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ABSTRACT

NAVIGATION AND CONTROL OF AN UNMANNED SEA SURFACE
VEHICLE

Kumru, Murat

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Kemal Leblebicioğlu

September 2015, 147 pages

In this study, navigation and control algorithms for unmanned sea surface vehicles

are investigated. For this purpose, firstly the mathematical model of a sea surface

vehicle with two propellers providing stable maneuvering capabilities is constructed

considering Newton-Euler equations. The next phase is to design a suitable naviga-

tion algorithm which integrates the solutions of “Inertial Navigation System (INS)”

and external aids such as “Global Navigation Satellite System (GNSS)” and magne-

tometer. At this step, different loosely coupled integration algorithms are developed,

and their performances are compared. After that, a model boat is assembled with nec-

essary electrical equipment and driving system as a test platform for the navigation

implementations. The results of the navigation algorithm obtained by processing real

data collected from the model boat are presented. Meanwhile, the corrected naviga-

tion solution is also utilized within a parallel independent study aiming to identify

the real parameters of the mathematical model of the boat. Finally, the design of

various autopilot algorithms is studied taking the improved mathematical model into

v



account. LQR and “Feedback Linearization” based controllers are realized for this

job. The results of the controllers are provided and compared.

Keywords: Sea surface vehicles, mathematical modeling, navigation, LQR, Feedback

Linearization controller

vi



ÖZ

BİR İNSANSIZ SU ÜSTÜ ARACININ NAVİGASYONU VE DENETİMİ

Kumru, Murat

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Kemal Leblebicioğlu

Eylül 2015 , 147 sayfa

Bu çalışmada, insansız su üstü araçları için navigasyon ve denetim algoritmaları in-

celenmiştir. Bu amaçla, ilk olarak çift pervaneli oluşu sebebiyle yüksek manevra ka-

biliyetine sahip bir su üstü aracı için bir matematiksel model oluşturulmuştur. Bu

model Newton-Euler denklemleri göz önünde bulundurularak inşa edilmiştir. Sonraki

aşamada “Ataletsel Navigasyon Sistemi”, “Küresel Navigasyon Sistemi” ve manyeto-

metre çözümlerini birleştiren bir navigasyon sistemi tasarlanmıştır. Bu süreçte, farklı

tip gevşek bağlı mimariler geliştirilerek performansları kıyaslanmıştır. Daha sonra,

bir model tekneye gerekli elektriksel donanım ve sürüş sistemi monte edilerek test

altyapısı hazırlanmıştır. Model tekne üzerinden toplanan gerçek verilerin navigasyon

algoritması tarafından işlenmesiyle elde edilen çözüm detaylı bir şekilde sunulmuş-

tur. Düzeltmiş bu navigasyon çözümü, paralelde yürütülen bağımsız bir çalışma tara-

fından model teknenin gerçek matematiksel parametrelerinin belirlenmesi amacıyla

kullanılmıştır. Son olarak, bu iyileştirilmiş modeli temel alan çeşitli otopilot algo-

ritmaları gerçeklenmiştir. Bu iş için LQR ve geri beslemeli doğrusallaştıran tipi iki
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farklı denetleç kullanılmıştır. Elde edilen sonuçlar karşılaştırmalı olarak verilmiştir.

Anahtar Kelimeler: Su üstü araçlar, matematiksel modelleme, navigasyon, LQR, ge-

ribeslemeli doğrusallaştıran denetleç
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Study

The last few decades have seen a growing trend towards the utilization of unmanned

vehicles in various military and civil applications. Additionally, the tasks, which

cannot be performed with required precision and efficiency by human capabilities

or may possibly endanger human life, are expected to be mostly achieved by these

vehicles in the near future.

This study essentially concentrates upon unmanned sea surface vehicles (USSV)

which are designed to move in uninterrupted contact with water surface.

Unmanned sea surface vehicles have been assigned with missions exhibiting great

diversity such as, environmental monitoring, detection and identification of the ob-

jects on sea surface, reconnaissance, mapping, supporting autonomous underwater

vehicles [10]. Consequently, there is a growing body of literature that recognizes the

significance of the complete autonomy of these vehicles which can be ensured by re-

liable, efficient and accurate design and implementation of navigation and autopilot

systems [11].

A navigation algorithm offering a robust localization method is needed as the position

and velocity information of the vehicle is to be determined with high precision by

using erroneous measurements.

The autopilot algorithm basically renders the movement of a surface vehicle without

continuous human intervention possible. Moreover, it is required to present complex
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and agile maneuvers guarantying the stability of the vessel. However, the design

procedure of the autopilot is quite challenging regarding to the nonlinear and coupled

dynamics of the system.

In this context, this dissertation is set out to investigate the navigation and autopi-

lot algorithms for an USSV owing to the remarkable potential and challenge in this

research area. Furthermore, the implementation of the algorithms is taken seriously

since it will provide the basis on which a completely autonomous USSV can be con-

structed.

1.2 Literature Review

A considerable amount of literature has been published on the mathematical model-

ing of sea surface vehicles. Almost all components of the ship systems have been

investigated within the literature [12]. These studies are summarized in brief by [13].

A marine craft experiences motion in 6 degrees of freedom (DOF) while maneu-

vering. Thus, the model illustrating the motion in 6 DOF is primarily constructed

considering the Newton-Euler or Lagrange equations as given in (1.1). The following

equations make use of SNAME notation [1].

Mv̇ =
n

∑
k=1

Fk (1.1)

where M symbolizes the system inertia matrix, and v̇ is denoted for the generalized

acceleration vector. The generalized velocity vector, v, comprises of linear and angu-

lar velocities as given in (1.2) where (u, v, w) are surge, sway and heave velocities,

and (p, q, r) are roll, pitch and yaw rates, respectively.

v =
[

u v w p q r
]T

(1.2)
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In Equation (1.1), Fk depicts the force/moment vector.

Fk =
[

Xk Yk Zk Kk Mk Nk

]T
(1.3)

The number of parameters utilized in the model represented by Equation (1.1), which

is in the order of hundreds to be able to include the effects of nonlinear hydrody-

namic factors, makes a model based controller design quite complicated [2]. Besides,

identification process of these parameters with sufficient accuracy poses difficulties.

Accordingly, Fossen [14] proposed a model demonstrated in (1.4) that depends on the

vectorial setting using the work of Craig [15] as motivation.

M(q)q̈+C(q, q̇)q = τ (1.4)

In the above equation, M represents the system inertia matrix, C is Coriolis matrix,

τ and q symbolize torques and vector of joint angles, respectively. This model was

improved by a number of researchers [16], [17], [18] and [19], and ended up with

Equation (1.5).

Mv̇+C(v̇)v+D(v̇)v+g(η) = τ (1.5)

where vectors of Euler angles, η , and velocities, v, are defined as in (1.6).

η =
[

x y z φ θ ψ

]T

v =
[

u v w p q r
]T

(1.6)

The model given in Equation (1.5) is equivalent to the one introduced by Equation

(1.1) in component form. On the other hand, the former representation simplifies de-

signing control systems by providing symmetric, skew-symmetric and positive ma-

trices. Additionally, construction of MIMO controllers is accomplished easily due to

the model and matrix properties [13].

Throughout this dissertation, the term navigation will be used to refer to the process

of detection and determination of position, orientation and velocity of a marine vessel
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with respect to a reference coordinate frame. As the diversity and complexity of the

tasks assigned to sea surface vehicles increase, autonomous navigation systems with

greater accuracy are required [20]. To that end, numerous types of navigation systems

are exploited, such as inertial navigation, satellite navigation, terrestrial radio naviga-

tion and feature matching [3] while the majority of the unmanned sea surface vehicles

depend on radio or spread-spectrum communications, global positioning systems and

inertial navigation systems [21]. To be able to obtain precise and reliable navigation

solutions, more than one of these systems are generally preferred to be integrated in

a structure. By doing so, it is aimed to take advantage of multiple solutions at the

same time. For instance, a Global Positioning System (GPS), an inertial measure-

ment unit (IMU), an automatic identification system and a marine radar are utilized

in [22] all at once. Meanwhile, using a multi sensor fusion algorithm also reduces

the tendency of the complete system to be affected by possible sensor failures [23].

In literature, there are various examples of integration algorithms based on different

state estimators, such as Kalman Filter, Extended Kalman Filter or particle filter [3].

Autopilots for sea surface vehicles have been constructed since early 20th century

[13]. Minorsky was the first researcher to analyze the most commonly used tech-

nique, namely Proportional-Integral-Derivative (PID) controller in detail [24]. In this

study, a single-input single output (SISO) system was realized which controls the yaw

position by utilizing a gyrocompass. After Kalman Filter was introduced in [25], the

theory for linear quadratic optimal controllers became available. Thereafter, linear

quadratic and H∞ controllers were extensively exploited for the autopilot of surface

vehicles [18], [26] [27], [28].

There have been a number of several studies for investigating nonlinear controllers

for ship autopilots in 21st century. Do (2004), et al. introduced a robust adaptive

controller by using Lyapunov’s direct method and backstepping method for under-

actuated ships [29]. In [30], a sliding mode fuzzy controller was proposed for the

guidance and control of autonomous underwater vehicles suggesting the viability of

the technique for surface vehicles. In another study, an output feedback lineariza-

tion controller with a nonlinear observer were employed to control a nonlinear vessel

model while some of the states are not observable [31]. The asymptotic stability of

the overall system including the internal dynamics was proven.
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1.3 Organization of the Thesis

In this study, navigation and autopilot algorithms are examined for an unmanned

sea surface vehicle. The motivation of this work and several significant publications

detected in the wake of a comprehensive review of the literature are presented in

Chapter 1.

In Chapter 2, a mathematical model for an unmanned sea surface vehicle with two

independent propellers, but with no rudder is constructed. To that end, essential math-

ematical tools are introduced at first. Throughout the derivation of the model, rigid

body dynamics, added mass dynamics, hydrodynamic damping factors, restoring and

air drag forces and thruster dynamics are taken into consideration. Only sources of

actuation are taken to be two distinct propellers in the model. The motion of the vessel

will basically be controlled by producing necessary thrusts via these propellers.

In Chapter 3, various navigation algorithms for sea surface vehicles are described to

assure the accomplishment of system identification and autopilot applications. The

solutions obtained from inertial navigation system, Global Navigation Satellite Sys-

tem and an attitude estimation system making use of a magnetometer are integrated

by different types of architectures. The one with best performance is also employed

to process the real measurements collected from the experimental setup.

In Chapter 4, the details of the experimental setup are discussed. The model boat

named as Pacific Islander Tugboat, the driving system comprising of Electronic Speed

Controllers and brushless DC motors, and the autopilot card, called Pixhawk, are

familiarized. After that, the developed softwares running on the ground station and

autopilot card are explained.

In Chapter 5, two autopilots utilizing LQR and FL controllers are considered depend-

ing on the improved mathematical model of the model boat. To be able to apply LQR

control theory, the model is linearized around various linearization points, and the

related controllable subspaces of the representations are explored. On the other hand,

FL controller is designed by taking the original nonlinear model into account. Subse-

quently, reference tracking and disturbance rejection performances of the controllers

are comparatively analyzed.
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Chapter 6 concludes the dissertation by presenting a brief summary of the study,

discussing the results and listing the recommendations for possible further research

work.
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CHAPTER 2

MATHEMATICAL MODELING

2.1 Introduction

In this chapter, the mathematical model of an Unmanned Sea Surface Vehicle (USSV)

with two independent propellers, but with no rudder is developed. In fact, the char-

acteristics of the above mentioned drive system are only included in Section 2.7.

Therefore, the rest of the model is valid for a typical USSV.

The mathematical model is created by depending on the vectorial model proposed by

Fossen [13] for marine crafts. The inertial components and the forces acting on the

boat are included in the model. It essentially takes centripetal and Coriolis forces,

gravity and buoyancy forces, damping forces, air drag and thruster forces into ac-

count. Any rudder related force is not involved. Disturbances resulted from the en-

vironmental effects, such as wind, waves, water current are also not contained in the

model. These effects are added as external forces for the assessment of disturbance

rejection performances of the controllers in Chapter 5.

The coordinate frames and transformations between different frames are described

in the beginning of the chapter. Next, the rigid body dynamics and the above men-

tioned forces are explained in details. Afterwards, the implementation of the model

in MATLAB environment and the results of the simulations are briefly discussed.

The acquired mathematical model is aimed to be employed in the system identifica-

tion process as given in [6]. Then, the model with enhanced parameters will be used

throughout the design procedures of the autopilot algorithms as expressed in Chapter

5.
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2.2 Kinematics

Kinematics describing the geometrical aspects of motion is analyzed in this section.

(2.1) depicts the vectorial model of Fossen for surface vehicles. The model has 6

degrees of freedom (DOF).

M(q)q̈+C(q, q̇)q = τ (2.1)

M represents system inertia matrix, C stands for Coriolis matrix, τ and q illustrate

torques and vector of joint angles, respectively.

Equation (2.1) is improved by [16], [17], [18] and [19], and put into the form given

by (2.2).

Mv̇+C(v)v+D(v̇)v+g(η)+g0 = τ + τwind + τwave (2.2)

where

η =
[

x y z φ θ ψ

]T
(2.3)

v =
[

u v w p q r
]T

(2.4)

The model is again reshaped by Equation (2.5) combining disturbances in a vector.

Mv̇+C(v)v = τd + τg + τt + τa + τdist (2.5)

In (2.5), the rigid body and added mass dynamics are included on the left hand side.

Besides, τd is water damping force, τg stands for gravitational and buoyancy forces,

τt is the summation of the forces produced by two propellers, τa is air drag forces,

and τdist is used for disturbances. The details of (2.5) will be given in the forthcoming

sections after the essential mathematical tools are introduced.
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2.2.1 Coordinate Frames and Transformations

A coordinate system, or frame is fixed to the body with the purpose of describing

the relative position and orientation of the vessel [15]. Figure 2.1 illustrates the body

fixed coordinate system and the motion in 6 degrees of freedom of the vehicle.

Figure 2.1: The 6 DOF velocities in the body fixed frame, [2].

The model relies on SNAME notation, the details of which given in the below table

[1].

Table 2.1: The notation indicated by SNAME, [1].

DOF
Forces and
moments

Linear and angular
velocities

Positions and Euler angles

1 motion in the x direction (surge) X u x
2 motion in the y direction (sway) Y v y
3 motion in the z direction (heave) Z w z
4 rotation about the x axis (roll) K p φ

5 rotation about the y axis (pitch) M q θ

6 rotation about the z axis (yaw) N r ψ

North-East-Down (NED) and the body fixed reference frames are exploited in this

study. The motion of the vessel with respect to the Earth is explained in terms

of NED frame symbolized by {n} = {xn,yn,zn} with the origin on. Furthermore,
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{b} = {xb,yb,zb} with the origin ob represents the body fixed frame. Figure 2.2

demonstrates both of the reference frames.

Figure 2.2: Representation of Earth and the body fixed frames, [2].

{n} resolves the position and the orientation of the body, and the linear and angular

velocities are represented in terms of the axes of {b}.

In this study, the vector, yγ

α|β , corresponds to y property of α frame with respect to β

frame resolved in γ frame. Consequently, the variables are indicated as follows:

vb
b|n : Linear velocities of ob w.r.t. {n} expressed in {b},

ω
b
b|n : Angular velocities of {b} w.r.t. {n} expressed in {b},

fb
b : Force with acting point ob expressed in {b},

mb
b : Moment about {b} expressed in {b},

Θnb : Euler angles between {n} and {b}.

The state and input vectors are chosen as η =

 pn
b|n

Θnb

, v=

 vb
b|n

ωb
b|n

, τ =

 fb
b

mb
b

.
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2.2.1.1 Transformations

Resolving axes of the vectors are needed to be transformed throughout the derivation

process. For instance, the linear velocities of the vehicle which are originally calcu-

lated in the body frame are to be transformed to {n} frame to be able to keep track

of the linear positions. For this purpose, the rotation matrix, Rn
b, is formed by con-

catenating the principle vectors of {b} frame expressed in {n} frame [15]. Equation

(2.6) defines the rotation matrix in terms of the Euler angles where s(·) and c(·) are

respectively used for sin(·) and cosine(·) operations to simplify the notation.

Rn
b (Θnb) =


cψcθ −sψcφ + cψsθsφ sψcφ + cψcθsφ

sψcθ cψcφ + sφsθsψ −cψcφ + sθsψcφ

−sθ cθcφ cθcφ

 (2.6)

Linear Velocity Transformation:

The linear velocity vector, vb
b|n, can be transformed to {n} as follows:

vn
b|n = ṗn

b|n = Rn
b(Θnb)vb

b|n (2.7)

Angular Velocity Transformation:

TΘ (Θnb) gives the relation between angular rate vector of the body frame, ωb
b|n,

and the rate of change of the Euler angles, Θ̇nb =
[
φ̇ , θ̇ , ψ̇

]T , where t(·) represents

tangent(·) operation.

Θ̇nb = TΘ (Θnb)ω
b
b|n (2.8)

TΘ (Θnb) =


1 sφ tθ cφ tθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 (2.9)

At the end, Equations (2.10) and (2.11) describe the kinematic equations of the marine

craft in 6 DOF by using the transformations, and the vectors that are already defined.
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η̇ = JΘ(η)v (2.10) ṗn
b|n

Θ̇nb

 =

 Rn
b(Θnb) 03×3

03×3 TΘ(Θnb)

 vb
b|n

ωb
b|n

 (2.11)

2.3 Rigid Body Dynamics

The equations for a marine craft relying on Newton’s second law is formulated by

Fossen [13] as given below.

MRBv̇+CRB(v)v = τ (2.12)

where RB stands for rigid body. MRB and CRB are mass and Coriolis/centripetal ma-

trices, respectively. Recall that the velocity vector, v, comprises of [u,v,w, p,q,r]T

represented in the body frame and the torques acting on the body, τ , is given as

[X , Y, Z, K, M, N]T .

Two different points, namely the origin of the body frame, CO, and the center of

gravity of the body, CG, will be utilized in the following equations.

Newton’s second law of motion is specified with regard to the conservation of linear

momentum, ~pg, and angular momentum, ~hg, taking Euler’s first and second axioms

into consideration.

id
dt

~pg = ~fg, ~pg = m~vg|i (2.13)

id
dt

~hg = ~mg, ~hg = Ig~ωb|i (2.14)

Note that~fg and ~mg are the moments acting on CG. Besides, the angular rate vector

of {b} with respect to {i} is illustrated by ~ωb|i. The inertia dyadic about CG is

symbolized by Ig.

The derivation of the model is performed under two assumptions.
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• The marine craft is a rigid body. Thus, there is no need to reckon with the

internal forces appearing between the individual elements of the body.

• {n} is an inertial frame. In other words, the forces resulted from the Earth’s ro-

tational motion are omitted. Then, the following notations become equivalent.

~vg|i ≈ ~vg|n (2.15)

~ωb|i ≈ ~ωb|n (2.16)

The below formula declaring the rule for the time differentiation of a vector,~a, will

frequently be utilized.

id
dt
~a =

bd
dt
~a+~ωb|i×~a (2.17)

Translational Motion about CG:

~rg|i represents the position vector from the origin of {i} to CG.~rb|i is denoted for the

position vector which starts from the origin of {i}, and ends at the origin of the body

frame.~rg symbolizes the position vector from CO to CG.

Then, the following equation can be written.

~rg|i =~rb|i +~rg (2.18)

Afterwards, the equation takes the form in below as {n} is assumed to be inertial.

~rg|n =~rb|n +~rg (2.19)

CG is stationary with respect to the body fixed frame for a rigid body.

bd
dt
~rg = 0 (2.20)
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(2.21) is attained by combining (2.17) and (2.20).

~vg|n =~vb|n +~ωb|n×~rg (2.21)

Subsequently, Euler’s first axiom is put into use.

~fg =
id
dt
(m~vg|n)

=
bd
dt

(m~vg|n)+m~ωb|n×~vg|n

= m
(
~̇vg|n +~ωb|n×~vg|n

)

fb
g = m

[
v̇b

g|n +S
(

ω
b
b|n

)
vb

g|n

]
(2.22)

where S(·) is the operator obtaining a skew-symmetric matrix from the input vector

as described in [2].

Rotational Motion about CG:

The rotational motion of the body is derived by utilizing a similar method with the

previous one. Euler’s second axiom is applied in the following equations.

~mg =
id
dt

(
Ig~ωb|n

)
=

bd
dt

(
Ig~ωb|n

)
+~ωb|n×

(
Ig~ωb|n

)
(2.23)

= Ig~̇ωb|n−
(
Ig~ωb|n

)
×~ωb|n

mb
g = Igω̇

b
b|n−S

(
Igω

b
b|n

)
ω

b
b|n (2.24)
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where the inertia matrix, Ig, is described in (2.25).

Ig ,


Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

 (2.25)

The equations describing the translational and rotational motion about CO are ac-

quired by employing coordinate transformations and the parallel axis theorem.

fb
b = m

[
v̇b

b|n +S
(

ω̇
b
b|n

)
rb

g +S
(

ω
b
b|n

)
vb

b|n +S2
(

ω
b
b|n

)
rb

g

]
(2.26)

mb
b = Ibω̇

b
b|n +S

(
ω

b
b|n

)
Ibω

b
b|n +mS

(
rb

g

)
v̇b

b|n +mS
(

rb
g

)
S
(

ω
b
b|n

)
vb

b|n (2.27)

The derivation procedure is explicitly described in [2]. The details of the matrices

used in Equations (2.26) and (2.27) are given below.

MRB =

 mI3×3 −mS
(
rb

c
)

mS
(
rb

c
)

Ib

=

 M11 M12

M21 M22

 (2.28)

CRB(v) =

 03×3 −S (M11v1 +M12v2)

−S (M11v1 +M12v2) −S (M21v1 +M22v2)

 (2.29)

The rigid body mass matrix is uniquely given as in (2.30).

MRB =



m 0 0 0 mzg −myg

0 m 0 mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz

−myg mxg 0 −Izx −Izy Iz


(2.30)

The Coriolis and centripetal matrix is illustrated in skew-symmetric form by (2.31).
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CRB(v) =



0 0 0

0 0 0

0 0 0

−m(ygq+ zgr) m(yg p+w) m(zg p− v)

−m(xgq−w) −m(zgr+ xg p) m(zg p+u)

m(xgr+ v) m(ygr−u) −m(xg p+ ygq)

(2.31)

m(ygq+ zgr) −m(xgq−w) −m(xgr+ v)

−m(yg p+w) m(zgr+ xg p) −m(ygr−u)

−m(zg p− v) −m(zgq+u) m(xg p+ yg)

0 −Iyzq− Ixz p+ Izr Iyzr+ Ixy p− Iyq

Iyzq+ Ixz p− Izr 0 −Ixzr− Ixyq− Ix p

−Iyzr− Ixy p+ Iyq Ixzr+ Ixyq− Ix p 0



When the origin of {b} coincides with CG, and the axes of {b} are organized in a

fashion to render the inertia matrix diagonal, the matrices are simplified as shown in

(2.32) and (2.33).

MRB =

 mI3×3 03×3

03×3 Ib

=



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ix 0 0

0 0 0 0 Iy 0

0 0 0 0 0 Iz


(2.32)
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CRB(v) =



0 0 0 0 mw −mv

0 0 0 −mw 0 mu

0 0 0 mv mu 0

0 mw −mv 0 Izr −Iyq

−mw 0 mu −Izr 0 Ix p

mv −mu 0 Iyq −Ix p 0


(2.33)

2.4 Added Mass Dynamics

The motion of a body moving in liquid is characterized with the help of added mass

terms. As the body transports some of the surrounding liquid by its motion, it is ob-

served as if the vessel weights more than its original weight. To be able to express

this incident in terms of the motion equations, added or virtual mass is to be intro-

duced. When the vessel moves the fluid out of its headway, some of its kinetic energy

is essentially transferred to the surrounding liquid. Added mass terms compensates

this phenomenon in the equations. The matrices corresponding to the added mass are

described in (2.34) and (2.35) by [13].

MA ,−



Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 Yṙ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 Nv̇ 0 0 0 Nṙ


(2.34)
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CA(v),



0 0 0 0 0 −Yv̇− Yṙ+Nṙ
2 r

0 0 0 0 0 Xu̇u

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Yv̇ +
Yṙ+Nṙ

2 r Xu̇u 0 0 0 0


(2.35)

where Xu̇ is defined to be the partial derivative of X with respect to u̇.

The added mass terms are calculated under the assumption of the marine craft being

in ellipsoidal shape. The work of [12] is pursued in the parameter derivation process.

An ellipsoid is represented by the following three parameters: semi-major, a; semi-

minor, b; and semi- vertical, c, axes. Moreover, the equation, x2

a + y2

b + z2

c = 1, holds

for the parameters.

The added parameters are calculated as given below with the assumption of b = c.

Xu̇ = − α0

2−α0

4
3

πρwab2 (2.36)

Yv̇ = Zẇ =− β0

2−β0

4
3

πρwab2 (2.37)

Kṗ = 0 (2.38)

Mq̇ = Nṙ =−
1
5

(
b2−a2)2

(α0−β0)

2(b2−a2)
2
+(b2 +a2)(α0−β0)

4
3

πρwab2 (2.39)

where

α0 =
2
(
1− e2)
e3

1
2

log
(

1+ e
1− e

)
− e (2.40)

β0 =
1
e2 −

1− e2

2e3 log
(

1+ e
1− e

)
(2.41)
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(2.42) computes the eccentricity of the meridian elliptical section.

e2 = 1−
(

b
a

)2

(2.42)

2.5 Hydrodynamic Damping

Hydrodynamic damping forces are basically caused by four different sources [18].

DP(v) illustrates radiation induced potential damping caused by forced body oscilla-

tions. DS(v) represents linear skin friction. DW (v) corresponds to wave drift damping.

DM(v) is used for the damping due to vortex shedding.

The real, positive, non-symmetrical damping matrix, D(v), can be written in terms of

these components.

D(v) = DP(v)+DS(v)+DW (v)+DM(v) (2.43)

Radiation Induced Potential Damping: While the body is made oscillating with the

wave excitation frequency in default of incident waves, this type of damping emerges.

On the other hand, radiation induced potential damping is usually ignored due to its

being relatively smaller than the other forces.

Skin Friction:

Linear skin friction caused by laminar boundary layers and turbulent boundary layers

essentially cause skin friction.

Wave Drift Damping:

Wave drift damping is associated with the interaction of the vessel with waves. The

second order wave theory can be utilized to produce the equations of wave drift damp-

ing [12].
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Damping due to Vortex Shedding:

The model for viscous damping force is given below.

f (U) =−1
2

ρCD (Rn)A|U |U (2.44)

where the speed of the boat is indicated by U , A is used for the projected cross sec-

tional area under water, the drag coefficient is given by CD(Rn) and ρ is denoted for

the water density.

The drag coefficient is determined by Reynolds number. (2.45) describes Reynolds

number by using the characteristic length of the body, D, and the kinematic viscosity

coefficient, v.

Rn =
UD

v
(2.45)

Two separate matrices, standing for the linear and nonlinear parts, are usually used to

represent the entire damping effect as shown in below.

D(v) = Dl +Dn(v) (2.46)

where Dl and Dn(v) are the linear and nonlinear damping matrices, respectively.

The damping matrices are computed via “Expanded Ad Hoc damping model for high

speed maneuvers” given in [18]. The linear damping matrix is described as follows.

Dl =−



Xu 0 0 0 0 0

0 Yu 0 0 0 Yr

0 0 Zw 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 Nv 0 0 0 Nr


(2.47)

The partial derivatives included in the above formula can be discovered with exper-

iments. Furthermore, the following equation is utilized for expressing motion with

20



low speed.

Nv = Yr (2.48)

Next, the nonlinear damping matrix is given in (2.49).

Dn =



X|u|u|u| 0 0 0 0 0

0 Y|v|v|v| 0 0 0 0

0 0 Z|w|w|w| 0 0 0

0 0 0 K|p||p| 0 0

0 0 0 0 M|q|q|q| 0

0 0 0 0 0 N|r|r|r|


(2.49)

(2.44) is exploited to compute the terms in (2.49).

Finally, the overall damping forces are evaluated with the below formula.

τd = D(v)v (2.50)

Throughout the derivation process of the damping matrices, the concerned body is

assumed to be in symmetrical box shape. Additionally, Rn is taken to be greater than

104. Moreover, the ad hoc model is expanded with the damping component operating

in the z direction of the body fixed frame.

2.6 Restoring Forces

τg included in (2.5) represents gravitational and buoyancy forces. As these forces fun-

damentally attempt to transfer the system to its equilibrium point within the range of

stability, they are also called restoring forces. The parameters, CG, CB, GMT , GML,

are employed to be able to formulate τg. The center of gravity of the surface vehicle is

CG. The center of gravity of the underwater volume of the boat is named as center of

buoyancy, and illustrated by CB. The distance between CG and the transverse meta-

center is known as transverse metacentric height, GMT . The distance between CG

and the longitudinal metacenter is known as longitudinal metacentric height, GML.
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A cross sectional view of the vessel is illustrated in Figure 2.3. Notice that the body

is rotated in the roll axis.

Figure 2.3: An illustration of traverse metacentric stability, [2].

The weight of the vessel is balanced with buoyancy forces when it is at rest.

mg = ρwg∇ (2.51)

where ρw is the density of the water.

The stationary state of the vessel is specified as z = 0. Hence, a net force is exerted on

the body which is resulted from the variation of the buoyancy force when the position

in the z-axis deviates from zero. The net force is formulated below.

Z = mg−ρwg(∇+δ∇(z)) =−ρwgδ∇(z) (2.52)

The force is rewritten with the assumption of box-shaped body, i.e., Awp(z) = Awp(0).

Z ≈−ρwgAwpz = z0z (2.53)

where z0 =−ρwgAwp.

Subsequently, the force is resolved in {b}.

δ fb
r = Rn

b(Θnb)
−1

δ fn
r = Rn

b(Θnb)
−1z0z = z0z


−sθ

cθsφ

cθcφ

 (2.54)
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The moment arms in roll and pitch are defined as:

rb
r =


−GMT sθ

GMLsφ

0

 (2.55)

The buoyancy force is transferred to the body fixed frame.

fb
r = Rn

b(Θnb)
−1


0

0

−ρwg∇

=−ρwg∇


−sθ

cθsφ

cθcφ

 (2.56)

The restoring moment caused by δ fb
r can be neglected as it is quite smaller than

the one resulted from fb
r [13]. Thus, the moment is found as given in the following

equation.

mb
r = rb

r × fb
r =−ρwg∇


GMT sφcθcφ

GMLsθcθcφ

(−GMLcθ +GML)sφsθ

 (2.57)

In the end, the forces and moments related with the restoring effects are included in

the below vector.

τg =

 δ fb
r

mb
r

=



−z0zsθ

z0zcθsφ

z0zcθcφ

−ρwg∇GMT sφcθcφ

−ρwg∇GMLsφcθcφ

−ρwg∇(GMLcθ +GML)sφsθ


(2.58)

If small angle assumption is applied to the above equation, it is further simplified as
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depicted in (2.59).

τg =



0

0

−z0z

−ρwg∇GMT φ

−ρwg∇GMLθ

0


(2.59)

Considering (2.59), the restoring force matrix is written in (2.60).

G =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 z0 0 0 0

0 0 0 −ρwg∇GMT 0 0

0 0 0 0 −ρwg∇GML 0

0 0 0 0 0 0


(2.60)

2.7 Thruster Dynamics

As previously mentioned, the model has two independent thrusters which are illus-

trated in Figure 2.4. In the model, the thrusters are assumed to be sources of force in

x direction of the body frame, by omitting the rotational impact.

Figure 2.4: Two independent thrusters located at the stern of the boat.
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fR and fL respectively illustrate the forces produced by right and left thrusters. The

position vector from CG to the right thruster is denoted by rtR , and rtL indicates the

position vector from CG to the left thruster. In addition, the moments resulted by the

thrusters are derived in the following equations.

mR = rtR× fR (2.61)

mL = rtL× fL (2.62)

As a result, the total force/moment vector of thrust is found by superposition.

τt =

 fR

mR

+
 fL

mL

 (2.63)

2.8 Air Drag Forces

Forces correspondent to air drag are also taken into account in the model. The forces

are associated with the relative velocity of the marine craft with respect to air. The

relative velocity is defined in (2.64).

vr = vb− va (2.64)

where vr is the relative velocity of the vehicle with regard to air, vb and va are the

velocities of the body and air related to inertial frame, respectively.

(2.65) computes the air drag forces.

Fa = AaPaCd,a (2.65)

where Fa illustrates the air drag forces, Aa is the area of the vehicle surface that

interacts with air, Pa symbolizes the air pressure, and the air drag coefficient is denoted

by Cd,a.

The approximation for the air pressure is given below [13].

Pa ≈ 2.56v2
r (2.66)
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The corresponding air drag torques are found by the cross product given in (2.68).

The moment arms are as given below under the assumption of symmetric shape of

the vehicle and CG being at the midpoint.

λ =
[

l
2

wi
2

h
2

]T
(2.67)

Ta = λ ×Fa (2.68)

where l, wi and h are respectively the length, width and the height of the body. Torque

components are neglected in the final equation considering the small dimensions of

the model boat [32]. In the end, the air drag forces are expressed as in (2.69).

τa =
[

Fa 0 0 0
]T

(2.69)

2.9 Implementation

Up to now, the mathematical model of a sea surface vehicle represented by Equa-

tion (2.5) is developed in this chapter. To be able to construct a simulator running

efficiently on digital environment, the continuous model is to be discretized. For this

purpose, Euler’s backward and forward integration methods are employed at the same

time as depicted in (2.70) and (2.71) [2].

v(k+1) = v(k)+hM−1 (τ−C(v(k))v(k)) (2.70)

η(k+1) = η(k)+JΘ (η (k))v(k) (2.71)

where h symbolizes the sampling interval, and it is determined to be 0.01 sec. (2.70)

makes use of the forward integration technique, while (2.71) utilizes the backward

integration method.

MATLAB environment is exploited for the discrete time realization of the model. No-

tice that the original continuous model is structured in a fragmented fashion; hence,

each subpart is realized with an independent function to render the discrete time
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model debug/ user friendly. These functions are recursively called by a main func-

tion, and the outputs are combined as given in (2.70). Furthermore, this method also

provides the advantage of observing the contribution of each subsystem separately.

2.10 Simulation Results

After the construction of the simulator pretending the motion characteristics of a sur-

face vehicle is accomplished, it is excessively tested to determine whether the outputs

of the program are reasonable in physical sense. For example, all of the initial veloci-

ties are taken as zero, and no force is exerted on the body by thrusters, then the vehicle

is verified to stay stationary at its initial Cartesian position. In this section, some of

the results obtained by various tests with different initial conditions and thrust inputs

will be presented.

2.10.1 Test1: Zero Thrust Inputs, NonZero Initial State

In the tests, thrusters are inactive, and does not produce any force. Besides, the ini-

tial values of Euler angles, linear and angular velocities are selected to be nonzero.

Figures 2.5, 2.6, 2.7 and 2.8 demonstrate this case. The velocities and Euler angles

converge to zero with time. Thus, the results seem to be consistent with the expec-

tations. Nevertheless, the body is found to be extremely over-damped in rotational

degrees of freedom as given in Figures 2.6 and 2.8. A possible explanation for this

might be that the damping parameters for rotational motion are calculated greater than

the real values. On the other hand, this does not pose a problem since the parameters

will be estimated by the virtue of the system identification algorithm.

2.10.2 Test2: Nonzero, Equal Thrust Inputs, Zero Initial State

In this case, initial states for all velocities and Euler angles are determined to be zero.

Furthermore, both of the thrusters exerts 2 N in the x direction of the body throughout

the motion. Figures 2.9, 2.10, 2.11 and 2.12 represent the findings. These results are

also in line with the predictions. The roll and yaw angles do not deviate from zero
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since the magnitudes of thrusts are equal. On the contrary, the pitch angle exhibits an

oscillation, and converge to a nonzero value as the vessel gathers speed along the x

direction of the body. Moreover, the acceleration of the body in surge axis converge to

zero due to the fact that damping forces are proportional to the velocity of the vehicle.

2.10.3 Test3: Nonzero, Unequal Thrust Inputs, Zero Initial State

Initial states for all velocities and Euler angles are again taken as zero in this case.

However, the magnitudes of applied thrusts are not equal as given in Equation (2.72).

The results are depicted by Figures 2.13, 2.14, 2.15 and 2.16.

τ
L
t = [4 0 0] N

τ
R
t = [2 0 0] N (2.72)

This test is also successful, as it is able to reflect the motion in yaw axis. The yaw

angle continuously increases owing to the inequality of the applied forces.

Figure 2.5: Linear positions resolved in {n} frame during Test1.
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Figure 2.6: Euler angles during Test1.

Figure 2.7: Linear velocities resolved in the body frame during Test1.
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Figure 2.8: Angular rates resolved in the body frame during Test1.

Figure 2.9: Linear positions resolved in {n} frame during Test2.
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Figure 2.10: Euler angles during Test2.

Figure 2.11: Linear velocities resolved in the body frame during Test2.
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Figure 2.12: Angular rates resolved in the body frame during Test2.

Figure 2.13: Linear positions resolved in {n} frame during Test3.
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Figure 2.14: Euler angles during Test3.

Figure 2.15: Linear velocities resolved in the body frame during Test3.
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Figure 2.16: Angular rates resolved in the body frame during Test3.
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CHAPTER 3

NAVIGATION

3.1 Introduction

In the following chapter, various autopilot algorithms will be developed for an USSV.

By doing so, it is inherently assumed that the true values of the state variables are

already acquired. However, in practice it is unlikely to specify the exact value of the

entire state vector due to the deficiency of measurements or the erroneous character

of information sources. As a result, to be able to obtain the best possible correct value

of the state vector and realize the above mentioned hypothesis, an algorithm, named

navigation, is to be built.

It is necessary here to clarify implicitly what is meant by navigation. In this thesis,

navigation is used to define the process of detection and determination of the position,

orientation and velocity of an object with respect to an established reference point or

frame. Position fixing and dead reckoning are two main methods that are utilized for

this purpose as stated in [3].

Position fixing can be described as the technique that detects the location of a body

in regard to a reference with the help of miscellaneous types of visual, radar, celestial

and electronic devices. The distance and/or relative direction between the reference

objects and the body may be benefited to generate position fixes. Global Position-

ing System (GPS) is a well-known example of a position fixing system which makes

use of the measurements of distance between the GPS antenna and variable number

of satellites. Dead reckoning is the process of calculating the recent position of the

moving body by integrating its velocity measurement and adding it to the previous
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position. In this technique, a transformation with regard to the relative orientation is

required since the velocities or position changes of the body are measured in the body

frame. Consequently, an external source of orientation information is to be employed.

The dead reckoning solution is prone to diverge from the true values of positions con-

sidering that the errors of measurements are being integrated in time. Furthermore,

it entails an initialization for the locations. On the other hand, position fixing does

not exhibit an accumulating fault behavior. However, the output of position fixing

is not continuous and may even become unavailable due to environmental changes

whereas the one of dead reckoning mostly appears to be uninterrupted. As a result,

an integrated navigation may be applied to produce the navigation solution by com-

bining those methods with complementary characteristics. The integrated algorithm

may take advantage of both techniques at the same time.

3.2 Inertial Navigation

An inertial navigation system (INS) is a type of dead reckoning navigation system

which consists of a processor and inertial sensors, namely accelerometers and gy-

roscopes [33]. The electronic device consisting of three mutually orthogonal and

aligned accelerometer and gyroscope sets is called inertial measurement unit (IMU).

The processor outputs the position, velocity and attitude of the object in three di-

mensional space by integrating the angular rates and specific forces measured by

gyroscopes and accelerometers, respectively. The inertial processor is started from an

initial point and utilizes a gravity model to convert accelerometer readings into accel-

eration information. Afterwards, it basically integrates the accelerations, velocities

and angular rates to produce continuous navigation solution.

The errors of INS tend to increase with time as it consistently adds the errors of

inertial sensors in an iterative fashion. Although INS in the market shows a great

variety in accuracy and price, the drifts of error characteristics are similar. Hence,

INS is usually preferred to be used together with external aids.
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3.2.1 Inertial Sensors

Inertial sensors include accelerometers and gyroscopes. An accelerometer measures

the physical phenomenon called specific force and a gyroscope measures angular rate.

An IMU generally consists of three accelerometers and three gyroscopes which are

placed in a mutually perpendicular manner. In this study, the IMU embedded to the

autopilot card, Pixhawk, employs strapdown architecture since the inertial sensors

are fixed with respect to the body coordinate frame. The working principles of the

inertial sensors which show great diversity are not included in this thesis. However,

error characteristics of these sensors are given since they are utilized in modeling

phase of the integration algorithms.

3.2.1.1 Error Characteristics

The error sources are categorized into four main groups that are biases, scale factor

errors, cross coupling errors and random noises for both of the sensors.

Bias is the constant error that is independent from measured quantity. Bias level

exhibits quite low variation in run time although it may drastically change after the

power of the sensor is cut. Biases of the accelerometer and gyroscope are respectively

denoted by ba and bg.

Scale factor errors are directly proportional to the magnitude of measurement. sa =

(sa,x, sa,y, sa,z) and sg = (sg,x, sg,y, sg,z) correspond to the scale factor errors of ac-

celerometers and gyroscopes in three axes.

The misalignments of the axes of inertial sensors result in cross coupling errors which

are illustrated by ma,αβ and mg,αβ where the α and β axes are subject to misalign-

ment.

The cross coupling and misalignment errors are combined with the following nota-

tions.
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Ma =


sa,x ma,xy ma,xz

ma,yx sa,y ma,yz

ma,zx ma,zy sa,z

 , Mg =


sg,x mg,xy mg,xz

mg,yx sg,y mg,yz

mg,zx mg,zy sg,z

 (3.1)

Lastly, the random noise is inevitably present in the measurements of inertial sensors

resulted from the electrical and mechanical characteristics. wa = (wa,x, wa,y, wa,z)

and wg = (wg,x, wg,y, wg,z) symbolize the random noises of accelerometer and gyro-

scope, respectively.

By taking these error sources into account accelerometer and gyro readings can be

formulated as given in (3.2) and (3.3) [3].

f̃ i
b|i = ba +(I3 +Ma) f i

b|i +wa (3.2)

ω̃ωω
i
b|i = bg +(I3 +Mg)ωωω

i
b|i +Ggf i

b|i +wg (3.3)

Where f̃ i
b|i and ω̃ωω

i
b|i are the outputs of the sensors and f i

b|i and ωωω i
b|i are the correspond-

ing true quantities of specific force and angular rate; Gg is the matrix relating the

specific force and angular rate measurements; I3 is 3 by 3 identity matrix.

3.2.2 Mathematics of Inertial Navigation

The operations which are necessary to produce the three-dimensional inertial naviga-

tion solution from the measurements of an IMU is introduced in this subsection. As

mentioned earlier, an IMU constituting of strapdown accelerometers and gyroscopes,

outputs the specific forces, fb
b|i, and angular rates, ωωωb

b|i, of the body with respect to in-

ertial frame resolved in the body frame. Then, the outputs of the IMU are processed

in the navigation processor considering the equations, details of which will be given

below.

Attitude update, transformation of the specific force, velocity update and position

update are four essential phases of the equations. The derivation of accelerations

from specific forces with the gravitational model is included in velocity update stage.

A brief overview of the basic steps is as follows:
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• The process is initialized with external position, orientation, velocity informa-

tion,

• Angular rates are integrated to obtain new orientation,

• Specific forces are transformed into the frame in which velocity and positions

are resolved,

• Accelerations calculated by specific forces and gravitational model are inte-

grated to obtain velocity,

• Velocities are integrated to obtain position.

The items after initialization are performed in an iterative way to generate new values

from the previous solution and new measurement.

3.2.2.1 Selection of the Coordinate Frames

The inertial navigation equations, or INS mechanization equations, obviously differ in

accordance with the coordinate frame in which the navigation solution is sought for.

In this study, an Earth fixed tanged plane is taken into account since the sea surface

vehicles operating in a local area are investigated. Therefore, the NED oriented,

surface fixed frame is selected as both reference and resolving frame. This so called

local navigation frame or flat Earth frame is denoted with {n} and depicted in 3.1.

It is attached to the initial position of the craft. The z-axis of the frame is directed

toward the center of the Earth, and it is equivalent to the gravity vector while ignoring

the local irregularities. The y-axis points east. The x-axis is attained by the projection

of the line from the origin of the frame to the north pole to the y-z plane.
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Figure 3.1: Illustration of local navigation frame {n}, [2].

Moreover, as [2] suggests, {n} can be assumed to be inertial so that Newton’s laws

of motion can still be applicable. In other words, the rotation of Earth is neglected,

which is a reasonable supposition owing to the fact that the marine vessels move in

relatively slow speeds and the forces exerted on the body due to the Earth’s rotation

is rather small compared to the hydrodynamical forces. In conclusion, the equations

in the rest of this section are derived to express the motion of a boat with respect to

{n} frame resolved in {n} frame.

3.2.2.2 Kinematics

A brief summary of kinematic equations will be given in this section to provide a basis

for the derivation of inertial navigation equations. To be able to illustrate the relative

motion of the body with respect to some reference, coordinate frames and transfor-

mations between frames are indispensable for navigation applications. However, a

detailed explanation about transformations will not be give here since it is already

included in Mathematical Modeling chapter. Cγ

β
represents the transformation ma-

trix from β -frame to γ-frame. xγ

α|β refers to some property of α-frame regarding to

β -frame expressed in terms of the axis of γ-frame.
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The vector standing for Euler rotation between α and β frames is as follows:

ΘΘΘ α|β =


φα|β

θα|β

ψα|β

 (3.4)

ZYX convention is utilized in (3.4) which is consistent with the previous chapter.

ωωω
γ

α|β , denoting the rate of rotation of α-frame’s axes regarding the β -frame expressed

in terms of the axes of γ-frame is called angular rate vector. As mentioned before,

angular rate vector consists of angular speeds in x, y and z axes of the resolving frame

which are shown in (3.5).

ωωω
γ

α|β =


pα|β

qα|β

rα|β

 (3.5)

The elements of ω
γ

α|β are put into skew symmetric form and symbolized as:

ΩΩΩ
γ

α|β =


0 −rα|β qα|β

rα|β 0 −pα|β

−qα|β pα|β 0

 (3.6)

The time derivation of the transformation matrix is found as in (3.7) under the as-

sumption of small angle [3].

Ċα

β =−Cα

β
ΩΩΩ

β

α|β =−ΩΩΩ
α

α|β Cα

β
= Cα

β
ΩΩΩ

β

β |α = ΩΩΩ
α

β |αCα

β
(3.7)

The Cartesian position, which is also known as Euclidean position, of the origin of

α-frame with regard to the origin of the β -frame resolved in γ-frame is denoted as

rγ

α|β = (xγ

α|β ,y
γ

α|β ,z
γ

α|β ). The position vector can be resolved in any frame with the

help of related transformation matrix as follows:

rδ

α|β = Cδ
γ rγ

α|β (3.8)

The time derivative of rβ

α|β calculated in β -frame is defined as the velocity of the

object. It should be noted that (3.9) implies that a velocity is registered if the origin
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of α-frame changes location with respect to the origin of β -frame or the orientation

of β -frame changes with respect to the origin of α-frame. The resolving axes of the

velocity vector can also be altered as shown in (3.10).

vβ

α|β , ṙβ

α|β (3.9)

vγ

α|β = Cγ

β
vβ

α|β (3.10)

The time derivative of the position vector resolved in a frame that is different from

reference frame is found in (3.11). As it was mentioned previously, the vector illus-

trated by vγ

α|β is just a vector obtained by the transformation of vβ

α|β into γ-frame. It

is not corresponded to the time derivative of rγ

α|β .

ṙγ

α|β = Ċγ

β
rβ

α|β +Cγ

β
ṙβ

α|β

= Ċγ

β
rβ

α|β +vγ

α|β (3.11)

The second time derivative of rβ

α|β taken in β -frame is defined as the acceleration

of the object. Furthermore, (3.13) shows the conversion of resolving axes of the

acceleration.

aβ

α|β , r̈β

α|β (3.12)

aγ

α|β = Cγ

β
aβ

α|β (3.13)

Note that aγ

α|β does not correspond to the time derivative vγ

α|β or the second time

derivative of rγ

α|β .

v̇γ

α|β =
d
(

Cγ

β
ṙβ

α|β

)
dt

= Ċγ

β
ṙβ

α|β +aγ

α|β (3.14)

r̈γ

α|β = C̈γ

β
rβ

α|β + Ċγ

β
ṙβ

α|β + v̇γ

α|β

= C̈γ

β
rβ

α|β +2Ċγ

β
ṙβ

α|β +aγ

α|β (3.15)

The first term on the right hand side of (3.15) can be reformed by (3.7) and (3.8):

C̈γ

β
rβ

α|β =
(

ΩΩΩ
γ

γ|β ΩΩΩ
γ

γ|β − Ω̇ΩΩ
γ

γ|β

)
rγ

α|β (3.16)
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The second term on the right hand side of (3.15) can be rearranged by (3.7), (3.8) and

(3.11):

Ċγ

β
ṙβ

α|β =−ΩΩΩ
γ

γ|β ΩΩΩ
γ

γ|β rγ

α|β −ΩΩΩ
γ

γ|β ṙγ

α|β (3.17)

When (3.16) and (3.17) are put into (3.15), (3.18) is finally obtained.

r̈γ

α|β =−
(

ΩΩΩ
γ

γ|β ΩΩΩ
γ

γ|β + Ω̇ΩΩ
γ

γ|β

)
rγ

α|β −2ΩΩΩ
γ

γ|β ṙγ

α|β +aγ

α|β (3.18)

In (3.18), aγ

α|β can be stated as force per unit mass that is transferred into a non-

reference frame. As a result, two virtual forces are found to appear in the equation of

motion if the resolving frame is rotating. The first term, −
(

ΩΩΩ
γ

γ|β ΩΩΩ
γ

γ|β + Ω̇ΩΩ
γ

γ|β

)
rγ

α|β ,

which will be witnessed by the observer located in the rotating frame is called cen-

trifugal acceleration. The second term, −2ΩΩΩ
γ

γ|β ṙγ

α|β , is known as the Coriolis accel-

eration.

3.2.2.3 Earth Surface and Gravity Models

In the application part of this study, the position solution is acquired in the form of

geodetic latitude, longitude and altitude from an unit consisting GPS module. For this

reason, the models for the Earth’s surface are introduced in this section.

To be able obtain the position with respect to the Earth’s surface, defining a reference

surface regarding the center and the axes of the Earth is the general convention. After

that, the set of longitude, latitude and altitude is utilized to describe the location of

the body considering this reference surface.

The Ellipsoid Model:

The surface of the Earth is approximated with an ellipsoid placed at the mean sea

level. The equatorial radius and the eccentricity of the ellipsoid, e, is commonly

indicated to define the ellipsoid [34]. (3.19) gives the definition of eccentricity.

e =

√
1−

R2
p

R2
0

(3.19)

R0 stands for the length of semi-major axis that is distance from center to any point

fixed on the equator. Rp denotes the length of semi-minor axis that is the distance
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from center to either pole (see 3.2). The polar radius and eccentricity attained from

the statements of the equatorial radius and flattening made by World Geodetic System

1984 [35] as follows:

- R0 = 6,378,137.0 m, Rp = 6,356,752.3142 m, e = 0.0818191908425.

Figure 3.2: Ellipsoid model of the Earth’s surface, [3].

Curvilinear Position:

Three mutually orthogonal coordinates which are aligned with the local navigation

frame resolve position information. The height (h) or altitude is the distance between

the body and the surface along the normal line to the Earth’s surface. The point on

surface where the normal line intersects with the surface is symbolized by S(b). Thus,

the latitude (L) is the north-south axis coordinate of S(b). The longitude (λ ) is the

east-west axis coordinate of S(b).

The transverse radius of curvature for east-west motion, RE , shows at which rate

longitude varies over the surface perpendicular to a meridian. It is expressed in (3.20).

RE(L) =
R0√

1− e2 sin2 L
(3.20)

The Cartesian positions in ECEF frame is computed with the following equation set

[3].

xe
b|e =

(
RE(LS(b))+hS(b)

)
cosLS(b) cosλS(b)

ye
b|e =

(
RE(LS(b))+hS(b)

)
cosLS(b) sinλS(b) (3.21)

ze
b|e =

[
(1− e2) RE(LS(b))+hS(b)

]
sinLS(b)
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Specific Force and Gravitation:

Specific force, f, is defined as forces exerted on a body with respect to an inertial

frame, excluding the gravitational ones per unit mass. Gravitation is the force resulted

from the attraction between the masses the body and the Earth. The acceleration

caused by gravitation is denoted by γ . The accelerometers measure the specific force

on the body with respect to an inertial frame as shown in (3.22).

f i
b|i = ai

b|i− γγγ
i

b|i (3.22)

The acceleration resulted from gravity is signified by gi
b. It should be noted that a

stationary object with respect to the Earth frame only senses the acceleration which

is the reaction to the gravity.

Throughout this work, the calculation of the gravitational force is based on World

Geodetic System 1984 [35].

3.2.2.4 Phases of Inertial Navigation

As previously explained with the justifications, the navigation solution is decided

to be sought for the flat local-navigation-frame, {n}, which is assumed to be inertial.

Thus, the specific forces, fb
b|i, and angular rates, ωωωb

b|i are accepted to be measured with

respect to local frame. Consequently, the mechanization equations are derived for this

inertial frame. Throughout the derivation process, several first order approximations

are made and the iterations are supposed to be performed at the rate of IMU output.

Figure 3.3 illustrates the basic diagram of the algorithm. The integration time, τi

is the time interval between two successive process cycles. The (–) and (+) signs

represent the value of the related property at the beginning and end of a process cycle,

respectively.
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Figure 3.3: Diagram of inertial navigation equations, [3].

Attitude Update:

At the beginning of every cycle, the angular rate measurement of the IMU is used

to update the transformation matrix, Ci
b which transforms the vectors from body to

local frame. Meanwhile, {i} is preferred on purpose in the following equations to

emphasize inertial behavior of the local frame, {n}. There is no discrepancy to replace

{i} with {n} in any step.

(3.23) is adapted from (3.7).

Ċi
b = Ci

bΩΩΩ
b
b|i (3.23)

ΩΩΩ
b
b|i formed by (3.6) can be rewritten as ΩΩΩ

b
b|i = S(ωωωb

b|i) where S(·) represents the

operator forming skew-symmetric matrix of the input vector.

By integrating (3.7), the transformation matrix is found as:

Ci
b(t + τi) = Ci

b(t)exp

 t+τ∫
t

ΩΩΩ
b
b|i dt

 (3.24)

Under the assumption of constant angular rates over the integration interval and ap-

plying first order approximation to power series expansion, (3.24) takes the following
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form [3]:

Ci
b(+)≈ Ci

b(−)(I3 +ΩΩΩ
b
b|iτi) (3.25)

and

I3 +ΩΩΩ
b
b|iτi =


1 −rb

b|i τi qb
b|i τi

rb
b|i τi 1 −pb

b|i τi

−qb
b|i τi pb

b|i τi 1

 (3.26)

where ωωωb
b|i =

[
pb

b|i qb
b|i rb

b|i

]T
.

Specific-Force Transformation:

The output of the IMU is resolved in the body frame. Hence, it is required to be

transformed into local frame to acquire the velocities by integration.

f i
b|i(t) = Ci

b(t) fb
b|i(t) (3.27)

The coordinate transformation matrix is approximated by the average of the values

appear at (+) and (–).

f i
b|i ≈

1
2
(
Ci

b(−)+Ci
b(+)

)
fb
b|i (3.28)

Velocity Update:

The inertial acceleration is attained by the summation of the specific force measure-

ment and the gravitational acceleration:

ai
b|i = f i

b|i + γγγ
i

b|i

(
ri

b|i

)
(3.29)

γγγ i
b|i is the function of Cartesian-position of the object with respect to the Earth’s

center and yields the magnitude of the gravitational acceleration. By taking the slowly

changing profile of the gravitational field into account, r i
b|i(−) is delivered as the input

of the function.

The velocity in local frame is as follows since the derivative is taken in the reference

frame:

v̇ i
b|i = a i

b|i (3.30)
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The velocity update is found by integrating (3.30) in the following way as the exact

value of acceleration during the integration interval is not available:

v i
b|i(+) = v i

b|i(−)+a i
b|iτi (3.31)

Position Update:

The time derivative of the Cartesian position is exactly equal to the velocity since the

reference and resolving frames are identical.

ṙ i
b|i = v i

b|i (3.32)

The approximated velocity through the process interval is the average of the start and

end values. Thus, the position is formulated as:

r i
b|i(+) = r i

b|i(−)+
(

v i
b|i(−)+v i

b|i(+)
)

τi

2

= r i
b|i(−)+v i

b|i(−)τi +a i
b|i

τ2
i
2

= r i
b|i(+)+v i

b|i(+)τi−a i
b|i

τ2
i
2

(3.33)

3.3 Radio and Satellite Navigation

Radio signals have being exploited for navigation purposes for more than eight decades

now [3]. There are several different methods in use which process radio signals to ob-

tain position and velocity information. Within the scope of this work, passive ranging

is the only one to be introduced. In such a system, a receiver collects timing signals

that are transmitted from numerous reference stations. When the synchronization of

the clocks of both receiver and transmitters is achieved, first the distance to transmit-

ters, then the position of the receiver can be calculated.

3.3.1 Global Navigation Satellite Systems

Global navigation satellite systems (GNSS) refers to the passive ranging systems

which furnish a positioning solution in three dimensional space by processing radio

signals broadcasted by orbiting satellites. There are currently several operating GNSS
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and regional extensions, the number of which is predicted to radically increase in the

near future. Navigation by Satellite Ranging and Timing (NAVSTAR) Global Posi-

tioning System (GPS) known shortly as GPS is the most famous one among these.

In six different orbits, up to 32 satellites are included in GPS which are built and

owned by U.S. government. The other globally functional satellite navigation system

is Global Navigation Satellite System (GLONASS) which is operated by Russian

Aerospace Defence Forces. It includes 24 satellites in three orbital planes. These

two distinct systems can now be benefited at the same time to increase the position

tracking accuracy of the navigation system [4].

The space, control/ground and the user segments are three fundamental modules of

the design of a satellite navigation system [36]. The orbiting satellites constitute the

space segment. They essentially transmit radio signals to the control segment and

users. It takes about 12-hour for the satellite vehicles to complete their full revolution

around Earth. The orbits represented in Figure 3.4 are almost circular and estab-

lished on six separate planes which are inclined 60◦ with respect to the equatorial

plane. Those orbit planes are designed to divide the equator into identical six pieces

to provide an uniform global coverage as illustrated in the below figure. This leads to

such a constellation that any user on the Earth’s surface is able to find at least four of

satellites in its direct line-of-sight at any time.

Figure 3.4: GPS satellites orbiting in 6 different planes, [4].
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The signals produced by satellite vehicles comprise of ranging measurements and

navigation data messages. Those signals are decoded by the receivers to obtain system

parameters.

The ground segment keeps track of the health and status of the space segment. It

constitutes of several monitor stations, one or more control stations and uplink sta-

tions [3]. The ranging measurements are gathered from satellite vehicles and trans-

mitted to the control stations by the monitor stations which utilize the measurements

to identify the orbits and calibrate the clocks of satellite vehicles since they are al-

ready located at precisely specified positions and have synchronized clocks. The

control stations informed by the ranging measurements decide the maneuvers to be

performed by satellites to track the correct orbits.

The user equipment consists of an antenna, a receiver and a set of processors. The

broadcast signals are captured and transformed into electrical ones. Then, the receiver

takes the electrical signals and produces a time reference by employing the synchro-

nized clock. Consequently, the processors calculate the distances between the antenna

and each of satellites and compute a position and velocity solution in turn. The details

of the algorithms run in the processors of the user equipment is out of the scope of

this work and will not be presented here.

In Figure 3.5 a GNSS which is receiving messages from four satellite system is il-

lustrated. r i
ia is the antenna position, r i

is j and ρC j are the position and the range

measurement of jth satellite, respectively. All position vectors are established with

respect to inertial frame and resolved also in inertial frame. By using pseudo-range

and the change of pseudo-range measurements, GNSS navigation solution containing

the three dimensional position and velocity of the user antenna is furnished.
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Figure 3.5: Producing position solution by signals from four satellites, [3].

The output of GNSS which will further be employed in integrated navigation tech-

niques is denoted as follows.

m̂G =

r̂ e
a|e,G

v̂ e
a|e,G

 (3.34)

The solution, m̂G is assumed to be generated in ECEF frame which is in conformance

with the hardware used in experiments.

3.4 Attitude Estimation

Attitude information of the body is to be obtained from an external source due to

growing error characteristics of INS. However, a sensor that directly outputs the ori-

entation of the vessel is not available. Consequently, an algorithm estimates the atti-

tude from magnetometer and accelerometer measurements is constructed.

As mentioned earlier, accelerometer measures only the acceleration resulting from

the reaction of gravity when the body is stationary with respect to the Earth’s surface.

Additionally, the translational accelerations can be assumed to be smaller by approx-

imately a factor of 10 than the gravitational acceleration. Thus, it is possible to detect
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the direction of gravitational force by only using this measurement. By doing so, the

z, axis of the local navigation frame is assumed to be aligned with the direction of

gravitational force since the vehicle operates on sea surface and local irregularities

can be neglected.

The other reference measurement is taken from the 3-axis magnetometer mounted

on the hull. It measures the total magnetic flux density resolved in the body frame

and can be interpreted to obtain the vector directed from the body to the magnetic

north pole. Moreover, this vector is guarantied to lie on the (x, z) plane of the local

navigation frame as it a NED coordinate frame [37]. Afterward, y axis is simply

acquired by the cross product of two measurements using the fact that it should be

perpendicular to previously mentioned plane. At this point, the y and z axes of local

navigation frame which are resolved in the body frame are attained. Finally, the x

axis is derived by using mutual orthogonality property of the axes.

Before the calculation of attitude from measurements, an extended version of Kalman

Filter is employed to eliminate sensor noises. The state and measurement vectors are

selected as depicted in (3.35).

x =


ωωωb

b|n

ω̇ωω
b
b|n

rb
g

rb
m

 , z =


ω̃ωω

b
b|n

r̃b
g

r̃b
m

 (3.35)

where ωb
b|n is the angular rate vector of the body measured regarding {n}, ω̇b

b|n is

the time derivative of angular rate vector with respect to {n}, rb
g is the gravitational

field vector represented in body frame and rb
m is the vector of magnetic field resolved

in body frame. ωωωb
b|n and rb

m are directly measured by gyroscope and magnetometer,

respectively. rb
g is obtained by using accelerometer measurement. Recall that {n}

illustrates the local frame which is supposed to be inertial.

52



3.4.1 Extended Kalman Filter Implementation

3.4.1.1 Prediction

The rate of change of angular rate vector is assumed to be constant over a period of

cycle, τi, which results in (3.36). The subscripts and superscripts are omitted in below

equations to simplify the notation although all variables are still resolved in the body

frame.

ωωωk+1 = ωωωk + τi ω̇ωωk (3.36)

To be able to predict the field vectors, the time derivatives are formed in accordance

with the following vector derivation equation:

vb = ṙb + ωωω
b× rb

= ṙb +S
(

ωωω
b
)

rb (3.37)

where vb stands for the time derivative of field in body frame, ṙb denotes the derivate

taken in inertial frame and ωb is the angular rate vector between the inertial and body

frames. The first term on the right hand side of (3.37), ṙb is taken as zero considering

the uniformity of the gravity and magnetic vector fields during a translational motion

[37]. Consequently, the nonlinear system model is written in the following way:

xk+1 = f (xk,w) =


ωωωk + τi ω̇ωωk +w1

ω̇ωωk +w2

rg,k +S (ωωωk)rg,kτi +w3

rm,k +S (ωωωk)rm,kτi +w4

 (3.38)

where w1, w2, w3 and w4 represent process noises.

The nonlinear model is linearized around the predicted state vector in (3.39) [37].

Ak =
∂ ( f (xk,w))

∂xk

∣∣∣∣
x̂−k

=


I3 τiI3 03 03

03 I3 03 03

−τiS
(
rg,k
)

03 I3 + τiS (ωωωk) 03

−τiS
(
rm,k
)

03 03 I3 + τiS (ωωωk)

 (3.39)
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The predicted states are calculated with the original nonlinear model in (3.40).

x̂−k+1 = f (x̂k,0) (3.40)

The covariance matrix belonging to predicted states is iterated as:

P−k+1 = AkPkAT
k +Qk (3.41)

where the process covariance matrix, Qk, is a diagonal matrix consisting of variances

of the states. The value of Qk is tuned through implementation since it is not directly

measured.

3.4.1.2 Correction

The measurement vector, zk, consisting of three measurements is presented as:

zk = Hkxk +Rk

(3.42)

Hk =


I3 03 03 03

03 03 I3 03

03 03 03 I3

 , Rk =


σ2

ω

σ2
rg

σ2
rm



where Rk stands for the measurement covariance matrix. The measurement model is

assumed to be fixed over time as the new readings of gyroscope, accelerometer and

magnetometer arrive at the same time step within a synchronized data package in the

utilized autopilot card, Pixhawk.

The Kalman gain, posteriori estimation and propagation of error covariance are given

in the following equations, respectively.

Kk = P−k HT
k
(
HkP−k HT

k +Rk
)−1

(3.43)

x̂k = x̂−k +Kk(zk−Hkx̂−k ) (3.44)

Pk = (I−KkHk))P−k (3.45)
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3.4.2 Equations to Obtain Attitude

To obtain orientation, the outputs of the Kalman filter, r̂g and r̂m are employed. At

the end of the procedure, basis vectors of the local frame, eb
nx
, eb

ny
, eb

nz
, which are

resolved in the body frame will be determined. Realizing the bases in column form,

the coordinate transformation matrix from local to body frame can be obtained by the

concatenation of three vectors in the following manner.

Cb
n =

[
eb

nx
eb

ny
eb

nz

]
(3.46)

As previously explained, the direction of gravitational force is accepted to be aligned

with z.

eb
nz
=

r̂g

‖r̂g‖
(3.47)

When the translational acceleration of the boat is different than zero, (3.47) introduces

an error to attitude estimation.

Moreover, eb
ny

is perpendicular to north direction due to the fact that the local frame

is a NED frame of reference. Thus, r̂m and eb
nz

is employed to determine eb
ny

.

eb
ny
=

eb
nz
× r̂m

‖eb
nz
× r̂m‖

(3.48)

Finally, eb
nx

is simply acquired by the succeeding cross product.

eb
nx
=

eb
ny
× eb

nz

‖eb
ny
× eb

nz
‖

(3.49)

Having obtained the transformation matrix, Euler angles can be recovered by basic

trigonometric manipulations.

3.5 Integrated Navigation

INS offers a continuous navigation solution with high bandwidth, smooth short term

errors and low random noise. Nevertheless, it is not suitable for stand alone use as

the accuracy of the output reduces by the tendency of the errors to increase with time.
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The RMS errors are not bounded due to the continuous integration of errors involved

in the sensor measurements and gravity model. On the other hand, the errors in GNSS

solution depend on the availability and geometric distribution of the satellite vehicles

that it can track. Therefore, its performance does not degrade with time. RMS errors

of position and velocity solutions are bounded if there are enough number of avail-

able satellites. However, the output of GNSS is updated at a relatively low rate and

it can even be unavailable as a result of the shortage of GNSS signals. Additionally,

a typical GNSS does not provide attitude solution. Consequently, an integrated nav-

igation system is proposed taking the complementary characteristics of two methods

into account. Finally, the attitude estimates are also benefited to prevent Euler an-

gles of INS from divergence. The entire system is designed to improve the overall

performance by reducing RMS errors in position, velocity and attitude solutions. To

be able to evaluate the expected integrated performance, statistical models presenting

the contribution of individual error sources to the performance of the overall system

are utilized.

3.5.1 Integration Architectures

3.5.1.1 INS and GNSS Integration

In this study, a loosely coupled INS/GNSS integration is enforced due to its simplicity

and redundancy [4]. In this structure, the position and velocity outputs of GNSS are

directly provided to the integration filter as measurements. It is a cascaded design

since the outputs of GNSS are already processed by a navigation filter. An error

state Kalman filter employed as the integration algorithm. The integrated navigation

solution is achieved by the correction of INS solution regarding the states of Kalman

filter. There are two feasible techniques to apply those corrections: open loop and

closed loop. In this study, both are investigated, realized and compared.

Open Loop Configuration:

In the open loop architecture, which is shown in the below figure, the Kalman es-

timates of state errors are utilized to correct the INS solution yielding the corrected

navigation solution. However, those errors are not fed back to INS. As a result, the
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raw INS and integrated solutions are separately maintained.

The raw inertial navigation solution is represented by C̃n
b, ṽn

b|n and r̃n
b|n. The corrected

or integrated inertial navigation solution is denoted by Ĉn
b, v̂n

b|n and r̂n
b|n. The attitude,

velocity and position errors are defined by the following equations.

Ĉn
b = δ ĈnT

b C̃n
b (3.50)

v̂n
b|n = ṽn

b|n−δ v̂n
b|n (3.51)

r̂n
b|n = r̃n

b|n−δ r̂n
b|n (3.52)

The attitude errors in (3.50) can be rearranged under the assumption of small angle

[3].

Ĉn
b =

(
I3−

[
S
(
δ Θ̂b|n

)])
C̃n

b (3.53)

where δ Θ̂n
b|n is the estimation of Euler angle error by the Kalman filter.

State Selection and System Model:

The state vector of the integrating Kalman filter is selected as below:

x =



δΘb|n

δvn
b|n

δrn
b|n

ba

bg


(3.54)

δΘb|n, δvn
b|n and δrn

b|n stand for attitude, velocity and position errors, respectively.

The error states are resolved in local frame given that the navigation solution is sought

for the local navigation frame. Besides, the biases of accelerometer, ba, and gyro-

scope, bg, are also involved in the state vector considering the fact that those are the

most dominant sources of error in inertial navigation solution. Before proceeding

with the derivation of state propagation model of the filter, it is found essential to

recall that the local navigation frame is assumed to be inertial.

Taking the derivative of (3.53), (3.55) is obtained

S
(
δ Θ̇b|n

)
≈ δ Ċn

b (3.55)
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By using (3.7) and (3.50), (3.55) takes the form:

C̃n
b
[
S
(
δ Θ̇b|n

)]
≈ Ω̃ΩΩ

b
b|i−ΩΩΩ

b
b|i (3.56)

(3.56) is further manipulated by the approximation, δΘb|nδ Θ̇b|n ≈ 0 referring to lin-

earity assumption of the states and finalized by (3.57). Details of the derivation can

be found in [3].

Θ̇b|n ≈ Ĉn
b

(
ω̃ωω

b
b|n−ωωω

b
b|n

)
= Ĉn

bδωωω
b
b|n (3.57)

The only error that is modelled as the state of the filter is the bias component. Thus,

(3.57) becomes:

Θ̇b|n ≈ Ĉn
bbg (3.58)

The time derivative of the velocity in local frame can be defined as:

v̇n
b|n = f n

b|n + γγγ
n

b|n (3.59)

Thus, the time derivative of the velocity error can be written as in (3.60).

δ v̇n
b|n = f̃ n

b|n− f n
b|n + γ̃γγ

n
b|n− γγγ

n
b|n (3.60)

As can be seen from (3.60), there are two distinct sources of velocity error. The first

one, represented by δ f n
b|n = f̃ n

b|n− f n
b|n corresponds to the error in specific force while

the second component, symbolized by, δγγγ n
b|n = γ̃γγ

n
b|n− γγγ n

b|n, stands for the error in

gravitational acceleration. The gravitational term will be neglected regarding to the

slow variation of the position of a marine craft operating in a local area.

The specific forces are originally measured in body frame; hence, transforming those

into local frame by an erroneous transformation matrix also introduces error:

δ f n
b|n = C̃n

bf̃ b
b|n−Cn

bf b
b|n (3.61)

≈ Ĉn
b

(
f̃ b
b|n− f b

b|n

)
+
(
C̃n

b−Cn
b
)

f̂ b
b|n (3.62)

The only error source in accelerometer measurement which is modelled as a state of

the filter is the bias component.

δ f b
b|n = f̃ b

b|n− f b
b|n ≈ ba (3.63)
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Finally, the model for velocity error state is completed by putting (3.53) and (3.63)

into (3.61).

δ v̇n
b|n =−S

(
Ĉn

bf̂ b
b|n

)
δΘb|n + Ĉn

bba (3.64)

The time derivative of position in inertial frame is simply velocity. Consequently, the

time derivative of position error in local frame is equal to velocity error.

δ ṙn
b|n = δvn

b|n (3.65)

The time derivatives of the gyro and accelerometer biases are taken as zero.

ḃa = 0, ḃg = 0 (3.66)

In the end, the system model can be put into standard form which is represented in

(3.67). 

δ Θ̇b|n

δ v̇n
b|n

δ ṙn
b|n

ḃa

ḃg


=



03 03 03 03 Ĉn
b

−S
(

Ĉn
bf̂ b

b|n

)
03 03 Ĉn

b 03

03 I3 03 03 03

03 03 03 03 03

03 03 03 03 03





δΘb|n

δvn
b|n

δrn
b|n

ba

bg


(3.67)

The model given in (3.67) is discretized with propagation time step, τs, by first order

approximation of the power series. In application part of this study, τs is selected to be

equal to INS integration time, τi, which is about 10 ms. The resulting state transition

matrix, Φ, is indicated in (3.68).

Φ =



I3 03 03 03 Ĉn
bτs

−S
(

Ĉn
bf̂ b

b|n

)
τs I3 03 Ĉn

bτs 03

03 I3τs I3 03 03

03 03 03 I3 03

03 03 03 03 I3


(3.68)

The time variation of velocity and attitude errors resulted from the integration of

accelerometer and gyro errors are modeled as white noises. As discussed in Inertial
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Sensors section, the biases of IMU can also be described as white noises. Therefore,

the INS system noise covariance matrix, QINS is defined as in (3.69) [3].

QINS =



n2
rgI3 03 03 03 03

03 n2
raI3 03 03 03

03 03 03 03 03

03 03 03 n2
badI3 03

03 03 03 03 n2
bgdI3


(3.69)

where n2
rg, n2

ra, n2
bad and n2

bgd stand for the power spectral densities of the gyro ran-

dom noise, accelerometer random noise, gyro bias variation and accelerometer bias

variation, respectively.

During the correction phase of the integration filter, the differences between outputs of

GNSS user equipment and inertial navigation solution are provided as measurement

input. zG and ẑG denote the Kalman filter measurement based on GNSS outputs and

its estimate, respectively. They are defined as:

zG = m̃G− m̃I (3.70)

ẑG = δm̂G−δm̂I (3.71)

where m̃G and m̃I respectively indicate the outputs of GNSS and INS.

Both velocity and position outputs of GNSS are utilized in this work. Thus, the

innovation can be described in the following way [3].

δzn−
G,k =

δrn
b|n,k

δvn
b|n,k

=

 r̂n
a|n,G− r̂n

b|n− Ĉn
bIb

a|b

v̂n
a|n,G− v̂n

b|n− Ĉn
b

[
S
(

ω̂ωω
b
b|n

)
Ib
a|b

]


k

(3.72)

where Ib
a|b illustrates the lever arm from the origin of body frame to the GNSS antenna

resolved in body frame.

By computing the Jacobian of measurement vector given by (3.72) regarding the state

vector illustrated by (3.54), the measurement matrix is found in (3.73).

HG,k =

 [
S
(

Ĉn
bIb

a|b

)]
03 −I3 03 03[

S{Ĉn
b

(
S
(

ω̂ωω
b
b|n

)
Ib
a|b

)
}
]
−I3 03 03 Ĉn

b

[
S
(

Ib
a|b

)]


k

(3.73)
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Considering to the fact that the length of the above level arm is about a few centime-

ters, the attitude errors and gyro biases are hardly related with the measurements.

Therefore, the measurement matrix is simplified by neglecting those terms.

HG,k =

03 03 −I3 03 03

03 −I3 03 03 03


k

(3.74)

The GNSS measurement covariance matrix, RG is assumed to be a time invariant

diagonal matrix as the hardware in use does not provide any related information in

real time.

Closed Loop Configuration:

This method is realized by periodically feeding the estimated attitude, velocity and

position errors back to the inertial navigation solution. Kalman filter is immediately

reinitialized whenever the corrections are fed back due to the fact that the difference

between INS and integrated navigation solution is zeroed by doing so. The states, sys-

tem model, measurement model and covariance matrices involved in the integrating

Kalman filter are identical to those of the open loop structure. In this configuration,

the corrections based on the outputs of error state filter are applied using below three

formulas.

Ĉn
b(+) = δ ĈnT

b Ĉn
b(−)≈

(
I3−

[
S
(
δ Θ̂b|n

)])
Ĉn

b(−) (3.75)

v̂n
b|n(+) = v̂n

b|n(−)−δ v̂n
b|n (3.76)

r̂n
b|n(+) = r̂n

b|n(−)−δ r̂n
b|n (3.77)

where the variables with (+) form the corrected navigation solution while the variables

with (-) are the results by the prediction phase of the filter.

The above given corrections are fed back to inertial navigation solution at the cycles

in which new GNSS measurement becomes available that occurs at about 5 Hz for

the used GNSS user equipment. Therefore, between two measurement updates, the

integrated solution is iterated by the mechanization equations of INS. For the same

interval of time, the Kalman filter continues to operate as well by making predictions

of the errors.
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3.5.1.2 INS, GNSS and Attitude Estimation Integration

Being independent of its configuration type, integrated INS/GNSS architecture does

not have a separate attitude measurement. It practically keeps track of the Euler an-

gles by processing and integrating the angular rate measurements. Thus, the attitude

solution has a tendency to diverge in a finite interval of time, which renders the exter-

nal aid for attitude compulsory.

The attitude estimation, denoted by Θ̂b|n,M is already obtained by using the accelerom-

eter and magnetometer measurements. It is illustrated with a hat symbol, since it is

generated by the preceding Kalman filter. The system model and process covariance

matrix used in the integrating Kalman filter are kept unchanged in this structure. The

measurement vector of the filter is augmented with the attitude estimation. Then, the

innovation takes the form indicated in (3.78).

δzn−
k =


δrn

b|n,k

δvn
b|n,k

δΘb|n,k

=


r̂n

a|n,G− r̂n
b|n− Ĉn

bIb
a|b

v̂n
a|n,G− v̂n

b|n− Ĉn
b

[
S
(

ω̂ωω
b
b|n

)
Ib
a|b

]
Θ̂b|n,M− Θ̂b|n


k

(3.78)

The measurement matrix takes the following form.

Hk =


03 03 −I3 03 03

03 −I3 03 03 03

−I3 03 03 03 03


k

(3.79)

Moreover, the measurement covariance matrix is established by combining the co-

variance matrices associated with the attitude estimation, RM,k and GNSS.

Rk =

RG 0

0 RM,k

 (3.80)

Incomplete Measurement:

The complete measurement vector will not be available for every correction phase

since the attitude and GNSS measurements are delivered at different rates. To avoid

waiting a new measurement supplied by one information source for the other one to
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complete entire vector or using the old measurement for multiple times, the measure-

ment model is adapted according to the type of available update.

If new GNSS and attitude measurements are both available at the same time the inte-

grating filter uses (3.79) and (3.80).

If only GNSS data is received, the filter makes use of (3.72) (3.73).

In case of the appearance of an unaccompanied attitude measurement, the model is

modified as below.

δzn−
k =

(
δΘb|n,k

)
=
(

Θ̂b|n,M− Θ̂b|n

)
k

(3.81)

Hk =
[
−I3 03 03 03 03

]
k

(3.82)

Rk = RM,k (3.83)

3.6 Estimation Algorithm

In this study, two distinct estimation algorithms, one to produce attitude estima-

tion and the other to integrate information coming from multiple sources, are im-

plemented. Both of the algorithms are based on the Kalman Filter. Although they

slightly vary in application, their main structures, which will simply be introduced in

this section, are substantially identical.

The Kalman Filter estimates the states of a linear dynamic system from a series of

noisy measurement in an iterative and efficient manner. It propagates the states and

error covariances according to the model of the system. Subsequently, exploiting the

measurements, measurement accuracy information and predicted states, it revises the

states and covariances. The filter steps will briefly be provided below while the details

of the derivation can be found in [38].

wk and vk are system and measurement noises; Qk and Rk are corresponding covari-

ance matrices, respectively.

xk+1 = Φkxk +wk

yk = Hkxk + vk

63



Initialization of the filter.

x̂0 = E[x0]

P0 = E
[
(x0−E[x0]) (x0−E[x0])

T
]

Kk is the Kalman gain and zk is denoted for the measurement.

x̂−k+1 = Φkx̂+k

P−k+1 = ΦkP+
k Φ

T
k +Qk

Kk+1 = P−k+1HT
k+1
(
Hk+1P−k+1HT

k+1 +Rk+1
)−1

x̂+k+1 = x̂−k+1 +Kk+1
(
zk+1−Hk+1x̂−k+1

)
P+

k+1 = (I−Kk+1Hk+1)P−k+1

3.7 Simulation Results

In this section, navigation solutions corresponding to the same example of motion of a

body are obtained by using three different integration techniques which are previously

introduced. The first architecture integrates GNSS and distinct INS solutions in an

open loop fashion, and it is symbolized by Arc1. An external estimate of attitude is

not supplied. The second architecture, Arc2, differs from the first one as a result of

being in closed loop configuration. No additional source of information is available

for this method. The third architecture, Arc3, is again implemented in closed loop

structure whereas it also receives attitude estimations as measurement.

To be able to investigate and compare the performances of navigation algorithms,

sensor measurements that are consistent with the given models of inertial sensors are

produced first. Moreover, the measurements are aimed to be rendered compatible

with those collected via the components of autopilot card employed in experimental

studies. Consequently, the following regulations are considered by taking the data

sheets of the sensors into account:

• The output rate of 100 Hz is chosen for IMU and magnetometer while the

velocity and position solutions are provided at 5 Hz by GNSS,
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• Scale factor errors of accelerometer, gyroscope and magnetometer are ±3 %,

±3 % and ±1 %, respectively.

• Cross coupling errors of accelerometer, gyroscope and magnetometer are ±2

%, ±2 % and ±1 %, respectively.

• Bias values are initialized by the uniform distributions of U(−0.491,0.491)

m/sec2 and U(−0.589,0.589) °/sec for all three axes of accelerometer and

gyroscope, respectively.

• The random noises of accelerometer, gyroscope and magnetometer are repre-

sented by rate noise spectral densities of 0.0034 m/sec2/
√

Hz,

0.0014◦/sec/
√

Hz, 5 mgauss/
√

Hz, respectively.

• The horizontal position accuracy of GNSS is about 2.5 m when it is connected

to GPS satellite vehicles.

The accelerometer and gyroscope measurements are exemplified in 3.6 and 3.7.
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Figure 3.6: The true and measured accelerations in body frame.
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Figure 3.7: The true and measured angular rates in body frame.

The navigation solution is obtained in local navigation frame which is a NED frame.

The simulated motion starts from Cartesian position of (0, 0, 0) with respect to local

frame, and draws a line for a while, then exhibits a S curve as demonstrated in Figure

3.8. Throughout the motion, the altitude and accordingly z position is fixed at zero

as represented by Figure 3.9 since the vessel is expected to not drift apart from the

surface of the water. Furthermore, the only angular motion appears in yaw axis where

roll and pitch axes are constant at 0◦ as in Figure 3.11. Once the details of the motion

are revealed, the sensor measurements are produced considering the above mentioned

error models. The corresponding GNSS position and velocity solutions are given in

Figures 3.12 and 3.13.

Due to the fact that there is no established feedback loop in Arc1, an independent

navigation solution of INS given by Figures 3.14, 3.15 and 3.16 emerges. The esti-

mates and real values of the errors in this solution are illustrated by Figure 3.17, 3.18

and 3.19. Taking those errors into consideration, Arc1 forms the corrected navigation

solution as in Figures 3.20, 3.21 and 3.22. The errors in the corrected navigation so-

lution are showed in Figures 3.23, 3.24 and 3.25. The estimated accelerometer and
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gyroscope biases by the error-state Kalman filter are represented by Figures 3.26 and

3.27, respectively.

The navigation solution of Arc2 and the errors in this solution that cannot be com-

pensated by the algorithm are depicted by Figures 3.28, 3.29, 3.30, 3.31, 3.32 and

3.33.

The navigation solution of Arc3 and the errors in this solution that cannot be com-

pensated by the algorithm are presented by Figures 3.34, 3.35, 3.36, 3.37, 3.38 and

3.39.

It is observed that in Arc1, the solution of INS drifts with time due to the biases and

random noises of inertial sensors. However, it is able to track the true values by

estimating this error of INS. The estimated accelerometer bias values in three axes

converge to (−0.10,0.20,−0.17)m/sec2 in order. Expected values of the true biases

are calculated to be equal to (−0.086,0.19,−0.17)m/sec2. Consequently, these are

estimated quite effectively. On the other hand, the estimation values of gyroscope

biases do not converge to a significant point because of the absence of an external

attitude or angular rate measurement in this structure. Furthermore, the same defi-

ciency results in the divergence of Euler angles as there is no source of information

to correct gyroscope errors.

Arc2 exhibits quite improved error performance compared to Arc1 without using any

additional sensor. Nevertheless, it is also not capable of tracking the true value of

Euler angles.

The main difference between the performances of Arc3 and Arc2 is that the errors in

the Euler angle estimates of the former one are about zero because it makes use of

angle estimates obtained from magnetometer measurements.

3.40 illustrates the trajectories obtained by three different integrated navigation archi-

tectures. Moreover, the RMS errors in position, velocity and attitude of the methods

are described in Table 3.1, 3.2 and 3.3.
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Figure 3.8: Simulated motion in X-Y coordinates of local navigation frame.
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Figure 3.9: The true Cartesian positions in local navigation frame.
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Figure 3.10: The true linear velocities in local navigation frame.
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Figure 3.11: The true attitude of the body with respect to local navigation frame.
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Figure 3.12: GNSS indicated position of the body local navigation frame.
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Figure 3.13: GNSS indicated linear velocity of the body local navigation frame.
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Figure 3.14: The open loop INS indicated position in local navigation frame.
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Figure 3.15: The open loop INS indicated velocity in local navigation frame.
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Figure 3.16: The open loop INS indicated attitude w.r.t. local navigation frame.
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Figure 3.17: The real and estimated position errors of INS in Arc1.
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Figure 3.18: The real and estimated velocity errors of INS in Arc1.
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Figure 3.19: The real and estimated attitude errors of INS in Arc1.
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Figure 3.20: Position solution in local navigation frame by Arc1.
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Figure 3.21: Velocity solution in local navigation frame by Arc1.
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Figure 3.22: Attitude solution w.r.t. local navigation frame by Arc1.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Errors in ARC1 Position Solution

Time(sec)

δX
(m

)

0 5 10 15 20 25 30

−0.5

0

0.5

Time(sec)

δY
(m

)

0 5 10 15 20 25 30

−0.5

0

0.5

Time(sec)

δZ
(m

)

Figure 3.23: Errors in position solution of Arc1 in local navigation frame.
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Figure 3.24: Errors in velocity solution of Arc1 in local navigation frame.
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Figure 3.25: Errors in attitude solution of Arc1 w.r.t. local navigation frame.
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Figure 3.26: Estimated accelerometer biases by Arc1.
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Figure 3.27: Estimated gyroscope biases by Arc1.
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Figure 3.28: Position solution in local navigation frame by Arc2.
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Figure 3.29: Velocity solution in local navigation frame by Arc2.
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Figure 3.30: Attitude solution w.r.t. local navigation frame by Arc2.
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Figure 3.31: Errors in position solution of Arc2 in local navigation frame.
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Figure 3.32: Errors in velocity solution of Arc2 in local navigation frame.
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Figure 3.33: Errors in attitude solution of Arc2 w.r.t. local navigation frame.
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Figure 3.34: Position solution in local navigation frame by Arc3.
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Figure 3.35: Velocity solution in local navigation frame by Arc3.
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Figure 3.36: Attitude solution w.r.t. local navigation frame by Arc3.
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Figure 3.37: Errors in position solution of Arc3 in local navigation frame.
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Figure 3.38: Errors in velocity solution of Arc3 in local navigation frame.
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Figure 3.39: Errors in attitude solution of Arc3 w.r.t. local navigation frame.
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Figure 3.40: Comparison of the trajectories obtained by three integration architec-
tures.

Table 3.1: RMS position errors in local navigation frame.

RMS Position Error X Y Z

Arc1 0.334 0.274 0.297
Arc2 0.181 0.195 0.262
Arc3 0.179 0.190 0.260

Table 3.2: RMS velocity errors in local navigation frame.

RMS Velocity Error vx vy vz

Arc1 0.176 0.162 0.160
Arc2 0.100 0.096 0.095
Arc3 0.096 0.095 0.090
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Table 3.3: RMS attitude errors w.r.t. local navigation frame.

RMS Attitude Error φ θ ψ

Arc1 3.36 5.36 14.54
Arc2 1.84 2.28 4.34
Arc3 0.37 0.36 0.32

3.8 Experimental Results

The navigation algorithm, previously represented by Arc3, implementing loosely cou-

pled, closed loop integration of INS, GNSS solutions and attitude estimates is also

tested with real measurements collected via Pixhawk autopilot card. It is aimed to

exploit the integrated navigation solutions that are obtained by experiments in system

identification process of the model boat. For this purpose, numerous tests are per-

formed in an indoor test pool and Yalıncak Lake located in the campus of METU.

Three examples will be introduced in this section.

3.8.1 Indoor Tests

To be able to identify the angular damping parameters of the model boat, the ex-

periments are made in an indoor pool which provides controlled test conditions by

eliminating environmental disturbances. Throughout experimentation process, the

GNSS is not able to connect any satellite vehicle as depicted in Figure 3.41. Thus,

the integrated position and velocity solutions are not corrected with measurements

and drifted away as given in Figures 3.42 and 3.43. As only angular states are investi-

gated in this case, it does not pose a problem. The attitude solution of the navigation

algorithm and the estimated attitude are given in Figure 3.44. In this experiment, the

vessel is disturbed on its roll axis on purpose, and the damping characteristic is exam-

ined. The noise content of estimates is seemed to be compensated by the navigation

algorithm.
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Figure 3.41: The number of available GNSS satellites during the indoor test.
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Figure 3.42: X-Position solutions in local navigation frame during indoor test.
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Figure 3.43: Y-Position solutions in local navigation frame during indoor test.
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Figure 3.44: Comparison of attitude solution with estimates.
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3.8.2 Outdoor Tests

The outdoor experiments are performed in the Yalıncak Lake facilities of METU. To

be able to identify all parameters of the vessel as accurate as possible, tests are carried

out along various types of trajectories aiming to separate the subparts of the overall

mathematical model. All of the trajectories are started from the end of the pier. In

this section, one will be informed about two categories of the experiments.

The details of the linear motion test are given in Figures 3.45 to 3.55. The circu-

lar motion test is depicted by Figures 3.56 to 3.66. During the tests, there was no

available reference for the true values of states. Precisely calibrated optical or acous-

tic systems could have been employed as models to be compared with the Kalman

estimates; however, they were not preferred due to their high costs.

Although the motion in both cases starts from the end of the pier, an offset is detected

as seen in Figures 3.45 and 3.56. This is caused by the GNSS position solution which

is the only source of position information in integration algorithm. Nonetheless, this

does not result in any discrepancy in the results as long as the origin of the local frame

is fixed to that shifted starting point.

The GNSS position solutions are observed to be nonuniform in time as illustrated in

Figures 3.50, 3.52, 3.61 and 3.63. This is resulted from the inefficiency of the data

logger application employed in the autopilot card although all of the functions are

already assured to be executed periodically in real time.

The number of the satellites seen by the GNSS antenna is determined to be 9 for

all the time as given in Figures 3.48 and 3.59. Thus, the system does not enter an

ambiguity state during experimentation. This also clarifies the low noise levels on

position solution of GNSS as detailed in 3.46 and 3.57.

The integration of inertial sensors improves the update rates of navigation solution

and fills the gaps between successive GNSS data as shown in Figures 3.47, 3.50, 3.52,

3.58, 3.61 and 3.63. Additionally, combination of inertial sensors, GNSS solution

and attitude estimates provides a navigation solution with sufficient bandwidth for

possible control applications [39].
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Linear Motion Test:

Figure 3.45: Top view of the linear motion captured by Google Earth software.
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Figure 3.46: Linear trajectories in X-Y plane by integrated navigation and GNSS.
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Figure 3.47: Linear trajectories in X-Y plane in four subintervals.
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Figure 3.48: The number of available GNSS satellites during the linear motion test.
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Figure 3.49: X position in local navigation frame by integrated navigation and GNSS
through linear motion test.

6.4 6.6 6.8 7 7.2 7.4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Details of X Position Solution in Interval 1

Time(sec)

x 
P

os
iti

on
(m

)

 

 

GNNS Solution
Integrated Navigation Solution

15 15.2 15.4 15.6 15.8 16 16.2

10.5

11

11.5

12

Details of X Position Solution in Interval 2

Time(sec)

x 
P

os
iti

on
(m

)

Figure 3.50: A zoomed sight of X position by integrated navigation and GNSS
through linear motion test.
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Figure 3.51: Y position in local navigation frame by integrated navigation and GNSS
through linear motion test.
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Figure 3.52: A zoomed sight of Y position by integrated navigation and GNSS
through linear motion test.
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Figure 3.53: Z position in local navigation frame by integrated navigation and GNSS
through linear motion test.
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Figure 3.54: Velocity solution in local navigation frame by integrated navigation and
GNSS through linear motion test.
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Figure 3.55: Attitude solution w.r.t. local navigation frame indicated by integrated
navigation through linear motion test.

Circular Motion Test:

Figure 3.56: Top view of the circular motion captured by Google Earth software.
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Figure 3.57: Circular trajectories in X-Y plane by integrated navigation and GNSS.
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Figure 3.58: Circular trajectories in X-Y plane in four subintervals.
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Figure 3.59: The number of available GNSS satellites during the circular motion test.
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Figure 3.60: X position in local navigation frame by integrated navigation and GNSS
through circular motion test.

96



13.5 14 14.5 15 15.5

6.5

7

7.5

8

8.5

Details of X Position Solution in Interval 1

Time(sec)

x 
P

os
iti

on
(m

)

 

 

GNNS Solution
Integrated Navigation Solution

42.4 42.5 42.6 42.7 42.8 42.9 43 43.1

18

18.2

18.4

18.6

18.8

19

Details of X Position Solution in Interval 2

Time(sec)

x 
P

os
iti

on
(m

)

Figure 3.61: A zoomed sight of X position by integrated navigation and GNSS
through circular motion test.

0 10 20 30 40 50 60
−25

−20

−15

−10

−5

0

5
Y Position Resolved in Local Frame(m)

Time(sec)

Y
 P

os
iti

on
(m

)

 

 

GNNS Solution
Integrated Navigation Solution

Figure 3.62: Y position in local navigation frame by integrated navigation and GNSS
through circular motion test.
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Figure 3.63: A zoomed sight of Y position by integrated navigation and GNSS
through circular motion test.
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Figure 3.64: Z position in local navigation frame by integrated navigation and GNSS
through circular motion test.
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Figure 3.65: Velocity solution in local navigation frame by integrated navigation and
GNSS through circular motion test.
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CHAPTER 4

EXPERIMENTAL SETUP

4.1 Introduction

Up to now, the progress of this study can be summarized as follows: The mathemat-

ical model of an unmanned sea surface vehicle is built at first. Later, the navigation

algorithm is constructed to prepare promising data sets. Afterwards, a model boat is

integrated with the electrical equipments and the driving system to be able to real-

ize the controlled motion of the vessel. The measurements collected from the boat

are first processed by the navigation algorithm, and then used to identify the math-

ematical parameters of the boat as described in [6]. The details of the software and

hardware employed through the experimentation will be presented in this chapter.

In this study, a model boat namely Pacific Islander Tugboat demonstrated in Fig-

ure 4.1 is employed. A ready-to-use, advanced autopilot card, Pixhawk, which is

mounted in the place of the wheel house of the boat is utilized. A software embedded

on the autopilot card is developed for communication with the ground station, driving

the motors in accordance with the commands taken from the ground, collecting and

storing the sensor readings during motion. Moreover, another software running on a

PC, called ground station, is constructed to send thruster commands to the vehicle by

using a specific communication protocol named Micro Air Vehicle Link (MAVLink).

This program is implemented on MATLAB/Simulink environment. It is able to trans-

mit commands for state transitions and the amount of thrusts to be applied by each

propeller by making use of a serial communication channel over a wireless module.
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Figure 4.1: Pacific Islander Tugboat.

In this chapter, the setup is introduced by dividing it into two main sections: hardware

and software. For instance, the hardware components and peripherals of the autopilot

card will be expressed in the former section while the architecture of the software will

be described in the latter one.

4.2 The Hardware Utilized in the Experiments

4.2.1 The Model Boat, Driving System and Batteries

The model Pacific Islander Tugboat represented is a highly detailed model of the real

tugboat that is scaled by 1:40. It is made of composite rendering it quite resistant to

possible crushes. The length is about 900 mm, the beam is 29 mm and the height is

around 58 mm. Excluding the electronics, ballast weights and batteries, the weight

is about 9.5 kg. It is delivered with two brushed DC motors and electronic speed

controllers (ESC) which are later replaced by waterproof and high power equivalents.

The vessel has two distinct, large, 4 bladed propellers made of brass whereby the agile
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maneuvers become feasible. In addition, dual Kort Nozzles changing the direction of

thrust exerted on the water are included although they are fixed and not functional

associated with the rationale of this study. The propellers of the marine craft are

depicted in Figure 4.2.

Figure 4.2: Two independent propellers of the model boat, [5].

The drive system comprises of two separated subparts each containing a brushless DC

motor and an ESC to power the motor. Although the boat is already dispensed with

a ready to use drive system with brushed DC motors and ESCs, these are replaced

with water-proof, high-power, and brushless counterparts due to reliability, mainte-

nance and performance concerns. The contemporary Seaking-120 A-V3 ESC and

3660SL 3180KV brushless DC motor are illustrated by Figures 4.3 and 4.4, respec-

tively. Both are produced by Hobbywing Technology. The ESC is able to provide 120

A continuous and up to 720 A peak current. As can be seen in the figures, the motors

feature pre-installed water cooling jackets, and both motors and ESCs are operated

with water cooling systems.
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Figure 4.3: The current ESC utilized in the boat.

Figure 4.4: The current DC Motor utilized in the boat.

The ESCs essentially take pulse-width modulation (PWM) signals from the Pixhawk

and control the speed of the propellers. The PWM signal basically corresponds to a

constant voltage signal, the level of which varies related to the duty cycle. In other

words, the motion of the vessel is controlled by arranging the pulse widths of two

PWM signals. Besides, the relation between the applied voltage and the magnitude

of output thrust is obtained as described in Figure 4.5. By doing so, the commands

can be arranged to represent the magnitude of thrust vector.
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Figure 4.5: Thrust-voltage characteristic of the drive system, [6].

A 4000 mAh, 8.4 V lithium-polymer (LiPo) battery consisting of two cells is selected

as the power source of the entire system. It is directly connected to the ESCs, motors

and the pump of the water cooling system. Furthermore, a voltage regulator is em-

ployed to service constant 5 V to the Pixhawk. All of the sensors are attached to the

Pixhawk and energized by its support.

4.2.2 The Autopilot Card and Sensors

In this study, a Pixhawk autopilot card represented by Figure 4.6 is acquired owing to

its being ready to use at reasonable price, customizable, open-source, open-hardware,

and efficient with a real-time operating system (RTOS). It is provided as a complete

system with its software and hardware and can easily be programmed by using C/C++

via an integrated development environment such as Eclipse.
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Figure 4.6: Pixhawk autopilot card, [6].

Pixhawk basically consists of a Flight Management Unit (FMU) and an Input/Output

(IO) module. The FMU depicted in Figure 4.7 contains 192 KB SRAM, 1024 KB

flash memory, a USB Bootloader and a 168 Mhz Cortex-M4F combining a 32 bit mi-

crocontroller, a Digital Signal Processor (DSP) and a Floating Point Unit (FPU). It has

a microSD slot to satisfy needs for extra memory. It offers the following interfaces:

UART, I2C, SPI and CAN. There are four different sensor units on FMU: a MPU-

6000 by Invensense including a 3 axis accelerometer and a 3 axis gyro; a L3GD20

3 axis gyro by ST Microelectronics; a LSM303D, combining a 3 axis accelerome-

ter and a magnetometer by ST Microelectronics and a MS5611, pressure sensor by

Measurement Specialities INC. As previously mentioned, gyroscopes measure angu-

lar rate information and the accelerometers output specific force measurements. Two

pairs of the sensors are included in FMU considering emergency cases as these are

of vital importance during an operation based on the measurements. The autopilot

algorithms are basically realized on the FMU. The IO module is designed as a carrier

board to the FMU such that it provides interfaces and a stable 5V power. It includes a

24 Mhz Cortez-M3 failsafe microcontroller, 8 high speed PWM outputs, 2 solid state

relays and multiple power outputs for the peripherals.
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Figure 4.7: An illustration of Pixhawk-FMU, [7].

Figure 4.8: An illustration of Pixhawk-IO module, [7].

Figure 4.9 demonstrates the peripherals connected to Pixhawk. In this figure, the top

left and right units are receptively the safety switch with an internal LED and the

buzzer. These serve the purpose of informing the outside world about the instanta-

neous state of the software, whether there exists an emergency case or not. Besides,

the safety switch activates the PWM outputs. The below right component contains a

u-blox NEO-7 GPS module with a compass. The update rate of the GPS is about 5

Hz. Finally, the 3DR telemetry radio is located at the bottom left corner of the figure.

It creates a connection with the ground station. It is specialized for working with

MAVLink packets and allows ranges up to several kilometers.
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Figure 4.9: A diagram of the peripherals, [8].

4.3 The Developed Softwares

In this section, the high level software architecture of Pixhawk is briefly introduced

at first, then the developed programs running on the autopilot and the ground station

are presented.

4.3.1 Pixhawk Software

Pixhawk utilizes a high level architecture consisting of nodes using semantic channels

such as ’attitude’ or ’position’ to broadcast the system state in a messaging network

as described in [7]. The organization is divided into the following four major layers

as illustrated by Figure 4.10/:

• Application Programming Interface (API) of applications,

• Application framework,

• Libraries

• Operating system.
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The API of applications is designed for application developers. The application

framework realizes main applications called nodes, establishing the core for oper-

ation controls. All of the system libraries are included in libraries layer. Finally,

hardware drivers, networking and failsafe systems are embedded into operating sys-

tem layer [7].

Pixhawk uses a publish-subscribe pattern object request broker to maintain com-

munication between processes/applications. To illustrate, a special application col-

lects measurements from various sensors into a packet and is required to transmit the

packet to the receivers with minimum latency. For this purpose, the nodes exchange

messages over buses, namely topics. That is to say, an application takes the necessary

message for its process from related bus/topic, and it also transmits a message to the

outside by publishing it on a topic. In short, the nodes does not know with whom they

are communicating. The locking issues are prevented by this method.

In this study, the Pixhawk is basically intended for driving the DC motors in accor-

dance with the thrust commands received from the ground station and recording the

measurements of all sensors into a log file. To that end, an application is developed

with two main states, namely, pre-operational mode and operational mode. When the

software is in pre-operational mode, it collects all sensor data, communicates with the

base station over the telemetry device; however, it is not able to power the engines.

This mode is essentially aimed for safety issues while the vessel is still located on

land for debug purposes. Besides, the sensor calibration procedures for accelerome-

ters and gyroscopes may also be performed in this state since the boat is guarantied to

be stationary in the absence of disturbances. The operational mode enables the PWM

signals to be applied to related channels. The application handles the communication

over topics as formerly described.

4.3.2 The Ground Station Software

The software running on the ground station is designed to communicate with the

Pixhawk over the telemetry device. MAVLink which is a header only message library

first released early 2009 by Lorenz Meier is benefited as the communication protocol

[40]. The structure of a MAVLink message can be illustrated as follows: first 6
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bytes are used for the header, and these are followed by variable number of bytes

representing transferred information, called payload; the last 2 bytes are reserved for

the checksum. Figure 4.11 demonstrates the details of the message. The ground

station software is implemented by using MATLAB/Simulink environment due to its

being convenient, stable and easy-to-use.

Figure 4.10: Pixhawk high-level software architecture, [7].
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Figure 4.11: Structure of a MAVLink Message, [9].
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CHAPTER 5

AUTOPILOT DESIGN

5.1 Introduction

In this chapter, several autopilots to control the motion of a sea surface vehicle are

examined. The design procedure of the autopilots is based on the introduced mathe-

matical model of a marine vessel. Furthermore, the parameter set of the model Pacific

Islander Tug Boat which is identified by the study of Erünsal, [6], is also taken into

account in the design process. To that end, Linear Quadratic Regulator (LQR) and

Feedback Linearization controllers are utilized in the autopilot algorithm. Therefore,

both a linear and an advanced nonlinear types of controllers are studied.

Disturbances rooted in the surroundings of the vehicle are set to be zero throughout

the autopilot design, whereas the disturbance rejection characteristics of the algo-

rithms are also presented in the section reserved for the acquired results. As stated in

the Experimental Setup chapter, there are two actuators in the model, namely, left and

right thrusters. The ultimate goal of the controllers is to force the vehicle to reach the

desired surge velocity and yaw positions which are set by an upper level controller.

For this purpose, the magnitudes of thrusts to be applied by left and right thruster are

calculated.

In this chapter, the fundamentals for the design of LQR controller are familiarized at

first. Then, the theory and implementation details of LQR are expressed. Afterwards,

the basis of FL controller design is discussed, and the implementation is enlarged

upon. Finally, simulation results obtained by both of the controllers are clarified and

compared.
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5.2 Autopilot Design with Linear Quadratic Regulator (LQR) Controller

In this section, the mathematical tools, which are essential for understanding the the-

ory of LQR are presented at first. Afterwards, the problem of linear quadratic regula-

tion is introduced, and the optimal control law for this problem is attained under cer-

tain assumptions. Next, the command tracking problem of the marine vessel system

is transformed into a regulation problem via augmentation of the state vector. Finally,

the controller rooted in the previous examinations is designed for the platform.

5.2.1 Fundamentals for LQR Design

5.2.1.1 Linearization

Recall the derived mathematical model of a marine craft given by (5.1) and (5.2). The

environmental force and torque components will be neglected in (5.2) as described

in [32].

η̇ = JΘv (5.1)

v̇+C(v) = τd + τg + τt + τa + τc (5.2)

where

η =
[
X Y Z φ θ ψ

]T

v =
[
u v w p q r

]T

The above nonlinear model is required to be linearized around determined potential

operating points to be able to make use of LQR controllers. Subsequently, the plant

is to be presented in the classical state space representation. During this procedure,

environmental effects (i.e., wind, water current) are set to zero, and the effect of air

drag is supposed to occur only from velocity of the vehicle. Equation (5.3) is the
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continuous time linear representation of the system model.

ẋ = Ax+Bu, where x =

η

v

 (5.3)

The state vector, x, including positions, orientations resolved in Earth fixed frame

and linear, angular velocities resolved in the body fixed frame is in IR12. Therefore,

the state transition matrix, A, appears to be a 12-by-12 matrix. The input vector, u

comprising of the magnitudes of thrusts applied by left and right propellers in order,

is in IR2. Note that, only the magnitudes are included in u as two scalars. As a result,

B is a 12-by-2 matrix and formed in such a way that the first and second columns

correspond to the left and right thrusters, respectively.

The nonlinear model referring to the above mentioned state vector can be written as

given in (5.4).

ẋ = f (x,u) (5.4)

After that, a linear approximation of the model around an operation point (x0,u0) can

be found as illustrated in (5.5) and (5.6). Meanwhile, the linearization points are not

necessarily the equilibrium points, i.e., f (x0,u0) 6= 0.

A =
∂ f (x,u)

∂x

∣∣∣∣
(x0,u0)

(5.5)

B =
∂ f (x,u)

∂u

∣∣∣∣
(x0,u0)

(5.6)

The linearization procedure is carried out for the possible pairs of surge speeds and

yaw positions which are respectively selected from the following sets:

u = {0.1,1.1,2.1,3.1}, ψ =
{

0, 1
2π,π, 3

2π
}

.
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5.2.1.2 Finding Controllable Subspaces of the Representation

The representation of the plant is required to be completely controllable to be able to

apply LQR controller [41]. For that reason, the controllability of (A,B) pairs is to be

inspected.

Let the system be defined as in (5.7),

ẋ = Ax+Bu

y = Cx+Du (5.7)

where the state vector, x, is n-by-1; A is a n-by-n matrix; input vector, u, is m-by-1; B

is a n-by-m matrix. The output vector, y, is r-by-1. Accordingly, C and D are matrices

whose dimensions are respectively r-by-n and r-by-m.

The controllability matrix Co is defined in (5.8).

Co =
[

B AB A2B . . . An−1B
]

(5.8)

If the rank of the controllability matrix is not equal to n, the system is said to be

not completely controllable. Thereafter, the subspace with the property of complete

controllability is to be found at each of the linearization points. To be able to place

the poles of the system into desired locations, the controllable subspaces are found by

using the Staircase Algorithm [42]:

Let x̄ = Tx be the new state vector. Then, the representation immediately becomes:

˙̄x = Āx̄+ B̄u

y = C̄x̄ (5.9)

where Ā = TATT , B̄ = TB and C̄ = CT. Besides, (5.10) reveals the internal structures
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of recently obtained matrices.

Ā =

 Auc 0

A21 Ac

 B̄ =

 0

Bc

 C̄ =
[

Cuc Cc

]
(5.10)

The pair, (Ac,Bc) is assured to be controllable, and it is noted that the transfer func-

tions of the systems represented by (5.7) and (5.9) are identical as depicted in (5.11).

C̄
(
sI− Ā

)−1 B̄ = C(sI−A)−1 B (5.11)

The controllable subspaces are acquired by utilizing this method for all of the lin-

earization points.

5.2.1.3 The Choice of the Sample Time for Discrete Autopilot

The autopilots designed in this section are desired to be realized on a digital autopilot

card. Therefore, a proper sample time is to be determined. The selection of the sample

time is performed by taking the phase margins of the linearized models of the system

into consideration. In other words, the response times are calculated by applying

reference signals for all points. The maximum of the response times is found to be

equal to 0.25 sec [6]. Hence, the sampling time should be smaller than one fifth of

this value as a rule of thumb. Eventually, the sampling frequency of the controller is

determined to be 50 Hz by adding some safety margin.

5.2.2 LQR Theory

A short summary of the optimal control theory is given in this section.

Consider the continuous time system in (5.7). The linear quadratic cost function

defined in (5.12) is to be minimized with the purpose of regulation of this system.

J =
1
2

xT (t f )Hx(t f )+
1
2

∫ t f

t0

[
xT (t)Qx(t)+uT (t)Ru(t)

]
dt (5.12)
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J is the general performance index for the linear regulation problems. t f is final time,

H and Q are real, positive semi definite and symmetric matrices. R is a real, positive

definite and symmetric matrix. It is assumed that there is no constraint on the input

and state vectors. By minimizing (5.12), the state vector is inherently desired to be

close to the origin in moderation of the control signal.

Subsequently, the Hamiltonian can be written as in (5.13),

H(x(t),u(t),P(t)) =
1
2

xT Qx(t)+
1
2

uT (t)Ru(t)+P(t) [Ax(t)+Bu(t)] (5.13)

where P(t) is called co-state vector.

The feature of optimality implies (5.14) and (5.15).

Ṗ(t) = −∂H
∂x

=−Qx(t)−AT P(t) (5.14)

∂H
∂u

= 0 = RuT (t)+BT PT (t) (5.15)

By using (5.15), the input vector is formalized as in (5.16).

u(t) =−R−1BT P(t) (5.16)

Note that since R is chosen to be positive definite, it is also invertible.

The substitution of (5.16) into (5.7) ends up with (5.17).

ẋ = Ax−BR−1BT P(t) (5.17)

The boundary condition of P(t) is given in (2.22):

P(t f ) = Hx(t f ) (5.18)
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The relation between co-state and state vectors is found as in (5.19) by taking the

boundary condition into consideration [41].

P(t) = K(t)x(t) (5.19)

By substituting (5.19) into (5.16), the input is rewritten.

u(t) =−BR−1K(t)x(t) (5.20)

Note that K(t) depends on t f , and P(t) is a linear function of the state vector.

Take the derivative of (5.19):

Ṗ(t) = K̇(t)x(t)+K(t)ẋ(t) (5.21)

When (5.7), (5.14), (5.19) and (5.20) are put into (5.21), the following equations are

attained.

−Qx(t)−AT K(t)x(t) = K̇(t)x(t)+K(t)Ax(t)−K(t)BR−1BT K(t)x(t) (5.22)

−Q−AT K(t) = K̇(t)+K(t)A−K(t)BR−1BT K(t) (5.23)

K can be solved with the boundary condition, K(t f ) = H. It is a Riccati type differen-

tial equation. Since K is an n-by-n, symmetric matrix, n(n+1)/2 differential equations

are to be solved [41]. Kalman [43] has shown that if

(i) The representation is completely controllable,

(ii) H = 0

(iii) A, B, R and Q are constant matrices,

then, K appears to be constant as t→ t f implying that the optimal control law for the

mentioned infinite-duration regulation problem is stationary.
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In that case, for fixed K, i.e., K̇(t) = 0, the Riccati equation takes the following form:

0 = Q+AT K+KA−KBR−1BT K (5.24)

K matrices are calculated at every linearization point by solving the above equation.

5.2.3 LQR Design for Tracking Problems

Up to now, optimal control theory of linear regulation problem is introduced. How-

ever, the desired value of the state vector is not necessarily zero for the marine craft

system. The vessel is commanded to track reference signals consisting of specified

surge speed and yaw position commands.

To apply LQR controller on a tracking problem, the state vector is augmented by

the integral of errors between the reference signal, r(t) and the states desired to be

controlled.

In other words, a tracking problem is transformed into a regulation one by involving

the reference in augmented integral states [2].

The system developed up to now is indicated by 5.25.

ẋ = Ax+Bu (5.25)

y = Cx (5.26)

The vector, z, is defined as:

ż = r(t)− y = r(t)−Cx (5.27)

where r(t) is the reference signal, comprising of the desired yaw position and surge

velocity to be followed by the system.

The state vector is rearranged to include z.
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xaug =

 x

z

 (5.28)

ẋaug =

 ẋ

ż

=

 A 0

−C 0

 x

z

+
 B

0

u+

 0

1

r (5.29)

Let Aaug =

 A 0

−C 0

, Baug =

 B

0

, and denote the desired values of states and

inputs respectively by xaug,d , and ud . Thereby, (5.29) is rewritten in the following

formula.

ẋaug,d =

 ẋd

żd

= Aaugxaug,d +Baugud +

 0

1

r (5.30)

The desired values are subtracted from the instantaneous state values while r is as-

sumed to be constant, r(t) = r.

ẋaug− ẋaug,d =

 ẋ− ẋd

ż− żd

= Aaug

 x−xd

z− zd

+Baug(u−ud) (5.31)

The state error, e, and the input error, v, are described as:

e = xaug−xaug,d, v = u−ud (5.32)

Thereafter, the notation of (5.31) is simplified.

ė = Aauge+Baugv (5.33)

Finally, the problem is transformed into regulation by (5.33).

Let the optimal control law, v?, for the above system exist.

v? =−Kauge (5.34)
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The following equation is acquired by putting (5.34) into (5.33).

ė = (Aaug−BaugKaug)e (5.35)

Kaug can be calculated with the method expressed in the previous section.

The LQR gain, Kaug, is partitioned.

Kaug =
[

K1 K2

]
(5.36)

Thus, v takes the below form:

v =−
[

K1 K2

] x−xd

z− zd

=−K1(x−xd)−K2(z− zd) (5.37)

(5.38) is attained by combining (5.32) and (5.37) while ud and zd are taken as zero.

u =−K1(x−xd)−K2z (5.38)

K2 can be symbolized by −KI in regard to z standing for the integral of the error.

u =−K1 (x−xd)+KIz (5.39)

where KI =−K2.

5.2.4 Implementation of LQR Controller

In the preceding section, theoretical basis for obtaining the proportional and integral

coefficients of the controller is already provided. In this section, the implementation

of the LQR controller in MATLAB environment is briefly discussed.

At first, the nonlinear equations of the system are linearized by a ready to use function,

‘jacobian’, in MATLAB. Thus, A and B matrices are attained. Next, the state vector
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is augmented by appending the error information to convert the tracking problem into

regulation. Thereafter, the corresponding state and input values are substituted into

the matrices at each linearization point, and the procedure is ended up with (A,B)

pairs where A is 12-by-12 and B is 12-by-2. Consequently, the augmented pairs,

(Aaug,Baug), are also determined where Aaug is 14-by-14 and Baug is 14-by-2. Like-

wise, C causing the surge speed and yaw position appear at the output, is a constant

2-by-14 matrix for all of the linearization points.

After that, Q and R matrices are established. During the selection of these matrices,

the natural limits originated from the physical characteristics of the actuators are taken

into account. It is an iterative process in which the matrices are recursively revised

after the assessment of time response of the closed loop system related to the certain

reference signals.

At that time, the controllable subspaces of the plant are to be found out. The trans-

formation matrices, T, are required to project the cost matrices onto the controllable

subspaces. Subsequently, controller gains are obtained by solving the continuous-

time differential Riccati equations with ‘care’ function in MATLAB. The last step is

to transform the Kalman gains back into the original spaces. The controller coeffi-

cients are acquired after repeating the above steps for all of the linearization points.

5.2.4.1 Combining the Outputs of the Controllers

So far, the system is linearized around various points, and the controller design is

accomplished for these points. Consequently, the control input to be fed to the original

nonlinear system will be produced by combination of the controller outputs which is

calculated in a weighted manner.

In equation (5.40), u refers to the control input which consists of the forces that will

be applied by left and right thrusters. ui is the output of the ith controller designed

considering the ith linearization point. ki indicates the rate at which ith controller will
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affect the control input [32].

u = ∑
i

kiui, where ∑
i

ki = 1 (5.40)

The weights are calculated at every iteration of the controllers by the procedure given

below [32].

ki =
ξi

∑ξi

ξi =
1

‖x− xi‖+ ε
, ε = 10−6 (5.41)

ξi = 0 if ξi <
β

100
max(ξ )

ξi essentially demonstrates how close the current state vector is to ith linearization

point. ε is added as a security factor during the computation of the reciprocal of the

related distance. ξi that is smaller than β percent of the maximum of ξi’s is set to zero

to prevent this linearization point from appearing in the control input.

5.3 Autopilot Design with Feedback Linearization (FL) Controller

Feedback linearization technique is basically employed to convert the nonlinear sys-

tem into a linear one. Consequently, the well established linear system theory can be

employed to manipulate and control the system dynamics. It completely differs from

Jacobian linearization that is mentioned in the previous section. Jacobian lineariza-

tion is a linear approximation of the system dynamics, whereas feedback linearization

is realized by selection of a control law which is a nonlinear mapping of the state

feedback [44].

5.3.1 Fundamentals for Feedback Linearization

To start with, a single-input single-output (SISO) nonlinear system is depicted in 5.42,
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ẋ = f (x)+g(x)u

y = h(x) (5.42)

where x is in IR12; f , and g are smooth vector fields over IR12 and h is the nonlinear

output function. U is an open set enclosing an equilibrium point, x0, of the system

with zero input. x is assumed to be in U for the succeeding calculations [44].

y is differentiated with respect to time.

ẏ =
∂h
∂x

ẋ =
∂h
∂x

f (x)+
∂h
∂x

g(x)u , L f h(x)+Lgh(x)u (5.43)

where L f h(x) and Lgh(x) are called Lie derivatives of h(x) regarding f (x) and g(x),

respectively. If Lgh(x) is not close to zero for all x ∈ U, then the control input can be

as given in (5.44).

u =
1

Lgh(x)
(
−L f h(x)+ v

)
(5.44)

By doing so, the relation between the input and the output is linearized.

ẏ = v (5.45)

When the above assumption (Lgh(x) 6= 0) is not satisfied, and Lgh(x) = 0 for all

x ∈ U, the output is differentiated once more.

ÿ =
∂ ẏ
∂x

ẋ =
∂L f h

∂x
f (x)+

∂L f h
∂x

g(x)u , L2
f h(x)+L f Lgh(x)u (5.46)

Subsequently, if LgL f h(x) is not close to zero for all x ∈ U, the input is put into the

form illustrated in (5.47),

u =
1

LgL f h(x)
(
−L2

f h(x)+ v
)

(5.47)
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which renders the input-output relation linear.

ÿ = v (5.48)

The system is said to have strict relative degree, γ , at x0 when (5.49) is satisfied [44].

LgLk
f h(x) = 0

LgLγ−1
f h(x0) 6= 0 ∀x ∈ U, k = 0, . . . ,γ−2. (5.49)

Then, the control law is established by the following equation:

u =
1

LgLγ−1
f h(x)

(
−Lγ

f h(x)+ v
)

(5.50)

which results in the input-output relation expressed in (5.51).

yγ = v (5.51)

Recall the mathematical model of the vessel given in the following equations,

η̇ = JΘ(η) v

Mv̇+C(v)v = τd + τg + τt + τa + τc

where

η =
[

x y z φ θ ψ

]T

v =
[

u v w p q r
]T

The above dynamics can also be put into the form described in (5.42). The state vector

including positions, orientations in Earth fixed frame and linear, angular velocities in

the body fixed frame is in IR12. The input vector, u, containing left and right thruster
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forces is in IR2. Besides, the output vector, y, which is selected to comprise of yaw

position and surge velocity is also in IR2. The system is multi-input, multi-output

(MIMO) where the outputs are driven to the desired states with the help of two inputs.

Fortunately, the theory of feedback linearization for square systems including as many

outputs as inputs is well established as revealed by [44].

Square systems can be represented in the following form,

ẋ = f (x)+g1(x)u1 + · · ·+gl(x)ul

y1 = h1(x)
...

yl = hl(x)

(5.52)

where x ∈ IRn, u ∈ IRl , y ∈ IRl , and f , gi are smooth vector fields, and h functions are

also smooth.

Take the derivative of ith output with respect to time:

ẏi = L f hi +
l

∑
k=1

(Lgkhi)uk (5.53)

If Lgkhi(x) = 0 for all k, the inputs of the system do not affect the derivative of ith

output.

Thereafter, γi is to be introduced. It is a variable similar to the strict relative degree in

SISO case such that at least one of the inputs influences yγi
i as shown in (5.54).

yγi
i = Lγi

f hi +
l

∑
k=1

Lgk

(
Lγi−1

f hi

)
uk (5.54)

where the summation on the right hand side of (5.54) is not identically equal to zero.
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At that point, let us define the matrix A(x) as:

A(x) =


Lg1Lγ1−1

f h1 . . . Lgl L
γ1−1
f h1

... . . . ...

Lg1Lγl−1
f hl . . . Lgl L

γl−1
f hl

 (5.55)

Hereby, the definition of vector relative degree is introduced.

The system has relative degree (γ1,γ2, . . . ,γl) at x0 if

LgkLm
f hi(x)≡ 0, 0≤ m≤ γi−2, (5.56)

for k = 1, . . . , l, and A(x0) is nonsingular.

Therefore, we can write a system with a definite relative degree vector as given in

(5.57).


yγ1

1
...

yγl
l

=


Lγ1

f h1

...

Lγl
f hl

+A(x)


u1

...

ul

 (5.57)

The nonsingular property of A(x) is already guarantied for the neighborhood of x0.

As a result, the control input for (5.57) can now be designated in a similar fashion

with Equation (5.50).

u =−A−1(x)


Lγ1

f h1

...

Lγl
f hl

+A−1(x)v (5.58)
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The control law given in (5.58) achieves the following closed loop dynamics:


yγ1

1
...

yγl
l

=


v1

...

vl

 (5.59)

At this point, linearization of the system by a static-state feedback control law is ac-

complished. Furthermore, it should be noted that the outputs of the system are all

decoupled. After that, well known linear controller techniques, such as pole place-

ment, LQR or PID can be designed by using (5.59).

If the relative degree is less than the order of the system (i.e., (γ1,γ2, . . . ,γl)< n), then

the control law is not able to take some of the states into account which are called

internal dynamics. In other words, some part of the system is caused to be unobserv-

able [45]. In this case, there are several methods in the literature to investigate the

behavior of the system. For instance, one can put the system into a special structure,

namely normal form, which decouples the internal and external dynamics. It is a way

to take a formal look at the internal dynamics and guarantee the stability of the system

during the operation of the controller. Additionally, once the input control law is de-

cided, the nonlinear equations can be directly tested for stability purposes. The latter

method is much simpler than the former one since normal form requires solving (n-r)

partial differential equations to figure the corresponding state transformation out [45].

Finally, if the stability of the internal dynamics is verified, it means that an applicable

solution to the control problem is accomplished.

5.3.2 Implementation of the FL Controller

As asserted in earlier sections, the ultimate goal of the autopilot is to drive the yaw

position and surge velocity to the desired values. Henceforth, the output of the system
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is chosen as in (5.60).

y =

 ψ

u

 (5.60)

Afterwards, referring to Equation (5.42), h(x) can be written in the following form:

y = h(x) = Cx (5.61)

where

C =

 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

 (5.62)

x =

 η

v

 (5.63)

The system dynamics can also be put into form of (5.42) by the necessary manipula-

tions.

 η̇

v̇

=

 JΘ(η)v

M−1 [τd + τg + τa + τc−C(v)v]

+
 0

M−1
τt

 (5.64)

It is seen that M−1
τt is a linear, constant function of left and right forces applied by

the thrusters. Therefore, it is rewritten as:

M−1
τt = Gtu (5.65)

where Gt is a 6-by-2 constant matrix, and u is the input vector whose elements are

the forces exerted onto body by left and right thrusters in order.

Finally, (5.64) takes the following form:

 η̇

v̇

=

 JΘ(η)v

M−1 [τd + τg + τa + τc−C(v)v]

+Gu (5.66)
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where G =

 0

Gt

 is a 12-by-2 fixed matrix, and let G = [ g1 g2 ]. g1 and g2 are

first and second columns of G, respectively.

The system is achieved to be represented in the form of (5.42).

ẋ = f (x)+g(x)u

where

 η̇

v̇

=

 JΘ(η)v

M−1 [τd + τg + τa + τc−C(v)v]

 and g(x) = G (5.67)

From now on, the implementation of the feedback linearization controller will be

based on the representation given by (5.67).

By taking Lie derivatives of the output function, the following observations are made:

(i) Lg1ψ ≡ 0, Lg2ψ ≡ 0 meaning that the input vector does not appear in the first

derivative of ψ ,

(ii) Lg1L f ψ 6= 0, Lg2L f ψ 6= 0,

(iii) Lg1L f u 6= 0, Lg2L f u 6= 0,

In other words, the relative degrees of ψ and u are found to be 2 and 1, respectively

(γ1 = 2, γ2 = 1).

Eventually, Equations (5.68) and (5.69) declare the output dynamics.

 ψ̈

u̇

=

 L2
f ψ

L f u

+A(x)u (5.68)

A(x) =

 Lg1L f ψ Lg2L f ψ

Lg1u Lg2u

 (5.69)

Thus, the control law can be selected as:

u =−A−1(x)

 L2
f ψ

L f u

+A−1(x)v (5.70)
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which brings about the following relation.

 ψ̈

u̇

=

 v1

v2

 (5.71)

Note that

A(x) =

 0.073 cos(φ)
cos(θ) +0.046 sin(φ)

cos(θ) 0.046 sin(φ)
cos(θ) −0.073 cos(φ)

cos(θ)

0.024 0.024

 (5.72)

which is invertible for the region R =
(
−π

2 < φ < π

2 ,−
π

2 < θ < π

2

)
. Meanwhile, the

given system equations are also not valid out of R since the vessel is not able to swim,

and tends to sink down.

To conclude, the problem is reduced to control a plant, consisting of a double integra-

tor and an integrator, with two inputs.

It should be noted that since the relative degrees of the plant are less than the order

of the system, there will inevitably emerge internal dynamics that are unobservable.

These states can be examined by representing the system in normal form or the non-

linear system with the determined input control law can initially be linearized by

Jacobian linearization and tested by the mathematical tools utilized for the analysis

of stability of linear systems.

5.4 Simulation Results

In this section, the responses of the close loop systems with LQR and FL controllers

to various step reference signals are examined. The reference signals are applied

after being filtered by a low pass filter with 4.5 second rise time and 6% overshoot.

It should be noted that the outputs of the controllers, which correspond to the forces

that will be applied by the thrusters, are limited in accordance with the characteristics

of the motors.

Throughout the simulations, the vessel model constructed in Mathematical Modeling
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Chapter is employed. The outputs of the controller are fed to the model, then the

resulting positions, velocities and attitudes are conveyed back to the controller as the

feedback signal.

The results of three different tests are shared in this section. For the first case, de-

noted by Re f1, the magnitudes of the step commands are π

4 rad and 1 m/sec for yaw

angle and surge speed, respectively, as illustrated in Figures 5.1, 5.2 and 5.3. In the

second test, symbolized by Re f2, the magnitudes of the commands are determined

to be π

2 rad for yaw angle and 0.5 m/sec for surge speed. Figures 5.4, 5.5 and 5.6

present details of this instance. In the last case, Re f1 is combined with the disturbance

forces depicted in Figure 5.10. As can be seen from the figure, the disturbances are

essentially applied in surge and sway directions although a relatively small moment

around z-axis emerges. Figures 5.7, 5.8 and 5.9 reveal the details of this condition.

In addition, the RMS yaw position and surge speed errors for the three cases with

different controllers are represented in Tables 5.1 and 5.2, respectively.

At first, the time responses of the controllers can be compared. The results with FL

controller are observed to be enhanced in terms of overshoot and rise time for all of

the simulations. Moreover, the maximum difference between the reference and output

signals is much smaller for FL controller. The steady-state errors converge to zero for

all of the cases even though the system with LQR cannot exactly reach zero steady-

state error in yaw position for one side of the motion as depicted in Figure 5.1. This is

interpreted to be resulted from the lack of LQR to notice the nonlinear characteristics

of the plant since it is founded on the linearized model. On the other hand, the settling

times are calculated to be close. Meanwhile, the improved performance of FL is not

originated from the maximum amount of obtained thrusts. As Figure 5.3 and 5.6

indicate, the highest levels of forces produced in both cases are quite similar. FL also

exhibits better disturbance rejection performance as shown in Figures 5.7 and 5.8.

The disturbance forces basically degrade the surge speed tracking performances as

the moment component perturbing yaw position is determined to be relatively weaker.

FL is again preferred to LQR by taking the RMS errors into consideration. For three

of the cases, RMS errors for FL are much smaller. The increasing magnitude of the

step command is confirmed to result in the degradation in terms of the relative criteria.
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The results arise as expected since FL controller is based on the plant model which

is exactly same with the one used for the tests. In other words, it is assumed that the

motion of the marine vessel is precisely modeled for the feedback linearized system,

unlike the LQR controlled case. Given that the model of the vessel is already identi-

fied by the experimentations, the assumption appears to be reasonable. However, one

should be aware of the fact that any discrepancy between the model and the real hard-

ware may associate with robustness issues since FL directly exploits the presumed

system model.

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

Time(sec)

Y
aw

 P
os

iti
on

 (
ra

d)

Yaw Position Tracking Performances w.r.t. Ref1  without Disturbances

 

 

Reference Signal
LQR
FL

0 5 10 15 20 25

−0.02

−0.01

0

0.01

0.02

Time(sec)

E
rr

or
s 

in
 Y

aw
 P

os
iti

on
 (

ra
d)

 

 

LQR
FL

Figure 5.1: Yaw position performances of the controllers in Re f1 without distur-
bances.
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Figure 5.2: Surge speed performances of the controllers in Re f1 without disturbances.
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Figure 5.3: Thruster commands of the controllers in Re f1 without disturbances.
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Figure 5.4: Yaw position performances of the controllers in Re f2 without distur-
bances.
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Figure 5.5: Surge speed performances of the controllers in Re f2 without disturbances.
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Figure 5.6: Thruster commands of the controllers in Re f2 without disturbances.
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Figure 5.7: Yaw position performances of the controllers in Re f1 with disturbances.
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Figure 5.8: Surge speed performances of the controllers in Re f1 with disturbances.
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Figure 5.9: Thruster commands of the controllers in Re f1 with disturbances.
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Figure 5.10: Disturbance forces exerted on the body.

Table 5.1: RMS yaw position errors.

RMS Err×103 Re f1 Re f2 Re f1 +Dist

LQR 8.08 22.12 8.11
FL 3.37 6.37 3.37

Table 5.2: RMS surge speed errors.

RMS Err×103 Re f1 Re f2 Re f1 +Dist

LQR 6.74 2.81 9.25
FL 0.10 0.045 1.81
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The work contained in this thesis essentially represents the investigation and devel-

opment of navigation and autopilot algorithms for sea surface vehicles. To that end,

the mathematical model of a marine craft is examined in the beginning of the study.

In the wake of a comprehensive literature review, the vectorial model proposed by

Fossen [2] is decided to be based on. Meanwhile, possible simplifications and mod-

ifications are suggested with regard to the model boat that will be utilized in the

experimental tests.

A number of necessary mathematical tools, such as rigid body dynamics, coordinate

systems and transformations, added mass dynamics, hydrodynamic damping, restor-

ing, thruster and air drag forces are discussed to be able to construct the model. The

equations expressing the motion of the vessel are founded on Newton’s laws of mo-

tion, while they comprise of separate vectors. Consequently, the implementation tasks

are also performed in a modular structure to render the model user/debug friendly and

maintainable.

After the mathematical model is constructed, various navigation algorithms are con-

sidered to provide a reliable basis for system identification and autopilot applications

for surface vehicles. For this purpose, three distinct integrated navigation algorithms

making use of the solutions of INS, GNSS and an external attitude estimation system

are developed. Subsequently, comparative tests with synthetic data sets, which are
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generated regarding the characteristics of the sensors used during experimentation,

are conducted between these methods. The technique executing the integration of

the mentioned three navigation solutions in a loosely coupled, closed loop fashion is

observed to exhibit the best performance in terms of the RMS position, attitude and

velocity errors. As a result, the measurements collected from the model boat are also

processed by this algorithm to obtain the navigation solution, and the outcomes are

illustrated.

Next, to be able to bridge the gap between the theory and practice, a model boat,

namely Pacific Islander Tugboat, is modified with the addition of necessary electrical

and mechanical equipments to be employed in the experiments. Thereafter, numer-

ous experiments are carried out, and the results, which are treated by the navigation

algorithm, are analyzed within a parallel study by Erünsal [6] aiming to identify the

parameters of the boat included in the mathematical model. In the end of this phase,

a model taking the parameters with improved accuracy into account is attained to be

exploited in the autopilot design.

In the end, two autopilot algorithms based on LQR and FL controllers are studied

to realize the controlled motion of the vessel. In the design procedure of LQR con-

trollers, the mathematical model is firstly linearized at various linearization points,

and the controllable subspaces of the corresponding representations are acquired.

Then, the optimal control theory is applied to calculate the parameters of LQR con-

trollers. On the other hand, FL controller makes use of the original nonlinear system

model. Reference tracking performances for yaw angle/surge speed and disturbance

rejection characteristics of the controllers are investigated by simulations, and the re-

sults are presented. For all of the tests, FL is confirmed to have higher performance

compared to LQR according to the RMS errors and time response characteristics.

6.2 Future Work

In this study, the autopilot algorithms are only tested in simulation environment. Con-

sequently, further investigations need to be carried out in order to validate the perfor-

mances of LQR and FL controllers using the same experimental setup utilized in this
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work. These could leave room for further research about the possible combinations

of controllers or applications of more sophisticated ones.

A tightly coupled integrated navigation algorithm making use of raw GNSS range

measurements may also be constructed, and the results can be compared with the

current performance in a further study.

It would also be very interesting to render the surface vehicle fully autonomous by

designing guidance and path planning algorithms with obstacle avoidance feature.

Meanwhile, two more Pacific Islander Tugboats are already ordered, and under con-

struction at present. These boats will be delivered in the forthcoming months. Hence,

an experimental setup for investigating the coordination of multiple surface vehicles

which are assigned missions such as, reconnaissance, detection and object identifica-

tion will be possible.
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