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ABSTRACT 

 

INVESTIGATION OF FRACTURE TOUGHNESS WITH FOUR POINT 

BENDING LOADING ON RECTANGULAR ROCK SPECIMENS 

 

Alkan, Uğur 

M.S., Department of Mining Engineering 

Supervisor: Prof. Dr. Levend Tutluoğlu 

 

September 2015, 214 pages 

 

In rock engineering applications inherent cracks and other type of impurities are 

seldom under the effect of loads acting along principal directions. Dominant loading 

states mostly consist of mixed mode type of loads. Mode I loading state has been 

studied by researchers for a long time. Therefore, common principles have been 

established for mode I loading state. Shear type (mode II) loading state is still an 

active subject to investigate in fracture mechanics. Although, numerous test methods 

have been suggested to determine the mode II fracture toughness 𝐾𝐼𝐼𝑐 of a rock, 

common opinion for mode II loading state is not well-established yet.  

 

Four-point asymmetric bending test specimen (FPAB) has a rectangular shaped 

geometry. Shear mode (mode II) fracture toughness investigations were conducted 

on rectangular shaped rock specimens under asymmetric bending loads. Tests were 

carried out under four-point asymmetric bending loads.  

 

In order to assure generation of pure mode II stress intensity factor state for FPAB 

test geometry, numerical modeling with ABAQUS Finite Element Software was 

conducted. 

 

Different sized rectangular shaped rock specimens were prepared to investigate size 

effect phenomena for FPAB test geometry. Numerical and experimental studies were 

conducted for three main beam depth groups having different notch lengths. The 
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generic FPAB test geometry which was 120 mm long and 50 mm thick consisted of 

three different beam depths 40-50-60 mm and included a preliminary single edge 

notch at the bottom center. Results of pure shear mode fracture toughness values 

from FPAB test geometry were compared to the ones from SNDB (Straight Notched 

Disk bending) method testing.  The same rock type, namely Ankara Gölbaşı 

Andesite was used in both. 

 

In the models, stress paths were created to analyze potential plastic regions or 

fracture process zones ahead of the preliminary notch. Von Mises plasticity in the 

vicinity of notch tip was examined along the potential crack propagation directions 

of mode I and mode II loading states. Stress paths were beginning from the notch tip 

and expanding to the outmost contour integral region. Stress paths for mode I and 

mode II stress intensity factor were compared. Boundary influence effect in  

rectangular shaped rock specimens under mode I and mode II loading states were 

compared.  

 

Mode II fracture toughness value of Ankara Gölbaşı Andesite was found as 𝐾𝐼𝐼𝑐 =

0.61 𝑀𝑃𝑎√𝑚 for FPAB test geometry. In comparison, mode II fracture toughness 

value of Ankara Gölbaşı Andesite was found as 𝐾𝐼𝐼𝑐 = 0.62 𝑀𝑃𝑎√𝑚 for the tests 

with SNDB geometry.  

 

Size of the beam specimens was changed by applying three different beam depths. 

Close results were achieved for mode II fracture toughness values for test geometries 

with different beam depths. No size effect was observed in shear mode fracture 

toughness values of tests with different beam depths of FPAB geometry.  

 

Keywords: Rock fracture mechanics, mode II fracture toughness, mode II stress 

intensity factor, four-point asymmetric bending, FPAB, rectangular, beam shaped 

rock specimen. 
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ÖZ 

 

DÖRTGEN KESİTLİ KAYA NUMUNELERİNİN ÇATLAK TOKLUĞUNUN 

DÖRT NOKTA ASİMETRİK EĞİLME DENEYİ İLE ARAŞTIRILMASI 

 

 

Alkan, Uğur 

Yüksek Lisans, Department of Mining Engineering 

Tez Yöneticisi: Prof. Dr. Levent Tutluoğlu 

 

Eylül 2015, 214 sayfa 

 

 

Kaya mühendisliği uygulamalarında doğal çatlaklar ve diğer impürite unsurları 

nadiren asal gerilme gerilme düzlemleri üzrinden gelen gerilmelere maruzdur. 

Baskın yükleme durumları karışık mod tipindeki yüklerden oluşur. Mod I yükleme 

durumu araştırmacılar tarafından uzunca bir süredir çalışılmaktadır. Bu sebepten 

ötürü, yerleşik bir temel mod I yükleme durumu için geliştirilmiştir. Makaslama tipi 

(mod II) yükleme durumu ise hali hazırda kırılma mekaniği araştırmalarında güncel 

bir konudur. Bir çok sayıda test metodu önerilmesine rağmen kayalarda i mod II 

çatlak tokluğu tayini için ortak bir fikir birliği iyi bir şekilde oluşturulamamıştır. 

 

Dört-nokta asimetrik eğme test numunesi dikdörtgen kesitli bir geometriye sahiptir. 

Makaslama modu (mod II) çatlak tokluğu araştırmaları dikdörtgen kesitli kaya 

numumeleri üzerine asimetrik eğme yükleri uygulanarak yürütülmüştür. Laboratuvar 

deneyleri de dört-nokta asimetrik eğme yükleri uygulanarak gerçekleştirilmiştir. 

 

Dört-nokta asimetrik eğme numunesi üzerinde saf mod II gerilme şiddeti faktörü 

durumunu kesin bir şekilde sağlamak için ABAQUS Yazılımı ile numeric 

modelleme yöntemi kullanılmıştır. 
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Numune boyut etkisinin araştırılması için farklı boyutlardaki dört-nokta asimetrik 

eğme kaya numuneleri hazırlanmıştır. Nümerik ve deneysel çalışmalar farklı çatlak 

boyları içeren üç farklı kiriş derinliği grubu oluşturularak yürütülmüştür. 120 mm 

uzunluğunda ve 50 mm kalınlığında olan, 40-50 ve 60 mm olmak üzere üç farklı 

kiriş derinliğine sahip genel dört-nokta asimetrik eğme test geometrisi, alt taraf 

kenarından açılmış bir çatlak barındır. Dört-nokta asimetrik eğme test numunesi için 

saf makaslama modu çatlak tokluğu sonuçları, düz çentiklikli Brazilyan diski 

numunesi sonuçlarıyla karşılaştırılmıştır. Bu iki farklı deney geometrisi için Ankara 

Andeziti olarak adlandırılmış aynı kaya tipi kullanılmıştır. 

 

Modellerde, potansiyel plastik deformasyon bölgelerinin ve çatlak proses zonlarının 

analiz edilmesi için çatlağın ön kısmında gerilme izleri oluşturulmuştur. Mod I ve II 

yükleme durumlarında potansiyel çatlak ilerleme yönü doğrultusunda  çatlak ucu 

civarındaki von Mises plastisite bölgeleri incelenmiştir. Bu gerilme izleri çatlak 

ucundan başlayarak en dış integrali konturuna doğru ilerleyen bir hat boyunca 

oluşturulmuştur. Mod I ve II gerilme şiddeti faktörü için oluşturulan bu iki gerilme 

izi birbirleriyle karşılaştırılmıştır. Dikdörtgen kesitli kaya numunelerinde numune 

sınırı etkisinin mod I ve mod II gerilme şiddeti faktörü üzerindeki etkileri 

karşılaştırılmıştır. 

 

Dört-nokta asimetrik eğme test geometrisi kullanılarak Ankara Andeziti için mod II 

çatlak tokluğu değeri  𝐾𝐼𝐼𝑐 = 0.61 𝑀𝑃𝑎√𝑚 olarak bulunmuştur. Aynı kaya tipi için 

düz çentikli Brezilyan diski test geometrisi kullanılarak yapılan deneyler de mod II 

çatlak tokluğu değeri 𝐾𝐼𝐼𝑐 = 0.62 𝑀𝑃𝑎√𝑚 olarak bulunmuştur. 

 

Farklı boyutlardaki kiriş tip numuneler, kiriş derinliği ölçüleri değiştirilerek 

oluşturulmuştur. Farklı kiriş derinliği ölçülerine sahip bu numuneler üzerinde yapılan 

mod II çatlak tokluğu deneyleri sonucu yakın çatlak tokluğu değerleri elde edilmiştir. 

Farklı kiriş derinliğine sahip kaya numuneleri üzerinde yapılan deneyler sonucunca, 

dört-nokta asimetrik eğme test geometrisi için makaslama modu çatlak tokluğu 

değerleri üzerinde boyut etkisinin olmadığı gözlemlenmiştir. 
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Anahtar Kelimeler: Kaya kırılma mekaniği, mod II çatlak tokluğu, mod II gerilme 

şiddeti faktörü, dört-nokta asimetrik eğme, dikdörtgen kesitli kaya numuneleri, kiriş 

tipi kaya numuneleri. 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

1.1 General remarks 

 

No matter how flawless and homogeneous they look, objects which are produced 

from the materials found in nature and ready to be used in daily life, possess flaws 

and defects like cracks even in micro scale. These defects act as stress concentrators 

within the structure when they are subjected to loading. Stress concentrations cause 

the defect to propagate and next whole body fails due to overstressed field generation 

at vicinity of the crack tip. Fracture mechanics is a branch of mechanics and it is 

related to the investigation effects of micro and macro scale cracks and crack-like 

defects on material behavior. More specifically, it investigates crack initiation and 

propagation behaviors of loaded solid sections of materials. Fracture mechanics 

benefits from other disciplines of mechanics as supportive fields; like solid 

mechanics, continuum mechanics, theory of elasticity and theory of plasticity in 

order to define relations between cracks and responses of the material. 

 

Following load applications, local stress concentrations at the tip of cracks in the 

object material might be in quite large scales. Dimensions of these stress 

concentration zones are geometrically in small scales compared to the dimension of 

the main object material. Stresses concentrated at the crack tip can be in magnitudes 

exceeding the yield strength of the material; but in global sense material can still be 

acting stable. However, due to these stress concentrations at the tip of the small 

cracks, undesired results can emerge for the material under a certain load. Normally, 

yielding behavior of a loaded material without having any cracks is described by the 

classical mechanical approaches. Classical mechanical approaches define the stress 
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distribution in the material based on the mechanical properties of the material. For 

instance, stresses for a linear elastic material exhibit proportional distribution in the 

material body with respect to the loading location. Maximum load that the material 

can resist is related to the maximum stress in the material. These stresses are 

proportionally distributed and their distribution in the material can be predicted 

easily by classical global stress analyses methods and strength of the material 

techniques. For a material including cracks, assessing the strength of the material 

based only on global strength parameters is not the right approach, since under the 

same load much higher stresses exist at the crack tips. 

 

In order to assess the behavior of cracks, stress analysis at the tip of the crack is to be 

carried out by using fracture mechanics methods and parameters such as stress 

intensity factor and critical energy release rate defined by fracture mechanics 

principles. With the stress values obtained by these methods, it is possible to 

compute the crack driving force. This way, complete failure or fracture mechanism 

can be described completely for a material inherently possessing cracks. Safe designs 

can be conducted based on these evaluations. 

 

In the past when fracture mechanics principles were not applied and designs were 

conducted based on global strength parameters, many catastrophic accidents 

occurred. The most important of them which probably led to the acceleration of 

fracture mechanics studies is the famous Titanic accident. In that era, similar 

accidents occurred due to the conventional design of the body with carbon steel 

which exhibits extremely brittle behavior under freezing temperatures without taking 

cracks into consideration. 

 

In rock mechanics applications, such as rock breaking, fragmentation, cutting and 

crushing the main purpose is to produce cracks, thus, fracture mechanics discipline 

plays an important role in assessing the input energy needed and mechanical methods 

that is to supply the input energy. 
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In summary, any material which is thought to be flawless inherently possesses 

defects and impurities. Thus, any design should include design against negative 

effect of cracks. Especially for the materials like rock which holds cracks and 

discontinuities owing to its nature, design based on fracture mechanics principles is 

to be considered, in addition to the design in terms of global design parameters. 

 

Rocks are naturally formed materials with inherent discontinuities. For rock mass 

classifications and strength estimations, rock mass quality indices like RMR, Q, and 

GSI are available. Behavior and effect of discontinuities in these quality indices are 

treated in the geological sense rather than mechanical and total quality rating is 

penalized.  In the evaluation entries, no parameter based on fracture mechanics 

principles is used. Moreover, direct relationship defined by the fracture mechanics 

between the inputs for the operations like hydraulic fracturing, rock ripping, rock 

excavation, blasting and the loading conditions exists. For example, in ripping 

process, shear mode (mode II) stress sate is directly involved in stress distribution at 

the crack tips. 

 

In this study, theoretical and laboratory works were conducted for the determination 

of the material property mode II fracture toughness of andesite rock. Based on the 

principals of fracture mechanics, modeling work was conducted to estimate the 

related stress intensity factor (SIF).  Rectangular beam shaped rock specimens were 

chosen in laboratory testing works. As a loading configuration, four-point 

asymmetric bending type of loading condition were chosen in order to create shear 

effect on the crack front. 

 

1.2 Historical development of fracture mechanics 

 

The major development of fracture mechanics study, such in other scientific and 

technological advances was driven by World War II. In addition, natively, mankind 

always had encountered many severe fracture induced problems as long as there have 

been man-made structures. The problems faced before, when it is compared to 
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today’s conditions, were relatively more harmless. Nowadays, humankind has 

inevitable desire in aerospace, nautical structures, civil and automotive industries to 

have compatible designs with long service life-time almost without any failure. 

Especially, the failures aroused from defects cause catastrophic results and also crack 

propagation causes permanent malfunction or long term break-downs. Therefore, 

today’s technology needs more flawless materials. Thereby more flawless materials 

need to have lesser flaws in it, in other words micro-cracks or defects. 

 

Fortunately, advances in fracture mechanics have compensated some of the potential 

dangers above-mentioned high-tech desires. Unfortunately, advances in fracture 

mechanics were achieved by the lessons learned from the accidents experienced 

before. In Figure 1.1 one of these accidents is illustrated. 

 

 

 

        Figure 1. 1 Famous troopships (Liberty Ships) of World War II (Adapted 

        from http://forum.worldwarwhips.com) 
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The knowledge of fracture mechanics has achieved terrific improvement especially 

after some catastrophic disasters in the history. In World War II, some of the famous 

troopships of World War II know as Liberty Ships fleet has sunk in Alaska. Ten 

ships have completely broken down into two pieces (Figure 1.2). This accident took 

attention into welded assemblies of the ships. Because, Liberty Ships had a 

construction method which uses welded connections between steel sheets of the 

main-body while the old ones used to be constructed with riveted construction 

method. Researchers concluded the debate proposing the causes of the disaster by 

following three dominant factors: 

 

 The welds involved flaws and cracks; they were produced by poor-quality 

labor. 

 Most of the fractures initiated on the deck at square shaped sharp corners 

where there was stress accumulation. 

 Construction material, the ships made of was poor quality steel which had 

underqualified mechanical properties. 

 

 

 

                                Figure 1. 2 Focused on to the crack region of the ship  

                                (Adapted from http://forum.worldwarwhips.com) 
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The steel, prime suspect of the accident, was questioned thoroughly by the 

investigators. Because, riveted ships had not experienced such issues while welded 

ones have problems with the same material. Riveting prevented the crack 

propagation across the steel panels. A welded deck which is composition of many 

welding joints showed behavior as if it was a single piece of metal. Therefore, this 

behavior made the whole metal sheet vulnerable with the contribution of man-made 

flaws to fracturing. 

 

In order to overcome these fracture propagation problems and all other fracture 

issues, the researchers at Naval Research Laboratory U.S America have studied 

fractures in detail. They improved quality control standards and fracture mechanics 

study was born in this research center located Washington DC, during the decade 

following the World War II. 

 

Another catastrophic disaster is the Comet plane disaster of civil aviation.  Comet 

passenger jet aircrafts had made a breakthrough in commercial aviation in 1950’s. 

However, after they serviced a few years a Comet exploded in the air unexpectedly; 

it shattered and all the cabin crew and passengers died instantly. Investigators have 

found that, aircraft’s sharp edged rectangular window panes caused enormous stress 

accumulations in the vicinity of the frame corners and the material the aircraft was 

made of could not stand long flights over and over. Year after year Comet had 

become vulnerable to the internal cabin pressure so, one day in duty, it exploded for 

this reason. Thirty four years after the first Comet disaster; in April 28, 1988 the 

aircraft flight number 243 allied to Aloha Airlines was flying from Hilo Airport, Big 

Island to Honolulu International Airport. During flight due to the cabin pressure, roof 

of the aircraft was scraped off from the front side of the passenger cabin and caused 

crash-landing (Figure 1.3). Only one casualty was reported that was one of the cabin 

crew who was hurled out of the cabin by the reverse pressurization. Researchers 

from National Transportation Safety Board (NTSB) which is a federal foundation of 

USA have revealed that, rivet holes of the main-body having micro-fractures (Figure 
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1.5). These micro-cracks propagate through the body due to the cabin pressure and 

cause the aluminum sheet to disperse. 

 

 

 

                       Figure 1. 3 Ripped off roof of Aloha's Aircraft (Adapted  

                       from National Geographic Channel documentary series  

                     “Air CrashInvestigation” episode “Hanging by Thread”) 

 

After this civil aviation accident, to prevent this rupturing failure arousing from 

micro-fractures, special riveting design was applied to aircrafts. In case of any crack 

initiation within the hull, special designed rivet rows prevent all through propagation 

of the crack. Figure 1.4 this rivet array can be seen easily. 

 

 

 

                Figure 1. 4 Rivet arrangement of an aluminum sheet (Adapted  

                from National Geographic Channel documentary series “Air  

                Crash Investigation” episode “Hanging by Thread”) 

Rivet Arrays 
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                  Figure 1. 5 Rivet hole fracture (Adapted from National Geographic 

                 documentary series “Air Crash Investigation” episode “Hanging by 

                 Thread 

 

All the causes of these undesired incidents were accomplished by the knowledge of 

fracture mechanics discipline. Fracture mechanics knowledge achieves progress with 

the investigation of researchers from many disciplines i.e. mechanical engineering, 

aerospace engineering, civil engineering and mining engineering.  

 

From mining engineering point of view, material having in fracture problems is 

usually the rock material or various combinations of rocks in general. Mining 

structures, for example, mine shafts, production chambers, transportation galleries, 

slopes and etc. are developed through rock. In order to define the response of the 

rock to the man-made structures thoroughly, designers should consider both rock 

mechanics and fracture mechanics at the same time. As we know, rock have 

discontinuities inherently, those discontinuities govern the strength of the rock and 

stress redistribution behaviors when the rock is disturbed. In order to get 

comprehensive information about rock fracture mechanics, first, the basics of 

fracture mechanics should be understood properly. 

 

Hole Fracture 
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The adaptation of toughness term used in fracture mechanics began with the study of 

Inglis (1913) about fractures and sharp edges. Inglis proposed that, defects or sharp 

edges within a plate may create stress concentrations many times of applied stress to 

the plate. He revealed defects that having smaller radius of curvature yields greater 

stress concentration. Then Griffith’s works put the relation between strain energy and 

input energy for crack propagation (Griffith 192, 1924). He created the energy 

criterion for crack propagation and calculated the input energy to form new crack 

surfaces. Definition of parameter stated as fracture energy balance criterion Gc was 

made by Griffith. He revealed that Gc is proportional to √a which is the square root of 

initial crack length. Then, stress intensity factor “K” which is equal to 𝜎 × √𝑎 

approach was suggested. K was assigned to stress intensity factor term, and Kc was 

assigned to critical stress intensity factor or facture toughness term. Crack tip stresses 

became mathematically identified by Westergaard’s analytical solution 

(Westergaard, 1934). 

 

1.3 Problem statement 

 

Definition of mode II fracture toughness can be stated as, resistance of a crack to 

propagate due to acting in plane shear stress on it. Determination of mode II fracture 

toughness of rocks is a crucial work for rock mechanics applications such as 

hydraulic fracturing, rock cutting, and rock blasting. In addition, applications like 

nuclear waste disposal storage excavations and construction of storage sites in rock 

medium can benefit from rock fracture mechanics concepts. In geotechnical 

applications, rock medium is usually under the effect of compressive forces as a 

result of overburden stress. This increases the importance of shear mode crack 

formation and propagation under pure shear mode or under mixed mode involving 

compressive-shear mode over the crack surfaces. 

 

Shear type mode II fracture toughness value of rocks is a useful parameter in rock 

breaking applications. In order to determine the mode I and mode II fracture 

toughness of a rock, certain methods have been suggested by ISRM. These are short 
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rod (SR), (Ouchterlony, 1988 and ISRM, 2014), chevron bend (CB), (Ouchterlony, 

1988) and cracked chevron notched brazilian disc (CCNBD), (Shetty et al., 1985), 

semi-circular bending test (SCB) (Chong and Kuruppu, 1984), punch through shear 

with confining pressure (PTS/CP),  (Backers, 2012) which is solely a mode II 

fracture toughness test. All these suggested methods are conducted on core based 

specimens. Especially, in determination of mode II fracture toughness of rocks, core 

based specimens have certain shortcomings. ISRM suggested punch through shear 

method for determination of mode II fracture toughness of rocks is only valid when 

the confining circumferential pressure is applied. Setting up this condition properly 

as proposed is practically rather difficult.  

 

Beam shaped rock specimens eliminate mechanical shortcomings of core based 

specimens and difficulties of PTS/CP test specimen at the times in determination of 

mode II fracture toughness of rocks. The main problem associated with core based 

specimen geometries is that specimen size is limited to the core diameter and 

specimen shape is limited to circular sections. Applicability of FPAB test specimen 

and its performance on determining mode II fracture toughness KIIc of rocks are 

challenging areas in rock fracture mechanics, since a well-developed mechanical 

background is available for beams. Geometrical parameters of the beam specimens 

can be changed easily for size effect and boundary influence issues. These aspects of 

beam shaped rock specimens should be investigated in detail by comparing results to 

those of the other core based testing. 

 

1.4 Objective of the study 

 

In the literature, there are limited investigations on FPAB test specimen. Ayatollohi 

and Aliha (2011) suggested geometric features of four-point asymmetric bending 

test. However, there was a drawback, suggested beam specimen was extremely long 

and thus practically hard to prepare. They suggested the dimensions of the beam as 

length (L) 400 mm, width (W) 40 mm and thickness (t) 20 mm.  He and Hutchinson 

(2000) proposed analytical expressions to find mode II stress intensity factor which 
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enables computation of mode II fracture toughness of a beam shaped specimen under 

four-point asymmetric bending type of loads. Analytical expressions proposed by He 

and Hutchinson for beams were constructed for infinitely thick beams under plane 

strain assumption. In reality, beam specimens have a finite thickness which requires 

3D (three-dimensional) simulations and computations for a better accuracy in 

fracture toughness evaluations.  

 

The main objective of this study is to determine mode II fracture toughness of rocks 

by performing four-point asymmetric bending (FPAB) test on beam shaped rock 

specimens. It covers specimen preparation phase with appropriate dimensions to 

generate the pure shear mode combinations for the beam and machined initial notch 

for shear mode fracture toughness testing of rocks. 

 

Expanded objective of this study is to clarify and reveal appropriate geometrical 

features of the FPAB specimen to catch pure shear mode state at the preliminary 

notch tip.  Figuring out loading and support points and their locations with respect to 

the crack plane is followed by the detailed objective related to the investigations of 

the stress fields at the crack tip regarding boundary influence effect and size effect of 

specimen. 

 

1.5 Methodology of the study 

 

Methodology of this study is shortly structured by two parts which are numerical 

computation study and experimental study of four-point asymmetric loading test 

specimen. Numerical computation phase of this study actually was conducted before 

and after the laboratory testing phase. The first numerical computation study is 

performed to specify the loading configuration satisfying the pure shear state at the 

crack tip of the test specimen. This configuration consists of four asymmetric loading 

points which develop the shear type stress intensity factor effect on the crack plane. 

The second one was conducted after experimental work; acquired fracturing loads 

from experimental phase were implied to the corresponding numerical models and 
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then computation were conducted in order to find the shear type fracture toughness 

of the rock type, grey colored Ankara Gölbaşı Andesite. 

 

Numerical modeling and computation studies were conducted utilizing Dassault 

Systemes’ finite element package named ABAQUS v12. Software licensed by 

Middle East Technical University. Numerical models were created in three-

dimensional space with six degree of freedoms assigned in every single node. Finite 

elements used in the numerical computation study selected as 8-noded 3-D stress 

elements which are hour-glass stress control enhanced. Crack tip stress singularity 

achieved by special finite elements called collapsed elements which were explained 

at Chapter 6 in detail. Validation of the numerical models was carried out by 

handling well-known fracture mechanics problems which are pure shear plate for 

mode II stress intensity factor and pure mode I stress intensity factor test specimen 

under three-point bending loading. Proper meshing was assured by mesh 

convergence studies applying different mesh amount and size. 

 

Investigations about loading and support points and their locations and distances 

from crack plane were conducted. 

 

In the experimental part of the thesis, grey colored Ankara Gölbaşı Andesite rock 

type is the choice due to its easily availability and its medium grained igneous 

texture. Test specimens are prepared as three main beam depth groups. For each 

group, different crack lengths are machined with varying notch length over beam 

depth ratios (a/W) from 0.2 to 0.6.  

 

In total, 64 specimens were prepared and tested. In testing work, servo-hydraulic 

MTS 815 stiff Rock Testing Machine was used. Fracture load readings were 

provided by the load cell which fits Turkish Standards Institute standards and 

certificated by Turkish Standards Institute (TSE). Experiments were conducted under 

displacement control by the software called MTS™ Series 793 Control Software 
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provided by MTS Company. Data acquisition is powered by MTS FlexTest 40 

electronic controller console.  

  

Finally, mode II fracture toughness values of grey colored Ankara Gölbaşı Andesite 

determined from four-point asymmetric bending (FPAB) test with specified 

geometric features were compared with straight notched disc bending (SNDB) test 

and discussions were made. Von-mises stress field were also analyzed in order to 

clarify behavior of mode II stress intensity factor of FPAB test specimen in terms of 

boundary influence effect and size effect. 

 

1.6 Sign convention of mechanical entities 

 

In general mechanics study, positive orientation of stresses and displacements agrees 

with the positive direction of the related axes of coordinate systems. This means, 

compressive forces, stresses and displacements have negative sign while tensile ones 

have positive. On the other hand, in rock mechanics study opposite sign convention 

is utilized. Compressive forces, stresses and displacements are taken positive while 

tensile ones negative. In this study, sign convention of finite element code 

ABAQUS© were adapted which is same as general mechanics sign convention. 

ABAQUS© indicates the ordinary Cartesian coordinate system x, y, z; as 1, 2, 3 

respectively. In Figure 1.6 and 1.7, general tensor notation for ABAQUS and sign 

convention of the study can be seen easily. 
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         Figure 1. 6 Negative state of stress for sign convention of ABAQUS 

 

As it is seen Figure 1.6, stress components of principle axes dictated as S12, S13, S21, 

S23, S31, and S32. This tensor notation corresponds to τ12, τ13, τ21, τ23, τ31, and τ32 

respectively. Principal axes x, y, and z correspond to 1, 2, and 3 respectively. All 

these principle directions and their components are in negative direction so, their 

signs are negative.  
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          Figure 1. 7 Positive state of stress for sign convention of ABAQUS 

 

Sign convention for stress intensity factor for mode I and mode II utilized in 

ABAQUS© is positive for KI if crack tends to open, and negative if crack tends to 

close. Figure 1.8 shows the sign of mode I stress intensity factor KI. KII is negative 

when normal of zy plane pointing positive side of x-direction subjected to negative 

shear force (S12 or S21) when outward normal pointing positive direction of the out of 

plane. This definition is illustrated in the Figure 1.9. 
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     Figure 1. 8 Direction of crack opening and sign of mode I stress intensity factor 

     KI for FPAB test specimen 

 

 

 

Figure 1. 9 : Direction of crack opening and sign of mode I stress intensity factor KII 

for FPAB test specimen 

 

1.7 Outline of the thesis 

 

In Chapter 1, general remarks and a brief history of the fracture mechanics discipline 

are presented. In addition to this, problem statement and methodology of the thesis 

are given.  
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In Chapter 2, general background related to the theoretical development of fracture 

mechanics with formulas, definitions, and meaning of SIF concept, including well-

known solutions (both mode I and II) for SIF’s in plates and beams with references 

and literature review is presented. Application areas for rock fracture mechanics are 

reviewed. Utilization of rock fracture mechanics for some practices i.e. hydraulic 

fracturing, rock excavation and mine opening design etc. are reviewed with 

references from literature in chronological order. Importance of rock fracture 

mechanics in rock burst problems is given. Beam type specimen geometries for 

fracture testing are reviewed. Well-known three-point and four-point specimen 

geometries, solutions for SIF’s for both core-based and rectangular sections, 

following the historical flow of related literature are given. 

 

In Chapter 3, definitions of shear stress and bending moment are fulfilled and 

required mechanical prerequisites that satisfy pure shear effect on a deformable body 

are given. Four-point asymmetric bending (FPAB) test specimen is presented with its 

geometry and loading point configuration. Sketches for FPAB test specimen and KIıc 

testing literature and analytical calculations are given. 

 

In Chapter 4, modeling studies for stress intensity factor computation and utilized 

finite element code ABAQUS© and its structure are presented. Numerical 

verification problems are given. Boundary conditions, discretization and meshing of 

the FPAB test specimen are presented. Crack tip stress singularity issues and crack 

tip meshing with special finite elements are reviewed. Von Mises stress field 

contours and their meanings are presented for both KI and KII stress intensity factors. 

Results for numerical study conducted on mode II stress intensity factor with FPAB 

specimen are given. 

 

In Chapter 5, experimental studies are presented. Test setup of four-point asymmetric 

bending (FPAB) test specimen is given. Testing machine and controller and their 

specifications are reviewed. Test procedures are also given. Results for mode II 

fracture toughness tests with FPAB test geometry are given.  
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In Chapter 6, stress analyzes for FPB and FPAB test geometries are given. Boundary 

influence effect and size effect phenomena are concluded. SNDB test specimen and 

its geometric features are given. Testing procedure and set-up for SNDB specimen 

are given. Numerical modeling study for SNDB test geometry is given. Accuracy 

level of numerical model of SNDB geometry is presented. Mode II fracture 

toughness values obtained from FPAB test and SNDB are compared. 

 

In Chapter 7, conclusion of the thesis and recommendations for future works are 

presented . 
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CHAPTER 2 

 

 

2. FUNDAMENTALS OF ROCK FRACTURE MECHANICS 

 

 

 

The adaptation of toughness term used in fracture mechanics began with the study of 

Inglis (1913) about fractures and sharp edges. Inglis proposed that, defects or sharp 

edges within a plate may create stress concentrations many times of applied stress to 

the plate. He revealed defects that having smaller radius of curvature yields greater 

stress concentration. Then Griffith’s works put the relation between strain energy and 

input energy for crack propagation (Griffith 1921 and 1924). He created the energy 

criterion for crack propagation and calculated the input energy to form new crack 

surfaces. Definition of parameter stated as fracture energy balance criteria Gc was 

made by Griffith. He revealed that Gc is proportional to √a which is the square root 

of initial crack length. Then, stress intensity factor “K” which is equal to 𝜎 × √𝑎 

approach was suggested. K was assigned to stress intensity factor term, and Kc was 

assigned to critical stress intensity factor or facture toughness term. Crack tip stresses 

became mathematically identified by Westergaard’s analytical solution 

(Westergaard, 1934). 

 

Irwin (1957) introduced the crack tip failure modes regarding to principal stresses. 

He proposed mathematical relations of three failure modes as; mode I opening mode, 

mode II in plane sliding (shear mode), mode II out plane shear (tearing mode). He 

made the definition of critical energy release rate Gc. He proposed Gc as a material 

property and defined as critical energy input to create a new unit crack surface. 

 

In 1960s crack tip plasticity investigations became concerned. Cottrell (1960) and 

Wells (1961) suggested crack tip opening displacement method as fracture criteria. 

Other approaches; “Maximum Tangential Stress” (Erdogan and Sih, 1963), 
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“Maximum Energy Release Rate” (Hussain and Pu, 1974) and “Minimum Strain 

Energy Density” (Sih, 1974) were proposed. Huge improvement was sustained by 

study of Rice (Rice, 1968). Rice generalized the crack tip plasticity issues suggesting 

a path independent line integral technique and proposed an analytical expression to 

calculate the both elastic and plastic energy around the crack tip. Because the 

calculations were based on stress invariants J1and J2 , this technique is referred as J-

Integral. Rice pioneered a new era for fracture mechanics study, and then elastic-

plastic fracture mechanics studies became more reliable. After stress intensity factor 

(SIF) calculations became more reliable and easier, huge compendiums for SIF 

studies for different crack and specimen geometries were compiled by researchers 

(Tada et al., 1973; Rooke and Cartwrigth, 1976; Murakami et al., 1986). 

 

Fracture mechanics is the science of cracked bodies. Cracks as stress concentrators 

are inherent impurities involved in materials or structures. Ordinary stress analysis is 

inadequate in specifying strength of cracked body because of stress concentration 

due to cracks. Stress intensity factor parameter proposed by fracture mechanics study 

enables to calculate amount of stress accumulated around a crack tip. This approach 

is quite acceptable compared to ordinary stress analysis techniques. In general, three 

different types of loading modes govern crack initiation and propagation. These are 

mode I, mode II and mode III. Mode I loading state is defined as opening mode 

because mode I loading condition compels the crack to open. Similarly, mode II is 

defined as sliding mode or in plane shear and finally, mode III is defined as tearing 

or out of plane shear. In Figure 2.1, three main crack displacement modes are 

illustrated. 
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Figure 2. 1 Crack displacement modes 

 

Fracture mechanics studies are divided into two main research groups: linear elastic 

fracture mechanics and elastic plastic fracture mechanics. In linear elastic fracture 

mechanics study, concerned structure or material is assumed to be linear elastic and 

isotropic while in elastic plastic fracture mechanics study nonlinearity and crack tip 

plasticity phenomenon are considered. 

 

2.1 Linear elastic fracture mechanics 

 

Definition of “toughness” began with the study of Inglis (1913). Inglis showed stress 

concentrations around a hole in a stressed domain. The amount of acting stress 

around the hole was considerably higher than the applied stress to the domain 

(Fischer-Cripss, 2007). In Figure 2.2, applied tensile stress and stress concentration 

around the hole can be seen. 

 

Opening- Mode I Sliding- Mode II Tearing- Mode III 
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                       Figure 2. 2 Stress concentration around a hole (Adapted 

                       from Fischer-Cripss, 2007) 

 

Inglis’ study excluded one important parameter of cracked bodies. Excluded 

parameters were shape and size of the impurities. Griffith extended Inglis’ study 

using elasticity theory. He combined strain energy knowledge with fracturing 

phenomenon. Griffith showed that when crack propagates it creates new surfaces and 

creating new surfaces requires energy. Therefore, creating new surfaces governed by 

the strain energy of the body. The balance between required energy input to create 

new crack surfaces and strain energy release was proposed as “Energy Balance 

Criterion” by Griffith (1921). An illustration is given in Figure 2.3 for energy 

balance criterion. 
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                       Figure 2. 3 Strain energy release and new crack surfaces 

                       (Adapted from Fischer-Cripss, 2007) 

 

 Crack tip stresses 2.1.1

 

Analytical expressions to calculate stresses and displacements around a crack tip 

(Figure 2.4) were proposed by Westergaard (1934) for mode I stress intensity factor. 

Then, the remaining analytical expressions for calculation of mode II and mode III 

crack tip stress and displacement were proposed by the study of Williams (1957). In 

the formulas below, KI, KII, and KIII are stress intensity factors corresponding to the 

crack displacement modes defined before. 
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                          Figure 2. 4 Crack tip stresses 

 

Singular stress field around a crack tip is proportional to inverse square root of 

distance “r” from crack tip. 

 

Analytical formulas for mode I crack tip stresses and displacement are; 

Stress components; 

 

𝜎11 =
𝐾𝐼

√2𝜋𝑟
× cos

𝜃

2
× [1 − sin

𝜃

2
× sin

3𝜃

2
]             (2.1) 

 

𝜎22 =
𝐾𝐼

√2𝜋𝑟
× cos

𝜃

2
× [1 + sin

𝜃

2
× sin

3𝜃

2
]             (2.2) 

 

𝜎33 = {
0 (𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑒𝑠𝑠)

𝜈 × (𝜎11 + 𝜎22)(𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑎𝑖𝑛)
             (2.3) 

 

𝜏12 =
𝐾𝐼

√2𝜋𝑟
× cos

𝜃

2
× sin

𝜃

2
× cos

3𝜃

2
             (2.4) 

 

𝜏13 = 0               (2.5) 

 

𝜏23 = 0               (2.6) 

σ11 

σ11 

σ22 

σ22 

τ12 

τ12 

τ21 

τ21 

1 

2 
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Displacements; 

 

𝑢1 =
𝐾𝐼

2𝜇
× √

𝑟

2𝜋
× cos

𝜃

2
[𝜅 − 1 + 2 × sin2

𝜃

2
]  (2.7) 

 

𝑢2 =
𝐾𝐼

2𝜇
× √

𝑟

2𝜋
× sin

𝜃

2
[𝜅 + 1 − 2 × cos2

𝜃

2
]  (2.8) 

 

𝑢3 = 0    (2.9) 

 

𝜅 = {

3 − 𝜈

1 + 𝜈
 (𝑃𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠)

3 − 4𝜈(𝑃𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛)
   (2.10) 

 

Analytical formulas for mode II crack tip stresses and displacement are; 

 

Stress components; 

 

𝜎11 = −
𝐾𝐼𝐼

√2𝜋𝑟
× sin

𝜃

2
× [2 + cos

𝜃

2
× cos

3𝜃

2
]  (2.11) 

 

𝜎22 =
𝐾𝐼

√2𝜋𝑟
× sin

𝜃

2
× cos

𝜃

2
× cos

3𝜃

2
  (2.12) 

 

𝜎33 = {
0          (𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑒𝑠𝑠)

𝜈 × (𝜎11 + 𝜎22)(𝑃𝑙𝑎𝑛𝑒 𝑆𝑡𝑟𝑎𝑖𝑛)
  (2.13) 

 

𝜏12 =
𝐾𝐼𝐼

√2𝜋𝑟
× cos

𝜃

2
× [1 − sin

𝜃

2
× sin

3𝜃

2
 ]  (2.14) 

 

𝜏13 = 0    (2.15) 

 

𝜏23 = 0    (2.16) 
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Displacements; 

 

𝑢1 =
𝐾𝐼𝐼

2𝜇
× √

𝑟

2𝜋
× sin

𝜃

2
[𝜅 + 1 + 2 × sin2

𝜃

2
]           (2.17) 

 

𝑢2 =
𝐾𝐼𝐼

2𝜇
× √

𝑟

2𝜋
× cos

𝜃

2
[𝜅 − 1 − 2 × sin2

𝜃

2
]           (2.18) 

 

𝑢3 = 0             (2.19) 

 

Stress intensity factor defines the crack tip stress singularity. The magnitude of 

singular stress is referred as stress intensity factor and denoted as K. This factor is 

directly governed by amount of applied stress and crack length. Shape of the crack, 

geometry of stressed domain and boundary conditions of domain also have influence 

on stress intensity factor. Stress intensity factor solutions for some well-known 

loading and geometries are given in Figure 2.5 and 2.6. For beam type geometries 

and bending loading configurations, it is common to express stress intensity as 

following; 

 

𝐾 = 𝜎 × √𝜋 × 𝑎 × 𝑓(𝑎
𝑊⁄ )             (2.20) 

 

  𝑀𝑃𝑎√𝑚 = 𝑀𝑃𝑎 × √(𝜋 × 𝑚) × 𝑓(𝑎 ⁄ 𝑊)(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)     (2.21) 

 

Where; 

𝐾: Stress intensity factor 

𝜎: Applied stress to the domain 

𝑎: Crack length 

𝑓(𝑎
𝑊⁄ ): Correction function depending on crack length/beam depth ratio 

 



27 

 

It is important to note here that variations in material elastic properties like E and ν 

do not effect SIF values, since these only depend on 𝜎 which is a function of loaded 

section geometrical parameters and applied loading, and on crack length a. 

 

 Typical geometries for mode I and mode II stress intensity factors 2.1.2

 

After mathematical expressions for SIFs and crack tip stresses derived, the 

researchers began to solve for SIFs of well-known geometries and specific loading 

types. Analytical solutions of mode I and mode II SIFs for beams and plates were 

given in “The Stress Analysis of Cracks Handbook” (Tada et al., 2000) and also in 

other compendiums. To give an idea about calculations of SIFs both mode I and II, 

typical geometries were given as follow; 

 

Three point bend beam for mode I SIF; 

 

 

 

                Figure 2. 5 Three point bend specimen (Adapted from Tada et al.,  

                2000) 

 

𝜎 =
6𝑀

𝑏2
     (2.22) 

 

W 
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𝑀 =
𝑃𝑠

4
     (2.23) 

 

𝐾𝐼 = 𝜎√𝜋𝑎 𝐹(𝑎
𝑊⁄ )    (2.24) 

 

𝑓𝑜𝑟 𝑠
𝑊⁄ = 4,   

𝐹(𝑎
𝑊⁄ ) =

1

√𝜋

1.99 − 𝑎
𝑊⁄ (1 − 𝑎

𝑊⁄ ) (2.15 − 3.93(𝑎
𝑊⁄ ) + 2.7(𝑎

𝑊⁄ )
2

)

1 + 2(𝑎
𝑊⁄ ) (1 − (𝑎

𝑊⁄ ))
3/2

 

          (2.25) 

 

𝑓𝑜𝑟 𝑠
𝑊⁄ = 4,   

𝐹(𝑎
𝑊⁄ ) = 1.106 − 1.552(𝑎

𝑊⁄ ) + 7.71(𝑎
𝑊⁄ )

2
− 13.53(𝑎

𝑊⁄ )
3

+ 14.23(𝑎
𝑊⁄ )

4
 

          (2.26) 

 

Where;  

𝜎: Effective stress on notch plane 

𝑀: Bending moment 

𝑃: Applied load 

𝑠: Span length 

𝑎: Notch length 

𝑊: Beam depth 

𝐹(𝑎
𝑊⁄ ): Geometric correction function  

𝐾𝐼: Mode I SIF 

𝑠
𝑊⁄ : Geometric span ratio 
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Center notched plate for mode II SIF; 

 

 

 

                                  Figure 2. 6 Center notched specimen mode  

                                  II SIF (Adapted from Tada et al., 2000) 

 

𝐾𝐼𝐼 = 𝜏√𝜋𝑎 𝐹(𝑎
𝑊⁄ )    (2.27) 

 

𝐹(𝑎
𝑊⁄ ) = {1 − 0.025(𝑎

𝑊⁄ )
2

+ 0.06(𝑎
𝑊⁄ )

4
} √sec

𝜋𝑎

2𝑊
  (2.28) 

 

Where; 

𝜏: Effective shear stress on notch plane 

𝜎: Applied remote stress 

𝑎: Notch Length 

𝑊: Half plate depth 

ℎ: Half plate height 

𝐹(𝑎
𝑊⁄ ): Geometric correction function  

(𝑎
𝑊⁄ ): Dimensionless notch length 

 

 

 

W W 



30 

 

 Fracture toughness 2.1.3

 

Fracture toughness is defined as critical form of stress intensity factor. Due to 

loading, stress intensity factor reaches a critical value, then, crack propagates. Stress 

based threshold for crack propagation is defined as fracture toughness and denoted as 

Kc. Fracture toughness as a material property is resistance of material to crack 

propagation (fracturing). Fracture toughness is directly governed by mechanical 

properties of material and geometry of the domain. To give an idea about the order of 

magnitude of fracture toughness of some commonly used materials, Table 2.1 is 

prepared from the literature listed in the table.  

 

Table 2. 1 Fracture toughness values of some commonly used materials 

 

Material 

Type 
Material 

Mode I Fracture 

Toughness KIc 

MPa√m 

Mode II Fracture 

Toughness KIIc 

MPa√m 

Reference 

Metals 

Aluminum 14-28 - 
ESDU 96013, 

1996 

Steel 50 - 
ESDU 83023, 

1995 

Titanium alloy 44-66 - 
Horiya and Kishi, 

1994 

Ceramics 

Aluminum 

Oxide 
3-5.3 ≈2 Callister, 2007 

Silicon Nitride 7-8 ≈2 Quinn et al., 1994 

Soda-Lime 

Glass 
0.7 ≈0.4 Callister, 2007 

Rocks 

Ankara Gölbaşı 

Andesite 
1.12 0.61 

Alkılıçgil, 2010 

and Karakaş, 

2011 

Gabbro 2.1 1.18 Het,2014 

Marble 1.45 0.62 

Alkılıçgil, 2010 

and Karakaş, 

2011 

Concrete Concrete C35 0.2-1.4 - Callister, 2007 
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2.2 Elastic plastic fracture mechanics 

 

Macroscopic stress applied to a structure or material (sometime called as remote 

stress) becomes infinite in the vicinity of crack tip as “r” tends to “0”. In here “r” is 

defined as distance from crack tip. As it is known, strength of a material is bounded 

by yielding stress and when the applied stress exceeds the yield stress, plastic 

deformation is occurred. The region near the crack tip which deformed plastically 

called as small scale yielding in fracture mechanics studies. Linear elastic 

formulations in this region are not valid. If this region is relatively too small, 

plasticity zones can be assumed as negligible and linear elastic fracture mechanics 

approaches can be utilized. However, if this region is not sufficiently small, instead 

of utilizing linear elastic fracture mechanics approaches, elastic plastic fracture 

mechanics approaches are employed. These approaches are “crack tip opening 

displacement” (CTOD) and “J-contour integral”. 

 

 Crack tip opening displacement 2.2.1

 

Wells (1961) showed that, as the initially sharp crack propagated, because of the 

plastic region around the crack tip it had transformed into blunted crack. He also 

revealed that, amount of blunting was proportional to toughness of the material. As 

the toughness of material increased, degree of blunting of initially sharp crack also 

increased. Therefore, a relationship between fracture toughness and degree of 

blunting of initially sharp crack was established mathematically by Wells. This 

approach is called as crack-tip opening displacement. 
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Figure 2. 7 Crack tip opening displacement method (Adapted from Anderson, 2005) 
 

In Figure 2.7, crack tip opening displacement basics were given. a: plasticity zone 

near crack a tip and effective crack length, b: development of crack from sharp form 

to blunted form due to plasticity zone, c: calculation theory of crack tip opening 

displacement, d and e: best calculation technique for crack tip opening displacement 

(90 degree intercept lines radiated from crack tip). 

 

 J-contour integral 2.2.2

 

Rice (1968), proposed the J- contour integral to calculate the required input energy 

to create new crack surfaces. J- contour integral may be utilized for both linear 

elastic fracture mechanics and elastic plastic fracture mechanics. The theory of J- 

integral holds potential energy variation as the crack extends. This technique gives 

accurate results for the materials that obey plastic deformation mechanism. 

Mathematical expression is given as follows; 

 

uy 

Plastic Zone 

ry 

δ 

δ 

δ 

δ 

σ 

(a) (b) 

(c) 
(d) (e) 
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𝐽 = ∫ (𝑊 𝑑𝑦 − 𝑇𝑖

𝜕𝑢𝑖

𝜕𝑥 
𝑑𝛤) = ∫ (𝑊 𝑛1 − 𝜎𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥 
𝑛𝑗) 𝑑𝛤

 

𝛤

 

𝛤

           (2.29) 

 

Where; 

𝛤: Arbitrary contour which begins from lower surface of the crack and extends to 

upper surface of the crack. 

𝑛𝑗: Unit outward vector components which is normal to the arbitrary contour “𝛤”. 

𝑇𝑖: Traction vector, product of 𝜎𝑖𝑗 and 𝑛𝑗  tensor notation in Cartesian coordinates 

𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑗 

𝑊: Strain energy density  

𝑢𝑖: Components of displacement vectors 

𝑑𝛤: Differential arc length of contour 𝛤 some books refer as “𝑑𝑠” 

 

 

 

                  Figure 2. 8 J- contour integral with two arbitrary contours  

                 (Adapted from Sun and Jin, 2012) 
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2.3 Fracture mechanics in earth sciences practice 

 

Cracks and discontinuities are inherent for rocks. In applications dealing with rocks, 

such as rock excavations, tunneling, mining practices, hydraulic fracturing and rock 

slope stability studies, behavior of cracks and discontinuities should be identified 

properly. In general, fracture mechanics is utilized for defining fracturing process 

and to avoid fracturing by performing defect designs. In disciplines, such as; 

mechanical engineering, aerospace engineering and materials science, primary 

objective is to prevent the material of structural element or whole structure from 

fracturing. However, in rock fracture mechanics applications, the main idea here is to 

evaluate input energy for fracturing process. Because, in applications 

abovementioned, primarily task is to disintegrate the rock medium concerned. 

 

 Hydraulic fracturing 2.3.1

 

Hydraulic fracturing (Figure 2.9) is a technique in which pressurized solution 

pumped into the rock formation to create fractures within the medium. This 

technique is utilized for oil extraction and production of special minerals in mining 

engineering. Boreholes are drilled into the rock medium and establishment of wells 

are configured as close loop. Fracturing resistance of rock is obtained from rock 

fracture mechanics studies. Input energy to create new fractures in rock medium is 

calculated and sufficient pressure is provided by pumps and the required amount of 

liquid for successful fracturing process is calculated. In hydraulic fracturing, both 

mode I and mode II crack opening modes are observed. However, during fracturing 

process, mode mixity effect is observed dominantly.  
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    Figure 2. 9 Schematic demonstration of hydraulic fracturing (Adapted from 

    http://en.skifergas.dk/technical-guide/what-is-hydraulic-fracturing) 

 

 Rock excavations 2.3.2

 

Rock excavations are conducted by blasting or using mechanical equipment. In rock 

blasting, energy provided by explosives is dissipated within rock medium and 

absorbed by crack tips. This energy is consumed to create new cracks. Thus, total 

breakage of rock medium is accomplished. This relation between fracture mechanics 

and rock mechanics is first proposed by Bienawski (1967). 

 

Mechanical equipment utilized for rock excavations such as drag bits, hydraulic 

hammers, diggers and cutters create both compressive and shearing loads (Figure 
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2.10). Thus, both mode I and mode II loading on inherent cracks and discontinuities 

are applied. Grading equipment generates mode II effect while drag bits mode I. For 

an ordinary excavation both mode I and mode II and also mode mixity is observed. 

Well-known specimens applicability on rock excavations utilized in determination 

fracture toughness values of rocks were investigated by Xu (1993). 

 

 

 

                Figure 2. 10 Rock cutting mechanism (Adapted from Hood and 

                Roxborough, 1992) 

 

Relationship between rock excavation difficulties and fracture toughness values of 

rock investigated by a considerable number of researchers. Deliac (1986), proposed 

an expression for required amount of force to crush the rock. He referred this force as 

MPFC “mean peak cutting force”. Relation between MPFC and fracture toughness 

value of rock introduced as follows; 

 

𝑀𝑃𝐹𝐶 = 𝐶′ × 𝐾𝐼𝑐 × 𝑑
3

2⁄              (2.30) 

 

Where; 

𝑀𝑃𝐹𝐶: Mean peak cutting force 

𝐶′: Rock type coefficient 
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𝐾𝐼𝑐: Mode I fracture toughness value of rock 

𝑑: Cutting depth 

 

Similar to Deliac’s study, another study to introduce the relationship between 

fracture toughness of rock and rock cutting mechanism was conducted by Guo 

(1990). Guo investigated the penetration rate of the excavation tool for five different 

rock types. Utilized rock types were sandstone, marble (fine grained and coarse 

grained), basalt and limestone. He showed that there was high correlation (R
2
=0.90) 

between fracture toughness values of these rocks and excavation difficulty degree. 

On the other hand, he proposed that, the only effective parameter for rock excavation 

mechanism was not fracture toughness but hardness of the rock also was an effective 

parameter. Relationship between penetration rate of the excavation tool and mode I 

fracture toughness of rock is given by following relationship; 

 

𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐸𝑥𝑐𝑎𝑣𝑎𝑡𝑖𝑜𝑛 𝑇𝑜𝑜𝑙 = 776.21 × 𝐾𝐼𝑐
−2.9109       (2.31) 

 

Another study was conducted by Zhou and Lin (2014). They investigated for the 

relation between brittle failure mechanism of rock and rock cutting process. The 

main purpose of the study was to introduce the whether size effect law exists for cut 

depth or not. They used beam type FPB (four-point bending) specimens to mimic the 

rock cutting process. Another reason utilizing FPB specimens was introduced as to 

investigate the size effect behavior of the rock. They observed size effect law for 

rock cutting process.  

 

Another study for tunnel boring machine (TBM ) disc cutters and fracture toughness 

value of rock was conducted by Liu and Cao (2015). As it is known, TBM’s are very 

efficient tools for rock excavation practices. TBM’s are utilized for hard rock 

excavations if they are appropriate for rock medium characteristics and create fewer 

vibrations in comparison with blasting. The most effective usage of TBM’s is 

provided by applying correct thrust to the excavation face. Optimum thrust depends 

on rock type and it is calculated by direct experimental methods. Liu and Cao 
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introduced relationship between the required thrust and fracture toughness of rock to 

cut and break the rock most effective way. 

 

Another different aspect of this study is the given relationships for optimum cutting 

force to break the rock. They proposed two formulas both for mode I and mode II 

stress intensity factors regarding position of the crack. This assumption takes into 

account the layered rock mediums. Whether required input energy to break the rock 

is smaller regarding mode II loading than mode I loading conditions or not can be 

calculated by the given equations. Position of cracks regarded as median crack and 

lateral crack for mode I and mode II loading conditions respectively (Figure 2.11). 

Stress intensity factor for median crack is given as follows; 

 

𝐾𝐼 = (𝜎𝑡1
∗ − 𝜎)√𝜋(𝜎𝑡1

∗ − 𝜎)𝐹            (2.32) 

 

 

 

Figure 2. 11 Thrust force direction regarding positions of cracks (Adapted from Liu 

and Cao, 2015) 
 

Where; 

 

𝐾𝐼: Mode I stress intensity factor for median type crack 

𝜎𝑡1
∗ : Effective tensile stress on the crack plane 

Lateral Crack Median Crack 
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𝜎: Remote stress (confining stress) 

𝐹: Crack length constant 

 

Position change of cracks creates different loading conditions. Lateral cracks will 

create mixed mode (mode I and mode II) loading conditions while median type 

cracks create mode I. They introduce following equations for such circumstances. In 

case of a lateral crack existence fracture angle 𝜃0is given by; 

 

𝜃0 = 2 tan−1
√1 + 8(𝐾𝐼𝐼 ⁄ 𝐾𝐼 )2 − 1

4(𝐾𝐼𝐼 ⁄ 𝐾𝐼)
            (2.33) 

 

They give mode I and mode II stress intensity factors as follow; 

 

𝐾𝐼 = 𝜎𝑡
3/2

√𝜋𝐹              (2.34) 

 

𝐾𝐼𝐼 = 0.5 × 𝜎[sin 2𝛽 − 𝑓(1 − cos 2𝛽)]√𝜋𝑎            (2.35) 

 

Where; 

𝐾𝐼: Mode I stress intensity factor for lateral crack 

𝐾𝐼𝐼: Mode II stress intensity factor for lateral crack 

𝛽: Inclination of crack from vertical 

𝑎: Crack length 

𝑓: Friction coefficient of the crack 

𝜎𝑡: Maximum tensile stress 

 

 Rock slope stability engineering 2.3.3

 

Conventional rock slope engineering methods do not consider fracture mechanics 

parameters in determination of stability of rock slopes. These conventional methods 

assume the rock medium as a continuum. On the contrary, slope failures occur due to 

discontinuity surfaces of rock mases. A movement on these discontinuities initiates 
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from joints tips. Also, joint tips as stress concentrators may cause failures which are 

not able to detect with limit equilibrium methods. Limit equilibrium methods only 

consider kinematics of rock bodies and orientation of discontinuities. 

 

Researchers have a common sense on that slope stability investigations excluding 

inherent impurities are not acceptable. So, especially in the last two decades, this 

topic has been investigated by the researchers. Chen and Wang (2004), analyzed 

stability of a rock slope subjected to dynamic loads with fracture mechanics 

parameters. Saouma (2010); reviewed some investigations which were made in the 

past. 

 

 Rock bursts 2.3.4

 

In the last three decades, mining activities are getting increasingly deeper in rock 

medium. As a result of this, rock bursts and coal bumps are begun to occur. 

Investigations (Zipf and Heasley, 1990, Heasley and Zelanko 1992, Maleki et al., 

1995 and Innachione and Zelanko, 1995) showed that there is a direct relationship 

between rock bursts and energy release rate concept.  

 

Firstly, energy release rate (ERR) concept as an indicator of coal bumps and rock 

bursts was proposed by Salamon (1963) and Cook (1965). These investigations were 

at deep hard rock mines in South Africa. This concept is shortly defined as, strain 

energy based rock burst phenomenon. Highly stressed rock in deeps tends to release 

its energy stored. This high stress causes strains within rock itself. Strain gaining 

characteristics of rock depend of its properties i.e. Young’s modulus and Poisson’s 

ratio. Strain energy concept has been used in mechanics for many years on the other 

hand, fracture based strain energy concept was built by fracture mechanics. As it is 

known from fracture mechanics knowledge, as the crack propagates energy release 

rate of the material increases and it tends to reach a critical value finally it causes to a 

catastrophic failure. This kind of failures worth many lives in mines. In order to 
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avoid casualties in deep hard rock mines fracture mechanics based strain energy 

release rate or energy storage rate concepts are crucial. 

 

In underground mines, when a shaft or production opening is created, energy 

changes occur. First change is the work in physical meaning (potential energy) done 

by convergence of the back (roof) or deformation of opening surrounded by the rock 

mass. The second is the strain energy stored in rock medium. The sum of these two 

energies yields to total available energy. When mining operation advances this total 

energy is released by two ways. The first is strain energy increase and the second is 

dissipation by supports applied. As a matter of fact total dissipation energy can never 

be higher than total energy. This relationship is defined by following inequality; 

 

𝑊 + 𝑈𝑚 > 𝑈𝑐 + 𝑊𝑠             (2.36) 

 

Where; 

𝑊: Potential energy of the system 

𝑈𝑚: Strain energy stored in the rock mass 

𝑈𝑐: Dissipated portion of strain energy stored in the rock mass 

𝑊𝑠: Dissipated portion the energy by support pressure 

 

From Equation 2.36 it is understood that, there is excess of energy. This energy 

should be dissipated somehow. Dissipation of this excess energy is occurred as 

kinetic energy (wave) if it is higher than strain energy stored in rock mass. Following 

equations introduce this relationship. 

 

𝑊𝑟 = (𝑊 + 𝑈𝑚) − (𝑈𝑐 + 𝑊𝑠) > 0           (2.37) 

 

𝑊𝑟 ≥ 𝑈𝑚 > 0             (2.38) 

 

𝑊𝑟 = 𝑈𝑚 + 𝑊𝑘             (2.39) 
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𝑊𝑘 = 𝑊 − (𝑈𝑐 + 𝑊𝑠) ≥ 0             (2.40) 

 

 

Where; 

𝑊𝑟: Excess energy (the energy should be released) 

𝑊𝑘: Kinetic energy 

 

This kinetic energy is dissipated through new faces of advancing direction of the 

mine and crack and it damped by impurities located in rock mass. Therefore, local 

stress concentrations occur and it is concluded by rock bursts. Fracture toughness 

values of rock both for mode I and mode II are included in this phenomenon. 

 

Energy chages can be assessed in terms fracture processes and fracture mechanics 

concepts.  Energy release rate concept was utilized in fracture mechanics in study of 

Irwin (1957). Gc was introduced as fracture surface energy to create new cracks. This 

energy concept is given as follows for plane strain conditions, 

 

𝐺𝑐 =
𝐾𝑐

2(1 − 𝜈2)

𝐸
 (

𝐽
𝑚2⁄ )             (2.41) 

 

In fracturing process Gc is a measure of energy input. Values for fracture surface 

energy can be assigned to the rock bursting medium by measuring KIc or KIIc in tests, 

provided that linear elastic fracture mechanics assumptions are valid. 

 

 Application of fracture mechanics to the prediction of comminution 2.3.5

behavior 

 

Not only researches for rock breakage in terms of rock excavations was conducted in 

literature but also comminution studies were placed. Bearman et al., (1997) studied 

the applicability of linear elastic fracture mechanics principles to predict 

comminution energy for rock particles. According to the study, mode I fracture 
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toughness KIc value of rocks can be predicted by performing Brazilian indirect tensile 

test and point load test. After, KIc value of rock sample was determined, they 

conducted a series of experiments. A correlation between drop weight parameters 

and KIc value of rock sample was observed. From these drop weight parameters they 

were able to predict the comminution energy. Finally, a comparative study was 

conducted utilizing bond mill and energy values obtained by drop weight tests. As a 

result of study they conducted, serious correlation between comminution energy and 

KIc value of rock was observed. 

 

Donovan (2003) performed experimental study for optimum design of jaw crushers 

using rock fracture mechanics fundamentals. According to experiments, high 

correlated relationship was achieved between comminution energy and fracture 

toughness values of rocks particles. He introduced the following expression for jaw 

crusher parameters using fracture toughness values; 

 

𝑓𝑜𝑟 1 ≤ 𝑅𝑅 < 1.5 

𝑃𝑐 = ∑[−0.511 + 0.511𝑅𝑅𝑖]𝐾𝐼𝑐𝐶𝑖𝑥𝑖 + 𝑃𝑛

𝑗

𝑖

            (2.42) 

 

𝑓𝑜𝑟 𝑅𝑅 ≥ 1.5 

𝑃𝑐 = ∑[0.215𝑅𝑅𝑖
0.428]𝐾𝐼𝑐𝐶𝑖𝑥𝑖 + 𝑃𝑛

𝑗

𝑖

            (2.43) 

 

Where; 

𝑃𝑐: Power consumption in Kw 

𝑅𝑅𝑖: Reduction ratio of particle size (subscript i denotes substantial fragmentation) 

𝐾𝐼𝑐: Mode I fracture toughness (𝑀𝑃𝑎√𝑚) 

𝐶𝑖: Breakage probability for particle size 

𝑥𝑖: Mass flow for particle size (tons per hour) 

𝑃𝑛: Idling power of the crusher 
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2.4 Mode II fracture toughness testing methods 

 

Laboratory testing of rocks are mostly conducted on core based specimens. The only 

reason of using core based specimens in laboratory experiments is that rock samples 

are originally extracted from boreholes. There is no other way to take rock samples 

from thousands of meters of deep rock formations with the available technology. As 

in ordinary laboratory experimental works of rocks, also in fracture toughness tests 

core based rock specimens are preferred.  

 

International Society of Rock Mechanics (ISRM) suggests semi-circular bending test 

(SCB) for mode I fracture toughness determination and punch-through shear with 

confining pressure test (PTS/CP) for mode II fracture toughness determinations of 

rocks (ISRM, 2014).  

 

Nevertheless, various experimental investigations for fracture toughness 

determination techniques of rocks for different specimen shapes and geometries have 

been conducted. To have an idea about those proposed testing methods for 

determination of fracture toughness of rocks the most important ones will be 

presented in this chapter. 

 

 The punch-through test with confining pressure 2.4.1

 

Punch-through test with confining pressure is an improved form of study of Watkins, 

(1983). Watkins proposed this setup for cementitious soils and specimen prepared as 

cubic shaped for mode II fracture toughness determination. Then, Backers (2005), 

Backers et al., (2002a and 2002b) and Backers (2004) adapted to rock specimens to 

determine mode II fracture toughness. Backers (2004), changed the shape of 

specimen and configured this setup for core based rock specimens. In addition to 

these changes, Backers’ setup enabled to apply confining pressure to the test 

specimen they proposed. Generic view of Backers’ PTS/CP test specimen is 

illustrated in Figure 2.12. 
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                 Figure 2. 12 Geometry of PTS/CP test specimen (Modified from  

                 ISRM, 2014) 

 

Where; 

D: Diameter of the test specimen 

a: Notch length of upper end surface 

b: Notch length of lower end surface 

L: Length of the test specimen 

t: Notch thickness 

ID: Notch diameter 

IP: Intact portion of the test specimen 

 

Diameter and length of the PTS/CP test specimen are equal and notches are 

machined in circular shaped both end surfaces of the specimen. Both notches are 

concentrically aligned to each other. Instead for circular diamond saws, notches are 

generated by special machine which exhibit similarity with a core drill machine. The 

depth of circular notch machined upper end surface is 0.1D and lower end surface is 

0.6 D. Notches are machined with same the diameter which is 0.5D. 

 

Loading procedure of the test is relatively hard to perform. Specimen is placed on 

lower end surface onto support points (Figure 2.13). Coating membrane is suggested 
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to isolate the test specimen from confining pressure transmitting medium. Loading 

platen is placed to the upper end surface of the test specimen and it should be 

checked whether is aligned with support platen.  

 

 

 

                Figure 2. 13 Loading procedure and test setup of PTS/CP test  

                specimen (Modified from ISRM, 2014) 

 

Loading rate of experiment is suggested as 0.2 mm/min which is constant. Number 

of repeats of the test is suggested with a minimum of five specimens. 

 

Mode II fracture toughness calculations are done by the proposed formula below 

(ISRM, 2014). 

 

𝐾𝐼𝐼𝑐 = 7.74 × 10−2 × 𝐹𝑚𝑎𝑥            (2.44) 
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𝐹𝑚𝑎𝑥 = −1.80 × 10−3 × 𝑃𝑐             (2.45) 

Where; 

𝐾𝐼𝐼𝑐: Mode II fracture toughness in MPa√m 

𝐹𝑚𝑎𝑥: Fracturing load in kN 

𝑃𝑐: Confining pressure in MPa 

Backers declares that given formula above is only valid for the specimen L=D= 50 

mm, ID= 25 mm, a= 25mm and b= 30 mm. 

 

 Shear box test 2.4.2

 

Shear box test for determination of mode II fracture toughness of rocks was first 

proposed by Rao et al., (2003). They claim that maximum mode I stress intensity 

factor KImax, is always higher in terms of magnitude than maximum mode II stress 

intensity factor KIImax under pure shear, pure tensile and shearing by compression and 

tensile loading conditions. On the contrary, brittle materials i.e. rocks, have smaller 

mode I fracture toughness KIc in comparison with mode II fracture toughness KIIc. 

Therefore they claim, in experimental studies conducted with ordinary mixed mode 

tests maximum mode I stress intensity factor reaches KImax mode I fracture toughness 

KIc before maximum mode II stress intensity factor KIImax reaches mode II fracture 

toughness KIIC. Because of this reason they argue; mode II fracture toughness tests 

conducted on specimens that have mechanical loading configuration except for pure 

shearing always measure for KIc instead of KIIc. For this reason, Rao proposed the 

shear box test for mode II fracture determination of rocks. 

 

Both numerical and experimental studies were conducted in the study. Rao et al., 

(2003) utilized a finite element program to compute stress intensity factor named 

ALGOR FEA 3D. Experiments were conducted on three main strength groups from 

high to low of rock samples which are granite, marble and sandstone respectively. 

However, strength results of these three rock types are not in their order given by 

Rao. Strength order tabulated as from higher one to lower, marble, sandstone and 

granite respectively. 
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General form of a test specimen is cubic and the experimental setup of shear box test 

is given in Figure 2.14. Specimen can be configured both as single edge notched and 

double edge notched. Size effect and boundary influence effects were investigated by 

changing notch length and thickness of the test specimen. 

 

 

 

                             Figure 2. 14 Experimental setup of Rao et al.'s  

                             shear box test (Adapted from Rao et al., 2003) 

 

Axial loading creates shear effect on the specimen due to beveled platens which are 

oriented to create shearing effect. Inclination of the platens and other dimensional 

parameters are given in Figure 2.15. 
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Figure 2. 15 Dimensional parameters of shear box test (Adapted from Rao et al., 

2003) 

 

Where; 

𝛼: Inclination of beveled platens 

𝑃: Load 

𝑊: Depth of the specimen 

𝐿: Length of the specimen 

𝑎: Notch length 

 

Rao et al., (2003) give the following equations for pure mode II stress intensity factor 

calculations; 

 

𝐾𝐼𝐼 =
𝑄𝑒

𝐵√𝑊
× 𝑓(𝑎

𝑊⁄ )(𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑒𝑑𝑔𝑒 𝑛𝑜𝑡ℎ𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛)        (2.46) 

 

𝐾𝐼𝐼 =
𝑄𝑒

𝐵√𝑊
× 𝑓(2𝑎

𝑊⁄ )(𝑓𝑜𝑟 𝑑𝑜𝑢𝑏𝑙𝑒 𝑒𝑑𝑔𝑒 𝑛𝑜𝑡ℎ𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛)      (2.47) 
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𝐹 × 𝑚−3/2 =
𝐹

𝑚 × 𝑚1/2
 (𝑆𝑜, 𝑃 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑙𝑜𝑎𝑑)       (2.48) 

 

𝑓(𝑎
𝑊⁄ ) =

2.138 − 5.2(𝑎
𝑊⁄ ) + 6.674(𝑎

𝑊⁄ )
2

− 3.331(𝑎
𝑊⁄ )

3

√1 − (𝑎
𝑊⁄ )

      (2.49) 

 

𝑓(2𝑎
𝑊⁄ ) = 1.780 + 3.095(2𝑎

𝑊⁄ ) − 10.559(2𝑎
𝑊⁄ )

2
+ 8.167(2𝑎

𝑊⁄ )
3
      (2.50) 

 

𝑄𝑒 = 𝑃 × (sin 𝛼 − tan ∅ cos 𝛼)            (2.51) 

 

Where; 

𝐾𝐼𝐼: Mode II stress intensity factor 

𝑄𝑒: Effective shear load 

𝐵: Thickness of the specimen 

𝑊: Width of the specimen 

𝑓(𝑎
𝑊⁄ ): Geometric function for single edge notched specimen 

𝑓(2𝑎
𝑊⁄ ): Geometric function for double edge notched specimen 

𝑃: Applied load (concentrated load) 

∅: Internal friction angle (in degrees) 

𝛼: Inclination of beveled platen (in degrees) 

 

Pure mode II fracture toughness of tested rock types were given by Rao et al., (2003) 

as tabulated in Table 2.2. 

 

        Table 2. 2 Mode II fracture toughness results for shear box test (Rao et al.,2003) 

 

Rock Type KIIc MPa√m KIIc/ KIc 

Marble 6.1 Not given 

Sandstone 5.0 Not given 

Granite 4.9 2.6 
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 Semi-circular bending test 2.4.3

 

Semi-circular bending test (SCB) is a suggested test method of ISRM (ISRM, 2014) 

for mode I fracture toughness determination. This specimen was presented by the 

study of Chong and Kuruppu (1984). Geometry of specimen is illustrated in Figure 

2.16.Chong, who is inventor of SCB test specimen, summarizes advantages of SCB 

test specimen as follow; 

 

 Requires very little machining of notch 

 Easy experiment setup 

 Enables compressive loading (previous tests are arranged as tensile loading) 

 Appropriate for brittle materials i.e. rocks, ceramics, concrete etc. which are 

weak in tension 

 Appropriate for size effect 

 Enables easier data acquisition 

 

 

 

             Figure 2. 16 Geometry of SCB test specimen (Adapted from Chong and 

             Kuruppu, 1984) 
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Chong defines the parameters of SCB test specimen as follow; 

𝑎: Notch length 

𝑙: Half gage length between knife edges 

𝑞: Load line displacement 

𝑟: Rotational factor 

𝑅: Radius of SCB test specimen 

𝑠: Half span 

𝑣: Crack mouth opening between knife edges 

𝑥: Vertical distance between load point and supports 

𝑧: Thickness of knife edges 

𝜃: Half angle of rotation 

𝛼: An angle constant 

 

Kinematics of SCB test specimen and calculation deformed shape factors were also 

given by Chong and Kuruppu (1984). Schematic view of deformed shape of SCB test 

specimen with its kinematics illustrated in Figure 2.17. 

 

Crack mouth opening between knife edges were given as; 

 

𝑣 = ∆𝑣 + 2𝑙 = 2[𝑟(𝑅 − 𝑎) + 𝑎 + 𝑧]
sin(𝛼 + 𝜃)

cos 𝛼
           (2.52) 

Where; 

tan 𝛼 =
𝑙

𝑟(𝑅 − 𝑎) + 𝑎 + 𝑧
             (2.53) 

 

Here; ∆𝑣 is crack mouth opening displacement. Center of rotation is defined at a 

distance 𝑟(𝑅 − 𝑎)from crack tip. 

 

Vertical displacement between load point and support points of deformed shape was 

given as; 
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𝑥 = 𝑃′𝑄 + 𝑄𝑇 − 𝐾𝑇 = (1 − 𝑟)(𝑅 − 𝑎) + [𝑟(𝑅 − 𝑎) + 𝑎 + 𝑧]
cos 𝛼 + 𝜃

cos 𝛼
 

                   (2.54) 

 

−[(𝑠 − 𝑙) sin 𝜃 + 𝑧 cos 𝜃]             (2.55) 

 

Load line displacement was given as; 

 

𝑞 = 𝑃𝑃′ = 𝑅 − 𝑥             (2.56) 

 

Rotation angle was given as; 

 

𝜃 = sin−1 {
(∆𝑣 + 2𝑙) cos 𝛼

2[𝑟(𝑅 − 𝑎) + 𝑎 + 𝑧]
} − 𝑎            (2.57) 

 

 

 

          Figure 2. 17 Kinematics and deformed shape of SCB test specimen (Adapted  

          from Chong and Kuruppu, 1984) 
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Whittaker et al., (1992) suggested that crack inclination for pure mode II stress 

intensity factor calculation as 63
º
. 

 

Lim et al., (1993) conducted numerical computations for a wide range of specimen 

geometries utilizing ABAQUS finite element software as a computation tool. As a 

result of the numerical computations on stress intensity factors for possible specimen 

geometries of SCB test specimen analytical expressions were derived for mode I 

fracture toughness determination. Their work covered numerical computation of 

SCB test specimens for different crack length/radius (𝑎/𝑟) ratios from 0.1 to 0.8, 

notch angles from 0
º
 to 75

º
 and span length/radius (2𝑆/𝑟) ratios. From the results of 

these computations, the following expression was proposed in terms of mode I 

normalized stress intensity factor. In Figure 2.18, SCB test specimen with inclined 

crack can be seen. 

𝑌𝐼 =
𝐾𝐼

𝜎0√𝜋𝑎
              (2.58) 

 

Where; 

𝑌𝐼: Dimensionless stress intensity factor for mode I 

𝐾𝐼: Stress intensity factor for mode I 

𝑎: Notch length 

𝜎0 =
𝑃

2𝑟𝑡
 

𝑃: Applied load (concentrated load) 

𝑟: Radius of test specimen 

𝑡: Thickness of test specimen 

 

Lim et al., (1994) conducted for this time for various geometric parameters of SCB 

test specimen. SCB specimens were prepared for three different radiuses which are 

55, 95, 144 mm and a range of specimen thickness which are from 11.9 to 43.9 mm. 

Combination of results of these two studies were concluded as SCB is an appropriate 

test specimen for mode I fracture toughness experiments (Figure 2.18).  
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                     Figure 2. 18 SCB test specimen with inclined crack (Adapted  

                     from Het, 2014) 

 

More investigations on SCB test specimen were conducted by the researchers. 

Ayatollahi et al., (2006) performed mode I and mode II tests on PMMA and 

concluded by a contradiction on analytical and experimental results of mode II stress 

intensity factors. Ayatollahi and Aliha (2007) compared the results of SCB and 

CSTBD experiments for mode I, mode II and mixed mode I-II fracture toughness 

determination. This study revealed that CSTBD test specimen causes high amount of 

stress singularity due to its sharp crack compared to SCB specimen. Aliha and 

Ayatollahi (2011) performed mixed mode I-II fracture toughness tests to introduce 

whole range from pure KI to pure KII. As a result, the ratio of KIIc/ KIc was found as 

0.4. Tutluoglu and Keles (2011) reported limited numerical results for the ranges 

0.4 ≤ 𝛽 ≤ 0.6 and 0.5 ≤ 𝑠/2𝑅 ≤ 0.8. 

 

Table 2.3, mode II fracture toughness of some rock types determined by SCB test 

geometry were listed. 
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Table 2. 3 Mode II fracture toughness values of some rock types determined by SCB         

      test geometry 

 

Rock Type 
Mode II Fracture 

Toughness MPa√m 
Reference 

Ankara Gölbaşı Andesite 0.43 Karakaş, 2011 

Marble 0.46 Karakaş, 2011 

Gabbro 0.92 Het, 2014 

 

 Cracked straight through Brazilian disc 2.4.4

 

Ayatollahi and Sistaninia (2011) declare that, cracked straight through Brazilian disc 

test specimen is a cored based specimen that allows diametrical compressive loading 

and a relatively easy test setup. Raw rock samples extracted from core drills are 

convenient for preparing CSTBD test geometry and require very little adjustment. 

CTSBD test specimen involves centered notch and orientation of the notch enables 

capability of different modes of crack initiation and propagation. Changing notch 

orientation with respect to diametrical loading points enables a wide range of stress 

intensity factors from pure mode I to pure mode II. These advantages make CTSBD 

test geometry ideal specimen for experimental program of mode I, mode II and 

mixed mode I-II fracture toughness determination of rocks. In Figure 2.19 CSTBD 

test specimen geometry can be seen. 
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                  Figure 2. 19 CTSBD test specimen geometry 

 

Where; 

𝑃: Applied load 

𝛼: Orientation of notch relative to diametrical loading plane 

𝑎: Half crack length 

 

CTSBD test geometry was pioneered by Libatskii and Kovichick (1967) in 

determination of mode I facture toughness of glasses. Awaji and Sato (1978), again 

declared that, CSTBD test specimen is appropriate test specimen for mode I and 

mode II also mixed mode I-II fracture toughness determination by changing notch 

orientation. In the study, they utilized marble, graphite and plaster and isotropy of the 

materials were checked (Table 2.4). Except for marble, sharp central notches were 
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machined with thin circular saw of 0.2 mm thickness and 13 mm diameter in the 

CTSBD specimens. Notches of marble specimens were machined by another cutter 

which was originally utilized for dental uses. Thickness of slit was 0.6 mm for 

marble specimen. Dimensionless notch length (a/R) notch length/disk diameter was 

kept to be approximately 0.5. As a numerical computation tool, to calculate the 

stresses around crack tips and boundaries of loading points, boundary collocation 

method and boundary dislocation methods were utilized. Hertzian contact stresses 

were considered in order to specify effective external boundary loading on the outer 

boundary. Stress intensity factor calculations were considered as sum of three 

superposition stages (Figure 2.20) as listed below; 

 

 Circular region loaded by diametrical forces which are concentrated loads, 

(Figure 2.20a) 

 Distributed loading effect subjected to notch surface, (Figure 2.20b) 

 Crack regions where assigned boundary stresses on (Figure 2.20c) 

 

Table 2. 4 Results mode I and mode II fracture toughness tests (Awaji and Sato, 1978) 

 

Tested Material KIc (MPa√m) KIIc (MPa√m) KIIc / KIc 

Marble 0.93 1.05 1.13 

Plaster 0.13 1.09 1.16 

Graphite 0.94 0.15 1.14 
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                                      Figure 2. 20  Analytical  approach   to  calculate  

                                      stress intensity factors for CSTBD test (Adapted  

                                      from Atkinson et al., 1986) 

 

Limited numerical results for stress intensity factors were achieved by following 

studies. Atkinson, 1982 conducted a series of mode I and mode II fracture toughness 

experiments on PMMA. Dimensionless stress intensity factors were reported and as a 

conclusion analytical equations were proposed for CTSBD test with some 

shortcomings. Reported dimensionless stress intensity factors and analytical 

equations were valid only specimens having dimensionless notch length 𝑎/𝑅 ≤ 0.3. 

(a) 

(b) 

(c) 
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Where; 

𝑎: Notch length 

𝑅: Radius of the disk 

 

Shetty et al., (1986) utilized CTSBD test specimen to determine mixed mode 

behaviors of ceramics. According to conducted mixed mode I-II experiments on 

ceramics, CSTBD test specimen geometry was found reliable for full range of stress 

intensity factors from pure mode I to pure mode II. CSTBD test specimen reported as 

an appropriate method for fracture toughness determination including mixed mode I-

II conditions. 

 

However, numerical results for CTSBD test geometry were still lacking. Only 

numerical results of stress intensity factors for CSTBD test specimen had been 

proposed by the study of Atkinson et al., (1986) up to that time. Fowell and Xu 

(1993) reported new polynomial fit functions for both modes I and II dimensionless 

stress intensity factor determination. In the study, it was also reported that notch 

angle provides for pure mode II conditions. Apart from equation proposed by 

Atkinson et al., (1993), Fowell and Xu, (1993) was valid for almost full range of 

dimensionless crack lengths from 𝑎 𝑅⁄ = 0.05 to 𝑎 𝑅⁄ = 0.95 (𝛼 = 𝑎
𝑅⁄ ).  

 

𝑌𝐼(𝛼) = 0.0354 + 2.0394𝛼 − 7.0356𝛼2 + 12.8154𝛼3 + 8.4111𝛼4 − 30.7417𝛼5 

−29.4959𝛼6 + 62.9739𝛼7 + 66.5439𝛼8 − 82.1339𝛼9 − 73.6742𝛼10

+ 73.8466𝛼11               (2.59) 

 

𝑌𝐼𝐼(𝛼) = 0.06462 + 2.8956𝛼 − 6.8663𝛼2 + 9.8566𝛼3 − 0.4455𝛼4 − 1.0494𝛼5 

−13.2492𝛼6 + 9.0783𝛼7 − 10.7354𝛼8 + 28.4775𝛼9 − 6.3197𝛼10 + 10.6626𝛼11 

−10.0268𝛼12 − 34.2997𝛼13 + 1.7292𝛼14 + 25.2216𝛼15          (2.60) 

 

𝜃𝐼𝐼 = 30.4406 − 4.6734𝛼 − 17.6741𝛼2 − 9.6827𝛼3 + 3.9819𝛼4 + 12.9163𝛼5 

−13.3222𝛼6 + 12.8001𝛼7 − 13.1239𝛼8            (2.61) 
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In addition, an equation for the relation between stress intensity factor and 

dimensionless stress intensity factor was also reported.  

 

𝐾𝐼𝐼𝑐 =
𝑃𝑐𝑟

𝐵 × √𝑅
𝑌𝐼𝐼             (2.62) 

 

Where, 

𝑃𝑐𝑟: Fracturing load 

𝑌𝐼: Mode I dimensionless stress intensity factor 

𝑌𝐼𝐼: Mode II dimensionless stress intensity factor 

𝐾𝐼𝐼𝐶: Mode II fracture toughness 

𝛼: 𝑎 𝑅⁄  

𝑎: Notch length 

𝑅: Radius of the disc 

𝐵: Thickness of the disc 

 

Another study for examination of mixed mode behaviors of a kind of sandstone, 

Krishman et al., (1998) found that critical notch inclination for pure mode II reported 

as 𝜃 = 29°. Temperature effects under confining pressure on CSTBD test specimen 

for modes I and II were investigated by Al-Shaeya et al., (2000). Ayatollahi and 

Torabi (2010) conducted numerical computations for CSTBD test specimen in order 

to determine effect of blunt notches on mode I and mode II fracture toughness values 

of PMMA and soda-glass. Aliha et al., (2012) compared the results of mode I and 

mode II fracture toughness values acquired from a series of experiments on CSTBD 

and SCB test specimens. SCB test specimen was reported as giving overestimated 

results for fracture toughness values of same materials in comparison with CSTBD 

test specimen. 

 

In Table 2.5, mode II fracture toughness of some rock types determined by CSTBD 

test geometry were listed. 
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Table 2. 5 Mode II fracture toughness values for some rock types determined by  

CSTBD test geometry 

 

Rock Type 
Mode II Fracture 

Toughness MPa√m 
Reference 

Ankara Gölbaşı Andesite 0.99 Karakaş, 2011 

Marble 0.86 Karakaş, 2011 

Gabbro 1.76 Het, 2014 

 

 Straight notched disc bending test 2.4.5

 

Straight notched disc bending test first introduced by Tutluoglu and Keles (2011) to 

determine mode I fracture toughness values of brittle materials i.e. rocks, ceramics, 

glass etc. Introduced test specimen mainly was a cylindrical plate which is Brazilian 

disc shaped, having a single straight edge notch and subjected to three point bending 

(Figure 2.21). They conducted a series of experiments for two different rock types 

Ankara Gölbaşı Andesite and Marble. Shortly they listed advantages of this test 

specimen as follows; 

 

 Easy test specimen preparation 

 Easy experimental setup 

 Appropriate for size effect changes 

 Stiff test specimen geometry 

 Little fracture process zone respect to other disc specimens  

 

In the study, great variety of three dimensional numerical computations were 

conducted for stress intensity factor calculations only mode I. Numerical study was 

performed by utilizing commercial finite element package ABAQUS software. In 

numerical study, diameter of the test specimen was kept constant at 75 mm. Other 

changed geometrical parameters were given in dimensionless form regarding radius 

of the test specimen. These parameters were given as; dimensionless span length 
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(S/R) between 0.5-0.8, dimensionless notch length (a/t) between 0.1-0.9, and 

dimensionless specimen thickness (t/R) between 0.5-3.0. Geometric parameter of 

SNDB test specimen can be seen in the following figure. 

 

 

 

Figure 2. 21 SNDB test specimen geometry 

 (Adapted from Tutluoglu and Keles, 2011) 

Where; 

𝑆: Half span length 

𝑅: Radius of the test specimen 

𝐷: Diameter of the test specimen 

𝑎: Notch length 

𝑡: Thickness of the test specimen 

𝑃: Apllied load (concentrated load) 

 

As a result of study Tutluoglu and Keles (2011) reported two types of fit functions. 

The first one was a linear fit function and the second was a fifth order polynomial. 

The first linear fit function was constructed relation between dimensionless mode I 

stress intensity factor 𝑌𝐼 and 𝑆 𝑅⁄ .  

 

𝑌𝐼 = 𝑚 (
𝑠

𝑅
) + 𝑛              (2.63) 
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Introduced linear fit function is only valid for specific 𝑎
𝑡⁄  ratio corresponding 

dimensionless specimen thickness  𝑡 𝑅⁄ . For this reason, 𝑌𝐼 fit functions for each 𝑎 𝑡⁄  

ratio regarding 𝑡 𝑅⁄  were tabulated in their study specificly. 

 

A fifth order polynomial fit function provided a relation between mode I stress 

intensity factor  𝑌𝐼 and 𝑡 𝑅⁄  as:  

 

𝑌𝐼 = 𝐶1 (
𝑡

𝑅
)

5

+ 𝐶2 (
𝑡

𝑅
)

4

+ 𝐶3 (
𝑡

𝑅
)

3

+ 𝐶4 (
𝑡

𝑅
)

2

+ 𝐶5 (
𝑡

𝑅
) + 𝐶6

 

     (2.64) 

 

This fifth order polynomial fit function was reported to be valid for specific  𝑎
𝑡⁄  

ratios. C values vary from -414 to 369. 𝑌𝐼 fit functions for each 𝑎
𝑡⁄  ratio regarding 

𝑆
𝑅⁄  were given in their study: 

 

Normalization equations for SNDB test specimen was given as follows; 

 

𝑌𝐼 =
𝐾𝐼

𝜎0√𝜋𝑎
              (2.65) 

 

𝜎0 =
𝑃

2𝐷𝑡
              (2.66) 

 

Where; 

𝑌𝐼: Mode I dimensionless stress intensity factor 

𝐾𝐼: Mode I stress intensity factor 

𝜎0: Effective tensile stress on notch plane 

𝑃: Applied load (concentrated load) 

𝐷: Diameter of the test specimen 

𝑡: Thickness of the test specimen 

𝑎: Notch length 
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Mode II stress intensity factor and fracture toughness determination studies were 

conducted by Karakaş (2011). Likewise, study of Tutluoglu and Keles (2011), fifth 

order polynomial fit functions for SNDB test specimen proposed to determine mode 

II fracture toughness of rocks. Normalization equation for SNDB test specimen to 

determine mode II fracture toughness value was given as follows; 

 

𝑌𝐼𝐼 =
𝐾𝐼𝐼

𝜎0√𝜋𝑎
     (2.67) 

 

𝜎0 =
𝑃

2𝐷𝑡
     (2.68) 

 

Where; 

𝑌𝐼𝐼: Mode II dimensionless stress intensity factor 

𝐾𝐼𝐼: Mode II stress intensity factor 

𝜎0: Effective tensile stress on notch plane 

𝑃: Applied load (concentrated load) 

𝐷: Diameter of the test specimen 

𝑡: Thickness of the test specimen 

𝑎: Notch length 

 

In Table 2.6 mode II fracture toughness of some rock types determined by SNDB test 

geometry were listed. 

 

Table 2. 6 Mode II fracture toughness of some rocks determined by SNDB test 

geometry 

 

Rock Type 
Mode II Fracture 

Toughness MPa√m 
Reference 

Ankara Gölbaşı Andesite 0.61 Karakaş (2011) 

Marble 0.62 Karakaş (2011) 

Gabbro 1.18 Het (2014) 
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CHAPTER 3 

 

 

3. FOUR-POINT ASYMMETRIC BENDING TEST SPECIMEN 

 

 

 

Major purpose of this study is to estimate the pure shear fracture toughness mode II 

of an edge notched beam shaped rock specimen. For mode II stress intensity factor 

computations of FPAB test, analytical, semi-analytical, and numerical modeling 

results from the previous work is summarized. Geometry of FPAB test specimen is 

illustrated with some sketches. 

 

3.1 Four-point asymmetric bending test specimen 

 

General geometry of the test specimen is selected as a beam. Beams are well-known 

structural elements in engineering analysis. In previous studies of structural analysis 

investigations, numerous loading conditions have been tested on beams and 

considerable experiences have been gained in Civil Engineering, Mechanical 

Engineering and also Mining Engineering disciplines. These experiences enable 

accurate computation of structural parameters for beams under different loading 

configurations. The other advantage of using beam type specimen is that stresses and 

deflections in beams are directly proportional to the applied loads. This condition 

requires that the action of the applied loads must not be affected by the change in 

shape of the beam due to bending (Timoshenko and Gere, 2013).  These advantages 

of beams are main reasons on selecting rectangular beam as base test specimen 

geometry. 
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3.2 Development of FPAB test specimen 

 

Four-point asymmetric bending (FPAB) test specimen was first proposed by Arrea 

and Ingraffea (1982). This work was concentrated on determining shear type fracture 

energy and mixed mode (mode I and mode II) fracturing parameters of concrete. 

Bazant and Pfeiffer’s (1986) work was on size effect on fracturing behavior of 

concrete using FPAB specimen.  Barr and Derradj (1990) used double edge notched 

FPAB specimen to investigate size effects in shear failure.  Martin and Davidson 

(1999) conducted mode II fracture toughness determination studies for laminated 

materials referring beam theory. They stated, there was a direct relationship between 

delamination and flexure amount for beams under loading. They defined flexure 

amount around crack by using beam theory formulations than mode II fracture 

toughness estimations for laminated materials.  

 

Fett, (1998) conducted a series of both mode I and mode II fracture toughness 

determination studies utilizing FPAB test geometry. He and Hutchinson (2000) 

proposed new analytical formulas to estimate mode I and mode II SIF’s for FPAB. 

With FPAB Yoshihara (2008) conducted mode II fracture toughness determination 

of wood. Aliha, et al., (2009) using marble specimens, a series of mode II fracture 

toughness experiments were performed. The main purpose of the study is 

determination of correct short moment arm distance that satisfies pure mode II brittle 

fracture. They prepared beam specimens with different dimensionless short moment 

arm distance d/W= 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75 and 1. They stated, to provide 

pure shear effect on crack plane d/W ratio should be greater than 0.5.  

 

Ayatollahi et al., (2012), investigated to determine optimum short and long moment 

arm distances to create pure mode II loading conditions on the crack plane for v-

notched FPAB specimen. They proposed long moment arm distance should be three 

times greater than short moment arm distance (L/d=3) to satisfy pure shear effect on 

the crack plane. They used 120 mm long beam with 24 mm beam depth. They also 

claimed that dimensionless crack length (a/W) should be greater than 0.3 for pure 
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mode II loading. Ayatollahi and Aliha, 2011 defined T-stresses around crack tip. 

They claimed, for small short moment arm distances (the ratio of short moment arm 

distance and beam depth) 𝑑/𝑊 < 0.5 considerable T-stresses observed and this 

yields significant mode I deformation on the crack plane.  

 

Krishnan and Xu, 2011 investigated shear mode testing conditions for short beams. 

In the study, two different beam depth groups were created as W= 19.1 and 30.5 mm. 

Short moment arm and long moment arm distances for each beam were set as 20 and 

40 mm, respectively. Thicknesses of beams were kept constant at 5.4 mm. Total 

lengths of beams were chosen as 152.2 and 122 mm, respectively. All beams were 

made of polycarbonate and polymethyl methacrylate (PMMA). As a result of this 

study it is stated that, pure mode II loading conditions can be provided also for short 

beams. 

 

3.3 Symsbols and geometric details of FPAB test specimen 

 

(FPAB) test specimen consists of two loading points and two support points which 

are configured asymmetrically. Arbitrary configurations of these points do not yield 

pure shear conditions on crack plane every time. Creating pure shear effect on crack 

plane is satisfied by structural analysis techniques using “Equilibrium of shear 

stress” concept. This condition requires that total bending moment along axis 

parallel to crack plane must be equal to zero. Loading was applied from bottom flat 

surface of the specimen in the numerical and experimental works. Therefore, rollers 

located on upper flat surface of the specimen became support points for this kind of 

loading configuration (Figure 3.1).  

 

In the literature, abbreviations of specimen dimensions and parameters, such as; 

beam depth and beam thickness do not agree each other. In this study, these 

dimensions and parameters are adopted from the beam theory and they are; 
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W: Beam depth 

B: Beam thickness 

d: short moment arm 

L: Long moment arm 

a: Crack length 

F: Concentrated load  

 

Units of parameters like beam depth, beam thickness, crack length, short and long 

moment arm are in meters and applied load is in Newtons in order to get stress 

intensity factor in MPa√m unit. 

 

 

 

Figure 3. 1 FPAB test specimen dimensions 

 

Pure shear conditions were satisfied by applying L=3d configuration of asymmetric 

loads. A Unit load of 1 N were applied to the loading points and it was proportioned 

as three quarters of F for short moment arm and one quarter of F for long moment 

arm to create zero total bending moment on the crack plane. 

a 

W 

B 

Loading Points 

Support Points 
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For different beam depths and crack lengths pure shear conditions were satisfied by 

changing loading configuration of asymmetric loads. 

 

For both numerical models and test samples, FPAB test specimens were prepared at 

three-main beam depth groups which were 40-50 and 60 mm. Each beam depth 

group included cracks of different lengths. Crack lengths were normalized as crack 

length over beam depth which is a/W. Stress intensity factors for numerical models 

and fracture toughness values for pure shear mode were analyzed in terms of 

normalized crack lengths.  

 

Loading and support points and other dimensional entities were illustrated in detail 

on 2D section of specimen in Figure 3.2 

 

 

 

Figure 3. 2 Generic 4-point asymmetric loading test specimen 

 

Different views of four-point asymmetric bending specimen geometries for both 

solid and wireframe forms are given in Figure 3.3.  

 

d L 

d L 

a 

Support 

point 

Support 

point 

3/4F 1/4F 
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Figure 3. 3 Solid and wireframe forms of FPAB test specimen from different views 

 

Machined notch creates a line and a plane within the specimen. This line is referred 

as notch line for 3-dimensional view, (Figure 3.3f). Similarly, the plane along which 

notch lies is referred as notch plane (Figure 3.3h).  

 

Here, to avoid confusion, terms “notch” and “crack” should be clarified. In fracture 

mechanics, crack refers to inherent impurities of materials or structures; on the other 

hand notches refer to artificial cracks which are machined deliberately in a specimen. 

These definitions had been become a need because of experimental studies of 

Notch Plane Bottom Loading Points 

Upper Support Points 

Notch Line 
Notch  

a b 

c d 

e f 

g h 



73 

 

fracture mechanics investigations. In order to observe crack propagation precisely 

notches are generated for intact specimens rather than utilizing arbitrarily cracked 

specimens. To make distinction over materials that generated human-made cracks 

from contain cracks inherently; “notch” and “crack” terms were derived by 

investigators. 

 

3.4 Analytical methods for mode II fracture toughness KIIc calculation 

 

Stress intensity factor is given in three main modes and they are: mode I, mode II and 

mode III. These modes are governed by the stresses acting from principal planes of a 

given state of stress on the crack plane. Fracture toughness is the form of a stress 

intensity factor that reaches a critical value under loading of a cracked body. As 

stress intensity factor reaches this critical value, crack cannot stand the stresses 

around crack tip and it propagates. Stress intensity factor is defined as;  

 

𝐾𝐼 = 𝜎𝑥𝑥 × √𝜋𝑎 × 𝑌𝐼(𝑎
𝑊⁄ ) for mode I (opening mode)        (3.1) 

 

𝐾𝐼𝐼 = 𝜏𝑥𝑦 × √𝜋𝑎 × 𝑌𝐼𝐼(𝑎
𝑊⁄ ) for mode II (in-plane shear mode)      (3.2) 

 

𝐾𝐼𝐼𝐼 = 𝜏𝑧𝑥 × √𝜋𝑎 × 𝑌𝐼𝐼𝐼(𝑎
𝑊⁄ ) for mode II (out of plane shear mode)     (3.3) 

 

KI: Mode I stress intensity factor 

KII: Mode II stress intensity factor 

KIII: Mode III stress intensity factor 

𝜎𝑥𝑥: Normal stress  

𝜏𝑥𝑦: In plane shear stress  

𝜏𝑧𝑥: Out of plane shear stress 

𝑌𝐼(𝑎
𝑊⁄ ): Crack length function for mode I 

𝑌𝐼𝐼(𝑎
𝑊⁄ ): Crack length function for mode II 

𝑌𝐼𝐼𝐼(𝑎
𝑊⁄ ): Crack length functions for mode III 
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Crack length functions can be stated as correction functions for geometric differences 

of test specimen’s thicknesses with different crack lengths. Therefore, it is given in 

the dimensionless form of (a/W) which is the ration of crack length to depth of the 

beam specimen.  

 

Dimensionless form of mode I and mode II stress intensity factors which are 𝑌𝐼 and 

𝑌𝐼𝐼 for FPAB test specimen has been investigated by the researchers and there are 

two well-developed solutions for calculation of them.  

 

The first one was proposed by Fett (1998) who defined the dimensionless form of 

mode I and mode II stress intensity factor for FPAB specimen as; 

 

𝐾𝐼 =
𝐹

𝐵 × 𝑊
× (1 −

𝑑

𝐿
) × 𝑌𝐼 × √𝜋𝑎              (3.4) 

 

𝐾𝐼𝐼 =
𝐹

𝐵 × 𝑊
× (1 −

𝑑

𝐿
) × 𝑌𝐼𝐼 × √𝜋𝑎              (3.5) 

 

So; dimensionless mode I and mode II stress intensity factors proposed by Fett was 

given by; 

𝑌𝐼 =
𝐾𝐼 × 𝐵 × 𝑊 × 𝐿

𝐹 × (𝐿 − 𝑑)
×

1

√𝜋𝑎
               (3.6) 

 

𝑌𝐼𝐼 =
𝐾𝐼𝐼 × 𝐵 × 𝑊 × 𝐿

𝐹 × (𝐿 − 𝑑)
×

1

√𝜋𝑎
               (3.7) 

 

Here; 

𝐾𝐼: Mode I stress intensity factor 

𝐾𝐼𝐼: Mode II stress intensity factor 

𝑌𝐼: Dimensionless mode I stress intensity factor 

𝑌𝐼𝐼: Dimensionless mode II stress intensity factor 

𝐹: Concentrated load 
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𝐵: Beam thickness 

𝑊: Beam depth 

𝐿: Long moment arm 

𝑑: Short moment arm 

𝑎: Crack length 

 

The second noticeable solution was proposed by He and Hutchinson (2000) in which 

the dimensionless form of mode I and II stress intensity factors for FPAB specimen 

was; 

 

𝑌𝐼 =
𝐾𝐼𝐼 × √𝑊

𝑄
×

1

√𝜋𝑎
               (3.8) 

 

𝑌𝐼𝐼 =
𝐾𝐼 × 𝑊2

6𝑐𝑄
×

(1 − 𝑎
𝑊⁄ )

1
2⁄

(𝑎
𝑊⁄ )

3
2⁄

              (3.9) 

 

𝐾𝐼 =
6𝑐𝑄

𝑊2 √𝜋𝑎 × 𝐹𝐼(𝑎
𝑊⁄ )             (3.10) 

 

𝐹𝐼(𝑎
𝑊⁄ ) = 1.122 − 1.121(𝑎

𝑊⁄ ) + 3.740(𝑎
𝑊⁄ )

2
+ 3.873(𝑎

𝑊⁄ )
3
 

−19.05(𝑎
𝑊⁄ )

4
+ 22.55(𝑎

𝑊⁄ )
5

 𝑓𝑜𝑟(𝑎
𝑊⁄ )

 
≤ 0.7           (3.11) 

 

𝐾𝐼𝐼 =
𝑄

√𝑊
×

(𝑎
𝑊⁄ )

3
2⁄

(1 − 𝑎
𝑊⁄ )

1
2⁄

× 𝐹𝐼𝐼(𝑎
𝑊⁄ )            (3.12) 

for 0 ≤ (𝑎
𝑊⁄ ) ≤ 1  

 

𝑄 = 𝑃 ×
(𝐿 − 𝑑)

(𝐿 + 𝑑)
             (3.13) 

𝐹𝐼𝐼(𝑎
𝑊⁄ ) = 7.264 − 9.37 × (𝑎

𝑊⁄ ) + 2.74 × (𝑎
𝑊⁄ )

2
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+1.87 × (𝑎
𝑊⁄ )

3
− 1.04 × (𝑎

𝑊⁄ )
4
            (3.14) 

 

So; dimensionless form of mode I and II stress factors according to He and 

Hutchinson is defined by; 

 

In here; 

𝐾𝐼: Mode I stress intensity factor 

𝐾𝐼𝐼: Mode II stress intensity factor 

𝑄: Shear force acting on crack plane 

𝑃: Distributed load (on beam thickness) 

𝑑: Short moment arm 

𝐿: Long moment arm 

𝑎: Crack length 

𝑐: Distance between notch and symmetry plane of the specimen 

𝑊: Beam depth 

𝐹𝐼(𝑎
𝑊⁄ ): Crack length correction function 

𝑌𝐼: Dimensionless mode I stress intensity factor 

𝐹𝐼𝐼(𝑎
𝑊⁄ ): Crack length correction function proposed by He and Hutchinson 

𝑌𝐼𝐼: Dimensionless mode II stress intensity factor 

 

In order to derive these semi-analytical expressions to calculate mode I and mode II 

stress intensity factors, numerical computation studies are performed. From 

numerical computations geometric correction functions are derived for different 

dimensionless notch lengths (a/W). Apparently, these functions are derived in terms 

of geometric changes in initial notch length “a” or beam depth “W”. This approach 

enables test conductors to define stress intensity factors independent from 

dimensional differences of possible test specimens. Likewise, both study expressed 

above utilized similar numerical computation studies. Stress intensity factors were 

calculated for different initial notch lengths then highly correlated polynomial fit 

functions derived for these two parameters (SIF vs a/W). This relationship defines 
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SIF change over geometric changes and can be used for geometric correction factor. 

Remaining part of the given functions are depend on dimensional changes. In order 

to give dimensionless form of SIFs dimensional parameters are cancelled with SIF. 

Generated new value is given as dimensional stress intensity factor.  

 

Dimensionless stress intensity factors for different geometries are given in two ways. 

The first way is to give definitive mathematical expressions like He and Hutchinson 

(2000). The second way is to give specific values for each geometric configuration 

like Fett (1998). 
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CHAPTER 4 

 

 

4. VERIFICATION STUDIES AND FINITE ELEMENT MODELING OF 

BEAM GEOMETRIES 

 

 

 

Many of engineering problems are defined by partial differential equations and exact 

saolution of these equations for complex shaped domains is quite difficult and 

sometimes impossible. For this reason, numerical computations of stress intensity 

factors were carried out by adopting finite element method.  

 

The finite element method is a mathematical tool that enables to solve these complex 

partial differential equations approximately with high accuracy. The main theory of 

finite element method is to divide the domain into finite elements. These elements 

are connected by nodes and approximate values for partial differential equations are 

achieved from these nodes. To achieve high convergence for solutions of these 

partial differential equations thousands of meshes should be generated. Computers 

can solve for node variables assigned to partial differential equations by 

programming a task for them. As number of nodes are increased in the model, 

accuracy of the solution tends to get higher convergence levels, but meanwhile, the 

computation time increases as well. Computing time is not only increased by number 

of nodes used, but also affected by the quality of the code (programming task) 

imposed to the computer (Davies A. J., 2011). So, to discard the disadvantageous 

effects of poor-structured finite element codes, some commercial packages have been 

introduced to users i.e. ANSYS, NASTRAN, LS-DYNA, ABAQUS etc. In this 

study, numerical computations are conducted utilizing ABAQUS commercial finite 

element package v12. 
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4.1 Notations, definitions and terms used by ABAQUS in modeling works 

 

As it is known, notation of mechanics may vary from text to texts and notation 

should be established before giving explanations. Likewise, finite element codes may 

utilize different notations for specific mechanical entities i.e. stress displacement and 

boundary condition etc. In order to prevent misunderstanding, notation of these terms 

is given. Other definitions and terms used in ABAQUS are given again to avoid lack 

of explanation in context. 

 

  Notation usage 4.1.1

 

ABAQUS denotes six degrees of freedom which are displacements with respect 

to 𝑥, 𝑦, 𝑧 𝑎𝑠  𝑢1, 𝑢2, 𝑢3, 𝑎𝑛𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠  𝑢𝑟1, 𝑢𝑟2, 𝑢𝑟3  about 𝑥, 𝑦, 𝑧  axes. 

Stresses and strains are given in tensor notation as;  

 

[𝜎𝑖𝑗] = [

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

] = [

𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 𝑆23

𝑆31 𝑆32 𝑆33

] (𝐴𝐵𝐴𝑄𝑈𝑆 𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛) 

                  (4.1) 

[𝜀𝑖𝑗] = [

𝜀11 𝜀12 𝜀13

𝜀21 𝜀22 𝜀23

𝜀31 𝜀32 𝜀33

] = [

𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33

] (𝐴𝐵𝐴𝑄𝑈𝑆 𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛) 

                  (4.2) 

 

Following Figure 4.1 illustrates degree of freedoms and reference points (RP) 

utilized in ABAQUS Software. 
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Figure 4. 1 Illustration of degree of freedoms and RPs in ABAQUS 

 

Stress intensity factors and crack propagation direction notations of ABAQUS code 

are: 𝐾𝐼: 𝑀𝑜𝑑𝑒 𝐼 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 

𝐾𝐼𝐼: 𝑀𝑜𝑑𝑒 𝐼𝐼 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 

𝐾𝐼𝐼𝐼: 𝑀𝑜𝑑𝑒 𝐼𝐼𝐼 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 

𝐶𝑃𝐷: 𝐶𝑟𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

 

 Terms and definitions 4.1.2

 

ABAQUS software utilizes some special terms that used in finite element modelling 

procedure itself. Only the ones utilized in this study are explained and they are; 

seeding, partitioning, crack line, cell, face, reference point. 

 

Seeding term is used for setting number of nodes per surface, edge or vertex. It is 

used for generating desired mesh density and geometry for whole body. 

U1 

U2 

U3 

UR3 

UR

UR1 Reference Point  

(Bounded to the red lines) 
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Partitioning term is used for dividing operation of bodies. It is used to form 

predefined parts to generate special mesh elements within the main body. It is also 

used to determine queries for stress and displacement readings. Successful 

partitioning leads to generate perfect meshes generation for part especially in the 

vicinity of cracks. 

 

Face term is used for partitioned two-dimensional closed surfaces. Faces can be 

labelled and can be used for multiple purposes. Cell term is used for partitioned 

three-dimensional closed volumes. Again cells can be labelled and used for multiple 

purposes i.e. assigning different material properties, mesh types and boundary 

conditions. Reference point is used for created arbitrary points non-dimensionally. 

Reference point is used to create distributed loads and boundary conditions can be 

assigned to it. It is an unbounded element and it is not a part of a main body. It is 

excluded by assembly. It transmits every single imposed mechanical effect to desired 

point, line or part of the domain. It may be assumed as a source of mechanical effect 

for coupled node, surface or cell. All these mentioned terms are illustrated in Figure 

4.2. 

 

 
 

Figure 4. 2 Terms utilized in ABAQUS 

Face Cell Reference Point Partitions 
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4.2 Fracture mechanics computation techniques of ABAQUS 

 

Fracture mechanics is the science of stress concentrators. Stress concentration (stress 

accumulation around a point) is resulted by the effect of far field stress acting on 

stress concentrators (cracks, notches, sharp edges). Around these points, stresses 

become infinite and create singularity. Singular stress is the key idea here and it 

should be evaluated precisely. It is known that for linear elastic brittle materials, 

stress state around crack tip has square root singularity. ABAQUS software offers 

special finite elements in order to compute singular stresses around a crack tip.  

 

Crack modeling is achieved by utilizing two methods in ABAQUS. The first method 

is employing “seam crack” and the second method is creating the notch by 

modelling. Het (2014) introduced that, there is no considerable difference between 

results of seam crack and blunted notches. Achieved difference is around 1%. So, for 

ease of modeling seam cracks are appropriate method for fracture mechanics 

computations. 

 

After seam crack is defined,  crack tip and first contour of crack tip are defined. In 

order to evaluate J-integrals for each finite element, predefined contour region should 

be created. Finally, “q-vector” determination is performed. “q-vector” is a unit 

vector for virtual crack extension direction. 

 

 Seam crack 4.2.1

 

In the simplest form seam is a virtual edge or a face with zero thickness that has 

ability of separation. Geometry of a seam changes upon the finite element model 

created in two dimensional (line shaped) or three dimensional space (face shaped). 

Seam divides the body as two corresponding surfaces where the seam is located and 

it is closed before loading. However, it has capability of separate with no resistance 

during loading. ABAQUS sets lap-jointed duplicate nodes throughout the seam. The 
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seam has to be embedded within a solid part of a three-dimensional domain as a 

plane. After the seam is defined, following crack modeling procedures can be 

performed. In Figure 4.3 and Figure 4.4 seam crack is illustrated in both two and 

three dimensional spaces. 

 

 

 

           Figure 4. 3 Seam crack in two dimensional body (ABAQUS User  

           Documentation, 2012) 

 

 

Figure 4. 4 Seam crack in three dimensional body (ABAQUS Documentation, 2012) 

 

Defining the seam is the first part of the crack modelling procedure. This step is 

followed by defining the crack itself. In this study crack definition and its calculation 

is conducted by using J-contour integral technique.  
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 Crack front 4.2.2

 

The area surrounding the crack tip till the first contour integral circle is defined as a 

crack front. Crack front is utilized to evaluate singular stresses of the first contour 

integral. Evaluation is performed by calculating J-integral for each contour. 

Accuracy level of contour integral calculations depends on size of contours created. 

In the Figure 4.5 contour integral regions are illustrated. 

 

 

              Figure 4. 5 Contour integral regions for two dimensional body  

              (ABAQUS Documentation, 2012) 
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In three-dimensional finite element modelling, contour integral calculation extends 

through the crack line. This means, in addition to calculations made expanding from 

the first contour integral to the outer contours; calculations are repeated for each 

node located on the crack line in a row. In the Figure 4.6 crack front and contour 

integral regions in three-dimensional body is illustrated (ABAQUS, 2006). 

 

 
 

Figure 4. 6 Contour integral calculation in three-dimensional modelling (ABAQUS 

Documentation, 2012) 

 

 Crack tip stress singularity calculation 4.2.3

 

Materials include crack inherently and cracks create singularity in terms of strain 

field at the crack tip. In order to improve the precision of contour integrals small-

strain analysis should be conducted. In order to satisfy the small-strain analysis 

conditions, special meshing styles should be utilized.  

 

Creating crack tip singularity improves the precision of the calculation of the J-

integral. Thus, at the vicinity of the crack tip, stresses and strains are calculated more 

accurately. If it is assumed that “r” is the distance from crack tip ABAQUS offers 

singularity form for a small-strain analysis in linear elastic medium as ε ∝ r−1/2. 

 

Numerically, crack tip singularity is provided by collapsed elements. Collapsed 

elements are the crucial part of the crack tip meshing procedure. A quadrilateral 
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element is degraded to a triangular element by combining the edge nodes of 

quadrilateral element to a single node. Therefore, a triangular element is generated.  

In Figure 4.7 degraded mesh element is illustrated. 

 

 
 

                               Figure 4. 7 Collapsed  duplicated  nodes  in  2- 

                               dimensional elements (ABAQUS Documentation,  

                               2012) 

 

Similarly, in three-dimensional space a hexahedral element degrades into a wedge 

element. Three-dimensional collapsed element is illustrated in Figure 4.8. 

 

 
 

                    Figure 4. 8 Collapsed duplicated nodes in 3-dimensional  

                    elements(ABAQUS Documentation, 2012) 

 

4.3 Verification studies 

 

In order to illustrate user skills in FEM modelling and capabilities of numerical 

approximation of fracture mechanics code ABAQUS software, two verification 

problems are modeled and analyzed. First one of the verification problems is the 
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three-point bending plate problem. The second one is the pure shear plate problem. 

Both verification problems have analytical solutions for mode I and mode II stress 

intensity factors. SIF results calculated with analytical expressions and numerical 

results computed by ABAQUS software are compared below. 

 

 Three-point bending plate verification problem 4.3.1

 

Numerical verification of the three-point bending plate problem performed 

comparing with its analytical solution given by Srawley (1976), and Tada et al., 

(2000). Verification study was divided into two parts. First, analytical solutions of 

the problem are given, then numerical computations efforts are compared with 

available solutions in the literature. 

 

Analytical Solution 

 

Srawley (1976), proposed a polynomial expression in order to improve the 

calculation of the stress intensity factor to define plane strain fracture toughness of 

materials. Previously proposed mathematical expressions for stress intensity factor 

calculation of plates subjected to  bending type of loads have errors for which having 

dimensionless crack length a/W less than 0.45 or greater than 0.55. While declared 

range of ratios sufficient for the purpose of crack growth they are not suitable for 

cases that have the ratio of a/W range from 0 to 1. In order to achieve this restriction, 

Srawley proposed the expression below. 

 

𝐾𝐵√𝑊

𝑃
=

3(
𝑆
𝑊)√𝛼[1.99 − 𝛼(1 − 𝛼)(2.15 − 3.93𝛼 + 2.7𝛼2)]

2(1 + 2𝛼)(1 − 𝛼)3/2
   (4.3) 

For 0 ≤ 𝛼 = 𝑎/𝑊 ≤ 1 and where; 

𝐾: Stress intensity factor 

𝐵= Thickness 

𝑊= Width 

𝑎= Crack length 
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𝑆= Span 

 

Apart from this, Tada et al., (2000), by giving a reference to Srawley (1976), 

explains the same problem as follows, 

𝜎 =
6𝑀

𝑊2
              (4.4) 

 

𝜎 =
6𝑀

𝑊2
              (4.5) 

 

𝑀 =
𝑃𝑆

4
              (4.6) 

 

𝐾𝐼 = 𝜎√𝜋𝑎 × 𝐹(
𝑎

𝑊
)             (4.7) 

 

𝐹 (
𝑎

𝑊
) =

1

√𝜋
×

1.99 −
𝑎
𝑊 (1 −

𝑎
𝑊)(2.15 − 3.93

𝑎
𝑊 + 2.7(

𝑎
𝑊)2

(1 + 2
𝑎
𝑊)(1 −

𝑎
𝑊)3/2

       (4.8) 

Using Srawley’s and Tada’s formulations for mode I stress intensity factor KI 

calculation for three-point bending plate was evaluated as 1159.43 Pa√𝑚 and 1160 

Pa√𝑚 respectively. 

 

Numerical Solution 

 

Numerical model of three-point bending plate problem was constructed by given 

dimensions in the Table 4.1. Dimensions and geometry illustration is given in Figure 

4.9. 
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Table 4. 1 Dimensions of three-point bending plate 

 

Dimension Value (mm) 

Plate Length (x-direction) 75 

Plate Depth (y-direction) 15 

Plate Thickness (z-direction) 75 

 

 

 

Figure 4. 9 Geometry of the three-point bending plate 

 

Properties used in modeling andesite plate were adopted from Het (2014) as elastic 

modulus of E=12.35 GPa and Poisson’s Ratio of ν=0.15. After material properties 

were assigned to the body, boundary conditions were to be defined properly. 

 

Since it is a bending problem, there is a loading application point at the top reference 

point and there are two supporting points at the bottom boundary. In order to provide 

bending conditions, those three points have to be configured properly. Applied 

boundary conditions for support points are imposed as fixed displacement as u2=0, 

and u3=0, and fixed rotations as ur1=0, and ur2=0. They are free to move in x 

direction and to rotate out of plane. In Figure 4.10 loading point and in Figure 4.11 

boundary conditions of the domain can be seen. 

 

L= 75 mm. 

W
=

1
5
 m

m
. 

Span (S) = 60 mm. 

Line distributed load “P” 

 P/2  P/2 

Notch length 

a=7.5 
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         Figure 4. 10 Loading point of three-point bending plate problem 

 

 

 

Figure 4. 11 Boundary conditions of three-point bending plate problem 

 

After boundary conditions are defined next step is dividing the domain into finite 

elements. Meshing process is the crucial part of the numerical modeling. User 

Loading 

Point 

Reference 

points 

Support  

points 



92 

 

experience on meshing process affects the quality of meshes and finally numerical 

computations results. Crack tip meshing procedure requires extra care. Because of 

stress singularity, ABAQUS strongly suggests utilizing sweep mesh around crack tip 

which radially expands through the first contour. Number of lines radiated from 

crack tip is another accuracy issue. Suggested number of lines radiated from crack tip 

by ABAQUS is between 8 and 36. In order to have an idea about this, Het (2014) 

conducted mesh convergence study and shoved that full accuracy was satisfied by 

dividing the crack tip into 32 lines. In the Figure 4.12, utilized meshing style can be 

seen easily. 

 

 

 

                     Figure 4. 12 Crack tip meshing 

 

 

For this pure opening mode problem for which KII is theoretically zero, numerically 

computed KII has to be close to zero. In order to obtain high accuracy results in terms 

of KI and KII,  fine meshing procedure was performed. Around 80000 finite elements 

were generated in total and nearly 50000 of them were structured in the vicinity of 
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contour integrals. Remaining finite elements were located on other parts of the 

domain. In Figure 4.13, whole body meshing can be seen in different views. 

 

 

 

    Figure 4. 13 Meshed domain 

 

Finite elements were generated by C3D8R type structured elements. ABAQUS 

defines these elements as 3D stress brick elements which have 8 vertex nodes.  

 

As a result of numerical computation, good agreement with analytical solution of the 

three-point bending problem was achieved. Mode I KI and mode II KII stress intensity 

factors were computed as 1154.8 Pa√𝑚 and 7.3 × 10−8 Pa√𝑚, respectively. Mode 

II stress intensity factor KII was approximately zero as expected. Therefore, pure 

Crack tip region 

75 mm 

15 mm 
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bending conditions were satisfied. Both results of analytical solutions and numerical 

solution of the pure bending plate problem were listed in Table 4.2 below. 

 

   Table 4. 2 Comparative results for three-point bending plate 

 

Problem KI (Pa√𝒎) KII (Pa√𝒎) Difference (%) 

Srawley (1972)  

(2D Plane Strain) 

 

1159.43 0 - 

Tada et al., (2000) 

(2D Plane Strain) 

 

1160.00 0 - 

Numerical Result 

(3D Modeling) 
1154.80 7.30 × 10−8 0.4 

 

3D numerical modeling KII value is a little bit lower than 2D plane strain analytical 

values since in 3D modeling beam can expand in the out of plane direction freely as 

opposed to the solutions based on plane strain assumption. These results and 

agreements with solutions of Srawley (1976) and Tada (2000) show that numerical 

modeling of the problem is robust. 

 

 Pure-shear plate verification problem 4.3.2

 

Pure-shear plate can be defined as: a plate having a central embedded crack which is 

subjected to a shear traction on the upper surface. In Figure 4.14 applied surface 

shear stress and boundary conditions are illustrated.  
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           Figure 4. 14 Loading and boundary condition configuration of the pure shear  

           plate problem 

 

 

Analytical Solution 

 

On a 400 mm square plate having a 20 mm crack mode II loading conditions are 

imposed by applying 1 MPa surface shear traction at the upper boundary. Mode I and 

mode II stress intensity factors, 𝐾𝐼 and 𝐾𝐼𝐼 are calculated analytically by following 

formulas: 

 

𝐾𝐼 = 𝜎√𝜋𝑎              (4.9) 

 

𝐾𝐼𝐼 = 𝜏√𝜋𝑎              (4.10) 

 

For an only unit 1 MPa shear stress applied to upper boundary of the plate, stress 

intensity factor for mode I; 

Moment point 
Fixed Boundary 

Shear 

Traction Vector 

Resultant x-direction 

displacement as a response of 

surface traction and lower fixed 

boundary condition bottom face 

y 

x 
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𝐾𝐼 = 𝜎√𝜋𝑎 = 0 × √𝜋 × 0.01 = 0 𝑀𝑃𝑎√𝑚           (4.11) 

 

Since applied normal stress σ=0, and SIF for mode II; 

 

𝐾𝐼𝐼 = 𝜏√𝜋𝑎 = 1 × √𝜋 × 0.01 = 0.177 𝑀𝑃𝑎√𝑚           (4.12) 

 

Numerical Solution 

 

The pure shear plate problem was modeled as a plane strain problem in two-

dimensional space and assumed as linear elastic. Mechanical properties of the plate 

are used as Elastic Modulus of E = 200 MPa, and Poisson’s Ratio of ν = 0.3. Out of 

plane thickness is 1600 mm long. This a plane strain problem; this dimension is there 

and significant only for computation of stress at the loaded boundary. In Following 

Table 4.3 geometric dimensions and material properties are listed. 

 

                 Table 4. 3 Geometric dimensions and material properties of the  

                 problem 

 

Parameter Value 

Elastic Modulus (E) 200 MPa 

Poisson’s Ratio (v) 0.3 

Height (2H) 400 mm 

Width (2W) 400 mm 

Plane Strain Thickness 1600 mm 

Crack Length (2a) 20 mm 

Surface Traction Amount  1 MPa 

 

Material properties of the previous beam problem and verification problem here are 

different and one may question these differences. At this point, in order to compare 

given solutions of these two well-known fracture mechanics problems no changes 

were made in properties used by previous researchers like Het (2014). In fact, 
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another study conducted by Het (2014) to investigate the effect of elastic properties 

on SIF’s showed that no effect of varying E and ν was observed. So, for better 

visualization of deformed shape of plate in checking the results, a rather low value of 

stiffnes as  E=200 MPa was chosen to be inpu to the model. 

 

In order to create 1 MPa shear stress on the upper surface of the plate, required load 

application was calculated from equation 4.13.  

 

Edge of square plate = 400 mm. 

Plane Strain Thickness= 1600 mm.  

 

400 𝑚𝑚 × 1600 𝑚𝑚. = 640,000 𝑚𝑚2. 

 

𝜎 =
𝐹𝑜𝑟𝑐𝑒

𝐴𝑟𝑒𝑎
     (4.13) 

So, 

 

1𝑀𝑃𝑎 =
𝐹𝑜𝑟𝑐𝑒

640,000 𝑚𝑚2
   (4.14) 

 𝐹𝑜𝑟𝑐𝑒 = 640,000 𝑁. 

 

In the Figure 4.15 loading and boundary conditions of the model can be seen. 
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Figure 4. 15 Applied load and boundary conditions of the problem 

 

In the three-point bending plate problem crack an edge crack, so there was only one 

crack tip inside the plate. In this problem because of the embedded crack, there are 

two crack tips naturally. Meshing was imposed by taking these effects into 

consideration. In the model, around 8000 eight-node plane strain CPE8R elements 

were utilized. Mesh concentration was structured in detail at the crack region again. 

In Figure 4.16 meshed form of whole body and crack region can be seen. 

 

A seam crack with zero thickness was embedded to the center of the plate. ABAQUS 

constructs duplicate nodes on the seam and those duplicate nodes enable the crack to 

have ability of separation.  
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   Figure 4. 16 Whole body meshing of pure shear plate 

 

Fracture toughness is a material property. Stress intensity factor is in the form of 

𝐾 = 𝜎√𝜋𝑎 for plates under pure shear. So, in general crack propagation occurs when 

σ is equal to critical value σc or when crack is equal to critical length. This means, σ 

might be lower critical value but crack length might be long and ensures propagation.  

 

In the formulation of crack tip stress field only σ and crack length are involved with 

constant stiffness. Thus, Young’s modulus and Poisson’s ratio do not effect stress 

intensity computations. In Figure 4.17 crack tip meshing style can be seen. 

Crack 
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            Figure 4. 17 Crack tip meshing of pure shear plate 

 

Results extracted from the numerical computation of the pure-shear plate problem 

were very close to the results of analytical solutions. Numerical computation result 

for mode I stress intensity factor KI was obtained as “0”. Mode II stress intensity 

factor KII was 0.175 MPa√m compared to the analytical result of 0.177 MPa√m. The 

error between numerical computation and analytical calculation was around 0.2%.  

 

Based on the results of verification work, it can be safely stated that modeling 

procedures, crack tip handling, and SIF computations are expected to yield 

sufficiently accurate results in SIF computations for modeling of FPAB specimen 

geometries in the following sections. 

 

In order to get accurate results for SIF computations optimum number of contour 

integrals were decided as 19 contours. Optimum spacing between two succeeding 

Crack Tips 

Seam Crack 
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contours was 0.25 mm. Diameter of the outmost contour integral was set as 5 mm 

around the crack tip.  

 

4.4 Finite element modeling of beam geometries 

 

This chapter covers all the efforts creating numerical models of FPAB (four-point 

asymmetric bending), FPB (four point bending), and SNDB (straight notched disc 

bending) test specimen geometries. 

 

Principal investigations concentrated on FPAB specimen geometry to investigate 

characteristics of pure mode II loading conditions and stress intensity factors. First, 

base numerical model was created for FPAB specimen, then stress redistribution and 

stress intensity factor parameters were investigated for different beam depths and 

crack lengths. FPAB test specimen models were constructed for three main beam 

depth groups. Then, behavior of models of each beam depth group was analyzed with 

eight different notch lengths. Entire specimen geometry and boundary load 

configurations were varied and adjusted to catch the right combinations generating 

pure mode II loading conditions at the crack tip.  

 

FPB test specimen was modeled to have an idea about size of the crack tip plasticity 

zone under mode I loading for a beam type geometry under four point bending load 

similar to FBAB geometry. Purpose was to compare extent of fracture process zone 

(FPZ) for FPAB and FPB geometries under the same load intensity and similar 

boundary conditions.  

 

Numerical model for SNDB test specimen was created to obtain the pure mode II 

SIF for a different geometry. A number of pure mode II tests were planned to be 

conducted with SNDB geometry. KIIc result of SNDB tests was planned to be 

compared to mode II fracture toughness values of FPAB tests.  
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Numerical studies were conducted by utilizing Dassault Systemes’ finite element 

code named ABAQUS
© 

v.12 which mentioned in Chapter 6. Overall 120 numerical 

models were created to compute mode II stress intensity factor with FPAB specimen. 

In Figure 4.18 general geometry of FPAB specimen for mode II type of loading is 

illustrated. 

 

 

 

         Figure 4. 18 Geometry of FPAB test specimen 

 

 Improvement studies of base numerical model of FPAB test specimen 4.4.1

 

In order to create reliable and robust numerical model of FPAB test specimen several 

trial numerical models were created. These numerical models were generated for one 

model geometry at first.   

 

Beam length or in other words span of specimen was constrained by platen size of 

compression test machine in the laboratory. So, beam length was configured as 120 

mm in first place. Then, in order to create well-shaped geometry, beam depth of the 

specimen was set as 50 mm and beam thickness as well. Initial notch length was 

preferred as 15 mm (a/W=0.3) in order to avoid possible boundary influence effects 
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(Bazant and Pfeiffer 1986). After base specimen geometry was structured, location 

selection and configuration studies for load and support points were performed to 

create pure shear effect on the crack plane. To do this, first 2D (plane strain) 

numerical models were created. Plane stress thickness of the numerical model was 

implied as 50 mm. Then, bottom loading points were subjected to a unit load of 1 N 

in total and support locations were varied to create pure shear effect on the crack 

plane.  

 

In the literature there are such investigations (Bazant and Pfeiffer, 1986; Suresh 

et.al., 1990; Ayatollahi et. al., 2012) that were aimed at creating pure shear effect on 

the crack plane for FPAB test specimen. Therefore, to create zero bending moment 

on the crack plane unit load partially was divided and applied to the loading points. 

For each loading point a part of the unit load was applied proportional to their 

distances to the crack plane.   

 

2D plane strain numerical models showed that, the best configuration is obtained for 

L=3d. For the specimen having L=120 mm, W=50 mm B=50 mm and a=15 mm, pure 

shear mode II stress intensity factor was satisfied when d=12.5 mm and L= 37.5 mm.  

 

Table 4. 4 Modeling parameters of base FPAB model 

 

Parameters Values 

Length 120 mm 

Depth (W) 50 mm 

Thickness (B) 50 mm 

Short moment arm distance (d) 12.5 mm 

Long moment arm distance (L) 37.5 mm 

Notch length (a) 15 mm 

Young’s Modulus 12.3 GPa 

Poisson’s Ratio 0.12 

Load (short moment arm) 0.75 

Load (long moment arm) 0.15 
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In Figure 4.19 loading and support points that satisfy the pure shear conditions on the 

crack plane are shown. Material properties (E and ν) for Ankara Gölbaşı Andesite are 

extracted from laboratory tests. In Table 4.4 modeling parameters of base FPAB 

model are listed. 

 

 

 

Figure 4. 19 One of loading and supporting points configuration for FPAB specimen 

 

After locations of loading and support points were determined from 2D models, 3D 

numerical models were created for more realistic simulation of the beam as a plate 

with finite thickness as used in test samples. 3D numerical models are more sensitive 

to boundary conditions than 2D numerical models. Therefore, defining boundary 

conditions are crucial for 3D dimensional numerical analysis. In the following 

section, development of boundary conditions of FPAB test specimen will be 

explained. 

 

 Boundary conditions of numerical models 4.4.2

 

Essential boundary conditions are one of the most critical parameters in numerical 

modeling studies. Finite element method uses to make approximations to compute 

the stresses, bending moments and the other mechanical entities on given body and 

Loading Point Loading Point 

Support 

Point 

Support 

Point 

d 

d 

L 

L 

a 

12.5 mm 

12.5 37.5 

37.5 mm 1
5
 m

m
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uses differential equations. These differential equations are in form of boundary 

value problems. Shortly it can be said that, essential boundary conditions in Finite 

Element Analysis are the initial values of the differentiated entities. Then, essential 

boundary conditions are implied to the numerical model. So, all the approximations 

are made by using these essential boundary conditions. Therefore, to have an idea of 

correct essential boundary conditions, several trial computations have to be 

conducted and their results must be mechanically examined to achieve accurate 

solutions.  

 

After all these trials the most reliable numerical model that accurately approximated 

real-life behavior of the test specimen were selected as the modeling technique of 

this beam or plate problem.  

 

For upper support points along entire thickness of the beam were (u2 and u3) fixed 

against displacement in –y and –z directions. For right and left flat sides of the beam 

all planar surfaces were fixed against rotation about –z axis. For loading points along 

entire thickness of the beam except for –y direction (u2) all degree of freedoms fixed 

(u1, u3, ur1, ur2, ur3). Boundary conditions identified as ideal for FPAB specimen 

geometry are shown in Figure 4.20 and Figure 4.21. In Table 4.5 boundary 

conditions for FPAB specimen geometry are listed. 

 

   Table 4. 5 Boundary conditions for FPAB test geometry 

 

Boundary 

Condition 
Implied Geometric Entity Fixed DOF 

B.C. 1 Reference point 1 (loading line) u1, u3, ur1, ur2, ur3 

B.C. 2 Reference point 2 (loading line) u1, u3, ur1, ur2, ur3 

B.C. 3 Support points of short moment arm u2, u3 

B.C. 4 Support points of long moment arm u2, u3 

B.C. 5 Right flat side ur3 

B.C. 6 Left flat side ur3 
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Figure 4. 20 Boundary conditions 1 

 

Reference Points are special entities that offered by ABAQUS
© 

software. Unit load 

was applied through Reference Points to the related loading points. They were 

utilized for converting the concentrated load into distributed load. Reference Points 

were bounded by kinematic coupling method to related points. Kinematic coupling 

creates links between Reference Points and influenced node regions which are 

selected by user. In Figure 4.21 these kinematic coupling links are illustrated 

Kinematic coupling method enables the control of selection which degree of freedom 

of the selected nodal surface will be affected by implied conditions. In our case these 

implied conditions are two concentrated loads which are distributed to the two lines 

that lie on the bottom flat surface of beam. Implied boundary conditions of Reference 

Points are shown in Figure 4.22. 

 

Fixed in –y and  

–z directions 

Fixed in rotation 

about –z 

direction 
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Figure 4. 21 Kinematic coupling of reference points 

 

 

 

  Figure 4. 22 Boundary conditions of reference points 

 

 

Kinematic Coupling Links 

Fixed in –x,-z directions and rotations 

about –x,-y,-x directions 
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 Mesh generation of FPAB specimen 4.4.3

 

Meshing process of numerical modeling work is the most important part of finite 

element analysis. Wang et al., (1977) employed singularity elements, in order to 

compute singular stresses around crack tip. Crack tip possesses 𝜎 ∝
1

√𝑟
 type 

singularity. Likewise, in this study, to compute crack tip stress singularity the same 

singularity element offered by ABAQUS element library was employed.  

 

Another important point on meshing process in crack problems is size of the contour 

integral region. Improper contour integral regions which are excessively large or 

small may lead acquiring inaccurate results for SIFs. ABAQUS suggests certain 

techniques for size of contour integral region. These techniques are related to the 

length of the crack. Following these suggestions, size of the outmost contour integral 

region was set as 5 mm (Figure 4.23). The innermost contour integral region (first 

contour integral region) was set as 0.5 mm. So, 19 contour integrals were achieved 

and this number was stated as appropriate number of contours in the integral region 

(ABAQUS User’s Manual, 2012). All numerical models were created with the same 

contour integral region properties in terms of size and number. This consistency and 

stability enabled justifiable comparisons of size of potential plastic zones and von-

mises stresses around crack tip for different models.  

 

 

 

Figure 4. 23 Contour integral region and meshing 
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Remaining parts of the FPAB test specimen were built by utilizing structured C3D8R 

brick elements. Element density of the numerical model was set as approximately 

80000. In Figure 4.24 and 4.25 crack tip meshing and whole body meshing of FPAB 

test specimen are illustrated. 

 

 
 

              Figure 4. 24 Whole body meshing 

 

 
 

                       Figure 4. 25 Crack tip meshing 
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 Loading configuration investigation for pure mode II SIF state in FPAB 4.4.4

models 

 

The pure shear mode II configuration of each beam depth group was investigated for 

different crack lengths (notch length/ beam depth) a/W=0.15, 0.20, 0.25, 0.30, 0.35, 

0.40, 0.50 and 0.60. In order to find the proper loading configuration, five different 

loading configurations were employed for each crack length. In Table 4.6 applied 

loading configurations for the specimen having beam depth 50 mm, 0.3 

dimensionless notch length (in dimensional form 15 mm) were listed. 

 

Table 4. 6 Various loading configurations applied to a specific specimen W= 50 mm 

and a/W= 0.3 for pure mode II SIF  KII 

 

Beam 

Length 

(mm) 

Beam 

Depth 

(mm) 

Beam 

Thickne

ss (mm) 

Notch 

Length 

(mm) 

Dimensionle

ss Notch 

Length 

Short 

Moment 

Arm (d) 

(mm) 

Long 

Moment 

Arm (L) 

(mm) 

120  50 50 15 0.3 

11.5 34.5 

12.0 36.0 

12.5 37.5 

13.0 39.0 

13.5 40.5 

 

For described specimen geometry, loading configuration with d= 12.5 mm and L= 

37.5 mm yielded almost pure mode II SIF condition on the crack plane. In table 4.7, 

KI and KII results for the concerned specimen were listed.  

 

Using these results, actual loading configuration that makes mode I SIF absolutely 

“zero” (pure shear) was calculated. Linear fit in Figure 4.26 gives optimum value of 

“d” distance that makes mode I SIF absolute “zero”. 
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         Table 4. 7 Loading configurations and computed mode I and II SIF’s for the 

         specimen W=50 mm and a/W= 0.3 

 

d (mm) L (m) KI Pa√m KII Pa√m KI/KII (%) 

11.5 34.5 -2.26 -49.07 4.62 

12.0 36.0 -1.31 -48.47 2.64 

12.5 37.5 -0.38 -47.68 0.78 

13.0 39.0 0.48 -42.02 -1.19 

13.5 40.5 1.32 -43.93 -3.02 

 

In this case “d” distance that satisfies pure shear conditions on the notch plane is 

evaluated as 12.72 mm. In modeling work the reason for choosing d=12.5 mm 

instead of exact value of short moment arm is due the accuracy of machining the 

initial notch to the beam specimen in experimental work of fracture toughness 

investigations. Locating the loading rollers in real life to such a number like d=12.72 

mm is not possible. Half millimeters of sensitivity is the limit point of experimental 

study.  

 

 

 

              Figure 4. 26 Fit function for loading configuration satisfies absolute  

              Pure mode II SIF effect 
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This computation process was applied to the all crack lengths a/W=0.15, 0.20, 0.25, 

0.30, 0.35, 0.40, 0.50 and 0.60 for the specimen W=50 mm. In table 4.8, 

dimensionless short moment arm “d/W” values corresponding dimensionless crack 

lengths a/W were listed. Remaining charts for dimensionless short moment arm and 

KI/KII ratios were given in APPENDIX A. 

 

Table 4. 8 Dimensionless short moment arm values corresponding to dimensionless 

crack lengths 

 

Dimensionless crack length  

(a/W) 

Dimensionless short moment arm 

(d/W) 

0.15 0.21 

0.20 0.23 

0.25 0.25 

0.30 0.25 

0.35 0.24 

0.40 0.23 

0.50 0.18 

0.60 0.14 

 

As a result, fourth order polynomial fit function (Figure 4.27) was derived for d/W 

and a/W values. This result apparently shows the relationship between moment arms 

and crack lengths. This also indicates that required bending moment on the initial 

notch for crack propagation regarding pure mode II conditions is independent from 

beam depth. 
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Figure 4. 27 Beam depth 50 mm fourth order polynomial fit function for d/W vs a/W 

 

FPAB specimens for W=40 and 60 mm, similar results for dimensionless short 

moment arm distance versus dimensionless crack lengths a/W=0.15, 0.20, 0.25, 0.30, 

0.35, 0.40, 0.50 and 0.60 were established. Graphical results for these relationships 

are illustrated in following Figures 4.28 and 4.29. 
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Figure 4. 28 Beam depth 40 mm fourth order polynomial fit function for d/W vs a/W 

 

 

Dimensionless short moment arm distance (d/W) first shows an increasing trend up 

to relative crack length (a/W) around 0.3, then decreases following a fourth order 

polynomial form. 

 

The critical d/W values ensuring pure shear condition is measured in terms of 

𝐾𝐼
𝐾𝐼𝐼

⁄ ratio, (ratio should be zero, for pure shear condition). 

 

Values other than the optimum d/W cause development of opening mode and non-

zero mode I stress intensity factor on the crack plane. In this case pure shear 

condition fails. 
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                   Figure 4. 29 Beam depth 40 mm fourth order polynomial fit  

                   function for d/W vs a/W 

 

Relationship between d/W and a/W was represented quite accurately in the same 

fourth order polynomial for all beam depth groups. Combining all beam depths in a 

single plot and functional form, dimensionless short moment arm distances (d/W) 

were averaged in terms of corresponding dimensionless notch lengths (a/W) and 

plotted in Figure 4.30. 

 

 

                  Figure 4. 30 Average d/W vs a/W relationship; all beam depths  

                  Were combined 
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For d/W vs a/W relationship, a fourth order polynomial fit function produced quite 

accurate (R
2
=1) results in estimating correct short moment arm distance to create 

pure shear state on the notch plane. New parametric equation is proposed for 

optimum  d/W value for pure mode II conditions as;  

 

𝑑
𝑊⁄ = 3.8216(𝑎

𝑊⁄ )
4

− 2.5389(𝑎
𝑊⁄ )

3
− 1.7519(𝑎

𝑊⁄ )
2

+ 1.2662(𝑎
𝑊⁄ ) + 0.0692             (4.15) 

 

These findings are not sufficient to declare for FPAB testing geometry that there is 

no size effect and boundary influence effect on mode II SIF. These are strong 

indications of FPAB testing geometry is free from size and boundary effects. 

Therefore, SIF investigations and stress analyses should be conducted. In this study 

stress analyses were conducted in terms of von-mises yield criterion. 

 

 Pure mode II SIF investigation for different beam depths and crack 4.4.5

lengths 

 

Numerical models of pure mode II stress intensity factors for each beam depth group 

and dimensionless crack lengths were created. For three beam depth groups W= 40, 

50 and 60 mm and dimensionless crack lengths a/W=0.15, 0.20, 0.25, 0.30, 0.35, 

0.40, 0.50 and 0.60 geometries were modeled. In all, 24 loading configurations were 

obtained that satisfy pure mode II conditions. Pure mode II results for these 

geometries are listed in Table 4.9. All Mode I stress intensity factors of computed 

specimen geometries were approximately “0”.  
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  Table 4. 9 Pure mode II results for all beam depth groups 

 

Beam 

Depth 

Group 

(mm) 

Dimensionless 

Crack Length 

(a/W) 

Dimensionless 

Short Moment 

arm Distance 

(d/W) 

Short Moment 

Arm Distance 

(mm) 

Pure Mode 

II SIF 

(Pa√m) 

40 

0.15 0.2125 8.5 26.98 

0.20 0.2375 9.5 35.18 

0.25 0.2500 10.0 44.06 

0.30 0.2500 10.0 53.30 

0.35 0.2500 10.0 60.81 

0.40 0.2250 9.0 68.05 

0.50 0.1875 7.5 76.99 

0.60 0.1375 5.5 81.04 

50 

0.15 0.2100 10.5 24.46 

0.20 0.2400 12.0 31.26 

0.25 0.2500 12.5 39.63 

0.30 0.2500 12.5 47.68 

0.35 0.2500 12.5 54.59 

0.40 0.2300 11.5 60.92 

0.50 0.1800 9.0 68.38 

0.60 0.1400 7.0 73.18 

60 

0.15 0.2167 13.0 21.56 

0.20 0.2417 14.5 28.60 

0.25 0.2500 15.0 36.36 

0.30 0.2500 15.0 43.75 

0.35 0.2500 15.0 49.80 

0.40 0.2333 14.0 55.77 

0.50 0.1833 11.0 62.90 

0.60 0.1417 8.5 67.32 
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In order to see the relation between pure mode II SIF and different notch lengths, 

graphical illustration of dimensionless notch length a/W versus pure mode II SIF 

plots were created. Finally, graphical study showed that there was a regular 

functional relationship between pure mode II SIF and dimensionless crack length 

a/W. In Figure 4.31 relationships between pure mode II SIF and dimensionless crack 

length for all three beam depth groups are illustrated. 

 

 

 

Figure 4. 31 Pure mode II SIF vs a/W results for all three beam depth groups 

 

Deformed and undeformed shapes of FPAB test specimen geometry are illustrated in 

Figure 4.32. As it is can be seen in the Figure 4.33, crack tip is under effects of shear 

stresses obviously. 
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Figure 4. 32 Undeformed shape of FPAB test geometry 

 

 

 

Figure 4. 33 Deformed shape of FPAB test geometry 

 

Dimensionless stress intensity factors both mode I and mode II were achieved by 

using following equations (4.16 and 4.17); the same equations were also given by 

Fett (1998); 

𝐾𝐼 =
𝐹

𝐵𝑊
(1 −

𝑑

𝐿
) 𝑌𝐼√𝜋𝑎    (4.16) 



120 

 

 

𝐾𝐼𝐼 =
𝐹

𝐵𝑊
(1 −

𝑑

𝐿
) 𝑌𝐼𝐼√𝜋𝑎    (4.17) 

 

𝑌𝐼 =
𝐾𝐼𝐵𝑊

𝐹√𝜋𝑎
(

𝐿

𝐿 − 𝑑
)    (4.18) 

 

𝑌𝐼𝐼 =
𝐾𝐼𝐼𝐵𝑊

𝐹√𝜋𝑎
(

𝐿

𝐿 − 𝑑
)    (4.19) 

 

Other researchers He and Hutchinson (2000) were proposed new equations for 

calculation of dimensionless stress intensity factor both mode I and II. Proposed new 

equations were as follow; 

 

𝐾𝐼 =
6𝑐𝑄

√𝑊2
√𝜋𝑎𝑌𝐼(𝑎

𝑊⁄ )    (4.20) 

 

𝑌𝐼 = √
2𝑊

𝜋𝑎
tan

𝜋𝑎

2𝑊

0.923 + 0.199 (1 − sin
𝜋𝑎
2𝑊)

2

cos
𝜋𝑎
2𝑊

  (4.21) 

 

for; 0 ≤
𝑎

𝑊
≤ 1 

 

𝐾𝐼𝐼 =
𝑄

√𝑊  

(𝑎
𝑊⁄ )

3/2

(1 − 𝑎
𝑊⁄ )

1/2
𝑌𝐼𝐼(𝑎

𝑊⁄ )   (4.22) 

 

𝑄 = 𝑃 (𝐿 − 𝑑
𝐿 + 𝑑⁄ )    (4.23) 

 

Utilizing these two expressions mode II dimensionless stress intensity factors YII 

values were calculated. In table 4.10 calculated pure mode dimensionless II stress 

intensity factors YII were listed. 
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  Table 4. 10 Dimensionless mode II SIF results for present work 

 

Beam Depth 

Group (mm) 

Dimensionless 

Crack Length 

(a/W) 

Pure mode II 

SIF (Pa√m) 

Dimensionless 

SIF YII present 

work 

40 

0.15 26.98 0.59 

0.20 35.18 0.67 

0.25 44.06 0.75 

0.30 53.30 0.82 

0.35 60.81 0.87 

0.40 68.05 0.91 

0.50 76.99 0.92 

0.60 81.04 0.89 

50 

0.15 24.46 0.60 

0.20 31.26 0.66 

0.25 39.63 0.75 

0.30 47.68 0.82 

0.35 54.59 0.87 

0.40 60.92 0.91 

0.50 68.38 0.91 

0.60 73.18 0.90 

60 

0.15 21.56 0.58 

0.20 28.60 0.66 

0.25 36.36 0.75 

0.30 43.75 0.83 

0.35 49.80 0.87 

0.40 55.77 0.91 

0.50 62.90 0.92 

0.60 67.32 0.90 

 



122 

 

In Fett’s study there is no information about FPAB test specimen for such geometries 

which are conducted throughout this study. In addition to this, no mathematical 

expressions were proposed for geometric functions of FPAB specimen in Fett 

(1998). As a result of SIF study conducted here, fourth order polynomial fit functions 

were derived for three main beam depth groups by using the same formula of 

dimensionless SIFs given in Fett 1998 (Figure 4.34). Difference between 

dimensionless values of mode II SIFs of He-Hutchinson (2000) and Fett (1998) is 

explained by utilization of different geometric parameters involved in expressions for 

dimensionless stress intensity functions.  

 

 

 

 

Figure 4. 34 Calculated dimensionless mode II SIF versus crack length in this study 

 

It is observed that the same curved behaviour dominate the YII versus a/W trend and 

this trend can be represented by a fourth order functional form in sufficient accuracy.  
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In order to propose single polynomial fit function, dimensionless SIF values were 

averaged individually. In figure 4.35 graphical illustration of average dimensionless 

SIF values and fourth order polynomial fit function were given. 

 

 

 

Figure 4. 35 Average dimensionless SIF and fourth order polynomial fit function fo 

all beam depth groups 

 

As a result, in order to calculate mode II stress intensity factor for FPAB test 

specimen following equations were proposed; 

 

𝐾𝐼𝐼 =
𝐹

𝐵𝑊
(1 −

𝑑

𝐿
) 𝑌𝐼𝐼√𝜋𝑎    (4.24) 

 

𝑌𝐼𝐼 = 26.464(𝑎
𝑊⁄ )

4
− 39.749(𝑎

𝑊⁄ )
3

+ 17.964(𝑎
𝑊⁄ )

2
 

−1.6026(𝑎
𝑊⁄ )

 
+ 0.5441    (4.25) 

 

In literature, analytical and semi-analytical solutions for SIF computation are in the 

form of fourth order polynomial (Tada et al., 2000 and Srawley 1976). So, in this 
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study following general trend in fracture mechanics investigations on beam type 

geometries, mode II SIF estimation equations are given as fourth order polynomial 

powers of a/W. 
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CHAPTER 5 

 

 

5. PURE MODE II FRACTURE TOUGHNESS TESTING WITH FPAB 

GEOMETRY 

 

 

 

Experimental studies were conducted on grey colored Ankara Gölbaşı Andesite rock 

type. In order to evaluate mechanical properties of grey colored Ankara Gölbaşı 

Andesite, static deformability and Indirect Tensile (Brazilian) tests were performed. 

From these tests, Young’s Modulus (E) and Poisson’s Ratio (ν) values were obtained 

and they were used for input parameters of numerical models. Uniaxial compressive 

strength of the rock was acquired from static deformability test. Three static 

deformability tests on core samples of andesite were tested. Six Brazilian test disc 

samples were tested to evaluate indirect tensile strength.  Static deformability and 

Brazilian tests were performed according to ISRM standards. Fracture toughness 

tests were carried out on beam specimens under asymmetric four point bending 

loads. Results were analyzed to evaluate mode II fracture toughness tests conducted 

on FPAB test specimen. Experimental work was performed in Rock Mechanics 

Laboratory of Department of Mining Engineering at Middle East Technical 

University. 

 

5.1 Testing equipment utilized in experimental study 

 

Experimental study is necessary to determine the rock parameters such as Elastic 

Modulus, Poisson’s Ratio and Uniaxial Compressive Strength (UCS). Obviously, 

laboratory tests provide important inputs for rock engineering designs and modeling. 

Therefore, determination capabilities and measurement sensitivity of these inputs 

have strong influence on designs and modeling. Laboratory tests should be 
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conducted with extra care. In the following Figure 5.1 laboratory testing phases were 

given in form of flow chart. 

 

 

 

               Figure 5. 1 Flow chart for experimental study 
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Rock fracture tests are more sensitive to specimen dimensions and shape in 

comparison with ordinary rock mechanics tests. In order to avoid probable unwanted 

irregularities and undesired results attention should be given from specimen 

preparation phase to final mechanical testing phase. In this study, experimental 

works were conducted with special procedure and step by step. 

 

 Milling machine 5.1.1

 

Milling machine was utilized for creating flat surfaces of FPAB test specimen 

(Figure 5.2). Mode II fracture toughness testing of FPAB specimen is highly 

sensitive to any angular irregularities on these flat surfaces. Flat surfaces were 

created by using diamond impregnated milling cutter. Irregularities on flat surfaces 

achieved with maximum 0.1 mm error. 

 

 

 

Figure 5. 2 Milling machine 

 

 Diamond circular saw 5.1.2

 

Diamond circular saw was utilized for notch opening works. Both notches of FPAB 

and SNDB test specimens were machined using diamond impregnated 0.5 mm thick 
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circular saws (Figure 5.3). Notch depth calibration was performed utilizing digital 

caliper.  

 

Notch thicknesses of prepared specimens were between 0.9-1.2 mm. Notch thickness 

error in machining was around 0.3 mm. Reason of notch thickness deviation in 

machining may be justified by grain size of rock type and buckling of thin circular 

saw . 

 

There is an error about ±0.3 mm in machining the preliminary notch along the 

desired direction. So, a ten millimeter length notch can be around 9.9 mm or 10.2 

mm which corresponds to 3% error in machining the correct 10 mm length. For 

longer notches ranging from 20 to 30 mm percentage error obsviously decreases. 

With the equipment used, physically, it is not possible to insert preliminary notches 

better than this accuracy range. 

 

 

                                   Figure 5. 3 Digital caliper adapted diamond  

                                   circular saw 
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 Testing machine 5.1.3

 

MTS 815 Rock Testing Machine is known as one of the most reliable testing 

machines in such usages compressive strength tests, deformability tests and fracture 

tests of rocks. The machine mainly consists of highly rigid load frame with fixed 

crossheads, single-ended actuator, servo-hydraulic service manifold, directional 

valve and hydraulic power unit (pump), under the control of digital controller. Servo-

hydraulic service manifold and servo-controlled directional valve provides definite 

control on the actuator of the machine. Displacement of the actuator is measured and 

controlled with LVDT and differential pressure transducer (ΔP) attached to the 

stroke and transmits a signal to the servo in order to define its location by local 

coordinates of the machine. Therefore, according to the feedback signal received, the 

servo calculates the hydraulic fluid requirement to provide the constant pressure on 

the actuator which is 21 MPa all the time. This means the machine serves under 

stable pressurized conditions and provides sufficient hydraulic power to compress 

rock samples with intended loading rates.  

 

Frame of the machine is structured as cross-head and the cross-head is highly rigid 

up to 3750 kN and its stiffness is 9x10
9
 N/m. Data acquisition system and controller 

unit of the machine is located in same box named FlexTest 40. FlexTest 40 controller 

unit consists of four channels which are connected to servo-hydraulic service 

manifold, differential pressure transducer, internal linear variable differential 

transformer, extensional and circumferential extensometers and the load-cell. 

FlexTest40 controller unit allows the actuator to move by means of displacement 

controlled, force controlled or extensometer controlled.  Controller unit also allows 

data acquisition up to 4096 Hz for four channels in total. In mechanical property 

identification tests and fracture toughness tests data acquisition frequency was set 

from all channels as 8 Hz. Force readings were achieved by externally adapted MTS 

500kN ± 0.25 load-cell which is calibrated by Turkish Standards Institution and 

certificated as Class 0.5. In Figure 5.4 general working principle of MTS machine is 

illustrated. 
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Extensional and circumferential extensometer readings were executed with same data 

acquisition system from allocated channel of the unit with frequency of 8 Hz. 

 

 

 

Figure 5. 4 MTS 815 Rock Testing Machine at a glance 
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5.2 Laboratory work for rock property determination 

 

Mechanical and physical property determination tests were conducted according to 

ISRM standards. Static deformability and Brazilian tests were performed using MTS 

Rock Testing Machine. In order to determine Young’s modulus and Poisson’s ratio 

of Ankara Gölbaşı Andesite, 3 NX size core specimens were prepared. Tensile 

strength determination was conducted by performing Brazilian (Indirect Tensile) test. 

For Brazilian test 6 disc specimens were prepared.  

 

 Static deformability test 5.2.1

 

Three NX type core samples were prepared to determine Young’s Modulus and 

Poisson’s Ratio of Ankara Gölbaşı Andesite rock (Figure 5.5). Static deformability 

tests were conducted utilizing MTS 815 Rock Testing Machine. Axial and 

circumferential deformations were measured by using extensometers called clip-on 

gages. Dual MTS series 632.94F-20 model axial extensometers that have 10 mm 

expansion capacity were utilized to measure axial deformation and single EPSILON 

circumferential extensometer was utilized to measure circumferential deformation of 

tested rock sample. Results of unit weight, static deformability, and strength tests 

aretabulated in Table 5.1. 

 

Table 5. 1 Results of static deformability test 

 

Specimen 

Code 

Length 

(mm) 

Diameter 

(mm) 

Density 

(gr/cm
3
) 

UCS  

(MPa) 

Elastic 

Modulus 

(GPa) 

Poisson’s 

Ratio 

A.SD.1 120.63 55.00 2.15 57.68 11.60 0.12 

A.SD.2 120.70 54.94 2.15 58.43 12.43 0.11 

A.SD.3 121.19 54.98 2.14 59.72 12.82 0.12 

Average  

± STD 

120.84  

± 0.25 

54.97  

± 0.025 

2.15 

± 0.005 

58.61  

± 0.84 

12.28  

± 0.51 

0.12  

± 0.05 
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Data acquisition was executed utilizing MTS Flextest40 controller and data 

acquisition box. During tests, load rate was kept constant rate 0.003 mm/s and data 

acquisition frequency was 8Hz. 

 

 

 

                                 Figure 5. 5 After static deformability test rock  

                                 core samples 

 

According to static deformability tests conducted a typical stress strain curve for 

Ankara Gölbaşı Andesite is given in Figure 5.6. 
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Figure 5. 6 Stress-strain curve for Ankara Gölbaşı Andesite 

 

 Brazilian (Indirect Tensile) test 5.2.2

 

In order to determine tensile strength of Ankara Gölbaşı Andesite Brazilian tests 

were performed on six discs (Figure 5.7). During tests load rate was kept constant 

0.003 mm/s (Figure 5.8). Result of Brazilian tests were tabulated in Table 5.2 

 

 

 

Figure 5. 7 Brazilian discs before testing 
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Table 5. 2 Results of Brazilian tests 

 

Specimen 

Code 

Thickness 

(mm) 

Diameter 

(mm) 

Density 

(gr/cm
3
) 

Failure 

Load 

(kgf) 

Tensile 

Strength 

(MPa) 

A.BT.1 31.86 55.01 2.09 2015.64 3.59 

A.BT.2 30.85 54.99 2.09 1655.84 3.05 

A.BT.3 31.00 54.98 2.09 1742.72 3.19 

A.BT.4 31.37 54.98 2.09 2040.11 3.69 

A.BT.5 34.08 55.00 2.04 2055.16 3.42 

A.BT.6 32.00 54.99 2.09 1852.54 3.29 

Average  

± STD 

31.86  

± 1.08 

54.99  

± 0.01 

2.08  

± 0.02 

1893.67  

± 154.62 

3.37  

± 0.22 

 

 

Figure 5. 8 Installation of Brazilian test 
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                              Figure 5. 9 Brazilian discs after test 

 

5.3 Fracture tests 

 

Although computers and simulation codes are very helpful in computing, they are not 

able to find out material properties. For instance, in fracture mechanics, complicated 

specimen geometries with arbitrary cracks may be computed in terms of SIFs, CPDs 

or energy utilizing finite element analysis. However, failure load cannot be 

determined by using finite element method. Input parameters should be provided to 

these simulation codes all time. They use these input parameters to solve problems. 

Therefore, laboratory works should be performed to determine material properties or 

other input parameters. Likewise, in this study, although SIFs can be determined by 

utilizing FEM code (ABAQUS), determination of fracture toughness values were 

performed by conducting experiments on rock specimens.  
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Fracture testing study was performed again same servo-hydraulic testing machine 

MTS 815. Data acquisition was performed utilizing FlexTest40 controller box and 

software support MTS series 793 testing software. Data acquisition frequency was 

set 8 Hz for each channel. 

 

 Mode II fracture toughness testing work with FPAB test geometry 5.3.1

 

In fracture tests with FPAB geometry three main beam depth groups W= 40, 50, and 

60 mm were decided to be tested. For beam depth groups of W=40 and 60 mm, six 

different notch lengths expressed in dimensionless form as  a/W= 0.20, 0.25, 0.30, 

0.35, 0.40 and 0.50 were machined. For beam depth group of W= 50 specimens were 

prepared for seven different crack lengths a/W= 0.20, 0.25, 0.30, 0.35, 0.40, 0.50 and 

0.60.  

 

FPAB test geometries were created properly to satisfy pure mode II conditions for all 

beam depth groups and associated crack lengths. All beam specimen dimensions as 

beam length and thickness  except beam depth were kept constant. Preliminary 

starter notches were machined as straight edge notches with 𝛽 = 0° from vertical 

loading axis. In Figure 5.10 FPAB specimens with different notch lengths are 

illustrated.  
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Figure 5. 10 Different notch lengths for beam depth group W= 60 mm 

 

From large blocks of Ankara Golbasi Andesite, rectangular rock beam specimens 

were carefully machined to final shape and dimensions utilizing milling and grinding 

apparatus in the lab. Rock samples were labeled in order to conduct the experiments 

and organize the results conveniently. Labelling rule is illustrated in Figure 5.11. 

 

 

 

        Figure 5. 11 Specimen labelling rule 
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During fracture toughness tests with FPAB geometry, rollers of 8 mm diameter were 

utilized to apply bending loads. Installation of FPAB test and view of fractured 

specimen after test can be seen in Figure 5.12 

 

 

 

         Figure 5. 12 Setup of FPAB test and specimen view after test 

 

 

From experimental study, fracture loads were recorded. Fracture Loads were used in 

order to calculate pure mode II fracture toughness value of Ankara Andesite. 

Fracture load levels were synchronized with computed mode II stress intensity 

factors by ABAQUS. Models that were initially constructed by applying unit 1 N 

loads were updated with actual load values obtained from the testing. For all beam 

depth groups of W=40, 50 and 60mm, calculated pure mode II fracture toughness 

values were given in graphical form in Tables 5.3, 5.4 and 5.5, respectively. 
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          Table 5. 3 FPAB test results for W= 40 mm 

 

Specimen Code 
Fracture Load 

(kN) 

Pure Mode II Fracture 

Toughness KIIC MPa√m 

FPAB-A-40-020-1 16.58 0.58 

FPAB-A-40-020-2 26.38 0.93 

FPAB-A-40-020-3 23.28 0.82 

FPAB-A-40-025-1 9.28 0.41 

FPAB-A-40-025-2 11.49 0.51 

FPAB-A-40-025-3 8.02 0.35 

FPAB-A-40-025-4 9.56 0.42 

FPAB-A-40-030-1 19.01 1.01 

FPAB-A-40-030-2 8.52 0.45 

FPAB-A-40-030-3 13.79 0.74 

FPAB-A-40-030-4 9.95 0.53 

FPAB-A-40-035-1 6.98 0.42 

FPAB-A-40-030-2 8.64 0.53 

FPAB-A-40-030-3 10.08 0.69 

FPAB-A-40-030-4 6.85 0.42 

FPAB-A-40-040-1 7.10 0.48 

FPAB-A-40-040-2 14.44 0.98 

FPAB-A-40-040-3 9.85 0.67 

FPAB-A-40-040-4 10.12 0.69 

FPAB-A-40-050-1 10.00 0.77 

FPAB-A-40-050-2 7.34 0.57 

FPAB-A-40-050-3 7.08 0.55 

Average ± STD 11.56 ± 5.24 0.62 ± 0.19 
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                Table 5. 4 FPAB test results for W= 50 mm 

 

Specimen Code 
Fracture 

Load (kN) 

Pure Mode II 

Fracture Toughness 

KIIC MPa√m 

FPAB-A-50-020-1 23.40 0.73 

FPAB-A-50-020-2 26.50 0.83 

FPAB-A-50-020-3 17.24 0.54 

FPAB-A-50-025-1 17.30 0.69 

FPAB-A-50-025-2 10.73 0.43 

FPAB-A-50-025-3 10.67 0.42 

FPAB-A-50-030-1 23.45 1.12 

FPAB-A-50-030-2 10.49 0.50 

FPAB-A-50-030-3 12.37 0.59 

FPAB-A-50-030-4 10.04 0.48 

FPAB-A-50-035-1 7.30 0.40 

FPAB-A-50-030-2 6.87 0.38 

FPAB-A-50-030-3 9.98 0.55 

FPAB-A-50-030-4 10.06 0.55 

FPAB-A-50-040-1 7.98 0.49 

FPAB-A-50-040-2 6.45 0.39 

FPAB-A-50-040-3 6.60 0.40 

FPAB-A-50-040-4 9.56 0.58 

FPAB-A-50-050-1 8.33 0.57 

FPAB-A-50-050-2 6.58 0.45 

FPAB-A-50-050-3 7.68 0.53 

FPAB-A-50-060-1 13.40 0.98 

FPAB-A-50-060-2 12.30 0.90 

FPAB-A-50-060-3 5.33 0.39 

Average ± STD 11.69 ± 5.70 0.58 ± 0.20 
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                Table 5. 5 FPAB test results for W= 60 mm 

 

Specimen Code 
Fracture 

Load (kN) 

Pure Mode II 

Fracture Toughness 

KIIC MPa√m 

FPAB-A-60-020-1 36.17 1.03 

FPAB-A-60-020-2 28.85 0.83 

FPAB-A-60-020-3 13.79 0.39 

FPAB-A-60-025-1 19.94 0.73 

FPAB-A-60-025-2 15.30 0.56 

FPAB-A-60-025-3 13.12 0.48 

FPAB-A-60-030-1 8.64 0.38 

FPAB-A-60-030-2 16.24 0.71 

FPAB-A-60-030-3 9.30 0.41 

FPAB-A-60-035-1 8.02 0.40 

FPAB-A-60-030-2 10.00 0.50 

FPAB-A-60-030-3 7.44 0.37 

FPAB-A-60-040-1 13.08 0.73 

FPAB-A-60-040-2 13.24 0.74 

FPAB-A-60-040-3 19.78 1.10 

FPAB-A-60-050-1 10.12 0.64 

FPAB-A-60-050-2 9.52 0.60 

FPAB-A-60-050-3 8.38 0.56 

Average ± STD 14.50 ± 7.44 0.62 ± 0.21 

 

Calculation of mode II fracture toughness values was conducted by ABAQUS 

Software. Fracture loads obtained from experimental study were utilized as input to 

ABAQUS Software. Fracture loads were divided proportional to short moment arm 

and long moment arm distances. In Figure 5.13 input windows for fracture loads are 

illustrated. 
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Figure 5. 13 Calculation of fracture toughness values 

 

As it is shown in results of experimental study, average pure mode II fracture 

toughness values of Ankara Gölbaşı Andesite are very close for different beam 

depths. This result indicates that there is no size effect for mode II fracture toughness 

with FPAB testing geometry. Finally, average pure mode II fracture toughness KIIc of 

Ankara Gölbaşı Andesite can be declared as 0.61 MPa√m.  

 

In Figure 5.14 typical FPAB test specimen after fracturing can be seen. Similar views 

of tested specimens are illustrated in APPENDIX B. In order to compare pure mode 

Short Moment arm load 2P/3 

Long Moment arm load P/3 
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II fracture toughness values acquired from FPAB specimen, SNDB testing geometry 

was used. Comparative study for fracture testing studies was introduced in Chapter 6. 

 

 

 

                   Figure 5. 14 FPAB test specimen after testing 
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CHAPTER 6 

 

 

6. RESULTS AND DISCUSSION 

 

 

 

Previously, rock fracture mechanics investigations have been mostly performed 

under mode I loading state. In the literature, more data is available for size effect and 

boundary influence phenomena for mode I loading state in comparison with mode II 

loading state. First Bazant, showed the global energy release leading to a simple size 

effect law in 1983 and 1984.Then, justification of this law was made by a number of 

studies of the researcher (Bazant and Pfeiffer, 1987, Bazant and Kazemi, 1990a, b, 

and Bazant et al., 1995). Aliha et al., (2010) studied crack trajectory deviation for 

different sized SCB and CSTBD specimens. Ayatollahi and Akbardoost (2012) 

proposed a new approach for size effect law on quasi-brittle materials. They 

employed maximum tangential stress criterion adapting higher order Williams 

expansion. Kumar and Barai (2012), introduced size effect phenomenon for 

rectangular beam shaped specimens under mode I loading state. Although mode II 

fracture toughness determination studies have been conducted for rectangular shaped 

rock specimens, sufficient data is not available about boundary influence effect and 

size effect for beam type specimens. 

 

Results of numerical studies and laboratory experimental work indicated that size 

and boundary influence effects were not observed for mode II loading state on 

rectangular shaped rock specimens. Finally, it was concluded that increasing the 

beam size by increasing the beam depth had no influence in terms so called size 

effect on mode II fracture toughness. In order to comparatively analyze  boundary 

influence effect, stress analysis studies were conducted for numerical models of 

FPAB test geometry under both mode I and mode II loading states. Stress analyzes 
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were conducted by adapting von Mises yield criterion around the crack tip in the 

models. 

 

According to results of laboratory tests conducted on different sized FPAB 

specimens, no size effect was observed. Almost the same mode II fracture toughness 

values for beam depth groups of 40, 50 and 60 mm were acquired as 0.62, 0.58 and 

0.62 MPa√m, respectively. Overall fracture toughness value for mode II loading state 

was obtained as 0.61 MPa√m for Ankara Gölbaşı Andesite. In order to justify the 

mode II fracture toughness values acquired by utilizing FPAB test geometry SNDB 

testing results was employed. Close results between FPAB and SNDB geometries 

were achieved for Ankara Gölbaşı Andesite in terms of mode II fracture toughness. 

 

6.1 Stress analyses around the notch of FPAB testing geometry and other 

numerical works 

 

As reported in Chapter 5, almost the same dimensionless short moment arm distances 

were obtained to reach pure mode II state at the crack tip for different beam depths. 

This finding was attributed to the same bending moment requirement to reach critical 

stress state for mode II crack propagation of the different sized specimens.  

 

In order to clarify this point, stress analyses were conducted both FPB (four-point 

bending) and FPAB (four-point asymmetric bending) test geometries. FBP test 

geometry was modeled in order to acquire mode I stress intensity factor behavior of 

rectangular shaped rock specimens. Stress analyses were conducted by examining 

von Mises stresses for a specific path which extended with crack propagation angle 

(around 70 degrees) from the notch tip to the outmost contour integral.  

 

Von Mises stress is a measure of potential plasticity zones of stressed domains. 

Examination of this stress prescribed paths around crack for both mode I and mode II 

loading conditions yields indications about the size of plasticity zones and boundary 

influence effects.  
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In order to justify the results of KIIc acquired from FPAB test geometry SNDB test 

geometry modeling and related experimental work were conducted. Justification 

study by the modeling and comparison of mode II fracture toughness values for 

FPAB and SNDB test geometries were presented in Section 6.2. 

 

 Von Mises yield criterion 6.1.1

 

Results of numerical computations are available in form of stress contour map. 

ABAQUS presents stress contour maps and including von Mises stress. Von Mises 

stress contour maps are dependent on second deviator stress invariant. Intensity of 

the von Mises stress contour maps indicate relative size of potential plasticity zones 

around cracks.  

 

Von Mises yield criterion was first proposed in 1904 by Huber. Then, in 1913 the 

same criterion was formulated and well-organized by Von Mises (1913). Von Mises 

yield criterion is also called “Maximum Distortion Energy Criterion”. The theory 

states that, if the distortion energy of a material is smaller than maximum distortion 

energy that the material can stand no yielding occurs. Von misses yield function is 

given as follows; 

𝑓(𝐽2) = √𝐽2 − 𝑘 = 0                (6.1) 

 

or; 

𝑓(𝐽2) = 𝐽2 − 𝑘2 = 0               (6.2) 

 

In here;  

𝑓(𝐽2): Von Mises yield function 

𝐽2: Second deviatoric stress invariant 

𝑘: yielding stress value of a material in pure shear conditions 

 

Investigations made showed that yielding stress is √3 times higher than maximum 

shear stress. Therefore, von Mises stress is redefined as;  
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𝜎𝑣 = √3𝐽2                (6.3) 

 

And von Mises yield function became; 

 

𝑓(𝐽2) = √3𝐽2 − 𝜎𝑦 = 0 = 𝜎𝑣 − 𝜎𝑦 = 0              (6.4) 

 

If this function is reoperated substituting J2 in terms of the principle stresses it gives; 

 

(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2 = 2𝜎𝑦
2             (6.5) 

 

or in tensor notation; 

 

(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎11 − 𝜎33)2 + 6(𝜎12 + 𝜎23 + 𝜎13) = 2𝜎𝑦
2 

                     (6.6) 

 

This equation finally yields to a cylindrical yield surface (Figure 6.1). 

 

 

 

                Figure 6. 1 Von Mises yield surface 
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In summary, von Mises yield criterion indicates that, if the second deviatory stress 

invariant J2 reaches critical value material begins to yield. Therefore, J2 indicates 

plasticity zone in stress contour maps in other words von Mises stresses. Stress and 

plasticity analyses of this study are done in terms of this yielding criterion. 

 

 Mode I stress intensity factor investigations on FPB test geometry 6.1.2

 

A FPB testing geometry for mode I stress intensity factor investigation was modeled. 

Dimensionless crack length a/W of the numerical model was selected as 0.6 (Figure 

6.2). Because of dimensionless crack length a/W= 0.6 this geometry becomes the 

most probable geometry for boundary influence effect. Modeling geometries and 

material properties for FPB test geometry were given in Table 6.1. 

 

                  Table 6. 1 Geometric dimensions and material properties of FPB test 

                  geometry 

 

Property Value 

Beam Length 120 mm 

Beam Depth 50 mm 

Beam Thickness 50 mm 

Crack Length 30 mm 

E (Young’s Modulus) 12300 MPa 

ν (Poisson’s Ratio) 0.12 

Short Span 50 mm 

Long Span 100 mm 

Load -1 N 
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Figure 6. 2 General geometry of FPB test specimen 

 

Numerical computation was conducted using around 58000 brick elements. 

Deformed shape of the numerical model is illustrated in Figure 6.3. 

 

 

 

                Figure 6. 3 Deformed shape of FPB test geometry 

 

As a result of numerical computation mode I mode II stress intensity factors obtained 

as KI= 355.8 Pa√m, KII= 0.001 Pa√m respectively, and CPD (crack propagation 

direction) = 0
o
. 

 

 

Support Points 

Loading Points 

P/2 P/2 

Notch 
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 Stress analyses for FPB and FPAB test geometries 6.1.3

 

Von Mises stresses were examined around prescribed path which extended through 

crack propagation direction of FPB and FPAB test specimens. These paths begin 

from notch tip and reach to the outmost contour integral region. In all, 21 points were 

examined for each geometry. Distance between two points was selected as 0.25 mm 

which was the same length for successive contour integral regions. Total length of 

these two paths was 5 mm long from notch tip. As described before crack 

propagation angle or direction is an output of the modeling work. Direction of these 

paths trails along CPD of each loading mode. For mode I loading (FPB test 

geometry) vertical angle equals to “0” while for mode II loading (FPAB test 

geometry) equals to about 70 degrees. In Figures 6.4 and 6.5 stress paths for mode I 

and mode II loading conditions are illustrated respectively. 

 

 

 

            Figure 6. 4 Stress path for mode I loading 

 

Stress path for 

mode I 
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Figure 6. 5 Stress path for mode II loading 

 

As it is shown in Figures 6.4 and 6.5, red dots are probes for von Mises stress 

analysis.  Probe values in terms of von Mises stress for both mode I and mode II 

loading type are listed in Table 6.2 and Table 6.3 respectively. 

 

Table 6. 2 Von Mises stresses for mode I loading 

 

Distance from 

Crack Tip (mm) 

von Mises stress 

values (Pa) Mode I 

Distance from 

Crack Tip 

(mm) 

von Mises stress 

values (Pa) Mode I 

0 9559.86 2.75 1739.11 

0.25 5933.57 3.00 1631.50 

0.50 4459.25 3.25 1536.09 

0.75 3729.04 3.50 1451.14 

1.00 3226.97 3.75 1375.31 

1.25 2862.40 4.00 1307.56 

1.50 2581.18 4.25 1247.02 

1.75 2353.10 4.50 1193.02 

2.00 2162.93 4.75 1143.90 

2.25 2001.07 5.00 1060.54 

2.50 1861.26   
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Table 6. 3 Von Mises stresses for mode II loading 

 

Distance from 

Crack Tip (mm) 

Von-mises stress 

values (Pa) Mode II 

Distance 

from Crack 

Tip (mm) 

Von-mises stress 

values (Pa) Mode II 

0 4177.94 2.75 1359.37 

0.25 2813.98 3.00 1316.82 

0.50 2559.91 3.25 1278.66 

0.75 2206.01 3.50 1244.03 

1.00 1976.56 3.75 1212.32 

1.25 1816.89 4.00 1183.03 

1.50 1697.43 4.25 1155.83 

1.75 1603.45 4.50 1130.54 

2.00 1526.79 4.75 1106.95 

2.25 1462.50 5.00 1062.62 

2.50 1407.42   

 

Von Mises stress field was redesigned in terms of stress values obtained from stress 

analysis. These probe values were acquired from the contour map presented by 

ABAQUS. Once more again, it was observed that for mode II loading state boundary 

influence effect in FPAB test geometry (Figure 6.6) was negligible. FPAB test 

specimen contour map was limited to 1000 Pa and 1100 Pa respectively for the 

specimen having dimensionless notch length of a/W= 0.6. While, contour map was 

limited to 1100 Pa, no contact was observed between von Mises stress field and 

upper boundary within the specified range. Then, limitation was applied as 1000 Pa; 

von Mises stresses did not reach the upper boundary at all. (See table 6.3) 
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Figure 6. 6 Boundary influence effect for mode II loading 

 

The same examination was conducted for mode I loading condition as well. Similar 

probe value ranges were applied to limit the stress contour map of pure mode I SIF 

test specimen (FPB).  It was observed that von Mises stress contour map showed an 

intensive distribution of potential yielding zones and intensive boundary influence 

effect, (Figure 6.7). 

 

 

 

Figure 6. 7 Boundary influence effect for mode I loading 

 

In order to examine more effectively, these probe values were illustrated graphically. 

In the following Figure 6.8 Von-mises stress values for both mode I and mode II 

loading were plotted. 

1100 Pa 

1000 Pa 

1060 Pa  

1100 Pa  
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Stress distribution analysis at the crack tip of four-point bend test specimen 

geometries under opening and shear mode was conducted. By assigning stress paths 

at the vicinity of crack tip stress distributions and von Mises stresses were compared. 

It was found that, crack tip under mode I had a higher potential to develop plastic 

zones at the crack tip. 

 

 

 

Figure 6. 8 Von mises stresses around stress path for mode I and mode II 

 

The reason of having no size effect for mode II fracture toughness in FPAB tests was 

explained based on the argument of having smaller plastic zones and FPZ’s at the 

crack tip. 

 

Beam type specimens are associated with high plastic zones/FPZ zones under 

opening mode loading conditions. For mode II loading state, size of the potential 

plastic zone compared in terms von Mises stress is about 2.5 times less than mode I 

model section almost up to a crack front extent of 3.5 mm, even for elastic models of 

analyses. If such stress analyses were carried out with elastic-plastic modeling work, 

0

2,000

4,000

6,000

8,000

10,000

12,000

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

σvm Pa   
 

Probe distance mm 

Pure KI Von
Mises

Pure KII Von
Mises

Notch Tip 

Outmost 

contour region 



156 

 

it would be expected to have higher difference between sizes of crack tip plasticity 

zones of beam specimens of KIc and KIIc testing work. Considering that crack length 

used in stress comparison is about 30 mm in both models, existence of a potentially 

plastic zone of about 3.5 mm ahead of the crack tip reflects the significance of plastic 

zone dimension and effected dimension is expected to be more than  10% in 

comparison of extent of FPZ for opening and shear loading states.  

 

6.2 Verification efforts for SNDB numerical study and justification of FPAB 

test results 

 

SNDB (straight notched disc bending) test geometry was modeled to justify mode II 

fracture toughness values obtained from FPAB test geometry. Experimental study of 

the FPAB test geometry was given in Chapter 8. In order to compare the mode II 

fracture toughness values obtained from FPAB test specimen, comparative study was 

conducted. This comparison was performed by using SNDB test geometry. In this 

section, first, numerical verification for SNDB modeling work was introduced then; 

mode II fracture toughness values obtained from using these two different testing 

methods were compared. 

 

 Numerical modeling work for SNDB test geometry 6.2.1

 

Pure shear geometry for SNDB test geometry adopted from Het (2014). In order to 

prove accuracy level of the modeled SNDB geometry, numerical computation results 

were compared with the ones given by Het (2014). Instead of giving all details of 

numerical computation techniques of SNDB test geometry, only comparative study 

was introduced. Geometric dimensions and material properties for SNDB test 

geometry were given in Table 6.4. 
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               Table 6. 4 Geometric dimensions and material properties of SNDB  

                model 

 

Property Value 

Disc Diameter (D) 100 mm 

Disc Radius (R) 50 mm 

Disc Thickness (B) 50 mm 

Notch Length (a) 25 mm 

Notch Angle vertical (β) 50
o
 

Load (P) -1 N 

Span Length (S) 60 mm 

Elastic Modulus (E) 18144 MPa 

Poisson’s Ratio (ν) 0.15 

  

SNDB test specimen can be seen in Figure 6.9. 

 

 

 

           Figure 6. 9 SNDB test specimen geometry 

 



158 

 

Numerical model was created by employing around 100000 brick elements. Obtained 

results and comparison with Het’s work are in Table 6.5. 

 

Table 6. 5 Comparative study for SNDB numerical model 

 

Parameters Present Model Het’s Model Difference % 

Mode I SIF (KI) 2.05 Pa√m 2.00 Pa√m %2.50 

Mode II SIF (KII) 28.30 Pa√m 28.02 Pa√m %0.99 

 

Mode I stress intensity factor difference between present work modeling and Het’s 

modeling work was around 2.5%. On the other hand, difference in mode II stress 

intensity factor values of these two modeling works was around 1%. As a result of 

this comparative study, acceptable resemblance between computed SIFs were 

believed to be achieved.  

 

For a mechanical checking, deformed shape of SNDB model is illustrated in Figure 

6.10. 

 

 

 

Figure 6. 10 Deformed shape of SNDB model 
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 Mode II fracture toughness determination with SNDB test geometry 6.2.2

 

SNDB (straight notched disc bending) test geometry is a core based specimen and 

firstly introduced by Tutluoglu and Keles (2011). SNDB geometry is highly 

recommended testing geometry for mode II fracture toughness determination of 

beam type rock core specimen geometries.  

 

For pure mode II fracture toughness testing study, in total three SNDB specimens 

were prepared. In Figure 6.11, SNDB test specimens are illustrated. 

 

 

 

                 Figure 6. 11 SNDB test specimens 

 

For testing of SNDB test specimen, similar testing procedure as in FPAB testing 

work was employed.  Pure mode II SIF condition and appropriate geometry for 

SNDB test specimen were provided by previous researchers (Het, 2014). This 

appropriate geometrical organization of SNDB specimen geometry is summarized in 

Table 6.6. 
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           Table 6. 6 Geometric dimensions and material properties of tested  

           SNDB test geometry 

 

Property Value 

Diameter (D) 100 mm 

Thickness (B) 50 mm 

Notch Length (an) 25 mm 

Span (2S) 60 mm 

Notch Inclination (β) 51
o 

Elastic Modulus (E) 12.3 GPa 

Poisson’s Ratio (ν) 0.12 

Dimensionless Span Length (S/R) 0.6 

Dimensionless Notch Length (a/R) 0.5 

 

 

 

Figure 6. 12 Installation of SNDB test geometry 
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With SNDB test geometry for determination of pure mode II fracture toughness of 

Ankara Gölbaşı Andesite, results were close to the ones that were obtained by FPAB 

tests. Experimental study conducted on SNDB test geometry resulted in an average 

mode II fracture toughness for pure shear state as KIIc= 0.62 MPa√m. Mode II 

fracture toughness values of tested specimens were calculated by using the fracturing 

load values of experimental work in ABAQUS software models. In the following 

table, results of pure mode II fracture toughness experiments for SNDB test 

geometry were listed. 

 

Table 6. 7 Mode II fracture toughness values acquired from SNDB test geometry 

 

Specimen Number 
Fracture Load 

(kN) 

Pure Mode II Fracture 

Toughness KIIc (MPa√m) 

SNDB 1 22.9 0.64 

SNDB 2 22.7 0.63 

SNDB 3 21.3 0.59 

Average ± STD 22.3 ± 0.71 0.62 ± 0.02 

 

Obtained pure mode II fracture toughness KIIc with FPAB specimen approximately 

equals to 0.61±0.20 MPa√m. 

 

Obtained pure mode II fracture toughness KIIc with SNDB specimen approximately 

equals to 0.62±0.02 MPa√m. 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%)  

=  
𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝐾𝐼𝐼𝑐 𝑤𝑖𝑡ℎ 𝑆𝑁𝐷𝐵 −  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝐾𝐼𝐼𝑐 𝑤𝑖𝑡ℎ 𝐹𝑃𝐴𝐵

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝐾𝐼𝐼𝑐 𝑤𝑖𝑡ℎ 𝐹𝑃𝐴𝐵

× 100 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%) =  
0.62 −  0.61

0.61
× 100 = %1.62 
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As a result of comparative study, a good agreement between mode II fracture 

toughness KIIc values of FPAB and SNDB tests was achieved with approximately 

1.62% difference.  

 

In Figure 6.13 SNDB test specimens after experimental study are illustrated.  

 

 

 

                            Figure 6. 13 Tested SNDB specimens 

 

Beam shaped rectangular rock specimens subjected to four-point asymmetric 

bending loading were investigated for mode II fracture toughness KIIc testing. In all, 

over 120 finite element models were created for three main different beam depth 

groups with different notch lengths. Beam thickness was kept constant and 64 

laboratory tests were conducted. In tests, grey colored Ankara Gölbaşı Andesite rock 

was used. As input to numerical models, mechanical properties of grey colored 
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Ankara  Gölbaşı Andesite were used. Average mode II fracture toughness value 

acquired from all four-point asymmetric bending (FPAB) tests was found as 

0.61±0.20 MPa√m.  

 

This work made a contribution in using rectangular beams of short dimensions 

instead of using very long large sized beam geometries previous works 

 

Pure mode II fracture toughness of Ankara Gölbaşı Andesite obtained from four-

point asymmetric bending test work was compared to the result of SNDB test work 

using the same rock type. Previous mode II fracture toughness results of andesite 

rock of Karakaş, (Karakaş, 2011) obtained by straight notched disc bending (SNDB) 

test for was used to compare the results of FPAB testing of this work. From SNDB 

tests, pure mode II fracture toughness was reported as 0.62 MPa√m by Karakaş, 

2011. Results with these two different bending type test confıgurations showed a 

good agreement.  

 

Beam depth was found to have no effect on the mode fracture toughness results of 

FPAB tests. As beam depth three entries with 40, 50, and 60 mm were implemented 

in modeling and testing work. Numerical computations showed that, as the beam 

depth of test specimen increases the mode II stress intensity factor value decreases. 

However, stress intensity factor illustrates no change when mode II stress intensity 

factor is presented in dimensionless form as normalized with geometrical dimensions 

of crack and beam. A fourth order polynomial fit function produces quite accurate 

results for YII which is the dimensionless form of KII. 

 

No size effect on mode II fracture toughness was observed from the data acquired by 

laboratory tests. Size effect on beam type specimens under opening mode was proven 

in previous work both theoretically and experimentally. 

 

In order to explain the reasons why no size effect existed in the results, stress 

distribution analysis at the crack tip of four-point bend test specimen geometries 
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under opening and shear mode was conducted. By assigning stress paths at the 

vicinity of crack tip, stress distributions and von Mises plasticity indicator stresses 

were compared. The reason of having no size effect for mode II fracture toughness 

FPAB test was attributed having smaller von Mises plasticity and FPZ at the crack 

tip.  

 

Another reason for having no size effect and boundary influence issue is explained 

by the position of short moment arm “d” parameter of the loading point configuration 

along the beam specimen. Direct relationship was observed between parameter called 

as dimensionless short moment arm distance d/W and bending moment amount to 

ensure pure mode II state on crack plane. For specimens having small beam depth, 

positions of short moment arm “d” were observed to be relatively closer to the crack 

plane compared to the other beam depth groups. 

 

In other words, the ratio of short moment arm distance and beam depth (d/W) were 

the same for all three beam depth groups for related crack lengths expressed as a/W. 

This phenomenon was attributed to the critical amount of bending moment 

requirement for crack initiation ensuring mode II loading state in rectangular shaped 

rock specimens. Finally, it was concluded as, the critical value for bending moment 

should be the same on the crack plane to ensure pure mode II state for different beam 

depths. 

Similar results were observed individually for each specimen groups having the same 

beam depths. To satisfy the pure mode II state at the crack for each beam depth 

group, there was an optimum value of short moment arm d. 

 

As crack length increases optimum value of short moment arm d initially increases, 

reaches a peak, and then decreases again. This trend is found to be described by a 

fourth order functional form using a “d” value other than the optimum causes 

development of opening mode and non-zero mode I stress intensity factor on the 

crack plane. In this case pure shear condition fails. 
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Experimental work results showed that crack depth/beam depth ratio (a/W) had no 

effect on mode II fracture toughness value.  No boundary influence issue was 

observed for FPAB test specimen geometries with varying beam depths. This finding 

was tried to be explained by studying Von-Mises stress field between the crack tip 

and beam loading points. For beam depth groups having 40-50-60 mm depths, mode 

II fracture toughness values were computed as 0.62±0.19, 0.59±0.20 and 0.62±0.21, 

MPa√m respectively. This indicated that increasing the beam size by increasing the 

beam depth had no influence in terms so called size effect on mode II fracture 

toughness. 
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CHAPTER 7 

 

 

7. CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

The conclusions extracted from this study can be listed as; 

 

 Four-Point Asymmetric Bending test is an accurate way to determine the 

mode II fracture toughness of rocks. The theory behind this test specimen 

geometry aims to produce zero absolute bending moment (sum of the 

reciprocal bending moments) on the crack plane. This condition is satisfied 

by the asymmetrically placed loading and support points. Nevertheless, 

location of loading and support points should be identified properly by 

precise modeling work. 

 

 Configuration of loading and support points that satisfy pure mode II 

conditions can be easily set using structural analysis techniques. Areas of 

shear force and bending moment diagrams clearly show the response of test 

specimen to corresponding changes.  

 

 Four-point asymmetric bending (FPAB) test specimen has flexibility 

advantages for dimension changes of the geometry with no drastic deviations 

of the boundary conditions. 

 

 Zero absolute bending moment which causes pure shear effect on the crack 

plane can be easily satisfied by changing the locations of loading and support 

points. 
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 Short moment arm “d” should be located sufficiently far from the crack plane 

to avoid opening mode and non-zero KI effect. Excessive proximity of “d” to 

the crack plane compromises existence of pure mode II stress state and causes 

generation of non-zero mode I stress intensity factor KI with opening effect. 

 

 Four-point asymmetric bending test configuration is also proven to be 

convenient for shorter beam lengths adopted in this study, compared to the 

previous work with beams extremely long spans.  

The recommendations for future work can be listed as; 

 

 In this work, L/d=3 is used in all beam geometries. Different position 

configurations of loading and support points should be investigated in detail. 

For example it is suggested to include geometries with 2 ≤ 𝐿/𝑑 ≤ 3.  

 

 For the same geometric dimensions of test specimen, different positioning of 

loading and support points that satisfy pure mode II conditions should be 

investigated. 

 

 The effect of beam thickness (B) on pure mode II fracture toughness should 

be investigated. 

 

 For different positioning of loading and support points and different beam 

thicknesses boundary influence and size effects should be examined by 

studying Von-Mises stress fields between crack tip and loading 

points/support points. 

 

 Von-Mises stress field around crack tip and loading points should be 

investigated seriously with plastic models. Von-Mises stress field for mode I 

stress intensity factor KI covers broader area on the specimen compared to the 

same stress field created by mode II stress intensity factor KII. 
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 Rock type utilized for four-point asymmetric bending (FPAB) test should 

consist of fine grained material. Coarse grains within the rock matrix may 

lead crack to propagate through improper paths. This issue causes undesirable 

fracturing of the test specimen and effects validity of the test results. 

 

 Specimen preparation process should be considered carefully. Results of 

laboratory tests are very sensitive to the any angular deviations on the flat 

surfaces of the test specimen. Corresponding surfaces should be totally 

parallel to each other. Errors on flatness and parallelism of the corresponding 

surfaces cause torsional and twisting effects on crack plane. This leads to 

undesirable crack propagation and fracturing mechanism. 

 

 Rocks tested under compression fails by forming major shear mode cracks at 

maximum load. Thus, it is recommended to investigate existence of any 

possible relationship between unconfined and confined strength values and 

mode fracture toughness values of rock units of different origin.  

 

 Loading rate of test procedure should allow the proper stress redistribution on 

the crack plane and of the test specimen itself. Excessively high or low 

loading rates may cause to develop instant overload on the crack plane or on 

stress fields. 

 

 Loading rate of test procedure should be within the limits of 8 to 2 microns 

per seconds. In this study it is set as 3 microns per second. 
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APPENDICES 

 

 

APPENDIX A: DIMENSIONLESS SHORT MOMENT ARM DISTANCE 

ANALYSIS 

 

 

 

A.1 Beam Depth Group W= 40 mm graphs 

 

 

 

Figure A. 1 Dimensionless short moment distance for a/W= 0.15 regarding pure 

shear SIF conditions 
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Figure A. 2 Dimensionless short moment distance for a/W= 0.20 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 3 Dimensionless short moment distance for a/W= 0.25 regarding pure 

shear SIF conditions 
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Figure A. 4 Dimensionless short moment distance for a/W= 0.30 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 5 Dimensionless short moment distance for a/W= 0.35 regarding pure 

shear SIF conditions 
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Figure A. 6 Dimensionless short moment distance for a/W= 0.40 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 7 Dimensionless short moment distance for a/W= 0.50 regarding pure 

shear SIF conditions 
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Figure A. 8 Dimensionless short moment distance for a/W= 0.60 regarding pure 

shear SIF conditions 
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A.2 Beam Depth Group W= 50 mm graphs 

 

 

 

Figure A. 9 Dimensionless short moment distance for a/W= 0.15 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 10 Dimensionless short moment distance for a/W= 0.20 regarding pure 

shear SIF conditions 
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Figure A. 11 Dimensionless short moment distance for a/W= 0.25 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 12 Dimensionless short moment distance for a/W= 0.30 regarding pure 

shear SIF conditions 
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Figure A. 13 Dimensionless short moment distance for a/W= 0.35 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 14 Dimensionless short moment distance for a/W= 0.40 regarding pure 

shear SIF conditions 

y = -0.0138x + 0.0369 
R² = 0.9989 

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.2300 0.2400 0.2500 0.2600 0.2700

K
I/

K
II
 R

A
TI

O
  

Dimensionless short moment arm 
d/W 

y = -0.012x + 0.0357 
R² = 0.9965 

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.2100 0.2200 0.2300 0.2400 0.2500

K
I/

K
II
 R

A
TI

O
  

Dimensionless short moment arm 
d/W 



191 

 

 

 

Figure A. 15 Dimensionless short moment distance for a/W= 0.50 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 16 Dimensionless short moment distance for a/W= 0.60 regarding pure 

shear SIF conditions  
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A.3. Beam Depth Group W= 60 mm graphs 

 

 

 

Figure A. 17 Dimensionless short moment distance for a/W= 0.15 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 18 Dimensionless short moment distance for a/W= 0.20 regarding pure 

shear SIF conditions 
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Figure A. 19 Dimensionless short moment distance for a/W= 0.25 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 20 Dimensionless short moment distance for a/W= 0.30 regarding pure 

shear SIF conditions 
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Figure A. 21 Dimensionless short moment distance for a/W= 0.35 regarding pure 

shear SIF conditions 

 

 

 

 

Figure A. 22 Dimensionless short moment distance for a/W= 0.40 regarding pure 

shear SIF conditions 
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Figure A. 23 Dimensionless short moment distance for a/W= 0.50 regarding pure 

shear SIF conditions 

 

 

 

Figure A. 24 Dimensionless short moment distance for a/W= 0.60 regarding pure 

shear SIF conditions 
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APPENDIX B: SPECIMEN PHOTOGRAPHS AFTER EXPERIMENTAL 

STUDY 

 

 

 

B.1 Beam Depth Group W= 40 mm photographs 

 

 
 

Figure B. 1 W= 40 mm a/W= 0.20 specimens after test 
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Figure B. 2 W= 40 mm a/W= 0.25 specimens after test 
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Figure B. 3 W= 40 mm a/W= 0.30 specimens after test 
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Figure B. 4 W= 40 mm a/W= 0.35 specimens after test 
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Figure B. 5 W= 40 mm a/W= 0.40 specimens after test 
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Figure B. 6 W= 40 mm a/W= 0.50 specimens after test 
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B.2 Beam Depth Group W= 50 mm photographs 

 

 

 

Figure B. 7 W= 50 mm a/W= 0.20 specimens after test 
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Figure B. 8 W= 50 mm a/W= 0.25 specimens after test 
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Figure B. 9 W= 50 mm a/W= 0.30 specimens after test 
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Figure B. 10 W= 50 mm a/W= 0.35 specimens after test 
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Figure B. 11 W= 50 mm a/W= 0.40 specimens after test 
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Figure B. 12 W= 50 mm a/W= 0.50 specimens after test 
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Figure B. 13 W= 50 mm a/W= 0.60 specimens after test 
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B.3 Beam Depth Group W= 60 mm photographs 

 

 

 

Figure B. 14 W= 60 mm a/W= 0.20 specimens after test 
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Figure B. 15 W= 60 mm a/W= 0.25 specimens after test 
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Figure B. 16 W= 60 mm a/W= 0.30 specimens after test 
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Figure B. 17 W= 60 mm a/W= 0.35 specimens after test 
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Figure B. 18 W= 60 mm a/W= 0.40 specimens after test 
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Figure B. 19 W= 60 mm a/W= 0.50 specimens after test 

 

 


