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ABSTRACT 

 

RADAR CROSS SECTION ANALYSIS BY  

SHOOTING AND BOUNCING RAYS METHOD 

  

Çakır, Mustafa Kağan 

Ph.D., Department of Engineering Sciences 

                                Supervisor: Prof. Dr. Turgut Tokdemir 

September 2015, 121 pages 

  

 

In this study, a MATLAB code incorporating `Shooting and Bouncing Rays (SBR) 

Method` is developed for calculating Radar Cross Section (RCS) of complex shapes. 

The code can calculate ray paths, magnetic current sheets, incident and scattered 

electric fields and RCS in horizontal, vertical and cross polarizations. While 

reflection effects are calculated by SBR algorithm, diffraction effects due to edges 

and corners are handled by `Equivalent Edge Currents (EEC’s)`. Wave frequency, 

aspect angle and number of rays are the input parameters of the code. Primitive 

geometries can be generated and analyzed by the code. In case of complex shapes, 

the input to the program is generated by 3D CAD tools in STL format. Several 

conclusions drawn from  the calculation results are presented. 

 

 

 

Keywords: Radar Cross Section, RCS, Shooting and Bouncing Ray Method, Ray 

Tube Integral 
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ÖZ 

 

SEKEN IŞIN YÖNTEMİ İLE  

RADAR KESİT ALAN ANALİZLERİ 

 

Çakır, Mustafa Kağan 

Doktora, Mühendislik Bilimleri Bölümü 

   Tez Yöneticisi: Prof. Dr. Turgut Tokdemir 

Eylül 2015, 121 sayfa 

 

 

Bu çalışmada, Seken Işın Yöntemi (SIY) ile kompleks cisimlerin Radar Kesit 

Alanı`nı (RKA) hesaplayabilen bir MATLAB kodu hazırlanması amaçlanmıştır. 

Kod, ışın yollarını, yüzey akımlarını, gelen ve saçılan elektrik alanları ve dikey, 

yatay ve çapraz dalga polarizasyonlarındaki RKA değerlerini hesaplayabilmektedir. 

Gelen dalga frekansı, tarama açısı, polarizasyon ve ışın sayısı gibi parametreler, 

hazırlanan MATLAB koduna girdi oluşturmaktadır. RKA analizi yapılacak olan 

temel geometrik şekiller gelistirilen kod icinde oluşturulabilmekte, bunun yaninda 

karmaşık geometriler ise 3D CAD programları aracılığı ile oluşturulup STL 

formatında MATLAB koduna girdi olarak tanıtilabilmektedir. Ayrıca, örnek 

çözümlemelerden elde edilen sonuçlar, tez çalışmasında sunulmuştur. 

 

 

 

Anahtar Kelimeler: Seken Işın Yöntemi, Radar Kesit Alanı, RKA, Işın tüpü 

integrali 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Literature Review  

 

James Clerk Maxwell formed the foundations of the classical theory of 

electromagnetism in 19th century. Main application scope of Maxwell equations is 

calculation of electromagnetic fields scattered from targets. Backscatter from 

military targets has been widely investigated since the beginning of World War II.  

The principles of ‘Radar’ are mainly based on Maxwell’s equations. “Radar is an 

object-detection system that uses radio waves to determine the range, altitude, 

direction, or speed of objects. It can be used to detect aircraft, ships, cavitycraft, 

guided missiles, motor vehicles, weather formations, and terrain. The radar dish (or 

antenna) transmits pulses of radio waves or microwaves that bounce off any object in 

their path. The object returns a tiny part of the wave's energy to a dish or antenna that 

is usually located at the same site as the transmitter. The term RADAR was coined in 

1940 by the United States Navy as an acronym for RAdio Detection And Ranging. 

The term radar has since entered English and other languages as a common noun, 

losing all capitalization. 

Hertz proved that electromagnetic waves are reflected back from metallic and 

dielectric surfaces. Research and development studies on radar systems gained 

significance due to the tactical advantages obtained on the combat field of World 

War II. In radar applications, electromagnetic power scattered by the target is 

modeled in hypothetical field called the ‘Radar Cross Section’ (RCS). Today, 

calculating the RCS of a target is one of the important issues in radar engineering. 
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“The radar cross section (RCS) of a target is defined as the effective area intercepting 

an amount of incident power which, when scattered isotropically, produces a level of 

reflected power at the radar equal to that from the target. RCS calculations require 

broad and extensive technical knowledge, thus many scientists and scholars find the 

subject challenging and intellectually motivating. This is a very complex field that 

defies simple explanation, and any short treatment is only a very rough 

approximation. 

  

The units of radar cross section are square meters; however, the radar cross section is 

NOT the same as the area of the target. Because of the wide range of amplitudes 

typically encountered on a target, RCS is frequently expressed in dBsm, or decibels 

relative to one square meter. The RCS is the projected area of a metal sphere that is 

large compared with the wavelength and that, if substituted for the object, would 

scatter identically the same power back to the radar. However, the RCS of all but the 

simplest scatterers fluctuates greatly with the orientation of the object, so the notion 

of an equivalent sphere is not very useful. 

  

Different structures will exhibit different RCS dependence on frequency than a 

sphere. However, three frequency regimes are identifiable for most structures. In the 

Rayleigh region at low frequencies, target dimensions are much less than the radar 

wavelength. In this region RCS is proportional with the fourth power of the 

frequency. In the Resonance or Mie Region at medium frequencies, target 

dimensions and the radar wavelength are in the same order. The RCS oscillates in the 

resonance region. In the Optical Region of high frequencies, target dimensions are 

very large compared to the radar wavelength. In this region RCS is roughly the same 

size as the real area of target. The RCS behaves more simply in the high-frequency 

region. In this region, the RCS of a sphere is constant.” [32] 
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Figure 1 Normalized backscattered RCS for a perfectly conducting sphere using 

semi-log scale 

Computational electromagnetics methods are based on numerical approaches of 

Maxwell equations which model interaction of physical targets and electromagnetic 

fields. In the last few decades this discipline has been critical for low observability 

technologies. Methods of this discipline have been widely adapted for problems such 

as antenna design and installation, radomme design, electromagnetic compatibility, 

RF parts design and bioelectromagnetism. 

 

“In general, codes based on the methods-of-moments (MOM) solution to the 

electrical field integral equation (EFIE) are used to calculate scattering in the 

Rayleigh and resonance regions. Codes based on physical optics (PO) and the 

physical theories of diffraction (PTD) are used in the optical or high-frequency 

region. The target's electrical size (which is proportional to frequency and inversely 

proportional to the radar wavelength) that determines the appropriate algorithm to 

calculate the scattering. When the target length is less than 5 to 10 wavelengths, the 
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EFIE-MOM algorithm is used. Alternatively, if the target wavelength is above 5 to 

10 wavelengths, the PO-PTD algorithm is used. [32] 

 

Many different methods have been developed since World War II for calculating 

Radar Cross Section of complex shapes. In the earlier techniques, electromagnetic 

waves in the microwave frequency are assumed to obey the laws of optics. These 

approximate techniques are used in the solution of numerically large problems. Since 

these techniques are effective at high frequencies, they are called high frequency 

solution techniques. Among the high frequency techniques are Physical Optics (PO), 

Geometric Optics (GO), Physical Theory of Diffraction (PTD), Geometric Theory of 

Diffraction (GTD)) and Uniform Theory of Diffraction (UTD). In most of these 

approaches, diffraction effects have also been taken into consideration when 

modeling interaction of electromagnetic wave with the target. Among these methods, 

physical optics and geometric optics provide accurate predictions unless there exists 

sharp edges on the target. However, in case of sharp edges and corners, methods that 

neglect diffraction effects have large error percentages. Error percentages in optic 

methods depend on the shape of the target.  

 

Figure 2 Computational Electromagnetics Techniques 
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Since 80’s there has been a rapid increase in computational power of processing 

units. Correspondingly, new methods which reduce approximations in RCS 

calculations have been developed. Techniques developed for RCS calculations after 

1980 are classified under two main groups. Basically, these techniques are high 

frequency techniques which adopt optical approaches and low frequency techniques 

which aims to solve the problem without any approximations.   

Full wave techniques have been developed by the approach of numerical 

discretization of Maxwell equations. Methods of Moments, Finite Difference Time 

Domain and Finite Element Method. These techniques are sometimes called the low 

frequency techniques. Electrically large problems in GHz frequencies cannot be 

solved by these low frequency techniques. However, low frequency techniques 

model the interaction of the target and electromagnetic wave and the resulting 

percent error is generally much lower than what is dictated by most engineering 

approaches. Recently, new methods based on full wave solution have been 

developed. This new method is called the Multilevel Fast Multi Pole Method 

(MLFMM) and uses the Method of Moments formulation. The main difference from 

MoM is that MLFMM groups the main functions and calculates the interaction 

between these groups. Today, this method is used for electrical large and dielectric 

problems that are difficult to solve even with today’s high computation power.  

The most effective solution for high frequency problems is high frequency 

techniques supported by diffraction theories. In these techniques, single and multiple 

reflections, shadowing and diffraction effects are also considered. The contribution 

of diffraction is calculated by the Physical Theory of Diffraction. Recently, a new 

method called the Shooting and Bouncing Rays (SBR) method is developed. 

Multiple reflections can be handled with this method. SBR is method is composed of 

combination of GO and PO methods. Ray tracing technique is an appropriate method 

used for low observability design. 

Multiple scattering plays a crucial role in RCS calculations. Cavities are locations 

where multiple scattering occurs mostly. The solution to this problem has been a 

main issue since multiple scatters around cavities have significant contributions on 

RCS.  
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In general, RCS of cavities is calculated by means of either modal analysis or full 

wave solution methods. For complex structures, neither modal analysis method nor 

full wave solution methods are not sufficient for solving electrically large problems. 

Shooting and Bouncing Rays (SBR) method for cavities first used by Chou et al. in 

1989 in a project supported by NASA [2] In this method, rays are shot into the cavity 

and propagate in the cavity according to GO rules. Besides, material properties can 

be taken into consideration by this method [2]. 

In Geometric Optics, electromagnetic propagation is first represented with the 

reflection, refraction, and divergence of optical rays. The electromagnetic properties 

of magnitude, direction, and phase are then added on top of the ray traces to mimic 

the properties of waves. In Physical Optics, incident electromagnetic waves are 

converted into equivalent surface currents on the scattering surfaces of the structure 

under study, using the surface equivalence principles. The current is then integrated 

and re-radiated as electromagnetic waves towards the observation points everywhere 

in the computational domain [1]. 

 

Figure 3 Various mechanisms contributing the Radar Cross Section (RCS) of an 

aircraft 

Combining Geometric Optics and Physical Optics methods, PO-SBR begins the 

computation by launching numerous rays from the sources, usually antennas or 

regions of plane waves. The magnitude of the rays is dependent upon the pattern of  
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the source. Each ray then propagates through the computational domain and bounces 

between the target surfaces under study using the GO method. Next, the 

electromagnetic fields at each hit point are converted into surface currents using the 

PO methods and re-radiated towards all observation points. Finally, the fields at each 

observation point are summed up to represent the final electromagnetic field 

computed at the corresponding location of the computational domain. Although the 

optical approximation is not a precise electromagnetic theory compared to the full 

wave methods, asymptotic methods are able to provide a very fast and reasonable 

estimation of the field strength in presence of electrically large structures [1]. 

Scattering from open ended rectangular cavities has been analyzed by two methods. 

These are ‘waveguide modal analysis method’ and ‘shooting and bouncing rays 

method’. Cavity is defined according to waveguide modes whose electrical field is a 

known quantity. Unknown mode coefficients are determined by applying the 

Kirchoff approach and reciprocity relationship. The second approach is the ray 

tracing method [3] which also known as shooting and bouncing rays.  

The solution to scattering from open ended waveguides and electromagnetic 

coupling problems has been investigated by Pathak et al. [4]. A relatively simple and 

efficient high-frequency analysis of electromagnetic modal reflection and 

transmission coefficients for waveguide discontinuities which are formed by joining 

different waveguide sections has been investigated. “The analysis extends the 

concept of geometrical theory of diffraction based equivalent edge currents and 

utilizes it in conjunction with the reciprocity theorem to describe interior 

(waveguide) scattering effects. It is noted that the previous use of equivalent edge 

currents was mostly restricted to exterior scattering by edged bodies, and its 

application to deal with interior scattering was limited to those guide geometries for 

which image theory could be used effectively to account for the interior wall effects. 

The present extension allows one to treat more general two and three-dimensional 

waveguide geometries provided the waveguide modes and their associated modal 

rays can be found explicitly. In particular, expressions for two-dimensional reflection 

and transmission coefficients are developed, and numerical results are shown for a 

flanged, semi-infinite parallel plate waveguide and for the junction between two  
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linearly tapered waveguides. One sample result is also shown for the reflection 

coefficient of a three-dimensional open-ended circular waveguide. Detailed 

expressions for three-dimensional waveguide discontinuities are being reported 

separately.” [4] 

As a result of the literature survey, it is concluded that there is a deviation between 

the results deduced from the computations conducted by SBR and modal analysis 

methods at low frequencies. Modal analysis method yields to accurate results at low 

frequencies whereas SBR at high frequencies. Other advantages of the SBR method 

are providing flexibility and applicability to problems whose waveguide modes 

cannot be determined easily.  

Baldauf et al. modified the SBR method which was originally developed for cavities. 

In cavity structures, rays leaving the cavity are captured at the aperture. However, for 

the open scatterers, it is troublesome to determine the area where the electrical field 

integral is solved [5]. Baldauf proposes a cavity equivalent to the scatterer. With this 

proposition, the solution is similar to conventional PO method except for multiple 

reflections. In this study, the baseline of this method is explained by Huygens 

principle.  

In this method, both basic and complex targets can be produces in STL 

(stereolithography) format. In STL mesh format, targets consist of triangular flat 

elements. Node coordinates and surface normal of triangular elements are clearly 

defined in this format. 

Complex targets can be handled as a geometry consisting of triangular flat elements. 

Ray-triangle intersection test has significance as most of the computation time is 

spent for this intersection test. Basic intersection algorithms in the literature first 

calculate three planar boundaries and then tests whether the intersection point lies 

within the boundaries of the triangle. One of the most frequent methods used in SBR 

for ray-triangle intersection is Badouel algorithm and the other is Moller-Trumbore 

[7] algorithm.  

In Badouel algorithm, the intersection of the ray with the plane that the triangle lies 

on is tested. If the ray is intersecting the plane, then the intersection point is tested 
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whether it lies inside the triangle or not. If the intersection point lies within the 

triangle, the intersection coordinates are calculated. 

In Moller-Trumbore algorithm, since the intersection of the ray with the plane that 

the triangle lies on is not calculated, there is no need for the plane’s equation 

parameters. Therefore, ray/triangle intersection test is accelerated. The most 

significant advantage of this method is efficient usage of the memory. 

The asymptotic solution to the canonical problem of scattering of planar waves from 

perfectly electric conducting cylinder has been investigated by Pathak [8] and 

‘Uniform Theory of Diffraction (UTD)’ has been proposed as the solution. Pathak 

solved the problem of scattering of planar waves from perfectly electric conducting 

cylinder in a manner similar to the method of Fock and by means of heuristic 

approaches he converted the total field into a uniform field. This solution is also 

valid for surface boundary layer transition zone. Fock also developed an asymptotic 

theory that investigates the diffraction of waves at large convex surfaces and 

proposed the solution in the shape of a canonic integral. 

Paknys [9]. investigated the radar cross section of the large rectangular shaped cavity 

embedded inside a finite cylinder. The geometry used in this analysis has also been 

used for analyzing cockpit like structures in air vehicle. Aperture Integration method 

has been used for analysis of waveguide modes propagating in cavity. Creeping wave 

effects have been calculated by ‘Geometric Theory of Diffraction’. Diffractions 

outside the cylinder have been handled by the ‘Theory of Equivalent Edge Waves’.  

 

1.2 Overview of the Thesis 

 

In this thesis study, basic SBR code is developed by MATLAB
®

. This code has been 

applied for open end scatterers for which the selected aperture is critical for the 

aperture integral. If the electromagnetic field values at the exit aperture are exactly 

known, far field RCS results can be acquired without considering the selected exit 

aperture. Huygens principles are applied to determine the electromagnetic field at the 

exit aperture. According to these principles it is assumed that the scattering surface is  
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contained by a surface called the Huygens surface. Equations of Huygens surface 

hypothesis has been used for numerical integration on the aperture surface. Results 

obtained from this code have been compared with the results obtained from PO 

methods. SBR can automatically handle shadowing and multiple bounce problems by 

means of ray tracing capability. However, since SBR algorithm does not consider 

diffraction effects, SBR code shall be supported by Physical Theory of Diffraction 

(PTD) or Uniform Theory of Diffraction (UTD) to achieve more accurate 

computation results. 

The broadest method in the literature which can handle edge diffraction effects is the 

Micheali’s method [10]. In this study, Micheali formulated the ‘Equivalent Edge 

Waves’ and claimed that diffraction effects can be solved by using them inside a 

linear radiance integral presented by Thomas Young almost 300 years ago.  

Although, Micheali, himself, did not perform any software applications, there have 

been numerous researchers using his method of ‘Equivalent Edge Waves’ for RCS 

analysis. 

 

1.3 Outline of the Thesis  

 

In the 2
nd

 chapter of this thesis study, formulation of the basic SBR method has been 

investigated. Also, ray-triangle intersection test has been analyzed by different 

methods and a new accelerated ray-triangle intersection test method has been 

investigated and compared by other conventional methods. In the last phase of the 

code, Huygens principles are made use of in the scattered field analysis and 

explained in detail. The code developed by using MATLAB has been tested on 

targets like square plate, cube and cylinder.  

In the 3
rd

 chapter of the study SBR code developed has been used to verify RCS of 

complex targets such as F117, Eurofighter and F16 aircrafts.  

In the 4
th

 chapter, Physical Theory of Diffraction (PTD) – Equivalent Edge Waves 

method has been superposed on SBR and diffraction effects have been investigated.  



11 

In the 5
th

 chapter, a case study on modelling a generic cockpit geometry of an air 

vehicle has been investigated. Cockpit geometry has been analyzed by using SBR 

and uniform theory of diffraction. 
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CHAPTER 2 

 

 

SHOOTING AND BOUNCING RAYS METHOD 

 

 

 

In this chapter, Shooting and Bouncing Rays (SBR) method is explained. SBR algorithm 

defined in this section is a ray based technique capable of calculating Radar Cross Section of 

perfectly electric conducting targets. This technique is also applied to electromagnetic 

scattering and antenna radiation problems. Basically, the algorithm is composed of ray 

tracing, amplitude tracing and aperture integration parts.  

 

Main blocks of the algorithm are defined in following sections: ‘Definition of the Ray’, 

‘Ray-Triangle Intersection Test’ and ‘Reflected Ray’ .In section 2.1 SBR analysis results for 

problems such as scattering from cavities and simple and complex targets are provided. 

Numerical results of the SBR code are compared with results obtained by Physical Optics 

(PO). Benefits and drawbacks of these two methods are also explained. 

 

2.1 Shooting and Bouncing Ray Method Formulation 

 

Shooting and Bouncing Ray (SBR) Method is based on principles of geometric optics [2]. 

Scattering analysis are performed on 3 levels. First, SBR traces the hit points and updates the 

incident electromagnetic fields from the source onto those hit points. Next, PO paints the 

equivalent surface current using the surface equivalence theory. The re-radiations of the 

surface currents from all hit points are then collected and summed at the desired observation 

points. And finally, the source radiates directly towards the observation points using SBR, 

and the resulting fields are added on top of the summation from the surface currents to 

become the final field solution at the observation points. In this step, scattered field is 

calculated by ray tube integration method according to Huygens principles. 
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SBR has two main advantages against PO. First, shadowing effects are naturally taken into 

consideration while in PO there is serious effort to calculate shadow effects. The second and 

more significant advantage is the ability of SBR to calculate multiple bounce effects whereas 

PO does not have that capability.  

 

 

Figure 4 Incident wave illuminating the target 

2.1.1 Ray Definition 

 

In order to perform SBR analysis, a stack of parallel rays shall be produced in order 

to mimic incident wave. Origin vector of each ray is defined as follows:  

                                         (2.1) 

   

The direction vector of the ray is: 

                     where;    
    

    
                                          (2.2) 

The directional components of the incident waves in Cartesian coordinate system are 

as follows:  

 

                ,                   
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and           

 

Figure 5 Incident ray intersecting the target surface 

 

Ray equation defined by the origin vectors is as follows: 

 

                                                                                                               (2.3) 

 

                                                                                         (2.4) 

 

denotes the coordinates of the ending point. In above equations, t denotes time,       

 

2.1.2 Ray-triangle intersection tests and reflected ray 

 

This phase includes calculations of reflection plane, surface normal, reflection point, 

distance from reflection point to the origin of the ray, amplitude and phase of 
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incident ray, reflection and transmissivity vectors, field magnitudes corresponding to 

reflecting and transmitted rays. 

When the ray reaches the target surface, ray-triangle intersection test shall be 

realized. If there is an intersection, plane of reflection, reflection and transmission 

vectors and point of reflection are found. Exact locations of the reflection and 

diffraction are necessary for calculating polarization components and traces of 

reflecting and diffracting fields.  

“Algorithms solving ray-triangle intersection test, simply calculates the intersection 

with three boundary planes defining the size of the triangle and then tests whether the 

intersection point is inside edges of the triangle or not.” [11] This approach requires a 

significant amount of storage space.  

Fig. 6 shows the boundary planes (i.e. plane AB, plane BC and plane CA) of triangle 

ABC.  

 

Figure 6 Boundary Planes of a Triangle 

 

Ray-triangle intersection test has two logical sequences: 

 The distance from the origin of the ray to the intersection point of ray end 

triangle is calculated. This is called the distance test. 
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 Whether the ray-triangle intersection point lies within the triangle or not is 

tested. This is called the aperture test.  

In this study, three algorithms governing ray-triangle intersection have been used. 

These are Badouel’s algorithm [6], Moller-Trumbore algorithm [7] and Plucker 

algorithm [11].  

 

2.1.2.1 Badouel Method 

 

The scattering surface is defined by the equation         . Intersection point on 

the ray and plane is determined by simultaneously solving plane and ray equations as 

shown in Figure 7. 

 

Figure 7 Ray and the plane on which the triangle lies 

 

For instance, if the scattering surface is a flat plate, the intersection point is 

determined as follows. Plane is defined by a point (Q) on it and the unit normal 

vector (    ).  

Since the dot product of two perpendicular vectors is equal to zero, for any point (P) 

on the plane following equation can be written, 

                                                (2.5) 
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The following equation is obtained by simultaneously solving ray and the plane 

equations: 

                                                          (2.6) 

Here t is defined as 

  
                    

         
                                                                            (2.7) 

Shape of the basic geometries like plate, sphere or cylinder can be defined by one 

single equation. Complex geometries can be handled by treating them as 

combination of triangular flat plates. In this case, intersection of a triangle and ray is 

more complicated than primitive geometries. “Basically, ray-triangle intersection test 

is applied in two steps: 

 Intersection of the ray and the plane of the triangle 

 Checking whether the intersection point lies within the triangle or not.” [11] 

 

Ray-triangle intersection is explained by equations 2.5 thru 2.7. After defining the 

intersection point, it is decided whether the point lies inside the triangle or not. 

Triangle is defined by corners p0, p1 and p2 as shown in Figure 8. The unit normal 

vector       is defined by the right hand rule and expressed as follows: 

 

                                                                                (2.8) 

 



19 

 

Figure 8 Triangle defined by the right hand rule 

The triangle is the intersection of 3 planes as shown in Figure 6. Provided that the 

point is at the right side of the each line (edge) then the point lies inside the triangle. 

Using this definition, if a point is at the left hand side of each edge then the point is 

outside the triangle. By means of vector multiplication and using the equations 2.9 

thru 2.11 it can be decided whether point P (ray-traingle intersection point) is at the 

right hand or left hand side of the specific edge.  

Since three corners of the triangle and the intersection point lies on the 3D space, 

vector multiplication is the best way to calculate the clockwise (CW) / 

counterclockwise (CCW) directions. The unit normal vector       shall be 

perpendicular to and outward the surface. The following equations shall be satisfied 

in order the point to be inside the triangle: 

                                                                             (2.9) 

                                                                             (2.10) 

                                                                           (2.11) 
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Figure 9 Method of testing whether a point is inside the triangle or not 

 

2.1.2.2 Moller-Trumbore Method 

 

This method yields to a faster algorithm since there is no need for the surface 

equation. Moller-Trumbore Method can be expressed as follows: 

Ray R(t) with origin O and normalized direction D can be defined as follows: 

                                   (2.12) 

Say the corners of the triangle are P0, P1 and P2 respectively. t is the intersection 

distance and (u,v) are the coordinates at the intersection point. 

2.1.2.2.1 Intersection Algorithm 

 

A point T (u, v) on the triangle is defined by the following equation: 

 

T(u,v)=(1-u-v)P0+uP1+vP2                (2.13) 
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where (u,v) are baricentric coordinates,    ,     and       must be 

satisfied. When calculating the intersection between ray R(t) and triangle T(u,v), 

R(T)=T(u,v) equation must be satisfied and defined as follows: 

O+tD = (1-u-v)P0+uP1+vP2                (2.14) 

This equation can also be defined as follows: 

 

                
 
 
 
                    (2.15)

  

The distance (t) between the ray’s origin and intersection point and its baricentric 

coordinates can be determined by solving the linear system of equations given in Eq. 

2.15. 

 

Figure 10 Translation of the ray’s origin 

 

In Figure 10, M=[-D,  V1-V0, V2-V0] is the matrix in Eq. 2.15. 

Given E1= P1-P0 , E2= P2-P0 and T=O-P0, Eq. 2.15 can be solved by Kramer’s rule. 

 

 
 
 
 
  

 

        
 

     

     

     
                            (2.16) 
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                        equation is known from linear algebra 

and can be solved Eq. 2.16 can be arranged as follows: 

 

 
 
 
 
  

 

         
 

         

        
        

  
 

    
 
    

   
   

         (2.17) 

 

where; P=(D x E2) and Q=(T x E1) 

 

2.1.2.3 Plucker Test Method 

 

Another method used to accelerate ray-triangle intersection test is the Plucker test. 

This test is faster than Moller-Trumbore test. Main idea of the Plucker test is to store 

the ray’s coordinates (i.e. origin and direction) and the edges of the triangle in 

Plucker coordinates. In Plucker method, first the intersection distance parameter and 

then intersection point is calculated [11]. 

.  

 

Figure 11 Illustration of Plucker Test 

 



23 

In Figure 11 a, b and c show the edges of the triangle. Since, all the black arrows 

attached to the edges of the triangle are directed towards the ray r1 and towards 

inside of the triangle, it can be concluded that the ray intersects the triangle. All the 

grey arrows attached to the edges of the triangle are directed towards the ray r2 but 

not all of them are directed towards inside of the triangle, it can be concluded that the 

ray does not intersect the triangle. 

The general strategy of the methods in the literature is first to perform the distance 

test and pass to the aperture test if the distance test fails. The Plucker algorithm 

performs a fast aperture test that makes use of the Plucker coordinates along with 

distance calculations. The following section explains the Plucker coordinates. 

 

2.1.2.3.1 Plucker Coordinates 

 

Plucker coordinates developed by Julius Plucker in 19
th

 century, is a method that 

assigns 6 homogenous coordinates for each line in the projective 3D space (P
3
). 

2.1.2.3.2 Geometric Intuition 

 

In the 3 dimensional Euclid space, line L is defined by two points or two planes 

containing the points.  

 

Figure 12 (a) Representation of two points in a line (b) Representation of direction 

and moments of two points on the line 

The displacement vector from point P = (p1, p2, p3) to point Q = (q1, q2, q3) is 

different from 0 as long as the points are not collocated. The displacement vector 
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also shows the direction of the line. Each displacement between the points on Line L 

is given by the scalar multiplication of U=P-Q. If a physical particle having a unit 

mass is moved from point P to point Q then it has a moment about the origin. This 

moment is equal to the cross product of the U and Q. The area of the triangle OPQ is 

proportional to the distance between P and Q which is considered as the triangle’s 

base and the area doe no change if the triangle is moved along the line. The moment 

vector V is perpendicular to the displacement as stated in its definition hence 

     .  

(U:V) = (u1: u2: u3: v1: v2: v3) are homogeneous coordinates of L. 

2.1.2.3.3 Algebraic Definition 

 

In the 3D projective space (P
3
), line L includes point P and point Q with 

homogeneous coordinates (px: py: pz: 1)  and (qx: qy: qz: 1)  respectively. These 

coordinates when embedded into the columns of M, a matrix of 4 x 2 is formed. 

   

    

    

    

  

                  (2.18)

  

Since P and Q are different points, the columns of M are linearly independent and 

rank 2. Plucker coordinates of line L is defines as follows: 

L={P-Q: P×Q} 

 
    

  
  

    

  
  

    

  
      

    

    
  

    

    
  

    

    
               (2.19) 

  P-Q            P×Q 

The Plucker coordinates of A, B and C edges of the triangle are expressed using 

following 18 coefficients, where (x0,y0,z0), (x1,y1,z1) and (x2,y2,z2) are the 

coordinates of the corners respectively [12]. 
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Table 1 Coefficients for Plucker Test 

A B C 

A0=x0y1-x1y0 B0=x1y2-x2y1 C0=x2y0-x0y2 

A1=x0z1-x1z0 B1=x1y2-x2y1 C1=x2z0-x0z2 

A2=x0-x1 B2=x1z2-x2z1 C2=x2-x0 

A3=y0z1-y1z0 B3=y1z2-y2z1 C3=y2z0-y0z2 

A4=z0-z1 B4=z1-z2 C4=z2-z0 

A5=y1-y0 B5=y2-y1 C5=y0-y2 

 

Following equations can be deduced from Table 1: 

A2+B2+C2=x0-x1+x1-x2+x2-x0=0           (2.20) 

A4+B4+C4=z0-z1+z1-z2+z2-z0=0          (2.21) 

A5+B5+C5=y1-y0+y2-y1+y0-y2=0           (2.22) 

Equations above yield: 

C2=-A2-B2              (2.23) 

C4=-A4-B4              (2.24) 

C5=-A5-B5             (2.25) 

As a result, for a triangle only 15 coefficients are enough instead of 18 coefficients 

yielding a memory saving 20 %. Non-normalized unit normal vector of the triangular 

surface can be defined as follows [13]. 
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Figure 13 Unit normal vector components of a triangle 

 

nx=A3+B3+C3                   (2.26) 

ny=-A1-B1-C1                   (2.27) 

nz=A0+B0+C0                   (2.28) 

 

2.1.2.3.4 Basics of the Plucker Test 

 

“Plucker coordinates are an alternate way of describing directed lines in three space 

using six numbers [11]. By performing a six dimensional permuted inner product of 

these numbers we can determine whether two directed lines intersect (the inner 

product is 0.0) or whether one passes to one side or the other (depending on the sign 

of the inner product). These three possibilities are illustrated in figure 14.” [11]  

 

 

Figure 14 Three possibilities for two directed lines whether one passes to one side or 

the other (depending on the sign of the inner product). 
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By determining on which side a line passes with respect to another we can determine 

if a ray passes through a triangle [11].  

So if 6-dim vectors defining edges and a ray are:  

e0 = {p − p0, p × p0}                  (2.29) 

e1 = {p1− p, p1× p}                  (2.30) 

e2 = {p0 − p1, p0 × p1}                 (2.31) 

R = {d × o, d}                  (2.32) 

Ray intersection test is performed by checking whether the dot products of the 

following 6 dimensional vectors have the same sign or not. 

t0 = (e0, R), t1 = (e1, R), t2 = (e2, R)               (2.33) 

 

Figure 15 Ray-Triangle Intersection Algorithm finds whether intersection point ph 

exists. If yes, computes the u, v parameters of intersection (such as ph = p + e0u + 

e1v) as well as distance t={o, ph}. 

Fast test is performed by pre-calculation and storage of the triangle edges in Plucker 

coordinates. 
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2.1.2.3.5 Intersection Algorithm 

 

In the following sections, accelerating techniques for ray-triangle intersection test 

with Plucker coordinates. First, necessary amount of calculation during rendering 

process, and how it’s reduced is explained in detail. Second, Plucker test which used 

for data processing, in the previous section is explained. Finally, whole intersection 

test is described. 

2.1.2.3.5.1 Pre-calculated Triangle Data 

 

In the pre-processing phase, all the information about the tringle is based on indexing 

the coordinates of normalized unit normal vector, corner p and two edges (e0 and e1). 

2.1.2.3.5.1.1 Storing the Unit Normal Vector 

 

The unit normal vector of the triangle is defined as follows:              . One of 

the perpendicular components is assumed to be equal to 1 and since the defined 

intersection algorithm does not include any perpendicular length, there is no need to 

store it. Similar to the projection test, the perpendicular component with the largest 

amplitude is chosen and all the proper values can be scaled by the inverse of this 

component. 

nw = max(abs(ni))  where i=0,1,2               (2.34) 

Then the last two remaining components can be determined: 

nu = nu/nw                   (2.35) 

nv = nv/nw                  (2.36) 

where u < v and u + v + w = 3. 

Choosing the perpendicular component with the largest amplitude is not compulsory. 

Preferably a component with non-zero amplitude can be chosen but small amplitude 

can effect sensitivity. 
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2.1.2.3.5.1.2 Storing the Vortex Data of the Triangle 

 

The data of two components of the corner p of the triangle with indices u and v are 

simply stored in pu and pv.  

pu = pu                   (2.37) 

pv = pv                   (2.38) 

The vectorial product of the corner p and scaled unit normal vector is stored as np. 

np = nu×pu + nv×pv pw                 (2.39) 

Instead of storing the dot product, it is possible to stoe the pw component of p but 

storing the dot product allows the best memory usage during intersection test phase. 

 

2.1.2.3.5.1.3 Storing the Edge Data of the Triangle 

 

It is necessary to store only two components of each edge with indices u and v (e0u, 

e0v, e1u, e1u ). There is no need to store the component having w index considering an 

edge is a 3 dimensional vector. The scaled components of e0 are calculated as in e1 in 

the following manner:  

e0u = (-1)
w
e0u/nw                  (2.40) 

e0v = (-1)
w
e0v/nw                 (2.41) 

e1u = (-1)
w
e1u/nw                  (2.42) 

e1v = (-1)
w
e1v/nw                 (2.43) 

The w index itself is stored and used for reloading the coordinate components for 

indexing. The other two indices (u, v) can be reloaded in order to be used for the bias 

(u < v) or (v < u) which are used in the pre processing and intersection test phases. 

2.1.2.3.5.2 Intersection Algorithm 

  

Generally speaking the ray-triangle intersection problem leads to solving of simple 

linear system (see Figure 1 for description of vectors):  
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p + ue 0 + ve1 = o + dt            (2.44) 

if ray hits triangle than , 

                  (2.45) 

                    (2.46) 

“The intersection algorithm defined here is based on two methods: 

 Fast hit test based on Plücker coordinates. Using three edges of a triangle, a 

ray calculation is determined against each edge and whether the ray is 

clockwise or counterclockwise with respect to the edge is determined. The 

ray intersects the triangle only when the ray is inside the triangle;

 Intersection point calculation. If ray passed the hit test (thus it is inside the 

triangle) then intersection point barycentric coordinates namely u,v and scalar 

distance t (see Figure 15) are calculated.” [11] This done by solving linear 

system written in Eq. 2.44. 

 

2.1.2.3.5.2.2 Improved Hit Test for Axis Aligned Triangles 

 

Axis aligned triangles have only one non-zero normal’s coordinate. In our case this 

will be nu and nv fields equal to zero. Thus, calculations from previous section could 

be simplified to: 

 

det =dw                  (2.57) 

dett=np – ow                  (2.58) 

Du = du∙ dett - (pu- ou) ∙ det                           (2.59) 

Dv = dv∙  dett - (pv- ov) ∙ det                           (2.60) 

detu = (e1v∙ Du – e1u∙ Dv)                (2.61) 

detv = (e0u∙ Dv – e0v∙ Du)                (2.62) 
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2.1.2.3.5.2.3 Intersection point calculation  

 

“After it is determined that the ray intersects the triangle, the exact position of 

intersection point is computed by solving linear system of ray-triangle intersection 

equations using Kramer’s rule.” [11]  

rdet = 1/det                  (2.63) 

t =dett ×rdet                      (2.64) 

ubar = detu×rdet                            (2.65) 

vbar = detv×rdet                             (2.66) 

Found ubar, vbar parameters are baricentric coordinates (see section 1), and t - 

distance of intersection. 

2.1.3 Calculation of the Reflected Wave 

 

“Next, the reflected ray is determined by using the rules of Snell’s law [2]; 

1) Reflected ray must lie in the plane of incidence 

2) The angle of reflection must be equal to the angle of incidence.” 

 

Figure 16 Reflection of a ray 
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Referring to Figure 16 the reflected ray can be determined according to Snell’s law. 

Let m be a unit vector, 

  =(rayi ×N)/sinθi                      (2.66) 

where rayi is the incident ray and N is the reflection normal. Note that m is 

perpendicular to the plane of incidence. Referring to Figure 14, one can define local 

coordinates as follows:  

y l =                             (2.67) 

zl =−N                              (2.68) 

xl =−(   N)                   (2.69) 

In spherical coordinates rayr can be defined as follows  

rayr = (r,θ,φ)                    (2.70)   

r=1, θ=−(π/2−θi), φ=0                             (2.71)   

“Next, (xl, yl, zl) coordinates of rayr in the local coordinate system can be calculated 

by spherical to Cartesian coordinate transformation.” Finally, local to global 

coordinate transformation can be performed as follows; 

   
   
   
   

                  (2.72) 

 

   

               
               
               

                 (2.73) 

 

B = A·C
−1

                  (2.74) 

(xg, yg , zg ) =B(xl , yl ,zl )                            (2.75) 

where, B is the transformation matrix. By using the reflected ray as a new incident 

ray this procedure is applied until the ray ends to bounce in the geometry. 
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2.1.4 Amplitude Tracing and Calculation of the Scattered Field 

 

In ray paths the field amplitude is also traced. In Geometrical Optics, the amplitude, 

phase and polarization of electric field can be updated with the following equation.  

E(xi+1, yi+ , zi+1 ) = (DF )i .Γi .E(xi , yi , zi ).e 
-jφ   

                     (2.76) 

Where φ=k0[(xi+1−xi)
2
+(yi+1−yi)

2
+(z i+1−zi)

2
]
1/2

 and DF is the divergence factor which 

calculates the spreading of ray tubes. DF is applicable for curved surfaces and for 

planar surfaces takes the value of 1. Γi is the planar reflection coefficient. For PECs, 

planar reflection coefficient can be applied with the equation 2.77. 

  
                   

                                    

(2.77) 

The scattered far field can be computed by applying the basic physical optics 

approximation in the aperture where exit rays are gathered. The magnetic current 

sheet   
       over the aperture is; 

                                                   (2.78) 

where,      is aperture normal.  

“From this magnetic current sheet, the scattered field can be calculated. The scattered 

far field is the sum of contributions from individual ray tubes.” The contribution of a 

ray tube is calculated as;  

      
      

 
                             (2.79) 

and,  

 

                                        (2.80) 

where, 

   = cosθcosφ  +cosθ sinφ  −sinθ                    (2.81) 
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    =−sinφ  +cosφ                   (2.82) 

     s =2E0θ[sin(φ)  +cos(φ)  ]+2E0φ[−cos(θ)cos(φ)  +cos(θ)  sin(φ)  ]           (2.83) 

  
   

  
                           (2.84) 

   
   

  
                                    

            (2.85) 

   
   

  
                                            

                      (2.86) 

                             (2.87) 

                             (2.88) 

 

For the bistatic case, θ
i
 and φ

i
 values in equations (2.85), (2.86), (2.87) and (2.88) are 

replaced with observation angles.  

Since the outgoing rays are not uniform, the integrations cannot be evaluated easily 

[2]. At this point, shooting and bouncing ray method has a way out. A small ray tube 

is shot into the geometry. The ray tube bounces on the geometry and comes to the 

aperture finally. Then the scattered field is calculated from this ray tube. Enough ray 

tubes are shot into the geometry to model the incident plane wave. The total scattered 

field is the sum of all contributions from the ray tubes.[2]  
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Figure 17 Ray Tube 

Assume that the incident ray tube has an area of (Δx0Δy0) . The central ray with 

direction vector (sx, sy, sz) hits the aperture. The ray tube will have an area of 

(ΔxsΔys) on the aperture and the field within the existing ray tube can be 

approximated as  

 

 
       
       

   
       
       

                                      (2.89) 

 

This means that the amplitude of the field is same on the ray tube and across the ray 

tube there is a linear phase variation [2]. If the size of existing ray tube is too large, 

the approximation will not be valid. Components of scattered electric field can be 

calculated using equations below;  

   
   

  
 

                                           
    

                                
             (2.90) 
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             (2.91) 

Since Ex(xi , yi) and Ey(xi , yi  are independent of integral variables they can be taken 

out of the integral;  

   
   

  
                                                                  (2.92) 

 

   
   

  
                                                                (2.93) 

where 

   
 

        
                          

   
    

                 (2.94) 

The integral in equation (2.94) is the phase factor in standard physical optics theory 

[5]. Sometimes it is called shape function and it is the Fourier Transform of the ray 

tube shape.  

In order to take advantage of this method for each ray tube, four rays around a central 

ray are shot into the geometry.  

 

Figure 18 Shape of Exit Ray Tube 
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“The position vectors of rays are denoted by               , n=1,2,3,4. Fourier 

transform can be evaluated as described in [2] and [15]. Simpler proof of this method 

based on Stokes’ theorem can also be considered in [16].” 

Ii =S(p,q)/S(0,0)                  (2.94) 

where,  

              
                                     

                                              
 
               (2.95) 

S(0,0)=(x1y2 −x2y1)+(x2y3 −x3y2)+(x3y4 −x4y3)+(x4y1 −x1y4)/2           (2.96) 

p = k0 (u − sx )                  (2.97) 

q = k0 (v − sy )                  (2.98) 

                               (2.99) 

As a final step, RCS can be calculated as in equations (2.100) and (2.101).  

               (Vertical polarization)                     (2.100) 

             
 
 (Horizontal polarization)           (2.101) 
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2.2 Numerical Results 

 

2.2.1 RCS Analysis of Cavity 

 

In this section, RCS analysis of a cavity geometry is performed by SBR method. The 

SBR algorithm used for these analyses is compiled at MATLAB®
. Befor explaining 

RCS results in detailed, brief information concerning azimuth and elevation angles 

shall be provided to better understand the results. 

 

2.2.1.1 Definition of Azimuth and elevation Angles 

 

“Azimuth and elevation are angles used to define the apparent position of an object 

in the sky, relative to a specific observation point. The observer is usually (but not 

necessarily) located on the earth's surface. 

 

Figure 19 Presentation of azimuth and elevation angles used in the analysis 

The azimuth ( ) angle is the compass bearing, relative to true (geographic) north, of 

a point on the horizon directly beneath an observed object. The horizon is defined as 

a huge, imaginary circle centered on the observer, equidistant from the zenith (point 

straight overhead) and the nadir (point exactly opposite the zenith). As seen from  
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above the observer, compass bearings are measured clockwise in degrees from north. 

Azimuth angles can thus range from 0 degrees (north) through 90 (east), 180 (south), 

270 (west), and up to 360 (north again). 

The elevation ( ) angle, also called the altitude, of an observed object is determined 

by first finding the compass bearing on the horizon relative to true north, and then 

measuring the angle between that point and the object, from the reference frame of 

the observer. Elevation angles for objects above the horizon range from 0 (on the 

horizon) up to 90 degrees (at the zenith). Sometimes the range of the elevation 

coordinate is extended downward from the horizon to -90 degrees. This is useful 

when the observer is located at some distance above the surface, such as in an 

aircraft.” 

In RCS analysis azimuth and elevation angles define incident ray’s direction with 

respect to target’s longitudinal and normal axes respectively. 

 

2.2.1.2 Results of RCS Analysis of Cavity 

 

The length of the cavity is 1.8 m and the cross section is a square with dimensions 

0.6m×0.6m. 

 

Figure 20 Predicted Ray Path in the Cavity 
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The incident ray angle    is set to zero in order to bound the study in xz plane and 

the excitation is 5 GHz. The estimated propagation directions of the rays incident on 

the cavity is shown in Figure 20. 

RCS values obtained by using the SBR method is plotted in Figures 21 thru 24 are 

vertical polarization values (RCSθθ) and horizontal polarization values (RCSϕϕ). The 

azimuth angle of the incident ray is assumed to be     and the elevation interval is 

set to [0°-80°] in the analysis as shown in Figure 21. Incidence angles in following 

results are       (Figure 22),       (Figure 23) and       (Figure 24). 

 

 

Figure 21 RCS values of a square cross section cavity obtained by SBR method at 

horizontal and vertical polarizations at φ=0° 
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Figure 22 RCS values of a square cross section cavity obtained by SBR method at 

horizontal and vertical polarizations at φ=45° 

 

Figure 23 RCS values of a square cross section cavity obtained by SBR method at 

horizontal and vertical polarizations at φ=60° 
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Figure 24 RCS values of a square cross section cavity obtained by SBR method at 

horizontal and vertical polarizations at φ=90° 

As seen from above figures, RCS value is dependent on the incidence angle (φ). RCS 

value decreases as φ increases at both θθ ve φφ polarizations and there is phase 

difference at both polarizations.  

RCS values obtained by using the SBR method is plotted in Figures 25 thru 27 are 

vertical polarization values (RCSθθ) and horizontal polarization values (RCSϕϕ). The 

elevation angle interval is set to [0°-80°] in the analysis as shown in following 

figures. Azimuth angles in following results are       (Figure 24),       

(Figure 25). The excitation frequency is 3 GHz. 

 



43 

 

Figure 25 RCS values of a square cross section cavity obtained by SBR method at 

horizontal and vertical polarizations at φ=0° 

.  

Figure 26 RCS values of a square cross section cavity obtained by SBR method at 

horizontal and vertical polarizations at φ=45° 
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Figure 27 RCS values of a square cross section cavity obtained by SBR method at 

horizontal and vertical polarizations at φ=60° 

As seen from the Figures 25 thru 27, RCS values at θθ polarization have not been 

changed significantly whereas RCS values at φφ have increased with increasing 

incidence angle φi. Also, there is phase difference at both polarizations.  

RCS values at 1 GHz and 10 GHz frequency values, [0°-80°] elevation interval and 

φi=0° are presented in Figures 28 and 29. 
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Figure 28 RCS results at 1 GHZ obtained by SBR method 

  

 

Figure 29 RCS results at 10 GHZ obtained by SBR method 
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As seen from Figures 28 and 29 it can be concluded that there is an average 

difference of 20 dB’s between RCS amplitudes calculated at 1 GHz and 10 GHz. 

According to results of analysis conducted at 1 GHz results maximum value of RCS 

is 20 dB at horizontal and 10 dB at vertical polarization. On the other hand Results 

obtained from 10 GHz analysis show that maximum value of RCS is 40 dB at 

horizontal polarization and 30 dB at vertical polarization. 

2.2.2 Numerical Results for Simple Targets  

 

SBR algorithm computing the RCS of basic and complex shapes is compiled by 

MATLAB. The code has the ability to read geometries produced in .stl format. STL 

format transforms surface geometries into discrete geometries made of flat triangles.  

The code can calculate the RCS of any shape discretized into triangular panels. 

Target geometries are modeled by triangular plates and scattering field integral is 

calculated by PO as explained in SBR method. The scattering field from each 

triangular element is superposed in a simple and fast manner. Therefore computation 

time is independent from size of the plates.  

In this section, RCS values calculated by SBR method for some simple shapes have 

been presented. RCS values of simple shapes such as square plate, plate with a hole, 

cube, corner reflector and cylinder are presented at different frequencies, aspect 

angles and polarizations. Numerical values obtained by SBR is compared by PO 

method. 

Various mesh models of a 1m x 1m square plate is presented in Figure 28. Triangular 

mesh models of the square plate composed of 2, 4 and 232 triangles are presented in 

Figures 30 (a), (b) and (c) respectively. 
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                    (a)       (b)               (c) 

Figure 30 (a) Square plate modeled by two triangular elements, (b) Square plate 

modeled by four triangular elements, (c) Square plate modeled by 232 triangular 

elements 

Since a triangle has 3 sides, ray-triangle intersection test can be performed by 

checking the location of a certain ray with respect to only 3 sides. Quadrilateral 

(quad) elements (elements with 4 sides) could also be used in the analysis. However 

since a quad element has 4 sides, ray-quad intersection test would take longer 

computation times but the results would not improve much as the accuracy of RCS 

analysis results inrease with number of rays shot into the geometry.  

Physical Optics (PO) method cannot calculate the multiple scatter effects. However 

in SBR method, shadowing effects and multiple reflections can be taken into 

consideration. The ray window illuminating the target is composed of different 

number of rays at different frequencies. As the frequency changes, computation time 

as well as the number of rays change. 
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Figure 31 RCS of square plate vs aspect angle with PO and SBR methods (a) 

Vertical polarization, (b) Horizontal polarizationf 

RCS values of the square plate in Figure 31 (a) illuminated at φ=0° and [-90°,90°] θ 

interval and 1 GHz frequency at vertical polarization (a) and horizontal polarization 

(b) with both SBR and PO methods are given in Figure 31. RCS value is given in 

terms of dBsm. In SBR method, rays are shot into the geometry with spacings of 

λ/20 which results in 4356 rays at 1 GHz. Intersection test of these rays with the 

triangles are also performed. RCS of square plate reaches the maximum value at 

θ=0°. SBR and PO techniques result in similar results at 4 consecutive peaks from 

θ=0°. 

RCS of square plates in Figure 30 (b) and Figure 30 (c) at 1 GHz frequency, φ=0° 

and θ interval of [-90°,90°] are given in Figures 32 and 33 respectively.  
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Figure 32 RCS of square plate vs aspect angle with PO and SBR methods at Vertical 

polarization 

 

Figure 33 RCS of square plate vs aspect angle with PO and SBR methods at Vertical 

polarization 
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Figures 32 and 33 show that RCS values obtained from squares plates of Figure 30 

(b) and (c) are almost identical to those presented in Figure 31. Therefore it can be 

concluded that for a flat square plate RCS is independent of the size of the triangular 

elements. Provided that the target surface is flat, surface properties like unit normal 

vector and surface impedance are constant, the surface can be partitioned by using 

larger elements since even relatively larger elements can represent flat surfaces 

perfectly. Therefore number of elements necessary to represent a flat surface is 

relatively small. Providing that the target surface is curved, number of flat elements 

needed to represent the surface perfectly is relatively large. In othe words element 

sizes decrease dramatically. Table 2 shows the increase in computation time as the 

number of triangular elements increases. 

Table 2 Computation time vs number of elements on the target surface [sec] 

Number of 

triangular plates 
2 4 232 600 800 1000 1250 1700 2200 

Badouel Method 34 37 600 800 1200 1550 2000 2800 3800 

Moller-Trumbore 

Method 
30 35 280 650 820 1000 1500 2000 2550 

Plucker Method 32 34 210 450 600 790 1100 1500 2200 
 

Table 2 shows the computation time necessary for intersection tests during RCS 

analysis of flat square plate. It can be concluded that Plucker test is almost twice as 

faster as Badouel test. 
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Figure 34 Change in time of computation in SBR method when Badouel, Moller-

Trumbore and Plucker methods are used 

 

Figure 34 shows the variation in time of computation in SBR method when Badouel, 

Moller-Trumbore and Plucker methods are used for ray-triangle intersection test. 

Plucker method provides much faster computation compared to other methods. 

Figure 35 shows monostatic RCS values of the square plate presented in Figure 30 

(b) at 4 GHz, φ=0° and vertical polarization. 
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Figure 35 RCS of square plate vs aspect angle with PO and SBR methods at Vertical 

polarization 

Compared to Figure 33, in Figure 35 both number of peaks and the amplitude of 

RCS has increased. While at 1 GHz RCS value is 22 dB, at 4 GHz it is 34 dB at 

φ=0°. 

Figure 36 shows monostatic RCS values of the square plate at 1 GHz, φ=30° and 

vertical polarization. 

 

Figure 36 RCS of square plate vs aspect angle with PO and SBR methods at Vertical 

polarization and φ=30° 
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When the results presented in Figure 36 compared to those in Figure 32, it can be 

concluded that the peak value at φ=0° is the same. The RCS value changes with the 

aspect angle. 

Figure 37 shows monostatic RCS values of the square plate at 1 GHz, φ=45° and 

vertical polarization. 1090 rays are shot to the meshed square plate with a spacing 

value of λ /10. 

 

 

Figure 37 RCS of square plate vs aspect angle with PO and SBR methods at Vertical 

polarization and φ=45° 
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Figure 38 A square plate mounted on xy plane 

In addition to the results presented above, monostatic RCS of a square plate mounted 

on xy plane (Fig. 38) has been investigated at 2-18 frequency interval, vertical 

polarization and θ=0
o
, φ=0

o
. 

 

Figure 39 RCS of square plate vs frequency with PO and SBR methods at Vertical 

polarization 

As shown in Figure 39, RCS results obtained by SBR perfectly matches PO results. 

Monostatic RCS results at vertical polarization, φ=0° and θ interval [-90°,90°] 

frequency values 5 and 12 GHz are given in Figures 40 and 41. Ray windows 
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illuminating the target are formed with λ /20 spacing and number of rays at 5 and 12 

GHz are given in Table 3. 

Table 3 Number rays with respect to frequency 

Frequency [GHz] Number of Rays 

5 3250 

12 18750 

 

 

Figure 40 RCS of square plate vs frequency with PO and SBR methods at Vertical 

polarization and 5 GHz 
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Figure 41 RCS of square plate vs frequency with PO and SBR methods at Vertical 

polarization and 12 GHz 

As seen in figures 40 and 41 as the frequency increases more peaks occur and the 

peak value at θ=0° increases.  

 

 

 

Figure 42 Discretized geometry of the square plate with a hole at the center 
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Monostatic RCS of a square mounted on xy plane with a hole at the center and edge 

length of 5m at 500 MHz, φ=0° at vertical polarization is given in Figure 42. The 

square plate with the hole consist of 950 of triangular elements. The ray window for 

this case consist of 27500 rays at a spacing value of λ /10. 

 

Figure 43 RCS of square plate vs aspect angle with PO and SBR methods at vertical 

polarization and 500 MHz frequency 

 

In Figure 43, RCS value of square plate vs aspect angle is given with PO and SBR 

methods at Vertical polarization and 500 MHz frequency. The results obtained by PO 

and SBR methods perfectly match ing the [-40°,40°] interval.  

In Figure 44 a cube with edge length of 1 m and consisting of 12 triangular elements 

is shown. Ray window illuminating the cube consist of 4400 rays at a frequency of 1 

GHz at a spacing of λ /10. 
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Figure 44 Cube geometry discretized into triangles 

Figure 44 shows monostatic RCS results of the cube geometry at a frequency value 

of 1 GHz, azimuth angle of φ=0° and a θ angular interval of [-90°,90°] at vertical 

polarization. Results obtained by SBR and PO methods are compared.  

 

Figure 45 RCS of cube vs aspect angle with PO and SBR methods at vertical 

polarization and 1 GHz frequency 

As seen from the above figure the results obtained from SBR and PO match perfectly 

inside the θ angular interval of [-25°,25°] where specular turns from the target are 

dominant. 

Figure 46 shows monostatic RCS results of the cube geometry at a frequency value 

of 1 GHz, azimuth angle of φ=25° and a θ angular interval of [-90°,90°] at vertical 

polarization. Results obtained by SBR and PO methods are compared.  
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Figure 46 RCS of cube vs aspect angle with PO and SBR methods at vertical 

polarization φ=25° and 1 GHz frequency 

The results provided in Figure 46 when compared with the results in Figure 43 shows 

that the peak value at θ=0° does not change, however the whole envelope of the 

graph has changed.  Also, SBR and PO match perfectly inside the θ angular interval 

of [-30°,30°] where specular turns from the target are dominant. 

Figure 47 shows monostatic RCS results of the cube geometry at a frequency value 

of 5 GHz, azimuth angle of φ=0° and a θ angular interval of [-80°,80°] at vertical 

polarization. Results obtained by SBR and PO methods are compared.  
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Figure 47 RCS of the cube vs aspect angle with PO and SBR methods at vertical 

polarization φ=0° and 5 GHz frequency 

 

The results provided in Figure 47 shows that SBR and PO methods match perfectly 

inside the θ angular interval of [-30°,30°] where specular turns from the target are 

dominant. 

 

Figure 48 Cube geometry discretized into triangles 
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Figure 48 shows a cube with dimensions x=7 m, y=7 m and z=7 m. The surface of 

the cube is composed of 24 triangular elements. Monostatic RCS of the cube has 

been investigated at vertical polarization, φ=0
o
 and an angular interval of [0°,180°] 

for θ. The analysis has been conducted at 2 GHz frequency where 218000 rays have 

been shot into the target with standard spacings of λ /10. 

 

Figure 49 RCS of the cube vs aspect angle with PO and SBR methods at vertical 

polarization φ=0° and 2 GHz frequency 

Figure 49 shows that inside elevation angle intervals of [30°-60°] and [120°-150°] 

results obtained from SBR and PO methods do not match due to edge and corner 

effects. Except these boundaries, SBR and PO results match in regions where 

specular surface returns are dominant. 

Table 4 Computation time for RCS analysis of the cube 

Intersection test method Number of Triangular Plates Computation Time 

[sec] 

Badouel  36 750 

Moller-Trumbore 36 510 

Plucker  36 450 
 

Table 4 shows computation times for analysis when Badouel, Moller-Trumbore and 

Plucker test methods are used for ray-triangle intersection test. As seen from the  
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table, Plucker test method provides 40% less computation time compared to Badouel 

test.  

Figure 50 shows monostatic RCS results of the cube geometry at a frequency value 

of 6 GHz, azimuth angle of φ =90° and an elevation angular interval of [0°,360°]  

The analysis have been conducted at vertical polarization with angular increments of 

1°. Results obtained by SBR and PO methods are compared.  

 

Figure 50 RCS of the cube vs aspect angle with PO and SBR methods at vertical 

polarization φ =90° and 6 GHz frequency 

Figure 50 shows that inside elevation angle intervals of [30°-60°], [120°-150°] 

[300°-330°], [210°-210°] results obtained from SBR and PO methods do not match 

due to edge and corner effects. Except these intervals, SBR and PO results match in 

regions where specular turns are dominant. 

Moreover RCS analysis of the box has been been conducted at azimuth angle φ =0° 

and elevation angle θ=0° and [2-18] GHz frequency interval. The results have been 

plotted in Figure 49. 
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Figure 51 RCS of box vs frequency with PO and SBR methods at vertical 

polarization, φ =0° and θ=0° 

Figure 51 shows that results obtained by PO and SBR perfectly match. Also RCS 

increases as frequency increases. As the frequency is increased, the wavelength gets 

smaller compared to the cube size. Since the electric field integral depends on 

wavelength, RCS of the single cube increases.  

 

Figure 52 Geometry and dimensions of the corner refelctor 

Geometry of a corner reflector is shown in Figure 52.The straight edges of the corner 

reflector are equal to 4m. The corner reflector consists of 3 triangular plates in total. 

RCS analysis has been conducted at azimuth angle φ=0
o
 and elevation angle θ=[0°,  
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180°] with angular increments of 1° at vertical polarization. Number of rays 

illuminating the target at 2, 5 and 8 GHz frequencies with standard spacings of λ /10 

are given in Table 5. 

Table 5 Number rays vs frequency for the corner reflector case 

Frequency [GHz] Number of Rays 

2 177000 

5 1102200 

8 1587000 

 

 

Figure 53 RCS of corner reflector vs aspect angle with PO and SBR methods at 

vertical polarization, 2 GHz 

Figure 53 shows that inside elevation angle intervals of [40°-85°], results obtained 

from SBR and PO methods do not match due to multiple reflection effects between 

perpendicular surfaces of the corner reflector. Except these intervals, SBR and PO 

results match  in regions where specular surface return effects are dominant. 
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Table 6 Computation time for RCS analysis of two boxes 

Ray-triangle 

intersection test method 

Number of Triangular 

Plates 

Computation time [sec] 

Badouel  73 1340 

Moller-Trumbore  73 1060 

Plucker  73 1000 

 

Table 6 shows Plucker test method provides 25% reduction in computation time. 

Campared with the results of single box, one can conclude that Plucker test is the fast 

intersection test but does not always yields to same amount of acceleration compared 

to other tests. Plucker test causes an acceleration of 40% for single box case while 

producing 25% acceleration for the case of corner reflector. These results show that 

speed of Plucker test depends on many paramaters such as size and geometry of the 

target, size of elements forming the target, frequency that the analysis has been 

conducted etc. Scattering mechanisms triggered by multiple or single reflections can 

also effect the speed of Plucker test. In the case of corner reflector multiple reflection 

can ocur whereas in a single cube only single reflections can ocur. 

 

Figure 54 Monostatic RCS of corner reflector vs aspect angle with PO and SBR 

methods at vertical polarization, 8 GHz 

Figure 54 shows inside elevation angle intervals of [5°-55°] and [190°-240°] results 

obtained from SBR and PO methods do not match due to multiple reflection effects 
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between the reflecting surfaces. Except these boundaries, SBR and PO results match 

in regions where specular turns are dominant. 

In Figure 55 corner reflector is illuminated at φ=0
o
 and θ=0

o
 and monostatic RCS 

values in frequency interval of [2-18] GHz is plotted. 

 

Figure 55 Monostatic RCS of the corner reflector vs frequency with PO and SBR 

methods at vertical polarization, φ=0
o
 and θ=0

o
 

Figure 55 shows that results obtained by PO and SBR perfectly match. Also RCS 

increases as frequency increases. As the frequency is increased, the wavelength gets 

smaller compared to the target size. Since the electric field integral depends on 

wavelength, RCS of the target increases. 

 

Figure 56 Meshed model of cylinder 

Meshed model of cylinder consisting of 400 triangular elements is shown in Figure 

56. The cylinder has a diameter of 3m and height of 10 m. Number of rays 
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illuminating the target at 1, 5 and 12 GHz frequencies with standard spacings of λ/20 

are given in Table 2-7. 

Table 7 Number rays vs frequency for cylinder case 

Frequency [GHz] Number of Rays 

1 4350 

5 70750 

12 120500 

 

Monostatic RCS values of cylinder geometry are presented at 1, 5 and 12 GHz in 

Figures 57, 58, and 59 respectively. RCS analyses have been conducted at azimuth 

angle φ=0
o
 and elevation angle θ=[90°, 90°] with angular increments of 1° at vertical 

polarization using both SBR and PO methods. 

 

Figure 57 Monostatic RCS of cylinder vs elevation angle with PO and SBR methods 

at vertical polarization, 1 GHz 

Figure 57 shows inside elevation angle intervals of [-35°,-15°] and [10°,65°] results 

obtained from SBR and PO methods do not match due to edge and corner effects. 

Except these boundaries, SBR and PO results match in regions where specular  
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surface returns are dominant. It is also observed that the RCS of the cylinder reaches 

maximum at θ=0
o
 

 

Figure 58 Monostatic RCS of cylinder vs elevation angle with PO and SBR methods 

at vertical polarization, 5 GHz 

Figures 58 and 59 show that inside elevation angle intervals of [-20°,-80°] and 

[20°,80°]; [-15°,-80°] and [15°,80°] respectively, results obtained from SBR and PO 

methods do not match due to edge diffractions. Except these intervals, SBR and PO 

results match in regions where specular turns are dominant. 

 

Figure 59 Monostatic RCS of cylinder vs elevation angle with PO and SBR methods 

at vertical polarization, 12 GHz 
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CHAPTER 3 

 

 

APPLICATION OF SBR TO COMPLEX TARGETS 

 

 

 

In the previous chapter, the SBR code is tested by using simple PEC objects. 

However, realistic targets possess much more complex geometries with several 

scattering mechanisms. The interactions between parts of complex geometries will 

affect dramatically the RCS values. At this point the SBR code, with its multiple 

scattering capability, will be superior to other ray based RCS prediction tools. The 

RCS prediction code developed in the previous chapter will be applied to complex 

targets in this chapter, in order to evaluate the performance of the method for realistic 

cases.  

In the simulations, targets are modeled using large triangular patches. In order to 

calculate the monostatic RCS of a target from different aspect angles, two different 

methods are used. In the first method, the target kept fixed and the ray window in 

Figure 60 is rotated. This method is applied to simple shapes. On the other hand, in 

the second method the target is rotated while the ray window is kept fixed. Target 

rotation is explained in next section. After that detailed monostatic RCS results of 

complex targets such as F-117, eurofıghter and F-16 aircrafts are presented. 
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Figure 60 Simple target rotation geometry 

3.1 Target Rotation  

 

For the visualization of RCS variation, we obtain plots of RCS versus aspect angles. 

Aspect angle is the orientation of target relative to the source position which is a ray 

window. In order to calculate the RCS as a function of aspect angle, the target is 

rotated. In order to rotate the target in three dimensions, three basic rotation matrices 

are used;  

 

       

   
                
               

                  (3.1) 

       
               

   
                

                  (3.2)  

       
                
               

   

                  (3.3)  

Each of these matrices rotates a target in counterclockwise direction around a fixed 

coordinate axis, by an angle of α . Rotation direction is determined by the right-hand 

rules. Other rotation matrices are derived from these three basic matrices.  
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In our simulations, for rotating a target that is in STL mesh format, all vertices of 

triangular patches are rotated about the orthogonal axes of the global coordinate 

system. Simple rotation geometry is illustrated in Figure 61.  

 

Figure 61 Fixed rotation around Y axis 

 

3.2 Numerical Results  

3.2.1 RCS Analysis of F-117 Aircraft 

 

The first complex model that the RCS analysis is presented is a simplified model F-

117 aircraft.  

 

                            (a)         (b) 

Figure 62 (a) Solid model of F-117  (b) Mesh geometry of F-117 

Size of the aircraft model is 10m and the mesh model consists of 320 triangular 

plates. Figures 63 and 64 presents monostatic RCS values of F-117 at 1 GHz and 12 

GHz respectively. The RCS analysis has been conducted at φ=0° azimuth angle and 

θ=[-80°,80°] elevation angle interval with angular increments of 1°.  
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Table 8 shows the number of rays shot into the target at 1 and 12 GHz frequency 

values. As the frequency level increases, number of rays in the analysis and 

computation time also increases. Results obtained by PO and SBR methods are 

compared in the plots. 

Table 8 Number of rays vs frequency for F-117 case 

Frequency [GHz] Number of Rays 

1 4350 

12 640000 

 

 

 

Figure 63 Monostatic RCS of F-117 vs elevation angle with PO and SBR methods at 

vertical polarization, 1 GHz 

As seen in Figure 63 results obtained from PO and SBR methods have similar 

tendency in [+30°, -30°] elevation angle interval. Results deviate in other intervals 

due to multiple reflection and edge diffraction effects. 
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Table 9 Computation time for F-117 case 

Ray-triangle 

intersection test method 

Number of Triangular 

Plates 

Computation time [sec] 

Badouel  320 1920 

Moller-Trumbore  320 1850 

Plucker  320 1510 

 

Table 9 presents the estimated computation times necessary for ray-triangle 

intersection tests with Badouel, Moller-Trumbore and Plucker methods. It can be 

concluded that Plucker test provides 20% less computation time than Badouel 

method does.  

 

Figure 64 Monostatic RCS of F-117 vs elevation angle with PO and SBR methods at 

vertical polarization, 12 GHz 

As seen in Figure 64 results obtained from PO and SBR methods have dissimilar 

tendency throughout the elevation angle interval. Results deviate due to multiple 

reflection and edge diffraction effects. At an elevation angle of (θ) 30° RCS result 

obtained from PO is -28 dBsm whereas SBR gives 39 dBsm.  
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3.2.2 RCS Analysis of Eurofighter Aircraft 

 

The second RCS simulation on complex targets has been run on Eurofıghter aircraft 

(Fig. 65). The length of the target is 18 m and consists of 955 triangular plates. A ray 

window big enough to illuminate this model consists of 4400 rays at 1 GHz with λ 

spacings. 

 

Figure 65 Eurofighter computer aided design model 

RCS analysis for Eurofighter has been conducted at 1 GHz at an azimuth angle of 

φ=0° and elevation angle (θ) interval of [-90°,90°] at vertical polarization. Results 

obtained by SBR and PO have been compared in Figure 66.  

 

Figure 66 Monostatic RCS of Eurofıghter vs elevation angle with PO and SBR 

methods at vertical polarization, 1 GHz 
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As seen in Figure 66 results obtained from PO and SBR methods have dissimilar 

tendency throughout the elevation angle interval. Results deviate due to multiple 

reflection and edge diffraction effects. It can be observed that maximum value occurs 

at an elevation angle of 0°. 

Table 10 Computation time for Eurofıghter case 

Ray-triangle 

intersection test method 

Number of Triangular 

Plates 

Computation time [sec] 

Badouel  955 3420 

Moller-Trumbore  955 3350 

Plucker  955 2810 

 

Table 10 presents the estimated computation times necessary for ray-triangle 

intersection tests with Badouel, Moller-Trumbore and Plucker methods. It can be 

concluded that Plucker test provides 20% less computation time than Badouel 

method does.  

 

3.2.3 RCS Analysis of F-16 Aircraft 

 

The third RCS simulation on complex targets has been run on F-16 aircraft (Fig. 65). 

The length of the target is 16 m and consists of 12500 triangular plates. A ray 

window big enough to illuminate this model has been prepared with λ spacings and 

number of rays per frequency value has been provided in Table 11. 

Table 11 Number rays vs frequency for F-16 case 

Frequency [GHz] Number of Rays 

2 4350 

8 110900 
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Figure 67 (a) Solid model of F-16  

Monostatic RCS values of F-16 model illuminated at an azimuth angle of φ=0
o
 and 

an elevation angle of θ=0
o
 has been presented in Figure 68 in a frequency interval of 

[2-18] GHz. 

 

Figure 68 Monostatic RCS of F-16 vs frequency with PO and SBR methods at 

vertical polarization, φ=0° and θ=0° 

 

In Figure 68, RCS results obtained by PO and SBR methods have been compared. It 

can be observed that PO and SBR curves have similar tendency in the frequency 

domain of interest. As the frequency is increased, the wavelength gets smaller 

compared to the aircraft size. Since the electric field integral depends on wavelength, 

RCS of the aircraft increases. 
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Monostatic RCS values of F-16 model illuminated at an azimuth angle of φ=0
o
 and 

an elevation angle interval of θ=[0°, 180°] has been presented at vertical and 

horizontal polarizations in Figures 69 and 70 respectively. Also results obtained by 

SBR and PO have been compared in the Figures.  

 

Figure 69 Monostatic RCS of F-16 vs elevation angle with PO and SBR methods at 

vertical polarization, 2 GHz 

 

As seen in Figure 69 results obtained from PO and SBR methods have dissimilar 

tendency in the elevation angle intervals of [20°, 60°] and [150°, 160°] due to 

multiple reflections. PO and SBR results match perfectly in other intervals. It can be 

observed that maximum value occurs at an elevation angle of 0°. 
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Figure 70 Monostatic RCS of F-16 vs elevation angle with PO and SBR methods at 

horizontal polarization, 2 GHz 

As seen in Figure 70 results obtained from PO and SBR methods have dissimilar 

tendency in the elevation angle intervals of [25°, 50°] and [160°, 170°] due to 

multiple reflections. PO and SBR results match perfectly in other intervals. It can be 

observed that maximum value occurs at an elevation angle of 0°. 

Table 12 Computation time for F-16 case 

Ray-triangle 

intersection test method 

Number of Triangular 

Plates 

Computation time [sec] 

Badouel  12500 9700 

Moller-Trumbore  12500 8700 

Plucker  12500 7000 

 

Table 12 presents the estimated computation times necessary for ray-triangle 

intersection tests with Badouel, Moller-Trumbore and Plucker methods. It can be 

concluded that Plucker test provides 25% less computation time than Badouel 

method does.  

Monostatic RCS values of F-16 model illuminated at an azimuth angle of φ=0
o
 and 

an elevation angle interval of θ=[0°, 180°] has been presented at vertical and 

horizontal polarizations in Figures 71 and 72 respectively. Analysis has been 
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conducted at 8 GHz frequency with angular increments of 1°. Also results obtained 

by SBR and PO have been compared in the Figures.  

 

Figure 71 Monostatic RCS of F-16 vs elevation angle with PO and SBR methods at 

vertical polarization, 8 GHz 

 

As seen in Figure 71 results obtained from PO and SBR methods have dissimilar 

tendency in the elevation angle intervals of [10°, 50°] and [140°, 160°] due to 

multiple reflections. PO and SBR results match perfectly in other intervals. It can be 

observed that maximum value occurs at an elevation angle of 0°. 



80 

 

Figure 72 Monostatic RCS of F-16 vs elevation angle with PO and SBR methods at 

horizontal polarization, 8 GHz 

 

As seen in Figure 72 results obtained from PO and SBR methods have dissimilar 

tendency in the elevation angle intervals of [10°, 60°] and [130°, 160°] due to 

multiple reflections. PO and SBR results match perfectly in other intervals. It can be 

observed that maximum value occurs at an elevation angle of 0°. 

Monostatic RCS values of F-16 model illuminated at an azimuth angle interval of 

φ=[0°-360°] and an elevation angle interval of θ=90° has been presented at vertical 

and horizontal polarizations in Figures 73 and 74 respectively. Analysis has been 

conducted at 10 GHz frequency with angular increments of 1°. Also results obtained 

by SBR and PO have been compared in the Figures.  
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Figure 73 Monostatic RCS of F-16 vs elevation angle with PO and SBR methods at 

vertical polarization, 10 GHz 

As seen in Figure 73 results obtained from PO and SBR methods have dissimilar 

tendency in the azimuth angle intervals of [10°, 25°] and [330°, 350°] due to multiple 

reflections. PO and SBR results match perfectly in other intervals. It can be observed 

that maximum value occurs at an azimuth angle of 270°. 

 

Figure 74 Monostatic RCS of F-16 vs elevation angle with PO and SBR methods at 

horizontal polarization, 10 GHz 
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As seen in Figure 74 results obtained from PO and SBR methods have dissimilar 

tendency in the azimuth angle interval of [330°, 350°] due to multiple reflections. PO 

and SBR results match perfectly in other intervals. It can be observed that maximum 

value occurs at an azimuth angle of 270°. 
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CHAPTER 4 

 

 

DIFFRACTION EFFECTS IN RADAR CROSS SECTION ANALYSIS 

 

 

 

The physical optics (PO) scattered field from perfectly electrically conducting 

structures is limited in accuracy because the PO current fails to closely approximate 

the exact current near surface discontinuities such as edges. ‘’The accuracy of the PO 

scattered field can be significantly increased by adding the fringe wave (FW) field, 

which takes into account the distortion of the current caused by edges. An 

approximation to the FW field can be calculated by integrating physical theory of 

diffraction equivalent edge currents along the illuminated part of the edges of the 

structure. These edge currents are determined from an integration of the FW current 

(the exact current minus the PO current) along incremental strips on the canonical 

wedge or half-plane. Throughout this study physical theory of diffraction equivalent 

edge currents will be considered, and these will be referred to as EEC's. 

 

4.1 Equivalent Edge Currents  

 

Closed-form expressions for EEC's have been derived for un-truncated (infinite) 

incremental wedge strips by Michaeli [10], Mitzner [17], and Shore et al. [18]. These 

EEC's will be called un-truncated EEC's in this study. For the analysis of bistatic 

radar scattering the un-truncated EEC's give an inadequate correction to the PO field 

due to the presence of the Ufimtsev singularity and the discontinuities of the 

calculated FW field across the current layers associated with the un-truncated strips. 

The Ufimtsev singularity occurs when the direction of observation is the continuation 

of an incident field grazing the face of the structure. 
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The above-mentioned problems associated with the un-truncated EEC's are 

eliminated by using truncated (finite) strips. Closed-form expressions for EEC's have 

been derived for truncated incremental half-plane strips by Breinbjerg [19] and by 

Shore and Yaghjian. Cote et al. have implicitly derived EEC's for truncated 

incremental strips on a right-angled wedge. Michaeli seems to be the only one who 

has derived EEC's for general truncated incremental wedge strips; the EEC's based 

on truncated wedge strips will in this report be called truncated EEC's. They apply to 

the analysis of bistatic radar scattering from three- dimensional structures with flat 

faces. However, from theoretical considerations, as well as numerical calculations, it 

appears that Michaeli's truncated EEC's contain non-removable singularities which 

give rise to numerical problems and thus hamper their application. The singularities 

are caused by the mathematical procedure applied to obtain closed-form expressions, 

and they occur for special directions of incidence and observation and for zero strip 

length.” [22]  

Discontinuities and nonremovable singularities in EEC’s employed in general 

computer codes are unwanted for two reasons. First, the prediction of the scattered 

field for directions of observation close to discontinuities and nonremovable 

singularities is clearly inaccurate. Second, the nonremovable singularities give rise to 

numerical problems in computing the line integral along the edges of the structure. 

Although the nonremovable singularities usually are confined to a narrow angular 

region of observation, they do constitute a problem in applications in which the 

scattered field has to be calculated for all directions of observation. For those 

reasons, the untruncated EEC’s and Michaeli’s truncated EEC’s are not suitable for 

the implementation of computer codes.  

In this study truncated EEC’s derived by Johansen [20] are utilized. “These EEC’s 

do not have the above-mentioned singularity problems of the previously reported 

expressions, that is, they are well behaved for all directions of incidence and 

observation and they take a finite value for zero strip length. This means that the new 

truncated EEC’s are, to the knowledge of the author, the first EEC’s that are well 

suited for implementation in general computer codes. [22]  
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Figure 75 Three-dimensional view of a flat face of a three-dimensional structure. 

The truncated incremental strip extends from the leading edge to the trailing edge 

and is directed along the unit vector     The directions of incidence and observation 

are     and   , respectively    is the exterior wedge angle, and it is assumed that  

1 <N   2 

4.1.1 The Concept of Truncated EEC’s  

 

The configuration under consideration is a perfectly con- ducting three-dimensional 

structure with flat faces illuminated by a plane wave (see Fig. 75). In the far field of 

the structure, a high-frequency approximation to the FW field is calculated from a 

line integral along the illuminated part C of the edges of the structure. The truncated 

EEC’s are represented by the magnetic current MT and the electric current I, so that 

the electric FW field is given by  

                                 
          

   
  

 
                      

(4.1) 

Herein, j is the imaginary unit (the time factor exp (jwt) is suppressed), k is the wave 

number, Z is the intrinsic impedance of the ambient medium,        is the vector to 

the far-field observation point, and    is the edge unit tangent vector. The two 

adjoining faces at each edge are denoted by A and B. Introducing a local rectangular 

xyz system at the integration point with       and    being the outward normal unit 

vector of face A,    is expressed as                                 and the  
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propagation direction     of the incident plane wave is                     

                     of incident plane wave is (see Figs. 73 and 74). Face B is 

located in the plane described by      where    is the exterior wedge angle. 

Throughout the section it is assumed that 1 < N   2.  

 

 

 

Figure 76 Two-dimensional view of the configuration shown in Fig. 75 in the plane 

z = 0 

The truncated EEC’s are determined by a sum of two contributions, one from each of 

the faces A and B  

     
    

    and        
    

                 (4.2) 

Henceforth, the superscripts A and B refer to the contributions from the faces A and 

B, respectively. In this paper, the contribution from face A will be derived in detail, 

and the contribution from face B is then obtained from the result for face A using a 

substitution technique.  

“The contribution from face A to the truncated EEC’s,   
 and   

 , is calculated 

analytically by integrating the FW current on face A of a wedge appropriately 

conforming to the structure along a truncated incremental strip with the length   . 

The strip extends from the leading edge (the edge at which the EEC’s are placed) to 

the trailing edge and is directed along the unit vector     which is the intersection of 
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the Keller cone and the face A. as shown in Fig. 75. However, the integration of the 

exact FW current along the truncated incremental strip cannot be performed exactly 

in closed form, and thus, an asymptotic calculation is necessary. To this end, the 

truncated EEC’s are expressed as the difference between the untruncated EEC’s and 

the correction EEC’s. [22] 

              and                              (4.3) 

Michaeli found that the untruncated EEC’s can be expressed exactly in closed form, 

whereas closed-form expressions for the correction EEC’s can only be obtained 

using an asymptotic technique. In the present paper, Michaeli’s untruncated EEC’s 

are used but a new asymptotic calculation of the correction EEC’s is performed 

because Michaeli’s correction EEC’s contain nonremovable singularities.  

The contribution from face A to the untruncated EEC’s,    
  and    

 , is obtained 

by integrating the FW current on face A along an untruncated incremental strip. The 

strip extends from the leading edge and is directed along    .  

Michaeli found that  
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and 

   
  

  

           
   

 
    

  
 

 
  

      
   

 

    
                  

      
  
 

     
  

         

               
                  

        

      
  

          
  

           
   

 
    

  
 

 

          (4.5) 

 

where Hz0 and Ez0 are the z components of the incident magnetic and electric field, 

respectively, at the origin of the local xyz system and U(x) is the unit step function.  

Moreover,  

  
                               

      
               (4.6) 
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and   is the solution to        determined by  

                                     (4.7) 

with                  and          . The square root in Eq. 4.7 is 

defines as  

       
             

                

                     (4.8) 

The only nonremovable singularity in    
  and    

  is the Ufimtsev singularity which 

occurs when           and simultaneously,      that is, when the direction 

of observation is the continuation of an incident field grazing face A.  

The contribution from face A to the correction EEC's,     
  and     

 , is obtained by 

integrating the FW current on face A along another untruncated incremental strip. 

This strip extends from the point of truncation at the trailing edge and is directed 

along    . Michaeli found that  

    
         

    

    
  

                      (4.9) 

and  

    
          

            
                         (4.10) 

with 

    
       

                    
 

  
               (4.11) 

 

where     
     denotes the x- and z components of the FW current on face A. “The 

approach used by Michaeli to calculate the integral     
  in is as follows. First, the 

expressions for the exact FW current, which is given in terms of contour integrals in 

the complex plane, are inserted into the integral (4.11). Next, the order of integration 

is interchanged, the inner integral is calculated analytically and finally, the resulting 

integral is evaluated asymptotically for              . However, this 

asymptotic evaluation gives rise to two problems in the correction EEC's when    
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 . First, the correction EEC's tend to infinity as    . The quantity L can become 

small for edge points close to corners in the evaluation of the integral (4.1). As 

discussed in [21], it is possible to avoid small values of L by omitting part of the 

edge which is close to comers. However, this approach is not robust in practical 

applications because the ca1culated field will depend on the ratio of the edge being 

omitted. Second, the correction EEC's contain nonremovable singularities for 

            , and for      and they are caused by the fact that only few 

of the poles potentially nearby the saddle point are isolated in the decomposition 

[21], applied by Michaeli. For a detailed discussion on these singularities, the reader 

is referred to [22]. The singularities occur for various directions of incidence and 

observation. It should be noted that no singularity problems occur in the correction 

EEC's when N = 2. [22]  

.  

4.1.2 Derivation of New Correction EEC's  

 

In this section, a new approach derived by Johansen [20] is used to calculate the 

correction EEC's. Instead of employing the exact expressions for the FW current 

when calculating the integral     
  in (4.11), the asymptotic expressions for the FW 

current are employed. Thus, the first thing that will be dealt with in this section is the 

determination of the asymptotic expressions for the FW current.  

 

4.1.2.1 Uniform Asymptotic Expressions for the FW Current on Face A  

 

The x component of the FW current on face A is given by  

  
     

                  

   
  

   
 

 
                   

   
 

 
    

  
 

 
            (4.12) 

where   is the steepest descent path trough   . Using the substitution  

    
 

 
   

 

 
                       (4.13) 
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where    means    
 

 
 , and a decomposition technique similar to the one applied by 

Michaeli [10] to isolate the pole potentially nearby the saddle point (s = 0), the 

integrand in (4.12) is written as a sum of a simple pole term and a regular term so 

that  

  
     

                    

    
   

 

  
 

  

                       
 

  
    (4.14) 

Herein,         
  

 
     

 

   
           , and the regular term is  

 

     
   

 

 

   
 

 
    

 

 
    

  
 

 
 

 

  
 

  

               (4.15) 

 

“The integration of the simple pole term in (4.14) is performed exactly and expressed 

in terms of a Fresnel function [23]. Since the quantity      given in (15) is regular 

near the saddle point, the integration of      in (14) is evaluated asymptotically for 

          using the standard steepest descent technique [24].” The result of these 

calculations is  

  
                        

          
  

 
                

  

 
   

 

           

 
 

    
  

 

 
   

 
 

     
 
 

    
  

 
 
   

(4.16) 

where F is a modified Fresnel function [21] 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(4.17) 

A similar procedure is used to obtain the asymptotic result for   
    

 

  
                 

      
        

      

                       
  

 
                

  

 
  

 
        

                     
  

 

 
        

           

  
     

    
  

 

 
   

 
 

     
 
 

    
  

 
 
   

 

(4.18) 

which applies for          . 

4.1.2.1 Expressions for the New Correction EEC's  

 

The asymptotic expressions for the contribution from face A to the correction EEC's, 

    
  in (4.9) and     

  in (4.10), are now obtained by inserting the expressions (4.16) 

and (4.18) for the FW current into the integral     
  (4.11).By using the relations  

 
                     

  

 

  
   

                

             

           

(4.19) 
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(4.20) 



92 

where   and F are defined in (4.6) and (4.17), respectively, and            .the 

result for the new correction EEC's is obtained through a straightforward calculation 

[22] 

    
  

                     

           

  
         

  

 
       

         
  

 
    

    

              
  

 

 
     

 
 

         
 
 

    
  

 
 
              

(4.21) 

and 

    
  

             

                

          
  

 
   

        

      
                          

          
  

 
              

      
  

 
      

 
   

    
  

 

                      

 
      

 
 

                         

     
 
 

    
  

 
      

              

(4.22) 

These asymptotic expressions apply for L > 1. The final expressions for the truncated 

EEC's are obtained by first calculating   
  and   

  by subtracting the above results 

(4.21), (4.22) from the untruncated EEC's (4.4), (4.5) (as shown in (4.3). Second, the 

contribution from face B is calculated using the results for   
  and   

  by replacing 

  with     ,    with    ,    with      ,   with      . and l
A
 with l

B
. 

Third, the contributions from the two faces are added to determine MT, and IT, see 
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(4.2). Finally, these expressions are inserted into the radiation integral (4.1) to 

determine the approximate FW field from the truncated EEC's. [22]  

It is noted that     
 , in (4.21) and     

 , in (4.22) do not contain singularities for 

                        , and L = 0 as do the previously reported 

expressions [21]. Using the result of [6] it is shown that if          
          

  

remain bounded as      If      and         
          

  are singular but this 

singularity (the Ufimtsev singularity) is cancelled by the singularity in    
  and    

  

given by (4.4) and (4.5), respectively. This means that MT and IT are valid for all 

directions of incidence and observation. Furthermore, the fact that     
  and     

  are 

finite for L = 0 implies that no numerical problems arise for edge points close to 

comers when evaluating the integral (4.1). This is very convenient from a practical 

point of view. However, the field calculated from the truncated EEC's for edge points 

close to comers is a poor approximation to the exact field because no information on 

the distortion of the current near comers [25] is introduced.  

4.1.3 Numerical Results 

 

In this section results obtained by combining method of equivalent edge currents 

with SBR are presented. Results obtained for square plate, box, two boxes and F-16 

aircraft are shown. First, data for square plate in the literature are used to validate the 

computer code consisting of combination of SBR, PTD and EEC methods.  

For this purpose, case study mentioned in Polka and Balanis [26], is handled. In this 

problem, Monostatic RCS of a square plate (Figure 77) mounted on xy plane and 

illuminated 10 GHz at an azimuth angle of φ=30° is investigated. Results for both 

vertical and horizontal polarizations have been presented in Figure 76 and compared 

with those obtained in [26]. 
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Figure 77 Square plate mounted on xy plane 

 

(a)              (b) 

Figure 78 RCS results obtained by SBR, PTD and EEC (a) Horizontal polarization 

(b) Vertical polarization 
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Figure 79 RCS results obtained by Polka and Balanis (a) Horizontal polarization (b) 

Vertical polarization 

As shown in Figure 78, diffraction effects are dominant at horizontal polarization 

when elevation angle θ is greater than 30 degrees. On the contrary, at vertical 

polarization diffraction effects are weak. The results presented by Polka and Balanis 

in Figure 79 are compatible with SBR, PTD and EEC code. Therefore the code is 

validated by the literature results.  

After the code is validated, the fist simulation has been run on a cube (Fig 80) 

consisting of 24 triangular elements with dimensions x=7 m, y=7 m and z=7 m. 

 

Figure 80 Meshed model of the box 
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Radar cross section of the cube has been investigated at 2 GHz frequency and 91° 

diffraction angle, at vertical and horizontal polarizations. In Figures 81 and 82 

change in RCS due to changing elevation angle; whereas in Figures 81 and 84 

change in RCS due to changing azimuth angle have been examined. 

In Figures 81 and 82, RCS of the box has been plotted at an azimuth angle of 0
o
 and 

elevation angle interval of [0
o
-180

o
] with angular increments of 1

 o  

 

Figure 81 RCS of cube with SBR, PTD and EEC at vertical polarization 

As shown in Figure 79, diffraction effects are dominant at elevation angle intervals 

of [170°-180°]. In other angular ranges, since diffraction effects are weak, SBR, PTD 

and EEC results are compatible with SBR results. 
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Figure 82 RCS of cube with SBR, PTD and EEC at horizontal polarization 

 

As shown in Figure 82, diffraction effects are dominant at elevation angle intervals 

of [10°-85°] and [105°-170°]. Especially in [10°-85°] region the difference in RCS 

levels is almost 10 dBsm. In other angular ranges, since diffraction effects are weak, 

SBR, PTD and EEC results are compatible with SBR results. 

In Figures 81 and 82, RCS of the cube has been plotted at an elevation angle of 90
o
 

and azimuth angle interval of [0
o
-360

o
] with angular increments of 1

o 
at vertical and 

horizontal polarizations respectively. The results have been obtained at 2 GHz 

frequency and diffraction angle has been set to 91
o 
in order to take diffraction effects 

of all edges into consideration. 
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Figure 83 RCS of the cube with SBR, PTD and EEC at vertical polarization 

 

As shown in Figure 83, SBR, PTD and EEC results are compatible with SBR results 

when the target is illuminated at vertical polarization in azimuth direction. 

 

 

Figure 84 RCS of the cube with SBR, PTD and EEC at horizontal polarization 
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As shown in Figure 84, diffraction effects are dominant at azimuth angle (   

intervals of [90°-110°] and [270°-290°]. In other angular ranges, since diffraction 

effects are weak, SBR, PTD and EEC results are compatible with SBR results. 

The third problem handled to investigate is the corner reflector (Fig. 83). The straight 

edges of the corner reflector are equal to 4m. The results have been obtained at 8 

GHz frequency and diffraction angle has been set to 91
o 

in order to take diffraction 

effects of all edges into consideration. The corner reflector has been modeled using 3 

triangular elements i.e. 1 triangle on each surface. 

 

 

Figure 85 3D Model of corner reflector 

 

In Figures 86 and 87, RCS of the corner reflector has been plotted at an azimuth 

angle of 0
o
 and elevation angle interval of [0

o
-180

o
] with angular increments of 1

o 
at 

vertical and horizontal polarizations respectively.  
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Figure 86 RCS of the corner reflector with SBR, PTD and EEC at vertical 

polarization 

As shown in Figure 86, diffraction effects are dominant at elevation angle (   

intervals of [0°-40°] and [150°-180°]. In other angular ranges, since diffraction 

effects are weak, SBR, PTD and EEC results are compatible with SBR results. 

 

 

Figure 87 RCS of the corner reflector with SBR, PTD and EEC at horizontal 

polarization 
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As shown in Figure 87, diffraction effects are dominant at elevation angle (   

intervals of [110°-170°]. In other angular ranges, since diffraction effects are weak, 

SBR, PTD and EEC results are compatible with SBR results. 

In Figures 88 and 89, RCS of the corner reflector has been plotted at an elevation 

angle of 90
o
 and azimuth angle interval of [0

o
-360

o
] with angular increments of 5

o 
at 

vertical and horizontal polarizations respectively.  

 

Figure 88 RCS of the corner reflector with SBR, PTD and EEC at vertical 

polarization 

As shown in Figure 88, diffraction effects are dominant at azimuth angle (    

intervals of [100°-150°] and [100°-150°]. In other angular ranges, since diffraction 

effects are weak, SBR, PTD and EEC results are compatible with SBR results. 
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Figure 89 RCS of corner reflector with SBR, PTD and EEC at horizontal 

polarization 

As shown in Figure 88, diffraction effects are dominant at azimuth angle (    

intervals of [60°-150°] and [250°-270°]. In other angular ranges, since diffraction 

effects are weak, SBR, PTD and EEC results are compatible with SBR results. 

The last problem investigated is the F-16 aircraft case (Fig. 90). The dimensions of 

the aircraft are x=15 m, y=10 m, z=4 m. The results have been obtained at 10 GHz 

frequency and diffraction angle has been set to 30
o
 and 90

o 
in order to take 

diffraction effects of all edges into consideration. RCS values obtained at vertical and 

horizontal polarizations and by PO, SBR and SBR, PTD and EEC methods have 

been compared in related plots. 
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                   (a)            (b) 

 

Figure 90 (a) 3D CAD model of F-16 (b) Dominant edges on diffraction when 

diffraction angle is 30
o
 and 90

o
 

In Figures 91 and 92, RCS of F-16 aircraft has been plotted at an elevation angle of 

90
o
 and azimuth angle interval of [0

o
-360

o
] with angular increments of 5

o 
at vertical 

and horizontal polarizations respectively. The results have been obtained at 8 GHz 

frequency and diffraction angle has been set to 91
o 
in order to take diffraction effects 

of all edges into consideration. 

 

Figure 91 RCS of F-16 with SBR, PTD and EEC at vertical polarization 
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Figure 92 RCS of F-16 with SBR, PTD and EEC at horizontal polarization 

As shown in Figure 91 and 92, diffraction effects are dominant at azimuth angle (   

interval of [65°-100°]. Main physical features on the aircraft which contribute to 

diffraction are leading and trailing edges of wing, horizontal and vertical tails. In 

other angular ranges, since diffraction effects are weak, SBR, PTD and EEC results 

are compatible with SBR results. 

In Figures 93 and 94, RCS of F-16 has been plotted at an azimuth angle of 0
o
 and 

elevation angle interval of [0
o
-180

o
] with angular increments of 1

o 
at vertical and 

horizontal polarizations respectively. The results have been obtained at 10 GHz 

frequency and diffraction angle has been set to 90
o 
in order to take diffraction effects 

of all edges into consideration. 



105 

 

Figure 93 RCS of F-16 with SBR, PTD and EEC at vertical polarization 

As shown in Figure 93, diffraction effects are most dominant at an elevation angle 

(   of 180°. 180° elevation angle coincides with the rear side of the aircraft. Also in 

elevation angle interval of [0
o
,-22

o
] SBR and SBR, PTD and EEC results do not 

match due to diffraction effects. In other angular ranges, since diffraction effects are 

weak, SBR, PTD and EEC results are compatible with SBR results. 

 

 

Figure 94 RCS of F-16 with SBR, PTD and EEC at horizontal polarization 
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As shown in Figure 94, diffraction effects are most dominant at elevation angle (   

intervals of [0
o
-75

o
] and [91

o
-180

o
]. In other angular ranges, since diffraction effects 

are weak, SBR, PTD and EEC results are compatible with SBR results. 

Figure 95 presents monostatic RCS values of F-16 with respect to frequency when 

azimuth and elevation angles are both set to 0
o
. The frequency interval in the analysis 

is [2-18] GHz with increments of 1 GHz. 

 

Figure 95 RCS of F-16 with respect to frequency with SBR, PTD and EEC at 

vertical polarization 

As shown in Figure 95, diffraction effects are most dominant at frequency (   

interval of [2-5] GHz. In other frequency ranges, since diffraction effects are weak, 

SBR, PTD and EEC results are compatible with SBR results 
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CHAPTER 5 

 

 

MODELLING AND RCS SIMULATION OF AIRCRAFT COCKPIT 

 

 

 

In the literature, rectangular cavity was used to represent a structure such as a cockpit 

in an air vehicle and has been flush mounted in the sidewall of a finite circular 

cylinder [27, 28]. In this study, fuselage of the air vehicle is modeled as finite 

elliptical cylinder and a large cavity is mounted inside the finite elliptical cylinder. 

Shooting and bouncing ray method is used for the cavity, and finite elliptical cylinder 

effects were accounted for via the Uniform Geometrical Theory of Diffraction 

(UTD) and Shooting and Bouncing Ray (SBR) method. RCS of cylindrical cockpit 

and rectangular cavity have been investigated at a frequency interval of [1-12] GHz.  

5.1 Radar Cross Section of a Rectangular Cavity in a Finite Cylinder 

 

In this section, effects of scattering from cylindrical surface superposed on 

rectangular cavity on RCS is investigated. In literature, cockpit of the aircraft is 

modeled as a rectangular cavity inside finite cylindrical surface. [28] 
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Figure 96 Cylinder with a flush mounted rectangular cavity. The cavity extends over 

–
 

 
   

 

 
  

 

 
   

 

 
       . The cylinder length=L and radius=c. 

 

Aperture integration (AI) of the waveguide modes was used for the cavity. Creeping 

wave effects were accounted for via the Uniform Geometrical Theory of Diffraction 

(UTD). External scattering from the cylinder was handled by curved edge GTD. This 

AI/UTD technique was previously used for a cavity in a finite, flat ground plane [2]. 

5.1.1 Diffraction Mechanisms and Model  

 

Three diffraction mechanisms are considered. RCS due to  

(a) the cavity,  

(b) creeping wave interactions of the cavity and cylinder, and  

(c) exterior scattering by the cylinder edges.”  

This is shown in Figs. 97 and 98. “The cavity contribution (a) is found by using 

propagating waveguide modes to obtain the equivalent magnetic currents in the 

aperture. Then, aperture integration is used to obtain the radiated field. Reciprocity is 

applied [27] to obtain the solution for cavity excitation by a plane wave. Combining 

the results gives us the RCS due to cavity effects. The interaction (b) of the cavity 

and cylinder is readily incorporated by using UTD [27] The creeping waves, when 

added to AI, provide an improvement beyond the       direction.  
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The exterior diffractions (c) originate from the edges of the cylinder and aperture. 

Interactions with the waveguide modes are not part of this process. The effect is 

included via curved edgc GTD [28]. Other methods are possible. e.g. PO/PTD. Such 

refinements were deemed to be not, worthwhile for this application  

 

Figure 97 Excitation of cavity modes via topside and bottom side illumination. 

 

Figure 98 External scattering by the cylinder, showing the possibility of two or four 

diffraction points. The cylinder has a length=L, and aperture length=b. 
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5.1.2 Results and Discussion  

 

The AI/UTD were used to compute the monostatic RCS in the     plane for a 1 by 

1 m aperture in a cylinder. The cavity depth is 2 m and the frequency is 5 GHz. The 

cylinder radius is 2.5 m and the length is 5 m.  

Fig. 99 shows       and       using AI/UTD. The external part of the geometry 

can be interpreted as a cylinder with an absorbing cavity. The total RCS represents a 

cylinder with a perfectly reflecting cavity. We also note that the cylinder RCS has a 

discontinuity; this is due to the appearance/disappearance of the diffraction points 

    and    , in Fig. 96. In the shadow, region      , creeping waves couple into 

the cavity, reflect, and then reradiate. This effect is very weak as compared to the 

cylinder’s external scattering  

 

 

Figure 99 Monostatic RCS of the finite cylinder with a rectangular cavity using 

AI/UTD 
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Figure 100 Monostatic RCS of the finite cylinder with a rectangular cavity using 

SBR 

Fig. 100 shows       and       using SBR.  There is a phase difference of 180° 

between horizontal and vertical polarizations in angular ranges other than   

        . Also, as   increases       component increase whereas       

component decreases. 
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CHAPTER 6 

 

CONCLUSIONS 

 

 

 

6.1 Summary of the Thesis  

 

In the scope of this study, a MATLAB code has been developed in order to calculate 

radar cross section of compex shapes using shooting and bouncing rays method. 

Shooting and bouncing rays method is a ray tracing method based on geometric 

optics (GO) and phyical optics (PO) methods. Ray paths are calculated by geometric 

optics, whereas the interaction of surface currents and electric field is handled by 

physical optics. Aperture integration (AI) method is also adopted. 

Wave frequency, number of rays shot into the target, polarization of the wave, target 

geometry and aspect angle are the major input parameters of the code. Based on 

these parameters, the code predicts the RCS of a complex shape.  

SBR code can handle reflaction effects which mainly occur due to specular surface 

returns. Diffraction, on the other hand, occurs whenever an incident ray comes 

accross an edge or a corner. Edge and corner diffraction mechanisms are mainly 

handled by diffraction theories such Physical Theory of Diffraction, Geometric 

Theory of Diffraction (GTD)) and Uniform Theory of Diffraction (UTD). Equivalent 

Edge Currents (EEC’s),  recently developed by Michaeli, is another method that can 

handle diffraction effects. EEC method is used in the scope of this study. Therefore, 

it can be concluded that, the code developed is a hybrid of SBR and EEC. 

In order to validate the code, RCS of some primitive shapes such as flat square, 

cylinder, and corner reflector is calculated and compared with the values pulished in 
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the literature. Complex shapes, on the other hand, are decomposed into planar 

triangles and saved as STL formats. The code performs ray-traingle intersection test 

and based on the results of intersection tests, calculates the contribution of each 

triangle. Finally, RCS of the whole target is calculated by summing up the 

contribution of each ray. This is performed in the aperture integration phase. 

Complex shapes that are analyzed in the scope of the study are F-16, F-117 and 

eurofighter aircrafts. 

Since SBR is a ray tracing based approach, a fast ray-triangle intersection test 

algorithm shall be utilized to enhance SBR method. Badouel, Moller-Trumbore and 

Plucker methods have also been implemented for ray-triangle intersection test in 

various problems involving targets consisting of large number of triangular plates. 

As a result of the study, it is concluded that Plucker test method yields lower 

computation times than other two intersection test methods.  

Results obtained by PO, SBR and SBR+EEC methods for complex and primitive 

shapes have been compared and differences have been examined. While the above 

mentioned codes provide perfect matches at regions where specular surface returns 

are dominant, significant deviations between the results arise at regions where 

diffraction effets are dominant.  

In the scope of this study, contribution of a rectangular shaped cockpit inside a 

circulor shaped aircraft fuselage to the RCS of the aircraft has been analyzed using 

the  methods in the literature.  

Finally, all the analysis conducted under this study have been performed based on 

‘Perfectly Electric Conducting (PEC)’ material assumption. Therefore the planar 

reflection coefficient is assmued to be 1. Effect of radar absorbing materials is not 

taken into consideration.  

6.2 Discussion and Future Work 

 

Electromagnetic analysis methods based on ray tracing or physical optics approaches 

such as SBR are approximate techniques. While external excitations can be modeled 

by these techniques, internal excitations cannot be handled. On the other hand, 

approximate techniques can provide fast results with relatively low computation 
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effort. Full wave solution techniques, also called current based techniques such as 

Method of Moments (MoM), Multi Level Fast Multipole Method (MLFMM) and 

Finite Element Method (FEM) do not include any approximations but require higher 

computation power and provide more accurate results compared to the above 

mentioned simpler approximate techniques.  

In order to obtain faster and more accurate results, approximate and full wave 

techniques can be combined resulting in a hybrid method. This approach can also 

provide a solution of the diffraction problem. 

Use of radar absorbent materials in the future fighter aircrafts is inevitable. Therefore 

any RCS code should be compatible of solving problems that include dielectric 

materials. This can be achieved through the development of dielectric material 

attenutaion models and modifying planar reflection coefficients used in electric field 

integrals.  
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