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ABSTRACT

INVESTIGATION OF FRACTURE TOUGHNESS WITH FOUR POINT
BENDING LOADING ON RECTANGULAR ROCK SPECIMENS

Alkan, Ugur
M.S., Department of Mining Engineering
Supervisor: Prof. Dr. Levend Tutluoglu

September 2015, 214 pages

In rock engineering applications inherent cracks and other type of impurities are
seldom under the effect of loads acting along principal directions. Dominant loading
states mostly consist of mixed mode type of loads. Mode | loading state has been
studied by researchers for a long time. Therefore, common principles have been
established for mode | loading state. Shear type (mode II) loading state is still an
active subject to investigate in fracture mechanics. Although, numerous test methods
have been suggested to determine the mode Il fracture toughness Kj;. of a rock,

common opinion for mode 1l loading state is not well-established yet.

Four-point asymmetric bending test specimen (FPAB) has a rectangular shaped
geometry. Shear mode (mode II) fracture toughness investigations were conducted
on rectangular shaped rock specimens under asymmetric bending loads. Tests were

carried out under four-point asymmetric bending loads.

In order to assure generation of pure mode Il stress intensity factor state for FPAB
test geometry, numerical modeling with ABAQUS Finite Element Software was

conducted.

Different sized rectangular shaped rock specimens were prepared to investigate size
effect phenomena for FPAB test geometry. Numerical and experimental studies were

conducted for three main beam depth groups having different notch lengths. The
v



generic FPAB test geometry which was 120 mm long and 50 mm thick consisted of
three different beam depths 40-50-60 mm and included a preliminary single edge
notch at the bottom center. Results of pure shear mode fracture toughness values
from FPAB test geometry were compared to the ones from SNDB (Straight Notched
Disk bending) method testing. The same rock type, namely Ankara Goélbasi

Andesite was used in both.

In the models, stress paths were created to analyze potential plastic regions or
fracture process zones ahead of the preliminary notch. Von Mises plasticity in the
vicinity of notch tip was examined along the potential crack propagation directions
of mode | and mode Il loading states. Stress paths were beginning from the notch tip
and expanding to the outmost contour integral region. Stress paths for mode | and
mode |l stress intensity factor were compared. Boundary influence effect in
rectangular shaped rock specimens under mode | and mode Il loading states were

compared.

Mode Il fracture toughness value of Ankara Go6lbasi Andesite was found as Kj;. =
0.61 MPa~/m for FPAB test geometry. In comparison, mode 1l fracture toughness

value of Ankara Golbas1 Andesite was found as K;;. = 0.62 MPa~/m for the tests
with SNDB geometry.

Size of the beam specimens was changed by applying three different beam depths.
Close results were achieved for mode 1l fracture toughness values for test geometries
with different beam depths. No size effect was observed in shear mode fracture

toughness values of tests with different beam depths of FPAB geometry.
Keywords: Rock fracture mechanics, mode Il fracture toughness, mode Il stress

intensity factor, four-point asymmetric bending, FPAB, rectangular, beam shaped

rock specimen.
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0z

DORTGEN KESITLI KAYA NUMUNELERININ CATLAK TOKLUGUNUN
DORT NOKTA ASIMETRIK EGILME DENEYI iLE ARASTIRILMASI

Alkan, Ugur
Yiiksek Lisans, Department of Mining Engineering

Tez Yoneticisi: Prof. Dr. Levent Tutluoglu

Eyliil 2015, 214 sayfa

Kaya miihendisligi uygulamalarinda dogal catlaklar ve diger impiirite unsurlar
nadiren asal gerilme gerilme diizlemleri iizrinden gelen gerilmelere maruzdur.
Baskin yiikleme durumlar1 karigik mod tipindeki yiiklerden olusur. Mod I yiikleme
durumu arastirmacilar tarafindan uzunca bir siiredir ¢alisilmaktadir. Bu sebepten
otiirti, yerlesik bir temel mod I ylikleme durumu igin gelistirilmistir. Makaslama tipi
(mod I1) yiikleme durumu ise hali hazirda kirilma mekanigi arastirmalarinda giincel
bir konudur. Bir ¢ok sayida test metodu Onerilmesine ragmen kayalarda 1 mod II

catlak toklugu tayini i¢in ortak bir fikir birligi iyi bir sekilde olusturulamamugtir.

Dort-nokta asimetrik egme test numunesi dikdortgen kesitli bir geometriye sahiptir.
Makaslama modu (mod II) catlak toklugu arastirmalar1 dikdortgen kesitli kaya
numumeleri lizerine asimetrik egme ylikleri uygulanarak ytriitiilmiistiir. Laboratuvar

deneyleri de dort-nokta asimetrik egme yiikleri uygulanarak gergeklestirilmistir.
Dort-nokta asimetrik egme numunesi lizerinde saf mod II gerilme siddeti faktorii

durumunu kesin bir sekilde saglamak icin ABAQUS Yazilimi ile numeric

modelleme yontemi kullanilmstir.
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Numune boyut etkisinin arastirilmasi i¢in farkli boyutlardaki dort-nokta asimetrik
egme kaya numuneleri hazirlanmistir. Niimerik ve deneysel ¢aligmalar farkli catlak
boylar1 igeren ii¢ farkl kiris derinligi grubu olusturularak yiiritiilmiistiir. 120 mm
uzunlugunda ve 50 mm kalinliginda olan, 40-50 ve 60 mm olmak {izere ii¢ farkli
kiris derinligine sahip genel dort-nokta asimetrik egme test geometrisi, alt taraf
kenarindan acilmis bir ¢atlak barindir. Dort-nokta asimetrik egme test numunesi igin
saf makaslama modu catlak toklugu sonuglari, diiz ¢entiklikli Brazilyan diski
numunesi sonuglariyla karsilastirilmistir. Bu iki farkli deney geometrisi icin Ankara

Andeziti olarak adlandirilmis ayn1 kaya tipi kullanilmistir.

Modellerde, potansiyel plastik deformasyon bolgelerinin ve c¢atlak proses zonlarinin
analiz edilmesi i¢in catlagin 6n kisminda gerilme izleri olusturulmustur. Mod I ve II
yiikkleme durumlarinda potansiyel catlak ilerleme yonii dogrultusunda catlak ucu
civarindaki von Mises plastisite bolgeleri incelenmistir. Bu gerilme izleri catlak
ucundan baslayarak en dis integrali konturuna dogru ilerleyen bir hat boyunca
olusturulmustur. Mod I ve II gerilme siddeti faktorii icin olusturulan bu iki gerilme
1zi birbirleriyle karsilastirilmistir. Dikdortgen kesitli kaya numunelerinde numune
sinir1 etkisinin mod I ve mod II gerilme siddeti faktorii tlizerindeki etkileri

karsilastirilmistir.

Dort-nokta asimetrik egme test geometrisi kullanilarak Ankara Andeziti i¢in mod II
catlak toklugu degeri K;;. = 0.61 MPa+\/m olarak bulunmustur. Aym kaya tipi igin
diiz ¢entikli Brezilyan diski test geometrisi kullanilarak yapilan deneyler de mod II

catlak toklugu degeri K;;. = 0.62 MPa+/m olarak bulunmustur.

Farkli boyutlardaki kiris tip numuneler, kiris derinligi Olglileri degistirilerek
olusturulmustur. Farkli kiris derinligi dl¢iilerine sahip bu numuneler {izerinde yapilan
mod II ¢atlak toklugu deneyleri sonucu yakin ¢atlak toklugu degerleri elde edilmistir.
Farkl kiris derinligine sahip kaya numuneleri {izerinde yapilan deneyler sonucunca,
dort-nokta asimetrik egme test geometrisi i¢in makaslama modu c¢atlak toklugu

degerleri iizerinde boyut etkisinin olmadig1 gézlemlenmistir.
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Anahtar Kelimeler: Kaya kirilma mekanigi, mod II ¢atlak toklugu, mod II gerilme
siddeti faktorii, dort-nokta asimetrik egme, dikdortgen kesitli kaya numuneleri, kiris

tipi kaya numuneleri.
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CHAPTER 1

INTRODUCTION

1.1 General remarks

No matter how flawless and homogeneous they look, objects which are produced
from the materials found in nature and ready to be used in daily life, possess flaws
and defects like cracks even in micro scale. These defects act as stress concentrators
within the structure when they are subjected to loading. Stress concentrations cause
the defect to propagate and next whole body fails due to overstressed field generation
at vicinity of the crack tip. Fracture mechanics is a branch of mechanics and it is
related to the investigation effects of micro and macro scale cracks and crack-like
defects on material behavior. More specifically, it investigates crack initiation and
propagation behaviors of loaded solid sections of materials. Fracture mechanics
benefits from other disciplines of mechanics as supportive fields; like solid
mechanics, continuum mechanics, theory of elasticity and theory of plasticity in

order to define relations between cracks and responses of the material.

Following load applications, local stress concentrations at the tip of cracks in the
object material might be in quite large scales. Dimensions of these stress
concentration zones are geometrically in small scales compared to the dimension of
the main object material. Stresses concentrated at the crack tip can be in magnitudes
exceeding the yield strength of the material; but in global sense material can still be
acting stable. However, due to these stress concentrations at the tip of the small
cracks, undesired results can emerge for the material under a certain load. Normally,
yielding behavior of a loaded material without having any cracks is described by the

classical mechanical approaches. Classical mechanical approaches define the stress



distribution in the material based on the mechanical properties of the material. For
instance, stresses for a linear elastic material exhibit proportional distribution in the
material body with respect to the loading location. Maximum load that the material
can resist is related to the maximum stress in the material. These stresses are
proportionally distributed and their distribution in the material can be predicted
easily by classical global stress analyses methods and strength of the material
techniques. For a material including cracks, assessing the strength of the material
based only on global strength parameters is not the right approach, since under the

same load much higher stresses exist at the crack tips.

In order to assess the behavior of cracks, stress analysis at the tip of the crack is to be
carried out by using fracture mechanics methods and parameters such as stress
intensity factor and critical energy release rate defined by fracture mechanics
principles. With the stress values obtained by these methods, it is possible to
compute the crack driving force. This way, complete failure or fracture mechanism
can be described completely for a material inherently possessing cracks. Safe designs

can be conducted based on these evaluations.

In the past when fracture mechanics principles were not applied and designs were
conducted based on global strength parameters, many catastrophic accidents
occurred. The most important of them which probably led to the acceleration of
fracture mechanics studies is the famous Titanic accident. In that era, similar
accidents occurred due to the conventional design of the body with carbon steel
which exhibits extremely brittle behavior under freezing temperatures without taking

cracks into consideration.

In rock mechanics applications, such as rock breaking, fragmentation, cutting and
crushing the main purpose is to produce cracks, thus, fracture mechanics discipline
plays an important role in assessing the input energy needed and mechanical methods
that is to supply the input energy.



In summary, any material which is thought to be flawless inherently possesses
defects and impurities. Thus, any design should include design against negative
effect of cracks. Especially for the materials like rock which holds cracks and
discontinuities owing to its nature, design based on fracture mechanics principles is

to be considered, in addition to the design in terms of global design parameters.

Rocks are naturally formed materials with inherent discontinuities. For rock mass
classifications and strength estimations, rock mass quality indices like RMR, Q, and
GSI are available. Behavior and effect of discontinuities in these quality indices are
treated in the geological sense rather than mechanical and total quality rating is
penalized. In the evaluation entries, no parameter based on fracture mechanics
principles is used. Moreover, direct relationship defined by the fracture mechanics
between the inputs for the operations like hydraulic fracturing, rock ripping, rock
excavation, blasting and the loading conditions exists. For example, in ripping
process, shear mode (mode I1) stress sate is directly involved in stress distribution at

the crack tips.

In this study, theoretical and laboratory works were conducted for the determination
of the material property mode Il fracture toughness of andesite rock. Based on the
principals of fracture mechanics, modeling work was conducted to estimate the
related stress intensity factor (SIF). Rectangular beam shaped rock specimens were
chosen in laboratory testing works. As a loading configuration, four-point
asymmetric bending type of loading condition were chosen in order to create shear

effect on the crack front.

1.2 Historical development of fracture mechanics

The major development of fracture mechanics study, such in other scientific and
technological advances was driven by World War I1. In addition, natively, mankind
always had encountered many severe fracture induced problems as long as there have

been man-made structures. The problems faced before, when it is compared to



today’s conditions, were relatively more harmless. Nowadays, humankind has
inevitable desire in aerospace, nautical structures, civil and automotive industries to
have compatible designs with long service life-time almost without any failure.
Especially, the failures aroused from defects cause catastrophic results and also crack
propagation causes permanent malfunction or long term break-downs. Therefore,
today’s technology needs more flawless materials. Thereby more flawless materials

need to have lesser flaws in it, in other words micro-cracks or defects.

Fortunately, advances in fracture mechanics have compensated some of the potential
dangers above-mentioned high-tech desires. Unfortunately, advances in fracture
mechanics were achieved by the lessons learned from the accidents experienced

before. In Figure 1.1 one of these accidents is illustrated.

Figure 1. 1 Famous troopships (Liberty Ships) of World War Il (Adapted
from http://forum.worldwarwhips.com)



The knowledge of fracture mechanics has achieved terrific improvement especially
after some catastrophic disasters in the history. In World War 11, some of the famous
troopships of World War Il know as Liberty Ships fleet has sunk in Alaska. Ten
ships have completely broken down into two pieces (Figure 1.2). This accident took
attention into welded assemblies of the ships. Because, Liberty Ships had a
construction method which uses welded connections between steel sheets of the
main-body while the old ones used to be constructed with riveted construction
method. Researchers concluded the debate proposing the causes of the disaster by

following three dominant factors:

s+ The welds involved flaws and cracks; they were produced by poor-quality
labor.

% Most of the fractures initiated on the deck at square shaped sharp corners
where there was stress accumulation.

¢+ Construction material, the ships made of was poor quality steel which had

underqualified mechanical properties.

Figure 1. 2 Focused on to the crack region of the ship
(Adapted from http://forum.worldwarwhips.com)
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The steel, prime suspect of the accident, was questioned thoroughly by the
investigators. Because, riveted ships had not experienced such issues while welded
ones have problems with the same material. Riveting prevented the crack
propagation across the steel panels. A welded deck which is composition of many
welding joints showed behavior as if it was a single piece of metal. Therefore, this
behavior made the whole metal sheet vulnerable with the contribution of man-made

flaws to fracturing.

In order to overcome these fracture propagation problems and all other fracture
issues, the researchers at Naval Research Laboratory U.S America have studied
fractures in detail. They improved quality control standards and fracture mechanics
study was born in this research center located Washington DC, during the decade
following the World War 11.

Another catastrophic disaster is the Comet plane disaster of civil aviation. Comet
passenger jet aircrafts had made a breakthrough in commercial aviation in 1950’s.
However, after they serviced a few years a Comet exploded in the air unexpectedly;
it shattered and all the cabin crew and passengers died instantly. Investigators have
found that, aircraft’s sharp edged rectangular window panes caused enormous stress
accumulations in the vicinity of the frame corners and the material the aircraft was
made of could not stand long flights over and over. Year after year Comet had
become vulnerable to the internal cabin pressure so, one day in duty, it exploded for
this reason. Thirty four years after the first Comet disaster; in April 28, 1988 the
aircraft flight number 243 allied to Aloha Airlines was flying from Hilo Airport, Big
Island to Honolulu International Airport. During flight due to the cabin pressure, roof
of the aircraft was scraped off from the front side of the passenger cabin and caused
crash-landing (Figure 1.3). Only one casualty was reported that was one of the cabin
crew who was hurled out of the cabin by the reverse pressurization. Researchers
from National Transportation Safety Board (NTSB) which is a federal foundation of

USA have revealed that, rivet holes of the main-body having micro-fractures (Figure



1.5). These micro-cracks propagate through the body due to the cabin pressure and
cause the aluminum sheet to disperse.

Figure 1. 3 Ripped off roof of Aloha's Aircraft (Adapted
from National Geographic Channel documentary series
“Air Crashlnvestigation” episode “Hanging by Thread”)

After this civil aviation accident, to prevent this rupturing failure arousing from
micro-fractures, special riveting design was applied to aircrafts. In case of any crack
initiation within the hull, special designed rivet rows prevent all through propagation

of the crack. Figure 1.4 this rivet array can be seen easily.

Figure 1. 4 Rivet arrangement of an aluminum sheet (Adapted
from National Geographic Channel documentary series “Air
Crash Investigation” episode “Hanging by Thread”)



Hole Fracture

Figure 1. 5 Rivet hole fracture (Adapted from National Geographic
documentary series “Air Crash Investigation” episode “Hanging by
Thread
All the causes of these undesired incidents were accomplished by the knowledge of
fracture mechanics discipline. Fracture mechanics knowledge achieves progress with
the investigation of researchers from many disciplines i.e. mechanical engineering,

aerospace engineering, civil engineering and mining engineering.

From mining engineering point of view, material having in fracture problems is
usually the rock material or various combinations of rocks in general. Mining
structures, for example, mine shafts, production chambers, transportation galleries,
slopes and etc. are developed through rock. In order to define the response of the
rock to the man-made structures thoroughly, designers should consider both rock
mechanics and fracture mechanics at the same time. As we know, rock have
discontinuities inherently, those discontinuities govern the strength of the rock and
stress redistribution behaviors when the rock is disturbed. In order to get
comprehensive information about rock fracture mechanics, first, the basics of

fracture mechanics should be understood properly.



The adaptation of toughness term used in fracture mechanics began with the study of
Inglis (1913) about fractures and sharp edges. Inglis proposed that, defects or sharp
edges within a plate may create stress concentrations many times of applied stress to
the plate. He revealed defects that having smaller radius of curvature yields greater
stress concentration. Then Griffith’s works put the relation between strain energy and
input energy for crack propagation (Griffith 192, 1924). He created the energy
criterion for crack propagation and calculated the input energy to form new crack
surfaces. Definition of parameter stated as fracture energy balance criterion G. was

made by Griffith. He revealed that G. is proportional to ‘'a which is the square root of

initial crack length. Then, stress intensity factor “K” which is equal to o X Va
approach was suggested. K was assigned to stress intensity factor term, and K. was
assigned to critical stress intensity factor or facture toughness term. Crack tip stresses
became mathematically identified by Westergaard’s analytical solution
(Westergaard, 1934).

1.3 Problem statement

Definition of mode Il fracture toughness can be stated as, resistance of a crack to
propagate due to acting in plane shear stress on it. Determination of mode Il fracture
toughness of rocks is a crucial work for rock mechanics applications such as
hydraulic fracturing, rock cutting, and rock blasting. In addition, applications like
nuclear waste disposal storage excavations and construction of storage sites in rock
medium can benefit from rock fracture mechanics concepts. In geotechnical
applications, rock medium is usually under the effect of compressive forces as a
result of overburden stress. This increases the importance of shear mode crack
formation and propagation under pure shear mode or under mixed mode involving

compressive-shear mode over the crack surfaces.

Shear type mode Il fracture toughness value of rocks is a useful parameter in rock
breaking applications. In order to determine the mode | and mode Il fracture

toughness of a rock, certain methods have been suggested by ISRM. These are short



rod (SR), (Ouchterlony, 1988 and ISRM, 2014), chevron bend (CB), (Ouchterlony,
1988) and cracked chevron notched brazilian disc (CCNBD), (Shetty et al., 1985),
semi-circular bending test (SCB) (Chong and Kuruppu, 1984), punch through shear
with confining pressure (PTS/CP), (Backers, 2012) which is solely a mode Il
fracture toughness test. All these suggested methods are conducted on core based
specimens. Especially, in determination of mode Il fracture toughness of rocks, core
based specimens have certain shortcomings. ISRM suggested punch through shear
method for determination of mode Il fracture toughness of rocks is only valid when
the confining circumferential pressure is applied. Setting up this condition properly
as proposed is practically rather difficult.

Beam shaped rock specimens eliminate mechanical shortcomings of core based
specimens and difficulties of PTS/CP test specimen at the times in determination of
mode Il fracture toughness of rocks. The main problem associated with core based
specimen geometries is that specimen size is limited to the core diameter and
specimen shape is limited to circular sections. Applicability of FPAB test specimen
and its performance on determining mode Il fracture toughness K of rocks are
challenging areas in rock fracture mechanics, since a well-developed mechanical
background is available for beams. Geometrical parameters of the beam specimens
can be changed easily for size effect and boundary influence issues. These aspects of
beam shaped rock specimens should be investigated in detail by comparing results to
those of the other core based testing.

1.4 Objective of the study

In the literature, there are limited investigations on FPAB test specimen. Ayatollohi
and Aliha (2011) suggested geometric features of four-point asymmetric bending
test. However, there was a drawback, suggested beam specimen was extremely long
and thus practically hard to prepare. They suggested the dimensions of the beam as
length (L) 400 mm, width (W) 40 mm and thickness (t) 20 mm. He and Hutchinson

(2000) proposed analytical expressions to find mode Il stress intensity factor which
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enables computation of mode 11 fracture toughness of a beam shaped specimen under
four-point asymmetric bending type of loads. Analytical expressions proposed by He
and Hutchinson for beams were constructed for infinitely thick beams under plane
strain assumption. In reality, beam specimens have a finite thickness which requires
3D (three-dimensional) simulations and computations for a better accuracy in

fracture toughness evaluations.

The main objective of this study is to determine mode Il fracture toughness of rocks
by performing four-point asymmetric bending (FPAB) test on beam shaped rock
specimens. It covers specimen preparation phase with appropriate dimensions to
generate the pure shear mode combinations for the beam and machined initial notch

for shear mode fracture toughness testing of rocks.

Expanded objective of this study is to clarify and reveal appropriate geometrical
features of the FPAB specimen to catch pure shear mode state at the preliminary
notch tip. Figuring out loading and support points and their locations with respect to
the crack plane is followed by the detailed objective related to the investigations of
the stress fields at the crack tip regarding boundary influence effect and size effect of

specimen.

1.5 Methodology of the study

Methodology of this study is shortly structured by two parts which are numerical
computation study and experimental study of four-point asymmetric loading test
specimen. Numerical computation phase of this study actually was conducted before
and after the laboratory testing phase. The first numerical computation study is
performed to specify the loading configuration satisfying the pure shear state at the
crack tip of the test specimen. This configuration consists of four asymmetric loading
points which develop the shear type stress intensity factor effect on the crack plane.
The second one was conducted after experimental work; acquired fracturing loads

from experimental phase were implied to the corresponding numerical models and
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then computation were conducted in order to find the shear type fracture toughness

of the rock type, grey colored Ankara G6lbasi Andesite.

Numerical modeling and computation studies were conducted utilizing Dassault
Systemes’ finite element package named ABAQUS v12. Software licensed by
Middle East Technical University. Numerical models were created in three-
dimensional space with six degree of freedoms assigned in every single node. Finite
elements used in the numerical computation study selected as 8-noded 3-D stress
elements which are hour-glass stress control enhanced. Crack tip stress singularity
achieved by special finite elements called collapsed elements which were explained
at Chapter 6 in detail. Validation of the numerical models was carried out by
handling well-known fracture mechanics problems which are pure shear plate for
mode 11 stress intensity factor and pure mode | stress intensity factor test specimen
under three-point bending loading. Proper meshing was assured by mesh

convergence studies applying different mesh amount and size.

Investigations about loading and support points and their locations and distances

from crack plane were conducted.

In the experimental part of the thesis, grey colored Ankara Golbasi Andesite rock
type is the choice due to its easily availability and its medium grained igneous
texture. Test specimens are prepared as three main beam depth groups. For each
group, different crack lengths are machined with varying notch length over beam
depth ratios (a/W) from 0.2 to 0.6.

In total, 64 specimens were prepared and tested. In testing work, servo-hydraulic
MTS 815 stiff Rock Testing Machine was used. Fracture load readings were
provided by the load cell which fits Turkish Standards Institute standards and
certificated by Turkish Standards Institute (TSE). Experiments were conducted under

displacement control by the software called MTS™ Series 793 Control Software
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provided by MTS Company. Data acquisition is powered by MTS FlexTest 40

electronic controller console.

Finally, mode Il fracture toughness values of grey colored Ankara Golbas1 Andesite
determined from four-point asymmetric bending (FPAB) test with specified
geometric features were compared with straight notched disc bending (SNDB) test
and discussions were made. Von-mises stress field were also analyzed in order to
clarify behavior of mode 11 stress intensity factor of FPAB test specimen in terms of

boundary influence effect and size effect.

1.6 Sign convention of mechanical entities

In general mechanics study, positive orientation of stresses and displacements agrees
with the positive direction of the related axes of coordinate systems. This means,
compressive forces, stresses and displacements have negative sign while tensile ones
have positive. On the other hand, in rock mechanics study opposite sign convention
is utilized. Compressive forces, stresses and displacements are taken positive while
tensile ones negative. In this study, sign convention of finite element code
ABAQUS©O were adapted which is same as general mechanics sign convention.
ABAQUSO indicates the ordinary Cartesian coordinate system X, y, z; as 1, 2, 3
respectively. In Figure 1.6 and 1.7, general tensor notation for ABAQUS and sign

convention of the study can be seen easily.
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Figure 1. 6 Negative state of stress for sign convention of ABAQUS

As it is seen Figure 1.6, stress components of principle axes dictated as Si, Si3, Sai,
S23, S31, and Szp. This tensor notation corresponds to Tip, Ti3, T21, T2 T31, and T3
respectively. Principal axes X, y, and z correspond to 1, 2, and 3 respectively. All
these principle directions and their components are in negative direction so, their

signs are negative.
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Figure 1. 7 Positive state of stress for sign convention of ABAQUS

Sign convention for stress intensity factor for mode | and mode Il utilized in
ABAQUSO is positive for K| if crack tends to open, and negative if crack tends to
close. Figure 1.8 shows the sign of mode | stress intensity factor K. K;; is negative
when normal of zy plane pointing positive side of x-direction subjected to negative
shear force (S, or S,;) when outward normal pointing positive direction of the out of

plane. This definition is illustrated in the Figure 1.9.
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Figure 1. 8 Direction of crack opening and sign of mode | stress intensity factor
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Figure 1. 9 : Direction of crack opening and sign of mode | stress intensity factor K|,
for FPAB test specimen

1.7 Outline of the thesis

In Chapter 1, general remarks and a brief history of the fracture mechanics discipline
are presented. In addition to this, problem statement and methodology of the thesis
are given.
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In Chapter 2, general background related to the theoretical development of fracture
mechanics with formulas, definitions, and meaning of SIF concept, including well-
known solutions (both mode I and II) for SIF’s in plates and beams with references
and literature review is presented. Application areas for rock fracture mechanics are
reviewed. Utilization of rock fracture mechanics for some practices i.e. hydraulic
fracturing, rock excavation and mine opening design etc. are reviewed with
references from literature in chronological order. Importance of rock fracture
mechanics in rock burst problems is given. Beam type specimen geometries for
fracture testing are reviewed. Well-known three-point and four-point specimen
geometries, solutions for SIF’s for both core-based and rectangular sections,

following the historical flow of related literature are given.

In Chapter 3, definitions of shear stress and bending moment are fulfilled and
required mechanical prerequisites that satisfy pure shear effect on a deformable body
are given. Four-point asymmetric bending (FPAB) test specimen is presented with its
geometry and loading point configuration. Sketches for FPAB test specimen and K,

testing literature and analytical calculations are given.

In Chapter 4, modeling studies for stress intensity factor computation and utilized
finite element code ABAQUSO© and its structure are presented. Numerical
verification problems are given. Boundary conditions, discretization and meshing of
the FPAB test specimen are presented. Crack tip stress singularity issues and crack
tip meshing with special finite elements are reviewed. Von Mises stress field
contours and their meanings are presented for both K; and K|, stress intensity factors.
Results for numerical study conducted on mode Il stress intensity factor with FPAB

specimen are given.

In Chapter 5, experimental studies are presented. Test setup of four-point asymmetric
bending (FPAB) test specimen is given. Testing machine and controller and their
specifications are reviewed. Test procedures are also given. Results for mode Il

fracture toughness tests with FPAB test geometry are given.
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In Chapter 6, stress analyzes for FPB and FPAB test geometries are given. Boundary
influence effect and size effect phenomena are concluded. SNDB test specimen and
its geometric features are given. Testing procedure and set-up for SNDB specimen
are given. Numerical modeling study for SNDB test geometry is given. Accuracy
level of numerical model of SNDB geometry is presented. Mode Il fracture

toughness values obtained from FPAB test and SNDB are compared.

In Chapter 7, conclusion of the thesis and recommendations for future works are

presented .
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CHAPTER 2

FUNDAMENTALS OF ROCK FRACTURE MECHANICS

The adaptation of toughness term used in fracture mechanics began with the study of
Inglis (1913) about fractures and sharp edges. Inglis proposed that, defects or sharp
edges within a plate may create stress concentrations many times of applied stress to
the plate. He revealed defects that having smaller radius of curvature yields greater
stress concentration. Then Griffith’s works put the relation between strain energy and
input energy for crack propagation (Griffith 1921 and 1924). He created the energy
criterion for crack propagation and calculated the input energy to form new crack
surfaces. Definition of parameter stated as fracture energy balance criteria G, was
made by Griffith. He revealed that G, is proportional to Va which is the square root
of initial crack length. Then, stress intensity factor “K” which is equal to ¢ x Va
approach was suggested. K was assigned to stress intensity factor term, and K. was
assigned to critical stress intensity factor or facture toughness term. Crack tip stresses
became mathematically identified by Westergaard’s analytical solution
(Westergaard, 1934).

Irwin (1957) introduced the crack tip failure modes regarding to principal stresses.
He proposed mathematical relations of three failure modes as; mode | opening mode,
mode Il in plane sliding (shear mode), mode Il out plane shear (tearing mode). He
made the definition of critical energy release rate G.. He proposed G. as a material

property and defined as critical energy input to create a new unit crack surface.

In 1960s crack tip plasticity investigations became concerned. Cottrell (1960) and
Wells (1961) suggested crack tip opening displacement method as fracture criteria.

Other approaches; “Maximum Tangential Stress” (Erdogan and Sih, 1963),
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“Maximum Energy Release Rate” (Hussain and Pu, 1974) and “Minimum Strain
Energy Density” (Sih, 1974) were proposed. Huge improvement was sustained by
study of Rice (Rice, 1968). Rice generalized the crack tip plasticity issues suggesting
a path independent line integral technique and proposed an analytical expression to
calculate the both elastic and plastic energy around the crack tip. Because the
calculations were based on stress invariants J;and J, , this technique is referred as J-
Integral. Rice pioneered a new era for fracture mechanics study, and then elastic-
plastic fracture mechanics studies became more reliable. After stress intensity factor
(SIF) calculations became more reliable and easier, huge compendiums for SIF
studies for different crack and specimen geometries were compiled by researchers
(Tada et al., 1973; Rooke and Cartwrigth, 1976; Murakami et al., 1986).

Fracture mechanics is the science of cracked bodies. Cracks as stress concentrators
are inherent impurities involved in materials or structures. Ordinary stress analysis is
inadequate in specifying strength of cracked body because of stress concentration
due to cracks. Stress intensity factor parameter proposed by fracture mechanics study
enables to calculate amount of stress accumulated around a crack tip. This approach
is quite acceptable compared to ordinary stress analysis techniques. In general, three
different types of loading modes govern crack initiation and propagation. These are
mode I, mode Il and mode I1l. Mode | loading state is defined as opening mode
because mode | loading condition compels the crack to open. Similarly, mode Il is
defined as sliding mode or in plane shear and finally, mode 111 is defined as tearing
or out of plane shear. In Figure 2.1, three main crack displacement modes are

illustrated.
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Opening- Mode | Sliding- Mode II Tearing- Mode 111

Figure 2. 1 Crack displacement modes

Fracture mechanics studies are divided into two main research groups: linear elastic
fracture mechanics and elastic plastic fracture mechanics. In linear elastic fracture
mechanics study, concerned structure or material is assumed to be linear elastic and
isotropic while in elastic plastic fracture mechanics study nonlinearity and crack tip

plasticity phenomenon are considered.

2.1 Linear elastic fracture mechanics

Definition of “foughness” began with the study of Inglis (1913). Inglis showed stress
concentrations around a hole in a stressed domain. The amount of acting stress
around the hole was considerably higher than the applied stress to the domain
(Fischer-Cripss, 2007). In Figure 2.2, applied tensile stress and stress concentration

around the hole can be seen.
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Figure 2. 2 Stress concentration around a hole (Adapted
from Fischer-Cripss, 2007)

Inglis’ study excluded one important parameter of cracked bodies. Excluded
parameters were shape and size of the impurities. Griffith extended Inglis’ study
using elasticity theory. He combined strain energy knowledge with fracturing
phenomenon. Griffith showed that when crack propagates it creates new surfaces and
creating new surfaces requires energy. Therefore, creating new surfaces governed by
the strain energy of the body. The balance between required energy input to create
new crack surfaces and strain energy release was proposed as “Energy Balance
Criterion” by Griffith (1921). An illustration is given in Figure 2.3 for energy
balance criterion.
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Figure 2. 3 Strain energy release and new crack surfaces
(Adapted from Fischer-Cripss, 2007)

2.1.1 Crack tip stresses

Analytical expressions to calculate stresses and displacements around a crack tip
(Figure 2.4) were proposed by Westergaard (1934) for mode 1 stress intensity factor.
Then, the remaining analytical expressions for calculation of mode Il and mode Il
crack tip stress and displacement were proposed by the study of Williams (1957). In
the formulas below, K|, Kj;, and Ky, are stress intensity factors corresponding to the

crack displacement modes defined before.
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Figure 2. 4 Crack tip stresses

Singular stress field around a crack tip is proportional to inverse square root of

distance “r” from crack tip.

Analytical formulas for mode | crack tip stresses and displacement are;
Stress components;

K; 0 6 36
011 :WXCOSEX [1—sm§><sm7 (2.1)
K, 0 8 30
Oy = NorTs X cos - X [1 + sin> X sin—- (2.2)
_ { 0 (Plane Stress) 2.3)
33 7 v x (0141 + 05;,)(Plane Strain) '
K, 6 6 36
Ty = Nores X cos > X sin> X cos —- (2.4)
T33=0 (2.5)
T3 = 0 (26)
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Displacements;

—le -~ 9[ 1+2><'29_
ul_Zu /271 cos |k sin®—

—K’x/rx'9[+1 2 X 29]
uz—zlu o Slrl2 K CosS 2

u3:O

1+v

3—v
= {— (Plane stress)
3 — 4v(Plane strain)

Analytical formulas for mode 1l crack tip stresses and displacement are;

Stress components;

Ky « si 0 o [2 N 0 o 30
011 = NorTs sin- CoS = X COS—
K, ) 0 30
0y7 = ——= X Sin= X COS = X COS—

\ 21T 2 2 2

_ { 0 (Plane Stress)
933 = v x (04, + 0y,) (Plane Strain)

K o 0 <[ 0 & si 30
Ty = cos— — sin— X sin—
2= o 2 2 2
T13 = O
T23 == 0
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(2.10)
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Displacements;

K, T a7 L, 0
u1=ﬂx EXSIHE-K+1+2XSIH 5| (2.17)
K [ scos2 =1 - 2 xsin? ] 2.18
uz_Zu o X C0S5 _K' sin 5| (2.18)
u; =0 (2.19)

Stress intensity factor defines the crack tip stress singularity. The magnitude of
singular stress is referred as stress intensity factor and denoted as K. This factor is
directly governed by amount of applied stress and crack length. Shape of the crack,
geometry of stressed domain and boundary conditions of domain also have influence
on stress intensity factor. Stress intensity factor solutions for some well-known
loading and geometries are given in Figure 2.5 and 2.6. For beam type geometries

and bending loading configurations, it is common to express stress intensity as

following;
K=oxvaxaxf(y) (2.20)
MPavm = MPa x V( x m) x f(a / W)(dimensionless) (2.21)
Where;

K Stress intensity factor
o Applied stress to the domain

a: Crack length
f (a/W): Correction function depending on crack length/beam depth ratio
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It is important to note here that variations in material elastic properties like E and v
do not effect SIF values, since these only depend on o which is a function of loaded

section geometrical parameters and applied loading, and on crack length a.

2.1.2 Typical geometries for mode I and mode 11 stress intensity factors

After mathematical expressions for SIFs and crack tip stresses derived, the
researchers began to solve for SIFs of well-known geometries and specific loading
types. Analytical solutions of mode | and mode 11 SIFs for beams and plates were
given in “The Stress Analysis of Cracks Handbook” (Tada et al., 2000) and also in
other compendiums. To give an idea about calculations of SIFs both mode | and I,

typical geometries were given as follow;

Three point bend beam for mode | SIF;

!
[E

—

2

77

Figure 2. 5 Three point bend specimen (Adapted from Tada et al.,
2000)

o= (2.22)
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M=7 (2.23)
Ki = oVra F(%fy) (2.24)
fOT S/W = 4,
F(%y) = 1199 =4y (1= Yy) (215 - 393(%y) +27(%Yy)’)
W Vm 3/2
o 1+2(Yy) (1= (YY) /
(2.25)
fOT S/W = 4,
F(Yyy) = 1106 — 1.552(%/;,) + 7_71(a/W)2 _ 13.53(a/W)3 s 14.23(a/w)4
(2.26)
Where;

o Effective stress on notch plane

M: Bending moment

P: Applied load

s: Span length

a: Notch length

W: Beam depth

F(a/W): Geometric correction function
K;: Mode | SIF

8 /y7- Geometric span ratio
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Center notched plate for mode 11 SIF;

TN
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Figure 2. 6 Center notched specimen mode
I SIF (Adapted from Tada et al., 2000)

Ky = wra F(%/y,) (2.27)

(%) = {1 - 0.025(%yy)° +0.06(%/yy)} [sec s (228)

Where;

7. Effective shear stress on notch plane
o: Applied remote stress

a: Notch Length

W Half plate depth

h: Half plate height

F (a/W): Geometric correction function

(a/W): Dimensionless notch length
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2.1.3 Fracture toughness

Fracture toughness is defined as critical form of stress intensity factor. Due to

loading, stress intensity factor reaches a critical value, then, crack propagates. Stress

based threshold for crack propagation is defined as fracture toughness and denoted as

K¢. Fracture toughness as a material property is resistance of material to crack

propagation (fracturing). Fracture toughness is directly governed by mechanical

properties of material and geometry of the domain. To give an idea about the order of

magnitude of fracture toughness of some commonly used materials, Table 2.1 is

prepared from the literature listed in the table.

Table 2. 1 Fracture toughness values of some commonly used materials

Material

Mode | Fracture

Mode Il Fracture

Tvoe Material Toughness K¢ Toughness K¢ Reference
yp MPavVm MPaVm
. ESDU 96013,
Aluminum 14-28 -
1996
ESDU 83023,
Metals Steel 50 -
1995
L Horiya and Kishi,
Titanium alloy 44-66 -
1994
Aluminum .
. 3-5.3 = Callister, 2007
Oxide
Ceramics  Silicon Nitride 7-8 =2 Quinnetal., 1994
Soda-Lime .
0.7 ~0.4 Callister, 2007
Glass
. Alkiliggil, 2010
Ankara Golbasi
) 1.12 0.61 and Karakas,
Andesite
2011
Rocks Gabbro 2.1 1.18 Het,2014
Alkiliggil, 2010
Marble 1.45 0.62 and Karakas,
2011
Concrete Concrete C35 0.2-14 - Callister, 2007
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2.2 Elastic plastic fracture mechanics

Macroscopic stress applied to a structure or material (sometime called as remote
stress) becomes infinite in the vicinity of crack tip as “»” tends to “0”. In here “r” is
defined as distance from crack tip. As it is known, strength of a material is bounded
by vyielding stress and when the applied stress exceeds the yield stress, plastic
deformation is occurred. The region near the crack tip which deformed plastically
called as small scale yielding in fracture mechanics studies. Linear elastic
formulations in this region are not valid. If this region is relatively too small,
plasticity zones can be assumed as negligible and linear elastic fracture mechanics
approaches can be utilized. However, if this region is not sufficiently small, instead
of utilizing linear elastic fracture mechanics approaches, elastic plastic fracture
mechanics approaches are employed. These approaches are ‘“crack tip opening
displacement” (CTOD) and “J-contour integral ”.

2.2.1 Crack tip opening displacement

Wells (1961) showed that, as the initially sharp crack propagated, because of the
plastic region around the crack tip it had transformed into blunted crack. He also
revealed that, amount of blunting was proportional to toughness of the material. As
the toughness of material increased, degree of blunting of initially sharp crack also
increased. Therefore, a relationship between fracture toughness and degree of
blunting of initially sharp crack was established mathematically by Wells. This

approach is called as crack-tip opening displacement.
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Figure 2. 7 Crack tip opening displacement method (Adapted from Anderson, 2005)

In Figure 2.7, crack tip opening displacement basics were given. a: plasticity zone
near crack a tip and effective crack length, b: development of crack from sharp form
to blunted form due to plasticity zone, c: calculation theory of crack tip opening
displacement, d and e: best calculation technique for crack tip opening displacement

(90 degree intercept lines radiated from crack tip).

2.2.2 J-contour integral

Rice (1968), proposed the J- contour integral to calculate the required input energy
to create new crack surfaces. J- contour integral may be utilized for both linear
elastic fracture mechanics and elastic plastic fracture mechanics. The theory of J-
integral holds potential energy variation as the crack extends. This technique gives
accurate results for the materials that obey plastic deformation mechanism.

Mathematical expression is given as follows;
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—f(Wd Tauidl“)—J(W ou, )dr (2.29)
]—F y=Tligs =)\ TG -

Where;

I': Arbitrary contour which begins from lower surface of the crack and extends to
upper surface of the crack.

n;: Unit outward vector components which is normal to the arbitrary contour “I"”.

T;: Traction vector, product of o;; and n; tensor notation in Cartesian coordinates
T; = oyjn;

W Strain energy density

u;: Components of displacement vectors

dr': Differential arc length of contour I' some books refer as “ds”

// / \\
+ 2 \r
[ /N2 N

Figure 2. 8 J- contour integral with two arbitrary contours
(Adapted from Sun and Jin, 2012)
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2.3 Fracture mechanics in earth sciences practice

Cracks and discontinuities are inherent for rocks. In applications dealing with rocks,
such as rock excavations, tunneling, mining practices, hydraulic fracturing and rock
slope stability studies, behavior of cracks and discontinuities should be identified
properly. In general, fracture mechanics is utilized for defining fracturing process
and to avoid fracturing by performing defect designs. In disciplines, such as;
mechanical engineering, aerospace engineering and materials science, primary
objective is to prevent the material of structural element or whole structure from
fracturing. However, in rock fracture mechanics applications, the main idea here is to
evaluate input energy for fracturing process. Because, in applications

abovementioned, primarily task is to disintegrate the rock medium concerned.

2.3.1 Hydraulic fracturing

Hydraulic fracturing (Figure 2.9) is a technique in which pressurized solution
pumped into the rock formation to create fractures within the medium. This
technique is utilized for oil extraction and production of special minerals in mining
engineering. Boreholes are drilled into the rock medium and establishment of wells
are configured as close loop. Fracturing resistance of rock is obtained from rock
fracture mechanics studies. Input energy to create new fractures in rock medium is
calculated and sufficient pressure is provided by pumps and the required amount of
liquid for successful fracturing process is calculated. In hydraulic fracturing, both
mode | and mode Il crack opening modes are observed. However, during fracturing

process, mode mixity effect is observed dominantly.
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Figure 2. 9 Schematic demonstration of hydraulic fracturing (Adapted from
http://en.skifergas.dk/technical-guide/what-is-hydraulic-fracturing)

2.3.2 Rock excavations

Rock excavations are conducted by blasting or using mechanical equipment. In rock
blasting, energy provided by explosives is dissipated within rock medium and
absorbed by crack tips. This energy is consumed to create new cracks. Thus, total
breakage of rock medium is accomplished. This relation between fracture mechanics

and rock mechanics is first proposed by Bienawski (1967).

Mechanical equipment utilized for rock excavations such as drag bits, hydraulic

hammers, diggers and cutters create both compressive and shearing loads (Figure
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2.10). Thus, both mode | and mode Il loading on inherent cracks and discontinuities
are applied. Grading equipment generates mode Il effect while drag bits mode I. For
an ordinary excavation both mode | and mode 11 and also mode mixity is observed.
Well-known specimens applicability on rock excavations utilized in determination

fracture toughness values of rocks were investigated by Xu (1993).

Applied .

Force

Crushed Rock

\ Tensile Cracks

Figure 2. 10 Rock cutting mechanism (Adapted from Hood and
Roxborough, 1992)

Relationship between rock excavation difficulties and fracture toughness values of
rock investigated by a considerable number of researchers. Deliac (1986), proposed
an expression for required amount of force to crush the rock. He referred this force as
MPFC “mean peak cutting force ”. Relation between MPFC and fracture toughness

value of rock introduced as follows;
MPFC = C' x K;, x d”/2 (2.30)

Where;
MPFC: Mean peak cutting force
C': Rock type coefficient
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K;.: Mode I fracture toughness value of rock
d: Cutting depth

Similar to Deliac’s study, another study to introduce the relationship between
fracture toughness of rock and rock cutting mechanism was conducted by Guo
(1990). Guo investigated the penetration rate of the excavation tool for five different
rock types. Utilized rock types were sandstone, marble (fine grained and coarse
grained), basalt and limestone. He showed that there was high correlation (R?=0.90)
between fracture toughness values of these rocks and excavation difficulty degree.
On the other hand, he proposed that, the only effective parameter for rock excavation
mechanism was not fracture toughness but hardness of the rock also was an effective
parameter. Relationship between penetration rate of the excavation tool and mode |

fracture toughness of rock is given by following relationship;

Penetration Rate of Excavation Tool = 776.21 X K;;#°1%%  (2.31)

Another study was conducted by Zhou and Lin (2014). They investigated for the
relation between brittle failure mechanism of rock and rock cutting process. The
main purpose of the study was to introduce the whether size effect law exists for cut
depth or not. They used beam type FPB (four-point bending) specimens to mimic the
rock cutting process. Another reason utilizing FPB specimens was introduced as to
investigate the size effect behavior of the rock. They observed size effect law for

rock cutting process.

Another study for tunnel boring machine (TBM ) disc cutters and fracture toughness
value of rock was conducted by Liu and Cao (2015). As it is known, TBM’s are very
efficient tools for rock excavation practices. TBM’s are utilized for hard rock
excavations if they are appropriate for rock medium characteristics and create fewer
vibrations in comparison with blasting. The most effective usage of TBM’s is
provided by applying correct thrust to the excavation face. Optimum thrust depends

on rock type and it is calculated by direct experimental methods. Liu and Cao
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introduced relationship between the required thrust and fracture toughness of rock to

cut and break the rock most effective way.

Another different aspect of this study is the given relationships for optimum cutting

force to break the rock. They proposed two formulas both for mode | and mode I

stress intensity factors regarding position of the crack. This assumption takes into

account the layered rock mediums. Whether required input energy to break the rock

is smaller regarding mode Il loading than mode I loading conditions or not can be

calculated by the given equations. Position of cracks regarded as median crack and

lateral crack for mode | and mode Il loading conditions respectively (Figure 2.11).

Stress intensity factor for median crack is given as follows;

K; = (0/1 — 0)\n(ofy —0)F

(2.32)
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Figure 2. 11 Thrust force direction regarding positions of cracks (Adapted from Liu

and Cao, 2015)

Where;

K;: Mode I stress intensity factor for median type crack

of,: Effective tensile stress on the crack plane
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o: Remote stress (confining stress)

F: Crack length constant

Position change of cracks creates different loading conditions. Lateral cracks will
create mixed mode (mode I and mode Il) loading conditions while median type
cracks create mode I. They introduce following equations for such circumstances. In

case of a lateral crack existence fracture angle 8,is given by;

_1\/1+8(K11/K1)2—1

0, = 2tan 2K, /K (2.33)

They give mode | and mode 11 stress intensity factors as follow;
K, = 6./*\mF (2.34)
K;; = 0.5 X o[sin2f — f(1 — cos 2B)Vma (2.35)

Where;

K;: Mode I stress intensity factor for lateral crack
K;;: Mode 11 stress intensity factor for lateral crack
B: Inclination of crack from vertical

a: Crack length

f: Friction coefficient of the crack

o.: Maximum tensile stress

2.3.3 Rock slope stability engineering

Conventional rock slope engineering methods do not consider fracture mechanics
parameters in determination of stability of rock slopes. These conventional methods
assume the rock medium as a continuum. On the contrary, slope failures occur due to

discontinuity surfaces of rock mases. A movement on these discontinuities initiates
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from joints tips. Also, joint tips as stress concentrators may cause failures which are
not able to detect with limit equilibrium methods. Limit equilibrium methods only

consider kinematics of rock bodies and orientation of discontinuities.

Researchers have a common sense on that slope stability investigations excluding
inherent impurities are not acceptable. So, especially in the last two decades, this
topic has been investigated by the researchers. Chen and Wang (2004), analyzed
stability of a rock slope subjected to dynamic loads with fracture mechanics
parameters. Saouma (2010); reviewed some investigations which were made in the

past.

2.3.4 Rock bursts

In the last three decades, mining activities are getting increasingly deeper in rock
medium. As a result of this, rock bursts and coal bumps are begun to occur.
Investigations (Zipf and Heasley, 1990, Heasley and Zelanko 1992, Maleki et al.,
1995 and Innachione and Zelanko, 1995) showed that there is a direct relationship

between rock bursts and energy release rate concept.

Firstly, energy release rate (ERR) concept as an indicator of coal bumps and rock
bursts was proposed by Salamon (1963) and Cook (1965). These investigations were
at deep hard rock mines in South Africa. This concept is shortly defined as, strain
energy based rock burst phenomenon. Highly stressed rock in deeps tends to release
its energy stored. This high stress causes strains within rock itself. Strain gaining
characteristics of rock depend of its properties i.e. Young’s modulus and Poisson’s
ratio. Strain energy concept has been used in mechanics for many years on the other
hand, fracture based strain energy concept was built by fracture mechanics. As it is
known from fracture mechanics knowledge, as the crack propagates energy release
rate of the material increases and it tends to reach a critical value finally it causes to a

catastrophic failure. This kind of failures worth many lives in mines. In order to
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avoid casualties in deep hard rock mines fracture mechanics based strain energy

release rate or energy storage rate concepts are crucial.

In underground mines, when a shaft or production opening is created, energy
changes occur. First change is the work in physical meaning (potential energy) done
by convergence of the back (roof) or deformation of opening surrounded by the rock
mass. The second is the strain energy stored in rock medium. The sum of these two
energies yields to total available energy. When mining operation advances this total
energy is released by two ways. The first is strain energy increase and the second is
dissipation by supports applied. As a matter of fact total dissipation energy can never

be higher than total energy. This relationship is defined by following inequality;

W+U, >U,+ W, (2.36)

Where;

W Potential energy of the system

U: Strain energy stored in the rock mass

U, Dissipated portion of strain energy stored in the rock mass

W;: Dissipated portion the energy by support pressure

From Equation 2.36 it is understood that, there is excess of energy. This energy
should be dissipated somehow. Dissipation of this excess energy is occurred as
kinetic energy (wave) if it is higher than strain energy stored in rock mass. Following

equations introduce this relationship.

W, =W +Upy) — (U, +W,) >0 (2.37)
W, > U, >0 (2.38)
W, = U, + W, (2.39)

41



We=W—(U,+W,) =0 (2.40)

Where;
W,.: Excess energy (the energy should be released)

W, : Kinetic energy

This kinetic energy is dissipated through new faces of advancing direction of the
mine and crack and it damped by impurities located in rock mass. Therefore, local
stress concentrations occur and it is concluded by rock bursts. Fracture toughness

values of rock both for mode I and mode Il are included in this phenomenon.

Energy chages can be assessed in terms fracture processes and fracture mechanics
concepts. Energy release rate concept was utilized in fracture mechanics in study of
Irwin (1957). G, was introduced as fracture surface energy to create new cracks. This

energy concept is given as follows for plane strain conditions,

Kcz(l B Vz)
6o =——F— /12 (2.41)

In fracturing process G is a measure of energy input. Values for fracture surface
energy can be assigned to the rock bursting medium by measuring Kc or K¢ in tests,
provided that linear elastic fracture mechanics assumptions are valid.

2.3.5 Application of fracture mechanics to the prediction of comminution

behavior

Not only researches for rock breakage in terms of rock excavations was conducted in
literature but also comminution studies were placed. Bearman et al., (1997) studied
the applicability of linear elastic fracture mechanics principles to predict
comminution energy for rock particles. According to the study, mode | fracture
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toughness K¢ value of rocks can be predicted by performing Brazilian indirect tensile
test and point load test. After, K. value of rock sample was determined, they
conducted a series of experiments. A correlation between drop weight parameters
and K¢ value of rock sample was observed. From these drop weight parameters they
were able to predict the comminution energy. Finally, a comparative study was
conducted utilizing bond mill and energy values obtained by drop weight tests. As a
result of study they conducted, serious correlation between comminution energy and

Kc value of rock was observed.

Donovan (2003) performed experimental study for optimum design of jaw crushers
using rock fracture mechanics fundamentals. According to experiments, high
correlated relationship was achieved between comminution energy and fracture
toughness values of rocks particles. He introduced the following expression for jaw

crusher parameters using fracture toughness values;

for1<RR<15

Jj
p. = Z[—o.sn + 0.511RR,]JK,Cix; + P, (2.42)
i

for RR > 1.5

j
P, = Z[O.ZlSRR?"‘ZS]K,CCixi +p, (2.43)
i

Where;

P.: Power consumption in Kw

RR;: Reduction ratio of particle size (subscript i denotes substantial fragmentation)
K;.: Mode | fracture toughness (MPa+/m)

C;: Breakage probability for particle size

x;. Mass flow for particle size (tons per hour)

PB,: 1dling power of the crusher
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2.4 Mode Il fracture toughness testing methods

Laboratory testing of rocks are mostly conducted on core based specimens. The only
reason of using core based specimens in laboratory experiments is that rock samples
are originally extracted from boreholes. There is no other way to take rock samples
from thousands of meters of deep rock formations with the available technology. As
in ordinary laboratory experimental works of rocks, also in fracture toughness tests

core based rock specimens are preferred.

International Society of Rock Mechanics (ISRM) suggests semi-circular bending test
(SCB) for mode | fracture toughness determination and punch-through shear with
confining pressure test (PTS/CP) for mode Il fracture toughness determinations of
rocks (ISRM, 2014).

Nevertheless, various experimental investigations for fracture toughness
determination techniques of rocks for different specimen shapes and geometries have
been conducted. To have an idea about those proposed testing methods for
determination of fracture toughness of rocks the most important ones will be

presented in this chapter.

2.4.1 The punch-through test with confining pressure

Punch-through test with confining pressure is an improved form of study of Watkins,
(1983). Watkins proposed this setup for cementitious soils and specimen prepared as
cubic shaped for mode Il fracture toughness determination. Then, Backers (2005),
Backers et al., (2002a and 2002b) and Backers (2004) adapted to rock specimens to
determine mode Il fracture toughness. Backers (2004), changed the shape of
specimen and configured this setup for core based rock specimens. In addition to
these changes, Backers’ setup enabled to apply confining pressure to the test
specimen they proposed. Generic view of Backers’ PTS/CP test specimen is

illustrated in Figure 2.12.
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Figure 2. 12 Geometry of PTS/CP test specimen (Modified from
ISRM, 2014)

Where;

D: Diameter of the test specimen

a: Notch length of upper end surface
b: Notch length of lower end surface
L: Length of the test specimen

t: Notch thickness

ID: Notch diameter

IP: Intact portion of the test specimen

Diameter and length of the PTS/CP test specimen are equal and notches are
machined in circular shaped both end surfaces of the specimen. Both notches are
concentrically aligned to each other. Instead for circular diamond saws, notches are
generated by special machine which exhibit similarity with a core drill machine. The
depth of circular notch machined upper end surface is 0.1D and lower end surface is

0.6 D. Notches are machined with same the diameter which is 0.5D.

Loading procedure of the test is relatively hard to perform. Specimen is placed on
lower end surface onto support points (Figure 2.13). Coating membrane is suggested
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to isolate the test specimen from confining pressure transmitting medium. Loading
platen is placed to the upper end surface of the test specimen and it should be

checked whether is aligned with support platen.

load stamp

seal .

jacket

e

bottom support

=3

Figure 2. 13 Loading procedure and test setup of PTS/CP test
specimen (Modified from ISRM, 2014)

Loading rate of experiment is suggested as 0.2 mm/min which is constant. Number

of repeats of the test is suggested with a minimum of five specimens.

Mode Il fracture toughness calculations are done by the proposed formula below
(ISRM, 2014).

KIIC == 774’ X 10_2 X Fmax (244)
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Epax = —1.80 x 1073 X P, (2.45)
Where;
K;;.: Mode 1I fracture toughness in MPaVm
Fqx: Fracturing load in kN
P.: Confining pressure in MPa
Backers declares that given formula above is only valid for the specimen L=D= 50

mm, ID= 25 mm, a= 25mm and b= 30 mm.

2.4.2 Shear box test

Shear box test for determination of mode Il fracture toughness of rocks was first
proposed by Rao et al., (2003). They claim that maximum mode | stress intensity
factor Kimax, 1S always higher in terms of magnitude than maximum mode Il stress
intensity factor K;jmax under pure shear, pure tensile and shearing by compression and
tensile loading conditions. On the contrary, brittle materials i.e. rocks, have smaller
mode | fracture toughness K. in comparison with mode Il fracture toughness Kjic.
Therefore they claim, in experimental studies conducted with ordinary mixed mode
tests maximum mode | stress intensity factor reaches Kimax mode | fracture toughness
K. before maximum mode Il stress intensity factor Kjmax reaches mode Il fracture
toughness Kjc. Because of this reason they argue; mode Il fracture toughness tests
conducted on specimens that have mechanical loading configuration except for pure
shearing always measure for K. instead of K. For this reason, Rao proposed the

shear box test for mode 11 fracture determination of rocks.

Both numerical and experimental studies were conducted in the study. Rao et al.,
(2003) utilized a finite element program to compute stress intensity factor named
ALGOR FEA 3D. Experiments were conducted on three main strength groups from
high to low of rock samples which are granite, marble and sandstone respectively.
However, strength results of these three rock types are not in their order given by
Rao. Strength order tabulated as from higher one to lower, marble, sandstone and

granite respectively.
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General form of a test specimen is cubic and the experimental setup of shear box test
is given in Figure 2.14. Specimen can be configured both as single edge notched and
double edge notched. Size effect and boundary influence effects were investigated by

changing notch length and thickness of the test specimen.

Figure 2. 14 Experimental setup of Rao et al.'s
shear box test (Adapted from Rao et al., 2003)

Axial loading creates shear effect on the specimen due to beveled platens which are
oriented to create shearing effect. Inclination of the platens and other dimensional

parameters are given in Figure 2.15.
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Figure 2. 15 Dimensional parameters of shear box test (Adapted from Rao et al.,
2003)

Where;

a: Inclination of beveled platens
P: Load

W Depth of the specimen

L: Length of the specimen

a: Notch length

Rao et al., (2003) give the following equations for pure mode 11 stress intensity factor

calculations;
Ky = & X f(a/W) (for single edge nothed specimen) (2.46)
BVvW
K, = Qe X f(za/W)(for double edge nothed specimen)  (2.47)
BVW
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F
F x m™3/2 = ———— (So, P load is not distributed load)  (2.48)
m X ml/2

2138 - 5.2(%/y,) + 6.674(“/W)2 - 3-331(‘7L/W)3

J1= Cw)

£(24/,,) = 1.780 + 3.095(29/,,,) — 10.559(2%/,,)” +8.167(2%/,,)"  (2.50)

(M) = (2.49)

Q. = P x (sina — tan @ cos a) (2.51)

Where;

K;;: Mode 11 stress intensity factor
Q.: Effective shear load

B: Thickness of the specimen

W: Width of the specimen

f(a/W): Geometric function for single edge notched specimen

f(za/W): Geometric function for double edge notched specimen

P: Applied load (concentrated load)
@: Internal friction angle (in degrees)

a: Inclination of beveled platen (in degrees)

Pure mode Il fracture toughness of tested rock types were given by Rao et al., (2003)
as tabulated in Table 2.2.

Table 2. 2 Mode Il fracture toughness results for shear box test (Rao et al.,2003)

Rock Type Kiice MPavm Kid Kie
Marble 6.1 Not given

Sandstone 5.0 Not given
Granite 4.9 2.6
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2.4.3 Semi-circular bending test

Semi-circular bending test (SCB) is a suggested test method of ISRM (ISRM, 2014)
for mode | fracture toughness determination. This specimen was presented by the
study of Chong and Kuruppu (1984). Geometry of specimen is illustrated in Figure
2.16.Chong, who is inventor of SCB test specimen, summarizes advantages of SCB

test specimen as follow;

% Requires very little machining of notch

« Easy experiment setup

+«+ Enables compressive loading (previous tests are arranged as tensile loading)

«+ Appropriate for brittle materials i.e. rocks, ceramics, concrete etc. which are
weak in tension

% Appropriate for size effect

¢+ Enables easier data acquisition

D
}
D

Figure 2. 16 Geometry of SCB test specimen (Adapted from Chong and
Kuruppu, 1984)
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Chong defines the parameters of SCB test specimen as follow;
a: Notch length

[: Half gage length between knife edges

q: Load line displacement

r: Rotational factor

R: Radius of SCB test specimen

s: Half span

v: Crack mouth opening between knife edges

x: Vertical distance between load point and supports

z: Thickness of knife edges

e

: Half angle of rotation

)

: An angle constant

Kinematics of SCB test specimen and calculation deformed shape factors were also
given by Chong and Kuruppu (1984). Schematic view of deformed shape of SCB test
specimen with its kinematics illustrated in Figure 2.17.

Crack mouth opening between knife edges were given as;

sin(a + 6
v=Av+2l=2[r(R—a)+a+z]¥ (2.52)
cosa

Where;

[
tana_r(R—a)+a+z (2.53)

Here; Av is crack mouth opening displacement. Center of rotation is defined at a

distance r(R — a)from crack tip.

Vertical displacement between load point and support points of deformed shape was

given as;
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x=PQ+QT—-KT=(1-r)(R—a)+[r(R—a)+a+ z]

—[(s —1)sin@ + z cos 0]

Load line displacement was given as;

q=PP'=R—x

Rotation angle was given as;

0 — sin-1 (Av + 2l) cos a
- s {2[r(R—a)+a+z]}_

cosa

2s

cosa + 6

(2.54)

(2.55)

(2.56)

(2.57)

Figure 2. 17 Kinematics and deformed shape of SCB test specimen (Adapted

from Chong and Kuruppu, 1984)
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Whittaker et al., (1992) suggested that crack inclination for pure mode Il stress

intensity factor calculation as 63",

Lim et al., (1993) conducted numerical computations for a wide range of specimen
geometries utilizing ABAQUS finite element software as a computation tool. As a
result of the numerical computations on stress intensity factors for possible specimen
geometries of SCB test specimen analytical expressions were derived for mode |
fracture toughness determination. Their work covered numerical computation of
SCB test specimens for different crack length/radius (a/r) ratios from 0.1 to 0.8,
notch angles from 0" to 75" and span length/radius (25/r) ratios. From the results of
these computations, the following expression was proposed in terms of mode |
normalized stress intensity factor. In Figure 2.18, SCB test specimen with inclined
crack can be seen.
K,

= p_——

Y, (2.58)

Where;
Y;: Dimensionless stress intensity factor for mode |
K;: Stress intensity factor for mode |

a: Notch length
P
Og = Z_T't
P: Applied load (concentrated load)
r: Radius of test specimen

t: Thickness of test specimen

Lim et al., (1994) conducted for this time for various geometric parameters of SCB
test specimen. SCB specimens were prepared for three different radiuses which are
55, 95, 144 mm and a range of specimen thickness which are from 11.9 to 43.9 mm.
Combination of results of these two studies were concluded as SCB is an appropriate

test specimen for mode | fracture toughness experiments (Figure 2.18).
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Figure 2. 18 SCB test specimen with inclined crack (Adapted

from Het, 2014)
More investigations on SCB test specimen were conducted by the researchers.
Ayatollahi et al., (2006) performed mode | and mode Il tests on PMMA and
concluded by a contradiction on analytical and experimental results of mode |1 stress
intensity factors. Ayatollahi and Aliha (2007) compared the results of SCB and
CSTBD experiments for mode I, mode Il and mixed mode I-1l fracture toughness
determination. This study revealed that CSTBD test specimen causes high amount of
stress singularity due to its sharp crack compared to SCB specimen. Aliha and
Ayatollahi (2011) performed mixed mode I-11 fracture toughness tests to introduce
whole range from pure K, to pure K,;. As a result, the ratio of K¢/ K, was found as
0.4. Tutluoglu and Keles (2011) reported limited numerical results for the ranges
04<p<06and0.5<s/2R <0.8.

Table 2.3, mode Il fracture toughness of some rock types determined by SCB test

geometry were listed.
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Table 2. 3 Mode I fracture toughness values of some rock types determined by SCB

test geometry
Mode Il Fracture
Rock Type Toughness MPavim Reference
Ankara Golbas1 Andesite 0.43 Karakas, 2011
Marble 0.46 Karakas, 2011
Gabbro 0.92 Het, 2014

2.4.4 Cracked straight through Brazilian disc

Ayatollahi and Sistaninia (2011) declare that, cracked straight through Brazilian disc
test specimen is a cored based specimen that allows diametrical compressive loading
and a relatively easy test setup. Raw rock samples extracted from core drills are
convenient for preparing CSTBD test geometry and require very little adjustment.
CTSBD test specimen involves centered notch and orientation of the notch enables
capability of different modes of crack initiation and propagation. Changing notch
orientation with respect to diametrical loading points enables a wide range of stress
intensity factors from pure mode | to pure mode Il. These advantages make CTSBD
test geometry ideal specimen for experimental program of mode I, mode Il and
mixed mode I-Il fracture toughness determination of rocks. In Figure 2.19 CSTBD

test specimen geometry can be seen.
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Figure 2. 19 CTSBD test specimen geometry

P: Applied load

a: Half crack length

S7

a: Orientation of notch relative to diametrical loading plane

CTSBD test geometry was pioneered by Libatskii and Kovichick (1967) in
determination of mode | facture toughness of glasses. Awaji and Sato (1978), again
declared that, CSTBD test specimen is appropriate test specimen for mode | and
mode Il also mixed mode I-11 fracture toughness determination by changing notch
orientation. In the study, they utilized marble, graphite and plaster and isotropy of the
materials were checked (Table 2.4). Except for marble, sharp central notches were




machined with thin circular saw of 0.2 mm thickness and 13 mm diameter in the
CTSBD specimens. Notches of marble specimens were machined by another cutter
which was originally utilized for dental uses. Thickness of slit was 0.6 mm for
marble specimen. Dimensionless notch length (a/R) notch length/disk diameter was
kept to be approximately 0.5. As a numerical computation tool, to calculate the
stresses around crack tips and boundaries of loading points, boundary collocation
method and boundary dislocation methods were utilized. Hertzian contact stresses
were considered in order to specify effective external boundary loading on the outer
boundary. Stress intensity factor calculations were considered as sum of three
superposition stages (Figure 2.20) as listed below;

+¢+ Circular region loaded by diametrical forces which are concentrated loads,
(Figure 2.20a)
+« Distributed loading effect subjected to notch surface, (Figure 2.20b)

¢+ Crack regions where assigned boundary stresses on (Figure 2.20c)

Table 2. 4 Results mode I and mode Il fracture toughness tests (Awaji and Sato, 1978)

Tested Material Kic (MPavm) Kiic (MPaVm) Kie! Kie
Marble 0.93 1.05 1.13
Plaster 0.13 1.09 1.16

Graphite 0.94 0.15 1.14
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(a)

(b)

Figure 2. 20 Analytical approach to calculate
stress intensity factors for CSTBD test (Adapted
from Atkinson et al., 1986)

Limited numerical results for stress intensity factors were achieved by following
studies. Atkinson, 1982 conducted a series of mode | and mode 11 fracture toughness
experiments on PMMA. Dimensionless stress intensity factors were reported and as a
conclusion analytical equations were proposed for CTSBD test with some
shortcomings. Reported dimensionless stress intensity factors and analytical

equations were valid only specimens having dimensionless notch length a/R < 0.3.
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Where;
a: Notch length
R: Radius of the disk

Shetty et al., (1986) utilized CTSBD test specimen to determine mixed mode
behaviors of ceramics. According to conducted mixed mode I-1l experiments on
ceramics, CSTBD test specimen geometry was found reliable for full range of stress
intensity factors from pure mode I to pure mode Il. CSTBD test specimen reported as
an appropriate method for fracture toughness determination including mixed mode I-

Il conditions.

However, numerical results for CTSBD test geometry were still lacking. Only
numerical results of stress intensity factors for CSTBD test specimen had been
proposed by the study of Atkinson et al., (1986) up to that time. Fowell and Xu
(1993) reported new polynomial fit functions for both modes I and Il dimensionless
stress intensity factor determination. In the study, it was also reported that notch
angle provides for pure mode Il conditions. Apart from equation proposed by

Atkinson et al., (1993), Fowell and Xu, (1993) was valid for almost full range of
dimensionless crack lengths from ¢/, = 0.05 to ¢/ = 0.95 (a = ¢/p).

Y;(a) = 0.0354 + 2.0394a — 7.0356a? + 12.8154a + 8.4111a* — 30.7417a’
—29.4959a° + 62.9739a” + 66.5439a® — 82.1339a° — 73.6742a1°
+ 73.8466a'? (2.59)

Y, (@) = 0.06462 + 2.8956a — 6.8663a? + 9.8566a® — 0.4455a* — 1.0494a°
—13.2492a° + 9.0783a’ — 10.7354a® + 28.4775a° — 6.3197a'® + 10.6626a'?

—10.0268a'? — 34.2997a'3 + 1.7292a'* + 25.2216a® (2.60)

0;,; = 30.4406 — 4.6734a — 17.6741a* — 9.6827a3 + 3.9819a* + 12.9163a’
—13.3222a° + 12.8001a’ — 13.1239a® (2.61)

60



In addition, an equation for the relation between stress intensity factor and

dimensionless stress intensity factor was also reported.

PCT

K. = ——=Y; 2.62
e =g VR ! (2.62)

Where,

P.,.: Fracturing load

Y;: Mode | dimensionless stress intensity factor
Y;;: Mode Il dimensionless stress intensity factor
K;;c: Mode Il fracture toughness

a/p

a: Notch length

R: Radius of the disc

B: Thickness of the disc

Another study for examination of mixed mode behaviors of a kind of sandstone,
Krishman et al., (1998) found that critical notch inclination for pure mode 1l reported
as 8 = 29°. Temperature effects under confining pressure on CSTBD test specimen
for modes | and Il were investigated by Al-Shaeya et al., (2000). Ayatollahi and
Torabi (2010) conducted numerical computations for CSTBD test specimen in order
to determine effect of blunt notches on mode | and mode Il fracture toughness values
of PMMA and soda-glass. Aliha et al., (2012) compared the results of mode | and
mode 11 fracture toughness values acquired from a series of experiments on CSTBD
and SCB test specimens. SCB test specimen was reported as giving overestimated
results for fracture toughness values of same materials in comparison with CSTBD

test specimen.

In Table 2.5, mode Il fracture toughness of some rock types determined by CSTBD
test geometry were listed.
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Table 2. 5 Mode I fracture toughness values for some rock types determined by
CSTBD test geometry

Mode Il Fracture

Rock Type Toughness MPavim Reference
Ankara Golbas1 Andesite 0.99 Karakas, 2011
Marble 0.86 Karakas, 2011

Gabbro 1.76 Het, 2014

2.4.5 Straight notched disc bending test

Straight notched disc bending test first introduced by Tutluoglu and Keles (2011) to
determine mode I fracture toughness values of brittle materials i.e. rocks, ceramics,
glass etc. Introduced test specimen mainly was a cylindrical plate which is Brazilian
disc shaped, having a single straight edge notch and subjected to three point bending
(Figure 2.21). They conducted a series of experiments for two different rock types
Ankara Golbas1 Andesite and Marble. Shortly they listed advantages of this test

specimen as follows;

¢+ Easy test specimen preparation

«» Easy experimental setup

¢ Appropriate for size effect changes

¢+ Stiff test specimen geometry

¢ Little fracture process zone respect to other disc specimens

In the study, great variety of three dimensional numerical computations were
conducted for stress intensity factor calculations only mode I. Numerical study was
performed by utilizing commercial finite element package ABAQUS software. In
numerical study, diameter of the test specimen was kept constant at 75 mm. Other
changed geometrical parameters were given in dimensionless form regarding radius

of the test specimen. These parameters were given as; dimensionless span length
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(S/R) between 0.5-0.8, dimensionless notch length (a/t) between 0.1-0.9, and
dimensionless specimen thickness (t/R) between 0.5-3.0. Geometric parameter of

SNDB test specimen can be seen in the following figure.

rollers

Figure 2. 21 SNDB test specimen geometry
(Adapted from Tutluoglu and Keles, 2011)

Where;

S: Half span length

R: Radius of the test specimen
D: Diameter of the test specimen
a: Notch length

t: Thickness of the test specimen

P: Apllied load (concentrated load)

As a result of study Tutluoglu and Keles (2011) reported two types of fit functions.
The first one was a linear fit function and the second was a fifth order polynomial.

The first linear fit function was constructed relation between dimensionless mode |

stress intensity factor ¥; and 5/
Y, =m (—) +n (2.63)
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Introduced linear fit function is only valid for specific @/, ratio corresponding
dimensionless specimen thickness ¢/p. For this reason, Y; fit functions for each 4/,

ratio regarding t/ r Were tabulated in their study specificly.

A fifth order polynomial fit function provided a relation between mode | stress

intensity factor ¥; and ¢/, as:

5 4 2

=l val) s e ralea e

This fifth order polynomial fit function was reported to be valid for specific %/,

ratios. C values vary from -414 to 369. ¥; fit functions for each ¢/, ratio regarding

S/R were given in their study:

Normalization equations for SNDB test specimen was given as follows;

K,
Y, = — (2.65)
oyVra
P
=— 2.
0o Dt (2.66)

Where;

Y;: Mode | dimensionless stress intensity factor
K;: Mode I stress intensity factor

o, Effective tensile stress on notch plane

P: Applied load (concentrated load)

D: Diameter of the test specimen

t: Thickness of the test specimen

a: Notch length
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Mode 11 stress intensity factor and fracture toughness determination studies were
conducted by Karakas (2011). Likewise, study of Tutluoglu and Keles (2011), fifth
order polynomial fit functions for SNDB test specimen proposed to determine mode
Il fracture toughness of rocks. Normalization equation for SNDB test specimen to

determine mode Il fracture toughness value was given as follows;

K
Y, = —2 (2.67)
ooVma
P
Og = m (268)

Where;

Y;;: Mode Il dimensionless stress intensity factor
K;;: Mode 11 stress intensity factor

o, Effective tensile stress on notch plane

P: Applied load (concentrated load)

D: Diameter of the test specimen

t: Thickness of the test specimen

a: Notch length

In Table 2.6 mode Il fracture toughness of some rock types determined by SNDB test

geometry were listed.

Table 2. 6 Mode Il fracture toughness of some rocks determined by SNDB test
geometry

Mode Il Fracture

Rock Type Toughness MPavm Reference
Ankara Golbas1 Andesite 0.61 Karakas (2011)
Marble 0.62 Karakas (2011)

Gabbro 1.18 Het (2014)
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CHAPTER 3

FOUR-POINT ASYMMETRIC BENDING TEST SPECIMEN

Major purpose of this study is to estimate the pure shear fracture toughness mode Il
of an edge notched beam shaped rock specimen. For mode Il stress intensity factor
computations of FPAB test, analytical, semi-analytical, and numerical modeling
results from the previous work is summarized. Geometry of FPAB test specimen is

illustrated with some sketches.

3.1 Four-point asymmetric bending test specimen

General geometry of the test specimen is selected as a beam. Beams are well-known
structural elements in engineering analysis. In previous studies of structural analysis
investigations, numerous loading conditions have been tested on beams and
considerable experiences have been gained in Civil Engineering, Mechanical
Engineering and also Mining Engineering disciplines. These experiences enable
accurate computation of structural parameters for beams under different loading
configurations. The other advantage of using beam type specimen is that stresses and
deflections in beams are directly proportional to the applied loads. This condition
requires that the action of the applied loads must not be affected by the change in
shape of the beam due to bending (Timoshenko and Gere, 2013). These advantages
of beams are main reasons on selecting rectangular beam as base test specimen

geometry.
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3.2 Development of FPAB test specimen

Four-point asymmetric bending (FPAB) test specimen was first proposed by Arrea
and Ingraffea (1982). This work was concentrated on determining shear type fracture
energy and mixed mode (mode | and mode Il) fracturing parameters of concrete.
Bazant and Pfeiffer’s (1986) work was on size effect on fracturing behavior of
concrete using FPAB specimen. Barr and Derradj (1990) used double edge notched
FPAB specimen to investigate size effects in shear failure. Martin and Davidson
(1999) conducted mode Il fracture toughness determination studies for laminated
materials referring beam theory. They stated, there was a direct relationship between
delamination and flexure amount for beams under loading. They defined flexure
amount around crack by using beam theory formulations than mode Il fracture

toughness estimations for laminated materials.

Fett, (1998) conducted a series of both mode I and mode Il fracture toughness
determination studies utilizing FPAB test geometry. He and Hutchinson (2000)
proposed new analytical formulas to estimate mode I and mode II SIF’s for FPAB.
With FPAB Yoshihara (2008) conducted mode Il fracture toughness determination
of wood. Aliha, et al., (2009) using marble specimens, a series of mode Il fracture
toughness experiments were performed. The main purpose of the study is
determination of correct short moment arm distance that satisfies pure mode Il brittle
fracture. They prepared beam specimens with different dimensionless short moment
arm distance d/W= 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75 and 1. They stated, to provide

pure shear effect on crack plane d/W ratio should be greater than 0.5.

Ayatollahi et al., (2012), investigated to determine optimum short and long moment
arm distances to create pure mode Il loading conditions on the crack plane for v-
notched FPAB specimen. They proposed long moment arm distance should be three
times greater than short moment arm distance (L/d=3) to satisfy pure shear effect on
the crack plane. They used 120 mm long beam with 24 mm beam depth. They also

claimed that dimensionless crack length (a/W) should be greater than 0.3 for pure

68



mode Il loading. Ayatollahi and Aliha, 2011 defined T-stresses around crack tip.
They claimed, for small short moment arm distances (the ratio of short moment arm
distance and beam depth) d/W < 0.5 considerable T-stresses observed and this

yields significant mode | deformation on the crack plane.

Krishnan and Xu, 2011 investigated shear mode testing conditions for short beams.
In the study, two different beam depth groups were created as W= 19.1 and 30.5 mm.
Short moment arm and long moment arm distances for each beam were set as 20 and
40 mm, respectively. Thicknesses of beams were kept constant at 5.4 mm. Total
lengths of beams were chosen as 152.2 and 122 mm, respectively. All beams were
made of polycarbonate and polymethyl methacrylate (PMMA). As a result of this
study it is stated that, pure mode Il loading conditions can be provided also for short

beams.

3.3 Symsbols and geometric details of FPAB test specimen

(FPAB) test specimen consists of two loading points and two support points which
are configured asymmetrically. Arbitrary configurations of these points do not yield
pure shear conditions on crack plane every time. Creating pure shear effect on crack
plane is satisfied by structural analysis techniques using “Equilibrium of shear
stress” concept. This condition requires that total bending moment along axis
parallel to crack plane must be equal to zero. Loading was applied from bottom flat
surface of the specimen in the numerical and experimental works. Therefore, rollers
located on upper flat surface of the specimen became support points for this kind of

loading configuration (Figure 3.1).
In the literature, abbreviations of specimen dimensions and parameters, such as;

beam depth and beam thickness do not agree each other. In this study, these

dimensions and parameters are adopted from the beam theory and they are;
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W: Beam depth

B: Beam thickness
d: short moment arm
L: Long moment arm
a: Crack length

F: Concentrated load

Units of parameters like beam depth, beam thickness, crack length, short and long
moment arm are in meters and applied load is in Newtons in order to get stress

intensity factor in MPaVm unit.

Support Points

Loading Points

Figure 3. 1 FPAB test specimen dimensions

Pure shear conditions were satisfied by applying L=3d configuration of asymmetric
loads. A Unit load of 1 N were applied to the loading points and it was proportioned
as three quarters of F for short moment arm and one quarter of F for long moment
arm to create zero total bending moment on the crack plane.
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For different beam depths and crack lengths pure shear conditions were satisfied by

changing loading configuration of asymmetric loads.

For both numerical models and test samples, FPAB test specimens were prepared at
three-main beam depth groups which were 40-50 and 60 mm. Each beam depth
group included cracks of different lengths. Crack lengths were normalized as crack
length over beam depth which is a/W. Stress intensity factors for numerical models
and fracture toughness values for pure shear mode were analyzed in terms of

normalized crack lengths.

Loading and support points and other dimensional entities were illustrated in detail

on 2D section of specimen in Figure 3.2

Support e 1 5 <—>|Support
point L d_, point

N
\Z

3/4F q° L 1/4F

Figure 3. 2 Generic 4-point asymmetric loading test specimen

Different views of four-point asymmetric bending specimen geometries for both

solid and wireframe forms are given in Figure 3.3.
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Figure 3. 3 Solid and wireframe forms of FPAB test specimen from different views

Machined notch creates a line and a plane within the specimen. This line is referred
as notch line for 3-dimensional view, (Figure 3.3f). Similarly, the plane along which

notch lies is referred as notch plane (Figure 3.3h).

Here, to avoid confusion, terms “notch” and “crack” should be clarified. In fracture
mechanics, crack refers to inherent impurities of materials or structures; on the other
hand notches refer to artificial cracks which are machined deliberately in a specimen.

These definitions had been become a need because of experimental studies of
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fracture mechanics investigations. In order to observe crack propagation precisely
notches are generated for intact specimens rather than utilizing arbitrarily cracked
specimens. To make distinction over materials that generated human-made cracks
from contain cracks inherently; “notch” and ‘“crack” terms were derived by

investigators.

3.4 Analytical methods for mode 11 fracture toughness K. calculation

Stress intensity factor is given in three main modes and they are: mode I, mode Il and
mode I1l. These modes are governed by the stresses acting from principal planes of a
given state of stress on the crack plane. Fracture toughness is the form of a stress
intensity factor that reaches a critical value under loading of a cracked body. As
stress intensity factor reaches this critical value, crack cannot stand the stresses
around crack tip and it propagates. Stress intensity factor is defined as;

K; = 0,x X Vma x Y;(%/y,) for mode | (opening mode) (3.1)
K1 = Tyy X Nma x Y;;(%/y,) for mode Il (in-plane shear mode) (3.2)
Kiii = Tox X Nma x Yy (%/yy,) for mode 11 (out of plane shear mode) (3.3)

Ki: Mode I stress intensity factor

Kii: Mode Il stress intensity factor

Kii: Mode 111 stress intensity factor

Oyxy. NOrmal stress

T,y IN plane shear stress

T,,. Out of plane shear stress

Y;(%/1y7): Crack length function for mode |
Y,,(a/W): Crack length function for mode 11

Y,,,(a/W): Crack length functions for mode Il1
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Crack length functions can be stated as correction functions for geometric differences
of test specimen’s thicknesses with different crack lengths. Therefore, it is given in
the dimensionless form of (a/W) which is the ration of crack length to depth of the

beam specimen.

Dimensionless form of mode | and mode 11 stress intensity factors which are Y; and
Y;; for FPAB test specimen has been investigated by the researchers and there are

two well-developed solutions for calculation of them.

The first one was proposed by Fett (1998) who defined the dimensionless form of

mode | and mode Il stress intensity factor for FPAB specimen as;

d
K,:wax(l—z)xY,x ma (3.4

d
K,,:wax(l—z)xY,,x ma (3.5

So; dimensionless mode | and mode Il stress intensity factors proposed by Fett was

given by;
Y_K,xBxWxLX 1 356)
" Fx(@L-d) " Vma '
v _KuxBxwxL 1 37)
T= Fx{L-d) ~ Vma '
Here;

K;: Mode I stress intensity factor

K;;: Mode 11 stress intensity factor

Y;: Dimensionless mode | stress intensity factor
Y;;: Dimensionless mode Il stress intensity factor

F: Concentrated load
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B: Beam thickness
W: Beam depth

L: Long moment arm
d: Short moment arm

a: Crack length

The second noticeable solution was proposed by He and Hutchinson (2000) in which
the dimensionless form of mode | and Il stress intensity factors for FPAB specimen

was;

Ky xvw 1
T = 0 X N (3.8)
1
K,xw? (1-9y) "
= 6>ZQ X ( (a/ /I;ZBZ (3.9
w
K, = ?;—(22\/% x Fi(%/y) (3.10)
F (%) = 1122 — 1.121(%/,,) + 3.740(Yy,,)” + 3.873(Yy,)”
~19.05(%/y,)" +22.55(%/,)° for(Y/y,) < 0.7 (3.11)
3/
Q (“/w) *
K, = X % Fu (%) (3.12)
W=y "
foro< (%) <1
o —d)
Q=PX 75 (3.13)

Fi(Yyy) = 7264 — 9.37 x () + 274 % (YY)
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+1.87 % (%) = 1.04 x (/)" (3.14)

So; dimensionless form of mode | and Il stress factors according to He and

Hutchinson is defined by;

In here;

K;: Mode I stress intensity factor

K;;: Mode 11 stress intensity factor

Q: Shear force acting on crack plane

P: Distributed load (on beam thickness)

d: Short moment arm

L: Long moment arm

a: Crack length

c: Distance between notch and symmetry plane of the specimen
W: Beam depth

Fi(%/y7): Crack length correction function

Y;: Dimensionless mode | stress intensity factor

F,,(a/W): Crack length correction function proposed by He and Hutchinson

Y;;: Dimensionless mode Il stress intensity factor

In order to derive these semi-analytical expressions to calculate mode | and mode 11
stress intensity factors, numerical computation studies are performed. From
numerical computations geometric correction functions are derived for different
dimensionless notch lengths (a/W). Apparently, these functions are derived in terms
of geometric changes in initial notch length “a” or beam depth “W”. This approach
enables test conductors to define stress intensity factors independent from
dimensional differences of possible test specimens. Likewise, both study expressed
above utilized similar numerical computation studies. Stress intensity factors were
calculated for different initial notch lengths then highly correlated polynomial fit

functions derived for these two parameters (SIF vs a/W). This relationship defines

76



SIF change over geometric changes and can be used for geometric correction factor.
Remaining part of the given functions are depend on dimensional changes. In order
to give dimensionless form of SIFs dimensional parameters are cancelled with SIF.

Generated new value is given as dimensional stress intensity factor.

Dimensionless stress intensity factors for different geometries are given in two ways.
The first way is to give definitive mathematical expressions like He and Hutchinson
(2000). The second way is to give specific values for each geometric configuration
like Fett (1998).
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CHAPTER 4

VERIFICATION STUDIES AND FINITE ELEMENT MODELING OF
BEAM GEOMETRIES

Many of engineering problems are defined by partial differential equations and exact
saolution of these equations for complex shaped domains is quite difficult and
sometimes impossible. For this reason, numerical computations of stress intensity

factors were carried out by adopting finite element method.

The finite element method is a mathematical tool that enables to solve these complex
partial differential equations approximately with high accuracy. The main theory of
finite element method is to divide the domain into finite elements. These elements
are connected by nodes and approximate values for partial differential equations are
achieved from these nodes. To achieve high convergence for solutions of these
partial differential equations thousands of meshes should be generated. Computers
can solve for node variables assigned to partial differential equations by
programming a task for them. As number of nodes are increased in the model,
accuracy of the solution tends to get higher convergence levels, but meanwhile, the
computation time increases as well. Computing time is not only increased by number
of nodes used, but also affected by the quality of the code (programming task)
imposed to the computer (Davies A. J., 2011). So, to discard the disadvantageous
effects of poor-structured finite element codes, some commercial packages have been
introduced to users i.e. ANSYS, NASTRAN, LS-DYNA, ABAQUS etc. In this
study, numerical computations are conducted utilizing ABAQUS commercial finite

element package v12.
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4.1 Notations, definitions and terms used by ABAQUS in modeling works

As it is known, notation of mechanics may vary from text to texts and notation
should be established before giving explanations. Likewise, finite element codes may
utilize different notations for specific mechanical entities i.e. stress displacement and
boundary condition etc. In order to prevent misunderstanding, notation of these terms
is given. Other definitions and terms used in ABAQUS are given again to avoid lack

of explanation in context.
4.1.1 Notation usage
ABAQUS denotes six degrees of freedom which are displacements with respect

to x,y,zas uy, u,, us,androtations ur,, ur,, ur; about x,y,z axes.

Stresses and strains are given in tensor notation as;

011 012 O13 S11 S12 Si3

[Uij] =021 022 023 =531 S, S,3| (ABAQUS Notation)
031 032 033 S31 S32 S33

(4.1)
€11 €12 €13 €11 €12 €13

[gl.j] = |€21 €22 E23|=|€21 €22 €23|(ABAQUS Notation)
€31 €32 €E33 €31 €32 €33

(4.2)

Following Figure 4.1 illustrates degree of freedoms and reference points (RP)
utilized in ABAQUS Software.
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wCRP-2

Reference Point
(Bounded to the red lines)

Figure 4. 1 lllustration of degree of freedoms and RPs in ABAQUS

Stress intensity factors and crack propagation direction notations of ABAQUS code
are: K;: Mode I stress intensity factor

K;;: Mode 1l stress intensity factor

K;;;: Mode 111 stress intensity factor

CPD: Crack propagation direction

4.1.2 Terms and definitions

ABAQUS software utilizes some special terms that used in finite element modelling
procedure itself. Only the ones utilized in this study are explained and they are;

seeding, partitioning, crack line, cell, face, reference point.

Seeding term is used for setting number of nodes per surface, edge or vertex. It is

used for generating desired mesh density and geometry for whole body.
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Partitioning term is used for dividing operation of bodies. It is used to form
predefined parts to generate special mesh elements within the main body. It is also
used to determine queries for stress and displacement readings. Successful
partitioning leads to generate perfect meshes generation for part especially in the

vicinity of cracks.

Face term is used for partitioned two-dimensional closed surfaces. Faces can be
labelled and can be used for multiple purposes. Cell term is used for partitioned
three-dimensional closed volumes. Again cells can be labelled and used for multiple
purposes i.e. assigning different material properties, mesh types and boundary
conditions. Reference point is used for created arbitrary points non-dimensionally.
Reference point is used to create distributed loads and boundary conditions can be
assigned to it. It is an unbounded element and it is not a part of a main body. It is
excluded by assembly. It transmits every single imposed mechanical effect to desired
point, line or part of the domain. It may be assumed as a source of mechanical effect
for coupled node, surface or cell. All these mentioned terms are illustrated in Figure
4.2.

Reference Point

Figure 4. 2 Terms utilized in ABAQUS

82



4.2 Fracture mechanics computation techniques of ABAQUS

Fracture mechanics is the science of stress concentrators. Stress concentration (stress
accumulation around a point) is resulted by the effect of far field stress acting on
stress concentrators (cracks, notches, sharp edges). Around these points, stresses
become infinite and create singularity. Singular stress is the key idea here and it
should be evaluated precisely. It is known that for linear elastic brittle materials,
stress state around crack tip has square root singularity. ABAQUS software offers

special finite elements in order to compute singular stresses around a crack tip.

Crack modeling is achieved by utilizing two methods in ABAQUS. The first method
is employing “seam crack” and the second method is creating the notch by
modelling. Het (2014) introduced that, there is no considerable difference between
results of seam crack and blunted notches. Achieved difference is around 1%. So, for
ease of modeling seam cracks are appropriate method for fracture mechanics

computations.

After seam crack is defined, crack tip and first contour of crack tip are defined. In
order to evaluate J-integrals for each finite element, predefined contour region should
be created. Finally, “g-vector” determination is performed. “g-vector” is a unit

vector for virtual crack extension direction.

4.2.1 Seam crack

In the simplest form seam is a virtual edge or a face with zero thickness that has
ability of separation. Geometry of a seam changes upon the finite element model
created in two dimensional (line shaped) or three dimensional space (face shaped).
Seam divides the body as two corresponding surfaces where the seam is located and
it is closed before loading. However, it has capability of separate with no resistance

during loading. ABAQUS sets lap-jointed duplicate nodes throughout the seam. The
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seam has to be embedded within a solid part of a three-dimensional domain as a
plane. After the seam is defined, following crack modeling procedures can be

performed. In Figure 4.3 and Figure 4.4 seam crack is illustrated in both two and

three dimensional spaces.

sketched D seam

2 partition - crack

Figure 4. 3 Seam crack in two dimensional body (ABAQUS User
Documentation, 2012)

seam

et sketched
: crack

partition

Figure 4. 4 Seam crack in three dimensional body (ABAQUS Documentation, 2012)

Defining the seam is the first part of the crack modelling procedure. This step is
followed by defining the crack itself. In this study crack definition and its calculation

is conducted by using J-contour integral technique.

84




4.2.2 Crack front

The area surrounding the crack tip till the first contour integral circle is defined as a
crack front. Crack front is utilized to evaluate singular stresses of the first contour
integral. Evaluation is performed by calculating J-integral for each contour.
Accuracy level of contour integral calculations depends on size of contours created.

In the Figure 4.5 contour integral regions are illustrated.
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Figure 4. 5 Contour integral regions for two dimensional body
(ABAQUS Documentation, 2012)

85



In three-dimensional finite element modelling, contour integral calculation extends
through the crack line. This means, in addition to calculations made expanding from
the first contour integral to the outer contours; calculations are repeated for each
node located on the crack line in a row. In the Figure 4.6 crack front and contour
integral regions in three-dimensional body is illustrated (ABAQUS, 2006).

crack front

crack line (cell)

»5.33 AL

I A
P e o

Il

Figure 4. 6 Contour integral calculation in three-dimensional modelling (ABAQUS
Documentation, 2012)

4.2.3 Crack tip stress singularity calculation

Materials include crack inherently and cracks create singularity in terms of strain
field at the crack tip. In order to improve the precision of contour integrals small-
strain analysis should be conducted. In order to satisfy the small-strain analysis

conditions, special meshing styles should be utilized.

Creating crack tip singularity improves the precision of the calculation of the J-
integral. Thus, at the vicinity of the crack tip, stresses and strains are calculated more
accurately. If it is assumed that “r” is the distance from crack tip ABAQUS offers

singularity form for a small-strain analysis in linear elastic medium as € oc r=%/2,

Numerically, crack tip singularity is provided by collapsed elements. Collapsed
elements are the crucial part of the crack tip meshing procedure. A quadrilateral
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element is degraded to a triangular element by combining the edge nodes of
quadrilateral element to a single node. Therefore, a triangular element is generated.

In Figure 4.7 degraded mesh element is illustrated.

" T T
[}
a 1
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p ] 1 g c
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SOV
isoparametric space physical space

Figure 4. 7 Collapsed duplicated nodes in 2-
dimensional elements (ABAQUS Documentation,
2012)
Similarly, in three-dimensional space a hexahedral element degrades into a wedge

element. Three-dimensional collapsed element is illustrated in Figure 4.8.

C3D20(RH) _ - -, midplane

s | edge plane

2 nodescollapsed — :
to the same location  &rack line’/ P o

/

3 nodes collapsed ’

.___-‘l : :
to the same location midside nodes

moved to 1/4 pts.

Figure 4. 8 Collapsed duplicated nodes in 3-dimensional
elements(ABAQUS Documentation, 2012)

4.3 Verification studies

In order to illustrate user skills in FEM modelling and capabilities of numerical
approximation of fracture mechanics code ABAQUS software, two verification

problems are modeled and analyzed. First one of the verification problems is the
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three-point bending plate problem. The second one is the pure shear plate problem.
Both verification problems have analytical solutions for mode | and mode Il stress
intensity factors. SIF results calculated with analytical expressions and numerical

results computed by ABAQUS software are compared below.
4.3.1 Three-point bending plate verification problem

Numerical verification of the three-point bending plate problem performed
comparing with its analytical solution given by Srawley (1976), and Tada et al.,
(2000). Verification study was divided into two parts. First, analytical solutions of
the problem are given, then numerical computations efforts are compared with

available solutions in the literature.
Analytical Solution

Srawley (1976), proposed a polynomial expression in order to improve the
calculation of the stress intensity factor to define plane strain fracture toughness of
materials. Previously proposed mathematical expressions for stress intensity factor
calculation of plates subjected to bending type of loads have errors for which having
dimensionless crack length a/W less than 0.45 or greater than 0.55. While declared
range of ratios sufficient for the purpose of crack growth they are not suitable for
cases that have the ratio of a/W range from 0 to 1. In order to achieve this restriction,

Srawley proposed the expression below.

KBYW 3(%)%1[1.99 —a(1—a)(2.15—3.93a + 2.7a?)]
P 2(1+2a)(1 — a)3/2
For 0 < a = a/W < 1 and where;

(4.3)

K Stress intensity factor
B= Thickness

W= Width

a= Crack length
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S= Span

Apart from this, Tada et al., (2000), by giving a reference to Srawley (1976),

explains the same problem as follows,

6M
CTwz (4.4)
6M

7T w2 (4.5)

M= 46

4 (4.6)

a a a a
; (i) 1 199- 7 (1 =7 (215 = 3.93 75 + 2.7 ()2 -
w vm 1+ 2%)(1 — %)3/2

Using Srawley’s and Tada’s formulations for mode I stress intensity factor K|
calculation for three-point bending plate was evaluated as 1159.43 Pay/m and 1160
Pay/m respectively.

Numerical Solution
Numerical model of three-point bending plate problem was constructed by given

dimensions in the Table 4.1. Dimensions and geometry illustration is given in Figure
4.9.
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Table 4. 1 Dimensions of three-point bending plate

Dimension Value (mm)
Plate Length (x-direction) 75
Plate Depth (y-direction) 15
Plate Thickness (z-direction) 75

Line distributed load “P”

Notch length |
Span (S) = 60 mm.

Figure 4. 9 Geometry of the three-point bending plate

Properties used in modeling andesite plate were adopted from Het (2014) as elastic
modulus of E=12.35 GPa and Poisson’s Ratio of v=0.15. After material properties

were assigned to the body, boundary conditions were to be defined properly.

Since it is a bending problem, there is a loading application point at the top reference
point and there are two supporting points at the bottom boundary. In order to provide
bending conditions, those three points have to be configured properly. Applied
boundary conditions for support points are imposed as fixed displacement as u,=0,
and u3=0, and fixed rotations as un=0, and u,=0. They are free to move in x
direction and to rotate out of plane. In Figure 4.10 loading point and in Figure 4.11

boundary conditions of the domain can be seen.
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Loading
Point

Figure 4. 10 Loading point of three-point bending plate problem

Support
points

Reference
points

Figure 4. 11 Boundary conditions of three-point bending plate problem

After boundary conditions are defined next step is dividing the domain into finite

elements. Meshing process is the crucial part of the numerical modeling. User
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experience on meshing process affects the quality of meshes and finally numerical
computations results. Crack tip meshing procedure requires extra care. Because of
stress singularity, ABAQUS strongly suggests utilizing sweep mesh around crack tip
which radially expands through the first contour. Number of lines radiated from
crack tip is another accuracy issue. Suggested number of lines radiated from crack tip
by ABAQUS is between 8 and 36. In order to have an idea about this, Het (2014)
conducted mesh convergence study and shoved that full accuracy was satisfied by
dividing the crack tip into 32 lines. In the Figure 4.12, utilized meshing style can be
seen easily.

4

Figure 4. 12 Crack tip meshing

For this pure opening mode problem for which K|, is theoretically zero, numerically
computed K;; has to be close to zero. In order to obtain high accuracy results in terms
of K, and K;;, fine meshing procedure was performed. Around 80000 finite elements
were generated in total and nearly 50000 of them were structured in the vicinity of
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contour integrals. Remaining finite elements were located on other parts of the

domain. In Figure 4.13, whole body meshing can be seen in different views.

Crack tip region

Figure 4. 13 Meshed domain

Finite elements were generated by C3D8R type structured elements. ABAQUS
defines these elements as 3D stress brick elements which have 8 vertex nodes.

As a result of numerical computation, good agreement with analytical solution of the
three-point bending problem was achieved. Mode | K; and mode Il K, stress intensity
factors were computed as 1154.8 Paym and 7.3 x 10~ Pay/m, respectively. Mode

Il stress intensity factor K, was approximately zero as expected. Therefore, pure
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bending conditions were satisfied. Both results of analytical solutions and numerical

solution of the pure bending plate problem were listed in Table 4.2 below.

Table 4. 2 Comparative results for three-point bending plate

Problem K, (Pavm) Ky (Pavm) Difference (%)
Srawley (1972)
(2D Plane Strain) 1159.43 0 -

Tada et al., (2000)
(2D Plane Strain) 1160.00 0 -

Numerical Result

-8
(3D Modeling) 1154.80 7.30 X 10 0.4

3D numerical modeling K;; value is a little bit lower than 2D plane strain analytical
values since in 3D modeling beam can expand in the out of plane direction freely as
opposed to the solutions based on plane strain assumption. These results and
agreements with solutions of Srawley (1976) and Tada (2000) show that numerical
modeling of the problem is robust.

4.3.2 Pure-shear plate verification problem

Pure-shear plate can be defined as: a plate having a central embedded crack which is
subjected to a shear traction on the upper surface. In Figure 4.14 applied surface

shear stress and boundary conditions are illustrated.

94



Resultant x-direction
displacement as a response of
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Fixed Boundary

Figure 4. 14 Loading and boundary condition configuration of the pure shear
plate problem

Analytical Solution

On a 400 mm square plate having a 20 mm crack mode Il loading conditions are
imposed by applying 1 MPa surface shear traction at the upper boundary. Mode | and
mode Il stress intensity factors, K, and K;; are calculated analytically by following

formulas:

K, = ovna (4.9)
K” = T\/ﬁ (410)

For an only unit 1 MPa shear stress applied to upper boundary of the plate, stress
intensity factor for mode I;
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K, = ovma = 0 x Vv x 0.01 = 0 MPavm (4.11)
Since applied normal stress =0, and SIF for mode II;

K;; = tWma =1 x vV x 0.01 = 0.177 MPam (4.12)

Numerical Solution

The pure shear plate problem was modeled as a plane strain problem in two-
dimensional space and assumed as linear elastic. Mechanical properties of the plate
are used as Elastic Modulus of E = 200 MPa, and Poisson’s Ratio of v = 0.3. Out of
plane thickness is 1600 mm long. This a plane strain problem; this dimension is there
and significant only for computation of stress at the loaded boundary. In Following

Table 4.3 geometric dimensions and material properties are listed.

Table 4. 3 Geometric dimensions and material properties of the

problem

Parameter Value
Elastic Modulus (E) 200 MPa
Poisson’s Ratio (v) 0.3
Height (2H) 400 mm
Width (2W) 400 mm
Plane Strain Thickness 1600 mm
Crack Length (2a) 20 mm
Surface Traction Amount 1 MPa

Material properties of the previous beam problem and verification problem here are
different and one may question these differences. At this point, in order to compare
given solutions of these two well-known fracture mechanics problems no changes

were made in properties used by previous researchers like Het (2014). In fact,
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another study conducted by Het (2014) to investigate the effect of elastic properties
on SIF’s showed that no effect of varying E and v was observed. So, for better
visualization of deformed shape of plate in checking the results, a rather low value of

stiffnes as E=200 MPa was chosen to be inpu to the model.

In order to create 1 MPa shear stress on the upper surface of the plate, required load

application was calculated from equation 4.13.

Edge of square plate = 400 mm.
Plane Strain Thickness= 1600 mm.

400 mm X 1600 mm. = 640,000 mm?.

_ Force (4 13)
7= Area '
So,
1MPa = — 2% 4.14
¢ = 640,000 mm? (4.14)

Force = 640,000 N.

In the Figure 4.15 loading and boundary conditions of the model can be seen.

97



Applied load |
640,000 N. in
X-direction

Vertical displacement fixed

Paxl1) JuswWiage|dsip [eansA

_D_
(¢B]
x.
o
]
c#
(¢B]
=
(¢B]
(&)
(_G.
(®F
e
©
©
(&)
o]
o
D
>

Fixed lower:boundary in both x and y directions

£

Figure 4. 15 Applied load and boundary conditions of the problem

In the three-point bending plate problem crack an edge crack, so there was only one
crack tip inside the plate. In this problem because of the embedded crack, there are
two crack tips naturally. Meshing was imposed by taking these effects into
consideration. In the model, around 8000 eight-node plane strain CPE8R elements
were utilized. Mesh concentration was structured in detail at the crack region again.

In Figure 4.16 meshed form of whole body and crack region can be seen.

A seam crack with zero thickness was embedded to the center of the plate. ABAQUS
constructs duplicate nodes on the seam and those duplicate nodes enable the crack to

have ability of separation.
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Figure 4. 16 Whole body meshing of pure shear plate

Fracture toughness is a material property. Stress intensity factor is in the form of
K = av/ma for plates under pure shear. So, in general crack propagation occurs when
o is equal to critical value o, or when crack is equal to critical length. This means,

might be lower critical value but crack length might be long and ensures propagation.
In the formulation of crack tip stress field only o and crack length are involved with

constant stiffness. Thus, Young’s modulus and Poisson’s ratio do not effect stress

intensity computations. In Figure 4.17 crack tip meshing style can be seen.
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Crack Tips

Figure 4. 17 Crack tip meshing of pure shear plate

Results extracted from the numerical computation of the pure-shear plate problem
were very close to the results of analytical solutions. Numerical computation result
for mode | stress intensity factor K; was obtained as “0”. Mode Il stress intensity
factor K;; was 0.175 MPaVm compared to the analytical result of 0.177 MPaVm. The

error between numerical computation and analytical calculation was around 0.2%.

Based on the results of verification work, it can be safely stated that modeling
procedures, crack tip handling, and SIF computations are expected to vyield
sufficiently accurate results in SIF computations for modeling of FPAB specimen
geometries in the following sections.

In order to get accurate results for SIF computations optimum number of contour
integrals were decided as 19 contours. Optimum spacing between two succeeding
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contours was 0.25 mm. Diameter of the outmost contour integral was set as 5 mm

around the crack tip.

4.4  Finite element modeling of beam geometries

This chapter covers all the efforts creating numerical models of FPAB (four-point
asymmetric bending), FPB (four point bending), and SNDB (straight notched disc

bending) test specimen geometries.

Principal investigations concentrated on FPAB specimen geometry to investigate
characteristics of pure mode Il loading conditions and stress intensity factors. First,
base numerical model was created for FPAB specimen, then stress redistribution and
stress intensity factor parameters were investigated for different beam depths and
crack lengths. FPAB test specimen models were constructed for three main beam
depth groups. Then, behavior of models of each beam depth group was analyzed with
eight different notch lengths. Entire specimen geometry and boundary load
configurations were varied and adjusted to catch the right combinations generating
pure mode Il loading conditions at the crack tip.

FPB test specimen was modeled to have an idea about size of the crack tip plasticity
zone under mode | loading for a beam type geometry under four point bending load
similar to FBAB geometry. Purpose was to compare extent of fracture process zone
(FPZ) for FPAB and FPB geometries under the same load intensity and similar

boundary conditions.

Numerical model for SNDB test specimen was created to obtain the pure mode Il
SIF for a different geometry. A number of pure mode Il tests were planned to be
conducted with SNDB geometry. K result of SNDB tests was planned to be
compared to mode Il fracture toughness values of FPAB tests.
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Numerical studies were conducted by utilizing Dassault Systemes’ finite element
code named ABAQUS® v.12 which mentioned in Chapter 6. Overall 120 numerical
models were created to compute mode |1 stress intensity factor with FPAB specimen.

In Figure 4.18 general geometry of FPAB specimen for mode Il type of loading is

illustrated.
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Figure 4. 18 Geometry of FPAB test specimen

4.4.1 Improvement studies of base numerical model of FPAB test specimen

In order to create reliable and robust numerical model of FPAB test specimen several
trial numerical models were created. These numerical models were generated for one

model geometry at first.

Beam length or in other words span of specimen was constrained by platen size of
compression test machine in the laboratory. So, beam length was configured as 120
mm in first place. Then, in order to create well-shaped geometry, beam depth of the
specimen was set as 50 mm and beam thickness as well. Initial notch length was

preferred as 15 mm (a/W=0.3) in order to avoid possible boundary influence effects
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(Bazant and Pfeiffer 1986). After base specimen geometry was structured, location
selection and configuration studies for load and support points were performed to
create pure shear effect on the crack plane. To do this, first 2D (plane strain)
numerical models were created. Plane stress thickness of the numerical model was
implied as 50 mm. Then, bottom loading points were subjected to a unit load of 1 N
in total and support locations were varied to create pure shear effect on the crack

plane.

In the literature there are such investigations (Bazant and Pfeiffer, 1986; Suresh
et.al., 1990; Ayatollahi et. al., 2012) that were aimed at creating pure shear effect on
the crack plane for FPAB test specimen. Therefore, to create zero bending moment
on the crack plane unit load partially was divided and applied to the loading points.
For each loading point a part of the unit load was applied proportional to their
distances to the crack plane.

2D plane strain numerical models showed that, the best configuration is obtained for
L=3d. For the specimen having L=120 mm, W=50 mm B=50 mm and a=15 mm, pure

shear mode 11 stress intensity factor was satisfied when d=12.5 mm and L= 37.5 mm.

Table 4. 4 Modeling parameters of base FPAB model

Parameters Values
Length 120 mm
Depth (W) 50 mm
Thickness (B) 50 mm
Short moment arm distance (d) 12.5 mm
Long moment arm distance (L) 37.5mm
Notch length (a) 15 mm
Young’s Modulus 12.3 GPa
Poisson’s Ratio 0.12
Load (short moment arm) 0.75
Load (long moment arm) 0.15

103



In Figure 4.19 loading and support points that satisfy the pure shear conditions on the
crack plane are shown. Material properties (E and v) for Ankara Golbasit Andesite are
extracted from laboratory tests. In Table 4.4 modeling parameters of base FPAB

model are listed.
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Point
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Figure 4. 19 One of loading and supporting points configuration for FPAB specimen

After locations of loading and support points were determined from 2D models, 3D
numerical models were created for more realistic simulation of the beam as a plate
with finite thickness as used in test samples. 3D numerical models are more sensitive
to boundary conditions than 2D numerical models. Therefore, defining boundary
conditions are crucial for 3D dimensional numerical analysis. In the following
section, development of boundary conditions of FPAB test specimen will be

explained.

4.4.2 Boundary conditions of numerical models

Essential boundary conditions are one of the most critical parameters in numerical
modeling studies. Finite element method uses to make approximations to compute
the stresses, bending moments and the other mechanical entities on given body and
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uses differential equations. These differential equations are in form of boundary
value problems. Shortly it can be said that, essential boundary conditions in Finite
Element Analysis are the initial values of the differentiated entities. Then, essential
boundary conditions are implied to the numerical model. So, all the approximations
are made by using these essential boundary conditions. Therefore, to have an idea of
correct essential boundary conditions, several trial computations have to be
conducted and their results must be mechanically examined to achieve accurate

solutions.

After all these trials the most reliable numerical model that accurately approximated
real-life behavior of the test specimen were selected as the modeling technique of

this beam or plate problem.

For upper support points along entire thickness of the beam were (u, and us) fixed
against displacement in —y and -z directions. For right and left flat sides of the beam
all planar surfaces were fixed against rotation about —z axis. For loading points along
entire thickness of the beam except for —y direction (u,) all degree of freedoms fixed
(u1, us, ury, ury, urs). Boundary conditions identified as ideal for FPAB specimen
geometry are shown in Figure 4.20 and Figure 4.21. In Table 4.5 boundary

conditions for FPAB specimen geometry are listed.

Table 4. 5 Boundary conditions for FPAB test geometry

Boundary

Condition Implied Geometric Entity Fixed DOF
B.C.1 Reference point 1 (loading line) Uz, Ug, Ur1, Uy, Urs
B.C.2 Reference point 2 (loading line) Uz, U3, Uy, U, U3
B.C.3 Support points of short moment arm Uz, U3
B.C.4 Support points of long moment arm Uy, Uz
B.C.5 Right flat side U3
B.C.6 Left flat side Urs
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Fixed in -y and

Fixed in rotation
about —z
direction

Figure 4. 20 Boundary conditions 1

Reference Points are special entities that offered by ABAQUS® software. Unit load
was applied through Reference Points to the related loading points. They were
utilized for converting the concentrated load into distributed load. Reference Points
were bounded by kinematic coupling method to related points. Kinematic coupling
creates links between Reference Points and influenced node regions which are
selected by user. In Figure 4.21 these kinematic coupling links are illustrated
Kinematic coupling method enables the control of selection which degree of freedom
of the selected nodal surface will be affected by implied conditions. In our case these
implied conditions are two concentrated loads which are distributed to the two lines
that lie on the bottom flat surface of beam. Implied boundary conditions of Reference
Points are shown in Figure 4.22.
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Kinematic Coupling Links

Figure 4. 21 Kinematic coupling of reference points

Fixed in —x,-z directions and rotations
about —x,-y,-x directions

Figure 4. 22 Boundary conditions of reference points
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4.4.3 Mesh generation of FPAB specimen

Meshing process of numerical modeling work is the most important part of finite

element analysis. Wang et al., (1977) employed singularity elements, in order to

compute singular stresses around crack tip. Crack tip possesses o-oc\/iF type

singularity. Likewise, in this study, to compute crack tip stress singularity the same

singularity element offered by ABAQUS element library was employed.

Another important point on meshing process in crack problems is size of the contour
integral region. Improper contour integral regions which are excessively large or
small may lead acquiring inaccurate results for SIFs. ABAQUS suggests certain
techniques for size of contour integral region. These techniques are related to the
length of the crack. Following these suggestions, size of the outmost contour integral
region was set as 5 mm (Figure 4.23). The innermost contour integral region (first
contour integral region) was set as 0.5 mm. So, 19 contour integrals were achieved
and this number was stated as appropriate number of contours in the integral region
(ABAQUS User’s Manual, 2012). All numerical models were created with the same
contour integral region properties in terms of size and number. This consistency and
stability enabled justifiable comparisons of size of potential plastic zones and von-

mises stresses around crack tip for different models.

Figure 4. 23 Contour integral region and meshing
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Remaining parts of the FPAB test specimen were built by utilizing structured C3D8R
brick elements. Element density of the numerical model was set as approximately
80000. In Figure 4.24 and 4.25 crack tip meshing and whole body meshing of FPAB

test specimen are illustrated.

Figure 4. 24 Whole body meshing

Figure 4. 25 Crack tip meshing
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4.4.4 Loading configuration investigation for pure mode Il SIF state in FPAB

models

The pure shear mode 11 configuration of each beam depth group was investigated for
different crack lengths (notch length/ beam depth) a/W=0.15, 0.20, 0.25, 0.30, 0.35,
0.40, 0.50 and 0.60. In order to find the proper loading configuration, five different
loading configurations were employed for each crack length. In Table 4.6 applied
loading configurations for the specimen having beam depth 50 mm, 0.3

dimensionless notch length (in dimensional form 15 mm) were listed.

Table 4. 6 Various loading configurations applied to a specific specimen W= 50 mm
and a/W= 0.3 for pure mode Il SIF K|,

Beam Beam  Beam Notch  Dimensionle Msohr?ure?}t Mlz)%?gnt

Length Depth Thickne Length ss Notch

(mm) (mm) ss(mm) (mm) Length Arm (d) Arm (L)
(mm) (mm)
11.5 34.5
12.0 36.0

120 50 50 15 0.3 12.5 37.5
13.0 39.0
135 40.5

For described specimen geometry, loading configuration with d= 12.5 mm and L=
37.5 mm yielded almost pure mode Il SIF condition on the crack plane. In table 4.7,

K and K, results for the concerned specimen were listed.
Using these results, actual loading configuration that makes mode | SIF absolutely

“zero” (pure shear) was calculated. Linear fit in Figure 4.26 gives optimum value of

“d” distance that makes mode I SIF absolute “zero”.
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Table 4. 7 Loading configurations and computed mode I and II SIF’s for the
specimen W=50 mm and a/W= 0.3

d (mm) L (m) KiPavm K, Pavm  K/K; (%)
115 34.5 -2.26 -49.07 4.62
12.0 36.0 -1.31 -48.47 2.64
125 375 -0.38 -47.68 0.78
13.0 39.0 0.48 -42.02 -1.19
135 40.5 1.32 -43.93 -3.02

In this case “d” distance that satisfies pure shear conditions on the notch plane is
evaluated as 12.72 mm. In modeling work the reason for choosing d=12.5 mm
instead of exact value of short moment arm is due the accuracy of machining the
initial notch to the beam specimen in experimental work of fracture toughness
investigations. Locating the loading rollers in real life to such a number like d=12.72
mm is not possible. Half millimeters of sensitivity is the limit point of experimental

study.
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Figure 4. 26 Fit function for loading configuration satisfies absolute
Pure mode Il SIF effect
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This computation process was applied to the all crack lengths a/W=0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.50 and 0.60 for the specimen W=50 mm. In table 4.8,
dimensionless short moment arm “d/W” values corresponding dimensionless crack
lengths a/W were listed. Remaining charts for dimensionless short moment arm and
K/K, ratios were given in APPENDIX A.

Table 4. 8 Dimensionless short moment arm values corresponding to dimensionless
crack lengths

Dimensionless crack length Dimensionless short moment arm
(a/w) (d/w)
0.15 0.21
0.20 0.23
0.25 0.25
0.30 0.25
0.35 0.24
0.40 0.23
0.50 0.18
0.60 0.14

As a result, fourth order polynomial fit function (Figure 4.27) was derived for d/W
and a/W values. This result apparently shows the relationship between moment arms
and crack lengths. This also indicates that required bending moment on the initial
notch for crack propagation regarding pure mode Il conditions is independent from
beam depth.

112



0.30
£
S
S 02 ¢
[
(]
g 0.20
. [ |
EZ
¥ T
o w
_& LCJ 0.15 &=
v 3
FIRG] y = 4.233x% - 3.0454x3 - 1.554x2 + 1.2397x + 0.0699
S T 0.10 ¥ R? = 0.9999
‘@
c
°E’ 0.05
s
0.00 ' ' ' ' ' ' 4
000 010 020 030 040 050 0.60 0.70
Dimensionless crack length a/W

Figure 4. 27 Beam depth 50 mm fourth order polynomial fit function for d/W vs a/W

FPAB specimens for W=40 and 60 mm, similar results for dimensionless short
moment arm distance versus dimensionless crack lengths a/W=0.15, 0.20, 0.25, 0.30,
0.35, 0.40, 0.50 and 0.60 were established. Graphical results for these relationships
are illustrated in following Figures 4.28 and 4.29.
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Figure 4. 28 Beam depth 40 mm fourth order polynomial fit function for d/W vs a/W

Dimensionless short moment arm distance (d/W) first shows an increasing trend up
to relative crack length (a/W) around 0.3, then decreases following a fourth order

polynomial form.

The critical d/W values ensuring pure shear condition is measured in terms of

K’/Knratio, (ratio should be zero, for pure shear condition).

Values other than the optimum d/W cause development of opening mode and non-
zero mode | stress intensity factor on the crack plane. In this case pure shear

condition fails.

114



0.30 =
e
[
()
£ 0.25 =
o
€S
£ 5 020
o 9
= o
w S
w 8 015 &
s B
i y = 2.9587x% - 1.5775x3 - 2.0718x2 + 1.2966x +
S g 010 +
G = 0.0701
[ 2 _
g 0.05 4 R? = 0.9999
=

0.00 ¥ ¥ ¥ ¥ ¥ ¥ 4

0.00 0.10 0.20 030 0.40 050 0.60 0.70
Dimensionless crack length a/W

Figure 4. 29 Beam depth 40 mm fourth order polynomial fit

function for d/W vs a/W
Relationship between d/W and a/W was represented quite accurately in the same
fourth order polynomial for all beam depth groups. Combining all beam depths in a
single plot and functional form, dimensionless short moment arm distances (d/W)
were averaged in terms of corresponding dimensionless notch lengths (a/W) and
plotted in Figure 4.30.
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Figure 4. 30 Average d/W vs a/W relationship; all beam depths
Were combined
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For d/W vs a/W relationship, a fourth order polynomial fit function produced quite
accurate (R?=1) results in estimating correct short moment arm distance to create
pure shear state on the notch plane. New parametric equation is proposed for

optimum d/W value for pure mode Il conditions as;

df ., =3.8216(%/,)" - 2.5389(%/,)" - 1.7519(Y/)"
+1.2662(%/};,) + 0.0692 (4.15)

These findings are not sufficient to declare for FPAB testing geometry that there is
no size effect and boundary influence effect on mode Il SIF. These are strong
indications of FPAB testing geometry is free from size and boundary effects.
Therefore, SIF investigations and stress analyses should be conducted. In this study

stress analyses were conducted in terms of von-mises yield criterion.

4.4.5 Pure mode Il SIF investigation for different beam depths and crack

lengths

Numerical models of pure mode Il stress intensity factors for each beam depth group
and dimensionless crack lengths were created. For three beam depth groups W= 40,
50 and 60 mm and dimensionless crack lengths a/W=0.15, 0.20, 0.25, 0.30, 0.35,
0.40, 0.50 and 0.60 geometries were modeled. In all, 24 loading configurations were
obtained that satisfy pure mode Il conditions. Pure mode Il results for these
geometries are listed in Table 4.9. All Mode | stress intensity factors of computed

specimen geometries were approximately “0”.
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Table 4. 9 Pure mode Il results for all beam depth groups

gsgm Dimensionless gri(r?retnl\s/:gnmlgzst Short Moment Pure Mode
Group Craczlg/\lﬁ)ngth arm Distance Arm(rlﬁlr;t)ance (IPI;/:E)
(mm) (d/W)
0.15 0.2125 8.5 26.98
0.20 0.2375 9.5 35.18
0.25 0.2500 10.0 44.06
0.30 0.2500 10.0 53.30
40 0.35 0.2500 10.0 60.81
0.40 0.2250 9.0 68.05
0.50 0.1875 7.5 76.99
0.60 0.1375 55 81.04
0.15 0.2100 10.5 24.46
0.20 0.2400 12.0 31.26
0.25 0.2500 12.5 39.63
0.30 0.2500 12.5 47.68
>0 0.35 0.2500 12.5 54.59
0.40 0.2300 11.5 60.92
0.50 0.1800 9.0 68.38
0.60 0.1400 7.0 73.18
0.15 0.2167 13.0 21.56
0.20 0.2417 14.5 28.60
0.25 0.2500 15.0 36.36
0.30 0.2500 15.0 43.75
°0 0.35 0.2500 15.0 49.80
0.40 0.2333 14.0 55.77
0.50 0.1833 11.0 62.90
0.60 0.1417 8.5 67.32
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In order to see the relation between pure mode Il SIF and different notch lengths,
graphical illustration of dimensionless notch length a/W versus pure mode Il SIF
plots were created. Finally, graphical study showed that there was a regular
functional relationship between pure mode Il SIF and dimensionless crack length
a/W. In Figure 4.31 relationships between pure mode Il SIF and dimensionless crack

length for all three beam depth groups are illustrated.
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Figure 4. 31 Pure mode Il SIF vs a/W results for all three beam depth groups

Deformed and undeformed shapes of FPAB test specimen geometry are illustrated in
Figure 4.32. As it is can be seen in the Figure 4.33, crack tip is under effects of shear

stresses obviously.
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Figure 4. 32 Undeformed shape of FPAB test geometry

Figure 4. 33 Deformed shape of FPAB test geometry

Dimensionless stress intensity factors both mode | and mode 11 were achieved by
using following equations (4.16 and 4.17); the same equations were also given by
Fett (1998);

F

= (1= v (4.16)

K;
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F d

_K,BW( L ) (4.18)

Y, = -
" Ema\L—d

V. = K,,BW( L ) (4.19)
" pyma \L—d '

Other researchers He and Hutchinson (2000) were proposed new equations for
calculation of dimensionless stress intensity factor both mode I and I1. Proposed new

equations were as follow;

6cQ
K, = W\/_T[aY,(a/W) (4.20)
2
oW ma 0.923 +0.199 (1 — sin )
Y, = — tan W @ (4.21)
COS W
for0<—-<1
w

_Q (a/w)3/2 a
n= \/W(l ~ a/w)l/z Yu( /W) (4.22)
0=P(=, . 4) (423)

Utilizing these two expressions mode Il dimensionless stress intensity factors Y
values were calculated. In table 4.10 calculated pure mode dimensionless Il stress

intensity factors Yy, were listed.
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Table 4. 10 Dimensionless mode Il SIF results for present work

Beamn Depth Dimensionless Pure mode I1 Dimensionless
P Crack Length N SIF Y}, present
Group (mm) (a/W) SIF (Pa m) Work
0.15 26.98 0.59
0.20 35.18 0.67
0.25 44.06 0.75
0.30 53.30 0.82
40
0.35 60.81 0.87
0.40 68.05 0.91
0.50 76.99 0.92
0.60 81.04 0.89
0.15 24.46 0.60
0.20 31.26 0.66
0.25 39.63 0.75
0.30 47.68 0.82
50
0.35 5459 0.87
0.40 60.92 0.91
0.50 68.38 0.91
0.60 73.18 0.90
0.15 21.56 0.58
0.20 28.60 0.66
0.25 36.36 0.75
0.30 43.75 0.83
60
0.35 49.80 0.87
0.40 B55.77 0.91
0.50 62.90 0.92
0.60 67.32 0.90
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In Fett’s study there is no information about FPAB test specimen for such geometries
which are conducted throughout this study. In addition to this, no mathematical
expressions were proposed for geometric functions of FPAB specimen in Fett
(1998). As a result of SIF study conducted here, fourth order polynomial fit functions
were derived for three main beam depth groups by using the same formula of
dimensionless SIFs given in Fett 1998 (Figure 4.34). Difference between
dimensionless values of mode Il SIFs of He-Hutchinson (2000) and Fett (1998) is
explained by utilization of different geometric parameters involved in expressions for

dimensionless stress intensity functions.
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Figure 4. 34 Calculated dimensionless mode Il SIF versus crack length in this study

It is observed that the same curved behaviour dominate the Y,, versus a/W trend and
this trend can be represented by a fourth order functional form in sufficient accuracy.
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In order to propose single polynomial fit function, dimensionless SIF values were
averaged individually. In figure 4.35 graphical illustration of average dimensionless

SIF values and fourth order polynomial fit function were given.
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Figure 4. 35 Average dimensionless SIF and fourth order polynomial fit function fo

all beam depth groups

As a result, in order to calculate mode Il stress intensity factor for FPAB test

specimen following equations were proposed;

F d

Vir = 26.464(%/y,)" —39.749(%/,)” +17.964(%/,)°
—1.6026(%/}y,) +0.5441 (4.25)

In literature, analytical and semi-analytical solutions for SIF computation are in the
form of fourth order polynomial (Tada et al., 2000 and Srawley 1976). So, in this
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study following general trend in fracture mechanics investigations on beam type
geometries, mode Il SIF estimation equations are given as fourth order polynomial

powers of a/W.
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CHAPTER 5

PURE MODE Il FRACTURE TOUGHNESS TESTING WITH FPAB
GEOMETRY

Experimental studies were conducted on grey colored Ankara Gélbasi1 Andesite rock
type. In order to evaluate mechanical properties of grey colored Ankara Golbasi
Andesite, static deformability and Indirect Tensile (Brazilian) tests were performed.
From these tests, Young’s Modulus (E) and Poisson’s Ratio (v) values were obtained
and they were used for input parameters of numerical models. Uniaxial compressive
strength of the rock was acquired from static deformability test. Three static
deformability tests on core samples of andesite were tested. Six Brazilian test disc
samples were tested to evaluate indirect tensile strength. Static deformability and
Brazilian tests were performed according to ISRM standards. Fracture toughness
tests were carried out on beam specimens under asymmetric four point bending
loads. Results were analyzed to evaluate mode Il fracture toughness tests conducted
on FPAB test specimen. Experimental work was performed in Rock Mechanics
Laboratory of Department of Mining Engineering at Middle East Technical
University.

5.1 Testing equipment utilized in experimental study

Experimental study is necessary to determine the rock parameters such as Elastic
Modulus, Poisson’s Ratio and Uniaxial Compressive Strength (UCS). Obviously,
laboratory tests provide important inputs for rock engineering designs and modeling.
Therefore, determination capabilities and measurement sensitivity of these inputs

have strong influence on designs and modeling. Laboratory tests should be

125



conducted with extra care. In the following Figure 5.1 laboratory testing phases were

given in form of flow chart.

Start
New Specimen

A 4

Size reduction of large rocks into
approximate segments. In this step Downscaling
rock saws are used.

\
Definite dimensions of the Specimen  —
specimen are completed. Adjustment

Specimens are checked for desired
length before notch opening. False

Notch machining is performed. 0.5 ;
mm. diamond circular saws are Notch Opening | €

used.

Final check for both specimen
dimensions and crack length

Dimension
check

Performing mechanical test | Mechanical
testing

l
=

Figure 5. 1 Flow chart for experimental study
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Rock fracture tests are more sensitive to specimen dimensions and shape in
comparison with ordinary rock mechanics tests. In order to avoid probable unwanted
irregularities and undesired results attention should be given from specimen
preparation phase to final mechanical testing phase. In this study, experimental

works were conducted with special procedure and step by step.

5.1.1 Milling machine

Milling machine was utilized for creating flat surfaces of FPAB test specimen
(Figure 5.2). Mode Il fracture toughness testing of FPAB specimen is highly
sensitive to any angular irregularities on these flat surfaces. Flat surfaces were
created by using diamond impregnated milling cutter. Irregularities on flat surfaces

achieved with maximum 0.1 mm error.

Figure 5. 2 Milling machine

5.1.2 Diamond circular saw

Diamond circular saw was utilized for notch opening works. Both notches of FPAB

and SNDB test specimens were machined using diamond impregnated 0.5 mm thick
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circular saws (Figure 5.3). Notch depth calibration was performed utilizing digital

caliper.

Notch thicknesses of prepared specimens were between 0.9-1.2 mm. Notch thickness
error in machining was around 0.3 mm. Reason of notch thickness deviation in
machining may be justified by grain size of rock type and buckling of thin circular

Saw .

There is an error about £0.3 mm in machining the preliminary notch along the
desired direction. So, a ten millimeter length notch can be around 9.9 mm or 10.2
mm which corresponds to 3% error in machining the correct 10 mm length. For
longer notches ranging from 20 to 30 mm percentage error obsviously decreases.
With the equipment used, physically, it is not possible to insert preliminary notches
better than this accuracy range.

Figure 5. 3 Digital caliper adapted diamond
circular saw
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5.1.3 Testing machine

MTS 815 Rock Testing Machine is known as one of the most reliable testing
machines in such usages compressive strength tests, deformability tests and fracture
tests of rocks. The machine mainly consists of highly rigid load frame with fixed
crossheads, single-ended actuator, servo-hydraulic service manifold, directional
valve and hydraulic power unit (pump), under the control of digital controller. Servo-
hydraulic service manifold and servo-controlled directional valve provides definite
control on the actuator of the machine. Displacement of the actuator is measured and
controlled with LVDT and differential pressure transducer (AP) attached to the
stroke and transmits a signal to the servo in order to define its location by local
coordinates of the machine. Therefore, according to the feedback signal received, the
servo calculates the hydraulic fluid requirement to provide the constant pressure on
the actuator which is 21 MPa all the time. This means the machine serves under
stable pressurized conditions and provides sufficient hydraulic power to compress

rock samples with intended loading rates.

Frame of the machine is structured as cross-head and the cross-head is highly rigid
up to 3750 kN and its stiffness is 9x10° N/m. Data acquisition system and controller
unit of the machine is located in same box named FlexTest 40. FlexTest 40 controller
unit consists of four channels which are connected to servo-hydraulic service
manifold, differential pressure transducer, internal linear variable differential
transformer, extensional and circumferential extensometers and the load-cell.
FlexTest40 controller unit allows the actuator to move by means of displacement
controlled, force controlled or extensometer controlled. Controller unit also allows
data acquisition up to 4096 Hz for four channels in total. In mechanical property
identification tests and fracture toughness tests data acquisition frequency was set
from all channels as 8 Hz. Force readings were achieved by externally adapted MTS
500kN + 0.25 load-cell which is calibrated by Turkish Standards Institution and
certificated as Class 0.5. In Figure 5.4 general working principle of MTS machine is

illustrated.
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Extensional and circumferential extensometer readings were executed with same data

acquisition system from allocated channel of the unit with frequency of 8 Hz.
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Figure 5. 4 MTS 815 Rock Testing Machine at a glance
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5.2 Laboratory work for rock property determination

Mechanical and physical property determination tests were conducted according to
ISRM standards. Static deformability and Brazilian tests were performed using MTS
Rock Testing Machine. In order to determine Young’s modulus and Poisson’s ratio
of Ankara Golbast Andesite, 3 NX size core specimens were prepared. Tensile
strength determination was conducted by performing Brazilian (Indirect Tensile) test.

For Brazilian test 6 disc specimens were prepared.

5.2.1 Static deformability test

Three NX type core samples were prepared to determine Young’s Modulus and
Poisson’s Ratio of Ankara Golbasi Andesite rock (Figure 5.5). Static deformability
tests were conducted utilizing MTS 815 Rock Testing Machine. Axial and
circumferential deformations were measured by using extensometers called clip-on
gages. Dual MTS series 632.94F-20 model axial extensometers that have 10 mm
expansion capacity were utilized to measure axial deformation and single EPSILON
circumferential extensometer was utilized to measure circumferential deformation of
tested rock sample. Results of unit weight, static deformability, and strength tests
aretabulated in Table 5.1.

Table 5. 1 Results of static deformability test

Specimen Length  Diameter Density UCS NIIEgZSJI' SS Poisson’s
Code (mm) (mm) (gricm®)  (MPa) (GPa) Ratio
ASD.1  120.63 55.00 2.15 57.68 11.60 0.12
ASD.2  120.70 54.94 2.15 58.43 12.43 0.11
ASD.3  121.19 54.98 2.14 59.72 12.82 0.12
Average 120.84 54.97 2.15 58.61 12.28 0.12
+STD +0.25 +0.025 + 0.005 +0.84 +0.51 +0.05
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Data acquisition was executed utilizing MTS Flextest40 controller and data
acquisition box. During tests, load rate was kept constant rate 0.003 mm/s and data

acquisition frequency was 8Hz.

Figure 5. 5 After static deformability test rock
core samples

According to static deformability tests conducted a typical stress strain curve for

Ankara Golbas1 Andesite is given in Figure 5.6.
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Figure 5. 6 Stress-strain curve for Ankara Go6lbas1 Andesite

5.2.2 Brazilian (Indirect Tensile) test

In order to determine tensile strength of Ankara Goélbasi Andesite Brazilian tests
were performed on six discs (Figure 5.7). During tests load rate was kept constant
0.003 mm/s (Figure 5.8). Result of Brazilian tests were tabulated in Table 5.2

Figure 5. 7 Brazilian discs before testing
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Table 5. 2 Results of Brazilian tests

Specimen Thickness Diameter Density Failure Tensile
Code (mm) (mm) (gricm?) L-oad Strength
(kgf) (MPa)
A.BT.1 31.86 55.01 2.09 2015.64 3.59
A.BT.2 30.85 54.99 2.09 1655.84 3.05
A.BT.3 31.00 54.98 2.09 1742.72 3.19
A.BT.4 31.37 54.98 2.09 2040.11 3.69
A.BT.5 34.08 55.00 2.04 2055.16 3.42
A.BT.6 32.00 54.99 2.09 1852.54 3.29
Average 31.86 54.99 2.08 1893.67 3.37
+STD +1.08 +0.01 +0.02 + 154.62 +0.22

Figure 5. 8 Installation of Brazilian test
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Figure 5. 9 Brazilian discs after test

5.3 Fracture tests

Although computers and simulation codes are very helpful in computing, they are not
able to find out material properties. For instance, in fracture mechanics, complicated
specimen geometries with arbitrary cracks may be computed in terms of SIFs, CPDs
or energy utilizing finite element analysis. However, failure load cannot be
determined by using finite element method. Input parameters should be provided to
these simulation codes all time. They use these input parameters to solve problems.
Therefore, laboratory works should be performed to determine material properties or
other input parameters. Likewise, in this study, although SIFs can be determined by
utilizing FEM code (ABAQUS), determination of fracture toughness values were
performed by conducting experiments on rock specimens.

135



Fracture testing study was performed again same servo-hydraulic testing machine
MTS 815. Data acquisition was performed utilizing FlexTest40 controller box and
software support MTS series 793 testing software. Data acquisition frequency was

set 8 Hz for each channel.

5.3.1 Mode Il fracture toughness testing work with FPAB test geometry

In fracture tests with FPAB geometry three main beam depth groups W= 40, 50, and
60 mm were decided to be tested. For beam depth groups of W=40 and 60 mm, six
different notch lengths expressed in dimensionless form as a/W= 0.20, 0.25, 0.30,
0.35, 0.40 and 0.50 were machined. For beam depth group of W= 50 specimens were
prepared for seven different crack lengths a/W= 0.20, 0.25, 0.30, 0.35, 0.40, 0.50 and
0.60.

FPAB test geometries were created properly to satisfy pure mode Il conditions for all
beam depth groups and associated crack lengths. All beam specimen dimensions as
beam length and thickness except beam depth were kept constant. Preliminary
starter notches were machined as straight edge notches with g = 0° from vertical
loading axis. In Figure 5.10 FPAB specimens with different notch lengths are

illustrated.
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Figure 5. 10 Different notch lengths for beam depth group W= 60 mm

From large blocks of Ankara Golbasi Andesite, rectangular rock beam specimens
were carefully machined to final shape and dimensions utilizing milling and grinding
apparatus in the lab. Rock samples were labeled in order to conduct the experiments

and organize the results conveniently. Labelling rule is illustrated in Figure 5.11.

FPAB-A-50-03-1
2

3
1 m It It oIt 1

Four-Point Asymmetric — Beam  Notch Length Specimen
Bending 2o Depth a'w Number

Figure 5. 11 Specimen labelling rule
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During fracture toughness tests with FPAB geometry, rollers of 8 mm diameter were
utilized to apply bending loads. Installation of FPAB test and view of fractured

specimen after test can be seen in Figure 5.12

Figure 5. 12 Setup of FPAB test and specimen view after test

From experimental study, fracture loads were recorded. Fracture Loads were used in
order to calculate pure mode Il fracture toughness value of Ankara Andesite.
Fracture load levels were synchronized with computed mode Il stress intensity
factors by ABAQUS. Models that were initially constructed by applying unit 1 N
loads were updated with actual load values obtained from the testing. For all beam
depth groups of W=40, 50 and 60mm, calculated pure mode Il fracture toughness

values were given in graphical form in Tables 5.3, 5.4 and 5.5, respectively.
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Table 5. 3 FPAB test results for W= 40 mm

. Fracture Load Pure Mode Il Fracture
Specimen Code

(kN) Toughness Kj,c MPaym
FPAB-A-40-020-1 16.58 0.58
FPAB-A-40-020-2 26.38 0.93
FPAB-A-40-020-3 23.28 0.82
FPAB-A-40-025-1 9.28 0.41
FPAB-A-40-025-2 11.49 0.51
FPAB-A-40-025-3 8.02 0.35
FPAB-A-40-025-4 9.56 0.42
FPAB-A-40-030-1 19.01 1.01
FPAB-A-40-030-2 8.52 0.45
FPAB-A-40-030-3 13.79 0.74
FPAB-A-40-030-4 9.95 0.53
FPAB-A-40-035-1 6.98 0.42
FPAB-A-40-030-2 8.64 0.53
FPAB-A-40-030-3 10.08 0.69
FPAB-A-40-030-4 6.85 0.42
FPAB-A-40-040-1 7.10 0.48
FPAB-A-40-040-2 14.44 0.98
FPAB-A-40-040-3 9.85 0.67
FPAB-A-40-040-4 10.12 0.69
FPAB-A-40-050-1 10.00 0.77
FPAB-A-40-050-2 7.34 0.57
FPAB-A-40-050-3 7.08 0.55
Average = STD 11.56 £5.24 0.62 +£0.19
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Table 5. 4 FPAB test results for W= 50 mm

_ Fracture Pure Mode Il
Specimen Code Load (kN) Fracture Toughness
Kiic MPavm
FPAB-A-50-020-1 23.40 0.73
FPAB-A-50-020-2 26.50 0.83
FPAB-A-50-020-3 17.24 0.54
FPAB-A-50-025-1 17.30 0.69
FPAB-A-50-025-2 10.73 0.43
FPAB-A-50-025-3 10.67 0.42
FPAB-A-50-030-1 23.45 1.12
FPAB-A-50-030-2 10.49 0.50
FPAB-A-50-030-3 12.37 0.59
FPAB-A-50-030-4 10.04 0.48
FPAB-A-50-035-1 7.30 0.40
FPAB-A-50-030-2 6.87 0.38
FPAB-A-50-030-3 9.98 0.55
FPAB-A-50-030-4 10.06 0.55
FPAB-A-50-040-1 7.98 0.49
FPAB-A-50-040-2 6.45 0.39
FPAB-A-50-040-3 6.60 0.40
FPAB-A-50-040-4 9.56 0.58
FPAB-A-50-050-1 8.33 0.57
FPAB-A-50-050-2 6.58 0.45
FPAB-A-50-050-3 7.68 0.53
FPAB-A-50-060-1 13.40 0.98
FPAB-A-50-060-2 12.30 0.90
FPAB-A-50-060-3 5.33 0.39
Average + STD 11.69 £5.70 0.58+£0.20
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Table 5. 5 FPAB test results for W= 60 mm

_ Fracture Pure Mode Il
Specimen Code Load (kN) Fracture Toughness
Kjic MPavm
FPAB-A-60-020-1 36.17 1.03
FPAB-A-60-020-2 28.85 0.83
FPAB-A-60-020-3 13.79 0.39
FPAB-A-60-025-1 19.94 0.73
FPAB-A-60-025-2 15.30 0.56
FPAB-A-60-025-3 13.12 0.48
FPAB-A-60-030-1 8.64 0.38
FPAB-A-60-030-2 16.24 0.71
FPAB-A-60-030-3 9.30 0.41
FPAB-A-60-035-1 8.02 0.40
FPAB-A-60-030-2 10.00 0.50
FPAB-A-60-030-3 7.44 0.37
FPAB-A-60-040-1 13.08 0.73
FPAB-A-60-040-2 13.24 0.74
FPAB-A-60-040-3 19.78 1.10
FPAB-A-60-050-1 10.12 0.64
FPAB-A-60-050-2 9.52 0.60
FPAB-A-60-050-3 8.38 0.56
Average + STD 14.50 £ 7.44 0.62 +0.21

Calculation of mode Il fracture toughness values was conducted by ABAQUS
Software. Fracture loads obtained from experimental study were utilized as input to
ABAQUS Software. Fracture loads were divided proportional to short moment arm
and long moment arm distances. In Figure 5.13 input windows for fracture loads are

illustrated.
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Figure 5. 13 Calculation of fracture toughness values

As it is shown in results of experimental study, average pure mode Il fracture
toughness values of Ankara Golbasi Andesite are very close for different beam
depths. This result indicates that there is no size effect for mode Il fracture toughness
with FPAB testing geometry. Finally, average pure mode Il fracture toughness K. of
Ankara Golbast Andesite can be declared as 0.61 MPavVm.

In Figure 5.14 typical FPAB test specimen after fracturing can be seen. Similar views

of tested specimens are illustrated in APPENDIX B. In order to compare pure mode
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Il fracture toughness values acquired from FPAB specimen, SNDB testing geometry

was used. Comparative study for fracture testing studies was introduced in Chapter 6.

Figure 5. 14 FPAB test specimen after testing
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CHAPTER 6

RESULTS AND DISCUSSION

Previously, rock fracture mechanics investigations have been mostly performed
under mode | loading state. In the literature, more data is available for size effect and
boundary influence phenomena for mode I loading state in comparison with mode 11
loading state. First Bazant, showed the global energy release leading to a simple size
effect law in 1983 and 1984.Then, justification of this law was made by a number of
studies of the researcher (Bazant and Pfeiffer, 1987, Bazant and Kazemi, 19903, b,
and Bazant et al., 1995). Aliha et al., (2010) studied crack trajectory deviation for
different sized SCB and CSTBD specimens. Ayatollahi and Akbardoost (2012)
proposed a new approach for size effect law on quasi-brittle materials. They
employed maximum tangential stress criterion adapting higher order Williams
expansion. Kumar and Barai (2012), introduced size effect phenomenon for
rectangular beam shaped specimens under mode | loading state. Although mode I
fracture toughness determination studies have been conducted for rectangular shaped
rock specimens, sufficient data is not available about boundary influence effect and
size effect for beam type specimens.

Results of numerical studies and laboratory experimental work indicated that size
and boundary influence effects were not observed for mode Il loading state on
rectangular shaped rock specimens. Finally, it was concluded that increasing the
beam size by increasing the beam depth had no influence in terms so called size
effect on mode Il fracture toughness. In order to comparatively analyze boundary
influence effect, stress analysis studies were conducted for numerical models of

FPAB test geometry under both mode | and mode Il loading states. Stress analyzes
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were conducted by adapting von Mises yield criterion around the crack tip in the

models.

According to results of laboratory tests conducted on different sized FPAB
specimens, no size effect was observed. Almost the same mode 11 fracture toughness
values for beam depth groups of 40, 50 and 60 mm were acquired as 0.62, 0.58 and
0.62 MPaVm, respectively. Overall fracture toughness value for mode II loading state
was obtained as 0.61 MPaVm for Ankara Golbasi Andesite. In order to justify the
mode Il fracture toughness values acquired by utilizing FPAB test geometry SNDB
testing results was employed. Close results between FPAB and SNDB geometries

were achieved for Ankara Golbasit Andesite in terms of mode 11 fracture toughness.

6.1 Stress analyses around the notch of FPAB testing geometry and other

numerical works

As reported in Chapter 5, almost the same dimensionless short moment arm distances
were obtained to reach pure mode |1 state at the crack tip for different beam depths.
This finding was attributed to the same bending moment requirement to reach critical

stress state for mode Il crack propagation of the different sized specimens.

In order to clarify this point, stress analyses were conducted both FPB (four-point
bending) and FPAB (four-point asymmetric bending) test geometries. FBP test
geometry was modeled in order to acquire mode | stress intensity factor behavior of
rectangular shaped rock specimens. Stress analyses were conducted by examining
von Mises stresses for a specific path which extended with crack propagation angle
(around 70 degrees) from the notch tip to the outmost contour integral.

Von Mises stress is a measure of potential plasticity zones of stressed domains.
Examination of this stress prescribed paths around crack for both mode | and mode 11
loading conditions yields indications about the size of plasticity zones and boundary

influence effects.
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In order to justify the results of K acquired from FPAB test geometry SNDB test
geometry modeling and related experimental work were conducted. Justification
study by the modeling and comparison of mode Il fracture toughness values for

FPAB and SNDB test geometries were presented in Section 6.2.

6.1.1 Von Mises yield criterion

Results of numerical computations are available in form of stress contour map.
ABAQUS presents stress contour maps and including von Mises stress. Von Mises
stress contour maps are dependent on second deviator stress invariant. Intensity of
the von Mises stress contour maps indicate relative size of potential plasticity zones

around cracks.

Von Mises vyield criterion was first proposed in 1904 by Huber. Then, in 1913 the
same criterion was formulated and well-organized by Von Mises (1913). Von Mises
yield criterion is also called “Maximum Distortion Energy Criterion”. The theory
states that, if the distortion energy of a material is smaller than maximum distortion
energy that the material can stand no yielding occurs. Von misses yield function is

given as follows;

fU)=+v]:—k=0 (6.1)

or;

fU)=],—k*=0 (6.2)

In here;
f({J2): Von Mises yield function
J>: Second deviatoric stress invariant

k: yielding stress value of a material in pure shear conditions

Investigations made showed that yielding stress is v/3 times higher than maximum

shear stress. Therefore, von Mises stress is redefined as;
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o, =3l (6.3)
And von Mises yield function became;
f(]2)=\/3_]2—0'y=0=0,,—0y=0 (6.4)
If this function is reoperated substituting J, in terms of the principle stresses it gives;
(01 — 02)%* + (0, — 03)% + (07 — 03)* = 20),° (6.5)
or in tensor notation;

(011 — 022)2 + (022 — 033)2 + (011 — C733)2 + 6(012 + 023 + 013) = 20y2

(6.6)

This equation finally yields to a cylindrical yield surface (Figure 6.1).
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Figure 6. 1 Von Mises yield surface
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In summary, von Mises yield criterion indicates that, if the second deviatory stress
invariant J, reaches critical value material begins to yield. Therefore, J, indicates
plasticity zone in stress contour maps in other words von Mises stresses. Stress and

plasticity analyses of this study are done in terms of this yielding criterion.

6.1.2 Mode I stress intensity factor investigations on FPB test geometry

A FPB testing geometry for mode | stress intensity factor investigation was modeled.
Dimensionless crack length a/W of the numerical model was selected as 0.6 (Figure
6.2). Because of dimensionless crack length a/W= 0.6 this geometry becomes the
most probable geometry for boundary influence effect. Modeling geometries and

material properties for FPB test geometry were given in Table 6.1.

Table 6. 1 Geometric dimensions and material properties of FPB test

geometry
Property Value

Beam Length 120 mm
Beam Depth 50 mm
Beam Thickness 50 mm
Crack Length 30 mm
E (Young’s Modulus) 12300 MPa
v (Poisson’s Ratio) 0.12
Short Span 50 mm
Long Span 100 mm
Load -1N
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Figure 6. 2 General geometry of FPB test specimen

Numerical computation was conducted using around 58000 brick elements.

Deformed shape of the numerical model is illustrated in Figure 6.3.

Figure 6. 3 Deformed shape of FPB test geometry

As a result of numerical computation mode | mode |1 stress intensity factors obtained
as K= 355.8 Pavm, K;= 0.001 Paym respectively, and CPD (crack propagation
direction) = 0°.
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6.1.3 Stress analyses for FPB and FPAB test geometries

Von Mises stresses were examined around prescribed path which extended through
crack propagation direction of FPB and FPAB test specimens. These paths begin
from notch tip and reach to the outmost contour integral region. In all, 21 points were
examined for each geometry. Distance between two points was selected as 0.25 mm
which was the same length for successive contour integral regions. Total length of
these two paths was 5 mm long from notch tip. As described before crack
propagation angle or direction is an output of the modeling work. Direction of these
paths trails along CPD of each loading mode. For mode | loading (FPB test
geometry) vertical angle equals to “0” while for mode II loading (FPAB test
geometry) equals to about 70 degrees. In Figures 6.4 and 6.5 stress paths for mode |

and mode 11 loading conditions are illustrated respectively.

Stress path for
mode |

: Puce_v)_103-50.0d0" A08qussScandard s, d2sk T

Figure 6. 4 Stress path for mode | loading
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Figure 6. 5 Stress path for mode 11 loading

As it is shown in Figures 6.4 and 6.5, red dots are probes for von Mises stress
analysis. Probe values in terms of von Mises stress for both mode | and mode 11

loading type are listed in Table 6.2 and Table 6.3 respectively.

Table 6. 2 Von Mises stresses for mode | loading

Distance from

von Mises stress

Distance from

von Mises stress

Crack Tip (mm)  values (Pa) Mode I Cr(ar;:]l:n')l'ip values (Pa) Mode |

0 9559.86 2.75 1739.11
0.25 5933.57 3.00 1631.50
0.50 4459.25 3.25 1536.09
0.75 3729.04 3.50 1451.14
1.00 3226.97 3.75 1375.31
1.25 2862.40 4.00 1307.56
1.50 2581.18 4.25 1247.02
1.75 2353.10 4.50 1193.02
2.00 2162.93 4.75 1143.90
2.25 2001.07 5.00 1060.54
2.50 1861.26
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Table 6. 3 Von Mises stresses for mode 11 loading

) . Distance )
Distance from Von-mises stress from Crack Von-mises stress
Crack Tip (mm) values (Pa) Mode Il . values (Pa) Mode I1
Tip (mm)

0 4177.94 2.75 1359.37
0.25 2813.98 3.00 1316.82
0.50 2559.91 3.25 1278.66
0.75 2206.01 3.50 1244.03
1.00 1976.56 3.75 1212.32
1.25 1816.89 4.00 1183.03
1.50 1697.43 4.25 1155.83
1.75 1603.45 450 1130.54
2.00 1526.79 4.75 1106.95
2.25 1462.50 5.00 1062.62
2.50 1407.42

Von Mises stress field was redesigned in terms of stress values obtained from stress
analysis. These probe values were acquired from the contour map presented by
ABAQUS. Once more again, it was observed that for mode Il loading state boundary
influence effect in FPAB test geometry (Figure 6.6) was negligible. FPAB test
specimen contour map was limited to 1000 Pa and 1100 Pa respectively for the
specimen having dimensionless notch length of a/W= 0.6. While, contour map was
limited to 1100 Pa, no contact was observed between von Mises stress field and
upper boundary within the specified range. Then, limitation was applied as 1000 Pa;
von Mises stresses did not reach the upper boundary at all. (See table 6.3)
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Figure 6. 6 Boundary influence effect for mode Il loading

The same examination was conducted for mode | loading condition as well. Similar
probe value ranges were applied to limit the stress contour map of pure mode | SIF
test specimen (FPB). It was observed that von Mises stress contour map showed an
intensive distribution of potential yielding zones and intensive boundary influence
effect, (Figure 6.7).

+1.208e+04
+1.117e+04
+1.025e+04

= 6e+03
+8.421e+03
+7.506e+03

A 1e+03

1060 Pa

Figure 6. 7 Boundary influence effect for mode | loading

In order to examine more effectively, these probe values were illustrated graphically.
In the following Figure 6.8 Von-mises stress values for both mode | and mode Il

loading were plotted.
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Stress distribution analysis at the crack tip of four-point bend test specimen
geometries under opening and shear mode was conducted. By assigning stress paths
at the vicinity of crack tip stress distributions and von Mises stresses were compared.
It was found that, crack tip under mode | had a higher potential to develop plastic
zones at the crack tip.

o, Pa
12,000
10,000 ==
Notch Tip =&—Pure KI Von
8,000 Mises
== Pure KIl Von
6,000 Mises
4,000 Outmost

2,000 contour region

2.00 250 3.00

Probe distance mm

Figure 6. 8 Von mises stresses around stress path for mode | and mode 11

The reason of having no size effect for mode 11 fracture toughness in FPAB tests was
explained based on the argument of having smaller plastic zones and FPZ’s at the

crack tip.

Beam type specimens are associated with high plastic zones/FPZ zones under
opening mode loading conditions. For mode 1l loading state, size of the potential
plastic zone compared in terms von Mises stress is about 2.5 times less than mode |
model section almost up to a crack front extent of 3.5 mm, even for elastic models of

analyses. If such stress analyses were carried out with elastic-plastic modeling work,
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it would be expected to have higher difference between sizes of crack tip plasticity
zones of beam specimens of K. and K, testing work. Considering that crack length
used in stress comparison is about 30 mm in both models, existence of a potentially
plastic zone of about 3.5 mm ahead of the crack tip reflects the significance of plastic
zone dimension and effected dimension is expected to be more than 10% in

comparison of extent of FPZ for opening and shear loading states.

6.2 Verification efforts for SNDB numerical study and justification of FPAB
test results

SNDB (straight notched disc bending) test geometry was modeled to justify mode |1
fracture toughness values obtained from FPAB test geometry. Experimental study of
the FPAB test geometry was given in Chapter 8. In order to compare the mode 11
fracture toughness values obtained from FPAB test specimen, comparative study was
conducted. This comparison was performed by using SNDB test geometry. In this
section, first, numerical verification for SNDB modeling work was introduced then;
mode Il fracture toughness values obtained from using these two different testing

methods were compared.

6.2.1 Numerical modeling work for SNDB test geometry

Pure shear geometry for SNDB test geometry adopted from Het (2014). In order to
prove accuracy level of the modeled SNDB geometry, numerical computation results
were compared with the ones given by Het (2014). Instead of giving all details of
numerical computation techniques of SNDB test geometry, only comparative study
was introduced. Geometric dimensions and material properties for SNDB test

geometry were given in Table 6.4.
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Table 6. 4 Geometric dimensions and material properties of SNDB

model

Property Value
Disc Diameter (D) 100 mm
Disc Radius (R) 50 mm
Disc Thickness (B) 50 mm
Notch Length (a) 25 mm
Notch Angle vertical (B) 50°
Load (P) -1N
Span Length (S) 60 mm
Elastic Modulus (E) 18144 MPa
Poisson’s Ratio (v) 0.15
SNDB test specimen can be seen in Figure 6.9.
¥
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Figure 6. 9 SNDB test specimen geometry
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Numerical model was created by employing around 100000 brick elements. Obtained

results and comparison with Het’s work are in Table 6.5.

Table 6. 5 Comparative study for SNDB numerical model

Parameters Present Model Het’s Model Difference %
Mode | SIF (K)) 2.05 Paym 2.00 Pavm %2.50
Mode II SIF (Ky) 28.30 Pavm 28.02 Pavm %0.99

Mode I stress intensity factor difference between present work modeling and Het’s
modeling work was around 2.5%. On the other hand, difference in mode Il stress
intensity factor values of these two modeling works was around 1%. As a result of
this comparative study, acceptable resemblance between computed SIFs were
believed to be achieved.

For a mechanical checking, deformed shape of SNDB model is illustrated in Figure
6.10.

Figure 6. 10 Deformed shape of SNDB model
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6.2.2 Mode Il fracture toughness determination with SNDB test geometry

SNDB (straight notched disc bending) test geometry is a core based specimen and
firstly introduced by Tutluoglu and Keles (2011). SNDB geometry is highly
recommended testing geometry for mode Il fracture toughness determination of

beam type rock core specimen geometries.

For pure mode Il fracture toughness testing study, in total three SNDB specimens

were prepared. In Figure 6.11, SNDB test specimens are illustrated.

Figure 6. 11 SNDB test specimens

For testing of SNDB test specimen, similar testing procedure as in FPAB testing
work was employed. Pure mode Il SIF condition and appropriate geometry for
SNDB test specimen were provided by previous researchers (Het, 2014). This
appropriate geometrical organization of SNDB specimen geometry is summarized in
Table 6.6.
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Table 6. 6 Geometric dimensions and material properties of tested

SNDB test geometry

Property Value
Diameter (D) 100 mm
Thickness (B) 50 mm
Notch Length (a,) 25 mm
Span (2S) 60 mm
Notch Inclination (B) 51°
Elastic Modulus (E) 12.3 GPa
Poisson’s Ratio (v) 0.12
Dimensionless Span Length (S/R) 0.6
Dimensionless Notch Length (a/R) 0.5

Figure 6. 12 Installation of SNDB test geometry
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With SNDB test geometry for determination of pure mode Il fracture toughness of
Ankara Golbas1 Andesite, results were close to the ones that were obtained by FPAB
tests. Experimental study conducted on SNDB test geometry resulted in an average
mode 11 fracture toughness for pure shear state as Kjc= 0.62 MPaVm. Mode I
fracture toughness values of tested specimens were calculated by using the fracturing
load values of experimental work in ABAQUS software models. In the following
table, results of pure mode Il fracture toughness experiments for SNDB test

geometry were listed.

Table 6. 7 Mode I fracture toughness values acquired from SNDB test geometry

Specimen Number Fracture Load Pure Mode Il Fracture
(kN) Toughness Kj;c (MPavVm)
SNDB 1 22.9 0.64
SNDB 2 22.7 0.63
SNDB 3 21.3 0.59
Average + STD 22.3+0.71 0.62 +0.02

Obtained pure mode Il fracture toughness K, with FPAB specimen approximately
equals to 0.61+0.20 MPaVm.

Obtained pure mode Il fracture toughness K with SNDB specimen approximately
equals to 0.62+0.02 MPavm.

Dif ference (%)
_ Computed Kllc with SNDB — Computed KIlc with FPAB

Computed Kllc with FPAB
x 100
0.62 — 0.61
Dif ference (%) = ol X 100 = %1.62
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As a result of comparative study, a good agreement between mode Il fracture
toughness K. values of FPAB and SNDB tests was achieved with approximately
1.62% difference.

In Figure 6.13 SNDB test specimens after experimental study are illustrated.

Figure 6. 13 Tested SNDB specimens

Beam shaped rectangular rock specimens subjected to four-point asymmetric
bending loading were investigated for mode 11 fracture toughness K¢ testing. In all,
over 120 finite element models were created for three main different beam depth
groups with different notch lengths. Beam thickness was kept constant and 64
laboratory tests were conducted. In tests, grey colored Ankara Golbasi Andesite rock

was used. As input to numerical models, mechanical properties of grey colored
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Ankara Golbas1 Andesite were used. Average mode Il fracture toughness value
acquired from all four-point asymmetric bending (FPAB) tests was found as
0.610.20 MPavm.

This work made a contribution in using rectangular beams of short dimensions

instead of using very long large sized beam geometries previous works

Pure mode Il fracture toughness of Ankara Golbasi Andesite obtained from four-
point asymmetric bending test work was compared to the result of SNDB test work
using the same rock type. Previous mode Il fracture toughness results of andesite
rock of Karakas, (Karakas, 2011) obtained by straight notched disc bending (SNDB)
test for was used to compare the results of FPAB testing of this work. From SNDB
tests, pure mode II fracture toughness was reported as 0.62 MPavm by Karakas,
2011. Results with these two different bending type test configurations showed a

good agreement.

Beam depth was found to have no effect on the mode fracture toughness results of
FPAB tests. As beam depth three entries with 40, 50, and 60 mm were implemented
in modeling and testing work. Numerical computations showed that, as the beam
depth of test specimen increases the mode Il stress intensity factor value decreases.
However, stress intensity factor illustrates no change when mode |1 stress intensity
factor is presented in dimensionless form as normalized with geometrical dimensions
of crack and beam. A fourth order polynomial fit function produces quite accurate

results for Y, which is the dimensionless form of K;,.

No size effect on mode Il fracture toughness was observed from the data acquired by
laboratory tests. Size effect on beam type specimens under opening mode was proven

in previous work both theoretically and experimentally.

In order to explain the reasons why no size effect existed in the results, stress

distribution analysis at the crack tip of four-point bend test specimen geometries
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under opening and shear mode was conducted. By assigning stress paths at the
vicinity of crack tip, stress distributions and von Mises plasticity indicator stresses
were compared. The reason of having no size effect for mode Il fracture toughness

FPAB test was attributed having smaller von Mises plasticity and FPZ at the crack

tip.

Another reason for having no size effect and boundary influence issue is explained
by the position of short moment arm “d” parameter of the loading point configuration
along the beam specimen. Direct relationship was observed between parameter called
as dimensionless short moment arm distance d/W and bending moment amount to
ensure pure mode Il state on crack plane. For specimens having small beam depth,
positions of short moment arm “d” were observed to be relatively closer to the crack

plane compared to the other beam depth groups.

In other words, the ratio of short moment arm distance and beam depth (d/W) were
the same for all three beam depth groups for related crack lengths expressed as a/W.
This phenomenon was attributed to the critical amount of bending moment
requirement for crack initiation ensuring mode Il loading state in rectangular shaped
rock specimens. Finally, it was concluded as, the critical value for bending moment
should be the same on the crack plane to ensure pure mode Il state for different beam
depths.

Similar results were observed individually for each specimen groups having the same
beam depths. To satisfy the pure mode Il state at the crack for each beam depth

group, there was an optimum value of short moment arm d.

As crack length increases optimum value of short moment arm d initially increases,
reaches a peak, and then decreases again. This trend is found to be described by a
fourth order functional form using a “d” value other than the optimum causes
development of opening mode and non-zero mode | stress intensity factor on the

crack plane. In this case pure shear condition fails.
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Experimental work results showed that crack depth/beam depth ratio (a/W) had no
effect on mode Il fracture toughness value. No boundary influence issue was
observed for FPAB test specimen geometries with varying beam depths. This finding
was tried to be explained by studying Von-Mises stress field between the crack tip
and beam loading points. For beam depth groups having 40-50-60 mm depths, mode
Il fracture toughness values were computed as 0.62+0.19, 0.59+0.20 and 0.62+0.21,
MPavVm respectively. This indicated that increasing the beam size by increasing the
beam depth had no influence in terms so called size effect on mode Il fracture

toughness.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The conclusions extracted from this study can be listed as;

*
L X4

X/
L X4

Four-Point Asymmetric Bending test is an accurate way to determine the
mode Il fracture toughness of rocks. The theory behind this test specimen
geometry aims to produce zero absolute bending moment (sum of the
reciprocal bending moments) on the crack plane. This condition is satisfied
by the asymmetrically placed loading and support points. Nevertheless,
location of loading and support points should be identified properly by

precise modeling work.

Configuration of loading and support points that satisfy pure mode 1l
conditions can be easily set using structural analysis techniques. Areas of
shear force and bending moment diagrams clearly show the response of test

specimen to corresponding changes.

Four-point asymmetric bending (FPAB) test specimen has flexibility
advantages for dimension changes of the geometry with no drastic deviations

of the boundary conditions.
Zero absolute bending moment which causes pure shear effect on the crack

plane can be easily satisfied by changing the locations of loading and support

points.
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X/
°

X/
L X4

Short moment arm “d” should be located sufficiently far from the crack plane
to avoid opening mode and non-zero K, effect. Excessive proximity of “d” to
the crack plane compromises existence of pure mode Il stress state and causes

generation of non-zero mode | stress intensity factor K; with opening effect.

Four-point asymmetric bending test configuration is also proven to be
convenient for shorter beam lengths adopted in this study, compared to the

previous work with beams extremely long spans.

The recommendations for future work can be listed as;

In this work, L/d=3 is used in all beam geometries. Different position
configurations of loading and support points should be investigated in detail.

For example it is suggested to include geometries with 2 < L/d < 3.

For the same geometric dimensions of test specimen, different positioning of
loading and support points that satisfy pure mode Il conditions should be

investigated.

The effect of beam thickness (B) on pure mode Il fracture toughness should

be investigated.

For different positioning of loading and support points and different beam
thicknesses boundary influence and size effects should be examined by
studying Von-Mises stress fields between crack tip and loading

points/support points.

Von-Mises stress field around crack tip and loading points should be
investigated seriously with plastic models. VVon-Mises stress field for mode |
stress intensity factor K, covers broader area on the specimen compared to the

same stress field created by mode 11 stress intensity factor K.
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% Rock type utilized for four-point asymmetric bending (FPAB) test should
consist of fine grained material. Coarse grains within the rock matrix may
lead crack to propagate through improper paths. This issue causes undesirable
fracturing of the test specimen and effects validity of the test results.

¢+ Specimen preparation process should be considered carefully. Results of
laboratory tests are very sensitive to the any angular deviations on the flat
surfaces of the test specimen. Corresponding surfaces should be totally
parallel to each other. Errors on flatness and parallelism of the corresponding
surfaces cause torsional and twisting effects on crack plane. This leads to

undesirable crack propagation and fracturing mechanism.

¢ Rocks tested under compression fails by forming major shear mode cracks at
maximum load. Thus, it is recommended to investigate existence of any
possible relationship between unconfined and confined strength values and

mode fracture toughness values of rock units of different origin.

% Loading rate of test procedure should allow the proper stress redistribution on
the crack plane and of the test specimen itself. Excessively high or low
loading rates may cause to develop instant overload on the crack plane or on
stress fields.

¢+ Loading rate of test procedure should be within the limits of 8 to 2 microns

per seconds. In this study it is set as 3 microns per second.
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APPENDICES

APPENDIX A: DIMENSIONLESS SHORT MOMENT ARM DISTANCE
ANALYSIS

A.1 Beam Depth Group W= 40 mm graphs
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Figure A. 1 Dimensionless short moment distance for a/W= 0.15 regarding pure
shear SIF conditions
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Figure A. 2 Dimensionless short moment distance for a/W= 0.20 regarding pure
shear SIF conditions
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Figure A. 3 Dimensionless short moment distance for a/W= 0.25 regarding pure
shear SIF conditions
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Figure A. 4 Dimensionless short moment distance for a/W= 0.30 regarding pure

shear SIF conditions
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Figure A. 5 Dimensionless short moment distance for a/W= 0.35 regarding pure
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Figure A. 6 Dimensionless short moment distance for a/W= 0.40 regarding pure
shear SIF conditions

0 : :
0.1750 : 0.2125 0.2250

0.03 + y =-0.0138x + 0.0238
R?=0.9928

Dimensionless short moment arm
d/w

Figure A. 7 Dimensionless short moment distance for a/W= 0.50 regarding pure
shear SIF conditions
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A.2 Beam Depth Group W= 50 mm graphs
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Figure A. 9 Dimensionless short moment distance for a/W= 0.15 regarding pure
shear SIF conditions
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Figure A. 10 Dimensionless short moment distance for a/W= 0.20 regarding pure
shear SIF conditions
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Figure A. 11 Dimensionless short moment distance for a/W= 0.25 regarding pure

shear SIF conditions
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Figure A. 13 Dimensionless short moment distance for a/W= 0.35 regarding pure
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A.3. Beam Depth Group W= 60 mm graphs
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shear SIF conditions
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Figure A. 21 Dimensionless short moment distance for a/W= 0.35 regarding pure
shear SIF conditions

0.03
0.02
0.02
0.01

0.01

0.00 T |
0.2417 0.2500

0.2
-0.01 %=

K,/K, RATIO

-0.01 5= y =-0.0101x + 0.0282

R?=0.9993
-0.02 ==

-0.02 . .
Dimensionless short moment arm

-0.03 & d/w

Figure A. 22 Dimensionless short moment distance for a/W= 0.40 regarding pure
shear SIF conditions
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APPENDIX B: SPECIMEN PHOTOGRAPHS AFTER EXPERIMENTAL
STUDY

B.1 Beam Depth Group W= 40 mm photographs

Figure B. 1 W= 40 mm a/W= 0.20 specimens after test



Figure B. 2 W= 40 mm a/W= 0.25 specimens after test
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Figure B. 3 W= 40 mm a/W= 0.30 specimens after test
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Figure B. 4 W= 40 mm a/W= 0.35 specimens after test
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Figure B. 5 W= 40 mm a/W= 0.40 specimens after test
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Figure B. 6 W= 40 mm a/W= 0.50 specimens after test
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B.2 Beam Depth Group W= 50 mm photographs
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Figure B. 7 W= 50 mm a/W= 0.20 specimens after test
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Figure B. 8 W= 50 mm a/W= 0.25 specimens after test
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Figure B. 9 W= 50 mm a/W= 0.30 specimens after test
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Figure B. 10 W= 50 mm a/W= 0.35 specimens after test
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Figure B. 12 W= 50 mm a/W= 0.50 specimens after test
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Figure B. 13 W= 50 mm a/W= 0.60 specimens after test
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B.3 Beam Depth Group W= 60 mm photographs

Figure B. 14 W= 60 mm a/W= 0.20 specimens after test
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Figure B. 16 W= 60 mm a/W= 0.30 specimens after test
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Figure B. 17 W= 60 mm a/W= 0.35 specimens after test

212



fter test

18 W= 60 mm a/W= 0.40 specimens a

B

igure

F

213



Figure B. 19 W= 60 mm a/W= 0.50 specimens after test
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