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ABSTRACT

AN FMRI SEGMENTATION METHOD UNDER MARKOV RANDOM FIELDS
FOR BRAIN DECODING

Aksan, Emre
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş. T. Yarman Vural

September 2015, 85 pages

In this study, a specially tailored segmentation method for partitioning the fMRI data
into a set of "homogenous" regions with respect to a predefined cost function is pro-
posed. The proposed method, referred as f-MRF, employs univariate and multivariate
fMRI data analysis techniques under Markov Random Fields to estimate the segments
by resolving a mixture density. The univariate approach helps identifying activation
pattern of a voxel independently from other voxels. In order to capture local interac-
tions among the voxels, pairwise functional similarity is used across a neighborhood.
By incorporating both the unary and pairwise features of the voxels into the MRF en-
ergy function, we achieve to cluster the voxels in the brain into functionally homoge-
neous and spatially coherent segments. In the proposed study, voxel space is modeled
with a Gaussian Mixture Model (GMM) over the univariate activation patterns, while
the cluster labels are modeled as discrete Markov Random Field over the pairwise
interactions. For estimation of the latent cluster labels, a two-step iterative approach
is followed. Accordingly, given the current estimate of the model parameters, cluster
labels are computed by using a graph-cut algorithm. In turn, the cluster labels are
used to estimate the model parameters by employing maximum likelihood estimation
(MLE). The final labeling result generally consists of few large clusters involving
the non-activated voxels, and isolates the activated voxels into smaller-sized clusters.
By partitioning the voxel space into functionally homogeneous parcels, we expect to
increase representative power of the data. Thus, we propose using the f-MRF segmen-
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tation in brain decoding tasks where the segments are employed in voxel selection or
feature extraction steps. In the experiments that are conducted on the real fMRI data
of visual object recognition, f-MRF outperforms compared segmentation methods.
Moreover, the results indicate that f-MRF has potential to boost the performance in
brain decoding studies.

Keywords: fMRI, Segmentation, Clustering, Markov Random Fields, Functional
Similarity, Univariate Analysis, MVPA
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ÖZ

ZİHİNSEL AKTİVİTELERİN ÇÖZÜMLENMESİ AMACIYLA MARKOV
RASGELE ALANLARI ÜZERİNDE GELİŞTİRİLEN FMRG BÖLÜTLEME

YÖNTEMİ

Aksan, Emre
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş. T. Yarman Vural

Eylül 2015 , 85 sayfa

Bu çalışmada fMRG voksellerini "türdeş" bölgelere ayırmak amacıyla f-MRA isimli
yeni bir bölütleme metodu önerilmiştir. f-MRA, türdeş voksel bölütlerini bir karı-
şım yoğunluğu çözümleyerek kestirmektedir. Bu amaçla, fMRG çalışmalarında kul-
lanılan tek değişkenli analiz ve çoklu değişkenli analiz teknikleri Markov Rasgele
Alan (MRA) aracılığı ile bir arada uygulanmıştır. Tek değişkenli analiz kullanılarak,
her bir vokselin diğer voksellerden bağımsız tekil aktivasyon düzeni kestirilmektedir.
Vokseller arasındaki yerel etkileşimleri yakalayabilmek için voksellerin komşuları ile
olan ikili fonksiyonel benzerlikleri kullanılmıştır. Voksellerin aktivasyon düzenleri te-
kil özniteliklere karşılık gelmekteyken, vokseller arasındaki fonksiyonel benzerlikler
ise ikili öznitelikler olarak tanımlanmıştır. f-MRA, enerji fonksiyonunda her iki özni-
telik uzayını bir arada kullanarak, beyindeki vokselleri fonksiyonel olarak türdeş ve
uzamsal olarak bütünleşik kümelere ayırabilmektedir. Voksel uzayı, tekil aktivasyon
düzenleri üzerinde Gaussian karışım modeli ile modellenmişken; küme etiketleri, ikili
fonksiyonel benzerlikler üzerinde Markov Rasgele Alanı olarak tanımlanmıştır. Her
bir vokselin küme etiketinin bulunması amacıyla iki adımlı bir yineleme yaklaşımı iz-
lenmiştir. Buna göre, karışım modelinin parametreleri kullanılarak MRA enerji fonk-
siyonunun en düşük değeri aldığı küme etiketleri kestirilir. Bu küme etiketleri kulla-
nılarak bir sonraki adım için modelin parametreleri tekrar hesaplanır. Yinelemeler so-
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nucunda elde edilen sonuç genellikle, aktiflik göstermeyen vokselleri içeren az sayıda
büyük kümeden oluşmaktadır. Aktif vokseller ise çok daha küçük boyutlardaki küme-
lerde toplanmıştırlar. Voksel uzayının fonksiyonel olarak türdeş parçalara bölünmesi
ile datanın temsil gücünün artmasını beklemekteyiz. Bu sebeple, f-MRA yöntemi-
nin zihinsel aktivite çözümlenmesi probleminde kullanılmasını önermekteyiz. Buna
göre elde edilen türdeş bölgeler, voksel seçimi veya öznitelik çıkarımı adımlarında
kullanılabilir. Yapılan karşılaştırmalı testlerde, f-MRA yönteminin diğer yöntemleri
sınıflandırma performansı anlamında geçtiği görülmüştür. Ayrıca test sonuçları, zi-
hinsel aktivite çözümlenmesi problemlerinde f-MRA yönteminin performans arttırıcı
bir potansiyele sahip olduğunu ortaya koymaktadır.

Anahtar Kelimeler: fMRG, Bölütleme, Kümeleme, Markov Rasgele Alan, Fonksiyo-
nel Benzerlik, Tek Değişkenli Analiz, Çoklu Voksel Örüntü Analizi
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Rationale

Starting from the early 19th century, researchers have been in search of an answer to

the question: "how does the brain work?". Understanding the human brain requires

identification of its functional subdivisions, and revealing the relationship between

the neural code and the underlying mental states, which have not been fully accom-

plished yet. It is too early to talk about how information is encoded and decoded by

the neurons, yet current studies focus on identifying the activation patterns at higher

abstraction levels.

With the advancements in the neuroimaging technology, researchers are able to con-

duct in vivo experiments on humans. As a non-invasive neuroimaging techniques,

functional magnetic resonance imaging (fMRI), the positron emission tomography

(PET) and electroencephalography (EEG) make major contributions to the quest of

discovering the human brain. Over the last decade, fMRI has become the dominant

technique mainly due to its high-resolution activation data, which can be used to lo-

calize brain functions.

Data-driven approaches in machine learning help researchers reveal the activation

patterns and make connections between the neural code and the real world events.

Spatially high resolution data of the fMRI brings us vast amount of fine-grained brain

activity to discover. However, small number of samples compared to high dimen-

sional feature space, i.e., large number of voxels, noisy measurements and the redun-

dancy in the data require extensive and elaborative efforts to extract useful informa-
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tion [7, 8]. In fMRI studies, mainly voxel selection or feature extraction techniques

are applied in order to get rid of intrinsic problems of the data, and hence increase

the signal-to-noise ratio (SNR) prior to further analysis and inference steps. Uni-

variate analysis and region of interest (ROI) approaches are the two well-accepted

techniques for voxel selection in fMRI literature [9, 10]. In univariate analysis, time

series of a voxel is compared with the theoretical signal by using statistical hypothe-

sis tests. A voxel is determined to be activated if the test score achieves a predefined

threshold [11]. However, univariate analysis has a major assumption that a voxel give

a response to the experimental conditions independently from other voxels. This ap-

proach ignores any kind of multivariate patterns in the data. In the ROI approach, by

selecting an anatomical region completely, spatial patterns can be captured. Never-

theless, it requires expert knowledge about anatomy and physiology of the brain in

order to determine the anatomical regions that are expected to be activated under the

experimental conditions. This approach is apparently prone to errors. Moreover, the

anatomical regions barely reflect structure of the interest which is usually in a small

portion of the regions (subregion) [10].

On the other hand, cluster-based analysis of the fMRI data, reveals groups of the vox-

els that give similar responses. Unlike ROI approach, clustering yields data-driven

parcellations, hence provides a better representation for the observations, which makes

the clustering a good candidate for discovery of the functional subdivisions in the

brain. By capturing the distinctive activation patterns via clusters, cluster-based anal-

ysis can serve as a tool for identification of the activation patterns, which can be

followed by a set of analysis routines such as noise elimination, dimensionality re-

duction or feature agglomeration on the clusters. Moreover, voxel selection by means

of identifying the clusters of activated voxels is able to exploit multivariate patterns

in the data. In contrast to ROI approach, data-driven clusters has potential to isolate

fine-grained activation patterns.

Cluster-based analysis has gained popularity in recent years [12, 13]. Well-accepted

clustering techniques from the image processing and computer vision domain and

their variations are applied on the fMRI data under various motivations such as lo-

cating the activated voxels or generating data-driven brain atlases. Hence, in order

to avoid scattering and ensure spatial continuity, it is common to impose spatial con-
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straints. For example, Vincent et al. [14] employ a spatial regularization on the cluster

labels under Markov Random Fields. In the studies of Craddock et al. [15] and Heller

et al. [9], the spatial constraints are quantified by the functional similarities. Like-

wise, Michell et al. [16] employ hierarchical clustering on the functional similarities

in order to identify activated voxels for brain decoding task. In addition to the use of

functional similarities, Woolrich et al. [17] apply clustering after the General Linear

Model (GLM) analysis while Ryali et al. [18] directly model voxel time courses.

1.2 Contributions

In this thesis, we propose a segmentation algorithm, called f-MRF, that particularly

considers assumptions and constraints of the fMRI data. Hence, it is expected that

f-MRF is able to capture natural structure of the fMRI data. More specifically, the

uninformative voxels that correspond to large quantities in a standard fMRI experi-

ment are isolated from the activated voxels by simply collecting them into a few large

clusters. Estimation of the cluster labels is formulated as energy minimization un-

der Markov Random Fields. The major contributions of this study can be listed as

follows:

• In the fMRI literature, there exist pioneering studies that employ Markov Ran-

dom Fields in voxel clustering, where MRFs are defined as the spatial prior on

cluster labels [17, 18, 19, 20]. Unlike previous studies, in this thesis, the lo-

cal interactions between the neighboring voxels are incorporated into the MRF

model. For this purpose, an additional energy term based on the functional con-

nectivity concept of fMRI is introduced. This term, which is called functional

energy, enables homogeneity of the regions with respect to statistical similarity

of voxel time series.

• In the previous studies, clustering algorithms are applied on either univariate or

multivariate features. Our proposed method, f-MRF, exploits two different fea-

ture sets simultaneously by defining unary potential of the MRF on univariate

features, and by incorporating the functional energy term. Hence, by design,

f-MRF is able to find both functionally homogeneous and spatially continuous
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clusters.

• In order to employ the clustering result of the f-MRF in brain decoding tasks,

we propose a heuristic for cluster selection. By using the symmetric Kull-

back–Leibler divergence, representative power of the clusters are estimated.

• Finally, the test results indicate that partitioning of the f-MRF yields better rep-

resentation of the fMRI data compared to the well-accepted clustering algo-

rithms, which is evaluated under the brain decoding task.

1.3 Organization of the Thesis

In Chapter 2, a literature survey on fMRI and the common fMRI analysis techniques

are provided. Moreover, existing studies regarding fMRI clustering are overviewed.

Then, as the backbone of this study, the theory of the Markov Random Fields and

MAP-MRF framework are explained.

Chapter 3, introduces the proposed clustering method, f-MRF. First, an overview on

the method is provided. Later, the energy terms and how we employ existing fMRI

techniques to construct the corresponding energy terms are presented. Moreover, the

algorithm for estimation of the labels and complexity analysis of the overall method

are provided. Finally, we explain how f-MRF can be employed in brain decoding

problems, and provide example use cases.

In Chapter 4, on an fMRI dataset, analysis of the f-MRF and comparative test results

are presented. First, effect of the parameters on the energy function and final parti-

tioning are analyzed. Later, the resulted clusters are employed in voxel selection and

voxel agglomeration tasks in order to construct a feature matrix for classification of

the underlying cognitive states. Clustering results and classification performance of

the f-MRF is compared with K-Means, Normalized Cut (nCut) and Gaussian Mixture

Model (GMM) methods.

In the final chapter, Chapter 5, outcomes of the study are discussed and future plans

are provided.

4



CHAPTER 2

BACKGROUND FOR FMRI SEGMENTATION AND MARKOV

RANDOM FIELDS

In this chapter, a survey about main topics of this study is presented with the pur-

pose of providing the reader a background. Firstly, working mechanism of the func-

tional magnetic resonance imaging (fMRI) and the data acquisition procedures are

described. For the reader to gain an expression of how the fMRI measurements are

employed in activity detection and connectivity analysis, popular approaches are pre-

sented. Moreover, existing studies on brain partitioning and clustering of the fMRI

voxels are reviewed. Finally, as the backbone of this work, Markov Random Fields

theory is overviewed and how it is used in a general clustering/segmentation problems

is explained.

2.1 Functional Magnetic Resonance Imaging (fMRI)

In the brain, activity of the neurons differs based on the underlying tasks from simpler

actions, such as controlling a body-part, to sophisticated cognitive activities such as

reasoning. The brain consists of several specialized sub-regions, and with all those

particular parts, it shows diverse patterns of activations. Hence, neuroimaging meth-

ods have a substantial role in understanding physiology of the brain and mappings

between the brain regions and the cognitive functions. In this context, functional

magnetic resonance imaging (fMRI) techniques, as a well accepted neuroimaging

procedures, are commonly used to understand how different parts of the brain re-

spond to external stimuli. The concept of functional MRI is built on the earlier MRI
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scanning technology and discovery of the relation between neuronal activity and the

blood-oxygenation level.

Magnetic resonance imaging (MRI) is a widely-used medical imaging technique to

examine physiology and anatomy of the body. It works by using the phenomenon

of nuclear magnetic resonance (NMR) according to which nuclei in a magnetic field

absorb and re-emit electromagnetic radiation so that the atoms behave like a small

magnet. Due to the fact that human body consists of large amount of water, MRI

machine makes use of nuclei of the hydrogen atoms (a single proton). The hydrogen

nuclei can be manipulated under the strong magnetic field of the MRI machine so

that the generated signals can be captured and used to create the MR images [21, 22].

In the absence of significant magnetic field, i.e., under normal circumstances, the

hydrogen nuclei, most of which are in the water or fat molecules, point randomly

in different directions. However, in the MRI machine, the hydrogen nuclei tend to

align with the direction of the strong magnetic field that they are exposed to, which is

called as equilibrium state [23]. In addition to the continuous magnetic field, the MRI

machine applies an energy in the form of radio waves to deflect nuclei of the hydro-

gen and perturb the equilibrium state, which is named as resonance. Under the effect

of radio-frequency pulse, the atoms absorbs the additional energy. When the radio-

frequency source is switched off, to return the equilibrium state, the atoms release the

energy, which causes a brief and faint signal to be emitted. It is the MR signal which

is used to create images. By the help of gradient coils, additional magnetic fields can

be generated by small increments so that different slices resonate with different fre-

quencies, which provides spatial information of the signal during imaging phase. An

MR image is, briefly, a map of signal distribution which is collected by continuously

manipulating the atoms. MRI, itself, is a sensitive tool for detecting structure of the

brain.

However, mapping the structure is not the same as mapping functionality of the brain.

Functional Magnetic Resonance Imaging (fMRI) is an MRI procedure, which mea-

sures signal changes in the brain that are due to changing neural activity. In other

words, the MRI provides images of the anatomy of the brain while fMRI measures

the functional activity within the anatomic structure of the brain. However, fMRI

does not directly capture the neural activity. Instead, the fluctuations in the MR sig-
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Figure 2.1: Path of the changes during a neural activity under the BOLD effect [1].

nal are due to an indirect, yet correlated effect of the changes in the blood flow which

is triggered by the neural activity. The origin of this effect is that the oxygen carrier

hemoglobin molecule shows different magnetic characteristics depends upon its state

of oxygenation. In other words, the change in oxygen saturation of the hemoglobin

molecules causes small alterations in the local MR signal, which is referred as the

blood oxygenation level–dependent (BOLD) effect [1, 24].

In 1990, the discovery of blood-oxygen-level dependent MRI revolutionized the field

of brain imaging in identification of the activated brain regions [25, 26]. Although

the first imaging studies started in 1990s [27, 28], the theory of BOLD effect has a

much longer history. Since 1890s, it has been known that the cerebral blood flow

could reflect the underlying neural activities [24, 29]. Later, in 1936, Pauling and

Coryell discovered how to measure the blood flow by means of the BOLD effect [30].

Specifically, oxygenated hemoglobin (Hb) has diamagnetic characteristics while de-

oxygenated hemoglobin (dHb) is paramagnetic. Hb in the arterials causes insignif-

icant effects to the magnetic fields, whereas dHb in the capillary and veins tends to

reduce strength of the MR signal in the neighborhood by causing distortions to the

magnetic field. This phenomenon has little effect if the ratio of the Hb to dHb always

remains constant. However, local neural activities trigger much more cerebral blood

flow than the metabolic rate (see Fig. 2.1). As a result, proportion of Hb and dHb

changes in favor of Hb. With the raised amount of oxygenated blood and Hb, the

local MR signal increases.

The small BOLD signal change is not a direct measure of the neural activity. Instead,

it is sensitive to physiological responses such as blood flow, blood volume and oxygen
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Figure 2.2: Temporal dynamics of the experimental hemodynamic response to a very
short stimulus [1, 2].

rate which are collectively referred as hemodynamic response [31]. The BOLD signal

in response to the neural activation is parametrized by a Hemodynamic Response

Function (HRF) [1, 32]. As it is depicted in Fig. 2.2, immediately after onset of the

stimulus, the activity of neurons extracts the oxygen out of local capillary, causing

a momentary fall referred as initial dip. Shortly after, the blood flow increases and

overcompensates for the initial demand. The blood flow peaks around 4-6 seconds,

and the BOLD signal reaches its highest value referred as peak or positive response.

When the neural activation finalizes, the hemodynamic response returns slowly to

baseline, accompanied by a post-stimulus undershoot.

Since the early studies employing the fMRI, it has drawn great attention to become a

powerful and standard neuroimaging tool to measure the brain activity [1, 33]. Com-

pared to MEG and EEG, which are direct measures of the neural activity, fMRI and

PET lacks temporal resolution due to their indirect measurement mechanisms [34].

However, fMRI distinguishes itself from other functional neuroimaging tools by its

very good spatial resolution (see Fig. 2.3 for comparison). Moreover, fMRI is a

non-invasive technique, hence, the subjects are not exposed to any radiation or surgi-

cal intervention. Its superior spatial resolution, also, enables mapping the functional

activations to sub-regions of the brain [35].

fMRI measurements are recorded as 2-dimensional slices of the brain which are later

collected into a 3-dimensional brain image representing an instance. Resolution of the

fMRI does not allow to sample at the level of a cell. Instead, the 3-dimensional image
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Figure 2.3: Functional neuroimaging tools with their temporal and spatial resolution
comparison, from [3].

is built up in units called voxels, or referred as volumetric pixels [32]. A voxel, the

smallest units of fMRI, contains thousands to millions of brain cells depending on the

resolution of the MRI machine, and represents the activity of a particular coordinate

in 3-dimensional space.

2.2 Univariate Analysis: Statistical Parametric Mapping

Univariate analysis of the fMRI data stands for examination of each voxel’s time

series independently, i.e., having an assumption that neighboring voxels are not in-

formative about the underlying cognitive task. Statistical Parametric Mapping (SPM)

[36] is the most common univariate analysis technique, which is offered to test signif-

icance of the BOLD response. SPM employs general linear model (GLM) in order to

resolve a linear combination of explanatory variables, and incorporates a number of

statistical models, such as t-test and F-test in order to assess voxel activation by using

coefficients of the explanatory variables.

Unfortunately, source of the raw fMRI signal is not only the BOLD response. In ad-

dition to the BOLD response, some noise factors such as head motion, scanner noise

and physiological effects make contribution to the measured signal. Therefore, in ad-

vance of the univariate analysis, a preprocessing step is required in order to increase

the signal quality. A standard SPM framework is composed of image preprocessing,

9



GLM analysis and inference steps, which will be summarized below:

Image Preprocessing aims to minimize the various kinds of artifacts in voxel time

series, and hence maximize contribution of the experimental conditions. The fMRI

slices of a volume is acquired in slightly differing times. To make sure that all voxels

of a volume are sampled at the same time, slice-timing correction is applied. Even

small head motion of a subject may result in measurements derived from several voxel

locations. In motion correction or realignment step, voxels are adjusted so that every

voxel represents the same location at different instances, i.e., each volume is aligned.

Spatial smoothing is also applied by most of the fMRI practitioners in different levels

fundamentally to reduce noise, hopefully without losing fine-grained information.

General linear model (GLM) defines the observed time series of a voxel as linear

combinations of several explanatory variables. It is expressed in matrix formulation

by

y = Xβ + ε (2.1)

where y = [y1, . . . , yM ]T is a column vector corresponding to measured signal (con-

sists of M time samples) of a single voxel. ε is the error vector following Normal

distribution with zero mean and a predefined standard deviation. X is the design ma-

trix containing explanatory variables that model the hypothesized changes in BOLD

response. Each column of the X represents a presumptive signal arising from the

experimental conditions. A column of the design matrixX can be generated by con-

volving a predefined hemodynamic response function (HRF) with the stimulus wave-

form which is defined with values of 1 when the experimental condition is turned on

and values of 0 in other cases (see figure 2.4). In addition to the theoretical responses,

vectors of artifacts such as noise, heartbeat and scanner drift can also be inserted into

the design matrix [1]. X is an MxN matrix, where N is number of the explanatory

variables. The parameters β = [β1, . . . , βN ] indicate contribution of each explanatory

variable to the measured signal y.

The parameter vector β are estimated using Least Squares approach, which computes

the estimation β̂ by minimizing the sum of squares of the residual error ε̂ = y−Xβ,

i.e., sum of squared differences between the actual and fitted values of the signal. β̂
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Figure 2.4: Convolution of the impulse function representing stimulus onsets (left)
with theoretical BOLD response (middle) to get expected signal corresponding to a
column of the design matrixX (right), from [4].

parameters can be obtained with

β̂ = (XTX)−1XTy. (2.2)

Inference about the contributions of the stimulus responses to the observed signal can

be made by using statistical methods to determine whether a voxel is activated or not.

For this purpose, signal contribution due to the stimulus response and noise level are

compared. This can be quantified in terms of t-statistics by testing the null hypothesis

that all the estimates are occurred by noise level. Additionally, different cases can

also be examined. For example, one can reveal the voxels that show significantly

different activation under a specific condition by testing against a null hypothesis that

all of the β̂ parameters are equal.

If the null hypothesis is supported, then the t-statistics follows a known distribution,

and hence an error probability (p-value) can be estimated. For example, a p-value

of 0.05 means that probability of observing the null hypothesis is 5%. The simplest

method to select the voxels showing expected behavior is applying a threshold, pos-

sibly on p-values of every voxel. Ideally, a p-value of 0.01 or 0.05 is selected to

discriminate the working voxels from others.

An alternative way of identifying the activated voxels is to use pairwise correlation

between observed time courses of a voxel and the model stimulus, i.e., theoretical

response. The correlation coefficient ρ takes values between -1 and 1, with the value

of 1 corresponding to a perfect correspondence and -1 being an inverse relation. The

value of 0 indicates no correlation.

11



Univariate techniques offer an intuitive and practical approach to fMRI analysis. They

have been the most popular analysis approach and pioneered many significant find-

ings about the cognitive process in the brain. However, there exist potential problems

with the univariate techniques deriving from the assumptions which may not be nec-

essarily valid. First, for every voxel (and every subject), the same model of stimulus

is specified. Hemodynamic response may vary between subjects and even across cor-

tical regions of a subject due to the anatomical and physiological differences [37].

Another major assumption is that the signals from different voxels are independent.

Finally, in univariate analysis a signal with low amount of noise is expected. The

higher the signal-to-noise ratio, the more accurately the activated voxels are identi-

fied. Any of these assumptions is likely to be invalid, which may lead to imperfect

results.

2.3 Brain Connectivity

It is well known that brain is made of a massively connected network of neurons.

Assuming that every neuron or a voxel which corresponds to a group of neurons

acts independently from each other would be fallacious. Instead, brain cells are in

a dynamic interaction with each other, and work in harmony in order to perform a

cognitive tasks [38]. Recent efforts focus on discovering the coordination between

different parts of the brain, and possibly the information flow. Those studies can be

gathered under a more inclusive title, called brain connectivity and categorized into

three types, namely, structural, effective and functional connectivity.

Structural connectivity, also known as anatomical connectivity, refers to the physi-

cal links between neuronal elements. On the other hand, functional connectivity is

defined as the statistical association or correlation among two or more anatomically

distinct time-series obtained in voxels from different locations [39]. Effective con-

nectivity, on the contrary, is based on causality, and characterizes the influence of one

neural element over another.

FC is a statistical concept in which functional similarity of the units can be estimated

by using different metrics, usually in the granularity of voxels or regions. One of the
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important issue to take into consideration is that input data is essentially the same:

voxel time series and the experimental design in particular variations. In order to

measure the pairwise similarity between two units, their representative time series are

compared. In the event related fMRI studies, similarity is calculated as the correlation

between peak values of the BOLD responses of voxels or regions [40]. In [41], func-

tional connectivity is defined as the similarity between β parameters of the univariate

analysis. Friston et al. [42] measure the similarity over a set of voxel-wise compo-

nents that are created by using PCA. In this study, functional similarity is calculated

by using the correlation coefficient by

ρjk =
cov(ṽj, ṽk)√
var(ṽj)var(ṽk)

(2.3)

where ρjk represents the zero-order correlation coefficient between time series of the

voxels ṽj and ṽk, cov and var are covariance and variance operators respectively.

Unlike from [40], none of the temporal samples are discarded, and the correlation is

calculated using all samples.

2.4 Segmentation of fMRI Data

Segmentation studies on the fMRI data aim partitioning the brain into a set of regions

with some degree of homogeneity with respect to the information provided in the time

series of voxels. It is the problem of assigning every single voxel with a label so that

voxels sharing the same cluster label show similar activation patterns.

Although the fMRI studies based on segmentation focus on the very same problem,

i.e. partitioning the brain into regions, they rely on different motivational aspects.

In order to deal with the main challenges of the fMRI data - the curse of dimen-

sionality and intrinsically low signal-to-noise (SNR) ratio - pipeline of the standard

pattern recognition is initialized with clustering step. In brain decoding studies, for

example, segments are used for voxel selection, feature agglomeration [16], or defin-

ing the feature subspaces for ensemble learning approach [Ref]. Moreover, cluster-

ing has been commonly applied on both activation (fMRI) [43, 44] and resting-state

(rs-fMRI) [45, 15, 46, 10] data to define data-driven parcellations. Unlike the brain

atlases, which own a predefined ontology, a data-driven parcellation models the mea-
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sured signal, and provides a better fit to the data, where the resulted parcels consist of

similarly activated voxels.

Clustering-based analysis, also, serves as an alternative tool for activity map gener-

ation. The standard approach is based on univariate analysis of the voxels, which is

inherently limited by SNR ratio of individual voxels. In the proposed scheme, par-

titions consisting of similarly activated voxels are represented by the average time

course of its constituent voxels, which is reported to increase SNR [9]. Accordingly,

the voxels in a region are collectively regarded as activated if their representative time

series is found to be active under statistical hypothesis tests. The same approach is

also accepted in connectivity analysis and detection studies by averaging the time se-

ries [47] and pairwise voxel correlations [48, 49, 50]. As such spatial averages may

cause loss of the fine-grained information which may be essential in the further anal-

ysis steps, clustering is also applied in a hierarchical manner [46, 51], where in the

higher levels the clusters becomes larger. Therefore, representative signals at different

resolutions can be calculated.

Most unsupervised exploratory methods start with the aim of partitioning the set of

voxels by employing clustering on raw fMRI time courses [52, 53], or applying Inde-

pendent Component Analysis (ICA) to find a decomposition of the data into a set of

independent spatial [54] or temporal components [55, 56]. However, those methods

do not take into consideration behavior of the voxels under the experimental con-

ditions, or pairwise relations between voxels. Although using the raw voxel time

series has potential to cover cognitive effects in the data, low SNR and increasing

dimensionality of the temporal data, i.e., length of the time series may cause practical

difficulties. In order to cope with the temporal dimension, in their study, Goutte et

al. [57, 58], Thirion and Faugeras [59] projected the original high-dimensional time

series onto a lower-dimensional space of new features which defines new measures

for the similarity between voxels by exploiting the experimental conditions.

Various clustering techniques and their variants that have gained popularity in com-

puter vision and image segmentation literature are also applied on the fMRI data.

The most popular clustering techniques are mixture models [60, 61, 62], k-means

[43], fuzzy clustering [52, 53, 63], hierarchical clustering [16, 46], spectral clustering
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[15, 64] and a variant of edge-detection technique to detect boundaries between func-

tionally different brain regions [65]. In order to incorporate the spatial information

within voxel-based analysis and get spatially connected components, some of these

approaches impose spatial constraints by adding spatial regularization terms [66], by

keeping only the neighboring voxels for the model [15, 9] or by iteratively merging

together only the neighboring components [16, 46].

2.5 Markov Random Fields for fMRI Analysis

Markov Random Fields have previously been used in fMRI analysis (mainly clus-

tering and activation map generation tasks) to model spatial context information em-

bedded in fMRI data. In the study of Descombes et al. [67], Markov Random Fields

(MRF) are used for both signal restoration and activation map generation in two steps.

Gaussian smoothing is a well-accepted preprocessing step to eliminate noise and in-

crease SNR with the disadvantage of blurring and loss of fine-grained structure if the

parameters are not selected wisely. In order to provide an alternative, Descombes et

al. firstly reconstruct the fMRI signals "intelligently" under MRF’s locality property.

By using the very same architecture with the signal restoration step, and the restored

signals, they group the voxels into experimental categories. Ng et al. [20] propose

"Group MRF" method to exploit multi-subject information in fMRI analysis. They

model activation map of all subjects with a single MRF extending the neighborhood

system to all by adding edges directly between the subjects in addition to the within-

subject edges. Differently from [20], Liu et al. [68], model within-subject spatial

coherence by using different MRFs for each subject, which is followed by a separate

group-layer with the aim of identifying group-level functional networks.

In [69, 18], Markov Random Fields are used within Bayesian Framework (see section

2.6.1 for details). The goal is estimating the unknown cluster labels given the mea-

sured fMRI data by maximizing the posterior probability. In both of the studies, the

cluster labels are defined to be an MRF on the voxel grid, which represents the prior

term in the Bayes rule. However, the likelihood terms have methodological differ-

ences although both of the studies employ mixture model approach. Ryali et al. [18]

propose a method in order to investigate functional subdivisions of the anatomical
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brain regions using resting-state fMRI. Raw time series are modeled with von Mises-

Fisher (vMF) distribution without applying any dimensionality reduction. Moreover,

a label cost is imposed to force the model using less number of labels by penaliz-

ing use of every distinct label [70], which is expected to uncover optimal number

of clusters from data. Model parameters and cluster labels are estimated iteratively.

Initializing the model with more than intended number of clusters, the model even-

tually converges to spatially contiguous and functionally homogeneous parcellations.

Unlike [18], Woolrich et al. [69] apply a spatial mixture model on statistical paramet-

ric maps instead of the raw time courses. They propose a clustering scheme to split

the brain into three distinct partitions. Given the cluster label, SPM feature set of a

voxel is assumed to be following Normal distribution for non-activated and Gamma

distributions for positively and negatively activated clusters.

In addition to the hard clustering methods, He et al. [71] propose a spatially regu-

larized fuzzy clustering algorithm which employs MRF to incorporate spatial con-

straints. Unlike from non-spatial fuzzy clustering, membership values are weighted

by the energy function of the MRF, which is referred as spatial membership.

2.6 Foundations of Markov Random Fields

In image processing and computer vision literature, Markov Random Fields have

been widely used for a variety of problems such as segmentation, de-noising, stereo-

matching and texture synthesis. A Markov Random Field is an undirected graph of

random variables, over which inference is carried out by minimization of a predefined

energy function. MRFs enable researchers to formulate their problem as energy min-

imization on a rectangular grid of pixels for many vision tasks, and on three dimen-

sional grid of voxels for fMRI studies. Moreover, the energy terms of the MRF make

it possible to incorporate both low-level and high-level context information about the

data.

Formally, an MRF is defined by the graph G = (V , E), where V = {1 . . . N} is set of

nodes each of which is associated with a random variable xi for i = {1 . . . N}, and

E = {ei,j} is set of links each of which connects a pair of nodes i, j ∈ V . LetNi ⊂ V
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be the neighborhood of node i, and j ∈ Ni if and only if the edge ei,j ∈ E .

A joint probability distribution P (x1 . . . xN) over the random variables X = {xi}Ni=1

can be defined as the probability of a particular configuration. The random field

X = {xi}Ni=1 is an MRF on G with respect to a neighborhood system if and only if

[72]

P (X) > 0,∀X (2.4)

P (xi|{xj}j∈V\i = P (xi|{xj}j∈Ni
) (2.5)

where Eq. (2.5) implies that a node in the graph is conditionally independent of rest

of the graph given its immediate neighbors, which is also referred as Markov blanket

[5]. Note that V \ i is the set difference.

By the Hammersley-Clifford theorem, a joint probability distribution over an MRF

that satisfies Eqs. (2.4) and (2.5) can take the form of a product of potential functions

on maximal cliques of G [72, 73, 5]:

P (x1 . . . xN) =
1

Z

∏
c∈C

φc(Sc) (2.6)

where C is set of maximal cliques. A maximal clique is a fully connected subgraph of

G where it is not possible to insert any other nodes without breaking the full connec-

tivity. Each potential function φc, c ∈ C returns a positive value, and it is defined on

a subset of random variables Sc ⊂ V . Obviously, the probability increases when the

clique potentials take higher values. In other words, each of these functions adjusts

the tendency for the variables to adopt a certain configuration. Z is the partition func-

tion normalizing the product of potential functions so that the joint probability sums

to one. Mathematically speaking, the normalization function is defined as;

Z =
∑
x1...xN

∏
c∈C

φc(Sc). (2.7)

Calculating the normalization term Z by using Eq. (2.7) is intractable and one of

the main limitations of MRF. It has the complexity of exponential in the size of the

model. Having a model with N nodes and L discrete states, the calculation requires

summing over LN states. Since any parameter controlling the potential functions is
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involved in the partition function Z, it is essential to calculate Z for parameter learn-

ing. Generally, approximation techniques are followed to overcome this problem.

For Eq. (2.4) to be hold, the potentials φc should be strictly positive. Therefore, it is

convenient to express the potential functions as exponentials,

φc(Sc) = exp [−Ec(Sc)] (2.8)

so that the joint distribution in Eq. (2.6) can equivalently be written as Gibbs distri-

bution,

P (x1 . . . xN) =
1

Z
exp [−Es(x1 . . . xN)] , (2.9)

Es(x1 . . . xN) =
∑
c∈C

Ec(Sc). (2.10)

The term Es(x1 . . . xN) is referred as the energy, and finding the best configuration

of random variables X , i.e., increasing the probability, can be referred as energy

minimization [5, 73].

2.6.1 MAP-MRF Framework

Markov Random Fields enable us modeling the priori probability of context-dependent

patterns. In an MRF model, a node favors patterns of its own class by associating them

with higher probability, i.e., lower energy values than other patterns. It is common

to use MRFs in conjunction with statistical decision or estimation models so as to in-

corporate context information inherently involved in the data. Maximum a posteriori

(MAP) has been one of the most popular optimality criteria in modeling with MRFs

since 1984 - pioneer study of Geman and Geman [74]. In the MAP-MRF frame-

work, the objective is the joint posterior probability of the random variables that are

involved in the MRF. The joint priori distribution of the variables and likelihood of

the observed data controls the posterior by means of the Bayes formula.

Segmentation problem can be formalized as an unsupervised learning or clustering

where the task is to assign a set of labels to a set of sites of homogeneous clusters.

18



Mathematically speaking, let V be the set of sites to be labeled so that

V = {v1 . . . vN}, (2.11)

where each vi is also the observed data sampled from the corresponding site. And, X

is set of random variables

X = {x1 . . . xN}

xi ∈ L = {`1 . . . `L}
(2.12)

where each xi assigns a label for the site vi among L possible discrete values from

the label set L. The labeling process is referred as a configuration in the terminology

of the random fields. And, it can be regarded as a function with domain V and range

L. In other words, in the context of clustering task, a configuration is equivalent to

the assignment of the possibly best labels that fulfills an objective function.

The process of estimating the cluster labels can be formulated by the Bayes Theorem

so that maximum a posteriori estimation (MAP) yields a configuration of the latent

labels:

x̂1 . . . x̂N = argmax
x1...xN

[P (x1 . . . xN |v1 . . . vN)] . (2.13)

And, the formulation of the problem by using the Bayes rule as follows:

P (x1 . . . xN |v1 . . . vN) =
P (v1 . . . vN |x1 . . . xN)P (x1 . . . xN)

P (v1 . . . vN)
, (2.14)

where P (X) is the prior probabilities of the configuration X , and P (V |X) is like-

lihood of the data V . By making an assumption that the conditional probability

P (V |X) factorizes into product of individual terms [5], Eq. (2.14) can be rewrit-

ten as

P (x1 . . . xN |v1 . . . vN) =

∏N
i=1 P (vi|xi)P (x1 . . . xN)

P (v1 . . . vN)
. (2.15)
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By reorganizing the Eqs. (2.13) and (2.15), the MAP solution can be expressed as

x̂1 . . . x̂N = argmax
x1...xN

[P (x1 . . . xN |v1 . . . vN)]

= argmax
x1...xN

[
N∏
i=1

P (vi|xi)P (x1 . . . xN)

]

= argmax
x1...xN

[
N∑
i=1

log[P (vi|xi)] + log[P (x1 . . . xN)]

]

= argmin
x1...xN

[
N∑
i=1

−log[P (vi|xi)] +
∑
c∈C

Ec(Sc)

]
= argmin

x1...xN

[Ed(x1 . . . xN) + Es(x1 . . . xN)]

(2.16)

where Eq. (2.14) is transformed to the log domain. Note that denominator of the

Bayes formula, i.e., P (v1 . . . vN), and the normalization term Z are discarded since

they do not make any influence on the MAP inference. Es(x1 . . . xN) is same as

the Eq. (2.10) and corresponds to the clique potentials from the MRF prior, and

it is referred as smoothing energy. It penalizes different labeling of adjacent sites.

Ed(x1 . . . xN) is the unary energy term that is the negative log likelihood of sites

given their cluster labels. This is a cost for observing a site vi with state, i.e., label,

xi.

A fully four-connected subgraph contains cliques of size 2, 3 and 4 (see Fig. 2.5

right). In the formulation above, the potential functions are assumed to be formulated

in terms of the maximal cliques only, which can be in the form of either pairwise or

higher order cliques. If the maximal cliques only connect pairs of nodes, those models

are called as pairwise Markov Random Fields. If the number of the constituent nodes

of a clique is more than two, then we talk about high-order Markov Random Fields.

Order of an MRF model has a key role in determining shape of the smoothing energy

term Es(x1 . . . xN) and the optimization approach.

2.6.2 Pairwise Markov Random Fields

In order to foster simplicity and make the inference efficient, the neighborhood is

set between only pairs of nodes, hence assuming a conditional independence of all

other nodes, given direct neighbors. On a two-dimensional grid, it corresponds to
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Figure 2.5: MRF neighborhood structures in two dimensional grid where the dashed
lines denote an example of maximal cliques. (Left) Pairwise MRF (Right) Example
for an higher-order MRF.

4-connected neighborhood (see Fig. 2.5 left), and on a three-dimensional grid the

model consists of 6-connected neighborhood - face touching. In pairwise MRFs, it

is common to accept homogeneous model. In other words, the potential functions

between each pair of nodes are assumed to be same for all. Although this neighbor-

hood structure seems to be very simple, by means of transitivity, it indirectly links all

nodes.

The smoothing energy of a pairwise MRF model has the following form:

Es(x1 . . . xN) =
N∑
i=1

∑
j∈Ni

βsUs(xi, xj), (2.17)

where βs is the hyper-parameter adjusting smoothing penalty. Choosing a potential

function f is crucial to accurately model neighboring relations. The standard Potts

model is a well-studied and commonly applied smoothing function [73, 5] as follows

Us(xi, xj) =

1, if xi 6= xj

0, otherwise.
(2.18)

Moreover, in variants of the Potts model, modifications are made so that the function

Us takes values based on the observations. While this can improve the performance,

some might argue that the pairwise MRFs are conceptually limited due to their mini-

mal cliques, which restrict expressive power of the model [75, 76].
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2.6.3 High-Order Markov Random Fields

Higher-order MRFs are a generalization of pairwise MRFs, where the cliques encom-

pass more than two nodes (see Fig. 2.5 right). The smoothing term is defined over

the maximal cliques so that

Es(x1 . . . xN) =
∑
c∈C

fc(Sc), (2.19)

where fc is the potential function of the clique Sc. As it is in the pairwise MRFs, such

models assume the spatial homogeneity. In other words, the potential functions are

the same for all cliques because choosing a suitable function is even more difficult

due to the larger size of the cliques.

Introducing a higher-order neighborhood system increases expressive power of the

MRFs and enables to model the long range dependencies. However, with a few ex-

ceptions only, pairwise MRFs are preferred. One of key challenges with respect to

the high-order MRFs is the efficient inference. The computational cost of the model

makes the optimization algorithms that even yield suboptimal solutions impractical.

There exist inference techniques for a few higher-order MRFs that have special struc-

ture [77, 78, 79]. Converting higher-order MRFs into pairwise MRFs by introducing

additional variables is another approach [80]. However, it is only applicable on the

small size of MRFs since number of the auxiliary variables grows exponentially with

the size of cliques [76].

2.6.4 Inference: Energy Minimization

Inference in the graphical models is the task of discovering the hidden information

for the random variables X given the observed variables V . In the context of cluster-

ing problems, inference is equivalent to estimation of the cluster labels. This can be

achieved by finding configuration of the latent variables X that maximizes the poste-

rior probability - maximum a posteriori estimation. As it is expressed in section 2.6.1,

minimization of the energy gives the same result.

Having a solution in closed form is the most desirable. However, the complexity

caused by interactions between the nodes reveals model specific constraints, and
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makes it very difficult to express the solution in closed form. Therefore, exact in-

ference in graphical models is generally very hard and computationally intractable.

In practice, approximate inference techniques are employed by means of iterative

search. Four popular approaches of approximate inference are Iterated Conditional

Modes (ICM), Simulated Annealing (SA), Belief Propagation (BP) and Graph cuts,

which are described below:

Iterated Conditional Modes (ICM), proposed by Besag [81], is one of the most

popular optimization algorithms. It is a deterministic algorithm based on optimizing

the local energy, iteratively. It follows a greedy strategy and maximizes the proba-

bility of each node conditioned on the rest (only the neighbors of the node itself due

to the Markovianity property 2.5) and the observed data. After updating every node

separately, a cycle of the ICM concludes. The iterations continues until a predefined

convergence criterion, which guarantees the convergence [81]. It has been reported

that ICM finds the global minimum if the search space is convex, which is an opti-

mistic assumption for MRF inference. MRF energy functions are generally do not

end up with convex search spaces. Therefore, result of the ICM heavily depends on

the initial labeling. ICM may return a local solution that is far from the optimal [73].

Simulated Annealing (SA) deals with the local minimum problem by accepting dif-

ferent configurations, which helps the method to avoid getting stuck in a local min-

imum. A time-varying parameter T , referred as temperature in the Gibbs distribu-

tion, controls the probability of accepting worse states. The method is initialized

with very high temperature and a random configuration, i.e. labeling. Simulated an-

nealing is a variant of sampling based algorithms, particularly Markov chain Monte

Carlo (MCMC) sampling. At every possible values of T , probability of jumping

another less optimal state is determined by using the Gibbs sampling. As the temper-

ature decreases, the solution space becomes more explored. Therefore, probability of

choosing a worse configuration also decreases, and the algorithm yields optimal -or

near optimal- solution [73, 74]. Note that in the limiting case where T is zero, SA

behaves like a greedy algorithm such as ICM. Theoretically, if SA is provided with

enough time and proper parameters, it finds the global optimum. However, size of the

search space and computationally expensive sampling steps make the SA algorithm

prohibitive for real world problems.
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Belief Propagation (BP) formulates the inference problem for pairwise MRFs as

maximizing the marginal posterior probabilities over individual variables. The BP

algorithm works by iteratively propagating the local messages across nodes of the

graph. At every iteration, each node of the MRF graph sends a message for each

label to its neighboring nodes and accepts incoming messages from the neighbors

until there is no change in the messages. A message from node p to node q about the

label ` indicates how likely node p and its neighbors other than q support that node q

should be assigned label `. After the message passing system reaches convergence,

the so-called belief of each node is computed by considering the observed data of the

node and incoming messages from its neighbors. The belief is an approximation of

the marginal probability of the node [73]. Finally, the label that maximizes the belief,

i.e., the marginal probability, or equivalently minimizes the negative log probability

is assigned to the node. On the tree-structured graphs, the BP algorithm is able to

make exact inference while it returns suboptimal solutions for general graphs.

Graph cuts is a class of algorithms that can be efficiently employed to solve MAP

inference tasks by translating the energy minimization problem into a maximum-flow

(or max-flow) / min-cut problem. It has been reported that exact inference, i.e. global

solution, is tractable for binary problems with pairwise MRFs [82]. Later, this has

been extended to solve multi-label MRF problems that has convex smoothness term.

For a more general energy function, i.e., a non-convex model, it has been shown that

good approximate solutions near the global optimum, and even exact inference in

some cases can be achieved by using graph cuts [5, 83, 84].

In order to transform the energy minimization task into a max-flow/min-cut problem,

two auxiliary vertices, namely s (source) and t (sink), are introduced (see Fig. 2.6).

Let the resulted graph be G̃ = (Ṽ , Ẽ), where Ṽ = V ∪ {s, t}. Now, the task is finding

maximum amount of flow from source to sink nodes. This is equivalent to finding a

cut which is defined as a minimal subset of edges that separates the source from the

sink. In the context of binary labeling, the vertices that are connected to the source

are labeled as 1 and the vertices that are attached to the sink are given label 0. In the

multi-label case, however, label of each node is defined by the edge that cuts its chain

(see Fig. 2.7).
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Figure 2.6: Reorganization of a 3x3 binary MRF as a max-flow problem. In addition
to the source and sink nodes, every site is represented in the final graph (black nodes)
[5].

If the pairwise potentials are non-convex (like Potts model, Eq. 2.18), then exact

inference can not be achieved, and it is NP-hard. Boykov et al. [83, 85] proposed good

approximate methods, namely α-expansion and α-β swap that can achieve solutions

within a known factor of the global minimum. The α-expansion algorithm can only

be employed if the pairwise cost is a metric. And, the pairwise cost satisfies at least

semi-metric conditions, then α-β swap algorithm can be used as an alternative. Both

of them works by reducing the multi-label problem into a series of binary problems

that can be solved exactly. In this study, we minimize the MRF energy by using

α-expansion algorithm. Therefore, details of the α-β swap algorithm is not provided.

At each iteration, a label α is selected and the nodes with labels other than α are given

the label
−
α (non-alpha). A max-flow graph is generated dynamically with respect to

the current configuration at each iteration. The source and sink nodes are represented

with α and
−
α respectively. In other words, α-expansion algorithm considers either

keeping
−
α label or switching it to α for each node by finding the minimum cut. The

algorithm repeatedly cycles through all possible labels as α until no further improve-

ment is possible.

One important advantage of the α-expansion algorithm is that it enables the simulta-

neous changes on set of nodes while ICM and SA switch one node label at a time.

The larger number of changes at every iteration keeps the search from getting stuck

in local minima, and hence guarantees an energy decrease.
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Figure 2.7: Reorganization as max-flow problem. (Left) Binary pairwise MRF. Edge
costs are defined by the unary (Ui) and pairwise (Pij) energy terms. (Right) Multi-
label pairwise MRF (4 labels). There are |L| + 1 nodes for sites (one for each label)
and fully connected neighboring edges (one for each pairwise label assignment) in
the graph [5].

2.7 Summary

In this chapter, firstly, background information about the fMRI data acquisition is

presented. Secondly, widely accepted analysis techniques of fMRI data that are used

for inference about the voxel activation, and the connectivity types in the brain are

overviewed. Later, from a large family of clustering techniques, exemplar studies on

the fMRI data are reviewed. The theory of Markov Random Fields and MAP-MRF

framework are explained. Finally, energy minimization techniques for MRF models

are compared qualitatively, and details of the α-expansion algorithm is provided.
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CHAPTER 3

F-MRF: A BRAIN SEGMENTATION METHOD BASED ON

MARKOV RANDOM FIELDS

In the previous chapter, a background about the fMRI data analysis techniques and a

clustering approach that employs MRFs are provided. In this chapter, we introduce

a segmentation method for the fMRI data by using a clustering algorithm based on

the Markov Random Fields. Our proposed method, f-MRF employs fMRI data analy-

sis techniques under the maximum a posteriori-Markov Random Fields (MAP-MRF)

framework.

First, an overview of the proposed method and motivation of our study is presented.

Second, f-MRF method is decomposed into individual energy terms and explained in

details. Later, we present the algorithm that is used for estimation of the cluster labels

and computational complexity analysis of the f-MRF. Finally, the approaches that are

employed in performance evaluation are provided.

3.1 Overview of f-MRF Segmentation

f-MRF is a segmentation method specially tailored for fMRI by pursuing the fMRI

data analysis techniques. f-MRF principally aims to partition the brain into a set of

disjoint regions that are functionally homogeneous and spatially coherent. Accord-

ingly, the voxels having similar time series are collected into the same region. Thus,

each segment in the brain is expected to represent a distinctive activation pattern.

Considering distributed nature of the brain, however, there may exist some remote

regions showing similar activation patterns. By using a clustering based approach,
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f-MRF finds the clusters that consist of functionally similar regions.

Given the fMRI data, recorded under a predefined cognitive stimulus, let Ṽ = {ṽi}Ni=1

represent the set of voxel time series ṽi = {ṽi(t)} for 1 < t < T , where N is

the number of voxels and T is the number of fMRI observations. A partition at

the output of a segmentation algorithm creates a set of homogeneous regions R =

{Ri}Si=1 where S is the number of regions. The partitioningR satisfies the following

conditions:

1. Ri ∩Rj = ∅,

2.
⋃S
i=1Ri = Ṽ ,

3. For a homogeneity predicate P ,

P(ṽm, ṽn) = TRUE , if ṽm, ṽn ∈ Ri

P(ṽm, ṽn) = FALSE , if ṽm ∈ Ri and ṽn ∈ Rj ∀m 6= n, i 6= j.

The homogeneity predicate in this study is defined by the minimum energy function

of the MRF model which is introduced in section 3.3.

3.2 Motivation

In the task-based fMRI experiments where the individuals are exposed to external

stimuli or asked to perform a task, not all of the voxels are correlated with the un-

derlying experimental conditions. Rather, majority of the voxels are noisy, inactive

or redundant for the underlying task [8, 86, 7, 87]. Hence, these voxels are non-

informative for the further analysis steps. Moreover, small number of samples com-

pared to high dimensionality requires extensive and elaborative efforts to extract use-

ful information.

In the fMRI studies, it is common to apply voxels selection and feature extraction

techniques in order to alleviate the dimensionality problem and increase signal-to-

noise ratio (SNR). Having a mapping of voxels that reflects activation patterns in the

data would enhance precision of the further dimensionality reduction steps. In this

study, we propose a new segmentation technique, called f-MRF, in order to group the
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non-informative voxels under the same cluster and reveal groups of the informative

voxels. For this purpose, we design the f-MRF in a way that it gathers segments of

the mostly inactive and negligible voxels in a few large clusters, and it isolates the

informative voxels into relatively small and functionally homogeneous clusters.

The prevalent techniques in dimensionality reduction mainly rely on (1) univariate

analysis, (2) region of interest (ROI), and (3) data-driven parcellations [10]. Recall

from chapter 2.2, in the univariate analysis approach, time series of each individual

voxel is compared with the theoretical blood oxygenation level–dependent (BOLD)

response under a statistical hypothesis test [11, 88]. Although the univariate analysis

is intuitive and practical, underlying assumptions driving the model may not be nec-

essarily valid. Firstly, co-activation patterns of multi voxels are simply ignored. In

other words, although two different voxels are not informative individually, the linear

or non-linear relation between them might carry information [8]. Secondly, in fMRI

studies, for every voxel, the same or minimally varied hemodynamic response func-

tions (HRF) are employed although it is reported that BOLD response may vary due

to the anatomical and physiological differences [37, 89]. Finally, because univariate

approaches require higher SNR, it is common to apply spatial smoothing in order to

increase the sensitivity [90]. However, this idea is debated in fMRI literature [88, 13]

since smoothing cause distortions on spatial patterns that might be informative.

In the region of interest (ROI) approach, on the other hand, regions that are expected

to be activated under the experimental conditions are selected by using a predefined

anatomical atlas [10, 9]. Although this approach provides functional and biological

homogeneity, recent studies reveal that the anatomical regions defined by atlases can

be coarse [9]. More specifically, depending the underlying task, there might be sub-

regions showing different behavior.

Data-driven parcellations provide better representations for the voxel space by col-

lecting similarly activated voxels into the same parcels. For this purpose, well-

accepted clustering methods in the vision domain are employed on fMRI data as well

as the algorithms that are dedicatedly crafted for fMRI. Each method, intrinsically,

has assumptions and constraints such as underlying distribution or structure of the

data. For example, the K-Means algorithm which minimizes the within cluster vari-
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ance, and Spectral Clustering method that minimizes between-cluster similarity are

strongly biased towards a result with uniformly sized clusters due to their objective

functions [15, 46]. Mixture models is another commonly used technique that has the

potential to capture various-sized clusters [60, 61, 62]. It makes an assumption that

the voxels are sampled from a mixture of distributions, and estimates the clustering by

assigning the voxels to the most likely mixture components. Heller et al. [9] propose

a clustering method based on functional connectivity of the voxels, which is used in

estimation of the representative signals. Michel et al. [16] employ clustering in order

to reveal a subset of informative voxels for classification task. First, they apply Ward

hierarchical clustering to construct a clustering tree. Later, the tree is pruned with

respect to a prediction score in order to discard non-informative clusters.

The existing studies in the literature are based on either unary features that simply

involve individual voxel properties or multivariate features which reveal the relation-

ship of a voxel with others. In this study, we employ these two different feature sets

simultaneously under MAP-MRF framework. By using both univariate properties

and local functional similarities of the voxels, we aim to acquire both functionally

homogeneous and spatially continuous clusters. From a different point of view, the f-

MRF algorithm can be considered as a hybrid between the clustering approaches that

employ unary and pairwise features separately. While unary feature set determines

characteristics of a cluster, i.e. consist of informative or non-informative voxels, the

pairwise feature set enforces both spatial coherence and functional homogeneity.

3.3 Proposed Method: f-MRF

Let V = {vi}Ni=1 be the set of random variables where each vi corresponds to a

d−dimensional feature vector of the ith voxel, and vi is generated from the voxel’s

time-series ṽi. It is referred as unary features. Let X = {xi}Ni=1 be the set of random

variables where each xi makes a label assignment for the voxel vi from the set of

cluster labels such that xi ∈ L = {`1 . . . `L} assuming that there are L clusters.

Let G = (V , E) be the graph that defines the Markov Random Field. Nodes V =

{1 . . . N} of the graph G is associated with the above-mentioned random variables xi
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ivix

Figure 3.1: MRF model on a 3-dimensional lattice. (Blue nodes and blue undirected
edges) The latent label node xi of the ith voxel and its neighborhood Ni. (Red nodes
and red directed edges) The observed data vi is conditionally dependent on the asso-
ciated cluster label xi.

(see Fig. 3.1). Let Ni ⊂ V be the neighborhood of node i, and j ∈ Ni if and only if

there exist an edge ei,j ∈ E between them.

Neighbors Ni of the node i are selected with respect to the Euclidean distance be-

tween positions of the voxel i and the voxels around. The distance threshold is chosen

to include 6 spatially nearest neighbors of the voxel vi in the 3−dimensional voxel

grid, i.e., face touching. Note that voxels that are located on the surface of the cortex

may have less than 6 neighbors.

The latent cluster labels are estimated by using maximum a posteriori estimation

(MAP) such that,

x̂1 . . . x̂N = argmax
x1...xN

[P (x1 . . . xN |v1 . . .vN )] . (3.1)

Recall from chapter 2.6.1, under the MAP-MRF framework, the estimation can be
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expressed as an energy minimization problem:

x̂1 . . . x̂N = argmax
x1...xN

[P (x1 . . . xN |v1 . . .vN ]

= argmax
x1...xN

[
N∏
i=1

P (vi|xi)P (x1 . . . xN)

]

= argmax
x1...xN

[
N∑
i=1

log[P (vi|xi)] + log[P (x1 . . . xN)]

]
= argmin

x1...xN

[Ed(x1 . . . xN) + Es(x1 . . . xN)] ,

(3.2)

where the solution hinges upon the unary and smoothing energy terms, Ed and Es,

respectively. In this study, we formulate the clustering problem as a pairwise Markov

Random Field, where cliques of the graph G consist of pairs of nodes. The unary

energy is defined as negative log-likelihood of the voxels. In other words, the less

the distance between a voxel and its cluster, the lower energy it emits. The smoothing

term, on the other hand, can be regarded as a constraint that forces the model to assign

the same cluster labels to the neighboring voxels.

The main contribution of this study is that we incorporate an additional energy term

in order to ensure both spatial regularization and functional homogeneity. For this

purpose, we benefit from pairwise voxel similarity which is expected to reveal the

multivariate activation patterns in the fMRI data. Accordingly, the total energy E can

be decomposed into the following terms:

E(x1 . . . xN) = Ed(x1 . . . xN) + Ep(x1 . . . xN) + Ef (x1 . . . xN), (3.3)

where Ed and Ep are the unary and Potts energy terms, respectively. Ef is the new

energy term that employs functional similarity. Hence, it is referred as functional

energy. In this setting, both Ep and Ef apply a penalty if any pair of voxels are

assigned to different clusters.

3.4 Unary Energy Term

The voxel space is summarized by the mixture of L models where each model repre-

sents a cluster. Assume that d-dimensional feature vector measured at each voxel is
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sampled from a density P (v), where P (v) is a finite mixture model with L compo-

nents. A voxel vi follows the distribution:

P (vi; Θ) =
L∑
`=1

λ`P`(vi|xi = `;θ`), (3.4)

where P`(vi|xi = `;θ`) is the mixture component for 1 ≤ ` ≤ L, and each com-

ponent is defined as a d-variate distribution with parameters θ`. λ` is the mixture

weights for 1 ≤ ` ≤ L that correspond to the probability of a voxel vi to be sampled

from the component `. Note that,

L∑
`=1

λ` = 1. (3.5)

Θ = {Θ1 . . .ΘL} is the set of parameters for our mixture model with L components:

Θ` = {λ`,θ`}, (3.6)

where θ` is parameters of the underlying mixture distribution. Using the above for-

malism, a partition C = {C1 . . . CL} can be defined in terms of the mixture com-

ponents, where each cluster C` is represented by a component of the mixture and its

corresponding parameters θ`.

Recall from Eq. (3.2) that the unary energy term is defined as negative log-likelihood

of a voxel vi, given its cluster label,

Ed(x1 . . . xN) = βd

N∑
i=1

−log[P (vi|xi)], (3.7)

where βd is the weight parameter adjusting the influence of the data cost. The log-

likelihood is defined as,

P (vi|xi = `) =
λ`P`(vi|xi = `;θ`)∑L

n=1 λnPn(vi|xi = n;θ`)
. (3.8)

Note that,
L∑
`=1

P (vi|xi = `) = 1. (3.9)

Although we have an assumption that clusters consist of different number of voxels,

and even some of the clusters gather majority of the voxels, the mixture weight λ of
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every cluster is initialized as the same. And, we let the MRF model determine shape

and size of the clusters, by optimizing the energy function.

In this study, a voxel vi ∈ Rd given its cluster label xi follows d-variate Normal

distribution such that the parameter set θ` of the mixture component is defined as

θ` = {µ`,Σ`}. The cluster component is approximated by a Normal distribution:

P (vi|xi = `;θ`) ∼ Nd(µ`,Σ`), and (3.10)

P (vi|xi = `;θ`) =
1√

(2π)d|Σ`|
exp

(
−1

2
(vi − µ`)

TΣ`
−1(vi − µ`)

)
. (3.11)

Note that in the above formulation, each mixture component consists of a set of "ho-

mogeneous" regions distributed over three dimensional brain volume. Accordingly, a

cluster may involve one or more regions as follows:

R1 . . .Rm︸ ︷︷ ︸
C1

,Rm+1 . . .Rn︸ ︷︷ ︸
C2

. . . Rp . . .RS︸ ︷︷ ︸
CL

3.4.1 Unary Features

Performing clustering on raw intensity measurements ṽi has a potential of covering

the underlying cognitive effects, and no additional information such as experimental

design and BOLD response is incorporated. However, low signal-to-noise ratio and

increasing dimensionality of the temporal data, i.e., length of the time series, may

cause practical difficulties in modeling the fMRI data [58, 51]. Instead of using the

time series of a voxel ṽi ∈ RT , Goutte et al. [57, 58] propose performing the cluster-

ing on a new feature space vi ∈ Rd where d � T , with an argument that "notion of

distance becomes counterintuitive" in high-dimensional spaces. Moreover, estimation

of the model parameters, such as covariance of the Normal distribution Σ becomes

impractically large in the high-dimensional spaces.

In the fMRI literature, univariate analysis techniques have been applied in order to

project the high-dimensional time series of the voxels onto a new feature space [58,

51, 10, 17]. Univariate analysis helps us making an inference about how experimental

conditions affect response of the individual voxels. Since the experimental design

is incorporated into the analysis, these features become directly associated with the
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Figure 3.2: Canonical HRF function and its constituent Gamma functions where
"Gamma Function 1" and "Gamma Function 2" correspond to the first and second
terms of the equation 3.13 respectively.

underlying conditions, and hence become more descriptive of the cognitive tasks.

In this study, the unary feature set vi = {ρn}dn=1 is defined as the statistical similarity

of the ith voxel with the theoretical BOLD response under various conditions. And,

the statistical similarity is calculated by using Pearson correlation coefficient between

the time series of the ith voxel ṽi and the time series of the theoretical response un

such that

ρn =
cov(ṽi,un)√
var(ṽi)var(un)

. (3.12)

It has been reported that if enough separation is provided between consecutive stimuli

-at least 5 seconds-, the BOLD response can be regarded as linear with respect to the

stimulus [87, 91]. Therefore, the input-output relationships between the stimuli and

the corresponding BOLD signal can be modeled as a linear time-invariant system,

so that the theoretical BOLD response can be estimated by convolving the stimu-

lus function with the theoretical form of the hemodynamic response function (see

2.4). Accordingly, we estimate the theoretical BOLD response, un, by convolving

the canonical HRF function of SPM toolbox [92, 93, 94] with the stimulus function

under various conditions. The canonical HRF is modeled as a mixture of two Gamma

distributions (see Fig. 3.2) such that

h(t) =

(
tα1−1βα1

1 e−β1t

Γ(α1)
− ct

α2−1βα2
2 e−β2t

Γ(α2)

)
, (3.13)

where Γ(·) is the Gamma function and the parameters α1, α2, β1 and β2 are set to their
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Figure 3.3: Examples of the stimulus function ∆j from a two-class experiment where
red and blue colors represent different class conditions. (a) Stimulus function is con-
structed by using both of the conditions. (b) Stimulus function is constructed by only
using one of the class conditions. (Top) No delay is applied. (Bottom) Stimulus
onsets are shifted in time in k units of TR.

default values 6, 16, 0.125 and 0.125, respectively. Time-invariance property of the

model enables us to represent different delay conditions in the response. Moreover,

in order to consider the behavior of a voxel under various stimulus conditions, the

stimulus function ∆j is constructed with j th condition-induced regressors. Suppose

the stimuli of j th condition are presented at times τ1 . . . τM , and the stimulus at time

τm is represented with the Dirac delta function δ(t− τm). Then, the stimulus function

∆j can be defined as,

∆j(t) =
M∑
m=1

δ(t− (τm + k)), (3.14)

where k controls amount of the shift in time, and it is in the unit of time repeat (TR)

value of the MRI machine (see Fig. 3.3). Thus, the theoretical BOLD response un is

defined as,

un(t) = ∆j(t) ∗ h(t), (3.15)

where the ∗ indicates the convolution operator. It can be concluded that each feature

ρn reveals the characteristics of a voxel under different class conditions. First, the

stimulus function ∆j can be constructed by using different sets of stimulus onsets,

which implies coherence of a voxel with the corresponding tasks. Second, by shifting
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the stimulus onsets in time, theoretical responses under various delay conditions can

be estimated, which is expected to help covering the delayed activation patterns of

voxels.

3.5 Potts Energy Term

We keep the Potts energy term Ep in the model for the purpose of spatial smoothness.

In other words, Ep helps the model providing spatial continuity. The Potts energy

term Ep is defined by using the standard Potts model which is a well-studied and

commonly applied smoothing function [5, 73]:

Ep(x1 . . . xN) =
N∑
i=1

∑
j∈Ni

βpUp(xi, xj), (3.16)

where βp is the hyper-parameter adjusting the penalty. Up is the potential function

that enforces the model to give the same cluster labels to he neighboring voxels, and

it is defined as

Up(xi, xj) =

1, if xi 6= xj

0, otherwise.
(3.17)

3.6 Functional Energy Term

Differently from the Potts energy Ep, our functional energy term Ef incorporates

data-dependent voxel similarity into the model. If any neighboring voxels are not

assigned with the same labels, Ef term applies a penalty in proportion to functional

similarity of the voxels. In other words, the model tends to gather voxels that give

correlated responses into the same cluster. Hence, Ef ensures both spatial continuity

and functional homogeneity simultaneously.

Functional connectivity, is defined as the statistical similarity between time-series of

a voxel pair. More specifically, it is the temporal correlation that reflects co-activation

of the distinct voxels [95]. Kriegeskorte et al. [96] state that spatially closer voxels

are more likely to give similar responses under the same stimuli. Moreover, Both

Firat et al. [97] and Onal et al. [98], in the brain decoding studies, employ features
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based on the local voxel interactions, and report that local relations are more infor-

mative compared to the unary features. Although HRF varies across individuals and

even brain regions [99, 89, 100], Bazargani and Nosratinia [101] state that BOLD

response across a local neighborhood remains constant. Therefore, based upon the

empirical evidences found in neuroscience literature, we may define a homogeneity

predicate for brain regions, when the voxels in the same neighborhood are statistically

correlated, regardless of their positions in the brain. More specifically, the local in-

teractions of a voxel with its immediate neighbors are independent from behavior or

analytic form of the BOLD response. Since these local interactions are based on the

functional connectivity concept, we refer them as functional texture in the fMRI data.

Note that local interactions are not informative about the type of the voxel behavior,

i.e., activated or non-activated. Hence, the unary features and these pairwise features

are complementary to each other.

Based upon the above discussion, the functional energy term Ef is defined as,

Ef (x1 . . . xN) =
N∑
i=1

∑
j∈Ni

βfUf (xi, xj), (3.18)

where βf is the hyper-parameter that controls contribution of the functional energy

to the total energy. Lower values of the βf make the model more tolerant towards

missing the local interactions, and hence the clustering result becomes more scattered.

The potential function Uf is defined as

Uf (xi, xj) =

|ρij|, if xi 6= xj

0, otherwise
(3.19)

where ρij is the Pearson correlation coefficient. It is a measure of linear dependence

between time series of the ith and j th voxels. It is given by

ρij =
cov(ṽi, ṽj)√
var(ṽi)var(ṽj)

. (3.20)

The correlation coefficient ρij takes values between [−1, 1] where values around zero

indicate that voxels behave independently while a correlation value of −1 and +1 are

an indicator of negative and positive statistical similarity respectively. In this study,

negative and positive coefficients are given the same emphasize by considering the

absolute value of ρij .
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Table 3.1: Triangle inequality condition. Possible configurations (α, γ, ς) of a pair of
random variables xi and xj , and corresponding energy (penalty) assignments under
potential function Uf of the functional energy Ef are listed.

Configuration Triangle inequality Eq. (3.23)
α = γ = ς 0 ≤ 0 + 0

α 6= γ, γ 6= ς, α 6= ς ρij ≤ ρij + ρij
α = γ, γ 6= ς 0 ≤ ρij + ρij
α 6= γ, α = ς ρij ≤ 0 + ρij
α 6= γ, γ = ς ρij ≤ ρij + 0

3.7 f-MRF Energy Minimization Algorithm

The configuration that minimizes the total energyE, defined in Eq. (3.3), is estimated

by using the α-expansion energy minimization algorithm [83, 85]. It requires the

pairwise potential functions to be a metric on the cluster label space L. Potential

function U is a metric if it satisfies

U(xi, xj) = 0⇔ xi = xj, (3.21)

U(xi, xj) = U(xj, xi) > 0, (3.22)

U(xi = α, xj = γ) ≤ U(xi = α, xj = ς) + U(xi = ς, xj = γ), (3.23)

for any cluster labels xi, xj and label instantiations α, γ, ς ∈ L. It has been previously

shown that one of the pairwise potential functions, Up of the Potts model, is a metric

[83]. The potential function Uf of the functional energy that has the same structure

with Potts’ model, is controlled by the pairwise correlation ρij of the voxels. Since

we employ absolute value of the Pearson correlation, and the Pearson correlation is

inherently symmetric, the conditions given by 3.21 and 3.22 are satisfied. For the

third condition, all possible configurations of the label instantiations are provided in

table (3.1). By inspecting the table, it can be seen that potential function Uf of the

functional energy term does not violate any of three metric conditions. Hence, α-

expansion algorithm can be employed for minimization of the energy E = Ed+Ep+

Ef of our method.
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3.8 Estimation of Labels

The cluster labels can be estimated by maximizing the posterior probability or by

minimizing the total energy equivalently. In both settings, formulation of the problem

is crucial. In terms of energy minimization, even if the optimization algorithm is able

to find the global solution, the final labeling result could still be unfavorable. More

specifically, the energy terms are inadequate in defining the problem. Therefore, it

is important to build a decent setup, which provides a reliable search space for the

energy minimization algorithm. In this study, an E-M like iterative approach [18, 102]

is adopted where at every iteration the model is expected to find a better representation

for the data. The cluster labels are estimated iteratively in two steps such that:

1. Given the current estimate of parameters of the mixture model Θ̂
t
, unary energy

term Ed
t is calculated. By using the α-expansion algorithm, best configuration

of the labels X̂ t that minimizes the total energy is determined.

2. Given the current estimate of cluster labels X̂ t, for the next iteration, parameters

of the mixture model Θ̂
t+1

is estimated.

The iterations continue until there is no difference between X̂ t and X̂ t+1. At every

iteration, the aim is tailoring the mixture components in accordance with the labeling

so that the clusters become more homogeneous. In return, the MRF model quickly

converges as the unary energy terms become more stable and more precise. Note that

pairwise energy terms Ep and Ef are not modified during the iterations.

We also apply a threshold to put a constraint on minimum size of the clusters. During

the iterations, if the number of voxels in a cluster C` becomes less than an empirically

defined threshold, then probability of voxels having label ` are set to zero such that

P (vi|xi = `) = 0,∀i. (3.24)

In other words, a cluster that is smaller than the intended size is disbanded. In the

labeling step, MRF model ignores the cluster C` in order to avoid the large penalty.

Thus, the voxels assigned with cluster label ` prefer clusters other than C`. This prac-

tice noticeably prevents the model from yielding scattered clustering results. More-

over, it enables the model to favor a subset of the mixture components. Different
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from the mixture models, f-MRF does not necessarily find an estimation for all com-

ponents. In fact, f-MRF has potential to uncover optimal number of clusters in the

data.

At the second step of the aforementioned approach, parameters of the mixture com-

ponents, i.e., parameters of the clusters, θ̂` = {µ̂`, Σ̂`} are calculated by using the

maximum-likelihood estimation (MLE):

µ̂` =
1

N`

∑
i∈C`

vi, (3.25)

Σ̂` =
1

N`

∑
i∈C`

(vi − µ̂`)(vi − µ̂`)
T , (3.26)

where C` is the set of voxels having cluster label `, and the partitioning C can be

written as C =
⋃L
`=1C`.

3.9 Computational Complexity Analysis

Computational complexity of the proposed segmentation method f-MRF is deter-

mined by the energy minimization steps, given in lines 11-12 of the algorithm (1).

In a cycle, the α-expansion algorithm iterates for each cluster label ` ∈ L, in total

of |L| times. Recall from chapter 2.6.4 that at every iteration a max-flow graph is

constructed followed by the min-cut operation. It was reported that the worst-case

computational complexity of this operation is O(mn2|C|) [85] where |C| is the cost

of the minimum cut, n is the number of nodes and m is number of edges in the max-

flow graph. Note that n and m include auxiliary nodes and edges, and bounded by

O(|V |) and O(|E|), respectively. The algorithm is guaranteed to terminate in O(|V |)
cycles under the assumptions that energy terms are constant, thus independent of the

graph size. However, it is shown that it takes a few cycles before the termination, in

practice [83]. Therefore, computational complexity of the lines 11-12 can be reported

as O(|L|mn2|C|).

The iterative approach between lines 7-14 continues for a predefined number of iter-

ations. If it is not specified it halts when the convergence criterion is met (line 14).

In the experiments, number of iterations t that the algorithm requires to converge was

quite reasonable and insignificant relative to number of nodes |V |. In fact, at every
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Algorithm 1 Steps of f-MRF Clustering Method

Require: Voxel time series Ṽ

Ensure: Label estimation X̂ .

1: Construct the graph G = (V , E) on 3−dimensional voxel grid.

2: Calculate unary features by using Eq. (3.12)

3: Calculate smoothing energy terms Ep and Ef by using Eqs. (3.17 and 3.18),

respectively.

4: Initialize a spatially constrained random labeling X̂1.

5: L1 ← L
6: t← 0.

7: do

8: t← t+ 1

9: Estimate Θ̂t based on the labeling X̂ t by using Eqs. (3.25 and 3.26).

10: Calculate unary energy term Ed
t by using Eq. (3.7) for all voxels and cluster

labels. Meanwhile, identify the clusters C`, where ` ∈
−
L that consist of less

number of voxels than the cluster size threshold.

11: Lt+1 ← {Lt} − {
−
L}.

12: Initialize α-expansion algorithm on graph G.

13: X̂ t+1 ← Run α-expansion algorithm with parameters {Edt, Ep, Ef ,Lt+1}.
14: while X̂ t 6= X̂ t+1

15: return X̂ t+1

iteration, since some of the clusters are ignored due to the size threshold (
−
L), the

α-expansion algorithm runs on a subset of labels (Lt+1 ⊂ L), which dramatically

decreases the run time of the energy minimization step.

3.10 Evaluation of the Output of f-MRF Segmentation

The output of the f-MRF algorithm yields a partition of the brain into a set of ho-

mogeneous regions. We expect that some of the active regions are responsible of

generating the underlying cognitive process. We also expect that majority of the vox-

els which belongs to large clusters do not contribute to the cognitive process. In order
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to measure degree of validity of the f-MRF segmentation, we need to define some

measures. In this study, the validity of the segmentation is evaluated by the classifi-

cation performance of the resulted segments. In order to identify informative voxels,

we employ the f-MRF as initial step of the classification pipeline. More specifically,

voxel selection and feature extraction steps are performed on top of the rigorously

generated clusters. Then, the voxels in the active segments are used as the feature

vectors of a classification algorithm. Note that a cluster may consists of several func-

tionally similar regions. Hence, instead of using the regions individually, we employ

the cluster with its constituent segments.

Redundant and non-informative voxels are eliminated from the data by means of se-

lecting the most informative clusters. In order to select the clusters of activated voxels

which contribute to the underlying cognitive stimuli, we propose two different greedy

approaches, namely, selection by cross validation (SCV) and selection by Kullback

Leibler divergence (SKL). After selecting the active clusters by using the training

data, we compute the classification performance on the test data.

Let F tr and F te be our training and test feature matrices of size NtrxM and NtexM

whereNtr andNte are number of training and test samples, respectively, andM is the

number of features. Let ctr = {c1 . . . cNtr} be the vector of class labels for training

data and cte = {c1 . . . cNte} be the ground truth vector of class labels for test data,

respectively. Note that each class label ci represents category of the stimulus (sample)

in the fMRI experiment.

After training a classifier with F tr and ctr, and asking class labels for the unseen test

data F te, the classifier yields a vector of estimated class labels ĉte = {ĉ1 . . . ĉNte}.
Accuracy of the classifier, acc, is calculated by using

acc =
1

N

Nte∑
i=1

δ(ci, ĉi), (3.27)

where δ(ci, ĉi) = 1 if ci = ĉi and δ(ci, ĉi) = 0 otherwise.

Note that in the voxel selection tasks SCV and SKL, columns of the feature matrices

F tr and F te consist of intensity values of the selected voxels. Therefore, the number

of features M corresponds to the number of selected voxels. Performance of a cluster

is measured by applying K-fold cross validation on the training data, leaving out equal
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Algorithm 2 Steps of cluster selection by cross-validation (SCV)

Require: Labeling X and the corresponding partitioning C = {C1 . . . CL}, training

datasetDtr divided into folds, vectors of the class labels for training folds ctr and

test folds cte, threshold T that determines number of selected clusters.

Ensure: A subset of clusters C̃ ⊂ C that yields highest cross-validation perfor-

mance.

1: for ` = 1→ L do

2: {F `
tr,F

`
te} ← Construct training and test feature matrices of the cluster C`

on the training data Dtr by concatenating intensity values of its constituent

voxels.
3: Ω` ← Perform classification on {F `

tr, ctr,F
`
te, cte} in order to calculate the

selection criterion, i.e., the classification accuracy, of cluster C`.
4: end for

5: Ĉ ← Sort clusters in descending order with respect to the selection criterion Ω.

6: for t = 1→ T do

7: C` ← Ĉ(t),

8: {F `
tr,F

`
te} ← Construct training and test feature matrices of the cluster C`,

9: F
(t)
tr ← F

(t)
tr ∪ F `

tr and F (t)
te ← F

(t)
te ∪ F `

te,

10: ψ(t) ← Find the classification accuracy of {F (t)
tr , ctr,F

(t)
te , cte}.

11: end for

12: t← argmax
t

ψ(t)

13: C̃ ← {Ĉ(1) . . . Ĉ(t)}.
14: return C̃

number of samples per class on each fold. Hence, F te is composed of the fold that is

separated for the test.

Mitchell et al. [7] estimate discriminating power of a voxel by using accuracy of a

single-voxel classifier over the training data of only the corresponding voxel. Like-

wise, in the SCV approach, a separate classifier is trained for each cluster using only

the observations of its constituent voxels, and accuracy of the classifier is considered

as discriminating power of the cluster. Starting from the cluster with highest classifi-

cation accuracy, clusters are added iteratively in a descending order of the classifica-
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tion accuracy. Hence, at each iteration t, performance on the expanding training and

test feature matrices F (t)
tr and F (t)

te is computed. Note that a feature matrix F consists

of the voxel intensity values which comes from the clusters of highest recognition ac-

curacy. Finally, the clusters that give the highest classification performance together

are selected. Steps of the SCV is provided in the algorithm (2).

In the second approach, SKL, we assess the informative power of a cluster by means

of the discrepancy between class conditional densities the cluster yields. In an ideal

clustering, similarly activated voxels are expected to be fallen into the same clus-

ters. Based upon this fact, we can build a heuristic in order to estimate informative

power of the clusters. We make an assumption that entries of the feature matrix F`

of a cluster C`, i.e., intensity values, follows the same distribution. More specifically,

sources of the observations, i.e., the voxels, are assumed to be the same. By doing so,

we measure how successfully the cluster, with its constituent regions, discriminates

samples of different categories. Accordingly, the class conditional densities of the

samples, i.e., intensity values, are estimated by using Parzen Window approach. In

order to calculate the difference between two class conditional distributions, symmet-

ric Kullback-Leibler divergence [103] is used as follows

D(P,Q) =
DKL(P ‖ Q) +DKL(Q ‖ P )

2
, (3.28)

where P and Q are discrete class conditional distributions, and DKL is Kullback-

Leibler divergence. It is defined as a non-symmetric measure of difference between

discrete distributions P and Q:

DKL(P ‖ Q) =
∑
i

P (i)ln
P (i)

Q(i)
, (3.29)

In SKL, clusters are greedily accumulated in the order of discrepancy scores, i.e.,

symmetric KL-divergence. Cluster selection is handled similar to the SCV approach.

As it is in the SCV, the selected clusters are determined by the cross-validation accu-

racy. Note that SCV and SKL approaches only differ in the cluster selection criteria

Ω. See the steps of the SKL in algorithm (3).

By using SCV and SKL criteria in cluster selection, we aim to see how well the

clusters decompose the feature space into coherent partitions. More specifically, the

clustering result is expected to increase the representative power of the data. By
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Algorithm 3 Steps of cluster selection by Kullback-Leibler divergence (SKL)

Require: Labeling X and the corresponding partitioning C = {C1 . . . CL}, training

datasetDtr divided into folds, vectors of the class labels for training folds ctr and

test folds cte, threshold T that determines number of selected clusters.

Ensure: A subset of clusters C̃ ⊂ C that yields highest cross-validation perfor-

mance.

1: for ` = 1→ L do

2: Ω` ← Estimate the selection criterion, i.e., symmetric KL-divergence, of clus-

ter C` by using Eq. (3.28).
3: end for

4: Ĉ ← Sort clusters in descending order with respect to the selection criterion Ω.

5: for t = 1→ T do

6: C` ← Ĉ(t),

7: {F `
tr,F

`
te} ← Construct training and test feature matrices of the cluster C`,

8: F
(t)
tr ← F

(t)
tr ∪ F `

tr and F (t)
te ← F

(t)
te ∪ F `

te,

9: ψ(t) ← Find the classification accuracy of {F (t)
tr , ctr,F

(t)
te , cte}.

10: end for

11: t← argmax
t

ψ(t)

12: C̃ ← {Ĉ(1) . . . Ĉ(t)}.
13: return C̃

partitioning the feature space into functionally homogeneous and spatially coherent

regions, we expect to get more informative feature subsets compared to all features.

We have conducted another test in order to compare the performance of the clustering

under a simple, yet popular feature extraction task. In the fMRI literature, repre-

senting a group of voxels by their average time series is a widely accepted step in

data analysis. It is applied by carrying various motivations such as noise elimination,

dimensionality reduction or feature extraction [16, 10, 9]. Accordingly, we can rep-

resent each cluster with average of the intensity values of its constituent voxels. In

the context of classification, the cluster-based averages are concatenated in order to

construct a new feature matrix F . This test is referred with the abbreviation AVG.

Steps of the AVG approach is provided in algorithm (4).
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Algorithm 4 Steps of feature matrix construction under AVG approach

Require: Labeling X and the corresponding partitioning C = {C1 . . . CL}, dataset

D.

Ensure: Feature matrix F .

1: for ` = 1→ L do

2: F ` ← Find the representative signal of cluster C` by averaging time series of

its constituent voxels.
3: F ← F ∪ F `.

4: end for

5: return F

3.11 Summary

In this chapter, the proposed segmentation method, f-MRF which partitions the brain

into a set of homogeneous regions is explained. Main purpose of the f-MRF is gather-

ing the segments of similarly activated voxels into the same clusters by using activity

patterns in the fMRI data, hence providing clusters of informative voxels as well as

redundant (non-informative) voxels. Differently from the existing solutions in the

fMRI literature, f-MRF employs two different feature sets, namely unary features

and pairwise features simultaneously. While the unary features reveals activation

patterns of the voxels, the pairwise features ensures functional homogeneity and spa-

tial continuity. f-MRF formulates the clustering problem as energy minimization un-

der Markov Random Fields. Energy function of the f-MRF consist of three different

terms, namely, unary, potts and functional energy terms, where we incorporate the

functional energy term into the MRF model in order to exploit local functional in-

teractions in the fMRI data. The method starts by modeling the voxel space with a

mixture model over the unary features. By iteratively estimating the cluster labels

given the mixture model and parameters of the mixture model given the current con-

figuration of labels, f-MRF yields the labeling that minimizes the energy. f-MRF is

proposed as an initial step for classification of the cognitive states. Hence, we evaluate

performance of the final labeling by applying voxel selection and feature extraction

operations on top of the clusters.
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CHAPTER 4

EXPERIMENTS TO ANALYZE VALIDITY OF THE F-MRF

METHOD

In this chapter, behavior of the f-MRF and compared algorithms are examined on a

real fMRI data of visual object recognition. In the analysis section, we observe effects

of the energy weight parameters of f-MRF on the energy function during the iterative

solution. Moreover, the unary and pairwise features of the f-MRF are analyzed, and

contribution of the functional energy term is presented.

In the comparative results section, f-MRF is compared with three well-known algo-

rithms, namely, K-Means, Gaussian Mixture Model (GMM) and Normalized Cuts

(nCut). We propose partitioning the high-dimensional voxel space, i.e., feature space,

into a set of homogeneous segments in order to increase representative power of the

data for brain decoding tasks. Therefore, quality of the segmentation results is evalu-

ated by using classification performance. Accordingly, by constructing feature matri-

ces under different voxel selection and voxel agglomeration routines which are per-

formed on the clusters, classification performance is computed for each segmentation

algorithm. Moreover, we provide illustrations of example segmentation results, and

make an evaluation about size and activation patterns of the clusters.

4.1 fMRI Data Acquisition

In this study, we have conducted validation tests on a real fMRI dataset that consists

of the neural activations during a visual object recognition experiment. fMRI samples

are acquired under a one-back repetition detection task [6]. The subjects are presented
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Figure 4.1: A sample sequence of the visual recognition experiment. After presenta-
tion of the stimulus image for 4 seconds, a rest period of 8,10 or 12 seconds follows
[6].

visual stimuli for 4 seconds and asked whether category of the current stimulus is

same with the previous one’s. In order to clearly separate the responses given to the

stimuli, the stimuli onsets are followed by 8, 10 or 12 seconds of rest periods [104].

The visual stimuli consist of gray-scale images that belong to two categories, namely

birds and flowers. The images are randomly selected for each run and are mutually

exclusive across runs. fMRI measurements are recorded by using 3T Siemens MRI

scanner with a TR of 2 seconds. SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/spm/) is

used for pre-processing of the images which are realignment of the functional images

and co-registration to the anatomical image.

fMRI data acquisition experiment is conducted in 6 runs on 5 participants where one

of the participants is discarded due to an error during the fMRI experiment. At each

run, measurements from 36 stimuli are recorded in a total duration of 252 samples,

where each class has equal number of samples. In order to preserve continuity of the

time courses, an entire run is selected for either training or test dataset. The fMRI

dataset is divided into two equal parts. Training data consists of samples from odd

numbered runs (1,3,5) while even numbered runs (2,4,6) are reserved as test data.

Thus, the training and test data consist of 54 samples for each class. Time series of

every voxel are first detrended to account for baseline shifts and scanner drift across
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Figure 4.2: Time series of a voxel. Every 6-sample period belongs to a stimulus.
Average of 2nd and 3rd observations after the stimulus onset (marked with red circles)
is used in classification.

the runs, and then normalized so that each voxel has mean 0 and standard deviation 1

in a run.

A voxel ṽi consists of the fMRI measurements collected at every 2 seconds (TR)

where the measurements include both the responses to the stimuli and the rest periods

(see Fig. 4.1). Let F tr and F te be our training and test feature matrices of size

NtrxM and NtexM , which are generated by using voxel intensity values. Ntr and

Nte are the number of training and test samples, respectively. In this study, since we

evenly split the data by means of odd and even runs, Ntr and Nte are 54. Note that

size of the voxel observations ṽi is larger than Ntr + Nte. In the feature matrices,

there exist one entry for each stimulus while we have 6 to 8 observations in the voxel

time series. Accordingly, entries of the feature matrices F tr and F te correspond to

average of 2nd and 3rd observations after the stimulus onset (see Fig. 4.2). On the other

hand, dimension of the feature space M varies with respect to the voxel selection and

feature extraction approaches. Let ctr = {c1 . . . cNtr} be the vector of class labels for

training data and cte = {c1 . . . cNte} be the ground truth vector of class labels for the

test data, respectively. Each entry of these vectors corresponds to the category of the

stimulus presented, i.e., bird or flower.
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4.2 Experimental Setup

In this study, we perform brain decoding in order to evaluate quality of the segmen-

tation results. Hence, category of the stimulus, i.e., class labels, for the fMRI obser-

vations are required. After the fMRI data is divided into training and test data, the

routines of segmentation and feature matrix design for brain decoding are performed

on the training data. The test data is remained unseen until the classification.

After training a classifier with F tr and ctr, and asking class labels for the unseen test

data F te, the classifier yields a vector of estimated labels ĉte = {ĉ1 . . . ĉNte}. We can

calculate accuracy of the classifier, acc, by using

acc =
1

N

Nte∑
i=1

δ(ci, ĉi), (4.1)

where δ(ci, ĉi) = 1 if ci = ĉi and δ(ci, ĉi) = 0 otherwise. We employ k-Nearest

Neighbor (kNN) algorithm in order to compute classification accuracy, where the k

value has an essential role on performance of the classifier. Thus, optimal value of the

k is determined among the candidates starting from 1 to
√
Ntr by running a K-Fold

cross-validation on the training data.

Recall from chapter 3 that, the energy function of the f-MRF consists of three hyper-

parameters, {βd, βp, βf}, which adjust the weight of the energy terms. Initial number

of clusters, βc, is another hyper-parameter that is common for all clustering methods.

In this study, clustering results are obtained by conducting a grid search on these

parameters. All clustering methods f-MRF, K-Means, GMM and nCut are initialized

with same βc values such that βc ∈ {30, 50, 100, 200, 300, 500, 700}.

Moreover, f-MRF results in less number of clusters than the initialization. In order

to see the performance of the compared clustering methods using small number of

clusters, we also initialized them with the number of f-MRF’s resulted clusters which

varies across subjects (see Table 4.1). In the following sections, these results are titled

with "Same # of Clusters".

For f-MRF, weight of the functional energy term βf are varied while the parameters

βd and βp remain constant. Then, our parameter search space for the f-MRF becomes

βf x βc, where βf ∈ {0.05, 0.3, 0.5, 1, 2, 2.5, 3, 3.5, 4, 5}. Note that the range of pa-
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Table 4.1: Number of clusters in f-MRF results, which are employed as the initial
number of clusters, βc, for K-Means, GMM and nCUT algorithms. Note that f-MRF
is initialized with the number of clusters βc ∈ {30, 50, 100, 200, 300, 500, 700}.

Participants # of f-MRF’s resulted clusters
Participant 1 13 22 31 40 49 58 67
Participant 2 11 19 23 32 36 47 60
Participant 3 7 11 17 21 27 38 53
Participant 4 13 22 32 41 50 60 69

rameter sets are determined empirically.

After getting the labeling with all parameter configurations, feature matrices F tr and

F te are constructed for each segmentation result. Recall from chapter 3.10 that three

approaches, namely SCV and SKL for voxel selection and AVG for voxel agglomer-

ation are proposed. In all three approaches, a cluster is taken into consideration with

its all constituent segments.

In SCV, discriminative power of the clusters is measured by using classification ac-

curacy. The accuracy is computed by applying cross-validation on the training data

of the constituent voxels of each cluster. In SKL criteria, on the other hand, the clus-

ters are evaluated with the symmetric Kullback-Leibler divergence between the class

conditional densities. Both criteria select the clusters by using an iterative approach.

Based on the evaluation score, i.e., accuracy or KL divergence, clusters are greed-

ily selected. On the training data, classification performance is calculated by using

constituent voxels of the selected clusters. The set of clusters that gives the highest

accuracy is obtained at output of the SCV and SKL algorithms. In this study, both

approaches continue until 20 iterations. In other words, outputs of SCV and SKL is

allowed to consist of at most 20 clusters, where number of selected clusters is ob-

served between 1 and 10 in the experiments. Feature matrices F tr and F te consists

of the voxels which come from the selected clusters, where the entries correspond to

average of 2nd and 3rd observations after the stimulus onset. Note that the size of the

feature space varies with respect to the size and number of selected clusters.

In the AVG approach, each cluster is simply represented with the average time series

of its constituent voxels. The representative signals of the clusters are employed

in order to construct F tr and F te feature matrices. Entries of the feature matrices
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correspond to the average of 2nd and 3rd observations on the representative signal.

The size of the feature space is equivalent to number of the clusters. For K-Means

and GMM, it is equal to preset number of clusters βc. Since nCut and f-MRF may

result in empty clusters, dimension of the feature space may be less than βc.

For every clustering result, classification accuracy under the aforementioned approaches

is computed. Over all clustering results of each algorithm (7 for nCut, GMM and K-

Means, 70 for f-MRF) average and maximum accuracy is provided in the following

sections.

4.3 Analysis of the f-MRF

In this section, we analyze behavior of the f-MRF method based on the empirical ev-

idence under different hyper-parameter settings. Recall that energy function of the f-

MRF is controlled by three hyper-parameters, {βd, βp, βf}, by adjusting weight of the

energy terms. Moreover, we have and additional βc parameter, initial number of clus-

ters. In the experiments βd and βp are kept constant while βc ∈ {30, 50, 100, 200, 300,

500, 700} and βf ∈ {0.05, 0.3, 0.5, 1, 2, 2.5, 3, 3.5, 4, 5}. Hence, we have a search

space of βc x βf for f-MRF.

4.3.1 Effect of the hyper-parameters βf and βc on Convergence of the Iterative

Solution

Recall from chapter 3.8 that in order to estimate latent labels, by iteratively updating

the model parameters and the labeling, f-MRF tries to find a better fit to the data until

a convergence is reached. In this study, as a convergence criterion, we prefer using

number of the modified labels between consecutive iterations. In other words, the

algorithm looks for the solution until any label change occurs. In [18], for a similar

clustering method, Rylai et al. propose using fractional change in the energy between

two iterations. Accordingly, if the fractional change is smaller than the threshold

(0.1% for example), then the algorithm stops.

In Fig. (4.3), details of the iteration steps is shown for randomly selected clustering
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Figure 4.3: (a) Change in the total energy at every iterations of the solution and (b)
total number of the modified labels with respect to the previous iteration under various
βc and βf settings.

results. In the figure 4.3-a, total energy of the system during the iterative solution

is plotted. In the first iterations of the solution (1-5), there is a dramatic decrease

in the energy. Since the algorithm starts from a random configuration, in the first

steps, the mixture model does not represent the data well. Besides, the unary costs

which determine the unary energy, Ed, are almost uniform. Hence large penalties are
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applied to the label assignments. As the iterations continue, clusters provide a better

fit to the voxel space with an income of stabilized costs, thus lower unary energy.

Independent from initialization of the βc and βf parameters, the model reaches a

convergence around iteration 10, where the energy becomes steady. Note that the

energy does not gradually decrease during the iterations. Small increases may be

observed. However, these increments are negligible (in the order of 10−4 - 10−6 with

respect to the previous iteration).

In figure 4.3-b, the number of the modified labels are illustrated during the iterations.

Similar to energy curve, most of the changes occur in the first 5 iterations, and im-

provements for rest of the iterations are almost negligible (in the order of 10s out

of ∼40000). Notice that the bumps before iteration 5 are due to the major modifi-

cations on the mixture model at the previous iteration, i.e., large amount of clusters

are discarded in order to provide a better fit. Recall from chapter 3.4 and Eq. (3.8),

large number of clusters introduces larger unary costs especially when the model is

not stable during the first iterations. Hence, iterative solution of the f-MRF favors less

number of clusters.

It can be seen from Fig. (4.4) that when we compare figures (a) and (b), initial cluster

number, βc parameter barely affects the convergence point. On the other hand, func-

tional energy weight, βf has a dominant role on the number of iterations required for

a convergence. Notice that the higher values βf takes, the faster the convergence is

reached. This is because the fact that f-MRF becomes more aggressive when effect

of the smoothing parameters (βf and βp) is larger. More specifically, large pairwise

costs dominate the unary costs, and force the model to favor assignment of the same

labels to the neighboring voxels. We can also observe from Fig. (4.4) that the energy

mainly varies with respect to βc parameter. This fact may essentially be attributed to

the amount of unary penalty. As it is explained previously, probability of a voxel’s be-

ing assigned to a cluster is much larger when number of the candidates is less, which

introduces lower penalty values.
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Figure 4.4: Change in the total energy at every iterations of the solution. (a) βf is
constant at 2.5 and βc varies over all possible initial values, (b) βc is constant at 100

and βf varies over all possible settings.

4.3.2 Analysis of the Unary and Pairwise Features

Recall from chapter 3 that the f-MRF method makes use of two feature sets namely

unary and pairwise features. By using a univariate approach, unary features of a voxel

are defined as the statistical similarity between time series of the voxel and different

theoretical response signals, where each feature corresponds to activity score of the
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Figure 4.5: (Vertical axis - normalized between 0 and 1) Pairwise Euclidean distance
between neighboring voxels i and j, du(i, j). (Horizontal axis) Pairwise correlation
distance between voxel time series of the voxels i and j, dp(i, j).

voxel under the corresponding experimental condition(s). On the contrary, pairwise

features are measures of the functional similarity between pairs of voxels. In order

to see how correlated these two feature sets, the distance between each neighboring

voxels are calculated by using both unary and pairwise features.

Let vi be the vector of d−dimensional unary features, and Ni be the neighborhood

of the ith voxel. Euclidean distance between pair of voxels i and j over the unary

features du(i, j) is defined by

du(i, j) =
√

(vi − vj)T · (vi − vj), (4.2)

where j ∈ Ni. Since pairwise features, by definition, correspond to the similarity of

neighboring voxels i and j, which take values between 0 and 1, the distance can be

defined as

dp(i, j) = 1− ρij (4.3)

where ρij is Pearson correlation between time series of the voxels i and j.

In Fig. (4.5), a scatter plot is provided. As it can be seen from the plot, these two dis-

tances are not equivalent for most of the instances. Only pairs of the highly correlated

voxels give similar distance values (particularly around 0-0.2). The less correlated a
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Table 4.2: Entries of the first three column are average ("Mean-Acc"), maximum
("Max-Acc") and standard deviation ("Std-Acc") of the accuracies that are obtained
on the clustering results of each parameter configuration. In the fourth and fifth
columns ("Mean-ClNo" and "Std ClNo"), average and standard deviation of the fi-
nal cluster numbers in the clustering results are provided, respectively.

Mean-Acc Max-Acc Std-Acc Mean-ClNo Std ClNo
f-MRF 0.86 0.93 0.04 38.43 18.53

f-MRF(βf = 0) 0.81 0.90 0.08 40 41.63

pair of voxels, the more likely it is to observe differences between unary and pairwise

features. By inspecting the Fig. (4.5), we can also say that partial correlation of the

time series (around 0.5) is not necessarily derived from similar activation character-

istics.

4.3.3 Analysis of Contribution of the Functional Energy

In order to observe the contribution of the functional energy term to the overall per-

formance, we have conducted SKL, SCV and AVG tests on the f-MRF results where

the functional energy termEf is simply ignored by setting the βf = 0. In other words,

f-MRF results only rely on unary and Potts energy terms. Since all three approaches

give similar results, only performance of the SKL is provided in Table (4.2) and Fig.

(4.6).

As it can be observed from fig. 4.6, in both settings, there is a decrease in the clas-

sification performance as weight of the pairwise cost (βforβp) increases. Because

the cost of assigning different labels to the neighboring voxels is getting larger, the

MRF model becomes less tolerant to such occasions. It aggressively gathers voxels

into the same cluster, and hence the final labeling results in fewer number of clus-

ters. Yet positive effect of the functional energy can be observed from the results. By

the help of functional energy, f-MRF applies spatial regularization selectively. More

specifically, the model starts gathering the neighboring voxels into the same cluster

from functionally most similar voxel pairs. Hence, functional energy is more robust

to initialization of the weight parameters than the standard Potts energy.

In Table (4.2), the classification results of Fig. (4.6) is summarized. First three
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Figure 4.6: Classification accuracy of f-MRF results. Each entry corresponds to SKL
performance of a clustering result. At the right most column initial number of clus-
ters are listed. (a) Functional energy weight βf varies while unary and Potts energy
weights remain constant (βd = 1, βp = 1). (b) Potts energy weight βp changes while
unary and functional energy weights remain constant (βd = 1, βf = 0).

columns of the table shows average, maximum and standard deviation of the accura-

cies in Fig. (4.6). In columns fourth and five, mean and standard deviation of the final

number of clusters under all parameter settings are presented. As it can be seen from

the table, both of the mean and maximum accuracy values are better when functional

energy is introduced to the total energy term. Moreover, variance in the number of

the clusters and classification accuracy is much larger when the functional energy is

not employed.

4.4 Comparative Results

f-MRF can be considered as a hybrid model which combines the clustering approaches

that employs either unary or pairwise features. Hence, we select the comparative clus-

tering methods carefully in order to reveal advantages and disadvantages of such an

hybrid approach. In this study, f-MRF is compared with standard K-Means, Gaussian

Mixture Models (GMM) and spatially constrained spectral clustering (SCSC) [15]

algorithms, where the abbreviation SCSC is used interchangeably with nCut.

Originally, Craddock et al. [15] apply the SCSC clustering algorithm on the resting-
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state fMRI data in order to generate a continuous brain atlas. SCSC performs nor-

malized cut (nCut) on graph G = (V , E) of the MRF model where the set of egde

weights E consist of the correlation values between neighboring voxel, i.e., pairwise

features. Since SCSC and f-MRF operate on the very same graph, we employ SCSC

in order to see effect of including the pairwise features only. Likewise, both K-Means

and GMM methods are preferred in order to make a comparison between our hybrid

approach and the approaches that are solely based on unary features.

In Figs. (4.8, 4.9, 4.10 and 4.11), example results for the four algorithms are illus-

trated from three viewpoints, and a bar plot showing size of the clusters in sorted

order is provided. Since it is unclear in advance how many clusters f-MRF returns,

first we get labeling of the f-MRF which consists of 60 clusters. Then, K-Means,

GMM and nCut algorithms are initialized with 60 clusters. In Fig. (4.7), a 3d brain

template is also illustrated as a reference by using the very same viewpoints that we

visualize the clustering results.

In Fig. (4.8), f-MRF yields a partitioning that collects vast amount of voxels (28860

out of 37944) into a single cluster. It shows that non-activated voxels overwhelmingly

spread across the brain in this visual recognition task. The MRF model, by accumu-

lating the non-activated voxels under the same cluster, is able to capture structure of

the data. The remaining clusters mostly consists of the voxels that show distinctive

patterns of activation. Notice that voxels from the primary visual area are isolated

Figure 4.7: Visualization of a 3d brain model as a reference in three different view-
points which are also used in Figs. (4.8, 4.9, 4.10 and 4.11). Azimuth and elevation
values set angle of the view in the horizontal coordinate system.
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Figure 4.8: Visualization and cluster size plot (clusters are in sorted order with re-
spect to size) for an example segmentation result of the f-MRF, where the parameters
{βd, βp, βf , βc} are initialized with {1, 1, 3.5, 700}.

Figure 4.9: Visualization and cluster size plot (clusters are in sorted order with respect
to size) for an example segmentation result of the K-Means, where the parameter {βc}
is initialized with {60}.

62



Figure 4.10: Visualization and cluster size plot (clusters are in sorted order with re-
spect to size) for an example segmentation result of the GMM, where the parameter
{βc} is initialized with {60}.

Figure 4.11: Visualization and cluster size plot (clusters are in sorted order with re-
spect to size) for an example segmentation result of the nCut, where the parameter
{βc} is initialized with {60}.
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from the non-activated voxels, which is an expected outcome of the fMRI experi-

ment. Moreover the resulted clusters are barely scattered compared to the results of

K-Means and GMM algorithms due to the spatial regularization of the f-MRF model.

Recall that clusters may consist of several continuous regions. Although the model

enforces spatial continuity, the distributed patterns are represented in terms of discon-

nected regions of the clusters.

In order to quantitatively evaluate amount of scattering in the clustering results, we

define the measure, S, for the clustering C = {C1 . . . CL} as follows

S =
1

L

L∑
`=1

|R`|
|C`|

, (4.4)

where R` is the regions of the cluster C` and |R`| is the number of regions. Note

that the regions correspond to the disconnected components on the graph of MRF.

And, |C`| is number of the voxels in the cluster. Accordingly, if the clusters consist of

one-voxel-sized regions where there is not any neighboring relationship between the

constituent voxels, then S gives the maximum scattering score of 1. The values near

zero indicate that the clustering is spatially continuous.

In Fig. (4.12), scattering scores of the algorithms are plotted. As it is expected,

spatially constrained nCut gives continuous partitions (Fig. 4.10) while K-Means

(Fig. 4.9) and GMM (Fig. 4.10) methods result in highly scattered partitions in the

absence of spatial regularization. On the other hand, f-MRF segmentation controls

the problem of scattering via the pairwise energy terms, Ef and Ep.

In Fig. (4.13), we aim to present representative power of the f-MRF. For this pur-

pose, based on the unary features, i.e., activation statistics, starting from the clus-

ter with minimum activation score, clusters are gathered. Recall that in the f-MRF

method, clusters are represented with mixture components where the parameters

θ` = {µ`,Σ`} of the Gaussian component is defined on the unary features. Like-

wise, activation statistics of the cluster C` can be regarded as its mean vector µ`.

Moreover, each element of the unary feature vector vi = {ρn}dn=1 of the ith voxel

corresponds to the voxel’s coherence with the underlying experimental condition(s).

Therefore, by looking maximum value of the unary feature vector, regardless of the

causing condition, we can estimate an activation score for the voxel. Similarly, by
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Figure 4.12: Average and standard deviation of scattering scores are calculated over
all clustering results of the algorithms that are initialized with the same number of
clusters, βc ∈ {30, 50, 100, 200, 300, 500, 700}.

taking maximum value of the µ`, activation score of the cluster C` can be measured.

As we can see from the plot in Fig. (4.13), vast amount of the voxels (28860 out

of 37944) are coming from the least-activated cluster. Moreover, the small flatness

indicates that small clusters do not necessarily consist of activated voxels.

The regular or almost-regular increase in the curves of nCut, K-Means and GMM is

mainly because of similarly-sized clusters compared to cluster size distribution of the

f-MRF (see Figs. 4.8, 4.9, 4.10 and 4.11). Both K-Means and SCSC algorithms are

strongly biased towards a clustering with uniformly sized clusters due to their ob-

jective functions. K-Means finds a labeling that minimizes within-cluster variance.

Likewise, the SCSC aims at finding a cut so that between-cluster similarity is mini-

mized. When a cut can not be determined uniquely, nCut method favors equal-sized

clusters [15]. It can be seen from the cluster size plots that both K-Means and nCut

find partitions that tend to have similar number of voxels. Although GMM is able

to model various-sized clusters theoretically, it is observed that GMM fails on this

dataset.
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Figure 4.13: Cumulative distribution of the cluster size, where clusters are sorted in
ascending order with respect to the cluster activation score. Horizontal axis is number
of the clusters added, and the vertical axis corresponds to the total number of voxels
in the combined set.

4.4.1 Classification Performance

In this section, by using the SCV, SKL and AVG approaches, we compute the classi-

fication accuracy for f-MRF, SCSC (nCut), GMM and K-Means segmentation algo-

rithms. Moreover, in order to evaluate how unary features affect the performance, K-

Means algorithm is applied on the training feature matrix, F tr, which is constructed

by using all voxels in the brain (referred as K-Means-D).

As it is explained in section (4.2), representative power of the segmentation algo-

rithms are evaluated by using the classification performance. For each participant,

segmentation results of the four algorithms are obtained for all possible initializations

of the parameters. For the algorithms SCSC (nCut), GMM, K-Means and K-Means-

D, the number of clusters are is initialized with βc ∈ {30, 50, 100, 200, 300, 500, 700}.
For the f-MRF, in addition to the βc, weight of the functional energy takes the values

βf ∈ {0.05, 0.3, 0.5, 1, 2, 2.5, 3, 3.5, 4, 5}. Therefore, we have 70 different partition-

ing results for the f-MRF, while number of the results is 7 for the compared algo-

rithms. Under three approaches, namely SCV, SKL and AVG, classification accuracy

for each partitioning result is computed. In Figs. 4.14a, 4.15a and 4.16a classifica-
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Figure 4.14: Classification accuracy for the f-MRF, SCSC (nCut), GMM, K-Means
and K-Means-D clustering algorithms computed under SCV approach.

tion results are plotted. The bar plots show average accuracy of the all partitioning

results for each clustering algorithm. The dots on each bar indicate the maximum

performance we get with the corresponding clustering method.

As it an be seen from the plots, the classification performance of f-MRF outperforms
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Figure 4.15: Classification accuracy for the f-MRF, SCSC (nCut), GMM, K-Means
and K-Means-D clustering algorithms computed under SKL approach.

the other algorithms for all participants when the maximum performance is consid-

ered. On the average accuracies, only for participant 3, the K-Means algorithm gives

competitive results.

Recall that f-MRF finds less number of clusters than the initialized. Hence, in order
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Figure 4.16: Classification accuracy for the f-MRF, SCSC (nCut), GMM, K-Means
and K-Means-D clustering algorithms computed under AVG approach.

to make a comparison under same conditions, SCSC (nCut), GMM and K-Means

algorithms are initialized with same cluster numbers with f-MRF results (see Table 4.1

for the initial number of clusters). In Figs. 4.14b, 4.15b and 4.16b, the classification

performances computed in this setting are plotted. On the data of participants 1,2
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Figure 4.17: Classification accuracy of various voxel selection approaches. Accuracy
is computed after selecting the voxels by using SKL and SCV on f-MRF clustering
results, univariate voxel selection, and using all voxels.

and 4, performance of the compared algorithms decreases. However, again only for

participant 3, K-Means yield competitive performance in SCV, SKL approaches.

For all participants, when the clusters are represented with the average time series of

the constituent voxels, there are approximately 5% decrease in the performance of

f-MRF (see the plots in Figs. 4.16a and 4.16b). However, when it is compared to

other algorithms, accuracy of the f-MRF is significantly higher. This result indicates

that clusters of the f-MRF provide better representation for the fMRI time series.

Finally, performance of the f-MRF method is compared with the univariate voxel se-

lection approach. Recall that activation score of a voxel is estimated as maximum

value of the unary features. Starting from the 100 voxels with highest activation

score, classification accuracy is computed using the selected voxels until 3500 voxels

(∼ 10% of all voxels) are chosen in increments of 100. In other words, we employ

a univariate voxel selection approach based on the voxel activation score. In Fig.

(4.17), classification accuracy results are plotted. We also compute the accuracy by

using all voxels. The results clearly indicates that f-MRF outperforms the univariate

technique we employed. Moreover, classification performance of our univariate voxel

selection approach is higher than performance of the nCut and GMM algorithms in
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some cases, which shows that set of unary features is itself informative. There are

dramatic decreases on the accuracy when all of the voxels are employed. The per-

formances drop to just above chance level. This means that the non-activated voxels

excessively affect the classifier.

4.5 Summary

This chapter covers analysis of the proposed method and comparative evaluation re-

sults obtained on a real fMRI data of visual object recognition. First, we analyze the

effect of different initialization of the parameters on energy function of the f-MRF. It

is observed that our iterative solution algorithm is robust to parameter initializations.

In other words, the convergence point of the energy minimization is approximately

same for all parameter configurations. Moreover, initialization of the energy weights

{βd, βp, βf} has little effect on the initial and final energy compared to the parameter

βc, initial number of clusters. On the clustering results, we see that larger values of

the smoothing weights, i.e., βp and βf , make the model less tolerant to different la-

bel assignments for the neighboring voxels. Resulting in less number of clusters, the

model converges earlier.

Second, we compare quality of the f-MRF clustering results with well-accepted seg-

mentation algorithms, namely K-Means, spatially constrained spectral clustering (nCut)

and Gaussian Mixture Models (GMM). In order to see, how partitioning increase

representative power of the data, we evaluate performance of the segmentation algo-

rithms under brain decoding tasks, by using classification accuracy. In the compar-

ative results, it is observed that f-MRF is able to isolate non-activated voxels from

activated voxels by gathering them into a large cluster. Considering the fact that vast

amount of the voxels in a standard fMRI experiment are non-activated, we can say

that f-MRF successfully capture structure of the data. Moreover, compared to the

K-Means and GMM algorithms where no spatial regularization is employed, f-MRF,

due to its pairwise energy terms, yields less scattered clusters that consist of several

spatially continuous segments. In the brain decoding experiments, by using the clus-

ter results, voxel selection by means of cluster selection (SCV and SKL), and voxel

agglomeration (AVG) tasks are performed. In all three settings, f-MRF outperforms
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the compared segmentation algorithms. Lastly, classification accuracy is computed

using all voxels and voxels selected by a univariate selection approach. Here again,

f-MRF gives higher classification accuracy than the compared techniques. Moreover,

near chance level performance of all voxels emphasizes that prior analysis should be

useful before the brain decoding tasks.
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CHAPTER 5

CONCLUSION AND SUGGESTIONS TO FUTURE WORK

In this study, a segmentation method that is specially tailored for the fMRI data is pre-

sented. The proposed method, f-MRF, estimates latent cluster labels of the voxels by

using maximum a posterior (MAP) estimation, where it is equivalently reformulated

as energy minimization under Markov Random Fields (MRF) framework. Without

making any assumptions about the size and shape of the clusters, f-MRF is able to fit

structure of the fMRI data. More specifically, in an fMRI experiment, large amount

of the voxels are noisy, redundant or non-activated, hence uninformative. f-MRF

isolates the uninformative voxels by gathering them into a few large clusters. And,

the activated voxels are collected into much smaller and functionally homogeneous

clusters.

By simultaneously employing two different feature sets, namely unary and pairwise

features, f-MRF differs from the existing clustering techniques applied on the fMRI

data, where unary and pairwise features are complementary to each other under the

MRF framework. For crafting these features, f-MRF exploits basic assumptions and

well-accepted analysis techniques in the fMRI literature.

Set of unary features corresponds to the activation statistics of an individual voxel.

As it is in the univariate approach, time courses of a voxel is statistically compared

with theoretical BOLD signals that are generated under various experimental condi-

tions. We also try to capture the delayed voxel behavior by applying time shifts on

the BOLD signals. A higher similarity value between time series of a voxel and a

BOLD signal indicates that voxel is highly activated under the corresponding con-

dition. Pairwise features, on the other hand, is a measure of statistical similarity
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between two neighboring voxels, which is also referred as functional connectivity

in the literature. By incorporating the pairwise similarity into the model, we aim to

ensure both functional homogeneity and spatial continuity of the clusters. Pairwise

features basically reveal functional relations of a voxel in its neighborhood. Thus, in

the context of MRFs, they can be regarded as functional textures in the fMRI data.

Total energy of the f-MRF can be decomposed into three components namely, unary,

Potts and functional energy terms. While unary energy is modeling the data, Potts

energy is responsible for spatial smoothness of the labels. And, the functional energy

is a link between the observations and the labels. In other words, it regulates spatial

coherence of the labels by considering the local interactions of voxels.

Unary energy is defined as negative log-likelihood of the voxels given the cluster

labels. The voxel space is represented by a Gaussian Mixture Model (GMM) over

d−dimensional unary features, where each component of the mixture corresponds

to a cluster. The unary energy term basically determines characteristics of the clus-

ters. More specifically, we can claim that a cluster is activated or non-activated by

inspecting parameters (mean and variance) of the model. Potts energy term, on the

other hand, is used for the purpose of spatial regularization. The unary energy term,

itself, results in highly scattered clusters (recall test results of the compared clustering

algorithms). In order to enforce spatial continuity, Potts energy term applies a penalty

when neighboring voxels are assigned to different clusters. Although the functional

energy term has the same structure with Potts energy, amount of the penalty is deter-

mined by pairwise features. Accordingly, the more functionally similar neighboring

voxels, the larger it costs to set different cluster labels. Hence, functional energy term

ensures not only spatial continuity but also functional homogeneity of the clusters,

which also motivates the model to preserve the functional textures.

In order to find the a configuration that minimizes the total energy, we employ a

two-step iterative procedure. First, given the GMM parameters, cluster labels are

computed by sub-optimally minimizing the energy via α-expansion algorithm. In

turn, model parameters are re-estimated given the labeling. Starting from a random

configuration, yielding a better fit to the voxel space every iteration, the algorithm

continues until there is no change on the labels.
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The tests that we have conducted on the real fMRI data -a visual recognition experiment-

indicate that f-MRF reveals non-activated voxels as a single large cluster and collects

the activated voxels into much smaller clusters. Having such a partition on the voxel

space, i.e., feature space, where the data is expected to be represented better, we pro-

pose using the f-MRF for brain decoding tasks. Accordingly, voxel selection or voxel

agglomeration, i.e, feature extraction, steps can be applied on the clustering result

which already provides homogeneous groups of similarly activated voxels. Hence,

we evaluate the quality of partitioning of the feature space by means of classification

accuracy.

In the experiments, voxel selection is performed by means of selecting the most infor-

mative clusters. For this purpose, two heuristics namely SCV and SKL are proposed.

In both criteria, greedily evaluating the clusters on the training data, a feature matrix

is constructed by simply concatenating voxels of the selected clusters. As a feature

agglomeration practice, on the other hand, each cluster is represented with the average

time series of its constituent voxels (AVG), which is a common practice in cluster-

based analysis. In the case of AVG, the feature matrix is constructed by concatenation

of the representative signals.

As it can be seen from test results, classification performance of f-MRF under all three

tasks outperforms the comparative methods. Our findings on this dataset indicate

that methods that are based on the univariate voxel activation (K-Means and GMM)

generally represents the data better than the methods using pairwise similarity of the

voxels (nCUT). However, f-MRF, as a hybrid of both approaches, yields much better

performance. This can be explained by f-MRF’s reasonably preserving the spatial

coherence and functional textures in the data.

5.1 Future Work

One of the major disadvantage of the f-MRF is that it introduces more hyper-parameters

which are already hard to optimize. In this study, the weight parameters {βd, βp, βf}
of the energy terms are not optimized. Instead, by keeping the βd and βp constant,

a grid search is applied on a set of empirically determined values for βf . As we can
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see, the performance of the f-MRF under SKL heuristic is very promising. Hence,

we plan to construct an optimization function based on SKL criterion in order to

estimate weight parameters. If we optimize the final clustering by using the SKL

criterion which also determines the selected clusters, we expect to boost classifica-

tion performance. More specifically, the clusters will be specially tailored for the

classification task.

Moreover, in the cluster selection tests (SKL and SCV), number of selected clusters

is generally more than one. This fact can be used to construct a hierarchy, so that at

higher levels of the hierarchy, a subset of voxels that yields maximum classification

performance can be discovered.
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