

AN APPROACH FOR AUTOMATED VERIFICATION OF WEB APPLICATIONS USING

MODEL CHECKING AND REPLAYING THE SCENARIOS OF COUNTEREXAMPLES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

YUDUM PAÇİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2015

AN APPROACH FOR AUTOMATED VERIFICATION OF WEB APPLICATIONS USING

MODEL CHECKING AND REPLAYING THE SCENARIOS OF COUNTEREXAMPLES

Submitted by YUDUM PAÇİN in partial fulfillment of the requirements for the degree of Master

of Science in Information Systems, Middle East Technical University by,

 Prof. Dr. Nazife Baykal

 Director, Graduate School of Informatics

 Prof. Dr. Yasemin Yardımcı

 Head of Department, Information Systems

 Assoc. Prof. Dr. Aysu Betin Can

 Supervisor, Information Systems

Examining Committee Members:

Assoc. Prof. Dr. Altan Koçyiğit

 Information Systems, METU

 Assoc. Prof. Dr. Aysu Betin Can

 Information Systems, METU

 Assoc. Prof. Dr. Banu Günel Kılıç

 Information Systems, METU

 Assoc. Prof. Dr. Halit Oğuztüzün

 Computer Engineering, METU

 Assoc. Prof. Dr. Vahid Garousi Yusifoğlu

 Software Engineering, Haccettepe University

 Date: 03/09/2015

iii

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

Name, Last Name : Yudum Paçin

Signature :

iv

ABSTRACT

AN APPROACH FOR AUTOMATED VERIFICATION OF WEB APPLICATIONS USING

MODEL CHECKING AND REPLAYING THE SCENARIOS OF COUNTEREXAMPLES

Paçin, Yudum

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Aysu Betin Can

September 2015, 137 pages

The increase in the use of web applications in various domains, raised the importance of the

methodologies for verification of web applications. We propose a framework for the verification

of web applications with respect to access control, link consistency and reachability properties

using model checking. In this approach, users define the properties by explanatory guidance of

user interface. The execution traces that lead to a property violation is translated to a script that

automates the replaying of the counterexample scenarios on a web browser. This facility enables

the user to observe incorrect behaviors of the web application with respect to specified properties

so that the user is released from the tedious task of understanding and interpreting the

counterexamples generated by the model checker. In addition, to automate this verification

v

process, we need to automate the model extraction of a web application to be given to the model

checker as an input. To this purpose, we use two dynamic web application crawlers and

automatically transform their models to an intermediate web model we have developed. This

intermediate web model both enables model extraction tool independence and gives the user to

edit the model manually to increase precision of verification process. In order to evaluate the tool

we developed for this purpose, we conducted a user study and the participants reported our tool to

be useful for detecting and visualizing errors. We also evaluated the effectiveness on real web

applications and observed that the tool can reveal real faults.

Keywords: Model checking, Web software verification, Counterexample animation

vi

ÖZ

WEB UYGULAMALARININ MODEL DENETLEME KULLANILARAK OTOMATİK

DOĞRULANMASI VE KARŞI ÖRNEK SENARYOLARININ OYNATILMASI İÇİN BİR

YAKLAŞIM

Paçin, Yudum

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Aysu Betin Can

Eylül 2015, 137 sayfa

Web uygulamalarının kullanım alanının gittikçe artması, doğrulama yöntemlerinin önemini de

arttırmaktadır. Bu çalışmada, model denetleme kullanılarak web uygulamalarının erişim kontrolü,

bağlantı tutarlılığı ve erişilebilirlik özelliklerinin doğrulanması için bir yöntem öneriyoruz. Bu

yaklaşımda, kullanıcılara sorgulanacak özellikleri ara yüz yardımıyla tanımlama imkanı

verilmektedir. Sorgulanan özelliklerin ihlaline neden olan yürütme adımları, model denetleyicinin

ürettiği karşı örneklerin web tarayıcısı üzerinde oynatılmasını sağlayan betiklere çevrilmektedir.

Bu sayede, kullanıcıların web uygulamasında bulunan hatalı davranışları gözlemlemelerine olanak

verilmekte, kullanıcıya model denetleme aracının ürettiği anlaşılması zor ve oldukça detaylı olan

karşı örneklerin çözümlenmesinde yardımcı olunmaktadır. Buna ek olarak, doğrulama sürecini

vii

otomatikleştirmek için, model denetleme aracına girdi olarak belirlenen modelin web

uygulamasından elde edilmesinin de otomatikleştirilmesi gerekmektedir. Biz bu amaçla, var olan

iki dinamik web arama robotunu kullanmakta ve çıkan modelleri otomatik olarak kendi

geliştirdiğimiz ara web modeline çevirmekteyiz. Bu ara web modeli, hem model çıkarma

aracından bağımsızlık sağlamakta hem de doğrulama sürecinin kesinliğini arttırmak için

kullanıcıya çıkan modeli manuel biçimde düzenleme imkanı sunmaktadır. Ayrıca, bu amaçla

geliştirdiğimiz aracın değerlendirilmesi kapsamında bir kullanıcı çalışması yürütülmüştür.

Katılımcılar, hata tespiti ve hataların görselleştirilmesini yararlı bulduklarını bildirmişlerdir.

Ayrıca, aracın hata tespitindeki etkililiği gerçek web uygulamalarıyla değerlendirilmiş ve aracın

hataları tespit edebildiği gözlemlenmiştir.

Anahtar Kelimeler: Model denetleme, Web yazılımı doğrulama, Karşı örnek oynatımı

viii

To my family,

Yusuf, Nuran & Doğukan Paçin

ix

ACKNOWLEDGEMENTS

I would like to thank my advisor Assoc. Prof. Aysu Betin Can for making this experience possible

for me. I thank her for her great patience and the time that she spent with me for discussing the

research and suggesting new ideas. I also would like to thank for her kind and quick responses,

which helped me in every stage of this work.

I also want to thank my friends, Murathan Kurfalı and Ece Kamer Takmaz for their friendship and

valuable comments, which light my way most of the time.

I would like to thank also Ezgi Arslan for her great support in my first year at the graduate school,

which gave me the strength to continue to my education.

I would like to thank my family for supporting me to pursue my education since I was a little child.

My father, Yusuf Paçin, my mother Nuran Paçin and my brother Doğukan Paçin provided me with

their unconditional support and love which become the motivation of my thesis.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ.. vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xiii

LIST OF FIGURES ... xiv

LIST OF ABBREVIATIONS AND ACRONYMS .. xvi

CHAPTER

 1. INTRODUCTION .. 1

 2. BACKGROUND .. 5

 2.1 Model Checking ... 6

 2.2 Web Crawlers Used for Modelling... 8

 2.2.1 Crawljax .. 9

 2.2.2 Micro-Crawler ... 10

 2.3 Counterexamples .. 11

 3. LITERATURE REVIEW ... 15

 3.1 Verification of Web Applications with Model Checkers ... 15

 3.1.1 Classification of the Related Studies ... 19

 3.1.1.1 Categorization Criteria ... 19

 3.2 Interpreting Counterexamples .. 23

xi

 3.3 Testing Web Applications with Model Checkers .. 24

 4. METHODOLOGY .. 27

 4.1 Running example ... 28

 4.2 Modelling Web Application as Intermediate Web Model ... 30

 4.3 Generation of Model in NuSMV ... 32

 4.4 Properties ... 37

 4.4.1 Navigation Errors .. 37

 4.4.2 Access Control Errors ... 37

 4.4.3 CTL Formulas ... 38

 4.5 Converting Counterexamples to Executable Error Scenarios .. 40

 5. MCWebSoft ... 43

 5.1 System Overview ... 43

 5.2 Implementation Details .. 44

 5.2.1 Decomposition Description and Description of Classes ... 45

 5.2.1.1 Data Package .. 45

 5.2.1.2 Application Package .. 49

 5.2.1.3 Presentation Package .. 51

 5.2.2 Dependency Description ... 53

 5.2.3 Third Party Tools and Packages Used .. 56

 5.2.3.1 NuSMV 2.5.4 ... 56

 5.2.3.2 Selenium .. 56

 5.2.3.3 com.google.gson .. 57

 5.2.3.4 org.junit .. 57

 6. EVALUATION .. 59

 6.1 User Study .. 59

xii

 6.2 Error Detection Evaluation ... 61

 6.2.1 Navigation Errors .. 61

 6.2.2 Access Control Errors ... 66

 6.3 Performance Evaluation ... 70

 6.3.1 Performance of navigation verification ... 70

 6.3.1.1 Results of the Size Measurement ... 70

 6.3.1.2 Results of Performance Evaluation .. 74

 6.3.2 Performance of Access Control Verification... 76

 7. DISCUSSION AND CONCLUSION .. 79

 7.1 Summary .. 79

 7.2 Contributions .. 80

 7.3 Limitations ... 81

 7.3.1 Completeness and Soundness .. 81

 7.3.2 Threads to Validity of the Evaluation ... 82

 7.4 Future Work ... 82

REFERENCES ... 85

APPENDICES

 A. INTERMEDIATE WEB MODEL OF RUNNING EXAMPLE ... 93

 B. NuSMV MODEL OF RUNNING EXAMPLE ... 101

 C. OUTPUT OF NuSMV FOR RUNNING EXAMPLE ... 105

 D. A JUNIT CLASS TO REPLAY FOR RUNNING EXAMPLE .. 109

 E. CLASS DIAGRAM OF MCWebSoft ... 111

 F. THE QUESTIONNAIRE ... 113

 G. NAVIGATIONAL VERIFICATION RESULTS ... 115

xiii

LIST OF TABLES

TABLES

1. Categorization of MCWebSoft .. 20

2. Categorization of the related studies .. 21

3. Navigation and access control properties in CTL .. 38

4. Items of the user study evaluation and responses of all participants 60

5. Perceived usefulness and perceived ease of use results ... 61

6. Subject web applications used in verification of navigation properties 62

7: Results of verification of navigation properties ... 64

8. Number of real faults and false alarms generated before and after model refinement 66

9. Results of verification of access control properties ... 68

10. The webstates detected in Version 1 .. 68

11. The webstates detected in Version 2 .. 69

12. The webstates detected in Version 3 .. 69

13. Results of size measurements of subject web applications in Table 6 73

14. Time measurement results of subject web applications in Table 6 .. 74

15. Results of performance evaluation of the Restaurant Script web site 77

xiv

LIST OF FIGURES

FIGURES

1. Overview of the approach .. 2

2. A high-level representation of the subjects covered in the study ... 5

3. A sample Kripke structure, K. The states marked with x are the states where the atomic property

x holds [21] ... 11

4. Counterexample of AF ¬x in K. The counterexample shows that there is a loop where x is

always true which violates the property specifying x will eventually be false in all paths [21] .. 12

5. A sample counterexample generated with NuSMV model checker ... 12

6. Workflow of the approach .. 28

7. A representative model of the running example ... 29

8. The intermediate web model of the running example (Excerpt) .. 31

9. Kripke structure representation of the running example .. 34

10. The NuSMV model of the running example (Excerpt) .. 35

11. A counterexample generated by NuSMV for the running example 41

12. Auto generated JUnit code from the counterexample in Figure 11 (Excerpt) 42

13. A high-level overview of the system .. 43

14. The detailed representation of the verification processes depicted in Figure 13 44

15. Package structure of MCWebSoft .. 45

16. WebState Class ... 45

xv

17. Element Class... 46

18. Edge Class .. 46

19. MicroCrawlerIntFormat Class ... 47

20. CrawljaxIntFormat Class ... 47

21: IntFormat Interface .. 48

22. Trace Class ... 48

23. CreateIntFormat Class ... 49

24. IntFormatToNuSMV Class .. 50

25. NuSMVExecuter Class .. 50

26. CounterExampleToScript Class ... 51

27. GUI Class ... 52

28. Class diagram of the Data Package .. 53

29. Class diagram of the Application Package .. 54

30. Class diagram of the Presentation Package .. 55

31. Relations between classes of data and application packages ... 55

32. Relations between classes of application and presentation packages 56

33. Technology Acceptance Model (TAM) (Adapted from [59]) ... 59

34. Verification results with respect to Micro-Crawler’s output ... 64

35. Verification results with respect to Crawljax’s output ... 65

36. The model of the Restaurant Script web site ... 67

37. Code fragment causing access control errors ... 67

38. Boxplot of file size of subject web applications .. 71

39: Boxplot of average DOM size of subject web applications ... 71

40. Boxplot of average number of edges in intermediate web models subject web applications 72

41. Boxplot of average number of webstates in intermediate web models subject web applications

 ... 73

42. Boxplot of average time spend in verification of subject web applications 74

43. Scatterplot of average number of edges and average time ... 75

44. Scatterplot of average number of webstates and average time .. 76

xvi

LIST OF ABBREVIATIONS AND ACRONYMS

ADM : Ariande Development Method

CSS : Cascading Style Sheets

CFG : Control Flow Graph

CTL : Computation Tree logic

DOM : Document Object Model

EE : Enterprise Edition

FSM : Finite State Machine

GUI : Graphical User Interface

HTML : HyperText Markup Language

HTTP : HyperText Transfer Protocol

Id : Identity

IDE : Integrated Development Approach

IIS : Internet Information Server

KB : KiloByte

LTL : Linear Temporal logic

MB : MegaByte

MDA : Model Driven Approach

ms : MiliSeconds

OBDD : Ordered Binary Decision Diagram

ORD : Object Relation Diagram

SMV : Symbolic Model Verifier

xvii

UML : Unified Modeling Language

UWE : UML-based Web Engineering

URL : Uniform Resource Locator

WAG : Web Application Graph

WebML : Web Modeling Language

XMI : XML Metadata Interchange

XML : eXtensible Markup Language

1

CHAPTER 1

INTRODUCTION

Web applications have been increasingly common and effective in our daily lives, where they are

heavily used in various types of domains as commerce, education, health and government. In

addition, with the rapid evolving technologies in web development, web applications have become

capable of more significant transactions, and as a result, more complicated and mission critical.

Therefore, an effective way to assure the correctness of these applications emerges as an important

necessity.

Verification of software is used to determine whether the developed software meets its destined

specifications [1]. Verification procedures increase the reliability of applications by identifying

the undesirable functions before they cause bigger problems. Model checking is a formal, model-

based verification technique. Using this method provides several benefits. One advantage of using

model checking is that it performs automated exhaustive search on state space of the system under

test. Users are only responsible for providing a high-level finite state model of a system and

properties to be verified for model checking. Second, model checkers produce an error trace, called

counterexample, for each violated property. This feature helps developers to localize errors and to

fix the verified system according to scenarios in counterexamples.

Despite these advantages, model checking is a challenging technique for developers who are not

familiar with formal methods. Defining the properties and understanding the counterexamples are

some of the complex tasks for non-expert users. Also, in order to perform model checking, the

system should be modelled as a finite state machine (FSM). However, modelling web applications

is not an easy task because of the complex and rich structures they have.

In this thesis, we aim to introduce users a way of applying this powerful verification technique,

model checking, to web applications without formal methods background and help with the

challenging tasks of using model checking discussed above. A tool-chain, MCWebSoft, is

implemented for this aim.

2

Figure 1: Overview of the approach

The workflow of MCWebSoft is depicted in Figure 1. In our approach, for defining model of web

applications, the tool is made compatible with models generated from web crawlers. We have used

two web crawlers, Crawljax [4] and Micro-Crawler, subsequent version of WebMole [5]. This

model is then converted to an XML-based model, which is called intermediate web model, in order

to prevent being fully dependent on the web crawler outputs and enabling user modifications to

the model extracted from web crawlers.

NuSMV [6] is embedded in our approach as the model checker. Therefore the intermediate web

model is converted to a NuSMV model. Complexities of defining properties to be verified are

eliminated by means of a user interface that helps to generate temporal logic properties required

for verifying navigation and access control mechanism of web applications. Finally,

counterexamples produced by the model checker is interpreted as replaying error scripts based on

Selenium’s WebDriver to enable users to visualize the detected errors.

With MCWebSoft, we also aim to find navigation and access control errors of web applications

with model checking. Navigation errors, within the scope of this thesis, consist of faults preventing

reachability between web pages. Reachability is one of the key aspects of web applications, since

navigation between web pages is established by the communication in client server system which

forms the general architecture of the web applications [2]. Also, reachability between all states of

a web application is an indicator of a good design [3]. In some web applications, reachability of

particular states require authorization of users. For restricting the access of private services or

contents, web applications employ access control mechanisms. Errors arising from any gap in

these mechanisms can cause unauthorized users to access private contents or services, which

constitute another type of errors aimed to be detected in this study called access control errors.

We conducted a user study to evaluate the ease of use and usefulness of MCWebSoft. The

participants had no experience in formal methods. These non-experienced users succeeded to

define their own properties and checked web application with a model checker for the first time.

The participants reported our tool to be useful for detecting and visualizing errors.

In addition, we evaluated our tool with 30 real web applications to investigate the capability of

detecting navigational errors, and found real reachability errors. However, there were false alarms

due to inaccuracies in the models extracted by crawlers. We refined the web models using only

the observations when scenarios are replayed and were able to eliminate all false alarms. Detecting

3

the access control errors were evaluated using fault injection on an open source web application.

We injected access faults by removing the delegations with authorization policy at several

locations in the source code. This resulted in accessing the private states without the authorization

page. MCWebSoft succeeded to detect the access control errors in each faulty version.

The remainder of this document is organized as follows: In Chapter 2, background information of

the thesis, which includes descriptions of model checking, web crawlers used for modelling,

counterexamples, is given. In Chapter 3, the literature survey on model checking usage on

verification of web applications, testing web applications and previous studies about interpretation

of counterexamples are presented. In Chapter 4, MCWebSoft is explained with its methodology.

Whole methodology is explained step by step with a running example and property definitions are

introduced in detail. In Chapter 5, implementation details and the system overview of MCWebSoft

are given. Information about the design and third party software packages, tools used for

MCWebSoft are presented in this chapter. In Chapter 6, the evaluation of MCWebSoft which is

comprised of user study, error detection evaluation and performance evaluation is presented. In

Chapter 7, conclusion and discussion of the study is given with the summary, contributions,

limitations and future work subsections.

4

5

CHAPTER 2

BACKGROUND

This study combines different methods to allow inexperienced users to apply model checking for

verification of web applications. In this chapter, descriptions of methods, tools and contexts

constituting the framework of the study are given.

Figure 2: A high-level representation of the subjects covered in the study

6

In Figure 2, a general view of the subjects included in our proposed model are given to better

explain the background information. In Section 2.1, model checking, the method used for

verification, is described. As a model based method, model checking requires a model of the

system under test. The system models are obtained from two web crawlers in our approach. These

web crawlers and the structure of the models they produce are presented in Section 2.2. Property

specification is made to check whether the model of web application satisfies certain requirements.

In our approach, properties are defined to find navigation and access control errors, but this section

is not included in this chapter, since the concept of property definition is more suitable for Chapter

4 in which the methodology of the study is explained (see Section 4.4). Finally, in this study, we

used output of model checker to replay errors of web applications. In the output file of model

checker, we used counterexamples for replaying the error traces. Therefore, counterexamples are

defined in Section 2.3, in more detail.

2.1 Model Checking

Model Checking is an automated formal verification technique for evaluating functional properties

of system models [7]. Model checking examines all system space to verify a system model against

properties which are the specifications that define what the system should or should not do. A

system model describes how the system behaves. Model checking performs state space exploration

on the system model to find whether the model fulfills the given property. If the property holds

for the system model, the execution terminates with a message indicating that the property is true.

Otherwise, violated property is displayed with a counterexample showing the sequences of states

leading to property violation [7].

In the rest of this section, formal and detailed descriptions of the prerequisites for model checking

technique are given. First prerequisite is the model of the system. The model expresses the

behavior of the system in a FSM which consists of a set of states and a set of transitions. States

give current values of variables. Transitions describe how the system evolves.

The model specified for model checking method should be formal; the formalism employed to

describe model and properties used for model checking is called Kripke structure [8].

Definition: Kripke structure is defined as a 4-tuple 𝐾 = (𝑆, 𝑆0, 𝑇, 𝐿) where,

 𝑆 is a finite set of states

 𝑆0 ⊆ 𝑆 is an initial state set,

 𝑇 ⊆ 𝑆 × 𝑆, is a left-total transition relation; for each 𝑠 ∈ 𝑆 there is a 𝑠′ ∈ 𝑆 such

that (𝑠, 𝑠′) ∈ 𝑇,

 𝐿: 𝑆 → 2𝐴𝑃, is a labelling function that maps each state to a set of atomic

representation that hold in this state, where AP is a set of atomic propositions.

In a Kripke structure, all possible behaviors of the system are expressed with a sequence of states,

called path. Definition of a path, according to the Kripke structure definition above, is as follows:

7

Definition: A path in the Kripke structure 𝐾 = (𝑆, 𝑆0, 𝑇, 𝐿) is an infinite sequence 𝑠0, 𝑠1, 𝑠2, .. in

𝑆 such that ∀𝑖 ≥ 0, (𝑠𝑖 , 𝑠(𝑖+1)) ∈ 𝑇 .

Second prerequisite for model checking is the properties. The properties specify the desired

features of the model. They are defined as formulas of temporal logic. Temporal logic describes

the sequences of transitions between states [9]. A temporal logic formula’s truth is not static, but

determined by a point of time inside the model. The time point specification is made implicitly

with the keywords in temporal logic operators, as eventually, never and globally [10].

The most commonly preferred temporal logics are Computation Tree Logic (CTL) and Linear

Temporal Logic (LTL) [8]. We used CTL in this study for specifying the properties to be checked

in web applications. In CTL, time is represented as branching from present time to the future,

whereas in LTL, time is considered as linear.

A CTL formula consists of atomic propositions, logical operators and temporal operators. A

temporal operator in CTL consists of two parts: a path quantifier (𝐴 and 𝐸) and a temporal operator

(𝐹, 𝐺, 𝑈, and 𝑋). The meaning of temporal operators, 𝐹, 𝐺, 𝑈, and 𝑋 are ‘in a Future state’,

‘always (Globally)’, ‘Until’ and ‘neXt state,’ respectively. These operators are preceded by a path

quantifier. The path quantifier, 𝐴 means ‘along All paths’ and 𝐸 means ‘along at least (there

Exists) one path’ [10].

The syntax of CTL is given in Backus Naur form as,

𝜙 ∷ =⊥ | ⊤ | 𝑎 | (¬𝜙) | (𝜙1 ∧ 𝜙2) | (𝜙1 ∨ 𝜙2)| (𝜙1 → 𝜙2) | 𝐴𝑋𝜙 | 𝐸𝑋𝜙 | 𝐴𝐹𝜙 | 𝐸𝐹𝜙 | 𝐴𝐺𝜙 |
𝐸𝐺𝜙 | 𝐴[𝜙1𝑈 𝜙2] | 𝐸[𝜙1𝑈𝜙2], where 𝑎 ranges over a set of atomic formulas and 𝜙, 𝜙1 and 𝜙2 are

state formulas.

Definition Let 𝑠 ∈ 𝑆 be a state of a Kripke structure 𝐾 = (𝑆, 𝑆0, 𝑇, 𝐿) and 𝜙 be a state formula.

According to these, (𝐾, 𝑠| = 𝜙) means 𝜙 holds at state 𝑠 in Kripke structure 𝐾. (𝐾, 𝑠¬| = 𝜙)

means 𝜙 does not hold at state 𝑠 in Kripke structure 𝐾. With these variables and explanations,

satisfaction of CTL formulas are explained as follows:

𝐾, 𝑠| = 𝜙1 ∨ 𝜙2 iff (𝐾, 𝑠| = 𝜙1) ∨ (𝐾, 𝑠| = 𝜙2)

𝐾, 𝑠| = 𝜙1 ∧ 𝜙2 iff (𝐾, 𝑠| = 𝜙1) ∧ (𝐾, 𝑠| = 𝜙2)

𝐾, 𝑠0| = 𝐴𝑋 𝜙 iff for every path 𝑠0, 𝑠1, 𝑠2, .. in 𝐾: 𝐾, 𝑠1| = 𝜙

𝐾, 𝑠0| = 𝐴𝐹 𝜙 iff for every path 𝑠0, 𝑠1, 𝑠2, .. in 𝐾: ∃𝑖 ∈ ℕ ∶ 𝐾, 𝑠𝑖| = 𝜙

𝐾, 𝑠0| = 𝐴𝐺 𝜙 iff for every path 𝑠0, 𝑠1, 𝑠2, .. in 𝐾 ∶ ∀𝑖 ∈ ℕ ∶ 𝐾, 𝑠𝑖| = 𝜙

𝐾, 𝑠0| = 𝐴 (𝜙1𝑈𝜙2) iff for every path 𝑠0, 𝑠1, 𝑠2, .. in 𝐾: ∃𝑖 ∈ ℕ+: (𝐾, 𝑠𝑖| = 𝜙1) ∧ ∀𝑗 ∈ ℕ: 𝑗 < 𝑖:
(𝐾, 𝑠𝑗| = 𝜙2)

𝐾, 𝑠0| = 𝐸𝑋 𝜙 iff there exist a path 𝑠0, 𝑠1, 𝑠2, .. in 𝐾: 𝐾, 𝑠1| = 𝜙

𝐾, 𝑠0| = 𝐸𝐹 𝜙 iff there exist a path 𝑠0, 𝑠1, 𝑠2, .. in 𝐾: ∃𝑖 ∈ ℕ ∶ 𝐾, 𝑠𝑖| = 𝜙

𝐾, 𝑠0| = 𝐸𝐺 𝜙 iff there exist a path 𝑠0, 𝑠1, 𝑠2, .. in 𝐾: ∀𝑖 ∈ ℕ ∶ 𝐾, 𝑠𝑖| = 𝜙

𝐾, 𝑠0| = 𝐸 (𝜙1𝑈𝜙2) iff there exist a path 𝑠0, 𝑠1, 𝑠2, .. in 𝐾: ∃𝑖 ∈ ℕ+: (𝐾, 𝑠𝑖| = 𝜙1) ∧ ∀𝑗 ∈ ℕ: 𝑗 <
𝑖: (𝐾, 𝑠𝑗| = 𝜙2)

In order to illustrate CTL formulas, we give some of the properties used in this thesis (see Section

4.4). The formulas are defined for the Kripke structure in which webstate is a variable of a state

8

and ‘index’, ‘state1’ are values of the webstate variable. Let (𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑖𝑛𝑑𝑒𝑥) and

(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒1) be two atomic properties. According to these assumptions, a CTL formula

𝐸𝐹(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑖𝑛𝑑𝑒𝑥) expresses that it is possible to eventually reach a state where

(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑖𝑛𝑑𝑒𝑥) is true (i.e., the index is reachable).

Another property is 𝐴𝐺(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑖𝑛𝑑𝑒𝑥 → 𝐴𝐹 (𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒1)). This formula

specifies that whenever the system encounters a state where (𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑖𝑛𝑑𝑒𝑥) is true, it will

eventually reach a state where (𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒1) is true.

LTL is the other commonly preferred temporal logic used for model checking. LTL differs from

CTL, in terms of the logic of modelling the time. LTL models the time as sequence of states, called

computation path. Also, LTL formulas are evaluated over paths, unlike CTL which is evaluated

over states. LTL formulas implicitly check formulas for all paths. Hence, existence of a path

cannot be examined in LTL [10]. Therefore, path quantifiers, 𝐴 and 𝐸 do not exist in LTL.

There are also several, different model checking algorithms. The first algorithm of model checking

was the explicit state model checking [8]. In explicit state model checking, one reachable state is

enumerated at a single time, but this can lead to state space explosion problem. That is, the size of

a state space of a system can grow exponentially with the increase in the number of its processes

and variables. McMillan et al. introduced symbolic model checking to solve this problem by

considering large set of states at a single step [11]. The idea behind the symbolic model checking

is to represent states and the transitions relation as Boolean logic formulas. In symbolic model

checking Ordered Binary Decision Diagrams (OBDDs) are used for manipulations of Boolean

formulas [9]. There are many model checkers supporting symbolic model checking (e.g. SPIN,

SAL, SMV, and NuSMV). In this approach we used NuSMV [6], a symbolic model checker, to

verify the web application models against CTL properties.

2.2 Web Crawlers Used for Modelling

A web crawler, which is also called web spider, ant or automatic indexer, is a web robot that

systematically browse World Wide Web. The first web crawler, the Wanderer, was developed in

1993 for measuring the size of web [12]. In 1994, the web crawler, called the WebCrawler, was

built for indexing and navigating the web [13, 14]. In this study, we used web crawlers to generate

navigational maps of web applications.

For indexing web applications, traditional web crawlers follow the links in web pages successively

and differentiates each web page by their URLs. However, with 2.0, traditional web crawlers have

become insufficient. Web 2.0 brought the technologies that increase the interactivity of users

(e.g., AJAX and JavaScript) to use. In web applications developed with these technologies, firing

an event does not necessarily change the URL, but changes the Document Object Model (DOM)

of the web pages.

DOM is a standard for accessing HTML and XML documents. DOM defines how the elements in

the HTML documents are related with each other. In DOM, a document consists of nodes and has

a tree structure, which is called DOM tree. All nodes in the document can be accessed with the

DOM tree [15]. JavaScript and AJAX code can manipulate the HTML pages through the DOM

9

Crawljax and Micro-Crawler are two open source web crawler tools which are developed

especially for AJAX-based web applications. Crawljax and Micro-Crawler automatically apply

dynamic analysis, which is a type of analysis performed by execution of web applications. During

the analysis, web crawlers explore and record the states of web applications by recursive crawl

algorithms. Dynamically generated contents, which depend on previous actions or requests, can

be crawled by these web crawlers thanks to their DOM structure based algorithms. Therefore,

Crawljax and Micro-Crawler were selected to extract a FSM of web applications.

The models inferred by Crawljax and Micro-Crawler are used for model checking first in this

study. However, using the models resulted from Crawljax and Micro-Crawler for the analysis of

web applications was suggested before. For Crawljax, Mesbah et al., recommend using Crawljax

for analyzing dynamic web applications [4]. Le Breton et al. state that the map resulted from

WebMole, earlier version of Micro-Crawler, can be used for verification purposes [5]. Also,

Micro-Crawler has a component to test web applications that user can write oracles and perform

runtime testing on the map resulted from crawling. Crawljax does not have a testing component

like Micro-Crawler, but it has been used for testing AJAX based web applications in earlier

studies. [16, 17, 18, 19].

Using web crawler tools for extracting models of web application saves time of developers and

give more time to think about other necessities of model checking such as defining properties.

Also, such automation eliminates the system modelling burden that discourages the use of model

checking. During model extraction, the number of states can blow up quite fast. This is a well-

known problem in model checking domain which is called state space explosion. Micro-Crawler

and Crawljax are both able to limit the number of states explored; Micro-Crawler offers a state

restriction option; users can define a stopping condition to limit the size of states to be crawled.

As for Crawljax, users can determine the maximum depth level and maximum number of states

for crawling. Also users can limit the maximum crawling time, ignore external links or they can

ignore the links matching the predefined expressions to limit the size of exploration with Crawljax.

Although, using web crawlers for model-based analysis is acceptable, there are several questions

about adequacy of the generated models. Deursen et al. examined Crawljax for its challenges in

the usage of web analysis and state that to increase the suitability of the resulted model and the

real web application, further abstractions on state machine of Crawljax such as presenting the

super states, hyper edges for displaying the recursive behaviors in web applications are needed

[14]. Demarty et al., developed a technique for existing web crawlers which apply an abstraction

by redefining the links in application symbolically. The abstraction technique they developed

allows to reduce the size of resulted state machines [20]. As for our study, in order to compensate

the inadequacies of web crawlers, we add an option for user to modify the model extracted from

web crawlers.

In following subsections Crawljax and Micro-Crawler tools are explained in more detail.

2.2.1 Crawljax

Crawljax is a browser-based, open source web crawler which browses the pages. Crawljax fires

the user events generating various DOM trees of web application recursively and infers a static

representation of web application called as State Flow Graph (SFG). SFG is a directed graph, 𝐺 =

10

< 𝑟, 𝑉, 𝐸, 𝐿 > where, 𝑟, is the initial state of application, 𝑉 indicates the set of states and

symbolizes the vertices of the graph, 𝐸 is the set of directed edges between vertices in graph and

represents a relation between two states if and only if there exists a clickable element connecting

them, 𝐿 is a labeling function which assigns a label from set of event types and DOM element

properties to each edge. Although, labeling function assumes the number of event types as more

than one, only the click event type can be recognized by Crawljax 3.6 which is the latest version

of Crawljax available.

The algorithm of Crawljax simply detects clickable elements on each state beginning from the

root state recursively and fires click events. If the DOM structure of the new state is different from

previous found ones, according to difference algorithm of Crawljax, the state and the relevant edge

and elements are saved. This process is continued until no clickable element is remained. When

the crawling process is finished for one state, Crawljax starts the backtracking procedure. Within

the backtracking, the first unexplored previous state is searched, and if there is such a state, it is

crawled. Before firing the clickable event, Crawljax compares the attributes of element with the

visited elements’ attributes. Although this feature helps crawler to avoid looping, it causes

deficiencies in SFG.

Crawljax identifies clickable elements according to the tag attributes of the element, but it

compares clickable elements of whole web application rather than comparing elements on one

state of web application. This situation leads to unrecognized clickable elements, since Crawljax

does not add the same element twice in SFG. Assume that the tag of link to index page is located in different pages of web application. Although, the link

works properly for reaching the index page, Crawljax do not recognize them unless the values for

id attributes are different in each tag of web pages. Therefore, the homepage links located in all

pages should have a different id to be recognized by Crawljax.

Crawljax gives the opportunity to crawl web pages that require authorization of users by enabling

form filling with particular data inputs. Hence, for verifying access of private pages, web pages

that require authorization, model of web applications should be extracted from Crawljax tool,

instead of Micro-Crawler.

2.2.2 Micro-Crawler

Micro-Crawler is a subsequent version of WebMole which is a browser-based, open source web

crawler and web testing tool. The model inferred by Micro-Crawler is called Web State Machine

(WSM). WSM is a directed graph, 𝐺 =< 𝑉, 𝐸, 𝛿, 𝑣0 >, where 𝑉, vertices of graph, represents the

DOM trees in the application, 𝐸, edges of graph, represents the DOM paths, 𝛿 is a function,

𝛿: 𝑉 × 𝐸 → 𝑉, describing that clicking an element in the path, 𝑒 ∈ 𝐸, in the DOM tree 𝑣 ∈
 𝑉 results in the DOM tree 𝑣′ ∈ 𝑉. Lastly, 𝑣0 is the initial DOM tree (i.e., the homepage of the

web application).

The algorithm of Micro-Crawler explores web application from initial state and always moves

forward. After a page is explored, Micro-Crawler never goes back to these state, instead, it restarts

exploration from the initial state of web application. Despite of its strong algorithm, Micro-

Crawler often fails to terminate while crawling web applications, because the heuristic of Micro-

11

Crawler misses abstract the pages which are dynamically created using a content from a data store

(e.g., item description pages created for each item in a store).

2.3 Counterexamples

In mathematics, counterexamples are used for proving the negation of a proposition (i.e., proof by

contradiction). For example, disclaim of a property, which is claimed to hold for each element of

a set, can be disproved by a single element in the set which does not fulfill the property. Model

checkers generate counterexamples in the same manner, to give a proof of the violated property.

Counterexamples of model checkers can be in tree-like (i.e., branching) or in linear path (i.e., non-

branching) format. The counterexamples in linear path format are in the form of sequences of

states from initial state to the state where the property is violated. Linear path structured

counterexamples are generated with Linear Time Logic (LTL). In Computation Tree Logic (CTL),

counterexamples are generated in the form of linear path with the help of special algorithms [8].

Now, we give an example counterexample in linear path for CTL from [21]1.

Figure 3: A sample Kripke structure, K. The states marked with 𝒙 are the states where the atomic

property 𝒙 holds [21]

1 In [21], the linear counterexample for 𝐴𝐹 ¬𝑥 is given for ACTL, which is a fragment of CTL. In ACTL,

only A is allowed as a path quantifier [22]. The counterexample of the Kripke structure, K against the

property, 𝐴𝐹 ¬𝑥 is also valid for CTL.

12

Figure 4: Counterexample of 𝑨𝑭 ¬𝒙 in K. The counterexample shows that there is a loop where 𝒙 is

always true which violates the property specifying 𝒙 will eventually be false in all paths [21]

In Figure 3, a sample Kripke structure, K is shown with an atomic proposition 𝑥. In Figure 4, a

counterexample of the property 𝐴𝐹 ¬𝑥 is depicted on the Kripke structure. 𝐴𝐹 ¬𝑥 indicates that

from every state it is always possible to reach a state where 𝑥 is false. However, in K there is a

path where negation of 𝑥 is not reachable (i.e., there is a cycle where 𝑥 is always true). This path

constitutes of the linear counterexample of the property.

In Figure 5, a sample of a linear counterexample, which is generated with NuSMV model checker,

is depicted. The sample counterexample in Figure 5, is generated against the CTL property,

𝐴𝐹 ¬(𝑥) where 𝑥 is a Boolean variable, which can have two states as true or false.

Figure 5: A sample counterexample generated with NuSMV model checker

In order to understand the counterexample, we must first know the variables, transactions that

compromise the verified model. For example, by looking at the counterexample in Figure 5, a

developer who has limited or no information about the model may not understand the cause of

violation of the property.

-- specification AF !x is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-- Loop starts here

-> State: 1.1 <-

 x = TRUE

 y = FALSE

-> State: 1.2 <-

13

Counterexamples of this study refer to linear path formatted counterexamples described with CTL,

but in our property specifications, a situation about counterexamples poses a problem for our

study. This problem is that only one number of counterexample is generated for each violated

property. For instance, a counterexample of CTL property𝐴𝐺(𝐸𝐹(𝑥)), which means from any

state it is possible to reach 𝑥, can reveal only one path where 𝑥 is not reachable. However, there

can be other paths from which 𝑥 is not reachable. Therefore, we defined CTL properties so that

each path causing the violation can be captured (See Section 4.4.3 for details).

14

15

CHAPTER 3

LITERATURE REVIEW

3.1 Verification of Web Applications with Model Checkers

As it was mentioned in earlier sections, model checkers verify hardware and software systems on

high level abstractions of them by checking all possible interactions. Today, model checking

method is successfully applied to software applications. Zing [23], SLAM [24] and Cmc [25] are

examples of model checkers built for verification of C programs, and JavaPathFinder [26] is a

software model checker developed to verify Java programs. Software model checking tools help

developers to analyze programs against some desired properties. Current model checkers can

verify control-dominated protocol properties [27] as dead-lock freedom (i.e., the system never

reaches a state in which it cannot make any progress) and the properties are in qualitative nature

[7]. Model checking on software applications brings developers more time to work on more

complicated issues by verifying desired properties which can be checked with model checkers.

Model checking techniques are used in verification of web application analysis in many studies.

In order to investigate the related studies, we performed a search on Google Scholar1 with the

keywords, “model checking”, “verification” and “web application”. The most related results found

with the search are gathered for the literature review. In these studies, we examined that either a

new model checker is developed or an existing model checker is used for verification of web

applications.

1 https://scholar.google.com.tr/

16

First, we briefly explain special model checkers developed for web application verification.

MCWEB [28] is an example of model checker developed for verification of static web pages

MCWEB is capable of verifying only static navigation properties. In our study we are also

interested in verifying dynamic features of web applications by verifying access control of private

pages. In 2004, Licata and Krishnamurthi [29] have built a model checker that uses source codes

of web applications for automatic modelling. They performed a static analysis with a CFG

(Control Flow Graph) which can guarantee that all possible executions are captured in a model.

The model can be automatically rearranged by user operation definitions that transform the model

to a WebCFG graph, a description of control flow graph with web interactions. The properties for

verification check web properties associated with user operations. Unlike [29], we use the models

created with dynamic analysis of web applications by means of web crawlers. Deutsch et al.’s

model checker, WAVE [30] is developed for web designers to verify web applications using

WebML, a high level notation for web application modelling. WAVE works with textual rule-

based specifications and a temporal logic property described by user. The properties to be verified

is reachability and business process of web applications. Although [30] can verify application

specific properties that cannot be checked with other model checkers, using this model checker is

not easy for non-expert users, because user has to input a textual description with the property in

LTL Also in [28, 29], inexperienced users are not considered for property specifications.

The second category of the related studies covers the studies on verification of web applications

with existing model checkers. Since we also use an existing model checker, NuSMV, to verify

web applications, related studies in these category are examined in more detail. The relevant

studies include formal modelling methods and different property specifications which vary

according to modelling methods, model checker type and temporal logic used. Since our aim is to

increase the user experience on model checking, the automation level of these studies is also an

important aspect for us. In the automation level context, we consider how modelling and property

specification is handled. For modelling we have described methods in two types as automated or

not automated. In both automated and not automated methods, we give also source of modelling

which can be a design model, source code or other type of resource. In order to give in which

extend users are involved in property specification process, we provide details about whether the

properties are predefined by authors of studies or can be generated by users. Besides automation

levels, the presentation of counterexamples are provided.

We first give the related studies gathered in a chronologic order with one paragraph explanations.

Then we present the categorization of the studies according to several criteria including modelling

source, model checker type, property types, automation levels and counterexample interpretation.

AnWeb, a verification tool for supporting the design of web application, is developed by Di

Sciascio et al. in 2002 [31]. In AnWeb model of web applications, called web graph, is designed

as a directed graph where pages, links and windows are nodes. The generation of web graph

requires the source code information; HTML source codes are modelled as static pages and PHP

codes are modelled as dynamic pages. The resulting web graph model is converted into NuSMV

input language and the properties are specified in CTL. The properties cover verification of

reachability properties as absence of dead-end, generation of dynamic pages and consistency of

frame structures. A frame is a HTML tag which is used to contain web contents in a specific part

of web page. Consistency of frame structure verifies the hierarchy of a content located in a frame.

In order to verify frames, web graph of a web page with frames are formed as a tree having frames

17

as child nodes. The specifications for web applications are converted to CTL by authors, and the

property generation is not automated. Moreover, output of NuSMV is presented to user on browser

without any translation.

Haydar et al. introduced an approach for generating a formal model of web applications by

observing the external behavior and validating the resulted model [32]. The approach is

implemented as a tool called WAUT. In the first step of WAUT, users select the desired attributes

for verification. Then, the model is built automatically by means of observations of HTTP request

and responses. The resulted model describes the navigation of web application including the

interactions with the browser (e.g. back button). Conversion to a formal model is performed by

transforming the model to XML-Promela language for aSpin, an extension of SPIN model

checker. The web attributes, which are selected in the first step, are used in formulating the web

attributes to LTL language. After verification process, the output of model checking is not

transformed to any other version.

In 2005, Di Sciascio et al. developed a method for converting UML diagrams to formal models in

order to be verified by model checker [33]. The conversion is made by means of a component

named XMI2SMV which translates the UML diagram in XMI format to Web Application Graph

(WAG). With this model, Di Sciascio extended the web graph in AnWeb by defining actions as a

node in web graph. Consequently, in WAG, pages, links, windows and actions represented as

nodes of the graph. The WAG can be converted to NuSMV input language automatically.

Castelluccia et al., developed the tool WaVer by extending the WAG of [33] with the addition of

access policies [34]. WaVer verifies UML-design of web applications with NuSMV model

checker. The model to be verified is converted from UML diagram by XMI2SMV component,

and additionally, access control policies of authorized users and administrators are added to WAG

model. The properties are formulated in CTL by authors. WaVer enables users to verify web

application by a single automation process. However, property definition is not allowed to users.

In the study, it is mentioned that the output of NuSMV execution allows to locate errors and make

adjustments on design of web application, but the output is not converted to a more understandable

version for demonstrating the errors on the design model for users.

Knapp and Zhang [35] used model checking for validating and verifying design of web

applications. The model of a web application is created by integration the navigation and business

logic models of web application. The models are in the UML-based Web Engineering (UWE)

form, which is an extension of UML. SPIN model checker is used for validating the model. The

properties are defined in LTL and check navigation and business processes of web applications.

Property generation with respect to specifications of users and automated modelling are not

considered in this study.

In 2007, Brambilla et al., extended the WAVE model checker [30] by adding a front-end using

Model Driven Approach (MDA) [36]. In this approach, the design model inputted to WAVE is

specified with WebML notation. To formalize model, a set of transformation process is used to

covert model to WAVE model. Users do not have to input textual rule-based specification and a

temporal logic property as in WAVE. Modelling is made manually in WebML notation. Users

then verify the model with LTL formulas. Moreover, authors present a way for converting user

specifications to LTL properties with a user interface [37]. In this study, interpretation of output

18

of model checking is also considered. As other model checkers produce counterexamples, WAVE

also outputs a feedback of false-resulted properties. Since users who have designed the system in

WebML may not understand an output generated with respect to variables of WAVE models, the

feedback is presented to users with elements of model in WebML, which is the notation used while

creating the model of web application by users.

Most of the previous studies focus on modelling, but Miao and Zeng emphasis on property

generation [38]. The properties are generated automatically as CTL formulas with respect to a

design diagram given by the user in the form of Object Relation Diagram (ORD), a directed graph

representing web pages, software components, their relationship types, and relations, which is

proposed by Kuang et al. [39]. The model to be verified, implementation model, is described

manually in Kripke structure. Within this approach, consistency between implementation and

design model is checked. Verification is completed by SMV model checker. In [38], the design

diagram constitutes the base for production of properties. However, users are not directly included

to property generation process, since they cannot select the attributes to be checked. Also

interpreting counterexample of SMV for inexperienced users is not considered in [38].

In 2007 Guerra et al. developed AToM tool which automates the verification of security policies

of web applications [40]. They use Ariande Development Method (ADM), a web engineering

method for modelling the web application [41]. The source model in ADM, is converted to Petri

net formalism to apply model checking against the properties in CTL. While verifying, main focus

is on access control properties, but static and dynamic features can also be verified. Corresponding

CTL expressions for given web model is built internally in this method. Results of model checking

also displayed on the design model. Also the result depicted in the design model is summarized in

a dialog box.

Han and Hofmeister’s method FarNAV verifies adaptive navigational properties of web

applications by means of NuSMV model checker [42]. The adaptive navigation properties specify

navigation features dependent on session and role types of users. In FarNAV modelling is based

on statecharts unlike other studies which are based on graph-structured models. Authors use

parallel sub-states to represent learned navigation patterns of visitors. In the main sub-state a web

page is represented as one state and a link between pages represented as transition. The properties,

specified in CTL, check the reachability of web application against the mode of the user. In

FarNAV, modelling and property definition process is handled manually. There is no specification

about counterexamples transformation for increasing their understandability.

In 2010, Hallé et al. developed a plugin for web applications that prevents runtime navigation

errors [43]. The model of web application, Navigation State Machine (NSM), is defined as state

machine like FarNAV. Given NSM specifications in XML format, the plugin monitors the web

application with respect to specified ACTL properties. NuSMV model checker verifies these

properties and the plugin restricts the control flow, if the model checker falsified the related

property. This study is different from previous ones in terms of aim of usage; the goal of this study

is to restrict an unwanted navigation path before it happens. In this way, it protects the user from

a security gap sourced from unexpected interactions that is not covered in web application

implementation.

19

Homma et al, studied on a method of modelling and verification of web application design with

model checkers [2]. They describe web applications with two separate models; internal state and

page automation models. Page automation represents the navigation between web pages and

internal state automation represents the internal transitions of application. These two models are

expressed in Promela, input language of SPIN model checker. In order to verify the model in

Promela, reachability properties defined by authors in LTL. The errors in web application design

are aimed to be detected in this way. Automation of the modelling is not included and increasing

user experience is not considered in this study.

3.1.1 Classification of the Related Studies

In this section, we give the classification of the related studies discussed in the previous subsection.

First, we define five categorization criteria and then we present the classification of the related

work in Table 2.

3.1.1.1 Categorization Criteria

The categorization of studies explained in preceding section are described based on five main

criteria which are modelling source, model checker, property type, automation level and

counterexample interpretation.

Modelling Source is a criterion for indicating from which source the model of the web application

is extracted for verification purposes. The modelling can be begin from source code, design model

or by monitoring the external behaviors of web applications.

Model Checker indicates which model checker tool is used.

Property Type describes the property specifications used in model checking. The categories for

property types are determined according to survey of Alalfi et al. [44] in which the desired

properties of web applications are explained in three categories as navigation, content and

behavior. Navigation and content categories split into two subcategories as static and dynamic

features. Moreover navigation category includes one more subcategory called interaction.

Interaction navigation category is about the navigation properties which occur outside the

boundaries of web application (e.g., interactions with the web browser). The last one, behavior, is

divided into two subcategories as security and instruction-processing properties. The property

types of related studies which are also included in Alalfi el al.’s survey, remain as Alalfi el al.’s

categorizations. Our categorization covers static and dynamic navigation, static and dynamic

content and security properties. Static navigation properties check reachability, absence of dead

endsor consistency of a frame structure. Dynamic navigation properties cover the navigation

which depend on user input or other behavior. Static content properties check the existence of web

pages, links or other components of web application. Dynamic content properties check the

existence of dynamically created objects. Security properties include the assertions of access

control or session/cookies mechanism.

In Brambilla et al.’s study [36] the verification concerns do not match with a specific category of

Alalfi el al.’s categorizations. They use a special model checker built for web analysis, WAVE

20

[30] which is capable of checking all of common temporal logic properties and not limited to

syntactic analysis. Therefore, more complicated specifications as business process descriptions

can be checked with [36]. The property type categorization of [36] is defined as business process

properties. In our categorizations, the high level descriptions about property types are given, since

we provide detailed explanations for each study in the previous section.

It is important to mention that the differentiation of property types depends on the extent of

models. For example, models that cover dynamic features as user roles, input variables, enable to

specify properties that can check dynamic features.

Automation Level specifies whether the modelling is automated or not and whether properties

are already defined by authors of the study or automatically generated by user specifications. Also

In Table 1, the description of MCWebSoft, in terms of the categorization criteria we defined is

given. It is important to remind that, although we make our implementation as capable to accept

the web crawler tools’ outputs as web models, modelling can be done manually too. Moreover,

properties are described in two main categories as navigation and access control. Navigation

properties cover reachability of homepage, absence of dead end and link consistency between web

pages. We categorize navigation property as static and dynamic navigation, since the web crawlers

we used for modelling performs dynamic analysis and they execute the web application with

random or defined inputs while crawling. Further, access control properties are categorized as

security properties. Besides, another feature of our study is transformation of counterexamples.

Counterexamples produced are replayed on web browser to provide a better feedback of execution

for inexperienced users.

Counterexample interpretation criterion is for indicating whether the counterexamples

generated from model checker is interpreted to a more understandable version. Also, if such an

interpretation is performed, the way of the transformation is specified. We denote the studies in

which the counterexample interpretation is not considered with the ‘None’ word.

Table 1: Categorization of MCWebSoft

Modelling

Source

Model

Checker

Property

Type

Automation Level Counterexample

Interpretation

Web Crawler

tools, Crawljax

and Micro-

Crawler

NuSMV Static and

dynamic

navigation

and security

Modelling is

automated. Properties

can be selected by

user.

Replay of

counterexamples

In Table 2, categorization of related studies are given.

21

Table 2: Categorization of the related studies

Study

(Author,

Year)

Modelling

Source

Model

Checker

Property

Type

Automation

Level

Counter

example

Interpretation

Di Sciascio

et al., 2002,

[31]

Source code NuSMV Static and

dynamic

navigation

Modelling is

automated.

Properties are

predefined.

None.

Haydar et

al., 2004,

[32]

HTTP

requests/res

ponses

aSpin Static and

dynamic

navigation,

static

content and

interaction

navigation

Modelling is

automated.

Properties are

generated with

respect to user

selections.

None

Di Scascio et

al., 2005,

[33]

Castelluccia

et al., 2006,

[34]

Design

model in

Unified

Modeling

Language

(UML)

NuSMV Static and

dynamic

navigation

Modelling is

automated.

Properties are

predefined.

None

Knapp and

Zhang, 2006,

[35]

Design

models of

navigation

and

business

logic in

UWE

SPIN Static

navigation

and

security

properties

Modelling is

not automated.

Properties are

predefined.

None

Brambilla et

al., 2007,

[36]

Design

model in

WebML

notation

WAVE Business

process

properties

Modelling is

automated.

Properties are

defined by

user.

The

counterexamples

are interpreted to

users with

elements of the

design model.

Miao and

Zeng, 2007

[38]

Source code SMV Static and

dynamic

content and

navigation.

And

security

properties

Modelling is

not automated.

Properties are

automatically

generated.

None

22

Table 2 (continued): Categorization of related studies

As it can be seen in Table 2, web crawlers have not been used as modelling source in related

studies. However, we mentioned in Section 2.2 that in [14] and [20], web crawlers are examined

for their adaptability for model checking, and Demarty et al. developed a method for existing web

crawlers in order to redefine the navigation maps for model checking [20].

Model checker that we used in this study, NuSMV, has been also used in other studies of web

application verification. Therefore, converting the web application models to NuSMV models is

covered in these studies which are [31, 33, 34, 43]. Property types that we cover in this study have

been also used in several previous studies; [2, 3, 31] cover the reachability properties of our study.

Moreover, [33, 34, 40, 42] include properties of access control, which is also considered in this

thesis.

As for automation level, in related studies, mostly, properties are specified by the authors. Only in

[34, 36, 38], users can be involved in property generation. In [34], users select the attributes they

want to verify, then properties in temporal logic are automatically produced. In [36], users specify

Guerra et al.,

2007,

[40]

Design

model

defined

with, the

Ariadne

Developme

nt Method

Petri nets Static and

dynamic

navigation,

security

properties

Modelling is

automated.

Properties are

predefined.

Results of model

checking are

given on the

source model and

in a dialog

window.

Han and

Hofmeister,

2010, [42]

Navigation

model

based on

statecharts

SMV Static and

dynamic

navigation

and

dynamic

content

Modelling is

not automated.

Properties are

predefined

None

Halle et al.,

2010,

[43]

Navigation

State

Machine

(NSM)

NuSMV Static,

dynamic

and

interaction

navigation

and

security

properties

Modelling is

not automated.

Properties are

predefined.

None

Homma et

al., 2010,

[2]

Page and

internal

state

automata

models

SPIN Static and

dynamic

navigation

properties

Modelling is

not automated.

Properties are

predefined.

None

23

the specifications by a virtual interface and properties are produced according to these

specifications in LTL. In [38] users input a design model, describing how the system should

behave, then by the design model temporal logic properties are generated automatically. In our

approach, reachability properties are generated automatically. Also for checking link consistency

between two states and access control of a state of web application, users select the web pages,

states to be verified with the guidance of user interface, then MCWebSoft generates the properties

in CTL. Moreover, we can see from Table 2 that most of the studies include the automation of

modelling [31, 32, 33, 34, 36, 40], but automated modelling with web crawlers is not used.

In Table 2, only [36] and [40] consider the interpretation of the counterexamples by giving the

output as design model specifications. In our study, we interpret counterexamples by converting

the traces of them into a sequence of clicks starting at the initial page and reproducing the error

on the actual web site. By this way, counterexamples can be understood by both designers and

users of web site. We give literature review about interpretation of counterexamples in Section 3.2

by covering literature not only about web application verification but software model checking

studies in general.

3.2 Interpreting Counterexamples

In Section 2.3, description, usage and structure of counterexamples are introduced. In this section,

we do not examine counterexamples, but give examples of studies that interpret the

counterexamples for increasing users’ comprehension.

Counterexamples provide users an important feedback about violated property by giving the

sequence of states causing the violation. However, there are several situations that complicate the

understandability of this important outputs and causing users to spend considerable time for

examining the counterexamples to find detected errors on real application. One of the situation

that makes difficult to understand counterexamples is the complexity of state variables defined in

the model for model checker. In counterexamples variables are displayed as they are defined in

model checker input language. However, if users do not know the variables defined in model

checker language, counterexamples can be confusing. To solve this problem, [36, 40] applied a

transformation process from output of model checker to design model. However, this may not be

enough for users to understand counterexamples, since model checking large systems can cause

lengthy counterexamples for the large number of states and transitions. To decrease such

complexities, Huang et al., grouped the errors produced from same initial state by using Bounded

Model Checking and provide descriptive reports [45]. Also, Ball et al., added a special algorithm

to SLAM [24] to report the cause of errors from error traces in counterexamples [46]. In [46],

correct traces are used to determine where the errors are localized in a program.

In our study, we choose to replay the scenarios of counterexamples on real application with

automatically generated executable scripts in order to help designers to localize and determine

errors more easily. The idea for replaying counterexamples is attempted before in different

studies. For example, Bandera [47], a tool using existing model checkers, SPIN and SMV, to

analyze the Java programs, has a component to save the execution traces in counterexample and

show the values of states for each step by giving moving backward and forward options to users.

For the web model checker built by Licata and Krishnamurthi [29], the output of model checking

is made suitable to be converted into the format of the WebVCR [48], a record and replay tool, to

24

enable developers to watch error traces, by giving traces as sequences of web pages and operations.

VeriWeb [49], a dynamic navigation testing tool which uses VeriSoft for exercising all possible

execution paths in a nondeterministic manner. In VeriWeb once errors are found, they are logged

by VeriSoft and the scenarios of errors are saved in a separate file, as a model checker generates

counterexamples for each violated property. Authors state that, the recorded error sequences are

suitable to be replayed by WebVCR. The difference of our approach from VeriWeb and Licata

and Krishnamurthi’s study is that we do not only provide automated transformation of

counterexamples into executable script, but also replay this scenarios without forcing users to use

a record and replay tool to watch the error traces on the web application

3.3 Testing Web Applications with Model Checkers

In this section, some of the studies in testing web applications with model checking method are

given. Although, the aim of our study is not testing, the concerns of generating a model of web

application and converting the model to model checker language are similar to our study.

Testing with model checkers is an approach for web applications in the context of model-based

testing. In testing with model checkers, counterexamples which are evidences of property

violations, are used to generate test cases. By this way, test case generation problem is adapted to

model checking. A well-known method for test case generation with model checkers is to create

counterexamples for trap properties within a coverage strategy [50, 51, 52]. Trap properties are

negation of temporal logic properties which describe the desired characteristics of a test case.

Another approach uses mutation-based techniques to create counterexamples as test cases by

applying mutation to model or temporal logic properties [53].

In [50], Törsel used NuSMV model checker to generate test cases. A domain-specific language is

defined for specifying models of web applications. The model is described in XML and converted

to NuSMV language for model checking. The application specific information about the tested

web application such as XPath expressions, HTML tags, are put in a separate format, but not in

the domain specific language. This is done for maintaining the possible changes in DOM structures

from one file. As for our approach, we do not need to map the information about HTML elements,

since the models of web applications are taken from web crawler output and the presence of HTML

content is dependent on the crawler output. In case of any change in the web application, user

should crawl the web application again and run MCWebSoft with the new output to update the

error scenarios for a reliable result.

Törsel [50] converted the model specified in domain-specific language to NuSMV model by using

nested relations and creating new variables for model checker input language. We also use these

techniques while building NuSMV model by creating a trap state and using nested relations. (see

Section 4.3 for detailed information).

In [51], a formal model for demonstrating navigational behavior of web applications, which is

used to generate test cases is proposed. An Object Relation Diagram (ORD) is employed to model

the web applications. In this study, a web application is modelled as a directed graph where set of

web pages and software components are represented as nodes and the relations between these

nodes are defined as edges. Trap properties are generated with respect to edge and node coverage

25

criteria and checked with model checker to generate counterexamples which are converted to test

cases.

In [52] a technique for modelling web applications as Kripke Structure and optimizing the number

of counterexamples which are converted to test cases are developed. The model of web application

is constructed as Kripke structure with states corresponding to web pages or components and state

transitions corresponding relations between web pages. In order to generate counterexamples,

state, transition and transition composition coverage are expressed as trap properties. The number

of resulted test cases is reduced by a special algorithm to avoid redundant test cases

26

27

CHAPTER 4

METHODOLOGY

This study aims to enable the users with no background in formal methods to use model checking

on verification of web applications. Our approach consists of the following four main steps:

 Modelling web application as intermediate web model

 Generation of model in NuSMV and temporal logic properties

 Model checking with NuSMV

 Converting counterexamples to executable error scenarios

Model checking process is handled by NuSMV model checker which is added to our tool

externally. Other steps are explained in subsections 4.2, 4.3, 4.4 and 4.5. The detailed workflow

containing all details about the methods is given in Figure 6.

Modelling the subject web application as intermediate web model is the first step of our approach

as shown on the left side in Figure 6. In order to build the model, first a base model is taken from

a web crawler. Then, this model is converted to intermediate web model or a web model is defined

manually as an intermediate web model from user. The basic unit of our model is called webstate.

Webstate corresponds to state of DOM structures determined by changes aroused from user

interactions with web applications. The second unit of model is element. Elements represent

clickable page element of web application. The last unit is edge. Edge represents transition

relations between webstates through elements. In intermediate web models, users can modify

components of the intermediate web model which are webstate, element and edge. The detailed

explanation of these terms are given in Section 4.2.

28

Figure 6: Workflow of the approach

The next step in the workflow is property and NuSMV model generations. Our tool generates CTL

formulas without user intervention for navigational properties, which check if there are no dead

ends and homepage (index) is reachable from every state of the application. The generation of the

access control properties and the navigational properties checking reachability between two states

(i.e., link consistency) require user guidance (Bottom left in Figure 6). The next activity in Figure

6 is running the model checker and parsing the resulting counterexamples. The final activity is the

transformation of the counterexamples into executable scenarios to run with Selenium and animate

the error cases on a browser with a dialog box explaining the violated property.

In the remainder of this chapter, to concrete the details about workflow steps, the proposed

methodology is explained with a toy dynamic web application. The chapter starts with the

explanation of this running example. Then methodology of our approach is given with the running

example application.

4.1 Running example

This artificial application consists of twelve source files where six of them are PHP files and one

of them contains functions in JavaScript. It is designed to illustrate the errors in navigation and

access control functionalities that is targeted in this study. This web application contains one Ajax-

enabled page, one login page, several private pages that needs to be accessed only after

authentication of user, two dead end pages, and one page with broken link. The representation of

the model of web application is given in Figure 7. This model is driven from SFG of Crawljax

because of login operation that requires form filling only supported by Crawljax. In this figure the

dashed line represents the transition Crawljax missed. This transition is added manually via the

user interface of our tool.

29

Figure 7: A representative model of the running example

As Figure 7 shows, there are 10 webstates in this example. The webstate named ‘state1’ performs

the login activity. The XPath expression on the edge originating this webstate locates on a button

element in the DOM tree. In this example, only the index page is designed to be publicly

accessible. The webstate, ‘state4’ is intended to be a private page, but it is accessible without

authorization. We expect that this error will be found by the access control property. The

webstates, ‘state7’ and ‘state13’ share the same URL. The transition between these states is due

to DOM manipulation with a JavaScript event. The webstate ‘state10’ represents a page that

includes a broken link. The webstates, ‘state9’ and ‘state4’ are dead ends with no clickable

elements. These webstates also violate that the index page is reachable from everywhere in the

web application. This application includes login operation so we extract the FSM using Crawljax.

All states were identified by Crawljax, but the transition between the webstates, ‘state13’ and

‘state2’ is not recognized. The webstate, ‘state13’ is created after an AJAX event is fired, which

does not reload the whole page but changes a part of the DOM tree asynchronously. In such cases,

Crawljax exercises the clickable elements in the changed part only. Since the link element in the

webstate, ‘state13’ which directs it to the page in the webstate, ‘state2’ does not change after an

AJAX event from the webstate, ‘state7’, Crawljax missed the link between the webstates,

‘state13’ and ‘state2’. The omission of this link would cause a false alarm stating that the webstate,

‘state13’ is a dead end. Therefore we add this link to the model manually by means of

MCWebSoft.

30

4.2 Modelling Web Application as Intermediate Web Model

Modelling web applications starts from extracting a model of web application from web crawlers.

The output of web crawlers, SFG for Crawljax or WSM for Micro-Crawler, is transformed into

intermediate web model. Moreover, users can manually define the web model directly, as shown

top left corner in Figure 6, without using web crawler outputs. The intermediate web model refers

to a finite state model in XML based language and it is designed to cover common elements of

WSM and SFG.

An intermediate web model is a 4 tuple directed graph 𝑀 = (𝑊, 𝐸, 𝛾, 𝑤0) where,

 𝑊 is the set of webstates which are the DOM trees generated by the web application. A

webstate consists of a name and a URL. Note that any two webstates can have the same

URLs, but different names, since there could be more than one DOM trees with the same

URLs due to partial reloading of a web page.

 𝐸 is the set of clickable page elements that change the current webstate when clicked on.

An element in E is identified by an XPath expression that locates the element on a page.

 𝛾: 𝑊 × 𝐸 → 𝑊 is the transition relation, which maps each (𝑤, 𝑒) for 𝑤 ∈ 𝑊, 𝑒 ∈ 𝐸 to

a webstate, 𝑤′ ∈ 𝑊. If we define this function as a curried function then 𝛾: 𝑊 → 𝐸 →
 𝑊 such that

o 𝛾(𝑊), returns all transition relations, 𝛾: 𝐸 → 𝑊 from the set of webstates, 𝑊

o 𝛾(𝑊)(𝐸) ⊆ 𝑊, returns webstate 𝑤′ ∈ 𝑊 which also equals to 𝛾(𝑤, 𝑒), for 𝑤 ∈
 𝑊 and 𝑒 ∈ 𝐸

 𝑤0 is the initial state of application which is called ‘index’.

Intermediate web model is created with variables that are also in SFG and WSM. The values which

fill the variables of the intermediate web model is taken from SFG or WSM depending on the user

choice for web crawler tool. The structure of these state machines are explained in sections 2.2.1

and 2.2.2. Let us repeat the definitions of these state machines here for convenience.

SFG is a directed graph, < 𝑟, 𝑉, 𝐸, 𝐿 > where

 𝑟, is the initial state of application,

 𝑉 is the set of states of web application and symbolizes the vertices of the graph,

 𝐸 is the set of directed edges between vertices in graph and represents a relation between

two states if and only if there exists a clickable element connecting them,

 𝐿 is a labeling function which assigns a label from a set of event types and DOM element

properties to each edge.

WSM is a directed graph, < 𝑉, 𝐸, 𝛿, 𝑣0 > where

 𝑉 is the set of DOM trees in the application,

 𝐸 is the set of DOM paths,

 𝛿 is a function, 𝛿: 𝑉 × 𝐸 → 𝑉 such that 𝛿 (𝑣, 𝑒) = 𝑣′, if clicking an element defined in the

path 𝑒 ∈ 𝐸, in 𝑣 ∈ 𝑉 results in the DOM tree 𝑣′ ∈ 𝑉,

31

 𝑣0 is the initial DOM tree.

By looking at these explanations, the set of states of SFG and the set of DOM tree of WSM

correspond to the set of webstate of intermediate web model. The set of elements of SFG and the

set of DOM paths of WSM refer to the set of elements of our intermediate web model. The edge

construct of our intermediate web model which is shown with 𝛾 function corresponds to functions

𝐿 of SFG and 𝛿 of WSM. Also the initial value of webstate, 𝑤0, exists in in both SFG and WSM

as the first state and the first DOM tree respectively.

Figure 8: The intermediate web model of the running example (Excerpt)

A part of the sample intermediate web model specification in XML format is shown in Figure 8

(see Appendix A for the complete version). The first lines declare the set of webstates, 𝑊. Then

between the lines 84 and 150, 𝐸, the set of clickable page elements are introduced with the XPath

expressions identifying them. Lastly, the transition relation is declared between the <edges> and

1 <?xml version='1.0' encoding='UTF-8' ?>

2 <webstates>

3 <webstate>

4 <name>

5 index

6 </name>

7 <url>

8 http://localhost/RunningExample/index.php

9 </url>

10 </webstate>

…

83 </webstates>

84 <elements>

85 <element>

86 <xpath>

87 /HTML[1]/BODY[1]/P[1]/A[1]

88 </xpath>

89 </element>

…

150 </elements>

151 <edges>

152 <edge>

153 <from>

154 index

155 </from>

156 <to>

157 state1

158 </to>

159 <xpathOfElement>

160 /HTML[1]/BODY[1]/P[1]/A[1]

161 </xpathOfElement>

162 </edge>

…

306 </edges>

32

</edges> tags (lines 151-306). Each edge includes a transition 𝛾(𝑤𝑖 , 𝑒) = 𝑤𝑗 where <from> tag

specifies 𝑤𝑖, <to> tag specifies 𝑤𝑗 and <XPathOfElement> specifies 𝑒 which is the XPath

expression that selects the element of 𝑤𝑖 that needs to be clicked on to trigger the transition.

Currently, a transition occurs only with click events and back button is not considered. This

restriction results from web crawlers used. Including back buttons would be a simple extension

but the user had to manually provide this information.

After the transformation to intermediate web model, users can refine it to include the webstates

elements and edges, the transitions that are missed by the crawlers. The next activity in the

workflow in Figure 6 is the property and NuSMV model generations which are explained in

Section 4.3 and Section 4.4 respectively.

4.3 Generation of Model in NuSMV

Model checkers accept system models in their own specification language or in a restricted set of

a programming language. In this study, we do not want to depend on a specific model checker or

on a specific web crawler. The intermediate web model serves the independence in both aspects.

In the previous section, the semantics of the intermediate web model and modelling web

applications as intermediate web model is explained. This intermediate web model needs to be

translated to the input language of the checker, NuSMV, to be verified by the model checker.

The transformation from intermediate web model to NuSMV model is not only syntactic

conversion. The web model in NuSMV contains guards on transitions and a trap state. The

intermediate web model is capable of representing the navigation inside the web application.

However, it does not contain the information required for investigating access control and

authorization errors. Moreover, the transition function defined in the intermediate model does not

fit to type of transition functions that NuSMV model accepts. Therefore, transformation of web

model to model checker model needs several additions.

To investigate access control errors, in the NuSMV model, we use Boolean variables to encode

the logged in information. These guard conditions are added to NuSMV model and not exists in

the intermediate web model. They can be used to specify role based authorizations. Another

addition to NuSMV model is the trap state. Recall that a transition relation in Kripke structure

must be left-total. However, the transition relation in the intermediate web model is not a left-total

transition relation. A trap state dead_end_webstate, a webstate variable, is added to NuSMV model

to enable that each webstate has a next webstate and to transform transition relations in

intermediate web model as left total. Also, in intermediate web model, each transition is triggered

with a page element. Therefore, we also introduce null_element, an element variable, to enable

transitions to the trap state. Adding new variables to NuSMV model was also used in [50].

In order to apply model checking, the model to be verified should be in the form of Kripke

structure [8]. Now we give the formal definition of our NuSMV model, which is a Kripke

structure. Since the transformation to model checker model starts from intermediate web model,

first we recall that; in Section 4.2, the intermediate web model is given as a directed graph, 𝑀 =
(𝑊, 𝐸, 𝛾, 𝑤0). In 𝑀 , 𝛾 defines a transition relation, 𝛾: 𝑊 × 𝐸 → 𝑊, from set of webstates 𝑊, and

33

set of page elements 𝐸 to set of webstates that are produced after clicking page elements on

webstates in domain set, such that 𝛾(𝑊), returns all transition relations, 𝛾: 𝐸 → 𝑊

Given an intermediate web model 𝑀 = (𝑊, 𝐸, 𝛾, 𝑤0), a NuSMV model is a 4-tuple 𝐾 =
(𝐺, 𝑆, 𝑆0 , 𝑇) where,

 𝐺 is the set of guard conditions {𝑔1, 𝑔2, … } which could be an empty set,

 𝑆 ⊆ 𝑊 ∪ {𝑑𝑒𝑎𝑑_𝑒𝑛𝑑_𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒} × 𝐸 ∪ {𝑛𝑢𝑙𝑙_𝑒𝑙𝑒𝑚𝑒𝑛𝑡} × 𝛱|𝐺|{𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}

 𝑆0 ⊆ 𝑆 is the initial state where 𝑆0 =< 𝑖𝑛𝑑𝑒𝑥, 𝑛𝑢𝑙𝑙_𝑒𝑙𝑒𝑚𝑒𝑛𝑡, ⊥>

 𝑇: 𝑆 → 𝑆 is the transition relation such that

Let 𝑤, 𝑤′ ∈ 𝑊, 𝑒, 𝑒′ ∈ 𝐸 and 𝑙, 𝑙′ ∈ 𝛱|𝐺| {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}. Let also 𝑠, 𝑠′ ∈

𝑆 where 𝑠 =< 𝑤, 𝑒, 𝑙 >. If 𝑇(𝑠) = 𝑠′ then 𝛾(𝑤) ≠ ∅ and 𝑠′ =< 𝛾(𝑤, 𝑒′), 𝑒′, 𝑙′ >

or 𝛾(𝑤) = ∅ and 𝑠′ =< 𝑑𝑒𝑎𝑑_𝑒𝑛𝑑_𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒, 𝑛𝑢𝑙𝑙_𝑒𝑙𝑒𝑚𝑒𝑛𝑡, ⊥>.

In the NuSMV model 𝐾, 𝐺, the set of guard conditions, would be an empty set, if a user did not

define a guard condition. Guard conditions are for adding access control properties, which check

access of pages requiring authorization of users to be reached. If 𝐺 is an empty set, only navigation

properties can be verified. Moreover, we assume that guard conditions constitute a set, since users

could differentiate admin and regular authorization by using two guard conditions such as

loggedIn and adminLoggedIn. However, in our implementation, there is only one guard condition

which checks if the regular user logged in or not. In this setting, marking the states where regular

user logs in or logs out is specifying the states where the guard condition is set or reset.

In this model, a state 𝑠 ∈ 𝑆 contains the information of the element that brings the system to the

state 𝑠. Since the initial state and the trap state has no such element, the element in the initial state

and the trap state is set to null_element.

34

Figure 9: Kripke structure representation of the running example

In Figure 9, the representation of Kripke structure 𝐾 of the running example is given. Circle shapes

represent states and arrow shapes represent transitions. Each state in the figure has a webstate,

which are depicted with their names as ‘index’, ‘state1’, ‘state2’, etc. an element which are

displayed as ‘XpathOfLink1’, ‘XpathOfLink2’, etc. and a guard condition represented with

Boolean variables. Moreover, the state (state2, XPathOfElement, TRUE), represented in the

Kripke structure in Figure 9, is a symbolic state where XPathOfElement represents all elements

which causes to state having the webstate named ‘state2’ to happen.

35

Figure 10: The NuSMV model of the running example (Excerpt)

1 MODULE main

2 VAR

3 login:boolean;

4 webstate:{index,state2,…, dead_end_webstate};

5 element:{_HTML_1__BODY_1__P_1__A_1_,…, null_element};

7 ASSIGN

8 init(login):=FALSE;

9 init(webstate):= index;

10 init(element):= null_element;

11 next(webstate):= case

12 webstate=index &

next(element)=_HTML_1__BODY_1__P_1__A_1_:state1;

…

27 webstate=state13 &

next(element)=_HTML_1__BODY_1__HEADER_1__DIV_1__A_1_:state2;

28 webstate=state1 & next(login) = TRUE &

next(element)=_HTML_1__BODY_1__FORM_1__INPUT_3_:state2;

…

29 TRUE: dead_end_webstate;

30 esac;

31 next(element):= case

32 webstate=state1 : {_HTML_1__BODY_1__FORM_1__INPUT_3_};

…

39 webstate=state10:{_HTML_1__BODY_1__DIV_1__A_1_,

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__A_1_};

40 webstate=dead_end_webstate:null_element;

41 TRUE: element;

42 esac;

43 …

44 next(login):= case

45 webstate=state1 & next(element) =

_HTML_1__BODY_1__FORM_1__INPUT_3_ : TRUE;

46 webstate=state2 & next(element)=

_HTML_1__BODY_1__DIV_1__A_2_:FALSE;

47 TRUE: login;

48 esac;

36

In Figure 10, the excerpt of the web model for our running example, in the input language of

NuSMV, is given (see Appendix B for the complete version). This code is generated from

intermediate web model of running example which is given in Figure 8. The NuSMV model,

depicted in Figure 10, is generated automatically in the input language of NuSMV. The NuSMV

input consists of a main module definition and a number of CTL specifications. The CTL

specifications are not shown in Figure 10, since they are discussed in Section 4.4 in detail. In this

NuSMV specification, there are three variables in the main module, which are webstate, element

and the guard condition, login. The domain of webstate (line 4) consists of the name attributes of

the webstates defined in intermediate web model specification (see Figure 8). The domain of

element consists of the modified XPath expressions that are defined with the <XPathOfElement>

tags in <elements> definition in our modelling language. The brackets and backslashes in the

XPath expressions are replaced with underscore to conform the NuSMV syntax rules (line 5).

The part starting with the ASSIGN keyword declares first the initial values of the variables (lines

7-10). These lines realize that the initial state of the system is 𝑆0 =< 𝑖𝑛𝑑𝑒𝑥, 𝑛𝑢𝑙𝑙_𝑒𝑙𝑒𝑚𝑒𝑛𝑡, ⊥>.

The init keyword is used for setting the initial values. Initially, element is set to null_element

indicating that no page element has been clicked. The variable webstate is set to index which is

the name of the first page when the web application is loaded. The guard condition login is set to

false, meaning initially there is no guard to access initial value of webstate which is index.

After assigning initial values, the transition relations are declared by defining how to set the next

values for each variable using a case expression. Each leg of case segment consists of a condition,

semicolon, and a value. NuSMV chooses the value whose case condition is satisfied by the current

execution state. The last case condition is TRUE for defining the default case. Consider the next

relation for webstate between lines 11- 27. This part is generated using the information between

the <edges> and </edges> tags in the intermediate web model specification. Recall that, an <edge>

node contains <from>, <to> and <XPathOfElement> child nodes. Based on this information, a

case condition is formed using the webstate name in the <from> tag and the modified XPath

expression that matches the element clicked on the current page. The next value is formed using

the webstate name in the <to> node of the edge. Here the case condition checks the next value of

the element which is consistent with our semantics. The element in a state holds the information

of which page element has brought the system to that state. Therefore, the variable element holds

the last clicked page element which resides in the previous webstate. Therefore, we have inserted

the next relation of element variable in the case clause for webstate, which is also used in [50].

Finally, the default case in line 29 defines that webstate becomes dead_end_webstate which is the

trap state in the model.

The next value of element is randomly selected from the clickable elements in the DOM tree of

the current webstate (lines 31 - 39). If current webstate is dead_end_webstate, next element is set

to null_element to ensure that the system stays in the trap state (line 40). The default condition for

the element variable is set to its current value with the expression in line 41. That is, if none of the

case conditions is satisfied by a value of the element variable, it does not change its value.

In this example there is one guard condition. The user has defined the guard condition as login

using our tool. The user also marked that login is set when the button element in the webstate,

‘state1’ that matches /HTML[1]/BODY[1]/FORM[1]/INPUT[3] is clicked. This information is

implemented in line 45 in Figure 10. Note that this information also added the line 28 in next

37

relation of webstate. Line 28 defines that after a successful login the system will be in ‘state2’.

The user marked that login is reset when the element matching the expression

/HTML[1]/BODY[1]/DIV[1]/A[2] on the webstate, ‘state2’ is clicked. This XPath expression

locates a logout button in the DOM tree called ‘state2’. This information is automatically

transformed to the line 46 in the NuSMV code. By default, the value of the login variable is its

current value (line 48).

4.4 Properties

In this study, properties are defined with the purpose of verifying or falsifying navigation and

access control specifications of web applications. The properties are described under four

categories which are index reachability, absence of dead end, link consistency, and access control.

Violation of these properties leads to generation of counterexamples, and this way, detection of

errors. In this section, we first give detailed explanations of the error categories aimed to be found.

Details about the property specifications as CTL formulas are given in Section 4.4.3.

4.4.1 Navigation Errors

Navigation errors arise from incorrectness or lack of static navigation features as static links. Most

of the early works focus on these type of errors by accepting web applications as hypermedia

applications. Absence of broken links, reachability, consistency of frame structure and features

related to estimating the cost of navigation are some of the criteria checked in the scope of

navigation of web applications [44]. In our study, two sub categories are checked within the

navigation title which are

 absence of dead ends,

 reachability.

De Alfaro [3] classified these type of properties as necessities of a good design at global level and

used model checking to check them. We consider dead end pages as the web pages which do not

have a next page to go within the web application. The web pages which can be navigated with

only back button is regarded as dead ends. For instance, web pages with special extensions such

as pdf, jpg are dead end pages, since user has to use back button for exiting these type of pages

Also, the web pages with only external links are considered as dead ends, since there is no internal

link to navigate web application. Moreover, error pages displayed with HTTP status code as 404

(Not Found) are considered as dead ends, since with these type of pages users have no choice, but

pushing the back button to return web application. In the second subcategory, reachability of

homepage, the web pages which cannot reach home page are regarded as errors. All dead end

pages are also errors which violate reachability to homepage. Also, users can check the existence

of a link between two different states in web application by link consistency properties, whose

violations constitute the errors belonging reachability category.

4.4.2 Access Control Errors

Web applications can have services or contents for specific types of users. Users must be

authorized for reaching such services and contents through an access control mechanism. The

38

access control mechanism can be employed on front end with web links or content or on back end

with database configurations which restrict specific data fields to particular users. Providing a

strong access control mechanism is a significant requirement in web security. In the OWASP 2013

top ten list of web application security [54], “A7-Missing Function Level Access Control” and in

the CWE 2011 Top 25 most dangerous software errors list [55] “Missing Authorization” items

address the access control errors and how significant they are in web security.

In this study, with the help of form filling enabled web crawler tool, Crawljax, we reveal states of

web applications that is secured with the authorization mechanism, but also can be reached without

authentication of users, without providing username and password information. For example, in

a shopping site, only registered users who provide user id and password must reach the state of

web application that indicates the payment for shopping is successfully completed. Otherwise, this

indicates an access control problem of state displaying “payment is completed” message and in

our analysis, we aim to determine such states of web applications. The analysis is performed on

existing web applications and the reason behind the errors, design or implementation, is irrelevant

from our analysis.

4.4.3 CTL Formulas

Web applications modelled as a NuSMV model presents all potential execution paths that may

occur. The properties defined in CTL specify the desired paths and occurrences of the variables in

the NuSMV model. Table 3 lists all the properties that we defined for verification of NuSMV

model. CTL formula generation is performed by our tool, MCWebSoft, and users are not exposed

to CTL syntax. The CTL formulas for specifying navigation properties in index reachability and

absence of dead end categories are generated in fully automated manner. The generation of the

link consistency and access control property formulas requires users only to choose the

corresponding states.

Table 3: Navigation and access control properties in CTL

Category CTL Formula Description

Index

Reachability

(automated)

𝐴𝐺(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑖 → 𝐸𝐹 (𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑖𝑛𝑑𝑒𝑥))

For each 𝑠𝑡𝑎𝑡𝑒𝑖 of the model

Index page is

reachable from

all other

reachable states.

Absence of

Dead End

(automated)

𝐴𝐺(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑖 → ¬𝐸𝑋(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 =
𝑑𝑒𝑎𝑑_𝑒𝑛𝑑_𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒))

𝐴𝐺(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑖 → 𝐸𝑋((𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 =

index) ∨ . . ∨ (𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑖−1) ∨

(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑖+1) ∨ . .∨ (𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑛)

For each 𝑠𝑡𝑎𝑡𝑒𝑖 of the model, and for n is the number of

webstates

Every reachable

state has a next

state in the

transition.

39

Table 3 (continued): Navigation and access control properties in CTL

Link

Consistency

(semi-

automated)

𝐴𝐺(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑝 →

 𝐸𝐹(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑞))

It is always possible to reach

stateq from statep

(user chooses statep and

stateq)

Access Control

(semi-

automated)

¬𝐸𝐹(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒𝑝 ∧ 𝑙𝑜𝑔𝑖𝑛 =

𝐹𝐴𝐿𝑆𝐸)

Statep is accessible only

through login action

(user chooses statep)

The automated reachability properties state that index webstate is always reachable from all other

webstates of web application and every reachable webstate always has a next page (no dead ends).

In this table, the index reachability could have been specified as 𝐴𝐺(𝐸𝐹(𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑖𝑛𝑑𝑒𝑥)).

However, in that case NuSMV would generate only one counterexample even if there were more

than one webstates which cannot reach the index. Hence we chose to write CTL formulas for each

webstate in the set of reachable webstates. Also, absence of dead-end property is defined for all

webstates for the same reason, to generate counterexamples giving all webstates in web

application which violates the property.

Link consistency as another property specifying reachability, states that it is always possible to

reach from a given state to a specific other state. For instance, it is always possible to reach login

page from index page. It is enough for users to select the two webstates to check if they were

connected by a clickable page element in web applications.

Access control checks if a state is reached after a login activity is performed. To define access

control properties, the model should have been extracted by Crawljax and the user has to mark the

webstates where the guard condition becomes true and false. In the special case where there is

only one guard called login, user has to mark the webstates that login and logout activity take

place. To mark these activities, firstly users specify authentication details as id and values for user

name and password fields with the help of MCWebSoft interface. Then they select the XPath

expression of page element where they fire click events for login and logout and also they select

the webstates of web application where these events start and end. The selection is made from a

list box where all webstates and elements of web applications are hold. After these actions, a user

can ask MCWebSoft to check that a webstate is never accessed without proper authorization.

In Table 3, CTL properties are given according to syntax described in Section 2.1. The CTL

formulas defined in NuSMV input language for checking index reachability, dead end absence

and access control properties with the model of our running example are provided in Appendix B.

40

4.5 Converting Counterexamples to Executable Error

Scenarios

Counterexamples obtained from the output of NuSMV execution consist of element variables with

XPath expressions, and webstate variables with the name of the state of the web page. Also, if

exists, value of the guard condition, that lead to violation of a property exists in counterexamples.

Recall that guard conditions are added to NuSMV model, when users define conditions in order

to add access control properties. While defining conditions, users must provide username and

password values for login operation with the user interface of our tool. These values are also added

to executable scripts to enable replay of error traces after login operation.

When it comes to our running example, NuSMV generates 7 counterexamples. The index

reachability is violated in three webstates; ‘state9’, ‘state4’ and ‘state14’. The same webstates

violate the absence of dead end properties as well. Since we check access control property, only

with private pages, pages can be accessed after the login page, the webstate named ‘state4’ violated

the access control property as expected. A counterexample is generated for this property which

means that the webstate, ‘state4’ is reachable without authentication of user. The complete output

of NuSMV for verification of running example is given in Appendix C.

Each violated property can be defined as an error on the system model of web application and

counterexamples are error scenarios or traces. These error traces are enough for replaying errors

on web browser. Therefore, the error traces are transformed into executable JUnit scripts to

increase the user experience on understanding model checker output. The error scenarios are

replayed on Mozilla Firefox where each step displays which portion of the web site is clicked. At

the end of the scenario a dialog box displays the violation of which property has been replayed.

Our tool uses Selenium WebDriver libraries to automate the browser for replaying the error

scenarios. We adopted the Java client driver libraries for binding the Selenium commands to JUnit

code. The error scenarios replayed by Selenium are the JUnit tests that our tool generated using

the counterexamples of NuSMV.

The conversion of NuSMV counterexamples to JUnit code is performed with a template JUnit file.

The template file consists of imports of Selenium and JUnit packages, and fixture setUp and

tearDown methods. SetUp initializes the browser and tearDown shows the dialog box. Each

counterexample provides a sequence of states beginning from an initial state and ending at the

state where the property violated. This sequence is used to fill in the test method of the template

file. Here we exploit that the elements encode XPath expressions.

41

Figure 11: A counterexample generated by NuSMV for the running example

Figure 11 shows a counterexample generated by NuSMV. The first line in Figure 11 shows what

property has been violated which is 𝐴𝐺 (𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒4 → 𝐸𝐹 𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 = 𝑖𝑛𝑑𝑒𝑥).

Next the sequence of states leading to error is given. The property is violated since the webstate,

‘state4’ cannot reach to the index page. Therefore the counterexample shows a trace reaching to

the webstate ‘state4’. The trace shows the violation is reached at the index page (𝑤𝑒𝑏𝑠𝑡𝑎𝑡𝑒 =
𝑖𝑛𝑑𝑒𝑥) when clicking on the element with the distorted XPath expression shown on the last line

of the figure.

-- specification AG (webstate = state4 -> EF webstate = index) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

 login = FALSE

 webstate = index

 element = null_element

-> State: 2.2 <-

 webstate = state4

 element =

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_1__TBODY_1__TR_1__TD_1_

_A_1_

42

Figure 12: Auto generated JUnit code from the counterexample in Figure 11 (Excerpt)

Figure 12 shows the excerpt of the corresponding JUnit code of counterexample given in Figure

11. (see Appendix D for the compete JUnit class) The first line of Figure 11 is transformed as a

string constant assigned to note variable in the teardown method in Figure 12. The trace depicting

the sequence of states and element leading to error in counterexample is implemented in the test

method in Figure 12. The test method starts the execution by setting opening the base URL on the

browser. Then it clicks on the element matching the XPath expression. Note that the use of

distorted XPath expressions in the NuSMV model makes the body of test method filled easily with

string replacement. The ‘_’ characters need to be converted to brackets or ‘/’. This matching also

enables traceability between models for expert user.

 …

@Before

 public void setUp() throws Exception {

 driver = new FirefoxDriver();

 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);

 driver.manage().window().maximize();

 baseUrl = "http://localhost/RunningExample/index.php";

}

@Test

 public void test() throws Exception {

 driver.get(baseUrl);

 openDialog("clicking to

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1]/TD

[1]/A[1]");

 driver.findElement(By.xpath("

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1]/TD

[1]/A[1]")).click();

}

@After

 public void tearDown() throws Exception {

 Thread.sleep(10000);

 String note="violation of the AG (webstate = state4 -> EF webstate =

index)) property, Homepage is not reachable from this page";

 openDialog(note);

 driver.close();

}

…

43

CHAPTER 5

MCWebSoft

In this chapter, MCWebSoft is explained with its system overview and implementation details,

MCWebSoft was developed using Eclipse EE IDE for Web Developers with Java Standard

Edition Development Kit 7.0. In order to apply model checking, we integrated NuSMV packages.

To automate the web browser for replay counterexamples, we added Selenium and JUnit packages

to our implementation. As for the user interface, Swing package of Java was adopted.

5.1 System Overview

Figure 13: A high-level overview of the system

44

In the previous chapter, we explain the methodology of MCWebSoft. Before giving details about

implementation, a high-level overview of the tool is given in Figure 13. In this figure, MCWebSoft

takes one input which is the output of web crawlers, Micro-Crawler or Crawljax, associated with

the web application to be verified. Then the tool outputs the verification result of web application

as replay of detected errors on the web browser, MozillaFirefox.

As it is mentioned in Chapter 4, during the modelling and property specification phases, user can

intervene the system by modifying the model of web application or generating new properties of

access control or link consistency to be verified on NuSMV model of web application.

In Figure 14, a more detailed representation of the verification processes box, given in Figure 13,

is presented. Conversion of web crawler output (SFG or WSM) to intermediate web model,

conversion of intermediate web model to NuSMV model, model checking with NuSMV and

converting counterexamples to JUnit classes are main processes of MCWebSoft represented in

this figure.

Figure 14: The detailed representation of the verification processes depicted in Figure 13

5.2 Implementation Details

Implementation details of MCWebSoft is depicted in three subsections which are decomposition

description and description of classes, dependency description and the third party tools and

packages used. In the first subsection, packages and classes constituting the system are explained.

Second subsection introduces relations between classes with class diagrams. Last subsection

involves the external tools and packages added to our implementation.

45

5.2.1 Decomposition Description and Description of Classes

In this section, explanation of the decomposition of MCWebSoft is given with the package

structure. Moreover, classes of the packages are described by giving information about functions

and purposes.

Figure 15: Package structure of MCWebSoft

Figure 15 depicts the package structure of MCWebSoft. The tool consists of three packages which

are data package, application package and presentation package. Data package includes the classes

holding the data variables and definitions. Application package contains classes which creates,

changes the file types and executes the files. Presentation package includes the class created to

form the user interface of the tool.

5.2.1.1 Data Package

Data package includes 6 classes which are WebState, Element, Edge, MicroCrawlerIntFormat,

CrawljaxIntFormat and Trace and 1 interface which is IntFormat.

WebState Class

Figure 16: WebState Class

The purpose of Webstate class is to set and get the data of webstate variable. The webstate variable

is comprised of two components which are name of webstate and URL address of webstate.

46

Element Class

Figure 17: Element Class

The purpose of Element class is to set and get the data of page element. The XPath expression of

element is given as attribute of Element class.

Edge Class

Figure 18: Edge Class

The purpose of Edge class is to set/get the data of edge variable, which provides the transition

relation information. The edge variable consists of three components which are from, a webstate

object describing from which webstate the edge begins, to, another webstate object referring by

which webstate the edge ends and an element object, a page element connecting two webstates

with the transition relation.

47

MicroCrawlerIntFormat Class

Figure 19: MicroCrawlerIntFormat Class

MicroCrawlerIntFormat class’s purpose is to read MicroCrawler output file in order to render the

components of intermediate web model. The function of the class is to read output of Micro-

Crawler, WSM, and initialize the webstate, element and edge values in this state machine.

CrawljaxIntFormat Class

Figure 20: CrawljaxIntFormat Class

48

CrawljaxIntIntFormat class’s purpose is to read Crawljax output file to capture the attributes of

intermediate web model. The function of the class is to read output of Crawljax, SFG, and initialize

the webstate, element and edge values in this model.

IntFormat Interface

Figure 21: IntFormat Interface

The IntFormat interface is created to include the names of common methods of CrawljaxIntFormat

and MicroCrawlerIntFormat in order to use polymorphism. By this way, it is possible to pass the

arguments of MicroCrawlerIntFormat and CrawljaxIntFormat objects to the same methods.

Moreover, this interface enables to be independent from web crawlers. Since common methods

for reading and initializing the components of web crawlers are put in this interface, we can add

new crawlers to the system without changing the rest of the code.

Trace Class

Figure 22: Trace Class

The purpose of Trace class is to get and set data values of counterexamples from the output of

execution of NuSMV. Trace class is responsible for getting and setting the list of webstate and

element values in error traces of counterexamples.

49

5.2.1.2 Application Package

Application package includes 4 classes which are CreateIntFormat, IntFormatToNuSMV,

NuSMVExecuter and CounterexampleToScript.

CreateIntFormat Class

Figure 23: CreateIntFormat Class

The aim of creating CreateIntFormat class is to print the values of webstate, element and edge of

crawler outputs to the intermediate web model. The function of the class is to get and set the path

of the XML file including the intermediate web model and printing webstate, element and edge

values as nodes of the XML-based model and creating the file with respect to this information.

50

IntFormatToNuSMV Class

Figure 24: IntFormatToNuSMV Class

IntFormatToNuSMV class is created for converting the intermediate web model, an XML file,

containing webstate and edge values, to NuSMV input language. The function of the class is to

initialize the values of webstate, element and edge variables, printing the initialized values, initial

values, transition relations and default reachability properties in NuSMV input language and

finally creating and setting the NuSMV file.

NuSMVExecuter Class

Figure 25: NuSMVExecuter Class

The aim at creating NuSMVExecuter class is to run the NuSMV input file with the model checker.

The function of the class is to execute the NuSMV input file and get, set the NuSMV input and

output files.

51

CounterexampleToScript Class

Figure 26: CounterExampleToScript Class

The purpose of CounterexampleToScript class is to create JUnit classes from counterexamples

and running them. The class has the function of reading output file of NuSMV execution, template

JUnit file, initializing the trace class with respect to output of NuSMV, filling the template JUnit

file with traces of counterexamples according to NuSMV models with the login variable or without

the login variable, executing the JUnit files and deleting the JUnit files.

5.2.1.3 Presentation Package

Presentation package includes 1 class named GUI and 9 interfaces constituting the listeners which

are implemented as inner class of GUI class.

52

GUI Class

Figure 27: GUI Class

The GUI class has 9 inner classes which are listeners for describing the events when a button is

clicked. The names of these listeners are InputListener, ModifyWebModelListener,

RunSMVListener, DefineLoginListener, DefineLogoutListener, AddAccessControlListener,

AddLinkConsListener, CreateScriptListener and ReplayListener. GUI class is created for enabling

53

users to manage all the operations related to MCWebSoft’s verification process. Functions of the

GUI class, which are enabled by listeners, are to choose the input option, browse the input file,

modify web model, create NuSMV model and generate default reachability properties, define

login edge, define logout edge, generate access control property, generate link consistency

property, run NuSMV model checker, create JUnit Files, replay the JUnit files. In addition to help

users for understanding the flow of application GUI class has functions to show a console which

explains the process details and all generated files, intermediate web model, NuSMV model,

output of NuSMV, in separate windows.

5.2.2 Dependency Description

Relations between classes of the system are depicted in this section. The class diagram of

MCWebSoft is explained with 5 figures. Figures 28, 29 and 30 show classes in Data, Application

and Presentation package respectively. Figures 31 and 32 display the relations between classes of

two different packages. Also the complete class diagram of the tool is provided in Appendix E.

Figure 28: Class diagram of the Data Package

54

Figure 29: Class diagram of the Application Package

55

Figure 30: Class diagram of the Presentation Package

Relations between the classes which are located in different packages are showed in Figure 31 and

Figure 32.

Figure 31: Relations between classes of data and application packages

56

Figure 32: Relations between classes of application and presentation packages

5.2.3 Third Party Tools and Packages Used

5.2.3.1 NuSMV 2.5.4

NuSMV is an open source model checker. It is an extension of SMV model checker which is the

first symbolic model checker tool. We used is NuSMV 2.5.4, which is the second version of

NuSMV. Moreover, we employed the special version of the tool which is portable to the Microsoft

Windows environment, which is available at the nusmv web site1. In the implementation, the

execution file, named “nusmv.exe”, is run on console using Java.

5.2.3.2 Selenium

Selenium is an open-source tool for automating web browsers [56]. Selenium provides several

usage options. One of them is Selenium IDE, which is an add-on for Mozilla Firefox that can

1 http://nusmv.fbk.eu/NuSMV/download/getting-v2.html

57

record and replay the user interactions with the browser. This add-on also can convert commands

for these interactions to an executable script in a specific language as Java and C#. Selenium Web

Driver is another option which enables users to drive browser locally or on a remote machine using

Selenium Server. In order to create and run Selenium test cases by a specific language, one should

get a Web Driver language binding library for that language.

We have used Selenium WebDriver libraries to create Selenium scripts in Java in order to replay

the scenarios of counterexamples. As a test engine, JUnit was employed to create scripts for replay.

The set of commands we have used are standard ones as ‘open’, ‘click’ and ‘sendKeys’. In

Selenium, there are also assertion functions which are used to verify test outputs, but our purpose

for using Selenium is to replay the web browser, not testing. Therefore, we did not use assertion

functions. In order to use the set of commands, page elements exposed to these commands should

be identified. In Selenium, for identifying a page element, one of the HTML tag attributes (e.g.,

name, id or XPath expression) of the element should be provided. Since we have unique XPath

expressions for each state of web application taken from web crawler outputs, XPath of elements

were used as identifiers when parsing the commands of Selenium.

The Selenium libraries we imported for our implementation belong to the package,

org.openqa.selenium.

org.openqa.selenium is a selenium package imported to the template file, template.java, which is

used for creating JUnit classes for replaying the error scenarios. This package is required to realize

the actions to open the web browser, Mozilla FireFox, identify a page element by its XPath

expression and filling the forms or clicking it on subject web application automatically.

5.2.3.3 com.google.gson

The gson is an open source java library to convert JSON elements to java objects or vice versa. In

our study this package is used for reading the file containing the crawler output of Crawljax web

crawler which is a JSON file. With the help of gson, the output file parsed and separated to its

components and transformed to the XML-based intermediate web model.

5.2.3.4 org.junit

The JUnit packages are imported to the template file called “template.java” from which JUnit

classes to replay the error traces are produced. To automate the browser, a test generator must be

used, we have chosen JUnit for this purpose. To add annotations (@Before, @Test and @After)

that forms the actions of browser automations, JUnit packages are required.

58

59

CHAPTER 6

EVALUATION

In this chapter, the evaluation process of MCWebSoft is presented. The evaluation was performed

in three steps. First a user study was conducted to measure the ease of use and the usefulness of

the tool. Second we evaluated the error detection effectiveness. In order to evaluate the error

detection performance with navigation properties, 30 real web applications were used. To measure

the access control error detection performance, we used fault injection on a real application. The

evaluations to assess error detection performance of the tool were carried on an Intel Core i5-3210

machine with 4 GB RAM running Windows 7. In the evaluations, web crawlers, Crawljax and

Micro-Crawler, are downloaded from GitHub1,2 and web application models are extracted using

the latest versions of the web crawlers that are available.

1 https://github.com/crawljax/crawljax/releases/tag/crawljax-3.6
2 https://github.com/WebMole/Micro-Crawler

59

6.1 User Study

MCWebSoft helps users having no experience or knowledge about formal methods to apply model

checking for verifying web applications. Therefore, one concern of this study is enabling

inexperienced users to use model checking method. A user study was conducted to measure

usefulness and ease of use of MCWebSoft in this respect.

The focus group consists of participants who are experienced about programming or web

developing in different levels and inexperienced about model checking and formal methods. A

questionnaire based on constructs of Technology Acceptance Model (TAM) were prepared to

analyze user’s responds to our tool.

TAM is an information system theory model designed to explore the technology acceptance and

usage. In TAM, perceived ease of use and perceived usefulness factors predict the intention to use

of a technology. And the intention to use factor effects the actual usage behavior [57]. Figure 33

depicts the constructs of TAM and their relations. Perceived ease of use is defined as “the degree

to which a person believes that using a particular system would be free of physical and mental

effort” and perceived usefulness is described as “the degree to which a person believes that using

a particular system would enhance his or her job performance” [57]. TAM suggests a theoretically

strong approach for the study of software acceptance that can be used in usability evaluations [58].

In the original version, there are 6 items measuring the perceived ease of use and 6 items measuring

the perceived usefulness.

Figure 33: Technology Acceptance Model (TAM) (Adapted from [59])

The questionnaire of our user evaluation constitutes of 5 items with 5-point Likert scaled

responses. 5 means strongly agree and 1 means strongly disagree. The questionnaire items are

provided in Table 4. Besides these questionnaire items, we also provided a free text for the

participants’ comments at the end of the study. The questionnaire of our user study is given in

Appendix F.

The user evaluation was conducted with 8 participants. Our focus group consists of the web admin

of Informatics Institute, two experienced web developers worked with the web development

frameworks Drupal and Dreamweaver, three graduate students of Informatics Institute two of

60

which are experienced Java developers, one undergraduate student with programming experience,

and one graduate student with a web development experience with PHP and MySql. All of the

participants had no experience in formal methods.

Within the user study, first the author of the tool, gave a ten minute presentation on how to use the

tool and a five minute presentation of the subject web application. Then four verification tasks

were given to the users. The tasks were loading an extracted model, starting the verification with

auto generated properties, defining their own link consistency properties, and observing the

reanimation of error scenarios.

During our evaluation process, users with no formal methods background succeeded to define

their own properties and checked a web application with a model checker for the first time. After

completing the tasks, they filled the questionnaire. In comment section of the user study, the

participants reported tour tool to be useful for detecting and visualizing errors in their comments.

Two participants suggested the tool to give a summary report for errors as improvement.

Table 4: Items of the user study evaluation and responses of all participants

P
a
rt

ic
ip

a
n

ts

Questions

I

would

find it

useful

It would

make

easier

to

detect

errors

Error

scenario

replay

would

improve

my

performance

I

would

find it

easy to

use

My

interaction

with the tool

is clear and

understanda

ble

P11 4 4 4 2 2

P21 4 5 4 3 2

P31 4 5 4 3 2

P42 5 5 5 3 4

P53 5 5 5 5 4

P63 5 5 5 5 4

P74 5 4 4 4 5

P84 4 5 5 3 3

61

Table 4 presents Likert scaled responses of participants to each item of questionnaire. Superscripts

of participants in the table are used to represent their experience in web development and

programming. Participants showed with the 1 in superscript (e.g. P11) represent experienced web

developers, participants indicated with the 2 in superscript (e.g. P42) represent little experienced

web developers, participants indicated with the 3 in superscript (e.g. P63) represent experienced

programmers and participants indicated with the 4 in superscript (e.g. P84) represent little

experienced programmers.

Table 5 presents the analysis of these responses. These results confirm that the approach and the

replay of error scenario are perceived as useful. The ease of use scores are lower than usefulness

scores, which is acceptable since MCWebSoft is not developed as a commercial product.

Table 5: Perceived usefulness and perceived ease of use results

Factor Questions Median Mean Min Max

Perceived

usefulness

I would find it useful 4.5 4.5 4 5

It would make easier to detect errors 5 4.75 4 5

Error scenario replay would

improve my performance

4.5 4.5 4 5

Perceived

ease of use

I would find it easy to use 3 3.5 2 5

My interaction with the tool

is clear and understandable

3.5 3.25 2 5

6.2 Error Detection Evaluation

In this section MCWebSoft’s error detection evaluations are given. The section is divided into two

subsections as navigation errors and access control errors. In navigation errors section, the errors

detected by reachability properties, which are automatically generated by MCWebSoft, are

evaluated and discussed. In access control subsection, we evaluate and discuss the capability of

MCWebSoft for finding errors in access control mechanism.

6.2.1 Navigation Errors

The reachability error detection effectiveness of MCWebSoft is evaluated by verifying

navigational properties which check index reachability and absence of dead end. We used 30 real

web applications for verification the properties. Table 6 gives the list of the subject web

applications. The subject applications were crawled by Micro-Crawler and Crawljax for model

extraction. Micro-Crawler requires all files to be in localhost. Therefore, we downloaded all the

files in these sites with WinHTTrack Website Copier [60] and then crawl web applications with

Micro-Crawler. With Crawljax, there was no need to copy web sites. Crawljax provides

configuration options for crawling. By using these options, the maximum time for crawling is

62

determined as 120 minutes. To crawl all possible webstates in that time, the maximum level of

depth is determined as 20. The web models are not manually modified, they are inputted and

verified by our tool as it their original version yielded from crawler tools.

Table 6: Subject web applications used in verification of navigation properties

ID URL

W1 http://www.seleniumhq.org/

W2 http://www.brain.ii.metu.edu.tr/eng_dworld.html

W3 http://www.acarturk.net/

W4 http://www.metu.edu.tr/~merkan/

W5 http://www.uyms2015.yasar.edu.tr/2015/index.html

W6 http://www.puppeteershadowplay.com/index.html

W7 http://www.tr.china-embassy.org/tur/

W8 http://www.kktcbe.org.tr/www/tr/anasayfa.asp

W9 http://www.mfa.gov.hu/kulkepviselet/TR/tr/

W10 http://www.ceng.metu.edu.tr/~altingovde/

W11 http://www.kovan.ceng.metu.edu.tr/~sinan/

W12 http://www.eonur.eu/

W13 http://www.ceng.metu.edu.tr/~manguoglu/

W14 http://www.ceng.metu.edu.tr/~polat/

W15 http://www.metu.edu.tr/~koksalan/

W16 http://www.metu.edu.tr/~stugba/index.html

W17 http://www.metu.edu.tr/~aliy/

W18 http://www.metu.edu.tr/~sdag/index.html#

W19 http://www.metu.edu.tr/~ymetin/

W20 http://www.metu.edu.tr/~sbilmis/

W21 http://www.retina.cs.bilkent.edu.tr/

W22 http://www.cs.bilkent.edu.tr/~erman/

W23 http://www.art.bilkent.edu.tr/ozguc/index.html

W24 http://www.cs.bilkent.edu.tr/~ozturk/index.html

W25 http://www.umram.bilkent.edu.tr/~ergin/

W26 http://www.volkan.bilkent.edu.tr/

63

Table 6 (continued): Subject web applications of navigation errors evaluation

W27 http://www.isbcs2015.ii.metu.edu.tr/index.html

W28 http://www.atilkurttekin.com/

W29 http://www.fince.bilkent.edu.tr/

W30 http://www.infobil.bilkent.edu.tr

We consider two main criteria while we select the web applications for our evaluation process.

The small sized and dynamic web applications are put into subject list. We limit our evaluation to

web applications which are small sized, since crawling time that we determined may not be enough

for completing crawl the entire web application for large-sized web applications. The resulted

incomplete crawler outputs may cause incorrectly reported errors by our tool. The details about

size and crawl outputs (average number of webstates and edges) are provided in Section 6.3. The

reason why we choose dynamic web applications is that the web crawlers we use are developed

for AJAX-based web applications.

Since, the subject web applications are public domain applications, we do not have the source code

or information about the development details of them. Therefore, the web technologies used in the

development of the subject web applications are determined by the Web Developer browser

extension [61], which provides the information about web applications. By means of the Web

Developer, the technical details of subject web applications in Table 6, except W9, can be

determined. According to the data provided with Web Developer extension, the subject web

applications are developed with different back-end languages such as PHP, ASP.NET or Java and

web server software such as Apache or IIS (Internet Information Server). Some of the subject web

applications employ JavaScript programming language, whose influence on DOM trees can be

detected by web crawlers we used, Micro-Crawler and Crawljax. (see Table 16 in Appendix G for

more detail).

The properties checking navigation are divided into two categories which are labeled as index

reachability and absence of dead end. These properties are automatically generated with the

NuSMV model.

At the end of the verification process, which is conducted with the navigation properties, 72

counterexamples with Micro-Crawler and 847 counterexamples with Crawljax output models are

generated. However, when we investigate the error scenarios in the counterexamples, we observed

that some counterexamples were spurious; they do not represent real faults on web applications.

We named these type of counterexamples as false alarms. In Table 7, the numbers of false alarms

and real faults are given with respect to the verified property types and the web crawler that

extracted the model of web application (see Table 17 and 18 in Appendix G for more detail).

64

Table 7: Results of verification of navigation properties

Web

Crawler

Micro-Crawler Crawljax

Property

Type

Index Reachability Absence of Dead

End

Index Reachability Absence of Dead

End

Counter

example

Type

Real

faults

False

Alarms

Real

faults

False

Alarms

Real

faults

False

Alarms

Real

faults

False

Alarms

Results 25 17 20 10 54 416 57 320

In Figures 34 and 35 the pie charts corresponding to the results are shown. The percentage of real

and false alarms with the numbers which are also given in Table 7 are depicted in the pie charts.

Figure 34: Verification results with respect to Micro-Crawler’s output

As it is seen in Figure 34, at the end of the verification procedure with Micro-Crawler, the number

of real faults were found as 45 and this corresponds to 62% of generated counterexamples. The

number of false alarms are 27 which corresponds to 38% of counterexamples.

65

Figure 35: Verification results with respect to Crawljax’s output

In Figure 35, the results of the verification process with Crawljax, show that 13% of

counterexamples are real faults and 87% of them are false alarms. Among all of the

counterexamples generated with Crawljax model, the number of false alarms are 736 and the

number of real faults are 111.

The false alarms are due to the incorrectness of the model extracted. For example, in W14 the

crawler missed an edge between a webstate and index page, which caused two false alarms. To

investigate this situation, we selected three subject applications (W14, W24 and W28) and refined

the web model obtained with Micro-Crawler using only the animated error scenarios. We fixed

the model with the option of modifying the FSMs of our tool. Table 8 shows the number of error

scenarios, number of false alarms, and the model size in terms of number of webstates and edges.

The top part shows these values for the extracted model and the bottom part shows them after the

models are refined. After the model refinement, where we added the edges missed by the crawler,

all of the false alarms were eliminated. The time spent in analyzing the scenarios and refining the

intermediate web models was about 15-20 minutes for each of web applications.

66

Table 8: Number of real faults and false alarms generated before and after model refinement

 ID Number of

error scenarios

Number of

false alarms

Number of

webstates

Number of

edges

Before

modification

W14 6 2 13 74

W24 12 4 16 78

W28 8 6 11 29

After

refinement

W14 4 0 13 75

W24 8 0 16 80

W28 2 0 11 32

6.2.2 Access Control Errors

Evaluation of MCWebSoft for detecting access control errors is performed with the fault injection

technique. In order to eliminate the possibility that the randomly chosen web applications had no

access control errors, the errors were injected to a real web application. Then the faulty versions

are verified against the access control properties. We injected faults into an open source web

application developed with PHP, called Restaurant Script1. It is a pizza restaurant system enabling

registered users to manage food orderings. Figure 36 shows the model of the Restaurant Script

web site. In this figure, each rectangular box represents a webstate, name of the webstate and the

name of the web page corresponding to this webstate is given for each one. Arrows represents the

edges between the webstates.

1The source code of the application is downloaded from

http://sourceforge.net/projects/restaurantmis/?source=directory

67

Figure 36: The model of the Restaurant Script web site

We check the Restaurant Script website with MCWebSoft by access control properties verifying

that the private webstates are only accessible with login action. In Figure 36, private webstates are

represented as rectangular boxes which can be accessed only after the webstates named ‘state 43’.

According to the results, there is no counterexamples and so no replaying error scenarios. With

this result, we verify that the subject website has no access control error.

In this application, the PHP file “auth.php” checks the authenticate values for login operation. In

this experiment, a fault injection into a PHP file was commenting out the lines that refer to

auth.php (see Figure 37). We created three faulty versions of this application called Version 1,

Version 2 and Version 3. In Version 1, only membership files were changed. In Version 2 only

the cart operations files were changed, and in Version 3 both cart operations and membership files

were defected. In Figure 36, defected webstates and edges are represented as dashed lines.

Figure 37: Code fragment causing access control errors

68

For this experiment Crawljax 3.6 was used for model extraction since it enables defining values

for form filling. Then, for each version, we defined the edges where login and logout activities

occur on the application. During the property specification, we selected the webstates requiring

authorization (i.e., the nonpublic webstates) for access control property generation. The same set

of nonpublic webstates were declared for each version. Finally, the NuSMV model and the

properties were sent to model checker. Table 9 shows the number of counterexamples generated

for each fault-seeded version of the Restaurant Script application.

Table 9: Results of verification of access control properties

Versions Number of

Counterexamples

Version 1 14

Version 2 3

Version 3 22

The verification results show that in Version 1, in total 14 webstates violated access control

properties. In Version 2, a total of 3 webstates and in Version 3 a total of 22 private webstates,

which require authorization of the user, can be accessed without login. Details about these

counterexamples are given in Table 10, 11 and 12. The names of webstates and page names which

correspond to these webstates leading to counterexamples are introduced in these tables. These

webstates can be seen in Figure 36. However, the webstates of the model in Figure 36 correspond

to the original version of the subject web site, which is not fault-seeded. Although, we have

showed the defected components in this figure, there can be webstates which are found with faulty

versions and not in the model displayed in Figure 36 or vice versa.

Table 10: The webstates detected in Version 1

Name of Webstate Page Name

state43

state87, state63, state65

state88, state66, state21

member-index.php

member-index.php?startrow=5,

member-index.php?startrow=0,

state49

state51

state50

inbox.php,

inbox.php?startrow=0,

inbox.php?startrow=5

state44, state22 member-profile.php

state72 ratings.php

state78 logout.php

69

Table 10 gives webstates which are revealed by MCWebSoft with Version 1 of the Restaurant

Script web site. In Version 1, membership pages were accessed without login due to fault injection

and the webstates detected correspond to membership files.

Table 11: The webstates detected in Version 2

Name of

Webstate

Page

Name

state46, state62 cart.php

state78 logout.php

Table 11 gives webstates which are revealed by MCWebSoft with Version 2 of the Restaurant

Script web site. In Version 2, cart operation pages were accessed without login due to fault

injection. According to the results, two webstates that belong to cart operations can be accessed

without login operation since they belong to the “cart.php” web page. In addition, the webstate

corresponding to logout page is accessed due to defecting cart operations pages.

Table 12: The webstates detected in Version 3

Name of Webstate Page Name

state43, state15

state87, state66

state88, state68

member-index.php

member-index.php?startrow=5,

member-index.php?startrow=0,

state49

state51, state34

state50, state33

inbox.php,

inbox.php?startrow=0,

inbox.php?startrow=5

state44, state37, state25 member-profile.php

state72 ratings.php

state78 logout.php

state46, state23

state57, state34

state56, state35

cart.php

cart.php?startrow=0

cart.php?startrow=5

Table 12 gives webstates which are revealed by MCWebSoft with Version 3 of the Restaurant

Script web site. In Version 3, both membership pages and cart operation pages were accessed

without login due to fault injection. As it can be seen, there are more webstates found with Version

3 than Version 2 and Version 1, which is reasonable since Version 3 is created by defecting both

70

membership and cart operation files. With these evaluations, it was observed that all authorization

problems were identified and there were no false alarms.

6.3 Performance Evaluation

In order to evaluate the performance of MCWebSoft, we give the size of subject web applications

and total time of verification of each subject web site by MCWebSoft. The time is obtained by

adding the time spend by MCWebSoft for converting web crawler models to intermediate web

model, generating NuSMV model and properties, verifying the properties and creating executable

scripts with respect to counterexamples. In order to present the size of evaluated web sites, the

number of webstates, the number of edges in the web crawler output models which are formed as

intermediate web model, the average DOM size and the file size of subject web applications are

given.

6.3.1 Performance of navigation verification

In order to evaluate the performance of MCWebSoft in terms of verification of navigational

properties, 30 case studies, which are given in Table 6, were examined. The details of the

verification processes are explained in Section 6.2.1. As well as giving time and space used by

MCWebSoft, the factors which have significant effect on the verification time is detected by

correlation analysis.

6.3.1.1 Results of the Size Measurement

In this section the distribution of subject web applications is presented in terms of their size values.

Numbers of webstates and edges, DOM size and file size values are given with this purpose. In

Figure 38, 39, 40 and 41, the distribution of the size measurements of the subject web applications,

which are given in Table 6, is depicted with boxplot figures. The file size information is obtained

by measuring the size of copied version of subject web applications which is used to verify Micro-

Crawler output. DOM size value is taken from output of Crawljax for each subject web

application. However, we have two values for webstate, edge and time values for each web crawler

output. Therefore the averages of the numbers of webstate, edge, attained with Crawljax and

Micro-Crawler outputs are given for performance analysis. Moreover, the separate values of

webstate and edge numbers for each of two crawlers are provided in Table 20 in Appendix G.

Boxplot is a graph to display the distribution of quantitative data. They represent the values as

separated by their quartiles. The vertical line in box shape denotes the median value, the data value

within the range of box shape is between first and third quartiles. The lines extending from box is

called whiskers and show the smallest and largest value of the data set. The points on the figure

symbolize the outliers. The numbers on the outliers refer the subject web application with the

order number in Table 6.

71

 Figure 38: Boxplot of file size of subject web applications

In Figure 38, file size analysis of the subject applications is presented. According to the results,

file sizes can change between 0.1 MB and 1026 MB, mean of them is 74.2 MB, median is 12.23

MB and standard deviation is 194.7 MB. As it is seen from the figure, there are 5 outliers. In the

boxplot figure, it is also observed that the vertical line representing median and the box is skewed

to the low part of the range line which means that size of the subject web applications is general

have lower values.

 Figure 39: Boxplot of average DOM size of subject web applications

Figure 39 gives the boxplot of average DOM size values of the subject web applications. The

average DOM size value is taken from the output of the crawl process done by Crawljax tool. The

72

results show that DOM size is between 2.4 KB and 106.1 KB, and have a mean of 18.3 KB with

standard deviation 23.3 KB. Median of DOM size values is 7.65 KB. As in Figure 38, the outliers

also exist in Figure 39. Also, as in the case of Figure 39 most of the data is gathered in low values,

so the average DOM size of all of the subject web applications are skewed to small values.

Figure 40: Boxplot of average number of edges in intermediate web models subject web applications

In Figure 40, the values of edges numbers as average of output of two crawler outputs are depicted

in boxplot. According to the results, average number of edges can change between 7.5 and 217,

mean of the edge values is 50.7, median is 36.5 and standard deviation is 47.7. There are three

outliers in the boxplot. Also, as other variables, most of the data of the average number of edges

set is skewed to low end of the range.

73

Figure 41: Boxplot of average number of webstates in intermediate web models subject web

applications

Figure 41 gives the boxplot of the average number of webstates obtained from the output models

of the Crawljax and Micro-Crawler tools. The results of descriptive analysis show the average

number of webstates is between 4 and 124.5, the mean is 19.6 with standard deviation 23.1 and

the median is 12.5. As it was shown in boxplot, there are two outliers and average number of

webstates are skewed to low ranges.

Table 13 shows the descriptive statistics of size measurements which is illustrated in boxplots in

Figures 38-41.

Table 13: Results of size measurements of subject web applications in Table 6

According to the results, subject web applications have low size values in both number of webstate

and edge values, DOM sizes and file sizes.

 Minimum Maximum Mean

Median

Std.

Deviation

File Size(MB) 0.1 1026 74.2 12.23 194.7

Average DOM

Size(KB)

2.4 106.1 18.3 7.65 23.3

Average Number of

Webstates

4.0 124.5 19.6 12.5 23.1

Average Number of

Edges

7.5 217 50.7 36.5 47.7

74

6.3.1.2 Results of Performance Evaluation

In this section, we examine the time and space used by our tool in verifying the subject web

applications. The time for verification is measured by adding the time spend for converting web

crawler outputs to intermediate web model, generating NuSMV model and properties, verifying

the properties and creating executable scripts with respect to counterexamples by MCWebSoft.

We perform two verification analysis with MCWebSoft for each subject web applications, since

we have two web crawler outputs for each web site. Therefore, average time for each verification

process is given. The time measurements for each version of web applications are provided in

Table 20 in Appendix G.

Figure 42: Boxplot of average time spend in verification of subject web applications

Figure 42 displays the boxplot of time spend by MCWebSoft on verification of each web

applications given in Table 6. The whole process for each subject took 586.5 ms at minimum and

13.645 ms at maximum. The median of time measurements is 977 ms and the mean is 2076.9 ms

with standard variation of 3018.1 ms.

Table 14 shows the descriptive statistics of time measurements which is illustrated in boxplots in

Figure 42.

Table 14: Time measurement results of subject web applications in Table 6

 Minimum Maximum Mean

Median

Std.

Deviation

Average Time(ms) 586.5 13645 2076.9 977 3018.1

75

Time and memory measurements are two of the important concerns of the model checking domain.

According to these results, average time values for evaluating 30 web applications is

approximately 2 seconds with approximately 3 seconds standard deviation.

In order to find which factors affect the time of evaluation, we performed correlation analysis,

with size, average DOM size, average number of webstate and average number of edges. It was

found that only average number of edges and average number of webstates have an important

effect on time. In Figures 43 and 44, these relations are given with scatterplots.

Figure 43: Scatterplot of average number of edges and average time

In Figure 43, the relation between the average number of edges and average time spend on

verification is displayed. The correlation between average number of edges and time was found

significant at the 0.01 level (p=0.019). According to this result, web applications having more

edges, namely the web applications which have more links and buttons that can change the DOM

structures, can take more time for our tool’s verification process.

76

Figure 44: Scatterplot of average number of webstates and average time

In Figure 44, the relation between the average number of webstates and average time are displayed.

The correlation analysis shows that the significance value of the correlation of the average number

of webstates and time is smaller than 0,005. By this result, we can say that the web applications

which have more webstates take more time for our tool’s verification process.

The results of correlation analysis saying that webstate and edge numbers have a positive effect

on evaluation time, is not surprising, since we verified the web sites based on their models as

intermediate web model which includes webstate and edge components. Moreover, we have

detected that file size and average DOM size of a web application have an insignificant effect on

the time spent by MCWebSoft. The size of web application files includes all web objects in the

web application including jpeg and gif files. Therefore this insignificant effect is reasonable, since

these image objects have no effect on the verified model of web application, i.e., NuSMV model.

Moreover, average DOM size has insignificant effect on time of verification, since the DOM size

measurement is taken from Crawljax output, but the time values are the average of the

measurements of the verification with both Micro-Crawler and Crawljax output models.

According to the results, only components of the intermediate model, webstate and edge, can affect

the time of verification. With this conclusion, we affirmed that the time for model checking is

dependent on the model verified by model checking [62].

6.3.2 Performance of Access Control Verification

The results of the space and time measurements of access control verification with the purpose of

evaluating the performance of MCWebSoft are given in this section. One web application is used

for our access control evaluation (see section 6.2.2 for details). Table 15 gives the results of

performance evaluations of each fault-seeded version of the Restaurant Script web site.

77

Table 15: Results of performance evaluation of the Restaurant Script web site

Versions Size(MB) Average DOM

Size(KB)

Number of

Webstates

Number of

Edges

Time

(ms)

Version 1

1.14

4.257 28 49 963

Version 2 5.945 50 63 1240

Version 3 5.662 49 63 1293

According to the results in Table 15, size of web application is 1.14 MB, since the webstate and

edge numbers change for each one for three fault-seeded versions of web applications, the time

for the tool to complete the verification were different; 963, 1240 and 1293 ms respectively.

As in navigation verification, in access control verification the time values are reasonable for

model checking. Time for executing these three versions is approximately 1 seconds (963 ms,

1240 ms and 1293 ms for three versions of the subject web application respectively). The numbers

of webstates obtained from Crawljax web crawler are between 28 and 50, the numbers of edges

are between 49 and 63 respectively.

78

79

CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Summary

This thesis introduces an approach for verification of web applications with model checking and

presents an implementation of this approach as a tool-chain, called MCWebSoft. In this context,

we aim to help inexperienced users in formal methods with the challenging tasks as modelling,

property specification, and locating the errors from counterexamples. Our tool benefits from two

Ajax-enabled web crawlers for extracting models of web applications. Also, an intermediate web

model between crawler output and model checker input is developed to enable modifications on

the web model extracted from web crawler. MCWebSoft also assists in defining CTL properties

checking access control and link consistency and automatically generates CTL properties for

assessing reachability of web applications. After the verification process with model checking,

generated counterexamples are automatically converted to executable scripts to be replayed on

web browser for allowing of visualizing the detected error traces on runtime.

The developed tool was evaluated in three parts. In the first part, with a user study we evaluated

the usefulness and ease of use of our tool. The focus group had no previous knowledge on model

checking techniques, but familiar with web development and programming in various levels..

80

They found MCWebSoft useful for detecting and visualizing errors. However, according to the

results, the ease of use could be improved

In the second part, we ran experiments on 30 real web applications to investigate the effectiveness

in detecting navigational errors. Lastly, we evaluated the effectiveness of access control error

detection by fault injection on an open source web application. It is observed that MCWebSoft is

successful in finding errors in real web sites. Also, false alarms can be detected by the tool with

the aid of error scenario execution. To eliminate false alarms, the refinement on the intermediate

web models was performed and it was found sufficient in evaluations.

7.2 Contributions

As web applications become increasingly common and have critical functionalities, verification

of these applications gains importance. Verification allows designers to correct inconsistencies in

desired features of web applications. Navigation and access control of authorized services are two

important features which deserve to be confirmed and corrected before leading bigger problems.

Model checking is a rigid and reliable technique for verification, but using this techniques requires

knowledge of mathematical concepts. In this thesis an implementation method for verification of

web applications with model checkers for inexperienced users is presented.

Our approach combines different methods as using web crawlers for model extraction, converting

navigational models to NuSMV, checking navigation properties with a model checker and

converting NuSMV counterexamples to executable scripts. In previous related studies, these

methods were used separately (see Chapter 3), the main contribution that we present lies in the

combination of the many different techniques in one approach and implementation of these

approaches as a tool-chain. Also, usage of some methods differ from other studies; converting

counterexamples to executable scripts as enabling automatic replay of counterexamples was not

implemented, but generating counterexamples which can be replayed by a capture/replay tool was

developed before [29, 49].

Moreover, we introduce the first study that uses Crawljax and Micro-Crawler for model checking.

Although, previously the adaptability of output model of web crawler tools to model checking is

questioned and further analysis are suggested on web crawlers, the results of error detection

performance gave us valuable results by revealing the deficiencies of these web crawler tools’

performance. We have detected that web crawler tools cause incorrect results when checking

navigation properties. According to our evaluation results conducted with 30 web applications,

Crawljax-generated models led more false alarms, false positive results, than Micro-Crawler.

(Micro-Crawler: 38% false alarm, Crawljax: 87% false alarm). We have detected that the reason

why Crawljax generates more false alarms is the error in algorithm of crawling; Crawljax does not

recognize the clickable page elements with same tag attributes, even they are located in the

different pages of the web application.

In our study we concentrate on easing the use of model checker by supporting web crawler output

models as input, generating CTL properties with user interface guidance and replaying

counterexample scenarios on web browser. Also, users are integrated as part of the tool by manual

editing of the model. Moreover, within the user study evaluation, participants who have never

81

used model checking method succeed to use MCWebSoft and verify web applications with model

checker, NuSMV with our system. Also, results of perceived usefulness show that participants

find our tool useful for animating detected error traces.

 7.3 Limitations

Our limitations in terms of in which extent we verify the web applications is dependent on the

model of web applications extracted from web crawlers, Crawljax and Micro-Crawler. Therefore

some type of errors could not be detected by MCWebSoft. For example, if a user can access a

private page by a specific URL with a web browser, MCWebSoft cannot find this error. The reason

is that the web crawlers successively click the clickable elements to create the navigation map of

web applications and they cannot record the web pages, states which cannot be reached from index

page. Moreover, if the web application has an error which causes to access private pages without

filling true inputs or if the web application fails after the login action, our tool would not recognize

this deficiency. Nevertheless, by investigating the models extracted from web crawlers, users can

expose these types of errors.

Besides, limitations of our study are given in two aspects; limitation of MCWebSoft and

limitations of the evaluation. The former one includes the analysis of the completeness and

soundness of the fault detection process. The latter one, the limitation of the evaluation, explains

the validity problems of the evaluation process.

7.3.1 Completeness and Soundness

The web crawlers used for this study, Micro-Crawler and Crawljax, do not ensure that the

complete web application will be crawled and recorded. Mesbah et al. state that the set of found

states in Crawljax in the inferred state machine, SFG, is not complete [4]. With the evaluations

conducted with Micro-Crawler, we have detected that the state machine generated from Micro-

Crawler is not complete too. In our implementation, an option to modify the model of web crawler

is provided, and in this way users can complete the missing states in the model of web application.

However, modifying the web crawler model may not be enough to ensure its completeness.

Therefore, our study does not guarantee the completeness, in other words, the errors found may

not be the full set of bugs in the application in their category.

Due to the incompleteness of models of web crawlers, our method does not produce sound results.

In other words, the errors found in the model may not be really a fault in web applications. We

call these type of errors as false alarms. In our study, in order to create an intermediate web model,

only one of the web crawler’s, Micro-Crawler or Crawljax, output model is required. Combining

the output of these two crawlers would be an option for decreasing the possibility of incomplete

results and for relieving the user from making a choice between two web crawlers. However, this

process is not straightforward for the differences in capabilities of web crawlers, and hence extent

of output models. Only Crawljax is able to crawl web applications, based on specific data inputs,

and extract the map of authorized part of web applications. Therefore, we cannot combine two

web crawler outputs for that private, part of application. Moreover, we created XML-based model,

the intermediate web model format in order to be independent from web crawler outputs. Although

we have used Micro-Crawler and Crawljax as two web crawlers in this study, the intermediate

82

web model allows to add another type of web crawler to our implementation. For all of these

reasons, combining two web crawler outputs is not covered in this study.

7.3.2 Threads to Validity of the Evaluation

In the findings of evaluations, there can be several threats to our evaluation in terms of its external

validity. Moreover, there are several concerns about repeatability of our evaluation which are

presented in this section

First, we present the concerns about repeatability of our experiments. The performance of

MCWebSoft was measured on one personal computer, the results of time evaluation may not be

the same when we repeat them in another computer due to performance of computer that the

evaluation is conducted with. Moreover, the web applications that we used as subject for our

evaluations are open to public domain. Therefore, there is a possibility that they can be modified

over time which may lead to be impossible to duplicate the evaluations with same results.

External Validity describes for which extent the result of our evaluations can be generalized. In

this category, we have threads for three steps of our evaluations.

First, the user study is conducted with limited sample size; 8 participants with the knowledge of

programming at different levels and no knowledge about model checking was investigated. The

participants have different background in web development or programming. However, this may

not be enough to generalize the results of our user group to all people who are in the same category.

Second, the error detection evaluation for navigation properties is performed with 30 web

applications and most of them are small sized web applications. The technologies used for

development of subject web applications have a large variety. However, the evaluation results for

subject web applications may not be enough to be generalized to all web applications. Also we

cannot generalize the results of access control evaluation to all web applications. While measuring

the performance of access control error detection, we used only one subject web application and

by fault seeding we check the error detection against three versions of this site. This may not be

enough for concluding that the results hold for all web applications.

7.4 Future Work

In this study, an approach to combine usage of web crawlers to model checking method to verify

web applications and increasing the user experience about the model checking is developed and

implemented as a software application. Although, MCWebSoft makes it possible to apply model

checking to web applications by users with no experience, in the user study, ease of use scores of

the tool is not so high. Therefore, it is aimed to improve the usability of the tool by developing a

more professional virtual interface in the future.

In Section 7.3.1, combining the output of both Micro-Crawler and Crawljax is mentioned as an

option for decreasing incompleteness of web models. A method for combining two web crawlers

can be developed in future work. In this study, we aim to be independent from web crawlers, so

we did not focus on improving web crawler outputs.

83

MCWebSoft verifies access of one type of user, which is the authenticated user, at one single time

of execution. However, in general, web applications could have other user types with different

roles having separate navigation paths and access control concerns. Also in Section 4.2, we defined

our model of web applications in Kripke structure as compatible with more than one type of user

by describing guard conditions as a set. However, while implementing we consider one guard

condition, which is the login information of regular users. With our current implementation, to

check different types of user roles in web applications, users should extract the output of web

application with respect to each one of user types, then input them to our tool one by one to control

their access. In the future, the function of verification of multiple different users’ access control at

one time is aimed to be implemented.

Moreover, the number of property categories can be increased in the future. In this study,

MCWebSoft can check navigation and access control properties. Other than these, certificates of

browsers can be verified or we can verify the web pages which require HTTPS protocol by

checking URL components that is saved for each webstates. In addition, back button is not

considered in this study. This restriction is due to the models web crawlers extracted. Including

back buttons would be a simple extension, but user had to manually provide this information.

84

85

REFERENCES

[1] Upadhyay, P. (2012). The Role of Verification and Validation in System Development Life

Cycle, IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661 Volume 5,

Issue 1 (Sep-Oct. 2012), PP 17-20

[2] Homma, K., Izumi, S., Abe, Y., Takahashi, K., & Togashi, A. (2010). Using the model

checker spin for web application design. In Applications and the Internet (SAINT), 2010

10th IEEE/IPSJ International Symposium on (pp. 137-140). IEEE.

[3] De Alfaro, L. (2001). Model Checking the World Wide Web, In Computer Aided

Verification (pp. 337-349). Springer Berlin Heidelberg

[4] Mesbah, A., van Deursen, A., & Lenselink, S. (2012). Crawling Ajax-based web

applications through dynamic analysis of user interface state changes. ACM Transactions

on the Web (TWEB), 6(1), 3.

[5] Le Breton, G., Maronnaud, F., & Hallé, S. (2013). Automated exploration and analysis of

Ajax web applications with WebMole. In Proceedings of the 22nd international conference

on World Wide Web companion (pp. 245-248). International World Wide Web Conferences

Steering Committee.

[6] Cimatti, A., Clarke, E., Giunchiglia, F., & Roveri, M. (1999). NuSMV: A new symbolic

model verifier. In Computer Aided Verification (pp. 495-499). Springer Berlin Heidelberg.

86

[7] Baier, C., & Katoen, J. (2008). Principles of model checking. Cambridge, Mass., London:

MIT Press

[8] Fraser, G., Wotawa, F., & Ammann, P. E. (2009). Testing with model checkers: a survey.

Software Testing, Verification and Reliability, 19(3), 215-261.

[9] Clarke, E. M., and Grumberg, O. (1999). Model Checking. Cambridge, Mass.: MIT Press.

[10] Huth, M., & Ryan, M. (2000). Logic in computer science: Modelling and reasoning about

systems. Cambridge, England: Cambridge University Press.

[11] McMillan, K. L. (1993). Symbolic model checking. Boston: Kluwer Academic Press.

[12] “Internet Growth and Statistics: Credits and Background”. [Online] Available at:

http://www.mit.edu/people/mkgray/net/background.html [Accessed 25 Jun. 2015].

[13] Pinkerton, B. (1994). Finding what people want: Experiences with the WebCrawler. In

Proceedings of the Second International World Wide Web Conference (Vol. 94, pp. 17-20).

[14] van Deursen, A., Mesbah, A., & Nederlof, A. (2015). Crawl-based analysis of web

applications: Prospects and challenges. Science of Computer Programming, 97, 173-180.

[15] Le Hégaret, P., Wood, L. and Robie, J. (2000). What is the Document Object Model?.

[Online] W3.org. Available at: http://www.w3.org/TR/DOM-Level-2-

Core/introduction.html [Accessed 9 Aug. 2015].

[16] Mesbah, A., & Van Deursen, A. (2009). Invariant-based automatic testing of AJAX user

interfaces. In Proceedings of the 31st International Conference on Software Engineering

(pp. 210-220). IEEE Computer Society.

87

[17] Bezemer, C.-P., Mesbah, A., & Van Deursen, A. (2009). Automated security testing of Web

widget interactions. In Proceedings of the 7th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering (ESEC-FSE’09). ACM Press, New York, NY, 81–91.

[18] Roest, D., Mesbah, A., & van Deursen, A. (2010). Regression testing Ajax applications:

Coping with dynamism. In Proceedings of the 3rd International Conference on Software

Testing, Verification and Validation (ICST’10). IEEE Computer Society, Los Alamitos, CA,

128–136.

[19] Mesbah, A. and Prasad, M. R. (2011). Automated cross-browser compatibility testing. In

Proceedings of the 33rd ACM/IEEE International Conference on Software Engineering

(ICSE’11). ACM Press, New York, NY, 561–570.

[20] Demarty, G., Maronnaud, F., Le Breton, G., & Hallé, S. (2013). SiteHopper: Abstracting

navigation state machines for the efficient verification of web applications. In Web Services

and Formal Methods (pp. 103-117). Springer Berlin Heidelberg.

[21] Clarke, E. M., Jha, S., Lu, Y., Veith, H. (2002). Tree-like counterexamples in model

checking. LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in

Computer Science, Washington, DC, U.S.A. IEEE Computer Society: Silver Spring, MD,

2002; 19–29. ISBN 0-7695-1483-9.

[22] Bojańczyk, M. (2008). The common fragment of ACTL and LTL. In Foundations of

Software Science and Computational Structures (pp. 172-185). Springer Berlin Heidelberg.

[23] Andrews, T., Qadeer, S., Rajamani, S. K., Rehof, J., & Xie, Y. (2004). Zing: A model

checker for concurrent software. In Computer Aided Verification (pp. 484-487). Springer

Berlin Heidelberg.

[24] Ball, T., & Rajamani, S. K. (2001). The SLAM toolkit. In Computer aided verification (pp.

260-264). Springer Berlin Heidelberg.

88

[25] Musuvathi, M., Park, D. Y., Chou, A., Engler, D. R., & Dill, D. L. (2002). CMC: A

pragmatic approach to model checking real code. ACM SIGOPS Operating Systems Review,

36(SI), 75-88.

[26] Havelund, K., & Pressburger, T. (2000). Model checking java programs using java

pathfinder. International Journal on Software Tools for Technology Transfer, 2(4), 366-

381.

[27] Jhala, R., & Majumdar, R. (2009). Software model checking. ACM Computing Surveys

(CSUR), 41(4), 21.

[28] Alfaro, L., Henzinger, T. A., & Mang, F. Y. (2001). MCWEB: A model-checking tool for

Web site debugging. In World Wide Web Conference (WWW)--Poster Proceedings.

[29] Licata, D. R., & Krishnamurthi, S. (2004). Verifying interactive Web programs. In

Automated Software Engineering, 2004. Proceedings. 19th International Conference on

(pp. 164-173). IEEE.

[30] Deutsch, A., Marcus, M., Sui, L., Vianu, V., & Zhou, D. (2005). A verifier for interactive,

data-driven web applications. In Proceedings of the 2005 ACM SIGMOD international

conference on Management of data (pp. 539-550). ACM.

[31] Di Sciascio, E., Donini, F. M., Mongiello, M., & Piscitelli, G. (2002). AnWeb: a system for

automatic support to web application verification. In Proceedings of the 14th international

conference on Software engineering and knowledge engineering (pp. 609-616). ACM.

[32] Haydar, M., Petrenko, A., & Sahraoui, H. (2004). Formal verification of web applications

modeled by communicating automata. In Formal Techniques for Networked and

Distributed Systems–FORTE 2004 (pp. 115-132). Springer Berlin Heidelberg.

89

[33] Di Sciascio, E., Donini, F. M., Mongiello, M., Totaro, R., & Castelluccia, D. (2005). Design

verification of web applications using symbolic model checking. In Web Engineering (pp.

69-74). Springer Berlin Heidelberg.

[34] Castelluccia, D., Mongiello, M., Ruta, M., & Totaro, R. (2006). Waver: A model checking-

based tool to verify web application design. Electronic notes in theoretical Computer

Science, 157(1), 61-76.

[35] Knapp, A., & Zhang, G. (2006). Model Transformations for Integrating and Validating Web

Application Models. In Modellierung (Vol. 22, p. 24).

[36] Brambilla, M., Cabot, J., & Moreno, N. (2007). Tool support for model checking of web

application designs. In Web Engineering (pp. 533-538). Springer Berlin Heidelberg.

[37] Brambilla, M., Deutsch, A., Sui, L., & Vianu, V. (2005). The role of visual tools in a web

application design and verification framework: a visual notation for LTL formulae. In Web

Engineering (pp. 557-568). Springer Berlin Heidelberg.

[38] Miao, H., & Zeng, H. (2007). Model checking-based verification of web application. In

Engineering Complex Computer Systems, 2007. 12th IEEE International Conference on

(pp. 47-55). IEEE.

[39] Kung, D. C., Liu, C. H., & Hsia, P. (2000). An object-oriented web test model for testing

web applications. In Quality Software, 2000. Proceedings. First Asia-Pacific Conference

on (pp. 111-120). IEEE.

[40] Guerra, E., Sanz, D., Díaz, P., & Aedo, I. (2007). A transformation-driven approach to the

verification of security policies in web designs. In Web Engineering (pp. 269-284). Springer

Berlin Heidelberg.

[41] Díaz, P., Montero, S., & Aedo, I. (2005). Modelling hypermedia and web applications: the

Ariadne Development Method. Information Systems, 30(8), 649-673.

90

[42] Han, M., & Hofmeister, C. (2006). Modeling and verification of adaptive navigation in web

applications. In Proceedings of the 6th international conference on Web engineering (pp.

329-336). ACM.

[43] Hallé, S., Ettema, T., Bunch, C., & Bultan, T. (2010). Eliminating navigation errors in web

applications via model checking and runtime enforcement of navigation state machines. In

Proceedings of the IEEE/ACM international conference on Automated software

engineering (pp. 235-244). ACM.

[44] Alalfi, M. H., Cordy, J. R., & Dean, T. R. (2009). Modelling methods for web application

verification and testing: state of the art. Software Testing, Verification and Reliability,

19(4), 265-296.

[45] Huang, Y. W., Yu, F., Hang, C., Tsai, C. H., Lee, D. T., & Kuo, S. Y. (2004). Verifying

web applications using bounded model checking. In Dependable Systems and Networks,

2004 International Conference on (pp. 199-208). IEEE.

[46] Ball, T., Naik, M., & Rajamani, S. K. (2003). From symptom to cause: localizing errors in

counterexample traces. In ACM SIGPLAN Notices (Vol. 38, No. 1, pp. 97-105). ACM.

[47] Corbett, J. C., Dwyer, M. B., & Hatcliff, J. (2000). Bandera: A source-level interface for

model checking java programs. In Proceedings of the 22nd international conference on

Software engineering (pp. 762-765). ACM.

[48] Anupam, V., Freire, J., Kumar, B., & Lieuwen, D. (2000). Automating Web navigation with

the WebVCR. Computer Networks, 33(1), 503-517.

[49] Benedikt, M., Freire, J., & Godefroid, P. (2002). VeriWeb: Automatically testing dynamic

web sites. In Proceedings of 11th International World Wide Web Conference (WW W’2002).

91

[50] Torsel, A. M. (2013). A Testing tool for Web applications using a domain-specific

modelling language and the NuSMV model checker. In Software Testing, Verification and

Validation (ICST), 2013 IEEE Sixth International Conference on (pp. 383-390). IEEE.

[51] Zeng, H., & Miao, H. (2007). Auto-generating test sequences for web applications. In Web

Engineering (pp. 301-305). Springer Berlin Heidelberg.

[52] Li, L., Miao, H., & Chen, S. (2010). Test generation for web applications using model-

checking. In Software Engineering Artificial Intelligence Networking and

Parallel/Distributed Computing (SNPD), 2010 11th ACIS International Conference on (pp.

237-242). IEEE.

[53] Ammann, P. E., Black, P. E., & Majurski, W. (1998, December). Using model checking to

generate tests from specifications. In Formal Engineering Methods, 1998. Proceedings.

Second International Conference on (pp. 46-54). IEEE.

[54] “Top 10 2013-Top 10 – OWASP”. [Online] Available at:

https://www.owasp.org/index.php/Top_10_2013-Top_10 [Accessed 25 Jun. 2015].

[55] “CWE -2011 CWE/SANS Top 25 Most Dangerous Software Errors”. [Online] Available

at: http://cwe.mitre.org/top25/index.html#CWE-862 [Accessed 25 Jun. 2015].

[56] “Selenium - Web Browser Automation”. [Online] Available at:

http://www.seleniumhq.org/ [Accessed 25 Jun. 2015].

[57] Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of

information technology. MIS quarterly, 319-340.

[58] Miller, M., Ranier, R. and Corley, J. (2003). Predictors of Engagement and Participation in

an On-Line Course. Online Journal of Distance Learning Administration, [Online] 6(1).

92

Available at: http://www.westga.edu/~distance/ojdla/spring61/miller61.htm [Accessed 9

Aug. 2015].

[59] Morris, G. M., Dillon, A., (1997). The Influence of User Perceptions on Software

Utilization: Application and Evaluation of a Theoretical Model of Technology Acceptance

[Online]. Available at:

https://ford.ischool.utexas.edu/html/2081/1143/User%20Preceptions.htm

[60] “HTTrack Website Copier - Free Software Offline Browser (GNU GPL)”. [Online]

Available at: https://www.httrack.com/ [Accessed 25 Jun. 2015].

[61] “Web Developer”. [Online] Available at: http://chrispederick.com/work/web-developer/

[Accessed 9 Aug. 2015].

[62] Schnoebelen, P. (2002). The Complexity of Temporal Logic Model Checking. Advances in

modal logic, 4(393-436), 35.

93

APPENDICES

APPENDIX A: INTERMEDIATE WEB MODEL OF

RUNNING EXAMPLE

<?xml version='1.0' encoding='UTF-8' ?>

<webstates>

<webstate>

<name>

index

</name>

<url>

http://localhost/RunningExample/index.php

</url>

</webstate>

<webstate>

<name>

state9

</name>

<url>

http://localhost/RunningExample/Dead%20End.html

</url>

</webstate>

<webstate>

<name>

state5

</name>

<url>

http://localhost/RunningExample/Normal.html

</url>

</webstate>

<webstate>

<name>

state7

</name>

<url>

94

http://localhost/RunningExample/Ajax.html

</url>

</webstate>

<webstate>

<name>

state2

</name>

<url>

http://localhost/RunningExample/welcome.php

</url>

</webstate>

<webstate>

<name>

state1

</name>

<url>

http://localhost/RunningExample/login.php

</url>

</webstate>

<webstate>

<name>

state4

</name>

<url>

http://localhost/RunningExample/Login%20Test.html

</url>

</webstate>

<webstate>

<name>

state13

</name>

<url>

http://localhost/RunningExample/Ajax.html

</url>

</webstate>

<webstate>

<name>

state10

</name>

<url>

http://localhost/RunningExample/Broken%20Link.html

</url>

</webstate>

<webstate>

<name>

state14

</name>

<url>

http://localhost/RunningExample/page.html

</url>

</webstate>

</webstates>

95

<elements>

<element>

<xpath>

/HTML[1]/BODY[1]/P[1]/A[1]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/FORM[1]/INPUT[3]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/DIV[1]/A[2]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1

]/TD[1]/A[1]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/DIV[1]/A[1]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[2]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/HEADER[1]/DIV[1]/A[1]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[3]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpath>

</element>

<element>

<xpath>

96

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[4]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[5]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/BUTTON[1]

</xpath>

</element>

<element>

<xpath>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/A[1]

</xpath>

</element>

</elements>

<edges>

<edge>

<from>

index

</from>

<to>

state1

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/P[1]/A[1]

</xpathOfElement>

</edge>

<edge>

<from>

state2

</from>

<to>

index

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/DIV[1]/A[2]

</xpathOfElement>

</edge>

<edge>

<from>

index

</from>

<to>

state4

</to>

<xpathOfElement>

97

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1

]/TD[1]/A[1]

</xpathOfElement>

</edge>

<edge>

<from>

state2

</from>

<to>

state5

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpathOfElement>

</edge>

<edge>

<from>

state5

</from>

<to>

state2

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/DIV[1]/A[1]

</xpathOfElement>

</edge>

<edge>

<from>

state2

</from>

<to>

state7

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[2]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpathOfElement>

</edge>

<edge>

<from>

state7

</from>

<to>

state2

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/HEADER[1]/DIV[1]/A[1]

</xpathOfElement>

</edge>

<edge>

<from>

98

state2

</from>

<to>

state9

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[3]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpathOfElement>

</edge>

<edge>

<from>

state2

</from>

<to>

state10

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[4]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpathOfElement>

</edge>

<edge>

<from>

state10

</from>

<to>

state2

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/DIV[1]/A[1]

</xpathOfElement>

</edge>

<edge>

<from>

state2

</from>

<to>

state4

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[5]/TBODY[1]/TR[1

]/TD[1]/A[2]

</xpathOfElement>

</edge>

<edge>

<from>

state7

</from>

<to>

state13

</to>

99

<xpathOfElement>

/HTML[1]/BODY[1]/BUTTON[1]

</xpathOfElement>

</edge>

<edge>

<from>

state10

</from>

<to>

state14

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/A[1]

</xpathOfElement>

</edge>

<edge>

<from>

state13

</from>

<to>

state2

</to>

<xpathOfElement>

/HTML[1]/BODY[1]/HEADER[1]/DIV[1]/A[1]

</xpathOfElement>

</edge>

</edges>

100

101

APPENDIX B: NuSMV MODEL OF RUNNING EXAMPLE

MODULE main

VAR

login: boolean;

webstate:{index,state9,state5,state7,state2,state1,state4,state13,state10,state14,dead_end_webstate};

element:{_HTML_1__BODY_1__P_1__A_1_,_HTML_1__BODY_1__FORM_1__INPUT_3_,_HTML_

1__BODY_1__DIV_1__A_2_,_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABL

E_1__TBODY_1__TR_1__TD_1__A_1_,_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD

_1__TABLE_1__TBODY_1__TR_1__TD_1__A_2_,_HTML_1__BODY_1__DIV_1__A_1_,_HTML_1

__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_2__TBODY_1__TR_1__TD_1__A_2_

,_HTML_1__BODY_1__HEADER_1__DIV_1__A_1_,_HTML_1__BODY_1__TABLE_1__TBODY_1

__TR_1__TD_1__TABLE_3__TBODY_1__TR_1__TD_1__A_2_,_HTML_1__BODY_1__TABLE_1__

TBODY_1__TR_1__TD_1__TABLE_4__TBODY_1__TR_1__TD_1__A_2_,_HTML_1__BODY_1__T

ABLE_1__TBODY_1__TR_1__TD_1__TABLE_5__TBODY_1__TR_1__TD_1__A_2_,_HTML_1__B

ODY_1__BUTTON_1_,_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__A_1_,null_el

ement};

ASSIGN

init(login):=FALSE;

init(webstate):=index;

init(element):=null_element;

next(webstate):= case

webstate=index & next(element)=_HTML_1__BODY_1__P_1__A_1_:state1;

webstate=state2 & next(element)=_HTML_1__BODY_1__DIV_1__A_2_:index;

webstate=index &

next(element)=_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_1__TBODY_

1__TR_1__TD_1__A_1_:state4;

webstate=state2 &

next(element)=_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_1__TBODY_

1__TR_1__TD_1__A_2_:state5;

webstate=state5 & next(element)=_HTML_1__BODY_1__DIV_1__A_1_:state2;

webstate=state2 &

next(element)=_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_2__TBODY_

1__TR_1__TD_1__A_2_:state7;

webstate=state7 & next(element)=_HTML_1__BODY_1__HEADER_1__DIV_1__A_1_:state2;

webstate=state2 &

next(element)=_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_3__TBODY_

1__TR_1__TD_1__A_2_:state9;

webstate=state2 &

next(element)=_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_4__TBODY_

1__TR_1__TD_1__A_2_:state10;

webstate=state10 & next(element)=_HTML_1__BODY_1__DIV_1__A_1_:state2;

webstate=state2 &

next(element)=_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_5__TBODY_

1__TR_1__TD_1__A_2_:state4;

webstate=state7 & next(element)=_HTML_1__BODY_1__BUTTON_1_:state13;

webstate=state10 &

next(element)=_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__A_1_:state14;

102

webstate=state13 & next(element)=_HTML_1__BODY_1__HEADER_1__DIV_1__A_1_:state2;

webstate=state1 & next(login)= TRUE & next(element)=_HTML_1__BODY_1__DIV_1__A_2_:state2;

TRUE:dead_end_webstate;

esac;

next(element):= case

webstate=state1:{_HTML_1__BODY_1__DIV_1__A_2_};

webstate=index:{_HTML_1__BODY_1__P_1__A_1_,_HTML_1__BODY_1__TABLE_1__TBODY_1_

_TR_1__TD_1__TABLE_1__TBODY_1__TR_1__TD_1__A_1_};

webstate=state5:{_HTML_1__BODY_1__DIV_1__A_1_};

webstate=state7:{_HTML_1__BODY_1__HEADER_1__DIV_1__A_1_,_HTML_1__BODY_1__BUTT

ON_1_};

webstate=state2:{_HTML_1__BODY_1__DIV_1__A_2_,_HTML_1__BODY_1__TABLE_1__TBODY

_1__TR_1__TD_1__TABLE_1__TBODY_1__TR_1__TD_1__A_2_,_HTML_1__BODY_1__TABLE_1

__TBODY_1__TR_1__TD_1__TABLE_2__TBODY_1__TR_1__TD_1__A_2_,_HTML_1__BODY_1_

_TABLE_1__TBODY_1__TR_1__TD_1__TABLE_3__TBODY_1__TR_1__TD_1__A_2_,_HTML_1_

_BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_4__TBODY_1__TR_1__TD_1__A_2_,

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_5__TBODY_1__TR_1__TD

_1__A_2_};

webstate=state13:{_HTML_1__BODY_1__HEADER_1__DIV_1__A_1_};

webstate=state10:{_HTML_1__BODY_1__DIV_1__A_1_,_HTML_1__BODY_1__TABLE_1__TBOD

Y_1__TR_1__TD_1__A_1_};

webstate=dead_end_webstate:null_element;

TRUE:element;

esac;

next(login):= case

webstate=state1& next(element)= _HTML_1__BODY_1__DIV_1__A_2_:TRUE;

webstate=state2& next(element)= _HTML_1__BODY_1__DIV_1__A_2_:FALSE;

TRUE: login;

esac;

--INDEX IS REACHABLE FROM ALL STATES

SPEC AG(webstate=state9 -> EF(webstate=index));

SPEC AG(webstate=state5 -> EF(webstate=index));

SPEC AG(webstate=state7 -> EF(webstate=index));

SPEC AG(webstate=state2 -> EF(webstate=index));

SPEC AG(webstate=state1 -> EF(webstate=index));

SPEC AG(webstate=state4 -> EF(webstate=index));

SPEC AG(webstate=state13 -> EF(webstate=index));

SPEC AG(webstate=state10 -> EF(webstate=index));

SPEC AG(webstate=state14 -> EF(webstate=index));

--THERE IS NO DEAD END

SPEC AG(webstate=index & login = TRUE -> !EX(webstate=dead_end_webstate));

SPEC AG(webstate=state1 & login = TRUE -> !EX(webstate=dead_end_webstate));

SPEC AG(webstate=state9 -> !EX(webstate=dead_end_webstate));

SPEC AG(webstate=state5 -> !EX(webstate=dead_end_webstate));

SPEC AG(webstate=state7 -> !EX(webstate=dead_end_webstate));

103

SPEC AG(webstate=state2 -> !EX(webstate=dead_end_webstate));

SPEC AG(webstate=state4 -> !EX(webstate=dead_end_webstate));

SPEC AG(webstate=state13 -> !EX(webstate=dead_end_webstate));

SPEC AG(webstate=state10 -> !EX(webstate=dead_end_webstate));

SPEC AG(webstate=state14 -> !EX(webstate=dead_end_webstate));

--ACCESS CONTROL PROPERTY

SPEC !EF((webstate=state9) & login =FALSE);

--ACCESS CONTROL PROPERTY

SPEC !EF((webstate=state5) & login =FALSE);

--ACCESS CONTROL PROPERTY

SPEC !EF((webstate=state7) & login =FALSE);

--ACCESS CONTROL PROPERTY

SPEC !EF((webstate=state2) & login =FALSE);

--ACCESS CONTROL PROPERTY

SPEC !EF((webstate=state4) & login =FALSE);

--ACCESS CONTROL PROPERTY

SPEC !EF((webstate=state13) & login =FALSE);

104

105

APPENDIX C: OUTPUT OF NuSMV FOR RUNNING

EXAMPLE

*** This is NuSMV 2.5.4 (compiled on Fri Oct 28 14:13:29 UTC 2011)

*** Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-users@list.fbk.eu>.

*** Please report bugs to <nusmv-users@fbk.eu>

*** Copyright (c) 2010, Fondazione Bruno Kessler

*** This version of NuSMV is linked to the CUDD library version 2.4.1

*** Copyright (c) 1995-2004, Regents of the University of Colorado

*** This version of NuSMV is linked to the MiniSat SAT solver.

*** See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

*** Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

-- specification AG (webstate = state9 -> EF webstate = index) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 login = FALSE

 webstate = index

 element = null_element

-> State: 1.2 <-

 webstate = state1

 element = _HTML_1__BODY_1__P_1__A_1_

-> State: 1.3 <-

 login = TRUE

 webstate = state2

 element = _HTML_1__BODY_1__DIV_1__A_2_

-> State: 1.4 <-

 webstate = state9

 element =

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_3__TBODY_1__TR_1__TD

_1__A_2_

-- specification AG (webstate = state5 -> EF webstate = index) is true

-- specification AG (webstate = state7 -> EF webstate = index) is true

-- specification AG (webstate = state2 -> EF webstate = index) is true

-- specification AG (webstate = state1 -> EF webstate = index) is true

-- specification AG (webstate = state4 -> EF webstate = index) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

 login = FALSE

106

 webstate = index

 element = null_element

-> State: 2.2 <-

 webstate = state4

 element =

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_1__TBODY_1__TR_1__TD

_1__A_1_

-- specification AG (webstate = state13 -> EF webstate = index) is true

-- specification AG (webstate = state10 -> EF webstate = index) is true

-- specification AG (webstate = state14 -> EF webstate = index) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 3.1 <-

 login = FALSE

 webstate = index

 element = null_element

-> State: 3.2 <-

 webstate = state1

 element = _HTML_1__BODY_1__P_1__A_1_

-> State: 3.3 <-

 login = TRUE

 webstate = state2

 element = _HTML_1__BODY_1__DIV_1__A_2_

-> State: 3.4 <-

 webstate = state10

 element =

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_4__TBODY_1__TR_1__TD

_1__A_2_

-> State: 3.5 <-

 webstate = state14

 element = _HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__A_1_

-- specification AG ((webstate = index & login = TRUE) -> !(EX webstate = dead_end_webstate)) is true

-- specification AG ((webstate = state1 & login = TRUE) -> !(EX webstate = dead_end_webstate)) is true

-- specification AG (webstate = state9 -> !(EX webstate = dead_end_webstate)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 4.1 <-

 login = FALSE

 webstate = index

 element = null_element

-> State: 4.2 <-

 webstate = state1

 element = _HTML_1__BODY_1__P_1__A_1_

-> State: 4.3 <-

 login = TRUE

 webstate = state2

 element = _HTML_1__BODY_1__DIV_1__A_2_

-> State: 4.4 <-

 webstate = state9

107

 element =

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_3__TBODY_1__TR_1__TD

_1__A_2_

-> State: 4.5 <-

 webstate = dead_end_webstate

-- specification AG (webstate = state5 -> !(EX webstate = dead_end_webstate)) is true

-- specification AG (webstate = state7 -> !(EX webstate = dead_end_webstate)) is true

-- specification AG (webstate = state2 -> !(EX webstate = dead_end_webstate)) is true

-- specification AG (webstate = state4 -> !(EX webstate = dead_end_webstate)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 5.1 <-

 login = FALSE

 webstate = index

 element = null_element

-> State: 5.2 <-

 webstate = state4

 element =

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_1__TBODY_1__TR_1__TD

_1__A_1_

-> State: 5.3 <-

 webstate = dead_end_webstate

-- specification AG (webstate = state13 -> !(EX webstate = dead_end_webstate)) is true

-- specification AG (webstate = state10 -> !(EX webstate = dead_end_webstate)) is true

-- specification AG (webstate = state14 -> !(EX webstate = dead_end_webstate)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 6.1 <-

 login = FALSE

 webstate = index

 element = null_element

-> State: 6.2 <-

 webstate = state1

 element = _HTML_1__BODY_1__P_1__A_1_

-> State: 6.3 <-

 login = TRUE

 webstate = state2

 element = _HTML_1__BODY_1__DIV_1__A_2_

-> State: 6.4 <-

 webstate = state10

 element =

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_4__TBODY_1__TR_1__TD

_1__A_2_

-> State: 6.5 <-

 webstate = state14

 element = _HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__A_1_

-> State: 6.6 <-

 webstate = dead_end_webstate

-- specification !(EF (webstate = state9 & login = FALSE)) is true

-- specification !(EF (webstate = state5 & login = FALSE)) is true

108

-- specification !(EF (webstate = state7 & login = FALSE)) is true

-- specification !(EF (webstate = state2 & login = FALSE)) is true

-- specification !(EF (webstate = state4 & login = FALSE)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 7.1 <-

 login = FALSE

 webstate = index

 element = null_element

-> State: 7.2 <-

 webstate = state4

 element =

_HTML_1__BODY_1__TABLE_1__TBODY_1__TR_1__TD_1__TABLE_1__TBODY_1__TR_1__TD

_1__A_1_

-- specification !(EF (webstate = state13 & login = FALSE)) is true

109

APPENDIX D: A JUNIT CLASS TO REPLAY FOR

RUNNING EXAMPLE

package junit;

import java.util.concurrent.TimeUnit;

import javax.swing.JOptionPane;

import javax.swing.JDialog;

import org.junit.*;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

public class Template1{

 private WebDriver driver;

 private String baseUrl;

 @Before

 public void setUp() throws Exception {

 driver = new FirefoxDriver();

 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);

 driver.manage().window().maximize();

 baseUrl = "http://localhost/RunningExample/index.php";

}

 @Test

 public void test() throws Exception {

 driver.get(baseUrl);

 openDialog("clicking to

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/A[1]");

 driver.findElement(By.xpath("

/HTML[1]/BODY[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]/A[1]")).c

lick();

}

 @After

 public void tearDown() throws Exception {

 Thread.sleep(10000);

 String note="violation of the AG (webstate = state4 -> EF webstate = index) property, Homepage is not

reachable from this page";

 openDialog(note);

 driver.close();

}

 public void openDialog(String note){

 if(note.length()>200){

 JOptionPane optionPane = new NarrowOptionPane();

110

 optionPane.setMessage(note);

 optionPane.setMessageType(JOptionPane.INFORMATION_MESSAGE);

 JDialog dialog = optionPane.createDialog(null, "Width 100");

 dialog.setVisible(true);

}

else

 JOptionPane.showMessageDialog(null, note);

}

 class NarrowOptionPane extends JOptionPane {

 NarrowOptionPane() {

}

 public int getMaxCharactersPerLineCount() {

 return 100;

}

}}

111

APPENDIX E: CLASS DIAGRAM OF MCWebSoft

112

113

APPENDIX F: THE QUESTIONNAIRE

WEB SİTESİ MODEL DENETLE ARACI

KULLANILABİLİRLİK ANKETİ

Eğitim Durumuz, Mezun Olduğunuz

Bölüm:

Mesleğiniz:

Bundan sonraki sorular, deney sırasında kullandığınız yazılım aracıyla ilgili deneyimlerinizle

ilgilidir. Sorular hakkında derecelendirme 1’den 5’e kadar, yapılacaktır.

1. Kesinlikle Katılmıyorum

2. Katılmıyorum

3. Nötr

4. Katılıyorum

5. Kesinlikle Katılıyorum

Model Denetlemeyle web sitelerini doğrulamak için geliştirilen bu yazılım aracıyla ilgili

kendinize en yakın bulduğunuz cevabı yuvarlak içine alınız.

SORULAR

1. Yararlı bir yazılım aracı olduğunu düşünüyorum.

1 2 3 4 5

2. Web sitelerinin hatalarının bulunmasında kolaylık sağlayacak bir araçtır.

1 2 3 4 5

114

3. Bulunan hataların canlandırılmasının yararlı olacağını düşünüyorum.

1 2 3 4 5

4. Kullanımı kolay bir araçtır.

1 2 3 4 5

5. Kullanım açısından anlaşılabilir bir araçtır.

1 2 3 4 5

Öneriler:

115

APPENDIX G: NAVIGATIONAL VERIFICATION

RESULTS

Table 16: Web technologies of the subject web applications

ID URL Technology

W1 http://www.seleniumhq.org/ Google App Engine Web Server

Java Programming Language

PayPal Payment Processor

W2 http://www.brain.ii.metu.edu.tr/eng_dw

orld.html

Apache Web Server

W3 http://www.acarturk.net/ Apache Web Server

PleskHosting Panel

WordPress 4.1CMSBlog

PHP Programming Language

W4 http://www.metu.edu.tr/~merkan/ Apache Web Server

W5 http://www.uyms2015.yasar.edu.tr/2015

/index.html

JQuery JavaScript Framework

W6 http://www.puppeteershadowplay.com/i

ndex.html

Google Analytics Analytics

LiteSpeed Web Server

W7 http://www.tr.china-embassy.org/tur/ Apache 2.4.4 Web Server

mod_jk 1.2.37 Web Server Extension

UNIX Operating System

Apache Tomcat Web Server

HeadJS (50% sure) JavaScript

Framework

W8 http://www.kktcbe.org.tr/www/tr/anasa

yfa.asp

jQueryJavaScript Framework

Microsoft ASP.NETWeb Framework

PleskHosting Panel

Windows Server Operating System

W9 http://www.mfa.gov.hu/kulkepviselet/T

R/tr/

(could not be determined)

W10 http://www.ceng.metu.edu.tr/~altingovd

e/

Apache Web Server

116

Table 16 (continued): Web technologies of the subject web applications

W11 http://www.kovan.ceng.metu.edu.tr/~sin

an/

Apache 2.2.22 Web Server

Debian Operating System

W12 http://www.eonur.eu/ jQuery JavaScript Framework

W13 http://www.ceng.metu.edu.tr/~manguogl

u/

Apache Web Server

StatCounter Analytics

HeadJS (50% sure) JavaScript

Framework

W14 http://www.ceng.metu.edu.tr/~polat/ Apache Web Server

Google Font API Font Script

W15 http://www.metu.edu.tr/~koksalan/ Apache Web Server

W16 http://www.metu.edu.tr/~stugba/index.ht

ml

Apache Web Server

W17 http://www.metu.edu.tr/~aliy/ Apache Web Server

W18 http://www.metu.edu.tr/~sdag/index.htm

l#

Apache Web Server

Google Font API Font Script

W19 http://www.metu.edu.tr/~ymetin/ Apache Web Server

W20 http://www.metu.edu.tr/~sbilmis/ Apache Web Server

W21 http://www.retina.cs.bilkent.edu.tr/ JQuery JavaScript Framework

W22 http://www.cs.bilkent.edu.tr/~erman/ Apache 2.2.15 Web Server

OpenSSL 0.9.8p Web Server Extension

PHP 5.3.2 (40% sure) Programming

Language

UNIX Operating System

mod_ssl 2.2.15 Web Server Extension

W23 http://www.art.bilkent.edu.tr/ozguc/inde

x.html

Apache Web Server

W24 http://www.cs.bilkent.edu.tr/~ozturk/ind

ex.html

Apache 2.2.15 Web Server

OpenSSL 0.9.8p Web Server Extension

PHP 5.3.2 (40% sure) Programming

Language

UNIX Operating System

mod_ssl 2.2.15 Web Server Extension

W25 http://www.umram.bilkent.edu.tr/~ergin/ jQuery JavaScript Framework

W26 http://www.volkan.bilkent.edu.tr/ Apache Web Server

W27 http://www.isbcs2015.ii.metu.edu.tr/ind

ex.html

JQuery JavaScript Framework

http://www.metu.edu.tr/~koksalan/
http://www.metu.edu.tr/~stugba/index.html
http://www.metu.edu.tr/~stugba/index.html

117

Table 16 (continued): Web technologies of the subject web applications

W28 http://www.atilkurttekin.com/ Google Analytics Analytics

IIS 6.0 Web Server

Microsoft ASP.NET (50% sure) Web

Framework

Windows Server Operating System

W29 http://www.fince.bilkent.edu.tr/ Apache Web Server

W30 http://www.infobil.bilkent.edu.tr Apache Web Server

118

Table 17: Results of verification of navigation properties with Micro-Crawler

ID URL Property

Index page is

reachable from all

states of web

application

There is no dead end in

web application

of

Detected

Real

faults

of

Detected

False

Alarms

of

Detected

Real

faults

of

Detected

False

Alarms

W1 http://www.seleniumhq.org/ .00 4.00 2.00 .00

W2 http://www.brain.ii.metu.ed

u.tr/eng_dworld.html

2.00 4.00 .00 2.00

W3 http://www.acarturk.net/ 4.00 .00 . .

W4 http://www.metu.edu.tr/~m

erkan/

.00 7.00 . .

W5 http://www.uyms2015.yasar

.edu.tr/2015/index.html

. . . .

W6 http://www.puppeteershado

wplay.com/index.html

. . . .

W7 http://www.tr.china-

embassy.org/tur/

. . . .

W8 http://www.kktcbe.org.tr/w

ww/tr/anasayfa.asp

. . . .

W9 http://www.mfa.gov.hu/kul

kepviselet/TR/tr/

. . . .

W10 http://www.ceng.metu.edu.t

r/~altingovde/

2.00 .00 . .

W11 http://www.kovan.ceng.met

u.edu.tr/~sinan/

. . .00 1.00

W12 http://www.eonur.eu/ .00 1.00 3.00 .00

W13 http://www.ceng.metu.edu.t

r/~manguoglu/

3.00 .00 2.00 1.00

W14 http://www.ceng.metu.edu.t

r/~polat/

2.00 1.00 . .

W15 http://www.metu.edu.tr/~ko

ksalan/

. . . .

119

Table 17 (continued): Results of verification of navigation properties with Micro-Crawler

ID URL Property

Index page is

reachable from all

states of web

application

There is no dead end in

web application

of

Detect

edReal

faults

of

Detected

False

Alarms

of

Detected

Real

faults

of

Detected

False

Alarms

W16 http://www.metu.edu.tr/~stugb

a/index.html

. . .00 1.00

W17 http://www.metu.edu.tr/~aliy/

W18 http://www.metu.edu.tr/~sdag/

index.html#

. . 1.00 .00

W19 http://www.metu.edu.tr/~ymeti

n/

1.00 .00 2.00 .00

W20 http://www.metu.edu.tr/~sbilm

is/

2.00 .00 1.00 .00

W21 http://www.retina.cs.bilkent.ed

u.tr/

1.00 .00 . .

W22 http://www.cs.bilkent.edu.tr/~e

rman/

. . . .

W23 http://www.art.bilkent.edu.tr/o

zguc/index.html

. . 4.00 2.00

W24 http://www.cs.bilkent.edu.tr/~o

zturk/index.html

4.00 2.00 3.00 .00

W25 http://www.umram.bilkent.edu

.tr/~ergin/

3.00 .00 . .

W26 http://www.volkan.bilkent.edu.

tr/

. . 1.00 .00

W27 http://www.isbcs2015.ii.metu.

edu.tr/index.html

. . 1.00 1.00

W28 http://www.atilkurttekin.com/ 1.00 5.00 . .

W29 http://www.fince.bilkent.edu.tr

/

. . .00 2.00

W30 http://www.infobil.bilkent.edu.

tr

. . . .

120

Table 18: Results of verification of navigation properties with Crawljax

ID URL Property

Index page is

reachable from all

states of web

application

There is no dead end in

web application

of

Detected

Real

faults

of

Detected

False

Alarms

of

Detected

Real

faults

of

Detected

False

Alarms

W1 http://www.seleniumhq.org/ .00 13.00 .00 6.00

W2 http://www.brain.ii.metu.ed

u.tr/eng_dworld.html

1.00 14.00 1.00 10.00

W3 http://www.acarturk.net/ .00 8.00 .00 7.00

W4 http://www.metu.edu.tr/~m

erkan/

.00 8.00 .00 7.00

W5 http://www.uyms2015.yasar

.edu.tr/2015/index.html

.00 14.00 .00 14.00

W6 http://www.puppeteershado

wplay.com/index.html

.00 6.00 . .

W7 http://www.tr.china-

embassy.org/tur/

3.00 42.00 3.00 27.00

W8 http://www.kktcbe.org.tr/w

ww/tr/anasayfa.asp

.00 37.00 .00 34.00

W9 http://www.mfa.gov.hu/kul

kepviselet/TR/tr/

19.00 216.00 19.00 111.00

W10 http://www.ceng.metu.edu.t

r/~altingovde/

1.00 2.00 1.00 3.00

W11 http://www.kovan.ceng.met

u.edu.tr/~sinan/

2.00 5.00 2.00 5.00

W12 http://www.eonur.eu/ 3.00 9.00 3.00 6.00

W13 http://www.ceng.metu.edu.t

r/~manguoglu/

.00 4.00 .00 1.00

W14 http://www.ceng.metu.edu.t

r/~polat/

1.00 6.00 1.00 5.00

W15 http://www.metu.edu.tr/~ko

ksalan/

4.00 7.00 4.00 4.00

121

Table 18 (continued): Results of verification of navigation properties with Crawljax

ID URL Property

Index page is

reachable from all

states of web

application

There is no dead end in

web application

of

Detecte

d Real

faults

of

Detected

False

Alarms

of

Detected

Real faults

of Detected

False Alarms

W16 http://www.metu.edu.tr/~stugb

a/index.html

.00 3.00 .00 3.00

W17 http://www.metu.edu.tr/~aliy/ .00 13.00 .00 13.00

W18 http://www.metu.edu.tr/~sdag/

index.html#

.00 2.00 .00 2.00

W19 http://www.metu.edu.tr/~ymeti

n/

1.00 16.00 1.00 6.00

W20 http://www.metu.edu.tr/~sbilm

is/

3.00 .00 3.00 7.00

W21 http://www.retina.cs.bilkent.ed

u.tr/

2.00 14.00 5.00 10.00

W22 http://www.cs.bilkent.edu.tr/~e

rman/

1.00 11.00 1.00 8.00

W23 http://www.art.bilkent.edu.tr/o

zguc/index.html

.00 11.00 .00 1.00

W24 http://www.cs.bilkent.edu.tr/~o

zturk/index.html

3.00 11.00 3.00 8.00

W25 http://www.umram.bilkent.edu

.tr/~ergin/

28.00 16.00 28.00 10.00

W26 http://www.volkan.bilkent.edu.

tr/

.00 8.00 .00 3.00

W27 http://www.isbcs2015.ii.metu.

edu.tr/index.html

.00 7.00 .00 7.00

W28 http://www.atilkurttekin.com/ .00 2.00 .00 2.00

W29 http://www.fince.bilkent.edu.tr

/

.00 109.00 .00 101.00

W30 http://www.infobil.bilkent.edu.

tr

1.00 26.00 1.00 17.00

122

Table 19: Results of the performance evaluation of subject web applications used in verification of

navigation properties with average values of webstates, edges and time measurements

ID URL Avera

ge # of

websta

tes

Average

of edges

Average

Time

(ms)

DOM

Size

(KB)

File

Size

(MB)

W1 http://www.seleniumhq.org/ 9.50 12.00 753.50 27.74 11.80

W2 http://www.brain.ii.metu.edu

.tr/eng_dworld.html

19.50 125.50 1303.50 9.02 20.90

W3 http://www.acarturk.net/ 9.50 30.00 862.50 7.10 11.30

W4 http://www.metu.edu.tr/~mer

kan/

8.50 12.00 676.50 15.38 2.59

W5 http://www.uyms2015.yasar.

edu.tr/2015/index.html

15.00 22.00 837.50 6.77 17.70

W6 http://www.puppeteershado

wplay.com/index.html

10.00 18.50 685.50 4.50 3.84

W7 http://www.tr.china-

embassy.org/tur/

32.00 102.00 2061.00 106.07 37.60

W8 http://www.kktcbe.org.tr/ww

w/tr/anasayfa.asp

29.00 59.00 1650.50 50.69 65.30

W9 http://www.mfa.gov.hu/kulk

epviselet/TR/tr/

124.50 146.00 13645.00 16.07 8.27

W10 http://www.ceng.metu.edu.tr

/~altingovde/

5.00 8.00 683.00 8.20 1.20

W11 http://www.kovan.ceng.metu

.edu.tr/~sinan/

10.00 38.00 996.50 12.30 154.00

W12 http://www.eonur.eu/ 29.50 60.50 1061.50 69.53 .97

W13 http://www.ceng.metu.edu.tr

/~manguoglu/

4.50 7.50 957.50 33.67 2.98

W14 http://www.ceng.metu.edu.tr

/~polat/

12.00 44.00 770.00 6.44 1.57

W15 http://www.metu.edu.tr/~kok

salan/

10.50 33.00 1017.50 6.65 .70

W16 http://www.metu.edu.tr/~stu

gba/index.html

6.00 41.50 716.00 4.62 .12

W17 http://www.metu.edu.tr/~aliy

/

14.50 48.00 1060.50 5.67 .16

123

Table 19 (continued): Results of the performance evaluation of subject web applications used in

verification of navigation properties with average values of webstates, edges and time measurements

ID URL Average

of

webstates

Average

of edges

Average

Time

(ms)

DOM

Size

(KB)

File

Size

(MB)

W18 http://www.metu.edu.tr/~s

dag/index.html#

4.00 12.50 586.50 15.36 1.47

W19 http://www.metu.edu.tr/~

ymetin/

27.00 111.00 1589.50 4.69 26.90

W20 http://www.metu.edu.tr/~s

bilmis/

13.00 26.00 727.50 2.39 21.70

W21 http://www.retina.cs.bilke

nt.edu.tr/

15.00 35.00 939.00 6.99 12.90

W22 http://www.cs.bilkent.edu.

tr/~erman/

10.50 24.50 869.00 3.30 38.20

W23 http://www.art.bilkent.edu

.tr/ozguc/index.html

13.50 52.00 1035.00 4.97 .20

W24 http://www.cs.bilkent.edu.

tr/~ozturk/index.html

16.00 48.00 1188.50 14.48 1026.0

0

W25 http://www.umram.bilken

t.edu.tr/~ergin/

33.50 217.00 2897.00 36.07 222.00

W26 http://www.volkan.bilkent

.edu.tr/

8.00 11.00 923.00 46.04 297.00

W27 http://www.isbcs2015.ii.

metu.edu.tr/index.html

8.00 32.00 3862.00 3.89 .46

W28 http://www.atilkurttekin.c

om/

7.50 17.50 671.00 7.03 200.00

W29 http://www.fince.bilkent.e

du.tr/

60.50 88.00 6695.00 10.51 16.80

W30 http://www.infobil.bilkent

.edu.tr

21.00 38.00 10585.00 3.97 22.60

124

Table 20: The numbers of webstates, edges and the values of time measurements for each web crawler

output whose average values are given in Table 4 (C means Crawljax, M means Micro-Crawler)

ID URL Web

Crawler

of

Webstates

of Edges Time

(ms)

W1 http://www.seleniumhq.org/ C 14 17 1039

M 5 7 468

W2 http://www.brain.ii.metu.edu.tr

/eng_dworld.html

C 20 34 1224

M 19 217 1383

W3 http://www.acarturk.net/ C 9 9 775

M 10 51 950

W4 http://www.metu.edu.tr/~merk

an/

C 9 10 817

M 8 14 536

W5 http://www.uyms.yasar.edu.tr/

2015/index.html

C 15 15 1123

M 15 29 552

W6 http://www.puppeteershadowp

lay.com/index.html

C 10 18 887

M 10 19 484

W7 http://www.tr.china-

embassy.org/tur/

C 54 140 3433

M 10 64 689

W8 http://www.kktcbe.org.tr/www

/tr/anasayfa.asp

C 38 39 2198

M 20 79 1103

W9 http://www.mfa.gov.hu/kulkep

viselet/TR/tr/

C 236 259 26501

M 13 33 789

W10 http://www.ceng.metu.edu.tr/~

altingovde/

C 4 3 821

M 6 13 545

W11 http://www.kovan.ceng.metu.e

du.tr/~sinan/

C 12 23 1204

M 8 53 789

W12 http://www.eonur.eu/ C 13 12 937

M 46 109 1186

W13 http://www.ceng.metu.edu.tr/~

manguoglu/

C 5 4 842

M 4 11 1073

125

Table 20 (continued): The numbers of webstates, edges and the values of time measurements for each

web crawler output whose average values are given in Table 4 (C means Crawljax, M means Micro-

Crawler)

W14 http://www.ceng.metu.edu.tr/~polat

/

C 11 14 794

M 13 74 746

W15 http://www.metu.edu.tr/~koksalan/ C 12 15 952

M 9 51 1083

W16 http://www.metu.edu.tr/~stugba/ind

ex.html

C 6 22 811

M 6 61 621

W17 http://www.metu.edu.tr/~aliy/ C 14 13 1219

M 15 83 902

W18 http://www.metu.edu.tr/~sdag/inde

x.html#

C 4 6 653

M 4 19 520

W19 http://www.metu.edu.tr/~ymetin/ C 27 59 1496

M 27 163 1683

W20 http://www.metu.edu.tr/~sbilmis/ C 20 43 800

M 6 9 655

W21 http://www.retina.cs.bilkent.edu.tr/ C 22 45 1324

M 8 25 554

W22 http://www.cs.bilkent.edu.tr/~erma

n/

C 13 12 1162

M 8 37 576

W23 http://www.art.bilkent.edu.tr/ozguc/

index.html

C 19 67 1104

M 8 37 966

W24 http://www.cs.bilkent.edu.tr/~oztur

k/index.html

C 16 18 1351

M 16 78 1026

W25 http://www.umram.bilkent.edu.tr/~

ergin/

C 45 108 3445

M 22 326 2349

W26 http://www.volkan.bilkent.edu.tr/ C 9 10 963

M 7 12 883

126

Table 20 (continued): The numbers of webstates, edges and the values of time measurements for each

web crawler output whose average values are given in Table 4 (C means Crawljax, M means Micro-

Crawler)

W27 http://www.isbcs2015.ii.metu.ed

u.tr/index.html

C 8 7 6988

M 8 57 736

W28 http://www.atilkurttekin.com/ C 4 6 564

M 11 29 778

W29 http://www.fince.bilkent.edu.tr/ C 111 122 12100

M 10 54 1290

W30 http://www.infobil.bilkent.edu.tr C 29 41 17726

M 13 35 3444

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS AND ACRONYMS
	INTRODUCTION
	BACKGROUND
	2.1 Model Checking
	2.2 Web Crawlers Used for Modelling
	2.2.1 Crawljax
	2.2.2 Micro-Crawler

	2.3 Counterexamples

	LITERATURE REVIEW
	3.1 Verification of Web Applications with Model Checkers
	3.1.1 Classification of the Related Studies
	3.1.1.1 Categorization Criteria

	3.2 Interpreting Counterexamples
	3.3 Testing Web Applications with Model Checkers

	METHODOLOGY
	4.1 Running example
	4.2 Modelling Web Application as Intermediate Web Model
	4.3 Generation of Model in NuSMV
	4.4 Properties
	4.4.1 Navigation Errors
	4.4.2 Access Control Errors
	4.4.3 CTL Formulas

	4.5 Converting Counterexamples to Executable Error Scenarios

	MCWebSoft
	5.1 System Overview
	5.2 Implementation Details
	5.2.1 Decomposition Description and Description of Classes
	5.2.1.1 Data Package
	5.2.1.2 Application Package
	5.2.1.3 Presentation Package

	5.2.2 Dependency Description
	5.2.3 Third Party Tools and Packages Used
	5.2.3.1 NuSMV 2.5.4
	5.2.3.2 Selenium
	5.2.3.3 com.google.gson
	5.2.3.4 org.junit

	EVALUATION
	6.1 User Study
	6.2 Error Detection Evaluation
	6.2.1 Navigation Errors
	6.2.2 Access Control Errors

	6.3 Performance Evaluation
	6.3.1 Performance of navigation verification
	6.3.1.1 Results of the Size Measurement
	6.3.1.2 Results of Performance Evaluation

	6.3.2 Performance of Access Control Verification

	DISCUSSION AND CONCLUSION
	7.1 Summary
	7.2 Contributions
	7.3 Limitations
	7.3.1 Completeness and Soundness
	7.3.2 Threads to Validity of the Evaluation

	7.4 Future Work

	REFERENCES
	APPENDIX A: INTERMEDIATE WEB MODEL OF RUNNING EXAMPLE
	APPENDIX B: NuSMV MODEL OF RUNNING EXAMPLE
	APPENDIX C: OUTPUT OF NuSMV FOR RUNNING EXAMPLE
	APPENDIX D: A JUNIT CLASS TO REPLAY FOR RUNNING EXAMPLE
	APPENDIX E: CLASS DIAGRAM OF MCWebSoft
	APPENDIX F: THE QUESTIONNAIRE
	APPENDIX G: NAVIGATIONAL VERIFICATION RESULTS

