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ABSTRACT

MODELING THE COMBINED EFFECT OF RNA-BINDING PROTEINS AND
MICRORNAS IN POST-TRANSCRIPTIONAL REGULATION

HafezQorani, Saber
M.S., Department of Health Informatics
Supervisor : Assoc. Prof. Dr. Yesim Aydin Son

Co-Supervisor : Assist. Prof. Dr. Hilal Kazan

September 2015, 81 pages

Post-transcriptional regulation (PTR) controls the gene expression between transcription and
translation. Regulation at this level is carried out by the interactions of trans-acting RNA-
binding proteins (RBPs) and microRNAs (miRNAs) with cis-regulatory elements in mRNA.
Majority of previous work have focused on the effect of a single factor independent of other
co-factors bound to the same mRNA. However, recent studies have shown that RBPs and
miRNAs can act in cooperation or competition with each other. In this thesis, we mapped
the binding sites of both RBPs and miRNAs on human 3’UTRs, and utilized this collection
of binding sites to better understand PTR networks. We first focused on several RBPs and
assessed how accessibility and conservation differ between experimentally supported sites
and other sites that are only computationally predicted. We then investigated the competitive
effects of other factors on HuR binding and the resulting transcript abundance change upon
HuR depletion. Next, we characterized the potential interactions between the factors by find-
ing those pairs of factors with co-occurrence of motifs higher than expected by chance. Our
results show that PUM1 and PUM2 have potential cooperative interactions with miRNAs.
Finally, we used logistic regression with features compiled from the counts of sites of factors
and dinucleotide frequency to accurately predict the stability and steady-state abundance of
mRNAs. Altogether, results of this thesis suggest that studies of PTR must consider the effect
of both RBPs and miRNAs, and their interactions.
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TRANSKRIPSIYON-SONRASI KONTROLDE RNA’YA BAGLANAN PROTEIN'LER
VE MIKRORNA’LARIN ETKISININ BIRLIKTE MODELLENMESI

HafezQorani, Saber

Yiiksek Lisans, Saglik Bilisimi Boliimii
Tez Yoneticisi : Dog. Dr. Yesim Aydin Son
Ortak Tez Yoneticisi : Yrd. Dog. Dr. Hilal Kazan

Eyliil 2015, 81 sayfa

Transkripsiyon-sonrasi kontrol (TSK), gen ifadesinin transkripsiyon ile translasyon arasin-
daki adimlarini kontrol eder. Bu adimlarin kontrolii RNA’ya baglanan protein (RBP) ve mik-
roRNA’larin (miRNA) mesajc1 RNA’lardaki (mRNA) hedef noktalarina baglanmalar saye-
sinde gerceklestirilir. Su ana kadar yapilan calismalarin biiylik cogunlugunda tek bir RBP ya
da tek bir miRNA aym1 mRNA’ya baglanan diger faktdrlerden bagimsiz olarak incelenmis-
tir. Ancak, son ¢alismalar RBP ve miRNA’larin birbirleriyle igbirligi ya da rekabet iligkileri
icerisinde olduklarini géstermistir. Bu tezde, son gelismelere paralel olarak insan 3’UTR’lar1
iizerindeki hem RBP, hem de miRNA baglanma noktalarim belirledik. Ilk olarak, iizerinde ¢a-
lisilmig RBP’lerin deneysel yontemlerle bulunan baglanma noktalari ile iglemsel yontemlerle
tahmin edilmis baglanma noktalarinit RNA nin ikincil yapisi ve evrimsel korunum bakimin-
dan farkli oldugunu gosterdik. Daha sonra, HuR adli RBP i¢in var olan susturulma sonrasi
mRNA ifade degisimi verilerini kullanarak diger faktorlerin HuR la olan rekabetci iligkilerini
aragtirdik. Ayrica, iki faktoriin (RBP ya da miRNA) baglanma noktalarinin beraber goériilme
sikligini hesaplayarak potansiyel igbirligi iligkilerini inceledik. Bu analiz sonucunda PUM1 ve
PUM?2 RBP’lerinin miRNA’larla igbirligi icerisinde oldugunu gézlemledik. Son olarak, fak-
tor baglanma sayilar1 ve diniikleotid frekansi1 gibi dznitelikleri baglanim modeliyle kullanarak
gen ifadesi ve stabilitesini yiiksek bir dogruluk payiyla tahmin ettik. Elde ettigimiz sonug-
lar transkripsiyon-sonras1 kontrol ile ilgili mekanizmalar1 daha iyi anlamak i¢in RBP’lerin,
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miRNA’larin ve ayrica aralarindaki iligkilerin de goz oniinde bulundurulmasi gerektigine isa-
ret etmektedir.

Anahtar Kelimeler: Transkripsiyon-sonrast kontrol, RNA’ya baglanan protein, MikroRNA,
RNA’1n ikincil yapisi, gen stabilitesi
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CHAPTER 1

INTRODUCTION

The genetic information of the cell is stored in DNA. DNA contains thousands of genes that
each lead to the production of a particular protein. Proteins are building blocks that perform
all the necessary functions of the cell. The flow of genetic information from DNA to protein,
which is also called the central dogma, involves the transcription of DNA to RNA and the
translation of RNA to protein. The amount of expression of the set of genes is critical and
determines the state of a cell. As such, gene expression has to be regulated precisely.

Most of the research in the last decade has focused on the first level of gene expression regula-
tion which is the transcriptional control. However, recent studies approved that, in addition to
the transcriptional steps, post-transcriptional steps also have significant impact in regulation
of gene expression. Post-transcriptional regulation (PTR) is a complex system that controls
every aspect of RNA metabolism including splicing, stability, localization, and degradation.
PTR is mediated by interactions between cis-regulatory elements in mRNA and trans-acting
factors such as RNA-binding proteins (RBPs) and microRNAs (miRNA). Understanding these
interactions is crucial because dysregulation in PTR networks are associated with several dis-
eases including neurodegenerative disorders and various types of cancer.

RBPs bind to target mRNAs and control their fates in every step from splicing to translation.
RBPs recognize short sequence and/or structure motifs in their target mRNAs. Target sites
of majority of RBPs remain uncharacterized. However, recently several high-throughput ex-
perimental techniques have been developed to characterize the in vitro and in vivo binding
specificities of RBPs.

MiRNAs form another class of post-transcriptional regulators that are known to downregulate
the gene expression by transcript degradation or translation inhibition. MiRNAs are non-
coding RNAs of length 21-24 nts which interact with their target mRNA by complementary
base pairing with their seed region. In addition to the limited number of experimentally
verified targets, several computational methods have been developed to predict target sites of
miRNAs.

Despite the fact that miRNAs and RBPs regulate the expression of overlapping sets of mRNAs
, systematic studies that consider the effects of both of these factors are lacking. Additionally,
recent studies show that RBPs and miRNAs are involved in cooperative and competitive in-
teractions that lead to an even more complex gene regulation network. In this thesis, our aim
is to better understand PTR by modeling the combined effect of RBPs and miRNAs and the
cooperative and competitive interactions between them.



This thesis is organized into five chapters as follows:

o Chapter 2 provides background about RBPs, miRNAs, and discusses the experimental
and computational approaches to identify their binding sites. This chapter also reviews
previous work that consider the effect of both RBPs and miRNAs.

e Chapter 3 describes the methods and datasets used in this thesis. In particular, we
explain how we mapped the genome-wide binding sites of RBPs and miRNAs, and
predicted RNA secondary structure. We also describe the details of the statistical model
that we developed to predict mRNA stability.

o Chapter 4 explains our results that support the need for modeling RBPs and miRNAs
together to model PTR.

o Chapter 5 summarizes the results and discusses possible future directions of this work.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, we cover the necessary background that is required to understand the overall
study. Besides, we aim to review the relevant literature about post-transcriptional regula-
tion. First, we discuss RBPs and their roles as regulators of post-transcriptional gene expres-
sion. We introduce the experimental and computational methods to detect their binding sites
genome-wide. Then, we cover miRNAs which are also key regulators of post-transcriptional
gene expression. We continue by introducing various methods for identifying miRNA sites.
Next, we discuss RNA secondary structure which plays a crucial role in RBP-target and
miRNA-target interactions. Finally, we review relevant studies that consider the effect of
both RBPs and miRNAs in modeling post-transcriptional gene regulation.

2.1 RNA-binding proteins

RBPs are key factors in the regulation of gene expression at the mRNA level. RBPs bind
to their target mRNAs and control several steps of RNA processing including splicing, sta-
bility, localization, and degradation [[1]. RBP-mRNA interactions form a multi-dimensional
network. An mRNA can be bound by several RBPs. On the other hand, RBPs have hundreds
of targets. More than 800 RBPs have been found in the human genome. Alternation in the
activity of RBPs leads to dysregulations in PTR. These are associated with many diseases
such as neurodegenerative disorders and cancer.

RBPs bind to their targets through one or more RNA-binding domains (RBDs). Some RBPs
bind single-stranded RNA by direct readout of the primary sequence, whereas others recog-
nize primarily the structure of the RNA [2| [3]]. There are also some RBPs which recognize
their targets by both the sequence and the secondary structure [4]].

In recent years, several experimental methods have been developed to identify binding speci-
ficities of RBPs. These methods can be classified as in vitro and in vivo methods. In vivo
experiments are carried out within the cell. On the contrary, in vitro studies are conducted
in some controlled environment. The advantage of in vivo methods are to model RBP-RNA
interactions in their natural environment. However, this requires additional knowledge about
the experimental condition in which the RBP is active. On the contrary, in vitro methods
identify RBP binding sites in non-biological conditions. However, this also enables query-
ing non-genomic sequences such as variants of the wild-type binding sites and testing a wide
range of interesting conditions (e.g. salts, pH). Below, we will discuss the widely-used in
vitro and in vivo methods.



2.1.1 In vitro methods

Selection of ligands by exponential enrichment (SELEX) is a low-throughput method for in
vitro detection of RBP targets [6]. This method selects high-affinity binding sequences from
a randomized pool through multiple rounds of selection, purification, and amplification. This
produces a set of high-affinity targets. One disadvantage of SELEX assay is that it reveals only
the highest affinity RNA targets, which do not necessarily reflect the physiological targets.

RNAcompete is a method for rapid characterization of binding specificities of RBPs in vitro
[7]. This method consists of three main steps: (i) generation of a custom-designed RNA pool
containing short sequences; (ii) a single binding reaction to identify the RNAs bound by the
tagged RBP of interest; and (iii) analysis of the microarray data to determine binding pref-
erences of the RBP. This method is recently used to characterize the binding specificities of
more than 200 RBPs from 24 diverse eukaryotes. Figure[2.1|shows the steps in RNAcompete
method.

W)= e - =

@ FPulidown RNA

Single binding Identification

RNA pool reaction of bound RNA

Figure 2.1: Steps of RNAcompete methods are simplified in this figure (Adopted from RNA-
compete [3])

2.1.2 In vivo methods

RNA immunoprecipitation (RIP) is a powerful high-throughput method which detects the
association of an individual RBP with specific RNA. This method purifies RBP-mRNA com-
plexes from cellular extracts and identifies protein-bound mRNAs using either a microarray
(RIP-chip) or high-throughput sequencing (RIP-seq) [9, [10]. The absence of cross-linking
step in this method may lead to dissociation of RBPs from their targets [[11]].

Cross-linking and immunoprecipitation (CLIP or HITS-CLIP) method aims to eliminate the
dissociation of RBPs mentioned in the previous method. Figure [2.2] shows the steps in PAR-
CLIP and HITS-CLIP methods. This approach utilizes an ultraviolet light (UV) cross-linking
step before immunoprecipitation. This enables a more stringent washing procedure to re-
duce contaminants and eliminate interactions that occur after cell lysis [12]. PARCLIP is
a modified version of CLIP technique which uses photoactivatable ribonucleoside-enhanced
cross-linking and immunoprecipitation. In this method, cross-linked sites are enriched with
a thymidine to cytidine transition [[13]]. This method identifies RBP binding sites by scoring
T to C transitions in sequenced cDNA. T-C mutations are useful in identification of binding
sites in high resolution. CLIP experiments identify the binding sites of a single RBP at a time
while a recently proposed method called gPARCLIP (global PARCLIP) identifies the binding
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sites of all the RBPs that exist in the cell [14]. However, this method is unable to detect and
identify the particular RBPs that bind to a site.
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Figure 2.2: Various steps in PARCLIP and HITS-CLIP methods (Figure and description
adopted from Konig et al. [8]])

2.1.3 In silico methods

DNA motif finding tools such as MEME [[15] and HOMER [16] are commonly used to iden-
tify the binding motifs from a set of RNA sequences that are known to be bound by the RBP.
Recently, several methods have been developed to specifically infer RNA motifs that include
both sequence and structure features [17, 18] [19]. However, all of these methods require a set
of bound RNA sequences so that they are based on the results of experimental methods.

De novo prediction of RBP-RNA interactions have been also studied. Pancaldi et. al. [20]],
used more than 100 features such as 3°’UTR characteristics, di-nucleotide content, RBP prop-
erties, RNA secondary structure statistics to predict the target mRNAs of RBPs in yeast.
Muppirala et. al. [21] developed a method called RPIseq that uses the 4-mer composition
of the RNA sequence and the 3-mer composition of the RBP sequence to train a statistical
model. They try both Support Vector Machine (SVM) and Random Forest (RF) methods to
predict whether the RNA-RBP pair will interact or not. These methods have not been tested
on a large dataset that contains human RBPs.



2.2 MicroRNAs

MiRNAs are small ( 22 nt long) non-coding RNAs that function in various biological path-
ways. They regulate gene expression by binding to target mRNAs containing complementary
sequences. Recent studies show that over half of the human transcripts are subject to miRNA
regulation through degradation or translation inhibition [22]. Studies have proved the effect
of miRNAs on various cancer types, such as breast, lung, and prostate cancer. They are also
implicated in some neurological disorders including schizophrenia and Alzheimer’s diseases.

The first miRNA, lin-4, was discovered in C.elegans [23l]. The identification of initial miR-
NAs led to extensive researches which resulted in the rapid discovery of many miRNAs.
Currently, there are hundreds of miRNAs in the human genome.

MiRNAs bind to their target sites in 3’UTR of target mRNAs by either complete or partial
complementary base pairing. The base pairing usually happens in the 5’-end of the miRNAs.
This region is positioned at 2-7 nt of miRNAs and named as the ’seed region’. Complete
complementary base pairing in this region is sufficient to downregulate the target mRNA.
On the other hand, partial complementary in this region is compensated with additional base
pairing in the 3’-end of the miRNAs. Similar to RBP-mRNA interactions, the interactions
between miRNAs and mRNAs can be seen as a many-to-many relationship. A miRNA can
bind to hundreds of mRNAs and an mRNA can contain target sites of several miRNAs. In the
following section, we will briefly introduce the methods to identify miRNA targets.

2.2.1 Methods for identification of miRNA binding sites

Techniques such as qRT-PCR, luciferase reporter assays and western blot can be used to
confirm an individual miRNA:mRNA interaction. qRT-PCR and western blot can be used to
measure the downstream mRNA and protein expression changes upon the change of miRNA
expression. However, these methods cannot distinguish between direct and indirect targets of
miRNAs. Reporter assays, on the other hand, can prove a direct link by testing the effect of
mutations in miRNA target sites. However, they are labor intensive.

The methods described above can only be used to identify a small number of targets of the
miRNA of interest. To identify the genome-wide targets of an miRNA, high throughput ap-
proaches have been also developed. One such approach is to measure the changes of gene
expression upon miRNA transfection or inhibition. Microarray or RNA-seq techniques can
be used to measure gene expression. One disadvantage of miRNA transfection method is
that the miRNA of interest is expressed in higher than natural quantity. This can potentially
saturate RISC complexes and affect the function of other endogenous miRNAs. MiRNA in-
hibition approach is also challenging because the antisense oligonucleotides that are used to
inhibit the miRNA may not be specific enough to distinguish between the members of the
same miRNA family. These methods still give a good overview of miRNA targets.

Biochemical approaches to find miRNA targets involve the immunoprecipitation of the RISC
component using an antibody against the Argonaute protein [24]]. Precipitates are then ana-
lyzed either by microarray or sequencing to identify the targets. Similar to the identification
of RBP sites, cross-linking by ultraviolet radiation technique can also be used here to identify
miRNA sites. For instance, PARCLIP has been applied in HEK293 cells [[13]].



The approaches described so far analyze the effects of miRNAs on mRNAs. Measuring the
change in protein expression is also important. Stable isotope labelling with amino acids in
cell culture (SILAC) is one such method to measure protein abundance using mass spectrom-
etry of samples labelled with different isotopes.

MiRNA targets that have been identified by experimental methods are stored in databases.
MirTarbase is one such database that contains more than fifty thousand experimentally vali-
dated miRNA-target interactions which are compiled by data-mining existing literature [25]].
Interactions can be validated by several techniques such as reporter assay, western blot, north-
ern blot, qRT-PCR, microarray, pSILAC and NGS based techniques.

MiRNA targets have been initially determined by time-consuming low-throughput experi-
ments. In the absence of high-throughput experiments, computational methods have been de-
veloped to predict miRNA targets. TargetScan is one of the most widely used method which
considers complementarity to seed region and conservation information to predict miRNA
target sites [26]. TargetScanS extends TargetScan by also taking into account other metrics
such as local A-U content, target site position, target abundance, seed pairing stability, 3’ con-
tribution. PicTar is another computational method that first assigns a probability to potential
target sites based on base-pairing to seed region and conservation. These probabilities are
then used in a hidden Markov model (HMM) to calculate the probability of generating the
3’UTR region by states that correspond to miRNA binding sites or background [27]. Gen-
MiR integrates matched mRNA-miRNA expression data into a Bayesian probabilistic model
to predict miRNA targets [28] The likelihood of this model is calculated by a linear model that
models the change in the expression level of potential targets to the expression of targeting
miRNAs. GenMiR starts from an initial network of miRNA-mRNA targets that are predicted
by TargetScan.

The regulatory effect of miRNAs depends on several factors. First, the location and secondary
structure of binding sites may enhance the chance of miRNAs to bind to their targets. Stud-
ies show that AU-rich regions and unstructured areas such as 3’UTRs are more likely to be
miRNA binding sites. Second, the number of miRNA binding sites plays a crucial role in
the regulation of mRNAs. The more binding sites a transcript contains, the higher probabil-
ity that it will be extensively regulated. Besides, miRNNAs may involve in collaboration and
competition interactions with RBPs. So far, most of the studies investigated the effect of one
of these factors independently. However, recent studies show that miRNAs and RBPs are in-
volved in complex gene regulation mechanisms. In the following sections, we first introduce
RNA secondary structure which is important in recognition of binding sites of miRNAs and
RBPs. Next, we briefly review previous work on the cooperative and competitive interactions
between miRNAs and RBPs.



2.3 RNA secondary structure

A single-stranded RNA molecule can fold back onto itself forming a secondary structure. The
most common base-pairs are the Watson-Crick base pairs A-T and G-C and the G-U wobble
pair.
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Figure 2.3: An RNA secondary structure example. One or more consecutive base pairs form
a stem. Unpaired bases form various kinds of loops (shown in blue).

We can represent RNA secondary structure formally by assigning an index to each base in the
RNA sequence. For example, we can start from the left end of the RNA sequence (5’end) and
index each base by proceeding to the right end (3’end). If we assume that the indexing starts
from 1 and the length of the sequence is N, a secondary structure S can be defined as a set of
pairs i-j, 1 <=1 < j <= N where each base is only paired with at most one other base. A stack
of base pairs is called a stem.

Figure [2.3]shows an example secondary structure. Unpaired regions that are enclosed by one
or more base pairs are called loops. They are several kinds of loops according to the number of
closing base pairs. A hairpin loop is a circular end to a hairpin stem and it happens when there
is a single closing base pair. A bulge or internal loop happens when there are two closing base
pairs. Multi-loops have more than two closing base pairs. Finally, an external loop happens
when the unpaired bases are at the end of the sequence. The same structure is shown with
a dot-parenthesis notation on the bottom of the figure. In this notation, a matching pair of
parentheses indicates a base pair and a dot denotes an unpaired base.

There are several experimental techniques to determine the secondary structure of a RNA.
However, these methods are difficult and time-consuming. Besides, experimental methods are
unable to characterize the structures of many RNAs because of their conformational flexibility
and large size. There are also methods in which scientists use chemical probing to increase
the accuracy and the throughput of probing experiments [29, 30, 31]]. The basic idea behind
this method is to use chemical reagent which leaves and imprint on the RNA molecule. These



imprints can then be used to distinguish paired and unpaired nucleotides. These experiments,
however, only report partial information of the structure.

There are three general categories for RNA secondary structure prediction algorithms: (i)
comparative methods that infer the secondary structure common to aligned sequence across
conserved species; (ii) thermodynamic methods that predict the structure with the minimum
free energy (MFE); and (iii) probabilistic models that use parameters learned from known
structures to predict unknown structures.

The comparative approach is most accurate when several aligned homologous RNA sequences
are available [32]]. The disadvantage of this approach is that it is limited to datasets where
the sequences are similar enough to get a reliable alignment. Therefore, these methods are
not suitable to determine the secondary structure of all in vitro and in vivo data sets for any
organism.

The second approach for discovering secondary structure is to use a set of thermodynamic
parameters that predict the folding free energy of a given structure and a dynamic program-
ming algorithm to find the structure with minimum free energy [33,34]]. The idea behind this
approach is that RNAs fold to the structure with the minimum free energy. One of the dis-
advantages of this approach is that an RNA molecule can fold into multiple structures during
its lifetime. Therefore, the predicted MFE structure may not be the real, functional structure.
One possible solution to address this issue is to consider the distribution of possible structures.

RNAfold is a method of this kind which computes probabilities for every possible base pair
from the partition function. RNAplfold is a variant of RNAfold which uses local folding in-
stead of global folding. This method considers base pairs within a certain span and calculates
average base pair probabilities by averaging over all windows of a certain length that contain
the pair. Studies show that this method performs more accurate than the classic global fold-
ing algorithms [35)]. This algorithm uses little amount of memory and CPU time to run and
therefore it is practical to scan large scale of the genome for short RNA structure.

SFOLD generates a statistical sample of RNA secondary structures from the Boltzmann en-
semble of RNA secondary structures [36]. Individual structures that are sampled by SFOLD
can be used to calculate various probabilities such as probability of a region to form a stem
with another region.

Probabilistic models use parameters estimated from known RNA structures to predict sec-
ondary structure. There is also a method, called SimFold, which combines thermodynamic
parameters and probabilistically estimated parameters [37]. These methods are becoming
more powerful due to the increasing availability of known RNA structures.

2.4 Competition and collaboration between RBPs and miRNAs

Recent studies show that the RBPs and miRNAs, two major classes of post-transcriptional
regulators, do not act independently. Instead, they are involved in competitive or cooperative
interactions with each other. As such, the net outcome of target mRNA expression relies
heavily on the interplay between these two classes of trans-acting factors. Here, we review
some examples of these interactions.



2.4.1 Collaboration between RBPs and miRNAs

Jing et al. investigated the collaborative interaction between TTP and miR-16 which leads
to the degradation of their target COX-2 mRNA [38]]. Both of these factors target the same
AU-rich element (ARE) and as such, they are involved in direct interaction. In this study,
they discovered that TTP interacts with miR-16 through association with AGO protein which
assists miR-16 to bind to its target site. This process enables miR-16-mediated repression of
COX-2 mRNA.

Interactions of HuR with miRNAs have been extensively studied as well. Kim et al. [39] show
that HuR and let-7 miRNA have to act together to repress translation of their target mRNA c-
MYC. These two trans-acting factors repress c-MYC through an interdependent mechanism.
In this study, they mutated the let-7 interaction sites and compared it with the wildtype case.
They observed that segments with mutated let-7 sites did not respond to HuR silencing en-
hancement. On the other hand, they show that HuR is necessary for let-7 interaction with
¢-MYC mRNA. However, the underlying mechanism is still unclear. They suggest that HuR
binding might change the local RNA structure, unmasking the let-7 recognition site.

Another interesting example is the cooperative interaction between the RBP PUMI1 and the
miRNAs miR-221/222 on the 3°UTR of the tumor suppressor gene p27 [40]. Figure 2.4]
illustrates the binding sites of PUM1 and miR-221/222 on two sides of a same stem-loop.
Binding of PUMI1 protein alters the secondary structure and allows miR-221/222 to bind to
the other side of the stem-loop. The cooperative interplay between these two factors leads to
faster downregulation of p27.
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Figure 2.4: Cooperative interaction between PUM1 and miR-221/222.

Figure [2.4] shows the collaboration between PUM1 and miR-221/222. Without the PUMI,
miR-221/222 is unable to bind to its target on p27 mRNA. Binding of PUMI to its target in one
side of the stem loop alters the secondary structure and makes it available for miR-221/222 to
bind to the other side of the same loop. Their cooperation leads to faster degradation of their
target mRNA.
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2.4.2 Competition between RBPs and miRNAs

HuR has been shown to enhance the overall gene expression of both CAT-1 and COX-2 by
protecting them from inhibitory action of miR-122 and miR-16, respectively [41, 42]. In the
first case (CAT-1), HuR gets dephosphorylated and translocated from nucleus to the cytosol,
where it binds to target ARE sequences on CAT-1 mRNAs and increases stability. This phe-
nomenon leads to dissociation of miR-122 containing RISCs from CAT-1 mRNAs. Indeed,
researchers also show that HuR is also able to displace the already bound RISCs. In the sec-
ond case, HuR and miR-16 target the same ARE on COX-2 mRNA. In colorectal cancer cells,
HuR gets overexpressed and localizes to the cytoplasm [42]]. Under these conditions miR-16
is unable to promote mRNA decay. HuR is shown to directly associate with miR-16; however
how HuR antagonizes miR-16 is still unclear.

Another example of competition between RBPs and miRNAs is the translocation of the RBP
HNRNPL under hypoxia conditions to compete with several miRNAs, including miR-297
or miR-299, on VEGFA 3’UTR through a CA-rich element. Binding of HNRNPL relieves
VEGFA mRNA from miRNA-mediated repression.

The examples mentioned above provide a summary of known interactions between RBPs and
miRNAs. Given the number of existing RBPs and miRNAs, these interactions constitute only
a minority of the existing interactions between RBPs and miRNAs. These studies have fo-
cused on a single RBP or a single miRNA as laborious experiments are needed to confirm the
interactions. Computational studies that scan for interactions between all RBPs and miRNAs
can guide experimental studies. In the following section, we introduce two studies which aim
to investigate combined effect of multiple factors in PTR.

2.4.3 High-throughput techniques considering several factors

Mukharjee et al. analyzed the combinatorial regulation by HuR and miRNAs [43]]. They
investigated the condition in which binding sites of HuR and miRNAs overlap with each other.
Their findings show that the existence of overlapping HuR sites relieves miRNA-mediated
repression. However, the existence of overlapping miRNA sites has no effect in regulation
mediated by HuR protein. This indicates that HuR is likely to compete with miRNAs for
binding sites and stabilizes the targeted mRNAs.

In another study, researchers analyzed the effect of possible interactions between a few RBPs
and miRNAs [44]. They investigated the positional relationship of motif occurrences and
observed that a particular RBP and an miRNA may interact with each other when there is a
specific distance between their binding sites. For example, they showed that specific miRNAs
tend to bind near PUM binding sites. These miRNAs have recognition seeds that are reverse
complementary to the PUM recognition motifs. They show that PUM increases the accessi-
bility of the sites for its interacting miRNAs which results in cooperation to promote mRNA
decay. MiR-101, miR-300, miR-144, miR-221/222 are some examples of miRNAs that are
predicted to interact with PUM. This is in accordance with the previous paper we described
above, in which miR-221/22 pairs up with the PUM recognition sequence and cooperate with
this protein to repress their target mRNA.

Most of the previous studies have ignored the effect of RNA secondary structure whereas it
is important in recognition of binding sites of RBPs and miRNAs. It is also beneficial to take
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advantage of existing knowledge on RBP binding, miRNA binding and mRNA stability by
compiling CLIP datasets, experimental miRNA targets and genome-wide datasets of knock-
down or transfection experiments. To the best of our knowledge, a comprehensive study of
cooperative and competitive interactions between pairs of factors (i.e., all RBPs and miR-
NAs) is still lacking. In this thesis, we aim to investigate RBPs and miRNAs cooperative
and competitive interaction comprehensively. First, we map the binding sites of RBPs and
miRNAs on human 3’UTRs. Next, we utilize this comprehensive collection of sites to inves-
tigate interplay between each pair of factors and to predict half-life and mRNA abundance by
considering effects of both RBPs and miRNAs.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Mapping RBP binding sites

To map the binding sites of RBPs, we downloaded 103 position frequency matrices (PFMs)
that correspond to 85 human RBPs from the RNAcompete paper [45]. These PFMs (which
are of length seven or eight) are generated from the alignment of top 10 7-mers determined
using all data (i.e. both setA and setB of RNAcompete pool). Rather than using these top 10
7-mers directly, we generated the top 10 n-mers from these PFMs. In this way, we also repre-
sented motifs that are longer than seven. In addition to RNAcompete motifs, we downloaded
the motifs (consensus motifs and the top 10 n-mer when a PFEM is available) for the follow-
ing well-known RBPs from RBPDB database [46]: HNRNPAB, PUM1, PUM2, ELAVL2,
KHSRP, ZFP36, AUF1 and CUGBP.

We downloaded human 3’UTRs from UCSC Genome Browser (on February 16th, 2014) and
determined the genome-wide binding sites of each RBP by finding matches to its top 10 n-
mers or consensus motifs on human 3’UTR sequences. We downloaded CLIP-seq and PAR-
CLIP data for a list of RBPs (HuR, FMR1, FUS, FXR1, FXR2, HNRNPA1, HNRNPA2B1,
HNRNPC, IGF2BP1-3, LIN28, PUM2, QKI, SRSF1, TDP-43, TIA1, TIAL1) from doRINA
database [47]. In addition to these RBP specific CLIP datasets, we downloaded gPARCLIP-
determined peaks [14]]. gPARCLIP dataset contains genome-wide protein-occupied regions
bound by any RBP in HEK293T cells. However, the identity of a particular RBP that binds
to a region is unknown.

We first intersected the peaks identified with CLIP or gPARCLIP with human 3’UTRs. To
correct for the background binding bias in CLIP-based techniques as identified by Frieder-
sdorf et al. [48]], we excluded parts of peaks that overlap with regions that correspond to
background binding. In summary, for each putative RBP site we keep track of the following
information: (i) the start and end position; (ii) a flag showing whether the site is located in a
CLIP- or gPARCLIP-determined peak; and (iii) conservation score calculated as the average
PhastCons score [49] (phastCons100way track downloaded from UCSC Genome Browser)
across the motif (Figure [3.1)).
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3.2 Mapping miRNA binding sites

To determine miRNA binding sites, we downloaded the target sites predicted by TargetScan
and PicTar methods [26, 27]. We downloaded AGO1-4 PARCLIP, AGO2 CLIP-seq and
AGO2-MNase PARCLIP datasets from doRINA database, and removed background bind-
ing bias as described in the previous section. We also downloaded experimentally verified
miRNA targets from miRTarBase database [25]. The interactions in miRTarBase database
specify only whether a miRNA interacts with an mRNA without providing the exact position
of the target site on the mRNA. Therefore, we assumed that a target miRNA site on an mRNA
is supported by miRTarBase if that miRINA-mRNA interaction exists in the database. For
each putative miRNA binding site, we keep track of its start and end position, a flag showing
whether the site is supported by TargetScan, PicTar or both, a flag showing whether it is sup-
ported by miRTarBase and a flag whether the site is located in CLIP- or PARCLIP-determined

peaks (Figure[3.1)).

3.3 Compilation of datasets related to post-transcriptional regulation

The following datasets were downloaded from the supplementary material of the correspond-
ing papers:

e Knockdown datasets: Log fold changes (LFCs) of transcript abundance upon HuR
knockdown in HEK293 and HeLa cells from [43]] and [50], respectively.

e Zhao dataset: The effect of human 3’ UTR segments (160-nts long) to mRNA stability
and steady-state mRNA abundance in BEAS-2B human bronchial epithelial cells [51]].

e Schueler dataset: mRNA half-lives measured in HEK293 and MCF7 cells [52]]. Aver-
age of the two replicate measurements is used.
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Figure 3.1: Mapping of RBP and miRNA binding sites on human 3’UTRs. RBP binding
sites are mapped by leveraging RNAcompete PEMs, CLIP- and PARCLIP-determined peaks
and PhastCons conservation scores. miRNA binding sites are mapped by combining Tar-
getScan and PicTar predictions with Ago-CLIP datasets and experimentally-verified interac-
tions in miRTarBase database. Also, the secondary structure of the 3’UTRs are predicted with
RNAplfold and Sfold. In particular, accessibility of a site is calculated by RNAplfold, and the
probability of a site to form a stem-loop by binding to another site is calculated by Sfold.

The set of expressed RBPs and miRNAs vary widely between different cell lines. As such, it
is important to consider only those factors that are expressed in the corresponding cell line in
the analysis of the datasets above. We used the following sources to define the set of expressed
RBPs and miRNAs in a given cell type:

HEK?293 cells:

— RBPs: quantitative mass spectrometry results [[14].

— miRNAs: top 100 expressed miRNAs identified with small-RNA sequencing [[13]].

HelL a cells:

— RBPs: immunohistochemistry results from Human Protein Atlas database [S3]].

— miRNAs: top 100 expressed miRNAs identified with small-RNA sequencing [50].

MCF7 cells:

— RBPs: immunohistochemistry results from Human Protein Atlas database.

— miRNAs: top 100 expressed miRNAs identified with small-RNA sequencing [54].

BEAS-2B cells:

— RBPs: immunohistochemistry results from Human Protein Atlas database.

— miRNAs: top 100 expressed miRNAs identified with small-RNA sequencing [51].
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For datasets that contain measurements mapped to gene IDs other than human RefSeq tran-
script IDs, we used the Synergizer tool for ID conversion [S5]].

We also checked the overlap in the set of expressed RBPs across the cell lines. Tables[3.1]and
[3.2show the number of expressed RBPs and miRNAs in each cell line along with the percent
overlap of expressed RBPs in different cell lines.

Table 3.1: The numbers within parenthesis correspond to the total number of RBPs expressed
in that cell line. Besides, percent of overlapping expressed RBPs between each pair of cell
lines are shown. For example, %95.65 of expressed RBPs in HEK293 cells are also expressed
in HeLa cells. On the other hand, %80.73 of expressed RBPs in HeL a cells are also expressed
in HEK293 cells.

Cell types HEK?293 (92) HelLa (109) BEAS2B (97) MCF7 (102)
HEK?293 (92) %95.65 %90.22 %93.48
HeLa (109) %80.73 %88.99 %93.58
BEAS2B (97) %85.57 %100 %97.94
MCF7 (102) %84.31 %100 %93.14

Table 3.2: The numbers within parenthesis correspond to the total number of miRNAs ex-
pressed in that cell line. Besides, percent of overlapping expressed miRNAs between each
pair of cell lines are shown. For example, %68.29 of expressed miRNAs in HEK293 cells are
also expressed in HeLa cells. On the other hand, %62.92 of expressed miRNAs in HeLa cells
are also expressed in HEK293 cells.

Cell types HEK?293 (82) HelLa (89) BEAS2B (78) MCEF7 (100)
HEK?293 (82) %68.29 %64.63 %50
HeLa (89) %62.92 %57.3 %52.81
BEAS2B (78) %67.95 %65.38 %48.72
MCF7 (100) %41 %47 %38

It is clear from tables [3.1) and [3.2] that the high percent of RBPs are expressed in all four cell
lines. Each pair of cell lines have over %90 overlapping expressed RBPs between each other.
It is not the same in case of miRNAs though. We compared the expressed miRNAs between
each cell types and observed that around half of them are shared between each pair of cell
lines.

3.4 Predicting the RNA secondary structure of binding sites

To determine whether binding sites are accessible, we predicted RNA secondary structure
of human 3’UTRs with RNAplfold [S6]. Since the flanking regions can affect secondary
structure, we folded the 3’UTRs together with the upstream 200nt-long flanking sequence
from coding region. Lange et al. has previously shown that local folding with a window length

16



of 200 and base pair span of 150 gives optimal results compared to using other parameters
or global folding [35]. As such, we applied local folding by running RNAplfold with the
parameters -W 200 and -L 150 where -W’ specifies the length of the local window and ’-
L restricts the maximal base pair span. We used the base pair probabilities output from
RNAplfold to determine accessibility. Namely, we calculated the average probability of being
in unpaired context across the site and classified the site as accessible if this value is greater
than 0.6 and inaccessible if the value is less than 0.4.

As in the example of PUM1-miR-221 (or miR-222) interplay [40], factors can act in cooper-
ation by binding to the two sides of the same stem-loop. In this way, one of the factors can
allow the other factor to bind its site by changing the secondary structure (i.e., accessibility)
of the region. To identify similar potential cooperative interactions, we calculated the number
of base pairs that can be formed between each pair of sites by considering reverse comple-
mentarity only. We deemed the pairs of sites that have > 5 base pairs as potential interactors.
As one site can be reverse complementary to several other sites, we need to choose the partner
site that is most likely to form a stem-loop. To find a quantitative metric for this purpose, we
used SFOLD to generate 1000 sample structures from the Boltzmann distribution of all pos-
sible structures for each running window of length 200nt. For each pair of binding sites, we
considered those windows that both sites are located in, and parsed all the sampled structures
of each window to calculate the average number of base pairs formed between the two sites.
This value reflects the probability that the two sites will form a stem-loop.

In order to determine the pairs of sites that could form a stem-loop, we sorted the potential in-
teracting sites (determined by reverse complementarity only) according to SFOLD-calculated
probabilities, and filtered out those that have a probability less than 0.1. We started from the
top of this list and selected pairs of sites iteratively. We ignored alternative possible inter-
acting sites of an already selected site. For example, let’s assume that a particular 3’UTR
contains three sites labeled as A, B and C, and each pair of these sites can form a stem-loop
with more than > 5 base pairs. Let’s also assume that the Sfold-calculated probabilities for
these pairs are as follows: A-B: 0.3, B-C: 0.6, A-C: 0.4. With our procedure, B-C pair would
score the highest and get selected, whereas A-B and A-C pairs would be ignored as B and C
are already considered.

3.5 Testing for significance

We used two-tailed Mann-Whitney U test (also called Wilcoxon rank-sum test) to compare
various properties (e.g. log fold change, stability) of sets of transcripts (see Results section),
and we used Wilcoxon signed-rank test to compare the area under the ROC curve (AUROC)
values of different logistic regression models.

3.6 Determining RBP and miRNA binding sites co-occurrence

To determine the co-occurrence between binding sites of a factor with all other factors (i.e., all
RBPs and miRNAs), we followed a similar method discussed in Jiang et al. [44]. At first step,
for each site of a factor, we calculated the number of neighboring sites of other factors in each
50-nt-window 500-nt on either side of the site. Next, we calculated the impractical P-value by
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comparing this count to the distribution of counts obtained when factor identities are shuffled
10000 times (keeping the site positions fixed). We repeated this permutation test three times,
using different shuffling types: (i) shuffling the factor identities of sites that are located on
the same chromosome; (ii) classifying the sites into three groups based on AU-content (i.e.,
< 3,> 3 and < 6, > 6 ) and shuffling the factor identities of the sites in the same group; (iii)
classifying the sites into 10 groups according to their relative position within the 3’UTRs and
shuffling the factor identities of the sites in the same group (see [44] for more details). In
order to correct the P-values for multiple testing, we converted them into g-values which are a
measure of significance in terms of false discovery rate rather than the false positive rate [57].

3.7 Predicting stability and expression using logistic regression

We used a logistic regression model in order to consider the effect of multiple factors on stabil-
ity and gene expression levels. We used the following datasets: (i) Effect of 3’ UTR segments
to mRNA half-lives and steady-state mRNA abundance in BEAS-2B immortalized human
bronchial epithelial cells (Zhao dataset, [S1]) (i) mRNA half-lives in HEK293 and MCF7
cells (Schueler dataset, [52]]). We sorted 3’UTR segments or transcripts based on half-lives or
abundance and filtered out those that do not have any miRNA or RBP site. We classified the
top 500 transcripts as one class (stable or highly expressed) and the bottom 500 transcripts as
the other class (unstable or lowly expressed). We labeled the sequences in the first class with 1
and the second class with 0. Our features consist of counts of dinucleotides and counts of sites
of factors where factors are grouped as miRNAs, activators, and repressors. We defined the
activators and repressors as sets of RBPs that are known to increase or decrease stability in
literature, respectively. Namely, activators group consists of the RBPs HNRNPL, PABPCI,
PABPC3, PABPC4, PABPC5, PABPN1, RBFOX1, TIA1, HuR, IGF2BP2 and IGF2BP3;
and repressors group consists of the RBPs CUGBP1, MBNL1, HNRNPC, KHSRP, ZFP36,
AUF1, PUMI1 and PUM2. We used the glmnet package to fit a logistic regression model
with L2 regularization. We repeated 10-fold cross validation (CV) 10 times and plotted the
interpolated area under ROC curve (AU-ROC) of 100 curves.

To run logistic regression with L2 regularization, we used the glmnet package [38] with al-
pha parameter set to 0. Within each cross-validation run, we ran the cv.glmnet function to
determine the optimal lambda (i.e. regularization constant) value.
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CHAPTER 4

RESULTS AND DISCUSSION

In the first step, we assess how accessibility and conservation differ between experimentally
supported sites and other sites that are only computationally predicted. Initially, we perform
this analysis considering CLIP-supported sites of PUM2, HuR, IGF2BP1-3 and QKI. Next,
we inquire the effect of competition between binding sites of HuR and binding sites of other
factors in term of mRNA abundance. Also we compare HuR CLIP-supported sites with other
sites which are not experimentally validated. In order to investigate the possible interactions
between RBPs and miRNAs, we analyze the co-occurrence of binding sites of all factors
with each other. Furthermore, we focus on PUM1(2) and analyze the effect of number of
PUMI1(2) binding sites on the stability of its target mRNAs. Besides, we investigate the
effect of situation in which PUM1(2) binding sites tend to localize close to each other on the
expression of transcripts. We show that number of PUM1(2) sites along with their distance
from each other may play crucial role in stability of their target mRNAs. Finally, we use
logistic regression with features compiled from the counts of sites of factors and dinucleotides
to accurately predict the stability and steady-state abundance of mRNAs.

4.1 Overview of our compendium of RBP and miRNA binding sites

As discussed earlier in the materials and methods section, we mapped RBP and miRNA bind-
ing sites on human 3’UTR. Figure [4.1a] shows the venn diagram of the distribution of RBP
binding sites supported by CLIP and/or gPARCLIP. All of the RBP binding sites comes from
RNAcompete method, which about %67 of them are supported by experimental methods.
Among experimentally validated binding sites, the majority of them are from gPARCLIP
method. Furthermore, figure .1b| shows the venn diagram of the overlap between miRNA
binding sites predicted by TargetScan and/or PicTar methods. Also it shows the intersection
between number of computationally predicted miRNA binding sites and experimentally val-
idated miRNA targets from mirTarBase and AGO2CLIP methods. As discussed earlier, we
used both TargetScan and PicTar computational methods to predict miRNA binding sites. Al-
most %93 of miRNA binding sites come from TargetScan method and the rest of them are
supported by PicTar. There are 2228 miRNA binding sites which are supported by both of
these methods.
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The total number of RBP binding sites defined by RNAcompete

gPARCLIP

CLIP-supported

Other RBP sites: 1563694

(a)

miRTarBase
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Figure 4.1: Venn diagram of the overlap between binding sites supported by CLIP-based
techniques and gPARCLIP methods. [(a)] Comparison of the cumulative distribution of RBP
binding sites supported by CLIP and/or gPARCLIP methods. [(b) Comparison of the cumu-
lative distribution of miRNA binding site abundance supported by any of TargetScan, PicTar,
miRTarBase, and AGO2CLIP methods.
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4.2 Accessibility and conservation scores of binding sites of RBPs

In this analysis, our goal was to observe the probable role of accessibility and/or conser-
vation in differentiating RBP binding sites that are located in CLIP-determined peaks from
other potential sites that are not located in CLIP-determined peaks. In order to classify po-
tential binding sites of HuR, we scanned RNAcompete top 10 n-mers and determined fol-
lowing RNAcompete IDs as HuR motifs in our analysis: RNCMPT00112, RNCMPT00117,
RNCMPT00136, RNCMPT00032 and RNCMPT00274. Table [.1] shows the motifs for HuR
RNAcompete IDs. Because RNAcompete has not been performed for PUM2, but for its
Drosophila homolog Pumilio, we used the Pumilio motif as a substitute. Among the mul-
tiple RNAcompete motifs inferred for Pumilio, we chose the one (i.e., RNCMPT00104)
that is most consistent with in vivo binding data (see Supplementary Table 6 of RNAcom-
pete paper). In addition to this motif, we also downloaded and used consensus motifs from
RBPDB database for PUM1 and PUM2 proteins. PUM1 and PUM2 proteins are from same
human PUF family and because of this fact they are known to have similar binding site
specificities. In our upcoming analysis we used PUM1 motif to scan for PUM?2 sites and
vice versa. Furthermore, we scanned RNAcompete and determined RNCMPTO00033 and
RNCMPT00172 RNAcompete IDs as IGF2BP1-3 motifs. Besides, we considered RNAcom-
pete ID RNCMPTO00047 as the QKI motif in our analyses.

Table 4.1: RNAcompete HuR motifs

RNAcompete ID IUPAC Motif

RNCMPT00112 | UUWGUUU UUuUUU
RNCMPT00117 | UUURKUU UUUAUU,U
RNCMPT00274 | UUUUUUK il

RNCMPTO00032 | UUDUUUU wéuw.u

RNCMPT00136 | UUKRUUU ol U

Our hypothesis in this analysis was that experimentally validated sites should have higher
accessibility and conservation scores compared to other sites. We classified the transcripts
into two groups based on CLIP-determined peaks. The first group contained binding sites
which reside in CLIP peaks (i.e., CLIP-supported sites) and the other group contained binding
sites which are not CLIP-supported (i.e., other sites). Next we compared the cumulative
distribution of accessibility and conservation scores between these two groups. (see Figures

4.2] [4.3] and [4.4)
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CLIP data in HEK293 cells
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Figure 4.2: Comparison of CLIP-supported and not CLIP-supported sites (i.e., other sites) of
HuR in terms of accessibility. For accessibility analysis, CLIP-supported sites are classified
into different groups based on the scores of the peaks that they are located in. [(a)] Cumulative
density fraction of accessibility scores of CLIP-supported sites and other sites where CLIP
experiment is performed in HEK293 cells. [(b)] Cumulative density fraction of accessibility
scores of CLIP-supported sites and other sites where CLIP experiment is performed in HeLa
cells.

Either considering PARCLIP data from HEK293 cells [13] or HeLa cells [50], we noticed
that the CLIP-supported HuR sites are more accessible. This result is in accordance with
previous studies [S9]. On the other hand, we grouped these CLIP-supported sites according
to their peak score (i.e. percentiles downloaded from doRINA database) to see their effect
in much detail and as expected, we noticed that the sites that reside in peaks with higher
scores are more accessible compared to other CLIP-supported sites (MannWhitneyU two-
tailed test P-value = 1.1E —203 for HEK293 cells and P-value = 4.5E —35 for HeLa cells)(See
Figures and [4.2b)). Next, we repeated the same type of analysis to investigate the effect
of PhastCons conservation scores on CLIP-supported sites. We observed that conservation
scores significantly differ between CLIP-supported sites and other sites of HuR protein either
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considering HEK293 CLIP data (P-value = 6.1FE — 16) or HeLa CLIP data (P-value ~ 0) (See
Figures and [4.3b] respectively). The difference is much more significant in HeLa cells
compared to HEK293 cells.

Figure [4.4a] shows that PUM1(2) experimentally validated sites are less accessible compared
to other sites (P-value = 1.74E — 10). PUMI is known to bind single-stranded motifs [[60] and
to downregulate its target mRNAs. PUM?2 is expected to have a similar binding preferences as
PUMI1. We considered PUM2 CLIP-supported sites for this analysis. However, as[d.4a|shows,
we observed the opposite where PUM?2 CLIP-supported sites are less accessible compared to
other sites. In order to investigate it in further detail, we distinguished CLIP-supported sites
according to their peak scores. We observed that sites in the high scoring peaks (percentile
1-10) are less accessible compared to sites located in low scoring peaks (Percentile 50-100)
with a P-value = 0.002. Figure {f.4a) shows the accessibility score distribution of sites in
distinguished groups. In case of conservation, as shown in Figure [4.4b] CLIP-supported sites
are significantly more conserved than other sites (P-value ~ 0).
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CLIP data in HEK293 cells
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Figure 4.3: Comparison of CLIP-supported sites and not CLIP-supported sites (i.e., other
sites) of HuR in terms of conservation scores. [(a)] Cumulative density fraction of conserva-
tion scores of CLIP-supported sites and other sites where CLIP experiment is performed in
HEK?293 cells. [(b)] Cumulative density fraction of conservation scores of CLIP-supported
sites and other sites where CLIP experiment is performed in HeLa cells.
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Figure 4.4: Comparison between CLIP-supported and other sites of PUM1(2) in terms of ac-
cessibility and conservation. [(a)] Cumulative density fraction of accessibility scores of CLIP-
supported sites and other sites. [(b)] Cumulative density fraction of conservation scores of
CLIP-supported sites and other sites.
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Furthermore, we repeated this analysis with QKI and IGF2BP1-3 RBPs. Figure .5 shows
that experimentally validated IGF2BP1-3 sites are more conserved compared to other sites
(P-value = 4.4E — 16). On the other hand, in case of accessibility, we observed that CLIP-
supported binding sites of IGF2BP1-3 are less accessible (P-value = 4.4E — 16). Figure 4.6]
shows the comparison between CLIP-supported and other binding sites of QKI. We observed
that CLIP-supported QKI binding sites are significantly more conserved compared to other
QKI binding sites (P-value = 7.5E — 09). Besides, CLIP-supported QKI binding sites are
more accessible (P-value = 2.7E — 03).

CLIP data in HEK293 cells
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Figure 4.5: Comparison between CLIP-supported and other sites of IGF2BP1-3 in terms
of accessibility and conservation. [(a)] Cumulative density fraction of accessibility scores of
CLIP-supported sites and other sites. [(b)] Cumulative density fraction of conservation scores
of CLIP-supported sites and other sites.
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CLIP data in HEK293 cells
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Figure 4.6: Comparison between CLIP-supported and other sites of QKI in terms of acces-
sibility and conservation. [(a)] Cumulative density fraction of accessibility scores of CLIP-
supported sites and other sites. Cumulative density fraction of conservation scores of
CLIP-supported sites and other sites.

As discussed before, we distinguished CLIP-supported sites of PUM2 and HuR according to
their CLIP score in accessibility analysis. However, in case of QKI and IGF2BP1-3 binding
sites, we considered all CLIP-supported binding sites in one single group. That is because
there are little amount of CLIP-supported binding sites and distinguishing them into several
groups makes it harder to investigate the effect of CLIP-supported sites in case of accessibility
and conservation.

Generally, we investigated the effect of CLIP-supported sites of RBPs in case of accessibility
and conservation. In the following section, we utilize knockdown datasets to further investi-
gate effect of CLIP-supported sites on expression of mRNAs.
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4.3 Analysis of knockdown datasets

In this series of analyses we aim to assess the effect of CLIP-supported sites and consequences
of competition between particular RBPs and other factors on the expression of mRNAs. We
repeated this analysis for HuR, QKI, and IGF2BP1-3 proteins for which knockdown datasets
are available. We used log fold expression changes of transcripts upon HuR depletion in
HEK?293 and HelLa cells from [43] and [50] respectively. As for QKI and IGF2BP1-3, we
used knockdown datasets from Hafner et al. in HEK293 cells [13]].

Mukharjee et al. [43] has shown that even transcripts with only intronic HuR sites still show
reduced expression upon HuR knockdown in HEK293 cells. Our aim is to understand the
function of HuR sites in 3’UTs. Therefore, we decided to filter out those transcripts that
contain intronic HuR sites in order to avoid their concealed effects throughout the following
analyses related to HuR.

4.3.1 Effect of CLIP-supported sites on transcripts expression

In this analysis our aim was to investigate the effect of experimentally validated RBP sites on
expression of transcripts compared to the effect of other sites of that RBP which are not CLIP-
supported. Expression log fold changes upon knockdown of a single factor provides valuable
information about that factor’s behavior. HuR increases the stability of its target mRINAs.
Therefore, we expected to see higher destabilization in transcripts containing experimentally
validated HuR sites compared to other sites in which HuR was knocked down.

In order to illustrate our expectations, we classified transcripts into three groups: (i) those
that have at least one CLIP-supported HuR site; (ii) those that have one or more predicted
HuR sites but none of them are CLIP-supported; and (iii) those that have no HuR sites at all.
Figure [4.7] shows the cumulative distribution of LFC of the transcripts belonging to these
groups. Considering the distribution of LFC of the transcripts having no HuR sites at all
as our baseline, we observed that transcripts in the first group are more destabilized upon
HuR Knockdown compared to those transcripts in the second group. (Figure P-value =
1.8E — 81) and (Figure [4.7b] P-value = 5.2F — 05)
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Figure 4.7: Comparison of the effect of HuR depletion on transcripts that contain CLIP-
supported HuR sites against those that do not contain CLIP-supported HuR sites. X axis
shows the log fold change of transcripts upon HuR depletion. [(a)] Response of mRNAs to the
loss of HuR in HEK293 cells. @Response of mRNAs to the loss of HuR in HeLa cells.

We also repeated this analysis with QKI and IGF2BP1-3 RBPs in order to further approve
our findings with HuR. Figure 48] shows the comparison between expression of transcripts
that contain CLIP-supported QKI binding sites and those that do not contain CLIP-supported
QKI binding sites in case of QKI knockdown. Hafner et al. [13] provides two siRNA dataset
for QKI knockdown and here we calculated the average values from these two siRNA knock-
down datasets and used it to investigate the effect of CLIP-supported QKI binding sites on
expression of their target mRNAs.
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Figure 4.8: Comparison of the effect of QKI depletion on transcripts that contain CLIP-
supported QKI sites against those that do not contain CLIP-supported QKI sites. X axis shows
the log fold change of transcripts upon QKI depletion. It shows the response of mRNAs to
the loss of QKI in HEK293 cells
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Figure 4.9: Comparison of the effect of IGF2BP1-3 depletion on transcripts that contain
CLIP-supported IGF2BP1-3 sites against those that do not contain CLIP-supported IGF2BP1-

3 sites. X axis shows the log fold change of transcripts upon IGF2BP1-3 depletion. It shows
the response of mRNAs to the loss of IGF2BP1-3 in HEK293 cells
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As figure[d.8]shows, we couldn’t observe a net effect on the expression of QKI target mRNAs.
There is no significant difference between log fold change of transcripts in groups 1 and 2 (P-
value = 0.17). Indeed, the roles of QKI on splicing is well established; however, its effect
to stability is not well determined. Hafner et al. [13] has found that QKI decreases stability.
On the other hand, another study by Teplova et al. [61] have analyzed the same datasets and
showed that QKI increases stability. Therefore, we decided to exclude this RBP from our
analyses.

Figure [4.9] shows the effect of CLIP-supported IGF2BP1-3 sites on abundance of its target
mRNAs. IGF2BP1-3 is known to increase the stability of its target mRNAs. Indeed, we ob-
served that the transcripts which contain CLIP-supported IGF2BP1-3 binding sites are more
destabilized upon IGF2BP1-3 knockdown compared to transcripts in second group (P-value
=6.84F — 14).

4.3.2 The effect of competition to HuR function

Transcripts are known to be occupied by several RBPs and miRNAs concurrently. In this
analysis, we aim to determine the outcome of HuR competition with other factors. We sup-
pose that two factors may involve in a competitive situation when they both target the same
region. If the binding sites of these factors overlap with each other, we consider them as
putative competitors. As such, In the initial step, we defined a HuR site to be overlapping if
there was another factor (RBP or miRNA) which targets the same region. Next, we classified
the transcripts into three groups: (i) transcripts that have at least one CLIP-supported HuR
site that is not overlapping with any other site (no competition); (ii) transcripts that have at
least one CLIP-supported HuR site but all HuR sites including the CLIP-supported ones are
overlapping with sites of other factors (competition); and (iii) transcripts that have no HuR
site at all. In order to filter out the effect of transcripts that contain intronic HuR sites, we
excluded them in the initial step. Figure 4.10]illustrates that transcripts in no competition
group are destabilized more after HuR knockdown compared to the transcripts in competition
group. This observation holds true for HuR knockdown dataset both from HEK293 and HeLa
cell lines. (P-value = 1.4E — 05 and 7.5E — 05 respectively)
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Figure 4.10: The effect of competition between HuR binding sites and other factors binding
sites on expression of mRNAs. [(a)] Response of mRNAs to the loss of HuR in HEK293 cells.
@ Response of mRNAs to the loss of HuR in HeLa cells.

Here, we assess the effect of competition of HuR binding sites with other factors. We demon-
strated that transcripts where all HuR binding sites are in competition with other factors, show
less change in case of expression upon HuR knockdown.
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4.4 Analysis of co-occurrence of motifs

In this set of analysis we aim to determine whether sites of a pair of factors (RBP and miRNA)
co-occur within a certain distance more often than expected by chance. As discussed in the
methods chapter, we calculated the impractical P-value for each window and converted them
into g-values to correct for multiple testing. Here, for each interested factor, we defined its
interacting factors by considering those factors which have at least one window with g-value
less than 0.05 in each permutation test.

We extended the co-occurrence analysis that Jiang et al. performed to include interactions
between a set of 10 RBPs and 21 miRNAs with all the factors (i.e., all RBPs and miRNAs).
The reason for selecting these specific RBPs and miRNAs is that either they are known to
interact with other factors or there were datasets which measure genome-wide effects upon
their knockdown or transfection. Table [A.T|at Appendix [A]lists these RBPs and miRNAs.
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Figure 4.11: Q-values of co-occurrence analysis between binding sites of PUM1 and binding
sites of its interacting factors (Normal shuffle).
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Figure [4.11] shows the g-value heatmap of the co-occurrence between PUMI binding sites
and other interacting factors. Each row represents a factor interacting with PUM1 and there
are 20 windows in each row (10 windows in upstream and 10 windows in downstream of
PUM1 sites, 5o nt long each). Y-axis shows the g-values calculated from impractical P-
values. Lower values represent significant number of binding sites of the interacting factor.
We observed that some factors, specifically miRNAs, tend to localize near the binding sites of
PUMI1. PUM1(2) is known to interact with miRINAs and there are several prominent exam-
ples of their cooperative interaction, including its collaboration with miR-221/222 to repress
the expression of their target p27 gene. We suppose that they are similar interactions between
PUM1(2) and miRNAs. We aim to investigate this phenomenon in detail. First, we deter-
mined miRNAs interacting with PUM1(2), considering q-values from previous co-occurrence
analysis. Next, we assess the effect of their interaction on mRNA half-life measurement in
HEK?293 cells (Schueler dataset, [52]). We classified the transcripts into five groups: (i) those
that do not have any PUM1(2) or miRNA sites (-PUM -miRNA); (ii) those that contain at
least one CLIP-supported PUM1(2) site but do not contain any site of an interacting miRNA
(+PUM -miRNA); (iii) those that contain at least one interacting miRNA site but do not con-
tain any PUM1(2) sites (-PUM +miRNA); (iv) those that contain at least one CLIP-supported
PUMI1(2) site and at least one site of an interacting miRNA (+PUM +miRNA (not stem-
loop)); and (v) a subset of the transcripts in group (iv) where there exists at least one pair of
PUM1(2)-miRNA site that forms a stem-loop (+PUM +miRNA (stemloop)).
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Figure 4.12: Effect of co-occurrence of PUM1(2) and miRNA sites to mRNA half-life. Tran-
scripts where PUM1(2) and miRNA sites are predicted to be in cooperation with each other
(+PUM +miRNA (stem-loop)) have significantly shorter half-lives compared to other tran-
scripts.

Figure [4.12] shows the comparison of the distribution of half-lives for these five groups. We
observed that transcripts in +PUM +miRNA (stem-loop) group have significantly shorter
half-lives compared to those in +PUM +miRNA (not stemloop) group (P-value = 0.0061),
+PUM -miRNA group (P-value = 0.0126) and -PUM +miRNA group (P-value = 0.005).
Also, the difference between the half-lives of the groups +PUM -miRNA and +PUM +miRNA
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(not stem-loop) is not significant (P-value = 0.52) pointing out that the functional effect of
co-occurrence of PUM1(2) and interacting miRNAs is only seen when they form a stem-
loop. This observation suggests that the cooperation between PUM1(2) and miRNAs is a
widespread phenomenon.

As figure @.11] shows, PUM1(2) and miRNA binding sites are tend to be close to each other.
It increases the chance to form stem-loops and therefore increases the possibility of collabo-
ration interaction between these factors. As such, it leads to faster degradation of transcript
half-lives. We plotted similar heatmaps for each factor, considering all three shuffle types.
Appendix |Bfcontains a selected number of those heatmaps.

4.5 Analyzing preferences of PUM binding sites

4.5.1 PUMI1(2) tends to bind to the 3’-end of its target mRNAs

As a follow-up, we investigated the g-values from previous analysis and interestingly noticed
that windows in the downstream of PUMI binding sites are not significant for almost all
interacting factors. It also holds true for PUM2, considering all three shuffle types. One
possible explanation for this issue is that PUM1(2) tends to bind to the end of transcripts.
As a result of that, they are no or little amount of other binding sites in the downstream of
PUMI1(2) sites. In order to further prove our hypothesis, we divided each transcript containing
PUMI1(2) into ten equal windows and counted the number of PUM1(2) in each window. Next,
we added them up to get the total amount of binding sites in each window. We observed that
windows in the downstream of the transcripts contain higher amount of PUMI1(2) binding
sites compared to other windows. This phenomenon is also accordance with a similar finding
in Jiang et al. [44].

4.5.2 Effect of number of binding sites of PUM1(2) and its interacting miRNAs on
stability of transcripts

We already determined that some factors might interact with PUM1(2). MiRNAs decrease
expression of their target transcripts and as we mentioned in previous section, some of these
miRNAs are likely to interact with PUM1(2) to effect stability of their target mRNAs. In this
analysis we aim to investigate the effect of such interactions on stability of transcripts.

In the co-occurrence analysis, we determined interacting factors for each factor of interest.
Here we only consider miRNAs among interacting factors of PUM1(2) because their effect
on transcripts are similar. Besides, we suppose that these interacting factors should be in
certain distance to get involved in a cooperative interaction. Therefore, we define interacting
miRNAs by only considering factors in 200 nt range of each PUM1(2) protein. We grouped
transcripts in case of their PUM1(2) and interacting miRNA sites count and then compared
them using the mRNA half-life measurement in HEK293 cells. We classified transcripts as
follows: (i) those that have no PUMI1(2) site at all. (ii) those transcript which contain at least
two up to five sites. iii those transcripts which contain more than five sites.
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Figure 4.13: Functional effect of number of PUM1(2) and its interacting miRNA sites on
transcripts. Transcripts with more binding sites of PUM1(2) and its interacting miRNAs have
significantly shorter half-lives compared to other transcripts.

Figure [d.13|shows the differences between these groups. We observe that transcripts in group
three have shorter half-lives compared to those transcripts with two up to five sites and also
those with no PUM1(2) sites at all (P-values = 0.03 and 7.91 E—-20 respectively). This analysis
demonstrates that the more PUM1(2) and its interacting miRNAs sites exist in a transcript,
the higher possibility there is that it will downregulate faster.

4.5.3 The effect of distance between binding sites of PUM1(2) on stability of mRNAs

It is also clear from the figure [d.TT|that PUM1 binding sites are close to each other. Q-values
are significant in 150nt up and down stream of the PUMI1 binding sites when we consider
its own sites as interacting factors. We suppose that this is because PUM1(2) interacts with
itself. In order to further investigate this issue, we analyzed the effect of number of PUM1(2)
binding sites on transcripts stability. Also we assessed the difference between two conditions
in which PUM1(2) binding sites co-occur in close ranges whereas they are not close to each
other.

In order to investigate our hypothesis, first we need to classify sites as close and not close
to each other. We determined two sites as close to each other when there was at most 50
nucleotides between the starting position of those sites, otherwise we considered them as
not close. The reason for considering this threshold is that we are trying to focus on those
PUMI1(2) sites which are inside same stem loop otherwise they will be unlikely to cooperate
with each other. We classified transcripts into three groups: (i) those that do not contain any
PUMI1(2) sites. (ii) those that contain two or more PUMI1(2) sites and there is at least two
sites which are close to each other. (iii) those that contain two or more PUMI1(2) sites but
none of them are close to each other. Figure [4.14a] shows the mRNA half-life measurement
in HEK?293 cells for these three groups. We observe that transcripts with more than two sites
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(close) have significantly shorter half-lives compared to those with more than two sites but
with no close sites (not close) (P-value = 2.98E — 05). Besides, both first and second groups
have significantly shorter half-lives compared to the transcripts with no PUM1(2) sites at
all (P-values = 1.04E — 22 and 2.6E — 04 respectively). This observation represents that
transcripts with close PUM1(2) sites tend to have shorter half-lives and the reason for this is
likely because PUM1(2) binding sites are cooperatively interacting with each other.
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Figure 4.14: Functional effect of close PUMI1(2) sites on stability of mRNAs. Transcripts
where PUM1(2) binding sites are close to each other have significantly shorter half-lives

compared to other transcripts where there are no close PUM1(2) sites.

Although the result for this analysis shows that transcripts with close PUM1(2) sites are desta-
bilizing faster than those with no close PUM1(2) sites at all. However, the disadvantage of this
analysis is that we ignore the fact that this difference may be not clearly because of interaction
between close PUM1(2) sites. Actually when we compare the transcripts in first and second
groups, we are not clearly sure that the difference is due to the phenomenon of close sites. It
might be related to the number of PUM1(2) sites. One solution is to restrict the number of
PUM sites and then re-plot the figure but it leads to data loss and weakens the output. Another
solution is to distinguish the results according to number of close sites. However, this time we
should make number of sites restrict. Actually, there are two variables here, number of sites
and number of close sites. In order to get a better result, we should take these two variables in
to consideration at the same time. However, this approach reduces the transcripts count and
makes the result not reliable. In the future, we may reintroduce this analysis for larger group
of transcripts to get much more reliable result.
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4.6 Predicting stability and gene expression with a logistic regression model

In this analysis, we took into account the effect of multiple factors to predict stability and gene
expression levels. Figure[d.T5|compares the AU-ROC curves of three models that predict half-
life or steady-state mRNA abundance in Zhao dataset: (i) miRNAs, activators and repressors
are used as features (miRNAs + RBPs); (ii) counts of 16 2-mers that represent dinucleotide
content are used as features (dinucleotide content); (iii) the combination of features used in
model (i) and (ii) are used (dinucleotide content + miRNAs + RBPs).
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Figure 4.15: Results of predicting half-life and steady-state mRNA levels in Zhao dataset.
ROC curves (interpolation of 100 curves) of models that predict half-life in Zhao dataset, area
shows the average of 100 AU-ROC values. [(b)] ROC curves (interpolation of 100 curves) of
models that predict steady state mRNA abundance in Zhao dataset, area shows the average of
100 AU-ROC values.

We observe that dinucleotide features alone perform much better than features formed from
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sites of miRNAs and RBPs (Wilcoxon signed-rank test applied to 100 AU-ROCs from two
models, P-value = 6.0E — 18 for half-life and P-value = 2.5F — 17 for mRNA abundance);
however, the addition of miRNA and RBP features on top of dinucleotide content features
improves the predictive power of the model (P-value = 1.1E — 17 for half-life and P-value =
9.1E — 18 for mRNA abundance).
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Figure 4.16: Results of predicting half-life in HEK293 and MCF7 cells (Schueler dataset)
ROC curves (interpolation of 100 curves) of models that predict half-life in HEK293 cells,
area shows the average of 100 AU-ROC values. [(b) ROC curves (interpolation of 100 curves)
of models that predict half-life in MCF7 cells, area shows the average of 100 AU-ROC values.

We repeated the same analysis with half-life datasets in HEK293 and MCF?7 cells (Schueler
dataset) this time calculating features considering the 3°’UTRs of the transcripts. Figure
and [4.16b] show the ROC curves of the logistic regression models predicting half-life in
HEK?293 and MCF7 cells, respectively. For both cell types, the increase in AU-ROC be-
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tween model(i) and model(ii); and between model(ii) and model(iii) is significant according
to Wilcoxon signed-rank test (P-values are 1.9E — 12 and 9.0E — 12 for HEK293 cells and
6.8E — 05 and 2.7E — 13 for MCF7 cells).

We also checked whether our features simply represent a bias of 3°’UTR length. The 3’UTR
segments in Zhao dataset are all of the same length whereas the Schueler dataset contains
3’UTRs of variable length. Predicting half-life with only 3°’UTR length in HEK293 and
MCEF7 cells results in a mean AU-ROC value of 0.545 and 0.548, respectively. This confirms
that our features do not simply represent 3°’UTR length.

In addition to counting simply the number of binding sites as above, we also tried using more
advanced features. For instance, we used the sum of the accessibility of sites of miRNAs,
activators or repressors as features. We also tried considering only gPARCLIP- or CLIP-
supported RBP sites and miRTarBase or Ago2-CLIP supported miRNA sites. Lastly, we took
into account the effect of competition by counting the sites that overlap with other factors’
sites as 0.5 rather than 1. However, neither of these modifications resulted in improved per-
formance in Zhao or Schueler datasets (data not shown).
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

PTR is mediated by the interactions of RBPs and miRNAs with target sites on mRNAs. Re-
cent studies show that these two major post-transcriptional regulators do not act indepen-
dently. Indeed, they are involved in competitive or cooperative interactions with each other.
In this thesis, we considered the effect of multiple factors concurrently. First, we mapped all
RBP and miRNA binding sites on human 3’UTRs. We took advantage of in vitro (RNAcom-
pete), in vivo (CLIP, gPARCLIP) and computational methods (TargetScan, PicTar) in order to
identify and predict binding sites of RBPs and miRNAs. We also considered the secondary
structure of 3’UTRs by predicting with computational methods RNAplfold and Sfold.

First, we compared CLIP-supported sites and other sites in terms of accessibility and conser-
vation. We repeated this analysis considering CLIP-supported sites of PUM2, HuR, IGF2BP1-
3, and QKI RBPs. We observed that CLIP-supported sites of these RBPs are more conserved
compared to other sites. In case of accessibility, we observed that CLIP-supported sites of
HuR are more accessible which is in line with previous studies [59} [17]. It also holds true
for CLIP-supported sites of QKI. However, in contrast to what we expected, CLIP-supported
sites of PUM2 are less accessible. Besides, CLIP-supported sites of IGF2BP1-3 are also less
accessible compared to other sites.

Next, we utilized the HuR knockdown dataset and checked whether CLIP-supported sites of
HuR show any difference compared to other sites in terms of functional outcome upon HuR
depletion. Indeed, we observed that transcripts with CLIP-supported HuR sites are destabi-
lized more compared to transcripts with no CLIP-supported sites at all. We also identified
HuR sites that overlap with binding sites of other factors and considered them as being in
competition. Next, we investigated the effect of competition to HuR function. We observed
that transcripts in which all HuR sites were in competition with other factors show less change
upon HuR knockdown.

In order to find potential interacting factors, for each pair of factors, we checked whether their
binding sites co-occur more often than expected by random chance. We observed that binding
sites of miRNAs tend to occur near PUM2 sites. In order to investigate the possible interaction
between these factors, we classified transcripts into two groups: first, those transcripts that
contain a site of PUM2 and a site of one of its interacting miRNAs in a stem-loop. Second,
those transcripts that still contain sites of both of these factors but not in a stem-loop. We
observed that transcripts in the first group have shorter half-lives compared to the second one.
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Besides, we observed that there are no or little amount of interacting factors in the 3’-end
of binding sites of PUM1(2). We think that it is because PUM1(2) tends to bind to the 3’-
end of transcripts. We divided the transcripts which contain binding sites of PUM1(2) into
several windows and counted the number of binding sites in each of them. As expected, we
observed that the nearest window to the 3’-end of transcripts contains the most binding sites
of PUM1(2). Furthermore, we assessed the effect of number of PUM1(2) binding sites on
mRNA stability and observed that transcripts with more PUM1(2) binding sites tend to have
shorter half-lives. Besides, we observed that binding sites of PUM1(2) tend to col-localize
near each other. We supposed that in such conditions, PUM1(2) may interact with itself.
We classified the transcripts into two groups: (i) Transcripts which contain binding sites of
PUM1(2) with at least two sites close to each other. (ii) Transcripts which contain PUM1(2)
sites but there are no binding sites close to each other. We observed that transcripts in the first
group have shorter half-lives. This indicates that binding sites of PUM1(2) may involve in
interaction with each other which may lead to faster degradation of their target mRNA.

Finally, we trained a logistic regression with features compiled from counts of sites of miR-
NAs, RBPs and dinucleotides to predict half-life and mRNA abundance. The high perfor-
mance of the dinucleotide-only model is in line with 2013 DREAMS challenge results where
motif models that consider dinucleotide content perform well [62]]. We hypothesize that din-
ucleotide features capture the binding motifs of RBPs or miRNAs. However, we observed
that including counts of RBP and miRNAs sites improves the performance, and we achieved
a 10-fold CV AU-ROC of 0.86 in predicting half-life in BEAS-2B cells. We also consid-
ered alternative ways to compile the features: (i) counting RBP sites that are only gPARCLIP
or CLIP-supported; (ii) summing the accessibility of sites; and (iii) considering the com-
petition between the factors. However, these modifications did not increase the predictive
performance. The first modification may not have improved performance as only 7 out of 19
RBPs that are in activators and repressors group have CLIP data. Also, counting sites with
gPARCLIP support may not result in an accurate estimate of the activity of a specific RBP as
the identity of the bound RBP in a gPARCLIP-determined peak is unknown. Lastly, gPAR-
CLIP and most CLIP experiments have been performed in HEK293 cells, whereas we predict
half-life and transcript abundance in other cell types such as BEAS-2B and MCF7 cells. The
second modification where we considered the accessibility of sites might result in a better
performance as our knowledge of mRNA secondary structure gets more accurate. Another
issue related to this modification could be our assumption that all RBPs and miRNAs prefer
binding to accessible regions. In reality, most of the RBPs have unknown secondary structure
preferences and increased knowledge on this would be instrumental.

5.2 Future directions

Despite recent efforts in identifying cooperative and competitive interactions between RBPs
and miRNAs, a number of challenges remain in modeling the interaction between these PTR
factors. Here we mention some of them which can be handled in the future.

In this thesis, we limited most of our analysis to RBPs HuR and PUM1(2). That’s because
they are well-characterized and their effect on mRNA stability is known. With the recent
advances in this field, more effect of factors becomes known to scientists. As a future work,
we can investigate competitive and cooperative interactions between wider range of factors.
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Furthermore, there are also limited datasets that measure genome-wide effect of factors upon
their depletion or transfection. We used HuR knockdown dataset to investigate the effect of
competition to HuR function. Although we repeated this analysis using for example QKI
knockdown dataset, but as the effect of QKI on mRNA stability is not very well known, we
cannot reason based on them. In the future, we can repeat our analyses using knockdown or
transfection dataset of other RBPs.

Experimental techniques can query mRNA secondary structure in vivo [63| 64]; however, the
coverage of the resulting profiles are limited. Recently developed icSHAPE technique [65]]
is shown to query the secondary structure of all four bases in mouse ES cells. icSHAPE
secondary structure profiles can be utilized in our framework as they become available for
human cell types.
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APPENDIX A

LIST OF RBPS AND MIRNAS

Table A.1: List of RBPs and miRNAs for which we performed the co-occurrence analysis

RBPs miRNAs
PUMI let-7b
PUM2 miR-1

IGF2BP2 miR-7
IGF2BP3 miR-9
HuR miR-15a
HNRNPL | miR-16
QKI miR-34a
LIN28A | miR-106b
ZFP36 miR-122a
PTBPI miR-124
miR-128a
miR-132
miR-133a
miR-142
miR-148b
miR-155
miR-181
miR-181a
miR-195
miR-373
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APPENDIX B

CO-OCCURRENCE HEATMAPS

B.1 Co-occurrence q-value heatmap plots of RBPs of interest
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Figure B.1: Co-occurrence g-value heatmap plots of binding sites of PUM1 - normal shuffle
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Figure B.2: Co-occurrence g-value heatmap plots of binding sites of PUM1 - decile shuffle
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Figure B.3: Co-occurrence g-value heatmap plots of binding sites of PUM1 - AUcontent
shuffle
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Figure B.4: Co-occurrence q-value heatmap plots of binding sites of PUM2 - normal shuffle
(Part 1)
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Figure B.5: Co-occurrence g-value heatmap plots of binding sites of PUM2 - normal shuffle
(Part 2)
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Figure B.6: Co-occurrence g-value heatmap plots of binding sites of PUM2 - decile shuffle
(Part 1)
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Figure B.7: Co-occurrence g-value heatmap plots of binding sites of PUM?2 - decile shuffle
(Part 2)
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Figure B.8: Co-occurrence g-value heatmap plots of binding sites of PUM2 - AUcontent
shuffle (Part 1)
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Figure B.9: Co-occurrence g-value heatmap plots of binding sites of PUM2 - AUcontent
shuffle (Part 2)

SNR TIAL

miR-30d 1-2.0
1-2.5

m|R-f48a 1-3.0

500 450 400 350 300 250 200 150 100 50 0 50 100 150 200 250 300 350 400 450 500

Figure B.10: Co-occurrence g-value heatmap plots of binding sites of HuR - normal shuffle
(Part 1)
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Figure B.11: Co-occurrence g-value heatmap plots of binding sites of HuR - normal shuffle
(Part 2)
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Figure B.12: Co-occurrence g-value heatmap plots of binding sites of HuR - decile shuffle
(Part 1)
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Figure B.13: Co-occurrence g-value heatmap plots of binding sites of HuR - decile shuffle
(Part 2)
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Figure B.14: Co-occurrence g-value heatmap plots of binding sites of HuR - AUcontent shuf-
fle (Part 1)
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Figure B.15: Co-occurrence g-value heatmap plots of binding sites of HuR - AUcontent shuf-
fle (Part 2)
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Figure B.16: Co-occurrence g-value heatmap plots of binding sites of IGF2BP2 - normal
shuffie
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Figure B.17: Co-occurrence g-value heatmap plots of binding sites of IGF2BP2 - decile shuf-
fle

500 450 400 350 300 250 200 150 100 50 0 50 100 150 200 250 300 350 400 450 500

Figure B.18: Co-occurrence q-value heatmap plots of binding sites of IGF2BP2 - AUcontent
shuffie
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Figure B.19: Co-occurrence g-value heatmap plots of binding sites of IGF2BP3 - normal
shuffle
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Figure B.20: Co-occurrence q-value heatmap plots of binding sites of IGF2BP3 - decile shuf-
fle
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Figure B.21: Co-occurrence g-value heatmap plots of binding sites of IGF2BP3 - AUcontent
shuffle
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Figure B.22: Co-occurrence g-value heatmap plots of binding sites of PTBP1 - normal shuffle
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Figure B.23: Co-occurrence g-value heatmap plots of binding sites of PTBP1 - decile shuffle
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Figure B.24: Co-occurrence g-value heatmap plots of binding sites of PTBP1 - AUcontent
shuffle
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Figure B.25: Co-occurrence g-value heatmap plots of binding sites of HNRNPL - decile
shuffle
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Figure B.26: Co-occurrence g-value heatmap plots of binding sites of HNRNPL - AUcontent
shuffie
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B.2 Co-occurrence g-value heatmap plots of miRNAs of interest
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Figure B.27: Co-occurrence g-value heatmap plots of binding sites of let-7b - normal shuffie
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Figure B.28: Co-occurrence g-value heatmap plots of binding sites of let-7b - decile shuffle
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Figure B.29: Co-occurrence g-value heatmap plots of binding sites of let-7b - AUcontent
shuffle
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Figure B.30: Co-occurrence g-value heatmap plots of binding sites of miR-9 - normal shuffle
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Figure B.31: Co-occurrence g-value heatmap plots of binding sites of miR-9 - decile shuffle
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Figure B.32: Co-occurrence g-value heatmap plots of binding sites of miR-9 - AUcontent
shuffle
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Figure B.33: Co-occurrence g-value heatmap plots of binding sites of miR-15a - normal
shuffle
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Figure B.34: Co-occurrence g-value heatmap plots of binding sites of miR-15a - decile shuffle
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Figure B.35: Co-occurrence g-value heatmap plots of binding sites of miR-15a - AUcontent
shuffle (Part 1)
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Figure B.36: Co-occurrence g-value heatmap plots of binding sites of miR-15a - AUcontent
shuffle (Part 2)
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Figure B.37: Co-occurrence g-value heatmap plots of binding sites of miR-16 - normal shuffle
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Figure B.38: Co-occurrence g-value heatmap plots of binding sites of miR-16 - decile shuffle
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Figure B.39: Co-occurrence g-value heatmap plots of binding sites of miR-16 - AUcontent
shuffle
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Figure B.40: Co-occurrence g-value heatmap plots of binding sites of miR-34a - normal
shuffie
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Figure B.41: Co-occurrence g-value heatmap plots of binding sites of miR-34a - AUcontent
shuffle
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Figure B.42: Co-occurrence g-value heatmap plots of binding sites of miR-106b - normal
shuffie

75



miR:
HNRNPCL1

miR-27a 1-2.0
. MiR-27b
miR-590-3p
miR-9

1-2.5

41-3.0

500 450 400 350 300 250 200 150 100 50 0 50 100 150 200 250 300 350 400 450 500

Figure B.43: Co-occurrence g-value heatmap plots of binding sites of miR-106b - decile
shuffle
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Figure B.44: Co-occurrence g-value heatmap plots of binding sites of miR-106b - AUcontent
shuffie
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Figure B.45: Co-occurrence g-value heatmap plots of binding sites of miR-148b - normal
shuffle
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Figure B.46: Co-occurrence g-value heatmap plots of binding sites of miR-148b - decile
shuffie
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Figure B.47: Co-occurrence g-value heatmap plots of binding sites of miR-148b - AUcontent
shuffle
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Figure B.48: Co-occurrence g-value heatmap plots of binding sites of miR-181a - normal
shuffle (Part 1)
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Figure B.49: Co-occurrence g-value heatmap plots of binding sites of miR-181a - normal
shuffie (Part 2)
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Figure B.50: Co-occurrence g-value heatmap plots of binding sites of miR-181a - decile
shuffle (Part 1)
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Figure B.51: Co-occurrence g-value heatmap plots of binding sites of miR-181a - decile
shuffle (Part 2)
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Figure B.52: Co-occurrence g-value heatmap plots of binding sites of miR-181a - AUcontent
shuffle (Part 1)
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Figure B.53: Co-occurrence g-value heatmap plots of binding sites of miR-181a - AUcontent
shuffle (Part 2)
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