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ABSTRACT 
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August 2015, 206 pages  

 

 

 

Energy efficiency plays a key role in minimizing energy usage cost and its 

environmental impacts. Life cycle thinking guides decision makers to develop energy-

efficient solutions in building early design stage; however, in practice, energy analysis 

is done according to technical specifications’ limits due to inefficient tools and lack of 

methodologies to response frequent changes in design. Therefore, alternative design 

solutions with different objectives cannot be generated. In this study, two energy 

optimization models are developed to solve existing energy analysis problems in 

practise. In the first model, a graphical user interface called EnrOpt that can be fast 

and flexible enough to be applied to multiple multi-objective problems and any 

building types is developed by strengthening weaknesses of practically applied TS 825 

Turkish Thermal Standard. The metaheuristics with different position update strategies 

such as Differential Evolution, Particle Swarm Optimizer and Modified Cross Entropy 

Method are used to provide a flexible model. In the second model, Dynamo based BIM 

integrated energy simulation optimization model is proposed. This model offers 

effective communication between stakeholders to avoid possible problems 

encountered in early design while providing efficient energy analysis by updating 
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frequent changes in design. Performance of energy optimization models are tested by 

case studies and Pareto optimal results are obtained. Parametric analysis of design 

parameters that affect energy model or optimization model on EnrOpt are performed. 

Results indicates that elaboration in climate and geometric data and energy use 

scheduling influences building energy estimation significantly. These two models can 

be applied to different building types by analyzing a vast of alternative designs using 

different meta-heuristics. 

 

 

Keywords: Building Energy Optimization, Building Energy Estimation, 
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SEZGİSEL ÜSTÜ ALGORİTMALARI KULLANARAK MODEL TABANLI 

BİNA ENERJİ OPTİMİZASYONU 
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Enerji verimliliği, enerji kullanım maliyetinin ve onun çevresel yan etkilerinin 

azaltılmasında önemli bir rol oynamaktadır. Yaşam döngüsü düşüncesi, binanın erken 

tasarım aşamasında karar vericilerin enerji tasarruflu çözümler geliştirmelerine 

rehberlik etmektedir; ama, uygulamada kullanılan araçların verimsiz olması ve  

tasarımda sürekli değişiklere hızlı reksiyon gösteren bir metodolojik yaklaşımdan 

yoksun olunmasından dolayı enerji analizleri sadece teknik şartnamelerde belirtilen 

sınırlara göre yapılmaktadır. Çok yönlü ve alternatifli tasarım değerlendirmeleri 

yapılamamaktadır. Bu çalışmada, sezgisel üstü optimizasyon yöntemleri kullanılarak 

enerji analizi uygulamalarındaki mevcut sorunların çözümüne yönelik iki enerji 

optimizasyon yöntemi geliştirilmiştir. İlk yöntemde, pratikte kullanılan TS 825 Türk 

Yalıtım Standardının zayıf kalan yönleri geliştirilerek birden fazla çok amaçlı problem 

analizini seri bir şekilde yapabilen, hızlı ve her türlü binaya uygulabilen, esnek bir 

enerji optimizasyon modeli bir grafik arayüzü kullanılarak EnrOpt adı ile 

geliştirilmiştir. Esnek bir model oluşturulmasından dolayı üç farklı pozisyon 

güncelleme yaklaşımları olan Diferansiyel Gelişim, Parçacık Sürüsü Eniyileştirici ve 
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Geliştirilmiş Çapraz Dağıntı yöntemleri kullanılmıştır. İkinci yöntemde, Dynamo adlı 

görsel programlama aracılığıyla Yapı Bilgi Modellemesi araçlarıyla bütünleşik çalışan 

enerji simulasyon programından oluşan bir enerji optimizasyon yöntemi 

geliştirilmiştir. Bu yöntem, tasarımdaki yapılan sürekli değişimlerin güncellenip enerji 

analizinin daha etkin yapılmasını sağlarken, bina projesi paydaşları arasında etkili bir 

iletişim sağlayarak erken tasarım sürecinde karşılaşılabilecek sorunları da ortadan 

kaldırmaktadır. Enerji optimizasyon modelleri örnek binalarla test edilmiş ve Pareto 

optimal çözümler elde edilmiştir. EnrOpt arayüz programına etki eden enerji ve 

optimizasyon yönteminde yer alan parametrelerin parametrik analizi yapılmıştır. 

Sonuç olarak iklimsel ve geometrik verilerin detaylandırılmasının ve enerji kullanım 

takvimi geliştirilmesinin bina performans tahmini büyük ölçüde etkilediği 

görülmektedir. Bu iki model, farklı sezgisel üstü optimizasyon yöntemleri 

uygulanarak, çok geniş alternatiflerin analiz edilerek farklı bina tiplerine 

uygulanabilir. 

 

 

Anahtar Kelimeler: Bina Enerji Optimizasyonu, Bina Enerji Tahmini,Sezgiselüstü 

Optimizasyon Yöntemleri, Yapı Bilgi Modellemesi, Dynamo 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Energy is essence of human’s life. It is consumed continuously as it is required for all 

aspects of life quality, from the food embodied energy to energy used to produce and 

utilize the tools that ease human life to vehicles used for our transportation needs. 

Similarly, energy is also essential for countries’ development. It is an indispensable 

component of economic survival as well as development of countries in many sectors 

of modern economies. The world energy statistics (2014) support this idea that most 

of the energy in the world is consumed in the countries with higher level of economic 

activities or in energy exporting countries that have abundance of energy sources. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. World Energy Consumption (a) and Production (b) (Enerdata 2014)  

 

In the last half century, world energy consumption has risen significantly in an 

exponential trend (see Figure 1.2.a) which has caused significant depletion of non-
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renewable energy sources such as oil, natural gas, coal and increase in concentration 

of greenhouse gases in atmosphere that traps radiated heat from Earth surface and 

causes change in the climate also called global warming potential (GWP)  (Panwar et 

al. 2011). Moreover, energy is a political card used time to time by energy exporting 

countries to manipulate world politics and persuade other energy importing players 

with energy reduction threats to take their sides (Cameron 2008). Therefore, energy 

importers must develop energy strategies to minimize the adverse effect of their energy 

exports. The simple but efficient strategies are (i) to increase role of domestic energy 

resources by increasing share of renewable energy with improvement in renewable 

technologies and (ii) to maximize energy efficiency by developing energy efficient 

solutions. 

 

Renewable energy resources are alternative domestic resources to reduce share of the 

imports in the energy demand of a country. Thus, governments, especially developed 

key players in world politics, give incentives to renewable energy technologies and 

support Research & Development projects in the renewable technologies to increase 

renewables’ effect on energy demand met. For instance, Germany targets to increase 

the share of renewable energy in its electricity production by %35 in 2020 and by 80% 

in 2050 whereas the share of renewables in its total energy consumption is planned to 

be 18% in 2020, 30% in 2030 and 60% in 2050  (Klaus et al. 2010). Similarly, the role 

of renewable energy sources such as solar, wind, biomass, and hydropower is 

forecasted to increase its share in the energy consumption in the following years 

(Figure 1.2.b) and consequently decrease the greenhouse release by increasing clean 

energy usage. 

 

The energy statistics are required to be examined in detail to develop energy strategies. 

In terms of energy consumption, the statistical results point out that energy use is 

concentrated in three sectors: industry, transportation and buildings (residential and 

non-residential ones). The buildings are responsible for  40 % of total energy 

consumption and 30% of CO2 emission in the world (Shaikh et al. 2014).When 
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building energy consumption is reviewed in detail , it is observed that energy demand 

on heating and cooling of the buildings seizes the lion’s share. The statistics (2008) for 

European countries indicates that the share of space heating varies from 50% to 70% 

of total building final energy consumption- the energy supplied to doors of the final 

consumers as seen in Figure 1.3. Similarly, the space heating and cooling in the 

buildings consume nearly 70% of the final energy in Turkish residential sector 

(Turkish Contractors Association 2014). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  World energy consumption (a) in years and (b) forecasted 

 

The exponential increase in the energy demand warns decision makers in energy 

importing countries to take precautions to control and govern energy demand due to 

its significant effect on international relations in terms of energy politics and energy 

security. Therefore, countries should use their energy and economic resources 

efficiently for both providing energy security and decreasing energy costs. Besides 

domestic non-renewable resources and renewable potentials, one of the energy 

efficient strategies is efficient management of potential energy savings. In the building 

sector,  Shaikh et al. (2014) summarizes from different studies that the United States 

can reduce their building energy consumption up to 20% whereas this value can go up 

to 30% in European Union and Turkey. In order to provide energy efficiency in the 

buildings and use building energy savings potential effectively, first, the barriers in 
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front of energy efficient buildings should be analyzed and energy efficient strategies 

needs to be developed as a solution to remove the barriers. The next section focuses 

on investigating barriers to energy efficient buildings and discussing efficient energy 

strategies in the buildings. 

 

 

 

Figure 1.3.  Final energy consumption of households (Mtoe), 2008 

(Enerdata 2008) 

 

1.1. Energy Efficiency in Buildings 

 

Energy efficiency means using less amount of energy resource while providing the 

same service. It is one of the fundamental steps to develop sustainable buildings. 

Energy efficiency increases the value of the buildings by providing energy cost control 

and improving environmental drawbacks of energy consumption; however, in most 

building design practices, energy analysis in design phase is neglected or the designer 

dabbles at energy analysis by only applying legal limits on building energy analysis. 

Therefore, this insufficient or ignored step in building design process decreases 

building’s whole life cycle value. Moreover, the precautions taken in the next steps of 

the building life cycle are not as efficient as the ones in the early design process in 
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terms of both energy efficiency and cost-effectiveness as seen in Figure 1.4. The 

reason for this is that more alternative scenarios can be evaluated in early design 

process with lower constraints in the projects compared to next steps in the building 

life cycle.  

 

 

 

Figure 1.4.  Decision cost and its impact during life cycle of building 

 

The reasons for having barriers in front of energy efficient solutions in the building, 

vary in building design process. The barriers in front of energy efficient buildings are 

explained in detail below: 

 

 Poor scope definition: Improper or incomplete scope of the project leads to 

frequent changes in the project. Thus, re-evaluation of all project design in each 

design change is required which may cause ineffective energy design due to 

reduction effect on building performance as project progresses. Moreover, 

energy performance of the buildings is analyzed after all necessary 

architectural and construction documents are prepared. This process is just 

followed to show the results of existing project design’s energy performance. 
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Thus, it is resulted in lost opportunity in the evaluation of any other energy 

based design alternatives. The main reason of this improper process is that 

traditional CAD-based design and planning tools are not adequate for energy 

performance evaluation. All stakeholders of the project make their designs in 

terms of their views and this results in lack of integration in design stage (Cho 

et al. 2009). Addition to energy analysis prominence negligence, lack of 

integration in the stakeholders’ designs also causes inefficient energy-based 

design in the buildings. 

 

 Lack of life cycle thinking/knowledge:  In traditional view, designer and the 

contractor generally focus on minimization of initial investment of building 

design and construction by providing all necessary design and construction 

details explained in the technical specifications of the building project. 

However, minimizing initial investment of the project does not add value to 

the building as higher operational energy costs exist which increase building 

life cycle costs and decrease its long-term cost-effectiveness. Therefore, 

building whole life cycle cost from early design stage to demolition of the 

building should be evaluated in determination of design details. 

 

 Lack of Legal Sanction or Incentives: In building design and construction 

practice, legal sanctions on energy efficiency enforce the designer and the 

contractor to produce energy efficient solutions in practice. Otherwise, gaps or 

recommendations in the mandatory codes, unfortunately, direct the designer or 

the contractor to develop solutions to minimize initial investment cost with 

short-term thinking in project profit. Similarly, incentives to energy efficient 

building are not seen sufficient enough to motivate construction companies to 

construct energy efficient buildings. Instead, the renowned construction 

companies construct symbolic energy efficient buildings that can be counted 

by fingers of the hand, to increase their prestige. However, share of smaller 

size companies on energy efficient building constructions decreases 
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significantly due to their cost minimization strategy. As the small-size 

companies dominate construction market, energy efficient practices become 

rare. 

 

A set of strategies are required to increase energy efficiency in the buildings. The 

following strategies can be followed to increase the energy efficiency: 

 

 Mandatory codes/certificates: One of the most efficient approaches to increase 

energy efficiency is the legal obligation for the buildings. Mandatory codes 

related with energy efficiency should be re-written to increase energy 

efficiency when it is seen inefficient in practice. Moreover, all necessities 

related with building energy efficiency should be clarified in the codes by 

filling all the gaps in the practice. Thus, this both increases the efficiency in 

the buildings and provides standardization in the practice. In order to reduce 

inefficiency of the recommendations on energy efficiency, minimum energy 

efficiency level for whole building, building components or building energy 

processes/operations should be set. Similarly, building certification programs 

such as LEEDS, BREEAMS or Energy Star or equivalent country indigenous 

certification programs may be used as mandatory programs to provide both 

energy efficient and sustainable solution and increase the minimum energy 

efficiency level in the buildings. For instance, in the United States, LEED 

certification has become mandatory application in the governmental buildings 

to incentivize efficiency and sustainability in the building via governmental 

hand. 

 

 Incentives to life cycle thinking: In general, the aim of a construction project is 

to complete the project within minimum project cost within pre-determined 

technical specifications that include mandatory codes; however, incentive 

programs are required to generate more efficient solutions than the ones limited 

by mandatory codes. Therefore, the decision makers should prepare incentive 
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programs for short-term period to deal with short-term profit thinking in the 

construction projects. Green tax reduction to reward building energy efficiency 

and provision of lending facilities for energy efficient projects and easiness in 

procedural details of building registers of certificated buildings and prestigious 

opportunity value addition on the building sales of certification motivate the 

construction sector in short-term period. Moreover, educational programs for 

life-cycle thinking increase the awareness in the society and long-term cost 

effectiveness in the buildings provide an increase in the building sale prices. 

 

 Incentives to renewable energy technologies: The rising awareness in global 

warming potential and depletion of non-renewable energy resources due to 

high level of energy consumption and forecasted trend in energy demand 

increase, directs the governments or social organizations to find alternatives to 

reduce greenhouse gas emission and energy depletion. The renewable energy 

resources are alternatives to reduce undesired effect of the non-renewable ones; 

however, the resources cannot compete with traditional energy resource in 

terms of cost. Therefore, the renewable sources must be incentivized by the 

governments to compete with the non-renewable ones. Carbon green taxes for 

the non-renewable energy usage or subsidy for renewable resources can be a 

solution to enable fair competition between alternatives. Moreover, the 

disadvantages of renewable resources and technologies such as higher initial 

cost in solar energy, 40% efficiency of solar panels, discrete energy/electric 

production in wind and solar energy due to permanent change in wind speed or 

low wind speed,  day and night effect on solar energy performance,  social and 

economic adverse effect of  small hydropower plants, and wide installation 

area requirement to produce in high amount energy of solar energy must be 

considered as trade-off parameters on the strategic decision making process on 

energy resources. The efficiency based parameter is expected to be improved 

in near future; however, the problems due to nature of renewable sources need 

to be considered as a constant parameter. Therefore, greenhouse and cost effect 
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of renewable sources should trade-off with their adverse effect. Moreover, 

during economic crises such as in 2008, the incentives for renewable 

technologies are decreased as seen in Germany. On the other hand, renewable 

energy usage decreases foreign-source dependency in a considerable amount. 

 

 Building energy control system: Building energy control system provides 

measurement of energy consumption of whole building system or different 

components of the buildings and analyzes energy performance of each 

component to re-design building components or reuse the results of the analysis 

in equivalent buildings. Using smart building applications such as building 

management systems, instantaneous energy consumption in the building 

components can be control by adjusting the performance of the required tools 

to environmental conditions. For instance, redundant lightening can be 

controlled by sensors or thermostatic setting in building can be automated to 

specific temperature controls. Moreover, direction/angle of the solar panel in 

the building is changed according to solar radiation to get higher energy from 

the Sun (Karagol 2013).  

 

 Wieldy energy analysis process: Energy estimation tools should be easy to use 

and applied to building energy performance. The response of the tools for 

design changes should be effective in terms of time and accuracy to update 

energy analysis. 

 

1.2. Building Energy Performance Estimation 

 

In building energy based design, accurate energy performance simulation for the 

building guides decision makers to develop energy efficient solutions in design stage. 

Various energy estimation tools or methods have been proposed to predict amount of 

energy required to meet building needs for a specific time period.  The performance of 
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energy estimation tools varies based on their methodologies. Energy estimation 

methods used in the literature are explained in detail in Chapter 2.  

 

Building energy performance, in general, can be estimated by engineering calculations 

or measured by using special devices or methods. In calculation based energy analysis, 

the accuracy of building performance estimation depends on details available for 

energy model. As the building is modeled in more detail building performance analysis 

get more realistic, however simulation time of the building analysis increases 

exponentially. On the other hand, measurement based energy estimation require huge 

amount of energy usage data. As details in measured data increase or energy 

measurement interval gets smaller, cost of measurement increases in an incremental 

order. Therefore, in energy estimation, decision makers consider trade-off between 

estimation cost, energy estimation accuracy, and simulation run time. 

 

Measured data are only available for existing buildings. Therefore, it is expected to be 

evaluated in retrofit projects. On the other hand, measured data in similar 

environmental conditions and building envelop can be used as a reference in the 

evaluation of newly designed buildings. In general practice, engineering calculations 

are more appropriate to estimate building performance in early design stage if 

measured data with similar conditions does not exist or is not reliable. 

 

1.3. Building Information Modeling (BIM) and BIM Integrated Energy Analysis 

 

Building Information Modeling (BIM) is data-enriched parametric representation of 

physical and functional characteristic of a facility that provides shared information for 

its life-cycle to be exchanged between the stakeholders (Eastman et al. 2011). BIM 

can also be used as communication and coordination tool to solve possible disputes 

encountered in construction process between stakeholders (Krygiel and Nies, 2008). 

The model can be used as main communicator in the evaluation of building 

performance criteria from different perspectives such as esthetics, structural reliability, 
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and energy performance in an integrated model. The model provides design 

alternatives and tests the performance of the design solution for each performance 

criteria. 

 

Building information modeling helps to analyze energy performance of the buildings 

with integration of simulation tools. The building is modeled virtually in BIM tool, 

then, energy model is exported into dynamic simulation tool as input file, and the 

performance of the energy model is estimated by energy simulation tool by adding 

default tool specific information. In the second approach, the performance of the 

building model can be tested through an add-in energy simulation tool in BIM 

environment such as Green Building Studio. Moreover, visual programming tools such 

as Dynamo can be used to change building element properties and automate building 

energy performance analysis in BIM tool via GBS. 

 

Dynamo integrated BIM tool is appropriate to evaluate multiple design alternatives in 

automation. In BIM integrated dynamic simulation energy analysis, the exported 

energy model needs to be updated by changing building elements manually to get 

accurate results. Whenever, energy model is exported once all design alternatives are 

determined in dynamic simulation tools, the dynamic model cannot inherit parametric 

relationship between building elements and prone to errors in energy model. On the 

other hand, in Dynamo based BIM tool integrated analysis, alternatives are applied to 

building model and associated energy performances are tested. At each design update, 

building model and energy model are updated by model in Dynamo. The automated 

building energy analysis in Dynamo overcomes disadvantages of two alternative 

approaches mentioned above. However, there is no commercially available or fully 

developed Dynamo based BIM energy optimization method to best of all knowledge. 

 

1.4. Building Life Cycle Energy Optimization 

 

In early design stage of the building projects, effective energy based design of the                                      
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building both provides cost-effective solution and also reduces  environmental adverse 

effect of higher energy use in building operational process.  However, to make the 

design effective, all stages of the building life cycle needs to be evaluated. For 

instance, minimization of wall insulation thickness decreases initial investment on the 

building whereas in the building operational process, high amount of energy is 

required for cooling and heating the building. Therefore, decision makers evaluate the 

trade-off between initial investment for wall insulation and extra energy cost due to 

reduction in insulation thickness, to minimize total cost of the energy based design. 

Moreover, inadequate insulation design in early design stage will require retrofits in 

building operational period to increase building energy efficiency and reduce existing 

life cycle energy cost of the building. However, decision making process by taking 

permits from all residents may take long time for insulation retrofits in multi-family 

dwellings. Therefore, early decision making improves performance and value of the 

buildings. 

 

In early design stage, decision makers want energy analyst to calculate life cycle 

energy performance of multiple alternative design solutions and evaluate all 

alternatives to select most appropriate design combination in building construction 

process. If number of design alternatives can be counted by fingers of the hands, 

energy analyst can run each design alternative and reports the results to decision 

maker; however, a great many design alternatives may not be solved one by one. In 

such conditions, optimization techniques are applied to test the energy performance of 

multiple design alternatives. 

 

Building energy performance can be optimized on single objective criterion to find 

optimum design combination or evaluated according to multiple objective criteria by 

generating multiple Pareto optimal design alternatives depending on decision makers’ 

expectations. 
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1.5. Motivation of the Study 

 

Researchers have been working on improving building energy estimation accuracy and 

optimizing building energy performance to maximize energy based cost savings and 

minimize environmental adverse effects. However, in real life, energy performance of 

existing building stocks are questionable due to inefficient design limits in previous 

thermal standards. In newer versions of thermal standards, more energy efficient 

design limits are set to provide improvement in building heat losses. Therefore, retrofit 

projects have been implemented to improve existing building performance, especially 

in developed countries. On the other hand, in Turkey, Turkish Contractors Association 

(2014) indicates that only 15 % of existing building stocks meets the minimum energy 

efficiency level in Turkish insulation standard TS 825, “Thermal insulation 

requirements for buildings” standard which regards insulation as an energy efficient 

solution. Therefore, Grand National Assembly of Turkey legislated for a law called 

“Law 5627 Energy Efficiency” to increase insulated dwelling stock with incentives 

and penalties. The Law forces residents to get energy ID card for the buildings which 

will be used for calculating the tax rates for the buildings and could provide advantages 

and prestige for energy efficient solutions. Moreover, significant number of existing 

buildings are planned to be renewed by urban renewal projects. During renewal 

projects and in new constructions, development of energy efficient solutions in early 

design stage of the buildings provide significant improvement in energy cost, resource 

use and environmental adverse effects. 

 

In the first part of this thesis, a flexible energy optimization framework is constructed 

to optimize building life cycle energy performance according to multiple objective 

combinations analyzed within a reasonable time. The aim is to provide enriched energy 

data analysis for decision maker to evaluate more design alternatives in a broader 

perspective. Thermal insulation standard TS 825 is modified to overcome its 

weaknesses that are explained in literature for achieving more accurate energy 
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estimation. This rapid comprehensive energy optimization analysis can be applied to 

practical real life problems through a user-friendly interface.  

 

In the second part of the thesis, energy optimization model is constructed on a visual 

programming tool to automate BIM integrated optimization process by adjusting 

design to changes fast and efficiently aiming to provide effective communication 

between stakeholders. The visual programming tools offer built-in nodes and custom 

nodes for non-programmers to construct the model easily. 

 

1.6. Research Questions 

 

This thesis is based on finding solutions to answer following research questions: 

 

 How do climate data parameters change building energy performance 

estimation? Which parameters should be updated to obtain more accurate 

simulation results in TS 825 standard methodology? 

 

 How do design alternatives influence building performance results? How can 

the building be designed to optimize building energy performance? 

 

 How can life cycle approach be applied in energy optimization model? Which 

parameters make trade-off in life cycle analysis? 

 

 How can a flexible energy optimization model be constructed to optimize 

energy performance of the building in multi-objective perspective such as cost, 

environmental effects, and payback period? 

 

 How are BIM tools integrated into energy optimization model to provide 

effective communication? 
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 What are differences in energy optimization applications between steady state 

energy estimation and BIM-based energy simulation? 

 

1.7. Research Goals/Objectives 

 

The objective of this thesis is to develop a flexible and wieldy case-free framework 

called Energy Optimizer (EnrOpt) to optimize single or multi-objective building life 

cycle energy performance according to life cycle cost savings, life cycle environmental 

improvements and payback periods by using meta-heuristic optimization techniques 

to contribute the literature.  

 

Another objective of this thesis is to propose visual programming based BIM 

integrated multi-objective building energy optimization framework to simulate 

building operational life cycle energy performance in the model and make efficient 

decisions in early design stage with respect to simulated models. Finally, energy 

estimation methodology and energy optimization models of the steady state methods 

based energy estimation and dynamic simulation based energy estimation are 

compared with each other according to EnrOpt and Dynamo based BIM integrated 

energy analysis. 

 

1.8. Scope of the Study 

 

In this thesis, thesis chapters are organized as follows: 

 

Chapter 1 introduces problems in energy optimization, motivation of the study and 

objectives of this thesis. 

Chapter 2 presents literature review on energy estimation methods and optimization 

applications on building energy performance. In this chapter, methodology of each 

energy estimation method is explained in detail with previous studies to discuss which 
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energy estimation method can be applied to different case studies. The optimization 

techniques applied to building energy estimation studies are introduced and 

categorized. 

 

Chapter 3 explains energy estimation methods used in the energy optimization models. 

Details of TS 825 standard and Green Building Studio are introduced. 

 

Chapter 4 introduces single and multi-objective optimization. The reasons for applying 

meta-heuristic optimization techniques on optimization problems are explained. The 

meta-heuristic algorithms Differential Evolution, Particle Swarm Optimizer, and 

Modified Cross Entropy Method are introduced and how the meta-heuristic algorithms 

are applied to energy optimization model is discussed. 

 

Chapter 5 presents energy optimization models: EnrOpt and Dynamo based BIM 

integrated life cycle energy optimization frameworks. The modifications in energy 

models and assumptions in energy optimization model in EnrOpt are explained with 

detailed design alternatives in optimization procedure. The implementation process of 

the interface is explained with design variables and optimization objectives. In the 

second part of Chapter 5, how Dynamo based BIM integrated life cycle energy 

optimization model is implemented is discussed. The details of the case studies for 

each energy optimization model are explained. 

 

Chapter 6 presents energy performance results of the case studies. Parametric analysis 

results of both energy models and optimization models are reported and discussed 

separately. Lastly, the energy optimization methodologies in the two energy 

optimization models applied are compared and evaluated. 

 

Chapter 7, finally, concludes major research findings and discusses the limitations of 

the study and explains possible future research studies. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

In this chapter, energy estimation methods in the literature are introduced. Design 

alternatives and objectives in multi-objective building energy optimization studies are 

investigated. Optimization techniques used in these studies are presented. 

 

2.1. Building Energy Estimation Methods 

 

Building energy performance estimation plays a key role to get accurate energy 

performance results for proposing energy-efficient solutions in the buildings. 

Researchers have been working on energy estimation methods for the last fifty years. 

In the literature, energy estimation techniques are categorized in various ways.  

 

ASHRAE Handbook (2009) classified the methods into two approaches as forward 

approach and inverse approach. In forward approach, design alternatives are entered 

as inputs to mathematical expression that describes physical behavior of building 

system and output of the mathematical expression indicates building energy 

performance. Whereas in data-driven approach, design alternatives are known and 

building energy performance is measured; however, mathematical relationship 

between design alternatives and performance results are unknown. Data-driven 

approach develops mathematical description to estimate building performance 

according to different design alternatives. 
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Pedersen (2007) divided load and energy predictions into three groups such as 

statistical approaches/regression analyses, energy simulation programs and intelligent 

computer systems. Statistical approaches use measured hourly energy consumption 

data as output of building energy estimation system whereas design parameters are set 

as input to maximize mathematical correlation between design alternatives and energy 

consumption by linear and multi-variate regression analysis. The correlation quality 

between design parameters and measured energy data indicates whether the regression 

analysis is accurate enough in building energy predictions. Energy simulation 

programs model and simulate all building energy models in two different calculation 

approaches such as response function method and numerical method. Response 

function method calculates building energy performance with respect to time invariant 

linear differential equations whereas numerical methods include time variance in the 

calculation where the model gets more complex and realistic by simultaneous equation 

solving. Lastly, intelligent computer systems such Artificial Neural Network interpret 

mathematical expression intrusively between given input and output data such as 

climate and energy performance data and testify the performance of the constructed 

model by training data among inputs and outputs. 

 

Foucquier et al. (2013)  categorized energy estimation methods into three approaches 

such as white box, black box and green box approaches. White box approach, also 

called physical model, constructs building energy model and solves thermal behavior 

equations in the model according to design parameters to estimate building energy 

performance. Thermal building behavior is simulated according to three different 

approaches such as Computational Fluid Dynamics (CFD), zonal approach and nodal 

approach. CFD decomposes a building zone into numerous control volumes and 

thermal transfers in the building zone are modeled in detail whereas zonal and nodal 

approaches simplify the building zone details compared to CFD. In black box 

approach, statistical approaches and intelligent computer systems in Pedersen (2007) 

study are combined. ANN, SVR, GA and linear multi-variate regression analysis 

interpret design data and energy performance data to construct a model to estimate 
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alternative design performance. Genetic Algorithm is proposed as complimentary 

technique for machine learning techniques to optimize ANN and SVR analysis 

parameters for minimizing difference between measured energy data and modeled 

energy data. Grey box approaches integrate white and black box approaches in 

building performance estimation. 

 

Wang, Yan, and Xiao ( 2012) quantified existing building energy use in three 

approaches such as calculation based energy analysis, measurement based energy 

analysis and hybrid approach. Building energy performance of the building is 

formulized in a mathematical expression according to its relation with external 

environment and internal heat loads in calculation based energy analysis whereas 

previous measurements in different buildings are used to estimate energy performance 

of the similar type of the building in equivalent environment in measurement based 

energy analysis. 

 

Wang, Yan, and Xiao ( 2012) divided calculation based energy analysis in two main 

parts as steady state and dynamic energy analysis. Steady state energy analysis 

simplifies building operations by assuming all properties and variables in building 

energy model constant for each calculation period condition by ignoring building and 

HVAC system dynamics whereas dynamic simulation models show continuous time 

dependent building operation and variation in a system. Quasi-steady state models 

combine simple part of dynamic model into steady state model by adding transient 

effect due to weather conditions and internal environment of the buildings. 

 

Typical steady state models are degree-day method, bin method and equivalent full 

load methods. The details of steady state methods are as follows: 

 

Degree-day method  is single-measure steady state method developed to calculate 

heating energy demand of buildings (Al-Homoud 2001). Except outdoor dry bulb 

temperature and design heat loss, heating equipment efficiency, all other effects are 
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ignored in the method. Heating degree-day and cooling degree-day values for the 

building are calculated according to given internal thermostat temperature and outdoor 

temperature difference. The annual or monthly average temperature data are used in 

the calculation by assuming continuous heating in that period. The method is modified 

by adding correction coefficient to decrease the difference between method results and 

actual building performance. Moreover, variable-base degree-day method is improved 

from fix-base degree-day method considering temperature balance of the buildings by 

adding interior heat gains and solar gains in the calculation in addition to degree-day 

methodology in the balanced temperature calculation. 

 

Bin method, temperature frequency, is also single measure steady state method 

developed to improve building energy estimation to calculate heating and cooling 

energy consumption of the buildings where the degree-day method is insufficient. In 

bin method, day is divided into pre-determined intervals and average temperature 

values for those periods are considered in calculation. Occupied and unoccupied 

conditions are also considered in the internal gain calculation procedure which makes 

the method more accurate than degree-day method. In modified bin method, instead 

of peak loads, diversified load profile characterized by average solar and internal gain 

profile is used. 

 

Equivalent full-load hour method, is a single–measure method to calculate 

approximated annual energy requirement especially for cooling session. It calculates 

number of hours an air-conditioner works at full load with equal energy consumption. 

It is generally used to get a rough energy use estimate. 

 

Dynamic energy models simulate energy consumption in detail by dividing time 

interval into small pieces with hourly or sub-hourly data. Dynamic changes in building 

energy loads and building system due to the external weather and response of plant 

used as energy converter to meet energy requirement of the building are reflected to 

analysis simultaneously. The simulation tools for energy analysis are generally based 
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on three modeling such as load model, system model, and plant model. The load model 

analyzes thermal behavior of all building system including building envelope, internal 

heat loads, and infiltration to determine heat requirement to the building system. The 

system model calculates thermodynamic effects of air-side system such as air handling 

equipment, fans and terminal units, and system needs on HVAC plant. Lastly, plant 

model analyzes building loads and energy converters to balance energy requirement 

into system. Commonly, these three models are linked to another one in a sequence in 

the order of building load calculation, system modeling, and plant analysis.  The load 

analysis is generally based on two approaches such as weighted factor method and heat 

balance method. In weigh factor approach, the weight factor that is used for convective 

heat gains of building components over whole building heat gains is pre-calculated 

before energy simulation according to material properties of building components. On 

the other hand, heat balance method calculates instantaneous building loads based on 

heat balance for each zone based on conductive, convective, and radiative heat flux in 

building zone.   

 

Energy calculations in dynamic simulation models are based on simulation programs. 

Input parameters in simulation programs can be entered directly or exported from BIM 

tools. In direct simulation programs, all input data and drawings are entered according 

to nature of simulation program whereas in BIM-based programs, the building is 

modeled via any BIM software such as Revit and ArchiCAD. Then, the output of BIM 

software is converted to input data for simulation programs and missing parts of 

building energy model is filled by the user and then the simulation runs. 

Energy simulation programs vary depending on details in the modeling and differences 

of country–specific approaches. Nguyen, Reiter, and Rigo (2014) investigated 

utilization intensity of building simulation programs in the literature in Scopus engine 

for the years of 2000-2013. The results indicate that the most commonly used 

simulation programs in optimization studies are Energy-Plus, TRNSYS, DOE-2. The 

detailed information about these simulation programs are presented below: 
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DOE-2 is a powerful and widely used to predict energy performance of different types 

of buildings. Building layout, constructions, scheduling details, HVAC and lightening 

details and utility rate are entered as inputs and by using weather data through an 

hourly simulation it calculates utility bills and energy use. It uses weighting factor 

method to calculate energy loads between spaces and zonal approach in thermal 

simulation by simplifications. VisualDOE, eQUEST and PowerDOE, are examples of 

DOE-2 based simulation tools. Moreover, Green Building Studio integrated with Revit 

BIM tool uses DOE-2.2 in energy performance calculations. 

   

EnergyPlus is a new generation simulation engine that uses basic structures of DOE-2 

in the simulation whereas heat balance method is used to calculate thermal loads. It 

can be applied to various complicated buildings with its advance futures. It provides 

flexibility in the design of HVAC system controls; however, its interface is not user 

friendly enough for direct design; therefore, the buildings are modeled in third party 

tools and exported as input file into simulation engine.  

 

TRNSYS is a simulation program to perform thermal behavior of transient systems. It 

is commonly applied to solar systems, low energy buildings and HVAC systems, 

renewable energy systems, cogeneration and fuel cells. TRNSYS divides each 

simulation stakeholders into components and manage and integrates all the process 

with calculation platform for simulation. Compared to EnergyPlus and DOE-2, 

thermal load calculations are simpler whereas HVAC design is more advanced. 

Measurement based energy analysis is founded on energy performance estimation 

according to measured energy data. This type of energy estimation is effective to 

forecast energy consumption of the existing building using its previous energy 

performance. Moreover, measurement based energy calculation can be applied to new 

buildings by using similar environmental conditions and building properties; however, 

extensive energy database for the buildings and their environment is required to get 

accurate results. This process may require higher initial investment and it is labor-

intense while achieving accurate estimation. Therefore, it would be effective for 
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governmental organizations to use an extensive database including all country’s 

energy efficiency data. On the other hand, for private sector and residents, it is cost-

inefficient and labor-intensive. Therefore, in new building designs, calculation based 

energy estimation is more preferable. Energy estimation of existing building can be 

forecasted by using its previous energy bills and this would be much more cost 

effective. Alternatively, special equipment can be used for all building components to 

monitor their energy use, which is expected to be expensive but gives more accurate 

result. Therefore, the decision maker should consider the trade-off between 

opportunity of energy estimation accuracy and cost of energy estimation method. 

 

Wang (2012) categorized measurement based energy estimation into two main parts 

such as energy bill disaggregating and monitoring based energy estimation. Energy 

bill disaggregating is a methodology that portions out total energy consumption in the 

bill into end-use equipment or systems. This method provides cost-effective and time 

efficient solution; however, the accuracy of energy consumption distribution on 

appliances is questionable. On the other hand, energy consumption in each appliance 

and system can be controlled by metering. Monitoring based energy estimation gives 

more accurate energy results; however, it is expensive for residential buildings (Wang 

et al. 2012). 

 

Hybrid energy estimation models combine measured data with calculation based 

energy analysis. Wang, Yan, and Xiao buildings (2012) classify hybrid approaches as 

calibrated simulation and dynamic inverse models. 

 

Calibration simulation models try to minimize difference between simulated energy 

estimation and measured data by changing details of the input parameters for 

simulation programs. The simulated energy results direct decision maker to change 

details of input parameters. Moreover, effect of each design parameters as inputs in 

simulation programs can be measured easily by comparing simulated energy 

performance with measured data in the rank of design parameters. 
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Dynamic inverse modeling is another hybrid energy estimation technique where a 

model is constructed by using training data that come from building measurements to 

determine the relationship between inputs such as equipment or any design parameters, 

process like building load calculation and energy use as output. The modeling covers 

dynamic effects of thermal mass to get more accurate calculation; however, the 

relationship between system stakeholders is complex and the method requires more 

detailed measurements to get more accurate results. One of the examples of dynamic 

modeling is Artificial Neural Network that is constructed between input parameters 

such as weather conditions, HVAC system, building properties and output parameter 

such as energy use of the building. Some of these data are used to construct relationship 

between measured data and input parameters as training data whereas the others are 

used to control the accuracy of the results by comparing the results of the model with 

measured data. The model constructs the relationship by using its modeling approach 

and the results are compared with the measured ones to determine its accuracy level 

for deciding whether to detail the input parameters more or not. If reasonable results 

can be held, the energy estimation of other new or existing buildings can be done via 

the model. 

 

2.2. Multi-objective Optimization in Building Energy Performance Analysis 

 

Optimization aims at improving building energy performance by changing design 

alternatives according to pre-defined calculation methodology in a reasonable run 

time. Details of building design, number of alternative design solutions and run time 

of energy model determine the limits of the optimization process. Therefore, in energy 

optimization models, trade-off between energy model accuracy and its run time are 

required to generate optimization process in a right way. Among energy estimation 

methodologies, Foucquier et al. (2013) explained that CFD is most comprehensive 

method to estimate thermal performance of the building in a most accurate way; 

however, single analysis of the building with CFD  takes multiple minutes. Therefore, 
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time-consuming simulation decreases the efficiency of all process. Due to this reason, 

multiple simulation tools used in literature such as EnergyPlus and TRNSYS use zonal 

approach which is the simplest version of CFD approach. On the other hand, since the 

real energy model is simplified more, the accuracy of energy estimation gets more 

questionable. 

 

Multi-objective optimization process generates solutions to provide extensive enriched 

data for decision makers to take a decision on building early design stage or in retrofit 

projects. Basically, performance of alternative designs is evaluated according to 

decision maker’s expectations. If decision maker pre-determines importance of each 

design objectives clearly before optimization process, all objectives can be combined 

together to find the optimum design solution according to decision maker’s 

expectation. Conversely, in post-decision making process, optimization method 

generates alternative solution sets which cannot dominate each other in at least one of 

the alternative evaluation methodologies. Therefore, all of design alternatives are 

candidates of optimum design depending on decision making process.  

 

In multi-objective optimization problems, researchers evaluate building energy 

performance by generating alternatives solutions that considers trade-off between 

objectives in the studies as tabulated in Table 2.1. General focus on energy 

optimization studies are based on investment on better design alternatives to minimize 

building energy use and cost. On the other hand, lightening and thermal comfort in the 

building are evaluated with building energy use and initial investment cost to generate 

alternative design approaches in decision making process. Moreover, life cycle 

awareness has increased in latest optimization studies whereas life cycle cost and 

environmental impact has a trade-off with initial investment. Life-cycle thinking 

approach provides significant decrease in life cycle emissions and other environmental 

adverse effects with a huge amount of energy cost savings. Furthermore, studies 

compare life cycle performance of the building and initial investment by minimizing  
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payback period of initial investment with a trade-off between annual energy reduction  

with initial investment. 

 

In multi-objective studies, building performance is tested by changing design 

parameters in energy models. Design variables in optimization studies in the literature 

are summarized in Table 2.2. In general view of the literature, optimization process 

presents heat loss reduction solutions with passive energy efficient approaches. The 

basic solution approach in energy optimization studies is changing insulation materials 

and their thicknesses to minimize heat loss in different building components. 

Secondly, window systems with different geometry and glazing properties present 

heat-loss reduction solutions. In some of the studies, HVAC system of the buildings 

are re-designed to improve building performance whereas interventions in appliances 

are used to minimize energy and electric usage. In some of the studies, solar collectors 

are added as renewable design alternatives to improve domestic heat water 

performance of the building. Additionally, in some cases, occupancy of people and 

equipment are evaluated in building energy performance estimation. 

 

In building energy optimization literature, nonlinear and mixed integer linear 

programming (Karmellos et al. 2015b; Aria & Akbari 2014; Antipova et al. 2014) are 

modeled to optimize building performance. Tchebycheff distance as efficient multi-

objective approach are one of the commonly used solutions in the literature (E. Asadi 

et al. 2012a, 2012b; Diakaki, Grigoroudis, and Kolokotsa 2013; Diakaki et al. 2010). 

Meta-heuristic optimization techniques are in trends in building energy optimization. 

Different versions of Genetic Algorithm are the mostly presented optimization 

techniques (Asadi et al. 2014; Boithias et al. 2012; Yang et al. 2014; Oh et al. 2011; 

Asadi et al. 2013; Yu et al. 2015a; Penna et al. 2014). Moreover, Harmony Search 

(Asadi 2014; Fesanghary et al. 2012), Ant Colony Optimization (Yuan et al. 2010; 

Asadi et al. 2012), Differential Evolution (Wang et al. 2014) and Particle Swarm 

Optimizer (Liu et al. 2015; Karaguzel et al. 2014) are studied in literature. 
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In literature, both forward approach to estimate building performance directly and 

black box approaches that predict the relations between design parameters and 

building performance in minimum variance with measured energy consumption have 

been studied. The simplest version of the forward optimization approach is building 

energy load minimization (Diakaki et al. 2008). In degree-day steady state method, 

building energy use is calculated by adding climate data and energy efficiency of 

heating/cooling systems (Diakaki et al. 2010; Futrell et al. 2015; Murray et al. 2014; 

Asadi et al. 2014). Besides steady state methods, building is modeled in more 

complexity in dynamic simulation models. In literature, EnergyPlus (Oh et al. 2011; 

Ascione et al. 2014; Asadi 2014; Fesanghary et al. 2012; Griego et al. 2012; Karaguzel 

et al. 2014; Futrell et al. 2015) and TRNSYS (Antipova et al. 2014; Asadi et al. 2012; 

Penna et al. 2014)  are most commonly used simulation tools. In black box approach 

studies, design parameters and measured consumption data are used to construct 

engineering models to evaluate different design alternatives by using ANN (Boithias 

et al. 2012). Moreover, machine learning techniques such as ANN (Yu et al. 2015b; 

Futrell et al. 2015; Asadi et al. 2014) and SVR (Eisenhower et al. 2012) are used to 

simulate optimization process of dynamic simulation models to accelerate 

optimization run time. Complex energy models are simulated in dynamic simulation 

tools more than one minutes and detailed parameter design process requires reasonable 

number of function evaluations such as at least 5000 to obtain stimulating data for 

decision maker. Therefore, in a proper optimization process, the model runs in 3.5 

days. In the literature studies, 3.5 days may be tolerated for once; however, in real life 

energy analysis, it is practically inapplicable. Therefore, machine learning tools are 

used to reduce all simulation time down to one or two hours by reducing difference 

between simulated energy analysis results and tested model results. The black box 

model is constructed according to pre-determined number of data and optimization 

algorithm is changing parameters in ANN layers. At the end of each update, 

performance of the constructed model is tested with simulated or measured test data. 

In literature studies, test data is one-tenth of training data (Magnier & Haghighat 2010; 

Asadi et al. 2014). After the model is constructed, the forward approach is applied to 
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optimize building performance by using the constructed model as engineering 

calculation methodology in the model. Although deviation in the constructed model is 

more than the measured data or simulation data, it provides rapid optimization process 

in practice. 

 

2.3. BIM Based Multi-objective Optimization in Building Energy Performance 

Analysis 

 

Building Information Modeling provide integration with energy estimation tools and 

communicate with all project stakeholders to avoid possible differences in building 

projects due to inconsistent designs for different disciplines. BIM based energy 

analysis process provides extensive data exportation from BIM tools to simulation 

tools where interface of simulation tools is not user friendly enough. In optimization 

process, BIM tools can be used in three different approaches explained one by one 

below. 

In the first approach, building is modeled in BIM tool and then exported to simulation 

tool. Simulation tool completes missing data in the exported energy model with its 

default values. Then, it simulates building performance. In optimization process, 

design parameters are changed in simulation models and optimized. Oh et al.(2011) 

studied on BIM-based optimization of a library building. The authors, first, modeled 

the building in Revit and then exported it into EnergyPlus 6.0 using a proposed Matlab 

based gbXML-IDF converter file. Performance of the building is optimized by 

minimizing thermal discomfort and energy consumption using GA by changing 

window glazing type and cavity gas in EnergyPlus input files. At each iteration, GA 

writes updated design parameters into EnergyPlus input and EnergyPlus runs 

simulation and gives objective fitness values. The rest of optimization process 

continues with respect to GA methodology in Matlab. 

 

In second approach, building is modeled in BIM tool and multiple design alternatives 

are created by changing some design details of the building model. Performance of 
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each design alternative is tested via energy simulation tool within the BIM 

environment. After simulating all alternative design models, a black box model is 

proposed to express implicit mathematical relationship between design alternatives 

and simulation results. The constructed black box model is used to optimize building 

performance. Chen and Gao (2011) modelled two-story academic building and 

exported building model to IES/VE simulation tools for 40 different alternative 

designs by changing building orientation  and window-wall ratio in the building. After 

obtaining simulation results with heating and cooling details, the authors constructed 

mathematical model for heating, cooling energy use and initial investment by using 

simulation results and design alternatives for regression analysis. The regressed model 

is optimized by Genetic Algorithm in Matlab environment by minimizing energy 

consumption and initial investment on building. 

 

In first two approaches, BIM tool is just used in the initial building modeling to give 

input parameters to simulation models; however, in this case, parametric relationship 

between building elements are ignored and all parameters are updated in simulation 

models or black box model. Ignorance of parametric property of BIM tool can be prone 

to geometric update errors. Therefore, in BIM integrated updates, consideration of 

parametric relations among building elements provides more accurate energy model 

construction. In BIM integrated optimization models, the building is modeled in BIM 

tool and exported to simulation tools to calculate building energy performance. 

Optimization algorithm evaluates simulated building performance values to generate 

new design. The new design parameters are updated in BIM tools and then exported 

to simulation tools. This loop continues until termination criteria are satisfied (Asl & 

Zarrinmehr 2013). Thus, this provides more flexibility to the resulting energy model 

and increases the accuracy of the model thanks to automated parametric update of all 

components, which avoids possible errors in manual updates in BIM software and/or 

updates in simulation tools.  
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Automation in BIM based energy modeling leads up studies on optimization of BIM-

based building performance analysis. In the literature, researchers have worked on 

multiple BIM tool and simulation program combinations. Asl and Zarrinmehr (2013) 

developed a plug-in to Revit called Revit to Green Building Optimization 

(Revit2GBSOpt) that provides automatic link between Revit BIM tool and cloud based 

simulation program GBS to optimize building energy use and lightening. Asl et al. 

(2014) studied same problem concept with visual programming tool Dynamo, to 

update building elements in BIM tools Revit and Vasari, by using Non-dominated 

Sorting Genetic Algorithm-II (NSGA-II) for minimizing energy use and maximizing 

suitable day lighting level in the resident. They make use of visual programming that 

provides a graphical user interface to construct programming relationships without 

coding, to ease BIM information use for the analysis. Welle et al. (2011) proposed an 

automated BIM based energy analysis methodology called ThermalOpt to calculate 

thermal and lightening performance of the buildings in multi-criteria problems. 

Similarly, Liu et al.(2015) developed BIM integrated Ecotect based optimization 

framework to optimize life cycle performance of office building in terms of lightening 

and thermal performance of the building by changing building wall type, window wall 

ratio, window glazing properties, and external sun shades. 

 

2.3. Discussion of Literature View 

 

After a general look in energy optimization literature, decision maker needs to evaluate 

different energy optimization methods by evaluating the trade-off between simulation 

run time, cost-effectiveness of energy optimization model, and accuracy of energy 

estimation in the model. In real life, cost effective solutions with high accuracy 

achieved in a reasonable time is looked for. On the other hand, the decision maker may 

want to evaluate design alternatives in terms of different perspectives such as initial 

investment, environmental impact, payback period, energy use, life cycle analysis 

among others. Therefore, flexible and rapid energy optimization model is required to 

provide extensive data for decision maker in order to evaluate design alternatives in 
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broad perspective. In this study, practically applicable and user-friendly energy 

optimization methodology is developed based on TS 825 Turkish thermal insulation 

standard, commonly used in building design practice. However, the performance 

accuracy of existing TS 825 standard is questionable. Yaman (2009) compared 

performance of the standard with measured data of campus buildings in Izmir. The 

results show that TS 825 performance deviates 66% from measured data. In any study, 

this deviation cannot be tolerated in optimization process. Therefore, energy model is 

required to be modified by detecting and strengthening the weaknesses of TS 825 

model. The previous studies in literature point out the modification requirement for TS 

825 methodology. Kürekçi et al. (2012) exchanged the climate temperature data 

proposed for four degree-day regions by long-term average temperature data for each 

city. Secondly, Bektas Ekici (2015) explained that solar radiation data in standard 

deviation are underestimated in the standard. Moreover, Aksoy & Bektas Ekici (2013) 

changed window geometry to test its performance on energy consumption and it is 

detected that window geometry also changes building performance; however, in TS 

825 standard, average glazing-frame ratio is used for any window geometry. 

Moreover, campus building study underlines the importance of scheduling for 

occupancy conditions. However, in TS 825 standard, continuous heating is provided 

in contrast to real usage conditions. Therefore, these weaknesses of TS 825 

methodology are eliminated in the modified energy model used in this study to 

increase energy estimation accuracy.  

 

Three meta-heuristic optimization techniques with different update strategies are 

proposed in energy optimization model to provide effective solutions in different case 

studies whereas the energy optimization framework is constructed for general use 

instead of case specific solutions. 

 

In the second part of this thesis, visual programming based BIM integrated energy 

optimization model is constructed to optimize building performance with parametric 

relations by avoiding possible errors in dynamic simulation models. BIM integrated 



 

 

36 

 

model provides effective communication and control mechanism to avoid unnecessary 

and improper design problems encountered in the early design stage. 

 

This thesis contributes steady state energy analysis literature by improving the 

performance of TS 825 energy estimation methodology. Moreover, the developed 

flexible energy optimization interface called EnrOpt provides variety in objectives and 

design variables in optimization process with multiple meta-heuristics developed for 

multi-objective energy optimization problems with different optimization strategy. In 

addition, besides Particle Swarm Optimizer and Differential Evolution as commonly 

used meta-heuristics in previous studies, a newly developed meta-heuristic, Modified 

Cross Entropy Method, is modified for multi-objective optimization problems as a 

contribution to literature. Finally, visual programming based BIM integrated energy 

optimization framework eliminates the difficulties for BIM based automated energy 

analysis for non-programmers in the previous studies and fills the gap in BIM based 

life cycle energy optimization for non-programmers by developing Dynamo visual 

programming based BIM integrated energy optimization framework with efficient 

optimization strategy in an efficient meta-heuristic algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

37 

 

CHAPTER 3 

 

 

ENERGY ESTIMATION 

 

 

 

 In this chapter, energy estimation methods used in energy optimization model are 

introduced. 

 

3.1. Energy Estimation by Modified TS 825 Thermal Insulation Standard 

 

In building energy performance improvement process, the most prominent approach 

to develop efficient solution is to construct building energy model that gives accurate 

building performance result compared to real life building performance. As the 

accuracy of the building performance estimation increases, the optimization process 

gives more accurate and reliable energy efficient solutions. In this study, TS825 

Standard “Thermal insulation requirements for buildings” as a commonly used energy 

estimation method in Turkey is applied for heating energy requirement estimation in 

buildings. The weaknesses of the building energy model are strengthened in the 

constructed building energy optimization model to provide more reliable solutions. 

The details of building energy estimation model are explained in the following 

paragraphs. 

 

TS825 Standard “Thermal insulation requirements for buildings” is a steady state 

energy estimation methodology based on degree-day approach used as static energy 

calculation method. This method is accepted as the main thermal insulation standard 

for calculation of heating energy requirement of a building in Turkey since 1998. The 

standard TS 825 is modified two times in 2008 and 2013 to incent more energy 
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efficient buildings with higher insulation levels in order to decrease heat loss in the 

buildings. The methodology in the standard is based on static and average calculation 

values. In the standard, climate data, building internal heat gain, solar effects on 

building heat gain are examples of calculation with static data. The calculation details 

are explained below: 

 

In building energy performance, climate data plays a key role to calculate level of 

heating energy requirement and it also shapes the details of TS 825 standard. 

According to TS 825 standard, Turkey is divided into degree-day regions according to 

similar climate conditions based on heating degree days and monthly average climate 

data used in heat loss calculation. According to five degree-day regions figured in 

Figure 3.1, the level of heat loss is calculated based on difference between monthly 

average outdoor temperature and building internal balance temperature depending on 

building types, and construction material properties and thickness values. 

 

 

 

Figure 3.1 Degree-day Regions 

 

In TS 825 standard, annual heating energy requirement (Qyear) of a building is 

calculated by summing up the monthly average energy requirements (Qm) with respect 

to given building internal (θi) and monthly outdoor (θe,m) temperature difference, 
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building specific heat loss ( H ) and heat gains as a result of internal conditions (ϕi) 

and solar effect (ϕs). 

 

 

where m
  represents monthly average utilization factor for gains and t is time in 

seconds.  

 

Heat Loss in Buildings: 

 

Heat loss in the building caused by convection, transmission and ventilation processes 

is called specific heat loss. Building specific heat loss is calculated by summing up 

heat loss by transmission and convection (HT) and ventilation (Hv) regarding the 

following formulas: 

 

 

where I and UTB represent length and thermal transmittance of thermal bridge . The 

heat loss (Equation 3.5) by heat transmission and convection between environments 

with different temperatures is calculated by multiplication of thermal transmittance 
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and area of the building components with the reduction factor (if exists) given in the 

Equation 3.7 such as external wall, window, external door, roof, basement, floor 

connect to external environment and the building component neighbor to lower 

temperature environment.  

 

Thermal transmittance of any building component is calculated according to following 

formulas: 

 

 

where i
d  and ,h i

  are thickness and thermal conductivity values of element i of the 

building component and R represents thermal resistance of the component. Internal 

and external thermal resistance (Ri , Re )  of the building component are obtained from 

Table 1 in TS 825 standard.  

 

Heat loss by ventilation is calculated according to ventilation types such as natural and 

mechanical ventilation. The ventilation discharge rate is calculated in different 

formulas for the ventilation types. In natural ventilation, heat loss calculation depends 

on air density () and specific heat (c), ventilated building volume (Vh) and ventilation 

rate (nh) in the building as seen in Equation 3.9-3.10  where Vh and nh is taken 0.7  in 

default. On the other hand, in mechanical ventilation, ventilation discharge is 

calculated in more details such that average ventilation rate in working system (Vf) 

and additional discharge rate due to air passage (Vx)  depending on ventilated volume, 

air entrance and existing discharge rate (VS, VE) and building openings. Moreover, 

time working rate (β) and heat recovery rate (ηv) of ventilation system changes heat 

loss by ventilation in mechanical ventilation systems. 
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where V0 and n50 represent ventilating discharge rate when the ventilation system is 

non-working and air exchange rate in 50 Pa pressure difference between indoor and 

outdoor, e and f are constants depends on building openings and location. 

 

Heat Gains in Buildings 

 

Buildings recover some of their heat losses by their internal heat gains and solar heat 

gains. Internal heat gains covers the gain thanks to human metabolism effect, cooking 

and lightening and heat released from electronic tools whereas solar radiation on 

building windows provides heat gain as solar heat gain. Heat gains in the building are 

calculated as follows: 

 

In the building, the maximum value of internal heat building is accepted five times of 

building usage area (An) in residential buildings and offices and ten times of building 

usage area in high interior heat gain buildings such as food and textile factories. The 

building usage area is taken thirty two percent of gross heated volume of the building 

as default if it is not specifically calculated. 

 

Solar heat gains ( ϕs ) are calculated according to heat gains from direct solar radiance 

from building windows in the following formula: 
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where  ri,m, gi,m and Ii,m represent shading factor, solar transmission factor of glazing 

and, solar radiation on vertical surface direction in direction i in mth month of year, 

respectively, and, g
  and Ai are solar transmission factor for the normal incidence and 

total window area in direction i.  

 

TS 825 standard limits maximum allowable annual heating energy requirement for 

buildings (Qmax) and upper limit of allowable thermal transmittance level (Uu) for 

different building component given in Table 3.1 to provide energy savings and incite 

insulation in the buildings. Therefore, in early insulation based building energy design 

process, both annual energy requirement level and thermal transmittance level for each 

building component should be checked whether the design exceeds the given upper 

limits or not. It is not mandatory rule but provides energy savings for the buildings in 

its life cycle. Therefore, if any of upper limits given in standard is exceeded, the design 

materials should be replaced with insulation materials that has lower heating 

conductivity property or insulation thickness of the design materials should be 

increased. 

 

Table 3.1. Insulation Limits in TS 825 

 

Degree-Day Region Uu,wall Uu,floor Uu,roof Uu,window 

1 0.66 0.43 0.66 1.80 

2 0.57 0.38 0.57 1.80 

3 0.40 0.28 0.43 1.80 

4 0.38 0.23 0.38 1.80 

5 0.36 0.21 0.36 1.80 
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3.2. Energy Estimation in Green Building Studio 

 

Green Building Studio (GBS) is a standalone cloud-based service to perform building 

energy simulation and carbon footprint calculation of the buildings modelled in BIM 

tools. It is interoperable with Autodesk Revit, Autodesk Vasari, ArchiCAD and 

Google SketchUp for exporting energy models to gbXML format to be used as input 

in DOE-2 dynamic simulation engine for hourly energy simulation. It provides whole 

building energy analysis based on building type geometry and envelope properties, 

using detailed climate data, HVAC system values, lightening amounts, and fuels and 

electricity as energy resources. 

 

Energy performance of the building model in Revit can be exported to GBS in three 

ways. In the first one, building energy performance is calculated conceptually by using 

“Conceptual Mass” approach that gives an idea about building performance. In second 

approach, energy performance of the building is analysed in detail by using building 

elements such as walls, windows, roofs and doors to create Energy Analytical Model 

in order to update the model into GBS via gbXML file. In the last approach, the 

building model in BIM tool or a third party tool is exported to gbXML and the file is 

updated to GBS to run energy performance. Before gbXML exporting, volume by area 

and room computation should be well-defined to take precautions against possible 

interoperability errors. 

 

Energy settings of the energy model exported into GBS are adjusted according to 

common practices in construction companies, ASHRAE standards and Commercial 

Building Energy Consumption Survey results. The general standards used in GBS 

energy simulation are as follows: 

 

 Schedules: California Non-residential New Construction Baseline Study 1999 

 Envelope thermal characteristics, Lighting Power Density, HVAC efficiency: 

ASHRAE 90.1 2007 and ASHRAE 90.2 2007 



 

 

44 

 

 Equipment power density & Domestic Heating Water loads: California 2005 

Title 24 Energy Code 

 Occupancy density, ventilation: ASHRAE 62.1-2007 

 

In energy settings, 34 different building types with different equipment power density, 

lighting power density, outside air flow rate and infiltration rate in multiple operational 

schedules can be selected with 30-year average climate data where the location of the 

building can be selected via Google Maps among 1.6 million virtual data station.  The 

weather data includes global horizontal radiation (wh/𝑚2), the amount of energy 

striking, the horizontal surface during the hour, direct normal radiation perpendicular 

to the sun’s rays (wh/𝑚2), diffuse horizontal radiation (wh/𝑚2), total sky cover, dry 

bulb temperature ( ℃ ), dew point temperature ( ℃ ), relative humidity ( % ), pressure 

( mb), wind direction ( ° ) and wind speed ( m/s). 

 

Building performance is analysed in GBS web service. The results can be followed via 

GBS web service or BIM tool integrated graphs. Energy and carbon based results in 

GBS simulation are as follows: 

 

 Annual energy cost as a summation of different energy resource costs  

 30-year life cycle energy cost in terms of Net Present Value 

 Annual CO2 emission based on different energy resources’ emission values 

 Annual energy consumption 

 Life cycle energy consumption 

 

All the results given above can be obtained in Dynamo based BIM integrated energy 

analysis. Therefore, in this study, some of the simulated energy results and their 

combinations are used as operational energy performance analysis of the building. By 

adding initial performance parameters such as initial investment cost in building life 

cycle cost analysis, whole life cycle energy performance of the building will be able 

to be calculated 
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CHAPTER 4 

 

 

OPTIMIZATION APPLICATION 

 

 

 

In this chapter, implemented optimization methodology is introduced. Firstly, the 

procedures in single and multi-objective problems are presented. Next, different 

approaches in objective relationships in multi-objective problems are explained in 

detail and then the approach used in this study is presented. Finally, Meta-heuristic 

techniques applied to multi-objective energy model are discussed. 

 

4.1. Optimization  

 

Optimization is improvement of a process or a product performance. The mathematical 

process tries to select the best alternative of available alternative sets. In building life 

cycle from design stage to building demolition, all stages of the building life cycle 

offer improvements in building performance for the building occupants. In early 

design stage, for instance, size of building structural components is optimized to 

minimize structural cost or weight  (Hasançebi et al. 2013). In construction process, 

resource constrained building construction project schedule is optimized to use 

resources effectively within given budget and time limitation to avoid from delay 

penalties (Bettemir & Sonmez 2012). On the other hand, some optimization problems 

such as building energy optimization take all life cycle of the buildings into 

consideration. For instance, optimization of building material selection covers initial 

design process, construction process, performance in operational stage and 

recyclability of the materials in demolition stage of the buildings. The energy 

performance of the building components may be optimized to minimize life cycle 
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energy use or many other performance parameters such as energy use, emission, and 

thermal comfort in building operational phase can be considered all together.  

 

In optimization problems, minimization or maximization of single performance 

function consideration is called single optimization problems whereas more than two 

function-optimization problems are solved as multi-objective optimization problems. 

 

In optimization problems, each solution alternative used as an input is called design 

variable whereas all solution alternatives together are considered as solution space. 

The mathematical expression of optimization function as maximization/minimization 

problem called as objective function. The output of optimization process is called as 

fitness value or fitness values if more than one objective functions are evaluated. The 

constraints limit the performance of the objective functions. 

 

Optimization problems can be solved by numerous solution techniques. In general, 

these techniques are divided into two parts: classical optimization techniques and 

heuristic optimization techniques. Classical optimization techniques such as linear 

programming, nonlinear programming, integer programming and Newton-Raphson 

method, search the optimal solution using gradient information of objective function(s) 

including constraints’ effects. In some problems, however, performance of the 

classical optimization techniques is questionable and solution is found in very long 

time. Therefore, heuristic optimization techniques are developed to solve optimization 

problems whenever classical optimization techniques produce inefficient solution(s). 

The heuristics are generally proposed for a specific problem to increase the efficiency 

and calculation speed of the problem. Heuristic search does not guarantee optimal 

solution for the problem but tries to approximate optimal solution. Shortly, heuristics 

can be called unguaranteed shortcut solution to problems. Moreover, more generalized 

versions of the heuristics were needed to be proposed to apply heuristic approaches to 

different kinds of problems. Meta-heuristic optimization methods are appropriate 

solution approaches to apply them to more problems (Voß 2001). 



 

 

47 

 

 

In the following sections, single and multi-objective optimization techniques are 

expressed mathematically. Types of multi-objective solution approaches are explained 

and discussed to determine appropriate solution approach for this thesis. Meta-

heuristic optimization techniques are compared with classical techniques and 

illustrated according to different solution methodology. The meta-heuristic techniques 

used in this thesis are presented in detail. 

 

4.2. Optimization Problems 

 

The details of a general single and multi-objective optimization problem are given in 

the following sections 4.2.1 and 4.2.2. 

 

4.2.1. Single Optimization 

 

Single optimization problem is generally represented as follows: 

 

 

where the design variable set x in solution space vector S try to optimize f , scalar 

objective function, subjected to  gj and hk constraints.  

 

4.2.2. Multi-objective Optimization  
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Multi-objective optimization problem can be formulated in general as follows: 

 

where  M>1 and the design variable set x in solution space vector S tries to optimize 

multiple objective function , fm , together, subjected to gj and hk constraints. 

 

In multi-objective optimization problems, all generated solution sets are first tested in 

terms of feasibility of the solution whether any constraints are violated or not. Then, 

solutions are compared with each other to determine dominance relation between 

solutions. Any solution set is called dominated solution if performance of at least one 

of the other solution sets is better at all objectives than the solution set; otherwise, 

solution set is called as non-dominated solution. 

 

Optimal solution in multi-objective optimization is not directly calculated as seen in 

single optimization. Instead of optimal solution, all non-dominated solution sets are 

kept in special place and these solutions are used to draw an M-dimensional graph to 

show their relations which is called Pareto optimality curve. The decision maker takes 

a decision and selects a solution set from Pareto curve according to decision making 

conditions which depend on weight of the objectives. The Pareto optimal solutions are 

expressed as weak and strict Pareto optima. The solution is called weak Pareto optima 

if at least one of the objectives of the solution set is equal to compared Pareto optimal 

solution and the solution set is dominated in other objectives by the compared Pareto 

optimal solution. The solution that dominates all Pareto solutions in any objective(s) 

and dominated by same solution in other objective(s) is called strict Pareto optima. 
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The relationship between objectives in multi-objective optimization can be formulated 

in different views to calculate optimal solution(s) as follows: 

 

 Scalarization technique (weighted sum approach) 

 є-constraints method 

 Goal programming 

 Multi-level programming 

 

Scalarization technique combines all objective functions into a single objective 

function by giving weight for all objectives. The mathematical expression of 

scalarization technique can be formulated as follows: 

 

 

where γm represents weight factor for objective function fm. 

 

Alternative optimal solution sets can be generated by changing weight factors for 

objective functions. Pareto optimal curve is drawn according to different weight 

factors. The solution set in the Pareto optimal curve is introduced as supported solution 

whereas the rest of solution sets are considered as unsupported solution sets.   

 

є-constraints method is proposed to focus on one objective by setting targets for all 

other objectives (Chankong & Haines 1983). The other objective functions are 

formulated as constraints and the selected objective function is tried to be optimized.  
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The mathematical expression of є-constraints method for minimization problems are 

expressed as follows: 

 

 

where fg is selected objective function to be optimized according to given target limits 

єh for each objective function fh. 

 

Goal programming is developed to reach specific goal fitness value for each objective 

(Charnes et al. 1955). Therefore, the fitness function for goal programming is 

formulated regarding the difference between goal objective fitness and solution fitness 

as seen below in mathematical expression for given 3-objective problem: 

 

where α represents weight factor for  slack or surplus variable. 
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Multi-level programming is another solution approach to find Pareto optimum solution 

sets. In multi-level programming, M objectives are ordered in a hierarchical order. 

First, the most important objective is optimized; then, the next one is optimized 

according to previous results and the process goes on until all objectives are optimized. 

Multi-level programming is preferred whenever hierarchy between objectives can be 

constructed. On the other hand, hierarchical optimization may constrain solution sets 

at last objectives’ optimization, as it may find infeasible solutions for the objective 

functions due to constraint functions. 

 

In this study, fifteen objective functions are evaluated separately and in a combination. 

For instance, life cycle cost savings of the building performance simulation is 

optimized as single optimization as well as building life cycle cost savings and life 

cycle global warming potential savings are both optimized to draw Pareto optimal 

curve as bi-objective optimization. More than two objectives such as life cycle cost 

savings, life cycle global warming potential savings, and initial investment are 

developed as multi-objective optimization problem. Therefore, the optimization 

approach should be valid for both single and multi-objective optimization problems. 

The scalarization technique may be effective when optimization technique is applied 

to bi-objective optimization problem; however, increasing the number of objectives 

requires exponential increase in the number of weight factors for the problem for 

constructing Pareto optima curve and that is expected to decrease efficiency of 

scalarization technique significantly. Combinations of fifteen objective functions bring 

too much workload to apply on the problem in efficient way. On the other hand, є-

constraints method is effective solution approach if the solution focuses on specific 

objective function and constrains other objective function with pre-determined targets. 

However, in this study, generalized version of multi-objective optimization approach 

to apply multiple buildings with different sizes is proposed. Therefore, the objective 

targets vary depending on building size. The variation in building objective targets 

makes є-constraints method inefficient. Similarly, goal programming is also inefficient 

solution approach for the given conditions above. Moreover, the number of objective 
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functions is expected to reduce performance of multi-level programming whenever 

number of objective functions increases in the optimization process. As discussed, 

direct use of these four multi-objective optimization solution approaches found to be 

inefficient to solve problems in this study. Therefore, a new approach that regards 

conditional statements in the problem model is developed. In this new approach, a 

prior objective called main objective is determined and solutions are generated 

according to this main objective while Pareto optimal solutions are also kept. Focusing 

on main objective may weaken the performance of the algorithm due to less 

concentration on non-dominated solutions surrounding other optimum designs of other 

objectives. The weakness of the solution approach is planned to be eliminated by 

solution approach in meta-heuristic algorithm application in the next section. 

 

4.3. Meta-heuristic Optimization Techniques 

 

Meta-heuristics are developed to solve the complex real life optimization problems 

where performance of the classical optimization problems is poor on the optimization 

problems. To eliminate drawbacks of classical optimization techniques, meta-

heuristics offer a derivative-free solution approach to eliminate problems due to 

gradient behavior of the classical methods such as multiple and shark peaks or 

discontinuous behavior of objective functions that causes sudden change in derivative 

value (Eskandar et al. 2012). Moreover, in gradient based solution approaches, the 

performance of the optimization techniques depends on the initial points when 

multiple local optima values exist in objectives functions. Meta-heuristics are expected 

to prevent from tackling local optima values by using derivative-free solution 

approaches applied to discrete, combinatorial and continuous optimization problems. 

These techniques do not guarantee to reach optimal solutions; however, they offer near 

optimal solutions. The meta-heuristics are efficient solution techniques when the 

classical optimization problems cannot reach optimal solution in efficient time. In 

highly complex problems, they reduce evaluation time by providing near optimal 

solutions. 
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Meta-heuristic optimization algorithms are developed by imitating biological, physical 

or social processes or behaviors. The most known meta-heuristics, Genetic Algorithm 

(GA) and Differential Evolution (DE) are developed by imitating Darwin’s 

Evolutionary Law of Natural Selection. Particle Swarm Optimizer (PSO), Ant Colony 

Optimization, Artificial Bee Colony, Cuckoo Search are proposed as products of 

inspiration of behaviors of animals such as birds, ants, bees and cuckoos respectively 

(Goldberg 1989; Holland 1992; Storn & Price 1997; Kennedy & Eberhart 1995; 

Dorigo & Stützle 2004; Karaboga & Basturk 2007; Yang & Deb 2009). Simulated 

Annealing (SA), Gravitational Search Algorithm (GSA), Water Cycle Algorithm 

(WCA) and Big Bang Big Crunch (BB-BC) algorithms are developed as simulation of 

annealing of metals, Newtonian gravity law, water cycle in the Earth and theory of the 

birth of the universe respectively(Kirkpatrick et al. 1983; Rashedi et al. 2009; Eskandar 

et al. 2012; Erol & Eksin 2006). Brainstorming Algorithm (BA), League 

Championship Algorithm and Social Emotional Optimization Algorithm (SEOA) are 

algorithm examples of social processes or behaviors depending on brainstorming of 

people, football games and social status of people (Shi 2011; Kashan 2009; Xu et al. 

2010). 

 

In meta-heuristic algorithms, constraints of the problem require a modification on the 

objective function to reflect the constraints’ effect on objective function. This 

constraint handling strategy provides constrained to unconstrained transformation in 

the problem formulation (Coello Coello 2002). Thus, modified objective functions are 

directly evaluated in the optimization process. The most known constraint handling 

strategies are dead penalty and penalty function. In death penalty strategy, feasibility 

of solution is tested for the constraints. The solution is eliminated directly if any 

constraints are violated. In the second approach, instead of direct elimination, 

constraint violation is penalized and added to objective function to worsen fitness 

value of the solution. Penalty strategies vary depending on fitness value result (positive 

or negative) and minimization or maximization of objective function. In this study,  
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constraint violating solutions are eliminated by multiplying the objective function with 

infinitesimally large number. 

 

In multi-objective optimization problems, contrast to single optimization problems, all 

non-dominated fitness values and position vectors are kept as best fitness and position 

vector; however, in position update procedure and fitness value calculation of each 

member, main objective function is taken as reference. 

 

The general procedure in meta-heuristic optimization algorithm can be explained in 

the following order. First, the algorithm is initialized by random distribution. The 

distribution type may change depending on the algorithm; however, in general, mostly 

uniform random distribution between upper and lower limits of design variables are 

preferred for efficient initialization. Then, the fitness function value for each 

population member is calculated. Fitness value and solution vector which is called 

position vector, are kept in memory if position vector of the population member uses 

its or others’ memories for their best fitness value and position vector called local best 

fitness and local best position vector to update its position vector. Then, the fitness 

values are sorted and best fitness value and position vector are kept in a special place. 

The most critical step which differentiates algorithms is the position vector update 

stage. After position vector is updated, the fitness value for each member is calculated 

and compared with local best fitness values to update local fitness best and local best 

position vector for population member. The best local best fitness value is assigned as 

best fitness and same is done for best position vector. Then, position vector for each 

member is updated and the algorithm repeats the same steps until the termination 

criterion is met.    

 

The position update procedure influences the performance of meta-heuristic algorithm 

significantly as underlined in previous part. The position update procedure or strategy 

for any algorithm is constructed on the balanced trade-off between exploration 

(diversification) and exploitation (intensification) in solution search. In exploration 
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search, the algorithm tries to explore new solution in global solution space whereas 

new solution is searched around global best solution in exploitation stage. In general, 

the algorithm focuses more on exploration search in early iteration; however, as 

iteration number increases, the algorithm looks more for new solution around the best 

solution encountered up to that time. The algorithm performance is expected to 

decrease if only one of these two search strategies is focused on much more. The 

exploration causes loss of concentration around best solution whereas much more 

focus on exploitation search results in pre-mature convergence and trap in local 

optimal solutions. Therefore, efficient trade-off between exploitation and exploration 

should be provided to improve algorithm performance. 

 

Performance of meta-heuristic algorithms changes depending on the optimization 

problems. Therefore, saying that algorithm A performs better than algorithm B by 

comparing one or two optimization problems will be a subjective decision as 

performance ranking of algorithms may change depending on optimization problems. 

In meta-heuristics, position vector update procedures mostly determine the 

performance of the algorithm. The random number used in position vector updates 

provides variety in solutions. Therefore, in contrast to classical optimization 

techniques, meta-heuristics may find different best fitness values at each optimization 

run. Although more than fifty meta-heuristic algorithms exist, in general, the position 

vector update procedures for the algorithms can be categorized into three approaches. 

In the first approach, only local best position vectors of the population are used in 

optimization procedure. In other words, new position vector of the swarm is located 

with respect to combination of local best position vector of the population member, 

local position vector of other population members and population global best position 

in multiple variation.  In the second approach, besides population’s local best position 

vector and global best position vector, position vectors of the population in the 

previous iteration are used to update population position vector. In the last approach, 

distributions such as Normal Distribution and Exponential Distribution are used to 

update position vectors. In the determination of distribution parameters, the latest 
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position vector of the population, local best position vector, global best position vector, 

elite position vector that is selected among the latest position vectors or local best 

position vector are used.  

 

In this study, a generalized optimization model that can be applied to optimize 

buildings in different size and different material combinations is planned to be 

constructed. The performance accuracy of single optimization algorithm is expected 

to vary depending on optimization case studies. Therefore, in this study, three different 

algorithms with different position update strategies are constructed to obtain more 

accurate optimization performance in different case studies. Meta-heuristic algorithms 

are classified according to their position update strategies as seen in Table 4.1. 

Performance of each optimization algorithms are tested with discrete and continuous 

unconstrained test problems and constrained engineering problems (Liang et al. 2006; 

Sadollah et al. 2013). Performance of each algorithm is compared with each other 

within its group. According to performance results, Differential Evolution, Particle 

Swarm Optimizer, and Modified Cross Entropy Method are selected to be applied to 

energy optimization model. The details of optimization algorithms are explained in the 

following sections. 
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4.3.2. Differential Evolution 

 

Differential Evolution is an evolutionary optimization algorithm based on Darwin’s 

Law of Natural Selection. Differential Evolution updates position vector of each 

individual called agent by crossover, mutation and selection stages (Storn & Price 

1997). In crossover stage, it is decided whether position value of agent i in dimension 

d is kept or changed. In mutation stage, new position vector is constructed. In selection 

stage, performance of local fitness best of agent i is compared with newly constructed 

vector’s fitness and the one with better fitness is selected. The details of Differential 

Evolution are introduced step by step below: 

 

Step 1: Initialize position vector for all agents by random distribution according to 

Equation 4.6. and set iteration t=0. 

 

 

where xi
d(t) represents ith  individual’s position on the dth design variable at iteration t 

within upper and lower boundary limits, Xmax
d and Xmin

d and r is uniform random 

number between 0 and 1. 

 

Step 2: Evaluate objective function fitness value(s) ( (t))
m i

f x  

 

Step 3: Construct donor position vector for all agents by different mutation strategies.  

The alternative mutation strategies are formulated below: 

 

   *         1, 2,..,     1,    )  (
d d d d

x X r X X for d m and i Nmaxmin min
t

i
    

 

  (4.6) 
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where y is donor position vector constructed with respect to random position vector of 

population agents using control parameter F.  

 

In this study, two different position update strategies are proposed with respect to 

optimization strategy of the decision maker. If the decision maker wants to focus more 

on the main objective and generate Pareto optimal solution around optimum main 

objective faster, the position vector of the population is updated according to Equation 

3.6. Whereas, the position vector is updated according to Equation 3.14 as global best 

position for agent i is selected randomly from Pareto optimal solution sets if the 

decision maker tries to collect all Pareto optimal solutions to gather data for detailed 

post-optimization evaluation.  

 

Step 4: Construct trial position vector. Select donor position vector if unit random 

number is less than the predetermined crossover rate, Cr ; otherwise, select existing 

position vector for the agent i. 

 ( 1) ( ) ( ( ) ( ))
1 2 3

y t x t F x t x tr r r
d d d d

i
    

  (4.7) 

 ( 1) ( ) ( ( ) ( ))
1 2

y t x t F x t x tr r
d d d d

i i
    

  (4.8) 

( 1) (
,

( ) ( ))
1 2

 py t F x t x tr
g dd d d

ri
   

  (4.9) 

( 1) ( ) ( ( ) ( )) ( ( ) ( ))
51 2

 
3 4

y t x t F x t x t F x t x tr r r r
d d d d

i
d d

r      
(4.10) 

( 1) ( ) ( ( ) ( )) ( (  ) ( ))
51 3 4

y t x t F x t x
d d

t F x t x tr r r ri i
d d d d

      
(4.11) 

,
( 1) ( ( ) ( )) ( p ( ) ( ))

51 2 4
y t F x t x t F x t x tr r

g d
r r

d d d d d
i

     
(4.12) 

( 1) ( ) ( ( ))
,

  py t x t F
g dd

i i
d

x t
i
d

    
(4.13) 

( 1) ( 1)       if   

                     ( )        

  y

 

 

  

d d

d

u t t r Cri i j

x t otherwise
i

  

 

   

(4.14) 



 

 

60 

 

Step 5: Select the position vector with better fitness value among previous position 

vectors and trial position vectors of each agent. 

 

 

Step 6: In single optimization problems, sort local best fitness values of the population. 

Select position vector of the individual with minimum local fitness value as the best 

position vector of the population, pg. In multi-objective optimization problems, set 

initial individual as best position at t=0, compare objective fitness values with best 

fitness values. Eliminate position vector of any individual in best solution sets if it is 

dominated by position vector of individual i. Add into ith individual position vector if 

its objective fitness values cannot be dominated by the best objective fitness sets. 

  

Step 7: Repeat steps 2-6 until termination criterion is met. 

 

In original DE, global best position vector is updated at each function evaluation and 

this cause pre-mature converges in the problems. Therefore, to prevent from pre-

mature converges, especially in single optimization in this thesis; the global best 

position vector is updated at the end of each iteration. 

 

4.3.1. Particle Swarm Optimizer 

 

Particle Swarm Optimizer is a population based meta-heuristic optimization algorithm 

inspired from social behavior of animals like fish schooling, insect swarming, and bird 

flocking (Kennedy & Eberhart 1995). PSO takes both individual memory of all swarm 

members and swarm knowledge together. Besides position vector for each individual, 

velocity vector that is based on previous position vector, local best position vector, and 

best position vector is also taken into consideration to update position vector of each 

( 1) ( 1)       if ( ( )) (x ( ))
1 1

                  ( )       

  

           

u

  

 ux t t f t f t
i i i i

x t otherwise
i

  
 

(4.15)  
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individual. The details of Particle Swarm Optimizer for minimization problems are 

outlined as follows: 

 

Step 1: Initialize position and velocity of each particle according to Equation 4.6 and 

4.16. Set iteration t=0. 

 

where v represents velocity vector. 

 

Step 2: Evaluate objective function fitness value(s) ( (t))
m i

f x . 

 

Step 3: Update local best position for all swarm particles. If iteration is equal to 0, 

assign position vector of individual as local best position. 

 

 

where pi
l is representation of ith  particle’s local best position. 

 

Step 4: Apply Step 6 in detailed explanation of Differential Evolution. 

 

Step 5: Update velocity and position vector for all particles. 

 

   *       1, 2,..,    (  

 

) 1:

  

d d d d
X r X X for d m andv t

i
i Nmaxmin min

    

 

(4.16)   

( )        ( ( ))  ( )
1 1

                           

   

 

l l
p t f t f p
i i i i

l
p other s

x

e

x

wi
i

 
 

(4.17)   

1
1 1 2 2

dl dd d dv t v t c r p t c r p t
i i

d
i i i i

    
g,,( ) ( ) ( x ( w* )) ( x ( ))  

(4.18)   

x ( 1) x ( )) ( 1)t t v t
i i

d
i

d d
     

(4.19)  
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where w represents inertia weight of particle to control exploration in the algorithm 

whereas c1 and c2 are constant trust parameters that may change to improve algorithm 

performance. When focusing on main objective optimization, global best position 

vector is used in update process whereas in focusing the Pareto optimal strategy, the 

global best position vector is randomly selected among existing Pareto optimal 

solutions updated in Step 4.  

 

Step 6: Repeat steps 2-5 until termination criterion is met. 

 

4.3.3. Modified Cross Entropy Method (MCEM) 

 

Modified Cross Entropy Method is an improved version of the distribution algorithm, 

Cross Entropy Method (CEM) proposed by Altun and Pekcan (2015). MCEM provides 

balance between exploration and exploitation stages to provide efficient convergence 

speed and solution result. Compared to BB-BC, another distribution algorithm as a 

special form of Modified Cross Entropy, MCEM provides higher convergence speed. 

In Modified Cross Entropy Method, in order to optimize single optimization problems, 

initial position vectors for each individual are randomly distributed and evaluated in 

terms of fitness. Then, all individuals are sorted in terms of its objective fitness values 

and elite samples are categorized for mean and standard deviation parameters of 

normal distribution. The position vector for each individual is updated according to 

normal random distribution. In multi-objective optimization problems, random 

selection of non-dominated solutions are considered as mean value for each individual 

and standard deviation parameters are calculated as done in single optimization. The 

step by step explanation of MCEM is detailed as follows: 

  

Step 1: Initially randomly distribute design variable according to Equation 3.6 and set 

iteration t=0. 

 

Step 2: Evaluate objective function fitness value(s) ( (t))
m i

f x  
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Step 3: Sort objective fitness values and determine position vector set for mean and 

standard deviation parameters’ calculation. In focus on main objective strategy, mean 

and standard deviation parameters of distribution are updated as follows: 

 

where µ and σ are mean and standard deviation of elite samples whereas Nmean and  

Nstd represent number of elite individuals for mean and standard deviation. In focus on 

Pareto optimal strategy, mean vector of the distribution is calculated according to 

position vector of randomly selected non-dominated solutions updated in Step 6 in DE 

whereas standard deviation vector is calculated by using same formulation in the 

previous strategy. 

 

Step 4: Apply Step 6 in detailed explanation of Differential Evolution.  

 

Step 5: Update position vector for each individual. In single optimization, mean value 

for the distribution is calculated in Step 3; whereas in multi-objective optimization, a 

random selected non-dominated position vector from Step 4 is used to update position 

vector. 

 

where  randn () is unit random normal distribution with N(0,1). 

 

Step 6: Repeat steps 2-6 until termination criterion is met. 

11

Nmean dx t
si

d sit
Nmean




 

( )

( )  

(4.20)   

2
11  where 1

11

N
std dx tN d d sit x tstdd dsi sit t

N Nsi std std


 

 
   



( )
( ( ) ( ))

( ) ( )  

(4.21)  

x ( 1) ( 1) randn() ( 1)d d dt t t
i

       
(4.22)   
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CHAPTER 5 

 

 

ENERGY OPTIMIZATION MODELS 

  

 

 

In this chapter, optimization methodology and energy models used in the developed 

energy optimization models are introduced. Meta-heuristic techniques applied to 

multi-objective energy model are presented in detail. The energy models constructed 

for steady state and BIM integrated energy estimations are explained. 

 

5.1. EnrOpt: Steady-State Life Cycle Energy Performance Optimization 

Framework 

 

Energy Optimizer is Excel integrated Matlab based graphic user interface to optimize 

building energy performance. In the interface, meta-heuristic optimization techniques 

are applied to a modified TS 825 standard based energy model for improving the 

building performance and getting the Pareto optimal design solutions for decision 

makers in the early design stage of the building. Energy performance of the building 

is analyzed comparatively for each design alternative solution set by taking initial 

energy based design as reference building design and a datum point in quantitative 

calculations. The general perspective of the interface model is summarized below 

while the prominent points in summarization of the interface are explained in detail in 

the following sections one by one.  

 

 The reference building design parameters are selected initially in commonly 

used tool Microsoft Excel to provide an easy and practical application for the 

users. 
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 The energy optimization model can be applied to any building types available 

in TS 825 standard. 

 

 The building energy estimation model based on TS 825 standard is modified 

by adding alternative climate data and operational schedule. Moreover, 

heating degree-day methodology and window system heat loss calculation 

methodology is elaborated to calculate annual heating energy requirement 

more accurately. 

 

 Meta-heuristic optimization techniques are applied to interact with the energy 

model efficiently and provide flexibility in the interface by applying different 

techniques on various buildings. Therefore, performance of optimization 

model in more complex building design can be improved by applying 

alternative meta-heuristics with different position update strategies. 

 

 The optimization model can be applied to both single objective and multi-

objective building energy performance analysis. In single objective problem, 

due to the nature of the problem, the algorithm tries to optimize the objective 

fitness to find single optimum fitness value.  In multi-objective problems, the 

objectives are ranked according to their priority for the decision maker and the 

most important one is selected as the main objective in the optimization 

process.  

 

 In EnrOpt interface, two different optimization strategies, focus on main 

objective optimization and focus on Pareto optimal solutions, are available to 

apply in the building performance optimization based on decision maker 

expectations. 
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 In EnrOpt interface, the energy optimization model calculates building 

performance for a specific period, shortly called semi-life cycle performance 

analysis. Therefore, in each design solution, cost and environmental impact 

based trade-offs are considered between initial design cost and environmental 

performance values, and operational energy cost and environmental impact 

values for this analysis period. 

 

 Building performance is analyzed based on cost-effective, payback period 

minimization and environmental impact minimization based objectives that 

are listed below. In energy optimization model, any of the listed fifteen 

objectives can be used to generate Pareto optimal solutions or single optimum 

design solution for the selected objective can be generated. The objectives in 

EnrOpt energy optimization model are as follows: 

 

1. Life cycle cost savings 

2. Life cycle GWP savings 

3. Initial investment cost 

4. Energy cost payback period 

5. Emission payback period 

6. Life cycle air acidification savings  

7. Life cycle water acidification savings  

8. Life cycle ecotoxicity savings  

9. Life cycle air eutrophication savings  

10. Life cycle water eutrophication savings  

11. Life cycle air human health particulate savings  

12. Life cycle human toxicity, cancer savings  

13. Life cycle human toxicity, non-cancer savings 

14. Life cycle ozone depletion savings 

15. Life cycle smog air savings  
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 In energy optimization model, wall types, insulation material and thickness 

combination on different building components such as wall insulation, roof 

insulation, floor and foundation insulation, and window systems with different 

frame and glazing types are generated as design alternatives to find Pareto 

optimal solutions.  

 

 The commonly used insulation materials in Turkish insulation applications 

such as mineral wools like glass wool and rock wool, expanded polystyrene 

(EPS) and extruded polystyrene (XPS) are applied as design alternatives in 

optimization application. Moreover, horizontal coring and vertically 

perforated brick walls with different sizes and autoclaved aerated concrete in 

different thickness alternatives are used as wall type design alternatives. 

 

 In energy optimization model, natural gas, hard coal, lignite, fuel oil, fuelwood 

and electricity are offered as energy resource alternatives for heating the 

buildings. The user can select one of the resources or multiple energy 

resources with their associated share in heating process. 

 

 In theory, each building element can be insulated with different insulation 

materials and thickness combinations; however, it is not applicable in practice. 

Therefore, building elements with same function should be designed with 

same design alternative to get more realistic results. Therefore, 23 design 

variables explained in detail in section 5.1.5 are generated for wall types, 

insulations, and window systems. Various design alternatives are generated 

for each design variables whereas the number of design alternatives for each 

design variable can be limited in the interface depending on decision maker’s 

expectation. 

 

 In optimization model, cost data are obtained from 2015 Unit Price Database 

of Republic of Turkey, Ministry of Environment and Urbanization, whereas 
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environmental data are extracted from PE INTERNATIONAL 2012 and Eco-

invent 2012 databases via Gabi 6.0 software (Ministry of Environment and 

Urbanisation 2015;EcoInvent Centre 2012). 

 

5.1.1. Modifications in Energy Model 

 

Accuracy of energy estimation is very important in building performance evaluation 

and reliable decision making. Therefore, the weaknesses of the TS 825 standard based 

steady state energy model are overcome with additional detailed information and 

changes made in the methodology aiming to increase accuracy of the model for getting 

more reliable results. The modified parts of the energy model and the reasons for the 

modifications are explained below: 

 

 In TS 825 standard, five different monthly climate data are available to 

calculate required energy amount according to degree-day region 

categorization. Therefore, same two buildings in two different cities in the 

same degree-day region with different real climate data need same amount of 

annual heating energy according to energy estimation methodology in TS 825 

standard contrast to reality. Hence, city specific climate data are generated 

from statistics to make the energy analysis more realistic. Hence, two different 

climate data types such as long-term monthly average climate data and recent 

short-term climate data are added into energy model. According to Turkish 

State Meteorological State data (2015), long-term climate data includes fifty 

five year monthly average temperature data for the years 1950-2014; whereas 

recent short-term climate data covers monthly average heating degree-days and 

number of days heating is required for the building  that are used to determine 

monthly adjusted heating degree days for the building types for the years 2007-

2014. 
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 The most important building components in the building heat loss are walls 

and windows (Dasdemir 2014). According to TS 825 standard, thermal 

transmittance of the window system is calculated with respect to frame material 

and glazing type according to given standard table taken from TS 2164 

Principles for the Preparation of the Projects of the Central Heating Systems; 

however, geometric details of frame and glazing system in the window have 

not been considered yet. Therefore, in the energy optimization model, thermal 

transmittance calculation methodology is modified by including shape and 

width parameters of window frames and glazing system in the calculation 

formula based on ISO 10077-1:2006 standard. Dividers with same material 

properties as window frame are added to adjust uncommonly used window 

shapes. Hence, thermal transmittance of window system is determined by the 

following formula: 

 

where Uw , Ug and Uf  represent thermal transmittance of window system, 

window glazing system, and window frame respectively. Ψg and lg are linear 

thermal transmittance due to the combined thermal effects of glazing, spacer 

and frame, and perimeter length of window glazing. In energy optimization 

model, area and perimeter values for each window shape are entered in Excel 

sheet and the optimization code directly changes thermal transmittance of 

window system by changing material properties while keeping geometric 

details of windows  system  constant. 

g g f f g g

W

f g

A U A U l
U

A A

 




  
 

 

 

 0.00     3.2

          0.05    2.27 & 3.2 2.0

          0.06    2.27 & 3.2 2.0

          0.06    2.27 &  2.0

          0.08    2.27 &  2.0

g g

f g

f g

f g

f g

U

U U

U U

U U

U U

  

  

  

 

 

 

(5.1)  

 

 

 

( 5.2)
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 In TS 825 standard, for solar heat gain calculation, solar radiation values on 

vertical surface direction in each main direction are valid for any location in 

Turkey; however, detailed annual solar radiation analysis clears that solar 

radiation distribution changes depending on the location of the building. 

Therefore, by taking average solar radiation distribution as reference, an 

adjustment solar radiation coefficient is generated by dividing annual solar 

radiation of city A to Turkey’s annual solar radiation mean. Therefore, solar 

radiation on different cities is differentiated to get more reliable results. 

Moreover, in the standard, solar transmission factor for the normal incidence 

values is given for limited glazing types. In the energy optimization model, by 

using Isıcam data set (2015), solar transmission factor for the normal incidence 

values for each glazing alternatives are set. Furthermore, shading property of 

the glazing alternatives can also be re-evaluated; however, in TS 825 standard, 

building surroundings are evaluated to determine glazing shading factor. 

Therefore, shading factor of glazing system according to Isıcam data set is 

ignored. 

 

 One of the most important drawbacks in TS 825 standard is heating operational 

schedule in the building. The standard assumes continuous heating schedule 

based on indoor and outdoor monthly temperature difference. Therefore, 

continuous heating schedule decreases the accuracy of the energy estimation 

in the building by resulting in higher energy estimation than measured one. 

Thus, alternative schedule programs are generated to deal with energy 

overestimation. The building does not need any heating requirement if outdoor 

average temperature is higher than 15ºC which is used as reference temperature 

in heating degree-day calculations (Eurostat, 2015). In this study, it is assumed 

that building is heated up to 15 ºC when it is out of operational schedule in a 

day. The operational schedule based on number of heating degree-day (HDD) 

is calculated by the formula given in Equation 5.3 as follows: 
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(5.3) 

 

where HDDm and α represent number of heating degree-day  in month m and  

operational schedule time rate in terms of percentage (0,1). In recent short-term 

climate data evaluation, all the calculations are done same as long-term one; 

however, HDD values for each month are given by taking internal balance 

temperature as 18 ºC .Therefore, depending on building type , HDD values are 

adjusted using both pure HDD values and number of days with less than 15 ºC. 

Then, the same procedure is followed with long-term climate data. 

 

 In this energy optimization model, building wall is insulated as external 

thermal sheathing. TS 825 claims that thermal bridges in buildings with 

external thermal sheathing are neglected. In this model, effect of thermal bridge 

is taken as zero, even in reference building design. 

 

5.1.2. Objectives 

 

In this study, it is aimed at developing a flexible energy modeling interface to solve 

any combination of objectives together depending on decision maker’s expectations. 

Therefore, multiple objectives constructed on time, cost and environmental issues are 

evaluated within this interface. The decision maker selects main objective and other 

objectives to generate Pareto optimal solutions for providing alternatives for post- 

evaluation in decision making process. Hence, in this study, fifteen objectives 

explained in detail below are used in optimization process. The objectives in the energy 

optimization model and their mathematical expressions are as follows: 

 

Life cycle cost savings considers trade-offs between initial investment cost to improve 

building energy performance and cost savings due to increase in the building energy 
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efficiency/performance. It provides life-cycle thinking for the decision maker in the 

early design stage to change the idea of minimizing initial investment cost as short-

term profit goal while evaluating design alternatives. In this study, analysis period of 

the building is determined by the decision maker; therefore, the decision maker can 

evaluate the performance of the building for different time periods to make a better 

evaluation. Net Present Value (NPV) approach is used by adding time value of the 

money in the optimization process to make the evaluation more comparative and clear. 

In the calculations, the performance of the building is evaluated with respect to 

reference building. The mathematical expression of life cycle cost savings are as 

follows: 

 

 

where ICR and QR represent  comparative initial investment and amount of energy 

need for the reference building whereas LCCSd , ICd and Qd symbolize lifecycle cost 

savings for the design solution compared to reference building, comparative initial 

investment and amount of energy need for the designed building, respectively. In NPV 

analysis, energy inflation rate (iei) and interest rate (ii)  are used to calculate discounted 

price of energy resource k (pk) for the next years by adding time value of money into 

optimization process whereas it is multiplied by energy resource use percentage (wk) 

from all energy resources to calculate annual discounted energy price for any year. In 

EnrOpt interface, energy inflation rate and interest rate are taken 8% and 9.5%, 

respectively (Deposite Rates 2015; Turkish Statistics 2015). Energy inflation rate is 

determined by examining last 3-years and 5-years change in energy prices according 

to Turkish Statistics in terms of Turkish Lira. Although the country imports nearly 

seventy five percent of its energy needs and U.S. Dollar is mostly used in energy trade, 

as all the design costs are determined in terms of Turkish Lira, energy prices and 

energy inflation rate are considered based on change in energy cost in Turkish Lira.  

1

( )( )(1 )
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n

R d k k eiN
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n i
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


  in Turkish Lira 
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Global warming potential measures heat amount trapped by greenhouse gases in the 

atmosphere to describe the impact of greenhouse gases on global warming for different 

time periods. In this study, life cycle global warming potential (GWP) savings 

measures how much  kg equivalent CO2 GWP can be reduced by changing design 

alternatives in the given analysis period. Similar to cost analysis, in GWP analysis, 

GWP value of initial design alternatives have a trade-off with relative GWP value due 

to change in annual energy needs between designed building and reference building. 

In this study, time value of GWP is also taken into consideration by taking it 3% to 

underline the importance of taking precautions to reduce GWP in early design stage 

(Marshall & Kelly 2010). The formula of life cycle GWP savings is given in Equation 

5.5 as follows: 

 

 

LCES, IE and GWPk represent life cycle global warming savings, initial relative global 

warming value of design alternatives and global warming potential of energy resource 

k for unit energy amount, respectively. 

 

Initial investment cost (IIC) measures how much extra investment is required to change 

initial reference building design. IIC is formulated as follows: 

 

 

Energy cost payback period presents duration to recover relative initial investment by 

reducing annual energy need in designed building compared to one in the referenced 

building. If the initial investment on the designed building is less than the one in the 

referenced building, the payback period in the building is assigned zero. Payback 

1
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Q Q GWP w
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

  



    kg equivalent CO2 

   

(5.5)  
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period is calculated by adding cumulative discounted energy cost to investment for 

each year until the sign of NPV changes. The payback period is determined by 

interpolation between two following years where the sign of NPV changes in between. 

The general formula of energy payback period time is as follows: 

 

 

where nc  presents energy cost payback period. 

 

Emission payback period is time period for recovery of initial extra emission coming 

from difference between designed building and reference building by relative energy 

need reduction in the designed building. In emission payback period calculation, 

similar formula in energy payback period calculation is used. The formula of emission 

payback period is explained in Equation 5.8 below: 

 

 

where ne  presents emission payback period. 

 

 

The rest of objectives in this study are environmental impact related objectives. They 

are explained in detail in Table 5.1 and formulated in Equations 5.9-5.18. 
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(5.7)  
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5.1.3. Design Alternatives 

 

In building energy performance based design, insulation property of the design 

component plays a key role to reduce heat loss in the building. Therefore, decision 

maker selects appropriate design materials to construct energy efficient solutions. In 

this study, wall types, insulation materials with different thickness combinations, and 

window systems with different frame-glazing type combination are presented as 

design alternatives in energy optimization process to generate Pareto optimal energy 

efficient solutions with respect to selected objectives. The details of all design 

alternatives by giving priority to insulation material are explained below. 

 

Insulation materials can be used in new building design or renovation of existing 

building in different forms such as as batt, roll, foam, board depending on intended use 

regarding fire protection, material strength, resistance to vapor as per given details in 

Table 5.2 . In Turkey, mineral wools such as rock wool, glass wool, expanded 

polystyrene (EPS), and extruded polystyrene (XPS) are commonly used insulation 

materials for insulation applications in buildings. In building insulation design, the 

right insulation material with right thickness should be selected to provide energy-

efficient and life cycle existing solution. For instance, in building foundation, if the 

compressive strength of the materials is insufficient to resist on the carried load, 

insulation material may lose its insulation property faster than intended period due to 

smash. Therefore, in insulation design, the prior objective should have insulation-

effectiveness; however, other properties such as reaction to fire or compressive 

strength should be also considered in material selection as constraints. 

 

Mineral wool comprises glass wool and rock wool which are produced as boards, mats 

and filling materials. The main raw materials for rock wool manufacturing are basalt, 

dolomite and limestone; whereas the glass wool is produced from sand, glass cullets, 

soda ash and limestone. For these mineral wools, the raw materials are melted at 

1500°C as spun fibers that are in a bind together to improve wool properties. The 
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produced mineral wool is then cured at about 200-250°C and cut in the required size 

and shape. Thermal conductivity of both rock wool and glass wool is 0.04. 

 

Table 5.2. Detailed Information of Most Common Insulation Materials in Turkey 

 

  Mineral Wools Organic Foam 

  Glass wool Rock wool EPS XPS 

Density(kg/m3) 15-100 40-150 15-35 25-30 

Thermal conductivity 

factor λ (W/Mk) 

0.035-0.050 0.035-0.050 0.035-0.040 0.030-0.040 

Resistance to vapor 

diffusion factor 

<=1 <=1 20-100 80-250 

Reaction to fire Very good Very good Good Good 

Compressive strength 

(kPa) 

0.5-500 0.5-500 30-500 100-1000 

 

Where to use 

 

 

wall, floor, 

ceiling, roof 

 

wall, floor, 

ceiling, roof 

 

wall, floor, 

ceiling, roof, 

expansion joints 

 

wall, floor, roof, 

foundation 

 

 

 

How to install 

fitted between 

joists, glued, 

nailed 

fitted between 

joists, glued, 

nailed 

glued ,nailed glued ,nailed 

Reuse/recyclability Recyclable; 

but not 

practical 

Recyclable; but 

not practical 

Recyclable Recyclable 

Waste disposal No special 

burden 

No special 

burden 

No special 

burden 

Long bio-

persistence 

 

EPS is composed of small spheres of polystyrene that are expanded by pentane (C6H12) 

with water vapor heat. The expanded beads are cooled, and air diffuses gradually into 

the pores and replaces residual condensed vapor and pentane gas. Then, the beads are 

molded in the intended shape and cut in the pre-determined size. Thermal conductivity 

of expanded polystyrene depends on EPS density (ρa). In this study, thermal 

conductivity values of EPS with various densities such as 16 kg/m3, 20 kg/m3, 30 

kg/m3 and 35 kg/m3 are calculated according to EPS thermal conductivity prediction 

formula of European Manufacturers of Expanded Polystyrene (EUMEPS,2014 ) given 

in Equation 5.19. 
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where λ pred represents predicted EPS thermal conductivity. 

 

XPS is produced from melted polystyrene by adding expansion gas such as HFC, CO2 

or C6H12 where polystyrene mass is extruded through a nozzle with pressure release 

that provides mass expansion. XPS is produced in continuous lengths and cut after 

cooling process. Thermal conductivity of extruded polystyrene varies between 0.03 

and 0.04. In this study, three different thermal conductivity values such as 0.03, 0.035 

and 0.04 are used in the optimization process. 

 

In wall type selection, brick walls and autoclaved aerated concrete walls are offered in 

common practice. All possible brick walls and AAC wall alternatives are listed 

according to 2015 Unit Price Database of Republic of Turkey, Ministry of 

Environment and Urbanization. Thermal resistance of each wall alternative is adjusted 

according to material list of TS 825 standard. 

 

In window system design, different frame and glazing combinations are created to 

evaluate more alternatives for better design. Types of frame and glazing systems are 

determined according to given alternatives in TS 825 standard. Beside this, glazing 

alternatives are diversified by adding different glazing type combination with different 

thickness level and different gases such as air and argon between two glasses. Thermal 

transmittance value of generated glazing types are taken from Isıcam database.  

In the determination of design alternative materials and their thickness values, 

availability of cost and environmental impact based data draw the limits for design 

alternatives. The cost of each design alternatives is determined according to 2015 Unit 

Price Database of Republic of Turkey, Ministry of Environment and Urbanization 

whereas environmental data are extracted from PE 2012 and Eco-invent 2012 

5 0.173606
0.027174 5.1743 10

pred a

a

 



    

   
(5.19)   
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databases via Gabi 6.0 software. The general procedure applied in this study for design 

alternative generation using these data is as follows: 

 

 Design alternative materials in insulation application of any building 

component should be used or not is determined according to pre-determined 

rule whether the insulation material is used in the insulation of that building 

component in the Unit Price Database. Moreover, all possible wall types in the 

database are used in the wall design process. 

 

 Some thickness levels of insulation materials decided to be used in design are 

given in Unit Price Database; however, alternative thickness values are 

generated to vary building design by interpolation for intermediate thickness 

values and extrapolation for the thickness alternatives that is higher than 

maximum thickness levels in Unit Price Database.  

 

 In the energy optimization model, insulation thickness alternatives are initially 

applied to reference building components to eliminate some of alternatives due 

to causing more heat loss than recommended thermal transmittance value in 

Table 3.1. In building walls, building wall type is assumed to be fixed 

according to reference building in elimination process. 

 

 Insulation design in any building component is done with respect to given 

insulation and material details in Unit Price Database. Therefore, all 

complementary materials for insulation application for different building 

components and waste percent of insulation materials are determined based on 

this database. 

 

 In this study, all cost and environmental impact based analyses are done 

comparatively. Therefore, same material applied in all alternative insulation 

designs is not taken into consideration. 
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 Some of the missing data are supported by complementary data. For instance, 

environmental impact values for natural gas used in Turkey are not available 

in database whereas same data is available for Greece, Hungary and European 

Union. Therefore, missing data is completed by complementary data from the 

given alternative above in the order of Greece, Hungary and European Union 

regarding geographical conditions. All of energy resource alternatives are 

determined according to this procedure.  

 

 Environmental performance of all insulation materials in Turkey is not 

available in Gabi 6.0 database. Therefore, existing performance values in the 

database are taken into consideration for design alternatives. Similar to energy 

resources, in insulation alternatives, missing environmental impact data of 

insulation materials are completed with respect to existing database. For 

instance, environmental performance of EPS 16 kg/m3 is estimated by 

interpolation of environmental performance of EPS 15 kg/m3 and EPS 20 kg/m3 

whereas environmental performance of EPS 35 kg/m3 is estimated by 

extrapolation of environmental performance of EPS 25 kg/m3 and EPS 30 

kg/m3. 

 

 Environmental performances of insulation and other design alternatives are 

calculated according to life cycle of materials. However, environmental 

performance impact due to material logistics is ignored, because a 

comprehensive database in detail is required for eighty one cities with various 

materials which needs to include material importing location and distance to 

local supplier. 

 

 In the evaluation of environmental performance of brick walls , in real life, the 

change in the surface area of brick wall  changes energy requirement and brick 

environmental performance; however, in this study, only the weight of the 

brick is evaluated in the environmental performance calculations due to lack of 
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data in the database. Similarly, in environmental performance evaluation of 

PVC frames, PVC frames with different hollow chambers are assumed to give 

same environmental life cycle performance. 

 

In energy optimization model, the decision maker, firstly design reference building 

and decide which design alternatives can be used in the optimization process. The 

decision maker can improve the building performance by changing wall types, window 

frame and glazing type and insulation material and thickness of wall, roof, and floor 

and foundation. All the possible design alternatives generated in the interface are 

tabulated in Table 5.3. 

 

5.1.4. Design Variables 

 

In the optimization design process, each building element can be design separately. 

For instance, walls in each story can be insulated by different material and thickness 

combination or in each story, different wall type can be used; however, this design 

approach loses touch with reality in practical applications. Therefore, instead of 

evaluating each building element separately, in this study, building components are 

categorized according to their thermal property difference and each building element 

with same thermal property are insulated by same material and thickness combination. 

This makes the study more realistic. Wall, roof and floor / foundation component of 

the building are sub-divided into multiple categories according to their location in the 

building and window system is diversified according to main directions in the building. 

The location based design variables in the energy optimization model are tabulated in 

Table 5.4. 

 

In optimization procedure, firstly, all redundant insulation material/thickness design 

alternatives that violates recommended insulation levels are directly eliminated. In the 

elimination procedure, the building elements with same design type and location  
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Table 5.3. Design Alternatives 

 

 

Design Type 

 

 

Design material 

 

Design Alternatives (size, thickness) 

Wall Type 

Aerated Concrete Wall 
7.5 cm, 8.5 cm, 9 cm, 10 cm, 12.5 cm, 13.5 cm, 15 cm, 

17.5 cm, 19 cm, 20 cm, 22.5 cm, 25 cm, 30 cm, 35 cm 

Horizontal Coring Brick 

Wall (HCB) 

190 x  85 x 190, 200 x 100 x 200, 250 x 120 x 200, 

 190 x135 x 190, 250 x200 x 250, 235 x240 x 135, 

 240 x250 x 190 

Vertically Perforated 

Brick Wall –W Class 

240 x 115 x 235, 240 x 145 x 235, 240 x 175 x 235, 290 x 

190 x 235, 240 x 240 x 235, 240 x 250 x 235, 240 x 300 x 

235 

Vertically Perforated 

Brick Wall –W Class 

290 x 190 x 135, 290 x 240 x 190, 

240 x 290 x 190, 190 x 390 x 190 

Wall 

Insulation 

EPS 16 kg/m3 

EPS 20 kg/m3 

EPS 30 kg/m3 

EPS 35 kg/m3 

3 cm to 20 cm by 1 cm interval 

XPS 25 kg/m3 

XPS 30 kg/m3 
3 cm to 20 cm by 1 cm interval 

Rock wool 120 kg/m3 

 
3 cm to 20 cm by 1 cm interval 

Floor / 

Foundation 

Insulation  

EPS 16 kg/m3 

EPS 20 kg/m3 

EPS 30 kg/m3 

EPS 35 kg/m3 

3 cm to 20 cm by 1 cm interval 

XPS 25 kg/m3 

XPS 30 kg/m3 
3 cm to 20 cm by 1 cm interval 

Roof 

Insulation 

EPS 16 kg/m3 

EPS 20 kg/m3 

EPS 30 kg/m3 

EPS 35 kg/m3 

3 cm to 20 cm by 1 cm interval 

XPS 25 kg/m3 

XPS 30 kg/m3 
3 cm to 20 cm by 1 cm interval 

 

Rock wool 50 kg/m3 

 

6 cm to 25 cm by 1 cm interval 

 

Glass wool 18 kg/m3 

 

6 cm to 25 cm by 1 cm interval 

 

Aerated Concrete 

 

5 cm, 7.5 cm, 8.5 cm, 10 cm, 12.5 cm, 15 cm, 17.5 cm, 20 

cm 
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Table 5.3. Design Alternatives (continued) 

 

 

Design Type 

 

 

Design 

material 

 

Design Alternatives (size, thickness) 

Window 

Frame  

Woodwork, Aluminum Joinery, Aluminum Joinery with 

Insulation Bridge, Two Hollow Chamber PVC, , Three Hollow 

Chamber PVC, , Four Hollow Chamber PVC, , Five Hollow 

Chamber PVC, , Six Hollow Chamber PVC 

Glazing 

Single Clear (4 mm),Double Clear Air (3-9-3), Double Clear Air 

(4-9-4), Double Clear Air (5-9-5), Double Clear Air (6-9-6), 

Double Clear Air (3-12-3), Double Clear Air (4-12-4), Double 

Clear Air (5-12-5),Double Clear Air (6-12-6), Double Clear Air 

(3-16-3), Double Clear Air (4-16-4), Double Clear Air (5-16-5), 

Double Clear Air (6-16-6), Double Sinergy Air (4-9-4), Double 

Sinergy Air (4-12-4), Double Sinergy Air (4-16-4), Double 

Comfort Air (4-9-4), Double Comfort Air (4-12-4), Double 

Comfort Air (4-16-4),Triple Sinergy Air (4-9-4-9-4), Triple 

Sinergy Air (4-12-4-12-4), Triple Sinergy Air (4-16-4-16-4) , 

Triple Comfort Air (4-9-4-9-4), Triple Comfort Air (4-12-4-12-

4), Triple Comfort Air (4-16-4-16-4), Double Clear with 

Argon(3-9-3), Double Clear with Argon(4-9-4), Double Clear 

with Argon(5-9-5), Double Clear with Argon(6-9-6), Double 

Clear with Argon(3-12-3), Double Clear with Argon(4-12-4), 

Double Clear with Argon(5-12-5), Double Clear with Argon(6-

12-6), Double Clear with Argon(3-16-3), Double Clear with 

Argon(4-16-4), Double Clear with Argon(5-16-5), Double Clear 

with Argon(6-16-6), Double Sinergy with Argon(4-9-4), Double 

Sinergy with Argon(4-12-4), Double Sinergy with Argon(4-16-4), 

Double Comfort with Argon(4-9-4), Double Comfort with 

Argon(4-12-4), Double Comfort with Argon(4-16-4) , Triple 

Sinergy with Argon(4-9-4-9-4), Triple Sinergy with Argon(4-12-

4-12-4), Triple Sinergy with Argon(4-16-4-16-4), Triple Comfort 

with Argon(4-9-4-9-4), Triple Comfort with Argon(4-12-4-12-4), 

Triple Comfort with Argon(4-16-4-16-4) 
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Table 5.4. Location Based Design Variables 

 

Design Type Design Location/ Direction 

Wall Type 

Curtain Wall (ventilated or partiating uninsulated ceiling) 

Exterior Wall 

Interior Walls (apartment partiating wall, stair, low-temperature surrounding) 

Soil-contacted Exterior Wall 

Wall 

Insulation 

Curtain Wall (ventilated or partiating uninsulated ceiling) 

Exterior Wall 

Interior Walls (apartment partiating wall, stair, low-temperature surrounding) 

Soil-contacted Exterior Wall 

Floor / 

Foundation 

Insulation 

Basement Ceiling 

Cantilever Floor 

Floor (partiating apartments or rooms in multi-purpose hall ,bottom  up heat flow ) 

Floor (partiating apartments or rooms in multi-purpose hall ,top-down heat flow) 

Soil-contacted Basement 

Roof 

Insulation 

Ceiling (unused garret, under ventilated space) 

Unventilated roof /ceiling  & terrace 

Window 

Frame 

East, North, South, West 

Window 

Glazing 

East, North, South, West 

 

are collected together and thermal resistance of each building element is calculated 

without insulation materials. Then, the building element with minimum thermal 

resistance, in other word, with worst insulation, is accepted as reference building 

element to eliminate insufficient design alternatives. After that minimum required 

thermal resistance level is calculated by subtracting thermal resistance of referenced 

building element from the recommended thermal resistance for that building 

component by dividing 1 to recommended thermal transmittance value in Table 3.1 

according to degree-day region of building location. All design alternatives that have 

less thermal resistance than the calculated minimum thermal resistance are eliminated 

before optimization process starts. Similarly, by fixing window frame properties of 
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reference building, all redundant glazing alternatives whose thermal transmittance 

level are higher than the recommended value are eliminated for each main direction of 

the building one-by-one. Similar to insulation elimination process, the most critical 

window system for each direction is referenced. 

 

In building energy based design process, some design alternatives needs to be 

eliminated due to illogical design. For instance, in building wall insulation design, the 

use of insulation design combination with higher thermal resistance in interior walls 

than the one in the exterior wall provides theoretically and practically illogical 

applications. Therefore, in optimization process, if the thermal resistance of interior 

walls is higher than the one in exterior and soil contacted exterior walls, then, the 

design solution is constrained and multiplied by infinitesimally high number to 

eliminate it from alternative best solutions. 

 

5.2. EnrOpt Graphic User Interface 

 

The details of EnrOpt interface is explained step by step as a user guide as follows: 

 

Step 1: Excel file of the interface is opened and details of wall, roof, floor or 

foundation (basement) and window is entered into the file as seen in Figure 5.1.-5.4. 

In excel file, the wall type for wall system and insulation type for wall/roof and 

basement system are selected among given alternatives whereas the material and 

thickness details of building layers are selected from given dropdown list obtained 

from TS 825 material database. The location of the building element (interior, exterior 

etc.) is also selected from given dropdown list. The excel macro is directly calculates 

thermal resistance of each layer and whole building element in variation such as 

thermal resistance of all building elements, thermal resistance without insulation or  

thermal resistance for only building element layers that are used in Matlab coding. 

Moreover, area of the material used is entered. The design details for wall system, 
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basement system and roof system are summarized in an excel sheet to follow the 

details more easily (Figure 5.5). 

 

In window design, the shape of the window system is selected from given dropdown 

list such as single/double casement, horizontal slider, angular and transom window. 

Then, frame material and glazing property of window system are selected from the 

given dropdown list. After that general geometric details of the window system such 

as window height, window width and window frame thickness are entered. Horizontal 

and vertical divider and divider thickness with same frame materials are used to better 

define complex geometry. Finally, by entering the number of windows with same 

property in the same direction by selecting the window direction from main directions 

given in dropdown list, frame area and glazing area and glazing perimeter for each 

window ID are calculated in excel macro and used in the calculations. 

 

Building door design details are also done in excel file. Thermal heat loss values for 

doors are calculated in excel file and used in Matlab code. Thus, excel based design 

process is finalized and excel file is saved and closed. 

 

The details of the following steps of Matlab GUI is explained on Figure 5.1 to 5.17. 
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Step 7: Optimization details represent the optimization part of the energy optimization 

model in the interface. In the interface, building type is selected from pop-up menu to 

obtain building internal balance temperature. The user selects building location to 

determine thermal and solar effect of climate on the building. From climate data and 

solar data menu, the user selects which temperature data and solar radiation data are 

used in the optimization process. The heating schedule of the building is selected from 

the given alternatives in operational schedule menu. 

 

In optimization process, the meta-heuristic algorithm that generates solutions and 

directs solution generation process is selected by alternative lists such as Differential 

Evolution, Particle Swarm Optimizer and Modified Cross Entropy Method. In 

optimization strategy, the user determines whether to focus more on main objective 

optimization or generates Pareto optimal solutions by scanning wider space. 

 

In determination of optimization objectives, the user can select the objectives in two 

ways. In the first one, if the number of objective is less or equal to three, the user can 

select the objectives from objective dropdown list one by one. The main objective is 

the key objective that directs all optimization process where the rest is used in the 

generation of Pareto optimal solutions. In the second approach, the user can enter the 

objective IDs that are given in dropdown list, by using comma between objective IDs. 

The objective ID with entered first represents the main objective. When both first and 

second approaches are used together, the second approach is valid in optimization. 

 

All design details should be checked before optimization process starts. Therefore, 

checklist for the effective design is given to warn the user not to miss any parts in the 

design. After all list is checked, the optimization process starts by pushing the button 

“Run EnrOpt”. The model runs in a minute and gives results. When optimization 

process finishes, “Result”, “Graphical Result” and “GWP Results” (if life-cycle GWP 

savings is in objective lists) are added to menu tabs (Figure 12). Thus, the user can 

check optimization results within the interface. 
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5.3. Case Study I: Typical TOKI Building Energy Performance Optimization 

 

In Turkey, instead of renovation and retrofit projects, construction of new buildings is 

more common. Turkish housing sale statistics (2013) support this idea that 46% of the 

dwellings sold are brand new. 44% of total first sales belongs to five major Turkish 

cities (Istanbul, Ankara, Izmir, Bursa, and Antalya). Urbanization factor plays 

dominant role in the first sale distribution in Turkey (Figure 5.18). Moreover, shanties 

and old buildings with high damage risk due to earthquake are planned to be 

demolished and new buildings are constructed via urban renewal projects. According 

to Ministry of Environment and Urbanism, 6.5 million dwellings of nearly 20 million 

dwelling stocks in Turkey are planned to be reconstructed in 20 year-period (Deloitte 

Turkey 2014). Housing Development Administration of Turkey (TOKI), established 

in 1984 to find solutions for distorted urbanization and housing problems, is the main 

player of the residential sector with a share of 9.1% of total sector for the years from 

2002 to 2012 (Emlak Konut Gyo 2014) and completion of 644,079 housing units till 

February,2015 (Housing Development Administration of Turkey 2015). Currently, 

approximately 2.5 million people reside in TOKI houses. The main customers of TOKI 

projects are medium low income groups and the poor with nearly 410243(506387) 

housing units (Housing Development Administration of Turkey 2015). In the 

upcoming urban renewal projects TOKI is tasked with management of urban renewal 

projects by Law 6306 (2012).Therefore, in the next years, TOKI is expected to sustain 

its share and reinforce its power in the housing market. 

 

In this case study, a typical 10-story TOKI building with 44 dwelling housing units 

whose gross are is 85 m2 is re-designed according to given alternatives in technical 

specifications in early design stage by EnrOpt graphical user interface to maximize its 

energy efficiency. All design alternatives in building design are tabulated in Table 5.5. 
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Figure 5.18. The Sales of First-hand Residential Properties for Cities in Turkey  

 

Table 5.5.All Design Alternatives 

 

Design Type Design Alternatives 

All Infilled Walls All Wall Types in Table 5.3 

Wall Insulation 

EPS with minimum 22 kg/m3 

XPS 

Rockwool 

Foundation XPS 

Floor 
EPS with minimum 22 kg/m3 

XPS 

Roof  

Glass wool 

Rockwool 

EPS with minimum 22 kg/m3 

XPS 

Window Frame PVC with 3 hollow chambers 

Window Glazing All glazing types 

 

TOKI building is initially designed in Microsoft Excel according to given conditions 

in Project Drawings and TS 825 standard whose details are given in Appendix A. Then, 
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Excel file is exported to EnrOpt to optimize the process. In optimization procedure, 

performance of TOKI buildings is evaluated in different perspectives explained below. 

 

Energy performance of TOKI buildings in different degree-day regions are tested by 

selected cities with top housing sales from each degree-day region such as İzmir, 

İstanbul, Ankara, Kayseri and Erzurum. For each city, insulation design of TOKI 

building is re-designed and adjusted according to TS 825 standard. Recent degree-day 

data, corrected solar radiation data with Isıcam daylight transmittance factors and 

natural gas as energy resource are used in the optimization process.  

 

Performance of all three algorithms is tested by buildings located in Ankara with 

efficient optimization strategy depending on results by optimizing LCC savings, 

LCGWP savings and initial investment of the buildings according to given design 

alternatives. The most efficient algorithm with suitable optimization strategy is 

selected to be used in the rest of the optimization analysis according to optimization 

results. 

 

In the rest of the case studies, Ankara is considered as reference city in energy 

optimization process. Performance of TOKI buildings located in Ankara is tested by 

multiple multi-objective energy optimization with alternative objective sets to prepare 

detailed reports for decision maker to take right decision with enriched data in early 

design stage. 

 

The multiple multi-objective energy optimization objectives can be listed below: 

 

 LCC savings  vs LCGWP savings vs Initial Investment 

 LCC savings  vs Initial Investment vs Energy Cost Payback Period 

 LCGWP savings  vs Initial Investment vs Energy Emission Payback Period 

 LCC savings  vs Initial Investment 

 LCC savings  vs LCGWP savings  
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 LCC savings  vs Energy Cost Payback Period 

 LCC vs Other Environmental Factors 

 LCGWP savings  vs Initial Investment 

 LCGWP savings  vs Energy Emission Payback Period 

 

Results of some of the above optimization scenarios are presented in Chapter 6. 

 

In the following analyses, building energy performance is optimized according to 

different scenarios such as different analysis period, initial investment limitations and 

different energy resources and limitations in design alternatives. Life cycle 

performance of the building is optimized according to LCC savings and LCGWEP 

savings whereas LCC savings objective is assigned as main objective to generate life 

cycle cost savings designs. 

 

Performance of the building is also tested by changing analysis period horizon from 5 

years to 40 years to evaluate change in design parameters. 

Initial investment limits are determined according to investment value on life cycle 

cost savings maximization design scenario. 

Energy resources are one of the determinant parameters in this optimization problems 

where their performance, costs and environmental impacts consider trade-offs with 

each other. Therefore, building life cycle performance for different energy resources 

such natural gas, hard coal, lignite and fuel oil are optimized. 

 

Reaction of EnrOpt on changes in insulation materials or their upper thickness limits 

where the market conditions limits insulation thickness are tested and compared with 

unlimited case for this case study. 

 

Parametric analysis is done to check how the change in design parameters in energy 

model changes reference building performance and optimization results. Modification 
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parameters in the energy model are compared with existing parameters in TS 825 

standard. The details of parametric analysis in energy model is explained below: 

 

 Performance of TOKI building in 3rd degree-day region in TS 825 standard is 

compared with performance of the same building in different cities of 3rd 

degree-day region according city specific long-term average temperature data 

and recent heating degree-day data instead of given temperature data in TS 

825. 

 

 TOKI building energy optimization results are compared according to existing 

solar radiation data in TS 825 standard and coefficient corrected solar radiation 

data. Moreover, daylight transmittance of glazing alternatives are calculated 

according to both TS 825 standard and Isıcam data set and compared. 

 

 Importance of time schedule is underlined by assigning different operating 

schedules. 

 

Performance of the optimization algorithm is compared with each other according to 

same number of function evaluation. Moreover, parametric analysis is done for 

optimization algorithms by changing population size and algorithm specific 

parameters. 

 

5.4. BIM Integrated Dynamo based Meta-heuristic Framework 

 

Computational Design refers to the ability to provide linkage between problem solving 

approaches with computational algorithms for automation, simulation and design 

solution generation (BIM-SIM 2014). In practice, it provides innovation solutions with 

huge impact in design; however, the framework that is easy to use for the designers to 

generate multiple design and evaluate them according to their purpose is needed to be 

constructed for effective computational design. 
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“Visual Programming Language “concept provides easy and flexible solutions for 

designers to construct their design by programming via graphical user interface. The 

users can construct and automate their design by custom relationship with pre-

packaged nodes. The design construction with nodes provides easy use for the non-

programmers without advanced coding. 

 

Dynamo is a visual programming tool that provides flexibility for users to both code 

via Python language in the tool and use built-in functions graphically without any 

coding which makes the tool easier to use and understand for non-programmers (Kron 

2013). It allows designers to customize computational design and automate whole 

process via its node-based visual programming interface. Dynamo can interact with 

BIM tools such as Autodesk Vasari and Revit by its Add-in to change geometric 

properties of BIM elements automatically and manipulate BIM data. Therefore, 

automated geometric control and data manipulation incent Dynamo use for different 

purposes. For instance, by changing BIM element geometric and material properties, 

the performance of the building for different purposes such as aesthetics, cost-

effectiveness and energy efficient solutions can be optimized according to pre-

determined fitness functions in the early design stage of the building. 

 

In this study, geometric and material properties of the building elements are 

manipulated to optimize life-cycle energy performance of the structure. Dynamo based 

BIM integrated optimization framework is constructed by using both built-in functions 

and Python coding to optimize multi-objective functions and talk with BIM tool to 

change building elements and run energy simulation. Each phase of the framework is 

explained step by step as follows: 

 

Step 1: Dynamo interacts with BIM tools via built-in functions and Python scripts to 

change building element property. For instance, Dynamo code in Figure 5.20 is written 

to change family type and glazing property of the selected windows. The family types 
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in the window are pre-defined with different shape and height and width values 

whereas glazing properties are selected from Revit add-in property. The code explains 

that all window family types are listed and one with defined family type ID is selected 

to be assigned to the chosen building element(s). Similarly, glazing property for the 

selected building element is assigned from glazing type list via defined glazing ID. 

Figure 5.19 demonstrates different family and glazing type assignment on the same 

window system. 

 

 

 

 

 

Figure 5.19. Window Property Change in BIM via Dynamo 
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Step 3:  Meta-heuristic optimization section is the brain of the integrated model. In 

this section, as seen in Figure 5.22, optimization model interacts with all stakeholders 

of the model. Initially, the optimization model interacts with BIM tools to assign initial 

design solution into model to test its energy performance and environmental 

performance of alternative materials are obtained from life cycle assessment database 

and transferred into fitness function via optimization model. Then, energy 

performance of the design solutions are calculated by GBS model and written into 

Dynamo fitness function. The loop shown in Figure continues until termination criteria 

are met. The details of the meta-heuristic optimization model, Multi-objective 

Differential Evolution are explained below. 

 

 

  

Figure 5.22.  General Description of Dynamo based BIM Integrated Optimization 

Framework 

 

In Dynamo interface, MODE is constructed as presented in Figure 5.22. The model 

starts with input parameters such as number of agents and crossover rate and boundary 

limits for each design variables. The initial design variables are created randomly in 

initialization custom node. The performance of each solution is evaluated by integrated 

design variables and fitness functions nodes. Fitness values of the main objective 

function (first fitness function) and initialized design variables for each agent are 

assigned as local best fitness and local best position. Then, all fitness functions of 
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agents are compared with each other to create initial non-dominated solution sets. The 

model performance evolves in the main loop by giving all necessary constructed and 

initialized parameters as inputs to generate new design variables and evaluate its 

performance with respect to others to construct Pareto optimal non-dominated solution 

sets while the termination criterion is met. 

 

The main structure of MODE model in Dynamo is shown in Figure 5.23. The details 

of sub-sections of the model and Python codes in the model is explained and presented 

in Appendix C. 

 

5.5. Case Study II: Simple Cottage Energy Performance Optimization 

 

In this case study, a simple cottage is modelled in Revit software to optimize its energy 

performance. The cottage has 47 m2 usable area enclosed by 8.5 inch concrete wall 

and covered by compounded ceiling with 0.45 U-value. The cottage is located in 

Middle East Technical University. It has two symmetric windows in north-south 

direction and two symmetric windows according to entrance door in west direction. 

 

In this case study, it has been planned to optimize life cycle performance of the cottage;  

however, in optimization process, the main energy analysis framework in Dynamo 

called Energy Analysis for Dynamo gave uncontrollable error in some of  the multiple 

runs of the same input file that is accepted  by the framework developers, Thorthon 

Tomasetti research group with Autodesk Building Performance Analysis research 

group. Therefore, additional Python code was implemented to eliminate the 

interruption in automated energy optimization process due to encountered error. In 

optimization process, 10 agents in DE are iterated 3 times but, the system was able to 

reach an energy performance results in only 45% of the constructed design alternatives 

in an hour. On the other hand, a single run of energy analysis in the system just takes 

10 to 20 seconds whereas this run time is extended up to 5 minutes in error encountered 

analysis. Therefore, in this case study, 500 function evaluations based model is  
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expected to be finished in at least 15 hours whereas this run time is expected to be 

improved down to 2 hours. Moreover, more than half of the runs do not give results in 

the automated process and efficient design solution may be missed due to internal 

errors in the model. Therefore, a new framework structure communicating with excel 

files are constructed to update parameters and fitness solutions in each algorithm step. 

If energy model does not give results at once, the model re-runs to obtain the results. 

Therefore, all solutions are controlled and used in optimization process.  

 

In optimization process, initial cost and emission data of design alternatives are 

planned to be exported from excel file to optimization model; however, due to the 

internal error, life cycle performance analysis is postponed. Instead of life cycle 

analysis, annual energy consumption is taken into consideration. The simple cottage 

model is optimized by Differential Evolution to improve building annual energy cost 

and annual carbon footprints and to find non-dominated solution for decision maker. 

Moreover, if annual energy cost and carbon footprints values are multiplied by a single 

discounted coefficient, the results give life cycle operational energy cost and carbon 

footprints. 

 

In optimization process, energy cost comes from electricity use and heating and 

cooling process of the cottage. Therefore, different design solutions provides trade-off 

between electricity use and direct energy resource consumption. Hence, this also 

provides trade-off in carbon footprints due to different emission rates of energy 

resources. 

 

In energy analysis process, first energy settings of the model are set. In this case study, 

location of cottage and building type are entered as METU and office (Figure 5.24). 

The model use rooms to export building geometry to gbXML file and the most detailed 

shading analysis that gives most accurate results among alternatives are used. The 

model first analyzed in Revit add-in analysis tool by communicating with GBS to 
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create project file in GBS. Then, energy optimization model starts to generate solutions 

to optimize building performance. 

 

In this case study, 64 different window family types with different geometric details 

and 24 glazing types are used to generate four different design variables. The first 

design variable is family type of side windows and the second one is family type of 

front windows in the model. Third and fourth design variables are glazing properties 

of these windows. Multi-objective Differential Evolution aims at reducing annual 

energy cost and carbon footprints by changing design variables in 500 function 

evaluation using 20 agents in 25 runs. The number of function evaluations is limited 

due to manual update procedure in the model. 

 

 

 

 

Figure 5.24. Energy Settings in Revit 
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The optimization model initially starts with random distribution and the position 

matrix are written in excel file with sheet name of ‘position’. Then, performance of 

each agent is simulated in GBS model one by one by exporting position matrix into 

Dynamo model and the fitness results are written in excel file. After fitness values of 

all agents are obtained, all position and fitness values of agents are assigned as local 

best position and fitness in a new excel files. After that, non-dominated solutions are 

generated by comparing initial fitness results in Dynamo file and non-dominated 

solutions are written in excel file in global best position and fitness files. Thus, first 

iteration of energy optimization model ends. In the next iteration, all necessary local 

and global best position matrix are exported into Dynamo node and new position 

vector is generated according to DE position update strategy. In the next step, 

performance of each agent’s position is evaluated by GBS run one by one and 

overwritten on previous position and fitness results. Next, local best and fitness values 

are updated by comparing new fitness results with existing local best fitness values 

and non-dominated solutions are checked with new fitness results to re-generate all 

non-dominated solutions. All updated results are overwritten on their existing values. 

The optimization process goes on until function evolution termination criterion is 

satisfied.  
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CHAPTER 6 

 

 

RESULTS 

 

 

 

In Chapter 5, case studies are prepared to test performance of constructed energy 

optimization models. In this chapter, optimization results in case studies are presented. 

Performance of meta-heuristics are compared. Parametric analysis of optimization 

algorithms and energy model in EnrOpt and sensitivity analysis of Dynamo based BIM 

integrated energy optimization model are presented and discussed. 

 

The performance of constructed energy optimization model frameworks on case 

studies in Section 5.3 and 5.5 is tested with detailed parametric or sensitivity analysis 

to explain research findings efficiently. In this chapter, Section 6.1 presents and 

discusses performance of TOKI buildings applied by EnrOpt energy optimization 

interface. In the following parts, performance of optimization techniques, DE, MCEM 

and PSO is compared with each other with respect to two different optimization 

strategies. In next parts, performance of TOKI buildings in different degree-days 

regions is optimized and compared with each other according to design details. In the 

last part of this section, parametric analysis of energy model and selected optimization 

model is done to show how the change in parameters influences optimization process 

and building performance. In Section 6.2, performance of simple cottage is improved 

by changing geometric and material properties of window systems. In the next part, 

sensitivity analysis in Dynamo based model is presented and discussed. 
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6.1. Performance Optimization of TOKI Buildings Case Study 

 

Performance of TOKI buildings is tested by different objective combinations. Bi-

objective and triple-objective models are graphed in Figure 6.1 and 6.2. Number of 

non-dominated solutions generated in optimization procedures varies depending on 

number of objectives, optimization strategy and main objectives. For instance, in bi-

objective problems figured in 6.2.a and 6.2.b, optimization algorithms try to generate 

non-dominated design solutions to optimize life cycle cost savings and life cycle global 

warming savings. While global warming potential reduction is selected as main 

objective, the optimization procedure generates 89 non-dominated solutions whereas 

this number decreases to 65 when life cycle cost savings is assigned as main objective. 

Moreover, while initial investment is added to objectives, number of non-dominated 

solutions increases up to 248.  

 

 

 

Figure 6.1. EnrOpt 3D Graph Outputs 
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Figure 6.1. EnrOpt 3D Graph Outputs (continued) 
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Figure 6.2. EnrOpt 2D Graph Outputs 
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In extreme case, while all 15 objectives are evaluated in the same optimization 

procedure, 7418 non-dominated solutions are generated in 200000 function 

evaluations. In Pareto optimal solution generation, vast number of alternative solutions 

would be valuable to show alternatives in literature studies; however, in real life, 

excessive number of alternative solutions reduces the efficiency of post-decision 

making process. Therefore, the decision maker needs to generate alternative solution 

strategy or decrease number of objectives. In main objective optimization based 

strategy, optimization algorithm more focuses on optimizing the main objectives while 

generating non-dominated solutions. As understood from projections of Figure 6.2.a 

and 6.2.b, in main objective problems, optimization curve slips on main objective 

optimum points. As seen in Figure 6.2.a, non-dominated solutions collected near 

highest life cycle cost savings values whereas this focus changes into maximum points 

of life cycle GWP savings values. When, these non-dominated solution sets are 

combined in Figure 6.3, it is seen that Pareto optimal solutions in extreme points are 

generated easily in the combined graph; however, in Pareto curves in Figure 6.3, 

performance of optimization algorithm is questionable whenever non-dominated 

solutions moves away from extreme points. Similarly, in triple objective problem as 

figured out in Figure 6.1, 698 non-dominated solution sets are generated in three runs 

by assigning each objective as main objective once. After comparison of all 

alternatives, all dominated solutions are eliminated and 562 non-dominated solutions 

are kept. The results shows that nearly eight percent of solutions focuses on dominant 

objective purpose. In initial investment dominant case, generated solutions tries to 

reduce investment by decreasing thermal performance of the building to minimize 

initial investment or maximize money on hand initially while in life cycle GWP 

savings, thermal performance of the building is maximized to improve building 

performance to reduce energy resource based emission. In life cycle cost savings, 

optimization algorithm makes trade-off between initial investment and building 

thermal performance to find optimum solutions. Therefore, in 3 cases, different 

solution alternatives are generated. Focusing on one single objective and generating 

alternative non-dominated solution increase post-decision making process. 
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Figure 6.3. Combined Pareto Optimal Curve 

 

In main objective based optimization process, performance of optimization algorithm 

is first tested by bi-objective problem drawn in Figure 6.2.a. For each algorithm, 

commonly used optimization parameters in literature are assigned. In Differential 

Evolution algorithm, crossover rate is assigned as 1 to reduce evaluation time. In PSO, 

initial inertia weight and constant parameters are assigned as 0.5 and 2, respectively 

whereas in MCEM, elite sample percentages for mean and standard deviation are 

assigned as 0.05 and 0.5 respectively. In optimization process, each algorithm is tested 

by 200000 function evaluations with different population sizes if it is seen necessary 

by 20 runs. The results shows that DE generates 63 solutions by reaching optimum 

fitness value of main objective with 100% success whereas PSO find optimal solution 

with 50% success and MCEM just finds optimal solutions in 2 runs. Inertia weight 

parameter in PSO is changed to improve algorithm performance. While it is increased 

up to 0.7 the performance results get worse. Therefore, inertia weight is decreased 

down to 0.1. In this case, PSO is able to reach optimal solution with 80% success and 

generates 57 non-dominated solutions. On the other hand, although the performance 

of MCEM is improved by changing elite percentage parameters and population size, 
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it does not give similar performance improvement as seen in PSO. In this case study 

problem, performance and cost parameters of design alternatives are near to each other. 

Therefore, multiple local optimum points are generated in the problems. According to 

observations in optimization process, MCEM gets trapped in one of the local optimum 

design alternative. Moreover, nature of distribution algorithm guides next solution 

with collective performance of the algorithm whereas memory of any population 

member is not considered. On the other hand, in PSO and DE, memory of population 

member guides position update procedure. In a similar way, performance of MCEM 

on problem 8 in Gravitational Search Algorithm (2009) introduction paper shows 

similar behavior.  

 

In Pareto optimal solution finding strategy, contrast to main objectives, non-dominated 

solutions guides position update procedure of optimization algorithm. In main 

objective based optimization strategy, algorithm find more non-dominate solution near 

optimal fitness value of main objective whereas in Pareto optimal solution finding 

strategy, algorithms scan nearly all solution space to improve the performance of 

existing building. The performance of optimization algorithms figured out in Figure 

6.4. shows that MCEM generates more and effective non-dominated solution 

compared to other two algorithms. The reason behind this performance is that new 

position value of next generation is updated according to randomly selected non-

dominated solution and population based deviation. Therefore, it improves local 

search ability of the algorithm around non-dominated solutions. On the other hand, 

PSO and DE needs to follow a path to improve the solution; however, in each iteration, 

the change in best position value which is selected randomly from non-dominated 

solutions disconcert optimization procedure of the algorithms. Therefore, compared to 

MCEM, DE and PSO fail. 

 

Performance of MCEM algorithm is compared with Differential Evolution with main 

objective optimization strategies by 1000000 function evaluations. The results are 

figured out in Figure 6.4 compared with performance of MCEM. The graph readings  
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Figure 6.4. Performance Comparison of Optimization Algorithms with Pareto 

Optimal Solution Finding Strategy 

 

 

 

Figure 6.5. MCEM Comparison with Combined Pareto Solutions 
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explain that Modified Cross Entropy Method generates effective non-dominated 

solution to generate more improved non-dominated solution sets in the case where 

design alternative solution is away from extreme points in MOO solutions. Similarly, 

in Figure 6.3, performance of combined non-dominated solution needs to be improved 

to generate more improved non-dominated solutions. Figure 6.5 underlines that 

MCEM with Pareto optimal solution finding strategy can strengthen the performance 

of combined non-dominated solution. 

 

In the rest of optimization analyses, non-dominate solutions are generated by main 

objective based optimization strategy to more focus around optimum value of main 

objective solution. Therefore, Differential Evolution algorithm is preferred thank to 

its performance on main objective based optimization process. 

 

6.1.1. Optimum Design of TOKI Building in Cities in Different Degree-Day 

Regions 

 

Reference TOKI building is designed according to TS 825 standard limits tabulated in 

Table 3.1. In initial case, Ankara is selected as reference city to optimize building 

performance according to all objectives by taking LCC savings as main objective. Out 

of 7418 non-dominated solutions, performance of main objective based optimum 

solution is tabulated in Table 6.1. Design details of optimum solution is also tabulated 

in Table 6.2. 

 

Performance analysis of optimum design indicates that discounted life cycle cost of 

TOKI building can reduced up to 113225.36 ₺ while nearly 275 CO2 equivalent metric 

ton- life cycle GWP is saved in 30-year life cycle of the building. The equivalent 

amount of GWP savings by carbon sequestration of different tree types are tabulated 

to show prominence improvement in energy based emission reduction in Table 6.3. 

More than half of cost savings are required to be invested initially to improve building 

thermal performance. Moreover, nearly ten year period is required to recover initial 
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investment on building design whereas energy reduction recovers extra emission of 

selected design alternatives in one-year period. Therefore, one-year recovery shows 

that GWP reduction based optimization process is positively and highly correlated 

with energy reduction. Nearly ₺1700 initial investment per dwelling is required to 

provide ₺175 annual improvement in each dwelling by 28.57% improvement in 

building heating.  Moreover, except europhication and ozon depletion , the rest of 

environmental impacts in the building are reduced. 

 

Table 6.1. Performance Details of Main Objective Based Optimum Design in Ankara 

 

Objectives  Performance Results 

Life Cycle Cost Savings (TL) 113225.36 

Life Cycle Global Warming Potential Savings (kg CO2-Equiv.) 274904.73 

Initial Investment (TL) 75066.90 

Energy Payback Period (year) 10.52 

Emission payback period (year) 0.99 

Life Cycle Acidification Air Savings (kg SO2-Equiv.) 403.12 

Life Cycle Acidification Water Savings (kg SO2-Equiv.) 0.03 

Life Cycle Ecotoxicity Savings (CTUeco) 42.44 

Life Cycle Eutrophication Air Savings (kg N-Equiv.) -10.53 

Life Cycle Eutrophication Water Savings (kg N-Equiv.) -1.22 

Life Cycle Human Health Particulate Air Savings (kg PM2.5-Equiv.) 33.99 

Life Cycle Human Toxicity, Cancer Savings (CTUh) 2.83E-05 

Life Cycle Human Toxicity, Non-cancer Savings (CTUh) 3.16E-07 

Life Cycle Ozone Depletion Air Savings (kg CFC 11-Equiv.) -8.80E-04 

Smog Air Savings (kg O3-Equiv.) 6930.09 

Reference Building Energy Consumption (MWh/year) 194.31 

Optimized Energy Consumption (MWh/year) 138.78 

Energy Efficiency (MWh/year) 55.52 

 

In optimized procedure, optimization algorithm considers trade-off between design 

alternatives based on their cost effectiveness and thermal efficiency. Moreover, the 

metric requirements of design variables also direct optimization procedures; because, 
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smaller change in design variable would cause significant change in objective fitness 

values if its requirement is much more than other design alternatives. In this case study, 

wall insulation design and wall type are main drivers of optimization procedure. In 

optimized design in Table 6.2, thermal performance of window glazing systems are 

maximized with their maximum initial investment level that means improvement in 

thermal performance of glazing system recovers its investment efficiently. Similarly, 

in roof system, glass wool that is the cheapest material among alternatives is selected 

with its upper thickness limits. On the other hand, in foundation, the smallest thickness 

value of XPS is selected with possible highest thermal performance. Therefore, in  

 

Table 6.2. Design Details of Main Objective Based Optimum Design in Ankara 

 

Design Variables Selected Design Alternative 

Wall Type I HCB 190 x 85 x 190 

Wall  Insulation I 16 cm-EPS 30 kg/m3 

Wall  Insulation II 11 cm-EPS 30 kg/m3 

Wall  Insulation III 16 cm-EPS 30 kg/m3 

Wall  Insulation IV 16 cm-EPS 30 kg/m3 

Base Insulation I 11 cm-EPS 35 kg/m3 

Base Insulation II 11 cm-EPS 35 kg/m3 

Base Insulation III 11 cm-EPS 35 kg/m3 

Base Insulation IV 3 cm-XPS300 25 kg/m3 

Roof Insulation I 25 cm-Glass wool 18 kg/m3 

Roof Insulation II 25 cm-Glass wool 18 kg/m3 

Window Frames PVC (3 chambers) 

Window Glazing I Triple Synergy with Argon (4-16-4-16-4) 

Window Glazing II Triple Synergy with Argon (4-16-4-16-4) 

Window Glazing III Triple Synergy with Argon (4-16-4-16-4) 

Window Glazing IV Triple Synergy with Argon (4-16-4-16-4) 

Window Glazing V Triple Synergy with Argon (4-16-4-16-4) 

Window Glazing VI Triple Synergy with Argon (4-16-4-16-4) 

Window Glazing V Triple Synergy with Argon (4-16-4-16-4) 

Window Glazing VI Triple Synergy with Argon (4-16-4-16-4) 
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selection procedure, optimization algorithm directs design selection according to 

effectiveness of cost-thermal performance ratio of design alternatives among smallest 

thickness XPS materials. In wall design procedure, cost effectiveness of wall type is 

considered in optimization procedure where thermal performance of the wall is 

improved significantly by wall insulation design. In wall insulation design, EPS 

materials are preferred by optimization algorithm to maximize cost-effectiveness of 

design alternative in material selection and balance between thermal performance 

improvement and cost increment is regarded in thickness determination. Similar 

behavior is also observed in basement ceiling insulation design. The optimization 

algorithm selects design alternatives according to their thermal improvement in the 

building and its cost. Whenever non-dominated solutions in life-cycle cost savings vs 

life cycle global warming optimization problem, it is seen that marginal changes in 

thickness and material selection in basement ceiling insulation determines the order of 

non-dominated solutions. Moreover, smaller changes in wall insulation design follows 

this and one or two cm changes in glass wool thickness in roof insulation design is 

observed among optimal alternatives. On the other hand, changes in window glazing 

types and wall types are rare in cost optimal designs. 

 

After optimizing building energy performance of TOKI building, four new input excel 

files are generated separately for the same buildings in İzmir, İstanbul, Kayseri and 

Erzurum. Thus, TOKI buildings in five different degree-day regions are generated and 

optimized. The performance of the buildings are tested by life cycle cost and GWP 

savings and initial investments. The energy performance of optimized buildings in 

different cities are presented in Table 6.3.  

 

Table 6.3 shows that building energy heating consumption is increasing as climate 

conditions get harsh. Therefore, in each building, different insulation alternatives, 

generally different thickness values of same material, are selected in initial design. 

Moreover, natural gas price values are adjusted according to prices of local energy 

distributors for each design in the optimization procedure. The optimization results 
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indicates that energy prices and climate conditions play important role in the selection 

of non-dominated solutions. The general view of optimum design values for different 

cities tabulated in Table 6.4 demonstrates that thermal performance of optimum design 

variables increases as climate conditions gets harsh whereas performance of objective 

functions depending on trade-off between energy prices and climate conditions. In 

Ankara and Istanbul, natural gas price is higher than the rests. Therefore, this effect is 

reflected on objective fitness value. 

 

Table 6.3. City based Performance Results 

 

Objectives İzmir İstanbul Ankara Kayseri Erzurum 

LCC Savings  (TL) 34497.49 90270.01 113225.36 83220.15 177477.35 

LCC GWP Savings  

(kg CO2-Equiv.) 
108578.98 223772.57 274904.73 227704.01 422342.61 

Initial Investment (TL) 29002.58 59406.34 75066.90 67015.31 87659.26 

Reference Building Energy 

Consumption (MWh/year) 
71.19 136.44 194.31 212.01 382.24 

Optimized Energy 

Consumption (MWh/year) 
50.95 91.75 138.78 166.26 297.49 

Energy Efficiency 

(MWh/year) 
20.24 44.69 55.52 45.75 84.75 

 

6.1.2. Scenario based Optimization Analysis of TOKI Buildings 

 

In this section, performance of TOKI building is optimized with respect to different 

scenarios that are free from energy and optimization model. TOKI building in Ankara 

is selected as reference building to optimize building life cycle energy performance 

with respect to life cycle cost and GWP savings and initial investment. In each 

scenario, objective fitness values and energy consumption details of main objective 

based optimum design are tabulated and non-dominated optimal solutions are graphed  
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Table 6.4. Design Details of Optimum Design in City based Analysis 

 

Design 

Parameters 
İzmir İstanbul Kayseri Erzurum 

Wall Type I HCB  

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

Wall  

Insulation  

I-III-IV 

9 cm-EPS30 13 cm-EPS30 17 cm-EPS30 20 cm-EPS30 

Wall  

Insulation II 
6 cm-EPS30 9 cm-EPS30 12 cm-EPS30 15 cm-EPS30 

Base 

Insulation  

I-II-III 

5 cm-EPS35 8 cm-EPS35 12 cm-EPS35 16 cm-EPS35 

Base 

Insulation IV 
3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 

Roof 

Insulation 
17 cm-GW18 25 cm-GW18 25 cm-GW18 25 cm-GW18 

Window 

Frames 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

Window 

Glazing 

 I-II 

Double S-Argon 

(4-16-4) 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing III 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing IV 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing V 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VI 

Double S-Argon 

(4-16-4) 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VII 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VIII 

Double S-Argon 

(4-16-4) 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 
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if it is seen efficient. Moreover, details of optimum design is tabulated in Appendix 

and compared and contrasted with other designs in following parts. 

 

Analysis period: In this case study, performance of the building is optimized with 

respect to 30-year period; however, the analysis period varies depending on quality of 

insulation works and materials. Therefore, five different periods are analyzed to 

compare change in optimum design details and energy consumption in the building. 

 

Table 6.5. Building Optimized Energy Performance for Different Analysis Period 

 

Objectives 
5-year 

Analysis 

10-year 

Analysis 

20-year 

Analysis 

30-year 

Analysis 

40-year 

Analysis 

LCC Savings  (TL) 7404.54 18665.24 62046.42 113225.36 162346.66 

LCC GWP Savings  

(kg CO2-Equiv.) 
25838.66 74201.60 180912.07 274904.73 342461.33 

Optimized Energy 

Consumption (MWh/year) 
187.79 164.95 147.47 138.78 135.24 

Energy Efficiency 

(MWh/year) 
6.52 29.36 46.84 55.52 59.06 

 

5-year period analysis underlines the role of initial investment in optimum design by 

decreasing insulation thicknesses of original case study whereas thermal performance 

of glazing system is improved and cost-effective wall type is selected. In 20-year 

analysis, thickness values in each wall and base insulation design are increased and, 

thickness values of roof glass wool is maximized whereas thermal performance of 

glazing system is improved. Energy consumption in each optimized building is 

improved as the length of analysis period increases. Figure 6.6 shows that in each time 

step increases, better non-dominated solutions are generated with evolution in the 

shape of non-dominated solution curve. 

 

Energy Resource: In case study, building optimized performance is analyzed with 

respect to natural gas use. In this scenario, different energy resources are used to meet 
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building heating energy requirement. Hard coal, lignite and fuel oil are assigned as 

alternative energy resources into energy optimization model. The price of each energy 

resource, their unit calorie value and efficiency rate are tabulated in Appendix with 

respect to first week of August, 2015. Among energy resources, fuel oil is the one with 

highest price-calorie ratio and natural gas is cleaner resource compared to other 

alternatives. The optimization results tabulated in Table 6.6 explain that performance 

of fuel oil used building can be reduced more than other alternatives by using 

insulation thicknesses to improve building thermal performance. Therefore, energy 

payback period in fuel oil is expected to be less than all other alternatives due to its 

highest price-calorie ratio by decreasing one-third of energy consumption in initial 

design. This result also underlines the inefficiency of fuel oil compared to other 

alternatives. On the other hand, hard coal or lignite improves building performance 

less than natural gas; however, improvement in emissions in hard coal is much more 

than the one in natural gas. The results show that hard coal is cheaper than natural gas 

whereas it releases more greenhouse gases compared to natural gas. 

 

  

Figure 6.6. Non-dominated Solutions in Different Analysis Period 
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Table 6.6. Building Optimized Energy Performance for Different Energy Resources 

 

Objectives Natural Gas Hard Coal Lignite Fuel Oil 

LCC Savings  (TL) 113225.36 56424.54 68869.13 249272.32 

LCC GWP Savings  

(kg CO2-Equiv.) 
274904.73 477215.39 247529.53 446388.68 

Optimized Energy Consumption 

(MWh/year) 
138.78 148.47 144.92 131.81 

Energy Efficiency  

(MWh/year) 
55.52 45.84 49.38 62.48 

 

Material Selection and Limitation: This scenario is generated to see how change in 

material selection changes building performance. Wall insulation design is taken into 

consideration and performance of each alternative insulation material, EPS, XPS and 

rock wool is tested. The results are tabulated in Table 6.7 and graphed in Figure 6.7. 

The results indicates that rock wool is cost-inefficient material compared to XPS and 

EPS although its emission performance is better than organic foams. Similarly, XPS 

costs higher than EPS although energy efficiency level in each design scenarios are 

nearly same. Therefore, EPS should be preferred in wall insulation design if different 

insulation materials are not required for specific purpose(s) in wall insulation 

applications. The graph results confirm that EPS is selected in most of the non-

dominated solutions. 

 

Table 6.7. Building Optimized Energy Performance for Different Design Materials 

 

Objectives EPS Rockwool  XPS 

LCC Savings  (TL) 113225.36 57411.62 99727.38 

LCC GWP Savings 

(kg CO2-Equiv.) 
274904.73 227919.23 278196.85 

Optimized Energy Consumption  

(MWh/year) 
138.78 141.21 140.19 

Energy Efficiency (MWh/year) 55.52 53.10 54.11 
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Figure 6.7. Non-dominated Solutions for Different Design Materials 

 

Insulation Thickness Limitation: In this case study, some of insulation thickness data 

are generated by extrapolation to evaluate more design alternatives. In this scenario, 

insulation thickness values in wall, base /floor and roof is limited as 10 cm, 10 cm and 

15 cm, respectively. The optimization performance of the building is calculated 

according to this limitation. The results show that in optimal design, all design 

variables higher than assigned limits decreased to maximum design limits whereas in 

wall design , EPS with better thermal performance and aerated autoclaved concrete 

that belongs to better thermal performance compared to brick wall are selected by 

optimization algorithm. Table 6.8 shows that the limitation in insulation thickness 

decrease the efficiency level of the building in 15 MWh annually. Moreover, 

limitations decrease number of non-dominated solution alternatives for decision 

makers (Figure 6.8). 
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Table 6.8. Building Optimized Energy Performance for Insulation Thickness 

Limitation Case 

 

Objectives Unconstrained Constrained 

LCC Savings  (TL) 113225.36 93866.16 

LCC GWP Savings (kg CO2-Equiv.) 274904.73 209640.37 

Optimized Energy Consumption (MWh/year) 138.78 153.60 

Energy Efficiency (MWh/year) 55.52 40.71 

 

 

 

 Figure 6.8. Non-dominated Solutions for Insulation Thickness Limitation Case 

 

6.1.3. Parametric Analysis of Energy Model  

 

In this section, the effects of modifications in TS 825 are observed in optimization 

process by comparing performance of modified parts of energy model with existing 

TS 825 standard based energy model. Climate effect, solar radiation on window system 

and alternative detailed shading data on window glazing system and operational 
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heating schedule parameters are analyzed to interpret how the change in energy model 

input changes energy optimization model output. 

 

Climate Temperature Data: In TS 825 standard, each degree-day region use single 

monthly average temperature data to calculate annual heating energy requirement. On 

the other hand, in reality, climate conditions of cities in the same degree-day regions 

shows variety. Therefore, two different types of city specific temperature data are used 

in optimization analyses. TOKI building in 3rd degree-day region is assigned as 

reference and four different cities such as such as Ankara, Artvin, Isparta and Malatya 

from different geographic regions but in same degree-day region are selected. 

Performance of TOKI buildings are optimized according to TS 825 temperature data, 

long-term average temperature data, and recent heating degree-day temperature data. 

The results of main objective based optimization solutions are tabulated in Table 6.9 

and 6.10 and graphed in Figure 6.9 and 6.10. Tabulated results claims that in both 

comparison, TS 825 standard calculates higher energy requirement than the one 

calculated for each city. Moreover, less amount of energy is required in long-term 

average data compared to recent heating degree-day data. The main reason behind this 

result is that in long-term average data, monthly average value of temperature data is 

calculated whereas higher temperature value than 15’C eliminates lower temperature 

ones. Therefore, less heating degree-day values are calculated in design stage. In 

reference building heating energy consumption, energy use is reduced in a range from 

12% to 23% by changing heating degree-day data. In optimization process, therefore, 

change in degree-day calculations directly change optimization results. The optimum 

design results indicate that more insulation design is required to improve building 

performance in TS 825 standard whereas optimum design thickness values decreases 

as energy consumption of reference buildings in different cities decreases in both data 

type. Compared to long-term temperature data type, recent heating degree-day data 

gives more incentive to insulation to increase life cycle cost. 
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Table 6.9. Building Optimized Energy Performance according to Long-term Average 

Temperature Data 

 

Objectives Ankara Artvin Isparta Malatya 
TS 825 

3rd DDR 

LCC Savings  

 (TL) 
109063.3354 84925.52 100375.32 94710.55 139911.82 

LCC GWP Savings  

(kg CO2-Equiv.) 
267850.54 222339.74 252883.36 238181.88 324175.54 

Reference Building  

Energy Consumption 

(MWh/year) 

189.18 160.50 178.41 175.49 222.53 

Optimized Energy 

Consumption (MWh/year) 
135.07 115.79 127.29 127.69 156.83 

Energy Efficiency 

(MWh/year) 
54.11 44.71 51.11 47.80 65.70 

 

 

Table 6.10. Building Optimized Energy Performance according to Recent Heating 

Degree-day Data 

 

Objectives Ankara Artvin Isparta Malatya 
TS 825 

3rd DDR 

LCC Savings  

 (TL) 
113225.36 102353.14 113654.32 101549.95 139911.82 

LCC GWP Savings  

(kg CO2-Equiv.) 
274904.73 238154.01 275563.42 256313.36 324175.54 

Reference Building  

Energy Consumption 

(MWh/year) 

194.31 171.76 193.56 183.59 222.53 

Optimized Energy 

Consumption (MWh/year) 
138.78 124.02 137.91 131.69 156.83 

Energy Efficiency 

(MWh/year) 
55.52 47.68 55.65 51.90 65.70 
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Figure 6.9. Non-dominated Solutions in Long-term Average Temperature Database 

 

 

 Figure 6.10. Non-dominated Solutions in Recent Heating Degree-day Database 
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Solar Radiation Data: In TS 825 standard, single solar radiation data are used in solar 

gain calculations for all country. In this case, a solar radiation normalization coefficient 

is proposed by dividing city based annual cumulative solar radiation value per meter 

square to same value from country average. Thus, the solar radiation difference 

between different latitudes are clearly explained. The effect of solar radiation in 

optimization results presented in Table 6.11 shows that solar radiation coefficient 

changes performance of TOKI building in Ankara slightly. 

 

Glazing Property Data: In TS 825 standard, shading factors of window glazing system 

are categorized into groups. On the other hand, in Isıcam database, shading factors are 

differentiated in detail according to window glazing properties. Thus, more detailed 

data give more accurate results. Optimization results support this idea that 

differentiated data changes life cycle performance of TOKI building in an observable 

value. Moreover, design details of main objective based optimum results indicate that 

alteration of the glazing database changes glazing design details in optimum design of 

the buildings. In this case, the optimization algorithm offers triple comfort glazing 

system with argon gas for the gaps instead of triple synergy glazing with argon. 

 

Table 6.11. Building Performance according to Solar Radiation and Glazing Property 

Database 

 

Objectives 
TS 825 

 SR & DTGD 

Isıcam   

SR & DTGD 

 TS 825 SR & 

Isıcam DTGD 

Isıcam SR & 

TS 825 DTGD 

LCC Savings  (TL) 119598.05 113225.36 112723.32 119908.29 

LCC GWP Savings  

(kg CO2-Equiv.) 
283847.70 274904.73 274133.82 284324.09 

Reference Building Energy 

Consumption (MWh/year) 
195.16 194.31 193.76 195.66 

Optimized Energy 

Consumption (MWh/year) 
137.92 138.78 138.38 138.33 

Energy Efficiency 

(MWh/year) 
57.24 55.52 55.38 57.33 
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Figure 6.11. Non-dominated Solutions in Solar Radiation and Glazing Property 

Database 

 

Operational Schedule: TS 825 is constructed based on constant continuous heating 

during all month; however, occupancy conditions determine heating schedule. In case, 

3 different heating schedules such 7/24 facility, 7/16 facility and 5/12 facility (that 

means working five days and twelve hours a day) are constructed to compare effects 

of heating schedule on energy consumption of the reference building and its 

optimization process. The optimization results prove that decrease in occupancy in a 

building reduces annual energy consumption in the building (Table 6.12). Moreover, 

insulation thickness values in basement ceiling and walls increases while more energy 

is consumed in the building. Furthermore, Figure 6.12 shows that building shows 

similar behavior in non-dominated solution generation whereas only values change.  
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Table 6.12. Building Optimized Energy Performance according to Heating Schedule 

 

Objectives 7/24 Facility 7/16 Facility  5/12 Facility  

LCC Cost Savings (TL) 113225.36 96940.06 73266.67 

LCC GWP Savings 

 (kg CO2-Equiv.) 
274904.73 241605.39 193200.04 

Reference Building 

Energy Consumption (MWh) 
194.31 175.68 147.44 

Optimized Energy Consumption 

 (MWh) 
138.78 127.22 108.98 

Energy Efficiency (MWh) 55.52 48.46 38.45 

 

 

Figure 6.12. Non-dominated Solutions in Different Heating Schedule 

 

6.1.4. Parametric Analysis of Differential Evolution Optimization Model 

 

In this section, performance of Differential Evolution in TOKI building energy 

optimization is tried to be improved by changing DE specific position update 

parameters by parametric analyses on control parameter F and crossover rate, Cr. 
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In parametric analysis, Differential Evolution runs by 200 agents in 1000 iterations to 

optimize building performance. Moreover, a control run is used by 5000 iterations to 

check Pareto optimal solution found in 200000 function evaluation runs. Firstly, 

control parameter F is set 1 and effect of changes in crossover rate on optimization 

performance is tested by 0.1 intervals. The optimization result in Figure 6.13 explains 

that no trends in results is observed in non-dominated solution generation, in Pareto 

optimal solutions where all non-dominated solutions combined and Pareto solutions 

are generated among them and ranked top 15 optimal solution with respect to main 

objective performance. On the other hand, among all results, DE with Cr=0.7 performs 

best with 77 non-dominated solutions and 34 Pareto optimal solutions. Moreover, the 

algorithm is able to catch all top 15 non-dominated solutions. Therefore, in the 

following analysis, crossover rate Cr is assigned as 0.7. 

 

 

 

Figure 6.13.Parametric Analysis of Crossover Rate in DE 

 

In the second part of the study, performance of Differential Evolution is tested by 

changing control parameters F using alternative F values from 0.5 to 2.0 with 0.25 

intervals. The optimization results show that F=1.0 and F=1.25 are efficient to generate 
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non-dominated and Pareto optimal solutions whereas F=0.75 works best while find top 

20 Pareto optimal solutions with 95% success in 200000 function evaluation. 

 

Parametric analysis results indicates that decision maker should use   Cr=0.75 and F 

should be set in a range of 0.75 to 1.25 for this case. Change in case study parameters 

may change parametric performance of the study. Therefore, in initial case of EnrOpt 

interface, crossover rate and control parameter are assigned as 0.7 and 1.0, 

respectively. 

 

 

 

Figure 6.14. Parametric Analysis of Control Parameter F in DE 

 

6.2. Performance Optimization of Simple Cottage Case Study 

 

In this section, energy performance results of simple cottage explained in Section 5.5 

are presented and details of non-dominated optimum designs are compared and 

discussed. In the next step, sensitivity of change in parameters of cost optimal design 

is analysed to present how parameter changes energy performance of the cottage. 
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At the end of multi-objective optimization procedure, five non-dominated design 

solutions are generated by MODE. In Figure 6.15, annual energy cost and carbon 

footprints are graphed with Pareto optimal solutions. In annual energy consumption 

based analysis, in general, single optimum design is expected if single energy resource 

is used in analysis; however, in this case, default energy costs are used that electricity 

and fuel cost per kWh are $ 0.14 and $ 0.049. On the other hand, renewables generates 

61 % of total electricity consumption. Therefore, electricity is much cleaner than fuel 

resource due to less carbon footprints. Therefore, in design stage, a trade-off between 

electricity and fuel consumption is expected to find non-dominated optimal design 

alternatives. Therefore, five non-dominated results are obtained thanks to this trade-

offs. 

 

 

 

Figure 6.15. Non-dominated Solutions in Cottage 

 

The details of optimum designs show that optimization algorithm tries to minimize 

heat loss in window glazing system by using different combinations of triple low-e 

glazing. Similarly, window area of side windows is larger than the one in front 

windows although side windows are located in both north and south direction. 
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Therefore, the results indicates that solar gains in south window is much larger than 

the expected heat loss in north window. Therefore, the size of window is increased in 

north-south directions. The effect of direction in window system is proved by 

exchanging geometric property of front and side window by 90 degree counter 

clockwise orientation where the larger window dimensions are used in south direction 

and no window exists in north direction. On the other hand, other symmetric window 

alternative is used in west and east direction. The results prove the idea that existing 

optimum performance of Alternative 2 in Table 6.12 is improved from $ 1369.77 to   

$ 1337.44 whereas annual carbon footprint decreases from 2.08 ton CO2 equivalent to 

1.95 ton. 

 

In energy analysis, GBS allows parametric analysis by changing design details in base 

model. In Dynamo based  energy analysis, multiple parametric analysis results can be 

obtained by enabling parametric runs in energy analysis process by using  ‘Run Energy 

Analysis’ node in  model figured  in Figure 5.21. After simulating base design energy 

performance, the model in Dynamo can call parametric analysis results. In this case 

study, sensitivity analysis of same design parameters that are used in the first case 

study to show importance of design details in energy analysis. The sensitivity results 

of wall and roof insulation, operating schedule and window glazing system are 

presented in Table 6.14. The R value in insulation parts represents thermal resistance 

of design parameters according to US standard. The results explain that insulation 

changes building performance significantly especially if the building component is not 

insulated with any insulation materials. The significance of results can be understood 

better from minimum 30% change between insulated and uninsulated wall and roof in 

Table 6.14. On the other hand, glazing effect is limited compared to insulation works. 

The main reason behind this result is the significant effect of insulation on building 

performance and window-wall ratio in the cottage. As window-wall ratio increases in 

the building, building performance is more affected by change in the glazing system. 

Moreover, change in operating schedule affects building performance significantly 

due to occupancy condition based energy consumption. These results support addition  
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of operating schedule in modified TS 825 based energy model to increase energy 

estimation accuracy. As a result, Dynamo based BIM integrated optimization model 

provides parametric relations in energy estimation with more accurate results and 

analyzes sensitivity in design parameters by parametric analysis to understand the 

change in energy performance of the building from a wider perspective. This enables 

decision maker to direct optimization process with respect parametric analysis results 

to reach optimum results in a fast and efficient way. 

 

Table 6.14. Sensitivity Analysis on Optimized Cottage Performance 

 

Wall Insulation 
Annual Energy 

Cost ($/year) 

Annual Carbon 

Footprints 

(ton/year) 

U-value  

if exists 

Uninsulated Wood Frame Wall  1680.75 3.03 1.56 

R13 Metal Frame Wall 1399.81 2.17 0.88 

R13 Wood Frame Wall, Wood Shingle  1251.29 1.70 0.46 

R13 + R10 Metal Frame Wall  1170.09 1.46 0.32 

8 inch Concrete Wall 1369.77 2.09 0.84 

Roof Insulation 

R0 2120.10 4.29 2.52 

R10 1369.77 2.09 0.45 

R19 1325.20 1.95 0.33 

R38 1249.10 1.72 0.13 

R60 1231.37 1.67 0.08 

Operating Schedule 

7/24 Facility 1839.31 3.02  

7/12 Facility 1664.87 2.61  

6/12 Facility 1612.50 2.52  

5/12 Facility 1472.23 2.30  

Window Glazing 

Single Clear(6 mm) 1434.69 2.28 6.17 

Double Clear 1398.29 2.17 2.74 

Double Low-e 1383.21 2.12 1.99 

Triple Low-e 1377.53 2.13 1.55 



 

 

153 

 

6.3. Comparison of EnrOpt and Dynamo-BIM Model 

 

The developed two energy optimization frameworks, EnrOpt and Dynamo based BIM 

integrated energy optimization model, are compared according to their energy 

estimation methodology and their performance in the optimization process in the 

comparison table in Table 6.15. 

 

Table 6.15. Comparison of EnrOpt and Dynamo-BIM Model 

 

 

Model Details 

 

EnrOpt 

 

Dynamo-BIM Model 

Energy model 
Modified TS 825 standard 

(steady-state) 

Green Building Studio 

(simulation) 

Optimization 

algorithm(s) 

Differential Evolution 

Particle Swarm Optimizer 

Modified Cross Entropy Method 

 

Differential Evolution 

Run time 

Depending on number of non-

dominated solutions in each 

iteration and number of function 

evaluation 

44.8 seconds for 65 non-

dominated solutions in 200.000 

function evaluation 

Depending on complexity of 

building envelope 

(10-20 seconds for single 

run) 

Life cycle analysis Applicable Applicable 

Possible design 

variables 

Insulation  

Window frames/glazing 

Wall type 

Insulation 

Window glazing 

Renewables 

Orientation 

All building component 

details 

Design alternative 

updates 

Updated in Excel and simple 

changes in coding if necessary 

Importing into BIM model 

or 

Creating design alternative 

in BIM tool 
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Table 6.15. Comparison of EnrOpt and Dynamo-BIM Model (continued) 

 

 

Model Details 
 

 

EnrOpt 
 

 

Dynamo-BIM Model 
 

Response to design 

change 

Re-designing reference building 

in Excel 

 

Automatically updated BIM 

model if updates are not 

relevant with design 

variables 

 

Re-design objective 

function if updates are 

relevant with energy model 

 

Requirements for tool 

use 

Microsoft Excel 

Matlab 

Quantity takeoff 

Material information/database 

BIM tools 

Building model 

Material 

information/database 

Simple Python coding 

Main Advantage Wieldy tool 
Parametric relations for 

more accurate estimation 
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CHAPTER 7 

 

 

CONCLUSION 

 

 

 

Energy consumption in buildings comprises a significant amount of total final energy 

consumption and carbon footprints. Therefore, efficient energy strategies are required 

to be developed to increase building energy efficiency. In order to develop an efficient 

strategy to improve building energy performance, previous studies have been focused 

on the reasons of inefficiency in building energy use. The reasons behind building 

energy inefficiency are lack of proper scope definition that causes frequent changes in 

design, short-term thinking by disregarding life cycle effect of design and inefficiency 

of legal regulations and incentive strategies. Moreover, in traditional construction, 

performance of designed building is analyzed just after necessary architectural and 

construction documents preparation to meet legal requirements. Therefore, it is 

resulted in lost opportunity to provide energy efficiency in the building early design 

stage. In the next steps of building life cycle, decision makers encounter with more 

constraint handling to improve building efficiency. Improperness of traditional CAD 

based solutions and lack of integration between project stakeholders are one of the 

main barriers to develop energy efficient solutions. Moreover wieldy energy analysis 

tools are required to evaluate different design alternatives in early design stage in a 

fast and efficient way. 

 

In building energy optimization process, energy model determines the accuracy of 

energy optimization model. In energy estimation, energy analyst selects energy 

prediction methodology based on cost-effectiveness, time efficiency and estimation 

accuracy of methodology. In early design stage, engineering calculations are preferred 
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in energy analysis due to scarcity of measured data. Engineering calculations are based 

on steady state energy estimation and dynamic energy simulation models. Steady state 

energy estimation techniques simplify building envelope and use average climate and 

all other necessary data to provide time efficiency in energy analysis. On the other 

hand, dynamic simulation models simulate spontaneous change in building envelope 

to predict building energy performance more accurately in much more time. Moreover, 

BIM based energy analysis provides geometry and material information export into 

energy model and reflects parametric relations of BIM model into energy model to get 

more accurate energy results in optimization process. Therefore, regarding whole 

process, in optimization process, accuracy of energy model and run time of 

optimization model considers a trade-off to develop efficient solution alternatives. 

 

In this study, a flexible excel integrated Matlab based GUI life cycle energy 

optimization interface based on TS 825 standard and meta-heuristics is developed to 

provide easy use, fast and accurate non-dominated design solution sets for decision 

maker in post-decision making process. Performance of energy model is improved by 

using more accurate and detailed input data. Furthermore, in the second energy 

optimization model, Dynamo based BIM integrated energy optimization model is 

proposed to provide effective model based solution that communicates with all project 

stakeholders to deal with improper scope definitions or conflicts between stakeholders 

in early design stage. In the following sections, major findings of this study and 

limitations in the study are explained and recommendation on the study and possible 

future studies are discussed. 

 

7.1. Major Findings 

 

Outcomes of this study show that energy optimization model improves building energy 

consumption and optimize building life cycle performance by generating non-

dominated solution alternatives for decision maker to consider effective design in post 

decision making process by changing design alternatives. The results demonstrate that 
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both energy estimation methodology and optimization strategy determines 

optimization results. Therefore, the major inferences obtained from this study 

according to both energy model and optimization model can be briefly explained as 

follows: 

 

Energy model based findings: 

 

 In building energy prediction, climate data dominates the accuracy level of 

estimated energy performance. TS 825 standard presents higher heating 

degree- day data for five different degree –day regions compared to both long-

term average temperature data and recent heating degree-day data. Moreover, 

temperature data categorization for degree-day regions causes deviations up to 

25% in energy estimations. This results in 12 % to 23% deviation in life cycle 

cost optimization process for the case study in this thesis. Moreover, significant 

change in climate data influences performance of non-dominated solutions and 

their design details. 

 

 In optimization process, cost-effectiveness and thermal efficiency of design 

alternatives consider a trade-off in design selection. In addition, area values of 

building components as coefficients of design variables increases the 

importance of trade-off in optimization process. 

 

 Heating schedule added to modified energy model causes significant change in 

building energy performance. 

 

 Elaboration in glazing properties and city specific solar radiation coefficient 

changes building life cycle performance slightly. 
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Optimization model based findings: 

 

  Optimization strategy determines direction of non-dominated solution 

generations. Main objective based optimization strategy focuses on alternative  

non-dominated solutions around main objective based optimum design 

whereas Pareto optimal solution finding strategy scan all solution spaces, 

especially   around all non-dominated solutions. 

 

 Performance of optimization algorithms on the case study shows that 

Differential Evolution and Particle Swarm Optimizer works efficiently in main 

objective based optimization strategy whereas Modified Cross Entropy works 

properly in Pareto optimal solution finding strategy. 

 

 Parametric analysis of Differential Evolution on the case study demonstrates 

that optimization parameters of DE, crossover rate and control parameter F, 

should be set 0.7 and 1.0. 

 

Energy optimization model based findings: 

 

 EnrOpt provides 113225.36 ₺ cost savings and nearly 275 metric ton CO2 GWP 

savings in TOKI building case in Ankara for 30-year analysis. This provides 

175 ₺ annual improvement for each dwelling by 28.57% improvement in 

building heating whereas 1700 ₺ initial investment is required for each 

dwelling in the case study. 

 

 Optimum design recovers its initial investment in nearly 10.5 years whereas 

this value is just 0.99 year for emission paybacks in the case study. 

 

 Most of life cycle environmental impacts in the building is reduced except 

ozone depletion and eutrophication in the case study. 
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 Climate conditions and energy prices are key determinants in energy use 

reduction and life cycle cost optimization for five different cities. 

 

 Optimum insulation design and design generation strategy of the algorithm 

changes depending on length of analysis period. In short-term analysis such as 

5-year analysis, algorithm tries to minimize initial investment cost regarding 

payback period of investment whereas in long-term analysis, algorithm 

considers trade-off between initial investment and thermal performance of 

whole building design. 

 

 Different energy resource use changes improvement rate in the building 

depending on energy resource cost and emission performance. 

 

 Limitation in material selection and insulation thickness changes building 

performance and design parameters. In this case study, the algorithm tries to 

maximize its performance by using upper insulation thickness limits for 

optimum design. Moreover, in wall design, the limitation changes selected 

material to reduce heat loss in the wall. 

 

 In this case study, observed optimization behavior shows that the algorithm, 

first tries to maximize thermal performance of window glazing systems and 

roof insulation. On the other hand, the thickness of insulation in foundation is 

minimized due to less heat loss in the foundation. The non-dominated design 

solutions indicates that basement ceiling insulation values are most sensitive to 

generate alternative non-dominated design solutions. 

 

 Dynamo interacts with BIM model to change geometric and material properties 

in the model. This change can be followed by all stakeholders to make analysis 

in terms of different perspective of building. This approach allows analyzing 

more design alternatives than currently done in practice. 
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 BIM integrated energy analysis provides consideration of parametric relations 

in energy estimation which gives more realistic results. 

 

 The case study in BIM integrated model shows that window fenestration, 

operating schedule and insulation details play a key role in building energy 

performance. 

 

7.2. Limitations of the Study 

 

In this study, energy optimization model is developed based on some assumptions. 

Therefore, these assumptions draw the limits of the study. The limitations of this study 

can be summarized as follows: 

 

 Cost and environmental impact data of design alternatives are obtained from 

databases. Therefore, change in design inputs is expected to change whole 

optimization process. 

 

 Energy prices are entered into model in terms of Turkish Lira to provide 

consistency in cost units with design alternatives; however, Turkey imports 

most of consumed energy in terms of US Dollars. Moreover, change in energy 

inflation is also determined in terms of Turkish Lira. This limits accuracy of 

life cycle cost analysis. 

 

 Maintenance cost of optimum design in the following years are excluded in 

this study. Moreover, change in performance of design alternatives in the 

upcoming years due to tear and wear in design alternatives are not considered. 

Lastly, logistic cost of the design alternatives are not taken into consideration.  
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 Manual update in BIM integrated energy optimization model decelerates 

optimization process and limits whole life cycle analysis in the case study. This 

can be eliminated if the automated run in energy analysis works properly. 

 

7.3. Recommendations and Future Work 

 

This study focuses on generating non-dominated design solutions to improve building 

life cycle performance according to multiple objectives and analyzes how change in 

energy optimization model changes building energy performance. The results of this 

study indicates that heat insulation based strategy provides passive and effective 

solution in buildings to reduce amount of energy use. Moreover, the results suggest 

that more insulation thicknesses with cost effective and thermal efficient materials 

should be used compared to insulation practices in construction industry. Furthermore, 

heating energy requirement calculation methodology in TS 825 standard should be 

elaborated by using more specific climate data and replacing shading factor table in 

TS 825 standard with a detailed database such as Isıcam glazing database. Beside these 

modifications, heating operating schedule should be included in calculations to reduce 

the amount of unnecessary energy estimation due to continuous heating during all 

month.  

 

Visual programming based BIM integrated studies are new and promising studies to 

evaluate building performance. Therefore, in near future, it is planned to focus on 

elimination of the internal error in some of the multiple runs of the same input file to 

automate the building energy optimization process without any extra manual update 

framework in the energy optimization model. Moreover, Dynamo based BIM 

integrated studies can be used to optimize building performance by interdisciplinary 

approach. The integrated model can interact with different tools to maximize whole 

building efficiency. In future studies, Dynamo based BIM integrated model can be 

constructed as a brain center of detailed framework such that the model can interact 

with Autodesk Vasari for lightening analysis and Revit and GBS with energy analysis 
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whereas structural performance of the model is tested by SAP 2000 model that is 

provided by DynamoSAP. BIM integrated scheduling can be also added into integrated 

framework. In the upcoming studies, optimization model in visual programming can 

interact with all these tools to maximize whole building life cycle efficiency in a 

correct order. Moreover, in the upcoming years, cloud based EnergyPlus simulation 

will be available for optimization studies to perform fast and more accurate energy 

analysis in BIM integrated optimization models instead of Green Building Studio. 

 

Elaboration in design parameters and calculations in the energy model in EnrOpt 

interface improves the estimation accuracy of the energy model. However, the 

accuracy level of the model should be tested by various building types to validate the 

improvement and its level in energy estimation. Finally, in future studies, input design 

database of EnrOpt interface can be enriched to get more accurate optimization results. 

Moreover, performance of meta-heuristics can be improved by changing optimization 

strategy in optimization models to generate more effective non-dominated solution 

sets. 
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APPENDIX A 

 

  

 

A. TOKI BUILDING CASE STUDY 

 

Table A.1. Energy Resource Details 

 

 

Energy Resource 

 

Unit Price 

Unit Lower 

Calorific Value 

(kcal/unit) 

 

Energy Efficiency 

(%) 

Fuel Oil (kg) 2.130 ₺ 9875 80 

Hard Coal (kg) 0.472 ₺ 6650 65 

Lignite(kg) 0.374 ₺ 4732 65 

Natural Gas in İzmir  (m3) 1.110 ₺ 8250 90 

Natural Gas in İstanbul (m3) 1.185 ₺ 8250 90 

Natural Gas in Ankara (m3) 1.200 ₺ 8250 90 

Natural Gas in Kayseri (m3) 1.162 ₺ 8250 90 

Natural Gas in Erzurum (m3) 1.107 ₺ 8250 90 
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Table A.2. Design Details of Reference Buildings for Different Cities 

 

 

 

 

 

 

 

Design 

Parameters 
İzmir İstanbul Kayseri Erzurum 

Wall Type I HCB  

190 x 190 x 135 

HCB  

190 x 190 x 135 

HCB  

190 x 190 x 135 

HCB  

190 x 190 x 135 

Wall   

Insulation I 
3 cm-EPS30 3 cm-EPS30 7 cm-EPS30 7 cm-EPS30 

Wall  

Insulation II 
4 cm-EPS30 5 cm-EPS30 8 cm-EPS30 8 cm-EPS30 

Wall   

Insulation III 
4 cm-EPS30 4 cm-EPS30 7 cm-EPS30 8 cm-EPS30 

Wall  

Insulation IV 
4 cm-EPS30 5 cm-EPS30 8 cm-EPS30 8 cm-EPS35 

Base  

Insulation I 
3 cm-EPS30 3 cm-EPS30 5 cm-EPS30 5 cm-EPS35 

Base  

Insulation II 
3 cm-EPS30 3 cm-EPS30 5 cm-EPS30 5 cm-EPS35 

Base  

Insulation III 
4 cm-EPS30 5 cm-EPS30 7 cm-EPS35 8 cm-EPS30 

Base  

Insulation IV 
4 cm-XPS350-30 5 cm-XPS350-30 7 cm-XPS300-30 8 cm-XPS350-30 

Roof Insulation I 8 cm-GW18 10 cm-GW18 17 cm-GW18 18 cm-GW18 

Roof Insulation I 9 cm-GW18 10 cm-GW18 17 cm-GW18 18 cm-GW18 

Window  

Frames 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

All Window 

Glazing Systems 

 

Double Sinergy 

Air (4-16-4) 

Double Sinergy 

Air (4-16-4) 

Double Sinergy 

Air (4-16-4) 

Double Sinergy 

Air (4-16-4) 
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APPENDIX B 

 

B. OPTIMUM DESIGN DETAILS 

 

Table B.1. Design Details of Optimum Design in Different Analysis Periods  

 

Design  

Parameters 
5-year Analysis 10-year Analysis 20-year Analysis 40-year Analysis 

Wall Type I HCB  

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

Wall   

Insulation 

 I-III-IV 

7 cm-EPS30 10 cm-EPS30 13 cm-EPS30 18 cm-EPS30 

Wall  

 Insulation II 
4cm-EPS30 6 cm-EPS30 9 cm-EPS30 12 cm-EPS35 

Base 

Insulation 

 I-II-III 

3 cm-EPS35 5 cm-EPS35 8 cm-EPS35 12 cm-EPS35 

Base  

Insulation IV 
3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 

Roof 

Insulation  
13 cm-GW18 19 cm-GW18 25 cm-GW18 25 cm-GW18 

Window 

 Frames 

PVC 

 (3 chambers) 

PVC  

(3 chambers) 

PVC 

 (3 chambers) 

PVC  

(3 chambers) 

Window  

Glazing 

 I-II-III 

IV-V-VII 

Double S-Argon 

(4-16-4) 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window  

Glazing  

VI-VIII 

Double S-Argon 

(4-16-4) 

Double S-Argon 

(4-16-4) 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 
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Table B.2. Design Details of Optimum Design for Different Energy Resources 

 

 

Design 

Parameters 
Natural Gas Hard Coal  Lignite Fuel Oil 

Wall Type I HCB  

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

Wall   

Insulation  

I-III-IV 

16 cm-EPS30 13 cm-EPS30 14 cm-EPS30 20 cm-EPS30 

Wall  

 Insulation II 
11 cm-EPS30 9 cm-EPS30 9 cm-EPS30 14 cm-EPS30 

Base  

Insulation  

I-II-III 

11 cm-EPS35 8 cm-EPS35 9 cm-EPS35 15 cm-EPS35 

Base  

Insulation IV 
3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 

Roof Insulation 25 cm-GW18 25 cm-GW18 25 cm-GW18 25 cm-GW18 

Window  

Frames 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

Window 

Glazing 

 I-II 

Low-e S-Argon 

(4-16-4-16-4) 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing III 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing IV 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing V 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VI 

Low-e S-Argon 

(4-16-4-16-4) 

Double S-Argon 

(4-16-4) 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VII 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VIII 

Low-e S-Argon 

(4-16-4-16-4) 

Double S-Argon 

(4-16-4) 

Double S-Argon 

(4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 
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Table B.3. Design Details of Optimum Design for Different Insulation Materials in 

Walls 

 

 

Design Parameters EPS Rockwool  XPS 

Wall Type I HCB  

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

Wall   

Insulation  

I-III-IV 

16 cm-EPS30 18 cm-RW120 

 

14 cm-XPS300-30 

Wall  

 Insulation II 
11 cm-EPS30 

12 cm-RW120 9 cm-XPS300-30 

Base  

Insulation  

I-II-III 

11 cm-EPS35 11 cm-EPS35 11 cm-EPS35 

Base  

Insulation IV 
3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 

Roof Insulation 25 cm-GW18 25 cm-GW18 25 cm-GW18 

Window  

Frames 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

Window Glazing 

 I-II 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing III Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing IV Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing V Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing VI Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing VII Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing VIII Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 
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Table B.4. Design Details of Optimum Design in Thickness Limitation 

 

Design Parameters Unconstrained Constrained 

Wall Type I HCB  190 x 85 x 190 7.5 cm-AAC400 

Wall  Insulation I 16 cm-EPS30 10 cm-EPS35 

Wall  Insulation II 11 cm-EPS30 10 cm-EPS30 

Wall  Insulation III 16 cm-EPS30 10 cm-EPS35 

Wall  Insulation IV 16 cm-EPS30 10 cm-EPS35 

Base Insulation I 11 cm-EPS35 10 cm-EPS35 

Base Insulation II 11 cm-EPS35 10 cm-EPS35 

Base Insulation III 11 cm-EPS 35 10 cm-EPS35 

Base Insulation IV 3 cm-XPS300-25 3 cm-XPS300-25 

Roof Insulation I 25 cm-GW18 15 cm-GW18 

Roof Insulation II 25 cm-GW18 15 cm-GW18 

Window Frames PVC (3 chambers) PVC  (3 chambers) 

Window Glazing I Low-e S-Argon (4-16-4-16-4) Low-e S-Argon (4-16-4-16-4) 

Window Glazing II Low-e S-Argon (4-16-4-16-4) Low-e S-Argon (4-16-4-16-4) 

Window Glazing III Low-e S-Argon (4-16-4-16-4) Low-e S-Argon (4-16-4-16-4) 

Window Glazing IV Low-e S-Argon (4-16-4-16-4) Low-e S-Argon (4-16-4-16-4) 

Window Glazing V Low-e S-Argon (4-16-4-16-4) Low-e S-Argon (4-16-4-16-4) 

Window Glazing VI Low-e S-Argon (4-16-4-16-4) Low-e S-Argon (4-16-4-16-4) 

Window Glazing VII Low-e S-Argon (4-16-4-16-4) Low-e S-Argon (4-16-4-16-4) 

Window Glazing VIII Low-e S-Argon (4-16-4-16-4) Low-e S-Argon (4-16-4-16-4) 
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Table B.5. Design Details of Optimum Design for Long-term Average Temperature 

Data 

 

Design 

Parameters 

Artvin Isparta Malatya TS 825 

3rd DDG 

Wall Type I HCB  

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

Wall   

Insulation  

I-III-IV 

15 cm-EPS30 16 cm-EPS30 15 cm-EPS30 17 cm-EPS30 

Wall  

 Insulation II 
10 cm-EPS30 10 cm-EPS30 10 cm-EPS30 12 cm-EPS30 

Base  

Insulation  

I-II-III 

9 cm-EPS35 10 cm-EPS35 10 cm-EPS35 12 cm-EPS35 

Base  

Insulation IV 
3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 

Roof Insulation 25 cm-GW18 25 cm-GW18 25 cm-GW18 25 cm-GW18 

Window  

Frames 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

Window 

Glazing 

 I-II 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing III 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing IV 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing V 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VI 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VII 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VIII 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 
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Table B.6. Design Details of Optimum Design for Recent Heating Degree-Day Data 

 

 

Design 

Parameters 

Artvin Isparta Malatya TS 825 

3rd DDG 

Wall Type I HCB  

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

Wall   

Insulation  

I-III-IV 

15 cm-EPS30 15 cm-EPS30 16 cm-EPS30 17 cm-EPS30 

Wall  

Insulation II 
10 cm-EPS30 11 cm-EPS30 11 cm-EPS30 12 cm-EPS30 

Base  

Insulation  

I-II-III 

9 cm-EPS35 10 cm-EPS35 11 cm-EPS35 12 cm-EPS35 

Base  

Insulation IV 
3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 

Roof Insulation 25 cm-GW18 25 cm-GW18 25 cm-GW18 25 cm-GW18 

Window  

Frames 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

Window 

Glazing 

 I-II 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing III 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing IV 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing V 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VI 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VII 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window 

Glazing VIII 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 
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Table B.7. Design Details of Optimum Design in Different Heating Schedule 

 

Design Parameters 7/24 Facility 7/16 Facility  5/12 Facility  

Wall Type I HCB  

190 x 85 x 190 

HCB 

190 x 85 x 190 

HCB 

190 x 85 x 190 

Wall  Insulation I 16 cm-EPS30 15 cm-EPS30 14 cm-EPS30 

Wall  Insulation II 11 cm-EPS30 10 cm-EPS30 9 cm-EPS30 

Wall  Insulation III 16 cm-EPS30 15 cm-EPS30 14 cm-EPS30 

Wall  Insulation IV 16 cm-EPS30 15 cm-EPS30 14 cm-EPS30 

Base Insulation I 11 cm-EPS35 10 cm-EPS35 9 cm-EPS35 

Base Insulation II 11 cm-EPS35 10 cm-EPS35 9 cm-EPS35 

Base Insulation III 11 cm-EPS 35 10 cm-EPS 35 9 cm-EPS 35 

Base Insulation IV 3 cm-XPS300-25 3 cm-XPS300-25 3 cm-XPS300-25 

Roof Insulation I 25 cm-GW18 25 cm-GW18 25 cm-GW18 

Roof Insulation II 25 cm-GW18 25 cm-GW18 25 cm-GW18 

Window Frames PVC  

(3 chambers) 

PVC  

(3 chambers) 

PVC  

(3 chambers) 

Window Glazing I Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing II Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing III Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing IV Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing V Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing VI Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Double S-Argon 

(4-16-4) 

Window Glazing VII Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Window Glazing VIII Low-e S-Argon 

(4-16-4-16-4) 

Low-e S-Argon 

(4-16-4-16-4) 

Double S-Argon 

(4-16-4) 
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APPENDIX C 

 

C. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION IN DYNAMO 
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APPENDIX D 

 

D.  MANUAL UPDATES IN DYNAMO 
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