
HIERARCHICAL REPRESENTATIONS FOR VISUAL OBJECT
TRACKING BY DETECTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BERİL BEŞBINAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2015

Approval of the thesis:

HIERARCHICAL REPRESENTATIONS FOR VISUAL OBJECT
TRACKING BY DETECTION

submitted by BERİL BEŞBINAR in partial fulfillment of the requirements for
the degree of Master of Science in Electrical and Electronics Engineer-
ing Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Eng.

Prof. Dr. A. Aydın Alatan
Supervisor, Elec. and Electronics Eng. Dept., METU

Examining Committee Members:

Assoc. Prof. Umut Orguner
Electrical and Electronics Engineering Dept., METU

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Fatih Kamışlı
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Elif Vural
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Osman Serdar Gedik
Computer Engineering Dept., Yıldırım Beyazıt University

Date: September 10, 2015

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: BERİL BEŞBINAR

Signature :

iv

ABSTRACT

HIERARCHICAL REPRESENTATIONS FOR VISUAL OBJECT
TRACKING BY DETECTION

Beşbınar, Beril

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

September 2015, 115 pages

Deep learning is the discipline of training computational models that are com-

posed of multiple layers and these methods have improved the state of the art

in many areas such as visual object detection, scene understanding or speech

recognition. Rebirth of these fairly old computational models is usually related

to the availability of large datasets, increase in the computational power of cur-

rent hardware and more recently proposed unsupervised training methods that

exploit the internal structure of very large, unlabeled datasets. An exhausting

search of good parameters that are usually on the order of thousands, or even

millions, is nearly impossible to result in a meaningful model when available

dataset is relatively small and this is the reason why deep architectures are

barely used for visual object tracking, which is a challenging yet very important

task in computer vision. In this thesis, we investigate the use of hierarchical

representations within the tracking-by-detection framework, a common strat-

egy in visual object tracking that regards tracking as a detection problem in

v

still images where temporal information is handled within a Bayesian approach.

Stacked autoencoders and convolutional neural networks are trained using aux-

iliary datasets and the resultant hierarchical representations are experimented

both off-the-shelf and after fine-tuning the pre-trained models using the few

samples available. Experiments are realized using a challenge toolkit, which not

only enables a fair comparison of hierarchical representations with well-known

and widely-used hand-crafted features by using the same tracking-by-detection

setting, but also demonstrates the performance of utilized framework among all

recent visual tracking algorithms. Test results show that exploiting the intri-

cate structure in auxiliary dataset, even without fine-tuning, contributes to the

solution of visual object tracking problem.

Keywords: Visual object tracking, tracking by detection, hierarchical represen-

tations, deep learning, stacked autoencoders, convolutional neural networks

vi

ÖZ

TESPİT İLE GÖRSEL NESNE TAKİBİ İÇİN SIRADÜZENSEL
BETİMLEMELER

Beşbınar, Beril

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Eylül 2015 , 115 sayfa

Derin öğrenme, çoklu tabakalardan oluşan işlemsel modellerin eğitilmesidir ve bu

yöntemler görsel nesne tespiti, sahne anlamlandırması veya konuşma tanıma gibi

pek çok alanda en son teknolojinin önüne geçmiştir. Nispeten eski olan bu yön-

temlerin yeniden doğuşu genellikle büyük veri kümelerinin ulaşılabilirliği, güncel

donanımların işlem gücü ve büyük verilerin iç mimarisinden istifade eden, göre-

celi yeni önerilen güdümsüz eğitim yöntemleri ile ilişkilendirilmektedir. Sayıları

binler hatta milyonlar seviyesinde olan iç değişkenlerin iyi olanlarını zahmetli

bir şekilde arama işleminin, kullanılan veri kümesinin göreceli küçük olması du-

rumunda anlamlı bir modelle sonuçlanması neredeyse imkansızdır ve bu durum,

derin mimarilerin, bilgisayarla görü alanında zorlu ancak oldukça önemli bir he-

def olan görsel nesne takibinde nadir olarak kullanılmasının sebebidir. Bu tez

kapsamında sıra düzenli betimlemelerin, görsel nesne takibinde oldukça yaygın

kullanılan ve takip problemini sabit imgelerde nesne tespiti olarak yorumlayıp

vii

zamansal bilgiyi Bayesçi bir çatı altında anlamlandıran tespit ile takip yöntemi

dahilinde kullanımı araştırılmıştır. Yığınlı özkodlayıcılar ve sıradüzensel betim-

lemeler yardımcı veri kümeleri kullanılarak eğitilmiş ve sonuçta çıkan sıradüzenli

betimlemeler hem oldukları gibi hem de az sayıda mevcut olan veri kullanıla-

rak modele yapılan ince ayar sonrasında test edilmiştir. Deneylerin bir yarışma

platformu kullanılarak yapılması, sadece sıradüzenli betimlemelerin iyi bilinen

ve sıkça kullanılan mühendislik ürünü betimlemeler ile adil olarak kıyaslanma-

sını sağlamamış, aynı zamanda, kullanılan çatı algoritmanın mevcut tüm takip

algoritmaları içerisindeki yerinin görülmesine de olanak tanımıştır. Deney so-

nuçları, ince ayar yapılmadığı durumlarda dahi yardımcı veri kümelerinin girişik

yapılarından faydalanmanın görsel nesne takibi çözümüne katkıda bulunacağını

göstermiştir.

Anahtar Kelimeler: Derin öğrenme, evrişimli sinir ağları, geriyayılım, uydu gö-

rüntüleri, jeo-uzamsal hedef bulma

viii

To mom, the strongest woman I’ve ever known...

ix

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my supervi-

sor, Prof. Dr. A.Aydın Alatan for his ever-lasting support, understanding and

guidance throughout these three years. I feel grateful to him for introducing

me such a wide variety of research areas so that I was able to pick the one

that matches my interests. I have learned a lot from his eloquence such that he

is capable of making ideas and conducted works comprehended with ease and

influence, even by those who are unfamiliar with the topic.

Being a part of Multimedia Research Group has always been a pleasure and it is

these invaluable friendships that makes the time I spent here remarkable. I would

like to thank Emrecan Batı for answering all my questions with patience and

understanding. In addition to his technical support and influence in my graduate

studies, he introduced me the world of fountain pens, which I become addicted

to and taught me how to drive, which made my life a lot easier. However, my

deepest gratitude is not for any of these, I appreciate most the opportunity to

be provided to trust someone from scratch when I turned in upon myself, and

it has been a real privilege to talk as I want when I am together with him,

without thinking what others think or say. I am thankful to İlker Buzcu for his

company during two years of TA work and all-nighters, as well as for his friendly

greetings in the mornings and on the phone. I thank to Yeti Ziya Gürbüz for

his support during the projects we were involved in and introducing me such a

different perspective about life. Thanks to Ömürcan Kumtepe for being such a

kind and naive friend; Akın Çalışkan, if not for anything for his belly laughs,

and Ece Selin Böncü, who demonstrates how to be a successful engineer without

sacrificing too much from her interests. I also would like to express my thanks

to former members of MMRG, Yağız Aksoy, who really knows how to listen and

was a great host during my summer in Switzerland, and Emin Zerman, for their

friendships and our memorable holiday. Thanks to Ozan Şener, another former

x

member of our group, for his endless energy and our pleasant conversations. I

acknowledge Dr.Osman Serdar Gedik, Dr.Ahmet Saraçoğlu and Dr.Alper Koz,

for their precious mentorship. I am also thankful to Enis Kobal, an honorary

member of our group, for his valued friendship.

I would like to offer my sincere thanks to Prof. Dr. Pascal Frossard, for his sup-

port and trust during my summer internship at EPFL. I had the opportunity

to benefit from his experience and wisdom even within such a limited time.

I would like to express my thanks to the fellow members of METU Aviation

Society Paragliding Club, which I was enrolled in until the early times of my

graduate studies. Spending endless time where there was nothing and nobody

else but us, surviving despite scorching hot or perishing cold, it was always a

real pleasure to share the moments of amusement when our feet began to tread

on air and we only heard the sound of the wind. I also thank to my old friends

Caner Bayram and Esra Özban who proved that the friendship is beyond the

measures of time and space.

I offer my sincere thanks to Scientific and Technological Research Council of

Turkey (TUBITAK), HAVELSAN and ASELSAN for their financial support

during my Master’s studies.

Finally, nothing would have meaning if I did not have the support of my family.

I am grateful to my mother, Zübeyde Beşbınar, not only for providing me such

surroundings that I am able graduate from Master’s degree today, but also for

teaching me how to be an independent woman. Her unconditional love has

always given me the strength to stand on my own feet. Although he has not

been with me since my first days at school, I am thankful to my father, Mehmet

Beşbınar, whose presence and absence I always feel deeply with my heart. I

really appreciate being the daughter of such a great man. The last but not the

least, I always feel privileged to be a member of such a big, caring family and I

express my love to each and every member.

xi

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xii

LIST OF TABLES . xvi

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Statement and Motivation 8

1.2 Scope and Outline of the Thesis 12

2 VISUAL OBJECT TRACKING 15

2.1 Object Representation 16

2.2 Object Detection . 18

2.3 Motion Estimation . 20

2.3.1 Motion Estimation for Point Representations . 20

xii

2.3.2 Motion Estimation for Appearance-Based Models 22

2.4 Online Object Tracking: A Benchmark [121] 23

2.5 Visual Object Tracking (VOT) Challenge 29

3 DEEP LEARNING - FUNDAMENTALS 35

3.1 Biological Inspiration 35

3.2 Historical Background 38

3.3 Feed-Forward Networks 42

3.3.1 Artificial Neuron 42

3.3.2 Neural Networks 45

3.3.3 Capacity and Overfitting 45

3.3.4 Optimization 47

Stochastic Gradient Descent 49

Backpropagation 50

Regularization 51

Learning Rate 52

Update Rule 53

Initialization 56

Determination of Hyperparameters 56

Early Stopping 56

Bias-Variance Trade-off 56

3.4 Convolutional Neural Networks 58

xiii

3.5 Autoencoders . 63

3.5.1 Types of Autoencoders 65

Linear Autoencoders 65

Denoising Autoencoders 65

Sparse Autoencoders 66

Contractive Autoencoders 66

4 DEEP ARCHITECTURES FOR TRACKING 71

4.1 Related Work: Tracking Frameworks that Involve Deep
Architectures . 72

4.2 Tracking by Detection 76

4.2.1 Tracking Scheme 76

4.2.2 Classification Scheme 80

4.2.3 Object Representation 82

Raw Pixels (Intensity) 82

Subspace Representation with PCA
(PCA) 82

Scale Invariant Features (SIFT) . . 82

Pyramid Histogram of Visual Words
(PHOW) 83

Sparse Representations using Struc-
tured Dictionaries (Sparse
Features) 83

Transfer Learning with SIFT Dictio-
naries (SIFT Sparse) . . 84

xiv

Stacked Denoising Autoencoders (DAE),
(DAEgray), (DAEcolor),
(DAEgray,w/adapt) 85

CNN Features off the Shelf (CNN) 86

4.2.4 Overview of The Framework 86

Initialization 86

Update 88

4.3 Implementation Details 90

4.4 Experimental Results 91

4.4.1 Visual Results 91

ball 92

bicycle 93

david 93

car 94

gymnastics 94

4.4.2 Accuracy and Robustness Results 95

5 CONCLUSION . 101

5.1 Summary . 101

5.2 Conclusion . 102

5.3 Future Work . 103

REFERENCES . 105

xv

LIST OF TABLES

TABLES

Table 3.1 Loss functions of different autoencoder configurations 69

Table 4.1 Average accuracy values of algorithms on sequences 97

Table 4.2 Number of failures for each algorithm for all sequences 97

Table 4.3 Percentage of failures computed over sequences for each algo-

rithm for all sequences . 98

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 Evolution of top-5 classification in ImageNet Large Scale Vi-

sual Recognition Challenge (ILSVRC) [100]. The success of deep

learning algorithms is demonstrated by the decrease in classification

error starting from 2012. 4

Figure 1.2 Semantic segmentation result obtained using deep neural net-

works(image taken from [129]) . 5

Figure 1.3 Image caption generation using convolutional and recurrent

neural networks (image taken from [62]) 5

Figure 1.4 Handwriting synthesis by recurrent neural networks that con-

ditions its predictions on a typed text sequence [39] 6

Figure 1.5 Recombination of content information of a photograph and

style of an artwork, depicted in bottom left corner of each panel, via

convolutional neural networks (image taken from [35]) 6

Figure 1.6 Reducing the dimension of data with unsupervised deep learn-

ing methods in such a way that they clustered much better in 2-

dimensions compared to the reduction realized by PCA.(image taken

from [50]) . 7

Figure 1.7 Classification results of [124] that indicates how transferable

the features extracted at each layer of convolutional neural networks 10

xvii

Figure 2.1 Illustration of object representations: (a) centroid, (b) multi-

ple points, (c) rectangular patch, (d) elliptical patch, (e) part-based

multiple patches, (f) object skeleton, (g) control points on object con-

tour, (h) complete object contour, (i) object silhouette (image taken

from [123]). 16

Figure 2.2 Success and precision plots of top ten algorithms for one-pass

evaluation [121] . 25

Figure 2.3 Success and precision plots of top ten algorithms for spatial

robustness evaluation [121] . 25

Figure 2.4 Success and precision plots of top ten algorithms for temporal

robustness evaluation [121] . 25

Figure 2.5 Ranking results of VOT 2013 challenge [64] 30

Figure 2.6 Ranking results of VOT 2014 challenge [65] 33

Figure 3.1 Illustration of a typical neuron 36

Figure 3.2 Mathematical model of a neuron 36

Figure 3.3 Illustration of the ventral pathway of human visual system

(image taken from [112]) . 37

Figure 3.4 (a) A typical architecture of the neocognitron [32] and (b)

input interconnections to the cells within a single cell-plane (figures

takes from [34]) . 41

Figure 3.5 Different activation functions: (a) linear (b) sigmoid (c) hy-

perbolic tangent (d) rectified linear 44

Figure 3.6 (a) An artificial neuron and (b) multi-layer feed-forward neural

network with one hidden layer (images taken from [70]) 44

xviii

Figure 3.7 A single neuron illustrated in (a) is capable of binary classifi-

cation, which is depicted in (b) for two-dimensional data. Multilayer

neural networks with hidden layers may achieve classification of data

that are not linearly separable (c) and approximate continuous func-

tions arbitrarily well (d) (images taken from [115]) 46

Figure 3.8 Toy example of classifying two dimensional data points with

a neural network of different architectures. Images in the first row

presents the results of neural networks with a single layer of 3,6 and

20 neurons, from left to right. Images in the second row is the clas-

sification results of neural networks with 1,2 and 3 hidden layers of

3 neurons. As the number of neurons/hidden layers increased in a

neural network, it tries to fit the data perfectly, which probably does

not generalize to the test data. 48

Figure 3.9 Illustration of different learning rates for the loss minimization

process . 54

Figure 3.10 Evolution of loss over training and validation sets. Iterations

less than required for good convergence will result in a model that

could not fit the data. On the other hand, allowing model to iterate

more than necessary will cause to memorization of data so that model

can not generalize well to new (test) data. 57

Figure 3.11 Illustration of bias-variance trade-off for neural networks . . . 57

Figure 3.12 Illustration of (a) fully-connected layers (b) local connections

and (c) weight sharing (images taken from [7]) 60

Figure 3.13 A frequent subblock of deep convolutional neural networks . 60

Figure 3.14 Architecture of LeNet-5, which is used for digit recognition

(figure taken from [74]) . 61

Figure 3.15 Architecture of AlexNet, proposed for Imagenet large scale

recognition challange in 2012(figure taken from [67]) 62

xix

Figure 3.16 Kernels of size 11x11x3 learned in the first convolutional layer

of AlexNet [67]) . 62

Figure 3.17 Autoencoder illustration: encoder attempts to find an expres-

sive representation h(x) of data x by minimizing the reconstruction

error between the input and reconstructed data x̂. 64

Figure 3.18 In denoising autoencoders, input x is corrupted with a noise

process p(x̃|x) and reconstructions is realized over the corrupted input

x̃. 65

Figure 3.19 Samples from hand-written digits dataset MNIST 67

Figure 3.20 Visualization of weights of an autoencoder corresponding to

different loss functions which are given in Table 3.1 68

Figure 3.21 (continued) Visualization of weights of an autoencoder (AE)

corresponding to different loss functions which are given in Table 3.1 69

Figure 3.22 Manifold interpretation of denoising autoencoders: Noise pro-

cess moves the training samples farther away from the manifold so

that model is forced to learn the structure (image taken from [69]) . 70

Figure 4.1 Architecture of the CNN utilized in human tracking algo-

rithm [57]. Image patches corresponding to the same position in two

consecutive frames are fed to the network which processes the input

data in global and local branches. Output of the architecture is a

probability map rather than a classification label. 74

Figure 4.2 Architecture of the CNN utilized in DeepTrack algorithm [75].

Three different cues are fed to the network and independent filters

learned through these three different paths. Resultant representations

are fused in the top layer where a 2 dimensional feature is generated

to indicate class probabilities of being positive or negative. 75

xx

Figure 4.3 Generic framework for tracking by detection algorithms. Solid

lines indicate the certain relations between sub-blocks whereas dashed

lines are used for optional interaction. 77

Figure 4.4 Illustration of resampling for particle filter. 79

Figure 4.5 Examples of anisotropic refinement atoms, which are a subset

of the dictionary utilized for sparse representation 83

Figure 4.6 Reconstruction of pattern "3" in (a) by a number of (b) 10,

(c) 20, (d) 30, (e) 40, (f) 50 and (g) 100 atoms 84

Figure 4.7 Illustration of algorithm in [119], which exploits auxiliary data

for learning a dictionary of hand-crafted features. 84

Figure 4.8 Samples from CIFAR-10 dataset [66] 85

Figure 4.9 (a) Initial frame of woman sequence in color with annotated

bounding box and (b) some of corresponding positive and negative

samples, within green and red bounding boxes respectively, in gray

level for the training of the classifier. 87

Figure 4.10 Positive and negative samples in the first and latter two rows,

respectively, warped into 32x32 gray-level images. 88

Figure 4.11 (a) Centers and (b) some of corresponding bounding boxes of

first-frame-particles. 88

Figure 4.12 (a) Centers and (b) some of corresponding bounding boxes of

the particles in 104th frame. 89

Figure 4.13 Detection result of 104th frame in woman sequence. 90

Figure 4.14 Positive and negative samples for 104th frame, in the first and

latter two rows, respectively, warped into 32x32 gray-level images.

Notice that positive samples correspond to the detection results of

the last 10 frames accompanied by the labeled sample in the initial

frame. 90

xxi

Figure 4.15 Tracking result of sequence ball corresponding frames (a)5

(b)59 (c)78 (d)114 (e)130 (f)146 (g)183 (h)187 (i)249. 92

Figure 4.16 Tracking result of sequence bicycle corresponding frames (a)10

(b)66 (c)118 (d)135 (e)149 (f)171 (g)176 (h)177 (i)233. 93

Figure 4.17 Tracking result of sequence david corresponding frames (a)10

(b)45 (c)130 (d)200 (e)310 (f)356 (g)426 (h)607 (i)720. 94

Figure 4.18 Tracking result of sequence car corresponding frames (a)22

(b)107 (c)147 (d)159 (e)168 (f)171 (g)218 (h)238 (i)250. 95

Figure 4.19 Tracking result of sequence gymnastics corresponding frames

(a)10 (b)74 (c)87 (d)97 (e)103 (f)117 (g)129 (h)140 (i)154. 96

xxii

LIST OF ABBREVIATIONS

AE Autoencoder

AI Artificial Intelligence

ANN Artificial Neural Network

BP Backpropagation

CAE Contractive Autoencoder

CNN Convolutional Neural Network

FNN Feedforward Neural Network

pdf Probability density function

PCA Principle Component Analysis

RBM Restricted Boltzman Machine

SAE Sparse Autoencoder

SVM Support Vector Machine

xxiii

xxiv

CHAPTER 1

INTRODUCTION

Today is the time of search engines that almost predict what you have been

looking for, or social network websites which recognize your friends. We all get

used to tools that simultaneously convert speech into text or intelligent agents

that answer our questions pretty well in real time. These are the outcomes of

the passion of mankind to create machines that are capable of thinking, which

initiated the academic field of study, artificial intelligence (AI). By formal defini-

tion, the objective of artificial intelligence research is to design intelligent agents

that can perceive the environment and take actions which maximize its chances

of success [91]. However, hard-coding the knowledge of environment, which is

intuitive and immense for humans, is not straightforward since the exact source

of knowledge is not known and not easy to understand. As a solution, research

has focused on giving these systems the ability to extract patterns from raw

data and acquire their own knowledge, which makes the representation of data

very important. For decades, artificial intelligence tasks have been attacked by

designing right set of specific features, which requires careful engineering and

domain expertise. With the aim of minimizing human effort and making AI

systems adapt themselves for new tasks, methods that allow machines to be

fed with raw data and let them discover the required representations have been

proposed, and these methods are called as representation learning. Similar to

the hand-engineered features that do this explicitly, the aim of representation

learning is the exploration of the abstractions that lead to the variability in the

data, which is known as factors of variation.

1

Deep learning, which has been a very hot topic in the last few years, is also a

representation learning method which aims to disentangle the factors of varia-

tion by the help of a nested hierarchy of concepts. In deep learning algorithms,

multiple levels of representation that correspond to different levels of abstrac-

tion are obtained in such a way that complex concepts are built out of simpler

concepts by composing simple but non-linear modules one after another. The

term depth is generally used to refer the number of composition levels, thus the

number of updates done to the representation and a more detailed discussion on

the term can be found in [11]. The most important aspect of deep learning which

provides its wide area of applications is the fact that these compositions are not

hand-crafted, rather, they are learned from data using a learning procedure that

may adapt itself to any area. In addition, learning from interrelated concepts

provide intermediate representations that may be shared among multiple tasks,

which fits into the AI tasks that capture different aspects of the same underlying

reality.

Learning of hierarchical architectures may be supervised or unsupervised. In

supervised learning, learning algorithm is fed with training data accompanied

by target output, which is usually called as label when the target task is clas-

sification. On the other hand, in unsupervised setting, algorithms are expected

to infer good representation only from the provided data. There are also differ-

ent approaches for unsupervised learning, and one option is to use data drawn

from the same generative distribution of the target task. Such a configuration

allows semi-supervised learning which refers to exploiting the information from

unlabeled data in order to use the resultant representation for the final task by

the help of a small set of labeled examples provided after unsupervised learn-

ing. It is also possible to use a more general unlabeled dataset which is not

restricted to the distribution of the labeled data, which is known as self-taught

learning. The difference between these approaches may be best explained with

an example. Suppose that the objective is to discriminate between the images

of cats and dogs. If cat and dog images are provided to an algorithm with

corresponding labels, this is supervised learning. In unsupervised setting, the

same training data may be provided but without explicitly saying which image

2

contains cat or dog. Feeding a small subset of cat and dog images with labels

after unsupervised learning is known as semi-supervised learning. If a more gen-

eral dataset, for example, images of different animals, is utilized for learning,

this is known as self-taught learning. Although a labeled example provide much

more information compared to the unlabeled one, high availability of such gen-

eral and unlabeled datasets nowadays ensures the interest in both supervised

and unsupervised learning algorithms. The amount of unlabeled data may be

well depicted by the following facts: by early 2015, about 240,000 images are

reported to be uploaded to Facebook every minute, 350 million photos every

day and a total number of 250 billion since its foundation [51]. Instagram itself

announces that the average number of photos shared every day is 70 million,

with a cumulative total of nearly 30 billion. It is 1.83 million public photos per

day in average for Flickr in 2014. Such a huge amount of publicly available data

brings the opportunity to design machines that are capable of generalizing well

at tasks that make use of visual data.

Power of deep learning comes from its success in both supervised and unsuper-

vised settings. For supervised learning, deep learning methods usually employ

backpropagation, a practical application of chain rule that indicates the algo-

rithm how to adjust its internal parameters according to the error at the output.

One very well-known and successful supervised learning method is convolutional

neural networks, a fairly old architecture that regained its reputation nowadays

mostly due to better understanding of the related optimization problem. Un-

supervised variations of deep learning, such as stacked autoencoders and deep

belief networks, not only serve as a pre-training step for supervised settings but

also succeed in obtaining meaningful representations that may be utilized for

different tasks. Recurrent neural networks contain feedback loops in their ar-

chitecture and have an internal memory. Readers are referred to [72] for a brief

overview of deep learning and its application areas and more detailed discus-

sions are present in [10], which may be relatively old regarding the pace of the

research community.

Although it is nearly impossible to fully exemplify the application of deep learn-

ing in a wide range of research areas, some examples will be given here to

3

demonstrate the power of deep learning not only because results improved the

state of the art but also they illustrate suitability to many different areas.

Maybe the most acknowledged application area of deep learning is image recog-

nition. Since 2012, deep learning algorithms dominated the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [100] which is composed of two

competitions, namely object detection and image classification. For image clas-

sification and localization task, participants are provided a labeled dataset of

1.2 million images that belongs to 1000 categories and asked for the five best

decision of their algorithms with corresponding confidence and bounding boxes.

Given in Fig. 1.1, the decrease of this top-5 error in classification challenge illus-

trates the efficacy of deep learning algorithms (convolutional neural networks)

with a considerable attack in 2012. The result of a recent work [43] that also

utilizes deep learning methods and claims to surpass human performance is also

depicted in the figure.

Figure 1.1: Evolution of top-5 classification in ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [100]. The success of deep learning algorithms
is demonstrated by the decrease in classification error starting from 2012.

Use of deep neural networks also has led to the state of the art results in seman-

tic segmentation problem, which require classification of each pixel in an image.

In [129], authors formulated conditional random field as recurrent neural net-

works and plugged the resultant network into a convolutional neural network for

training with backpropagation. The promising results of the proposed method

are illustrated in Fig. 1.2.

Another area in which the application of deep neural networks made a con-

siderable contribution is image captioning. An example work in [62] uses a

4

Figure 1.2: Semantic segmentation result obtained using deep neural net-
works(image taken from [129])

combination of convolutional and recurrent neural networks to detect and align

objects in the image, and generates descriptions of image regions via a multi-

modal recurrent neural network. Results in Fig. 1.3 demonstrate the success of

proposed method.

Figure 1.3: Image caption generation using convolutional and recurrent neural
networks (image taken from [62])

As depicted with previous examples, deep neural networks are not only used

for discriminative purposes like classification and their generative ability is also

utilized in different application areas. For example, in [39], a recurrent neural

network synthesizes handwriting and has a demo webpage that enables you to

choose a handwriting style to synthesize a sentence you type in, as illustrated

in Fig. 1.4

A very interesting work proposed by Gatys et al. intends to create artistic im-

ages that combine content and style of arbitrary images [35] with a pre-trained

5

Figure 1.4: Handwriting synthesis by recurrent neural networks that conditions
its predictions on a typed text sequence [39]

Figure 1.5: Recombination of content information of a photograph and style
of an artwork, depicted in bottom left corner of each panel, via convolutional
neural networks (image taken from [35])

deep convolutional neural network after minor changes. Authors presented that

the reconstruction of input image from different convolutional layers in a net-

work demonstrate different characteristic, in fact, nearly perfect reconstruction

is possible from the lower convolutional layers, however, as going to the higher

6

levels of abstractions, detailed-pixel information is lost whereas the high-level

content is still present. Therefore, using feature responses in higher levels of the

network and combining them with style representations, they created images

whose content information is taken from a photograph and style information

from an artwork. Impressive results of the proposed algorithm is depicted in

Fig. 1.5.

Unsupervised, generative deep learning methods, such as stacked autoecoders

[116] or Restricted Boltzman machines (RBM) [49], are widely used to learn

meaningful representations of data, after the discovery of greedy layerwise train-

ing trick [12,49]. The effectiveness of learned representations may be visualized

by learning 2-dimensional codes from a network in an unsupervised manner,

which actually corresponds to a dimension reduction problem. In [50], authors

generated such two dimensional codes of hand-written digit dataset MNIST [74]

by well-known Principal Component Analysis (PCA) and a stacked RBM net-

work. Fig. 1.6 illustrates the power of hierarchical representations which cluster

data, even in 2-dimensions, without any supervision.

Figure 1.6: Reducing the dimension of data with unsupervised deep learning
methods in such a way that they clustered much better in 2-dimensions compared
to the reduction realized by PCA.(image taken from [50])

7

1.1 Problem Statement and Motivation

In this thesis, the ultimate aim is to track a visual object during a video sequence

given only the bounding box around the object for the first frame. The problem

is usually known as single-object short-term visual object tracking and trackers

are expected to contain no information from a pre-learned model of object ap-

pearance. However, tracker may adapt itself to a single model for all objects,

either pre-learned or not, as long as it does not know what kind of object is

being tracked. And similar to machine learning evaluation, if any training is

assumed, it should not be on the test set.

If intension is the online learning of an object during tracking, there is only a

single labeled data from the initial frame. No other positive or negative exam-

ples are present explicitly, and the object is supposed to undergo heavy pose

and appearance changes during the motion. If we regard the tracking problem

as classification in each frame, it is not only the positive sample (object) that

changes significantly, negative samples, i.e., background, may also vary a lot.

This specific problem of visual object tracking makes it hard to apply conven-

tional learning techniques to tracking. It is even harder to argue about the

application of so-successful deep learning algorithms to tracking problem since

these models are composed of hundreds of thousands or millions of internal pa-

rameters which are trained on the same order of data, even probably more.

However, generalization property of deep architectures that are also assumed

to be distributed, i.e., shared across different tasks, may be utilized for per-

frame classification. Problem and proposed solutions of visual object tracking

are discussed in detail in Chapter 4, and here will be given off some examples to

articulate how the representations of deep architectures trained on large datasets

are utilized for transfer learning.

An unsupervised and transfer learning challenge is organized in 2011 in order

to question capabilities of data representations produced by unsupervised and

transfer learning. For the first phase of the challenge, participants are provided

with five datasets from various domains, such as Arabic manuscripts or human

actions, and they are asked to submit their learned representations (similar-

8

ity/kernel matrices). Submitted results were then tested for supervised learning

tasks by the organizers in order to observe the power of representations learned

without any supervision. No labeled data was provided for the first phase. For

the second phase, some labels of the same were provided to participants who are

expected to improve their representations. However, the test task was similar

yet different according to the provided labels in order to evaluate how re-usable

the proposed representations were and whether they can be adapted from do-

main to domain. The winner group of this challenge proposed deep architectures

for all of the target datasets [83]. They employed different preprocessing steps

for datasets such as standardization, uniformization, contrast normalization or

feature selection and utilized deep representations with different single-layer sub-

blocks for different datasets. The indication of proposed work is the fact that

stacking different layer-wise representations worked well for all datasets and

the best performance is achieved by contractive autoencoder, denoising autoen-

coder and spike-and-slam Restricted Boltzman Machine. Results also showed

that PCA is very effective not only when used as a preprocessing step but also

as a last layer. Specifically, the method of transductive PCA which is a PCA

trained on the last layer of validation/test set, is claimed to provide retaining

dominant variations on the related validation/test set and this step is stated to

be decisive for winning the competition.

There are also lots of transfer learning attempts using the representations ob-

tained in the higher layers of deep architectures that are trained on large datasets

which relatively differs from the target task. Inspired from the state-of-the-art

results presented in recent work [26, 102, 126] that take advantage of transfer

learning from higher layers of deep architectures, Yosinski et al. investigated

the generality of neurons in the each layer of deep convolutional neural net-

works [124]. For this purpose, authors randomly divided ImageNet dataset into

two, group A and B, with nearly equal number of labels and samples and trained

a 8-layer convolutional networks on each dataset, whose structure is the same

as AlexNet [67]. Then, they freeze the first n layers of each network where

n ∈ 1, 2, ..., 7, initialized the remaining layers randomly and trained both net-

works on the test dataset, i.e., group B. These networks are denoted as BnB

9

and AnB, where first letter denotes the dataset on which the initial networks

are trained and the second letter stands for the dataset on which architectures

are tested. In addition, they constructed two other test networks which are the

same as BnB and AnB at the beginning but differs in second training process

since all layers are set free for adaptation. These networks with unfrozen initial

weights are labeled as BnB+ and AnB+. Classification results of all networks

on test set of group B, are depicted in Fig. 1.7.

Figure 1.7: Classification results of [124] that indicates how transferable the
features extracted at each layer of convolutional neural networks

The strong conclusions of this work [124] can be summarized as follows:

• Features learned in the very first layers are very general and transfering

features from the first two layers does not worsen the performance.

• Transfer from middle layers, particularly 4 and 5, causes a considerable

performance drop due to co-adaptation of learning features.

10

• Performance drop due to the transfer from higher layers, 6 and 7, are more

related to less general features in the higher levels of abstractions.

• Relearning the output layer that carries the information more related to

classification is rather a simple problem compared to feature learning in

the lower layers.

• Transfer learning performs better than training from scratch.

• The performance of features that are transferred and then fine-tuned is

better than the features trained directly on the target dataset.

As an additional test, they split ImageNet dataset into two groups, one of which

contains natural images and the other contains man-made entities. Similar tests

conducted on this more variant datasets revealed that features transfer more

poorly when datasets are less similar [124].

The work conducted in [92] also proved the representational power of deep con-

volutional neural networks. The first fully connected layer of Overfeat network,

which is trained for object classification, ILSVRC13, is tested for a various com-

puter vision tasks. The features are used off-the-shelf, i.e., without fine-tuning,

for problems like visual classification, attribute detection, image retrieval, scene

recognition or fine-grained recognition. Off-the shelf features presented perfor-

mance similar to or even higher than state-of-the-art results for all target tasks.

Fine-tuning of the network with possible data augmentation beats the state of

the art for VOC 2007 classification task and scene classification of MIT-67 indoor

scene dataset. Authors claim that CNN features will provide a breakthrough as

hand-crafted features did in the last decade.

In [63], CNNs are evaluated empirically on a dataset of 1 million videos that

belong to 487 classes. The proposed multi-resolution CNNs are trained over

a period of one month and authors compared their video classification results

with possible hand-crafted features, which indicated the superior performance

of multilayer neural networks compared to linear models. In addition, resul-

tant representations are tested on another large video classification dataset with

different configurations: no fine-tuning, fine-tuning of top few layers and fine-

11

tuning of only classification layer. Best performance is obtained when few top

layers are fine-tuned using the new dataset , however, authors propose to fine-

tune only the classifier layer when available dataset is small, whether the new

dataset is similar to the dataset of pre-trained model or not. In addition, authors

remarked that pre-trained networks can be run on images of different sizes due

to the parameter sharing.

1.2 Scope and Outline of the Thesis

Deep learning methods have proven their efficacy on a very wide range of do-

mains by learning meaningful hierarchical representations. Both supervised and

unsupervised learning capabilities of models that use deep architectures increase

the chance of their adoption to new application areas. In addition, tasks that

lack large training data to fulfill the requirements of either training or fine-tuning

these architectures are shown to benefit from the generality of learned represen-

tations. The performance of deep models on domain adaptation problems are

considerably good as exemplified on the Motivation part. Therefore, we investi-

gate the utilization of representations obtained by training deep architectures for

visual object tracking problem. For this purpose, a tracking by detection frame-

work, which consists of representation, classification and motion model modules,

is constructed. Tracking problem is handled by classifying the representation of

candidate image patches, which are proposed by a motion model, and this mod-

ular structure allows experimentation with different representation algorithms.

Classifier in the framework is trained using the single labeled data provided in

the initial frame. Once a new frame arrives, candidate image patches are pro-

cessed by representation module and resultant features are fed to the classifier,

which decides how likely each image patch corresponds to the new bounding

box of the target object. The motion model, which is a recursive Bayesian filter

with predict and update stages, utilizes the corresponding probability values for

each image patch for its update step.

We experimented with two different deep architectures, namely convolutional

neural networks and autoencoders, as representation modules and they are ex-

12

plained in detail in Chapter 3. Due to the lack of training data in visual object

tracking, features from a pre-trained CNN are applied off-the-shelf after an ad-

dition of classification layer on the top. For autoencoders, we exploit auxiliary

data that contain different objects and fine-tune the whole model using the

few samples available for tracking. Performance of learned representations and

some well-known hand-crafted features within the proposed tracking by detec-

tion framework are compared for the completeness of the experiments.

Chapter 2 presents a brief survey of visual object tracking by summarizing dif-

ferent aspects and demonstrating current approaches. Results of recent bench-

marks and challenges on visual object tracking are given in the same chapter in

order to demonstrate the performance and variety of approaches for the solution

of the problem. Brief explanations of some best-performing algorithms are also

provided. Different datasets and performance measures are available for visual

object tracking and the ambiguity of evaluation is depicted by the difference

between the performance of the same algorithm on different evaluation method-

ologies. Dynamic performance and ranking results throughout recent years not

only illustrate the difficulty of proposing a generic and robust solution, but also

demonstrate the interest in the problem.

In Chapter 3, a thorough background information of deep learning algorithms

related to convolutional neural networks and autoencoders is provided.

Chapter 4 first introduces the few approaches to attack visual object tracking

problem with deep learning. The experimentation scheme and algorithms used

for performance comparison are also given in Chapter 4 and it summarizes the

results of experiments realized using a challenge toolkit.

Chapter 5 concludes the presented work by related inference and possible future

directions.

13

14

CHAPTER 2

VISUAL OBJECT TRACKING

Visual object tracking can be defined as the automatic estimation of the tra-

jectory of a moving object over a sequence of images. Object tracking is an

important task with a wide range of application areas such as video surveillance

for security, human-robot or human-computer interaction, traffic monitoring,

driver assistance, vehicle navigation, video compression, sports video analysis,

augmented reality, etc. Although humans can easily detect and track objects,

automatic tracking of objects in real world data can be very complex due to

cluttered background, fast and abrupt motion, large target appearance varia-

tions caused by illumination, pose and/or viewpoint changes and partial or full

occlusions.

There is a substantial work for tracking some specific objects such as face [56]

or human [3, 36]; however, in this thesis, the term "object" will be used for a

rather general purpose to indicate standalone things with well-defined boundary

and corresponding center. The key components of object tracking can then be

described as object initialization, representation of the object and motion esti-

mation. Initialization of the tracker may be manual and object location can be

initialized by a user in the first frame using a bounding box. Otherwise, ini-

tialization is realized by automatic object detection algorithms. Representation

of the object refers to the mathematical modelling of object descriptors which

is deeply investigated in [76] and will be summarized in the following sections.

Motion estimation is the step in which the trajectory of the target is predicted

using the current, and possibly previous frames.

15

2.1 Object Representation

Choosing a proper representation for the target not only plays an important

role in the success of the tracker but also directly affects the motion estimation

step. Objects can be represented by their shapes, appearance or both. As

categorized in [123], shape representation can be achieved by points, geometric or

articulated shapes, skeletal models, silhouettes or contours, which are illustrated

in Fig. 2.1 On the other hand, appearance models may be estimated either

parametrically, for example, using Gaussian or a mixture of Gaussians, or non-

parametrically such as histograms. If not estimated, the appearance models

can be templates formed using simple geometric shapes or silhouettes. Another

option is to learn the appearance of the object using training data and update

the model simultaneously during tracking by storing the object features such as

texture, color or gradients. Note that the appearance model can be single view

or multi-view.

Figure 2.1: Illustration of object representations: (a) centroid, (b) multi-
ple points, (c) rectangular patch, (d) elliptical patch, (e) part-based multiple
patches, (f) object skeleton, (g) control points on object contour, (h) complete
object contour, (i) object silhouette (image taken from [123]).

In addition to the way the object is represented, selection of features to be

used during tracking is also very important. Color, texture, optical flow or

edges are the features that are generally used in object detection and tracking

algorithms [123]. Color is a physical property of the object and is influenced

16

by its surface reflectance properties as well as the illumination. Texture is less

sensitive to illumination changes and measures the variation of intensity between

neighbouring pixels and is an indicator of object surface properties. Optical flow

defines the translation of pixels in a region between consecutive frames and tries

to capture the spatio-temporal motion information of an object. Edges, which

refer to strong changes in image intensities, are usually used to describe object

boundaries and also less sensitive to illumination changes.

Raw pixel intensities, boundaries, texture, optical flow or even histograms of

color and/or texture can be used to describe the objects globally. As another

option, local descriptions of objects are also possible using local templates, seg-

mentation, saliency or point detectors. Local templates are similar to the global

ones except being more robust against occlusions and shape changes. Being

used for either object boundary or superpixels, segmentation aims to partition

an image into visually similar regions and may be realized by algorithms such

as mean-shift clustering [21], graph-cut [16] or active contours [19] according to

the need for description. In the case of superpixel generation, the aim may be

to build a dictionary of superpixels which corresponds to local templates. On

the other hand, point detectors are used with an aim to find interest points

that has an expressive power of description with respect to their local neigh-

bours. Harris interest point detector [41], Scale Invariant Feature Transform

(SIFT) [79], Speed Up Robust Features (SURF) [8], Histogram of Oriented

Gradients (HoG) [23] and their variants are frequently used for object detection

and readers interested in performance evaluation of local descriptors are referred

to the related survey [84]. Finally, saliency detection is mostly used to exploit

the salient information in the image which is believed to be distinct and robust

so useful for object detection.

Both local and global features have their own advantages and disadvantages.

Although being susceptible to appearance changes, global features are simple,

computationally efficient an therefore, easy to track. Local features are more

robust to deformations, partial occlusions and illumination changes since they

capture local structures; however, they miss the global structure and are afflicted

by noise and background distraction. Therefore, it is more common to track

17

objects after a detection step instead of tracking the features directly.

2.2 Object Detection

Apart from the tracking aspect, object detection is a standalone problem in

computer vision with other application areas such as recognition and scene un-

derstanding. Object detection approaches tend to use a statistical model which

makes use of the image features that are briefly explained beforehand. Accord-

ing to the model generation process, these approaches can be classified into two

groups as discriminative and generative. [76] The purpose of generative approach

is to reveal a model which represents the data best so that the way the object

is re-generated results in the possible smallest error. On the other hand, the

objective of the discriminative models is to separate the object from non-object

regions, therefore, they regard the detection problem as a binary classification

problem. Therefore, discriminative models try to capture the structural infor-

mation not only in the object but also in the background. Both discriminative

and generative models use online learning techniques during tracking so that the

models are adapted to appearance changes and occlusions.

One generative model approach is to use mixture models, such as Gaussian, in

order to represent the object using raw pixel intensity values or local features.

Mixture models require the number of components in the mixture as an input

to the algorithm; therefore, heuristic determination of the number of compo-

nents may lead to deterioration of the tracking performance. Unlike mixture

models, kernel-based methods use kernel-density estimation for modeling the

data which may be based on color, shape or spatio-temporal distribution in-

formation. However, computational complexity and memory consumption are

important drawbacks for kernel-based tracking algorithms as well as the dif-

ficulty of determination or learning of the kernel. In subspace learning-based

generative appearance models, target object is associated with several under-

lying subspaces and is expressed as a linear combination of basis functions of

these subspaces. Linear subspace models either construct vector-based models

for lower order or models based on a matrix or tensor for higher orders, whereas

18

non-linear subspace models assume that the training data lie on a non-linear

manifold and use non-linear dimensionality reduction techniques such as Lo-

cal Linear Embedding (LLE) and kernel principal component analysis (KPCA).

Sparsity constraints and spatial pooling schemes are also introduced for higher

efficiency. Addition of subspaces, i.e., multi-subspace learning is also possible

for the increase in expressive power with an additional cost of memory and com-

putation. Regarding the temporal coherence of frames, autoregressive models

are also used for subspace learning methods.

In contrast, discriminative models try to separate the object from background

using classification methods. For example, boosting methods use simple (weak)

classifiers that use features with weak classification performance in order to in-

crease the accuracy by a single, strong classifier that is composed of simple ones.

Self-learning boosting-based models first train a classifier using a set of positive

and negative samples obtained from the classification result of previous frames

and use that trained classifier for object detection in the current frame [38].

Semi-supervised learning is applied to boosting-based methods in order to avoid

the model drift due to the error accumulation in self-learning boosting-based

models. Another classifier used for discriminative models is Support Vector Ma-

chines (SVM), which aims to find a hyperplane that separates the two-class data

best using the most informative samples called "support vectors". Selecting an

effective kernel and computing it efficiently are the two key factors that affect

the performance of SVM classifiers. Like boosting-based methods, SVMs can use

self-learning or co-learning techniques. The main disadvantage of self-training

SVM-based discriminative model is that it does not use the discriminative infor-

mation from unlabeled data or multiple sources. On the other hand, co-learning

SVM-based models require several labeled samples for semi-supervised learning

methods, which is not applicable for many realistic scenarios. A more efficient

model for discriminative methods is the appearance models that are based on

randomized learning techniques, which aim to construct a classifier ensemble

by selecting input and/or features randomly [76]. Although these methods are

eligible for multi-core or GPU implementation so that the overall run-time is

reduced, their performance may be unstable depending on the tracking scene.

19

One other alternative is to use discriminant analysis methods which seek a lower

dimensional feature space where the separability of classes is increased. Pop-

ular linear discriminant analysis assumes Gaussian distribution of classes and

the kernel trick can be used to learn non-linear mappings [76]. Graph based

learning methods, which need large number of labeled data, are also used for

discriminant analysis.

Discriminative and generative models have their own weaknesses and strengths

and hybrid models are used to take the advantage of the strengths of both models

by a complementary use. This combination may be realized in a low-level feature

extraction step, in high-level decision step or in both steps [76]. Another way to

combine discriminative and generative models is to use the output of one model

as the input of other.

2.3 Motion Estimation

Object detection and establishing correspondence between object instances in

consecutive frames can be performed jointly or separately. In general, the joint

solution offers iterative update of the object region and location. Otherwise,

the object detection is performed for each frame and the tracking algorithm

generates the trajectory by corresponding the detection results.

2.3.1 Motion Estimation for Point Representations

The tracking approach heavily depends on the choice of object representation.

If point representation is chosen for the detected object in each frame, points

can be associated with methods that use motion heuristics such as proximity,

maximum velocity, small velocity change, common motion, rigidity or proximal

uniformity [123]. A cost for the association between points on consecutive frames

is defined using these motion constraints and the correspondence is established

by minimizing the defined cost. However, statistical models proposed for point

tracking aim to model uncertainties and utilize state space approaches for object

modelling. There is a variety of options for the object state; however, position,

20

velocity and acceleration are the object properties that are mostly used for track-

ing algorithms. The objective is to estimate the current state of the object using

all measurements up to the current moment, which is equivalently estimating a

conditional probability density function. Bayesian recursive filters with predic-

tion and correction steps are widely used to solve the problem [123]. In case of

multiple points to be tracked, a step for the association of measurements with

the tracks is required.

Using a Kalman filter for the estimation of the object state is a very common

approach. Kalman filter assumes the initial state is known and is distributed

by a Gaussian as well as a Gaussian noise. In the prediction step, a linear

state model is used to predict the current state of the object. The predicted

position is updated in the correction step that uses the current position obtained

using the object detection algorithm. There are extensions of Kalman filter

for non-linear motion models: extended Kalman filter uses Jacobian for the

linearization of the underlying non-linear model, whereas unscented Kalman

filter makes use of a deterministic sampling method whose output sample points

are utilized for the mean and covariance estimation. Kalman filter is optimal for

the valid assumptions on distributions and noise and extended and unscented

Kalman filters are useful when the non-linearities are mild and uncertainties

are small [123]. If the assumption of normally distributed state variables and

noise is not possible, particle filtering can also be used for state estimation.

Particle filter is a sequential Monte Carlo method that represents the posterior

probability density function by a set of samples called "particles" with associated

weights and computes the estimates using these samples and weights.

As stated earlier, multiple target tracking requires a step where the detection

data is associated with each track. One option is to solve correspondence prob-

lem using deterministic methods such as nearest neighbour algorithm; however,

deterministic methods usually fail in case of close objects or occlusion. On the

other hand, there are several statistical approaches to overcome data associa-

tion problem. One well-known technique is Joint Probabilistic Data Association

Filter (JPDAF), which associates measurements to tracks and the most proba-

ble update is achieved as a combination of all potential assignments. However,

21

JPDAF is not able to handle objects entering or exiting the field of view since the

number of tracks is assumed to be constant. Another proposition for correspon-

dence problem is Multiple Hypothesis Tracking (MHT) [93], which propagates

alternative data association hypotheses in case of assignment conflicts and deci-

sion is taken after several frames. However, MHT algorithm is computationally

exponential in memory and time.

2.3.2 Motion Estimation for Appearance-Based Models

If the object is represented using appearance models instead of a point, the

motion of the object, usually in parametric form, is computed for tracking. If

a template-based appearance model is used for object representation, template

matching, which seeks for a region in the whole image that is similar to the

object template according to a similarity metric, is a widely used method for

the tracking purpose. There are several variants of template-matching, some

of them narrows down the search area with proximal uniformity assumption

and some variants propose the use of different features such as image gradi-

ents, color histograms or mixture models instead of the using intensity directly.

One well-known appearance-based tracking algorithm is Kanada-Lucas-Tomasi

(KLT) tracker [104] whose goal is to compute the translation of a rectangular

region centered on an interest point. The translation is computed iteratively

and the decision to continue tracking features is made according to the quality

of those features that is computed as sum of square differences after the affine

transformation between regions in consecutive frames. Another option to track

objects represented by appearance-based models is to learn the multiple views of

the object offline and use them for tracking. Instead of describing objects with

simple geometric shapes, some approaches prefer using silhouette-based mod-

els in the form of a density functions (edge or color histograms), object edges,

object contour or any combination of them. Silhouette is usually detected by

background subtraction and silhouette-based modelling leads to trackers with

shape matching or contour tracking. Shape matching is very similar to template

matching: it searches for the chosen model of the silhouette in the current frame,

but the model is updated every frame to handle appearance changes. On the

22

other hand, contour tracking methods evolve the initial contour of a detected

object using state space models, which is defined in terms of the motion pa-

rameters and the shape, or minimizing a contour energy that involves temporal

information. Silhouette-based tracking methods can handle a variety of object

shapes as well as objects that split or merge; however, occlusion handling is only

achieved by motion models that assume constant velocity or acceleration.

2.4 Online Object Tracking: A Benchmark [121]

In 2013, Wu et al. published a benchmark [121] and evaluated 29 online object

tracking algorithms on a dataset which consists of 50 sequences. Initial position

and size of the object is provided to the trackers and robustness of the algorithms

is tested by perturbing the initial bounding boxes both temporally and spatially.

Wu et al. first review the algorithms regarding their object representation,

search mechanism and model update approaches. Similar to brief explanation

of object representation approaches provided beforehand, authors refer to the

works that use raw intensity values, subspace models, sparse representations,

visual features, discriminative models, learning models and multiple represen-

tation schemes. They also categorize the search mechanism as deterministic or

stochastic. Results of the benchmark emphasize the importance of updating the

object representation and/or model so that appearance changes are not prob-

lematic. Benefit of involving the context information in the tracking algorithm

is also emphasized for occlusion handling.

For performance evaluation and analysis of algorithms, sequences are annotated

with attributes of illumination variation, scale variation, occlusion, deformation,

motion blur, fast motion, in-plane rotation, out-of-plane rotation, out-of-view,

background clutters and low-resolution so that any algorithm can be evaluated

on a sequence with a specific attribute for the evaluation of the performance of

the tracker on that specific problem.

One quantitative metric authors use for the analysis is precision plot, which

indicates the percentage of frames in which the estimated location is close to

23

the ground truth within a given threshold. Precision plot is obtained by sweeping

that threshold and re-evaluating a specific tracker on sequences. It is claimed

to cope with the ambiguity of well-known evaluation metric of center location

error during the frames when the tracker loses the target.

Another evaluation metric is the success plot which shows the percentage of

frames when the bounding box overlap between the algorithm and the ground

truth is larger than a given threshold. Algorithms are ranked by the areas

under success plot curves. In order to measure the robustness of the algorithms

to initialization, authors conducted tests during which the tracking algorithm

is started at different frames with different bounding boxes, which accounts for

the error of object detection algorithm in case of automatic detection.

Figure 2.2 shows the performance of top ten algorithms in terms of precision

and success plots when the initialization is made with ground truth scale and

position, and average precision or success is taken into account, which is called

one-pass evaluation (OPE). The ranking is according to the area-under-curve

for success plots and an error threshold of 20 for precision plots.

Figure 2.3 illustrates spatial robustness evaluation (SRE) of top ten algorithms

when trackers are evaluated for 4 center shifts, 4 corner shifts and 4 scale vari-

ations of the initial bounding box.

Figure 2.4 presents the temporal robustness evaluation (TRE) of top ten algo-

rithms for which sequences are partitioned into 20 segments and trackers are

tested for all segments individually.

Notice that one-pass evaluation is one instance of both spatial and temporal

robustness evaluation.

The best algorithm in both temporal and spatial robustness evaluation, but

the second best in one-pass evaluation is Struck [40]. Hare et al. propose an

adaptive tracking by detection scheme which links the learning and tracking

problems instead of labelling positive and negative samples according to the

object detection result and updating the classifier separately. In other words, in

typical tracking by detection algorithms, tracker estimates the current position

24

Figure 2.2: Success and precision plots of top ten algorithms for one-pass eval-
uation [121]

Figure 2.3: Success and precision plots of top ten algorithms for spatial robust-
ness evaluation [121]

Figure 2.4: Success and precision plots of top ten algorithms for temporal ro-
bustness evaluation [121]

of the object by making use of a confidence function, generates a set of training

examples with binary labels by first sampling with different transformations and

25

then labelling with the classifier. The classifier is updated using the samples

with binary labels, without giving priority to any of the generated samples.

In the proposed framework, instead of binary labels, a prediction function that

aims to estimate the two dimensional translation between frames is learned with

structured-output SVM. Therefore, labelled examples that consist of both image

patch and transformation relative to the current location are provided to update

the prediction function. In order to avoid the increase in computational cost by

the provided support vectors each step, a budget algorithm is proposed which is

based on the removal of the support vector that leads to the smallest change to

weight vectors in structured-output SVM. The performance of the algorithm is

shown to deteriorate when the overlap threshold for success plots is increased or

location threshold for precision plots is decreased and it is mainly due to the fact

that the algorithm predicts the location change and is not designed to handle

scale changes.

The top ranked algorithm in OPE is a sparsity-based collaborative model (SCM).

SCM [130] uses both holistic templates and local representations and detects ob-

jects by the help of a sparsity-based hybrid model. Discriminative classifier is

based on the training samples of down-sampled gray level image patches. Im-

age patches are converted to vectors and positive samples are selected around

the manually selected object whereas the negative samples are also close to the

object and may even contain small parts of it. Then, determinative features

are selected from these samples for both foreground and background via a spar-

sity constraint and original feature space is projected to the space spanned by

these selected distinctive features. On the other hand, gray level vectors of over-

lapped windows is used for the generative model and a dictionary is generated

using the patches within the initial bounding box. Another sparse vector is

obtained for each patch regarding the generated dictionary and histogram of

the sparse vectors is computed. One important point is that the patches with

large reconstruction error is regarded as occlusion and discarded for histogram

computation. The collaborative model is then constructed for the candidates

taken around the detection result of the previous frame with a particle filter.

Likelihood function for each candidate is computed using both the reconstruc-

26

tion error for foreground and background models in discriminative classifier and

the similarity of histograms between the candidate and the template for gener-

ative model. In order to cope with appearance changes, negative templates in

discriminative classifier and template histogram in generative model is updated.

There is no change on the dictionary during tracking process in order not to get

affected from tracking errors. Authors relates the performance of the algorithm

to the unification of discriminative holistic and generative local features.

Despite of the relatively poor performance on temporal robustness evaluation

tests, TLD [60] achieves good results in one-pass evaluation tests. Kalal et al.

propose a semi-supervised learning process guided by positive and negative con-

straints, called P-N learning, in order to learn a object detector during tracking.

They use image patches obtained by scanning a window throughout the entire

image, regard these patches as unlabeled data and claim that patches are re-

lated both spatially and temporally so they have spatial and temporal structure.

Based on the fact that an object appears in one location only, the trajectory

is claimed to define a curve in the video volume. Randomized forest classifier

is used as a detector and trained using the patches within the initial bounding

box. Ferns of the classifier computes 2-bit binary patterns of a number of images

patches which results in a feature vector on the leaf nodes. These feature vectors

correspond to posterior probabilities, which are averaged later and average value

higher than 50% results in a positive detection result. For each frame, classifier

and Lucase-Kanade tracker find the location of object. Confidence between the

initial frame and last tracked frame is calculated and if the trajectory is validated

by the confidence value, P-constraints that require patches close to trajectory

to have positive labels and N-constraints that forces patches far away from the

trajectory to have negative labels are applied. Positive and negative examples

are used to update the trajectory. However, re-initialization is required in case

of a strong detection far away from the trajectory. Note that the ranking of

this algorithm is lower in TRE since it performs better on longer sequences as a

virtue of this learning scheme.

Adaptive structural local sparse appearance model (ASLA) [58] also achieved

good results in all of the evaluation tests. In order to obtain a local sparse

27

model, a dictionary is generated using the overlapped local image patches in-

side template target regions. A sparse coefficient vector is obtained for local

patches inside every target candidate and these coefficient vectors are divided

into segments. Segment coefficients are then averaged to obtain weights which

gives more importance on more frequent ones. In order to capture the structural

characteristics using modified coefficient vectors, an alignment pooling scheme

is proposed. Using the similarity between pooled features in consecutive frames

as observation model, tracking problem is attacked within a Bayesian inference

framework. In addition, a template update scheme, which utilizes not only the

last tracking result but also earlier ones, is proposed with a random selection of

template to be updated. Like many other tracking approaches, model update

procedure is inspired from the incremental learning method proposed in [97],

which is also evaluated in benchmark and not ranked in top ten in the given

results.

As can be concluded from the given few examples, there is a variety of ap-

proaches for visual object tracking. The large scale experiments carried out

and summarized in [121] indicate that sparse representations are powerful for

appearance changes and local sparse representations have shown better perfor-

mance than holistic approaches. In addition to structured learning approaches,

sparse representations are also effective for handling occlusions. Readers are

referred to [128] for a survey that reviews the tracking algorithms that are based

on sparse coding. Authors of the benchmark also conclude that the performance

of stochastic methods is insufficient in case of fast and abrupt motion mainly

due to poor dynamic models, which is advised to be improved.

The work of Wang et al. [117] is not included in the benchmark since it is

published the same year as the benchmark. Authors propose a non-negative

dictionary learning algorithm which can automatically detect occlusions. Pro-

posed method is similar to L1 Tracker [82] that represents the object as a sparse

linear combination of object and trivial templates and then uses these coeffi-

cients within the particle filter framework. Wang et al. first find a robust sparse

coding using dictionary templates by introducing a Huber loss function. Later,

the template update is also formulated as a dictionary learning problem where

28

a matrix composed of previous tracking results is used and approximated by

a low-rank component. Authors claim that the engagement of previous track-

ing result and using a sparse representation forces the tracker to discard the

detections with occlusions in model update. In order to further increase the

robustness, background templates sampled randomly from previous frames are

augmented to the dictionary. Instead of holistic templates, authors prefer using

L1 regularized logistic regression for feature selection. Test results show that

the algorithm presents a better performance than some approaches included in

the benchmark.

2.5 Visual Object Tracking (VOT) Challenge

In addition to the benchmark published in 2013, a Visual Object Tracking (VOT)

workshop has been organized yearly since 2013. The aim of the workshop is to

provide a common platform to visual tracking community where an annotated

dataset is available with an evaluation methodology.

The workshop in 2013 was in conjunction with International Conference on Com-

puter Vision (ICCV) 2013, for which a total of 27 trackers, which includes eight

baseline trackers, are evaluated on the benchmark dataset. The competitors in

the challenge were casual, single object visual trackers that only require the first

frame to be manually initialized. During evaluations, trackers are re-initialized

manually in case of a failure, which means zero overlap between the detected and

ground truth bounding boxes. The dataset of 16 sequences are selected from a

pool of sequences that had been used for visual object tracking evaluation [64].

Each frame of the sequences in the dataset is labeled with five visual attributes

that are occlusion, illumination change, motion change, size change and camera

motion. Two orthogonal measures are said to be chosen for the performance:

accuracy and robustness. Accuracy is computed to find the overlap between

the bounding box predicted by the tracker and the ground truth whereas the

number of failures is counted in order to find the robustness of a tracker. Af-

ter failure of a tracker in a sequence, user manually reinitializes the tracker 5

frames after the failure to continue evaluation of the tracker for the remaining

29

part of the sequence. Three experiments are conducted for each tracker: for

the first experiment, the first frame is initialized by the ground truth bounding

box. Secondly, trackers are tested using bounding boxes perturbed randomly in

position and size. The third experiment is the same as the first one but frames

are converted to gray-scale. Trackers are tested on each sequence by being run

15 times. Accuracy and robustness of a tracker are first computed as the aver-

age accuracy or robustness over a frame in a sequence, then, the average over

frames is calculated in order to evaluate the performance of that specific tracker

on a single sequence. Trackers are ranked separately on each attribute sequence

regarding their accuracy and robustness, and the ranks are averaged with equal

weight over different attributes. The final ranking on each experiment is ob-

tained by taking the average of two rankings. During the ranking of trackers

on attribute sequences, groups of equivalent trackers are determined so that the

rank of a tracker is corrected by an average of the ranks in the group of equiv-

alent trackers. Readers are referred to the resulting report [64] of the challenge

for the explanation of how the equivalence of trackers is determined.

Performance of algorithms participated in 2013 challenge is summarized in Fig-

ure 2.5, where each tracker is represented by a point in joint accuracy-robustness

rank space.

Figure 2.5: Ranking results of VOT 2013 challenge [64]

The best performing method in 2013 challenge is PLT, which is introduced as

a single scale, pixel based lookup table tracker in the challenge report. Heng

et al. proposes using the sparse structural SVM in Struck algorithm [40] to

select discriminative binary features that are constructed from gray scale, color

and gradient information. During training, features are weighted according to a

30

probabilistic object-background mask obtained from color histograms. Since the

algorithms works in a single scale, it has difficulties in adaptation to the target

size.

For the second best algorithm on average, FoT, Flock of Trackers, Wendel et al.

utilizes a number of independent trackers that are initialized on a regular grid

inside the specified object frame. These independent trackers are able to change

position within cell regions. Object motion is estimated as a combination of local

trackers that are expected to represent translations. The estimation is done

after filtering out the trackers that do not satisfy neighbourhood consistency

and Markov model constraints. Although experiments show that FoT is the

best performing algorithm regarding the accuracy, lowered robustness compared

to PLT results in a second best rank on average.

Another good performing algorithm in the challenge is EDFT, an enhanced

field tracking algorithm that uses channel representations for an efficient com-

putational scheme [31]. EDFT is a variation of Distribution Field Tracking ap-

proach [103] that uses smoothed local histograms for region-based tracking with

a density-based comparison. Use of channel representations instead of smoothed

histograms is claimed to be more efficient yet powerful with the appropriate pa-

rameters derived in the paper.

LGT++, an enhanced adaptive coupled layer tracker [122] is an adaptation of

LGT [17], which employs both local image patches and a probabilistic global

appearance model within an interactive framework. In [17], image patches are

tracked using Kalman filters and validated using matching strategies. Patches

that could not be matched are removed from the model whereas new ones are

allocated using the global appearance model that uses colour, motion and shape

information of the candidate target. In LGT++, the previous algorithm is im-

proved with adaptive patch size, a drift avoidance method based on marginal

density, a memory recovery for occlusion handling and particle filter to collab-

orate with Kalman filter. The results of the algorithm on VOT dataset shows

that it is quite robust under noisy initializations and the accuracy of the tracker

is reasonably well.

31

The top algorithm on the benchmark [121], Struck placed after ten algorithms

on average despite of its success on occlusion handling test. Another algorithm

that achieved good results on the benchmark, TLD [60], got a poor place on the

challenge ranking. These results emphasize the importance of evaluation metrics

and methodology, as well as the need for a common platform to evaluate and

compare visual tracking algorithms.

The workshop organized in 2014 also intended casual, model-free trackers that

use sequences from a single camera to track single object and total of 39 trackers

are evaluated for the challenge. The new dataset is obtained from a pool of 193

sequences and final 25 sequences are in color and longer than 200 frames [65].

Per-frame annotation with five visual attributes was the same as in 2013; how-

ever, rotated bounding boxes are used for elongated, rotating and deforming

targets in some sequences. The first two experiments in 2013 challenge were

conducted the same way for 2014 challenge and ranking of algorithms was real-

ized using the accuracy and robustness criteria as in 2013. However, equivalence

of trackers is determined by comparing the average accuracy per frame of track-

ers within a threshold, computation of which can be found in [18]. In addition, a

normalized time-measure is introduced for a more fair comparison of execution

time of trackers.

The evaluation results of VOT 2014 challenge are summarized in Figure 2.6 on

the same accuracy-robustness rank space.

PLT 13, which was represented as PLT for VOT 2013 challenge, and its suc-

cessor, PLT 14 with a difference of size adaptation, are the best two algorithms

in terms of robustness. However, regarding the accuracy, best performing algo-

rithms are DSST [24], SAMF [77] and KCF [47], the last two of which are vari-

ations of CSK tracker, a circular structure kernel tracker [46] that also achieved

good results on the online benchmark [121] with the highest speed. CSK tracker

makes use of the structure of training samples obtained by cyclically shifting

stacked image patches and link the resultant circular matrix to Fourier analysis

for a kernel learning problem as efficient as linear classifiers [46].

DSST is discriminative scale space tracker [24] that uses HoG features concate-

32

Figure 2.6: Ranking results of VOT 2014 challenge [65]

nated with image intensity values for learning discriminative correlation filters to

be used for tracking. Scale estimation, which is the most problematic attribute

according to VOT 2013 report, is achieved by a scale-space feature pyramid.

The scale and translation filters are kept separate for higher efficiency, i.e., scale

is estimated after the optimal translation is found. The resultant translation

and scale samples are then used to update scale and translation models.

SAMF [77] is also a kernel correlation filter tracker and it uses scale adaptive

feature integration. Similar to DSST, SAMF uses HoG features in collaboration

with color naming, a perspective, 11-dimensional color space with mapping in

[113]. However, instead of one-dimensional scale filter in DSST, multi-scale

adaptation of kernel in SAMF is achieved using a scale pool which is composed

of samples with different scales that are interpolated to a fixed size.

KCF, Kernelized Correlation Filter, [47] is developed by the authors of CSK

with improvements of multi-scale support, model update and sub-cell peak es-

timation. As in CSK, training examples are obtained by cyclically shifting a

positive example, which is a one dimensional vector and chosen to be HoG fea-

33

tures in KCF. This shifting operation is shown to correspond to the translation

of image patches. The matrix of training samples is then diagonalized using Dis-

crete Fourier Transform (DFT), which enables efficient computation of kernel

correlation.

A different approach based on dynamic graphs is used in DGT, Dynamic Graph

Tracker by Wen et al. [65]. Graphs are constructed on superpixels and tracking

problem is attacked by matching candidate graphs to the target graph using an

affinity matrix based on motion, appearance and geometric constraints.

Readers who are interested in the algorithms participated in the challenge, eval-

uation criteria and/or more detailed ranking results are referred to the challenge

report [65].

The most important conclusion that can be deduced from survey papers, bench-

marks and challenge reports is the fact that there is a huge variety of possibilities

for visual object tracking algorithms. Many different methodologies are exper-

imented by various researches; however, none of them presented a performance

that promises to overcome all difficulties in real-world tracking scenarios. Thus,

present tracking algorithms have their own capabilities and difficulties. A sec-

ond very important conclusion is the fact that evaluation results depend heavily

on the evaluation metrics. An algorithm that is rated as the best one according

to an evaluation metric may be regarded as less successful according to another

one. An overview of evaluation metrics used for visual object tracking is given

in [105]

34

CHAPTER 3

DEEP LEARNING - FUNDAMENTALS

3.1 Biological Inspiration

Human brain, which is the main organ of human nervous system, is composed of

100 billion neurons on average and information transmission takes place via 1,000

trillion synaptic connections where neurons are connected to each other [80]. A

typical neuron is assembled of a body, called soma, dendrites, which are thin

branches connected to the cell body, and a single axon, a special, extra-long

filament that is also connected to the soma. A simple illustration of a typical

neuron is given in Fig. 3.1. As depicted in the figure, each neuron receives

input signal from its feathery dendrites, process the information in its body

and transmits the processed signal through the axon, which branches to link

neighboring neurons.

Intracellular processes are activated by action potentials, which are electrochemi-

cal pulses that emerge from sudden voltage increase across cell membranes above

a precise threshold. Generation of action potentials obeys "all-or-none" princi-

ple, i.e., they are either generated or not. Larger stimulus does not lead to action

potential with larger amplitude and it is the frequency of action potentials that

is correlated with the intensity of the stimulus. In addition, a single neuron

can get invoked by multiple other neurons, to which it may respond differently.

Different input from other neurons may either increase (excite) or decrease (in-

hibit) the generation of action potentials so the firing rate, i.e., frequency of

action potentials, depends on the synaptic connections.

35

Figure 3.1: Illustration of a typical neuron

Mathematical model of a neuron uses all these principles of human brain. In

Artificial Neural Networks (ANN), neurons are computational units that sum

a bunch of input after weighting them properly and outputs the value of sum-

mation after a non-linearity. Although artificial neuron model is explained in

Chapter 3.3, brief explanation of this mathematical modeling is as follows: mul-

tiple inputs to an artificial neuron corresponds to synapse connections between

multiple neurons. Inputs are weighted that may be regarded as the strength of

synaptic connections, and weighted sum is fed to an activation function with a

bias, that may model the thresholded behavior of action potentials. The analogy

between an artificial neuron and brain computation unit is well depicted in Fig.

3.2.

Figure 3.2: Mathematical model of a neuron

Neuron model is not the only way machine learning gets inspired from human

physiology. The success of human visual system to extract the relevant infor-

mation from the huge amount of data it is exposed to gets attention from visual

neuroscience community and such a fast and giant computational ability at-

tracts researchers from computer vision and artificial intelligence communities.

Human visual cortex, present at the rear of the brain, enables people to recog-

36

nize patterns by a virtue of complex neuron structure that work parallel in an

hierarchical way. The primary visual cortex, which is the best studied area of

human brain and also known as V1, receives information from the visual field

and transmits it to two primary pathways. Ventral pathways, which is some-

times referred as "what pathway", is responsible for object representation and

recognition and follows a path from V1 to inferior temporal cortex through V2

and V4. This path is known to process the information in a sequential manner

so that the simple visual forms like edges and corners in V1 are converted into

intermediate representations, i.e., feature groups, throughout the way so that

high level object descriptions are obtained for decision making in the related

area of the brain. This layered structure that interprets visual stimula from

retina was the inspiring point for hierarchical representations. An illustration of

ventral pathway is given in Fig. 3.3.

Figure 3.3: Illustration of the ventral pathway of human visual system (image
taken from [112])

On the other hand, dorsal pathway is known as "where pathway" and associated

with motion and localization.

Construction of complex representations in mammal brain is first revealed by

David Hubel and Torsten Wiesel by famous cat experiment in 1959. They

placed microelectrodes into the primary visual cortex of an anesthetized cat

and presented various stimuli that are composed of light and dark areas to its

eyes. What they observed was the rapid firing of some neurons when the light

37

constitutes a line at a certain angle, while some other neurons fire when the angle

is changed. Hubel and Wiesel called these "orientation-sensitive" neurons simple

cells as they respond to light and dark patterns differently. Another observed

type of neurons was what they called complex cells, which detected edges of

a larger receptive field in a contrast-insensitive manner [54]. They suggested

that complex cells receive input from simple cells and this hierarchy of features

detection found many applications in machine learning which will be explained

in detail later in this chapter.

Despite all this primary inspiration, it is important to emphasize that the re-

search of neural networks aims neither to imitate the human brain nor to gener-

ate biologically plausible models. Rather, research mainly focuses on the math-

ematical properties of artificial neurons to improve the models. The example

Yann Lecun, who is one of the inspirational professors in deep learning research,

gives in many of his talks and tutorials explain the situation fairly well: he

remarks that mankind did not achieve flying by imitating the way birds do it,

rather, they understood the basic principles of aerodynamics by observing flying

creatures and find convenient ways that are based on the mathematical models

of their observations.

3.2 Historical Background

Although it is not possible to survey a research area with such enormous number

of publications that increases even more rapidly day-by-day and created its own

way of "open-review" in order not to stifle innovation and progress, aim of

this part is to overview the evolution of deep artificial neural networks briefly.

Readers who are interested in a more detailed survey are highly encouraged to

view [101] written by Jurgen Schmidhuber, who intends to assign credit to those

who contributed to deep learning in neural networks with over 850 references

currently.

This decade has been witnessing the inevitable popularity of deep learning;

however, shallow neural network (NN)-like models date back to 1940s. In 1943,

38

McCulloch and Pitts proposed a non-recurrent neural net that incorporates no

learning scheme [81]. They stated a neuron that fires at a certain time provided

two conditions: first, none of the neurons should have an inhibitory synapse

towards it was firing a time step earlier, and second, more than a certain number

of neurons have an excitatory synapse towards it was firing at a time step earlier.

Despite the complicated statement and lack of learning scheme, their proposal

may be regarded as an early, very simple NN architecture that tries to realize

temporal propositional expressions.

On the other hand, in 1949, Donald Hebb presented a learning rule, sometimes

referred as "Hebb’s rule", by stating that some growth process should take

place in two cells if one of them fires the other persistently and repeatedly

[45], which actually indicates that neuron model of McCulloch-Pitts should be

adaptive according to this biological proposal. In 1958, a major contribution

is made with the statement of well-known perceptron by Frank Rosenblatt [95]

who used McCulloch-Pitts neuron model and Hebb’s findings. Perceptron is

a single neuron with adjustable synaptic weights and bias and it is built for

pattern classification. Although this simplest form of a neural network requires

patterns to be linearly separable for classification, it was the first time when a

supervised learning scheme incorporates a neural network. In further discussions

[96], perceptron is defined to take inputs which are not equally important, i.e.,

weighted differently, for computation of a thresholding that corresponds to step

function. In mathematical form, the neuron model can be defined as in Eq.

3.1 with five inputs, a1 to a5 with corresponding weights w1 to w5, as in [96].

Weights are initialized randomly and adaption is achieved using binary labeled

samples a(j), c(j)a iteratively until all the samples are classified correctly with

learned weights. Perceptron learning algorithm is summarized in Algorithm 1.

Rosenblatt proved the convergence of his learning algorithm in case of linearly

separable samples.

b =
5∑
i=1

wiai, f(b) =

0 if b < θ

1 if b ≥ θ
(3.1)

39

Algorithm 1 Perceptron Learning Rule
Random weights wi, i = 1, .., N

Labeled samples a(j), c(j)a , j = 1, ..,M

repeat

Select random a(j), c
(j)
a

error = c
(j)
a − f(

∑
iwia

(j)
i)

for all i do wi = wi + learningrate · error · a(j)i
end for

until All samples are correctly classified

Perceptron actually emerged from a machine invented in 1957, in which neurons

were built as photocells, weights were encoded in potentiometers and update

is achieved through electric motors [14]. With an interesting anticipation, they

were reported to be "the embryo of an electronic computer that [the Navy]

expects will be able to walk, talk, see, write, reproduce itself and be conscious

of its existence" by New York Times [88]. When they had been shown to be

untrainable for many types of patterns, that are basically not linearly separable,

loss of interest in perceptrons were as rapid as it attracted attention in artificial

intellegence community, so, neural network research experienced a deadlock that

lasted years.

After the exploration of simple and complex cells in 1962, Fukushima proposed

neocognitron [33] in 1979 and employed neurophysiological insights in an artificial

neural network that deserves the attribute deep. Neocognitron is a hierarchical

multilayer neural network that consists of two different type of cells, namely

"S-cells" and "C-cells" which are placed alternately. S-cells in the hierarchical

structure serves for feature extraction and have variable input connections that

are learned during training. Each S-cell responds to a particular feature in its

receptive field, which may be local features in lower stages and more global fea-

tures in higher stages. On the other hand, input connections of C-cells are fixed

and these cells are used to handle positional errors. A typical architecture of the

neocognitron is depicted in Fig. 3.4. The objective is to recognize the shapes

regardless of their locations by depending on the geometrical symmetry [34] and

this trainable network depends on the self-organization for learning in an un-

40

supervised manner. Thus, neocognitron is very similar to famous convolutional

neural networks in terms of objective and architecture but lacks the notion of

supervised training with backpropagation for weight updates.

Figure 3.4: (a) A typical architecture of the neocognitron [32] and (b) input
interconnections to the cells within a single cell-plane (figures takes from [34])

Efficient error backpropagation for arbitrary NN-like networks with possible

sparse connections is first proposed in a master’s thesis in 1970 [78]. First

NN-specific application of backpropagation is reported to be in 1981 in the sur-

vey paper of Schmidhuber and related work is published in 1986 [71]. Use of

backpropagation for neural networks gained popularity with the work of Rumel-

hart et al. [99] that presented useful representations in hidden layers. However,

research was focused on networks with few layers since additional hidden layers

were believed to offer no more benefits compared to the shallow ones due to

the difficulties in training. In 1989, LeCun et al. applied backpropagation to

the hand-written digit recognition problem via a convolutional neural network

with adaptive connections and weight-sharing, and introduced the very famous

data set of hand-written digits, MNIST [73]. Proposed networks employed max-

pooling and training was sped up using graphic cards, which are basic and

well-known ingredients of today’s competition-winning deep architectures.

The problem of vanishing gradients, which is a phenomenon that explains shrink-

ing or exploding cumulative backpropagated errors due to saturating activation

functions, is first investigated in 1991 in a diploma thesis [52]. Later, much of

the research focused on this fundamental problem of deep learning which makes

deep networks hard to train and several solution proposals have been presented.

41

The idea of unsupervised pre-training that greatly facilitates supervised credit

assignment either by stacked autoencoders or Deep Belief Networks was one of

the breakthroughs in deep-learning research [48]. Propositions that incorpo-

rate Hessian-free optimizations are also known to alleviate the problem for both

feed-forward and recurrent networks. Introduction of new labeled datasets that

consist of millions of images and the computation power of today’s graphics

processing units (GPUs) also contributed to deep learning research.

Although machine learning research focused on other methods like Support Vec-

tor Machines (SVMs) more during 2000s, results of a convolutional neural net-

work on ImageNet classification benchmark drew the attention back to neural

networks. Proposed network, which is called as "AlexNet" today, achieved top-

5 error rate of 15.3% on the classification task of Large Scale Visual Recogni-

tion Challenge (ILSVRC) that targets 1000 classes of objects on images of size

256x256 [67]. The success of a deep feed-forward network on such a well-known

challenge, where the second best result was 26.2%, has influenced the exten-

sive research on deep learning by both machine learning and computer vision

communities since then.

3.3 Feed-Forward Networks

3.3.1 Artificial Neuron

As stated earlier in this chapter, the basic unit of a artificial neural network is a

computational unit which is called as neuron. A single artificial neuron performs

a particular computation of the input, which may be decomposed into two steps

called input activation (pre-activation) and output activation (neuron activa-

tion). Input activation refers to summing the input with a bias with probably

unequal importances (weights) and output activation feeds the weighted sum

to an activation function and dictates the output of the neuron accordingly. If

we denote the input of d dimensions as x = [x1, ..., xd]
T , weights as wi, bias as

b and activation function as g(.), pre-activation and activation functions, a(x)

and h(x), are computed as given in Eq. 3.3

42

a(x) = b+
∑
i

wixi = b+ wTx (3.2)

h(x) = g(a(x)) = g

(
b+

∑
i

wixi

)
(3.3)

Note that a single neuron may be regarded as a binary classifier when the acti-

vation function is the unit step function, which corresponds to the perceptron.

However, there are many different activation functions used for neural networks

each with its own offerings.

• One option is the linear activation, that does not squash input and does not

have any lower or upper bounds. Linear activations are usually not used

in multilayer neural networks since cascaded linear layers also indicates

a linear operation, which in fact can be represented with a single linear

layer.

• Sigmoid, sigm(.), is a commonly used option for the activation function

and squashes the neuron’s pre-activation between 0 and 1.

• Hyperbolic tangent, tanh(.), is another strictly increasing option with

slightly different characteristics and different lower and upper bounds, -1

and 1, so that the output is centered at zero.

• Rectified linear activation functions, reclin, that has become popular due

to the sparsity it introduces to neuron activities.

Explicit definitions of the last three activation functions are given in Eq. 3.6

and all of the given functions are illustrated in Fig. 3.5.

sigm(a) =
1

1 + exp(−x)
(3.4)

tanh(a) =
exp(a)− exp(−a)

exp(a) + exp(−a)
=

exp(2a)− 1

exp(2a) + 1
(3.5)

reclin(a) = max(0, a) (3.6)

43

Figure 3.5: Different activation functions: (a) linear (b) sigmoid (c) hyperbolic
tangent (d) rectified linear

Although these would be more clear later in this chapter, there are a few things

to note on the activation functions. Despite the frequent use in neural network

history, sigmoids have fallen out of favor since they cause the problem of van-

ishing gradients. If the local gradient is small in a hidden layer, i.e., neuron

is saturated and takes the values of sigmoid on its tails, errors are backpropa-

gated to lower layers after a multiplication with a very small number. Different

initialization strategies for the weights are introduced to overcome the problem

of vanishing gradients when sigmoid or hyperbolic tangent activations are used;

however, other type of activation functions that do not saturate, such as rectified

linear activations, are more commonly used nowadays. Rectification may also

cause the gradients to "die" in case of improper initialization and learning rate

choice. Leaky rectified units, which does not output zero but rather dictates a

small portion of the input when it is less than zero, are proposed to overcome

dead gradient problem.

(a)

(b)

Figure 3.6: (a) An artificial neuron and (b) multi-layer feed-forward neural
network with one hidden layer (images taken from [70])

44

3.3.2 Neural Networks

A single neuron may serve as a binary classifier as stated earlier, and logistic

regression is the specific case when sigmoid activation function is used for clas-

sification at the output layer. However, decision boundary of such a classifier is

linear and many real world problems employ classification tasks of data that are

not linearly separable.

Multiple neurons are used to construct networks in order to increase the capac-

ity, which refers to the space of representable functions. In other words, for the

success of a linear classifier, it is necessary to transform input into a new rep-

resentation where data is linearly separable and utilization of multiple neurons

attacks the problem of finding a proper representation. Different structures are

possible according to the type of connections in the network, for example, feed-

forward networks allow information to travel only in one direction but recurrent

networks employ feedback loops so that information may travel in both direc-

tions. Thus, connections of neurons may be represented as an acyclic graph for

feed-forward neural networks and cyclic graph for recurrent ones. Feed-forward

networks are often organized into distinct layers and named differently according

to the connections between neurons. If each pair of neurons in adjacent layers

are connected, network is called to be fully-connected and the layers in the mid-

dle of the network, i.e., that are not at the top or bottom, are called as hidden

layers. Neurons connected to the input are named as input layer and there usu-

ally exists an output layer on top of hidden layers for classification. A single

neuron and a multilayer neural network with one hidden layer are illustrated in

Fig. 3.6.

3.3.3 Capacity and Overfitting

Feed-forward neural networks with a single hidden layer and linear output is

stated to approximate any continuous function with a finite error provided

enough hidden units [22], which is known as universal approximation theo-

rem [53] Fig. 3.7 shows the capacity of a single neuron and illustrates its bi-

45

nary classification power for a two-dimensional input vector. A neural network

that contains one hidden layer with four neurons, which may generate a simple,

bumpy output of the input vector is also given in Fig. 3.7. This illustration

gives an intuition of universal approximation problem.

(a) (b)

(c)

(d)

Figure 3.7: A single neuron illustrated in (a) is capable of binary classification,
which is depicted in (b) for two-dimensional data. Multilayer neural networks
with hidden layers may achieve classification of data that are not linearly separa-
ble (c) and approximate continuous functions arbitrarily well (d) (images taken
from [115])

Although neural networks with a single hidden layer are shown to approximate

any continuous function arbitrarily well, parameters of neural networks are never

guaranteed to converge to the specific values of aforementioned approximation.

The more the parameters of a network for a specific problem, the harder the

training algorithm will converge to a "good" local minimum in most of the cases.

A well-known fact is that functions represented compactly with k layers may re-

quire exponential size with k-1 layers, which is proved for logic gates [42], formal

neurons [55] and radial basis function (RBF) units [13]. In other words, functions

that are compactly representable with a deep architecture would require expo-

nentially more units, and therefore parameters, when represented with a shallow

46

network. Thus, compact representations introduced by deep feed-forward neural

networks is a key point for better-trained parameters and better representation,

provided that the vanishing gradients problem is overcome with a proper training

strategy.

Before delving into training strategies for deep architectures, there are some

important issues to be emphasized about the capacity of neural networks. Rep-

resentational power is shown to increase with additional layers of neural networks

and higher number of neurons, but is it always true that the higher the number

of hidden layers and/or neurons the better the representation is? This ques-

tion brings us to the problem of over-fitting, which may be well-explained by

a demonstration prepared by Andrej Karpathy [61]. Suppose that the problem

is the classification of two-dimensional data. In Fig. 3.8, performance of dif-

ferent neural network architectures is shown to understand the effect of hidden

layer number and sizes. Results in the first row corresponds to a fully-connected

feed-forward neural network with a single layer of different number of neurons.

The first and most obvious observation is the fact that network learns to classify

more complicated data as the number of neurons in the network is increased.

However, the problem is that it starts to memorize the data which probably

contain noise in real world problems. This phenomenon of perfectly fitting to

the present dataset instead of learning the underlying relationship is known as

overfitting. Another example of overfitting is presented in the second row of Fig.

3.8, which illustrates the classification results of networks with different number

of hidden layers of fixed number of neurons. What we expect from neural net-

works is not to fit the model to all seen examples, as done by the networks with

higher number of neurons and hidden layers that tries to classify even outliers,

rather, find a network that generalizes so that it performs well not only on the

training data but also on the test data, which contains unseen examples.

3.3.4 Optimization

This simple example emphasized the importance of architecture choice; how-

ever, choosing the right architecture is not the only way to avoid overfitting.

47

Figure 3.8: Toy example of classifying two dimensional data points with a neural
network of different architectures. Images in the first row presents the results
of neural networks with a single layer of 3,6 and 20 neurons, from left to right.
Images in the second row is the classification results of neural networks with
1,2 and 3 hidden layers of 3 neurons. As the number of neurons/hidden layers
increased in a neural network, it tries to fit the data perfectly, which probably
does not generalize to the test data.

Training strategy is as important as the network architecture. The main prin-

ciple behind training neural networks is known as empirical risk minimization

and the objective is to learn weights and biases for classification in a supervised

manner, i.e., when data is available with target labels that should be predicted

by the designed neural network. Training of a neural network is regarded as an

optimization problem where a target cost function of parameters θ = {W, b} are
minimized by proper optimization methods. A general framework for a learning

algorithm employs a loss function l(.) that compares the output of the neural

network and the target label, a labeled data set composed of input x(t) and

corresponding label y(t) for t = 1, .., T , a regularizer Ω(.) that penalizes certain

values of θ which will avoid overfitting and aims generalization in most cases,

and an optimization procedure with an initialization method. Hence the over-

all framework can be summarized as in Eq. 3.7 where f(x(t); θ) resembles the

output of the neural network for input x(t).

48

arg min
θ

1

T

∑
t

l(f(x(t); θ), y(t)) + λΩ(θ) (3.7)

Stochastic Gradient Descent One very common exercise for the minimiza-

tion of any function is to decrease the parameters in the opposite direction of the

gradient, which is known as gradient descent. In case of neural networks, there

may be tens or hundreds of thousands of images (remember that in ImageNet, it

is 1.2 million training images of size 256x256), it would be exhausting to compute

the loss function and/or its gradient for all of the input samples. Therefore, it is

very common to divide the training set into subsets called batches, over which

gradients are computed and parameters are updated accordingly. Parameter up-

date is realized for all batches in the training set so that every sample is visited,

and this iteration of all samples is called one "epoch", whereas the procedure

is named as (mini-)batch gradient descent. Another practical variant of gradi-

ent descent is stochastic gradient descent that enables on-line optimization by

considering only one sample for each iteration of parameter update. However,

stochastic gradient descent is usually utilized to indicate parameter updates with

mini-batches and the reason for such an approximation with batches is the fact

that the input data is usually correlated and the average of gradients over a sub-

set with reasonable number of elements is believed to lead to a good direction for

the minimization process. The number of samples in a batch is a hyperparame-

ter as well as the learning rate, α, which is the amount of movement, step size,

in the opposite direction of gradient. These hyperparameters are determined

using a validation set. The stochastic gradient descent algorithm is described in

Algorithm 2 and it is usually utilized with batches instead of samples.

Algorithm 2 Stochastic Gradient Descent
for N iterations do

for each training sample (x(t), y(t)) do

∆ = −∇θl(f(x(t); θ), y(t))− λ∇θΩ(θ)

θ ← θ + α∆

end for

end for

49

When the task is classification, neural networks are trained to estimate the

class probabilities given the input data, f(x)c = p(y = c|x), which should be

maximized. This maximization problem is converted to a minimization problem

using negative log-likelihood. An example loss function for classification task is

given in Equation 3.8 where 1 represents the identity function.

l(f(x; θ), y) = −
∑
c

1(y=c) log f(x)c = − log f(x)y (3.8)

For multi-class classification task, categorical probability densities can be found

by exponential normalization, known as soft-max. The soft-max loss function

for class ci over a total of C classes is given in Eq. 3.9.

l(f(x; θ), y)ci = − log

(
exp f(x)ci∑C
c=1 exp f(x)c

)
(3.9)

Backpropagation Once the loss function is set, parameters in every layer

should be updated according to the gradient by the amount of learning rate.

For this purpose, errors are required to propagate from the output layer up to

the input layer, which is known as backpropagation. Regarding the network in

Fig. 3.6b with the loss function in Eq. 3.8, following derivatives are involved in

the backpropagation:

• Partial derivative w.r.t. output pre-activation, ∂(− log f(x)y)

∂a(L+1)(x)c

• Partial derivatives w.r.t. hidden layer activations, ∂(− log f(x)y)

∂h(k)(x)j

• Partial derivatives w.r.t. hidden layer pre-activations, ∂(− log f(x)y)

∂a(k)(x)j

• Partial derivatives w.r.t. parameters , ∂(− log f(x)y)

∂W
(k)
i,j

and ∂−log f(x)y
∂b(k)

Derivation of all these partial derivatives are out of this thesis’ scope; however,

resultant expressions for gradients are given in Eq. 3.10 for the sake of com-

pleteness. Loss function − log f(x)y is denoted as L for easier understanding.

Readers who are interested in the derivation process are encouraged to check

the online course materials by Hugo Larochelle [68].

50

∇f(x)L =
−1

f(x)y

[
1(y=0), ..., 1(y=C−1)

]
∇h(k)(x)L = W(k+1)T

(
∇a(k+1)(x) − log f(x)y

)
,

∇a(k)(x)L =
(
∇h(k)(x) − log f(x)y

)
�
[
..., g′(a(k)(x)j), ...

]
∇W(k)L =

(
∇a(k)(x) − log f(x)y

)
h(k−1)(x)T ,

∇b(k)L = ∇a(k)(x) − log f(x)y

Equations show that backpropagation algorithm requires the values of activation

and preactivation for gradient calculation; in other words, it assumes forward

propagation. Once the forward propagation is realized, backpropagation algo-

rithm may update gradients according to Algorithm 3

Algorithm 3 Backpropagation
Forward propagate the input x and compute f(x)y

Compute output gradient: ∇a(L+1)(x) − log f(x)y

for k from L+1 to 1 do

Compute gradients of hidden layer parameters: ∇W(k) − log f(x)y,∇b(k) −
log f(x)y

Compute gradient of hidden layer below: ∇h(k−1)(x) − log f(x)y

Compute gradient of hidden layer (pre-activation) below: ∇a(k−1)(x) −
log f(x)y

end for

Regularization As emphasized earlier, there are different ways of controlling

the capacity of a neural network so that overfitting is avoided. One option is to

regularize the parameters of the network, which is employed by an additional

term in the loss function to be minimized. Most common form of regularization

is L2 regularization, which makes the regularization term in the cost function

Ω(θ) = 1
2

∑
k

∑
i

∑
j

(
W

(k)
i,j

)2
, and shrinks weights with a square penalty. Net-

works with such a regularization are encouraged to use all of the inputs instead

of using some of them more often. Small weights are interpreted in such a way

that they do not learn the local noise in data since the alteration of a few ran-

51

dom inputs would create a negligible change. Result of weight regularization is

a simpler network compared to a network with large weighs that are adapted

perfectly to the noise in the data.

Another option is to employ a L1 regularization, for which the regularization

term Ω(θ) =
∑

k

∑
i

∑
j |W

(k)
i,j | forces some weights to be zero and thus intro-

duces sparsity. The reason why L2 regularization only shrinks weights towards

zero whereas L1 regularization usually results in sparse weights is the fact that

the shrink amount in L2 is proportional to the weights due to partial derivate;

however, weights shrink by a constant amount, either −1 or 1 according to their

sign, in L1 regularization. Regularization, either L1 or L2, is used for weights,

not biases.

There are also some works that normalize weights after each epoch instead of

introducing an additional term to the loss function.

Recently, a new regularization method called dropout is introduced [107] which

has presented a lot of successful results in deep learning. Dropout simply pro-

poses discarding some neurons and therefore not updating related parameters

during training with probability p. Forward propagation and backpropagation of

errors are carried out only through the neurons chosen randomly in each epoch

and related parameters are updated so that complex co-adaptation of neurons

are claimed to be prevented. One important thing is that dropout is applied

during training and never utilized once the parameters are learned.

Learning Rate Optimization scheme is also very important since the loss

function is believed to be full of local minima and plateaus, and neural network

research intends to find a good minimum which leads to good representation for

the specific task. Effect of two important aspects in the optimization scheme

has been deeply investigated: the choice of learning rate and update rule.

In terms of learning rate, it is a well-known fact that small learning rate results

in slow convergence whereas large learning rate may cause parameter vector to

bounce around and hardly settle down. In some optimization problems, instead

of trying to choose a proper learning rate, Newton’s method is utilized in order

52

to consider the curvature of the cost surface for an efficient update. However,

Newton’s method requires the computation of the inverse of Hessian matrix, the

square matrix of second partial derivatives, which is possible if the cost function

is at least locally convex. This computationally expensive method is preferred

when the number of parameters are not large. The update rule with Newton’s

method is given in Eq. 3.11 where H(f(x; θ)) is the Hessian matrix.

θt+1 = θt − (∇2
θtl(f(x; θt), y))−1(∇θtl(f(x; θt), y)) (3.10)

= θt − [H(f(x; θt))]
−1(∇θtl(f(x; θt), y)) (3.11)

It is also possible to anneal the learning rate throughout the training procedure

to promote generalization. In addition, stochastic gradient descent is not guar-

anteed to converge when the learning rate is constant. In fact, the constraints

that will lead stochastic gradient descent to converge are
∑∞

t=1 αt = ∞ and∑∞
t=1 α

2
t < ∞. Therefore, different decay methods are employed for annealing

the learning rate. One option is to decrease the learning rate by some amount

every (few) epoch(s), which may also be realized only if the validation error stops

improving. Other possibilities are multiplying the learning rate by a constant

less than 1, using exponential decay or time dependent decay with a formula like

α = α0/(1 + kt) where α0 is the initial learning rate and k is a hyperparameter,

or updating the learning rule as α← α/tδ where δ is a hyperparameter. It is a

common practice to use a constant learning rate for few updates and decrease it

to avoid overfitting by using any of these rules. Fig. 3.9 illustrates the conver-

gence of a loss minimization process for different learning rates and reveals the

importance of a proper selection.

Update Rule When it comes to update rule, different approaches, such as

momentum update, are proposed the accelerate the convergence of minimization

process. In vanilla gradient descent, which is the regular policy, parameters θ

are updated according to the rule in Eq. 3.12, where ∆ is the gradient and α is

the learning rate.

53

Figure 3.9: Illustration of different learning rates for the loss minimization pro-
cess

θt+1 = θt − α∇L(x; θt) (3.12)

The point of the momentum update is to increase the speed of convergence

without heavy computations as in Newton’s method, simply by making use of

the previous gradient updates. This method introduces a notion of "velocity"

which resembles the weighted accumulation of gradients in previous epochs, thus,

acts as a friction to gradually decrease the kinetic energy of the optimization

system. Momentum update rule is given in Eq. 3.14, where v is used for velocity

vector which is initialized to zero and µ is the momentum coefficient. Similar to

learning rate, momentum coefficient can be annealed in such a way that it has

a low value in the beginning of the learning in order to allow free movement but

annealed to higher values when procedure probably finds a good path for the

minimization of the loss function.

vt+1 = µvt − α∇L(x; θt) (3.13)

θt+1 = θt + vt+1 (3.14)

Nesterov’s Accelerated Gradient (NAG) [87] is also a first-order optimization

method with a better convergence rate than gradient descent. The key difference

54

between the classical momentum method in Eq. 3.14 and NAG in Eq. 3.16 is the

order of application of momentum and velocity updates. In Eq. 3.14, gradient is

computed before velocity update whereas Nesterov proposes the other way, i.e.,

gradient is computed on weights after the addition of momentum, which seems

to change v in a quicker and more responsive way [108]. However, it should

be noted that convergence theories for momentum update methods considers

an environment without noise and they do not retain asymptotic local rate of

convergence in stochastic settings.

vt+1 = µvt − α∇θL(x; (θt + µvt)) (3.15)

θt+1 = θt + vt+1 (3.16)

AdaGrad [27], an adaptive learning rate method, proposes higher step sizes

for rarely seen updates whereas the effective learning rate of high gradients is

decreased. Method makes use of the update information of previous iterations

and formulated in Eq. 3.17.

θt+1 = θt − α
∇θL(x; θt)√∑t
t′=1 (∇2

θL(x; θt′))
2

(3.17)

RMSprop is an unpublished yet known method that proposes keeping a moving

average of squared gradients for weight updates, which is given in Eq. 3.19. γ

in the equation stands for the decay rate. AdaDelta [125] is another variation

of AdaGrad that also employs the moving average of squared gradients over a

window with an additional correction step that is based on Hessian approxima-

tion.

rmst+1 = γrmst + (1− γ)∇2
θL(x; θt+1) (3.18)

θt+1 = θt − α
∇θL(x; θt+1)√

rmst+1

(3.19)

55

Initialization Initialization of the weights can also affect the learning process.

As mentioned earlier, saturation of neurons, that is neurons’ taking values in the

tails of the activation function, results in small partial derivatives and therefore

vanishing gradient problem. On the other hand, all-zero initialization is not

rational since all neurons would behave the same way with the same initial

points. As a solution, biases are initialized as zero and weights are initialized

in such a way that all neurons are random and close to zero at the beginning,

which is expected to result in distinct updates and proper learning. A common

heuristic is to normalize the initial parameters according to the number of inputs.

Determination of Hyperparameters Variety of approaches to the mini-

mization problem reveals the importance of training process in deep learning

algorithms. Determining a cost function for the objective problem is rather

easy compared to the selection of architecture, optimization method and deter-

mination of hyperparameters. Hyperparameters are also selected via different

methods and two very common choices are using grid search for the selection of

best hyperparameters in the related space or searching them randomly.

Early Stopping The process of training itself is important since it will directly

affect the performance of the neural network for the given problem. If possible,

observing the loss function change over a validation set is a good option to avoid

overfitting and examine the convergence properties. Another hyperparameter,

number of epochs, is usually interfered by stopping the optimization process

when the loss or classification error over the validation set starts to increase. This

interference is known as early stopping and a case that illustrates the evolution

of loss over training and validations sets is depicted in Fig. 3.10.

Bias-Variance Trade-off If the minimization process is not interfered in by

checking the training error over the validation set, the difference of loss over

training and validation sets in the following epochs will probably diverge, which

is a strong indication of overfitting. The difference between training and val-

idation error is an example of high variance, when overfitting phenomena is

56

Figure 3.10: Evolution of loss over training and validation sets. Iterations less
than required for good convergence will result in a model that could not fit the
data. On the other hand, allowing model to iterate more than necessary will
cause to memorization of data so that model can not generalize well to new
(test) data.

investigated within bias-variance trade-off. Remember that overfitting refers to

models that fits perfectly to available training data and cannot generalize well

to new test data. Within the bias-variance trade-off, generalization error can be

interpreted as the sum of (squared) bias and variance, where variance refers to

the sensitivity of the model to the changes in the training set and bias is usually

used to indicate the dissimilarity between the trained model and the true one.

For a better understanding, different bias-variance cases are illustrated in Fig.

3.11. f ∗ in the cartoon figure stands for the true, target model and gray areas

depicted as f resembles the neural networks that can be trained using different

training sets. Our ultimate aim is to find a good trade-off between bias and

variance with proper selection of architecture, hyperparameters, update method

and regularization method.

Figure 3.11: Illustration of bias-variance trade-off for neural networks

57

3.4 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a type of feed-forward networks ex-

plained in Part 3.3 with some distinguishing properties. Main objective of CNN

architecture is to exploit the 2D topology in images in a hierarchical way, which

is very similar to the working principal of human visual cortex. Local connectiv-

ity, parameter sharing and subsampling hidden units bring invariance to certain

variations and ability to handle larger images compared to fully-connected feed-

forward neural networks.

Local connectivity, as can be understood from the name, is the proposition

that each hidden unit in a neural network is connected to a small number of

units in the previous layer that are spatially localized. However, hidden units

are connected to all channels of the input, i.e., connectivity is local in space but

full along the input depth.

Parameter sharing refers to sharing of parameters across the neurons of the

same channel, or so-called feature maps, which leads to extraction of same fea-

tures at every position. Feature maps are obtained by convolving set of param-

eters, sometimes referred as filters or kernels, with the image. If kij is the jth

convolution kernel for ith input channel xi, i.e., kij is the hidden weight matrix

Wij with its rows and column flipped, the jth activation function yj is computed

as in Eq. 3.20, where g(.) is the activation function and operator ∗ in Eq. 3.21

resembles the discrete convolution operation.

yj = g

(
b+

∑
i

kij ∗ xi

)
(3.20)

(x ∗ k)ij =
∑
pq

xi+p,j+qkr−p,r−q (3.21)

Both local connectivity and parameter sharing decrease the number of parame-

ters to be trained by a great amount. Suppose that we have an image of size [227

x 227 x 3], which is the case for ImageNet dataset. If we had a fully-connected

layer where parameters are not shared, there would be 227*227*4 = 157,587

58

parameters, i.e., weights and biases, for each neuron in the upper hidden layer.

If the weights are locally connected and we use a kernel size of 11, which is some-

times referred as receptive field, there would be number of 11x11 parameters for

each channel for each neuron, which results in 11*11*4*(227-11+1)*(227-11+1)

for each feature map in the upper hidden layer where the number of neurons are

set to (227-11+1)*(227-11+1) as a result of convolution operation.

Discrete convolution is sometimes not evaluated for each pixel in the input image,

rather, the neurons in the upper layer are set to S spatial units apart, where

S is called as stride. For example, if the stride is equal to 4, we evaluate the

convolution for 4 pixels apart, thus there would be ((227-11)/4 + 1)*((227-11)/4

+ 1) neurons for each resultant feature map. As a result, introducing stride of

4 pixels decreases the number of parameters by a factor of 16.

Finally, if parameters are shared among neurons, only 11*11*4 parameters are

learned for each feature map in the upper layer. Such a decrease in the number

of parameters are compensated with higher number of feature maps in order to

increase the variety of features to be learned.

The conclusion of this many multiplicative calculations is actually rather simple,

weight sharing and local connectivity properties of convolutional neural networks

help keeping the number of parameters manageable for real-world data. Prop-

erties of local connectivity and weight sharing are further illustrated in Fig.

3.12.

Although there are some exceptions, convolutional neural networks are generally

composed of cascaded convolutional layers followed by periodical pooling layers.

Pooling layers reduce the spatial size, and hence number of parameters, by

resizing each feature map individually using a maximum or averaging operation.

Downsampling realized by pooling layers may be interpreted as a simplification

of the information in the output of convolutional layers, i.e., pooling layers

determine if a feature exists within a window regardless of its position.

Some convolutional architectures also employ normalization layers in order not

to get affected from contrast differences. An example sub-block that incorpo-

59

Figure 3.12: Illustration of (a) fully-connected layers (b) local connections and
(c) weight sharing (images taken from [7])

rates local normalization is illustrated in Fig. 3.13. In addition, input data of

convolutional neural networks is sometimes preprocessed by practicing mean-

subtraction, dimension reduction via PCA and/or whitening.

Figure 3.13: A frequent subblock of deep convolutional neural networks

In summary, small-sized filters of convolutional neural network layers are ex-

tended through the full depth of the previous layer, they are shared across

neurons and the aim is to extract the same features at every position. A sin-

gle feature map of a layer is generated by sliding a single filter whose depth

is equal to the depth of input and realizing a discrete convolution. Multiple

filters are used in a hidden layer in order to capture different spatial character-

istics and output volume is formed by stacking the filters along depth, which

60

is sometimes called as "filter bank". Convolutional layers are usually followed

by pooling layers and non-linearity functions. Successive application of convo-

lutional and pooling layers with non-linearities result in spatially downsampled

outputs which extends through its depth as a virtue of multiple filters in convo-

lutional layers. Resultant output volume is usually processed by fully-connected

layers at the highest levels of the architeture, where the very last layer, i.e.,

output loss function, depends heavily on the task.

A typical convolutional architecture, LeNet-5 [74] is one of the first attempts

to apply a neural network to a real world problem such as document recog-

nition. Proposed architecture is composed of convolutional layers followed by

subsampling, the result of which fully-connected to RBF units after hyperbolic

tangent function. In contrast to more recent architectures, proposed method

uses convolutional neural networks to obtain codes to be classified by Gaussian

connections. The overall network is illustrated in Fig. 3.14.

Figure 3.14: Architecture of LeNet-5, which is used for digit recognition (figure
taken from [74])

Another very well-known convolutional architecture is the one proposed by Alex

Krizhevsky [67], hence usually referred as AlexNet, which improved the state of

the art by more than 10% for recognition on ImageNet dataset. The architecture

is composed of five convolutional and three fully-connected layers and rectified

linear activation is applied to the output of all layers. Max-pooling is used as

the subsampling method and drop-out and data augmentation is used to avoid

overfitting. The architecture is illustrated in Fig. 3.15 and Fig. 3.16 represents

the filters learned in the first convolutional layer of the architecture. Notice that

some learned kernels are frequency and orientation selective whereas the others

are simply color blobs, due to the restricted connectivity between two parallel

61

branches in Fig. 3.15, which are processed by two distinct GPUs.

Figure 3.15: Architecture of AlexNet, proposed for Imagenet large scale recog-
nition challange in 2012(figure taken from [67])

Figure 3.16: Kernels of size 11x11x3 learned in the first convolutional layer of
AlexNet [67])

Success of AlexNet has motivated many researchers for deep convolutional ar-

chitectures; therefore, many variations are proposed especially since 2012. Most

of these variations attempt to deepen the architecture, such as GoogLeNet [109]

with 22 layers that are a combination of convolutional and pooling layers (both

max and average operations are utilized for different layers) that also incorpo-

rates dropout and multiscale processing. Although deeper, GoogLeNet is said to

use 12 times fewer parameters compared to AlexNet and it took the first place

in ILSVRC 2014 by going deeper with convolutions. The runner-up in 2014 is

also a very-deep architecture, known as VGGNet, which actually accommodates

several variations under its name. The variations of VGG are composed of dif-

ferent number of similar layers so that they are used to show that depth is a

very critical component. The winner variation contains a total number of 16

layers and convolution and subsampling operations are realized using the same

size of kernels throughout the network, 3x3 for convolution and 2x2 for pool-

ing. This winner VGGNet is reported to have nearly 140 million parameters

62

to be learned, which reveals the importance of optimization involved in train-

ing process again. Another relatively different variation [106] is based on the

wish for the simplicity, thus, it incorporates only convolutional layers and reLu

activations by replacing max-pooling layers with convolutional layers of higher

stride values. This work also introduced "guided backpropagation" in order to

visualize the features learned not only in the first layer but also in any layer.

3.5 Autoencoders

So far, the structure and learning methods that depend on labeled data are ex-

plained. However, as aforementioned before, the amount of unlabeled data grows

extremely fast and unsupervised learning intends to exploit this massive data

to take advantage of prior knowledge by learning the underlying explanatory

factors of low-level sensory data.

Autoencoders are fully connected feed-forward neural networks and they try

to learn useful representations that will be used to generate the data itself.

In other words, in the most basic form, an autoencoder attempts to learn a

function that maps the data to itself. Although this function corresponds to

identity at first glance, putting some constraints on the learning process leads

to very interesting and useful representations. For example, probably the oldest

feature extraction method, Principle Component Analysis (PCA) [90], projects

the data onto a orthogonal basis of dh dimensions, each of which stands for the

greatest variance in the training data. Such a projection may be represented

as h = f(x) = WTx + b. Hence, the problem of dimension reduction via PCA

can be expressed as an autoencoder with a linear layer and undercompleteness

constraint, i.e., dimension of the resultant representation is smaller than the

dimension of the data.

By a more formal definition, autoencoders define a specific, closed-form feature-

extraction function called as "encoder" part, output of which is mapped back to

input data by another parametric function, "decoder" part. The parameters of

encoder and decoder are learned simultaneously during learning and the objec-

63

tive is to minimize the reconstruction error that emerges from mapping process.

A representative illustration is given in Fig. 3.17. As can be depicted from the

given figure, the neural network is trained to maintain information of input data

x and obtain a representation that also reconstructs the input well by x̃. The

weights W and W∗ are said to be tied if W∗ = WT where WT stands for the

transpose of W.

Figure 3.17: Autoencoder illustration: encoder attempts to find an expressive
representation h(x) of data x by minimizing the reconstruction error between
the input and reconstructed data x̂.

Two common loss functions used for training auto encoders are cross-entropy

and mean square error. Given in Eq. 3.22, cross-entropy is suitable for binary

inputs or inputs with values between (0, 1). Cross-entropy is in fact used for

measuring the similarity between two probability distributions p(x) and q(x)

over the same underlying set of events as −
∑

x p(x) log q(x). The adaptation

is done by simply assuming p(x = 1) = xk and q(x = 1) = x̂k. As a result, if

xk = 1, minimization corresponds to maximizing x̂k and similarly, xk = 0 means

minimizing x̂k. For real valued inputs, mean square error given in Eq. 3.23 is

utilized.

l(f(x)) = −
∑
k

(xk log(x̂k) + (1− xk) log(1− x̂k)) (3.22)

l(f(x)) =
1

2

∑
k

(x̂k − xk)2 (3.23)

For either case, the gradient of loss function w.r.t pre-activation is∇â(x(t))l(f(x(t))) =

x̂(t)−x(t), and remaining back-propagation process is the same with the one for

feed-forward neural networks.

64

3.5.1 Types of Autoencoders

Linear Autoencoders Linear autoencoders, for which the hidden layer rep-

resentation is simply a linear function of the input, i.e., h = f(x) = WTx + b,

may be trained to obtain either undercomplete or overcomplete representations.

Undercomplete representations, which is the case for PCA, result in the "com-

pression" of training data. On the other hand, overcomplete representations can

be more problematic for linear autoencoders since each hidden unit may copy a

different component of the input and there is no guarantee of meaningful repre-

sentations. In order to avoid this problem, different constraints are injected to

the learning process.

Denoising Autoencoders One interesting approach is to corrupt the input

of the autoencoder and attempt to recover the original input from the corrupted

version [116]. In other words, the reconstruction x̂ is computed from the noisy

input x̃, however, loss function compares the reconstructed data x̂ with the

original input x. The objective is to obtain representations that are robust to

noise. The noise process may be chosen to assign random 0 values to input image

with probability v, which is known as masking noise, or to add Gaussian noise

with standard deviation σ. Structure of denoising autoencoders with masking

noise is illustrated in Fig. 3.18.

Figure 3.18: In denoising autoencoders, input x is corrupted with a noise process
p(x̃|x) and reconstructions is realized over the corrupted input x̃.

65

Sparse Autoencoders Another constraint to learn the structure of the input

data regardless of the hidden layer size is to introduce sparsity constraint to

network. In sparse autoencoders, activity of neurons are forced to be zero most

of the times via an additional term in the loss function. The constraint can be

chosen as the L1 norm of the hidden layer activations or Kullback-Leibler (KL)

divergence between the mean activation of the network and the desired sparsity.

If the hidden layer representation is denoted as h(x), the average activation of

unit j over the training set is computed as in Eq. 3.24 . Related KL-divergence

term is given in Eq. 3.25 where ρ represents the desired sparsity and generally

chosen to be a small number as 0.01 or 0.05. Corresponding L1 sparsity term is

also given in Eq. 3.26.

ρ̂j =
1

T

T∑
t=1

[
hj(x

(t))
]

(3.24)

jmax∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(3.25)

jmax∑
j=1

1

T

T∑
t=1

|hj(x(t))| (3.26)

Contractive Autoencoders As proposed in [94], the addition of the Frobe-

nius norm of the Jacobian matrix of the encoder activations with respect to the

input provides a representation that captures the local variations imposed by the

data. Proposed additional term attempts to throw away the information of the

input data whereas the autoencoder loss function tries to keep that information

as much as possible to reconstruct the input data. As a result, the represen-

tation obtained by contractive autoencoders is claimed to keep both good and

sufficient information. The overall loss function of contractive autoencoders is

given Eq. 3.27.

66

Figure 3.19: Samples from hand-written digits dataset MNIST

l(f(x(t))) + λ‖∇x(t)h(x(t))‖2F (3.27)

where ‖∇x(t)h(x(t))‖2F =
∑
j

∑
k

(
∂h(x(t))j

∂x
(t)
k

)2

(3.28)

Since autoencoders are feed-forward networks, the same regularization strate-

gies for training feed-forward neural networks, such as weight constraints, also

apply for autoencoders. In order to observe the weights learned via different

constraints, autoencoders with different loss functions are experimented within

a simple framework. The objective is to visualize the filters of an autoencoder

with 500 hidden units and the hand-written character dataset MNIST is cho-

sen as the input data. Minimization of several loss functions is achieved via

stochastic gradient descent with a constant learning rate (0.25) for a constant

number of epochs (25). The general form of the loss function is given in Eq.

3.29 where l(W) stands for the weight regularization term and l(h(x)) is used for

sparsity constraint. Configuration of the loss functions with related coefficients

is summarized in Table 3.1. The resultant weights are exemplified in Fig. 3.20.

L = l0(f(x))︸ ︷︷ ︸
data term

+λ1 l1(W)︸ ︷︷ ︸
term for

weight regularization

+λ2 l2(h(x))︸ ︷︷ ︸
sparsity term

(3.29)

Whatever the loss function is, the fact that autoencoders attempt to learn the

structural information about training data is evident. Visual results may be

discussed in terms of their homogeneity or sparsity; however, the performance

of the autoencoders is task-dependent, thus hard to interpret. Nevertheless,

there are certain things that can be concluded from the given results such as

67

(a) AE1 (b) AE2

(c) AE3 (d) AE4

(e) AE5 (f) AE6

(g) AE7 (h) AE8

(i) AE9 (j) AE10

Figure 3.20: Visualization of weights of an autoencoder corresponding to differ-
ent loss functions which are given in Table 3.1

the effect of regularization. Difference of results between AE2 and AE1, AE4

and AE3, AE12 and AE13 arises from L2 regularization, i.e., additional loss

68

Table3.1: Loss functions of different autoencoder configurations

Data Term
l(f(x))

Noise Process
Weight Reg.

l(W)
λ1

Sparsity Term
l(h(x))

λ2

AE1 Mean Square Error Binomial, v = 0.5 None - None -
AE2 Mean Square Error Gaussian, σ = 0.5 None - None -
AE3 Cross Entropy Binomial, v = 0.5 None - None -
AE4 Cross Entropy Gaussian, σ = 0.5 None - None -
AE5 Cross Entropy Gaussian, σ = 0.5 L2 1x10−3 None -
AE6 Cross Entropy Gaussian, σ = 0.5 L1 5x10−5 None -
AE7 Cross Entropy Gaussian, σ = 0.5 None - KL, ρ = 0.01 5x10−1

AE8 Cross Entropy Gaussian, σ = 0.5 L2 1x10−3 KL, ρ = 0.01 1x10−1

AE9 Cross Entropy Binomial, v = 0.5 L2 1x10−3 None -
AE10 Cross Entropy Binomial, v = 0.5 L1 5x10−5 None -
AE11 Cross Entropy Binomial, v = 0.5 None - KL, ρ = 0.01 5x10−1

AE12 Cross Entropy Binomial, v = 0.5 L2 1x10−3 KL, ρ = 0.01 1x10−1

AE13 Cross Entropy None None - KL, ρ = 0.01 2

AE14 Cross Entropy None L2 1x10−4 KL, ρ = 0.01 1

term that forces weights to have small values. This regularization provides some

noisy blob like-features to evolve into stroke-like features. Furthermore, addition

of sparsity terms provides localization of features as the way AE8 differs from

AE7; however, without weight regularization, sparsity itself may go for less to

learn structural properties as in AE13. Some samples from MNIST dataset are

depicted in Fig. 3.19 for the sake of completeness.

(a) AE11 (b) AE12

(c) AE13 (d) AE14

Figure 3.21: (continued) Visualization of weights of an autoencoder (AE) cor-
responding to different loss functions which are given in Table 3.1

Denoising autoencoders can also be interpreted within the manifold learning

69

perspective. N dimensional data usually constitute a lower dimensional topology

due to their internal structure. Suppose that the one-dimensional manifold

in Fig. 3.22 can represent the space spanned by hand-written digits "2". In

other words, all samples of digit "2" are placed near to the manifold in the

related space, as represented with crosses in the figure and random samples

are further away from the manifold as the noise image in the figure illustrates.

The noise process in denoising autoencoders then pushes the samples away from

the manifold by the introduction of masking or Gaussian noise. The model is

therefore forced to learn the structure so that it can relate the corrupted data to

the uncorrupted version, which is possibly the closest projection of it onto the

underlying manifold.

Figure 3.22: Manifold interpretation of denoising autoencoders: Noise process
moves the training samples farther away from the manifold so that model is
forced to learn the structure (image taken from [69])

70

CHAPTER 4

DEEP ARCHITECTURES FOR TRACKING

As discussed in detail in Chapter 3 most of the recent approaches in object

recognition and detection literature involve deep structures, which have shown

superior performance in image classification challenges [44, 67]. Hierarchical

structure provides high capacity to learn complex models with multiple levels

of abstraction. The robust expressivity obtained by the use of deep structures

is used for object detection purpose in different ways. In [110], the geomet-

ric information necessary for object detection is captured using a deep neural

network-based regression model with a multi-scale box inference. The algorithm

is claimed to outperform the state-of-the-art methods for some object classes in

Pascal Visual Object Challenge (VOC) 2007 [29] dataset, regarding the aver-

age precision criteria used to evaluate the performance of detection algorithms.

This algorithm is further improved by training a single deep neural network [28]

which jointly trains representations and the bounding box predictors. Resul-

tant class-agnostic method not only achieves competitive results on Pascal VOC

2007 benchmark but also generalizes over unseen classes. Girshick et al. [37]

show that a Convolutional Neural Network (CNN) outperforms systems based

on HOG-like features in terms of the object detection performance on PASCAL

VOC dataset. The localization problem of CNN is attacked by region proposal

approach: their method generates several region proposals with corresponding

features obtained using CNN, and classification of proposed regions as objects

or non-objects is achieved using linear SVMs. The same localization problem

of deep Convolutional Neural Network is also attacked via the use of a fully-

connected Conditional Random Field [20]. Using the whole algorithm, a more

71

dense score evaluation is achieved and the resultant label assignment probability

is used as a unary term in fully-connected CRF. Results obtained on PASCAL

VOC 2012 segmentation benchmark shows that the proposed method is capable

of generating semantically accurate predictions. Instead of neural networks, a

mixture of hierarchical tree models is used to represent objects in [131]. De-

tection results on PASCAL VOC 2007 dataset reveal that deep structures are

better than shallow structures for object detection.

Despite the huge interest in deep architectures for object recognition, speech pro-

cessing or scene understanding, the use of deep architectures on object tracking

is very limited. The proposals up to now, all of which take different approaches

to the problem, will be briefly explained before the explanation of experimental

setup and sub-blocks.

4.1 Related Work: Tracking Frameworks that Involve Deep Archi-

tectures

This part addresses understanding the proposed visual tracking algorithms that

involve deep architectures or related learning methods.

In [59], a two-layer convolutional neural network with a radial basis function

at the top layer is used for object detection for tracking. The output vector of

the image patch that is annotated in the first frame is used as a positive exam-

ple. Then, each following frame is divided into small patches, for which output

vectors are computed via the neural network. Using the distance between the

positive example and patches in a frame, a confidence map is generated. Detec-

tion is achieved by selecting the rectangle that corresponds to the peak value

in confidence map, which must exceed a pre-defined threshold. Three experi-

ments are conducted regarding the parameter initialization: for the first one,

parameters are initialized randomly. For the second, parameters are obtained

by a supervised training method by the help of an auxiliary dataset. The third

experiment is based on parameters trained in an unsupervised manner, using

K-means clustering learning, on another auxiliary dataset. Their experiments

72

show that the unsupervised training of parameters is better for the framework

they proposed.

Convolutional neural networks are also used for human tracking in [57], which is

actually out of scope due to the specific object model. However, it is a good idea

to understand the way deep architectures are adapted to tracking problem. Af-

ter offline training of parameters using their task-dependent dataset, a fixed-size

rectangle is extracted around the human head annotated in the initial frame.

A rectangle at the same position is extracted in the next frame and these two

rectangles are fed to a neural network in order to capture the temporal struc-

ture. R,G,B channels together with horizontal and vertical gradients are used as

feature maps of the rectangles. The proposed algorithm uses two pathways for

CNN, one of which tries to capture local structures with a single convolution and

a sampling layer while the other pathway intends to reveal global information

with consecutive convolution and sampling layers. Four-times upsampling used

on the global branch is claimed to bring shift-variant properties. Processing of

feature maps that carry information from each patch individually and together

with temporal neighbor patches jointly results in a probability map, maximum

of which is used as the detection result. In order to adapt scale changes, scale

of the bounding box is also estimated using an additional CNN. This object-

specific tracker is shown to be more stable in case of drastic view/pose change

and false-positive matches.

Another approach exploits an auxiliary dataset for transfer learning. Wang et al.

propose the use of stacked denoising autoencoders that are trained offline using

natural images [118]. The use of auxiliary data for knowledge transfer is also

used in [120], in which an overcomplete dictionary is learned from natural images

and used for sparse representation during online tracking. Similarly, Wang et

al. use 1 million gray-scale images to train a network of denoising autoencoders

that are used to recover from corrupted data. Training data is corrupted with

masking occlusion, Gaussian noise or salt and pepper noise and autoencoders are

trained using the corrupted images so that the reconstruction error is minimized.

The use of denoising autoencoders is claimed to contribute to the robustness of

tracker in case of occlusions. During online tracking, a sigmoid classifier is added

73

Figure 4.1: Architecture of the CNN utilized in human tracking algorithm [57].
Image patches corresponding to the same position in two consecutive frames are
fed to the network which processes the input data in global and local branches.
Output of the architecture is a probability map rather than a classification label.

to the autoencoder network and tracking is achieved using particle filters. The

experimental results show that the proposed method achieves good success rates

with very low center location errors in general. After training with a patch larger

than the target, detection of the new position is made on the point that gives the

maximum correlation value. Update of the model is improved with a memory

using linear interpolation.

Opposite to the findings of [59] and philosophy of deep learning for generaliza-

tion, a very recent work [75] proposes an online learning scheme for convolutional

neural networks. Authors state the difficulty of adopting CNN to visual object

problem mainly due to the lack of reliable training samples and overfitting of

CNNs to most recent observations. The employment of CNN architecture to

proposed tracking by detection scheme is achieved via a special loss function

that consists of a truncated norm and a structural term. They also propose a

sampling mechanism that takes the label noise problem into consideration and

makes use of the frame index for an iterative stochastic gradient descent with

a temporal sampling mechanism. The network architecture is composed of two

convolutional layers and two fully-connected layers. Two locally normalized im-

age patches for gray images and H and S channels for color images are fed to

the network together with the gradient image. The results of the proposed al-

74

gorithm both on CVPR 2013 benchmark and VOT 2013 challenge demonstrate

the best performance for most of the conditions, which indicates the possible

good adoptions of deep learning algorithms to visual object tracking problem.

The flow chart of the proposed algorithm is illustrated in Fig. 4.2.

Figure 4.2: Architecture of the CNN utilized in DeepTrack algorithm [75]. Three
different cues are fed to the network and independent filters learned through
these three different paths. Resultant representations are fused in the top layer
where a 2 dimensional feature is generated to indicate class probabilities of being
positive or negative.

A totally different approach, which is inspired from the human perceptual system

and utilizes an attentional model for tracking, is proposed in [9]. The model is

composed of ventral and dorsal pathways. Ventral pathway, known as what

module, is modeled using (factored) Restricted Boltzmann Machines (RBM)

and a particle filter is used for the dorsal pathway which is known as where

module. The particle filter is used to estimate the location, orientation, speed

and scale of the object on the lowest level of dorsal attentional mechanism, and,

an online hedging algorithm provides the policy for where to search in the next

frame. For the appearance model, a (factored)-restricted Boltzmann machine

in the first hidden layer with a hidden layer of multi-fixation RBM on the top,

is used on the foveated observations for classification. Their results on both

synthetic and natural sequences show that the proposed algorithm is capable of

learning where to look from the uniformly distributed gazes in the beginning.

The algorithm is improved in [25] with a different gaze control strategy for a

better performance in the presence of partial information.

75

4.2 Tracking by Detection

Tracking by detection is a very common framework for both single and multi ob-

ject tracking. As for all tracking algorithms, object is defined by its location and

the aim is to determine the location in the next frame. Using the object location

in the previous frame, motion module, which may be Kalman or particle filter

as explained in Chapter 2.3.1, outputs a possible object location regarding the

motion dynamics of the system. Generated position hypotheses are converted

to candidate object regions according to the appearance model. The decision is

then made by comparing the relevance of candidate regions to the object model.

This classification result may be utilized to update the appearance model in

order to adapt the appearance and environment changes.

In this thesis, we will investigate different object representations for tracking

by detection scheme. The framework for experiments is constructed to take the

initial frame and corresponding bounding box and obtain object representations

to train a classifier. For the initial frame, motion model generates candidate

noisy positions around the given location. Once the initial model is constructed,

successive frames are processed by considering the patches generated according

to the motion model output of the previous frame. Patches are converted to

object representations by related algorithm and these representations are fed to

a classifier that outputs a confidence value about how likely the given represen-

tation is to be the object it learned. For adaptation, an update mechanism is

utilized for classifier by generating positive and negative samples according to

the previous detection results, which is also possible for adaptive representations.

Object detection is achieved using a weighted average of candidate regions with

corresponding confidence values. Overall framework with object representation,

classification and a motion estimation modules, is illustrated in Fig. 4.3.

4.2.1 Tracking Scheme

Object tracking is achieved within a Bayesian inference framework by describing

the measurement model according to the object detection scheme. In general,

76

Figure 4.3: Generic framework for tracking by detection algorithms. Solid lines
indicate the certain relations between sub-blocks whereas dashed lines are used
for optional interaction.

a system model that describes the evolution of state vector accompanied by

a measurement model for noisy acquirements is required for the analysis and

inference of a dynamic system. Although it is possible to construct a posterior

probability density function (pdf) based on all the information available, which

may be regarded as batch-processing, sequential processing of the received data

by recursive filters fits more to visual object tracking problem. Processing may

be achieved in two stages: after predicting the state pdf from one measurement

to the next, current measurement is used to update the predicted distribution,

which is achieved using Bayes theorem.

In mathematical notation, tracking can be formulated as in Eq. 4.1 if the state

sequence up to time t is represented as x1:t and related measurements are de-

picted as z1:t, the objective is to find the current target state by maximum a

posteriori estimation.

x̂t = arg max
xt

p(xt|z1:t) (4.1)

In a recursive filter, we assume that p(x1:t−1|z1:t−1) at time t − 1 is available.

Thus the distribution we want to estimate can be written as in 4.2, which

can then be converted into the expression in 4.3 with Markov assumption, i.e.,

p(xt|zt−1,x1:t−1) = p(xt|xt−1) .

77

p(xt|z1:t−1) =

∫
p(xt|xt−1, z1:t−1)p(xt−1|z1:t−1) dxt−1 (4.2)

=

∫
p(xt|xt−1)p(xt−1|z1:t−1) dxt−1 (4.3)

The expression in Eq. 4.3 is known as the prediction stage where the proba-

bilistic evolution of state vector, p(xt|xt−1), is known as the system model. The

prediction stage in the recursive filter may be realized using the relation in Eq.

4.4 once the measurement zt is obtained.

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)∫
p(zt|xt)p(xt|z1:t−1) dxt

(4.4)

The analytic solution of this recursive propagation density is not possible [4];

however, both optimal and suboptimal methods for some cases are present. If

the posterior density at each time step is assumed to be Gaussian, Kalman filter

is the optimal solution. However, for most of the cases, the strong assumptions

on noise and linear system and measurement processes do not hold, which re-

veals the need for approximations. Recursive Bayesian filter by Monte Carlo

simulations, which is known with different names [4] and will be referred here as

particle filters, is such an approximation that represents the required posterior

density by a set of random samples {xit, i = 1, ..., Ns} and associated weights,

{ωit, i = 1, ..., Ns}, where Ns demonstrates the number of random samples, i.e.,

particles. Weights are normalized such that
∑

i ω
i
t = 1 and the discrete weighted

approximation of the posterior probability is given in Eq. 4.5.

p(x0:t|z1:t) ≈
Ns∑
i=1

ωitδ(x0:t − xi0:t) (4.5)

Given that samples are drawn from an importance density q(x0:t|z1:t), weights
are related to the importance density as given in Eq. 4.6. If importance density

is chosen to factorize such that q(x0:t|z1:t) = q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t−1), se-
quential update of weights are possible as given in Eq. 4.7, with an assumption

of first-order Markov process, i.e., q(xt|x0:t−1, z1:t) = q(xt|xt−1, zt) [4].

78

ωit ∝
p(xi0:t|z1:t)
q(xi0:t|z1:t)

(4.6)

ωit ∝ ωit−1
p(zt|xit)p(xit|xit−1)
q(xit|xit−1, zt)

(4.7)

In order to avoid the common problem of weight degeneracy in sequential impor-

tance sampling, which indicates all but one particle will have negligible weight

after a few iterations, a resampling method is required. With resampling, the

information on weights of the samples are conserved by replacing the samples

with higher weights with more samples with equal weights and removing the par-

ticles with negligible weights, which is depicted in Fig. 4.4. Inverse transform

resampling, also known as Smirnov transform [86], is employed as the resam-

pling method for particle filter. The basic idea is to resample a variable from the

uniform distribution and use it to generate particle weights from the cumulative

distribution function (CDF). The overall procedure is given in Algorithm 4.

Figure 4.4: Illustration of resampling for particle filter.

The motion model in the framework is characterized as the temporal correlation

of the target states in consecutive frames. The state vector represents the affine

transformation between consecutive frames with parameters of x and y positions,

rotation angle, scale, aspect ratio and skewness. The components of transition

density are assumed to be independent and modeled by a zero-mean Gaussian

distribution. For the experiments, variance of skewness term is set to zero,

79

whereas the other variables are kept the same throughout the tracking process.

The estimate of the state vector may be achieved in different ways and instead

of the commonly used Maximum A Priori (MAP) estimate, which corresponds

to the detection of the candidate with maximum confidence value, we employed

mean estimate, i.e., x̂t = 1/Ns

∑Ns

i=1 ω
i
tx
i
t, which clearly introduces smoothness

prior to the motion model. The measurement model is determined by the object

classification confidence, which will be explained in the next section.

Algorithm 4 Particle Filter
for i from 1 to Ns do

Draw particle xit ∼ q(xit|xit−1, zt)
Assign weight ωit to the particle according to Eq. 4.7

end for

Normalize weights so that
∑

i ω
i
t = 1

Resample particles:

Construct CDF: ci = ci−1 + ωit

Start at the bottom of the CDF: i = 1

Draw a starting sample from uniform distribution: u1
for j from 1 to Ns do

Move along the CDF: uj
while uj > ci do

i = i+ 1

end while

xj∗t ← xit

ωjt ← 1/Ns

end for

4.2.2 Classification Scheme

Another important module in the framework is classification, which already has

its own literature. The key point for the classification is the fact that our objec-

tive is not to achieve strong boundaries between positive and negative samples

without regarding the evolution of the boundary. Therefore, after experimenting

with support vector machines, which are shown to present better performance

80

as the top layer of a neural network [111], we decided to utilize a classification

method that does not learn from the scratch every time it is trained, rather

adapts a decision boundary with new-coming data, such as logistic regression.

Aim of the logistic regression is to learn a function hW(x), known as sigmoid or

logistic, that squashes the value of WTx into the range [0,1] so that the output

can be interpreted as probability. Function parameter W is learned so that the

output is high when the data has label "1" and small when input belongs to

class "0". Eq. 4.9 summarizes the logistic regression function for input vectors

x(i) and corresponding class labels y(i) ∈ {0, 1}.

P (y = 1|x) = hW(x) =
1

1 + exp(−WTx)
(4.8)

P (y = 0|x) = 1− P (y = 1|x) = 1− hW(x) (4.9)

Learning of the function parameter W is achieved via minimizing the cost func-

tion given in Eq. 4.10, which measures how well the function hW predicts class

labels. When trained with binary labels y(i) ∈ {0, 1}, one of the two terms always

becomes zero, i.e., label y(i) = 0 corresponds to maximizing (1− hW(x(i))), and

thus minimizing hW(x(i)),), whereas label y(i) = 1 indicates the maximization

of hW(x(i)).

J(W) = −
∑
i

(
y(i) log(hW(x(i))) + (1− y(i)) log(1− hW(x(i)))

)
(4.10)

Notice that the cost function of a logistic regression classifier corresponds to

cross-entropy loss for a feed-forward neural network that is trained for binary

classification problem. Therefore, choice of the logistic regression is parallel

with the aim of adapting neural network representations during training and

minimization of the loss is achieved via gradient descent method.

81

4.2.3 Object Representation

Object representation constitutes the most important part of the scheme since

all other modules are frozen during experiments to investigate advantage and

disadvantages of various object representation methods. Italic words in bold

represents the abbreviations used during performance evaluation.

Raw Pixels (Intensity) Intensity values, i.e., gray levels, are used without

any inference, only after normalization between [0,1] as a baseline. Results of

tracking with intensity values indicate the baseline performance and computa-

tional cost of utilized tracking by detection scheme.

Subspace Representation with PCA (PCA) Although used as a dimen-

sion reduction method in general, principal component analysis is experimented

for the purpose of representing images by enhancing the mutual independence of

contributory factors. The orthogonal linear transformation of PCA is achieved

by using the eigenvectors of the covariance of data and dimension reduction is

possible via the elimination of components that corresponds to the amount of

data to be discarded. PCA can be regarded as a generative model since the

representative eigenvectors, so-called principal components, establish the most

of the information in the data; however, they also articulate the greatest vari-

ance. Nevertheless, spatial information in the image is not preserved due to the

flattening of images to obtain covariance matrix.

PCA is usually utilized for incremental learning algorithms for visual object

tracking [98].

Scale Invariant Features (SIFT) As another representation, widely-used

distinctive image descriptors that are extracted from scale-invariant key points,

that are known as SIFT descriptors [79], are utilized. SIFT descriptors are ac-

tually three dimensional image gradient histograms that accumulate gradient

orientations weighted by gradient norms and a Gauss distribution that indicates

the spatial distance from the keypoint. In an extensive study of local image de-

82

scriptors [85], SIFT features are shown to be distinctive and robust against affine

transformations and textured scenes, which makes them reasonable candidates

for the tracking problem.

SIFT descriptors have been utilized in visual tracking algorithms both within

particle filter framework [30] and keypoint matching methodologies [1].

Pyramid Histogram of Visual Words (PHOW) Pyramid Histogram of

Visual Words (PHOW) [15] features are similar to SIFT descriptors but ex-

tracted at multiple scales, so they may be regarded as an extension of bag-of-

words (BoW) that considers the spatial information. For feature extraction,

image is divided into sub-regions that becomes finer at the higher levels of so-

called pyramids, and dense, quantized SIFT descriptors are computed in each

sub-region.

Sparse Representations using Structured Dictionaries (Sparse Fea-

tures) Sparse representations are widely used for visual object tracking as

a virtue of their robustness to partial occlusions. For tracking applications,

sparse coding methods that aim to model object appearance are claimed to out-

perform sparse representations that are based on target searching [2]. In this

empirical study, we experiment with a reconstructive sparse representation over

a structured dictionary, which is generated by applying translation, rotation and

anisotropic scaling to a mother function g. Some sample anisotropic refinement

atoms [114] that are generated by a mother function g(x, y) = (2−4x2)e−(x
2+y2),

where x, y indicates the pixel coordinates, are depicted in Fig. 4.5.

Figure 4.5: Examples of anisotropic refinement atoms, which are a subset of the
dictionary utilized for sparse representation

Sparse representations over the overcomplete dictionary, which is generated by

applying a grid of aforementioned parameters, are obtained using Orthogonal

Matching Pursuit (OMP) Algorithm [89]. OMP is a sub-optimal, greedy method

83

that attacks the well-known sparse representation problem by iteratively select-

ing the atom that presents the highest correlation with the residue. Residue is

initialized as the image itself, updated at each iteration and projected onto the

span of selected atoms. Iterative search of atoms until the convergence criteria

is met. A toy example in Fig 4.6 illustrates the reconstruction of a hand-written

digit using different number of atoms obtained by OMP algorithm.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.6: Reconstruction of pattern "3" in (a) by a number of (b) 10, (c) 20,
(d) 30, (e) 40, (f) 50 and (g) 100 atoms

For tracking experimentation, coefficients of a pre-defined number of atoms, that

results in a sparse vector, is utilized as image representation.

Figure 4.7: Illustration of algorithm in [119], which exploits auxiliary data for
learning a dictionary of hand-crafted features.

Transfer Learning with SIFT Dictionaries (SIFT Sparse) Parallel with

the objective of this thesis, a transfer learning scheme for visual object tracking

is presented in [119]. However, learning visual prior from real-world images is

different from neural network models and it corresponds to learning a dictio-

nary of sparse codes over SIFT descriptors. For this purpose, SIFT descriptors

84

from overlapped gray-level patches of object detection datasets are extracted for

learning a dictionary is over the descriptors. During tracking, first, SIFT descrip-

tors are extracted from candidate object regions and these features are encoded

using the learned dictionary. Final representation is acquired by dividing the

candidate patch into non-overlapped regions, max-pooling the coding results of

descriptors and concatenating the pooled features from all regions. This highly

complex hand-crafted feature based transfer learning method is illustrated in

Fig. 4.7.

Stacked Denoising Autoencoders (DAE), (DAEgray), (DAEcolor),

(DAEgray,w/adapt) Two different denoising autoencoders with masking noise

and L2 regularization are trained using the combination of CIFAR-10 and CIFAR-

100 datasets [66], each of which consists of 50000 32x32 color images corre-

sponding to different objects. Figure 4.8 illustrates some random samples from

CIFAR-10 dataset.

Figure 4.8: Samples from CIFAR-10 dataset [66]

We experimented with three different autoencoders in four different ways. The

85

first autoencoder is composed of 4 hidden layers and it is a denoising autoen-

coder which employs additive Gaussian noise process [118] (DAE). The second

autoencoder has a lower capacity with three hidden layers that consist of less

number of neurons and training is achieved using CIFAR-10 and CIFAR-100

intensity images (DAEgray). A similar architecture, same number of layers but

larger number of neurons per-layer, is trained using the same dataset but using

the color information (DAEcolor). These three autoencoders are utilized to ini-

tialize the corresponding feed-forward network which is fine-tuned in the initial

frame and fine-tuned weights are kept the same throughout tracking, except the

top layer, which corresponds to logistic regression classifier. The fourth exper-

iment is conducted by adapting not only the last layer but also the weights of

lower layers when classifier requires re-training (DAEgray,w/adapt,).

CNN Features off the Shelf (CNN) Since the number of training examples

in online tracking can be hardly made on the order of hundred, using CNN

features off-the-shelf makes more sense instead of training it from scratch or fine-

tuning a large-capacity network with limited number of examples that would

cause memorization. Therefore, the features obtained before the first fully-

connected layer of AlexNet [67], are utilized as CNN features.

4.2.4 Overview of The Framework

For the investigation of different object representations for visual tracking prob-

lem, a tracking-by-detection scheme is constructed that is composed of repre-

sentation, classification and motion estimation modules. The general overflow

is as follows:

Initialization

• Initial frame of a sequence is provided with an annotated bounding box,

which is illustrated in color in Fig. 4.9a for woman sequence. Using the

provided bounding box, positive and negative samples are generated for

86

(a) (b)

Figure 4.9: (a) Initial frame of woman sequence in color with annotated bound-
ing box and (b) some of corresponding positive and negative samples, within
green and red bounding boxes respectively, in gray level for the training of the
classifier.

classifier training. Positive samples correspond to the bounding boxes of

the same size as the ground truth which are translated a few pixels with

respect to the provided location. On the other hand, negative samples of

the same size are extracted around the groundtruth in such a way that they

contain small parts of the object. Positive samples for the initial frame in

Fig. 4.9a are illustrated with green bounding boxes in Fig. 4.9b where red

bounding boxes correspond to some of extracted negative samples.

• All bounding boxes, i.e., the ground-truth, positive samples and negative

samples, are converted to intensity image patches of size 32x32, except

for CNN features. Intensity values are normalized between [0,1]. Warped

samples corresponding to the bounding boxes provided in Fig. 4.9b are

illustrated in Fig. 4.10.

• Logistic regression parameter is obtained via gradient descent using this

small labeled dataset.

• Any initialization regarding the experimented representation, such as dic-

tionary generation for sparse representation or loading parameters for any

pre-trained model, is realized. This step corresponds to the fine-tuning

of fully-connected neural networks whose weights are initialized as the

87

weights of trained autoencoders.

• Particles are generated around the ground-truth using the independent

zero-mean Gauss distributions of each state parameter. The variance of

skewness parameter is set to zero. Centers and some of corresponding

bounding boxes for the first frame particles are illustrated in Fig. 4.11.

Figure 4.10: Positive and negative samples in the first and latter two rows,
respectively, warped into 32x32 gray-level images.

(a) (b)

Figure 4.11: (a) Centers and (b) some of corresponding bounding boxes of first-
frame-particles.

Update

• Once the new frame is provided to the algorithm, object candidate rect-

angles are generated by the prediction stage of the particle filter. Centers

and some of corresponding bounding boxes for the particles in 104th frame

are illustrated in Fig. 4.12

88

(a) (b)

Figure 4.12: (a) Centers and (b) some of corresponding bounding boxes of the
particles in 104th frame.

• Representation of candidate regions are obtained according to the chosen

scheme.

• Representations are fed to classifier and resultant positive-class probability

is used to update the particle weights for the next frame.

• Mean estimate of the particles is computed to be the new bounding box

of the target object, which is depicted in Fig. 4.13.

• If the highest confidence value is lower than an empirical threshold, which

indicates a dramatic change in the view, or the classifier has not been

updated for a large number of frames, a classifier update procedure is

realized.

• For updating the classifier, positive samples are obtained with memory, i.e.,

the detection results of the last nf frames are utilized as positive samples.

However, negative samples are obtained from the current frame. Positive

and negative samples corresponding to 104th frame in woman sequence are

given in Fig. 4.14, since it exemplifies the case in which classifier requires

an update.

• The current detection result is stored in the positive samples and update

procedure is finalized.

89

Figure 4.13: Detection result of 104th frame in woman sequence.

Figure 4.14: Positive and negative samples for 104th frame, in the first and latter
two rows, respectively, warped into 32x32 gray-level images. Notice that positive
samples correspond to the detection results of the last 10 frames accompanied
by the labeled sample in the initial frame.

4.3 Implementation Details

The overall framework is constructed in Matlab with a modular structure. Ex-

cept from sparse SIFT features [119], which are extracted using the source code

provided by the authors, all representations are implemented for the experiments

in this thesis.

Training of autoencoders is realized using Theano [6], a Python library which

is convenient for deep learning research with many benefits, such as symbolic

differentiation and efficient use of computational sources. The structure of the

gray-level autoencoder, DAEgray, is chosen to be 1024-896-512-256-1, including

input and output layers, whereas color autoencoder, DAEcolor, utilizes 3072-

2048-1024-512-1 structure. Both autoencoders benefit L2 regularization and

90

optimization is achieved via stochastic gradient descent with momentum of value

0.9. Annealing learning rate strategy is preferred with a starting value of 0.04. A

total of 120.000 images are exploited using mini-batch size of 64 for 400 epochs.

Binomial noise with corruption probability of 0.4 is employed as the noise process

in denoising autoencoders. Fine-tuning is achieved via backpropagation within

the Matlab framework.

The number of particles utilized for the estimation of posterior probability in

tracking by detection scheme is 1000, except sparse features and sparse SIFT

features. Due to the computational burden, 400 particles are utilized for the

tracker with sparse SIFT representation whereas only 200 particles are employed

during the tracking with sparse features.

4.4 Experimental Results

As stated earlier, all representations are evaluated within the same tracking by

classification scheme using the VOT Challenge 2014 toolkit [65]. Toolkit eval-

uates the algorithms on 25 short sequences that are per-frame annotated with

occlusion, illumination change, motion change, size change and camera motion.

The ultimate aim of ranking algorithms is achieved via 15 iterations of all se-

quences and ranking of the algorithms is determined in terms of accuracy and

robustness. In this thesis, we utilized the platform in order to run the algorithm

once for all sequences so that the toolkit realizes reinitialization when the track

is lost. First, some visual results that demonstrate the output bounding boxes

of each algorithm will be presented. Then, we will declare the average accu-

racy and robustness values per sequence, instead of the accuracy and robustness

ranks of the algorithms.

4.4.1 Visual Results

This section will include some examples from sequences on which the experi-

ments carried on.

91

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Intensity PCA SIFT PHOW SIFTsparse DAE

DAEgray DAEgray, w/adapt DAEcolor sparseFeatures CNN

Figure 4.15: Tracking result of sequence ball corresponding frames (a)5 (b)59
(c)78 (d)114 (e)130 (f)146 (g)183 (h)187 (i)249.

ball Ball is a relatively simple sequence that mainly includes motion and scale

changes., As depicted in Fig. 4.15, all trackers corresponding to different repre-

sentations are capable of tracking the target with some accuracy in the very first

frames where only a smooth camera motion is present. During the motion of the

ball, representations that are based on local descriptors are observed to stuck on

local parts of the object, whereas tracker with CNN features capture the global

appearance fairly well. However, none of the trackers is able to survive when a

fast motion change occurs, and this is probably due to the limitations of motion

model.

92

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Intensity PCA SIFT PHOW SIFTsparse DAE

DAEgray DAEgray, w/adapt DAEcolor sparseFeatures CNN

Figure 4.16: Tracking result of sequence bicycle corresponding frames (a)10
(b)66 (c)118 (d)135 (e)149 (f)171 (g)176 (h)177 (i)233.

bicycle is a sequence that demonstrates viewpoint and scale change as well as

a short-time occlusion. Fig. 4.16 also represents the success of the tracker with

CNN features in terms of the size and orientation of the bounding box, until

the occlusion that occurs between frames 170-175. Trackers with sparseFeatures

and colored autoencoder, DAEcolor, are observed to handle the occlusion better

than the trackers with other representations.

david The sequence david starts under bad illumination conditions and the

object is subject to motion, scale, pose and illumination changes. As Fig. 4.17

indicates, all trackers with local or hierarchical representations are capable of

robust visual object tracking under poor illumination conditions, even without

93

any preprocessing.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Intensity PCA SIFT PHOW SIFTsparse DAE

DAEgray DAEgray, w/adapt DAEcolor sparseFeatures CNN

Figure 4.17: Tracking result of sequence david corresponding frames (a)10 (b)45
(c)130 (d)200 (e)310 (f)356 (g)426 (h)607 (i)720.

car The sequence car demonstrates the scale and pose change as well as an

occlusion. Results in Fig. 4.18 present that none of the representations is able

to lead the tracker to handle scale and pose change with a bounding box that

adapts itself fairly well to cover the most of the object and the least of the

background. However, trackers with hierarchical representations demonstrate

very good performance in terms of robustness.

gymnastics In the challenging sequence gymnastics, a fast motion with ro-

tation resulting in heavy pose changes is present and results are given in Fig.

94

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Intensity PCA SIFT PHOW SIFTsparse DAE

DAEgray DAEgray, w/adapt DAEcolor sparseFeatures CNN

Figure 4.18: Tracking result of sequence car corresponding frames (a)22 (b)107
(c)147 (d)159 (e)168 (f)171 (g)218 (h)238 (i)250.

4.19.

4.4.2 Accuracy and Robustness Results

Despite the abundance of performance measures in visual tracking, VOT chal-

lenge toolkit utilizes two orthogonal performance measures, accuracy and ro-

bustness. Accuracy indicates the amount of overlap between the groundtruth

AGt and predicted bounding boxes ATt as in Eq. 4.11.

accuracy =
AGt ∩ ATt
AGt ∪ ATt

(4.11)

Robustness, on the other hand, is determined by the number of times tracker

loses the target. Regarding the use of VOT challenge toolkit for the reinitial-

ization of trackers in case of target loss, notice that the accuracy results are

biased towards the algorithms that are not robust, due to the re-initialization

with ground truth bounding box.

Average accuracy and robustness values of representations are given in Table

95

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Intensity PCA SIFT PHOW SIFTsparse DAE

DAEgray DAEgray, w/adapt DAEcolor sparseFeatures CNN

Figure 4.19: Tracking result of sequence gymnastics corresponding frames (a)10
(b)74 (c)87 (d)97 (e)103 (f)117 (g)129 (h)140 (i)154.

4.1 and Table 4.2-Table 4.3 respectively. Accuracy is given in terms of average

overlap percentage over sequences whereas the first term in robustness values

represent the number of failures and the second term indicates the percentage

of failures regarding the number of frames in a sequence. For a fair comparison,

same values for the four algorithms tested for VOT Challenge 2014, two of which

ranked the top two place (DSST [24] and SAMF [77]) in terms of joint ranking

and the other two ranked the bottom (MIL [5] and CT [127]), are also provided

in the tables.

First of all, experimented tracking scheme is neither as successful as the state-of-

the-art methods as DSST and SAMF, nor worse than the last-ranking methods

like MIL and CT, which indicates the validity of the experimentation framework.

Relatively poor overall performance is also not surprising since the procedure is

not tailored to any of the representations and parameters are chosen to be loose

in order to better observe the representation power of the algorithms. In other

96

Table4.1: Average accuracy values of algorithms on sequences

Intensity PCA SIFT PHOW
Sparse
Features

Sparse
SIFT

DAE DAEcolor DAEgray DAEgray,w/adapt CNN MIL CT DSST SAMF

ball 0.63 0.52 0.36 0.48 0.67 0.56 0.48 0.67 0.67 0.51 0.53 0.43 0.39 0.57 0.78
basketball 0.45 0.31 0.54 0.37 0.35 0.3 0.36 0.4 0.3 0.32 0.37 0.61 0.54 0.64 0.75
bicycle 0.46 0.35 0.47 0.61 0.52 0.57 0.58 0.48 0.58 0.45 0.68 0.54 0.56 0.58 0.62
bolt 0.45 0.44 0.52 0.47 0.37 0.54 0.62 0.54 0.52 0.38 0.38 0.52 0.42 0.56 0.56
car 0.54 0.57 0.5 0.55 0.36 0.54 0.27 0.59 0.31 0.48 0.34 0.42 0.37 0.74 0.51

david 0.47 0.58 0.59 0.51 0.45 0.64 0.64 0.45 0.56 0.71 0.45 0.5 0.4 0.81 0.82
diving 0.28 0.32 0.31 0.33 0.31 0.33 0.29 0.35 0.34 0.33 0.3 0.25 0.24 0.44 0.25
drunk 0.41 0.33 0.32 0.35 0.28 0.34 0.33 0.3 0.4 0.59 0.56 0.49 0.48 0.55 0.57

fernando 0.31 0.36 0.3 0.44 0.27 0.37 0.38 0.36 0.38 0.31 0.43 0.46 0.39 0.34 0.39
fish1 0.45 0.33 0.45 0.36 0.33 0.53 0.47 0.17 0.45 0.34 0.16 0.39 0.36 0.32 0.5
fish2 0.24 0.22 0.3 0.31 0.28 0.34 0.37 0.41 0.23 0.29 0.46 0.2 0.21 0.35 0.3

gymnastics 0.57 0.54 0.47 0.59 0.48 0.53 0.6 0.57 0.56 0.54 0.54 0.28 0.48 0.63 0.54
hand1 0.41 0.36 0.52 0.54 0.18 0.47 0.47 0.5 0.41 0.47 0.43 0.51 0.32 0.21 0.55
hand2 0.27 0.28 0.28 0.36 0.32 0.4 0.27 0.29 0.24 0.28 0.46 0.42 0.2 0.53 0.46
jogging 0.46 0.45 0.55 0.63 0.51 0.75 0.56 0.45 0.58 0.7 0.59 0.2 0.77 0.79 0.82

motocross 0.33 0.46 0.4 0.29 0.28 0.37 0.54 0.33 0.41 0.42 0.41 0.32 0.22 0.42 0.4
polarbear 0.47 0.27 0.55 0.42 0.50 0.52 0.23 0.38 0.3 0.31 0.51 0.46 0.6 0.64 0.71
skating 0.38 0.36 0.48 0.38 0.46 0.53 0.27 0.31 0.27 0.45 0.29 0.29 0.51 0.59 0.45
sphere 0.64 0.56 0.13 0.42 0.16 0.44 0.68 0.38 0.5 0.35 0.46 0.55 0.61 0.93 0.88

sunshade 0.66 0.72 0.64 0.63 0.51 0.69 0.69 0.66 0.51 0.53 0.64 0.42 0.41 0.78 0.76
surfing 0.69 0.6 0.71 0.73 0.66 0.8 0.71 0.8 0.74 0.76 0.71 0.38 0.66 0.91 0.8
torus 0.37 0.4 0.53 0.58 0.28 0.52 0.53 0.59 0.44 0.51 0.66 0.53 0.55 0.81 0.84
trellis 0.58 0.47 0.58 0.43 0.29 0.74 0.53 0.48 0.52 0.64 0.45 0.44 0.33 0.81 0.83
tunnel 0.61 0.47 0.51 0.51 0.48 0.5 0.48 0.56 0.61 0.65 0.56 0.35 0.2 0.81 0.55
woman 0.62 0.59 0.53 0.52 0.54 0.66 0.43 0.61 0.4 0.46 0.62 0.26 0.57 0.79 0.76
average 0.48 0.43 0.47 0.46 0.40 0.51 0.45 0.45 0.46 0.50 0.48 0.42 0.43 0.64 0.64

Table4.2: Number of failures for each algorithm for all sequences

Intensity PCA SIFT PHOW
Sparse
Features

Sparse
SIFT

DAE DAEcolor DAEgray DAEgray,w/adapt CNN MIL CT DSST SAMF

ball 2 4 2 5 3 3 2 1 2 1 2 1 1 1 1
basketball 3 2 1 5 5 3 2 3 0 2 2 2 1 1 0
bicycle 0 0 1 2 7 2 1 0 1 1 1 0 2 0 0
bolt 3 7 1 3 4 4 4 1 3 2 2 6 9 1 2
car 0 1 0 1 2 1 1 1 0 0 0 0 0 0 0

david 2 1 0 1 3 2 0 1 0 0 0 0 1 0 0
diving 2 3 2 3 3 2 2 1 1 3 2 1 2 1 4
drunk 0 1 1 1 2 0 0 0 0 0 0 0 0 0 0

fernando 1 3 3 3 4 3 4 3 4 1 2 2 3 1 1
fish1 3 8 3 6 10 3 5 1 4 2 1 2 10 1 3
fish2 6 5 4 6 8 3 6 6 7 6 4 6 4 4 5

gymnastics 4 2 2 4 4 4 4 2 5 3 2 5 4 5 2
hand1 4 7 4 4 9 3 4 6 5 5 3 1 3 2 3
hand2 12 14 9 9 15 11 11 10 11 10 7 8 15 6 5
jogging 1 1 0 1 2 1 1 1 1 1 1 1 1 1 1

motocross 3 4 4 3 5 3 5 4 3 4 2 4 3 4 4
polarbear 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
skating 1 0 1 0 5 1 1 1 2 1 1 4 2 0 0
sphere 1 3 1 1 2 2 0 0 3 1 1 0 0 0 0

sunshade 4 3 3 4 10 3 3 3 3 3 3 4 4 0 0
surfing 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
torus 3 3 2 2 9 3 4 0 3 4 1 5 4 0 0
trellis 4 2 1 3 9 1 6 2 4 2 0 4 5 0 0
tunnel 2 3 1 0 7 2 0 0 1 0 2 2 0 0 0
woman 3 6 6 7 9 2 2 1 3 1 3 1 4 1 1
sum 64 83 52 74 139 62 68 48 66 53 42 59 78 29 32

97

Table4.3: Percentage of failures computed over sequences for each algorithm for
all sequences

Intensity PCA SIFT PHOW
Sparse
Features

Sparse
SIFT

DAE DAEcolor DAEgray DAEgray,w/adapt CNN MIL CT DSST SAMF

ball 0.003 0.007 0.003 0.008 0.005 0.005 0.003 0.002 0.003 0.002 0.003 0.002 0.002 0.002 0.002
basketball 0.004 0.003 0.001 0.007 0.007 0.004 0.003 0.004 0.000 0.003 0.003 0.003 0.001 0.001 0.000
bicycle 0.000 0.000 0.004 0.007 0.026 0.007 0.004 0.000 0.004 0.004 0.004 0.000 0.007 0.000 0.000
bolt 0.009 0.020 0.003 0.009 0.011 0.011 0.011 0.003 0.009 0.006 0.006 0.017 0.026 0.003 0.006
car 0.000 0.004 0.000 0.004 0.008 0.004 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

david 0.003 0.001 0.000 0.001 0.004 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000
diving 0.009 0.014 0.009 0.014 0.014 0.009 0.009 0.005 0.005 0.014 0.009 0.005 0.009 0.005 0.018
drunk 0.000 0.001 0.001 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

fernando 0.003 0.010 0.010 0.010 0.014 0.010 0.014 0.010 0.014 0.003 0.007 0.007 0.010 0.003 0.003
fish1 0.007 0.018 0.007 0.014 0.023 0.007 0.011 0.002 0.009 0.005 0.002 0.005 0.023 0.002 0.007
fish2 0.019 0.016 0.013 0.019 0.026 0.010 0.019 0.019 0.023 0.019 0.013 0.019 0.013 0.013 0.016

gymnastics 0.019 0.010 0.010 0.019 0.019 0.019 0.019 0.010 0.024 0.014 0.010 0.024 0.019 0.024 0.010
hand1 0.016 0.029 0.016 0.016 0.037 0.012 0.016 0.025 0.020 0.020 0.012 0.004 0.012 0.008 0.012
hand2 0.045 0.052 0.034 0.034 0.056 0.041 0.041 0.037 0.041 0.037 0.026 0.030 0.056 0.022 0.019
jogging 0.003 0.003 0.000 0.003 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

motocross 0.018 0.024 0.024 0.018 0.030 0.018 0.030 0.024 0.018 0.024 0.012 0.024 0.018 0.024 0.024
polarbear 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
skating 0.003 0.000 0.003 0.000 0.013 0.003 0.003 0.003 0.005 0.003 0.003 0.010 0.005 0.000 0.000
sphere 0.005 0.015 0.005 0.005 0.010 0.010 0.000 0.000 0.015 0.005 0.005 0.000 0.000 0.000 0.000

sunshade 0.023 0.017 0.017 0.023 0.058 0.017 0.017 0.017 0.017 0.017 0.017 0.023 0.023 0.000 0.000
surfing 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
torus 0.011 0.011 0.008 0.008 0.034 0.011 0.015 0.000 0.011 0.015 0.004 0.019 0.015 0.000 0.000
trellis 0.007 0.004 0.002 0.005 0.016 0.002 0.011 0.004 0.007 0.004 0.000 0.007 0.009 0.000 0.000
tunnel 0.003 0.004 0.001 0.000 0.010 0.003 0.000 0.000 0.001 0.000 0.003 0.003 0.000 0.000 0.000
woman 0.005 0.010 0.010 0.012 0.015 0.003 0.003 0.002 0.005 0.002 0.005 0.002 0.007 0.002 0.002
average 0.009 0.011 0.007 0.010 0.018 0.009 0.010 0.007 0.009 0.008 0.006 0.008 0.010 0.005 0.005

words, trackers are barely restricted to fit in a motion model and the condition

of classifier update is not very strong, which decreases the overall performance

of the framework setup.

Keeping the bias in the accuracy results in mind, we observe that the best

accuracy result belongs to sparse SIFT features, which exploit auxiliary data

for transfer learning. Success of fully-connected NN representations as well as

CNN features also emphasizes the benefit of transfer learning for visual object

tracking. However, performance of SIFT descriptors are better than sparse SIFT

features in terms of robustness, although the latter is carefully hand-designed

with great effort and requires computational power.

The best representation in terms of robustness is CNN features and the repre-

sentation that led to the second least number of failures is the fully connected

networks pretrained as color autoencoders, which reveals the power of hierarchi-

cal representations for visual object tracking.

Dimension reduction via PCA performs worse than the raw intensity value track-

ing on average, so, we can also conclude that generative models that does not

adapt itself during tracking do not promise better performance. Results also in-

dicate the power of raw intensity values within a tracking by detection scheme.

98

On the other hand, autoencoders, which can also be regarded as generative

models, perform better than both intensity and PCA representation. It can be

related to the power or hierarchical representations that try to capture the un-

derlying reasons of the given data and therefore contain discriminative features.

Adaptation of the whole network improves not only the accuracy but also the

robustness of the tracker according to the performance difference of DAEgray
and DAEgray,w/adapt. Results clearly show that inclusion of color information

improves the performance of a tracker with feed-forward neural networks, since

there is a considerable change in number of failures given in Table 4.2. The

network with higher capacity that is trained on a larger dataset performs very

similar to the small-capacity network in terms of both tracking accuracy and

robustness.

Sparse representations result in the worst performance regarding both accuracy

and robustness. MAP estimate in motion model as well as the normalization

of resultant sparse vector has been observed to improve the results; however,

detailed work and tests on sparse representations may be regarded as a future

work.

99

100

CHAPTER 5

CONCLUSION

5.1 Summary

In this thesis, utilization of hierarchical representations for visual object tracking

problem is investigated. A brief survey of visual object tracking algorithms has

revealed the variety of approaches and evaluation methodologies, which indicates

that the topic is an active research area. Thus, investigation of a rather primitive

but very important problem as representation is expected to facilitate finding

the future work directions.

Until last decade, hand-crafted object representations have been utilized with a

great success owing to human effort and expertise. However, availability of more

strong and powerful hardware as well as large-scale data sets has contributed

to the recent rebirth of fairly old neural networks. Hierarchical architectures

started to exploit the underlying structure of large datasets as a virtue of better

understanding the optimization problem related to this complex computational

modules. In this thesis, we not only presented some of the recent deep learning

algorithms that achieved state of the art for a wide range of research areas, but

also introduced the basics of multi-layer feed-forward neural networks, autoen-

coder and convolutional neural networks.

Despite the success of hierarchical representations in object classification tasks,

application of deep learning algorithms to visual object tracking problem is not

straightforward. There have been a few works that focus on the integration of

these two important research problems, since generic online tracking algorithms

101

have only one labeled sample, initial frame, which is supposed to be processed

as soon as possible. On the other hand, deep architectures that consist of a huge

number of adjustable parameters require large number of examples for tuning

the internal structure. The first thing that can be considered to meet these

two problems is transfer learning, which regards the generalization capability

of representations as an opportunity to apply them for different tasks. Thus,

we experimented with autoencoders that are trained on auxiliary data and pre-

trained convolutional neural networks for the representation of objects.

These deep architectures are experimented within a tracking by detection scheme

as an object representation module. Experiments are realized using a recent

challenge toolkit and the results are compared with some hand-crafted repre-

sentations employed in the same tracking scheme. Results prove the power of

hierarchical representations for visual object problem via transfer learning meth-

ods.

5.2 Conclusion

The findings of this thesis can be summarized as follows:

• Dynamics of visual tracking systems is not straightforward. Representa-

tion of an image with intensity values performed better than some hand-

crafted and learned representations, and more interestingly, the overall

performance of the system can be considered better than two algorithms

with lowest ranks in 2014 VOT challenge.

• Adaptivity of a model that targets tracking problem is very crucial on the

resultant performance. Adaptation of both representation and classifier in

tracking by detection scheme are observed to improve the results.

• Color information improves the performance of a tracker based on tack-

ing by detection scheme without sacrificing too much from computational

simplicity.

102

• The representation that leads to the most robust tracker is CNN features,

which exploits both the spatial and color information. Results with off the

shelf features indicate the generalization ability of deep architectures. The

success of CNN features may be improved further by fine-tuning, which is

indicated by the results of different feed-forward neural networks.

• Although one of the strongest assertions of deep learning algorithms against

the hand-crafted features is the fact that hand-crafted features require ef-

fort and expert knowledge, training of these architectures is also not a

simple task. There are a lot of factors that directly affect the performance

of the representation and the interrelated structure of these factors require

time to understand the dynamics. Determination of capacity, loss func-

tion, optimization method and optimization parameters become more of

an issue if the target task does not give an opportunity of validation, as in

the tracking problem.

5.3 Future Work

This thesis work constitutes a small step into the application of deep learning

to visual object tracking area; however, it is of a great importance since it leads

to an initial understanding of two huge literatures. It is more than obvious that

integration will not be straightforward; however, results show that even without

a lot of engineering, hierarchical representations give promising results within

one of the most common ways of visual object tracking.

The first future direction will probably concentrate on the adaptation of hier-

archical representations to a more local appearance. Adaptation criterion as

well as the way it is adapted will be critical. Tracking by detection scheme it-

self contains a lot of ambiguities like the determination of positive and negative

samples according to a predicted classification result; therefore, integration of

temporal information without a direct classification step may benefit more from

deep architectures. Since tracking corresponds to sequential processing of data,

recurrent neural networks may also be employed for visual tracking algorithms.

103

104

REFERENCES

[1] Object tracking using {SIFT} features and mean shift. Computer Vision
and Image Understanding, 113(3):345 – 352, 2009. Special Issue on Video
Analysis.

[2] Sparse coding based visual tracking: Review and experimental compari-
son. Pattern Recognition, 46(7):1772 – 1788, 2013.

[3] J. Aggarwal and Q. Cai. Human motion analysis: a review. In Nonrigid
and Articulated Motion Workshop, 1997. Proceedings., IEEE, pages 90–
102, June 1997.

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking. Signal
Processing, IEEE Transactions on, 50(2):174–188, 2002.

[5] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online
multiple instance learning. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 983–990. IEEE, 2009.

[6] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Berg-
eron, N. Bouchard, and Y. Bengio. Theano: new features and speed im-
provements. Deep Learning and Unsupervised Feature Learning NIPS
2012 Workshop, 2012.

[7] E. Batı. Deep convolutional neural networks with an application towards
geospatial object recognition.

[8] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
In Computer vision–ECCV 2006, pages 404–417. Springer, 2006.

[9] L. Bazzani, H. Larochelle, V. Murino, J.-a. Ting, and N. D. Freitas. Learn-
ing attentional policies for tracking and recognition in video with deep net-
works. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 937–944, 2011.

[10] Y. Bengio. Learning deep architectures for ai. Foundations and trends R©
in Machine Learning, 2(1):1–127, 2009.

[11] Y. Bengio, I. J. Goodfellow, and A. Courville. Deep learning. Book in
preparation for MIT Press, 2015.

105

[12] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, et al. Greedy layer-
wise training of deep networks. Advances in neural information processing
systems, 19:153, 2007.

[13] Y. Bengio, Y. LeCun, et al. Scaling learning algorithms towards ai. Large-
scale kernel machines, 34(5), 2007.

[14] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[15] A. Bosch, A. Zisserman, and X. Munoz. Image classification using random
forests and ferns. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1–8. IEEE, 2007.

[16] Y. Boykov and M.-P. Jolly. Interactive organ segmentation using graph
cuts. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2000, pages 276–286. Springer, 2000.

[17] L. Cehovin, M. Kristan, and A. Leonardis. Robust visual tracking using
an adaptive coupled-layer visual model. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 35(4):941–953, 2013.

[18] L. Čehovin, A. Leonardis, and M. Kristan. Visual object tracking perfor-
mance measures revisited. arXiv preprint arXiv:1502.05803, 2015.

[19] T. F. Chan and L. A. Vese. Active contours without edges. Image pro-
cessing, IEEE transactions on, 10(2):266–277, 2001.

[20] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
Semantic image segmentation with deep convolutional nets and fully con-
nected crfs. arXiv preprint arXiv:1412.7062, 2014.

[21] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 24(5):603–619, 2002.

[22] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[23] N. Dalal and B. Triggs. Histograms of oriented gradients for human de-
tection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE,
2005.

[24] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Accurate scale esti-
mation for robust visual tracking. In British Machine Vision Conference,
Nottingham, September 1-5, 2014. BMVA Press, 2014.

106

[25] M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas. Learning where
to attend with deep architectures for image tracking. Neural computation,
24(8):2151–2184, 2012.

[26] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell. Decaf: A deep convolutional activation feature for generic
visual recognition. arXiv preprint arXiv:1310.1531, 2013.

[27] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–
2159, July 2011.

[28] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detec-
tion using deep neural networks. In Computer Vision and Pattern Recog-
nition (CVPR), 2014 IEEE Conference on, pages 2155–2162. IEEE, 2014.

[29] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (voc) challenge. International journal of
computer vision, 88(2):303–338, 2010.

[30] S. Fazli, H. M. Pour, and H. Bouzari. Particle filter based object tracking
with sift and color feature. In Machine Vision, 2009. ICMV’09. Second
International Conference on, pages 89–93. IEEE, 2009.

[31] M. Felsberg. Enhanced distribution field tracking using channel represen-
tations. In Computer Vision Workshops (ICCVW), 2013 IEEE Interna-
tional Conference on, pages 121–128. IEEE, 2013.

[32] K. Fukushima. Neocognitron.

[33] K. Fukushima. Neural network model for a mechanism of pattern recog-
nition unaffected by shift in position - neocognitron. Trans. IECE, J62-
A(10):658–665, 1979.

[34] K. Fukushima. Neocognitron: A self-organizing neural network for a mech-
anism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36(4):193–202, 1980.

[35] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic
style. CoRR, abs/1508.06576, 2015.

[36] D. M. Gavrila. The visual analysis of human movement: A survey. Com-
puter vision and image understanding, 73(1):82–98, 1999.

[37] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages
580–587. IEEE, 2014.

107

[38] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line
boosting. In BMVC, volume 1, page 6, 2006.

[39] A. Graves. Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850, 2013.

[40] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output track-
ing with kernels. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 263–270. IEEE, 2011.

[41] C. Harris and M. Stephens. A combined corner and edge detector. In
Alvey vision conference, volume 15, page 50. Manchester, UK, 1988.

[42] J. Hastad. Almost optimal lower bounds for small depth circuits. In
Proceedings of the eighteenth annual ACM symposium on Theory of com-
puting, pages 6–20. ACM, 1986.

[43] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. arXiv preprint
arXiv:1502.01852, 2015.

[44] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. arXiv preprint
arXiv:1502.01852, 2015.

[45] D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.

[46] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the
circulant structure of tracking-by-detection with kernels. In Computer
Vision–ECCV 2012, pages 702–715. Springer, 2012.

[47] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed track-
ing with kernelized correlation filters. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 37(3):583–596, 2015.

[48] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006.

[49] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[50] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[51] K. Ho. 41 up-to-date facebook facts and stats.

[52] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.
Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technis-
che Universität München, 1991. Advisor: J. Schmidhuber.

108

[53] K. Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

[54] D. H. HUBEL and T. N. WIESEL. Receptive fields of single neurones
in the cat’s striate cortex. The Journal of physiology, 148:574–591, Oct.
1959.

[55] J. Håstad and M. Goldmann. On the power of small-depth threshold
circuits. computational complexity, 1(2):113–129, 1991.

[56] R. Jagathishwaran, K. Ravichandran, and P. Jayaraman. A survey on face
detection and tracking. 2014.

[57] A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bregler. Learn-
ing human pose estimation features with convolutional networks. arXiv
preprint arXiv:1312.7302, 2013.

[58] X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive structural
local sparse appearance model. In Computer vision and pattern recognition
(CVPR), 2012 IEEE Conference on, pages 1822–1829. IEEE, 2012.

[59] J. Jin, A. Dundar, J. Bates, C. Farabet, and E. Culurciello. Tracking with
deep neural networks. In Information Sciences and Systems (CISS), 2013
47th Annual Conference on, pages 1–5. IEEE, 2013.

[60] Z. Kalal, J. Matas, and K. Mikolajczyk. Pn learning: Bootstrapping bi-
nary classifiers by structural constraints. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 49–56. IEEE, 2010.

[61] A. Karpathy. Demo: toy 2d classification with 2-layer neural network.

[62] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generat-
ing image descriptions. arXiv preprint arXiv:1412.2306, 2014.

[63] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei. Large-scale video classification with convolutional neural networks.
In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Con-
ference on, pages 1725–1732. IEEE, 2014.

[64] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. P. Pflugfelder, G. Fer-
nández, G. Nebehay, F. Porikli, and L. Cehovin. A novel performance
evaluation methodology for single-target trackers. CoRR, abs/1503.01313,
2015.

[65] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Cehovin, G. Nebe-
hay, T. Vojir, G. Fernandez, A. Lukezic, A. Dimitriev, A. Petrosino, A. Saf-
fari, B. Li, B. Han, C. Heng, C. Garcia, D. Pangersic, G. Hager, F. S. Khan,
F. Oven, H. Possegger, H. Bischof, H. Nam, J. Zhu, J. Li, J. Y. Choi, J.-W.

109

Choi, J. F. Henriques, J. van de Weijer, J. Batista, K. Lebeda, K. Ofjall,
K. M. Yi, L. Qin, L. Wen, M. E. Maresca, M. Danelljan, M. Felsberg, M.-
M. Cheng, P. Torr, Q. Huang, R. Bowden, S. Hare, S. Y. Lim, S. Hong,
S. Liao, S. Hadfield, S. Z. Li, S. Duffner, S. Golodetz, T. Mauthner, V. Vi-
neet, W. Lin, Y. Li, Y. Qi, Z. Lei, and Z. Niu. The visual object tracking
vot2014 challenge results. In Proceedings, European Conference on Com-
puter Vision (ECCV) Visual Object Tracking Challenge Workshop, Zurich,
Switzerland, September 2014.

[66] A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images, 2009.

[67] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[68] H. Larochelle. Lecture 3: Rétropropagation des gradients et optimisation.
IFT 725 Lecture Notes.

[69] H. Larochelle. Lecture 6: Autoencodeurs. IFT 725 Lecture Notes.

[70] H. Larochelle. Multilayer neural networks. IFT 725 Lecture Notes.

[71] Y. LeCun. Learning processes in an asymmetric threshold network. In
E. Bienenstock, F. Fogelman-Soulié, and G. Weisbuch, editors, Disordered
systems and biological organization, pages 233–240, Les Houches, France,
1986. Springer-Verlag.

[72] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[73] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Back-propagation applied to handwritten zip code
recognition. Neural Computation, 1(4):541–551, 1989.

[74] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[75] H. Li, Y. Li, and F. Porikli. Deeptrack: Learning discriminative feature
representations online for robust visual tracking. CoRR, abs/1503.00072,
2015.

[76] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. van den Hengel. A Sur-
vey of Appearance Models in Visual Object Tracking. ACM Transactions
on Intelligent Systems and Technology, March 2013.

110

[77] Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with
feature integration. In Computer Vision-ECCV 2014 Workshops, pages
254–265. Springer, 2014.

[78] S. Linnainmaa. The representation of the cumulative rounding error of
an algorithm as a Taylor expansion of the local rounding errors. Master’s
thesis, Univ. Helsinki, 1970.

[79] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[80] L. Mastin. Neurons and synapses.

[81] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 7:115–133, 1943.

[82] X. Mei and H. Ling. Robust visual tracking using &# x2113; 1 minimiza-
tion. In Computer Vision, 2009 IEEE 12th International Conference on,
pages 1436–1443. IEEE, 2009.

[83] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. J. Goodfellow,
E. Lavoie, X. Muller, G. Desjardins, D. Warde-Farley, et al. Unsuper-
vised and transfer learning challenge: a deep learning approach. ICML
Unsupervised and Transfer Learning, 27:97–110, 2012.

[84] K. Mikolajczyk and C. Schmid. A performance evaluation of local descrip-
tors. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
27(10):1615–1630, 2005.

[85] K. Mikolajczyk and C. Schmid. A performance evaluation of local descrip-
tors. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
27(10):1615–1630, 2005.

[86] F. Miller, A. Vandome, and M. John. Inverse Transform Sampling. VDM
Publishing, 2010.

[87] Y. Nesterov. A method of solving a convex programming problem with
convergence rate o (1/k2).

[88] M. Olazaran. A sociological study of the official history of the perceptrons
controversy. Social Studies of Science, 26(3):611–659, 1996.

[89] Y. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition. In Signals, Systems and Computers, 1993. 1993 Confer-
ence Record of The Twenty-Seventh Asilomar Conference on, pages 40–44
vol.1, Nov 1993.

111

[90] K. Pearson. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11):559–572, 1901.

[91] D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence: A
Logical Approach. Oxford University Press, Oxford, UK, 1997.

[92] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In Computer Vision
and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference
on, pages 512–519. IEEE, 2014.

[93] D. B. Reid. An algorithm for tracking multiple targets. Automatic Con-
trol, IEEE Transactions on, 24(6):843–854, 1979.

[94] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive
auto-encoders: Explicit invariance during feature extraction. In Proceed-
ings of the 28th International Conference on Machine Learning (ICML-
11), pages 833–840, 2011.

[95] F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[96] F. Rosenblatt. Principles of Neurodynamics. Spartan, New York, 1962.

[97] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for
robust visual tracking. International Journal of Computer Vision, 77(1-
3):125–141, 2008.

[98] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for
robust visual tracking. International Journal of Computer Vision, 77(1-
3):125–141, 2008.

[99] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. Mc-
Clelland, editors, Parallel Distributed Processing, volume 1, pages 318–362.
MIT Press, 1986.

[100] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Ima-
geNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), pages 1–42, April 2015.

[101] J. Schmidhuber. Deep learning in neural networks: An overview. CoRR,
abs/1404.7828, 2014.

112

[102] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[103] L. Sevilla-Lara and E. Learned-Miller. Distribution fields for tracking. In
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on, pages 1910–1917. IEEE, 2012.

[104] J. Shi and C. Tomasi. Good features to track. In Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer
Society Conference on, pages 593–600. IEEE, 1994.

[105] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,
and M. Shah. Visual tracking: an experimental survey. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 36(7):1442–1468, 2014.

[106] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. Striv-
ing for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014.

[107] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[108] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of
initialization and momentum in deep learning. In Proceedings of the 30th
international conference on machine learning (ICML-13), pages 1139–
1147, 2013.

[109] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014.

[110] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object
detection. In Advances in Neural Information Processing Systems, pages
2553–2561, 2013.

[111] Y. Tang. Deep learning using linear support vector machines. arXiv
preprint arXiv:1306.0239, 2013.

[112] S. J. Thorpe and M. Fabre-Thorpe. Neuroscience. Seeking categories in
the brain. Science (New York, N.Y.), 291(5502):260–263, Jan. 2001.

[113] J. van de Weijer, C. Schmid, J. Verbeek, and D. Larlus. Learning color
names for real-world applications. Image Processing, IEEE Transactions
on, 18(7):1512–1523, July 2009.

[114] P. Vandergheynst and P. Frossard. Efficient image representation by
anisotropic refinement in matching pursuit. In Acoustics, Speech, and

113

Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE Interna-
tional Conference on, volume 3, pages 1757–1760 vol.3, 2001.

[115] P. Vincent. Machine learning from linear regression to neural networks.
IFT3395 Lecture Notes.

[116] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of
the 25th international conference on Machine learning, pages 1096–1103.
ACM, 2008.

[117] N. Wang, J. Wang, and D.-Y. Yeung. Online robust non-negative dictio-
nary learning for visual tracking. In Computer Vision (ICCV), 2013 IEEE
International Conference on, pages 657–664. IEEE, 2013.

[118] N. Wang and D.-Y. Yeung. Learning a deep compact image representation
for visual tracking. In Advances in Neural Information Processing Systems,
pages 809–817, 2013.

[119] Q. Wang, F. Chen, J. Yang, W. Xu, and M.-H. Yang. Transferring visual
prior for online object tracking. Image Processing, IEEE Transactions on,
21(7):3296–3305, 2012.

[120] Q. Wang, F. Chen, J. Yang, W. Xu, and M.-H. Yang. Transferring visual
prior for online object tracking. Image Processing, IEEE Transactions on,
21(7):3296–3305, 2012.

[121] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In
Computer vision and pattern recognition (CVPR), 2013 IEEE Conference
on, pages 2411–2418. IEEE, 2013.

[122] J. Xiao, R. Stolkin, and A. Leonardis. An enhanced adaptive coupled-
layer lgtracker++. In Computer Vision Workshops (ICCVW), 2013 IEEE
International Conference on, pages 137–144. IEEE, 2013.

[123] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm
computing surveys (CSUR), 38(4):13, 2006.

[124] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are
features in deep neural networks? In Advances in Neural Information
Processing Systems, pages 3320–3328, 2014.

[125] M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

[126] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In Computer Vision–ECCV 2014, pages 818–833. Springer,
2014.

114

[127] K. Zhang, L. Zhang, and M.-H. Yang. Real-time compressive tracking. In
Computer Vision–ECCV 2012, pages 864–877. Springer, 2012.

[128] S. Zhang, H. Yao, X. Sun, and X. Lu. Sparse coding based visual tracking:
review and experimental comparison. Pattern Recognition, 46(7):1772–
1788, 2013.

[129] S. Zheng, S. Jayasumana, Bernardino, Romera-Paredes, V. Vineet, Z. Su,
D. Du, C. Huang, and P. H. S. Torr. Conditional random fields as recurrent
neural networks. CoRR, abs/1502.03240, 2015.

[130] W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-
based collaborative model. In Computer vision and pattern recognition
(CVPR), 2012 IEEE Conference on, pages 1838–1845. IEEE, 2012.

[131] L. Zhu, Y. Chen, A. Yuille, andW. Freeman. Latent hierarchical structural
learning for object detection. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 1062–1069. IEEE, 2010.

115

