EFFECT OF RING SIZE ON BENZIMIDAZOLE ACCEPTOR UNIT ON THE
PROPERTIES OF DONOR-ACCEPTOR-DONOR TYPE MONOMERS AND
THEIR ELECTROCHROMIC POLYMERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMİNE GÜL CANSU ERGÜN

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
POLYMER SCIENCE AND TECHNOLOGY

AUGUST 2015
Approval of the thesis:

EFFECT OF RING SIZE ON BENZIMIDAZOLE ACCEPTOR UNIT ON THE PROPERTIES OF DONOR-ACCEPTOR-DONOR TYPE MONOMERS AND THEIR ELECTROCHROMIC POLYMERS

submitted by EMİNE GÜL CANSU ERGÜN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Polymer Science and Technology
Department, Middle East Technical University by,

Prof. Dr. Gülbın Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Necati Özkan
Head of Department, Polymer Science and Technology

Prof. Dr. Ahmet M. Önal
Supervisor, Chemistry Dept., METU

Prof. Dr. Atilla Cihaner

Examining Committee Members:

Assoc. Prof. Dr. Akın Akdağ
Chemistry Dept., METU

Prof. Dr. Ahmet M. Önal
Chemistry Dept., METU

Asst. Prof. Dr. Seha Tirkeş

Asst. Prof. Dr. Murat Kaya

Asst. Prof. Dr. İrem Erel Göktepe
Chemistry Dept., METU

Date: 21.08.2015
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name : Emine Gül Cansu Ergün

Signature :
ABSTRACT

EFFECT OF RING SIZE ON BENZIMIDAZOLE ACCEPTOR UNIT ON THE PROPERTIES OF DONOR-ACCEPTOR-DONOR TYPE MONOMERS AND THEIR ELECTROCHROMIC POLYMERS

Cansu Ergün, Emine Gül

Ph. D., Department of Polymer Science and Technology

Supervisor: Prof. Dr. Ahmet M. Önal
Co-Supervisor: Prof. Dr. Atilla Cihaner

August 2015, 138 pages

In this thesis, a series of novel benzimidazole-type acceptor units were designed and synthesized. The target acceptors were benzimidazoles including cyclohexane, cycloheptane and cyclooctane rings. Each acceptor group was coupled with 3,4-ethylenedioxythiophene (EDOT) and dihexyl substituted 3,4-propylenedioxythiophene (PRODOT(C6)) donor groups separately and six donor-acceptor-donor (DAD) type monomers were obtained. The main aim of this thesis is to comparatively elucidate the electrochemical and optical properties of these six DAD type conjugated monomers and their polymers when the ring size in the selected acceptor unit is systematically changed.

In EDOT containing monomers, the monomer including cyclohexane ring (E6E) exhibited the strongest intramolecular charge transfer and the most red shifted absorption band (539 nm). The polymer films of the EDOT containing monomers showed similar optical absorption and the band gap values around 1.18 eV. Switching times of the polymers were quite fast and the fastest one was found to be for the polymer including cyclooctane ring (P(E8E)) (0.5 s). Coloration efficiencies were calculated as quite high for all polymers but the highest for P(E8E) (316 C/cm²). All the polymer films exhibited ambipolar doping (both anodically and
cathodically dopable) properties (green in the neutral state, gray in the oxidized state and brick-red in the reduced state).

In PRODOT containing monomers, absorption maxima were found to be almost the same; 310 / 520 nm. The strongest intramolecular charge transfer were observed in the monomer including cyclooctane ring (P8P). For the polymer films, the lowest band gap value was obtained for the polymer including cyclohexane ring (P(P6P)) (1.29 eV). Switching times of the polymers were quite fast and the fastest response was found in P(P8P) (0.5 s). The coloration efficiencies of all the polymers were calculated as quite high but the highest for P(P8P) (572 cm2/C at its longer wavelength absorption). All the polymer films exhibited ambipolar doping properties (green in the neutral state, gray in the oxidized state and brick-red in the reduced state).

After all these studies were finished, the monomers and polymers have been compared to each other in EDOT group and the PRODOT(C6) group, separately. At the end, one of the polymers from each two groups were selected to construct an electrochromic device with poly(3,4-ethylenedioxythiophene) (PEDOT). The device properties were revealed in terms of its switching ability, and color contrast ratio. Devices in both groups showed similar optical properties but the device constructed with PRODOT containing polymer exhibited higher coloration efficiency (189 C/cm2 at its longer wavelength absorption).

Keywords: Conductive Polymers, Electron Donor-Acceptor Systems, Benzimidazoles, Electrochemical Properties, Optical Properties, Electrochromic Device
ÖZ

BENZİMİDAZOL ALICI BİRİM ÜZERİNDEKİ HALKA BOYUTUNUN ELEKTRON VERİCİ-ALICI-VERİCİ TİP MONOMERLER VE ONLARIN ELEKTROKROMİK POLİMERLERİ ÜZERİNE ETKİSİ

Cansu Ergün, Emine Gül
Doktora, Polimer Bilim ve Teknolojisi Bölümü

Tez Yöneticisi: Prof. Dr. Ahmet M. Önal
Eş Danışman: Prof. Dr. Atilla Cihaner

Ağustos 2015, 138 sayfa

Bu tezde, bir seri özgün benzimidazol türü elektron alıcı birim tasarlanmış ve sentezlenmiştir. Hedef elektron alıcı birimler; siklohekzan, sikloheptan ve siklooktan halkası içeren benzimidazollerdir. Her bir elektron alıcı birim, 3,4-etilendiyoksitiyofen (EDOT) ve dihezkil sübstitüyeli 3,4-propilendiyoksitiyofen (PRODOT(C6)) elektron verici grupları ile ayrı ayrı eşleştirilerek altı adet verici-alıcı verici (VAV) türünde monomer elde edilmiştir. Bu tezin ana amacı, seçilen elektron alıcı birim içerisinde bulunan halka boyutu sistematik olarak değiştiğinde, sentezlenen altı adet konjuge monomer ve onların polimerlerinin elektrokimyasal ve optiksel özelliklerinin değişiminin karşılaştırmalı olarak belirlenmesidir.

EDOT içeren monomerlerde, en güçlü molekül-içi elektron transferi ve kırmızı bölge en çok kanyan optik sogurma bandı siklohekzan halkası içeren monomerde (E6E) (539 nm) gözlenmiştir. EDOT içeren monomerlerin polimer filmleri, benzer optik davranım ve bant aralığı değerleri göstermiştir (yaklaşık 1.18 eV). Polimerlerin yükselgenme-indirgenme zamanları oldukça hızlı bulunmuş, en hızlı olan ise siklooktan halkası içeren polimer için P(E8E) rapor edilmiştir (0.5 s). Tüm polimerlerdeki renklenme verimliliği oldukça yüksek bulunmaktadır birlikte, en yüksek değer P(E8E) polimerine aittir. Tüm polimer filmler, ambipolar doplanma (anodik ve
katodik bölgede doplanabilme) özelliği göstermiştir (nötr halde yeşil, yükseltgenmiş halde gri ve indirgenmiş halde tuğla kırmızısı).

PRODOT içeren monomerlerde, maksimum soğurma bant değerleri neredeyse aynı bulunmuştur; 310 / 520 nm. En güçlü molekül-ici elektron transferi sikloooktan halkası içeren monomerde (P8P) gözlenmiştir. Polimer filmleri için, en düşük bant aralığı değeri siklohekzan halkası içeren polimer filmine (P(P6P)) aittir (1.29 eV). Polimerlerin yükseltgenme-indirgenme zamanları oldukça hızlı bulunmuş, en hızlı olan ise sikloooktan halkası içeren polimer için (P(P8P)) (0.5 s) rapor edilmiştir. Tüm polimerlerdeki renklenme verimliliği oldukça yüksek bulunmakla birlikte, en yüksek değer P(P8P) polimerine aittir (572 cm²/C, daha uzun dalga boyundaki soğurma bandında). Tüm polimer filmler ambipolar doplanma davranışı göstermiştir (nötr halde yeşil, yükseltgenmiş halde gri ve indirgenmiş halde tuğla kırmızısı).

Tüm bu çalışmalarından sonra, EDOT grubundaki ve PRODOT(C6) grubundaki monomer ve polimerler ayrı ayrı birbirleri ile karşılaştırılmıştır. Son olarak, her iki gruptaki polimerlerden bir tanesi poli(3,4-etilendiyoksitiyofen) (PEDOT) ile elektrokromik cihaz yapımında kullanılmıştır. Cihaz özellikleri, yükseltgenme-indirgenme değişimi yeteneği, ve renk zıtlık orani cinsinden açığa çıkarılmıştır. Her iki gruptaki cihazlar benzer optik özellikler göstermekle birlikte, PRODOT grubu içeren polimer ile yapılan cihazda renklenme verimliliği daha yüksek bulunmuştur 189 C/cm², daha uzun dalga boyundaki soğurma bandında).

Anahtar Kelimeler: İletken Polimerler, Elektron Alıcı-Verici Sistemler, Benzimidazoller, Elektrokimyasal Özellikler, Optiksel Özellikler, Elektrokromik Cihaz
I express my gratitude to my supervisor Prof. Dr. Ahmet M. Önal for her guidance and excellent encouraging helps during this work. I also would like to thank him for not only his support throughout my PhD period but also treating me like a colleague and part of his family.

I would like to thank to my co-supervisor Prof. Dr. Atilla Cihaner for his academic guidance.

I wish to thank to my moms and dads (Hilmiye Cansu, Semiha Ergün, Şükrü Cansu, Ünal Ergün) for accepting my studentship after all these years and for their endless believes and supports.

My deepest thanks are to my husband Prof. Dr. İhsan Ergün for encouraging me and for making the life easy-going for us. His huge academic experience helped me to find my way at work. His big heart and patience helped me to find my way at home. I could not do anything without him.

Finally, my little princess Cansu; I send my smily thanks to you for just being in our life. In the beginning of this journey, you were just one year old, and now, you are eight. I wish a long, happy and healthy life for you my precious…
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ÖZ</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>CHAPTERS</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Conducting Polymers</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Concept of Band Theory</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Doping</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Synthesis of Conducting Polymers</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1 Chemical Polymerization</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2 Electrochemical Polymerization</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Donor-Acceptor Approach in Conjugated Polymers</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1 Electrochromism</td>
<td>10</td>
</tr>
<tr>
<td>1.5 Donor Materials</td>
<td>13</td>
</tr>
<tr>
<td>1.6 Acceptor Materials</td>
<td>15</td>
</tr>
<tr>
<td>1.7 Benzimidazoles</td>
<td>18</td>
</tr>
<tr>
<td>1.8 Aim of This Study</td>
<td>24</td>
</tr>
</tbody>
</table>
2. EXPERIMENTAL

2.1 Materials

2.2 Methods and Equipment

2.3 Synthesis of Monomers

2.3.1 Synthesis of Acceptor Groups

2.3.1.1 Synthesis of 3,6-dibromobenzene-1,2-diamine (2)

2.3.2 Synthesis of Donor Groups

2.3.2.1 Tributyl(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)stannane (9)

2.3.2.2 Synthesis of 3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b]dioxepine (PRODOT(C6))

2.3.2.3 Tributyl(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine-8-yl)stannane (10)

2.3.3 D-A-D Type Monomer Synthesis via Stille Coupling Reaction

2.4 Synthesis of Polymers via Electrochemical Polymerization of Monomers

2.4.1 Cyclic Voltammetry

2.4.2 Constant Potential Coulometry

2.5 Characterization of Polymers

2.5.1 Electrochemistry

2.5.2 Spectroelectrochemistry

2.5.3 Optical Contrast and Optical Stability

2.5.4 Colorimetry
2.5.5 Coloration Efficiency ... 47

2.6 Applications of CPs: Electrochromic Device 48

3. RESULTS AND DISCUSSION ... 51

3.1 Benzimidazole Based D-A-D Type Monomers and Their Polymers Including EDOT Donor Units ... 51

3.1.1 Electrochemical Behaviour of E6E, E7E, E8E 51

3.1.2 Optical Characterization of E6E, E7E, E8E 52

3.1.3 Polymerization of E6E, E7E and E8E and Their Characterizations ... 57

 3.1.3.1 Electrochemical Polymerization of E6E, E7E and E8E 57

 3.1.3.2 Optical Characterization of P(E6E), P(E7E) and P(E8E) 66

 3.1.3.3 Switching Behavior of P(E6E), P(E7E) and P(E8E) 69

3.2 Benzimidazole Based D-A-D Type Monomers and Their Polymers Including PRODOT(C6) Donor Units ... 75

3.2.1 Electrochemical Behaviour of P6P, P7P, P8P 75

3.2.2 Optical and Photophysical Properties of P6P, P7P, P8P 76

3.2.3 Polymerization of P6P, P7P and P8P and Their Characterizations ... 81

 3.2.3.1 Electrochemical Polymerization of P6P, P7P and P8P 81

 3.2.3.2 Optical Characterization of P(P6P), P(P7P) and P(P8P) 90

 3.2.3.3 Switching Study of P(P6P), P(P7P), P(P8P) 93

3.3 Electrochromic Device ... 99

3.4 Discussion ... 104
3.4.1 Comparison of EDOT Containing Polymers in Terms of Acceptor Unit ... 104

3.4.2 Comparison of PRODOT Containing Polymers in Terms of Acceptor Unit .. 106

3.4.3 Comparison of PRODOT and EDOT Containing Polymers in Terms of Donor Unit .. 108

4. CONCLUSION .. 111

REFERENCES ... 115

APPENDICES

A - NMR DATA ... 127

B - HRMS DATA ... 131

C - UV-VIS SPECTRA OF THE ACCEPTORS .. 135

CURRICULUM VITAE ... 137
LIST OF FIGURES

Figure 1.1 Simple band gap illustration for insulators, semi-conductors and conductors .. 2

Figure 1.2 Illustration of polaron and bipolaron formation on polythiophene structure upon doping ... 4

Figure 1.3 Illustration of resulting lower band gap energy for DAD type conjugated systems ... 9

Figure 1.4 Tunable units on DAD type conjugated system ... 10

Figure 2.1 Views of the acceptor units. From left to right; 6, 7 and 8 33

Figure 2.2 General set up for potentiostatic studies .. 42

Figure 2.3 General set up for potentiostatic methods in optical studies 45

Figure 2.4 CIELAB color space ... 47

Figure 2.5 Schematic view of an electrochromic device .. 49

Figure 2.6 Redox charge vs deposited charge density graph of PEDOT films deposited by constant potential electrolysis with 1.5 V ... 50

Figure 3.1 The cyclic voltammograms of E6E, E7E, E8E monomers in 0.1 M LiClO₄ in ACN - DCM (90:10 v/v) between -0.5 V and 0.90 V for E6E and E8E and between -0.5 V and 1.00 V for E7E vs Ag/AgCl at a scan rate of 100 mV.s⁻¹ .. 52

Figure 3.2 Normalized optical absorption spectra of E6E, E7E and E8E monomers in DCM. Inset: Colors of the monomers under day light 53

Figure 3.3 Emission spectra of E6E, E7E and E8E in DCM. Inset: Colors of the monomers under 366 nm UV-light .. 54

Figure 3.4 The normalized absorption and emission spectra of E6E (a, b); E7E (c, d) and E8E (e, f) in different solvents of DCM, THF and toluene 56

Figure 3.5 Electropolymerization of E6E between -0.5 V and 0.85 V (a), E7E between -0.4 V and 1.0 V (b), E8E between -0.5 V and 0.85 V (c), with 15 cycles in 0.1 M LiClO₄ solution of ACN - DCM at a scan rate of 100 mV.s⁻¹ on Pt WE. The cyclic voltammograms of the resulting polymers (d), versus Ag/AgCl in monomer free electrolyte solution of 0.1 M TBABF₄ - ACN at a scan rate of 100 mV.s⁻¹ .. 59
Figure 3.6 (a) Cyclic voltammograms of the polymers (P(E6E), P(E7E), P(E8E)) obtained by constant potential electrolysis with the charge of 80 mC.cm\(^{-2}\) on Pt working electrode between -0.5 V and 0.9 V in 0.1 M TBABF\(_4\) - ACN monomer free electrolyte solution vs Ag/AgCl. (b) Cyclic voltammograms of the polymers (P(E6E), P(E7E), P(E8E)) during n-doping process between 0.0 V and -1.25 V in 0.1 M TBABF\(_4\) - ACN monomer free solution vs Ag/AgCl reference electrode.

Figure 3.7 Scan rate dependence of P(E6E), P(E7E) and P(E8E) on Pt disc electrode in 0.1 M TBABF\(_4\) - ACN at a scan rate of 20 - 40 - 60 - 80 - 100 mV.s\(^{-1}\) between -0.5 V and 0.90 V. Inset: The current vs scan rate (a) and the charge density vs scan rate (b) plots of the polymer films with increasing scan rates.

Figure 3.8 Cyclic voltammograms of P(E6E), P(E7E) and P(E8E) films after many of switchings. Insets: (a). Anodic and cathodic charge density vs number of switching graphs of P(E6E) film in 0.1 M TBABF\(_4\) - ACN achieved by square wave potential (-0.2 V for 3 s and 0.6 V; 3 s for each) under ambient conditions. (b). The first and the last cyclic voltammograms of polymer films in 0.1 M TBABF\(_4\) - ACN.

Figure 3.9 UV-VIS spectra of the polymer films ((a) P(E6E) of 30 mC.cm\(^{-2}\), (b) P(E7E) of 35 mC.cm\(^{-2}\), (c) P(E8E) of 20 mC.cm\(^{-2}\)) during oxidation from -0.5 V to 1.0 V via cyclic voltammetry with the scan rate of 20 mV.s\(^{-1}\). Inset: reduction from 0.0 V to -1.7 V with the scan rate of 100 mV.s\(^{-1}\).

Figure 3.10 Transmittance change of P(E6E) film (25 mC.cm\(^{-2}\)) at 433 nm and 835 nm, in its fully oxidized (1.1 V) and reduced (-0.5 V) states in different switching times (10 s, 5 s, 3 s and 2 s).

Figure 3.11 Transmittance change of P(E7E) film (25 mC.cm\(^{-2}\)) at 430 nm and 820 nm, in its fully oxidized (1.1 V) and reduced (-0.5 V) states in different switching times (10 s, 5 s, 3 s and 2 s).

Figure 3.12 Transmittance change of P(E8E) film (20 mC.cm\(^{-2}\)) at 431 nm and 828 nm, in its fully oxidized (1.1 V) and reduced (-0.5 V) states in different switching times (10 s, 5 s, 3 s and 2 s).

Figure 3.13 The cyclic voltammograms of P6P, P7P, P8P in 0.1 M LiClO\(_4\) in ACN - DCM (90:10 v/v) between -0.2 V and 0.95 V vs Ag/AgCl at a scan rate of 100 mV.s\(^{-1}\).

Figure 3.14 Optical absorption spectra of P6P, P7P and P8P monomers in DCM. Inset: Colors of the monomers under 366 nm UV-light.

Figure 3.15 Emission spectra of P6P, P7P and P8P in DCM. Inset: Colors of the monomers under 366 nm UV-light.
Figure 3.16 The normalized absorption and emission spectra of P6P (a, b); P7P (c, d) and P8P (e, f) in different solvents of DCM, THF and toluene

Figure 3.17 Electropolymerization of P6P between -0.2 V and 0.95 V (a), P7P between -0.2 V and 0.95 V (b), P8P between -0.2 V and 1.00 V (c) with 15 cycles in 0.1 M LiClO₄ solution of ACN - DCM (90:10 v/v) at a scan rate of 100 mV.s⁻¹ on Pt WE. The cyclic voltammograms of the resulting polymers (P(P6P), P(P7P) and P(P8P))(d) vs Ag/AgCl in monomer free electrolyte solution of 0.1 M TBABF₄ - ACN at a scan rate of 100 mV.s⁻¹

Figure 3.18 (a) Cyclic voltammograms of the polymers (P(P6P), P(P7P), P(P8P)) obtained by constant potential electrolysis with the charge of 80 mC.cm⁻² on Pt working electrode between -0.2 V and 1.0 V in 0.1 M TBABF₄ - ACN monomer free electrolyte solution vs Ag/AgCl. (b) Cyclic voltammograms of the polymers (P(P6P), P(P7P), P(P8P)) during n-doping process between 0.0 V and -1.35 V in 0.1 M TBABF₄ - ACN monomer free electrolyte solution vs Ag/AgCl

Figure 3.19 Scan rate dependence of P(P6P), P(P7P) and P(P8P) on Pt disc electrode in 0.1 M TBABF₄ - ACN at a scan rate of 20 - 40 - 60 - 80 - 100 mV.s⁻¹ between -0.2 V and 1.0 V. Insets: The current vs scan rate (a) and the charge density vs scan rate (b) plots of the polymer films with increasing scan rates

Figure 3.20 Cyclic voltammograms of P(P6P), P(P7P) and P(P8P) films after many of switchings. Insets: (a) Anodic and cathodic charge density vs number of switching graphs of polymer films in 0.1 M TBABF₄ - ACN achieved by square wave potential (-0.1 V for 3 s and 0.6 V; 3 s for each) under ambient conditions. (b). The first and the last (after 2000 of switchings) cyclic voltammograms of the polymers in 0.1 M TBABF₄ - ACN

Figure 3.21 UV-VIS spectra of the polymer films (a) P(P6P) of 20 mC.cm⁻², (b) P(P7P) of 20 mC.cm⁻², (c) P(P8P) of 20 mC.cm⁻²) during oxidation from -0.2 V to 1.0 V via cyclic voltammetry with the scan rate of 20 mV.s⁻¹. Insets : UV-VIS spectra of the polymer films P(P6P) of 20 mC.cm⁻², P(P7P) of 20 mC.cm⁻², P(P8P) of 20 mC.cm⁻²) during n-doping from 0.0 V to -1.5 V with the scan rate of 100 mV.s⁻¹

Figure 3.22 Transmittance change of P(P6P) film (20 mC.cm⁻²) at 410 nm and 766 nm, in its fully oxidized (1.1 V) and reduced (-0.2 V) states in different switching times (10 s, 5 s, 3 s and 2 s)

Figure 3.23 Transmittance change of P(P7P) film (20 mC.cm⁻²) at 410 nm and 763 nm, in its fully oxidized (1.1 V) and reduced (-0.2 V) states in different switching times (10 s, 5 s, 3 s and 2 s)

Figure 3.24 Transmittance change of P(P8P) film (25 mC.cm⁻²) at 410 nm and 769 nm, in its fully oxidized (1.1 V) and reduced (-0.2 V) states
in different switching times (10 s, 5 s, 3 s and 2 s).................................97

Figure 3.25 Spectroelectrochemical behavior of P(E6E) - PEDOT ECD (a) and P(P6P) - PEDOT ECD (b) between -0.6 V and 0.8 V. Inset: Cyclic voltammograms of ECDs between -0.6 V and 0.8 V at scan rate of 100 mV.s$^{-1}$..... 101

Figure 3.26 Percent transmittance change of P(E6E) - PEDOT ECD at 417 nm and 815 nm (a), P(P6P) - PEDOT ECD at 418 nm and 820 nm (b) switched between -0.6 V and 0.8 V with the residence times of 10, 5 and 3 s...........102

Figure 4.1 The neutral state and reduced state colors of the EDOT containing (left) and the PRODOT containing (right) polymer films......................... 112
LIST OF SCHEMES

Scheme 1.1 Some electrochromic polymer structures in the literature..12

Scheme 1.2 Development of the conjugated polymers from polyacetylene to poly(propylenedioxythiophene) .. 15

Scheme 1.3 The wellknown acceptor groups used in DAD systems ..15

Scheme 1.4 BIm including CPs in the literature ..21

Scheme 1.5 Monomers, polymers, acceptor and donor groups that is aimed to be studied in this thesis ...27

Scheme 2.1 General reaction scheme for the synthesis of acceptor units ..31

Scheme 2.2 Synthesis route of compound 9 ...34

Scheme 2.3 Synthesis route of PRODOT(C6) ...35

Scheme 2.4 Reaction scheme for stannylation of PRODOT (C6) ..37

Scheme 2.5 Synthesis route of monomers (E6E, E7E, E8E, P6P, P7P, P8P)40
LIST OF TABLES

Table 1.1 The CPs compared with respect to acceptor unit in ref [126] 17
Table 3.1 Electrochemical and spectrochemical properties of E6E, E7E, E8E 57
Table 3.2 Electrochemical and spectrochemical properties of P(E6E), P(E7E), P(E8E) ... 66
Table 3.3 Electrochemical and optical properties of P(E6E), P(E7E), P(E8E) 74
Table 3.4 Electrochemical and spectrochemical properties of P6P, P7P, P8P 81
Table 3.5 Electrochemical and spectrochemical properties of P(P6P), P(P7P), P(P8P) ... 90
Table 3.6 Electrochemical and optical properties of P(P6P), P(P7P), P(P8P) 98
Table 3.7 Spectrochemical properties of P(E6E) - PEDOT and P(P6P) - PEDOT ECDs .. 103
Table 3.8 The electrochemical-optical properties of the EDOT containing polymers from this work and of the similar polymers from the literature 105
Table 3.9 The electrochemical-optical properties of the PRODOT containing polymers from this work and of the similar polymers from the literature 107
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>Ar</td>
<td>Argon</td>
</tr>
<tr>
<td>BiM</td>
<td>Benzimidazole</td>
</tr>
<tr>
<td>Box</td>
<td>Benzoxadiazole</td>
</tr>
<tr>
<td>BSe</td>
<td>Benzoselenadiazole</td>
</tr>
<tr>
<td>BTD</td>
<td>Benzothiadiazole</td>
</tr>
<tr>
<td>BTZ</td>
<td>Benzotriazole</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>CB</td>
<td>Conducting band</td>
</tr>
<tr>
<td>CDCl₃</td>
<td>Deuterochloroform</td>
</tr>
<tr>
<td>CE</td>
<td>Coloration efficiency</td>
</tr>
<tr>
<td>CE</td>
<td>Counter electrode</td>
</tr>
<tr>
<td>CIE</td>
<td>Commission Internationale de l’Eclairge</td>
</tr>
<tr>
<td>CMYK</td>
<td>Cyan-magenta-yellow-key black</td>
</tr>
<tr>
<td>CP</td>
<td>Conducting polymer</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic voltammetry</td>
</tr>
<tr>
<td>DA</td>
<td>Donor-acceptor</td>
</tr>
<tr>
<td>DAD</td>
<td>Donor-acceptor-donor</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>ECD</td>
<td>Electrochromic device</td>
</tr>
<tr>
<td>EDOT</td>
<td>3,4-Ethylenedioxythiophene</td>
</tr>
<tr>
<td>Eg</td>
<td>Band gap</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethyl alcohol</td>
</tr>
<tr>
<td>FET</td>
<td>Field effect transistor</td>
</tr>
<tr>
<td>Ge</td>
<td>Germanium</td>
</tr>
<tr>
<td>H</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied molecular orbital</td>
</tr>
<tr>
<td>HRMS</td>
<td>High-resolution mass spectrometry</td>
</tr>
<tr>
<td>ICT</td>
<td>Intramolecular charge transfer</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ITO</td>
<td>Indium tin oxide</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>n-butyl lithium</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>OLED</td>
<td>Organic light emitting diode</td>
</tr>
<tr>
<td>OPV</td>
<td>Organic photovoltaic</td>
</tr>
<tr>
<td>PC</td>
<td>Propylene carbonate</td>
</tr>
<tr>
<td>PCE</td>
<td>Power conversion efficiency</td>
</tr>
<tr>
<td>Pd</td>
<td>Palladium</td>
</tr>
<tr>
<td>PEDOT</td>
<td>Poly(2,3-dihydrothieno[3,4-b][1,4]dioxine)</td>
</tr>
<tr>
<td>PMMA</td>
<td>Poly(methyl metacrylate)</td>
</tr>
<tr>
<td>PRODOT</td>
<td>3,4-propylenedioxythiophene</td>
</tr>
<tr>
<td>PRODOT(C6)</td>
<td>Dihexyl substituted 3,4-propylenedioxythiophene</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>P3HT</td>
<td>Poly(3-hexylthiophene)</td>
</tr>
<tr>
<td>RE</td>
<td>Reference electrode</td>
</tr>
<tr>
<td>RGB</td>
<td>Red-green-blue</td>
</tr>
<tr>
<td>S</td>
<td>Sulfur</td>
</tr>
<tr>
<td>SC</td>
<td>Solar cell</td>
</tr>
<tr>
<td>Se</td>
<td>Selenium</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>Te</td>
<td>Tellurium</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethylsilane</td>
</tr>
<tr>
<td>VB</td>
<td>Valence band</td>
</tr>
<tr>
<td>WE</td>
<td>Working electrode</td>
</tr>
</tbody>
</table>
1.1. Conducting Polymers

After the discovery of macromolecules in early 1930’s, the term “plastics” became the most popular materials worldwide since they are lighter than wood, much more resistant to corrosives than metals, not brittle like ceramics and they are cheaper as well. When all the features are taken into account, it can be said that the discovery of macromolecules has opened up a new gate into a new age called the polymer age in the world of industry [1,2].

Beyond those superior properties, an exclusive feature of some polymers was discovered in 1977 by Shirakawa, Heeger and McDiarmid that they could also be conductive [3,4]. The conducting polymers (CPs) have been the most promising materials over the past decades [5,6]. They became competitive materials to inorganic semi-conductors for numerous reasons. First of all, they are low cost and processable materials. The second reason is that they are lightweight. The third advantage of organic-conductives is that they can be applied on flexible surfaces unlike their inorganic counterparts. Besides, their mechanical, electrical and optical properties can be improved by modifying their structures [7-16].

Because of these advantages, CPs fastly started to be developed and to be replaced to inorganics in technological areas such as smart windows [17,18], solar cells [19-46], light emitting diodes (LEDs) [47-56], television and mobile phone screens [57-60], field effect transistors (FETs) [61-66], camouflage materials [67-69], biosensors [70-73], etc.
It is obviously clear that the discovery of CPs has opened up another brand new gate inside the polymer age in the word of technology and they have already taken into attention by scientists who have been continuously developing these materials for having them better properties.

1.2. Concept of Band Theory

Electrical conductivity is a measure of material’s ability to conduct electrical current via electron flow. This property of materials depends mainly on the energy difference between the valance band (Highest Occupied Molecular Orbital; HOMO) and conduction band (Lowest Unoccupied Molecular Orbital; LUMO) which is known as the band gap energy (E_g). High electrical conductivity of metals is due to either partially filled valance band or lack of energy difference between valence and conduction bands, which allows electron movement. In semi-conductors, on the other hand, it requires a little push to fill the conduction band because of the energy barrier which is less than 3.0 eV [74]. For insulators, the band gap is so large (higher than 3.0 eV) that makes those materials non-conductors (Figure 1.1).

![Simple band gap illustration for insulators, semi-conductors and conductors](image)

Figure 1.1. Simple band gap illustration for insulators, semi-conductors and conductors [75].
Chemical structures of the CPs are different from their ordinary plastic counterparts. They have alternating single-double bonds (conjugation) in the one-dimensional chain due to overlapping of p_z-orbitals. This π-conjugation imparts intrinsic conductivity to the polymer. The phenomena is similar to semi-conductors; both have low conductivities. However, this can be increased by creating defects (holes or extra electrons) on the polymer chain which is called as doping.

1.2.1. Doping

The pioneers of the area of conducting polymers are Shirakawa, Heeger and McDiarmid who firstly showed that conductivity of polyacetylene can be increased by 10^9 order of magnitude than undoped polyacetylene [76]. That was an important discovery and the Nobel Prize was awarded to this study in 2000. They doped trans-polyacetylene with iodine vapor and obtained a conductivity of 10^3 S/cm in the resulting polymer [77]. This was a remarkable value when compared with the conductivities of well-known metals like silver, iron or copper with conductivities of about 10^6 S/cm. On the other hand, the conductivity value for a typical insulator is 10^{-10} S/cm.

As it is mentioned before, alternating single and double bonds in the backbone are the major feature of CPs which is called as π-conjugation. Every single bond is strongly localized sigma bond, on the other hand, every double bond is weaker partially delocalized π-bond.

Doping is a process of charge injection or ejection. The dopants give extra electrons or make some holes on the chain which disturbs the structure and allows electron movement. CPs show semi-conductor-like band structures and their conductivities can be increased by doping process. If doping is made by injecting electrons into the material, it is called n-type doping. If the doping is occurring by removing electrons from the material, it is called p-type doping.
The basic optical transition of CPs lies between bonding and antibonding molecular orbitals ($\pi-\pi^*$ transition band). When an external energy is applied to the polymer structure, an exciton is created. Exciton can be defined as a new state of an electron and hole. For trans-polyacetylene, excitation results with the formation of a new quasi-particle (soliton) and this particle has an electronic state in the middle of the band gap. For aromatic structures, excitation results with different chain distortions (nondegenerated ground state) and excitation results with the formation of quasi-particle called polaron (Figure 1.2). A polaron can be defined as the moving electron (or hole) on defected structure [78].

![Diagram of polaron and bipolaron formation on polythiophene structure upon doping.](image)

Figure 1.2. Illustration of polaron and bipolaron formation on polythiophene structure upon doping.

When a CP is oxidized, electrons are removed from the system resulting in the creation of holes (radical cation or polaron) and new energy levels are formed.
between the valance and conduction bands. This is due to newly formed charge carriers. After further oxidation, two charge carriers are formed (radical dication or bipolaron) and energy levels come more closer to the mid energy gap [79].

Same process occurs when a CP is reduced. Addition of electrons results in the formation of negative polarons (radical anions) and bipolarons (radical dianions). In p-doping and n-doping processes, positive charges are counterbalanced with anions and negative charges are counterbalanced with cations, respectively. Doping process can be achieved reversibly in CPs, which is the major difference between CPs and inorganic semi-conductors [8], and it is possible to obtain doped-dedoped states either by chemical and electrochemical doping.

Chemical dopants play a convenient role in making the wide range of polymers conductive. Oxidizing or reducing compounds are used in chemical doping. Common p-type dopants (which are generally electron attracting substances or compounds) are Br₂, I₂, AsF₅, SbCl₅, PF₃, SF₆, FeCl₃, etc. The well-known n-type dopants (they are electron donating substances or compounds) are NH₃, N₂H₄, molten potassium, etc. In chemical doping, doping process is fixed by introducing the doping agent into the polymer structure. When polymer is p-doped, it is needed to introduce n-type dopant for dedoping process (reobtain the polymer in neutral state) or vice versa.

The polymers can also be doped (oxidized or reduced) easily by applying a potential with a direct current source (electrochemical doping). This method is widely used in doping CPs becasue of variety uses of CPs in electronic applications. Electrochemically doping process has some advantages over chemical doping. First of all, amount of current passing through the system can be monitored and doping level can be controlled. Secondly, p- or n-type doping can be applied rapidly without any additional chemicals. Both in chemical and electrochemical doping, counter ions are needed to stabilize the charge on the polymer backbone. This may cause some structural distortions on the material and may affect conductivity.
There are some other types of doping methods which are also used in different applications. One of them is “photo-doping” which is defined as the irradiation of a conjugated polymer with a light beam of energy greater than its band gap energy. This method is used in organic photovoltaic (OPV) applications [33, 35]. Another type of doping is “charge-injection doping” where charge carriers are injected into the band gap by applying a suitable potential on a multilayer structure like metal-insulator-polymer. This method is used in FETs or LEDs [49]. Both in photo-doping and charge-injection doping, there is no counter ion generation so the structural distortion is minimized.

1.3. Synthesis of Conducting Polymers

1.3.1. Chemical Polymerization

Oxidative polymerization technique is suitable for chemical polymerization of unsubstituted monomers. For this purpose, suitable oxidizing agents such as ammonium peroxodisulfate ((NH₄)ₓS₂O₈), ferric chloride (FeCl₃), potassium permanganate (KMnO₄) or hydrogen peroxide (H₂O₂) are commonly used [80].

However, if the monomer has any substitution like alkyl chains as in the case of 3-hexylthiophene, the planarity concept must be considered because oxidative technique results in regioirregular polymer. In the aim of synthesizing the planar or regioregular polymer chains, some specific reactions were developed. The metal catalysts are used in these reactions [81].

In the synthesis of electron donor-acceptor type polymers or copolymers, the various organometallic cross-coupling reactions are used depending on the types of functionalizing groups on the monomers. One of them is the Stille coupling reaction which is most widely used in chemical polymerization. In Stille coupling reaction, one of the monomer must be halogenated (mostly brominated) from both sides and
the other must be stannylated on both sides. Then, these two units come together alternately in the presence of a suitable catalyst, usually palladium compounds. The other well-known coupling reactions are Sonogashira Coupling, Suzuki Miyaura coupling, Kharash coupling, Negishi coupling, Himaya coupling and Kumuda coupling reactions.

1.3.2. Electrochemical Polymerization

CPs can be obtained as a thin film on a conducting substrate such as indium tin oxide (ITO) glass substrate or other suitable working electrode (WE) surfaces. The monomer is dissolved in a proper solvent including supporting electrolyte and electrochemicaly polymerized by applying external potential. There are various advantages of this method. One of them is small amount of monomer is enough to obtain polymer film. Another benefit is the ease of process which yields the required CP in relatively short time period. Furthermore, the polymer film thickness on the electrode surface can be easily controlled. However, the large scale production of CPs by this method is one of the main practical disadvantage.

Working principle of electrochemical polymerization starts with the oxidation of the monomer into a radical cation. This radical cation either attacks to a neutral monomer [82] or may couple with another radical cation [83]. Both of the routes yield an intermediate that produces a dimer unit after the loss of two protons. The repeating couplings go on until oligomeric particles become insoluble and precipitate onto the electrode surface.

The electopolymerization is generally performed by potentiostatic (constant potential), galvanostatic (constant current) or potentiodynamic (cyclic voltammetry) methods.

In electrochemical studies, it is important to choose a suitable electrolyte solution which includes the electrolyte and the solvent. To avoid any interference due to
oxidation of electrolytic solution, electrochemically inert solvent and electrolyte should be chosen for this purpose. Generally, high dielectric constant solvents such as acetonitrile (ACN), propylene carbonate (PC) and dichloromethane (DCM) are preferred since they allow high ionic conductivity for the electrolytic solution. The mostly used solvent is acetonitrile because of its wide potential window (i.e., potential window of acetonitrile extends from -1.8 V to +2.8 V in tetrabutyl ammonium tetrafluoroborate vs saturated calomel electrode) [84].

The examples of the well-known compounds used for supporting electrolyte can be given as in the following: tetrabutylammonium hexafluorophosphate (N(Bu)_4PF_6), tetrabutylammonium tetrafluoroborate (N(Bu)_4BF_4), lithium perchlorate (LiClO_4) and tetrabutylammonium perchlorate (N(Bu)_4ClO_4).

1.4. Donor-Acceptor Approach in Conjugated Polymers

After the discovery of conducting polyacetylene, molecular developments were accelerated in this field. The major aim was to obtain air-stable and processable materials due to air-instability and insolubility of polyacetylene. After these problems were overcome in time, conjugated systems were started to modify in many ways for various reasons:

i. to decrease the band gap,
ii. to obtain different colors,
iii. to get more chemically, optically or thermally stable materials for the desired applications.

In the scope of these aims, various conjugated systems have been designed and synthesized. During these developments, it was realized that if an acceptor molecule combines with a donor one, the resulting conjugated system reveals better properties in terms of reducing the band gap [85,86]. The studies about conjugated systems were focused on this approach since last decade. Hybridization of molecular orbitals
results in the narrower band gap as compared to their original counterparts (Figure 1.3). Also, by modifying the molecular structures, not only the band gap value can be altered but also solubility, stability and electrochromic properties can be enhanced. Since those properties are under the same roof, these systems are very popular in today's studies. The corresponding systems are called as “Donor-Acceptor-Donor” (DAD) systems.

As shown in Figure 1.4, DAD systems allow to tune many properties of the resulting polymers. The difference between electron richness of the donor molecule and electron deficiency in the acceptor molecule determines the magnitude of the band gap. Also, it allows multiple redox states in low potentials; bringing the multicolor property with the ability of p- and n-type doping. Furthermore, solubility can be achieved via alkyl substituents [87,88]. Thus, DAD systems can be arranged as desired according to the application area. DAD type conjugated systems are desirable in electronic device applications such as electrochromic devices (ECDs), LEDs, SCs, FETs.
Electrochromic property can be defined as the ability of changing color with an applied potential. Upon oxidation or reduction, electronic absorption spectra of the polymer film change due to the formation of intermediate states. Conjugated polymers have electrochromic property which allows them to be used in various electronic applications such as smart windows, electrochromic devices, car rear views [89], displays, light emitting diodes, etc.

For an effective electrochromic polymer, the following parameters must be achieved:

i. Redox potential window should be small. In other words, the polymer should be oxidized at low potentials (especially for the applications of OSCs or OLEDs).

ii. The optical absorption range should be broad (especially for OSCs in order to harvest more light).

iii. The band gap energy level (E_g) should be low (lower band gap polymers (< 1.8 eV) are suitable for OSC applications).

iv. The color switching ability should be fast (below seconds) and stable (fast response times are desired for smart windows).
v. The electrochromic contrast (transmittance difference between neutral and oxidized states) and the coloration efficiency (optical density property) should be high [90].

The new generation CPs have numerous advantages when they are compared to their inorganic counterparts such as tungsten oxide (WO$_3$). Conjugated polymers are low cost materials and can be applied on flexible and large surfaces. Also, they have high optical contrast ratio and they can exhibit multicolor properties. The electrochromic switching times of conjugated polymers are reversible and quite fast. With having all these advantages, design and synthesis of new electrochromic polymers have been taking attention during the last three decades. The studies are mainly focused on the design and synthesis of conjugated systems which can complete the scale of RGB (red-green-blue) and CMYK (cyan-magenta-yellow-key black) color systems for the availability in display applications.

Reynold’s group reported the red and different hues of blue with the design and synthesis of corresponding conjugated polymers [91,92]. Basicly, poly(ethylenedioxythiophene)s (PEDOT) possesed the deep blue color in its neutral state and transmissive blue in its oxidized state. Poly(3-hexylthiophene)s (P3HT)s exhibited red color in its neutral form. Numerous polymer design and synthesis gave different colors and hues of a color.

In the case of green color, absorption spectrum of the polymer must have two peaks below 500 nm and beyond 600 nm in its neutral state. The pioneering study about the synthesis of neutrally green polymer was reported by Wudl et al. in 2004 (Scheme 1.1-a). The corresponding electrochromic polymer was in donor-acceptor-donor (DAD) pattern [93,94].
Scheme 1.1. Some electrochromic polymer structures in the literature.
Toppare’s group (Scheme 1.1-b-c-d) [95-99], Reynold’s group (Scheme 1.1-e) [100] and Cihaner’s group (Scheme 1.1-f-g-h) [101-103] designed and synthesized other neutrally green DAD type conjugated polymers. The corresponding polymers were transparent in the oxidized state.

When it comes to CMYK color series, neutrally cyan color was achieved by Reynold’s group in 2009 [104]. A series of alternating conjugated DA polymers containing 3,4-dioxythiophenes, 2,1,3-benzothiadiazole, and unsaturated spacers (either ethynylene or trans-ethylene) were obtained chemically and spray coated on ITO-glass in toluene for investigating the electro-optical features (Scheme 1.1-i-j). The different hues of cyan color were achieved by little modifications in the structure. Önal’s group synthesized a DAD type electrochromic polymer in 2012, which revealed cyan color in its neutral state [105] (Scheme 1.1-k). The polymer was obtained via electrochemically and possessed good solubility and electro-optical stability. Oxidized color of the polymer was transparent.

The neutral state black colored polymer should absorb in the whole visible region and this was achieved by several groups [106-108].

As it is seen from the studies summarized above, DAD type conjugated polymers are promising candidates for advanced electrochromic applications.

1.5. Donor Materials

The early studies in 1980’s was focused on the polyheterocycles such as polythiophene, polypyrrole, poly(phenylacetylene), poly(isothionapththaline), polyfuran, polyaniline, poly(paraphenylene) and their derivatives [5,7,8]. These polymers possessed good conductivity but there were still some more problems to be resolved. For example, they all suffer from lack of solubility in common solvents. Furthermore, polythiophene and its close analogues may also polymerize via 3,4 carbon atoms leading to irregular structures.
These monomers also susceptible to oxygen attacks during polymerization. In order to bring a solution, alkyl chains were used as a substituent not only to close the oxygen susceptible carbon positions but also to enhance the solubility of such polymers [106]. However, alkyl substitution causes a decrease in the planarity and also in regioregularity. Regio-irregularity increases the band gap because of decrease in effective conjugation length. Regioregular patterns can be obtained via special steps of reactions which need some special conditions and catalysts [109-112].

In 1980’s, Bayer scientists in Germany developed a new polythiophene derivative, poly(3,4-ethylenedioxythiophene) (EDOT) in order to close the carbon atoms on 3rd and 4th position with alkoxy bridge [113]. Its polymer, PEDOT, possessed better conductivity and lower oxidation potential due to the presence of electron donating oxygen atoms. The obtained polymer film color was deep blue in the neutral state and very transparent blue in its oxidized form. However, PEDOT was still suffering from lack of solubility. In order to impart solubility, the ethylenedioxy bridge was replaced by alkyl chain substituted propylenedioxy bridge by Reynolds and his coworkers [114-120]. The first example of soluble PPRODOT derivative, PPRODOT-C4 was found to be soluble in common organic solvents and also was air-stable both in its neutral and oxidized states [121].

Then various PPRODOT derivatives bearing different alkyl sizes were synthesized and it was observed that solubity increases with increasing chain length [122].
Scheme 1.2. Development of the conjugated polymers from polyacetylene to poly(propylenedioxythiophene).

1.6. Acceptor Materials

Some of the conjugated backbones have electron deficiency in their structures. These materials are used as the electron acceptor groups in DAD approach. The most common acceptors are benzazole derivatives. Benzothiadiazole (BTD), benzotriazole (BTZ), benzoselenadiazole (BSe), benzoaxadiazole (BOx) and benzimidazoles (BIm) are the most commonly used acceptors in the applications of conducting polymers.

Scheme 1.3. The well-known acceptor groups used in DAD systems.
Studies on DAD type conjugated polymers focused on both donor effect and acceptor effect in the resulting polymer. Benzazole derivatives were widely investigated in terms of acceptor unit effect in the literature [123-126].

Instead of sulfur atom in the heterocyclic structure of acceptor unit, other benzazole derivates bearing different chalcogen atoms (i.e. Se, Si, Ge and Te) were also investigated to elucidate information about heteroatom effect. It is observed that larger heteroatoms (e.g., Se as compared to S, Te as compared to Se) increase the conjugation length and decrease the band gap accompanied with a change in the electrochromic properties [127,128].

In 2012, Huang et al. published a review about DAD type CPs for bulk-heterojunction photovoltaic applications [129]. They compared various types of CPs in terms of effect of acceptor units. As seen from Table 1.1, similar DAD type polymers were synthesized by using well-known acceptor groups. The polymers then were constructed as OPV devices and power conversion efficiencies (PCE %) were measured (PCE represents the percentage of sunlight which is converted to the electricity). When the band gap energy levels of these polymers were considered, the wider band gap value belongs to BTD based CP. The narrower band gap corresponds to dimethylated BIm based CP and the PCE % of OPV device for BIm based CP is quite higher than BSe and BTZ containing CPs.
Table 1.1. The CPs compared with respect to acceptor unit in ref [129].

<table>
<thead>
<tr>
<th>CPs</th>
<th>HOMO (eV)</th>
<th>$E_{\text{g, optical}}$ (eV)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{C}8\text{H}{17-}\text{C}8\text{H}{17}$</td>
<td>-5.50</td>
<td>1.88</td>
<td>3.16</td>
</tr>
<tr>
<td>$\text{C}8\text{H}{17-}\text{C}8\text{H}{17}$</td>
<td>-5.34</td>
<td>1.68</td>
<td>6.1</td>
</tr>
<tr>
<td>$\text{C}8\text{H}{17-}\text{C}8\text{H}{17}$</td>
<td>-5.28</td>
<td>1.73</td>
<td>2.6</td>
</tr>
<tr>
<td>$\text{C}8\text{H}{17-}\text{C}8\text{H}{17}$</td>
<td>-5.54</td>
<td>2.18</td>
<td>2.8</td>
</tr>
<tr>
<td>$\text{C}8\text{H}{17-}\text{C}8\text{H}{17}$</td>
<td>-5.47</td>
<td>1.64</td>
<td>3.1</td>
</tr>
</tbody>
</table>

When S atom is replaced with Se atom in the acceptor unit, a decrease in the band gap value was noted together with a red shift in the absorption spectra. These changes were explained in terms of size and electronegativity differences between Se and S atoms [132]. If S atom is replaced with N atom, resulting acceptor, BTZ, is less electron deficient than BTD. That’s why the band gap of BTZ based CP would have higher band gap value than that of BTD analogue. On the other hand, BTZ has the advantage of functionalizing with alkyl units to supply better solubility for related CPs. The OPV constructed with CP including BTZ acceptor (alkylated with $\text{C}_{12}\text{H}_{25}$ from the lone pair position of N) exhibited relatively high band gap value (2.18 eV) but lower HOMO level (-5.54 eV) resulting with a moderate power conversion efficiency of 2.75% [134].

Changing the S atom with the C atom brings another type acceptor, BIm, which can be functionalized from its second carbon position to get different optical properties or better solubility. Advantage of this acceptor is its easy functionalization without
disturbing the quinoidal structure and planarity. The CP containing BIm (functionalized with dimethyl groups) possessed good solubility in common organic solvents [135]. Besides, corresponding polymer had band gap of 1.64 eV which is smaller than that of BTD analogue (1.88 eV).

1.7. Benzimidazoles

Benzimidazoles (BIm) are the most interesting acceptor unit among other well-known analogues due to having availability of functionalizing on its 2-C position. BIm have been widely used in biological and medical applications and pharmaceutical activities such as antimicrobial, antiviral, antidiabetic and anticancer activity [137-141]. Besides, polybenzimidazoles have been reported as having great thermal stability and resistance to high temperatures [136].

In 1998, Yamamoto’s group synthesized the homopolymers of BIm with different alkyl chains (H, phenyl and heptyl) on its 2-C (Scheme 1.4-A). The study revealed that the polymers are electrochromic and electrochemically active upon n-doping. Due to its photoluminescence and solvatochromism properties, BIm was found to be an interesting building block for π-conjugated polymers [142].

Since BIm structure includes (C=N) bond, which is electron-withdrawing imine nitrogen like in pyridine and quinoxaline, it was used instead of pyridine and quinoxaline by Yamamoto’s group (Scheme 1.4-B) [143]. BIm units (bearing different alkyl chain lengths) were chemically co-polymerized with thiophene and a blue shift both in absorption and emission maxima were noted with increasing alkyl chain length ($\lambda_{\text{max}} = 460$ nm for pentyl substituent and $\lambda_{\text{max}} = 436$ nm for octadecyl substituent).

BIm unit can also be functionalized with cyclic or aromatic units on its 2-C position. This gives to this acceptor group very unique property of developing various type of new acceptors upon numerous modifications on it.
In 2010, a series of benzimidazole containing DAD type polymers with EDOT donor unit was introduced to investigate the acceptor unit effect by deriving the BIm on 2-C position with EDOT, ferrocene and benzene, separately. Resulting features revealed different electrochromic properties from each other (Scheme 1.4-C-D-E) [144]. The lowest optical band gap was obtained as 1.69 eV for D (E_g= 1.75 eV for C and 1.77 eV for E). Very high optical contrasts and subsecond level switching times were obtained especially for C and D. Moreover, D have found to be multichromic electrochrome upon both n- and p-doping. So, these benzimidazole containing DAD type polymers are reported to be strong candidates as high performance electrochromic materials.

The H atom on the N atom of the imidazole ring may probably make H-bonding with the neighboring oxygen on donor unit (eg: EDOT). This was investigated by Toppare’s group [145,146] by coupling benzene ring bearing BIm with EDOT to obtain the corresponding monomer (C) and the existence of H-bonding was experimentally proved.

In 2012, two different BIm including conjugated polymers synthesized. 4’-(tert-butyl)spiro[benzo[d]imidazole-2,1’-cyclohexane] was used as acceptor group and coupled with 3-hexylthiophene and EDOT unit on both sides via Stille coupling reaction (Scheme 1.4-F-G) [147]. Both electrochemically obtained polymer films showed high optical contrast and gave broad absorption peaks. As expected, polymer film of F showed lower oxidation potential (0.55 V and 0.82 V) than G (0.79 V) because of having strong donor feature of EDOT moiety. F and G polymer films possessed green and blue color in their neutral states, respectively. Both polymers have two optical absorption band due to donor-acceptor pattern. F showed its dual absorption band in the visible region at 430 nm (due to $\pi - \pi^*$ transition) and 837 nm (due to intramolecular charge transfer, ICT). On the other hand, ICT band for G was found to be at about 640 nm. This blue shift indicates weaker ICT between donor and acceptor units in G. Moreover, F showed multichromic property (- : light green, orange, brick-red; n: green; + : light gray, light blue) and 0.9 s switching time of oxidation.
In the same year, another BIm and dithieno based conjugated polymer was synthesized by Toppare’s group (Scheme 1.4-H). This polymer was transparent both in neutral and doped states. 95 % transmittance was measured with 0.3 % optical change upon doping and this was reported as the best result in conjugated systems up to 2012 [148].

Although all polymers mentioned above are good candidates for electrochemical and other device applications, BIm’s were aimed to be synthesized especially for photovoltaic device applications.

Suh et al. focused on improving the solubility of CPs without disturbing the coplanarity of the backbone. The group widely used alkylated BIm as acceptor unit, to synthesize soluble DAD type CPs or small molecules for photovoltaic applications [149].
Scheme 1.4. BIm including CPs in the literature.
Suh et al. synthesized a series DAD polymers with dihexylated BIm as acceptor unit and thiophenes as donor unit. When thiophene is alkylated in order to achieve solubility (3-hexylthiophenes), the planarity of resulting system is affected and resulted in a blue shift in the optical absorption spectrum (Scheme 1.4-I-J-K). Contribution of alkylated BIm supplies solubility along with keeping the coplanarity. The polymer films showed absorption maxima at 529 nm (E_g: 2.64 eV), 562 nm (E_g: 2.32 eV) and 569 nm (E_g: 2.21 eV) with increased number of the thiophene unit.

Same group synthesized a series BIm containing block copolymers in 2010 (Scheme 1.4-S-T-U-V) [150]. The acceptor group, BIm was alkylated with dihexyl chain and connected to bithiophene. Then, this unit was copolymerized with different groups alternately via Stille coupling reaction. It was reported that BIm supplied good solubility at room temperature in organic solvents along with facilitating the absorption at longer wavelengths. Higher red shift was observed in V because of stronger ICT between dialkoxy-phenylene unit and BIm acceptor.

In another study, a soluble CP by combining alkoxy substituted terthiophene (as donor unit) and cyclohexane bearing BIm (as acceptor unit) was synthesized (Scheme 1.4-L) [151]. The chemically synthesized polymer was found to be soluble, and showed red shifted absorption peak (at 475 and 755 nm; E_g: 1.32 eV) as compared to BTD containing counterparts.

Suh and his co-workers also used di(thien-2-yl)-2H-benzimidazole-2'-spirocyclohexane as acceptor unit in synthesizing two different type DAD polymers via chemical polymerization (Scheme 1.4-M-N) [152]. One of the resulting polymers (M) revealed deeper HOMO levels (0.12 eV deeper) and lower band gaps (0.3 eV lower) compared to the case of the polymer with BTD acceptor unit.

They also used dimethyl-2H-benzimidazole as acceptor unit instead of BTD in order to increase the solubility while protecting the planarity for solar cell application (Scheme 1.4-O-P) [153]. They observed an increase in the solubility and a decrease
in the band gap when dimethyl-functionalized BIm was used as acceptor unit as compared BTD.

Recently, in 2015, Suh et al. reported BIm based DAD type small molecule for photovoltaic applications (Scheme 1.4-R) [154]. For comparison, the same molecule was synthesized by using BTD unit and the effect of ICT was investigated among these two molecules. BIm unit was functionalized with dimetyl to get better solubility. BIm containing molecule exhibited two optical absorption band at longer wavelengths and proved the better ICT as well as showed the lower band gap (E_g: 1.64 eV). Power conversion efficiency of BIm containing small molecule (0.28 %) was found higher than BTD including moiety (0.15 %).

Since PBIms’s are bio-compatible and widely used in biological applications, functionalized DAD type benzimidazole based polymers were studied as biosensors. For example, benzene ring bearing BIm was coupled with EDOT and resulting DAD type polymer was combined with poly(methylmetacrylate) - clay nanocomposite for glucose biosensor applications [155].

Another example of biosensor is reported about aldehyde functionalized DAD type BIm containing polymer with thiophene donor unit. This polymer film was investigated in terms of its optical properties. Color of the polymer film is yellowish orange neutrally and pale green when oxidized. Band gap and HOMO level of the polymer was reported as 1.92 eV and -6.1 eV, respectively [156].

While electro-optical properties of BIm containing DAD polymers are still being studied [157-161], there are still missing studies about BIm containing CPs since this unit can be functionalized with many possible substituents.
1.8. Aim of This Study

According to the comparative literature summary mentioned in “Acceptor Materials” and “Benzimidazoles” sections, BIm has great advantage of having ability of functionalization from its 2-C position, which can positively affect the solubility while keeping the planarity of the related CP [129]. Functionalized BImS can also alter the optical absorption spectrum at lower energies which allows the photovoltaic device to harvest more sunlight and also lower the band gap [149-154]. BImS can change the degree of ICT and exhibit different electrochromic colors in DAD systems by bearing different substituents [144-148].

In this thesis, a series of novel benzimidazole-type acceptor units were designed and synthesized. These acceptors include cyclic alkyl units at their 2-C position (cyclohexane, cycloheptane and cyclooctane rings). The major aim is to understand the effect of the ring size on the acceptor group on the properties of DAD type monomers and their polymers. EDOT and PRODOT(C6) are the selected donor units to be coupled with the novel acceptor groups via Stille coupling reaction.

In synthesizing these DAD type novel monomers it is aimed to investigate not only the effect of ring size on the acceptor unit but also the effect of different donor units on the electrochemical and photophysical properties of the monomers and their corresponding polymers.

The following steps are included for six DAD type monomers in the scope of the study:

i. Synthesis, electro-optical characterization and comparison of monomers.

ii. Obtaining electroactive polymer films via electrochemical polymerization.

iii. Investigating the electrochemical and spectroelectrochemical behaviors of each polymer film.
iv. Comparing all CPs with each other as well as to their well-known moieties in terms of their electro-optical properties in terms of acceptor and donor group effects.

v. Constructing electrochromic device with two of the CPs.

Three different BIm based acceptor groups: (4,7-dibromo-2-cyclohexyl-2H-benzo[d]imidazole, 4,7-dibromo-2-cycloheptyl-2H-benzo[d]imidazole, and 4,7-dibromo-2-cyclooctyl-2H-benzo[d]imidazole were designed and used as acceptor groups. 3,4-ethylenedioxythiophene (EDOT) and dihexyl substituted 3,4-propylenedioxythiophene (PRODOT(C6) were selected as the donor groups. For this aim, six DAD type monomers, E6E (4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-2-cyclohexyl-2H-benzo[d]imidazole), E7E (4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-2-cyclohexyl-2H-benzo[d]imidazole), E8E (4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-2-cyclooctyl-2H-benzo[d]imidazole), P6P (4-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-2-cyclohexyl-2H-benzo[d]imidazole), P7P (4-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-2-cycloheptyl-2H-benzo[d]imidazole), P8P (4-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-2-cyclooctyl-2H-benzo[d]imidazole) and their corresponding polymers P(E6E) (poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-2-cyclohexyl-2H-benzo[d]imidazole)), P(E7E) (poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-2-cycloheptyl-2H-benzo[d]imidazole)), P(E8E) (poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-2-cyclooctyl-2H-benzo[d]imidazole)), P(P6P) (poly(4-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-2-cyclohexyl-2H-benzo[d]imidazole)), P(P7P) (poly(4-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-2-cyclohexyl-2H-benzo[d]imidazole))
were synthesized, characterized and their properties were comparatively evaluated.
<table>
<thead>
<tr>
<th>ACCEPTORS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DONORS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MONOMERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POLYMERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Scheme 1.5. Monomers, polymers, acceptor and donor groups that are aimed to be studied in this thesis.
CHAPTER 2

EXPERIMENTAL

2.1. Materials

All chemicals were purchased from Sigma Aldrich Chemicals and used as received except tetrahydrofuran (THF), ethanol and toluene. THF was dried over sodium and benzophenone, ethanol was distilled over iodine and magnesium, toluene was dried over calcium hydride (CaH₂) prior to use.

Electrolyte solutions were prepared by dissolving lithium perchlorate (LiClO₄) or tetrabutylammonium tetrafluoroborate (N(Bu)₄BF₄) in acetonitrile (ACN). Gel electrolyte for electrochromic device was prepared by mixing TBABF₄ - PMMA - PC - ACN in the following ratio 3 : 7 : 20 : 70 (w/w), respectively.

2.2. Methods and Equipment

The molecular structures of the synthesized compounds and final monomers were characterized with Bruker-Instrument, (DPX-400) model Nuclear Magnetic Resonance Spectrometer (NMR) in deuterochloroform (CDCl₃). Chemical shifts (δ) were given relative to tetramethylsilane (TMS) as the internal standard. Chemical shifts were reported in ppm with respect to 7.27 ppm of CDCl₃ as the reference signals for ¹H NMR (see Appendix A). Agilent (6224) model HRMS instrument was used for the molecular weight determination of monomers (see Appendix B). Electrochemical studies were performed in three electrode system by using Pt disk electrode, Pt plate and Ag/AgCl electrodes as working (WE), counter (CE) and reference (RE) electrodes, respectively. The cyclic voltammograms were recorded
with Gamry Reference 600 model potentiostat - galvanostat. The cyclic voltammetry measurements were calibrated with 10 mM solution of ferrocene in DCM. Spectroelectrochemistry studies were carried out with Specord S600 model UV-VIS spectrometer where it is combined with Gamry Reference 600 model potentiostat - galvanostat. Indium tin oxide (ITO) coated glass, Pt wire and Ag wire were used as WE, CE, and pseudo RE, respectively in spectroelectrochemical studies. The monomer included and monomer free electrolyte solution that was used for polymerization and polymer characterization purged with Argon (Ar) especially before n-doping measurements. Emission wavelengths were determined with Thermo Lumina fluorescence spectrometer. All measurements were performed at room temperature and ambient conditions. Thin layer chromatography (TLC) technique was used for monitoring the reactions. TLC plates (60 F 254, Merck) were used to see the reaction spots under UV light having 254 and 366 nm wavelengths. Merck Silica Gel (35-60 mesh) was used for purification of the target compounds by column chromatography.

2.3. Synthesis of Monomers

The synthesis part includes three steps: Synthesis of the acceptor units (6, 7, 8); synthesis of stannylated donor units (9, 10) and the synthesis of final DAD monomers (E6E, E7E, E8E, P6P, P7P, P8P). Six different monomers were synthesized via Stille Coupling Reaction and characterized via 1H-NMR and HRMS instrumental techniques. Several reaction steps were achieved for the preparation of donor and acceptor groups up to last step of Stille Coupling reaction.

2.3.1. Synthesis of Acceptor Groups

For the synthesis of acceptor groups, the skeleton unit called 3,6-dibromobenzene-1,2-diamine (2) was synthesized first. Then, the acceptor groups were obtained via
the reaction of diamine with cyclohexanone, cycloheptanone and cyclooctanone, separately (Scheme 2.1).

Scheme 2.1. General reaction scheme for the synthesis of acceptor units.

2.3.1.1. Synthesis of 3,6-dibromobenzene-1,2-diamine (2) [162]

1 g of 4,7-dibromobenzo[c][1,2,5]thiadiazole (1) was dissolved in 50 mL of diethyl ether and 400 mL ethyl alcohol (EtOH) at 0 °C. 5 g of NaBH₄ was added portionwise at the same temperature. After addition is completed, reaction mixture was allowed to stir overnight. EtOH was evaporated and the extraction with ether and brine was performed. After drying over MgSO₄, 1.04 g brown solid was obtained. Column chromatography was used for purification (4:1 Petroleum ether: diethyl ether) and 330 mg diamine was obtained as white solid (37%).

General procedure for the synthesis of acceptor unit is in following [163]: 1 eq of 3,6-dibromobenzene-1,2-diamine (2) and 3.7 eq of cyclohexanone (3) or cycloheptanone (4) or cyclooctanone (5) were dissolved in diethyl ether under Ar atmosphere with continuous stirring. After addition of 0.1 eq acetic acid, reaction mixture was refluxed at 50 °C and followed by TLC during 10 days. After reaction was stopped and solvent was removed under reduced pressure, crude product was diluted with ethyl acetate and washed with saturated aqueous brine. The collected organic phase was dried over MgSO₄ and purified with column chromatography (20:1 Hexane: Ethyl acetate). The yellowish oil was collected for the 2nd step. The yellowish oil was stirred under Ar atmosphere with 3 eq of 85 % activated MnO₂ in fresh THF overnight. Reaction mixture was filtered, washed with THF and solvent was evaporated. Lastly the product was purified with column chromatography (15:1 Hexane: Ethyl acetate). Final product (6, 7 or 8) was collected as yellow needles (see Figure 2.1).

^1^H NMR (400 MHz, CDCl₃) δ (ppm): 7.19 (s, 2H); 2.01-1.95 (m, 6H); 1.76 (s, br, 2H); 1.72 (s, br, 2H); ^1^3^C NMR (100 MHz, CDCl₃) δ (ppm): 156.9; 135.8; 118.8; 107.4; 32.6; 25.5; 24.5.

4,7-dibromo-2-cycloheptyl-2H-benzo[d]imidazole (7): Yield: 63 %

^1^H NMR (400 MHz, CDCl₃) δ (ppm): 7.17 (s, 2H); 1.82-1.76 (m, 12 H); ^1^3^C NMR (100 MHz, CDCl₃) δ (ppm): 164.9; 135.8; 100; 79.9; 33.8; 25.2; 23.4.
4,7-dibromo-2-cyclooctyl-2H-benzo[d]imidazole (8): Yield: 14 %

1H NMR (400 MHz, CDCl$_3$) δ (ppm): 7.17 (s, 2H); 1.78-1.71 (m, 14H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm): 156.8; 135.7; 110.8; 77.2; 41.9; 27.2; 22.7.

![Image of acceptor units](image1.png)

Figure 2.1. Views of the acceptor units. From left to right; 6, 7 and 8.

2.3.2. Synthesis of Donor Groups

In the aim of coupling the donor groups with the acceptor group via Stille coupling reaction, tributyltin substituted EDOT and PRODOT(C6) were prepared by lithiation with n-butyl lithium (n-BuLi) solution followed with treatment with tributyltin chloride (Sn(Bu)$_3$Cl). EDOT was used as received. PRODOT(C6) was synthesized via several steps.
2.3.2.1. Tributyl(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)stannane (9) [164]

\[
\text{EDOT} \xrightarrow{n-\text{BuLi}, \text{Sn(Bu)}_3\text{Cl}} \quad \text{THF, -78} \, ^\circ\text{C} \quad \text{9}
\]

Scheme 2.2. Synthesis route of compound 9

A 0.77 g (5.42 mmol, 1 eq) sample of EDOT in 70 mL of freshly dried THF was cooled to -78 °C under Ar atmosphere. 2.3 mL (5.69 mmol, 1.05 eq) of 2.5 M n-BuLi was added to the solution dropwise. When the addition is finished, solution was taken out to room temperature for 1 hour. Then the reaction solution was cooled again to -78 °C for one hour, and then 1.46 mL (1 eq) of tributylstannyl chloride were slowly added to the solution. The solution was stirred at -78 °C for additional 2 h. Then the solution was warmed to room temperature very slowly and stirred overnight. 3-4 drops of 2 M aqueous solution of H\textsubscript{2}SO\textsubscript{4} was added to the solution to deactivate the excess n-BuLi. After evaporation of the solvent, the residue was extracted with dichloromethane and saturated aqueous brine. Lastly the organic phase was dried over MgSO\textsubscript{4}. The solvent was removed and tributyl(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)stannane (9) was obtained as viscous yellow liquid (1.6 g, 68%). The compound 9 was used for the coupling reactions without further purifications.

\(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta\) (ppm): 6.32 (s, 1H); 4.20 (s, 4H); 1.6-1.5 (m, 6H); 1.37-1.28 (m, 6H); 1.15-1.07 (m, 6H); 0.92-0.82 (m, 9H); \(^{13}\text{C NMR (100 MHz, CDCl}_3\) \(\delta\) (ppm): 147.7; 108.9; 105.8; 64.7; 28.9; 27.1; 13.7; 10.5.
2.3.2.2. Synthesis of 3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b]dioxepine (PRODOT(C6)) [165]

Couple of reaction steps were followed during the synthesis of PRODOT(C6) (Scheme 2.3).

Scheme 2.3. Synthesis route of PRODOT(C6)

Synthesis of 2,2-dialkylmalonate (Step 1): 6.90 g (0.3 moles, 3.25 eq) of Na metal was dissolved in 250 mL of freshly distilled ethyl alcohol. 15 g (93 mmol, 1 eq) of diethyl malonate was added and the reaction mixture was started to heat. When reflux began, 56 g (340 mmol, 3.65 eq) of 1-bromohexane was added dropwise. The reaction was continued for 4 days. After evaporation of ethyl alcohol, the crude product was dissolved in diethyl ether and washed with cold water. The collected...
organic phase was dried over MgSO$_4$. 22 g of 2,2-dihexylmalonate was obtained as yellow oil (72 %).

Synthesis of 2,2-dihexylpropane-1,3-diol (Step 2): 200 mL of freshly dried THF was added onto 5.40 g of LiAlH$_4$ dropwise while stirring under Ar atmosphere. After addition is completed, the temperature was raised to reflux temperature. Then 22 g of 2,2-dihexylmalonate was added to this system drop by drop after diluting with 50 mL THF. The reaction was cooled after 18 hours. 2 M of H$_2$SO$_4$ was added dropwise in order to deactivate excess LiAlH$_4$. Then THF was removed and the product was washed with ether and saturated aqueous brine. The organic phase was dried over MgSO$_4$. After evaporation of solvent, 14 g of 2,2-dihexylpropane-1,3-diol was obtained as yellow oil (86 %).

Synthesis of 3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b])dioxepine, PRODOT(C6)) (Step3):

5 Å molecule sieve was dried on a bunsen burner for 3 hours for using as drying agent in a soxhlet apparatus during the reflux. 2g (13.8 mmol, 1 eq) of 3,4-dimethoxythiophene, 6.76 g (27.6 mmol, 2 eq) of 2,2-dihexylpropane-1,3-diol and 0.27 g (1.38 mmol, 0.1 eq) para-toluene sulfonic acid (PTSA) were mixed in 120 mL of freshly distilled toluene under Ar atmosphere. Soxhlet apparatus was placed on the reaction flask. The reflux unit was placed on the soxhlet. The reaction mixture was refluxed at 120 °C by following with TLC. After 2 days, reaction was stopped and concentrated reaction product was diluted with dichloromethane (DCM) to wash with saturated aqueous brine. The collected organic phase was dried over MgSO$_4$. After solvent evaporation, further purification was done by column chromatography (4:1 Hexane : DCM) and 4.36 g viscous yellow product was obtained (97 %).

1H NMR (400 MHz, CDCl$_3$) δ (ppm): 6.41 (s, 2H); 3.84 (s, 4H); 1.39-1.28 (m, 12H); 1.28 (s, br 8H); 0.89 (s, br 6H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm): 149.7; 104.6; 77.5; 31.9; 31.7; 30.15; 22.7; 22.6; 14.07.
2.3.2.3. Synthesis of Tributyl(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)stannane (10) [164]

Scheme 2.4. Reaction scheme for stannylation of PRODOT (C6)

A 3.8 g (11.73 mmol, 1 eq) solution of PRODOT(C6) in 200 mL of freshly distilled THF was cooled to -78 °C under Ar atmosphere. 5.0 mL (12.32 mmol, 1.05 eq) of 2.5 M n-butyllithium was added to the solution dropwise. When the addition is finished, solution was taken out to room temperature for 1 hours. Then after the reaction solution was cooled again for 1 h at -78 °C, 3.2 mL (1 eq) of tributylstannyl chloride were slowly added to the solution. The solution was stirred at -78 °C for additional 2 h. Then the solution was warmed to room temperature very slowly and stirred overnight. 3-4 drops of 2 M aqueous solution of H₂SO₄ was added to the solution to deactivate the excess n-BuLi. After evaporation of the solvent, the residue was extracted with dichloromethane and saturated aqueous brine. Lastly the organic phase was dried over MgSO₄. The solvent was removed and tributyl(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)stannane (10) was obtained as very viscous dark yellow liquid (7.4 g, 99 %). The compound 10 was used for the coupling reactions without further purifications.

¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.42 (s, 1H); 3.84 (s, 4H); 1.36-1.28 (m, 18H); 1.28 (s, br, 16H); 1.0-0.86 (m, 15H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 149.7; 128.2; 104.6; 77.5; 43.7; 31.8; 31.7; 30.14; 28.2; 27.1; 25.6; 22.7; 16.3; 15.6; 13.7.
2.3.3. DAD Type Monomer Synthesis via Stille Coupling Reaction

The Stille reaction is a widely used method in organic synthesis for the C-C bond formation and the building of sp²-sp² bond containing molecules [166]. It is also known as “Migita-Kosugi-Stille coupling”, since it is introduced first by Migita and developed by Stille [167,168]. Coupling of organostannanes with organohalides can be achieved by Stille reaction in the presence of palladium-catalyst.

All monomers (E6E, E7E, E8E, P6P, P7P, P8P) were synthesized via Stille coupling reaction. Color of the progress was the same for all monomers. In the beginning, all solutions were in yellow color. After 30 minutes, the color was started to turn red. After two hours, the reaction color was fixed itself to red. The purifying steps were also similar. The fluorescence red compounds were collected from column chromatography.

General procedure of monomer synthesis is in following: 1 eq of acceptor compound, 2.1 eq of donor compound and 2 % eq of Pd(II) were dissolved in freshly distilled toluene under Ar atmosphere. Reaction was followed by TLC during two days. The solvent was evaporated, the crude product was dissolved in DCM and washed with aqueous brine. After drying the organic part over MgSO₄, the product was purified with column chromatography (3:1 Hexane : DCM).

E6E: Purple like solid film. Yield: 47%

1H NMR (400 MHz, CDCl₃) δ (ppm): 7.83 (s, 2H); 6.47 (s, 2H); 4.35-4.25 (dt, 8H); 2.04-2.0 (t, 10H); HRMS: 467.1052 g / mol; 8.96 ppm.

E7E: Purple like solid film. Yield: 22%

1H NMR (400 MHz, CDCl₃) δ (ppm): 7.80 (s, 2H); 6.48 (s, 2H); 4.35-4.25 (dt, 8H); 1.56 (t, br, 8H); 1.77 (t, 4H); HRMS: 481.1189 g / mol; 12.69 ppm.
P8P: Red solid film. Yield: 16 %
1H NMR (400 MHz, CDCl$_3$) δ (ppm): 7.73 (s, 2H); 6.47 (s, 2H); 3.93 (s, 4H); 3.83 (s, 4H); 1.37 (m, 8H); 1.29 (m, 4H); 1.23 (m, 42H); 0.83 (q, 12 H).

P7P: Red solid film. Yield: 24 %
1H NMR (400 MHz, CDCl$_3$) δ (ppm): 7.74 (s, 2H); 6.47 (s, 2H); 3.94 (s, 4H); 3.82 (s, 4H); 1.23 (m, 40 H); 1.36 (m, 8H); 1.67 (t, 4H); 1.83 (t, 12H); HRMS: 845.5255 g / mol; 7.6 ppm

P6P: Red solid film. Yield: 80 %
1H NMR (400 MHz, CDCl$_3$) δ (ppm): 7.86 (s, 2H); 6.55 (s, 2H); 4.01 (s, 4H); 3.9 (s, 4H); 1.45-1.42 (m, br 10H); 1.31-1.22 (m, 40H); 0.9 (t, 12H); HRMS: 831.5137 g / mol; 3.15 ppm.

E8E: Purple like solid film. Yield: 37%
1H NMR (400 MHz, CDCl$_3$) δ (ppm): 7.81 (s, 2H); 6.48 (s, 2H); 4.36-4.25 (dt, 8H); 1.72 (t, 4H); 1.25 (t, br 10H); HRMS: 495.1358 g / mol; 9.85 ppm.
2.4. Synthesis of Polymers via Electrochemical Polymerization of Monomers

The polymer films firstly were obtained by cyclic voltammetry with a certain number of repetitive scans in order to see the deposition of the polymer films. Further studies (determination the redox potentials, stability, scan-rate dependence etc.) were performed with the films which were deposited by constant potential coulometry.

The polymers were deposited on different substrates for different purposes. For electrochemical studies, monomers were electropolymerized on Pt disc WE (0.0314 cm² surface area). One compartment three electrode system consisting of a Pt disc WE, Ag/AgCl RE and Pt plate CE was used during electrochemical studies. 0.1 M LiClO₄ in ACN-DCM (90:10 v/v) electrolyte solution was used for the electropolymerization of monomers.

For optical studies, indium tin oxide (ITO) coated glass substrate was used as WE. The pseudo-reference electrode was Ag wire and the CE was Pt wire. Electropolymerizations were performed by constant potential electrolysis in UV-cuvette in the electrolyte solution of 0.1 M LiClO₄ in ACN-DCM (90:10 v/v).

2.4.1. Cyclic Voltammetry

Cyclic voltammetry (CV) is the mostly used electroanalytical technique for electrochemical reactions. It gives useful information about the redox behavior, such as oxidation-reduction potential values of the substrates [169]. In this method, three electrode system (WE, CE and RE) in the electrochemical cell is connected to the potentiostat (Figure 2.2). Commonly used WEs are Pt disc, glassy carbon disc and ITO coated glass electrodes. The RE may be an Ag wire or Ag/AgCl saturated calomel electrode. The CE is generally a Pt wire or a Pt plate. In CV, WE potential is varied at a specified rate linearly and current flow between WE and CE was monitored as a function of WE potential.
The peak current is expressed by Randles & Sevcik equation [170]:

\[i_p = (2.69 \times 10^5) n^{3/2} A D^{1/2} C v^{1/2} \]

Where, \(\eta \) is the number of electrons transferred in redox process, \(A \) is the area of the electrode, \(C \) is the concentration, \(D \) is the diffusion coefficient and \(v \) is the voltage scan rate. As it can be seen from the equation, the peak current is directly proportional to the square root of scan rate and the concentration of analyte.

2.4.2. Constant Potential Coulometry

Constant potential coulometry is one of the electroanalytical methods like cyclic voltammetry. In this technique, the monomer is totally oxidized (or reduced) at the WE. The polymer film deposition is achieved by applying a constant potential to the cell, the resulting film will be in its oxidized state. The film thickness can be monitored and controlled by controlling the amount of charge (in coulombs) passing through the electrochemical cell [171].
2.5. Characterization of Polymers

In order to report a CP as a “good electrochrome”, certain parameters (redox behavior, electrochemical stability, band gap, HOMO and LUMO values, optical absorption and emission regions, optical stability, electrochromic contrast, switching time, colors in different redox states and coloration efficiency) must be determined and reported. In this thesis, all parameters written above were monitored, calculated and reported for six synthesized polymer films.

2.5.1. Electrochemical Properties of CPs

Electroanalytical techniques can be utilized to elucidate information about oxidation and reduction potentials of the polymers which can be used to evaluate the band gap energy. Furthermore, by recording the repetitive CVs in monomer free electrolytic solution, information about the electrochemical stability of polymer films can be obtained.

In the case of CPs since the polymer is localized on the WE surface, Randels-Sevcik equation does not work due to lack of diffusion. The peak current is expressed by the following equation based on the theory of immobilized redox centers [172]:

\[i_p = \frac{n^2F^2\Gamma v}{4RT} \]

where \(\Gamma \) is the amount of analyte on the electrode surface. According to this equation, the current intensity is directly proportional to the scan rate.

In this thesis, the cyclic voltammograms of the polymer films were recorded at different scan rates and the “current vs scan rate” and “current vs square root of scan rate” graphs were plotted in order to prove if the polymer is well adhered to the electrode surface. Moreover, “amount of charge vs scan rate” graphs were also
plotted to show if the polymer films can do their charge-discharge process even at high scan rates.

Retaining the electroactivity after large number of redox cycles is an important parameter for an electrochromic polymer especially for device applications. The electrochemical stability of the polymer films were tested by square wave potential method by applying potential steps. In this method, two specific potential values (V_1 and V_2) are applied to the WE for specified time intervals. One of the potential value oxidizes the polymer and the other potential keeps the polymer in its neutral form.

2.5.2. Spectroelectrochemistry

Spectroelectrochemistry is the combination of the electrochemical and spectroscopic techniques. Remarkable information about the polymer films can be obtained by operating these methods together. Optical studies can be performed while the redox process is in progress. For example, the optical absorption spectra of the polymer films can be recorded during the p-type or n-type doping process in order to provide support for the polaron / bipolaron formation.

For optical studies, ITO-coated glass substrate was used as WE. The pseudo reference electrode was Ag wire and the CE was Pt wire (Figure 2.3).
UV-VIS spectrometry was used to determine the maximum absorption wavelengths of the polymers. The optical band gap (E_g^{optical}) was determined for each of the polymer by using the onset of longer wavelength absorption spectrum.

The emission spectrum gives an information about the solid state emission of the polymer which is a remarkable property for many of applications such as organic light emitting diodes (OLEDs). The emission spectra of the polymer films were studied in their solid states with the fluorescence spectrometry and emitted colors were determined.

2.5.3. Optical Contrast and Optical Stability

When the CPs are doped, their optical properties, in other words, their light transmittances change depending on the applied potential value. The difference in their transmittance values between fully oxidized (\% T_{bleached}) and reduced (\% T_{colored}) states (\Delta T \%) were studied at the maximum absorption wavelengths. The kinetic program of the UV-VIS spectrometry was performed while the square wave potential method was applied in the same time. The percent transmittance values between fully oxidized and reduced states were calculated and reported. How fast the polymer film achieves the redox process was determined and optical stability of the
films were reported by applying the square wave potential with the residence times of 10, 5, 3, and 2 seconds.

Percent transmittance and the color change (upon redox process) must be stable upon switching many times, which is called optical stability. Redox switching stabilities of the polymers were monitored for 50 cycle redox switchings with a residence time of 5 seconds.

The time required for doping (t_{ox}) and dedoping (t_{red}) is preferred to be in subsecond level for display applications while it is not necessary to be very fast for smart windows. The switching times of the polymers were also determined by monitoring the percent transmittance results. The optical contrast results were given at 95% of the full contrast since the human eye can perceive in this range.

2.5.4. Colorimetry

An electrochromic polymer changes its color in its oxidized (or may be in reduced or intermediate) states. Each human eye may detect the colors relatively different because of different light sources or back ground colors or may be because of the observer. There exist some scales for standardization of the color values with the numbers. The most widely accepted scale is “The Commission Internationale de l’Eclairage” (CIE). This commitee developed a three dimensional lab color space (called CIELAB) for expressing the color specifically in 1976. According to this system, brightness, hue and saturation are expressed by $L^*a^*b^*$ values respectively and the exact color is indicated on the CIELAB color space (see CIELAB space in Figure 2.4).

Color measurements of the polymer films in the scope of this thesis were performed by spectrophotometer and neutral, oxidized and reduced state colors of the polymers were indicated in terms of $L^*a^*b^*$ values.
2.5.5. Coloration Efficiency

Coloration efficiency (CE) is another important parameter which shows the relation between optical absorbance change (at a specific wavelength) and charge / discharge density required for a full switch [174].

CE (\(\eta \)) is calculated with the following equation [175]:

\[
\eta = \frac{\Delta OD}{Q_d}
\]

Where \(\Delta OD = \log\left(\frac{T_{\text{bleached}}}{T_{\text{colored}}}\right) \) and \(Q_d \) is the charge density (C.cm\(^{-2}\)). The unit of CE is cm\(^2\).C\(^{-1}\). CE is commonly measured and reported at 95 % of the full optical contrast.
2.6. Applications of CPs: Electrochromic Device

An electrochromic device (ECD) is a device having an ability of changing its optical contrast at different applied potentials. ECDs are used in the application fields of smart windows, car rear views, display applications or emittance surfaces [176-179].

Type of the conjugated polymers used in device applications determines the color of ECD. The color change in oxidized state is commonly transmissive in conjugated polymers. Hence, the well-known type of organic ECD is absorptive-transmissive type ECDs. Moreover, conjugated polymers can have two different colored state in their neutral and oxidized states, or more than two in between [180]. These electrochromes are suitable candidates for reflective type ECDs.

The basic set up for an ECD consists of two electrochromic polymer films sandwiched between a conducting substrate with gel electrolyte in the middle (Figure 2.5). Gel electrolyte supports the ionic balance as well as encapsulates the device. The coloration switch of the ECD is adjusted by the selecting an anodically coloring and a cathodically coloring polymer films.

In this study, transmissive type ECDs were constructed with P(E6E) and PEDOT and P(P6P) and PEDOT polymer films. PEDOT was chosen as cathodically coloring polymer (Dark blue in neutral state and transmissive sky blue in oxidized state). Before making a successful ECD, charge balance must be adjusted for electrochemically depositing polymers in order to prevent remaining extra charge on ECD on redox process. For this aim, PEDOT film on ITO-glass was deposited with different charge densities (10; 20; 29; 30.5 and 43.5 mC. cm$^{-2}$). Then charge density vs redox charge graph was drawn as reference for P(E6E) and P(P6P) separately (Figure 2.6). Then, our polymer films were electrochemically deposited on ITO with suitable charge density.

After balancing the charges, PEDOT was left in oxidized form and P(E6E) (or P(P6P)) was left in its reduced form. After drying of the films for an hour, the
polymer films were sandwiched on their conducting sites with leaving thin layer gel electrode between them. The ECD was left to dry for two days and then it was run by connecting the WE to P(E6E) (or P(P6P)) and the CE (short cutted by the reference electrode) to PEDOT.

Gel electrolyte was prepared by mixing TBABF$_4$ - PMMA - PC - ACN with the ratio of 3 : 7 : 20 : 70 (w/w) respectively [181]. PMMA was dissolved in ACN while heating and stirring at 70 °C. Then TBABF$_4$ (dissolved in PC) was slowly added to solution and ACN in resulting mixture was allowed to evaporate overnight. Gel electrolyte was obtained as very viscous colorless product.

![Figure 2.5](attachment:figure25.png)

Figure 2.5. Schematic view of an electrochromic device.
Figure 2.6. Redox charge vs deposited charge density graph of PEDOT films deposited by constant potential electrolysis with 1.5 V.
CHAPTER 3

RESULTS AND DISCUSSION

3.1. Benzimidazole Based DAD Type Monomers and Their Polymers Including EDOT Donor Units

3.1.1. Electrochemical Behaviour of E6E, E7E and E8E

Prior to electrochemical polymerization, electrochemical behaviour of the monomers were investigated not only to find the suitable polymerization potential but also to understand the effect of different ring size of the acceptor units on the electrochemical behaviour of the monomers. The cyclic voltammograms of E6E, E7E and E8E monomers were recorded in ACN - DCM solvent mixture (90 : 10 v/v) containing 0.1 M LiClO₄ as supporting electrolyte and the results are depicted in Figure 3.1. As seen from the figure, the monomers exhibit an irreversible oxidation peak at about 0.80 V vs Ag/AgCl (0.50 V vs Fc/Fc⁺) during the first anodic scan. Although all three monomer behaviours seem similar, E8E (0.73 V vs Ag/AgCl, 0.43 V vs Fc/Fc⁺) has the lowest and E7E (0.80 V vs Ag/AgCl, 0.50 V vs Fc/Fc⁺) has the highest oxidation potential indicating that the monomers which includes even number ring on their acceptor groups can be oxidized relatively easier. On the other hand, no reduction peak was observed during the cathodic scan for all three monomers in LiClO₄ electrolyte medium.
Figure 3.1. The cyclic voltammograms of E6E, E7E, E8E monomers in 0.1 M LiClO₄ in ACN - DCM (90:10 v/v) between -0.5 V and 0.90 V for E6E and E8E and between -0.5 V and 1.00 V for E7E vs Ag/AgCl at a scan rate of 100 mV/s.

3.1.2. Optical Characterization of E6E, E7E and E8E

The optical properties of the monomers were determined by recording their electronic absorption spectrum in DCM and the spectra were given in Figure 3.2. All three monomers exhibited two optical absorption bands due to their donor-acceptor pattern. One of the reasons for the existence of second (low lying) absorption band in DAD type molecules might be charge transfer between donor and acceptor units together with π→π* transition [182]. As seen from Figure 3.2, the maximum absorption wavelengths for E6E, E7E and E8E are at 314 / 539 nm, 312 / 532 nm and 312 / 530 nm, respectively. A close inspection of these values indicates that the ring size on the acceptor unit has no significant effect on absorption maxima except a slight blue shift in the low lying band with increasing ring size. On the other hand, intensity of the absorption peak at longer wavelength gives an important clue for ICT efficiency between donor and acceptor units. In order to clarify this, the electronic
absorption spectra of the monomers were normalized in terms of the shorter wavelength optical absorption bands. The better charge transfer feature between the donor-acceptor units occurs in E6E and it decreases with increasing ring size. The optical band gap values of corresponding monomers were calculated by using the onset of the longer wavelengths in the optical absorption spectra. The band gap values of the monomers are found as 1.99 eV for E6E and 2.03 eV for E7E and E8E. Table 3.1 summarizes the obtained electrochemical-optical properties of the monomers.

![Normalized Optical Absorption Spectra](image)

Figure 3.2. Normalized optical absorption spectra of E6E, E7E and E8E monomers in DCM. Inset: Colors of the monomers under daylight.
The fluorescence spectra of the monomers were also recorded in DCM and the results are presented in Figure 3.3. The fluorescence spectra of all the monomers exhibited strong luminescence maxima in the wavelength region 640–650 nm corresponding to red color, upon their excitation at 525 nm. Emission maxima for the three monomers are very close (650 nm, 648 nm and 645 nm for \(\text{E6E} \), \(\text{E7E} \) and \(\text{E8E} \), respectively) exhibiting a small blue shift as the ring size increases from 6 to 8. The fluorescence results are compatible with the UV results indicates the bathochromic shift and the stronger ICT with decreasing the ring size.

Figure 3.3. Emission spectra of \(\text{E6E} \), \(\text{E7E} \) and \(\text{E8E} \) in DCM. Inset: Colors of the monomers under 366 nm UV-light.
Photoluminescence (PL) solvatochromism is a useful method for examining the electronic properties of excited states by systematically changing the dielectric properties (polarity) of the surrounding environment (solvent). If the excited-state dipole of a chromophore is larger than that of the ground state, increasing the polarity of the solvent will stabilize the excited state more than the ground state, producing a red shifted emission [183]. In order to clarify the existence of intramolecular charge transfer between D and A units, solvatochromic experiments were performed. The optical absorption and emission spectra of monomers were monitored in three different solvents with different dielectric constants: DCM (9.1), THF (7.5) and toluene (2.4) and the results are shown in Figure 3.4. Although λ_{max} values for the three monomers investigated did not show a straight trend with increasing solvent polarity, a slight red shift was observed in the emission maxima with increasing solvent polarity. In the case of E6E, λ_{max} appears at 542 nm in toluene (the least polar solvent) and this value shifts to 548 nm in THF with increasing solvent polarity. However, λ_{max} undergoes almost 9 nm blue shift, in DCM, with further increase in solvent polarity. The same relation was also observed for E7E ($\lambda_{\text{max}}= 532$ nm in DCM, 537 nm in THF and 536 nm in toluene) and E8E ($\lambda_{\text{max}}= 530$ nm in DCM, 537 nm in THF and 536 nm in toluene). However, when the emission spectra of the monomers recorded in different solvents were examined (see Figure 3.4) a slight red shift in the emission maxima was observed for all three monomers with increasing solvent polarity. In the case of E6E, emission spectra shifts from 636 nm (toluene) to 648 nm (THF) and to 650 nm (DCM). Similar trend was also observed in the case of E7E ($\lambda_{\text{emission}}= 643$ nm, 645nm and 648 nm in toluene, THF and DCM, respectively) and E8E ($\lambda_{\text{emission}}= 641$ nm, 644 nm and 645 nm in toluene, THF and DCM, respectively). This red shift in the emission wavelength proves that the low-energy band present in the absorption spectrum is originating most probably from intramolecular charge transfer [184]. Furthermore, since the observed red shift with increasing the polarity of solvents is highest in E6E and lowest in E8E, it can be concluded that the extent of intramolecular charge transfer decreases with increasing ring size on benzimidazole unit for the monomers, E6E, E7E and E8E.
Figure 3.4. The normalized absorption and emission spectra of E6E (a, b); E7E (c, d) and E8E (e, f) in different solvents of DCM, THF and toluene.
Table 3.1. Electrochemical and spectroelectrochemical properties of E6E, E7E, E8E.

<table>
<thead>
<tr>
<th>Monomers</th>
<th>λ_{max} (abs) nm</th>
<th>λ_{max} (ems) nm</th>
<th>E_{ox} (V)</th>
<th>$E_{\text{ox(onset)}}$ (V)</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>$E_{\text{g(\text{UV})}}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6E</td>
<td>314</td>
<td>539</td>
<td>0.46 *</td>
<td>0.38 *</td>
<td>-5.18 **</td>
<td>-3.19 **</td>
<td>1.99</td>
</tr>
<tr>
<td>E7E</td>
<td>312</td>
<td>532</td>
<td>0.50 *</td>
<td>0.39 *</td>
<td>-5.19 **</td>
<td>-3.16 **</td>
<td>2.03</td>
</tr>
<tr>
<td>E8E</td>
<td>312</td>
<td>530</td>
<td>0.43 *</td>
<td>0.35 *</td>
<td>-5.15 **</td>
<td>-3.12 **</td>
<td>2.03</td>
</tr>
</tbody>
</table>

* with respect to $E_{\text{ox(onset)}}$ of Fc/Fc$^+$ (0.30 V)

$E_{\text{g}} = [E_{\text{ox(onset)}} + 4.80]$ and HOMO = [LUMO - E_{g}] [185]

3.1.3. Polymerization of E6E, E7E and E8E and Their Characterizations

3.1.3.1. Electrochemical Polymerization of E6E, E7E and E8E

The electrochemical polymerizations of E6E, E7E and E8E were achieved in electrolyte solutions consisting of 0.1 M LiClO$_4$ dissolved in ACN - DCM mixture (90:10 v/v) via repetitive cycling. The solvent mixture was used because of poor solubility of monomers in ACN. Polymer films, P(E6E), P(E7E) and P(E8E), were deposited on the Pt-WE surface via potential cycling from -0.5 V to 0.85 V (for E6E and E8E); -0.4 V to 1.0 V (for E7E). During potential scanning, new oxidation and reduction peaks appeared in all three polymerization. Appearance of the new redox peak is the fingerprint of the polymer formation. Also, the current intensities were
increased in every successive scan which indicated the increase in polymer film thickness on the electrode surface. Figure 3.5 (a-b-c) shows the cyclic voltammograms recorded during repetitive cycling.

Although LiClO₄ was used as supporting electrolyte, instead of more commonly used TBABF₄, during electrochemical polymerizations the latter was used during investigating the electrochemical behaviours of the polymer films. The reason for using LiClO₄ during polymerizations of the monomers is because of better polymerization efficiency. BF₄⁻ anions caused the right shifted oxidation potentials for the monomers and also resulted in less current increase during the electropolymerization. Higher current densities were obtained when LiClO₄ was used as the electrolytic medium. In case of investigating electrochemical behaviour of polymers we have used TBABF₄ since N(Bu)₄⁺ cations are better than Li⁺ during the n-doping process. The n-doping property was obtained for the polymers when TBABF₄ was used instead of LiClO₄.

After 15 successive scans, the polymer film coated electrode was washed with and left in ACN to remove any unreacted monomer and oligomeric species. The redox behaviour of the polymer films were investigated by recording their cyclic voltammograms in monomer free electrolyte solution, consisting of 0.1 M TBABF₄ in ACN, and the results are given in Figure 3.5-d.

Further electrochemical studies (i.e. oxidation-reduction potentials, polymer film stability, n-doping, scan-rate dependence etc.) were performed on the polymer films obtained via constant potential electrolysis at applied potential of 0.90 V in the supporting electrolyte solution of 0.1 M LiClO₄ - ACN/ DCM mixture (90:10 v/v) vs Ag/AgCl.
Figure 3.5. Electropolymerization of E6E between -0.5 V and 0.85 V (a), E7E between -0.4 V and 1.0 V (b), E8E between -0.5 V and 0.85 V (c), with 15 cycles in 0.1 M LiClO₄ solution of ACN-DCM at a scan rate of 100 mV.s⁻¹ on Pt WE. The cyclic voltammograms of the resulting polymers (d), versus Ag/AgCl in monomer free electrolyte solution of 0.1 M TBABF₄-ACN at a scan rate of 100 mV.s⁻¹.
When the total Faradaic charge reached to 80 mC.cm$^{-2}$ electrolysis was stopped and polymer coated WE was transferred into monomer free electrolyte solution to monitor their redox behaviour. When P(E6E), P(E7E), and P(E8E) were scanned anodically in monomer-free electrolyte solution, they exhibited well-defined reversible redox couples due to p-doping ($E_{p}^{ox} = +0.28$ V and +0.61 V (-0.02 V and +0.31 V vs Fc/Fc$^+$) for P(E6E); $E_{p}^{ox} = +0.25$ V and +0.61 V (-0.05 V and +0.31 V vs Fc/Fc$^+$) for P(E7E) and $E_{p}^{ox} = +0.32$ V together with two shoulders at about -0.11 V and 0.73 V (main peak at +0.02 V and the shoulders at -0.19 V and at 0.43 V vs Fc/Fc$^+$) for P(E8E) (see Figure 3.6-a). Oxidation onset potentials of the P(E6E) and P(E8E) measured as equal and 30 mV lower than that of P(E7E). P(E7E) exhibited highest oxidation onset among the others as in the case its monomers.

Unlike the monomers, polymer films exhibited well-defined reversible n-doping process. This might be due to using two different supporting electrolytes in investigating electrochemical behaviour of monomers and their corresponding polymer films. The results followed during n-dopings are depicted in Figure 3.6-b. ($E_{n}^{red-onset} = -1.01$ V (-1.31 vs Fc/Fc$^+$) for P(E6E); $E_{n}^{red-onset} = -1.00$ V (-1.30 vs Fc/Fc$^+$) for P(E7E) and $E_{n}^{red-onset} = -1.05$ V (-1.35 vs Fc/Fc$^+$) for P(E8E)). It can be concluded that removing an electron from the cycloheptane ring bearing monomer (and also its polymer) is harder than that of the even number ring bearing monomers. On the other hand, inserting an electron is easier in P(E7E) than P(E6E) and P(E8E). Based on the results, it can be said that, E6E, E8E, P(E6E) and P(E8E) are more electron rich than E7E and P(E7E).

The oxidation-reduction onset potentials, optical band gap values, HOMO-LUMO levels and the colors of the polymer films were given in Table 3.2. Furthermore, the oxidation and reduction onset values were utilized to elucidate electrochemical band gap value of the polymer films (E_{g}^{CV}) and tabulated in Table 3.3.
Figure 3.6. (a) Cyclic voltammograms of the polymers (P(E₆E), P(E₇E), P(E₈E)) obtained by constant potential electrolysis with the charge of 80 mC.cm⁻² on Pt working electrode between -0.5 V and 0.9 V in 0.1 M TBABF₄-ACN monomer free electrolyte solution vs Ag/AgCl. (b) Cyclic voltammograms of the polymers (P(E₆E), P(E₇E), P(E₈E)) during n-doping process between 0.0 V and -1.25 V in 0.1 M TBABF₄-ACN monomer free solution vs Ag/AgCl reference electrode.
The scan rate dependence of the polymers was also investigated in order to see if the polymer films well adhered to the electrode surface. Scan rate is increased with the increments of 20 up to 200 mV.s\(^{-1}\) starting with 20 mV.s\(^{-1}\). Scan rate dependence experiments showed that both anodic and cathodic peak currents increase linearly with increasing scan rate, indicating a well-adhered polymer film on the WE surface and a non-diffusional redox process, which was shown in Figures 3.7. Moreover, charge vs scan rate graphs show that if the polymer films can achieve charging-discharging process effectively. The anodic and cathodic charges vs scan rate graphs of the polymer films showed that the charging-discharging process of the polymer film is effectively achieved even at higher scan rates.
Figure 3.7. Scan rate dependence of $P(E6E)$, $P(E7E)$ and $P(E8E)$ on Pt disc electrode in 0.1 M TBABF$_4$-ACN at a scan rate of 20 - 40 - 60 - 80 - 100 mV.s$^{-1}$ between -0.5 V and 0.90 V. Inset: The current vs scan rate (a) and the charge density vs scan rate (b) plots of the polymer films with increasing scan rates.
The electrochemical stability can be defined as the ability of retaining electrochemical properties upon repetitive doping-dedoping process. This is an important parameter for conjugated polymers for being a good candidate in electronic device applications. Electrochemical stability of the polymer films obtained by constant potential electrolysis (+ 0.90 V vs Ag/AgCl, 80 mC.cm$^{-2}$) on Pt disc WE were studied with square wave potential method under ambient conditions by applying the potentials of -0.2 V and 0.6 V of 3 s for each. Cyclic voltammograms were recorded after 100, 350, 600 and 1000 switchings. After 1000 cycle is complete, the first cyclic voltammogram of the polymers were compared to their last cycles in terms of amount of charge lost. If there is no lost in current intensity or charge, the cycle number was further increased.

According to the voltammograms, P(E6E) showed 9.6 % charge lost in anodic region after 1000 switching. In the cathodic part, the charge lost value was determined as 9.4 %. P(E7E) exhibited different trend in stability survey. There was a right shift in cyclic voltammogram after 1000 cycles. The oxidation onset potential value of P(E7E) was right shifted by 0.15 V after 1000 cycles. Moreover, P(E7E) lost its charge by 29 % and 27 % in anodic and the cathodic part, respectively. P(E8E) showed the best stability profile. Even after 5000 switching, there was only 5 % charge lost both in anodic and cathodic region (Figure 3.8).
Figure 3.8. Cyclic Voltammograms of P(E6E), P(E7E) and P(E8E) films after many of switchings. Insets: (a) Anodic and cathodic charge density vs number of switching graphs of P(E6E) film in 0.1 M TBABF$_4$ - ACN achieved by square wave potential (-0.2 V for 3 s and 0.6 V; 3 s for each) under ambient conditions. (b) The first and the last cyclic voltammograms of polymer films in 0.1 M TBABF$_4$ - ACN.
Table 3.2. Electrochemical and spectroelectrochemical properties of P(E6E), P(E7E) and P(E8E).

<table>
<thead>
<tr>
<th>Polymers</th>
<th>λ_{max} (abs) nm</th>
<th>E_{ox} (onset) (V)</th>
<th>E_{red} (onset) (V)</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>E_{gUV} (eV)</th>
<th>Red.</th>
<th>Neut.</th>
<th>Ox.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(E6E)</td>
<td>433 835</td>
<td>-0.32 *</td>
<td>-1.31 *</td>
<td>-4.48</td>
<td>-3.31</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(E7E)</td>
<td>430 820</td>
<td>-0.25 *</td>
<td>-1.30 *</td>
<td>-4.55</td>
<td>-3.36</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(E8E)</td>
<td>431 828</td>
<td>-0.32 *</td>
<td>-1.35 *</td>
<td>-4.48</td>
<td>-3.30</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* with respect to $E_{\text{ox(onset)}}$ of Fe/Fe$: 0.30$ V.

3.1.3.2. Optical Characterization of P(E6E), P(E7E) and P(E8E)

In order to elucidate the electrochromic features, polymer films were deposited on ITO WE via constant potential electrolysis in ACN-DCM solvent mixture (90:10 v/v) containing 0.1 M LiClO$_4$ as supporting electrolyte. After completion of electrolysis, polymer coated ITO electrode was first washed with and left in ACN to remove any unreacted monomer and then transferred into UV cuvette containing monomer free electrolyte solution (0.1 M TBABF$_4$ in ACN) to monitor the transitions between the neutral (dedoped), oxidized (p-doped) and reduced (n-doped) states under a voltage pulse. P(E6E), P(E7E) and P(E8E) exhibited two absorption maxima, in their neutral form, due to their DAD characteristics. Absorption maxima of the polymer films appeared at 433 / 835 nm, 430 / 820 nm and 431 / 828 nm for P(E6E), P(E7E) and P(E8E), respectively. The latter band can be attributed to the ICT between the donor and the acceptor unit while the former band can be assigned to the $\pi \rightarrow \pi^*$ transition [107].
The evolution of the spectra upon electrochemical doping shows a simultaneous
decrease of the absorbance at 433 / 835 nm for P(E6E), 430 / 820 nm for P(E7E)
and 431 / 828 nm for P(E8E), which is accompanied by the formation of a new
absorption band beyond 800 nm in the potential range from –0.5 V to +1.0 V
indicating the formation of charge carriers. The polymer films also exhibits a color
change from green (neutral) to gray (oxidized). All spectra recorded during potential
cycling between –0.5 V and +1.0 V passes through the isosbestic points at about 965
nm for P(E6E), 950 nm for P(E7E) and 956 nm for P(E8E), indicating that polymer
films were being interconverted between their neutral and oxidized states (see Figure
3.9 a, b and c). The n-doping behaviour of the polymer films were also confirmed by
recording the changes in the electronic absorption spectra during cathodic scan from
0.0 to -1.7 V vs Ag wire. During reduction the intensity of dual band present in the
neutral form of polymer films decreases in intensity (insets of Figure 3.9) which is
accompanied by a color change from green to brick red indicating that polymer films
exhibit electrochromic behaviour. However, no new band formation was observed
due to instrumental limitation during the cathodic scan. Electrochromic response of
polymer films observed during p and n-doping were also reported in terms of L*, a*,
b* values in Table 3.3.
Figure 3.9. UV-VIS spectra of the polymer films ((a) P(E6E) of 30 mC.cm$^{-2}$, (b) P(E7E) of 35 mC.cm$^{-2}$, (c) P(E8E) of 20 mC.cm$^{-2}$) during oxidation from -0.5 V to 1.0 V via cyclic voltammetry with the scan rate of 20 mV.s$^{-1}$. Inset: reduction from 0.0 V to -1.7 V with the scan rate of 100 mV.s$^{-1}$.
The optical band gaps (E_g) of P(E6E), P(E7E), and P(E8E) were calculated from the onset of the low energy end of the $\pi-\pi^*$ transitions to be 1.17 eV, 1.19 eV, and 1.18 eV, respectively, which were in well agreement with the band gaps calculated from cyclic voltammogram data (see Table 3.2). An inspection of E_g values obtained from two different methods indicates that P(E6E) has the smallest band gap value indicating stronger intramolecular charge transfer between D and A units in accordance with the fluorescence measurements. Oxidation potentials are reported vs. Fc/Fc$^+$ to calculate HOMO and LUMO levels of the polymers. The energy level of Fc/Fc$^+$ was taken as 4.80 eV below vacuum [185]. The oxidation onset potential of Fc/Fc$^+$ was measured as 0.30 V vs Ag/AgCl. HOMO and LUMO energy levels were obtained from the onset of the oxidation and reduction potentials of polymers and the results are given in Table 3.3.

3.1.3.3. Switching Behaviour of P(E6E), P(E7E) and P(E8E)

Switching study provides informations about switching time, optical contrast and coloration efficiencies which are important parameters for the application of conjugated polymers in electrochromic devices. Therefore, such properties of polymer films on ITO were also investigated under square wave input of predetermined potential ranges with the residence times of 10, 5, 3, and 2 s by monitoring the transmittance and the kinetic responses of the films at given wavelengths and the results are listed in Table 3.3. The switching times of the polymers were found as in subsecond levels (at 95 % of the full contrast and at their longer wavelengths) and the fastest switching behaviour was observed in P(E8E) (0.5 s). Furthermore, the CE values of the polymer films were calculated as 304 C/cm2, 266 C/cm2 and 316 C/cm2 for P(E6E), P(E7E) and P(E8E), respectively, indicating that P(E7E) has the lowest CE.

Percent transmittance values are 40 %, 42.5% and 41% for P(E6E), P(E7E) and P(E8E), respectively in 10 s residence times with the potentials -0.5 V and 1.1 V which were measured at shorter absorption wavelengths. At longer wavelengths of
polymer films, the percent transmittance values were measured as 29 %, 36 % and 32.5 % for P(E6E), P(E7E) and P(E8E), respectively (Figure 3.10-11-12). As seen from the Figures 3.10-11-12, the transmittance of the polymers at their longer wavelengths exhibited a sudden increase during oxidation following by a decrease in the progressing seconds. This phenomenon is observed due to the overlapping of the polaron bands with the absorption maxima of the polymer films upon further oxidation.

In order to test the optical stability, the polymers were fully oxidized (by applying 1.1 V) and fully neutralized (by applying -0.5 V) with 5 s time intervals. The lost in percent transmittance after 50 switches for P(E6E), P(E7E) and P(E8E) were measured as 3 %, 24 % and 6 %, respectively, at their shorter wavelengths. P(E6E) and P(E8E) did not loose their percent transmittance at longer absorption maxima after 50 switching. However, 12 % loss was observed for P(E7E) at its longer absorption wavelength upon 50 repetitive redox process. The switching times of the polymers were given at Table 3.3.
Figure 3.10. Transmittance change of P(E6E) film (25 mC.cm\(^2\)) at 433 nm and 835 nm, in its fully oxidized (1.1 V) and reduced (-0.5 V) states in different switching times (10 s, 5 s, 3 s and 2 s).
Figure 3.11. Transmittance change of P(E7E) film (25 mC.cm⁻²) at 430 nm and 820 nm, in its fully oxidized (1.1 V) and reduced (-0.5 V) states in different switching times (10 s, 5 s, 3 s and 2 s).
Figure 3.12. Transmittance change of P(E8E) film (20 mC.cm$^{-2}$) at 431 nm and 828 nm, in its fully oxidized (1.1 V) and reduced (-0.5 V) states in different switching times (10 s, 5 s, 3 s and 2 s).
Table 3.3. Electrochemical and optical properties of P(E6E), P(E7E), P(E8E)

<table>
<thead>
<tr>
<th></th>
<th>P(E6E)</th>
<th>P(E7E)</th>
<th>P(E8E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E<sub>ox</sub>(onset) (vs Fe/Fe<sup>+</sup>)</td>
<td>-0.32</td>
<td>-0.25</td>
<td>-0.32</td>
</tr>
<tr>
<td>E<sub>red</sub>(onset) (vs Fe/Fe<sup>+</sup>)</td>
<td>-1.31</td>
<td>-1.30</td>
<td>-1.35</td>
</tr>
<tr>
<td>E<sub>g</sub> (from CV) (V)</td>
<td>0.99</td>
<td>1.05</td>
<td>1.03</td>
</tr>
<tr>
<td>E<sub>g</sub> (optical) (eV)</td>
<td>1.17</td>
<td>1.19</td>
<td>1.18</td>
</tr>
<tr>
<td>HOMO (eV)</td>
<td>-4.48</td>
<td>-4.55</td>
<td>-4.48</td>
</tr>
<tr>
<td>LUMO (eV)</td>
<td>-3.31</td>
<td>-3.46</td>
<td>-3.30</td>
</tr>
<tr>
<td>λ<sub>max</sub> (nm)</td>
<td>λ<sub>max1</sub></td>
<td>λ<sub>max2</sub></td>
<td>λ<sub>max1</sub></td>
</tr>
<tr>
<td></td>
<td>433</td>
<td>835</td>
<td>430</td>
</tr>
<tr>
<td>t<sub>ox</sub> (s) (95 % of full contrast)</td>
<td>1.7</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>t<sub>red</sub> (s) (95 % of full contrast)</td>
<td>1.6</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>T % (95 % of full contrast)</td>
<td>40</td>
<td>29</td>
<td>42.5</td>
</tr>
<tr>
<td>CE at 100 % of full contrast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ox **</td>
<td>140</td>
<td>334</td>
<td>132</td>
</tr>
<tr>
<td>Red **</td>
<td>164</td>
<td>156</td>
<td>198</td>
</tr>
<tr>
<td>CE at 95 % of full contrast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ox **</td>
<td>162</td>
<td>304</td>
<td>164</td>
</tr>
<tr>
<td>Red **</td>
<td>160</td>
<td>166</td>
<td>182</td>
</tr>
<tr>
<td>Colors at different redox states</td>
<td>Oxidized *</td>
<td>Neutral *</td>
<td>Reduced *</td>
</tr>
<tr>
<td>L: 62 a*: -2 b*: 1.7</td>
<td>L: 72 a*: -0.7 b*: 0.6</td>
<td>L: 81 a*: -2 b*: 0.5</td>
<td></td>
</tr>
<tr>
<td>L: 65 a*: 7 b*: 26</td>
<td>L: 60 a*: 6 b*: 25</td>
<td>L: 61 a*: 5 b*: 20</td>
<td></td>
</tr>
<tr>
<td>Charge passed during polymerization</td>
<td>#30 mC.cm<sup>-2</sup></td>
<td>#35 mC.cm<sup>-2</sup></td>
<td>#20 mC.cm<sup>-2</sup></td>
</tr>
</tbody>
</table>
| * and ** indicates the amount of deposited charge on the polymer films given in the last row.
3.2. Benzimidazole Based DAD Type Monomers and Their Polymers Including PRODOT(C6) Donor Units

3.2.1. Electrochemical Behaviour of P6P, P7P, P8P

In order to investigate the ring size effect on the electrochemical behaviour of monomers, their cyclic voltammograms were recorded in ACN-DCM solvent mixture (90:10 v/v) containing 0.1 M LiClO₄ as supporting electrolyte and the results are depicted in Figure 3.13. As it is seen from the figure, the monomers, P6P, P7P and P8P exhibited an irreversible oxidation peak at around + 0.9 V vs Ag/AgCl during the first anodic scan. However, no reduction peak was observed during the cathodic scan for all three monomers in LiClO₄ electrolyte. Although P7P has the highest oxidation potential (0.88 V vs Ag/AgCl, 0.56 V vs Fc/Fc⁺) among the three monomers, the difference in their oxidation potentials is not greater than 60 mV. This small difference is not unexpected, since the three monomers have the same donor units. Monomer oxidation potentials followed the same trend with EDOT containing monomers such that, the even number ring containing monomers (P6P and P8P) can be oxidized relatively easier than the odd number ring containing monomer (P7P).
Figure 3.13. The cyclic voltammograms of P6P, P7P, P8P in 0.1 M LiClO₄ in ACN - DCM (90:10 v/v) between -0.2 V and 0.95 V vs Ag/AgCl at a scan rate of 100 mV/s.

3.2.2. Optical and Photophysical Properties of P6P, P7P and P8P

The optical properties of the monomers were determined by recording their electronic absorption spectrum in DCM and the results are shown in Figure 3.14. Similar to the first DAD type monomers (i.e. monomers with EDOT donor units), all three monomers exhibited two optical absorption bands, one at about 310 nm in the UV region and the other in the visible region at about 520 nm, due to their donor-acceptor pattern. The negligible variations in the absorption wavelengths for P6P, P7P and P8P (see Table 3.4) clearly show that the ring size on the acceptor unit has no significant effect on absorption maxima. A comparison of these values with that of EDOT containing monomers (E6E, E7E, E8E) indicates a blue shift in the low lying absorption bands of P6P, P7P, P8P. This observation reveals the existence of stronger intramolecular charge transfer in E6E, E7E, E8E as compared to P6P, P7P, P8P. It is well known that the intramolecular charge transfer also depends on the
planarity of the DAD type monomer. Presence of the hexyl substituents on the PRODOT donor unit might lower the planarity causing a decrease in the extend of intramolecular charge transfer [186]. On the other hand, when the absorption peaks were normalized in terms of the higher energy peaks, P8P showed the more intense low lying absorption peak among three monomers which indicates the P8P has stronger ICT between its donor-acceptor units. P6P and P7P exhibited the same peak intensity which are lower than that of P8P.

The optical band gap values of corresponding monomers were calculated by using the onset of the longer wavelengths in the optical absorption spectra. The band gap values of the monomers were found as 2.04 eV for P7P and 2.05 eV for P6P and P8P. These values are slightly higher that that of their EDOT containing analogous. Table 3.4 summarizes the collected data related to electrochemical and optical properties of the monomers.

![Normalized Absorption - A.u.](image)

Figure 3.14. Optical absorption spectra of P6P, P7P and P8P monomers in DCM. Inset: Colors of the monomers under day light.
The fluorescence spectra of the monomers were recorded in DCM and the results are given in Figure 3.15. As seen from the figure, emission maxima for the three monomers are very close (643 nm, 645 nm and 645 nm for P6P, P7P and P8P, respectively) indicating no significant effect of the ring size on the acceptor unit. Solvatochromic experiments were also performed to clarify the existence of intramolecular charge transfer between D and A units. As in the case of first group of DAD type monomers, same three solvents with different dielectric constants were used in recording the electronic absorption and emission spectra and the resulting spectra are shown in Figure 3.16.

![Emission spectra of P6P, P7P, and P8P in DCM. Inset: Colors of the monomers under 366 nm UV-light.](image)

Figure 3.15. Emission spectra of P6P, P7P, and P8P in DCM. Inset: Colors of the monomers under 366 nm UV-light.
The λ_{max} values for the three monomers showed a slight red shift with decreasing solvent polarity. For example, λ_{max} appears at 520 nm in DCM (the most polar solvent) and this value shifts to 525 nm in THF and 526 nm in toluene (the least polar solvent). The same trend was observed for P8P (λ_{max} = 520 nm in DCM, 524 nm in THF and 526 nm in toluene). While there was no change in the optical absorption band of P7P in THF and toluene, there was a blue shift in in DCM (λ_{max} = 519 nm in DCM, 526 nm both in THF and toluene). On the other hand, a significant red shift was observed in the emission maxima of the monomers with increasing solvent polarity. In the case of P6P, λ_{max} appears at 627 nm in toluene and this value shifts to 631 nm in THF and 643 nm in DCM. In the case of P7P and P8P the same trend was also observed (P7P; $\lambda_{\text{emission}}$ = 625 nm, 636 nm and 645 nm in toluene, THF and DCM, respectively and P8P; $\lambda_{\text{emission}}$ = 629 nm, 635 nm and 645 nm in toluene, THF and DCM, respectively). This red shift in the emission spectrum provides a further support for the low-energy band present in the absorption spectrum being ICT band.
Figure 3.16. The normalized absorption and emission spectra of P6P (a, b); P7P (c, d) and P8P (e, f) in different solvents of DCM, THF and toluene.
Table 3.4. Electrochemical and spectroelectrochemical properties of P6P, P7P, P8P.

<table>
<thead>
<tr>
<th>Monomers</th>
<th>λ_{max} (abs)</th>
<th>λ_{max} (ems)</th>
<th>E_{ox} (V)</th>
<th>$E_{\text{ox(onset)}}$ (V)</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>E_g (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6P</td>
<td>310</td>
<td>643</td>
<td>0.50 *</td>
<td>0.43 *</td>
<td>-5.23 **</td>
<td>-3.18 **</td>
<td>2.05</td>
</tr>
<tr>
<td>P7P</td>
<td>310</td>
<td>645</td>
<td>0.56 *</td>
<td>0.46 *</td>
<td>-5.26 **</td>
<td>-3.22 **</td>
<td>2.04</td>
</tr>
<tr>
<td>P8P</td>
<td>311</td>
<td>645</td>
<td>0.54 *</td>
<td>0.41 *</td>
<td>-5.21 **</td>
<td>-3.16 **</td>
<td>2.05</td>
</tr>
</tbody>
</table>

* with respect to $E_{\text{ox(onset)}}$ of Fe/Fe$^+$ (0.32 V);
** $E_g = -[E_{\text{ox(onset)}} + 4.80]$ and HOMO = [LUMO - E_g] [185]

3.2.3. Polymerization of P6P, P7P and P8P and Their Characterizations

3.2.3.1. Electrochemical polymerization of P6P, P7P and P8P

The electrochemical polymerization of P6P, P7P and P8P were achieved in electrolyte solution consisting of 0.1 M LiClO$_4$ dissolved in ACN/DCM mixture (90:10 v/v) via potential cycling. Polymer films, P(P6P), P(P7P) and P(P8P), were deposited on the Pt-WE surface via potential cycling from -0.2 V to 0.95 V (for P6P and P7P); -0.2 V to 1.0 V (for P8P). During the second scan new reversible redox couples appeared around +0.3 and + 0.5 V vs Ag/AgCl and after each successive scan, the peak currents were intensified, indicating the formation of an electroactive polymer film on the working electrode with increasing polymer film thickness. After electrodeposition (15 successive scans), the polymer film coated on the electrodes were washed with and left in ACN to remove any unreacted monomer and
oligomeric species. The redox behaviours of polymer films were investigated by recording their cyclic voltammograms in monomer free electrolyte solution, consisting of 0.1 M TBABF₄ in ACN (Figure 3.17 (a-d)).

Further electrochemical studies (i.e. oxidation-reduction potentials, polymer film stability, n-doping, scan-rate dependence etc.) were performed on the polymer films obtained via constant potential electrolysis at applied potential 0.90 V vs Ag/AgCl in the same electrolyte solution. When the total Faradaic charge reached to 80 mC.cm⁻² electrolysis was stopped and polymer coated WE was transferred in to monomer free electrolyte solution to monitor their redox behaviour. When P(P₆P), P(P₇P), and P(P₈P) were scanned anodically in monomer-free electrolyte solution, they exhibited well-defined reversible redox couples due to p-doping ($E_{p}^{ox} = +0.45$ V and 0.78 V (+0.13 V and +0.46 V vs Fc/Fc⁺) for P(P₆P); $E_{p}^{ox} = +0.59$ V and +0.74 V (+0.27 V and +0.42 V vs Fc/Fc⁺) for P(P₇P) and $E_{p}^{ox} = +0.57$ V and +0.76 V (+0.25 V and +0.44 V vs Fc/Fc⁺) for P(E₈E)), (see Figure 3.18 (a)).
Figure 3.17. Electropolymerization of P6P between -0.2 V and 0.95 V (a), P7P between -0.2 V and 0.95 V (b), P8P between -0.2 V and 1.00 V (c) with 15 cycles in 0.1 M LiClO4 solution of ACN - DCM (90:10 v/v) at a scan rate of 100 mV.s⁻¹ on Pt WE. The cyclic voltammograms of the resulting polymers (P(P6P), P(P7P) and P(P8P)) (d) vs Ag/AgCl in monomer free electrolyte solution of 0.1 M TBABF₄-ACN at a scan rate of 100 mV.s⁻¹.
The redox behaviour of the polymer films were also examined during n-doping and the results are depicted in Figure 3.18 (b). As seen from the figure, polymer films exhibited well-defined reversible n-doping process. \(E_{n}^{\text{red} - \text{onset}} = -0.91 \text{ V} \) (-1.23 V vs Fc/Fc\(^+\)) for P(P6P); \(E_{n}^{\text{red} - \text{onset}} = -0.90 \text{ V} \) (-1.22 V vs Fc/Fc\(^+\)) for P(P7P) and \(E_{n}^{\text{red} - \text{onset}} = -0.88 \text{ V} \) (-1.20 V vs Fc/Fc\(^+\)) for P(P8P). The oxidation-reduction onset potentials, HOMO-LUMO levels, optical band gap values and the colors of the polymer films were given in Table 3.5. Furthermore, the oxidation and reduction onset values were utilized to elucidate electrochemical band gap value of the polymer films \(E_{g}^{CV}\) and the results are tabulated in Table 3.6.
Figure 3.18. (a) Cyclic voltammograms of the polymers (P(P6P), P(P7P), P(P8P)) obtained by constant potential electrolysis with the charge of 80 mC.cm⁻² on Pt working electrode between -0.2 V and 1.0 V in 0.1 M TBABF₄ - ACN monomer free electrolyte solution vs Ag/AgCl. (b) Cyclic voltammograms of the polymers (P(P6P), P(P7P), P(P8P)) during n-doping process between 0.0 V and -1.35 V in 0.1 M TBABF₄ - ACN monomer free electrolyte solution vs Ag/AgCl.
Scan rate dependence experiments showed that both anodic and cathodic peak currents increase linearly with increasing scan rate, indicating a well-adhered polymer film on the WE surface and a non-diffusional redox process, which was shown in Figure 3.19. Moreover, the anodic and cathodic charges vs scan rate graphs of the polymer films showed that the charging-discharging process of the polymer film is effectively achieved even at higher scan rates (See inset of Figure 3.19).
Figure 3.19. Scan rate dependence of P(P6P), P(P7P) and P(P8P) on Pt disc electrode in 0.1 M TBABF₄-ACN at a scan rate of 20 - 40 - 60 - 80 - 100 mV.s⁻¹
between -0.2 V and 1.0 V. Insets: The current vs scan rate (a) and the charge density vs scan rate (b) plots of the polymer films with increasing scan rates.

Due to its importance for electrochromic device applications, electrochemical stability of the polymer films obtained by constant potential electrolysis (+ 0.95 V vs Ag/AgCl, 80 mC.cm\(^{-2}\)) on Pt disc WE were also investigated under square wave input of -0.1 V and 0.6 V in 3 s intervals. Cyclic voltammograms were recorded after 100, 350, 600, 1000 and 2000 switchings. After 2000 cycle is complete, the first cyclic voltammogram of the polymers were compared to their last cycles in terms of amount of charge lost.

According to the voltammograms, \(P(P_6P)\) showed 3.7 % of charge lost in anodic region and 15 % in its reversible cathodic reaction after 2000 switchings. Also the oxidation onset was 22.5 % right shifted (from 0.31 V to 0.40 V) (Figure 3.20). \(P(P_7P)\) exhibited 14.8 % right shift in oxidation onset (from 0.46 V to 0.54 V) and the polymer film lost its charge by 6.3 % and 5.5 % in anodic and the cathodic part respectively after 2000 switchings. \(P(P_8P)\) showed 10.6 % of the right shifted oxidation onset potential (from 0.42 V to 0.47 V). After 2000 cycle switchings, there was 20.5 % charge lost in anodic region. The charge lost in reversible cathodic region was only 2 %.

Figure 3.20. Cyclic voltammograms of P(P6P), P(P7P) and P(P8P) films after many switchings. Insets: (a) Anodic and cathodic charge density vs number of switching graphs of the polymer films in 0.1 M TBABF$_4$ - ACN achieved by square wave potential (-0.1 V for 3 s and 0.6 V; 3 s for each) under ambient conditions (b). The first and the last (after 2000 of switchings) cyclic voltammograms of the polymers in 0.1 M TBABF$_4$ - ACN.
Table 3.5. Electrochemical and spectroelectrochemical properties of P(P6P), P(P7P) and P(P8P)

<table>
<thead>
<tr>
<th>Polymers</th>
<th>λ_{max} (abs) nm</th>
<th>E_{ox} (onset) (V)</th>
<th>E_{red} (onset) (V)</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>E_g (eV)</th>
<th>Red.</th>
<th>Neut</th>
<th>Ox.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(P6P)</td>
<td>410</td>
<td>-0.04 *</td>
<td>-1.23 *</td>
<td>-4.76</td>
<td>-3.47</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(P7P)</td>
<td>410</td>
<td>-0.04 *</td>
<td>-1.22 *</td>
<td>-4.76</td>
<td>-3.45</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>766</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(P8P)</td>
<td>410</td>
<td>0.04 *</td>
<td>-1.20 *</td>
<td>-4.84</td>
<td>-3.53</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>769</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* with respect to E_{ox(onset)} of Fe/Fc*: 0.32 V.

3.2.3.2. Optical Characterization of P(P6P), P(P7P) and P(P8P)

The electro-optical properties of the polymer films deposited on ITO electrode via constant potential electrolysis were investigated by monitoring the changes in the electronic absorption spectra under a voltage pulse in a monomer free electrolyte solution. The results are depicted in Figure 3.22. P(P6P), P(P7P) and P(P8P) exhibited two absorption maxima, appeared as 410 / 768 nm, 410 / 766 nm and 410 / 769 nm for P(P6P), P(P7P) and P(P8P), respectively. The latter band can be attributed to the ICT between donor and the acceptor unit while the former band can be assigned to the $\pi-\pi^*$ transition [107].

These optical bands lose intensity during oxidation of the polymer films which is accompanied by the appearance of new intensifying band beyond 850 nm due to formation of charge carriers. All spectra recorded during potential cycling between −0.2 V and 1.0 V passes through the isosbestic points at about 905 nm for P(P6P), 910 nm for P(P7P) and 915 nm for P(P8P), indicating that polymer films were
being interconverted between their neutral and oxidized states (see Figure 3.21 a, b and c). The polymer films also exhibit color change from green (neutral) to gray (oxidized) during potential cycling from -0.2 V to 1.0 V. The n-doping behaviour of the polymer films were also confirmed by recording the changes in the electronic absorption spectra during cathodic scan from 0.0 to -1.5 V vs Ag wire. During reduction the intensity of dual band present in the neutral form of polymer films decreases in intensity (see insets of Figure 3.21) which is accompanied by a color change from green to brick-red, indicating that polymer films exhibit electrochromic behaviour. Electrochromic response of polymer films observed during p- and n-doping were also reported in terms of L*, a*, b* values in Table 3.6.
Figure 3.21. UV-VIS spectra of the polymer films (a) P(P6P), (b) P(P7P) and (c) P(P8P) of 20 mC.cm$^{-2}$ during oxidation from -0.2 V to 1.0 V via cyclic voltammetry with the scan rate of 20 mV.s$^{-1}$. Insets: UV-VIS spectra of the polymer films (P(P6P), P(P7P) and P(P8P)) of 20 mC.cm$^{-2}$ during n-doping from 0.0 V to -1.5 V with the scan rate of 100 mV.s$^{-1}$.

92
The optical band gaps (E_g) of P(P6P), P(P7P) and P(P8P) were also calculated from the onset of the low energy end of the $\pi-\pi^*$ transitions and were found to be 1.29 eV, 1.31 eV and 1.31 eV, respectively. These values are slightly higher (about 0.10 eV) than those obtained from electrochemical data (see Table 3.6). An inspection of E_g values obtained from two different methods indicates that P(P6P) has the smallest band gap value. Furthermore, comparison of E_g values of polymers with different donor units indicates that polymers obtained from EDOT containing monomers have smaller band gap values as compared to PRODOT containing analogous. Oxidation potentials are reported vs Fc/Fc$^+$ to calculate HOMO and LUMO levels of the polymers. The energy level of Fc/Fc$^+$ was taken as 4.80 eV below vacuum [185]. The oxidation onset potential of Fc/Fc$^+$ was measured as 0.32 V vs Ag/AgCl. HOMO and LUMO energy levels were obtained from the onset of the oxidation and reduction potentials of polymers, and the results are given in Table 3.6.

3.2.3.3. Switching Study of P(P6P), P(P7P), P(P8P)

Switching times and optical contrast of the polymer films on ITO were also investigated under square wave input of -0.2 and +1.1 V in 10, 5, 3 and 2 s intervals by monitoring the visible transmittance and the kinetic responses of the film, and the results are shown in Figures 3.22, 3.23 and 3.24 and listed in Table 3.7. Inspection of these figures reveals that P(P6P), P(P7P) and P(P8P) polymer films on ITO WE show a reversible response within the range of applied potential pulses.

Percent transmittance values are 31.4 %, 30 % and 38 % P(P6P), P(P7P) and P(P8P) respectively in 10 s residence times with the potentials -0.2 V and +1.1 V which were measured at shorter absorption wavelengths. At longer wavelengths of polymer films, the percent transmittance values were measured as 31 %, 32 % and 41 % for P(P6P), P(P7P) and P(P8P), respectively (Figure 3.22-23-24). As seen from the Figures 3.22-23-24, the transmittance of the polymers at their longer wavelengths exhibited a sudden increase during oxidation following by a decrease in the progressing seconds. This phenomena is observed due to the overlapping of the
polaron bands with the absorption maxima of the polymer films upon further oxidation.

The coloration efficiencies of the polymers were calculated, (see Table 3.6) and P(P8P) was found to have the highest value (572 C/cm²) at its longer wavelength. The lowest coloration efficiency was calculated for P(E6E) (279 C/cm²).

In order to test the optical stability, the polymers were fully oxidized (by applying 1.1 V) and fully reduced (by applying -0.2 V) with 5 s time intervals. The lost in percent transmittance after 50 switch for P(P6P), P(P7P) and P(P8P) were measured as 4.3 %, 14 % and 7 %, respectively at their shorter wavelengths. Although, P(P6P) did not lose its percent transmittance at longer absorption maxima after 50 switching, P(P7P) and P(P8P) exhibit 6 % and 26 % loss in percent transmittance, respectively. The switching times of the polymers are given at Table 3.6.
Figure 3.2. Transmittance change of P(P6P) film (20 mC.cm$^{-2}$) at 410 nm and 766 nm, in its fully oxidized (1.1 V) and reduced (-0.2 V) states in different switching times (10 s, 5 s, 3 s and 2 s).
Figure 3.23. Transmittance change of P(P7P) film (20 mC.cm\(^2\)) at 410 nm and 763 nm, in its fully oxidized (1.1 V) and reduced (-0.2 V) states in different switching times (10 s, 5 s, 3 s and 2 s).
Figure 3.24. Transmittance change of P(P8P) film (25 mC.cm$^{-2}$) at 410 nm and 769 nm, in its fully oxidized (1.1 V) and reduced (-0.2 V) states in different switching times (10 s, 5 s, 3 s and 2 s).
Table 3.6. Electrochemical and optical properties of P(P6P), P(P7P), P(P8P)

<table>
<thead>
<tr>
<th></th>
<th>P(P6P)</th>
<th>P(P7P)</th>
<th>P(P8P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\text{ox(onset)}}$ (vs Fc/Fc')</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>$E_{\text{red(onset)}}$ (vs Fc/Fc')</td>
<td>-1.23</td>
<td>-1.22</td>
<td>-1.20</td>
</tr>
<tr>
<td>E_g from CV (V)</td>
<td>1.19</td>
<td>1.18</td>
<td>1.24</td>
</tr>
<tr>
<td>E_g optical (eV)</td>
<td>1.29</td>
<td>1.31</td>
<td>1.31</td>
</tr>
<tr>
<td>HOMO (eV)</td>
<td>-4.76</td>
<td>-4.76</td>
<td>-4.84</td>
</tr>
<tr>
<td>LUMO (eV)</td>
<td>-3.47</td>
<td>-3.45</td>
<td>-3.53</td>
</tr>
<tr>
<td>λ_{max} (nm)</td>
<td>λ_{max1}</td>
<td>λ_{max2}</td>
<td>λ_{max1}</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>768</td>
<td>410</td>
</tr>
<tr>
<td>t_{ox} (s)**</td>
<td>3</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>(95 % of full contrast)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{red} (s)**</td>
<td>1.2</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>(95 % of full contrast)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T % **</td>
<td>31.4</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>CE at 100 % of full contrast</td>
<td>Ox **</td>
<td>146</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Red **</td>
<td>166</td>
<td>214</td>
</tr>
<tr>
<td>CE at 95 % of full contrast</td>
<td>Ox **</td>
<td>149</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>Red **</td>
<td>161</td>
<td>203</td>
</tr>
<tr>
<td>Colors at different redox states</td>
<td>Oxidized *</td>
<td>L: 67 a*: -3.5 b*: 2.2</td>
<td>L: 67 a*: -5.7 b*: -2.6</td>
</tr>
<tr>
<td></td>
<td>Reduced *</td>
<td>L: 61 a*: 5.4 b*: 18</td>
<td>L: 57 a*: 3.4 b*: 17</td>
</tr>
<tr>
<td>Charge passed during polymerization</td>
<td>*20 mC.cm$^{-2}$</td>
<td>*20 mC.cm$^{-2}$</td>
<td>*20 mC.cm$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>**20 mC.cm$^{-2}$</td>
<td>**20 mC.cm$^{-2}$</td>
<td>**20 mC.cm$^{-2}$</td>
</tr>
</tbody>
</table>

* and ** indicates the amount of deposited charge on the polymer films given in the last row.
3.3. Electrochromic Device Applications of P(E6E) and P(P6P)

Among the six polymer films, P(E6E) and P(P6P) were selected as anodically coloring polymers for constructing transmissive type ECDs with PEDOT, which is mostly used as cathodically coloring polymer.

First of all, charge balance of the polymers was adjusted as explained before (see Section 2.6). Anodically coloring polymers were electrochemically deposited on ITOs with the charge densities of 25 mC.cm\(^{-2}\) for P(E6E) and 22.4 mC.cm\(^{-2}\) for P(P6P). The redox charges of the P(E6E) and P(P6P) were measured as 2.25 mC and 2.3 mC which both suited with the PEDOT film of 40 mC.cm\(^{-2}\) according to reference graph (Figure 2.8). Then the ECDs were constructed as explained in experimental part (Section 2.6).

ECDs were tested by connecting the WE to P(E6E) (or P(P6P)) and the CE (short cutted by the RE) to PEDOT. During a successive anodic scan, the cyclic voltammograms and UV-VIS spectra were monitored. Working range between -0.6 V and 0.8 V was found as suitable for both devices. The ECDs was deep blue color at 0.8 V and green at -0.6 V (Figure 3.25). As seen from the figure, during the application of 0.8 V, dual band of P(E6E) in its ECD and P(P6P) in its ECD losses intensity which is accompanied by the evolution of a new band at about 620 nm. The newly formed corresponds to the electronic absorption band of PEDOT in its neutral form.

Switching time, optical contrast and coloration efficiency features of ECDs were also investigated under square wave input of predetermined potential ranges with the residence times of 10, 5, and 3 s by monitoring the transmittance and the kinetic responses of the films at 417 and 816 nm for P(E6E), at 418 nm and 820 nm for P(P6P).

P(E6E) - PEDOT ECD exhibited 6.5 % transmittance in 10 second residence time with the potentials -0.6 V and 0.8 V at both wavelengths. The response time of ECD
at 95% of full contrast was calculated as 1.4 s for oxidation and 1.5 s for reduction at 417 nm. The response time at 816 nm was calculated as 2.7 s for oxidation and 1.0 s for reduction. The ECD was switched between -0.6 V and 0.8 V for 10, 5 and 3 s intervals. The optical contrast was 6.5%, 6.3% and 6% for 10 s, 5 s and 3 s switchings, respectively (Figure 3.26 (a)).

The coloration efficiency and the other optical results were given at Table 3.7. P(P6P) - PEDOT ECD exhibited 8.4% and 6% transmittance in 10 second residence time at 418 nm and 820 nm, respectively. The response times of ECD at 95% of full contrast was calculated as 1.7 s for both oxidation and reduction at 418 nm. The response time at its longer wavelength was calculated as 2.6 s for oxidation and reduction. The ECD was switched between -0.6 V and 0.8 V for 10, 5 and 3 second intervals (Figure 3.26 (b)). The optical contrast, coloration efficiency and the other optical results were given at Table 3.7.
Figure 3.25. Spectroelectrochemical behaviour of P(E6E) - PEDOT ECD (a) and P(P6P) - PEDOT ECD (b) between -0.6 V and 0.8 V. Inset: Cyclic voltammograms of ECDs between -0.6 V and 0.8 V at scan rate of 100 mV.s⁻¹.
Figure 3.26. Percent transmittance change of P(E6E) – PEDOT ECD at 417 nm and 815 nm (a), P(P6P) - PEDOT ECD at 418 nm and 820 nm (b) switched between -0.6 V and 0.8 V with the residence times of 10, 5 and 3 s.
Table 3.7. Spectroelectrochemical properties of P(E6E) - PEDOT and P(P6P) - PEDOT ECDs.

<table>
<thead>
<tr>
<th>Optical Parameters</th>
<th>P(E6E) – PEDOT ECD</th>
<th>P(P6P) – PEDOT ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{max} (nm)</td>
<td>$\lambda_{\text{max}1}$</td>
<td>$\lambda_{\text{max}2}$</td>
</tr>
<tr>
<td>417</td>
<td>816</td>
<td>418</td>
</tr>
<tr>
<td>t_{ox} (s)</td>
<td>Ox</td>
<td>1.4</td>
</tr>
<tr>
<td>95 % of full contrast</td>
<td>Red</td>
<td>1.5</td>
</tr>
<tr>
<td>t_{red} (s)</td>
<td>Ox</td>
<td>6.5</td>
</tr>
<tr>
<td>95 % of full contrast</td>
<td>Red</td>
<td>1.5</td>
</tr>
<tr>
<td>T %</td>
<td>Ox</td>
<td>71</td>
</tr>
<tr>
<td>95 % of full contrast</td>
<td>Red</td>
<td>76</td>
</tr>
<tr>
<td>CE at 100 %</td>
<td>Ox</td>
<td>151</td>
</tr>
<tr>
<td>of full contrast</td>
<td>Red</td>
<td>162</td>
</tr>
<tr>
<td>CE at 95 %</td>
<td>Ox</td>
<td>150</td>
</tr>
<tr>
<td>of full contrast</td>
<td>Red</td>
<td>163</td>
</tr>
<tr>
<td>Color at oxidized state</td>
<td>Ox</td>
<td>39.4</td>
</tr>
<tr>
<td>Color at reduced state</td>
<td>Red</td>
<td>48</td>
</tr>
</tbody>
</table>
An inspection of Table 3.7 reveals that both electrochromic devices prepared utilizing P(E6E) and P(P6P) as anodically coloring part exhibit almost very similar properties. Mainly, P(P6P) – PEDOT ECD have slightly higher CE value at its longer wavelength than that of P(E6E) – PEDOT ECD and than the PEDOT itself (183 cm²/C) [187]. When L*a*b* values are considered, P(P6P) – PEDOT ECD has higher L* values indicating brighter color for corresponding ECD.

3.4. Discussion

3.4.1. Comparison of EDOT Containing Polymers in Terms of Acceptor Unit

P(E6E), P(E7E), and P(E8E) have the absorption maxima in the range of 430 nm - 835 nm, and the average E₉ value of 1.18 eV. Some other EDOT containing polymers with different acceptor groups (benzimidazole (P1), benzothiadiazole (P2), benzoselenadiazole (P3), benzoxadiazole (P4), benzotriazole (P5)) in the literature were examined and the results were tabulated in Table 3.8. P1 to P5 polymers have at least two absorption bands and the band gap values changes from 1.15 eV to 1.60 eV. The smallest band gap value was found for P1 and the highest one was for P5. A comparison of these values with that of P(EXE)s synthesized in this work indicates that benzimidazole containing polymers have smaller E₉ values. This shows that benzimidazole is a stronger acceptor unit causing better band gap compression and stronger ICT. Furthermore, all the polymers listed in Table 3.8 have quite low oxidation potentials due to the electron rich EDOT donor unit.

The P(EXE) films are green in their neutral states. The other polymers (P1 to P5) are also green except P5. It can be concluded that benzotriazole acceptor results with the blue shift of the resulting polymer. Moreover, the P(EXE)s and P1 exhibited transparent gray color when they are oxidized, but P2, P3, P4 and P5 showed transparent blue. Indeed, It was reported that P1 also exhibits blue color in further oxidized state.
Table 3.8. The electrochemical-optical properties of the EDOT containing polymers from this work and of the similar polymers from the literature.

<table>
<thead>
<tr>
<th>Polymers</th>
<th>λ_{max} (abs) nm</th>
<th>E_{ox} (onset) (V)</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>E_{gUV} (eV)</th>
<th>Neut. Color</th>
<th>Ox. Color</th>
<th>Red. Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6] P(E6E)</td>
<td>433 835</td>
<td>-0.32</td>
<td>-4.48</td>
<td>-3.31</td>
<td>1.17</td>
<td>Green</td>
<td>Transparent Gray</td>
<td>Brick-red</td>
</tr>
<tr>
<td>[7] P(E7E)</td>
<td>430 820</td>
<td>-0.25</td>
<td>-4.55</td>
<td>-3.36</td>
<td>1.19</td>
<td>Green</td>
<td>Transparent Gray</td>
<td>Brick-red</td>
</tr>
<tr>
<td>[8] P(E8E)</td>
<td>431 828</td>
<td>-0.32</td>
<td>-4.48</td>
<td>-3.30</td>
<td>1.18</td>
<td>Green</td>
<td>Transparent Gray</td>
<td>Brick-red</td>
</tr>
<tr>
<td>P1 [147]</td>
<td>440 \sim 740</td>
<td>E_{ox}: 0.55 vs Ag wire 0.82</td>
<td>-5.31</td>
<td>-4.42</td>
<td>1.15</td>
<td>Green</td>
<td>Gray-blue</td>
<td>Brick-red</td>
</tr>
<tr>
<td>P2 [95]</td>
<td>428 755</td>
<td>E_{ox}: -0.06 vs Ag wire</td>
<td>-3.94</td>
<td>-2.75</td>
<td>1.19</td>
<td>Green</td>
<td>Transparent Blue</td>
<td>Not Reported</td>
</tr>
<tr>
<td>P3 [190]</td>
<td>\sim 420 830</td>
<td>-0.43</td>
<td>-3.97</td>
<td>-2.76</td>
<td>1.21</td>
<td>Green</td>
<td>Transparent Blue</td>
<td>Not Reported</td>
</tr>
<tr>
<td>P4 [190]</td>
<td>\sim 400 767</td>
<td>-0.37</td>
<td>-4.03</td>
<td>-2.77</td>
<td>1.26</td>
<td>Green</td>
<td>Transparent Blue</td>
<td>Not Reported</td>
</tr>
<tr>
<td>P5 [190]</td>
<td>624 684</td>
<td>-0.30</td>
<td>-4.10</td>
<td>-2.50</td>
<td>1.60</td>
<td>Blue</td>
<td>Transparent Blue</td>
<td>Not Reported</td>
</tr>
</tbody>
</table>
3.4.2. Comparison of PRODOT Containing Polymers in Terms of Acceptor Unit

There are several reports on PRODOT containing DAD type polymers. It is already reported that alkyl chain length has pronounced effect on the properties of the resulting polymer [122]. Although increasing chain length improves the solubility, it also causes a decrease in planarity due to steric reasons. Therefore, PRODOT(C6) was selected as the donor group in synthesizing the target monomers in this work. Thus, due to limited number of examples present in the literature we compared our results with the reported values to get a general idea (see Table 3.9).

When it comes to PRODOT containing polymers, there are CPs in the literature that bear comparison. They include different acceptor units but the same donors, PRODOT(C10) [127]. In this work we preferred to use PRODOT(C6) in order to decrease the steric hindrance. It was demonstrated that; when PRODOT alkyl chain length increases, the planarity decreases and the steric hindrance increases but the absorption band exhibits red shift and solubility gets better. Although changing the alkyl size on PRODOT affects the properties of polymer, the including products can also give a general idea of comparison with our counterparts in this work.

Among P1-P4, n-doping behaviour was observed only in P3. This was explained due to the steric hindrance caused by long alkyl chains. On the other hand, presence of n-doping property in P3 was explained in terms of higher electronegativity of oxygen atom which overcame the steric hindrance problem of the polymer. In addition, when alkyl size is reduced to (C6), n-doping behaviour is observable like in P5 due to the lower steric hindrance. However, all P(PXP)s synthesized in this study are n-dopable and exhibits brick-red color beyond the -1.25 V.

The E_g values of P1-P4 lay between 1.37 eV (for P2) and 1.80 eV (for P4). The P(PXP)s in this work exhibited the E_g values around 1.30 eV which is lower than P5. It can be easily concluded that the BIm acceptor unit causes stronger ICT with PRODOT(C6) donor unit and reduced the band gap.
Table 3.9. The electrochemical-optical properties of the PRODOT containing polymers from this work and of the similar polymers from the literature.

<table>
<thead>
<tr>
<th>Polymers</th>
<th>λ_{max} (abs) nm</th>
<th>E_{ox} (onset) (V)</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>E_{G^UV} (eV)</th>
<th>Neut. Color</th>
<th>Ox. color</th>
<th>Red. color</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP6P</td>
<td>410</td>
<td>-0.04</td>
<td>-4.76</td>
<td>-3.47</td>
<td>1.29</td>
<td>Green</td>
<td>Transparent Gray</td>
<td>Brick-red</td>
</tr>
<tr>
<td>PP7P</td>
<td>410</td>
<td>-0.04</td>
<td>-4.76</td>
<td>-3.45</td>
<td>1.31</td>
<td>Green</td>
<td>Transparent Gray</td>
<td>Brick-red</td>
</tr>
<tr>
<td>PP8P</td>
<td>410</td>
<td>0.04</td>
<td>-4.84</td>
<td>-3.53</td>
<td>1.31</td>
<td>Green</td>
<td>Transparent Gray</td>
<td>Brick-red</td>
</tr>
<tr>
<td>P1</td>
<td>408</td>
<td>0.33</td>
<td>-5.13</td>
<td>-3.63</td>
<td>1.48</td>
<td>Cyan</td>
<td>Transparent Blue</td>
<td>-</td>
</tr>
<tr>
<td>P2</td>
<td>419</td>
<td>0.48</td>
<td>-5.28</td>
<td>-3.91</td>
<td>1.37</td>
<td>Green</td>
<td>Transparent Gray</td>
<td>-</td>
</tr>
<tr>
<td>P3</td>
<td>400</td>
<td>0.48</td>
<td>-5.28</td>
<td>-3.88</td>
<td>1.40</td>
<td>Cyan</td>
<td>Transparent Gray</td>
<td>Yes but Not Reported</td>
</tr>
<tr>
<td>P4</td>
<td>585</td>
<td>0.46</td>
<td>-5.26</td>
<td>-3.46</td>
<td>1.80</td>
<td>Blue</td>
<td>Transparent Blue</td>
<td>-</td>
</tr>
<tr>
<td>P5</td>
<td>417</td>
<td>0.27</td>
<td>-5.07</td>
<td>-3.57</td>
<td>1.50</td>
<td>Cyan</td>
<td>Transparent Gray</td>
<td>Dark Brown</td>
</tr>
</tbody>
</table>
3.4.3. Comparison of PRODOT and EDOT Containing Polymers in Terms of Donor Unit:

As it is mentioned in the introduction part, existence of ethylenedioxy bridge on the 3rd and 4th locations of thiophene (EDOT) results with highly electron rich structure (means lower oxidation potential) and more stable molecule as well. On the other hand, EDOT polymers were not soluble or very slightly soluble even if synthesized chemically [188,189].

Introducing PRODOT with different alkyl chain lengths overcame the solubility problem. Propylenedioxy bridge on the thiophene ring increases the electron density of the molecule as in PEDOT, therefore this molecule has also lower oxidation potential. However, the oxidation potentials of these two promising units are slightly different; 0.98 V for PRODOT [191] and 0.88 V for EDOT [192]. This difference is explained by the xylenedioxy bridges of the molecules. Propylenedioxy bridge on PRODOT unit has twisted conformation, decreasing the overlap between the lone pairs of oxygen atom and thiophene ring [193].

The same trend was observed for EXE and PXP monomers synthesized in this work. E6E and P6P oxidation potentials were measured as 0.46 V and 0.50 V vs Fc/Fc+, respectively. Similar trend was also observed for the other monomers (E7E; 0.50 V, P7P; 0.56 V and E8E; 0.43 V, P8P; 0.54 V).

Due to stronger ICT between EDOT and acceptor units, the absorption maxima of the EXE monomers are red shifted as compared to PXP monomers. The largest difference in \(\lambda_{\text{max}}\) values was observed between E6E and P6P as about 20 nm. This may be due to having stronger ICT of E6E monomer among other EXEs.

The effect on ICT was also clearly observed in the case of polymers prepared from EXE and PXP. When considering the polymers, the \(E_g\) values of P(EXE)s were found to be about 0.12 eV lower than their P(PXP) counterparts. This is due to P(EXE)s having the absorption bands at lower energies because of the stronger
donor character of EDOT unit as compared to PRODOT unit. Due to the same reasoning, P(EXE)s have lower oxidation potentials and higher HOMO levels.

Although P(EXE)s and P(EXE)s bear the same acceptor unit, which is mainly responsible from the reduction of polymers, reduction onsets of P(PXP)s were found to be about 0.1 V higher than that of P(EXE)s polymers ($E_{n}^{\text{red-onset}} = -1.31$ V for P(E6E); $E_{n}^{\text{red-onset}} = -1.30$ V for P(E7E) and $E_{n}^{\text{red-onset}} = -1.35$ V for P(E8E)), ([$E_{n}^{\text{red-onset}} = -1.23$ V for P(P6P); $E_{n}^{\text{red-onset}} = -1.22$ V for P(P7P) and $E_{n}^{\text{red-onset}} = -1.20$ V for P(P8P)). This indicates that donor units are also affecting the redox behaviour. The higher electron density on the EDOT unit may not allow inserting extra electron into the system as easy as in PRODOT unit.

When we consider the electronic absorption spectra of polymer thin films on ITO surface, they all have dual band absorption spectra due to their DAD characteristics. As in the case of their similar analogues, the absorption spectra were red shifted in P(EXE)s as compared to P(PXP)s (about 20 nm and 50 nm right shift in λ_{max} in the higher and lower energy bands, respectively). This also indicates better ICT between donor and acceptor units in P(EXE)s.

The colors of all six polymers were transparent gray in their oxidized state and brick-red in their reduced states. In neutral state, P(EXE)s exhibited higher L value than P(PXP)s, which was consistent with the observers view that P(PXP)s have darker green (The L* value indicates the lightness or brightness of the color which can take the value up to 100 at CIE color space).

The a* value depicts the color range between green and red. The negative a* values of the polymers indicate that their colors were greenish. More negative a*’s in P(PXP)s point the greener hue in their color. The b* value expresses the saturation of the color between blue and yellow.

All polymers have positive b* which indicates to the yellow region but greater b* values of P(EXE)s mark more yellowish saturation in their neutral colors. On the
other hand, L* values in P(EXE)s in their oxidized state are higher indicating the lighter gray. In their reduced form, L*a*b* values of the polymers almost the same except the greater b* values in P(EXE)s underlying more yellowish saturation in their brick-red color.
CHAPTER 4

CONCLUSION

In this study, three different benzimidazole based acceptor groups (bearing cyclohexane, cycloheptane and cyclooctane rings at 2-C position of benzimidazole) were synthesized and coupled with EDOT and PRODOT(C6) donor units. Six different DAD type monomers were obtained. The monomers were examined in terms of their electrochemical and optical behaviours. It was seen that changing the ring size on the acceptor group has an observable effect on intramolecular charge transfer on the monomers. In EDOT containing monomers, cyclohexane ring caused the best intramolecular charge transfer and this shows a decreasing trend with increasing the cycle size. Also the emission spectra of EDOT monomers showed blue shift with increasing the ring size.

On the other hand, for the PRODOT containing monomers, cyclooctane ring showed the best intramolecular charge transfer with the PRODOT donor. However, there was not revealed any trend in the properties by changing the ring size in PRODOT containing monomers. Moreover, the EDOT containing monomers were oxidized easier than their PRODOT counterparts.

The monomers were electrochemically polymerized and electro-optical properties were investigated. The optical properties of the same donor unit containing polymers did not exhibit a significant difference. Moreover, when compared the EDOT containing and the PRODOT containing CPs, they exhibited different optical behaviours. EDOT containing polymers showed a red shift in their optical absorption spectra and lower band gap values with respect to PRODOT analouges.
All the EDOT containing and PRODOT containing polymer films exhibited ambipolar (both anodically and cathodically dopable) property. The polymer films are green in their neutral states, gray in the oxidized states and the brick-red in their reduced states. The minor difference between the neutral and reduced colors of EDOT and PRODOT containing polymers illustrated in Figure 4.1. The EDOT polymers exhibited softer green in the neutral state and more brownish brick-red in the reduced state. The green of the PRODOT polymers were more bright (or cyanish) and the reduced state color was more reddish brick-red. They were matched with the autumn leaves in the figure for seeing the color difference between them.

![Figure 4.1](image)

Figure 4.1. The neutral state and reduced state colors of the EDOT containing (left) and the PRODOT containing (right) polymer films.

The band gap values of all six polymers were found to be lower than the other same donor containing CPs in literature. This showed the efficient intramolecular charge transfer caused by the benzimidazole units that synthesized in this work.

Although dihexylated PRODOT donor unit was used in this study with the expectation of solubility, it could not be achieved for the electrochemically synthesized polymer films. Then the electrochromic devices were constructed with one of the EDOT polymers (with PEDOT) and one of the PRODOT polymers (with PEDOT). Both electrochromic devices exhibited similar optical behaviors. The
switching times of the devices were measured as around 2.7 s, with the percent transmittance change about 6%. The coloration efficiency of the PRODOT containing electrochromic device was found to be higher (189 cm2/C) than that of EDOT containing device (163 cm2/C) and also that of PEDOT itself (183 cm2/C).

In this work, it was seen that changing the ring size on benzimidazole acceptor has no significant effect on the properties of the resulting monomers and the polymers. On the other hand, comparison of the polymers with their analogous in the literature showed that benzimidazole acceptor caused better intramolecular charge transfer with EDOT and the PRODOT donor unit, resulting with the red-shifted absorption and the lower band gap energy.
REFERENCES

[133] Zhao, W.; Cai, W.; Xu, R.; Yang, W.; Gong, X.; Wu H.; Cao, Y. Polymer 2010, 51, 3196-3202.

Figure A.1. 1HNMR spectrum of E6E monomer.
Figure A.2. 1HNMR spectrum of E7E monomer.

Figure A.3. 1HNMR spectrum of E8E monomer.
Figure A.4. 1HNMR spectrum of P6P monomer.

Figure A.5. 1HNMR spectrum of P7P monomer.
Figure A.6. 1HNMR spectrum of P8P monomer (a) and the close look in the alkyl region of P8P (b).
Figure B.1. HRMS report of E6E monomer.
Figure B.2. HRMS report of E7E monomer.

Figure B.3. HRMS report of E8E monomer.
Figure B.4. HRMS report of P6P monomer.

Figure B.5. HRMS report of P7P monomer.
APPENDIX C

UV-VIS SPECTRA OF THE ACCEPTORS

Figure C.1. Optical absorption spectra of the acceptor groups.
CURRICULUM VITAE

CANSU ERĞÜN, EMİNE GÜL

PERSONAL INFORMATION

Date and Place of Birth : 05.03.1976 - BAFRA
Address : Atılım University, Department of Chemical Engineering and Applied Chemistry, 06836, Gölbaş, ANKARA.

EDUCATION

- 2015 August – PhD degree in Polymer Science and Technology
 Middle East Technical University – METU
 Ankara, Turkey
- 2010 July – MSc degree in Chemistry
 Ankara University, Ankara, Turkey
- 1998 June – BSc degree in Chemistry Education
 Middle East Technical University – METU
 Ankara, Turkey

PROFESSIONAL EXPERIENCE

- Research assistant at Atılım University (from 2009 – still working)
PUBLICATIONS

CONFERENCES

- A Carborane Based New Electrochromic Polymer, 4th National Polymer Science and Technology Congress (Oral Presentation), 2012, Çanakkale, Turkey.
- Properties Of A New Conjugated Copolymer With Different Feed Ratios, (Oral Presentation), 10th International Electrochemistry Meeting, 2013, Konya, Turkey.
- A new Carborane Based Conjugated Copolymer, IUPAC-44th Word Chemistry Congress (Poster Presentation), 2013, Istanbul, Turkey.
- Dithienosilole Type Electrochromic Copolymer: Synthesis and Characterization, 5th National Polymer Science and Technology Congress (Oral Presentation), 2014, Konya, Turkey.