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ABSTRACT

DEVELOPMENT OF A HIGH-ORDER NAVIER-STOKES SOLVER FOR
AEROACOUSTIC PREDICTIONS OF WIND TURBINE BLADE SECTIONS

Yalçın, Özgür

M.S., Department of Aerospace Engineering

Supervisor : Prof. Dr. Yusuf Özyörük

August 2015, 69 pages

Increased interest in renewable energy in the world has lead to research on wind tur-
bines at a great pace. However, these turbines have come with a noise problem. The
noise source of wind turbines is primarily aerodynamic noise highly related to com-
plex, three dimensional, unsteady flow fields around them. Therefore, determination
of these sources requires successful, accurate, turbulent flow solutions. In addition,
because acoustic waves are non-dispersive and non-dissipative, such solutions must
be carried out using low dissipation and low dispersion numerical schemes. Motivated
by these points, a high order, parallel Navier-Stokes solver with ’dispersion-relation-
preserving’ (DRP) feature and delayed detached eddy simulation (DDES) capability
has been developed. In this thesis, after the numerical methodology through this de-
velopment is presented, some validation procedures are carried out in order to test
order of accuracy, far field boundary conditions, inviscid and viscous flux routines,
and DDES capability of the solver. Finally, the results of the turbulent flow structures
causing noise around a NACA0012 blade section are demonstrated with the compar-
isons and comments.

Keywords: wind turbine noise, computational aeroacoustics, high-order methods,
dispersion-relation-preserving, DDES

v



ÖZ

RÜZGAR TÜRBİNİ PAL KESİTLERİ İÇİN AEROAKUSTİK TAHMİNLER
AMACIYLA YÜKSEK MERTEBELİ BİR NAVIER-STOKES ÇÖZÜCÜSÜNÜN

GELİŞTİRİLMESİ

Yalçın, Özgür

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Yusuf Özyörük

Ağustos 2015 , 69 sayfa

Rüzgar enerjisine eğilimin artmasıyla birlikte rüzgar türbinleri üzerine yapılan araş-
tırma ve geliştirmeler de artmıştır. Fakat, bu türbinlerin kullanımı gürültü sorununu
da beraberinde getirmiştir. Aerodinamik gürültü, rüzgar türbini gürültü bileşenleri
içinde çok önemli yer teşkil eder. Bu gürültüye türbin palleri etrafındaki üç boyutlu,
karmaşık ve durağan olmayan akışlar sebep olur. Bu nedenle paller etrafındaki gürültü
oluşma ve yayılma benzetimi yüksek doğruluk dereceli ve başarılı türbülans hesapla-
maları gerektirir. Akustik dalgaların kayıpsız ve dağılmadan ilerlemesini benzetmek
için bu hesaplamalar yüksek mertebeli ve dağılma ilişkisini koruyan çözüm şema-
ları kullanılarak yapılmalıdır. Bu amaç doğrultusunda yüksek mertebeli, ’dağılma-
korunumu-prensibi’ne uygun, DDES benzetim kapasiteli, paralleştirilmiş bir Navier-
Stokes çözücüsü geliştirilmiştir. Bu çalışmada önce çözücünün geliştirilmesi sıra-
sında kullanılan yöntemler tanıtılmakta, sonrasında ise doğrulama amacı ile bazı he-
sap rutin testleri yapılmaktadır. Çalışmanın sonunda NACA0012 pal kesiti etrafında
gürültüye sebep olan akış sonuçları, kıyas ve yorumlar eşliğinde sunulmaktadır.

Anahtar Kelimeler: rüzgar türbini gürültüsü, hesaplamalı aeroakustik, yüksek-mertebeli
yöntem, dağılma-korunumu-prensibi, DDES
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Öncelikle danışmanım Yusuf Özyörük’e henüz yüksek lisans eğitimim başlamamışken
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Son olarak, tezime sağladığı teknik destekten dolayı RÜZGEM’e ve 3 yıl boyunca
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CHAPTER 1

INTRODUCTION

1.1 Wind as a Renewable Energy

Renewable energy has recently become one of the most attractive topics around the

world because of global concerns such as climate change, overpopulation and en-

ergy deficiency. In the mean time, gradually increment of global energy requirement

which will be in 2040 almost 1.5 times higher than 2010 [16] raises the importance

of these concerns. The three positive contributions of renewable energy are reduction

of dependence on infrequent and expensive fossil fuels, protection of global climate

and creation of new international markets via green industries. Consequently, gov-

ernments are being forced to change their energy policies through renewable energy

by intergovernmental organizations (e.g. IRENA - International Renewable Energy

Agenda [29]) and international treaties and policies (e.g. Kyoto Protocol and Copen-

hagen Accord [35, 1]).

Among renewable energy sources like solar, biomass, geothermal and others [6], wind

is accepted as one of the leading energy source and wind turbines are the most com-

mon tools to extract energy from it. Increased interest in renewable energy in the

world, therefore, has lead to installation of wind turbines at a great pace which can

be supported by the wind market statistics of Global Wind Energy Council - GWEC

[23] (see Figure 1.1).

On the other hand, increase in both installed wind capacity and residential areas due

to overpopulation has caused a conflict such that people living nearby wind farms

have started to complain about wind turbine noise. It is reported that wind turbine

1



Figure 1.1: Global Cumulative Installed Wind Capacity (1997-2014) [23]

noise could be sensed as far as 1.5 km away [51, 41]. Furthermore, it could be more

annoying than transportation noise [51, 49]. For example, a 10 kW small wind tur-

bine build for residential power can cause a 60 dB sound pressure level with a wind

speed of 6 m/s. However, when wind speed is increased to 13 m/s, the sound pres-

sure level increases over 13 dB and approaches to a noise level caused by a street

traffic [53]. Although there is no international noise regulations and standards, some

European countries have limited noise levels to around 40 dB for the wind turbines

near the residential areas [53]. Moreover, this annoyance grows especially at night

since approximately 15 dB higher noise levels can be reached than in daytime [67].

Therefore, it can be said that while usage of wind energy has become widespread and

popular, it has come with a noise problem.

1.2 Noise Sources of Wind Turbines

Wind turbines are classified according to their rotor axis arrangement as Horizontal

Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT). Power gen-

eration of wind turbines could be increased with the length of the blades [68]. Since

generator and transmission devices of VAWTs are located on ground, the size of these

turbines could not be extended as much as HAWTs. Therefore, trend of an installation

of wind turbines for generating much more energy goes through the HAWT technol-

ogy. Hence, the noise problem of horizontal axis ones forms the biggest part of the

acoustic researches on wind turbines.

The noise source related to wind turbines is of aerodynamic and mechanic origin in

2



principle. Mechanical noise, also called hub noise, is caused from the mechanical

parts especially gearbox in the hub region. However, this kind of noise is achieved

to be reduced as enhancement of technology [46]. Nowadays in modern turbines,

aerodynamic noise, also called blade noise, is higher than hub noise [53]. Sound

levels for broadband frequency domain (Figure 1.2(b)) and projection of the measured

noise sources averaged over several rotations (Figure 1.2(a)) are used to demonstrate

this comparison in experimental studies [44]. Hence, the wind turbine noise issue has

been regarded as an aeroacoustic problem.

(a) Projection of noise sources averaged over

several rotations

(b) Averaged spectra of hub (—) and blade noise (—)

Figure 1.2: Comparison of blade and hub noise [44]

Noise emitted from a rotary blade is generally created by three types of sources;

monopole, dipole, and quadrupole. While displacement of the blade volume due to

rotation causes monopole sources, steady aerodynamic loadings on the blade surface

cause dipole sources. On the other hand, turbulent flow around the blade causes

quadrupole sources. While monopole and dipole sources emit low and discrete sound

components, quadrupole sources cause broadband noise emissions. Quadrupole sources

are more significant for the wind turbine blades due to its low speed nature [70, 53].

Noise sources caused by turbulent flow is shown in Figure 1.3. Unlike the turbulent

flow developed by the blade itself (known as self-noise in literature), interaction of

oncoming atmospheric turbulent flow with the leading edge of the blade creates a

3



dipole source (low-frequency noise, up to 160 Hz frequency). The reason is that the

interaction caused an unsteady lift which means an aerodynamic loading on the blade

surface. The other sources shown in Figure 1.3 are due to a blade boundary layer

which is arisen from the flow progression over the large wind turbine blades.

Figure 1.3: Aerodynamic noise sources over a blade

Turbulent fluctuations do not emit noise themselves in an efficient way. However,

when they interact with a sharp trailing edge as in the wind turbines, vortical motions

related with near field pressure disturbances are created. Thus, these interactions

cause broadband noise emission which is in a range of 160-1500 Hz frequency values

and this is why trailing edge noise is believed as the most important noise source in

the wind turbines [45].

Apart from the turbulent flow, there is a vortex shedding noise caused by laminar

boundary layers (also called a tonal noise). It becomes influential at low Reynolds

numbers. Hence, for large wind turbines where flow with high Reynolds numbers

takes part, it is not a threatening problem [15].
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Another source to be mentioned lastly is the blade tip noise. It occurs due to the

pressure difference between top and bottom surfaces of the blade which generates a

trailing vortex at the tip of the blade. As wind turbines are getting bigger and bigger,

this topic has become as important as the interaction of turbulent boundary layer -

trailing edge interaction noise [46].

In brief, noise sources due to flow around a rotary blade are summed up in Table 1.1:

Table 1.1: Noise source types in aerodynamic origin for a rotary blade

Source Types Directivity Frequency Range
Displacement of the blade volume Monopole

LowAerodynamic loadings on the blade surface
Dipole

Interaction of the leading edge
and the oncoming turbulence
Interaction of the turbulent boundary layer
and the trailing edge

Quadrupole Broadband
Blade tip noise
Laminar boundary layer vortex shedding
(tonal noise)

1.3 Methods for Noise Source Detection

It is certain that determination of the noise source locations and types accurately

is crucial to be able to solve the noise issue during the design process of the wind

turbines. In this regard, much research on wind turbine noise sources are carried

out experimentally [22, 32, 44], computationally [20, 60] or semi-theoretically and

theoretically (acoustic analogy) [4]. Determination experimentally is for sure the

most reliable method if the test environment could be impeccable. However, test set-

up for the wind turbines is quite difficult; for instance, pureness of the blade surfaces,

mounting and positioning the microphone platform, control of the oncoming air flow

are some of the considerations to be certainly prepared and arranged in a studious

way.

Computational way to detect the wind turbine noise sources implies basically a nu-

merical simulation of the fluid motions in acoustic frame. This is regarded as Com-

putational Aeroacoustic simulations (CAA). As previously mentioned, most noise
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sources are associated with turbulent structures (eddies) and the turbulent flow is

composed of random, three dimensional, non-linear and unsteady fluid motions as

it is well known. Therefore, due to its complexity, a proper resolution of turbulent

flow is needed for accurate noise simulations. Although there are commonly used

commercial flow solvers (such as [2, 7]) with the capability of flow simulation over a

rigid body, they are more suitable for steady-state flow solutions and flows changing

slowly in time due to low-order numerical schemes employed (mostly second order).

For acoustic purposes high-order numerical methods are needed [66] for low dissi-

pation and dispersion errors. This argument will be discussed in details in Chapter

1.4. Furthermore, even very vortical flow motions can radiate less sound compared

with its total energy especially at low Mach numbers because the noise sources may

cancel each other during long propagations. By considering this information, if any

numerical solver causes large computational errors, it may estimate more noise at far

regions than it should be [11]. Thus, truncation error should also be handled seriously

during CAA simulations.

Acoustic analogy, on the other hand, is the first theory to discuss and demonstrate

that the reason of the aerodynamic noise is the flow itself [37]. This analogy basically

shows a derivation of a classical wave equation, that has source terms (Lighthill’s

stress tensor) on the right hand side and perturbation terms on the left hand side,

from Navier-Stokes (NS) equations with some mathematical operations. Since the

source terms are represented by the turbulent fluctuations, the flow region is treated

as the acoustic environment. Then, when the governing equation is solved by Green

Function [18], it is seen that the solution is directly associated with the turbulent flow

region. On the other hand, since directly numerical computations of all the regions

from source location to the far away fields is still expensive, acoustic analogy is pre-

ferred to estimate the noise sensed by a far away observer by integral techniques

after obtaining the numerical solution at near fields. The widely-used integral ap-

proaches are Kirchhoff [34] and Ffowcs Williams-Hawkings (FW-H) [72] equations.

They can both handle the source terms on moving surfaces with the turbulent flow

effects. Although Kirchhoff method is mostly applicable in a surface that is in linear

flow region, its area of utilization is extended by many studies such as ducted fan

problems by Özyörük and Long [47], jet problems by Shih et al. [40] and others.
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However, when the integration surface is in non-linear flow regions, FW-H method

can estimate the radiated sound more properly than Kirchhoff method [55]. Further-

more, FW-H equation is well-suitable for the helicopter and wind turbine blade noise

calculations from the domain of the flow solutions near the solid body to the far away

regions effectively [60, 18].

1.4 Computational Issues

Sound is composed of acoustic waves that are non-dissipative, and non-dispersive in

non-convective mediums, and propagate with the local speed of sound. For this rea-

son, acoustic waves can propagate in any direction (contrary to entropy and vorticity

waves) without attenuation over long distances. Numerical methods for aeroacous-

tic problems, therefore, must provide low dissipation, low dispersion characteristics

of the noise and this subject constitutes the main difference between CAA and CFD

(Computational Fluid Dynamics) problems.

Dissipation error is an amplitude error which means a mismatch between the ampli-

tude of the wave solved by numerical discretizations and that of the physical (actual)

wave. On the other hand, dispersion error emanates from phase speed or frequency

distinctness between numerical and actual waves. As known that low-order algo-

rithms are inherently dissipative and therewithal could not capture dispersion relation

accurately. That is why high-order numerical algorithms are required in CAA prob-

lems.

Although central schemes can be dispersive, they do not produce dissipation in com-

putational domains. Non-central schemes (like upwinding) conversely cause dissi-

pation and therefore they are usually avoided to use in CAA simulations. Never-

theless, some studies (such as [76, 25]) do not hesitate to use non-central schemes

because dissipative terms are necessary for damping out the unnatural short waves

emerged from the high-order discretizations of the partial differential equations. For

instance, much amount of dissipation must be included in numerical algorithms for

the steady-state solutions or shock capturing problems. However, both satisfying the

wave propagation characteristics of sound and removing these spurious waves may
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become a pretty difficult and highly noteworthy situation to be applied in CAA simu-

lations. The reasons are that unsteady acoustic problems include long propagations of

noise disturbances and dissipation causes spatially altering solutions of amplitude and

phase of the waves. Although these non-central algorithms are trying to rearrange the

mesh stencil sizes to overcome excessive dissipation [76], central schemes are also be

preferred with explicitly addition of artificial dissipation terms. These terms eliminate

the contamination of spurious short waves from the computational domains without

damping the low frequency waves (with high wavelengths) when dissipation is re-

quired especially at physical boundaries. The methodology of artificial dissipation

algorithm will be widely mentioned in Chapter 2.4.

Statement of the wave propagation theory is that the number of wave modes (acous-

tic, vorticity and entropy) and the wave propagation characteristics (isotropic, non-

dissipative and non-dispersive) are expressed by the dispersion relations of the gov-

erning equations [71]. Hence, this theory helps to understand that any numerical

discretizations should avoid to damage dispersion relations of the partial differen-

tial equations to be used. In accordance with this purpose, the ’dispersion-relation-

preserving’ (DRP) scheme by Tam and Webb [64] has opened a new road in 1990s to

aeroacoustic problems. They proposed high-order finite difference methods to pro-

vide not only a low dissipation feature in numerical solutions but also almost a match

between the exact dispersion relation of the governing differential equations and the

numerical one. The idea behind this algorithm is preserving the Fourier transforms

of the partial differential equations since the dispersion relations are obtained by tak-

ing the Fourier transforms of these equations. Therefore, DRP discretizations in both

space and time domains were derived in this manner. This novel algorithm has been

extant in many CAA applications.

1.4.1 Finite Difference Solver

For numerical solvers developed for aeroacoustic purposes, obtaining high-order ac-

curacy is a must. While creating a mesh domain, the use of unstructured grids are

more suitable to handle difficulties of the complex geometries than structured ones.

However, it is not easy to achieve a high-order accuracy with unstructured ones dur-
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ing spatial discretizations. Moreover, for a wind turbine blade section simulation, it

is enough to use structured grids providing that the mesh quality. On the other hand,

although finite volume (FV) approach could be implemented to unstructured grids

in a more appropriate way than finite difference (FD) methods, the use of FD meth-

ods are adequate for a non-complex geometry as in this thesis, regarding their easy

implementation.

1.4.2 Time Integration Methods

To be able to provide less dissipative and less dispersive scheme, temporal discretiza-

tion must also be applied accordingly. For explicit FD solvers, Runge-Kutta (RK)

and Linear Multistep (LM) time integration methods are generally preferred [10].

RK methods do the time integration by dividing the time step in stages and compute

a variable one time step further from the obtained information of each stages. On the

other hand, LM methods use the information from the prior time steps to go forward

in time. As examples through acoustic purpose, while Tam and Webb developed a

LM method with DRP scheme [64], Hu et al. optimized the RK methods to get low

dissipation and low dispersion features (called as LDDRK [26]).

1.4.3 Considerations for Outer Boundary

High accurate numerical algorithms are mandatory but not sufficient by themselves

for CAA problems. The use of these algorithms becomes meaningful with appro-

priate boundary conditions. Since acoustic waves, during propagation, decline so

slowly than other flow disturbances, outgoing from the computational boundaries

without reflection should be treated more attentively than CFD simulations. This

also shows why CAA applications differ from CFD ones. For this purpose, some

non-reflecting artificial boundaries have been improved. Asymptotic boundary con-

ditions [3, 64], characteristic boundary conditions [21, 50], and Perfectly Matched

Layer (PML) technique [27, 24] can be shown as examples of famous non-reflecting

boundary types. Among them, asymptotic ones are considered as the most reliable

ones for wide scale CAA problems [10, 36] only if the artificial boundary is consti-
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tuted adequately far from the body to be simulated.

1.5 Turbulence Modelling Issues

Up to now, the importance of an accurate numerical solver of turbulent fluctuations to

predict aerodynamic noise caused by wind turbine blades and the computational con-

siderations while creating this solver have been discussed in Chapter 1.2 and Chapter

1.4. Besides, selection of the governing equations is another remarkable point. As

is known to all, fluid motion is basically identified with NS equations. However, the

governing equations to be solved are changing with the type of the acoustic problems.

For example, while it is sufficient to describe linear wave propagation through uni-

form flow fields with the convected wave equations, for non-uniform flow fields it is

required to solve the linearized Euler equations. On the other hand, non-linear wave

propagations should be illustrated with the nonlinear Euler equations.

Acoustic problems arising from turbulent flow must be analysed with NS equations.

The best approach to treat the problem is of course direct numerical simulation (DNS)

of the turbulent flow field, where every scale of the eddies are taken into account.

However, DNS of a realistic problem especially with high Reynolds numbers (con-

taining much shorter waves) is computationally out of reach of current CPU capabil-

ities due to super fine mesh domains requirement.

Instead, modelling the eddies rather than directly resolution is preferred to reduce the

CPU cost. Reynolds-Averaged Navier-Stokes (RANS) simulation that models all the

turbulent scales is one of the approaching methods. It takes the Reynolds time aver-

aging of NS equations and since time average of each flow variable is kept constant,

it brings the equations to steady form which is inadequate for solving unsteadiness of

the turbulent flow. Although Unsteady RANS (URANS) equations are developed to

remain the transient terms, RANS approach satisfies inaccurate results for the cases

of large separations over a body where large eddies mostly exist [13, 32, 48]. The rea-

son behind is that RANS attempts to model the large eddies with a universal model

and since large eddies are influenced by the geometry of a body, they could not be

simulated accurately with the universal models.
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To overcome the drawback of RANS in massive separations, Large Eddy Simulation

(LES) which resolves the large eddy structures directly and model the small ones

has been introduced. LES takes a volume average of the equations instead of time

averaging in RANS; in other words, LES applies a numerical grid filter. It makes

sense to model only small, isotropic, homogeneous eddies which are more universal

and resolve the others so that this kind of approach has been a remedy of the flow

problems such as wake flow and large separation cases [13, 20]. However, using

the grid volume filter could not reduce the CPU resources to feasible levels in the

wall boundary layer for the problems that particularly involve the attached boundary

layers.

To be able to defeat the disadvantages of both methods, Spalart et al. [57] have conse-

quently introduced a new hybrid method of RANS and LES, named Detached Eddy

Simulation (DES). This hybrid method which applies RANS near the solid boundary

and LES far from the boundary provides not only an accurate solution through ex-

tensive problems but also less demand on computer usage. DES basically intents to

model eddy viscosities in the boundary layer by RANS and then activates LES at the

outer regions of the boundary layer to sort the detached eddies out in case of massive

separation.

Even though DES reduces the fine grid requirement of LES in the boundary layer in

general, it might have a problem during switching from RANS to LES mode with

some doubtful grid types. In the event that parallel grid spacing to the wall is smaller

than thickness of the boundary layer, LES mode is turned on in somewhere inside

the boundary layer and not able to model all the velocity fluctuations accurately due

to insufficient grid refinement there. Therefore, DES develops less eddy viscosity

than it should be in the problem. This is called as Modelled-Stress Depletion (MSD)

and to discard the dependency of grid spacings, Delayed Detached Eddy Simulation

(DDES) has been presented as a modified version of DES by limiting the length scale

with the eddy viscosity field [58].

Reynolds averaging of the NS equations has brought about new unknown terms,

called Reynolds stresses and these extra unknowns could not be solved with the al-

ready governed equations (closure problem). First, Reynolds stress term has been
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described by an eddy viscosity through Boussinesq hypothesis. Then, to close the

extra unknowns several models such as zero-equation (e.g. mixing length theory),

one-equation (e.g. Spalart-Allmaras) and two-equation models (e.g. k-ω, k-ε) have

being enhanced. By taking into consideration of experimental data Spalart-Allmaras

one-equation turbulence model is more appropriate with the Detached Eddy Simula-

tion [57].

1.6 CAA Applications for Wind Turbine Blade Sections

As stated before, the interaction of turbulent boundary layer with trailing edge of a

blade constitutes the major component of modern wind turbine noise. Apart from

some experimental and semi-theoretical studies exemplified in Chapter 1.3, many

CAA applications with/without acoustic analogy have been carried on for aeroacous-

tic purposes around wind turbine blade sections. According to the study of Kam-

ruzzaman et al. [32], it was emphasised that simulations with RANS be insufficient

alone for detecting trailing edge noise. Although Ikeda et al. [28] achieved a noise

radiation caused by low Reynolds number flow over a blade with DNS approach, it is

not possible to perform a DNS study for high Reynolds number flow which is more

realistic. Instead, LES has been preferred as one of the most common methods in

blade simulations [20, 42].

Winkler [73] demonstrated the effect of a trailing edge blowing technique, which is

for broadband noise reduction, over a blade section by LES simulation. Besides, Wolf

and Lele [74] performed a successful trailing edge noise estimation study by LES for

flow with high Reynolds number and low angle of attack around a wind turbine blade

section with FW-H integral equation. A PhD study of Zhu [75] presented a similar

work of both wind turbine blade section and whole turbine situations. However, as

mentioned in Chapter 1.5, separation of boundary layers for large angle of attack

flows could not be captured accurately by LES. Therefore, this affects a prediction

of the trailing edge noise. This weakness of LES was demonstrated in the study of

Ferreria [19]. Hence, wind turbine noise studies are being gone through hybrid LES-

RANS, DES, and improvements of DES approaches.
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Kim et al. [33] presented a noise simulation around a flatback airfoil with hybrid

LES-RANS method. They achieved an adequate noise prediction generated by vor-

tical flows leaving from a blunt trailing edge. Morris et al. [43] carried on a jet

noise simulation study via DES approach based on SA one equation model, and they

made noise prediction with FW-H integral equation. However, DES studies for aeroa-

coustic purposes around wind turbine blade sections have been recently conducted in

literature.

1.7 The Objectives of The Thesis

The objective of the thesis is to develop a numerical solver that has a capability of

turbulent flow simulations around wind turbine blade sections for aeroacoustic pur-

poses. During the development, expected results to be achieved by the solver are

summarised as follows:

• A high order accuracy,

• Adequate far field boundary conditions for minimum wave reflection,

• Accurate steady-state solutions for inviscid, viscous, and turbulent flow prob-

lems,

• Unsteady turbulent flow solutions of a wind turbine blade section for noise

predictions.

1.8 The Scope of The Thesis

In the light of the information discussed up to now, for aeroacoustic purposes, a three

dimensional, 4th order, DRP, parallel, finite difference solver of NS equations and

SA one equation model with DDES capability is developed in this thesis. A central

differencing with an artificial dissipation is performed within the computational do-

main, and the far field boundary grid points are solved with the asymptotic solutions

of the linearized Euler equations. In this thesis, the development process is mostly

presented.
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In Chapter 2, the methodology of this development is described. After the governing

equations with the boundary conditions are given, spatial and temporal discretiza-

tions of the equations are explained. Then, implementations of the wall and far field

boundary conditions are introduced. Finally, an artificial dissipation method to use is

shown.

In Chapter 3, the results of various flow problems are presented. First, validation

problems to demonstrate the order of accuracy, behaviour of far field equations, and

implementations of inviscid, viscous, turbulent flux terms, and DDES to the solver

are simulated. Then, an unsteady flow simulation is performed, and the results are

discussed.

In Chapter 4, the conclusion of the thesis is presented with the comments and the

future work.
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CHAPTER 2

METHODOLOGY

2.1 Governing Flow Equations with Turbulence Model

As stated before, full, three dimensional, compressible, time-dependent Navier-Stokes

equations are solved, in RANS form. In this chapter, first, these equations are given

together with the turbulence model employed. Then, the numerical schemes used for

solving these equations are described.

2.1.1 Compressible Reynolds-Averaged Navier-Stokes Equations

Three dimensional, unsteady, compressible RANS equations (also known as the Favre-

averaged Navier-Stokes Equations) are given in Cartesian coordinates as:

∂Q

∂t
+
∂(E− Ev)

∂x
+
∂(F− Fv)

∂y
+
∂(G−Gv)

∂z
= 0 (2.1)

where Q represents flow variables in vector form, and (E,F,G) and (E,F,G)vis

represent the inviscid and viscous flux vectors, respectively.

The conservative variables and the fluxes are given as:
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Q =



ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄ẽt


,E =



ρ̄ũ

ρ̄ũ2 + p̄

ρ̄ũṽ

ρ̄ũw̃

(ρ̄ẽt + p̄)ũ


,Evis =



0

τ̄xx

τ̄xy

τ̄xz

τ̄xxũ+ τ̄xyṽ + τ̄xzw̃ − q̄x


,

F =



ρ̄ṽ

ρ̄ṽũ

ρ̄ṽ2 + p̄

ρ̄ṽw̃

(ρ̄ẽt + p̄)v


,Fvis =



0

τ̄yx

τ̄yy

τ̄yz

τ̄yxũ+ τ̄yyṽ + τ̄yzw̃ − q̄y


,

G =



ρ̄w̃

ρ̄w̃ũ

ρ̄w̃ṽ

ρ̄w̃2 + p̄

(ρ̄ẽt + p̄)w̃


,Gvis =



0

τ̄zx

τ̄zy

τ̄zz

τ̄zxũ+ τ̄zyṽ + τ̄zzw̃ − q̄z



(2.2)

where an overbar signifies Reynolds-averaging (or time-averaging), and a tilde sig-

nifies favre-averaging (or mass-averaging). If φ is defined as any instantaneous flow

variable, Reynolds and favre averagings are represented separately as:

φ̄ =
1

T

∫
T

φdt (2.3a)

φ̃ =
ρφ

ρ̄
(2.3b)

where T represents a time interval.

The total energy term, ẽt, is obtained as:

ẽt =
p̄

ρ̄(γ − 1)
+

1

2
(ũ2 + ṽ2 + w̃2) (2.4)

Shear stresses and heat flux terms including eddy viscosities (according to Boussinesq

hypothesis) have the form as:

τ̄ik = (µdyn + µturb)

[(
∂ũi
∂xk

+
∂ũk
∂xi

)
− 2

3
δik
∂ũj
∂xj

]
(2.5a)

q̄k = −
(

µdyn
Pr(γ − 1)

+
µturb

Prt(γ − 1)

)
∂T̃

∂xk
(2.5b)
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where ũ1 = ũ, ũ2 = ṽ, ũ3 = w̃ and x1 = x, x2 = y, x3 = z. δ is the Kronecker delta.

Extra unknown term µturb is calculated with Spalart-Allmaras (SA) turbulence model

in order to close the flow equations.

2.1.2 Turbulence Modelling

The turbulent eddy viscosity, µturb, added to the molecular dynamic viscosity, µdyn, in

Equation 2.5 is calculated by solving SA one equation model with Delayed Detached

Eddy Simulation (DDES) approach. This is done simultaneously with the solution of

NS equations.

2.1.2.1 Standard Spalart-Allmaras One Equation Model

The standard one equation model [56] is applied as in the following form (in non-

conservation form and without trip term):

∂ν̃

∂t
+ V · ∇ν̃ = Ψ + Π− Φ (2.6)

where V = [ũ, ṽ, w̃]. Then, the turbulent eddy viscosity is obtained from;

µturb = ρfv1ν̃ (2.7)

The terms on the right hand side of Equation 2.6 represent diffusion, production and

destruction, respectively. They are computed as:

Ψ = ∇ ·
(
ν + ν̃

σ
∇ν̃
)
, Π = cb1(1− ft2)S̃ν̃ +

cb2
σ
|∇ν̃|2,

Φ = (cw1fw −
cb1
κ2
ft2)

[
ν̃

d

]2 (2.8)

where ν is the molecular kinematic viscosity. All variables shown in these expressions

are calculated as:

fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
, ν =

µdyn
ρ
, S̃ = S +

ν̃

κ2d2
fv2,

fv2 = 1− χ

1 + χfv1

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

,

g = r + cw2(r6 − r), r = min

(
ν̃

S̃κ2d2
, rmax

) (2.9)
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where S is the vortex term computed as S = |∇ × V| and d is the distance to the

nearest wall location. Parameters used in these equations are as follows:

σ = 2/3, cb1 = 0.1355, cb2 = 0.622, κ = 0.41, cw1 =
cb1
κ2

+
1 + cb2
σ

,

cw2 = 0.3, cw3 = 2, cv1 = 7.1, rmax = 10

(2.10)

2.1.2.2 Crivellini’s Modification to the Spalart-Allmaras Model

It was suggested by Crivellini and D’Alessandro [12] that the standard SA model

be basically modified through preventing calculation of fictitious source terms due to

negative values of ν̃. For this purpose, production and destruction terms (Π−Φ) were

rearranged as in the following form:

Π− Φ =


[
(1− ft2) cb1

κ2r
− cw1fw + ft2

cb1
κ2

] (
ν̃
d

)2
+ cb2

σ
|∇ν̃|2, ν̃ ≥ 0

0, ν̃ < 0
(2.11)

The diffusion term, on the other hand, was modified as:

Ψ = ∇ ·
(
ν + max(ν̃, 0)

σ
∇ν̃
)

(2.12)

Moreover, the turbulent eddy viscosity was suggested to be computed as:

µturb = ρfv1 max(ν̃, 0) (2.13)

Lastly, the function of r used in the source equation was given as:

r∗ =

(
Sκ2d2

ν̃
+ fv2

)−1

(2.14a)

r =

rmax, r∗ < 0

min (r∗, rmax) , r∗ ≥ 0
(2.14b)

The other functions and constants were kept the same as in the standard form. It

was reported that with this modification a transition can be triggered in the laminar

separation cases. However, it should be integrated differently for the attached flow

circumstances. In this thesis, fully-turbulent flow is provided via DDES approach

with the help of existence of initial eddy viscosity.
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2.1.2.3 Implementation of Delayed Detached-Eddy Simulation

As mentioned before, DDES method is more appropriate to flow simulations in-

volving separation and highly attached flow situations. Then DDES implementation,

which simply switches the distance term nearest to the wall between RANS and LES

modes with regard to less dependent on grid spacings, is done through [58]:

d̃ = d− fd max(0, d− CDES∆max) (2.15)

fd = 1− tanh([8rd]
3) (2.16)

rd =
νt + ν

(ui,jui,j)0.5κ2d2
(2.17)

where ∆max = max(∆x,∆y,∆z), and the coefficient of CDES = 0.65 which is

determined based on a calibration to isotropic turbulence decay. Here, νt represents

the turbulent kinematic viscosity and ui,j represents the velocity gradient ( ∂ui
∂xj

).

Although there are some further improvements to this mode (Zonal DES [14], and Ex-

tended DDES [52]) to prevent possible instabilities of switching between the modes

(named as a gray area problem), it has not been proven yet that their applications are

really needful. Therefore, DDES mode has been decided to use in this study.

2.2 Boundary Conditions

The governing equations are solved with the physical information of conservative

flow variables at computational boundaries in the view of the aeroacoustic purposes.

In this section, wall and far field boundary conditions are described, respectively.

2.2.1 Wall Boundary Conditions

The wall boundary (surface of the body) conditions are applied according to the fol-

lowing physical information:

Inviscid wall boundary conditions:

• Velocity: Normal velocity component to the wall is zero (V · ñ = 0). Other

components are found by extrapolations.
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• Pressure: Normal derivative of pressure is obtained from the momentum equa-

tion parallel to the wall (∇p · ñ = −pñ · ((V · ∇)V)).

• Density: Total enthalpy is preserved (h∞ = hlocal = γp
ρ(γ−1)

+ 1
2
ρ|V|2).

Viscous wall boundary conditions:

• Velocity: All velocity components on the wall are zero due to the no-slip con-

dition (V = 0).

• Pressure: Normal derivative of pressure is zero (∇p · ñ = 0).

• Density: For adiabatic cases, normal derivative of density is zero (∇ρ · ñ = 0).

However, for non-adiabatic cases, it is obtained from the equation of state (p =

ρRT ).

Finally, the turbulent eddy viscosity term is taken as zero on the wall point since there

is no turbulence there.

2.2.2 Far Field Boundary Conditions

In acoustic problems, the waves created by the source should go out of the computa-

tional domain with a negligible reflection. Therefore, far field conditions should be

constructed in considerations of the propagation characteristics of each waves.

Outgoing waves are classified according to their characteristics as entropy, acoustic,

and vorticity waves. Tam and Webb showed that the asymptotic solutions of the

linearized Euler equations contain these characteristics waves [64]. Accordingly, far

field boundary conditions are represented by two different set of equations which

are radiation and outflow equations. While the radiation boundary conditions are

related to the acoustic disturbances only, the outflow boundary conditions involve

the combination of all disturbances of entropy, acoustic, and vorticity waves. If a

disturbance to a quantity q is defined as q′ = q − q∞, then 3 dimensional radiation

boundary condition equations in polar coordinates are given as:
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∂

∂t


ρ′

V′

p′

+ V (θ)

(
∂

∂r
+

1

r

)
ρ′

V′

p′

 (2.18)

3 dimensional outflow boundary condition equations are as follows:

∂ρ′

∂t
+ V∞ · ∇ρ′ =

1

(c∞)2

(
∂p′

∂t
+ V∞ · ∇p′

)
(2.19a)

∂V′

∂t
+ V∞ · (∇V′) = − 1

ρ∞
∇p′ (2.19b)

∂p′

∂t
+ V (θ)

(
∂

∂r
+

1

r

)
p′ = 0 (2.19c)

where V (θ) is given by;

V (θ) = V · êr +
(
a2 − (V · êθ)2

)1/2 (2.20)

r is taken as the radial distance from the source location to the far field boundary

points. However, the question here is which point in the domain should be taken

as the source location? To compensate this confusion, if the far field boundary is

composed sufficiently far from the body, the term 1/r in the asymptotic equations

will not change from one reference point to another taken within the domain.

Bogey and Bailly demonstrated that using the linearized Euler equations at far field

grid nodes together with NS equations at interior domains does not damage the sim-

ulation process at all; on the contrary, it serves as a non-reflecting artificial boundary

as intended [5].

Furthermore, the far field condition of the turbulent eddy viscosity term is generally

selected as ν̃farfield = 3ν∞ to 5ν∞ in order to provide a turbulent flow field continu-

ously to the computational domain [59].

2.2.3 RANS Equations Transformed to Computational Domains

Discretizations of the governing equations are conducted within the computational

domain. Therefore, the equations are transformed from the physical domain to the
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computational domain. The transformed version of compressible RANS equations

given in a flux vector form in Equation 2.1 are as follows:

∂Q̂

∂τ
+
∂(Ê− Êv)

∂ξ
+
∂(F̂− F̂v)

∂η
+
∂(Ĝ− Ĝv)

∂ζ
= 0 (2.21)

where τ , ξ, η, and ζ represent time and space coordinates of the computational do-

main. Each flux term is calculated with Jacobian terms as:

Q̂ =
Q

J
(2.22a)

Ê =
1

J
(ξtQ + ξxE + ξyF + ξzG) (2.22b)

F̂ =
1

J
(ηtQ + ηxE + ηyF + ηzG) (2.22c)

Ĝ =
1

J
(ζtQ + ζxE + ζyF + ζzG) (2.22d)

2.3 Discretizations of the Equations

The idea of high order DRP discretizations, suggested by Tam and Webb [64], is

based on minimizing the dispersion error of discrete forms of derivatives in the gov-

erned equations. In order to determine the discretization coefficients of the DRP

scheme they proposed a procedure as follows: Firstly, a transformed wavenumber/an-

gular frequency is obtained from Fourier/Laplace transforms of the governing differ-

ential equations. Then, the optimized (DRP) coefficients which minimize the dis-

persion error caused by a difference between the transformed and actual wavenum-

bers/angular frequencies are obtained. In this section, a 4th order DRP numerical

discretizations of the parallel, explicit, finite difference solver, developed to solve

the 6 partial differential equations which are equations of continuity, 3 momentum,

energy, and SA one equation model, are described in space and time domains.
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2.3.1 Spatial Discretization

The classical 4th order finite difference scheme is satisfied with 5 grid nodes. How-

ever, to provide DRP feature one extra coefficient, as a free parameter, is used for the

optimization. After this coefficient is found, other coefficients are easily calculated by

classical Taylor series approach. Therefore, with the addition of this extra coefficient

spatial derivatives of the equations are discretized with 7 nodes to reach 4th order ac-

curate DRP scheme. For the nodes in the interior region of computational domains,

central differencing is applied. However, at boundary regions where the number of

nodes are limited, backward/forward discretizations are applied. In Figure 2.1, while

point A represents the central differencing, point B represents the backward/forward

differencing.

Figure 2.1: Spatial discretizations at inner and boundary regions of the computational

domain

The weights of the central DRP scheme were obtained by Tam and Webb [64] as

follows:

First, any partial differential term of an lth node in a uniform grid was expanded with

the finite difference approximation by 7 nodes as:(
∂f

∂x

)
l

' 1

∆x

3∑
j=−3

ajfl+j (2.23)

Here, the parameters of aj are the DRP coefficients. When Fourier transform was
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applied to left and right hand sides of Equation 2.23 as:

f̃(α) =
1

2Π

∫ ∞
−∞

f(x)e−iαxdx, (2.24)

a transformed wavenumber, α̃, was found as follows:

α̃ =
−i
∆x

3∑
j=−3

aje
ijα∆x (2.25)

The phase of the transformed wave, α̃∆x, is actually a periodic function of the phase

of the differential term, α∆x, with period of 2π. On the other hand, any sinusoidal

wave can be defined with at least 5 grid points in computational domains. This means

that its wavelength should be equal or bigger than 4 grid spacings. In other words,

the phase of the wave should be smaller than π/2. Therefore, the dispersion error

between the actual and transformed phase was defined in the range of π/2 as:

E =

∫ π/2

−π/2
|α∆x− α̃∆x|2d(α∆x) (2.26)

The spatial discretization coefficients that satisfy the condition of minimization of

this error,
∂E

∂aj
= 0, (2.27)

were finally derived. Governed DRP coeficients to be used in central spatial dis-

cretizations are as follows:

aj=0 = 0,

aj=1 = −aj=−1 = 0.79926643,

aj=2 = −aj=−2 = −0.189413314,

aj=3 = −aj=−3 = 0.02651995

In case of a requirement of backward/forward discretizations at boundaries, Tam and

Dong gave DRP coefficients for all possible non-central schemes [62] as:

a(j=4 to j=−2) = [0.049041958,−0.468840357,−0.474760914, 1.273274737,

−0.518484526, 0.166138533,−0.026369431],

a(j=4 to j=−2) = [−0.209337622,−1.084875676, 2.14777605,−1.388928322,

0.768949766,−0.28181465, 0.048230454],

a(j=4 to j=−2) = [−2.192280339, 4.748611401,−5.108851915, 4.461567104,

−2.833498741, 1.128328861,−0.203876371]
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To see the superiority of the DRP scheme to the standard one, the dispersion rela-

tions obtained by different numerical schemes are compared. Figure 2.2 shows the

comparison of α∆x of a first derivative of a function with α̃∆x. Appendix A gives

the details of the formulations of dispersion relations obtained by different numerical

schemes.

α ∆x

α
 ∆

x

0 0.8 1.6 2.4 3.2
0

0.8

1.6

2.4

3.2

standard secondorder FD

standard fourthorder FD

standard sixthorder FD

DRP fourthorder FD

ideal scheme

~

Figure 2.2: Comparison of the wavelengths resolved by different numerical schemes

with one mesh spacing

As seen in Figure 2.2, one mesh spacing can resolve 1.45 radian part of the whole

phase with fourth-order DRP scheme. This means that for accurate wave resolution

approximately (2π/1.4 w) 4.5 mesh spacings at least are required. In other respects,

standard sixth-order, fourth-order and second-order schemes need 6.3, 9 and 15.7

mesh spacings, respectively. Therefore, this study shows that high-order DRP nu-

merical methods are more prone to simulate physical waves with equivalent compu-

tational domains than low-order or standard numerical methods.

2.3.2 Temporal Discretization

Temporal derivatives of the governing equations are discretized with DRP Linear

Multistep (LM) method which was suggested by Tam and Webb [64] due to its low
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dissipation and low dispersion features. However, in steady-state simulations of this

thesis compact four-stage Runge-Kutta (RK4) method [30] is preferred since it con-

verges to steady solutions with higher CFL numbers than the LM method.

2.3.2.1 Linear Multistep scheme with DRP

The LM discretization method with 4th order DRP scheme was developed by Tam and

Webb with the same approach used in the spatial discretizations as following steps:

First, any time derivative term at nth time step was expanded with Taylor series by 4

time steps as follows:

Qn+1 −Qn ' ∆t
3∑
j=0

bj

(
dQ

dt

)n−j
(2.28)

The transformed angular frequency of Equation 2.28 applied Laplace transform was

found as:

ω̃ =
i(e−iω∆t − 1)

∆t
∑3

j=0 bje
ijω∆t

(2.29)

DRP coefficients of the temporal discretizations obtained from minimizing the error

between the actual angular frequency of the differential term and the transformed one

are given as:

bj=0 = 2.30255809,

bj=1 = −2.49100760,

bj=2 = 1.57434093,

bj=3 = −0.38589142

The discretization algorithm of the 3D, explicit, 4th order, DRP finite difference solver

in Cartesian coordinates (for inner regions of the computational domain) is as follows:
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The flux vector, A, obtained from spatial discretization is given as:

A(x, y, z, t) =− 1

∆x

3∑
j=−3

ajE(x+ j∆x, y, z, t)− 1

∆y

3∑
j=−3

ajF(x, y + j∆y, z, t)

− 1

∆z

3∑
j=−3

ajG(x, y, z + j∆z, t)

(2.30)

The conservative flow variable vector, Q, after one time step, ∆t, obtained from

temporal discretization is given as:

Q(x, y, z, t+ ∆t) = Q(x, y, z, t) + ∆t
3∑
j=0

bjA(x, y, z, t− j∆t) (2.31)

The discretization algorithm can also be written in computational domains as follows:

A(ξ, η, ζ, τ) =−
3∑

j=−3

ajÊ(ξ + j, η, ζ, τ)−
3∑

j=−3

ajF̂(ξ, η + j, ζ, τ)

−
3∑

j=−3

ajĜ(ξ, η, ζ + j, τ)

(2.32)

Q̂(ξ, η, ζ, τ + 1) = Q̂(ξ, η, ζ, τ) +
3∑
j=0

bjA(ξ, η, ζ, τ − j) (2.33)

where Q̂, Ê, F̂, and Ĝ are computed from Equation 2.22.

2.3.2.2 Compact four-stage Runge-Kutta scheme

The compact RK4 temporal discretization scheme after getting the flux terms, A,

with DRP method as in LM integration is given as:

q(0) = Q(x, y, z, t)

q(1) = q(0) − β1∆tA(q(0))

q(2) = q(0) − β2∆tA(q(1)) (2.34)

q(3) = q(0) − β3∆tA(q(2))

Q(x, y, z, t+ ∆t) = q(0) − β4∆tA(q(3))

where the coefficients are: β1 = 1/4, β2 = 1/3, β3 = 1/2, β1 = 1.
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2.3.2.3 Implementation of The Boundary Conditions

Maintaining the use of the central discretization schemes within the computational

domain is important for low dissipation. However, this could be possible at boundary

regions with only existence of extra three ghost nodes that are not in the physical

domain. On the other hand, damping out the spurious short waves created by the

high-order discretizations of the partial differential equations is another remarkable

point. Therefore, the boundary conditions are constructed with these considerations.

Tam and Dong proposed that there should be one ghost grid node created inside the

wall for each boundary grid nodes. However, the number of ghost values should be

selected as much as the number of defined equations due to physical requirements

on the wall. Then, normal derivatives of the variables that cause these requirements

should be discretized by non-central DRP schemes with the help of their ghost values

[62]. To illustrate, for 2 dimensional viscous flow problems there must be no-slip con-

dition that enforces zero velocity on the wall (uwall = 0, vwall = 0), and the pressure

and shear stress variables (p, τxy) are responsible for zero velocity. Therefore, while

these variables are discretized in the perpendicular direction to the wall with their

ghost values (like point A in Figure 2.3), all the remaining variables are discretized

with only their interior points (like point B in Figure 2.3).

For the linearized equations, the use of the non-central schemes at boundaries can

damp out the numerical contamination due to spurious short waves; however, when

non-linearized equations are the point in question, this methodology becomes com-

plicated and may cause numerical instabilities [61]. As an ideal way in this thesis, it

is decided to maintain the central schemes with the addition of an artificial dissipa-

tion to clean the unwanted short waves (see Chapter 2.4). Therefore, three ghost grid

points for each wall points and each flow variables need to be defined. The ghost val-

ues of velocity components, density, pressure, and turbulent eddy viscosity terms are

obtained by extrapolations according to Dirichlet and Neumann type conditions with

respect to the wall boundary conditions given in Chapter 2.2.1. Then, the ghost val-

ues of total energy term are directly calculated with the ghost values of other variables

(see Equation 2.4).
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Figure 2.3: An alternative to spatial discretizations near the wall boundary

On the other hand, since the linearized Euler equations are used instead of the non-

linear NS equations at the far field boundary, it is preferred to use a backward finite

differencing for three ghost nodes at outer boundary (like point B in Figure 2.1) with

the help of the non-central DRP coefficients.

2.4 Artificial Dissipation

High-order discretizations of the partial differential equations cause contamination

with spurious short waves that cannot be simulated exactly due to different propaga-

tion characteristics from those of large waves. Therefore, an artificial dissipation is

added to the governing equations to clean up the contamination. In this section, the

artificial dissipation method applied to the developed solver is described after intro-

ducing some other methods.

Since the high-order DRP algorithm of Tam and Webb is used in this thesis, the

artificial dissipation method recommended by them [65] has been firstly intended to

use. For any lth point in the computational domain, the artificial dissipation term is
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added to the governing equations as:

∂Q̂l

∂τ
+
∂(Ê− Êv)l

∂ξ
+
∂(F̂− F̂v)l

∂η
+
∂(Ĝ− Ĝv)l

∂ζ
= −µad

3∑
j=−3

cjQ̂l+j (2.35)

where µad is the weight of the artificial dissipation term, and it is taken as constant

for all nodes in the domain.

Although this algorithm damps the spurious waves out sufficiently in inviscid flow

problems, it cannot show this achievement in viscous flow problems where high gra-

dients of flow variables and variational mesh densities take place. The reason is that

this algorithm cannot adapt itself to these changes. To compensate this, Tam and

Shen proposed a selective artificial dissipation algorithm [63] which is changing with

the flow conditions. However, it may cause a numerical instability feature in more

complicated flow problems due to its non-conservative form.

Lastly, the artificial dissipation model introduced by Jameson, Schmidt and Turkel

(named as JST model) [31] that is both conservative and adjusted itself to different

flow conditions has settled the matter. This model is, in origin, appropriate to the 2nd

order algorithms. Cengiz raised the order of the artificial dissipation accuracy to the

4th order by the 6th order differencing terms [8].

For 3 dimensional, 4th order accurate algorithms, JST type artificial dissipation terms

which are added to the right hand side of the flow equations are given in the compu-

tational domain (for any lth point) as follows:

∂Q̂l

∂τ
+
∂(Ê− Êv)l

∂ξ
+
∂(F̂− F̂v)l

∂η
+
∂(Ĝ− Ĝv)l

∂ζ
= LADQ̂l (2.36)

LADQ̂l = (D2
ξ +D2

η +D2
ζ +D6

ξ +D6
η +D6

ζ)Q̂l (2.37)

The 2nd and 6th order terms are defined as:

D2
ξQ̂l = ∇ξ

[
λlε

(2)
l ∆ξ

]
Q̂l (2.38a)

D6
ξQ̂l = ∇ξ∆ξ∇ξ

[
λlε

(6)
l ∆ξ∇ξ∆ξ

]
Q̂l (2.38b)

where ∇ξ and ∆ξ represent the forward and backward differencing schemes, respec-

tively. ε(6) is the weight of the artificial dissipation term, and λ represents the spectral

radius. Here, the 2nd order terms are necessary for transonic flows to capture the
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shock. ε(2) behaves like a pressure sensor and calculated as:

ε
(2)
l = min(20s2

JST , sJST ) (2.39)

where sJST is the pressure sensor term:

sJST =
|p̃ξ+1,η,ζ − 2p̃ξ,η,ζ + p̃ξ−1,η,ζ |
p̃ξ+1,η,ζ + 2p̃ξ,η,ζ + p̃ξ−1,η,ζ

(2.40)

Therefore, JST type artificial dissipation model adapted to the 4th order accurate al-

gorithms by Cengiz [8] is decided to use in the developed solver to damp out the

spurious short waves.

2.5 Ffowcs Williams-Hawkings Equation

It is expensive to directly simulate the sound radiated to the far away regions by

numerical discretizations. Thus, FW-H integral equation is solved with the data of

flow variables resolved near the source body. In this section, FW-H integral equation

and its implementation to the solver are presented.

General FW-H equation [72] composed as a wave equation after rearranging NS equa-

tions is as follows:(
∂2

∂t2
− c2

0

∂2

∂xi∂xi

)
(H(f)ρ′) =

∂2

∂xi∂xi
(TijH(f))− ∂

∂xi
(Fiδ(f)) +

∂

∂t
(Qδ(f))

(2.41)

where f = 0 represents FW-H surface, a subscript of 0 denotes the values far from

the surface, and a prime (′) denotes the perturbation values. H is Heaviside and δ is

Dirac delta function. For 3D flow, i is taken as 1, 2, and 3. Moreover, Ti,j , Fi and Q

represent quadrupole, dipole and monopole source terms, respectively. Here are the

formulations of the source terms:

Tij = ρuiuj + pδij − c2
0ρ
′δij (2.42)

Fi = (pδij + ρ(ui − 2Ui)uj + ρ0UiUj)
∂f

∂yj
(2.43)

Q = (ρui − ρ0Ui)
∂f

∂yi
(2.44)
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In the above equations, while u is the local flow velocity,−U represents FW-H surface

velocity. δij is again Kronecker delta. Furthermore, ∂f/∂y terms represent the normal

derivatives of the integral surface.

A time-domain or frequency-domain solution of Equation 2.41 was obtained from

the implementation of Green function via wave equation operator. 3D time-domain

solution was formulated efficiently by Farassat [17]. On the other hand, 2D and 3D

frequency-domain solutions were demonstrated in Lockard’s studies [38, 39].

In order to detect the waves with certain frequencies that could be resolved in the

range of the capability of the solver, 3D frequency-domain FW-H solution is used in

this thesis. The final equation that gives the perturbation density values at the observer

location is as follows (in the form of [39]):

H(f)c2
0ρ
′(y, ω) =−

∫
f>0

Tij(ξ, ω)H(f)
∂2G(y; ξ)

∂ξi∂ξj
dξ

−
∮
f=0

Fi(ξ, ω)
∂G(y; ξ)

∂ξi
dl

−
∮
f=0

iωQ(ξ, ω)G(y; ξ)dl

(2.45)

where y and ξ denote the observer and source coordinates in vector forms, respec-

tively. Green function for a wave equation is given for the flow in y1 direction as:

G(y; ξ) =
−1

4πd
e−ik(d−M(y1−ξ1))/β2

(2.46)

where d is a distance which is equal to
√

(y1 − ξ1)2 + β2(y2 − ξ2)2 + β2(y3 − ξ3)2,

i is complex number, M is Mach number, k is wavenumber (ω/co), and β is Prandtl-

Glauert factor (
√

1−M2).

Each terms in Equation 2.45 are integrated by summation of all the values of each

grids in the identified regions. That is to say that while monopole and dipole source

terms are integrated along FW-H surface area, quadrupole source terms are integrated

along a volume out of FW-H surface.

Integral surface of FW-H equation can be selected as both the surface of the body

and a near field surface (called as the permeable surface). If the permeable surface

is constituted including all the turbulent regions that cause noise, it is not needed to

make quadrupole volume integrations so that the contributions of the surface integrals

alone would be enough.
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2.6 Development of the Solver

The commercial CFD programs do not have enough numerical capability of simu-

lating aeroacoustic problems because of their low order numerical accuracy. This is

why a CAA solver is required to be developed with the purpose of noise estimation

of wind turbine blade sections. In this section, firstly, the coding language of the

solver is introduced. Then, how the solver is parallelized is described. Finally, a

parallel speedup graph obtained by multiple cores in a high performance cluster is

demonstrated.

2.6.1 Coding Language

The solver is coded via Fortran programming language. Fortran 90 which is one of

the newest versions is preferred to use. The reasons of the decision are summed up in

Table 2.1 through conspicuous features unavailable in the oldest versions:

Feature Intended Purpose
Module group data together and make them available when necessary
Allocate-Deallocate allow a dynamic memory allocation when necessary
Pointer create dynamic data structures without allocate extra memory
Select-Case make multiple selection faster instead of using if loop

Table 2.1: Programming features that come with the version of Fortran 90

The newer versions such as Fortran 2003/2008/2015 have renewals mostly in the area

of object-oriented programming. Therefore, Fortran 90 is decided to be adequate to

develop the desired solver in an efficient way. Moreover, double precision is used

during programming the solver to minimize the round-up errors.

2.6.2 Parallelization Procedure

Since much fine stencil sizes are required to simulate the large frequency acous-

tic waves and much more time iterations are needed to converge to solutions with

high-order methods during the simulations, computation cost becomes huge when
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the equations are solved with a sequential code. This brings the necessity of making

the solver parallel meaning that the code works with multi-processors.

There are two commonly-used multi-processing language: OpenMP and Open MPI.

Although the implementation of the functions of OpenMP is easier than those of Open

MPI, OpenMP only provides a communication between the cores in a single node.

Open MPI, on the other hand, can supply a communication between several nodes

and this gives an advantage to be able to use more processors. In addition to that,

the linear speedup can be easily preserved with increasing the number of processors

with Open MPI; however, OpenMP does not guarantee the speedup. Thus, Open MPI

functions are preferred to implement into the solver to make it parallel.

After all processors are initialized and ranked with simple Open MPI functions, equal-

ized computational domains are distributed to them. Therefore, each processors start

to solve all the flow equations in their local domains. In every iteration after solving

the internal domain numerically, the global boundary values are identified. This pro-

cedure is exactly the same as in the sequential code. However, there are also boundary

values of local domains of the processors to be determined. Therefore, these values

are taken from the internal domain of neighbour processors by communication. Re-

mind from Chapter 2.2.1, it is told that three ghost nodes are used to preserve the

central scheme. During the communication between the processors in neighbour-

hood relations, three ghost nodes are transferred in each axis direction. Figure 2.4

represents the communication process in i direction.

Figure 2.4: Communication between processors for local boundary values
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All multi-processing simulations of this thesis are done in METUWIND (METU Cen-

ter for Wind Energy) HPC cluster that has 8 nodes and 512 cores. The speedup test

that demonstrates how the speed of the solver increases with the number of proces-

sors is done to see the efficiency of the solver. The result of the speedup test up to 64

cores is shown in Figure 2.5.
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Figure 2.5: Comparison of the speedup of the solver with the linear speedup curve

The reason of a deviation from the linear speedup line is that the communication

process might slow down the simulations. Nevertheless, multi-processing efficiency

of the solver is good enough for long duration simulations.
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CHAPTER 3

RESULTS AND DISCUSSION

As aforementioned, high order methods have lower dispersion and dissipation errors.

Keeping them at acceptable levels is important for unsteady simulations. Therefore,

before starting to solve unsteady problems, order of accuracy of the developed solver,

which is desired to be 4th order, is demonstrated firstly. Then, far field reflection test-

ing is done to see the outgoing ability of acoustic waves from computational domains

without significant reflections. After that, inviscid and viscous flux computations of

the solver are tested with some steady-state problems that have analytical solutions

or solutions validated with experimental studies in literature. With these problems,

it is aimed to see the artificial dissipation effects on the solver as well. Then, im-

plementation of DDES algorithm is validated with a ’severe’ grid problem. Finally,

an unsteady problem over a wind turbine blade section (NACA0012) is introduced

and turbulent flow results obtained from unsteady simulations are demonstrated with

the comparisons and comments. Note that flow directions of the problems including

convection are selected through the positive coordinate systems.

3.1 Testing of Order of Accuracy

It is suitable to simulate a convection problem of an isentropic vortex in order to

check the order of accuracy of the solver. The problem simply includes a 2D convec-

tion simulation of an isentropic vortex. The simulation is done with inviscid (Euler)

equations with periodic boundary conditions and without artificial dissipation. Since

this is a pure convection inviscid flow problem, all flow characteristics of the vortex

37



is expected to be preserved during convection.

In the simulation, the vortex is convected through 3 different non-uniform Cartesian

meshes that have 50 × 50, 100 × 100 and 200 × 200 grid points, separately. Each

non-uniform mesh is created with sine and cosine functions. It is expected that 4th

order of accuracy is provided with the change of the grid sizes. On the other hand, the

reason of the use of non-uniform meshes is to show that the order of accuracy does

not depend on the mesh uniformity. Time step of all mesh domains is selected with

respect to the fines one. The reason is that time step is calculated with respect to the

smallest grid spacing in unsteady simulations as well.

Figure 3.1: Initial pressure contours of the isentropic vortex on a non-uniform mesh

The vortex is convected with the speed of V∞ = 200m/s. Initial conditions of the vor-

tex are given in the following formulations which are created by Gaussian distribution

as follows:

V =


V∞

0

0

+ uAe
(1−(r/b)2)/2


(y − y0)/b

−(x− x0)/b

0

 (3.1)

ρ = ρ∞

(
1− γ − 1

2

(
uA
c∞

)2

e1−(r/b)2

)1/(γ−1)

(3.2)

p = p∞

(
1− γ − 1

2

(
uA
c∞

)2

e1−(r/b)2

)γ/(γ−1)

(3.3)
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where b ' 0.08 which regulates the size of the vortex, uA = 0.8V∞, x0 and y0

represent the central points of the vortex, and r represents a local radius that originates

from these central points and composes the circular shape of the vortex.

Initial shape of the pressure contours of the vortex on non-uniform mesh with 50×50

grid points are shown in Figure 3.1.

After the simulation, pressure contours of the convected vortex for 3 different meshes

defined above is shown in Figure 3.2.

(a) 50× 50 grid points (b) 100× 100 grid points

(c) 200× 200 grid points

Figure 3.2: Pressure contours of the isentropic vortex convected through different

mesh domains

Root-mean-square (RMS) of error values caused by the difference between the flow
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variables of the simulation and the analytical one shows the order of accuracy as

follows: 4th order accuracy in 2D space is represented as O[(∆x)4, (∆y)4]. After

halving the grid spacings in both direction, the new error should become as

O[(∆x/2)4, (∆y/2)4] = O[(∆x)4/16, (∆y)4/16].

After the simulation, the RMS of errors caused by the difference of entropy flow

values of the isentropic vortex is analyzed. Figure 3.3 shows that the comparison of

the RMS curve obtained from the simulations with 2nd and 4th order accuracy curves

in logarithmic scales.
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Figure 3.3: RMS values of the entropy flow variables changing with grid spacings

As seen in Figure 3.3, the RMS curve of the simulation is almost parallel with the

4th order accuracy curve. This means that 4th order accuracy is achieved as expected

during the development of the solver.

3.2 Testing of Far Field Boundary Reflection

Since outgoing of acoustic waves from the computational boundaries should be non-

reflective in aeroacoustic problems, it is useful to check the behaviour of the employed

outer boundary conditions. For this purpose, the far field equations (2.18 and 2.19)

implemented into the solver are tested with a propagation problem of a 2D pulse. In
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this problem, outgoing of the propagated pulse from a computational domain without

a significant reflection is expected.

The pressure pulse is created by Gaussian distribution at the center of the computa-

tional domain (x = 0.5m, y = 0.5m) with zero velocity. Freestream pressure value

is taken as 101300 Pa. The simulation is done again with Euler equations without

artificial dissipation. Solutions are obtained in time accurate manner and propagation

of the pulse is observed.
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Figure 3.4: Appearances of the pressure pulse in the computational domain at differ-

ent times

Figure 3.4 shows several phases during the propagation. The contour plot at t = 0

s represents the initial condition of the pulse. Besides, Figure 3.5 demonstrates the
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cross sections of the pulse taken from the central line (y = 0.5m) of the contour plots

shown in Figure 3.4.
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Figure 3.5: Cross section view of the pressure pulse at y = 0.5m at different times

It is observed that the pulse leaves the computational domain without a significant re-

flection and finally the domain reaches to the ambient pressure value which is 101300

Pa (see Figure 3.5). Consequently, the far field equations (2.18 and 2.19) are used in

the further problems in this thesis.

3.3 Testing of Flux Computations

Steady-state problems are more challenging cases to verify the implementations of

the flux terms, boundary conditions, and artificial dissipation to the numerical solver.

However, high-order methods are not appropriate to the steady-state problems due

to a requirement of long iteration periods to reach steady flow conditions inherently.

Thus, steady test cases are performed with that knowledge.

Furthermore, many spurious short waves that could not be solved exactly by the intro-

duced scheme come in sight and contaminate the computational domain when, most

particularly, the freestream flow is encountered a solid body in numerical simulations.

Therefore, artificial dissipation (sufficient to damp only spurious waves) is added for
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the following problems.

3.3.1 Inviscid Flow over a Cylinder

In this problem, a 2D, steady, inviscid flow simulation over a cylinder body is per-

formed. In this simulation, again Euler equations are solved but this time for a more

difficult problem. Steady-state flow solutions around the cylinder are expected.

In the simulation, an inviscid flow with 0.3 Mach is passed over a cylinder. An O type

mesh with 129 × 81 grid points are used. The weight of artificial dissipation term,

ε(6), is selected as 1/64. The flow velocity corresponds to an almost incompressible

flow condition. Therefore, symmetric contours are expected around the cylinder.

Residual values of flow variables can be seen in Figure 3.6. It is observed that the

simulation is reached to the steady-state condition. A requirement of a long iteration

period is due to the use of a high-order method.
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Figure 3.6: Residual values of density, x-momentum and energy flow variables for

the inviscid flow over the cylinder test case

Figure 3.7 shows the pressure and Mach contours around the cylinder at the steady-

state condition. As seen that symmetry is almost preserved. A comparison of the

pressure coefficient, Cp, distribution on the wall surface between the solution of the
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simulation and the analytical solution (potential flow solution) is done as well. Figure

3.8 demonstrates this comparison.

(a) Mach contours (b) pressure contours

Figure 3.7: Inviscid flow with 0.3 Mach number over a cylinder
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Figure 3.8: Comparison of Cp distribution on the wall with the potential flow solution

Results indicate that a deviation is observed around the trailing edge of the cylinder.

This is possibly due to that the artificial dissipation term added to damp out the spu-

rious waves causes such an addition of viscosity. Therefore, there occurs a somewhat

boundary layer effect around the trailing edge.
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3.3.2 Viscous Flow Test Cases

The aim of this section is to verify the routines in the code that include viscous flux

terms of NS equations as well as turbulent viscosity computations through SA equa-

tion. First, 2D steady-state laminar and turbulent flow problems over a flat plate are

simulated. Then, 2D steady-state laminar flow over a NACA0012 blade section is

solved.

3.3.2.1 Laminar Flow over a Flat Plate

A laminar flow with a Reynolds number of 105 (chord-based) and 0.2 Mach number

over a 2 m-long flat plate is simulated in this section. A mesh domain of the flatplate

is shown in Figure 3.9 with the boundary conditions. Since the far field boundary is

not far enough away from the wall, Riemann far field conditions are applied instead

of the radiation and outflow equations (2.18 and 2.19).

Figure 3.9: Simulation setup with 69× 49 grid points for the flat plate test cases

The simulation is performed with NS equations until the steady condition is reached.

ε(6) is selected as 1/64. Residual history of flow variables are demonstrated in Figure

3.10.

After the simulation, velocity profiles of the laminar boundary layer is compared with

Blasius solution which is the analytical solution for zero pressure gradient flow. While

Figure 3.11 shows this comparison at the middle point of the wall, Figure 3.12 shows

it at the trailing edge.
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Figure 3.10: Residual values of density, x-momentum and energy flow variables for

the laminar flow over the flat plate test case
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Figure 3.11: Velocity profile in a laminar boundary layer compared with Blasius

solution at middle point of the flat plate

As seen in Figures 3.11 and 3.12, laminar velocity profile is obtained nearly the same

as Blasius solution. However, since orthogonal velocity component has different or-

der of magnitude, the difference between Blasius one seems much more than in par-

allel velocity component. It should be indicated that there exist a little more deviation
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in orthogonal velocity component of the trailing edge results since the boundary layer

is getting thicker there.
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Figure 3.12: Velocity profile in a laminar boundary layer compared with Blasius

solution at trailing edge of the flat plate

Skin friction coefficient is also compared with Blasius solution in Figure 3.13. The

results match up with each other perfectly.
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Figure 3.13: Comparison of skin friction coefficient, Cf , with Blasius solution for the

laminar flow over the flat plate test case
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3.3.2.2 Turbulent Flow over a Flat Plate

In this case, a turbulent flow with a Reynolds number of 107 and 0.2 Mach number

is passed over the same flat plate. ε(6) is selected as 1/64. Residual histories can be

seen in Figure 3.14. As observed that a level of the convergence to the steady-state

condition is not reached to the level of the laminar flow test case. The possible reason

is that the stability characteristic of SA equation is different than that of NS equa-

tions. Thus, the difference might affect the stability characteristic of fully-turbulent

problems. However, this problem is tested to verify the computation routines of the

turbulent terms, not to reduce the residual values as in the previous problem.

Figure 3.14: Residual values of density, x-momentum and energy flow variables for

the turbulent flow over the flat plate test case

Velocity profile is validated with the law of the wall as shown in Figure 3.15. Skin

friction coefficient distribution over the plate is also compared with CFL3D code of

NASA Langley Research Center [9] which uses 2nd order schemes (see Figure 3.16).

Figure 3.16 shows that although the grids are much more dense in both directions in

the mesh of CFL3D solver case (545×385 grid points), friction coefficient distribution

is exactly the same (except initial points of the leading edge) as the coarser one. This

shows the superiority of the use of 4th order DRP numerical schemes as well.
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Figure 3.15: Velocity profile in a turbulent boundary layer compared with the law of

the wall for the flat plate test case
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Figure 3.16: Comparison of skin friction coefficient, Cf , with CFL3D code results

with 545× 385 grid points [9] for the turbulent flow over the flat plate test case
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3.3.2.3 Laminar Flow over a NAC0012 Airfoil

A laminar flow over a NACA0012 airfoil is simulated with the conditions of 0.5

Mach, zero angle of attack, and a Reynolds number of 5000. The simulation is per-

formed with NS equations. O type mesh with 157× 113 grid points shown in Figure

3.17 is used. Again ε(6) is selected as 1/64.
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Figure 3.17: O type mesh domain with 157 × 113 grid elements over a NACA0012

airfoil for the laminar flow test case

Results are compared with the study of Villedieu et al. [69] where the same problem

was simulated by high order upwind schemes with an unstructured C type mesh with

8564 grid elements (200 of them are on the airfoil surface).

Residual values of flow variables are demonstrated in Figure3.18.

While Figure 3.19 shows the attained Mach and pressure contours, Figure 3.20 shows

the Cp and Cf distributions over the airfoil.

It is evident from the figures, the distributions are quite similar with the study of

Villedieu et al. except the leading and trailing edges (see Figure 3.20(b)). The reason

of the deviation at the leading and trailing edges is due to relatively poor mesh density

in the present calculations. Besides, because of the O type mesh configuration, wake
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leaving from the trailing edge is not resolved as well as on a C type mesh.
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Figure 3.18: Residual values of density, x-momentum and energy flow variables for

the laminar flow over a NACA0012 airfoil test case

(a) Mach contours (b) pressure contours

Figure 3.19: Contours of laminar flow around a NACA0012 blade section
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Figure 3.20: Cp and Cf comparisons with the study of Villedieu et al. [69]

3.4 Testing of Implementation of Turbulence Modelling

The fact that DDES approach can delay the activation of LES in boundary layers in

case of ’severe’ grids describes the superiority of DDES to DES. This is why DDES

approach is preferred in this study. To validate the implementation of DDES algo-

rithm to the solver, a severe grid is created along the flat plate mesh domain which

is shown in Figure 3.9. Severe grids occur when a grid spacing parallel to the wall

is less than the boundary layer thickness. Therefore, the mesh domain is extended

through z direction and grid spacings in x and z directions are rearranged to be able

to have a severe grid. Boundary conditions and the mesh topology in y direction of

the mesh are not changed.

General view of the severe grid is shown in Figure 3.21. ∆x and ∆z are selected as

0.1δ where δ is the boundary layer thickness, and calculated as δ = 0.37(ReL)−0.2L

[54]. The mesh has 513× 49× 9 grid points.

An unsteady turbulent flow with a Reynolds number of 106 in x direction and 5× 104

in z direction, and 0.1 Mach number over 2 m-long flat plate is simulated with RANS,

DES, and DDES, separately. It is expected that while DES could not capture the eddy

viscosity distribution in the boundary layer, DDES gives a closer result to RANS in

the severe grid. The simulation is carried on until time-averaged flow variables do not
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Figure 3.21: View of severe grid with ∆x ' ∆z ' 0.1δ

change. ε(6) is selected as 1/64. Distributions of turbulent eddy viscosity to molec-

ular kinematic viscosity, νt/ν, and fd function, which is used in DDES algorithm to

postpone LES mode, in the boundary layer are shown in Figure 3.22.
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Figure 3.22: Distributions of νt/ν and fd function in the flat plate boundary layer

Figures 3.22(a) and 3.22(b) indicate that DDES delays the activation of LES mode by

fd function and develops much more closer eddy viscosity distribution to RANS than

DES as expected. While DDES preserves the peak eddy viscosity, DES reduces it by
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almost 75% and this was also concluded by Spalart et al. in their study introducing

DDES algorithm [58].

3.5 Unsteady Aeroacoustic Simulation of a Blade Section

In this section, it is aimed to detect the turbulent structures emitted noise from a wind

turbine blade section to an observer. In order to make comparisons, a PhD study

of Wei Jun Zhu, titled as "Aero-Acoustic Computations of Wind Turbines" [75], is

selected as a benchmark case.

The properties of the simulation to be compared with the benchmark case are sum-

marized as follows:

• A 2D uniform flow with a Reynolds number of 105, 0.2 Mach number, and 50

angle of attack is passed over a wind turbine blade section.

• The blade section has a NACA0012 airfoil profile.

• O type mesh with 225 grid points in the circumferential direction, and 153 grid

points in the radial direction is constituted (see Figure 3.23).

• The first grid spacing starting from the airfoil surface towards the radial direc-

tion is 1.2× 10−4 length of the chord.

• Oncoming flow has a continuous (ambient) eddy viscosity as ν̃ = 3ν∞ which

is suggested by Spalart [59] to obtain fully-turbulent flow.

• An observer is located at 2.5 chord length away from the trailing edge towards

the radial direction which corresponds to a point of (x, y) = (1.0, 2.5) in the

computational domain.

It is not possible to make direct numerical resolution up to the observer location be-

cause of high cost of mesh requirement. Therefore, after unsteady, and vortical flow

solutions near the blade are reached to a condition which is sufficient to collect noise

data, the perturbation flow values at the observer location are calculated by FW-H
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(a) near field (illustrated with odd-numbered nodes) (b) trailing edge field

Figure 3.23: View of the mesh around the airfoil with 225× 153 grid ponits

integral equation. Then, sound pressure levels (SPL) of the observer location in a

frequency domain are calculated as:

SPL(dB) = 20log10

(
p′/
√

2

pref

)
(3.4)

where pref = 2× 10−5 Pa.

3.5.1 Grid Dependency Study

Before starting the simulation, a grid dependency study is performed. This study ba-

sically shows whether the mesh is both fine enough to obtain desired solutions and

coarse enough to reduce the computation cost or not. Comparing the time-averaged

flow variables obtained from different mesh domains is the most appropriate way

to make grid dependency study. However, it is computationally expensive for high

Reynolds number flow problems. Instead, developed 2D flow solutions just before

beginning of the unsteadiness are decided to be compared. For this purpose, 3 differ-

ent mesh domains are created. One of them is the original mesh introduced in Figure

3.23. Others are the coarsened mesh where the grid points are halved and the refined

mesh where the grid points are doubled in both directions. The coarsened mesh is

created by removing even-numbered nodes of the original mesh. On the other hand,
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the refined mesh is created by an addition of extra nodes between each node of the

original mesh bi-quadratically. The skin friction coefficients obtained from each mesh

at the same convection time are compared and demonstrated in Figure 3.24.
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Figure 3.24: Grid dependency study for 3 different mesh domains

The results indicate that the solutions of the original and refined mesh domains are

close each other. However, that of the coarsened one deviates from others noticeably.

Therefore, the use of original one is plausible considering the computational cost.

3.5.2 Unsteady Flow Results

The simulation is performed with DDES approach and carried on until dimensionless

time about 150 (with respect to speed of sound). During the simulation 64 processors

are used. Time step is around 5 × 10−5 dimensionless time (with respect to speed

of sound) which corresponds to CFL number of 0.8. ε(6) is selected as 1/64. Fully-

turbulent results are shown in Figure 3.25.

The results in Figure 3.25 indicate that a separation and vortical flow structures start

to occur between x/c = 0.2 and x/c = 0.3 along the surface. In the benchmark

case which was performed with 2nd order methods and LES approach, the separation

occurred almost at the same region.
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Figure 3.25: Fully-turbulent flow fields over a NACA0012 blade section with Re=105,

α=50, Mach=0.2

Flow data, required for FW-H integral equation, is collected on a permeable FW-H

surface which surrounds almost all turbulent flow structures around the blade section.

The permeable surface is selected as the boundary surface which distinguishes much

coarser and much finer grid domains (see Figure 3.26). The fact that how often and

how long should flow data be collected is decided with respect to a resolution capac-

ity of the solver and the mesh. The boundaries of the resolution capacity are analyzed

according to maximum and minimum wave frequencies. Hence, maximum and min-

imum frequencies in the domain surrounded by the permeable surface are found as

follows:

One wave can be resolved with approximately 6 grid spacings by this solver. Maxi-

mum wave frequency that can be resolved is computed as:

fmax,resolved =
c

6∆xmin
' 4250Hz (3.5)

where c is the speed of sound. Then, minimum period to collect data is:

Tmin =
1

fmax,resolved
' 2.4× 10−4s (3.6)

which corresponds to 200 iteration numbers in the solver. This means data should be

collected in each 200 iterations. On the other hand, maximum period is selected as

one convection time which corresponds to approximately 120000 iteration numbers.

Minimum frequency is, then, found as 50 Hz.
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After data collection is finished, all data are transformed to the frequency domain by

Fast Fourier Transform. Pressure fluctuation amplitudes (|p̂|) and turbulent kinetic

energy (TKE) for different frequency values at different locations on the permeable

surface are presented in Figure 3.27. Figure 3.26 shows FW-H surface and these

locations.
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Figure 3.26: FW-H surface and the points where fluctuations are obtained

Figure 3.27 indicates that intenseness of turbulent structures is increasing through

trailing edge. While point C has lowest intensity of TKE, point A has approximately

2000 times of that of point C. On the other hand, pressure fluctuation which is directly

related to acoustic spectra is reached its minimum value at point C as well. It is hard

to compare the other points from the pressure fluctuations. When the pressure levels

of each point are obtained by p′rms/pref , it is seen in Figure 3.28 that points B, and

D have similar trends in pressure levels distributions so that they cause similar noise

levels. The reason is that sound is radiated in all direction and they are both located

in regions close to unsteady, and vortical turbulent flow structures. Moreover, point A

has still been encountered vorticity fields. Therefore, making a noise comment about

it could be misleading.
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Figure 3.27: Distributions of pressure fluctuation amplitudes and turbulent kinetic

energy at different points on FW-H surface
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Figure 3.28: Pressure levels of different points located on FW-H surface with respect

to frequency values in logarithmic scale

The sound pressure level of the observer located far from the blade section is not

computed since FW-H integral equation has not been validated yet. In the following

studies, after it is validated, the SPL distribution will be compared with the results of

the benchmark case.
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CHAPTER 4

CONCLUSION

In this thesis, a 4th order, dispersion-relation-preserving, parallel, finite difference

solver of Navier-Stokes equations and Spalart-Allmaras one equation model with

DDES capability is developed for the purpose of performing aeroacoustic simulations

around wind turbine blade sections.

Firstly, the reason why a non-dispersive and non-dissipative solver is required in

Computational Aeroacoustic simulations is explained. Then, numerical methodolo-

gies including the way of spatial and temporal discretizations that provide 4th order,

DRP features within the computational domains with appropriate boundary condi-

tions and artificial dissipation are described in the frame of acoustic uses.

At the beginning of the results section, validation test problems are carried on. By

the vortex convection problem, the achievement of the 4th order accuracy is shown.

In the propagation problem of the pressure pulse, outgoing of the pulse from a com-

putational domain without a significant reflection is provided as desired with the far

field equations based on asymptotic solutions of the linearized Euler equations. The

computation routines of inviscid, viscous, and turbulent flux terms of the solver are

verified with the steady-state problems involving flow over a solid body situations.

Furthermore, the effect of the artificial dissipation on flow solutions is observed in

the steady-state problems. Although in the inviscid flow over a cylinder problem ar-

tificial dissipation has caused a boundary-layer effect around the trailing edge due to

the addition of viscosity, the pressure coefficient distribution is almost matched with

the potential flow solution. In the laminar flow over a flatplate problem, the artifi-

cial dissipation has worked perfect such that residual histories could be reduced to
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−15 levels in logarithmic scales. However, in the turbulent case it is observed that

the artificial dissipation method for SA one equation model should be constructed

differently than NS equations. Nevertheless, the solutions of the velocity profile and

the skin friction distribution have shown highly satisfactory results even with coarse

mesh domains with the help of 4th order and DRP scheme.

Finally, the unsteady simulation of a fully-turbulent flow over a NACA0012 wind tur-

bine blade section is conducted via DDES approach. The flow solutions are compared

with the results of the benchmark test case which was done by 2nd order methods and

LES approach in literature. After the simulation, the vortical flow structures that

cause noise are observed along the surface. A similar separation trend is observed

when compared with the benchmark case. Moreover, pressure fluctuations and turbu-

lent kinetic energy of different points located on FW-H surface which is a permeable

surface are compared with each other. It is observed that the region near the leading

edge develops fewest noise levels since turbulent structures do not occur around the

leading edge. Point A has the biggest turbulent kinetic energy distribution since it

is exposed to vorticity fields directly. Points B and D have similar pressure levels,

which are related to acoustic spectra, since sound is radiated in all direction and these

points have similar distances to the turbulent structures around the blade section.

It should be emphasised that this thesis mostly includes the development process of

the solver. Therefore, the validation problems constitutes the major part of the thesis.

However, this solver is created for unsteady simulations and noise predictions around

wind turbine blade sections. Hence, as an immediate future work, implementation

of FW-H integral equation will be validated so that noise levels of far away regions

could be obtained and compared with experimental and numerical studies in litera-

ture. Furthermore, comprehensive studies including 3D and blade tip effects, thicker

blade sections, synthetic inlet conditions, transition behaviour, and large separations

can be analysed in details by this solver. Then, acoustic spectra of these studies can

be revealed. Moreover, acoustic simulations for whole wind turbine blades can be

performed and blade shape optimization studies to reduce the noise levels can be

conducted.
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APPENDIX A

THE FORMULATIONS OF DISPERSION RELATIONS

General dispersion relation of central schemes with 2M + 1 grid points in x direction

of Cartesian coordinates is given as:

α̃∆x

α∆x
=

1

iα∆x

M∑
l=−M

ale
ilα∆x (A.1)

where al is the weight of grid points used in finite difference algorithms.

Using Equation A.1, the equations of dispersion relations, which are functions of

α∆x, according to different finite difference algorithms are found as follows:

For standard 2nd order schemes:

α̃∆x

α∆x
=

1

α∆x
sin(α∆x) (A.2)

For standard 4th order schemes:

α̃∆x

α∆x
=

1

α∆x

(
−1

6
sin(2α∆x) +

8

6
sin(α∆x)

)
(A.3)

For standard 6th order schemes:

α̃∆x

α∆x
=

1

α∆x

(
1

30
sin(3α∆x)− 3

10
sin(2α∆x) +

3

2
sin(α∆x)

)
(A.4)

For DRP 4th order schemes:

α̃∆x

α∆x
=

2

α∆x
(aj=3 sin(3α∆x) + aj=2 sin(2α∆x) + aj=1 sin(α∆x)) (A.5)

where aj=1, aj=2, and aj=3 are given in Chapter 2.3.1.
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