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ABSTRACT

MODEL BASED BUILDING ENERGY OPTIMIZATION USING
META-HEURISTICS

Altun, Murat
M.S., Department of Civil Engineering

Supervisor: Asst. Prof. Dr. Asli Ak¢amete Glingor

August 2015, 206 pages

Energy efficiency plays a key role in minimizing energy usage cost and its
environmental impacts. Life cycle thinking guides decision makers to develop energy-
efficient solutions in building early design stage; however, in practice, energy analysis
is done according to technical specifications’ limits due to inefficient tools and lack of
methodologies to response frequent changes in design. Therefore, alternative design
solutions with different objectives cannot be generated. In this study, two energy
optimization models are developed to solve existing energy analysis problems in
practise. In the first model, a graphical user interface called EnrOpt that can be fast
and flexible enough to be applied to multiple multi-objective problems and any
building types is developed by strengthening weaknesses of practically applied TS 825
Turkish Thermal Standard. The metaheuristics with different position update strategies
such as Differential Evolution, Particle Swarm Optimizer and Modified Cross Entropy
Method are used to provide a flexible model. In the second model, Dynamo based BIM
integrated energy simulation optimization model is proposed. This model offers
effective communication between stakeholders to avoid possible problems
encountered in early design while providing efficient energy analysis by updating



frequent changes in design. Performance of energy optimization models are tested by
case studies and Pareto optimal results are obtained. Parametric analysis of design
parameters that affect energy model or optimization model on EnrOpt are performed.
Results indicates that elaboration in climate and geometric data and energy use
scheduling influences building energy estimation significantly. These two models can
be applied to different building types by analyzing a vast of alternative designs using

different meta-heuristics.

Keywords: Building Energy Optimization, Building Energy Estimation,
Metaheuristics, BIM, Dynamo
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SEZGISEL USTU ALGORITMALARI KULLANARAK MODEL TABANLI
BiNA ENERJIi OPTIMIiZASYONU

Altun, Murat
Yiiksek Lisans., Insaat Miihendisligi Boliimii

Tez Yoneticisi: Yrd. Dog. Dr. Asli Akcamete Gilingor

Haziran 2015, 206 sayfa

Enerji verimliligi, enerji kullanim maliyetinin ve onun c¢evresel yan etkilerinin
azaltilmasinda 6nemli bir rol oynamaktadir. Yasam dongiisii diisiincesi, binanin erken
tasarim asamasinda karar vericilerin enerji tasarruflu ¢oziimler gelistirmelerine
rehberlik etmektedir; ama, uygulamada kullanilan araglarin verimsiz olmasi ve
tasarimda siirekli degisiklere hizli reksiyon gdsteren bir metodolojik yaklagimdan
yoksun olunmasindan dolay1 enerji analizleri sadece teknik sartnamelerde belirtilen
sinirlara gére yapilmaktadir. Cok yonlii ve alternatifli tasarim degerlendirmeleri
yapilamamaktadir. Bu ¢aligmada, sezgisel {istli optimizasyon yontemleri kullanilarak
enerji analizi uygulamalarindaki mevcut sorunlarin ¢dziimiine yonelik iki enerji
optimizasyon yontemi gelistirilmistir. Ik yontemde, pratikte kullanilan TS 825 Tiirk
Yalitim Standardinin zayif kalan yonleri gelistirilerek birden fazla ¢ok amagli problem
analizini seri bir sekilde yapabilen, hizli ve her tiirlii binaya uygulabilen, esnek bir
enerji optimizasyon modeli bir grafik arayiizii kullanilarak EnrOpt adi ile
gelistirilmistir. Esnek bir model olusturulmasindan dolayr ii¢ farkli pozisyon

giincelleme yaklasimlari olan Diferansiyel Gelisim, Parcacik Siiriisii Eniyilestirici ve

vii



Gelistirilmis Capraz Dagimnt1 yontemleri kullanilmustir. Ikinci yontemde, Dynamo adli
gorsel programlama aracilifiyla Yapi Bilgi Modellemesi araglariyla biitiinlesik ¢alisan
enerji simulasyon programindan olusan bir enerji optimizasyon yoOntemi
gelistirilmistir. Bu yontem, tasarimdaki yapilan siirekli degisimlerin gilincellenip enerji
analizinin daha etkin yapilmasini saglarken, bina projesi paydaslari arasinda etkili bir
iletisim saglayarak erken tasarim siirecinde karsilasilabilecek sorunlar1 da ortadan
kaldirmaktadir. Enerji optimizasyon modelleri 6rnek binalarla test edilmis ve Pareto
optimal ¢oziimler elde edilmistir. EnrOpt arayiiz programina etki eden enerji ve
optimizasyon yonteminde yer alan parametrelerin parametrik analizi yapilmistir.
Sonug olarak iklimsel ve geometrik verilerin detaylandirilmasinin ve enerji kullanim
takvimi gelistirilmesinin  bina performans tahmini biiyik o6l¢iide etkiledigi
goriilmektedir. Bu iki model, farkli sezgisel tistii optimizasyon yoOntemleri
uygulanarak, c¢ok genis alternatiflerin analiz edilerek farkli bina tiplerine

uygulanabilir.

Anahtar Kelimeler: Bina Enerji Optimizasyonu, Bina Enerji Tahmini,Sezgiseliistii

Optimizasyon Yontemleri, Yap1 Bilgi Modellemesi, Dynamo
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CHAPTER 1

INTRODUCTION

Energy is essence of human’s life. It is consumed continuously as it is required for all
aspects of life quality, from the food embodied energy to energy used to produce and
utilize the tools that ease human life to vehicles used for our transportation needs.
Similarly, energy is also essential for countries’ development. It is an indispensable
component of economic survival as well as development of countries in many sectors
of modern economies. The world energy statistics (2014) support this idea that most
of the energy in the world is consumed in the countries with higher level of economic

activities or in energy exporting countries that have abundance of energy sources.

Unit: Mtoe
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Figure 1.1. World Energy Consumption (a) and Production (b) (Enerdata 2014)

In the last half century, world energy consumption has risen significantly in an

exponential trend (see Figure 1.2.a) which has caused significant depletion of non-




renewable energy sources such as oil, natural gas, coal and increase in concentration
of greenhouse gases in atmosphere that traps radiated heat from Earth surface and
causes change in the climate also called global warming potential (GWP) (Panwar et
al. 2011). Moreover, energy is a political card used time to time by energy exporting
countries to manipulate world politics and persuade other energy importing players
with energy reduction threats to take their sides (Cameron 2008). Therefore, energy
importers must develop energy strategies to minimize the adverse effect of their energy
exports. The simple but efficient strategies are (i) to increase role of domestic energy
resources by increasing share of renewable energy with improvement in renewable
technologies and (ii) to maximize energy efficiency by developing energy efficient

solutions.

Renewable energy resources are alternative domestic resources to reduce share of the
imports in the energy demand of a country. Thus, governments, especially developed
key players in world politics, give incentives to renewable energy technologies and
support Research & Development projects in the renewable technologies to increase
renewables’ effect on energy demand met. For instance, Germany targets to increase
the share of renewable energy in its electricity production by %35 in 2020 and by 80%
in 2050 whereas the share of renewables in its total energy consumption is planned to
be 18% in 2020, 30% in 2030 and 60% in 2050 (Klaus et al. 2010). Similarly, the role
of renewable energy sources such as solar, wind, biomass, and hydropower is
forecasted to increase its share in the energy consumption in the following years
(Figure 1.2.b) and consequently decrease the greenhouse release by increasing clean

energy usage.

The energy statistics are required to be examined in detail to develop energy strategies.
In terms of energy consumption, the statistical results point out that energy use is
concentrated in three sectors: industry, transportation and buildings (residential and
non-residential ones). The buildings are responsible for 40 % of total energy
consumption and 30% of CO emission in the world (Shaikh et al. 2014).When



building energy consumption is reviewed in detail , it is observed that energy demand
on heating and cooling of the buildings seizes the lion’s share. The statistics (2008) for
European countries indicates that the share of space heating varies from 50% to 70%
of total building final energy consumption- the energy supplied to doors of the final
consumers as seen in Figure 1.3. Similarly, the space heating and cooling in the
buildings consume nearly 70% of the final energy in Turkish residential sector
(Turkish Contractors Association 2014).
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Figure 1.2. World energy consumption (a) in years and (b) forecasted

The exponential increase in the energy demand warns decision makers in energy
importing countries to take precautions to control and govern energy demand due to
its significant effect on international relations in terms of energy politics and energy
security. Therefore, countries should use their energy and economic resources
efficiently for both providing energy security and decreasing energy costs. Besides
domestic non-renewable resources and renewable potentials, one of the energy
efficient strategies is efficient management of potential energy savings. In the building
sector, Shaikh et al. (2014) summarizes from different studies that the United States
can reduce their building energy consumption up to 20% whereas this value can go up
to 30% in European Union and Turkey. In order to provide energy efficiency in the

buildings and use building energy savings potential effectively, first, the barriers in



front of energy efficient buildings should be analyzed and energy efficient strategies
needs to be developed as a solution to remove the barriers. The next section focuses
on investigating barriers to energy efficient buildings and discussing efficient energy

strategies in the buildings.

Final energy consumption of residential (Mtoe), 2008

61.10

B Space heating
s Water heating
s Cooking

W Air-cooling
[ Other
«==@==Total

Germany France United Kingdom Italy Spain

Figure 1.3. Final energy consumption of households (Mtoe), 2008
(Enerdata 2008)

1.1. Energy Efficiency in Buildings

Energy efficiency means using less amount of energy resource while providing the
same service. It is one of the fundamental steps to develop sustainable buildings.
Energy efficiency increases the value of the buildings by providing energy cost control
and improving environmental drawbacks of energy consumption; however, in most
building design practices, energy analysis in design phase is neglected or the designer
dabbles at energy analysis by only applying legal limits on building energy analysis.
Therefore, this insufficient or ignored step in building design process decreases
building’s whole life cycle value. Moreover, the precautions taken in the next steps of

the building life cycle are not as efficient as the ones in the early design process in



terms of both energy efficiency and cost-effectiveness as seen in Figure 1.4. The
reason for this is that more alternative scenarios can be evaluated in early design
process with lower constraints in the projects compared to next steps in the building

life cycle.

Effectiveness of Decisions

Cost of Modification

Effectiveness of Decisions/Cost of Implementation

Sketch Architectural Engineering Construction Operation &
Phase Design Design Maintenance

Life of the Building

Figure 1.4. Decision cost and its impact during life cycle of building

The reasons for having barriers in front of energy efficient solutions in the building,
vary in building design process. The barriers in front of energy efficient buildings are

explained in detail below:

v Poor scope definition: Improper or incomplete scope of the project leads to
frequent changes in the project. Thus, re-evaluation of all project design in each
design change is required which may cause ineffective energy design due to
reduction effect on building performance as project progresses. Moreover,
energy performance of the buildings is analyzed after all necessary
architectural and construction documents are prepared. This process is just

followed to show the results of existing project design’s energy performance.



Thus, it is resulted in lost opportunity in the evaluation of any other energy
based design alternatives. The main reason of this improper process is that
traditional CAD-based design and planning tools are not adequate for energy
performance evaluation. All stakeholders of the project make their designs in
terms of their views and this results in lack of integration in design stage (Cho
et al. 2009). Addition to energy analysis prominence negligence, lack of
integration in the stakeholders’ designs also causes inefficient energy-based

design in the buildings.

Lack of life cycle thinking/knowledge: In traditional view, designer and the
contractor generally focus on minimization of initial investment of building
design and construction by providing all necessary design and construction
details explained in the technical specifications of the building project.
However, minimizing initial investment of the project does not add value to
the building as higher operational energy costs exist which increase building
life cycle costs and decrease its long-term cost-effectiveness. Therefore,
building whole life cycle cost from early design stage to demolition of the
building should be evaluated in determination of design details.

Lack of Legal Sanction or Incentives: In building design and construction
practice, legal sanctions on energy efficiency enforce the designer and the
contractor to produce energy efficient solutions in practice. Otherwise, gaps or
recommendations in the mandatory codes, unfortunately, direct the designer or
the contractor to develop solutions to minimize initial investment cost with
short-term thinking in project profit. Similarly, incentives to energy efficient
building are not seen sufficient enough to motivate construction companies to
construct energy efficient buildings. Instead, the renowned construction
companies construct symbolic energy efficient buildings that can be counted
by fingers of the hand, to increase their prestige. However, share of smaller

size companies on energy efficient building constructions decreases



significantly due to their cost minimization strategy. As the small-size
companies dominate construction market, energy efficient practices become

rare.

A set of strategies are required to increase energy efficiency in the buildings. The

following strategies can be followed to increase the energy efficiency:

v" Mandatory codes/certificates: One of the most efficient approaches to increase
energy efficiency is the legal obligation for the buildings. Mandatory codes
related with energy efficiency should be re-written to increase energy
efficiency when it is seen inefficient in practice. Moreover, all necessities
related with building energy efficiency should be clarified in the codes by
filling all the gaps in the practice. Thus, this both increases the efficiency in
the buildings and provides standardization in the practice. In order to reduce
inefficiency of the recommendations on energy efficiency, minimum energy
efficiency level for whole building, building components or building energy
processes/operations should be set. Similarly, building certification programs
such as LEEDS, BREEAMS or Energy Star or equivalent country indigenous
certification programs may be used as mandatory programs to provide both
energy efficient and sustainable solution and increase the minimum energy
efficiency level in the buildings. For instance, in the United States, LEED
certification has become mandatory application in the governmental buildings
to incentivize efficiency and sustainability in the building via governmental
hand.

v"Incentives to life cycle thinking: In general, the aim of a construction project is
to complete the project within minimum project cost within pre-determined
technical specifications that include mandatory codes; however, incentive
programs are required to generate more efficient solutions than the ones limited

by mandatory codes. Therefore, the decision makers should prepare incentive



programs for short-term period to deal with short-term profit thinking in the
construction projects. Green tax reduction to reward building energy efficiency
and provision of lending facilities for energy efficient projects and easiness in
procedural details of building registers of certificated buildings and prestigious
opportunity value addition on the building sales of certification motivate the
construction sector in short-term period. Moreover, educational programs for
life-cycle thinking increase the awareness in the society and long-term cost

effectiveness in the buildings provide an increase in the building sale prices.

Incentives to renewable energy technologies: The rising awareness in global
warming potential and depletion of non-renewable energy resources due to
high level of energy consumption and forecasted trend in energy demand
increase, directs the governments or social organizations to find alternatives to
reduce greenhouse gas emission and energy depletion. The renewable energy
resources are alternatives to reduce undesired effect of the non-renewable ones;
however, the resources cannot compete with traditional energy resource in
terms of cost. Therefore, the renewable sources must be incentivized by the
governments to compete with the non-renewable ones. Carbon green taxes for
the non-renewable energy usage or subsidy for renewable resources can be a
solution to enable fair competition between alternatives. Moreover, the
disadvantages of renewable resources and technologies such as higher initial
cost in solar energy, 40% efficiency of solar panels, discrete energy/electric
production in wind and solar energy due to permanent change in wind speed or
low wind speed, day and night effect on solar energy performance, social and
economic adverse effect of small hydropower plants, and wide installation
area requirement to produce in high amount energy of solar energy must be
considered as trade-off parameters on the strategic decision making process on
energy resources. The efficiency based parameter is expected to be improved
in near future; however, the problems due to nature of renewable sources need

to be considered as a constant parameter. Therefore, greenhouse and cost effect



of renewable sources should trade-off with their adverse effect. Moreover,
during economic crises such as in 2008, the incentives for renewable
technologies are decreased as seen in Germany. On the other hand, renewable

energy usage decreases foreign-source dependency in a considerable amount.

v Building energy control system: Building energy control system provides
measurement of energy consumption of whole building system or different
components of the buildings and analyzes energy performance of each
component to re-design building components or reuse the results of the analysis
in equivalent buildings. Using smart building applications such as building
management systems, instantaneous energy consumption in the building
components can be control by adjusting the performance of the required tools
to environmental conditions. For instance, redundant lightening can be
controlled by sensors or thermostatic setting in building can be automated to
specific temperature controls. Moreover, direction/angle of the solar panel in
the building is changed according to solar radiation to get higher energy from
the Sun (Karagol 2013).

v Wieldy energy analysis process: Energy estimation tools should be easy to use
and applied to building energy performance. The response of the tools for
design changes should be effective in terms of time and accuracy to update

energy analysis.

1.2. Building Energy Performance Estimation

In building energy based design, accurate energy performance simulation for the
building guides decision makers to develop energy efficient solutions in design stage.
Various energy estimation tools or methods have been proposed to predict amount of

energy required to meet building needs for a specific time period. The performance of



energy estimation tools varies based on their methodologies. Energy estimation

methods used in the literature are explained in detail in Chapter 2.

Building energy performance, in general, can be estimated by engineering calculations
or measured by using special devices or methods. In calculation based energy analysis,
the accuracy of building performance estimation depends on details available for
energy model. As the building is modeled in more detail building performance analysis
get more realistic, however simulation time of the building analysis increases
exponentially. On the other hand, measurement based energy estimation require huge
amount of energy usage data. As details in measured data increase or energy
measurement interval gets smaller, cost of measurement increases in an incremental
order. Therefore, in energy estimation, decision makers consider trade-off between

estimation cost, energy estimation accuracy, and simulation run time.

Measured data are only available for existing buildings. Therefore, it is expected to be
evaluated in retrofit projects. On the other hand, measured data in similar
environmental conditions and building envelop can be used as a reference in the
evaluation of newly designed buildings. In general practice, engineering calculations
are more appropriate to estimate building performance in early design stage if

measured data with similar conditions does not exist or is not reliable.

1.3. Building Information Modeling (BIM) and BIM Integrated Energy Analysis

Building Information Modeling (BIM) is data-enriched parametric representation of
physical and functional characteristic of a facility that provides shared information for
its life-cycle to be exchanged between the stakeholders (Eastman et al. 2011). BIM
can also be used as communication and coordination tool to solve possible disputes
encountered in construction process between stakeholders (Krygiel and Nies, 2008).
The model can be used as main communicator in the evaluation of building

performance criteria from different perspectives such as esthetics, structural reliability,
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and energy performance in an integrated model. The model provides design
alternatives and tests the performance of the design solution for each performance

criteria.

Building information modeling helps to analyze energy performance of the buildings
with integration of simulation tools. The building is modeled virtually in BIM tool,
then, energy model is exported into dynamic simulation tool as input file, and the
performance of the energy model is estimated by energy simulation tool by adding
default tool specific information. In the second approach, the performance of the
building model can be tested through an add-in energy simulation tool in BIM
environment such as Green Building Studio. Moreover, visual programming tools such
as Dynamo can be used to change building element properties and automate building

energy performance analysis in BIM tool via GBS.

Dynamo integrated BIM tool is appropriate to evaluate multiple design alternatives in
automation. In BIM integrated dynamic simulation energy analysis, the exported
energy model needs to be updated by changing building elements manually to get
accurate results. Whenever, energy model is exported once all design alternatives are
determined in dynamic simulation tools, the dynamic model cannot inherit parametric
relationship between building elements and prone to errors in energy model. On the
other hand, in Dynamo based BIM tool integrated analysis, alternatives are applied to
building model and associated energy performances are tested. At each design update,
building model and energy model are updated by model in Dynamo. The automated
building energy analysis in Dynamo overcomes disadvantages of two alternative
approaches mentioned above. However, there is no commercially available or fully

developed Dynamo based BIM energy optimization method to best of all knowledge.

1.4. Building Life Cycle Energy Optimization

In early design stage of the building projects, effective energy based design of the
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building both provides cost-effective solution and also reduces environmental adverse
effect of higher energy use in building operational process. However, to make the
design effective, all stages of the building life cycle needs to be evaluated. For
instance, minimization of wall insulation thickness decreases initial investment on the
building whereas in the building operational process, high amount of energy is
required for cooling and heating the building. Therefore, decision makers evaluate the
trade-off between initial investment for wall insulation and extra energy cost due to
reduction in insulation thickness, to minimize total cost of the energy based design.
Moreover, inadequate insulation design in early design stage will require retrofits in
building operational period to increase building energy efficiency and reduce existing
life cycle energy cost of the building. However, decision making process by taking
permits from all residents may take long time for insulation retrofits in multi-family
dwellings. Therefore, early decision making improves performance and value of the
buildings.

In early design stage, decision makers want energy analyst to calculate life cycle
energy performance of multiple alternative design solutions and evaluate all
alternatives to select most appropriate design combination in building construction
process. If number of design alternatives can be counted by fingers of the hands,
energy analyst can run each design alternative and reports the results to decision
maker; however, a great many design alternatives may not be solved one by one. In
such conditions, optimization techniques are applied to test the energy performance of

multiple design alternatives.

Building energy performance can be optimized on single objective criterion to find
optimum design combination or evaluated according to multiple objective criteria by
generating multiple Pareto optimal design alternatives depending on decision makers’

expectations.
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1.5. Motivation of the Study

Researchers have been working on improving building energy estimation accuracy and
optimizing building energy performance to maximize energy based cost savings and
minimize environmental adverse effects. However, in real life, energy performance of
existing building stocks are questionable due to inefficient design limits in previous
thermal standards. In newer versions of thermal standards, more energy efficient
design limits are set to provide improvement in building heat losses. Therefore, retrofit
projects have been implemented to improve existing building performance, especially
in developed countries. On the other hand, in Turkey, Turkish Contractors Association
(2014) indicates that only 15 % of existing building stocks meets the minimum energy
efficiency level in Turkish insulation standard TS 825, “Thermal insulation
requirements for buildings” standard which regards insulation as an energy efficient
solution. Therefore, Grand National Assembly of Turkey legislated for a law called
“Law 5627 Energy Efficiency” to increase insulated dwelling stock with incentives
and penalties. The Law forces residents to get energy ID card for the buildings which
will be used for calculating the tax rates for the buildings and could provide advantages
and prestige for energy efficient solutions. Moreover, significant number of existing
buildings are planned to be renewed by urban renewal projects. During renewal
projects and in new constructions, development of energy efficient solutions in early
design stage of the buildings provide significant improvement in energy cost, resource

use and environmental adverse effects.

In the first part of this thesis, a flexible energy optimization framework is constructed
to optimize building life cycle energy performance according to multiple objective
combinations analyzed within a reasonable time. The aim is to provide enriched energy
data analysis for decision maker to evaluate more design alternatives in a broader
perspective. Thermal insulation standard TS 825 is modified to overcome its

weaknesses that are explained in literature for achieving more accurate energy
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estimation. This rapid comprehensive energy optimization analysis can be applied to

practical real life problems through a user-friendly interface.

In the second part of the thesis, energy optimization model is constructed on a visual

programming tool to automate BIM integrated optimization process by adjusting

design to changes fast and efficiently aiming to provide effective communication

between stakeholders. The visual programming tools offer built-in nodes and custom

nodes for non-programmers to construct the model easily.

1.6. Research Questions

This thesis is based on finding solutions to answer following research questions:

v

How do climate data parameters change building energy performance
estimation? Which parameters should be updated to obtain more accurate

simulation results in TS 825 standard methodology?

How do design alternatives influence building performance results? How can

the building be designed to optimize building energy performance?

How can life cycle approach be applied in energy optimization model? Which

parameters make trade-off in life cycle analysis?
How can a flexible energy optimization model be constructed to optimize
energy performance of the building in multi-objective perspective such as cost,

environmental effects, and payback period?

How are BIM tools integrated into energy optimization model to provide

effective communication?
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v" What are differences in energy optimization applications between steady state

energy estimation and BIM-based energy simulation?

1.7. Research Goals/Objectives

The objective of this thesis is to develop a flexible and wieldy case-free framework
called Energy Optimizer (EnrOpt) to optimize single or multi-objective building life
cycle energy performance according to life cycle cost savings, life cycle environmental
improvements and payback periods by using meta-heuristic optimization techniques

to contribute the literature.

Another objective of this thesis is to propose visual programming based BIM
integrated multi-objective building energy optimization framework to simulate
building operational life cycle energy performance in the model and make efficient
decisions in early design stage with respect to simulated models. Finally, energy
estimation methodology and energy optimization models of the steady state methods
based energy estimation and dynamic simulation based energy estimation are
compared with each other according to EnrOpt and Dynamo based BIM integrated

energy analysis.

1.8. Scope of the Study

In this thesis, thesis chapters are organized as follows:

Chapter 1 introduces problems in energy optimization, motivation of the study and
objectives of this thesis.

Chapter 2 presents literature review on energy estimation methods and optimization
applications on building energy performance. In this chapter, methodology of each

energy estimation method is explained in detail with previous studies to discuss which
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energy estimation method can be applied to different case studies. The optimization
techniques applied to building energy estimation studies are introduced and

categorized.

Chapter 3 explains energy estimation methods used in the energy optimization models.
Details of TS 825 standard and Green Building Studio are introduced.

Chapter 4 introduces single and multi-objective optimization. The reasons for applying
meta-heuristic optimization techniques on optimization problems are explained. The
meta-heuristic algorithms Differential Evolution, Particle Swarm Optimizer, and
Modified Cross Entropy Method are introduced and how the meta-heuristic algorithms

are applied to energy optimization model is discussed.

Chapter 5 presents energy optimization models: EnrOpt and Dynamo based BIM
integrated life cycle energy optimization frameworks. The modifications in energy
models and assumptions in energy optimization model in EnrOpt are explained with
detailed design alternatives in optimization procedure. The implementation process of
the interface is explained with design variables and optimization objectives. In the
second part of Chapter 5, how Dynamo based BIM integrated life cycle energy
optimization model is implemented is discussed. The details of the case studies for

each energy optimization model are explained.

Chapter 6 presents energy performance results of the case studies. Parametric analysis
results of both energy models and optimization models are reported and discussed
separately. Lastly, the energy optimization methodologies in the two energy
optimization models applied are compared and evaluated.

Chapter 7, finally, concludes major research findings and discusses the limitations of

the study and explains possible future research studies.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, energy estimation methods in the literature are introduced. Design
alternatives and objectives in multi-objective building energy optimization studies are

investigated. Optimization techniques used in these studies are presented.

2.1. Building Energy Estimation Methods

Building energy performance estimation plays a key role to get accurate energy
performance results for proposing energy-efficient solutions in the buildings.
Researchers have been working on energy estimation methods for the last fifty years.

In the literature, energy estimation techniques are categorized in various ways.

ASHRAE Handbook (2009) classified the methods into two approaches as forward
approach and inverse approach. In forward approach, design alternatives are entered
as inputs to mathematical expression that describes physical behavior of building
system and output of the mathematical expression indicates building energy
performance. Whereas in data-driven approach, design alternatives are known and
building energy performance is measured; however, mathematical relationship
between design alternatives and performance results are unknown. Data-driven
approach develops mathematical description to estimate building performance

according to different design alternatives.
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Pedersen (2007) divided load and energy predictions into three groups such as
statistical approaches/regression analyses, energy simulation programs and intelligent
computer systems. Statistical approaches use measured hourly energy consumption
data as output of building energy estimation system whereas design parameters are set
as input to maximize mathematical correlation between design alternatives and energy
consumption by linear and multi-variate regression analysis. The correlation quality
between design parameters and measured energy data indicates whether the regression
analysis is accurate enough in building energy predictions. Energy simulation
programs model and simulate all building energy models in two different calculation
approaches such as response function method and numerical method. Response
function method calculates building energy performance with respect to time invariant
linear differential equations whereas numerical methods include time variance in the
calculation where the model gets more complex and realistic by simultaneous equation
solving. Lastly, intelligent computer systems such Artificial Neural Network interpret
mathematical expression intrusively between given input and output data such as
climate and energy performance data and testify the performance of the constructed

model by training data among inputs and outputs.

Foucquier et al. (2013) categorized energy estimation methods into three approaches
such as white box, black box and green box approaches. White box approach, also
called physical model, constructs building energy model and solves thermal behavior
equations in the model according to design parameters to estimate building energy
performance. Thermal building behavior is simulated according to three different
approaches such as Computational Fluid Dynamics (CFD), zonal approach and nodal
approach. CFD decomposes a building zone into numerous control volumes and
thermal transfers in the building zone are modeled in detail whereas zonal and nodal
approaches simplify the building zone details compared to CFD. In black box
approach, statistical approaches and intelligent computer systems in Pedersen (2007)
study are combined. ANN, SVR, GA and linear multi-variate regression analysis

interpret design data and energy performance data to construct a model to estimate
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alternative design performance. Genetic Algorithm is proposed as complimentary
technique for machine learning techniques to optimize ANN and SVR analysis
parameters for minimizing difference between measured energy data and modeled
energy data. Grey box approaches integrate white and black box approaches in

building performance estimation.

Wang, Yan, and Xiao ( 2012) quantified existing building energy use in three
approaches such as calculation based energy analysis, measurement based energy
analysis and hybrid approach. Building energy performance of the building is
formulized in a mathematical expression according to its relation with external
environment and internal heat loads in calculation based energy analysis whereas
previous measurements in different buildings are used to estimate energy performance
of the similar type of the building in equivalent environment in measurement based

energy analysis.

Wang, Yan, and Xiao ( 2012) divided calculation based energy analysis in two main
parts as steady state and dynamic energy analysis. Steady state energy analysis
simplifies building operations by assuming all properties and variables in building
energy model constant for each calculation period condition by ignoring building and
HVAC system dynamics whereas dynamic simulation models show continuous time
dependent building operation and variation in a system. Quasi-steady state models
combine simple part of dynamic model into steady state model by adding transient

effect due to weather conditions and internal environment of the buildings.

Typical steady state models are degree-day method, bin method and equivalent full
load methods. The details of steady state methods are as follows:

Degree-day method is single-measure steady state method developed to calculate

heating energy demand of buildings (Al-Homoud 2001). Except outdoor dry bulb
temperature and design heat loss, heating equipment efficiency, all other effects are
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ignored in the method. Heating degree-day and cooling degree-day values for the
building are calculated according to given internal thermostat temperature and outdoor
temperature difference. The annual or monthly average temperature data are used in
the calculation by assuming continuous heating in that period. The method is modified
by adding correction coefficient to decrease the difference between method results and
actual building performance. Moreover, variable-base degree-day method is improved
from fix-base degree-day method considering temperature balance of the buildings by
adding interior heat gains and solar gains in the calculation in addition to degree-day

methodology in the balanced temperature calculation.

Bin method, temperature frequency, is also single measure steady state method
developed to improve building energy estimation to calculate heating and cooling
energy consumption of the buildings where the degree-day method is insufficient. In
bin method, day is divided into pre-determined intervals and average temperature
values for those periods are considered in calculation. Occupied and unoccupied
conditions are also considered in the internal gain calculation procedure which makes
the method more accurate than degree-day method. In modified bin method, instead
of peak loads, diversified load profile characterized by average solar and internal gain

profile is used.

Equivalent full-load hour method, is a single-measure method to calculate
approximated annual energy requirement especially for cooling session. It calculates
number of hours an air-conditioner works at full load with equal energy consumption.

It is generally used to get a rough energy use estimate.

Dynamic energy models simulate energy consumption in detail by dividing time
interval into small pieces with hourly or sub-hourly data. Dynamic changes in building
energy loads and building system due to the external weather and response of plant
used as energy converter to meet energy requirement of the building are reflected to
analysis simultaneously. The simulation tools for energy analysis are generally based
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on three modeling such as load model, system model, and plant model. The load model
analyzes thermal behavior of all building system including building envelope, internal
heat loads, and infiltration to determine heat requirement to the building system. The
system model calculates thermodynamic effects of air-side system such as air handling
equipment, fans and terminal units, and system needs on HVAC plant. Lastly, plant
model analyzes building loads and energy converters to balance energy requirement
into system. Commonly, these three models are linked to another one in a sequence in
the order of building load calculation, system modeling, and plant analysis. The load
analysis is generally based on two approaches such as weighted factor method and heat
balance method. In weigh factor approach, the weight factor that is used for convective
heat gains of building components over whole building heat gains is pre-calculated
before energy simulation according to material properties of building components. On
the other hand, heat balance method calculates instantaneous building loads based on
heat balance for each zone based on conductive, convective, and radiative heat flux in

building zone.

Energy calculations in dynamic simulation models are based on simulation programs.
Input parameters in simulation programs can be entered directly or exported from BIM
tools. In direct simulation programs, all input data and drawings are entered according
to nature of simulation program whereas in BIM-based programs, the building is
modeled via any BIM software such as Revit and ArchiCAD. Then, the output of BIM
software is converted to input data for simulation programs and missing parts of
building energy model is filled by the user and then the simulation runs.

Energy simulation programs vary depending on details in the modeling and differences
of country—specific approaches. Nguyen, Reiter, and Rigo (2014) investigated
utilization intensity of building simulation programs in the literature in Scopus engine
for the years of 2000-2013. The results indicate that the most commonly used
simulation programs in optimization studies are Energy-Plus, TRNSYS, DOE-2. The

detailed information about these simulation programs are presented below:
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DOE-2 is a powerful and widely used to predict energy performance of different types
of buildings. Building layout, constructions, scheduling details, HVAC and lightening
details and utility rate are entered as inputs and by using weather data through an
hourly simulation it calculates utility bills and energy use. It uses weighting factor
method to calculate energy loads between spaces and zonal approach in thermal
simulation by simplifications. VisualDOE, eQUEST and PowerDOE, are examples of
DOE-2 based simulation tools. Moreover, Green Building Studio integrated with Revit

BIM tool uses DOE-2.2 in energy performance calculations.

EnergyPlus is a new generation simulation engine that uses basic structures of DOE-2
in the simulation whereas heat balance method is used to calculate thermal loads. It
can be applied to various complicated buildings with its advance futures. It provides
flexibility in the design of HVAC system controls; however, its interface is not user
friendly enough for direct design; therefore, the buildings are modeled in third party

tools and exported as input file into simulation engine.

TRNSYS is a simulation program to perform thermal behavior of transient systems. It
is commonly applied to solar systems, low energy buildings and HVAC systems,
renewable energy systems, cogeneration and fuel cells. TRNSYS divides each
simulation stakeholders into components and manage and integrates all the process
with calculation platform for simulation. Compared to EnergyPlus and DOE-2,
thermal load calculations are simpler whereas HVAC design is more advanced.

Measurement based energy analysis is founded on energy performance estimation
according to measured energy data. This type of energy estimation is effective to
forecast energy consumption of the existing building using its previous energy
performance. Moreover, measurement based energy calculation can be applied to new
buildings by using similar environmental conditions and building properties; however,
extensive energy database for the buildings and their environment is required to get
accurate results. This process may require higher initial investment and it is labor-

intense while achieving accurate estimation. Therefore, it would be effective for
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governmental organizations to use an extensive database including all country’s
energy efficiency data. On the other hand, for private sector and residents, it is cost-
inefficient and labor-intensive. Therefore, in new building designs, calculation based
energy estimation is more preferable. Energy estimation of existing building can be
forecasted by using its previous energy bills and this would be much more cost
effective. Alternatively, special equipment can be used for all building components to
monitor their energy use, which is expected to be expensive but gives more accurate
result. Therefore, the decision maker should consider the trade-off between

opportunity of energy estimation accuracy and cost of energy estimation method.

Wang (2012) categorized measurement based energy estimation into two main parts
such as energy bill disaggregating and monitoring based energy estimation. Energy
bill disaggregating is a methodology that portions out total energy consumption in the
bill into end-use equipment or systems. This method provides cost-effective and time
efficient solution; however, the accuracy of energy consumption distribution on
appliances is questionable. On the other hand, energy consumption in each appliance
and system can be controlled by metering. Monitoring based energy estimation gives
more accurate energy results; however, it is expensive for residential buildings (Wang
etal. 2012).

Hybrid energy estimation models combine measured data with calculation based
energy analysis. Wang, Yan, and Xiao buildings (2012) classify hybrid approaches as

calibrated simulation and dynamic inverse models.

Calibration simulation models try to minimize difference between simulated energy
estimation and measured data by changing details of the input parameters for
simulation programs. The simulated energy results direct decision maker to change
details of input parameters. Moreover, effect of each design parameters as inputs in
simulation programs can be measured easily by comparing simulated energy

performance with measured data in the rank of design parameters.
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Dynamic inverse modeling is another hybrid energy estimation technique where a
model is constructed by using training data that come from building measurements to
determine the relationship between inputs such as equipment or any design parameters,
process like building load calculation and energy use as output. The modeling covers
dynamic effects of thermal mass to get more accurate calculation; however, the
relationship between system stakeholders is complex and the method requires more
detailed measurements to get more accurate results. One of the examples of dynamic
modeling is Artificial Neural Network that is constructed between input parameters
such as weather conditions, HVAC system, building properties and output parameter
such as energy use of the building. Some of these data are used to construct relationship
between measured data and input parameters as training data whereas the others are
used to control the accuracy of the results by comparing the results of the model with
measured data. The model constructs the relationship by using its modeling approach
and the results are compared with the measured ones to determine its accuracy level
for deciding whether to detail the input parameters more or not. If reasonable results
can be held, the energy estimation of other new or existing buildings can be done via
the model.

2.2. Multi-objective Optimization in Building Energy Performance Analysis

Optimization aims at improving building energy performance by changing design
alternatives according to pre-defined calculation methodology in a reasonable run
time. Details of building design, number of alternative design solutions and run time
of energy model determine the limits of the optimization process. Therefore, in energy
optimization models, trade-off between energy model accuracy and its run time are
required to generate optimization process in a right way. Among energy estimation
methodologies, Foucquier et al. (2013) explained that CFD is most comprehensive
method to estimate thermal performance of the building in a most accurate way;

however, single analysis of the building with CFD takes multiple minutes. Therefore,
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time-consuming simulation decreases the efficiency of all process. Due to this reason,
multiple simulation tools used in literature such as EnergyPlus and TRNSY'S use zonal
approach which is the simplest version of CFD approach. On the other hand, since the
real energy model is simplified more, the accuracy of energy estimation gets more
questionable.

Multi-objective optimization process generates solutions to provide extensive enriched
data for decision makers to take a decision on building early design stage or in retrofit
projects. Basically, performance of alternative designs is evaluated according to
decision maker’s expectations. If decision maker pre-determines importance of each
design objectives clearly before optimization process, all objectives can be combined
together to find the optimum design solution according to decision maker’s
expectation. Conversely, in post-decision making process, optimization method
generates alternative solution sets which cannot dominate each other in at least one of
the alternative evaluation methodologies. Therefore, all of design alternatives are

candidates of optimum design depending on decision making process.

In multi-objective optimization problems, researchers evaluate building energy
performance by generating alternatives solutions that considers trade-off between
objectives in the studies as tabulated in Table 2.1. General focus on energy
optimization studies are based on investment on better design alternatives to minimize
building energy use and cost. On the other hand, lightening and thermal comfort in the
building are evaluated with building energy use and initial investment cost to generate
alternative design approaches in decision making process. Moreover, life cycle
awareness has increased in latest optimization studies whereas life cycle cost and
environmental impact has a trade-off with initial investment. Life-cycle thinking
approach provides significant decrease in life cycle emissions and other environmental
adverse effects with a huge amount of energy cost savings. Furthermore, studies

compare life cycle performance of the building and initial investment by minimizing
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payback period of initial investment with a trade-off between annual energy reduction

with initial investment.

In multi-objective studies, building performance is tested by changing design
parameters in energy models. Design variables in optimization studies in the literature
are summarized in Table 2.2. In general view of the literature, optimization process
presents heat loss reduction solutions with passive energy efficient approaches. The
basic solution approach in energy optimization studies is changing insulation materials
and their thicknesses to minimize heat loss in different building components.
Secondly, window systems with different geometry and glazing properties present
heat-loss reduction solutions. In some of the studies, HVAC system of the buildings
are re-designed to improve building performance whereas interventions in appliances
are used to minimize energy and electric usage. In some of the studies, solar collectors
are added as renewable design alternatives to improve domestic heat water
performance of the building. Additionally, in some cases, occupancy of people and

equipment are evaluated in building energy performance estimation.

In building energy optimization literature, nonlinear and mixed integer linear
programming (Karmellos et al. 2015b; Aria & Akbari 2014; Antipova et al. 2014) are
modeled to optimize building performance. Tchebycheff distance as efficient multi-
objective approach are one of the commonly used solutions in the literature (E. Asadi
et al. 2012a, 2012b; Diakaki, Grigoroudis, and Kolokotsa 2013; Diakaki et al. 2010).
Meta-heuristic optimization techniques are in trends in building energy optimization.
Different versions of Genetic Algorithm are the mostly presented optimization
techniques (Asadi et al. 2014; Boithias et al. 2012; Yang et al. 2014; Oh et al. 2011;
Asadi et al. 2013; Yu et al. 2015a; Penna et al. 2014). Moreover, Harmony Search
(Asadi 2014; Fesanghary et al. 2012), Ant Colony Optimization (Yuan et al. 2010;
Asadi et al. 2012), Differential Evolution (Wang et al. 2014) and Particle Swarm
Optimizer (Liu et al. 2015; Karaguzel et al. 2014) are studied in literature.
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In literature, both forward approach to estimate building performance directly and
black box approaches that predict the relations between design parameters and
building performance in minimum variance with measured energy consumption have
been studied. The simplest version of the forward optimization approach is building
energy load minimization (Diakaki et al. 2008). In degree-day steady state method,
building energy use is calculated by adding climate data and energy efficiency of
heating/cooling systems (Diakaki et al. 2010; Futrell et al. 2015; Murray et al. 2014;
Asadi et al. 2014). Besides steady state methods, building is modeled in more
complexity in dynamic simulation models. In literature, EnergyPlus (Oh et al. 2011,
Ascione et al. 2014; Asadi 2014; Fesanghary et al. 2012; Griego et al. 2012; Karaguzel
et al. 2014; Futrell et al. 2015) and TRNSYS (Antipova et al. 2014; Asadi et al. 2012;
Penna et al. 2014) are most commonly used simulation tools. In black box approach
studies, design parameters and measured consumption data are used to construct
engineering models to evaluate different design alternatives by using ANN (Boithias
et al. 2012). Moreover, machine learning techniques such as ANN (Yu et al. 2015b;
Futrell et al. 2015; Asadi et al. 2014) and SVR (Eisenhower et al. 2012) are used to
simulate optimization process of dynamic simulation models to accelerate
optimization run time. Complex energy models are simulated in dynamic simulation
tools more than one minutes and detailed parameter design process requires reasonable
number of function evaluations such as at least 5000 to obtain stimulating data for
decision maker. Therefore, in a proper optimization process, the model runs in 3.5
days. In the literature studies, 3.5 days may be tolerated for once; however, in real life
energy analysis, it is practically inapplicable. Therefore, machine learning tools are
used to reduce all simulation time down to one or two hours by reducing difference
between simulated energy analysis results and tested model results. The black box
model is constructed according to pre-determined number of data and optimization
algorithm is changing parameters in ANN layers. At the end of each update,
performance of the constructed model is tested with simulated or measured test data.
In literature studies, test data is one-tenth of training data (Magnier & Haghighat 2010;
Asadi et al. 2014). After the model is constructed, the forward approach is applied to
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optimize building performance by using the constructed model as engineering
calculation methodology in the model. Although deviation in the constructed model is
more than the measured data or simulation data, it provides rapid optimization process

In practice.

2.3. BIM Based Multi-objective Optimization in Building Energy Performance
Analysis

Building Information Modeling provide integration with energy estimation tools and
communicate with all project stakeholders to avoid possible differences in building
projects due to inconsistent designs for different disciplines. BIM based energy
analysis process provides extensive data exportation from BIM tools to simulation
tools where interface of simulation tools is not user friendly enough. In optimization
process, BIM tools can be used in three different approaches explained one by one
below.

In the first approach, building is modeled in BIM tool and then exported to simulation
tool. Simulation tool completes missing data in the exported energy model with its
default values. Then, it simulates building performance. In optimization process,
design parameters are changed in simulation models and optimized. Oh et al.(2011)
studied on BIM-based optimization of a library building. The authors, first, modeled
the building in Revit and then exported it into EnergyPlus 6.0 using a proposed Matlab
based gbXML-IDF converter file. Performance of the building is optimized by
minimizing thermal discomfort and energy consumption using GA by changing
window glazing type and cavity gas in EnergyPlus input files. At each iteration, GA
writes updated design parameters into EnergyPlus input and EnergyPlus runs
simulation and gives objective fitness values. The rest of optimization process

continues with respect to GA methodology in Matlab.

In second approach, building is modeled in BIM tool and multiple design alternatives

are created by changing some design details of the building model. Performance of

32



each design alternative is tested via energy simulation tool within the BIM
environment. After simulating all alternative design models, a black box model is
proposed to express implicit mathematical relationship between design alternatives
and simulation results. The constructed black box model is used to optimize building
performance. Chen and Gao (2011) modelled two-story academic building and
exported building model to IES/VE simulation tools for 40 different alternative
designs by changing building orientation and window-wall ratio in the building. After
obtaining simulation results with heating and cooling details, the authors constructed
mathematical model for heating, cooling energy use and initial investment by using
simulation results and design alternatives for regression analysis. The regressed model
is optimized by Genetic Algorithm in Matlab environment by minimizing energy

consumption and initial investment on building.

In first two approaches, BIM tool is just used in the initial building modeling to give
input parameters to simulation models; however, in this case, parametric relationship
between building elements are ignored and all parameters are updated in simulation
models or black box model. Ignorance of parametric property of BIM tool can be prone
to geometric update errors. Therefore, in BIM integrated updates, consideration of
parametric relations among building elements provides more accurate energy model
construction. In BIM integrated optimization models, the building is modeled in BIM
tool and exported to simulation tools to calculate building energy performance.
Optimization algorithm evaluates simulated building performance values to generate
new design. The new design parameters are updated in BIM tools and then exported
to simulation tools. This loop continues until termination criteria are satisfied (Asl &
Zarrinmehr 2013). Thus, this provides more flexibility to the resulting energy model
and increases the accuracy of the model thanks to automated parametric update of all
components, which avoids possible errors in manual updates in BIM software and/or

updates in simulation tools.
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Automation in BIM based energy modeling leads up studies on optimization of BIM-
based building performance analysis. In the literature, researchers have worked on
multiple BIM tool and simulation program combinations. Asl and Zarrinmehr (2013)
developed a plug-in to Revit called Revit to Green Building Optimization
(Revit2GBSOpt) that provides automatic link between Revit BIM tool and cloud based
simulation program GBS to optimize building energy use and lightening. Asl et al.
(2014) studied same problem concept with visual programming tool Dynamo, to
update building elements in BIM tools Revit and Vasari, by using Non-dominated
Sorting Genetic Algorithm-11 (NSGA-I1I) for minimizing energy use and maximizing
suitable day lighting level in the resident. They make use of visual programming that
provides a graphical user interface to construct programming relationships without
coding, to ease BIM information use for the analysis. Welle et al. (2011) proposed an
automated BIM based energy analysis methodology called ThermalOpt to calculate
thermal and lightening performance of the buildings in multi-criteria problems.
Similarly, Liu et al.(2015) developed BIM integrated Ecotect based optimization
framework to optimize life cycle performance of office building in terms of lightening
and thermal performance of the building by changing building wall type, window wall

ratio, window glazing properties, and external sun shades.

2.3. Discussion of Literature View

After a general look in energy optimization literature, decision maker needs to evaluate
different energy optimization methods by evaluating the trade-off between simulation
run time, cost-effectiveness of energy optimization model, and accuracy of energy
estimation in the model. In real life, cost effective solutions with high accuracy
achieved in a reasonable time is looked for. On the other hand, the decision maker may
want to evaluate design alternatives in terms of different perspectives such as initial
investment, environmental impact, payback period, energy use, life cycle analysis
among others. Therefore, flexible and rapid energy optimization model is required to

provide extensive data for decision maker in order to evaluate design alternatives in
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broad perspective. In this study, practically applicable and user-friendly energy
optimization methodology is developed based on TS 825 Turkish thermal insulation
standard, commonly used in building design practice. However, the performance
accuracy of existing TS 825 standard is questionable. Yaman (2009) compared
performance of the standard with measured data of campus buildings in 1zmir. The
results show that TS 825 performance deviates 66% from measured data. In any study,
this deviation cannot be tolerated in optimization process. Therefore, energy model is
required to be modified by detecting and strengthening the weaknesses of TS 825
model. The previous studies in literature point out the modification requirement for TS
825 methodology. Kiirekgi et al. (2012) exchanged the climate temperature data
proposed for four degree-day regions by long-term average temperature data for each
city. Secondly, Bektas EKkici (2015) explained that solar radiation data in standard
deviation are underestimated in the standard. Moreover, Aksoy & Bektas Ekici (2013)
changed window geometry to test its performance on energy consumption and it is
detected that window geometry also changes building performance; however, in TS
825 standard, average glazing-frame ratio is used for any window geometry.
Moreover, campus building study underlines the importance of scheduling for
occupancy conditions. However, in TS 825 standard, continuous heating is provided
in contrast to real usage conditions. Therefore, these weaknesses of TS 825
methodology are eliminated in the modified energy model used in this study to

increase energy estimation accuracy.

Three meta-heuristic optimization techniques with different update strategies are
proposed in energy optimization model to provide effective solutions in different case
studies whereas the energy optimization framework is constructed for general use

instead of case specific solutions.
In the second part of this thesis, visual programming based BIM integrated energy

optimization model is constructed to optimize building performance with parametric

relations by avoiding possible errors in dynamic simulation models. BIM integrated
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model provides effective communication and control mechanism to avoid unnecessary

and improper design problems encountered in the early design stage.

This thesis contributes steady state energy analysis literature by improving the
performance of TS 825 energy estimation methodology. Moreover, the developed
flexible energy optimization interface called EnrOpt provides variety in objectives and
design variables in optimization process with multiple meta-heuristics developed for
multi-objective energy optimization problems with different optimization strategy. In
addition, besides Particle Swarm Optimizer and Differential Evolution as commonly
used meta-heuristics in previous studies, a newly developed meta-heuristic, Modified
Cross Entropy Method, is modified for multi-objective optimization problems as a
contribution to literature. Finally, visual programming based BIM integrated energy
optimization framework eliminates the difficulties for BIM based automated energy
analysis for non-programmers in the previous studies and fills the gap in BIM based
life cycle energy optimization for non-programmers by developing Dynamo visual
programming based BIM integrated energy optimization framework with efficient

optimization strategy in an efficient meta-heuristic algorithm.
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CHAPTER 3

ENERGY ESTIMATION

In this chapter, energy estimation methods used in energy optimization model are

introduced.

3.1. Energy Estimation by Modified TS 825 Thermal Insulation Standard

In building energy performance improvement process, the most prominent approach
to develop efficient solution is to construct building energy model that gives accurate
building performance result compared to real life building performance. As the
accuracy of the building performance estimation increases, the optimization process
gives more accurate and reliable energy efficient solutions. In this study, TS825
Standard “Thermal insulation requirements for buildings” as a commonly used energy
estimation method in Turkey is applied for heating energy requirement estimation in
buildings. The weaknesses of the building energy model are strengthened in the
constructed building energy optimization model to provide more reliable solutions.
The details of building energy estimation model are explained in the following

paragraphs.

TS825 Standard “Thermal insulation requirements for buildings” is a steady state
energy estimation methodology based on degree-day approach used as static energy
calculation method. This method is accepted as the main thermal insulation standard
for calculation of heating energy requirement of a building in Turkey since 1998. The
standard TS 825 is modified two times in 2008 and 2013 to incent more energy
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efficient buildings with higher insulation levels in order to decrease heat loss in the
buildings. The methodology in the standard is based on static and average calculation
values. In the standard, climate data, building internal heat gain, solar effects on
building heat gain are examples of calculation with static data. The calculation details

are explained below:

In building energy performance, climate data plays a key role to calculate level of
heating energy requirement and it also shapes the details of TS 825 standard.
According to TS 825 standard, Turkey is divided into degree-day regions according to
similar climate conditions based on heating degree days and monthly average climate
data used in heat loss calculation. According to five degree-day regions figured in
Figure 3.1, the level of heat loss is calculated based on difference between monthly
average outdoor temperature and building internal balance temperature depending on
building types, and construction material properties and thickness values.

»

Deqree-Day Region

e | | | E

Figure 3.1 Degree-day Regions

In TS 825 standard, annual heating energy requirement (Qyear) Of a building is
calculated by summing up the monthly average energy requirements (Qm) with respect
to given building internal (0i) and monthly outdoor (0em) temperature difference,
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building specific heat loss ( H ) and heat gains as a result of internal conditions (¢i)
and solar effect (¢s).

Qm = [H (0| _He,m) M (¢|m + s,m)] t (3.1)
max(0,H @) (32

M, —1-¢ $m+osm

Qear = 2. Qn (3.3)

where 77, represents monthly average utilization factor for gains and t is time in

seconds.

Heat Loss in Buildings:

Heat loss in the building caused by convection, transmission and ventilation processes
is called specific heat loss. Building specific heat loss is calculated by summing up
heat loss by transmission and convection (Hr) and ventilation (H\) regarding the

following formulas:

H=Hy +Hy (3.4)
Hp =S AU +1U, (3.5)
U, =bUg+é (3.6)
> AU=U,A, +UA, +U A +08U A +U A, +050A +050,A, (B7)

where | and Utg represent length and thermal transmittance of thermal bridge . The
heat loss (Equation 3.5) by heat transmission and convection between environments

with different temperatures is calculated by multiplication of thermal transmittance
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and area of the building components with the reduction factor (if exists) given in the
Equation 3.7 such as external wall, window, external door, roof, basement, floor
connect to external environment and the building component neighbor to lower

temperature environment.

Thermal transmittance of any building component is calculated according to following

formulas:
3.8
U - L (38)
Re+X—+R;
I ﬂh,i

where d; and A, are thickness and thermal conductivity values of element i of the

building component and R represents thermal resistance of the component. Internal
and external thermal resistance (Ri, Re) of the building component are obtained from
Table 1 in TS 825 standard.

Heat loss by ventilation is calculated according to ventilation types such as natural and
mechanical ventilation. The ventilation discharge rate is calculated in different
formulas for the ventilation types. In natural ventilation, heat loss calculation depends
on air density (p) and specific heat (c), ventilated building volume (Vh) and ventilation
rate (nn) in the building as seen in Equation 3.9-3.10 where Vh and ny is taken 0.7 in
default. On the other hand, in mechanical ventilation, ventilation discharge is
calculated in more details such that average ventilation rate in working system (Vs)
and additional discharge rate due to air passage (Vx) depending on ventilated volume,
air entrance and existing discharge rate (Vs, Ve) and building openings. Moreover,
time working rate (B) and heat recovery rate (nv) of ventilation system changes heat

loss by ventilation in mechanical ventilation systems.
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Hy=pcV’ (3.9)

Vi :nth (3.10)
Vim =Vo@L=5)+ 8 (V¢ L=my)+Vx) (3.11)
v, = 'h 50 ¢ (3.12)

Vo -V
1+“[SEJ
e Vh n50

where Vo and nso represent ventilating discharge rate when the ventilation system is
non-working and air exchange rate in 50 Pa pressure difference between indoor and

outdoor, e and f are constants depends on building openings and location.
Heat Gains in Buildings

Buildings recover some of their heat losses by their internal heat gains and solar heat
gains. Internal heat gains covers the gain thanks to human metabolism effect, cooking
and lightening and heat released from electronic tools whereas solar radiation on
building windows provides heat gain as solar heat gain. Heat gains in the building are

calculated as follows:

In the building, the maximum value of internal heat building is accepted five times of
building usage area (An) in residential buildings and offices and ten times of building
usage area in high interior heat gain buildings such as food and textile factories. The
building usage area is taken thirty two percent of gross heated volume of the building

as default if it is not specifically calculated.

Solar heat gains ( ¢s ) are calculated according to heat gains from direct solar radiance

from building windows in the following formula:
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#sm = 20m im lim A 319

¢ = Z¢s,m (3.14)
%im =089, o)

where rim, gim and lim represent shading factor, solar transmission factor of glazing

and, solar radiation on vertical surface direction in direction i in m™ month of year,
respectively, and, J, and A; are solar transmission factor for the normal incidence and

total window area in direction i.

TS 825 standard limits maximum allowable annual heating energy requirement for
buildings (Qmax) and upper limit of allowable thermal transmittance level (Uy) for
different building component given in Table 3.1 to provide energy savings and incite
insulation in the buildings. Therefore, in early insulation based building energy design
process, both annual energy requirement level and thermal transmittance level for each
building component should be checked whether the design exceeds the given upper
limits or not. It is not mandatory rule but provides energy savings for the buildings in
its life cycle. Therefore, if any of upper limits given in standard is exceeded, the design
materials should be replaced with insulation materials that has lower heating
conductivity property or insulation thickness of the design materials should be

increased.

Table 3.1. Insulation Limits in TS 825

Degree-Day Region Uu,wall Uu floor Uu,roof Uu,window
1 0.66 0.43 0.66 1.80
2 0.57 0.38 0.57 1.80
3 0.40 0.28 0.43 1.80
4 0.38 0.23 0.38 1.80
5 0.36 0.21 0.36 1.80
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3.2. Energy Estimation in Green Building Studio

Green Building Studio (GBS) is a standalone cloud-based service to perform building
energy simulation and carbon footprint calculation of the buildings modelled in BIM
tools. It is interoperable with Autodesk Revit, Autodesk Vasari, ArchiCAD and
Google SketchUp for exporting energy models to gbXML format to be used as input
in DOE-2 dynamic simulation engine for hourly energy simulation. It provides whole
building energy analysis based on building type geometry and envelope properties,
using detailed climate data, HVAC system values, lightening amounts, and fuels and

electricity as energy resources.

Energy performance of the building model in Revit can be exported to GBS in three
ways. In the first one, building energy performance is calculated conceptually by using
“Conceptual Mass” approach that gives an idea about building performance. In second
approach, energy performance of the building is analysed in detail by using building
elements such as walls, windows, roofs and doors to create Energy Analytical Model
in order to update the model into GBS via gbXML file. In the last approach, the
building model in BIM tool or a third party tool is exported to gbXML and the file is
updated to GBS to run energy performance. Before gbXML exporting, volume by area
and room computation should be well-defined to take precautions against possible

interoperability errors.

Energy settings of the energy model exported into GBS are adjusted according to
common practices in construction companies, ASHRAE standards and Commercial
Building Energy Consumption Survey results. The general standards used in GBS

energy simulation are as follows:
v Schedules: California Non-residential New Construction Baseline Study 1999

v" Envelope thermal characteristics, Lighting Power Density, HVAC efficiency:
ASHRAE 90.1 2007 and ASHRAE 90.2 2007
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v Equipment power density & Domestic Heating Water loads: California 2005
Title 24 Energy Code
v Occupancy density, ventilation: ASHRAE 62.1-2007

In energy settings, 34 different building types with different equipment power density,
lighting power density, outside air flow rate and infiltration rate in multiple operational
schedules can be selected with 30-year average climate data where the location of the
building can be selected via Google Maps among 1.6 million virtual data station. The
weather data includes global horizontal radiation (wh/m?), the amount of energy
striking, the horizontal surface during the hour, direct normal radiation perpendicular
to the sun’s rays (wh/m?), diffuse horizontal radiation (wh/m?), total sky cover, dry
bulb temperature ( °C ), dew point temperature ( °C ), relative humidity ( % ), pressure

( mb), wind direction ( °) and wind speed ( m/s).

Building performance is analysed in GBS web service. The results can be followed via
GBS web service or BIM tool integrated graphs. Energy and carbon based results in

GBS simulation are as follows:

Annual energy cost as a summation of different energy resource costs
30-year life cycle energy cost in terms of Net Present Value
Annual COz emission based on different energy resources’ emission values

Annual energy consumption

NN

Life cycle energy consumption

All the results given above can be obtained in Dynamo based BIM integrated energy
analysis. Therefore, in this study, some of the simulated energy results and their
combinations are used as operational energy performance analysis of the building. By
adding initial performance parameters such as initial investment cost in building life
cycle cost analysis, whole life cycle energy performance of the building will be able
to be calculated
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CHAPTER 4

OPTIMIZATION APPLICATION

In this chapter, implemented optimization methodology is introduced. Firstly, the
procedures in single and multi-objective problems are presented. Next, different
approaches in objective relationships in multi-objective problems are explained in
detail and then the approach used in this study is presented. Finally, Meta-heuristic

techniques applied to multi-objective energy model are discussed.

4.1. Optimization

Optimization is improvement of a process or a product performance. The mathematical
process tries to select the best alternative of available alternative sets. In building life
cycle from design stage to building demolition, all stages of the building life cycle
offer improvements in building performance for the building occupants. In early
design stage, for instance, size of building structural components is optimized to
minimize structural cost or weight (Hasangebi et al. 2013). In construction process,
resource constrained building construction project schedule is optimized to use
resources effectively within given budget and time limitation to avoid from delay
penalties (Bettemir & Sonmez 2012). On the other hand, some optimization problems
such as building energy optimization take all life cycle of the buildings into
consideration. For instance, optimization of building material selection covers initial
design process, construction process, performance in operational stage and
recyclability of the materials in demolition stage of the buildings. The energy

performance of the building components may be optimized to minimize life cycle
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energy use or many other performance parameters such as energy use, emission, and

thermal comfort in building operational phase can be considered all together.

In optimization problems, minimization or maximization of single performance
function consideration is called single optimization problems whereas more than two

function-optimization problems are solved as multi-objective optimization problems.

In optimization problems, each solution alternative used as an input is called design
variable whereas all solution alternatives together are considered as solution space.
The mathematical expression of optimization function as maximization/minimization
problem called as objective function. The output of optimization process is called as
fitness value or fitness values if more than one objective functions are evaluated. The

constraints limit the performance of the objective functions.

Optimization problems can be solved by numerous solution techniques. In general,
these techniques are divided into two parts: classical optimization techniques and
heuristic optimization techniques. Classical optimization techniques such as linear
programming, nonlinear programming, integer programming and Newton-Raphson
method, search the optimal solution using gradient information of objective function(s)
including constraints’ effects. In some problems, however, performance of the
classical optimization techniques is questionable and solution is found in very long
time. Therefore, heuristic optimization techniques are developed to solve optimization
problems whenever classical optimization techniques produce inefficient solution(s).
The heuristics are generally proposed for a specific problem to increase the efficiency
and calculation speed of the problem. Heuristic search does not guarantee optimal
solution for the problem but tries to approximate optimal solution. Shortly, heuristics
can be called unguaranteed shortcut solution to problems. Moreover, more generalized
versions of the heuristics were needed to be proposed to apply heuristic approaches to
different kinds of problems. Meta-heuristic optimization methods are appropriate
solution approaches to apply them to more problems (VoS3 2001).
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In the following sections, single and multi-objective optimization techniques are
expressed mathematically. Types of multi-objective solution approaches are explained
and discussed to determine appropriate solution approach for this thesis. Meta-
heuristic optimization techniques are compared with classical techniques and
illustrated according to different solution methodology. The meta-heuristic techniques

used in this thesis are presented in detail.

4.2. Optimization Problems

The details of a general single and multi-objective optimization problem are given in

the following sections 4.2.1 and 4.2.2.

4.2.1. Single Optimization

Single optimization problem is generally represented as follows:

min/max f(x)

subject to (4.1)

xeS§S

where the design variable set x in solution space vector S try to optimize f , scalar

objective function, subjected to gj and hk constraints.

4.2.2. Multi-objective Optimization
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Multi-objective optimization problem can be formulated in general as follows:

min / max [fl(x),fz(x) ,...,fM(x)] (4.2)

subject to

XxeS

where M>1 and the design variable set x in solution space vector S tries to optimize

multiple objective function , fn, together, subjected to gj and hx constraints.

In multi-objective optimization problems, all generated solution sets are first tested in
terms of feasibility of the solution whether any constraints are violated or not. Then,
solutions are compared with each other to determine dominance relation between
solutions. Any solution set is called dominated solution if performance of at least one
of the other solution sets is better at all objectives than the solution set; otherwise,

solution set is called as non-dominated solution.

Optimal solution in multi-objective optimization is not directly calculated as seen in
single optimization. Instead of optimal solution, all non-dominated solution sets are
kept in special place and these solutions are used to draw an M-dimensional graph to
show their relations which is called Pareto optimality curve. The decision maker takes
a decision and selects a solution set from Pareto curve according to decision making
conditions which depend on weight of the objectives. The Pareto optimal solutions are
expressed as weak and strict Pareto optima. The solution is called weak Pareto optima
if at least one of the objectives of the solution set is equal to compared Pareto optimal
solution and the solution set is dominated in other objectives by the compared Pareto
optimal solution. The solution that dominates all Pareto solutions in any objective(s)

and dominated by same solution in other objective(s) is called strict Pareto optima.
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The relationship between objectives in multi-objective optimization can be formulated

in different views to calculate optimal solution(s) as follows:
Scalarization technique (weighted sum approach)

v

v' e-constraints method
v Goal programming
v

Multi-level programming

Scalarization technique combines all objective functions into a single objective
function by giving weight for all objectives. The mathematical expression of

scalarization technique can be formulated as follows:

min/max Y ym fm (%) (4.3)
subject to

Xym=1

gj(x)zo

hk(x)=0
XeS

where ym represents weight factor for objective function fim,

Alternative optimal solution sets can be generated by changing weight factors for
objective functions. Pareto optimal curve is drawn according to different weight
factors. The solution set in the Pareto optimal curve is introduced as supported solution

whereas the rest of solution sets are considered as unsupported solution sets.
e-constraints method is proposed to focus on one objective by setting targets for all

other objectives (Chankong & Haines 1983). The other objective functions are

formulated as constraints and the selected objective function is tried to be optimized.
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The mathematical expression of e-constraints method for minimization problems are

expressed as follows:

min fg (4.4)
subject to

f () <e, Yhe{l,2..m}{g}

9 (x)=0

hy (x)=0

xeS

where fg is selected objective function to be optimized according to given target limits

en for each objective function fh.

Goal programming is developed to reach specific goal fitness value for each objective
(Charnes et al. 1955). Therefore, the fitness function for goal programming is
formulated regarding the difference between goal objective fitness and solution fitness

as seen below in mathematical expression for given 3-objective problem:
min asl— S+ a32+ Sy, + asz_sz_ + a33+ Sq. (4.5)
subject to
fl(x) +S5_ 2V
f2(x)+52_ =S5, =V
f3(x) =83, <Vj
S115p45p 153, =0
XxeS
where goals are given below:

fl(x)2v : f2(x):v2, f3(x)§v3

where « represents weight factor for slack or surplus variable.
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Multi-level programming is another solution approach to find Pareto optimum solution
sets. In multi-level programming, M objectives are ordered in a hierarchical order.
First, the most important objective is optimized; then, the next one is optimized
according to previous results and the process goes on until all objectives are optimized.
Multi-level programming is preferred whenever hierarchy between objectives can be
constructed. On the other hand, hierarchical optimization may constrain solution sets
at last objectives’ optimization, as it may find infeasible solutions for the objective

functions due to constraint functions.

In this study, fifteen objective functions are evaluated separately and in a combination.
For instance, life cycle cost savings of the building performance simulation is
optimized as single optimization as well as building life cycle cost savings and life
cycle global warming potential savings are both optimized to draw Pareto optimal
curve as bi-objective optimization. More than two objectives such as life cycle cost
savings, life cycle global warming potential savings, and initial investment are
developed as multi-objective optimization problem. Therefore, the optimization
approach should be valid for both single and multi-objective optimization problems.
The scalarization technique may be effective when optimization technique is applied
to bi-objective optimization problem; however, increasing the number of objectives
requires exponential increase in the number of weight factors for the problem for
constructing Pareto optima curve and that is expected to decrease efficiency of
scalarization technique significantly. Combinations of fifteen objective functions bring
too much workload to apply on the problem in efficient way. On the other hand, e-
constraints method is effective solution approach if the solution focuses on specific
objective function and constrains other objective function with pre-determined targets.
However, in this study, generalized version of multi-objective optimization approach
to apply multiple buildings with different sizes is proposed. Therefore, the objective
targets vary depending on building size. The variation in building objective targets
makes e-constraints method inefficient. Similarly, goal programming is also inefficient

solution approach for the given conditions above. Moreover, the number of objective
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functions is expected to reduce performance of multi-level programming whenever
number of objective functions increases in the optimization process. As discussed,
direct use of these four multi-objective optimization solution approaches found to be
inefficient to solve problems in this study. Therefore, a new approach that regards
conditional statements in the problem model is developed. In this new approach, a
prior objective called main objective is determined and solutions are generated
according to this main objective while Pareto optimal solutions are also kept. Focusing
on main objective may weaken the performance of the algorithm due to less
concentration on non-dominated solutions surrounding other optimum designs of other
objectives. The weakness of the solution approach is planned to be eliminated by

solution approach in meta-heuristic algorithm application in the next section.

4.3. Meta-heuristic Optimization Techniques

Meta-heuristics are developed to solve the complex real life optimization problems
where performance of the classical optimization problems is poor on the optimization
problems. To eliminate drawbacks of classical optimization techniques, meta-
heuristics offer a derivative-free solution approach to eliminate problems due to
gradient behavior of the classical methods such as multiple and shark peaks or
discontinuous behavior of objective functions that causes sudden change in derivative
value (Eskandar et al. 2012). Moreover, in gradient based solution approaches, the
performance of the optimization techniques depends on the initial points when
multiple local optima values exist in objectives functions. Meta-heuristics are expected
to prevent from tackling local optima values by using derivative-free solution
approaches applied to discrete, combinatorial and continuous optimization problems.
These techniques do not guarantee to reach optimal solutions; however, they offer near
optimal solutions. The meta-heuristics are efficient solution techniques when the
classical optimization problems cannot reach optimal solution in efficient time. In
highly complex problems, they reduce evaluation time by providing near optimal

solutions.

52



Meta-heuristic optimization algorithms are developed by imitating biological, physical
or social processes or behaviors. The most known meta-heuristics, Genetic Algorithm
(GA) and Differential Evolution (DE) are developed by imitating Darwin’s
Evolutionary Law of Natural Selection. Particle Swarm Optimizer (PSO), Ant Colony
Optimization, Artificial Bee Colony, Cuckoo Search are proposed as products of
inspiration of behaviors of animals such as birds, ants, bees and cuckoos respectively
(Goldberg 1989; Holland 1992; Storn & Price 1997; Kennedy & Eberhart 1995;
Dorigo & Stiitzle 2004; Karaboga & Basturk 2007; Yang & Deb 2009). Simulated
Annealing (SA), Gravitational Search Algorithm (GSA), Water Cycle Algorithm
(WCA) and Big Bang Big Crunch (BB-BC) algorithms are developed as simulation of
annealing of metals, Newtonian gravity law, water cycle in the Earth and theory of the
birth of the universe respectively(Kirkpatrick et al. 1983; Rashedi et al. 2009; Eskandar
et al. 2012; Erol & Eksin 2006). Brainstorming Algorithm (BA), League
Championship Algorithm and Social Emotional Optimization Algorithm (SEOA) are
algorithm examples of social processes or behaviors depending on brainstorming of
people, football games and social status of people (Shi 2011; Kashan 2009; Xu et al.
2010).

In meta-heuristic algorithms, constraints of the problem require a modification on the
objective function to reflect the constraints’ effect on objective function. This
constraint handling strategy provides constrained to unconstrained transformation in
the problem formulation (Coello Coello 2002). Thus, modified objective functions are
directly evaluated in the optimization process. The most known constraint handling
strategies are dead penalty and penalty function. In death penalty strategy, feasibility
of solution is tested for the constraints. The solution is eliminated directly if any
constraints are violated. In the second approach, instead of direct elimination,
constraint violation is penalized and added to objective function to worsen fitness
value of the solution. Penalty strategies vary depending on fitness value result (positive

or negative) and minimization or maximization of objective function. In this study,
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constraint violating solutions are eliminated by multiplying the objective function with

infinitesimally large number.

In multi-objective optimization problems, contrast to single optimization problems, all
non-dominated fitness values and position vectors are kept as best fitness and position
vector; however, in position update procedure and fitness value calculation of each

member, main objective function is taken as reference.

The general procedure in meta-heuristic optimization algorithm can be explained in
the following order. First, the algorithm is initialized by random distribution. The
distribution type may change depending on the algorithm; however, in general, mostly
uniform random distribution between upper and lower limits of design variables are
preferred for efficient initialization. Then, the fitness function value for each
population member is calculated. Fitness value and solution vector which is called
position vector, are kept in memory if position vector of the population member uses
its or others” memories for their best fitness value and position vector called local best
fitness and local best position vector to update its position vector. Then, the fitness
values are sorted and best fitness value and position vector are kept in a special place.
The most critical step which differentiates algorithms is the position vector update
stage. After position vector is updated, the fitness value for each member is calculated
and compared with local best fitness values to update local fitness best and local best
position vector for population member. The best local best fitness value is assigned as
best fitness and same is done for best position vector. Then, position vector for each
member is updated and the algorithm repeats the same steps until the termination

criterion is met.

The position update procedure influences the performance of meta-heuristic algorithm
significantly as underlined in previous part. The position update procedure or strategy
for any algorithm is constructed on the balanced trade-off between exploration

(diversification) and exploitation (intensification) in solution search. In exploration
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search, the algorithm tries to explore new solution in global solution space whereas
new solution is searched around global best solution in exploitation stage. In general,
the algorithm focuses more on exploration search in early iteration; however, as
iteration number increases, the algorithm looks more for new solution around the best
solution encountered up to that time. The algorithm performance is expected to
decrease if only one of these two search strategies is focused on much more. The
exploration causes loss of concentration around best solution whereas much more
focus on exploitation search results in pre-mature convergence and trap in local
optimal solutions. Therefore, efficient trade-off between exploitation and exploration
should be provided to improve algorithm performance.

Performance of meta-heuristic algorithms changes depending on the optimization
problems. Therefore, saying that algorithm A performs better than algorithm B by
comparing one or two optimization problems will be a subjective decision as
performance ranking of algorithms may change depending on optimization problems.
In meta-heuristics, position vector update procedures mostly determine the
performance of the algorithm. The random number used in position vector updates
provides variety in solutions. Therefore, in contrast to classical optimization
techniques, meta-heuristics may find different best fitness values at each optimization
run. Although more than fifty meta-heuristic algorithms exist, in general, the position
vector update procedures for the algorithms can be categorized into three approaches.
In the first approach, only local best position vectors of the population are used in
optimization procedure. In other words, new position vector of the swarm is located
with respect to combination of local best position vector of the population member,
local position vector of other population members and population global best position
in multiple variation. In the second approach, besides population’s local best position
vector and global best position vector, position vectors of the population in the
previous iteration are used to update population position vector. In the last approach,
distributions such as Normal Distribution and Exponential Distribution are used to

update position vectors. In the determination of distribution parameters, the latest
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position vector of the population, local best position vector, global best position vector,
elite position vector that is selected among the latest position vectors or local best

position vector are used.

In this study, a generalized optimization model that can be applied to optimize
buildings in different size and different material combinations is planned to be
constructed. The performance accuracy of single optimization algorithm is expected
to vary depending on optimization case studies. Therefore, in this study, three different
algorithms with different position update strategies are constructed to obtain more
accurate optimization performance in different case studies. Meta-heuristic algorithms
are classified according to their position update strategies as seen in Table 4.1.
Performance of each optimization algorithms are tested with discrete and continuous
unconstrained test problems and constrained engineering problems (Liang et al. 2006;
Sadollah et al. 2013). Performance of each algorithm is compared with each other
within its group. According to performance results, Differential Evolution, Particle
Swarm Optimizer, and Modified Cross Entropy Method are selected to be applied to
energy optimization model. The details of optimization algorithms are explained in the

following sections.
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4.3.2. Differential Evolution

Differential Evolution is an evolutionary optimization algorithm based on Darwin’s
Law of Natural Selection. Differential Evolution updates position vector of each
individual called agent by crossover, mutation and selection stages (Storn & Price
1997). In crossover stage, it is decided whether position value of agent i in dimension
d is kept or changed. In mutation stage, new position vector is constructed. In selection
stage, performance of local fitness best of agent i is compared with newly constructed
vector’s fitness and the one with better fitness is selected. The details of Differential
Evolution are introduced step by step below:

Step 1: Initialize position vector for all agents by random distribution according to

Equation 4.6. and set iteration t=0.

d (4.6)

d d d :
X (1) =Xin ”*(Xmax = Xnmin ) ford=12,.,m and i=1N

where xi(t) represents i individual’s position on the d"" design variable at iteration t
within upper and lower boundary limits, Xma® and Xmin® and r is uniform random

number between 0 and 1.
Step 2: Evaluate objective function fitness value(s) f, (X (t))

Step 3: Construct donor position vector for all agents by different mutation strategies.

The alternative mutation strategies are formulated below:
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i 4D =1 0+ Fox 0 -, ¢ 0) (4.7)

i+ = 0+ F o 0-xc ¢ ) (4.8)
yid (t+1) = p9 9+ F(xrld ) - erGI () (4.9)
i ) =2 00+ Foxe, S 0 xS )+ FOxr, 0 -3 @) (4.10)
yid t+2) =x9 1)+ F(xrld ) - xr3d )+ F(xr4d () - erd ) (4.11)
v, t+1) = 094 F (xrld (t) - szd () +F (Xr4d ) - Xr5d ®) (4.12)

(4.13)

d d d d
vl ) =x" +F ¥ -x% (1)
where y is donor position vector constructed with respect to random position vector of

population agents using control parameter F.

In this study, two different position update strategies are proposed with respect to
optimization strategy of the decision maker. If the decision maker wants to focus more
on the main objective and generate Pareto optimal solution around optimum main
objective faster, the position vector of the population is updated according to Equation
3.6. Whereas, the position vector is updated according to Equation 3.14 as global best
position for agent i is selected randomly from Pareto optimal solution sets if the
decision maker tries to collect all Pareto optimal solutions to gather data for detailed

post-optimization evaluation.

Step 4. Construct trial position vector. Select donor position vector if unit random
number is less than the predetermined crossover rate, C, ; otherwise, select existing
position vector for the agent i.
udt+n= v+  ifr. <c
i (t+1)=y;" (t+1) Ty <ty

xid ) otherwise

(4.14)

59



Step 5: Select the position vector with better fitness value among previous position

vectors and trial position vectors of each agent.

(D) = uyt+D) i (ui(0) < 04 (1) (4.15)

X; () otherwise

Step 6: In single optimization problems, sort local best fitness values of the population.
Select position vector of the individual with minimum local fitness value as the best
position vector of the population, p% In multi-objective optimization problems, set
initial individual as best position at t=0, compare objective fitness values with best
fitness values. Eliminate position vector of any individual in best solution sets if it is
dominated by position vector of individual i. Add into i individual position vector if

its objective fitness values cannot be dominated by the best objective fitness sets.
Step 7: Repeat steps 2-6 until termination criterion is met.

In original DE, global best position vector is updated at each function evaluation and
this cause pre-mature converges in the problems. Therefore, to prevent from pre-
mature converges, especially in single optimization in this thesis; the global best

position vector is updated at the end of each iteration.

4.3.1. Particle Swarm Optimizer

Particle Swarm Optimizer is a population based meta-heuristic optimization algorithm
inspired from social behavior of animals like fish schooling, insect swarming, and bird
flocking (Kennedy & Eberhart 1995). PSO takes both individual memory of all swarm
members and swarm knowledge together. Besides position vector for each individual,
velocity vector that is based on previous position vector, local best position vector, and

best position vector is also taken into consideration to update position vector of each
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individual. The details of Particle Swarm Optimizer for minimization problems are

outlined as follows:

Step 1: Initialize position and velocity of each particle according to Equation 4.6 and
4.16. Set iteration t=0.

d (4.16)

vid(t)=xmind+r*(xmax - xmind) for d =1,2,..,m and i=1:N

where v represents velocity vector.
Step 2: Evaluate objective function fitness value(s) f,( (t)).

Step 3: Update local best position for all swarm particles. If iteration is equal to O,
assign position vector of individual as local best position.

|Dil = x50  f04M) < fl(pil) (4.17)

piI otherwise

where pi' is representation of i'" particle’s local best position.
Step 4: Apply Step 6 in detailed explanation of Differential Evolution.

Step 5: Update velocity and position vector for all particles.

Vld (t-l-].): W*Vld (t)_l_clrl( pll,d _de (t))'l'czrz(pl o _de (t)) (4]_8)

4.19
d( (4.19)

x4 (t+2)=x.9 1)+ (41
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where w represents inertia weight of particle to control exploration in the algorithm
whereas c1 and c. are constant trust parameters that may change to improve algorithm
performance. When focusing on main objective optimization, global best position
vector is used in update process whereas in focusing the Pareto optimal strategy, the
global best position vector is randomly selected among existing Pareto optimal

solutions updated in Step 4.

Step 6: Repeat steps 2-5 until termination criterion is met.

4.3.3. Modified Cross Entropy Method (MCEM)

Modified Cross Entropy Method is an improved version of the distribution algorithm,
Cross Entropy Method (CEM) proposed by Altun and Pekcan (2015). MCEM provides
balance between exploration and exploitation stages to provide efficient convergence
speed and solution result. Compared to BB-BC, another distribution algorithm as a
special form of Modified Cross Entropy, MCEM provides higher convergence speed.
In Modified Cross Entropy Method, in order to optimize single optimization problems,
initial position vectors for each individual are randomly distributed and evaluated in
terms of fitness. Then, all individuals are sorted in terms of its objective fitness values
and elite samples are categorized for mean and standard deviation parameters of
normal distribution. The position vector for each individual is updated according to
normal random distribution. In multi-objective optimization problems, random
selection of non-dominated solutions are considered as mean value for each individual
and standard deviation parameters are calculated as done in single optimization. The

step by step explanation of MCEM is detailed as follows:

Step 1: Initially randomly distribute design variable according to Equation 3.6 and set

iteration t=0.

Step 2: Evaluate objective function fitness value(s) f_(x;(t))
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Step 3: Sort objective fitness values and determine position vector set for mean and
standard deviation parameters’ calculation. In focus on main objective strategy, mean

and standard deviation parameters of distribution are updated as follows:

Nmean 4 (4.20)
L%
,ud('H—l): si=1
Nmean
. : — N Szt d A (4.21)
td (u'™ ()= x5 (t . Si
od(t+1)= S e f\l) 5'1( ) where '@ (tJrl):—S':l\ll
si=1 std std

where u and ¢ are mean and standard deviation of elite samples whereas Nmean and
Nsta represent number of elite individuals for mean and standard deviation. In focus on
Pareto optimal strategy, mean vector of the distribution is calculated according to
position vector of randomly selected non-dominated solutions updated in Step 6 in DE
whereas standard deviation vector is calculated by using same formulation in the

previous strategy.
Step 4: Apply Step 6 in detailed explanation of Differential Evolution.

Step 5: Update position vector for each individual. In single optimization, mean value
for the distribution is calculated in Step 3; whereas in multi-objective optimization, a
random selected non-dominated position vector from Step 4 is used to update position

vector.

xA (t40) = 8 (t+2)+randn() o9 (t+1) (4.22)

where randn () is unit random normal distribution with N(0,1).

Step 6: Repeat steps 2-6 until termination criterion is met.
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CHAPTER 5

ENERGY OPTIMIZATION MODELS

In this chapter, optimization methodology and energy models used in the developed
energy optimization models are introduced. Meta-heuristic techniques applied to
multi-objective energy model are presented in detail. The energy models constructed

for steady state and BIM integrated energy estimations are explained.

5.1. EnrOpt: Steady-State Life Cycle Energy Performance Optimization

Framework

Energy Optimizer is Excel integrated Matlab based graphic user interface to optimize
building energy performance. In the interface, meta-heuristic optimization techniques
are applied to a modified TS 825 standard based energy model for improving the
building performance and getting the Pareto optimal design solutions for decision
makers in the early design stage of the building. Energy performance of the building
is analyzed comparatively for each design alternative solution set by taking initial
energy based design as reference building design and a datum point in quantitative
calculations. The general perspective of the interface model is summarized below
while the prominent points in summarization of the interface are explained in detail in

the following sections one by one.
v The reference building design parameters are selected initially in commonly

used tool Microsoft Excel to provide an easy and practical application for the

users.
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The energy optimization model can be applied to any building types available
in TS 825 standard.

The building energy estimation model based on TS 825 standard is modified
by adding alternative climate data and operational schedule. Moreover,
heating degree-day methodology and window system heat loss calculation
methodology is elaborated to calculate annual heating energy requirement

more accurately.

Meta-heuristic optimization techniques are applied to interact with the energy
model efficiently and provide flexibility in the interface by applying different
techniques on various buildings. Therefore, performance of optimization
model in more complex building design can be improved by applying

alternative meta-heuristics with different position update strategies.

The optimization model can be applied to both single objective and multi-
objective building energy performance analysis. In single objective problem,
due to the nature of the problem, the algorithm tries to optimize the objective
fitness to find single optimum fitness value. In multi-objective problems, the
objectives are ranked according to their priority for the decision maker and the
most important one is selected as the main objective in the optimization

process.

In EnrOpt interface, two different optimization strategies, focus on main
objective optimization and focus on Pareto optimal solutions, are available to
apply in the building performance optimization based on decision maker

expectations.
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v" In EnrOpt interface, the energy optimization model calculates building
performance for a specific period, shortly called semi-life cycle performance
analysis. Therefore, in each design solution, cost and environmental impact
based trade-offs are considered between initial design cost and environmental
performance values, and operational energy cost and environmental impact

values for this analysis period.

v Building performance is analyzed based on cost-effective, payback period
minimization and environmental impact minimization based objectives that
are listed below. In energy optimization model, any of the listed fifteen
objectives can be used to generate Pareto optimal solutions or single optimum
design solution for the selected objective can be generated. The objectives in

EnrOpt energy optimization model are as follows:

Life cycle cost savings

Life cycle GWP savings

Initial investment cost

Energy cost payback period
Emission payback period

Life cycle air acidification savings
Life cycle water acidification savings

Life cycle ecotoxicity savings

© 0 N o g B~ w DN PE

Life cycle air eutrophication savings

=
o

. Life cycle water eutrophication savings

-
[N

. Life cycle air human health particulate savings

[EY
N

. Life cycle human toxicity, cancer savings

=
w

. Life cycle human toxicity, non-cancer savings

[N
s

. Life cycle ozone depletion savings

[EY
(S}

. Life cycle smog air savings
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v"In energy optimization model, wall types, insulation material and thickness
combination on different building components such as wall insulation, roof
insulation, floor and foundation insulation, and window systems with different
frame and glazing types are generated as design alternatives to find Pareto

optimal solutions.

v" The commonly used insulation materials in Turkish insulation applications
such as mineral wools like glass wool and rock wool, expanded polystyrene
(EPS) and extruded polystyrene (XPS) are applied as design alternatives in
optimization application. Moreover, horizontal coring and vertically
perforated brick walls with different sizes and autoclaved aerated concrete in

different thickness alternatives are used as wall type design alternatives.

v"In energy optimization model, natural gas, hard coal, lignite, fuel oil, fuelwood
and electricity are offered as energy resource alternatives for heating the
buildings. The user can select one of the resources or multiple energy

resources with their associated share in heating process.

v In theory, each building element can be insulated with different insulation
materials and thickness combinations; however, it is not applicable in practice.
Therefore, building elements with same function should be designed with
same design alternative to get more realistic results. Therefore, 23 design
variables explained in detail in section 5.1.5 are generated for wall types,
insulations, and window systems. Various design alternatives are generated
for each design variables whereas the number of design alternatives for each
design variable can be limited in the interface depending on decision maker’s

expectation.

v"In optimization model, cost data are obtained from 2015 Unit Price Database

of Republic of Turkey, Ministry of Environment and Urbanization, whereas
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environmental data are extracted from PE INTERNATIONAL 2012 and Eco-
invent 2012 databases via Gabi 6.0 software (Ministry of Environment and
Urbanisation 2015;Ecolnvent Centre 2012).

5.1.1. Modifications in Energy Model

Accuracy of energy estimation is very important in building performance evaluation
and reliable decision making. Therefore, the weaknesses of the TS 825 standard based
steady state energy model are overcome with additional detailed information and
changes made in the methodology aiming to increase accuracy of the model for getting
more reliable results. The modified parts of the energy model and the reasons for the

modifications are explained below:

v In TS 825 standard, five different monthly climate data are available to
calculate required energy amount according to degree-day region
categorization. Therefore, same two buildings in two different cities in the
same degree-day region with different real climate data need same amount of
annual heating energy according to energy estimation methodology in TS 825
standard contrast to reality. Hence, city specific climate data are generated
from statistics to make the energy analysis more realistic. Hence, two different
climate data types such as long-term monthly average climate data and recent
short-term climate data are added into energy model. According to Turkish
State Meteorological State data (2015), long-term climate data includes fifty
five year monthly average temperature data for the years 1950-2014; whereas
recent short-term climate data covers monthly average heating degree-days and
number of days heating is required for the building that are used to determine
monthly adjusted heating degree days for the building types for the years 2007-
2014,
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v The most important building components in the building heat loss are walls

W

and windows (Dasdemir 2014). According to TS 825 standard, thermal
transmittance of the window system is calculated with respect to frame material
and glazing type according to given standard table taken from TS 2164
Principles for the Preparation of the Projects of the Central Heating Systems;
however, geometric details of frame and glazing system in the window have
not been considered yet. Therefore, in the energy optimization model, thermal
transmittance calculation methodology is modified by including shape and
width parameters of window frames and glazing system in the calculation
formula based on ISO 10077-1:2006 standard. Dividers with same material
properties as window frame are added to adjust uncommonly used window
shapes. Hence, thermal transmittance of window system is determined by the

following formula:

DAU Y AU+ Ly, (5.1)
DAFA

w,= 000 U, 232

0.05 U, <2.27&32>U, >20 (5-2)
0.06 U,>227&32>U, >20

006 U, <227& U <20

008 U, >227& U, <20

where Uw, Ugand Us represent thermal transmittance of window system,
window glazing system, and window frame respectively. Wg and Iq are linear
thermal transmittance due to the combined thermal effects of glazing, spacer
and frame, and perimeter length of window glazing. In energy optimization
model, area and perimeter values for each window shape are entered in Excel
sheet and the optimization code directly changes thermal transmittance of
window system by changing material properties while keeping geometric

details of windows system constant.
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v' In TS 825 standard, for solar heat gain calculation, solar radiation values on
vertical surface direction in each main direction are valid for any location in
Turkey; however, detailed annual solar radiation analysis clears that solar
radiation distribution changes depending on the location of the building.
Therefore, by taking average solar radiation distribution as reference, an
adjustment solar radiation coefficient is generated by dividing annual solar
radiation of city A to Turkey’s annual solar radiation mean. Therefore, solar
radiation on different cities is differentiated to get more reliable results.
Moreover, in the standard, solar transmission factor for the normal incidence
values is given for limited glazing types. In the energy optimization model, by
using Isicam data set (2015), solar transmission factor for the normal incidence
values for each glazing alternatives are set. Furthermore, shading property of
the glazing alternatives can also be re-evaluated; however, in TS 825 standard,
building surroundings are evaluated to determine glazing shading factor.
Therefore, shading factor of glazing system according to Isicam data set is

ignored.

v One of the most important drawbacks in TS 825 standard is heating operational
schedule in the building. The standard assumes continuous heating schedule
based on indoor and outdoor monthly temperature difference. Therefore,
continuous heating schedule decreases the accuracy of the energy estimation
in the building by resulting in higher energy estimation than measured one.
Thus, alternative schedule programs are generated to deal with energy
overestimation. The building does not need any heating requirement if outdoor
average temperature is higher than 15°C which is used as reference temperature
in heating degree-day calculations (Eurostat, 2015). In this study, it is assumed
that building is heated up to 15 °C when it is out of operational schedule in a
day. The operational schedule based on number of heating degree-day (HDD)
is calculated by the formula given in Equation 5.3 as follows:
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HDDy, =a max(0,6; - 6,) +(1-a) max(0,15-6,) if g, <15 °C (5.3)
0 otherwise

where HDDn, and a represent number of heating degree-day in month m and
operational schedule time rate in terms of percentage (0,1). In recent short-term
climate data evaluation, all the calculations are done same as long-term one;
however, HDD values for each month are given by taking internal balance
temperature as 18 °C .Therefore, depending on building type , HDD values are
adjusted using both pure HDD values and number of days with less than 15 °C.

Then, the same procedure is followed with long-term climate data.

v" In this energy optimization model, building wall is insulated as external
thermal sheathing. TS 825 claims that thermal bridges in buildings with
external thermal sheathing are neglected. In this model, effect of thermal bridge

Is taken as zero, even in reference building design.

5.1.2. Objectives

In this study, it is aimed at developing a flexible energy modeling interface to solve
any combination of objectives together depending on decision maker’s expectations.
Therefore, multiple objectives constructed on time, cost and environmental issues are
evaluated within this interface. The decision maker selects main objective and other
objectives to generate Pareto optimal solutions for providing alternatives for post-
evaluation in decision making process. Hence, in this study, fifteen objectives
explained in detail below are used in optimization process. The objectives in the energy

optimization model and their mathematical expressions are as follows:

Life cycle cost savings considers trade-offs between initial investment cost to improve

building energy performance and cost savings due to increase in the building energy
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efficiency/performance. It provides life-cycle thinking for the decision maker in the
early design stage to change the idea of minimizing initial investment cost as short-
term profit goal while evaluating design alternatives. In this study, analysis period of
the building is determined by the decision maker; therefore, the decision maker can
evaluate the performance of the building for different time periods to make a better
evaluation. Net Present Value (NPV) approach is used by adding time value of the
money in the optimization process to make the evaluation more comparative and clear.
In the calculations, the performance of the building is evaluated with respect to

reference building. The mathematical expression of life cycle cost savings are as

follows:
N (QR _Qd)(z pka)(1+ iei)n
- (5.4)
LCCS, =1C,—IC,+)] — in Turkish Lira
) @+i)

where ICR and Qr represent comparative initial investment and amount of energy
need for the reference building whereas LCCSq , 1Cq and Qq symbolize lifecycle cost
savings for the design solution compared to reference building, comparative initial
investment and amount of energy need for the designed building, respectively. In NPV
analysis, energy inflation rate (iei) and interest rate (ii) are used to calculate discounted
price of energy resource k (pk) for the next years by adding time value of money into
optimization process whereas it is multiplied by energy resource use percentage (W)
from all energy resources to calculate annual discounted energy price for any year. In
EnrOpt interface, energy inflation rate and interest rate are taken 8% and 9.5%,
respectively (Deposite Rates 2015; Turkish Statistics 2015). Energy inflation rate is
determined by examining last 3-years and 5-years change in energy prices according
to Turkish Statistics in terms of Turkish Lira. Although the country imports nearly
seventy five percent of its energy needs and U.S. Dollar is mostly used in energy trade,
as all the design costs are determined in terms of Turkish Lira, energy prices and

energy inflation rate are considered based on change in energy cost in Turkish Lira.
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Global warming potential measures heat amount trapped by greenhouse gases in the
atmosphere to describe the impact of greenhouse gases on global warming for different
time periods. In this study, life cycle global warming potential (GWP) savings
measures how much kg equivalent CO> GWP can be reduced by changing design
alternatives in the given analysis period. Similar to cost analysis, in GWP analysis,
GWP value of initial design alternatives have a trade-off with relative GWP value due
to change in annual energy needs between designed building and reference building.
In this study, time value of GWP is also taken into consideration by taking it 3% to
underline the importance of taking precautions to reduce GWP in early design stage
(Marshall & Kelly 2010). The formula of life cycle GWP savings is given in Equation

5.5 as follows:
N (QR _Qd)(ZGWPka) (5_5)
LCES, = IE; —IE, + ) —— kg equivalent CO,
n=1 (1+ IGWP)

LCES, IE and GWP represent life cycle global warming savings, initial relative global
warming value of design alternatives and global warming potential of energy resource

k for unit energy amount, respectively.

Initial investment cost (11C) measures how much extra investment is required to change

initial reference building design. I11C is formulated as follows:

lIC, = IE, - IE; kg equivalent CO; (5.6)

Energy cost payback period presents duration to recover relative initial investment by
reducing annual energy need in designed building compared to one in the referenced
building. If the initial investment on the designed building is less than the one in the

referenced building, the payback period in the building is assigned zero. Payback
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period is calculated by adding cumulative discounted energy cost to investment for
each year until the sign of NPV changes. The payback period is determined by
interpolation between two following years where the sign of NPV changes in between.

The general formula of energy payback period time is as follows:

Ne (Qd _QR)(Z pka)(1+iei)n
IC,—1C, =) (1k+ T

n=1

(5.7)

where nc presents energy cost payback period.

Emission payback period is time period for recovery of initial extra emission coming
from difference between designed building and reference building by relative energy
need reduction in the designed building. In emission payback period calculation,
similar formula in energy payback period calculation is used. The formula of emission

payback period is explained in Equation 5.8 below:

Ne (Qd _QR)(ZGWPka)
IE,—1E, =) :

n=1 (1+ iGWP)n

(5.8)

where ne presents emission payback period.

The rest of objectives in this study are environmental impact related objectives. They

are explained in detail in Table 5.1 and formulated in Equations 5.9-5.18.
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5.1.3. Design Alternatives

In building energy performance based design, insulation property of the design
component plays a key role to reduce heat loss in the building. Therefore, decision
maker selects appropriate design materials to construct energy efficient solutions. In
this study, wall types, insulation materials with different thickness combinations, and
window systems with different frame-glazing type combination are presented as
design alternatives in energy optimization process to generate Pareto optimal energy
efficient solutions with respect to selected objectives. The details of all design

alternatives by giving priority to insulation material are explained below.

Insulation materials can be used in new building design or renovation of existing
building in different forms such as as batt, roll, foam, board depending on intended use
regarding fire protection, material strength, resistance to vapor as per given details in
Table 5.2 . In Turkey, mineral wools such as rock wool, glass wool, expanded
polystyrene (EPS), and extruded polystyrene (XPS) are commonly used insulation
materials for insulation applications in buildings. In building insulation design, the
right insulation material with right thickness should be selected to provide energy-
efficient and life cycle existing solution. For instance, in building foundation, if the
compressive strength of the materials is insufficient to resist on the carried load,
insulation material may lose its insulation property faster than intended period due to
smash. Therefore, in insulation design, the prior objective should have insulation-
effectiveness; however, other properties such as reaction to fire or compressive

strength should be also considered in material selection as constraints.

Mineral wool comprises glass wool and rock wool which are produced as boards, mats
and filling materials. The main raw materials for rock wool manufacturing are basalt,
dolomite and limestone; whereas the glass wool is produced from sand, glass cullets,
soda ash and limestone. For these mineral wools, the raw materials are melted at

1500°C as spun fibers that are in a bind together to improve wool properties. The
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produced mineral wool is then cured at about 200-250°C and cut in the required size

and shape. Thermal conductivity of both rock wool and glass wool is 0.04.

Table 5.2. Detailed Information of Most Common Insulation Materials in Turkey

Mineral Wools Organic Foam
Glass wool Rock wool EPS XPS
Density(kg/mq) 15-100 40-150 15-35 25-30
Thermal conductivity | 0.035-0.050 0.035-0.050 0.035-0.040 0.030-0.040
factor A (W/Mk)
Resistance to vapor <=1 <=1 20-100 80-250
diffusion factor
Reaction to fire Very good Very good Good Good
Compressive strength 0.5-500 0.5-500 30-500 100-1000
(kPa)
wall, floor, wall, floor, wall, floor, wall, floor, roof,
Where to use ceiling, roof ceiling, roof ceiling, roof, foundation
expansion joints
fitted between | fitted between glued ,nailed glued ,nailed
joists, glued, joists, glued,
How to install nailed nailed
Reuse/recyclability Recyclable; Recyclable; but Recyclable Recyclable
but not not practical
practical
Waste disposal No special No special No special Long bio-
burden burden burden persistence

EPS is composed of small spheres of polystyrene that are expanded by pentane (CsH12)
with water vapor heat. The expanded beads are cooled, and air diffuses gradually into
the pores and replaces residual condensed vapor and pentane gas. Then, the beads are
molded in the intended shape and cut in the pre-determined size. Thermal conductivity
of expanded polystyrene depends on EPS density (pa). In this study, thermal
conductivity values of EPS with various densities such as 16 kg/ms, 20 kg/ms, 30
kg/ms and 35 kg/ms are calculated according to EPS thermal conductivity prediction
formula of European Manufacturers of Expanded Polystyrene (EUMEPS,2014 ) given
in Equation 5.19.
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=0.027174+5.174310° p, + 0.173606 (5.19)

Pa

A

pred

where A pred represents predicted EPS thermal conductivity.

XPS is produced from melted polystyrene by adding expansion gas such as HFC, CO>
or CeH12 where polystyrene mass is extruded through a nozzle with pressure release
that provides mass expansion. XPS is produced in continuous lengths and cut after
cooling process. Thermal conductivity of extruded polystyrene varies between 0.03
and 0.04. In this study, three different thermal conductivity values such as 0.03, 0.035

and 0.04 are used in the optimization process.

In wall type selection, brick walls and autoclaved aerated concrete walls are offered in
common practice. All possible brick walls and AAC wall alternatives are listed
according to 2015 Unit Price Database of Republic of Turkey, Ministry of
Environment and Urbanization. Thermal resistance of each wall alternative is adjusted

according to material list of TS 825 standard.

In window system design, different frame and glazing combinations are created to
evaluate more alternatives for better design. Types of frame and glazing systems are
determined according to given alternatives in TS 825 standard. Beside this, glazing
alternatives are diversified by adding different glazing type combination with different
thickness level and different gases such as air and argon between two glasses. Thermal
transmittance value of generated glazing types are taken from Isicam database.

In the determination of design alternative materials and their thickness values,
availability of cost and environmental impact based data draw the limits for design
alternatives. The cost of each design alternatives is determined according to 2015 Unit
Price Database of Republic of Turkey, Ministry of Environment and Urbanization

whereas environmental data are extracted from PE 2012 and Eco-invent 2012
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databases via Gabi 6.0 software. The general procedure applied in this study for design

alternative generation using these data is as follows:

v Design alternative materials in insulation application of any building
component should be used or not is determined according to pre-determined
rule whether the insulation material is used in the insulation of that building
component in the Unit Price Database. Moreover, all possible wall types in the

database are used in the wall design process.

v" Some thickness levels of insulation materials decided to be used in design are
given in Unit Price Database; however, alternative thickness values are
generated to vary building design by interpolation for intermediate thickness
values and extrapolation for the thickness alternatives that is higher than

maximum thickness levels in Unit Price Database.

v"In the energy optimization model, insulation thickness alternatives are initially
applied to reference building components to eliminate some of alternatives due
to causing more heat loss than recommended thermal transmittance value in
Table 3.1. In building walls, building wall type is assumed to be fixed

according to reference building in elimination process.

v" Insulation design in any building component is done with respect to given
insulation and material details in Unit Price Database. Therefore, all
complementary materials for insulation application for different building
components and waste percent of insulation materials are determined based on

this database.
v In this study, all cost and environmental impact based analyses are done

comparatively. Therefore, same material applied in all alternative insulation

designs is not taken into consideration.
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v Some of the missing data are supported by complementary data. For instance,
environmental impact values for natural gas used in Turkey are not available
in database whereas same data is available for Greece, Hungary and European
Union. Therefore, missing data is completed by complementary data from the
given alternative above in the order of Greece, Hungary and European Union
regarding geographical conditions. All of energy resource alternatives are

determined according to this procedure.

v Environmental performance of all insulation materials in Turkey is not
available in Gabi 6.0 database. Therefore, existing performance values in the
database are taken into consideration for design alternatives. Similar to energy
resources, in insulation alternatives, missing environmental impact data of
insulation materials are completed with respect to existing database. For
instance, environmental performance of EPS 16 kg/ms is estimated by
interpolation of environmental performance of EPS 15 kg/msand EPS 20 kg/ms
whereas environmental performance of EPS 35 kg/ms is estimated by
extrapolation of environmental performance of EPS 25 kg/ms and EPS 30
kg/ms.

v" Environmental performances of insulation and other design alternatives are
calculated according to life cycle of materials. However, environmental
performance impact due to material logistics is ignored, because a
comprehensive database in detail is required for eighty one cities with various
materials which needs to include material importing location and distance to

local supplier.

v"In the evaluation of environmental performance of brick walls , in real life, the
change in the surface area of brick wall changes energy requirement and brick
environmental performance; however, in this study, only the weight of the

brick is evaluated in the environmental performance calculations due to lack of
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data in the database. Similarly, in environmental performance evaluation of
PVC frames, PVC frames with different hollow chambers are assumed to give

same environmental life cycle performance.

In energy optimization model, the decision maker, firstly design reference building
and decide which design alternatives can be used in the optimization process. The
decision maker can improve the building performance by changing wall types, window
frame and glazing type and insulation material and thickness of wall, roof, and floor
and foundation. All the possible design alternatives generated in the interface are
tabulated in Table 5.3.

5.1.4. Design Variables

In the optimization design process, each building element can be design separately.
For instance, walls in each story can be insulated by different material and thickness
combination or in each story, different wall type can be used; however, this design
approach loses touch with reality in practical applications. Therefore, instead of
evaluating each building element separately, in this study, building components are
categorized according to their thermal property difference and each building element
with same thermal property are insulated by same material and thickness combination.
This makes the study more realistic. Wall, roof and floor / foundation component of
the building are sub-divided into multiple categories according to their location in the
building and window system is diversified according to main directions in the building.
The location based design variables in the energy optimization model are tabulated in
Table 5.4.

In optimization procedure, firstly, all redundant insulation material/thickness design

alternatives that violates recommended insulation levels are directly eliminated. In the

elimination procedure, the building elements with same design type and location
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Table 5.3. Design Alternatives

Design Type Design material Design Alternatives (size, thickness)
7.5¢m, 8.5¢cm, 9cm, 10 cm, 12.5 cm, 13.5 cm, 15 cm,
Aerated Concrete Wall
17.5cm, 19 cm, 20 cm, 22.5 cm, 25 cm, 30 cm, 35 cm
. ) ) 190 x 85 x 190, 200 x 100 x 200, 250 x 120 x 200,
Horizontal Coring Brick
190 x135 x 190, 250 x200 x 250, 235 x240 x 135,
Wall (HCB)
240 x250 x 190
Wall Type
] 240 x 115 x 235, 240 x 145 x 235, 240 x 175 x 235, 290 x
Vertically Perforated
. 190 x 235, 240 x 240 x 235, 240 x 250 x 235, 240 x 300 x
Brick Wall —-W Class
235
Vertically Perforated 290 x 190 x 135, 290 x 240 x 190,
Brick Wall —-W Class 240 x 290 x 190, 190 x 390 x 190
EPS 16 kg/ms
EPS 20 kg/ms
EPS 30 kg/ms 3cmto 20 cm by 1 cm interval
Wall EPS 35 kg/ms
Insulation XPS 25 kg/ms
XPS 30 kg/ms 3cmto 20 cm by 1 cm interval
Rock wool 120 kg/ms 3 cm to 20 cm by 1 cm interval
EPS 16 kg/m3
EPS 20 kg/m3 .
Fo'l:JInOdOarti/on EPS 30 kg/m3 3cmto 20 cm by 1 cm interval
Insulation EPS 35 kg/m3
XPS 25 kg/m3 .
XPS 30 kg/m3 3cmto 20 cm by 1 cm interval
EPS 16 kg/m3
EPS 20 kg/m3 .
EPS 30 kg/m3 3cmto 20 cm by 1 ¢cm interval
EPS 35 kg/m3
XPS 25 kg/m3 .
XPS 30 kg/m3 3cmto 20 cm by 1 cm interval
Roof .
- Rock wool 50 kg/ms 6 cm to 25 cm by 1 cm interval
Insulation
Glass wool 18 kg/m; 6 cm to 25 cm by 1 ¢cm interval
Aerated Concrete 5cm, 7.5¢cm, 8.5¢cm, 10 cn”(l:,n}zs cm, 15cm, 17.5 cm, 20
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Table 5.3. Design Alternatives (continued)

Design Type

Design

material

Design Alternatives (size, thickness)

Window

Frame

Woodwork, Aluminum Joinery, Aluminum Joinery with
Insulation Bridge, Two Hollow Chamber PVC, , Three Hollow
Chamber PVC, , Four Hollow Chamber PVC, , Five Hollow
Chamber PVC, , Six Hollow Chamber PVVC

Glazing

Single Clear (4 mm),Double Clear Air (3-9-3), Double Clear Air
(4-9-4), Double Clear Air (5-9-5), Double Clear Air (6-9-6),
Double Clear Air (3-12-3), Double Clear Air (4-12-4), Double
Clear Air (5-12-5),Double Clear Air (6-12-6), Double Clear Air
(3-16-3), Double Clear Air (4-16-4), Double Clear Air (5-16-5),
Double Clear Air (6-16-6), Double Sinergy Air (4-9-4), Double
Sinergy Air (4-12-4), Double Sinergy Air (4-16-4), Double
Comfort Air (4-9-4), Double Comfort Air (4-12-4), Double
Comfort Air (4-16-4),Triple Sinergy Air (4-9-4-9-4), Triple
Sinergy Air (4-12-4-12-4), Triple Sinergy Air (4-16-4-16-4)
Triple Comfort Air (4-9-4-9-4), Triple Comfort Air (4-12-4-12-
4), Triple Comfort Air (4-16-4-16-4), Double Clear with
Argon(3-9-3), Double Clear with Argon(4-9-4), Double Clear
with Argon(5-9-5), Double Clear with Argon(6-9-6), Double
Clear with Argon(3-12-3), Double Clear with Argon(4-12-4),
Double Clear with Argon(5-12-5), Double Clear with Argon(6-
12-6), Double Clear with Argon(3-16-3), Double Clear with
Argon(4-16-4), Double Clear with Argon(5-16-5), Double Clear

with Argon(6-16-6), Double Sinergy with Argon(4-9-4), Double
Sinergy with Argon(4-12-4), Double Sinergy with Argon(4-16-4),

Double Comfort with Argon(4-9-4), Double Comfort with
Argon(4-12-4), Double Comfort with Argon(4-16-4) , Triple
Sinergy with Argon(4-9-4-9-4), Triple Sinergy with Argon(4-12-
4-12-4), Triple Sinergy with Argon(4-16-4-16-4), Triple Comfort
with Argon(4-9-4-9-4), Triple Comfort with Argon(4-12-4-12-4),

Triple Comfort with Argon(4-16-4-16-4)
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Table 5.4. Location Based Design Variables

Design Type Design Location/ Direction
Curtain Wall (ventilated or partiating uninsulated ceiling)
Wall Type Exterior Wall
Interior Walls (apartment partiating wall, stair, low-temperature surrounding)
Soil-contacted Exterior Wall
Curtain Wall (ventilated or partiating uninsulated ceiling)
Wall Exterior Wall
Insulation | Interior Walls (apartment partiating wall, stair, low-temperature surrounding)
Soil-contacted Exterior Wall
Basement Ceiling
Floor / Cantilever Floor
Foundation | Floor (partiating apartments or rooms in multi-purpose hall ,bottom up heat flow )
Insulation Floor (partiating apartments or rooms in multi-purpose hall ,top-down heat flow)
Soil-contacted Basement
Roof Ceiling (unused garret, under ventilated space)
Insulation | Unventilated roof /ceiling & terrace
Window East, North, South, West
Frame
Window East, North, South, West
Glazing

are collected together and thermal resistance of each building element is calculated

without insulation materials. Then, the building element with minimum thermal

resistance, in other word, with worst insulation, is accepted as reference building

element to eliminate insufficient design alternatives. After that minimum required

thermal resistance level is calculated by subtracting thermal resistance of referenced

building element from the recommended thermal resistance for that building

component by dividing 1 to recommended thermal transmittance value in Table 3.1

according to degree-day region of building location. All design alternatives that have

less thermal resistance than the calculated minimum thermal resistance are eliminated

before optimization process starts. Similarly, by fixing window frame properties of
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reference building, all redundant glazing alternatives whose thermal transmittance
level are higher than the recommended value are eliminated for each main direction of
the building one-by-one. Similar to insulation elimination process, the most critical

window system for each direction is referenced.

In building energy based design process, some design alternatives needs to be
eliminated due to illogical design. For instance, in building wall insulation design, the
use of insulation design combination with higher thermal resistance in interior walls
than the one in the exterior wall provides theoretically and practically illogical
applications. Therefore, in optimization process, if the thermal resistance of interior
walls is higher than the one in exterior and soil contacted exterior walls, then, the
design solution is constrained and multiplied by infinitesimally high number to

eliminate it from alternative best solutions.

5.2. EnrOpt Graphic User Interface

The details of EnrOpt interface is explained step by step as a user guide as follows:

Step 1: Excel file of the interface is opened and details of wall, roof, floor or
foundation (basement) and window is entered into the file as seen in Figure 5.1.-5.4.
In excel file, the wall type for wall system and insulation type for wall/roof and
basement system are selected among given alternatives whereas the material and
thickness details of building layers are selected from given dropdown list obtained
from TS 825 material database. The location of the building element (interior, exterior
etc.) is also selected from given dropdown list. The excel macro is directly calculates
thermal resistance of each layer and whole building element in variation such as
thermal resistance of all building elements, thermal resistance without insulation or
thermal resistance for only building element layers that are used in Matlab coding.

Moreover, area of the material used is entered. The design details for wall system,
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basement system and roof system are summarized in an excel sheet to follow the

details more easily (Figure 5.5).

In window design, the shape of the window system is selected from given dropdown
list such as single/double casement, horizontal slider, angular and transom window.
Then, frame material and glazing property of window system are selected from the
given dropdown list. After that general geometric details of the window system such
as window height, window width and window frame thickness are entered. Horizontal
and vertical divider and divider thickness with same frame materials are used to better
define complex geometry. Finally, by entering the number of windows with same
property in the same direction by selecting the window direction from main directions
given in dropdown list, frame area and glazing area and glazing perimeter for each

window ID are calculated in excel macro and used in the calculations.
Building door design details are also done in excel file. Thermal heat loss values for
doors are calculated in excel file and used in Matlab code. Thus, excel based design

process is finalized and excel file is saved and closed.

The details of the following steps of Matlab GUI is explained on Figure 5.1 to 5.17.
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Step 7: Optimization details represent the optimization part of the energy optimization
model in the interface. In the interface, building type is selected from pop-up menu to
obtain building internal balance temperature. The user selects building location to
determine thermal and solar effect of climate on the building. From climate data and
solar data menu, the user selects which temperature data and solar radiation data are
used in the optimization process. The heating schedule of the building is selected from

the given alternatives in operational schedule menu.

In optimization process, the meta-heuristic algorithm that generates solutions and
directs solution generation process is selected by alternative lists such as Differential
Evolution, Particle Swarm Optimizer and Modified Cross Entropy Method. In
optimization strategy, the user determines whether to focus more on main objective

optimization or generates Pareto optimal solutions by scanning wider space.

In determination of optimization objectives, the user can select the objectives in two
ways. In the first one, if the number of objective is less or equal to three, the user can
select the objectives from objective dropdown list one by one. The main objective is
the key objective that directs all optimization process where the rest is used in the
generation of Pareto optimal solutions. In the second approach, the user can enter the
objective 1Ds that are given in dropdown list, by using comma between objective IDs.
The objective ID with entered first represents the main objective. When both first and
second approaches are used together, the second approach is valid in optimization.

All design details should be checked before optimization process starts. Therefore,
checklist for the effective design is given to warn the user not to miss any parts in the
design. After all list is checked, the optimization process starts by pushing the button
“Run EnrOpt”. The model runs in a minute and gives results. When optimization
process finishes, “Result”, “Graphical Result” and “GWP Results” (if life-cycle GWP
savings is in objective lists) are added to menu tabs (Figure 12). Thus, the user can

check optimization results within the interface.
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5.3. Case Study I: Typical TOKI Building Energy Performance Optimization

In Turkey, instead of renovation and retrofit projects, construction of new buildings is
more common. Turkish housing sale statistics (2013) support this idea that 46% of the
dwellings sold are brand new. 44% of total first sales belongs to five major Turkish
cities (Istanbul, Ankara, lzmir, Bursa, and Antalya). Urbanization factor plays
dominant role in the first sale distribution in Turkey (Figure 5.18). Moreover, shanties
and old buildings with high damage risk due to earthquake are planned to be
demolished and new buildings are constructed via urban renewal projects. According
to Ministry of Environment and Urbanism, 6.5 million dwellings of nearly 20 million
dwelling stocks in Turkey are planned to be reconstructed in 20 year-period (Deloitte
Turkey 2014). Housing Development Administration of Turkey (TOKI), established
in 1984 to find solutions for distorted urbanization and housing problems, is the main
player of the residential sector with a share of 9.1% of total sector for the years from
2002 to 2012 (Emlak Konut Gyo 2014) and completion of 644,079 housing units till
February,2015 (Housing Development Administration of Turkey 2015). Currently,
approximately 2.5 million people reside in TOKI houses. The main customers of TOKI
projects are medium low income groups and the poor with nearly 410243(506387)
housing units (Housing Development Administration of Turkey 2015). In the
upcoming urban renewal projects TOKI is tasked with management of urban renewal
projects by Law 6306 (2012).Therefore, in the next years, TOKI is expected to sustain
its share and reinforce its power in the housing market.

In this case study, a typical 10-story TOKI building with 44 dwelling housing units
whose gross are is 85 m? is re-designed according to given alternatives in technical
specifications in early design stage by EnrOpt graphical user interface to maximize its

energy efficiency. All design alternatives in building design are tabulated in Table 5.5.
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Figure 5.18. The Sales of First-hand Residential Properties for Cities in Turkey

Table 5.5.All Design Alternatives

Design Type

Design Alternatives

All Infilled Walls

All Wall Types in Table 5.3

Wall Insulation

EPS with minimum 22 kg/m?3
XPS

Rockwool

Foundation

XPS

Floor

EPS with minimum 22 kg/m?®
XPS

Roof

Glass wool
Rockwool
EPS with minimum 22 kg/m3
XPS

Window Frame

PVC with 3 hollow chambers

Window Glazing

All glazing types

TOKI building is initially designed in Microsoft Excel according to given conditions

in Project Drawings and TS 825 standard whose details are given in Appendix A. Then,
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Excel file is exported to EnrOpt to optimize the process. In optimization procedure,

performance of TOKI buildings is evaluated in different perspectives explained below.

Energy performance of TOKI buildings in different degree-day regions are tested by
selected cities with top housing sales from each degree-day region such as Izmir,
Istanbul, Ankara, Kayseri and Erzurum. For each city, insulation design of TOKI
building is re-designed and adjusted according to TS 825 standard. Recent degree-day
data, corrected solar radiation data with Isicam daylight transmittance factors and

natural gas as energy resource are used in the optimization process.

Performance of all three algorithms is tested by buildings located in Ankara with
efficient optimization strategy depending on results by optimizing LCC savings,
LCGWP savings and initial investment of the buildings according to given design
alternatives. The most efficient algorithm with suitable optimization strategy is
selected to be used in the rest of the optimization analysis according to optimization

results.

In the rest of the case studies, Ankara is considered as reference city in energy
optimization process. Performance of TOKI buildings located in Ankara is tested by
multiple multi-objective energy optimization with alternative objective sets to prepare
detailed reports for decision maker to take right decision with enriched data in early

design stage.

The multiple multi-objective energy optimization objectives can be listed below:

LCC savings vs LCGWP savings vs Initial Investment

LCC savings vs Initial Investment vs Energy Cost Payback Period
LCGWHP savings vs Initial Investment vs Energy Emission Payback Period
LCC savings vs Initial Investment

LCC savings vs LCGWP savings

NN
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LCC savings vs Energy Cost Payback Period
LCC vs Other Environmental Factors
LCGWP savings vs Initial Investment

LCGWP savings vs Energy Emission Payback Period

Results of some of the above optimization scenarios are presented in Chapter 6.

In the following analyses, building energy performance is optimized according to
different scenarios such as different analysis period, initial investment limitations and
different energy resources and limitations in design alternatives. Life cycle
performance of the building is optimized according to LCC savings and LCGWEP
savings whereas LCC savings objective is assigned as main objective to generate life

cycle cost savings designs.

Performance of the building is also tested by changing analysis period horizon from 5
years to 40 years to evaluate change in design parameters.

Initial investment limits are determined according to investment value on life cycle
cost savings maximization design scenario.

Energy resources are one of the determinant parameters in this optimization problems
where their performance, costs and environmental impacts consider trade-offs with
each other. Therefore, building life cycle performance for different energy resources
such natural gas, hard coal, lignite and fuel oil are optimized.

Reaction of EnrOpt on changes in insulation materials or their upper thickness limits
where the market conditions limits insulation thickness are tested and compared with

unlimited case for this case study.

Parametric analysis is done to check how the change in design parameters in energy

model changes reference building performance and optimization results. Modification
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parameters in the energy model are compared with existing parameters in TS 825

standard. The details of parametric analysis in energy model is explained below:

v Performance of TOKI building in 3" degree-day region in TS 825 standard is
compared with performance of the same building in different cities of 3™
degree-day region according city specific long-term average temperature data
and recent heating degree-day data instead of given temperature data in TS
825.

v" TOKI building energy optimization results are compared according to existing
solar radiation data in TS 825 standard and coefficient corrected solar radiation
data. Moreover, daylight transmittance of glazing alternatives are calculated

according to both TS 825 standard and Isicam data set and compared.

v Importance of time schedule is underlined by assigning different operating

schedules.

Performance of the optimization algorithm is compared with each other according to
same number of function evaluation. Moreover, parametric analysis is done for
optimization algorithms by changing population size and algorithm specific

parameters.

5.4. BIM Integrated Dynamo based Meta-heuristic Framework

Computational Design refers to the ability to provide linkage between problem solving
approaches with computational algorithms for automation, simulation and design
solution generation (BIM-SIM 2014). In practice, it provides innovation solutions with
huge impact in design; however, the framework that is easy to use for the designers to
generate multiple design and evaluate them according to their purpose is needed to be

constructed for effective computational design.
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“Visual Programming Language “concept provides easy and flexible solutions for
designers to construct their design by programming via graphical user interface. The
users can construct and automate their design by custom relationship with pre-
packaged nodes. The design construction with nodes provides easy use for the non-

programmers without advanced coding.

Dynamo is a visual programming tool that provides flexibility for users to both code
via Python language in the tool and use built-in functions graphically without any
coding which makes the tool easier to use and understand for non-programmers (Kron
2013). It allows designers to customize computational design and automate whole
process via its node-based visual programming interface. Dynamo can interact with
BIM tools such as Autodesk Vasari and Revit by its Add-in to change geometric
properties of BIM elements automatically and manipulate BIM data. Therefore,
automated geometric control and data manipulation incent Dynamo use for different
purposes. For instance, by changing BIM element geometric and material properties,
the performance of the building for different purposes such as aesthetics, cost-
effectiveness and energy efficient solutions can be optimized according to pre-

determined fitness functions in the early design stage of the building.

In this study, geometric and material properties of the building elements are
manipulated to optimize life-cycle energy performance of the structure. Dynamo based
BIM integrated optimization framework is constructed by using both built-in functions
and Python coding to optimize multi-objective functions and talk with BIM tool to
change building elements and run energy simulation. Each phase of the framework is

explained step by step as follows:
Step 1: Dynamo interacts with BIM tools via built-in functions and Python scripts to

change building element property. For instance, Dynamo code in Figure 5.20 is written

to change family type and glazing property of the selected windows. The family types
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in the window are pre-defined with different shape and height and width values
whereas glazing properties are selected from Revit add-in property. The code explains
that all window family types are listed and one with defined family type ID is selected
to be assigned to the chosen building element(s). Similarly, glazing property for the
selected building element is assigned from glazing type list via defined glazing ID.
Figure 5.19 demonstrates different family and glazing type assignment on the same

window system.

Type Properties

Family: _Combina tion Rip with Trin v Load...

Type: 0915 x 1830mm v Duplicate.

Value

Pilkington single glazing

Type Properties
Famiy; M_Archtop vith Trim v Load...

Type: 1220 x 1525mm v Duplcate,

Figure 5.19. Window Property Change in BIM via Dynamo
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Step 3: Meta-heuristic optimization section is the brain of the integrated model. In
this section, as seen in Figure 5.22, optimization model interacts with all stakeholders
of the model. Initially, the optimization model interacts with BIM tools to assign initial
design solution into model to test its energy performance and environmental
performance of alternative materials are obtained from life cycle assessment database
and transferred into fitness function via optimization model. Then, energy
performance of the design solutions are calculated by GBS model and written into
Dynamo fitness function. The loop shown in Figure continues until termination criteria
are met. The details of the meta-heuristic optimization model, Multi-objective
Differential Evolution are explained below.

. Q “\ngML
o\
ﬁuildingln n: Modeling

Life-cycle Ji Results
§ i Assesment s — T
Database
Optimization ( 3
Model

Dynamo Interface —

Figure 5.22. General Description of Dynamo based BIM Integrated Optimization

Framework

In Dynamo interface, MODE is constructed as presented in Figure 5.22. The model
starts with input parameters such as number of agents and crossover rate and boundary
limits for each design variables. The initial design variables are created randomly in
initialization custom node. The performance of each solution is evaluated by integrated
design variables and fitness functions nodes. Fitness values of the main objective
function (first fitness function) and initialized design variables for each agent are

assigned as local best fitness and local best position. Then, all fitness functions of
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agents are compared with each other to create initial non-dominated solution sets. The
model performance evolves in the main loop by giving all necessary constructed and
initialized parameters as inputs to generate new design variables and evaluate its
performance with respect to others to construct Pareto optimal non-dominated solution

sets while the termination criterion is met.

The main structure of MODE model in Dynamo is shown in Figure 5.23. The details
of sub-sections of the model and Python codes in the model is explained and presented

in Appendix C.

5.5. Case Study I1: Simple Cottage Energy Performance Optimization

In this case study, a simple cottage is modelled in Revit software to optimize its energy
performance. The cottage has 47 m? usable area enclosed by 8.5 inch concrete wall
and covered by compounded ceiling with 0.45 U-value. The cottage is located in
Middle East Technical University. It has two symmetric windows in north-south

direction and two symmetric windows according to entrance door in west direction.

In this case study, it has been planned to optimize life cycle performance of the cottage;
however, in optimization process, the main energy analysis framework in Dynamo
called Energy Analysis for Dynamo gave uncontrollable error in some of the multiple
runs of the same input file that is accepted by the framework developers, Thorthon
Tomasetti research group with Autodesk Building Performance Analysis research
group. Therefore, additional Python code was implemented to eliminate the
interruption in automated energy optimization process due to encountered error. In
optimization process, 10 agents in DE are iterated 3 times but, the system was able to
reach an energy performance results in only 45% of the constructed design alternatives
in an hour. On the other hand, a single run of energy analysis in the system just takes
10 to 20 seconds whereas this run time is extended up to 5 minutes in error encountered

analysis. Therefore, in this case study, 500 function evaluations based model is
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expected to be finished in at least 15 hours whereas this run time is expected to be
improved down to 2 hours. Moreover, more than half of the runs do not give results in
the automated process and efficient design solution may be missed due to internal
errors in the model. Therefore, a new framework structure communicating with excel
files are constructed to update parameters and fitness solutions in each algorithm step.
If energy model does not give results at once, the model re-runs to obtain the results.

Therefore, all solutions are controlled and used in optimization process.

In optimization process, initial cost and emission data of design alternatives are
planned to be exported from excel file to optimization model; however, due to the
internal error, life cycle performance analysis is postponed. Instead of life cycle
analysis, annual energy consumption is taken into consideration. The simple cottage
model is optimized by Differential Evolution to improve building annual energy cost
and annual carbon footprints and to find non-dominated solution for decision maker.
Moreover, if annual energy cost and carbon footprints values are multiplied by a single
discounted coefficient, the results give life cycle operational energy cost and carbon

footprints.

In optimization process, energy cost comes from electricity use and heating and
cooling process of the cottage. Therefore, different design solutions provides trade-off
between electricity use and direct energy resource consumption. Hence, this also
provides trade-off in carbon footprints due to different emission rates of energy

resources.

In energy analysis process, first energy settings of the model are set. In this case study,
location of cottage and building type are entered as METU and office (Figure 5.24).
The model use rooms to export building geometry to gbXML file and the most detailed
shading analysis that gives most accurate results among alternatives are used. The

model first analyzed in Revit add-in analysis tool by communicating with GBS to
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create project file in GBS. Then, energy optimization model starts to generate solutions

to optimize building performance.

In this case study, 64 different window family types with different geometric details
and 24 glazing types are used to generate four different design variables. The first
design variable is family type of side windows and the second one is family type of
front windows in the model. Third and fourth design variables are glazing properties
of these windows. Multi-objective Differential Evolution aims at reducing annual
energy cost and carbon footprints by changing design variables in 500 function
evaluation using 20 agents in 25 runs. The number of function evaluations is limited

due to manual update procedure in the model.

Parameter WValue ﬁ
Common =
Building Type Office w
Location Middle East Technical University, T
Ground Plane Level 1
Detailed Model A
Export Category Rooms
Export Complexity Complex with Mullions and Shadin
Include Thermal Properties
Project Phase Mew Construction
Sliver Space Tolerance 304.2
Energy Model o
Analytical 5pace Resclution 457.2
Analytical Surface Resclution 304.8
Core Offset 3600.0
Divide Perimeter Zones "
Conceptual Constructions Edit...
Target Percentage Glazing 40%
Target Sill Height 750.0
Glazing is Shaded
Shade Depth &00.0
Tarnet Percentane Skwlinhts ne b

Figure 5.24. Energy Settings in Revit
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The optimization model initially starts with random distribution and the position
matrix are written in excel file with sheet name of ‘position’. Then, performance of
each agent is simulated in GBS model one by one by exporting position matrix into
Dynamo model and the fitness results are written in excel file. After fitness values of
all agents are obtained, all position and fitness values of agents are assigned as local
best position and fitness in a new excel files. After that, non-dominated solutions are
generated by comparing initial fitness results in Dynamo file and non-dominated
solutions are written in excel file in global best position and fitness files. Thus, first
iteration of energy optimization model ends. In the next iteration, all necessary local
and global best position matrix are exported into Dynamo node and new position
vector is generated according to DE position update strategy. In the next step,
performance of each agent’s position is evaluated by GBS run one by one and
overwritten on previous position and fitness results. Next, local best and fitness values
are updated by comparing new fitness results with existing local best fitness values
and non-dominated solutions are checked with new fitness results to re-generate all
non-dominated solutions. All updated results are overwritten on their existing values.
The optimization process goes on until function evolution termination criterion is

satisfied.
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CHAPTER 6

RESULTS

In Chapter 5, case studies are prepared to test performance of constructed energy
optimization models. In this chapter, optimization results in case studies are presented.
Performance of meta-heuristics are compared. Parametric analysis of optimization
algorithms and energy model in EnrOpt and sensitivity analysis of Dynamo based BIM

integrated energy optimization model are presented and discussed.

The performance of constructed energy optimization model frameworks on case
studies in Section 5.3 and 5.5 is tested with detailed parametric or sensitivity analysis
to explain research findings efficiently. In this chapter, Section 6.1 presents and
discusses performance of TOKI buildings applied by EnrOpt energy optimization
interface. In the following parts, performance of optimization techniques, DE, MCEM
and PSO is compared with each other with respect to two different optimization
strategies. In next parts, performance of TOKI buildings in different degree-days
regions is optimized and compared with each other according to design details. In the
last part of this section, parametric analysis of energy model and selected optimization
model is done to show how the change in parameters influences optimization process
and building performance. In Section 6.2, performance of simple cottage is improved
by changing geometric and material properties of window systems. In the next part,

sensitivity analysis in Dynamo based model is presented and discussed.
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6.1. Performance Optimization of TOKI Buildings Case Study

Performance of TOKI buildings is tested by different objective combinations. Bi-
objective and triple-objective models are graphed in Figure 6.1 and 6.2. Number of
non-dominated solutions generated in optimization procedures varies depending on
number of objectives, optimization strategy and main objectives. For instance, in bi-
objective problems figured in 6.2.a and 6.2.b, optimization algorithms try to generate
non-dominated design solutions to optimize life cycle cost savings and life cycle global
warming savings. While global warming potential reduction is selected as main
objective, the optimization procedure generates 89 non-dominated solutions whereas
this number decreases to 65 when life cycle cost savings is assigned as main objective.
Moreover, while initial investment is added to objectives, number of non-dominated

solutions increases up to 248.
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In extreme case, while all 15 objectives are evaluated in the same optimization
procedure, 7418 non-dominated solutions are generated in 200000 function
evaluations. In Pareto optimal solution generation, vast number of alternative solutions
would be valuable to show alternatives in literature studies; however, in real life,
excessive number of alternative solutions reduces the efficiency of post-decision
making process. Therefore, the decision maker needs to generate alternative solution
strategy or decrease number of objectives. In main objective optimization based
strategy, optimization algorithm more focuses on optimizing the main objectives while
generating non-dominated solutions. As understood from projections of Figure 6.2.a
and 6.2.b, in main objective problems, optimization curve slips on main objective
optimum points. As seen in Figure 6.2.a, non-dominated solutions collected near
highest life cycle cost savings values whereas this focus changes into maximum points
of life cycle GWP savings values. When, these non-dominated solution sets are
combined in Figure 6.3, it is seen that Pareto optimal solutions in extreme points are
generated easily in the combined graph; however, in Pareto curves in Figure 6.3,
performance of optimization algorithm is questionable whenever non-dominated
solutions moves away from extreme points. Similarly, in triple objective problem as
figured out in Figure 6.1, 698 non-dominated solution sets are generated in three runs
by assigning each objective as main objective once. After comparison of all
alternatives, all dominated solutions are eliminated and 562 non-dominated solutions
are kept. The results shows that nearly eight percent of solutions focuses on dominant
objective purpose. In initial investment dominant case, generated solutions tries to
reduce investment by decreasing thermal performance of the building to minimize
initial investment or maximize money on hand initially while in life cycle GWP
savings, thermal performance of the building is maximized to improve building
performance to reduce energy resource based emission. In life cycle cost savings,
optimization algorithm makes trade-off between initial investment and building
thermal performance to find optimum solutions. Therefore, in 3 cases, different
solution alternatives are generated. Focusing on one single objective and generating

alternative non-dominated solution increase post-decision making process.
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In main objective based optimization process, performance of optimization algorithm
is first tested by bi-objective problem drawn in Figure 6.2.a. For each algorithm,
commonly used optimization parameters in literature are assigned. In Differential
Evolution algorithm, crossover rate is assigned as 1 to reduce evaluation time. In PSO,
initial inertia weight and constant parameters are assigned as 0.5 and 2, respectively
whereas in MCEM, elite sample percentages for mean and standard deviation are
assigned as 0.05 and 0.5 respectively. In optimization process, each algorithm is tested
by 200000 function evaluations with different population sizes if it is seen necessary
by 20 runs. The results shows that DE generates 63 solutions by reaching optimum
fitness value of main objective with 100% success whereas PSO find optimal solution
with 50% success and MCEM just finds optimal solutions in 2 runs. Inertia weight
parameter in PSO is changed to improve algorithm performance. While it is increased
up to 0.7 the performance results get worse. Therefore, inertia weight is decreased
down to 0.1. In this case, PSO is able to reach optimal solution with 80% success and
generates 57 non-dominated solutions. On the other hand, although the performance

of MCEM is improved by changing elite percentage parameters and population size,
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it does not give similar performance improvement as seen in PSO. In this case study
problem, performance and cost parameters of design alternatives are near to each other.
Therefore, multiple local optimum points are generated in the problems. According to
observations in optimization process, MCEM gets trapped in one of the local optimum
design alternative. Moreover, nature of distribution algorithm guides next solution
with collective performance of the algorithm whereas memory of any population
member is not considered. On the other hand, in PSO and DE, memory of population
member guides position update procedure. In a similar way, performance of MCEM
on problem 8 in Gravitational Search Algorithm (2009) introduction paper shows

similar behavior.

In Pareto optimal solution finding strategy, contrast to main objectives, non-dominated
solutions guides position update procedure of optimization algorithm. In main
objective based optimization strategy, algorithm find more non-dominate solution near
optimal fitness value of main objective whereas in Pareto optimal solution finding
strategy, algorithms scan nearly all solution space to improve the performance of
existing building. The performance of optimization algorithms figured out in Figure
6.4. shows that MCEM generates more and effective non-dominated solution
compared to other two algorithms. The reason behind this performance is that new
position value of next generation is updated according to randomly selected non-
dominated solution and population based deviation. Therefore, it improves local
search ability of the algorithm around non-dominated solutions. On the other hand,
PSO and DE needs to follow a path to improve the solution; however, in each iteration,
the change in best position value which is selected randomly from non-dominated
solutions disconcert optimization procedure of the algorithms. Therefore, compared to
MCEM, DE and PSO fail.

Performance of MCEM algorithm is compared with Differential Evolution with main

objective optimization strategies by 1000000 function evaluations. The results are
figured out in Figure 6.4 compared with performance of MCEM. The graph readings
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explain that Modified Cross Entropy Method generates effective non-dominated
solution to generate more improved non-dominated solution sets in the case where
design alternative solution is away from extreme points in MOO solutions. Similarly,
in Figure 6.3, performance of combined non-dominated solution needs to be improved
to generate more improved non-dominated solutions. Figure 6.5 underlines that
MCEM with Pareto optimal solution finding strategy can strengthen the performance

of combined non-dominated solution.

In the rest of optimization analyses, non-dominate solutions are generated by main
objective based optimization strategy to more focus around optimum value of main
objective solution. Therefore, Differential Evolution algorithm is preferred thank to

its performance on main objective based optimization process.

6.1.1. Optimum Design of TOKI Building in Cities in Different Degree-Day

Regions

Reference TOKI building is designed according to TS 825 standard limits tabulated in
Table 3.1. In initial case, Ankara is selected as reference city to optimize building
performance according to all objectives by taking LCC savings as main objective. Out
of 7418 non-dominated solutions, performance of main objective based optimum
solution is tabulated in Table 6.1. Design details of optimum solution is also tabulated
in Table 6.2.

Performance analysis of optimum design indicates that discounted life cycle cost of
TOKI building can reduced up to 113225.36 © while nearly 275 CO; equivalent metric
ton- life cycle GWP is saved in 30-year life cycle of the building. The equivalent
amount of GWP savings by carbon sequestration of different tree types are tabulated
to show prominence improvement in energy based emission reduction in Table 6.3.
More than half of cost savings are required to be invested initially to improve building

thermal performance. Moreover, nearly ten year period is required to recover initial
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investment on building design whereas energy reduction recovers extra emission of
selected design alternatives in one-year period. Therefore, one-year recovery shows
that GWP reduction based optimization process is positively and highly correlated
with energy reduction. Nearly £1700 initial investment per dwelling is required to
provide £175 annual improvement in each dwelling by 28.57% improvement in
building heating. Moreover, except europhication and ozon depletion , the rest of

environmental impacts in the building are reduced.

Table 6.1. Performance Details of Main Objective Based Optimum Design in Ankara

Objectives Performance Results

Life Cycle Cost Savings (TL) 113225.36
Life Cycle Global Warming Potential Savings (kg CO2-Equiv.) 274904.73
Initial Investment (TL) 75066.90
Energy Payback Period (year) 10.52
Emission payback period (year) 0.99
Life Cycle Acidification Air Savings (kg SO2-Equiv.) 403.12
Life Cycle Acidification Water Savings (kg SO2-Equiv.) 0.03
Life Cycle Ecotoxicity Savings (CTUeco) 42.44
Life Cycle Eutrophication Air Savings (kg N-Equiv.) -10.53
Life Cycle Eutrophication Water Savings (kg N-Equiv.) -1.22
Life Cycle Human Health Particulate Air Savings (kg PM2.5-Equiv.) 33.99
Life Cycle Human Toxicity, Cancer Savings (CTUh) 2.83E-05
Life Cycle Human Toxicity, Non-cancer Savings (CTUh) 3.16E-07
Life Cycle Ozone Depletion Air Savings (kg CFC 11-Equiv.) -8.80E-04
Smog Air Savings (kg O3-Equiv.) 6930.09
Reference Building Energy Consumption (MWh/year) 194.31
Optimized Energy Consumption (MWh/year) 138.78
Energy Efficiency (MWh/year) 55.52

In optimized procedure, optimization algorithm considers trade-off between design
alternatives based on their cost effectiveness and thermal efficiency. Moreover, the

metric requirements of design variables also direct optimization procedures; because,
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smaller change in design variable would cause significant change in objective fitness
values if its requirement is much more than other design alternatives. In this case study,
wall insulation design and wall type are main drivers of optimization procedure. In
optimized design in Table 6.2, thermal performance of window glazing systems are
maximized with their maximum initial investment level that means improvement in
thermal performance of glazing system recovers its investment efficiently. Similarly,
in roof system, glass wool that is the cheapest material among alternatives is selected
with its upper thickness limits. On the other hand, in foundation, the smallest thickness

value of XPS is selected with possible highest thermal performance. Therefore, in

Table 6.2. Design Details of Main Objective Based Optimum Design in Ankara

Design Variables Selected Design Alternative
Wall Type | HCB 190 x 85 x 190

Wall Insulation |

16 cm-EPS 30 kg/m?®

Wall Insulation 11

11 cm-EPS 30 kg/m?®

Wall Insulation 111

16 cm-EPS 30 kg/m?®

Wall Insulation 1V

16 cm-EPS 30 kg/m?®

Base Insulation |

11 cm-EPS 35 kg/m?®

Base Insulation 11

11 cm-EPS 35 kg/m?®

Base Insulation |11

11 cm-EPS 35 kg/m?®

Base Insulation IV

3 cm-XPS300 25 kg/m?®

Roof Insulation |

25 cm-Glass wool 18 kg/m?®

Roof Insulation 11

25 cm-Glass wool 18 kg/m?®

Window Frames

PVC (3 chambers)

Window Glazing |

Triple Synergy with Argon (4-16-4-16-4)

Window Glazing Il

Triple Synergy with Argon (4-16-4-16-4)

Window Glazing 111

Triple Synergy with Argon (4-16-4-16-4)

Window Glazing IV

Triple Synergy with Argon (4-16-4-16-4)

Window Glazing V

Triple Synergy with Argon (4-16-4-16-4)

Window Glazing VI

Triple Synergy with Argon (4-16-4-16-4)

Window Glazing V

Triple Synergy with Argon (4-16-4-16-4)

Window Glazing VI

Triple Synergy with Argon (4-16-4-16-4)
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selection procedure, optimization algorithm directs design selection according to
effectiveness of cost-thermal performance ratio of design alternatives among smallest
thickness XPS materials. In wall design procedure, cost effectiveness of wall type is
considered in optimization procedure where thermal performance of the wall is
improved significantly by wall insulation design. In wall insulation design, EPS
materials are preferred by optimization algorithm to maximize cost-effectiveness of
design alternative in material selection and balance between thermal performance
improvement and cost increment is regarded in thickness determination. Similar
behavior is also observed in basement ceiling insulation design. The optimization
algorithm selects design alternatives according to their thermal improvement in the
building and its cost. Whenever non-dominated solutions in life-cycle cost savings vs
life cycle global warming optimization problem, it is seen that marginal changes in
thickness and material selection in basement ceiling insulation determines the order of
non-dominated solutions. Moreover, smaller changes in wall insulation design follows
this and one or two cm changes in glass wool thickness in roof insulation design is
observed among optimal alternatives. On the other hand, changes in window glazing

types and wall types are rare in cost optimal designs.

After optimizing building energy performance of TOKI building, four new input excel
files are generated separately for the same buildings in izmir, Istanbul, Kayseri and
Erzurum. Thus, TOKI buildings in five different degree-day regions are generated and
optimized. The performance of the buildings are tested by life cycle cost and GWP
savings and initial investments. The energy performance of optimized buildings in

different cities are presented in Table 6.3.

Table 6.3 shows that building energy heating consumption is increasing as climate
conditions get harsh. Therefore, in each building, different insulation alternatives,
generally different thickness values of same material, are selected in initial design.
Moreover, natural gas price values are adjusted according to prices of local energy
distributors for each design in the optimization procedure. The optimization results
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indicates that energy prices and climate conditions play important role in the selection
of non-dominated solutions. The general view of optimum design values for different
cities tabulated in Table 6.4 demonstrates that thermal performance of optimum design
variables increases as climate conditions gets harsh whereas performance of objective
functions depending on trade-off between energy prices and climate conditions. In
Ankara and Istanbul, natural gas price is higher than the rests. Therefore, this effect is

reflected on objective fitness value.

Table 6.3. City based Performance Results

Objectives izmir Istanbul Ankara Kayseri | Erzurum
LCC Savings (TL) 34497.49 90270.01 | 113225.36 | 83220.15 | 177477.35
LCC GWP Savings
. 108578.98 | 223772.57 | 274904.73 | 227704.01 | 422342.61
(kg CO2-Equiv.)
Initial Investment (TL) 29002.58 59406.34 75066.90 | 67015.31 | 87659.26
Reference Building Energy
) 71.19 136.44 194.31 212.01 382.24
Consumption (MWh/year)
Optimized Energy
. 50.95 91.75 138.78 166.26 297.49
Consumption (MWh/year)
Energy Efficiency
20.24 44.69 55.52 45.75 84.75
(MWh/year)

6.1.2. Scenario based Optimization Analysis of TOKI Buildings

In this section, performance of TOKI building is optimized with respect to different
scenarios that are free from energy and optimization model. TOKI building in Ankara
is selected as reference building to optimize building life cycle energy performance
with respect to life cycle cost and GWP savings and initial investment. In each
scenario, objective fitness values and energy consumption details of main objective

based optimum design are tabulated and non-dominated optimal solutions are graphed
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Table 6.4. Design Details of Optimum Design in City based Analysis

Design . . )
Parameters Izmir Istanbul Kayseri Erzurum
Wall Type | HCB HCB HCB HCB
190 x 85 x 190 190 x 85 x 190 190 x 85 x 190 190 x 85 x 190

Wall

Insulation 9 cm-EPS30 13 cm-EPS30 17 cm-EPS30 20 cm-EPS30
I-111-1V
Wall

insulation 11 6 cm-EPS30 9 cm-EPS30 12 cm-EPS30 15 cm-EPS30
Base

Insulation 5 cm-EPS35 8 cm-EPS35 12 cm-EPS35 16 cm-EPS35
I-11-111

Base

Insulation IV 3 cm-XPS300-25 | 3cm-XPS300-25 | 3 cm-XPS300-25 | 3 cm-XPS300-25
Roof

Insulation 17 cm-GW18 25 cm-GW18 25 cm-GW18 25 cm-GW18
Window PVC PVC PVC PVC
Frames (3 chambers) (3 chambers) (3 chambers) (3 chambers)
Window

Glazing Double S-Argon Double S-Argon Low-e S-Argon Low-e S-Argon
o (4-16-4) (4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Double S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing Il (4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Double S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing IV (4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Double S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing V (4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Double S-Argon Double S-Argon Low-e S-Argon Low-e S-Argon
Glazing VI (4-16-4) (4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Double S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing VI (4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Double S-Argon Double S-Argon Low-e S-Argon Low-e S-Argon
Glazing V111 (4-16-4) (4-16-4) (4-16-4-16-4) (4-16-4-16-4)
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if it is seen efficient. Moreover, details of optimum design is tabulated in Appendix

and compared and contrasted with other designs in following parts.

Analysis period: In this case study, performance of the building is optimized with
respect to 30-year period; however, the analysis period varies depending on quality of
insulation works and materials. Therefore, five different periods are analyzed to

compare change in optimum design details and energy consumption in the building.

Table 6.5. Building Optimized Energy Performance for Different Analysis Period

o 5-year 10-year 20-year 30-year 40-year
Objectives ) ) ) ) )
Analysis Analysis Analysis Analysis Analysis
LCC Savings (TL) 7404.54 18665.24 62046.42 | 113225.36 | 162346.66
LCC GWP Savings

(kg CO2-Equiv.)

25838.66 74201.60 | 180912.07 | 274904.73 | 342461.33

Optimized Energy

. 187.79 164.95 147.47 138.78 135.24
Consumption (MWh/year)
Energy Efficiency
6.52 29.36 46.84 55.52 59.06
(MWh/year)

5-year period analysis underlines the role of initial investment in optimum design by
decreasing insulation thicknesses of original case study whereas thermal performance
of glazing system is improved and cost-effective wall type is selected. In 20-year
analysis, thickness values in each wall and base insulation design are increased and,
thickness values of roof glass wool is maximized whereas thermal performance of
glazing system is improved. Energy consumption in each optimized building is
improved as the length of analysis period increases. Figure 6.6 shows that in each time
step increases, better non-dominated solutions are generated with evolution in the

shape of non-dominated solution curve.

Energy Resource: In case study, building optimized performance is analyzed with

respect to natural gas use. In this scenario, different energy resources are used to meet
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building heating energy requirement. Hard coal, lignite and fuel oil are assigned as
alternative energy resources into energy optimization model. The price of each energy
resource, their unit calorie value and efficiency rate are tabulated in Appendix with
respect to first week of August, 2015. Among energy resources, fuel oil is the one with
highest price-calorie ratio and natural gas is cleaner resource compared to other
alternatives. The optimization results tabulated in Table 6.6 explain that performance
of fuel oil used building can be reduced more than other alternatives by using
insulation thicknesses to improve building thermal performance. Therefore, energy
payback period in fuel oil is expected to be less than all other alternatives due to its
highest price-calorie ratio by decreasing one-third of energy consumption in initial
design. This result also underlines the inefficiency of fuel oil compared to other
alternatives. On the other hand, hard coal or lignite improves building performance
less than natural gas; however, improvement in emissions in hard coal is much more
than the one in natural gas. The results show that hard coal is cheaper than natural gas

whereas it releases more greenhouse gases compared to natural gas.
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Figure 6.6. Non-dominated Solutions in Different Analysis Period
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Table 6.6. Building Optimized Energy Performance for Different Energy Resources

Obijectives Natural Gas Hard Coal Lignite Fuel Oil
LCC Savings (TL) 113225.36 56424.54 68869.13 249272.32
LCC GWP Savings
) 274904.73 477215.39 247529.53 446388.68

(kg CO2-Equiv.)
Optimized Energy Consumption

138.78 148.47 144.92 131.81
(MWh/year)
Energy Efficiency

55.52 45.84 49.38 62.48
(MWh/year)

Material Selection and Limitation: This scenario is generated to see how change in
material selection changes building performance. Wall insulation design is taken into
consideration and performance of each alternative insulation material, EPS, XPS and
rock wool is tested. The results are tabulated in Table 6.7 and graphed in Figure 6.7.
The results indicates that rock wool is cost-inefficient material compared to XPS and
EPS although its emission performance is better than organic foams. Similarly, XPS
costs higher than EPS although energy efficiency level in each design scenarios are
nearly same. Therefore, EPS should be preferred in wall insulation design if different
insulation materials are not required for specific purpose(s) in wall insulation
applications. The graph results confirm that EPS is selected in most of the non-

dominated solutions.

Table 6.7. Building Optimized Energy Performance for Different Design Materials

Obijectives EPS Rockwool XPS
LCC Savings (TL) 113225.36 57411.62 99727.38
LCC GWP Savings

. 274904.73 227919.23 278196.85
(kg CO2-Equiv.)
Optimized Energy Consumption

138.78 141.21 140.19

(MWh/year)
Energy Efficiency (MWh/year) 55.52 53.10 54.11
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Figure 6.7. Non-dominated Solutions for Different Design Materials

Insulation Thickness Limitation: In this case study, some of insulation thickness data
are generated by extrapolation to evaluate more design alternatives. In this scenario,
insulation thickness values in wall, base /floor and roof is limited as 10 cm, 10 cm and
15 cm, respectively. The optimization performance of the building is calculated
according to this limitation. The results show that in optimal design, all design
variables higher than assigned limits decreased to maximum design limits whereas in
wall design , EPS with better thermal performance and aerated autoclaved concrete
that belongs to better thermal performance compared to brick wall are selected by
optimization algorithm. Table 6.8 shows that the limitation in insulation thickness
decrease the efficiency level of the building in 15 MWh annually. Moreover,
limitations decrease number of non-dominated solution alternatives for decision

makers (Figure 6.8).
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Table 6.8. Building Optimized Energy Performance for

Limitation Case

Insulation Thickness

Objectives Unconstrained Constrained
LCC Savings (TL) 113225.36 93866.16
LCC GWP Savings (kg CO2-Equiv.) 274904.73 209640.37
Optimized Energy Consumption (MWh/year) 138.78 153.60
Energy Efficiency (MWh/year) 55.52 40.71
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Figure 6.8. Non-dominated Solutions for Insulation Thickness Limitation Case

6.1.3. Parametric Analysis of Energy Model

In this section, the effects of modifications in TS 825 are observed in optimization

process by comparing performance of modified parts of energy model with existing

TS 825 standard based energy model. Climate effect, solar radiation on window system

and alternative detailed shading data on window glazing system and operational
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heating schedule parameters are analyzed to interpret how the change in energy model

input changes energy optimization model output.

Climate Temperature Data: In TS 825 standard, each degree-day region use single
monthly average temperature data to calculate annual heating energy requirement. On
the other hand, in reality, climate conditions of cities in the same degree-day regions
shows variety. Therefore, two different types of city specific temperature data are used
in optimization analyses. TOKI building in 3™ degree-day region is assigned as
reference and four different cities such as such as Ankara, Artvin, Isparta and Malatya
from different geographic regions but in same degree-day region are selected.
Performance of TOKI buildings are optimized according to TS 825 temperature data,
long-term average temperature data, and recent heating degree-day temperature data.
The results of main objective based optimization solutions are tabulated in Table 6.9
and 6.10 and graphed in Figure 6.9 and 6.10. Tabulated results claims that in both
comparison, TS 825 standard calculates higher energy requirement than the one
calculated for each city. Moreover, less amount of energy is required in long-term
average data compared to recent heating degree-day data. The main reason behind this
result is that in long-term average data, monthly average value of temperature data is
calculated whereas higher temperature value than 15°C eliminates lower temperature
ones. Therefore, less heating degree-day values are calculated in design stage. In
reference building heating energy consumption, energy use is reduced in a range from
12% to 23% by changing heating degree-day data. In optimization process, therefore,
change in degree-day calculations directly change optimization results. The optimum
design results indicate that more insulation design is required to improve building
performance in TS 825 standard whereas optimum design thickness values decreases
as energy consumption of reference buildings in different cities decreases in both data
type. Compared to long-term temperature data type, recent heating degree-day data

gives more incentive to insulation to increase life cycle cost.
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Table 6.9. Building Optimized Energy Performance according to Long-term Average

Temperature Data

_— ) TS 825
Objectives Ankara Artvin Isparta Malatya
3" DDR
LCC Savings
L) 109063.3354 | 84925.52 | 100375.32 | 94710.55 | 139911.82
LCC GWP Savings
. 267850.54 | 222339.74 | 252883.36 | 238181.88 | 324175.54
(kg CO2-Equiv.)
Reference Building
Energy Consumption 189.18 160.50 178.41 175.49 222.53
(MWh/year)
Optimized Energy
. 135.07 115.79 127.29 127.69 156.83
Consumption (MWh/year)
Energy Efficiency
54.11 44,71 51.11 47.80 65.70
(MWh/year)

Table 6.10. Building Optimized Energy Performance according to Recent Heating

Degree-day Data

_ ) TS 825
Obijectives Ankara Artvin Isparta Malatya
3"YDDR
LCC Savings
L) 113225.36 | 102353.14 | 113654.32 | 101549.95 | 139911.82
LCC GWP Savings
. 274904.73 | 238154.01 | 275563.42 | 256313.36 | 324175.54
(kg CO2-Equiv.)
Reference Building
Energy Consumption 194.31 171.76 193.56 183.59 222.53
(MWh/year)
Optimized Energy
) 138.78 124.02 137.91 131.69 156.83
Consumption (MWh/year)
Energy Efficiency
55.52 47.68 55.65 51.90 65.70
(MWh/year)

141




14 _ - ,
: “\o .
: L
13_. . *
12 i - .\
5 :
» ¢ oq : .
g, 10 I : b
S e W ¢ :
S 0 DO, N %o 4 gy :
..g 9 e O 8 “H
o ;
(3] ingay ® : ]
L gb * . %@30 : "'.
S = W .
] ®
o 7L L X1 N %
5 . & %
L. e ® ¢ Ankara
B- Ny % * Artvin
LN ¢ |sparta
5 ® Malatya
. * TS825
i | * I i I i | j
%.2 24 26 28 3 3.2 34 36 38
Life cycle GWP savings (kg CO2-Equiv.) x10°

Figure 6.9. Non-dominated Solutions in Long-term Average Temperature Database
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Figure 6.10. Non-dominated Solutions in Recent Heating Degree-day Database
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Solar Radiation Data: In TS 825 standard, single solar radiation data are used in solar
gain calculations for all country. In this case, a solar radiation normalization coefficient
is proposed by dividing city based annual cumulative solar radiation value per meter
square to same value from country average. Thus, the solar radiation difference
between different latitudes are clearly explained. The effect of solar radiation in
optimization results presented in Table 6.11 shows that solar radiation coefficient

changes performance of TOKI building in Ankara slightly.

Glazing Property Data: In TS 825 standard, shading factors of window glazing system
are categorized into groups. On the other hand, in Isicam database, shading factors are
differentiated in detail according to window glazing properties. Thus, more detailed
data give more accurate results. Optimization results support this idea that
differentiated data changes life cycle performance of TOKI building in an observable
value. Moreover, design details of main objective based optimum results indicate that
alteration of the glazing database changes glazing design details in optimum design of
the buildings. In this case, the optimization algorithm offers triple comfort glazing

system with argon gas for the gaps instead of triple synergy glazing with argon.

Table 6.11. Building Performance according to Solar Radiation and Glazing Property

Database
o TS 825 Isicam TS 825 SR & Isicam SR &
Objectives
SR&DTGD | SR&DTGD | Isicam DTGD | TS 825DTGD
LCC Savings (TL) 119598.05 113225.36 112723.32 119908.29
LCC GWP Savings
) 283847.70 274904.73 274133.82 284324.09
(kg CO2-Equiv.)
Reference Building Energy
] 195.16 194.31 193.76 195.66
Consumption (MWh/year)
Optimized Energy
] 137.92 138.78 138.38 138.33
Consumption (MWh/year)
Energy Efficiency
57.24 55.52 55.38 57.33
(MWh/year)
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Figure 6.11. Non-dominated Solutions in Solar Radiation and Glazing Property

Database

Operational Schedule: TS 825 is constructed based on constant continuous heating
during all month; however, occupancy conditions determine heating schedule. In case,
3 different heating schedules such 7/24 facility, 7/16 facility and 5/12 facility (that
means working five days and twelve hours a day) are constructed to compare effects
of heating schedule on energy consumption of the reference building and its
optimization process. The optimization results prove that decrease in occupancy in a
building reduces annual energy consumption in the building (Table 6.12). Moreover,
insulation thickness values in basement ceiling and walls increases while more energy
is consumed in the building. Furthermore, Figure 6.12 shows that building shows

similar behavior in non-dominated solution generation whereas only values change.
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Table 6.12. Building Optimized Energy Performance according to Heating Schedule

Objectives 7/24 Facility 7/16 Facility 5/12 Facility
LCC Cost Savings (TL) 113225.36 96940.06 73266.67
LCC GWP Savings
) 274904.73 241605.39 193200.04
(kg CO2-Equiv.)
Reference Building
) 194.31 175.68 147.44
Energy Consumption (MWh)
Optimized Energy Consumption
138.78 127.22 108.98
(MWh)
Energy Efficiency (MWh) 55.52 48.46 38.45
12210°
* 7124 Facility
- oy, +* 7116 Facility
M- -5, . ® 5/12 Facility
10
- (1] .‘...'. ".-.
% [e]™ '5 ‘
2 " ~
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Figure 6.12. Non-dominated Solutions in Different Heating Schedule

6.1.4. Parametric Analysis of Differential Evolution Optimization Model

In this section, performance of Differential Evolution in TOKI building energy

optimization is tried to be improved by changing DE specific position update

parameters by parametric analyses on control parameter F and crossover rate, Cr.
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In parametric analysis, Differential Evolution runs by 200 agents in 1000 iterations to
optimize building performance. Moreover, a control run is used by 5000 iterations to
check Pareto optimal solution found in 200000 function evaluation runs. Firstly,
control parameter F is set 1 and effect of changes in crossover rate on optimization
performance is tested by 0.1 intervals. The optimization result in Figure 6.13 explains
that no trends in results is observed in non-dominated solution generation, in Pareto
optimal solutions where all non-dominated solutions combined and Pareto solutions
are generated among them and ranked top 15 optimal solution with respect to main
objective performance. On the other hand, among all results, DE with C,=0.7 performs
best with 77 non-dominated solutions and 34 Pareto optimal solutions. Moreover, the
algorithm is able to catch all top 15 non-dominated solutions. Therefore, in the

following analysis, crossover rate C; is assigned as 0.7.
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Figure 6.13.Parametric Analysis of Crossover Rate in DE
In the second part of the study, performance of Differential Evolution is tested by

changing control parameters F using alternative F values from 0.5 to 2.0 with 0.25

intervals. The optimization results show that F=1.0 and F=1.25 are efficient to generate
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non-dominated and Pareto optimal solutions whereas F=0.75 works best while find top

20 Pareto optimal solutions with 95% success in 200000 function evaluation.

Parametric analysis results indicates that decision maker should use C,=0.75 and F
should be set in a range of 0.75 to 1.25 for this case. Change in case study parameters
may change parametric performance of the study. Therefore, in initial case of EnrOpt
interface, crossover rate and control parameter are assigned as 0.7 and 1.0,

respectively.
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Figure 6.14. Parametric Analysis of Control Parameter F in DE

6.2. Performance Optimization of Simple Cottage Case Study

In this section, energy performance results of simple cottage explained in Section 5.5
are presented and details of non-dominated optimum designs are compared and
discussed. In the next step, sensitivity of change in parameters of cost optimal design

is analysed to present how parameter changes energy performance of the cottage.
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At the end of multi-objective optimization procedure, five non-dominated design
solutions are generated by MODE. In Figure 6.15, annual energy cost and carbon
footprints are graphed with Pareto optimal solutions. In annual energy consumption
based analysis, in general, single optimum design is expected if single energy resource
is used in analysis; however, in this case, default energy costs are used that electricity
and fuel cost per kWh are $0.14 and $ 0.049. On the other hand, renewables generates
61 % of total electricity consumption. Therefore, electricity is much cleaner than fuel
resource due to less carbon footprints. Therefore, in design stage, a trade-off between
electricity and fuel consumption is expected to find non-dominated optimal design
alternatives. Therefore, five non-dominated results are obtained thanks to this trade-
offs.

1600

* All Solutions
® Pareto Optimal Solutions
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1450 -

Annual Energy Cost ($/year)

1400

95 2 2.05 21 215 22 225 23 235 24 245
Annual Carbon Emission (metric tonnes)

Figure 6.15. Non-dominated Solutions in Cottage

The details of optimum designs show that optimization algorithm tries to minimize
heat loss in window glazing system by using different combinations of triple low-e
glazing. Similarly, window area of side windows is larger than the one in front

windows although side windows are located in both north and south direction.
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Therefore, the results indicates that solar gains in south window is much larger than
the expected heat loss in north window. Therefore, the size of window is increased in
north-south directions. The effect of direction in window system is proved by
exchanging geometric property of front and side window by 90 degree counter
clockwise orientation where the larger window dimensions are used in south direction
and no window exists in north direction. On the other hand, other symmetric window
alternative is used in west and east direction. The results prove the idea that existing
optimum performance of Alternative 2 in Table 6.12 is improved from $ 1369.77 to
$ 1337.44 whereas annual carbon footprint decreases from 2.08 ton CO2 equivalent to
1.95 ton.

In energy analysis, GBS allows parametric analysis by changing design details in base
model. In Dynamo based energy analysis, multiple parametric analysis results can be
obtained by enabling parametric runs in energy analysis process by using ‘Run Energy
Analysis’ node in model figured in Figure 5.21. After simulating base design energy
performance, the model in Dynamo can call parametric analysis results. In this case
study, sensitivity analysis of same design parameters that are used in the first case
study to show importance of design details in energy analysis. The sensitivity results
of wall and roof insulation, operating schedule and window glazing system are
presented in Table 6.14. The R value in insulation parts represents thermal resistance
of design parameters according to US standard. The results explain that insulation
changes building performance significantly especially if the building component is not
insulated with any insulation materials. The significance of results can be understood
better from minimum 30% change between insulated and uninsulated wall and roof in
Table 6.14. On the other hand, glazing effect is limited compared to insulation works.
The main reason behind this result is the significant effect of insulation on building
performance and window-wall ratio in the cottage. As window-wall ratio increases in
the building, building performance is more affected by change in the glazing system.
Moreover, change in operating schedule affects building performance significantly
due to occupancy condition based energy consumption. These results support addition
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of operating schedule in modified TS 825 based energy model to increase energy
estimation accuracy. As a result, Dynamo based BIM integrated optimization model
provides parametric relations in energy estimation with more accurate results and
analyzes sensitivity in design parameters by parametric analysis to understand the
change in energy performance of the building from a wider perspective. This enables
decision maker to direct optimization process with respect parametric analysis results

to reach optimum results in a fast and efficient way.

Table 6.14. Sensitivity Analysis on Optimized Cottage Performance

Annual Carbon U-value
Wall Insulation Annual Energy Footprints if exists
Cost ($/year)
(ton/year)
Uninsulated Wood Frame Wall 1680.75 3.03 1.56
R13 Metal Frame Wall 1399.81 2.17 0.88
R13 Wood Frame Wall, Wood Shingle 1251.29 1.70 0.46
R13 + R10 Metal Frame Wall 1170.09 1.46 0.32
8 inch Concrete Wall 1369.77 2.09 0.84
Roof Insulation
RO 2120.10 4.29 2.52
R10 1369.77 2.09 0.45
R19 1325.20 1.95 0.33
R38 1249.10 1.72 0.13
R60 1231.37 1.67 0.08
Operating Schedule
7124 Facility 1839.31 3.02
7/12 Facility 1664.87 2.61
6/12 Facility 1612.50 2.52
5/12 Facility 1472.23 2.30
Window Glazing
Single Clear(6 mm) 1434.69 2.28 6.17
Double Clear 1398.29 2.17 2.74
Double Low-e 1383.21 212 1.99
Triple Low-e 1377.53 2.13 1.55
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6.3. Comparison of EnrOpt and Dynamo-BIM Model

The developed two energy optimization frameworks, EnrOpt and Dynamo based BIM
integrated energy optimization model, are compared according to their energy
estimation methodology and their performance in the optimization process in the

comparison table in Table 6.15.

Table 6.15. Comparison of EnrOpt and Dynamo-BIM Model

Model Details

EnrOpt

Dynamo-BIM Model

Energy model

Modified TS 825 standard
(steady-state)

Green Building Studio

(simulation)

Differential Evolution

44.8 seconds for 65 non-

Optimization ) o
) Particle Swarm Optimizer ) ) )
algorithm(s) - Differential Evolution
Modified Cross Entropy Method
Depending on number of non-
dominated solutions in each ) ]
) . . Depending on complexity of
iteration and number of function .
. ) building envelope
Run time evaluation

(10-20 seconds for single

Possible design

variables

Window frames/glazing

Wall type

) ) ) run)
dominated solutions in 200.000
function evaluation
Life cycle analysis Applicable Applicable
Insulation
) Window glazing
Insulation

Renewables
Orientation
All building component

details

Design alternative

updates

Updated in Excel and simple

changes in coding if necessary

Importing into BIM model
or
Creating design alternative
in BIM tool
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Table 6.15. Comparison of EnrOpt and Dynamo-BIM Model (continued)

Model Details

EnrOpt

Dynamo-BIM Model

Response to design

change

Re-designing reference building

in Excel

Automatically updated BIM
model if updates are not
relevant with design

variables

Re-design objective
function if updates are

relevant with energy model

Requirements for tool

use

Microsoft Excel
Matlab
Quantity takeoff

Material information/database

BIM tools
Building model
Material
information/database

Simple Python coding

Main Advantage

Wieldy tool

Parametric relations for

more accurate estimation
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CHAPTER 7

CONCLUSION

Energy consumption in buildings comprises a significant amount of total final energy
consumption and carbon footprints. Therefore, efficient energy strategies are required
to be developed to increase building energy efficiency. In order to develop an efficient
strategy to improve building energy performance, previous studies have been focused
on the reasons of inefficiency in building energy use. The reasons behind building
energy inefficiency are lack of proper scope definition that causes frequent changes in
design, short-term thinking by disregarding life cycle effect of design and inefficiency
of legal regulations and incentive strategies. Moreover, in traditional construction,
performance of designed building is analyzed just after necessary architectural and
construction documents preparation to meet legal requirements. Therefore, it is
resulted in lost opportunity to provide energy efficiency in the building early design
stage. In the next steps of building life cycle, decision makers encounter with more
constraint handling to improve building efficiency. Improperness of traditional CAD
based solutions and lack of integration between project stakeholders are one of the
main barriers to develop energy efficient solutions. Moreover wieldy energy analysis
tools are required to evaluate different design alternatives in early design stage in a

fast and efficient way.

In building energy optimization process, energy model determines the accuracy of
energy optimization model. In energy estimation, energy analyst selects energy
prediction methodology based on cost-effectiveness, time efficiency and estimation

accuracy of methodology. In early design stage, engineering calculations are preferred
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in energy analysis due to scarcity of measured data. Engineering calculations are based
on steady state energy estimation and dynamic energy simulation models. Steady state
energy estimation techniques simplify building envelope and use average climate and
all other necessary data to provide time efficiency in energy analysis. On the other
hand, dynamic simulation models simulate spontaneous change in building envelope
to predict building energy performance more accurately in much more time. Moreover,
BIM based energy analysis provides geometry and material information export into
energy model and reflects parametric relations of BIM model into energy model to get
more accurate energy results in optimization process. Therefore, regarding whole
process, in optimization process, accuracy of energy model and run time of

optimization model considers a trade-off to develop efficient solution alternatives.

In this study, a flexible excel integrated Matlab based GUI life cycle energy
optimization interface based on TS 825 standard and meta-heuristics is developed to
provide easy use, fast and accurate non-dominated design solution sets for decision
maker in post-decision making process. Performance of energy model is improved by
using more accurate and detailed input data. Furthermore, in the second energy
optimization model, Dynamo based BIM integrated energy optimization model is
proposed to provide effective model based solution that communicates with all project
stakeholders to deal with improper scope definitions or conflicts between stakeholders
in early design stage. In the following sections, major findings of this study and
limitations in the study are explained and recommendation on the study and possible

future studies are discussed.

7.1. Major Findings

Outcomes of this study show that energy optimization model improves building energy
consumption and optimize building life cycle performance by generating non-
dominated solution alternatives for decision maker to consider effective design in post

decision making process by changing design alternatives. The results demonstrate that
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both energy estimation methodology and optimization strategy determines
optimization results. Therefore, the major inferences obtained from this study
according to both energy model and optimization model can be briefly explained as

follows:

Energy model based findings:

v In building energy prediction, climate data dominates the accuracy level of
estimated energy performance. TS 825 standard presents higher heating
degree- day data for five different degree —day regions compared to both long-
term average temperature data and recent heating degree-day data. Moreover,
temperature data categorization for degree-day regions causes deviations up to
25% in energy estimations. This results in 12 % to 23% deviation in life cycle
cost optimization process for the case study in this thesis. Moreover, significant
change in climate data influences performance of non-dominated solutions and

their design details.

v In optimization process, cost-effectiveness and thermal efficiency of design
alternatives consider a trade-off in design selection. In addition, area values of
building components as coefficients of design variables increases the

importance of trade-off in optimization process.

v Heating schedule added to modified energy model causes significant change in

building energy performance.

v" Elaboration in glazing properties and city specific solar radiation coefficient

changes building life cycle performance slightly.
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Optimization model based findings:

v' Optimization strategy determines direction of non-dominated solution
generations. Main objective based optimization strategy focuses on alternative
non-dominated solutions around main objective based optimum design
whereas Pareto optimal solution finding strategy scan all solution spaces,

especially around all non-dominated solutions.

v Performance of optimization algorithms on the case study shows that
Differential Evolution and Particle Swarm Optimizer works efficiently in main
objective based optimization strategy whereas Modified Cross Entropy works

properly in Pareto optimal solution finding strategy.

v' Parametric analysis of Differential Evolution on the case study demonstrates
that optimization parameters of DE, crossover rate and control parameter F,
should be set 0.7 and 1.0.

Energy optimization model based findings:

v" EnrOpt provides 113225.36 b cost savings and nearly 275 metric ton CO, GWP
savings in TOKI building case in Ankara for 30-year analysis. This provides
175 b annual improvement for each dwelling by 28.57% improvement in
building heating whereas 1700 % initial investment is required for each

dwelling in the case study.

v" Optimum design recovers its initial investment in nearly 10.5 years whereas

this value is just 0.99 year for emission paybacks in the case study.

v" Most of life cycle environmental impacts in the building is reduced except
ozone depletion and eutrophication in the case study.
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v Climate conditions and energy prices are key determinants in energy use

reduction and life cycle cost optimization for five different cities.

v Optimum insulation design and design generation strategy of the algorithm
changes depending on length of analysis period. In short-term analysis such as
5-year analysis, algorithm tries to minimize initial investment cost regarding
payback period of investment whereas in long-term analysis, algorithm
considers trade-off between initial investment and thermal performance of

whole building design.

v Different energy resource use changes improvement rate in the building

depending on energy resource cost and emission performance.

v Limitation in material selection and insulation thickness changes building
performance and design parameters. In this case study, the algorithm tries to
maximize its performance by using upper insulation thickness limits for
optimum design. Moreover, in wall design, the limitation changes selected
material to reduce heat loss in the wall.

v In this case study, observed optimization behavior shows that the algorithm,
first tries to maximize thermal performance of window glazing systems and
roof insulation. On the other hand, the thickness of insulation in foundation is
minimized due to less heat loss in the foundation. The non-dominated design
solutions indicates that basement ceiling insulation values are most sensitive to

generate alternative non-dominated design solutions.

v Dynamo interacts with BIM model to change geometric and material properties
in the model. This change can be followed by all stakeholders to make analysis
in terms of different perspective of building. This approach allows analyzing

more design alternatives than currently done in practice.
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v" BIM integrated energy analysis provides consideration of parametric relations

in energy estimation which gives more realistic results.

v The case study in BIM integrated model shows that window fenestration,
operating schedule and insulation details play a key role in building energy

performance.

7.2. Limitations of the Study

In this study, energy optimization model is developed based on some assumptions.
Therefore, these assumptions draw the limits of the study. The limitations of this study

can be summarized as follows:

v" Cost and environmental impact data of design alternatives are obtained from
databases. Therefore, change in design inputs is expected to change whole

optimization process.

v' Energy prices are entered into model in terms of Turkish Lira to provide
consistency in cost units with design alternatives; however, Turkey imports
most of consumed energy in terms of US Dollars. Moreover, change in energy
inflation is also determined in terms of Turkish Lira. This limits accuracy of

life cycle cost analysis.

v Maintenance cost of optimum design in the following years are excluded in
this study. Moreover, change in performance of design alternatives in the
upcoming years due to tear and wear in design alternatives are not considered.

Lastly, logistic cost of the design alternatives are not taken into consideration.
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v" Manual update in BIM integrated energy optimization model decelerates
optimization process and limits whole life cycle analysis in the case study. This

can be eliminated if the automated run in energy analysis works properly.

7.3. Recommendations and Future Work

This study focuses on generating non-dominated design solutions to improve building
life cycle performance according to multiple objectives and analyzes how change in
energy optimization model changes building energy performance. The results of this
study indicates that heat insulation based strategy provides passive and effective
solution in buildings to reduce amount of energy use. Moreover, the results suggest
that more insulation thicknesses with cost effective and thermal efficient materials
should be used compared to insulation practices in construction industry. Furthermore,
heating energy requirement calculation methodology in TS 825 standard should be
elaborated by using more specific climate data and replacing shading factor table in
TS 825 standard with a detailed database such as Isicam glazing database. Beside these
modifications, heating operating schedule should be included in calculations to reduce
the amount of unnecessary energy estimation due to continuous heating during all

month.

Visual programming based BIM integrated studies are new and promising studies to
evaluate building performance. Therefore, in near future, it is planned to focus on
elimination of the internal error in some of the multiple runs of the same input file to
automate the building energy optimization process without any extra manual update
framework in the energy optimization model. Moreover, Dynamo based BIM
integrated studies can be used to optimize building performance by interdisciplinary
approach. The integrated model can interact with different tools to maximize whole
building efficiency. In future studies, Dynamo based BIM integrated model can be
constructed as a brain center of detailed framework such that the model can interact

with Autodesk Vasari for lightening analysis and Revit and GBS with energy analysis
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whereas structural performance of the model is tested by SAP 2000 model that is
provided by DynamoSAP. BIM integrated scheduling can be also added into integrated
framework. In the upcoming studies, optimization model in visual programming can
interact with all these tools to maximize whole building life cycle efficiency in a
correct order. Moreover, in the upcoming years, cloud based EnergyPlus simulation
will be available for optimization studies to perform fast and more accurate energy

analysis in BIM integrated optimization models instead of Green Building Studio.

Elaboration in design parameters and calculations in the energy model in EnrOpt
interface improves the estimation accuracy of the energy model. However, the
accuracy level of the model should be tested by various building types to validate the
improvement and its level in energy estimation. Finally, in future studies, input design
database of EnrOpt interface can be enriched to get more accurate optimization results.
Moreover, performance of meta-heuristics can be improved by changing optimization
strategy in optimization models to generate more effective non-dominated solution

sets.
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APPENDIX A

A. TOKI BUILDING CASE STUDY

Table A.1. Energy Resource Details

Unit Lower
Energy Resource Unit Price Calorific Value Energy Efficiency

(kcal/unit) (%)
Fuel Oil (kg) 2.130 b 9875 80
Hard Coal (kg) 0472 b 6650 65
Lignite(kg) 0374 b 4732 65
Natural Gas in Izmir (m?®) 1.110 b 8250 90
Natural Gas in Istanbul (m®) 1.185 b 8250 90
Natural Gas in Ankara (mq) 1.200 1 8250 90
Natural Gas in Kayseri (m?) 1.162 b 8250 90
Natural Gas in Erzurum (m?®) 1.107 b 8250 90
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Table A.2. Design Details of Reference Buildings for Different Cities

Design . . .
Izmir Istanbul Kayseri Erzurum
Parameters
Wall Type | HCB HCB HCB HCB
190 x 190 x 135 190 x 190 x 135 190 x 190 x 135 190 x 190 x 135
Wall
] 3 cm-EPS30 3 cm-EPS30 7 cm-EPS30 7 cm-EPS30
Insulation |
Wall
] 4 cm-EPS30 5 cm-EPS30 8 cm-EPS30 8 cm-EPS30
Insulation 11
Wall
] 4 cm-EPS30 4 cm-EPS30 7 cm-EPS30 8 cm-EPS30
Insulation 11
Wall
] 4 cm-EPS30 5 cm-EPS30 8 cm-EPS30 8 cm-EPS35
Insulation IV
Base
3 cm-EPS30 3 cm-EPS30 5 cm-EPS30 5 cm-EPS35
Insulation |
Base
3 cm-EPS30 3 cm-EPS30 5 cm-EPS30 5 cm-EPS35
Insulation 11
Base
4 cm-EPS30 5 cm-EPS30 7 cm-EPS35 8 cm-EPS30
Insulation 111
Base
] 4 cm-XPS350-30 | 5¢cm-XPS350-30 | 7 cm-XPS300-30 | 8 cm-XPS350-30
Insulation IV
Roof Insulation | 8 cm-GW18 10 cm-GW18 17 cm-GW18 18 cm-GW18
Roof Insulation | 9 cm-GW18 10 cm-GW18 17 cm-GW18 18 cm-GW18
Window PVC PVC PVC PVC
Frames (3 chambers) (3 chambers) (3 chambers) (3 chambers)
All Window Double Sinergy Double Sinergy Double Sinergy Double Sinergy
Glazing Systems Air (4-16-4) Air (4-16-4) Air (4-16-4) Air (4-16-4)
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APPENDIX B

B. OPTIMUM DESIGN DETAILS

Table B.1. Design Details of Optimum Design in Different Analysis Periods

Design
J 5-year Analysis | 10-year Analysis | 20-year Analysis | 40-year Analysis
Parameters
Wall Type | HCB HCB HCB HCB
190 x 85 x 190 190 x 85 x 190 190 x 85 x 190 190 x 85 x 190
Wall
Insulation 7 cm-EPS30 10 cm-EPS30 13 cm-EPS30 18 cm-EPS30
I-11-1v
Wall
) 4cm-EPS30 6 cm-EPS30 9 cm-EPS30 12 cm-EPS35
Insulation Il
Base
Insulation 3 cm-EPS35 5 cm-EPS35 8 cm-EPS35 12 cm-EPS35
1-11-111
Base
] 3cm-XPS300-25 | 3cm-XPS300-25 | 3 cm-XPS300-25 | 3 cm-XPS300-25
Insulation IV
Roof
] 13 cm-GW18 19 cm-GW18 25 cm-GW18 25 cm-GW18
Insulation
Window PVC PVC PVC PVC
Frames (3 chambers) (3 chambers) (3 chambers) (3 chambers)
Window
Glazing Double S-Argon Double S-Argon Low-e S-Argon Low-e S-Argon
I-11-111 (4-16-4) (4-16-4) (4-16-4-16-4) (4-16-4-16-4)
IV-V-VII
Window
Glazi Double S-Argon Double S-Argon Double S-Argon Low-e S-Argon
azing
4-16-4 4-16-4 4-16-4 4-16-4-16-4
VIV ( ) ( ) ( ) ( )
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Table B.2. Design Details of Optimum Design for Different Energy Resources

Design o )
Parameters Natural Gas Hard Coal Lignite Fuel Oil
Wall Type | HCB HCB HCB HCB
190 x 85 x 190 190 x 85 x 190 190 x 85 x 190 190 x 85 x 190

Wall

Insulation 16 cm-EPS30 13 cm-EPS30 14 cm-EPS30 20 cm-EPS30
I-1-1v
Wall

insulation 11 11 cm-EPS30 9 cm-EPS30 9 cm-EPS30 14 cm-EPS30
Base

Insulation 11 cm-EPS35 8 cm-EPS35 9 cm-EPS35 15 cm-EPS35
I-11-111

Base

Insulation IV 3 cm-XPS300-25 | 3 cm-XPS300-25 | 3 cm-XPS300-25 | 3 cm-XPS300-25
Roof Insulation 25 cm-GW18 25 cm-GW18 25 cm-GW18 25 cm-GW18
Window PVC PVC PVC PVC
Frames (3 chambers) (3 chambers) (3 chambers) (3 chambers)
Window

Glazing Low-e S-Argon Double S-Argon Low-e S-Argon Low-e S-Argon
o (4-16-4-16-4) (4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing 111 (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing IV (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing V (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Double S-Argon | Double S-Argon Low-e S-Argon
Glazing VI (4-16-4-16-4) (4-16-4) (4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing VII (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Double S-Argon | Double S-Argon Low-e S-Argon
Glazing VIII (4-16-4-16-4) (4-16-4) (4-16-4) (4-16-4-16-4)
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Table B.3. Design Details of Optimum Design for Different Insulation Materials in

Walls

Design Parameters EPS Rockwool XPS

Wall Type | HCB HCB HCB
190 x 85 x 190 190 x 85 x 190 190 x 85 x 190

Wall

Insulation 16 cm-EPS30 18 cm-RW120 14 cm-XPS300-30

I-11-1v

Wall 12 cm-RW120 9 cm-XPS300-30

Insulation 11 1 om-EPS30

Base

Insulation 11 cm-EPS35 11 cm-EPS35 11 cm-EPS35

I-11-111

Base

Insulation 1V 3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25

Roof Insulation 25 cm-GW18 25cm-GW18 25 cm-GW18

Window PVC PVC PVC

Frames (3 chambers) (3 chambers) (3 chambers)

Window Glazing Low-e S-Argon Low-e S-Argon Low-e S-Argon

I-11 (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)

Window Glazing 11 Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)

Window Glazing IV Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)

Window Glazing V Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)

Window Glazing VI Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)

Window Glazing V1I Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)

Window Glazing VIII Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
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Table B.4. Design Details of Optimum Design in Thickness Limitation

Design Parameters

Unconstrained

Constrained

Wall Type | HCB 190 x 85 x 190 7.5 cm-AAC400
Wall Insulation | 16 cm-EPS30 10 cm-EPS35
Wall Insulation 11 11 cm-EPS30 10 cm-EPS30
Wall Insulation 111 16 cm-EPS30 10 cm-EPS35
Wall Insulation 1V 16 cm-EPS30 10 cm-EPS35
Base Insulation | 11 cm-EPS35 10 cm-EPS35
Base Insulation 11 11 cm-EPS35 10 cm-EPS35
Base Insulation 111 11 cm-EPS 35 10 cm-EPS35
Base Insulation 1V 3 cm-XPS300-25 3 cm-XPS300-25
Roof Insulation | 25 cm-GW18 15 cm-GW18
Roof Insulation Il 25 cm-GW18 15 cm-GW18

Window Frames

PVC (3 chambers)

PVC (3 chambers)

Window Glazing |

Low-e S-Argon (4-16-4-16-4)

Low-e S-Argon (4-16-4-16-4)

Window Glazing Il

Low-e S-Argon (4-16-4-16-4)

Low-e S-Argon (4-16-4-16-4)

Window Glazing 111

Low-e S-Argon (4-16-4-16-4)

Low-e S-Argon (4-16-4-16-4)

Window Glazing IV

Low-e S-Argon (4-16-4-16-4)

Low-e S-Argon (4-16-4-16-4)

Window Glazing V

Low-e S-Argon (4-16-4-16-4)

Low-e S-Argon (4-16-4-16-4)

Window Glazing VI

Low-e S-Argon (4-16-4-16-4)

Low-e S-Argon (4-16-4-16-4)

Window Glazing VII

Low-e S-Argon (4-16-4-16-4)

Low-e S-Argon (4-16-4-16-4)

Window Glazing VIII

Low-e S-Argon (4-16-4-16-4)

Low-e S-Argon (4-16-4-16-4)
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Table B.5. Design Details of Optimum Design for Long-term Average Temperature

Data
Design Artvin Isparta Malatya TS 825
Parameters 3 DDG
Wall Type | HCB HCB HCB HCB
190 x 85 x 190 190 x 85 x 190 190 x 85 x 190 190 x 85 x 190
Wall
Insulation 15 cm-EPS30 16 cm-EPS30 15 cm-EPS30 17 cm-EPS30
I-111-1V
Wall
insulation 11 10 cm-EPS30 10 cm-EPS30 10 cm-EPS30 12 cm-EPS30
Base
Insulation 9 cm-EPS35 10 cm-EPS35 10 cm-EPS35 12 cm-EPS35
I-11-111
Base
Insulation IV 3 cm-XPS300-25 | 3 cm-XPS300-25 | 3 cm-XPS300-25 | 3 cm-XPS300-25
Roof Insulation 25 cm-GW18 25 cm-GW18 25 cm-GW18 25 cm-GW18
Window PVC PVC PVC PVC
Frames (3 chambers) (3 chambers) (3 chambers) (3 chambers)
Window
] Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
(Is_l;alzmg (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing 111 (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing IV (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing V (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing VI (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing VII (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing VIII (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
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Table B.6. Design Details of Optimum Design for Recent Heating Degree-Day Data

Design Artvin Isparta Malatya TS 825
Parameters 3 DDG
Wall Type | HCB HCB HCB HCB
190 x 85 x 190 190 x 85 x 190 190 x 85 x 190 190 x 85 x 190

Wall
Insulation 15 cm-EPS30 15 cm-EPS30 16 cm-EPS30 17 cm-EPS30
I-1-1v
Wall
insulation 11 10 cm-EPS30 11 cm-EPS30 11 cm-EPS30 12 cm-EPS30
Base
Insulation 9 cm-EPS35 10 cm-EPS35 11 cm-EPS35 12 cm-EPS35
I-11-111
Base
Insulation IV 3 cm-XPS300-25 | 3 cm-XPS300-25 | 3 cm-XPS300-25 | 3 cm-XPS300-25
Roof Insulation 25 cm-GW18 25 cm-GW18 25 cm-GW18 25 cm-GW18
Window PVC PVC PVC PVC
Frames (3 chambers) (3 chambers) (3 chambers) (3 chambers)
Window

. Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
(?_Ilalzmg (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing 111 (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing IV (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing V (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing VI (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing VII (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Low-e S-Argon Low-e S-Argon Low-e S-Argon Low-e S-Argon
Glazing VIII (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
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Table B.7. Design Details of Optimum Design in Different Heating Schedule

Design Parameters 7/24 Facility 7/16 Facility 5/12 Facility
Wall Type | HCB HCB HCB
190 x 85 x 190 190 x 85 x 190 190 x 85 x 190
Wall Insulation | 16 cm-EPS30 15 cm-EPS30 14 cm-EPS30
Wall Insulation 11 11 cm-EPS30 10 cm-EPS30 9 cm-EPS30
Wall Insulation 111 16 cm-EPS30 15 cm-EPS30 14 cm-EPS30
Wall Insulation IV 16 cm-EPS30 15 cm-EPS30 14 cm-EPS30
Base Insulation | 11 cm-EPS35 10 cm-EPS35 9 cm-EPS35
Base Insulation I1 11 cm-EPS35 10 cm-EPS35 9 cm-EPS35
Base Insulation 111 11 cm-EPS 35 10 cm-EPS 35 9 cm-EPS 35
Base Insulation IV 3cm-XPS300-25 | 3cm-XPS300-25 | 3 cm-XPS300-25
Roof Insulation | 25 cm-GW18 25 cm-GW18 25 cm-GW18
Roof Insulation Il 25 cm-GW18 25 cm-GW18 25 cm-GW18
Window Frames PVC PVC PVC
(3 chambers) (3 chambers) (3 chambers)
Window Glazing | Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Glazing 11 Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Glazing 111 Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Glazing IV Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Glazing V Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Glazing VI Low-e S-Argon Low-e S-Argon Double S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4)
Window Glazing VI Low-e S-Argon Low-e S-Argon Low-e S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4-16-4)
Window Glazing VIII Low-e S-Argon Low-e S-Argon Double S-Argon
(4-16-4-16-4) (4-16-4-16-4) (4-16-4)
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APPENDIX C

C. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION IN DYNAMO
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APPENDIX D

D. MANUAL UPDATES IN DYNAMO
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