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ABSTRACT

PARAMETRIC AND POSTERIOR CRAMÉR-RAO LOWER BOUNDS FOR
EXTENDED TARGET TRACKING IN A RANDOM MATRIX

FRAMEWORK

Sarıtaş, Elif

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Umut Orguner

September 2015, 91 pages

This thesis presents the parametric and posterior Cramér-Rao lower bounds

(CRLB) for extended target tracking (ETT) in a random matrix framework.

ETT is an area of target tracking in which the common assumption of point tar-

gets does not hold due to the recent improvements in sensor technology. With

the increased sensor capability, targets can generate more than one measure-

ment in a single scan depending on their size. Therefore, not only the target’s

kinematical state but also its extension can be estimated. Although there are

different methods in literature that deals with ETT, random matrix based ETT

algorithms are the subject of this thesis. In this Bayesian approach, the extents

of the targets are assumed to be ellipsoidal and they are represented with posi-

tive definite matrices which are called as the extent states. The kinematic and

extent states are estimated recursively in a Bayesian framework. When these es-

timators are applied, their performances come into question. Cramér-Rao Lower
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Bound (CRLB) which gives a lower bound on the achievable mean-square-error

(MSE) of an unbiased estimator is a commonly used method to evaluate es-

timator performance in estimation theory. CRLB is the inverse of the Fisher

Information which is a measure of information that a measured random variable

carries about the parameter to be estimated; and in this study, it is applied for

ETT algorithms. First, parametric and posterior CRLBs for ETT in a random

matrix framework are obtained. Formulae for CRLBs for both kinematic and

extent states are computed by using both analytical and numerical tools, and

then compared with the performance of a state-of-the-art random matrix based

ETT algorithm.

Keywords: Extended target tracking, Bayesian approach, random matrix, pos-

terior CRLB, parametric CRLB
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ÖZ

RASTGELE MATRİS ÇERÇEVESİNDE GENİŞLETİLMİŞ HEDEF İZLEME
İÇİN PARAMETRİK VE SONSAL CRAMÉR-RAO ALT SINIRI

Sarıtaş, Elif

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Umut Orguner

Eylül 2015 , 91 sayfa

Bu tezde rastgele matris çerçevesinde genişletilmiş hedef izleme (GHİ) için pa-

rametrik ve sonsal Cramér-Rao alt sınırları (CRAS) sunulmaktadır. GHİ, yakın

zamanda gerçekleşen sensör teknolojisindeki ilerlemeler dolayısıyla yaygın ola-

rak yapılan noktasal hedef varsayımının geçerli olmadığı hedef izleme alanıdır.

Artan sensör yetenekleri ile hedefler tek bir sensör raporunda birden fazla ölçüm

üretir hale gelmiştir. Böylelikle, hedefin kinematik durumunun yanı sıra genişliği

de tahmin edilebilir olmuştur. Kaynaklarda çeşitli GHİ algoritmaları olsa da, bu

çalışmada rastgele matris tabanlı GHİ algoritmaları üzerinde durulmuştur. Bu

yaklaşımda hedeflerin şekillerinin elips şeklinde olduğu varsayılır ve şekil durum

değişkeni kesin pozitif matrisler ile temsil edilir. Bayes teorisi çerçevesinde, ki-

nematik ve şekil durumları yinelemeli olarak kestirilir. Bu tezde bu kestiriciler

kullanıldıkları zaman elde edilen kestirim başarımları sorgulanmaktadır. CRAS

yansız kesitiricilerin başarabileceği ortalama karesel hata için bir alt sınırdır ve
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başarım ölçümü için kestirim teorisinde sıklıkla kullanılır. Ölçümü alınan rast-

gele bir değişkenin tahmin edilmek istenen parametre ile ilgili taşıdığı bilginin

ölçüsü olan Fisher bilgi matrisinin tersi olan bu sınır, bu çalışmada GHİ al-

goritmaları için uygulanmıştır. Öncelikle rastgele matris çerçevesinde GHİ için

parametrik ve sonsal CRAS’lar elde edilmiştir. Çözümlemeli ve sayısal araçlar

kullanılarak kinematik ve şekil durumları için CRAS formülleri türetilip rastgele

matris tabanlı güncel bir GHİ algoritmasının başarımları ile karşılaştırılmıştır.

Anahtar Kelimeler: Genişletilmiş hedef izleme, Bayes yaklaşımı, rastgele matris,

sonsal CRAS, parametrik CRAS
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Thesis

In broad sense, target tracking (TT) can be refers to the field of research that

deals with the problem of estimating the kinematical features of some targets

using the measurements gathered from one or more sensors. Most of the time,

the number of targets is unknown, and it is conventionally assumed that these

objects are points as a consequence of low sensor resolution compared to the

target extent or the object being in the far-field of the sensor. Therefore, it is

common to assume that each target generates at most a single measurement in

a sensor report. On the other hand, with the recent improvements in sensor

technology, this assumption is not valid any longer. For instance, the increase

in radar resolution capabilities results in the fact that targets can generate more

than one measurement in a single scan depending on their size.

This area of target tracking where the point target assumption does not hold is

known as extended target tracking (ETT). With the increased sensor capability,

the estimation of not only the kinematical features but also the extension of

the object are made possible. Moreover, the extent estimation contributes to

resolving the attributes of the object, such as target type. Some examples of the

problems which make use of ETT methods are given in [1] as vehicles that use

radar sensors to track other road-users, ground radar stations tracking airplanes

which are sufficiently close to the sensor, or mobile robotics when pedestrians

are tracked using laser range sensors. Furthermore, clusters of targets that
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are closely spaced can be examined via ETT algorithms as well. There are

different approaches to extent estimation. The extent can be modelled as a

rigid body with a predefined shape, or described with a spatial distribution of

a set of measurements. Several methods in the literature that deal with ETT

can be exemplified as spatial distributions, random matrix based methods and

Monte Carlo methods. In this study, the random matrix based ETT algorithms

are investigated. In this approach, the extents of the targets are assumed to

be ellipsoidal and they are represented with positive definite matrices which

are called as the extent states. The kinematic and extent states are estimated

recursively in a Bayesian framework with a filter that resembles a Kalman Filter.

When an estimator is applied, its performance should be investigated. The use

of lower bounds on the achievable estimation error is a common methodology to

evaluate estimator performance in estimation theory. The most well-known and

important family of lower bounds is Cramér-Rao Lower Bound (CRLB) which

provides a lower bound on the achievable error of an unbiased estimator in

terms of mean-square-error (MSE). CRLB is defined as the inverse of the Fisher

Information Matrix (FIM) which is a measure of information that a measured

random variable carries about the parameter to be estimated. CRLB can be

calculated for both deterministic and random parameter estimation. The bound

obtained for random parameter estimation is called as Bayesian CRLB. CRLB

expressions are also available for the state estimation of discrete-time systems in

the literature. The deterministic and Bayesian CRLBs used for state estimation

are called as parametric and posterior CRLBs respectively.

In the literature, there are few studies that examine the performance of ETT

techniques, none of which focus on the random matrix approach. The existing

methods are all restricted to the comparison of some earliest methods in ETT.

Therefore, the aim of this study is to calculate the parametric and posterior

CRLBs for ETT in a random matrix framework. In this thesis, first, the analyt-

ical formulae for CRLBs for both kinematic and extent states are obtained by

using analytical and numerical tools and then compared with the performance of

the state-of-the-art random matrix based ETT algorithms. The results provide

valuable insight for the performances of the recently proposed ETT algorithms
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and give an indication of how much size estimation capability can be expected

from such methods.

1.2 Organization of the Thesis

The thesis has been organized as follows. It begins with an introductory chap-

ter that expresses the motives behind this study. Chapter 2 provides a general

background on the topic. Some ETT algorithms are summarized and random

matrix approach is discussed in detail. Moreover, the concept of a lower bound is

introduced and CRLB is defined. Finally, some studies on the performance mea-

sures are surveyed in this chapter. In Chapter 3, parametric CRLB is explained

and its derivation for ETT with random matrices is presented. Posterior CRLB

is described and its derivation is given for ETT in Chapter 4. These bounds

are implemented and the corresponding results are discussed in Chapter 5. The

thesis concludes with a summary in Chapter 6 where final remarks on the study

and future work are also discussed.
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CHAPTER 2

BACKGROUND

In this chapter, some background information on the concepts utilized through-

out this study is provided. The main topics addressed in this section are ETT,

CRLB and performance measures on ETT. First, the notion of ETT is intro-

duced and an overview of literature on this problem is given. Then, Bayesian

approach using random matrices is explained in detail including the problem

formulation. The second concept examined in this part is CRLB. After the the-

orem of CRLB is stated, the brief history of performance measures on ETT is

summarized.

2.1 Extended Target Tracking

In conventional target tracking, targets are assumed to be points. Therefore,

only one measurement is expected for a target in radar plot, when the target

is detected. After receiving the measurements, the first task is to decide which

measurement belongs to which target, i.e., to make data association. Then by

exploiting the associated measurement, the kinematical features, such as position

and velocity, are estimated and attributes of a target are deduced with the help

of these estimates. There are many well-established algorithms in the literature,

for TT is a mature field; and [2] and [3] provide detailed discussions on every

aspect of this area.

The progress in the radar technology in recent years led to new research ar-

eas in which conventional methods of TT are not applicable. For example, the
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point target assumption does not hold any more when one works with a high

resolution radar. More than one measurements at a single scan is possible for

a target, especially for short-range applications, due to improved radar resolu-

tions. Increased number of measurements which is proportional to the target’s

size make it possible to estimate not only the kinematical state but also the

extension size and orientation of the target. The estimated extension may also

cover a group of closely spaced objects. This field of target tracking where mul-

tiple measurements are possible for a single target is named as extended target

tracking (ETT).

ETT is a newly arising field of research; yet, there exists various methods that

deal with it in literature such as multiple hypothesis tracking(MHT), spatial

distributions, Bayesian methods with random matrices, so and so forth. One of

the earliest papers in this topic belongs to Salmond et al. [4], where the problem

of tracking of an elliptic target with a radar that gives range, bearing and along-

range target extent measurements is considered. Target length is embedded

into the state vector and its contribution to the track maintenance is examined

by implementing the extended Kalman filter (EKF), unscented Kalman filter

(UKF) and particle filter (PF). In another study conducted by Salmond et al.

[5], the extent is modeled as a set of point sources. Moreover, it is assumed that

number of measurements arising from the target at a scan is Poisson distributed

and these measurements are independent having a spatial probability density

function (pdf) which is convolved with the sensor model later. Eventually, a

Bayesian filter is derived and implemented with both multiple hypothesis KF

and PF.

Track before detect methods are also applied to ETT problems. One may find

the application of this approach to a one dimensional extended target in the

paper [6] proposed by Boers et al. Nonlinear Kalman filters are also utilized

for ETT. One example is Rao-Blackwellised unscented Kalman filter (RBUKF)

used by Xu et al. in [7]. In this paper, down-range extent and cross-range extent

are included in the state. These static parameters are coupled to kinematical

features in a highly nonlinear manner that RBUKF is preferred. The reasons

for this choice of the filter were the divergent behavior of EKF and the compu-
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tational complexity of UKF. It was seen that RBUKF is immune to divergence

problems with a relatively low computational cost.

The study [8] carried out by Angelova et al. utilizes Monte Carlo techniques

for an ETT problem with range, bearing and down-range measurements. The

kinematical states and extension parameters are estimated separately. Kine-

matic state estimates are obtained by interacting multiple model (IMM)-KF,

whereas Monte Carlo techniques, IMM with data augmentation, mixture KF

and IMM-PF are implemented for extension parameter estimation. Angelova

et al. concluded that IMM with data augmentation is the most accurate algo-

rithm; however, its computation cost is greater than the others and performance

of IMM-PF depends on the parameter selection. Moreover, they claim that “mix-

ture KF provides a reasonable compromise between accuracy and computational

time”.

Probability hypothesis density filters have also been made use of for ETT. A

detailed example is given in [9] by Granström et al. In this work, probabil-

ity hypothesis density refers to the first-order moment of a random set of target

states. Probability hypothesis density filter is implemented by Gaussian mixture

approximation. Clustering methods are applied in order to reduce the computa-

tional cost. They indicate that tracking performance is quite satisfactory even

in a cluttered environment. Moreover, it is claimed by the authors that the

algorithm handles closely spaced targets effectively.

2.1.1 ETT with Random Matrices

In this study, a Bayesian approach, which assumes that targets or groups of tar-

get have ellipsoidal form represented by positive semi-definite symmetric random

matrices, is considered. With this method, the target extent is also a state vari-

able to be estimated using multiple measurements enabling the estimation of

size, orientation and aspect ratio of the target.

This approach is first suggested by Koch in [10]. In this paper, a Bayesian es-

timator is established deriving its recursive equations for all phases of tracking:
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prediction, filtering and smoothing. The second paper on this subject [11] be-

longs to Feldmann et al. In [11], the authors propose an improvement on the

measurement model of the previous paper [10], while using the same formula-

tion. The last work considered here is presented by Granström et al. [1]. In

this work, a new prediction method is suggested claiming that it is superior to

the previous ones. In this section, details of the ETT with random matrices is

presented. First of all, notations used throughout this thesis are introduced.

Notations:

• xk ∈ Rn denotes kinematical state at time tk. It includes of position and

velocity components. In this study, only x and y axes are considered.

Therefore, the state xk is a vector with 4 elements, i.e., n = 4.

• Xk ∈ Sd represents the extension of the target at tk. Xk is a 2× 2 positive

definite symmetric matrix, i.e., d = 2.

• ξk = (xk, Xk) is the augmented state at time tk which is the union of xk
and Xk.

• Yk =
{
yik
}mk
i=1

stands for the set of mk measurements, each named as yik,

received at time instant k.

• Y k = {Y`}k`=0 refers to the set of whole measurements from the initial time

instant t0 to time tk.

• Multivariate Gaussian pdf for a random variable x with mean µ and Σ is

denoted as

N (x;µ,Σ) ,
e−

1
2

(x−µ)TΣ−1(x−µ)√
(2π)n|Σ|

where the random vector x ∈ Rn.

• Pdf of Wishart distribution for a positive semi-definite random matrix X

with degrees of freedom v and scale matrix V is given as

Wd(X; v, V ) ,
|X| v−d−1

2

2
vd
2 Γd

(
v
2

)
|V | v2

etr(− 1
2
XV −1)

where the subscript d (v ≥ d) indicates that X is a d× d random matrix,

i.e., X ∈ Sd.
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• The inverse Wishart pdf for a positive semi-definite random matrix X with

degrees of freedom v and scale matrix Ψ is given as

IWd(X; v, V ) ,
|Ψ| v2

2
vd
2 Γd

(
v
2

)
|X| v+d+1

2

etr(− 1
2

ΨX−1)

where the subscript d (v ≥ d) indicates that X is a d× d random matrix,

i.e., X ∈ Sd.

2.1.1.1 Formulation

In ETT, multiple measurements are generated by the sensor at each scan. These

measurements are independent from each other. According to the measurement

model used in [10], measurements are produced from an ellipse whose center is

the entries of kinematical state corresponding to position and they are spread

to the space in proportion to its extension size and orientation. The likelihood

function for a measurement set at a given time is defined by Koch as

p(Yk|xk, Xk) =

mk∏
i=1

N (yik;Hxk, Xk) (2.1)

where H is the measurement matrix and mk represents the number of measure-

ments at time k which is possibly random and dependent on the kinematical

and extent states at time k, i.e., mk = mk(xk, Xk).

This model neglects the contribution of sensor errors to the spread of the mea-

surements. The absence of measurement error in the model can result in overes-

timated extension in the presence of large sensor errors. Thus in [11], Feldmann

et al. modifies (2.1) so that the effects of the sensor noise on the measurement

distribution can be taken into account. The new model is given as

p(Yk|xk, Xk) =

mk∏
i=1

N (yik;Hxk, sXk +R) (2.2)

where s is a scaling factor and R is the measurement error covariance matrix.

9



The posterior pdf of the augmented state is then expressed in [10] and [11] as

p(ξk|Y k) = p(xk|Xk, Y
k)p(Xk|Y k),

≈ p(xk|Y k)p(Xk|Y k),

= N (xk;µk|k,Σk|k)IW(Xk; vk|k, Vk|k). (2.3)

It is worth to remind that the state ξk is the concatenation of kinematical state

and extension.

The predicted pdf for the augmented state is derived as below in [10].

p(ξk|Y k−1) =

∫
p(ξk|ξk−1, Y

k−1)p(ξk−1|Y k−1)dxk−1dXk−1, (2.4)

=

∫
p(xk|Xk, ξk−1, Y

k−1)p(Xk|xk−1, Xk−1, Y
k−1)p(ξk−1|Y k−1)dxk−1dXk−1,

(2.5)

=

∫
p(xk|Xk, xk−1)p(Xk|Xk−1)p(ξk−1|Y k−1)dxk−1dXk−1. (2.6)

The last term in the integral (2.6) is the posterior pdf for the previous time

instant. Note that while obtaining (2.6) from (2.5), there are some assump-

tions made. First of all, the process is assumed to be Markovian. Additionally,

the kinematical state should not depend on the previous extension so that the

following equality can be written.

p(xk|Xk, ξk−1, Y
k−1) = p(xk|Xk, xk−1). (2.7)

The final assumption regarding this derivation is that the extension evolves

independently from the previous kinematical state so that the following equality

holds.

p(Xk|xk−1, Xk−1, Y
k−1) = p(Xk|Xk−1). (2.8)

As indicated by Granström et al. in [1], this assumption is valid for some models

such as constant velocity or constant acceleration. Yet, it turns out to be untrue

for some other models; for instance, the coordinated-turn model. This is the

main motivation for Granström et al.’s paper [1], that suggests a prediction

update model valid for extension evolutions depending on the kinematic state.
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The transition pdfs for the prediction are defined in [11] by Feldmann et. al.

and in [10] by Koch as follows.

p(xk+1|xk) = N (xk+1; f(xk), Qk+1), (2.9)

p(Xk+1|Xk) =W
(
Xk+1;nk+1,

Xk

nk+1

)
, (2.10)

where Qk+1 is the process noise covariance matrix and f(·) is state transition

function. Whereas, the following version is proposed by Granström et al. in [1]

so that extension can evolve depending on the kinematical state.

p(Xk+1|xk, Xk) = N
(
Xk+1;nk+1,

MxkXkM
T
xk

nk+1

)
(2.11)

where Mxk is an invertible matrix function of the kinematic state xk. The

steps of the estimator proposed in [11] is given below. ETT algorithm whose

performance is going to be compared to CRLB in this study is implemented

according to this description.

Prediction Update:

xk+1|k = f(xk|k) (2.12)

Pk+1|k = FPk|kF +Q (2.13)

Xk+1|k = Xk|k (2.14)

αk+1|k = 2 + exp(−T/τ)(αk|k − 2) (2.15)

where F is the Jacobian of f(·) and αk|k = nk|k − d− 1.

Measurement Update:

xk+1|k+1 = xk+1|k +Kk+1|k(ȳk+1 −Hxk+1|k), (2.16)

Pk+1|k+1 = Pk+1|k −Kk+1|kSk+1|kK
T
k+1|k, (2.17)

Xk+1|k+1 =
1

αk+1|k+1

(
αk+1|kXk+1|k + N̂k+1|k + Ŷk+1|k

)
, (2.18)

αk+1|k+1 = αk+1|k + nk+1, (2.19)
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where

ȳk+1 =
1

nk+1

mk+1∑
i=1

yik+1, (2.20)

Sk+1|k = HPk+1|kH
T +

Yk+1|k

nk+1

, (2.21)

Kk+1|k = Pk+1|kH
TS−1

k+1|k, (2.22)

Yk+1|k = sXk+1|k +R, (2.23)

Ȳk+1 =

mk+1∑
i=1

(
yik+1 − ȳk+1

) (
yik+1 − ȳk+1

)T
, (2.24)

Nk+1|k =
(
ȳk+1 −Hxk+1|k

) (
ȳk+1 −Hxk+1|k

)T
, (2.25)

N̂k+1|k = X
1/2
k+1|kS

−1/2
k+1|kNk+1|k

(
S
−1/2
k+1|k

)T (
X

1/2
k+1|k

)T
, (2.26)

Ŷk+1|k = X
1/2
k+1|kY

−1/2
k+1|kȲk+1

(
Y
−1/2
k+1|k

)T (
X

1/2
k+1|k

)T
. (2.27)

Note that X
−1/2
k+1|k is defined as follows.

Xk+1|k = X
1/2
k+1|k

(
X
−1/2
k+1|k

)T
. (2.28)

2.2 Cramér-Rao Lower Bound

Estimation theory is developed with the aim of inferring some set of parameters

using measurements. Its area of interest includes systems from a wide range

of subjects such as control, communications, image processing, radar and so

forth [12]. It is desired to estimate the parameter as accurately as possible, which

brings the necessity to establish some performance measures on the estimator.

2.2.1 Parametric Cramér-Rao Lower Bound

Parametric (or deterministic) Cramér-Rao Lower Bound (CRLB) is one of the

performance measures setting a limit on the achievable estimator performance.

In fact, it defines a lower bound on the mean-square-error (MSE) that an unbi-

ased estimator of a deterministic parameter can accomplish. Therefore, perfor-

mances of different estimators can be compared by examining the closeness of

12



MSE of an estimator to this bound. The closer the result to the bound, the bet-

ter the performance of the estimator is. Furthermore, if the CRLB is attained

by MSE for an estimator, then the estimator is said to be efficient.

Before presenting the theorem for parametric CRLB, the definitions for an un-

biased estimator and the score function are given using [12].

Definition 1. An estimate x̂(y) of a deterministic parameter x ∈ Rnx based on

the random measurements y ∈ Rny is unbiased if and only if

E [x̂(y)|x] = x ∀x. (2.29)

�

Definition 2. The score function, S(·, ·), is the gradient, with respect to some

vector of parameters x, of the logarithm of the likelihood function.

S(y, x) , ∇x log p(y|x) (2.30)

where ∇x ,

[
∂

∂x1

∂

∂x2

· · · ∂

∂xnx

]T
denotes the gradient operator. �

Now that the expressions above are presented, the theorem of parametric CRLB

for a deterministic parameter x ∈ Rnx is given as follows.

Theorem 1 (Adopted from Theorem 3.1 from [12]). It is assumed that the

likelihood p(y|x) satisfies the regularity condition

E [∇x log p(y|x)] = 0, ∀x. (2.31)

Then, the covariance matrix of any unbiased estimator x̂(y) of the deterministic

parameter x based on the measurement y must satisfy

cov(x̂(y)) ≥ (E [−∆x
x log p(y|x)])−1 (2.32)

where the notation ∆s
x denote the Hessian operation, i.e., ∆s

x = ∇x∇T
s , and the

derivatives inside the expectation are evaluated at the true value of x. The right

hand side of (2.32) is called as the parametric CRLB of the parameter x and

shown as J x. �
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The matrix E [−∆x
x log p(y|x)] in (2.32) is named as Fisher information matrix

(FIM) and it is a measure of information that the measurement y conveys about

the estimated parameter x. We show the Fisher information matrix as Ix. Note
that for some problems, finding the second order derivatives in (2.32) may be a

pretty cumbersome task. To overcome this problem, following property from [12]

can be used.

Property 1. The following equality is satisfied.

E [−∆x
x log p(y|x)] = E

[
∇x log p(y|x)∇T

x log p(y|x)
]
. (2.33)

�

The last property given below is related to how to find the parametric CRLB of

a function of a parameter whose parametric CRLB is known.

Property 2. If z = g(x) is to be estimated, where g(·) is, in general, a nonlinear

function, then the parametric CRLB for z can be found from the parametric

CRLB for x as follows

J z ≥ ∇T
x g(x)J x∇xg(x). (2.34)

where the notation ∇xg(x̄) denotes the Jacobian of the vector valued function

g(·) evaluated at the value x̄. �

2.2.2 Posterior Cramér-Rao Lower Bound

Posterior (Bayesian) CRLB is the random parameter counterpart of parametric

CRLB. In this case, the estimated parameter x is random; therefore, it has a

prior distribution. The posterior CRLB is much more powerful than parametric

CRLB, since it gives a lower bound on the mean square error (MSE) of any

estimator, i.e., not only the unbiased estimators like the parametric CRLB. The

posterior CRLB is defined in the following theorem.

Theorem 2 (Adopted from Equation 217 of [13]). The MSE matrix of any

estimator x̂(y) of the random parameter x satisfies

MSE(x̂(y)) ≥ (E [−∆x
x log p(y, x)])−1 (2.35)
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The right hand side of (2.35) is called as the posterior CRLB of the parameter

x and shown as J̃x. �

The differences between the expressions for the parametric and posterior CRLBs,

i.e., between (2.32) and (2.35), are listed as follows:

• In (2.32) the score function, i.e., the derivatives of the logarithm of the

likelihood, is used while in (2.35) the logarithm of the joint density (of the

parameter and the measurement) is used.

• The expectation in (2.32) is with respect to only the measurement y (since

the parameter x is deterministic) while the expectation in (2.32) is with

respect to both the measurement y and the parameter x.

A similar property to Property 1 holds also for the random parameter case as

below.

Property 3. The following equality is satisfied.

E [−∆x
x log p(y, x)] = E

[
∇x log p(y, x)∇T

x log p(y, x)
]
. (2.36)

�

The random parameter counterpart for Property (2) is given as follows.

Property 4 (Adopted from Section 1.2.8.2 of [14]). If z = g(x) is to be esti-

mated, where g(·) is, in general, a nonlinear function, then the posterior CRLB

for z can be found from the posterior CRLB for x as follows

J̃ z ≥ E
[
∇T
x g(x)

]
J̃ xE [∇xg(x)] . (2.37)

where the notation ∇xg(x̄) denotes the Jacobian of the function g(·) evaluated

at x̄. �

2.3 Literature Research on Performance Measures on Extended Tar-

get Tracking

ETT is a relatively new area with various algorithms suggested, and more is

revealing. In order to evaluate the performances of these techniques, some per-
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formance measure studies exist in the literature. Papers related to some of these

works are surveyed in this section.

The first study was conducted by Ristic et al. in [15]. The scenario here is an

elliptical target moving in a way that the angle between the major axis of the

target and the target-observer line of sight (LOS) remains constant throughout

the scenario. The joint state vector includes the target length and the ratio of

minor and major axes of the ellipse as well as the kinematical features. The

sensor provides the measurements of range, bearing and target extent along the

LOS. The system dynamics is a linear one; however, the measurement equation

is highly nonlinear due to the relationship between the states and the target

extent. In this study, posterior CRLB is used to evaluate the performance.

The authors first investigate the change in posterior CRLB with respect to the

changes in each element of the state. Later, they implement EKF and UKF and

compare their performance to posterior CRLB. Finally, they conclude that these

filters are not satisfactory in terms of extent estimation due to high nonlinearity.

A different version of CRLB is offered by Xu et al. in the study [16]. The so-

called hybrid CRLB (HCRLB) was developed to investigate the performance of

the algorithms for ground moving extended targets with high range resolution

ground moving target indicator. In the scenario of [16], the targets are modelled

as rectangles; and range, bearing, Doppler and down-range extent measure-

ments are collected with a radar. The authors give a performance measure on

the estimation of the state vector which consists of the kinematical state and

deterministic parameters: length and width of the extent rectangle. As the state

vector includes both random variables and deterministic parameters, Xu et al.

suggest to use the recursive HCRLB that handles both types of variables. They

examine the effects of changing the uncertainty in the state elements on the

HCRLB behavior. However, they do not implement any estimator to analyze

the performance using HCRLB.

The third work which belongs to Zhong et al. [17] makes a comparison between

the performance bounds for point TT and ETT with the aid of posterior CRLB.

In this paper, system and measurement models are the same as those in [15]. The
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contribution of extension information coming in the form of down-range extent

measurements to the kinematic estimation, i.e., to the estimation of the center of

the ellipse, is investigated. The authors make the following assumptions claiming

that they are valid premises most of the time: States in point TT are elements

of the state vector in ETT, representing kinematical features. Furthermore,

the dynamics of the kinematic states in ETT is the same as those in point

TT. Finally, it is accepted that the measurements related to the extension are

correlated to the kinematical measurements; however, vice versa is not true.

Under these assumptions, recursive posterior CRLB equations are derived for

both ETT and point TT. As a result, posterior CRLB for ETT turns out to be

smaller than that of point TT.

In another study [17], Zhang et al. extend their work by examining posterior

CRLB for two different ETT models in [18]. The first model is the one that

is used in [17]. The authors derive posterior CRLB for both ETT and point

TT with this model, and concluded that the information carried by extent mea-

surements reduces the velocity error bound drastically. Moreover, they find out

that posterior CRLB for ETT is better than that for point TT in terms of kine-

matical states. The other model covered in the paper is the spatial probability

distribution model where multiple independent measurements are expected at a

scan due to the high resolution of the sensor. The measurement number is ran-

dom and they are distributed in space independently. Radar supplies range and

azimuth angle measurements. Here in posterior CRLB calculation, the unknown

measurement number is involved in the equations and it is averaged out via the

Extended Information Reduction Factor method. Complicated expectations are

handled with Monte Carlo integration. It turns out that the more measurements

are obtained, the more information is gathered about the states, which leads to

more accurate estimates. In addition, when the mean of the number of mea-

surements is one, ETT results coincide with that of point TT. Thus, for these

two models, it is understood that ETT is superior to point TT.

The last piece of research that is discussed here belongs to Meng et al. [19]. The

system dynamics and measurements are modelled as in [17]; whereas, comparison

of ETT and point TT is made under the existence of clutter and missed detec-
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tions. Deriving posterior CRLB under these conditions is a more tricky problem,

for the contribution of measurement uncertainty to the bound is obscure. This

problem is handled with three methods: information reduction factor, measure-

ment sequence conditioning and measurement existence sequence conditioning.

When these techniques are compared, and it is seen that posterior CRLB of in-

formation reduction factor becomes the smallest, and the measurement sequence

conditioning yields the greatest bound. Again, posterior bounds for ETT are

smaller than point TT.

As it can be seen, there is not much work on performance measures for ETT,

let alone on ETT with random matrices. Therefore, parametric and poste-

rior CRLB’s derived in this thesis that enables the performance evaluation of

Bayesian ETT techniques are rather novel.
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CHAPTER 3

PARAMETRIC CRAMÉR-RAO LOWER BOUND FOR

EXTENDED TARGET TRACKING

Parametric Cramér-Rao lower bound is the first type of CRLB derived for ETT

in this study. The chapter is organized as follows. First the parametric CRLB

for dynamic systems is defined in Section 3.1. Then the Fisher information

matrix required for the parametric CRLB recursion is obtained in Section 3.2.

The chapter continues with a discussion of initialization of the parametric CRLB

recursion in Section 3.3. In Section 3.4, the chapter is concluded with parametric

CRLB expressions for semi-major and semi-minor axes of the extension.

3.1 Parametric Cramér-Rao Lower Bound for Dynamic Systems

Parametric CRLB assumes that the parameter, i.e., the state vector in this

case, is deterministic and it is defined only for unbiased estimators. Therefore,

parametric CRLB is defined for only dynamic systems with no process noise and

initial state uncertainty. We consider the following state space representation.

ξk+1 =f(ξk), (3.1)

yk|ξk ∼p(yk|ξk) (3.2)

where

• ξk ∈ Rnξ is the state vector of the dynamic system;

• f(·) is, in general, a nonlinear differentiable function;
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• p(yk|ξk) is a known likelihood function for the measurements yk ∈ Rny .

Then, the parametric CRLB Jk|k for any unbiased estimate ξ̂k|k for ξk is defined

using the following recursion.

J0|−1 =J̄0 (3.3)

Jk|k =
(
J −1
k|k−1 + Ik

)−1

(3.4)

Jk+1|k =FkJk|kF T
k (3.5)

where J̄0 is a fixed covariance matrix representing an initial estimate for the

augmented state ξ0; the matrix Fk , ∇T
ξk
f(ξk) is the Jacobian matrix of the

state transition function f(·) evaluated at the true value of the state ξk. Ik is

the Fisher information matrix at time k which is defined as

Ik = E
[
∇ξk log p(yk|ξk)∇T

ξk
log p(yk|ξk)

]
. (3.6)

In the next section, the expressions for the FIM Ik are obtained considering

the problem definition of ETT in the random matrix framework given in Sec-

tion 2.1.1.1.

3.2 Fisher Information Matrix for ETT

In this section, we derive the expressions for the FIM Ik defined in (3.6). We

consider the augmented state vector ξk which is composed of the kinematic state

xk and the extension state Xk as follows.

ξk ,

 ξxk

ξXk

 (3.7)

where

ξxk ,xk, (3.8)

ξXk ,
[

[Xk]11 [Xk]12 [Xk]22

]T
. (3.9)

Note here that since Xk is a symmetric matrix, we have the equality [Xk]12 =

[Xk]21. Therefore, the extent component ξXk of the augmented state vector ξk

20



contains only [Xk]12 and is three dimensional. The likelihood function p(Yk|xk, Xk)

is written as

p(Yk|xk, Xk) =

mk∏
i=1

N (yik;Hxk, sXk +R) (3.10)

where it should be reminded that mk represents the number of measurements at

time k which is possibly random and dependent on the kinematical and extent

states at time k, i.e., mk = mk(xk, Xk). The likelihood function p(Yk|ξk) for

the augmented state can be obtained from p(Yk|xk, Xk) by making the following

substitutions into p(Yk|xk, Xk).

xk ←ξxk , (3.11)

Xk ←

 [ξXk ]1 [ξXk ]2

[ξXk ]2 [ξXk ]3

 . (3.12)

The score function ∇ξkp(Yk|ξk) will be obtained using the derivatives of the log-

likelihood log p(Yk|xk, Xk) with respect to the state variables xk and Xk defined

below.

Sx ,∇x log p(Yk|xk, Xk), (3.13)

SX ,∇X log p(Yk|xk, Xk). (3.14)

where it is emphasized here that Sx is a vector of the same size as x while SX is

a matrix with the same size as X.

3.2.1 Score Function

In the remaining parts of this chapter, the measurements and states only at a

single time instant k are considered. Hence, the subscripts k in the variables are

all omitted for the sake of brevity.

The log-likelihood function log p(Y |x,X) is given as

log p(Y |x,X) =
m∑
p=1

logN (yp;Hx, sX +R)) (3.15)

=
m∑
p=1

−1

2
(yp −Hx)T (sX +R)−1(yp −Hx)− m

2
log |sX +R|

(3.16)
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up to an additive constant independent of both x and X. The right hand side of

the expression (3.16) consists of two terms which will be called I1(·, ·) and I2(·)
from now on in this section. These terms are defined as

I1(x,X) , −1

2

m∑
p=1

(yp −Hx)′(sX +R)−1(yp −Hx) (3.17)

I2(X) , −m
2

log |sX +R| (3.18)

In order to calculate the derivatives of I1(·, ·) with respect to x, following prop-

erty from [20] is utilized.

Property 5.

∂(bx+ c)TD(bx+ c)

∂x
= bT (D +DT )(bx+ c). (3.19)

�

This property yields the result below.

∂I1

∂x
(x,X) = HT (sX +R)−1

m∑
p=1

(yp −Hx). (3.20)

In order to take the derivative of I1(·, ·) with respect to X, we first bring I1(·, ·)
into the following form.

I1(x,X) = −1

2

m∑
p=1

(yp −Hx)T (sX +R)−1(yp −Hx)

= −1

2

m∑
p=1

tr
[
(sX +R)−1(yp −Hx)(yp −Hx)T

]
= −1

2

2∑
t=1

2∑
u=1

[
(sX +R)−1

]
tu

[
m∑
p=1

(yp −Hx)(yp −Hx)T

]
tu

(3.21)

The derivative of inverse of a matrix with respect to its elements is given by

property taken from [20] below.

Property 6.

∂ [X−1]tu
∂Xkl

= −
[
X−1

]
tk

[
X−1

]
lu

(3.22)

where the notations Σij and [Σ]ij both denote the element of the argument matrix

Σ corresponding to the ith row and the jth column. �
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Using this property, the derivative of I1(·, ·) with respect to [sX +R]kl is given

as follows.

∂I1

∂ [sX +R]kl
(x,X) =

1

2

2∑
t=1

2∑
u=1

[
(sX +R)−1

]
tk

[
(sX +R)−1

]
lu

×

[
m∑
p=1

(yp −Hx)(yp −Hx)T

]
tu

(3.23)

Hence, we can write the derivative of I1(·, ·) with respect to Xkl using the chain

rule as follows

∂I1

∂Xkl

(x,X) =
2∑
i=1

2∑
j=1

∂I1

∂ [sX +R]ij

∂ [sX +R]ij
∂Xkl

(3.24)

= s
∂I1

∂ [sX +R]kl
(3.25)

=
s

2

2∑
t=1

2∑
u=1

[
(sX +R)−1

]
tk

[
m∑
p=1

(yp −Hx)(yp −Hx)T

]
tu

[
(sX +R)−1

]
lu

=
s

2

2∑
t=1

2∑
u=1

[
(sX +R)−1

]
kt

[
m∑
p=1

(yp −Hx)(yp −Hx)T

]
tu

[
(sX +R)−1

]
ul

=
s

2

[
(sX +R)−1

(
m∑
p=1

(yp −Hx)(yp −Hx)T

)
(sX +R)−1

]
kl

(3.26)

where we used the facts that

∂ [sX +R]ij
∂Xkl

=


s, if i = k and j = l

0, otherwise
, (3.27)

and sX +R is symmetric.

We now consider the second term in the log-likelihood function, I2(·), which is

independent of x. We have

∂I2

∂x
(X) = 0. (3.28)

To be able to take the derivative of I2(·) with respect to X, the following rule

from [20] is employed.

Property 7.

∂ log |X|
∂Xij

= [X−1]ji. (3.29)

�
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Using (3.29), the derivative is found as below.

∂I2

∂Xij

(X) = −∂ (0.5m log |sX +R|)
∂ [sX +R]ij

∂ [sX +R]ij
∂Xij

= −0.5sm
[
(sX +R)−1]

ji
(3.30)

which gives
∂I2

∂X
(X) = −0.5sm (sX +R)−1 (3.31)

since sX + R is a symmetric matrix. Overall results for the derivatives Sx and

SX are given below.

Sx =
∂I1

∂x
(x,X) +

∂I2

∂x
(X), (3.32)

SX =
∂I1

∂X
(x,X) +

∂I2

∂X
(X). (3.33)

Using the results presented above, we get

Sx =HT (sX +R)−1

m∑
p=1

(yp −Hx), (3.34)

SX =
s

2
(sX +R)−1

(
m∑
p=1

(yp −Hx)(yp −Hx)T

)
(sX +R)−1

− 0.5sm(sX +R)−1. (3.35)

It should be reminded here that Sx is a vector of the same size as x while SX is

a matrix with the same size as X. Note that ξk defined in (3.7) is composed of

ξxk , xk and ξXk given in (3.9). Therefore, the gradient of the likelihood p(Y |ξ)
with respect to ξ, which we call as Sξ is given as

Sξ , ∇ξp(Y |ξ) =

 ∇x log p(Y |ξ)

∇ξX log p(Y |ξ)

 =

 Sx

SξX

 . (3.36)

where

SξX , ∇ξX log p(Y |ξ). (3.37)

Since the matrix X is symmetric, we have the constraint [X]12 = [X]21. Under

this constraint, we have

SξX =


[SX ]11

[SX ]12 + [SX ]21

[SX ]22

 (3.38)
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where the summation in the second derivative comes from the chain rule under

the constraint [X]12 = [X]21.

3.2.2 Fisher Information Matrix

Once the score function is obtained, the expected values have to be calculated.

The FIM, Ik, defined in (3.6) is given as

Ik , E[∇ξ log p(Y |ξ)∇T
ξ log p(Y |ξ)] (3.39)

=

 E
[
SxS

T
x

]
E
[
SxS

T
ξX

]
E
[
SξXS

T
x

]
E
[
SξXS

T
ξX

]
 . (3.40)

We are now going to calculate the partitions of Ik one by one below.

• Calculation of E
[
SxS

T
x

]
:

SxS
T
x = HT (sX +R)−1

m∑
p=1

(yp −Hx)
m∑
p=1

(yp −Hx)T (sX +R)−1H.

(3.41)

Taking the expected values of both sides given m, we obtain

E[SxS
T
x |m] =HT (sX +R)−1E

[
m∑
p=1

(yp −Hx)
m∑
p=1

(yp −Hx)T

∣∣∣∣∣m
]

× (sX +R)−1H (3.42)

=HT (sX +R)−1m(sX +R)(sX +R)−1H (3.43)

=mHT (sX +R)−1H (3.44)

where we used the fact that the measurements {yp}mp=1 are distributed as

yp ∼ N (Hx, sX + R) and they are independent. If we take the expected

value of both sides of (3.44) with respect to m, we get

E[SxS
T
x ] = m̄HT (sX +R)−1H (3.45)

where m̄ is the expected value of the number of measurements, i.e., m̄ ,

E[m], which can be a function of the true states x and X, i.e., m̄ =

m̄(x,X).
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• Calculation of E
[
SxS

T
ξX

]
: Due to the definition of the gradient SXξ given

in (3.38), this expectation involves the expectation of the terms of the form

[Sx]j[SX ]kl. We can write these terms as the multiplication eTj Sxe
T
k SXel

where each of ej, ek and el is a column vector composed of all zeros except

for its jth entry which is equal to unity. Note that with the extended

target state definitions, the possible values for j and k, l are j = 1, . . . , 4

and k, l = 1, . . . , 2, respectively. As a result, defining B , (sX +R)−1, we

can write [Sx]j[SX ]kl

[Sx]j[SX ]kl = eTj Sxe
T
k SXel (3.46)

=[Sxe
T
k SX ]jl (3.47)

=

[
HTB

m∑
p=1

(yp −Hx)

× eTk

(
−0.5smB + 0.5sB

m∑
r=1

(yr −Hx)(yr −Hx)TB

)]
jl

=− 0.5sm

[
HTB

m∑
p=1

(yp −Hx)eTkB

]
jl

+ 0.5s

[
HTB

m∑
p=1

(yp −Hx)eTkB
m∑
r=1

(yr −Hx)(yr −Hx)TB

]
jl

.

(3.48)

Taking the expected values of both sides given m, we get

E
[[
Sx · eTk SX

]
jl

∣∣∣m] = −0.5sm

[
HTBE

[
m∑
p=1

(yp −Hx)

∣∣∣∣∣m
]
eTkB

+0.5sHTBE

[
m∑
p=1

(yp −Hx)eTk

m∑
r=1

(yr −Hx)(yr −Hx)T

∣∣∣∣∣m
]
B

]
jl

.

(3.49)

Since we have E[yp−Hx|m] = E[yp−Hx] = 0, the first term of the right

hand side of (3.49) vanishes. Hence we have

E
[[
Sx · eTk SX

]
jl

∣∣∣m]
= 0.5s

[
HTBE

[
m∑
p=1

(yp −Hx)eTkB
m∑
r=1

(yr −Hx)(yr −Hx)T

∣∣∣∣∣m
]
B

]
jl

(3.50)
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= 0.5s

[
HTBE

[
m∑
p=1

m∑
r=1

(yp −Hx)eTkB(yr −Hx)(yr −Hx)T

∣∣∣∣∣m
]
B

]
jl

(3.51)

= 0.5s

[
HTB

m∑
p=1

m∑
r=1

E
[
(yp −Hx)eTkB(yr −Hx)(yr −Hx)T

∣∣m]B]
jl

.

(3.52)

When p 6= r, due to the independence of the measurements, the expecta-

tion inside the summation above should be zero. Hence, we have

E
[[
Sx · eTk SX

]
jl

∣∣∣m]
= 0.5s

[
HTB

m∑
r=1

E
[
(yr −Hx)eTkB(yr −Hx)(yr −Hx)T

∣∣m]B]
jl

.

(3.53)

Inside the expectation above, we have third-order central moments of a

Gaussian random variable which are zero. As a result, we have

E
[[
Sx · eTk SX

]
jl

∣∣∣m] = 0 (3.54)

for j = 1, . . . , 4, k, l = 1, 2 and for all m. As a result, we get

E
[
SxS

T
ξX

]
= 0. (3.55)

• Calculation of E
[
SξXS

T
x

]
: This term is the transpose of the term E

[
SxS

T
ξX

]
,

hence we have

E
[
SξXS

T
x

]
= 0. (3.56)

• Calculation of E
[
SξXS

T
ξX

]
: Considering the definition of the gradient

SξX in (3.38), the matrix E
[
SξXS

T
ξX

]
can be obtained as follows.

E
[
SξXS

T
ξX

]
=


d11,11 d11,12 + d11,21 d11,22

d12,11 + d21,11

d12,12 + d12,21

+d21,12 + d21,22

d12,22 + d21,22

d22,11 d22,12 + d22,21 d22,22

 .

(3.57)
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where

dij,kl , E [[SX ]ij[SX ]kl] . (3.58)

Hence, we have to calculate the expectation of the terms of the form

[SX ]ij[SX ]kl. We can write these terms as the multiplication eTi SXeje
T
k SXel =

[SXeje
T
k SX ]il where each of ei, ej, ek and el is a column vector composed

of all zeros except for its jth entry which is equal to unity. Note that with

the extended target state definitions, the possible values for i, j and k, l

are i, j = 1, . . . , 4 and k, l = 1, . . . , 2, respectively. As a result, defining

B , (sX +R)−1, we can write

SXeje
T
k S

T
X =

(
−0.5smB + 0.5sB

m∑
p=1

(yp −Hx)(yp −Hx)TB

)

× ejeTk

(
−0.5smB + 0.5sB

m∑
r=1

(yr −Hx)(yr −Hx)TB

)
=0.25s2m2Beje

T
kB

− 0.25s2mBeje
T
kB

m∑
r=1

(yr −Hx)(yr −Hx)TB

− 0.25s2mB
m∑
p=1

(yp −Hx)(yp −Hx)TBeje
T
kB

+ 0.25s2B
m∑
p=1

(yp −Hx)(yp −Hx)TBeje
T
kB

×
m∑
r=1

(yr −Hx)(yr −Hx)TB. (3.59)

We now define C ,
m∑
p=1

(yp−Hx)(yp−Hx)T and substitute it into (3.59),

which gives

SXeje
T
k S

T
X =0.25s2m2Beje

T
kB − 0.25s2mBeje

T
kBCB

− 0.25s2mBCBeje
T
kB + 0.25s2BCBeje

T
kBCB. (3.60)

Taking the expected values of both sides given m, we have

E[SXeje
T
k S

T
X |m] = 0.25s2m2Beje

T
kB − 0.25s2mBeje

T
kBE[C|m]B

− 0.25s2mBE[C|m]Beje
T
kB + 0.25s2BE[CBeje

T
kBC|m]B. (3.61)
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Noting that C is Wishart distributed with C ∼ W(m, sX + R) given m,

we have E[C|m] = m(sX +R) = mB−1. Hence, we have

E
[
SXeje

T
k S

T
X |m

]
= −0.25s2m2Beje

T
kB + 0.25s2BE[CBeje

T
kBC|m]B.

(3.62)

In order to compute the expectation in the last term of (3.62), we need

the following theorem from [21].

Theorem 3 (Theorem 3.3.15(ii) from [21]). Let C ∼ W(m,Σ) be a Wishart

distributed random matrix. Then,

E [CAC] = mΣA′Σ +m tr [ΣA] Σ +m2ΣAΣ. (3.63)

�

Using Theorem 3, we can write

E[CBeje
T
kBC|m] =mB−1Beke

T
j BB

−1 +m tr
(
B−1Beje

T
kB
)
B−1

+m2B−1Beje
T
kBB

−1 (3.64)

=meke
T
j +m tr

(
eje

T
kB
)
B−1 +m2eje

T
k (3.65)

=meke
T
j +m tr

(
eTkBej

)
B−1 +m2eje

T
k (3.66)

=meke
T
j +mBkjB

−1 +m2eje
T
k . (3.67)

Substituting this result into (3.62) we obtain

E
[
SXeje

T
k S

T
x |m

]
=− 0.25s2m2Beje

T
kB

+ 0.25s2B
[
meke

T
j +mBkjB

−1 +m2eje
T
k

]
B (3.68)

=0.25s2B
[
meke

T
j +mBkjB

−1
]
B (3.69)

=
s2

4
m
[
Beke

T
j B +BkjB

]
. (3.70)

Taking the expectation of both sides with respect to m, we get

E
[
SXeje

T
k S

T
x

]
=
s2

4
m̄
[
Beke

T
j B +BkjB

]
. (3.71)
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As a result, dij,kl used in the result (3.57) is given as

dij,kl ,E [[SX ]ij[SX ]kl] (3.72)

=
s2

4
m̄
[
(sX +R)−1eke

T
j (sX +R)−1

+ (sX +R)−1
[
(sX +R)−1

]
kj

]
il

(3.73)

=
s2

4
m̄
( [

(sX +R)−1
]
ik

[
(sX +R)−1

]
jl

+
[
(sX +R)−1

]
il

[
(sX +R)−1

]
kj

)
. (3.74)

Combining the results given above, the overall FIM Ik defined in (3.6) has the

following form.

Ik =


I11

... 0

· · · ... · · ·

0
... I22

 (3.75)

where I11 denoting the FIM for kinematical states is given as

I11 , m̄HT (sX +R)−1H. (3.76)

The matrix block I22 denoting the FIM for extension is given as

I22 , E
[
SξXS

T
ξX

]
(3.77)

where the explicit result of the expectation is given in (3.57). Since the overall

FIM Ik is block diagonal, if the initial covariance J̄0 initial estimation errors in

the kinematic state and the extent state is also block diagonal and the dynamics

of the kinematic state and the extent state are independent, the parametric

CRLBs for the kinematic and extent states can be computed using independent

recursions as follows.

• Parametric CRLB Recursion for the Kinematic State

J x
0|−1 =J̄x0 , (3.78)

J x
k|k =

((
J x
k|k−1

)−1
+ I11

k

)−1

, (3.79)

J x
k+1|k =F x

k J x
k|k(F

x
k )T , (3.80)

where
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– J x
k|k is the parametric CRLB for the kinematic state,

– J̄x0 is a fixed covariance matrix representing the estimation error for

the initial kinematic state x0,

– F x
k is the Jacobian for the state transition function of the kinematic

state evaluated at the true kinematic state,

– I11
k is the FIM for the kinematic state given as I11 in (3.76).

• Parametric CRLB Recursion for the Extent State

J X
0|−1 =J̄X0 , (3.81)

J X
k|k =

((
J X
k|k−1

)−1
+ I22

k

)−1

, (3.82)

J X
k+1|k =FX

k J X
k|k(F

X
k )T , (3.83)

where

– J X
k|k is the parametric CRLB for the extent state,

– J̄X0 is a fixed covariance matrix representing the estimation error for

the initial extent state X0,

– FX
k is the Jacobian for the state transition function of the extent state

evaluated at the true extent state,

– I22
k is the FIM for the extent state given as I22 in (3.77).

3.3 Initialization of the Parametric CRLB

The initial value of the parametric CRLB for the kinematic state is set to a fixed

covariance representing the estimation error for the initial kinematic state x0.

For example, if the initial estimate of an ETT algorithm have the distribution

x̂0|−1 ∼ px̂0|−1
(·) which has a mean equal to the true initial kinematic state x0,

then J x
0|−1 is set to be

J x
0|−1 = P0 (3.84)

where P0 is the covariance of px̂0|−1
(·). Note that the requirement that the mean

of px̂0|−1
(·) is x0 comes from the requirement of unbiasedness for parametric

CRLB, i.e., we need to have E[x̂0|−1] = x0.
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The initial value of the parametric CRLB for the kinematic state is set to a fixed

covariance representing the estimation error for the initial extension state X0.

Suppose that the distribution of the initial extent estimate for an ETT algorithm

is given as X̂0|−1 ∼ pX̂0|−1
(·) which has a mean equal to the true initial extent

state, i.e., E[X̂0|−1] = X0, then J X
0|−1 is set to be

J X
0|−1 = Σ0 (3.85)

where Σ0 is the covariance of pX̂0|−1
(·).

For example, suppose that X̂0|−1 is Wishart distributed, i.e., we have X̂0|−1 ∼

W
(
n0,

X0

n0

)
where n0 is the initial degrees of freedom. Note that when we

have this selection, E[X̂0|−1] = X0 which is a necessary condition for parametric

CRLB, since it considers only the unbiased estimators. The covariance of the

Wishart distribution is given in the following theorem from [21].

Theorem 4 (3.3.15 (i) from [21]). Let S ∼ W(n,Σ), then

cov(Sij, Skl) = n(ΣikΣjl + ΣilΣjk). (3.86)

�

Using the theorem, we can calculate the initial parametric CRLB for the extent

state as follows.

J X
0|−1 =

1

n0


2[X0]211 2[X0]11[X0]21 2[X0]221

2[X0]11[X0]21 2[X0]11[X0]22 + 2[X0]221 2[X0]21[X0]22

2[X0]221 2[X0]21[X0]22 2[X0]222

 . (3.87)

3.4 Parametric CRLB for Semi-Major and Semi-Minor Axes

Semi-major and semi-minor axes of the extension ellipsoid are equal to the square

root of the eigenvalues of the extension matrix. The eigenvalues of matrix X

can be expressed as follows

λ1,2(X) =
trX ∓

√
(trX)2 − 4 detX

2
(3.88)

32



where + and − signs in ∓ correspond to the larger and smaller eigenvalues of

X respectively. The semi-major and semi-minor axes of the extension, denoted

as amajor and aminor, respectively, are given as

amajor,minor(X) =

√√√√trX ∓
√

(trX)2 − 4 detX

2
, (3.89)

=

√√√√X11 +X22 ∓
√

(X11 +X22)2 − 4 (X11X22 −X12X21)

2

(3.90)

where + and − signs in ∓ correspond to the semi-major and semi-minor axes

of the extension, respectively. When we use the fact that X is symmetric, i.e.,

X12 = X21, we have

amajor,minor(X) =

√√√√X11 +X22 ∓
√

(X11 +X22)2 − 4 (X11X22 −X2
12)

2
. (3.91)

These expressions describe deterministic nonlinear transformations of the entries

of the matrix X and the parametric CRLBs can be obtained using Property 2

from the parametric CRLB of the extent state. In order to obtain the Jacobian

of amajor,minor(·) with respect to X, we are going to take the square of both sides

above.

a2
major,minor(X) =

X11 +X22 ∓
√

(X11 +X22)2 − 4 (X11X22 −X2
12)

2
(3.92)

which is correct since the right hand side above is always non-negative. Hence

we have

∂a2
major,minor(X)

∂Xij

= 2amajor,minor(X)
∂amajor,minor(X)

∂Xij

(3.93)

which can be written as

∂amajor,minor(X)

∂Xij

=
1

2amajor,minor(X)

∂a2
major,minor(X)

∂Xij

. (3.94)
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Since we have ξX ,
[
X11 X12 X22

]T
, the Jacobian of amajor(·) and aminor(·)

with respect to ξX can be calculated using (3.94) as

∇ξXamajor(X) =
1

2amajor(X)



1

2
+

X11 −X22

2
√

(trX)2 − 4 detX

2
X12√

(trX)2 − 4 detX
1

2
+

X22 −X11

2
√

(trX)2 − 4 detX


, (3.95)

∇ξXaminor(X) =
1

2aminor(X)



1

2
− X11 −X22

2
√

(trX)2 − 4 detX

−2
X12√

(trX)2 − 4 detX
1

2
− X22 −X11

2
√

(trX)2 − 4 detX


. (3.96)

Using the result of Section 2.2.1, we can write the parametric CRLB of the

semi-major and semi-minor axes as follows.

J amajor

k|k =∇T
ξXk
amajor(Xk)J X

k ∇ξXk
amajor(Xk), (3.97)

J aminor

k|k =∇T
ξXk
aminor(Xk)J X

k ∇ξXk
aminor(Xk). (3.98)
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CHAPTER 4

POSTERIOR CRAMÉR-RAO LOWER BOUND FOR

EXTENDED TARGET TRACKING

Posterior Cramer-Rao lower bound is the second type of CRLB derived for ETT

in this study. The chapter is organized as follows. First the posterior CRLB

for dynamic systems is defined in Section 4.1. The posterior CRLB recursion

for ETT is derived in Section 4.2. The chapter continues with a discussion of

the initialization of the posterior CRLB recursion in Section 4.3. In Section 4.4,

the chapter is concluded with posterior CRLB expressions for semi-major and

semi-minor axes of the extension.

4.1 Definition of Posterior Cramér-Rao Lower Bound for Dynamic

Systems

Posterior CRLB assumes that the parameter, i.e., the state vector in this case,

is random and gives a performance measure for both biased and unbiased esti-

mators. We consider the following state space representation.

ξ0 ∼pξ0(ξ0), (4.1)

ξk+1|ξk ∼p(ξk+1|ξk), (4.2)

yk|ξk ∼p(yk|ξk) (4.3)

where

• ξk ∈ Rnξ is the state vector of the dynamic system,
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• pξ0(·) is a known initial distribution for ξ0,

• p(ξk+1|ξk) is a known state transition density describing the evolution of

the state ξk,

• p(yk|ξk) is a known likelihood function for the measurements yk ∈ Rny .

The posterior CRLB recursion derived for this system by Tichavsky et al. in [22]

is given as follows.

Ĩ0 =E
[
−∆ξ0

ξ0
log p (ξ0)

]
(4.4)

Ĩk+1 =D22
k+1 + E

[
−∆

ξk+1

ξk+1
log p(yk+1|ξk+1)

]
−D21

k+1

(
Ĩk +D11

k+1

)−1

D12
k+1 (4.5)

J̃k =Ĩ−1
k (4.6)

where

D11
k+1 , E

[
−∆ξk

ξk
log p(ξk+1|ξk)

]
, (4.7)

D12
k+1 , E

[
−∆

ξk+1

ξk
log p(ξk+1|ξk)

]
, (4.8)

D21
k+1 , E

[
−∆ξk

ξk+1
log p(ξk+1|ξk)

]
, (4.9)

D22
k+1 , E

[
−∆

ξk+1

ξk+1
log p(ξk+1|ξk)

]
. (4.10)

The following expressions can be used to calculate the terms Dij
k+1, i, j = 1, 2

and E
[
−∆

ξk+1

ξk+1
log p(yk+1|ξk+1)

]
using only first-order derivatives (See [23] for

details).

E
[
−∆ξ0

ξ0
p (ξ0)

]
=E

[
∇ξ0p (ξ0)∇T

ξ0
p (ξ0)

]
, (4.11)

E
[
−∆ξk

ξk
log p(ξk+1|ξk)

]
=E

[
∇ξk log p(ξk+1|ξk)∇T

ξk
log p(ξk+1|ξk)

]
, (4.12)

E
[
−∆

ξk+1

ξk
log p(ξk+1|ξk)

]
=E

[
∇ξk log p(ξk+1|ξk)∇T

ξk+1
log p(ξk+1|ξk)

]
, (4.13)

E
[
−∆ξk

ξk+1
log p(ξk+1|ξk)

]
=E

[
∇ξk+1

log p(ξk+1|ξk)∇T
ξk

log p(ξk+1|ξk)
]
, (4.14)

E
[
−∆

ξk+1

ξk+1
log p(ξk+1|ξk)

]
=E

[
∇ξk+1

log p(ξk+1|ξk)∇T
ξk+1

log p(ξk+1|ξk)
]
, (4.15)

E
[
−∆

ξk+1

ξk+1
log p(yk+1|ξk+1)

]
= E

[
∇ξk+1

log p(yk+1|ξk+1)∇T
ξk+1

log p(yk+1|ξk+1)
]
, (4.16)

= E
[
E
[
∇ξk+1

log p(yk+1|ξk+1)∇T
ξk+1

log p(yk+1|ξk+1)
∣∣∣ ξk+1

]]
, (4.17)

= E [Ik+1(ξk+1)] , (4.18)
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where Ik(ξk) is the parametric FIM at the true augmented state ξk.

In the next section, the posterior CRLB will be derived for the ETT problem

defined in Section 2.1.1.1.

4.2 Derivations of Posterior CRLB for the Case of ETT

In this section, we derive the expressions for the posterior CRLB for ETT. We

consider again the augmented state vector ξk which is composed of the kinematic

state xk and the extension state Xk as follows.

ξk ,

 ξxk

ξXk

 (4.19)

where

ξxk ,xk, (4.20)

ξXk ,
[

[Xk]11 [Xk]12 [Xk]22

]T
. (4.21)

The state transition densities for the kinematic and extent states are selected to

be independent as follows

p(xk+1|xk) = N (xk+1;Fxk, Q), (4.22)

p(Xk+1|Xk) =Wd

(
Xk+1;nk+1,

Xk

nk+1

)
. (4.23)

where d = 2. Hence, p(ξk+1|ξk) can be obtained by the multiplication of

p(xk+1|xk) and p(Xk+1|Xk) by making the following substitutions.

xk ←ξxk , (4.24)

xk+1 ←ξxk+1, (4.25)

Xk ←

 [ξXk ]1 [ξXk ]2

[ξXk ]2 [ξXk ]3

 , (4.26)

Xk+1 ←

 [ξXk+1]
1

[ξXk+1]
2

[ξXk+1]
2

[ξXk+1]
3

 . (4.27)

The likelihood p(Yk|ξk) is defined exactly the same as that in the parametric

CRLB case. It has been seen in the parametric CRLB case that the likelihood
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p(Yk|ξk) results in independent pieces of Fisher information for the kinematic

and extent states. Since the transition densities for the kinematic and extent

states are also independent, if the initial pieces of Fisher information for the

kinematic and extent states are independent, all FIMs and CRLB matrices,

Ĩk and J̃k as well as the intermediate matrices Dij
k+1, i, j = 1, 2 will be block

diagonal. Therefore, posterior CRLBs for the kinematic and extent states can

be computed using independent recursions as follows.

• Posterior CRLB Recursion for the Kinematic State:

Ĩx0 =E
[
∇x0 log px0 (x0)∇T

x0
log px0 (x0)

]
, (4.28)

Ĩxk+1 =Dx,22
k+1 + E

[
I11
k+1(xk+1, Xk+1)

]
−Dx,21

k+1

(
Ĩxk +Dx,11

k+1

)−1

Dx,12
k+1,

(4.29)

J̃ x
k =

(
Ĩxk
)−1

, (4.30)

where I11
k+1(·, ·) is the parametric FIM for the kinematic state (evaluated at

the true kinematic and extent states xk+1 and Xk+1 respectively) derived

in Chapter 3 which is equal to I11 in (3.76) and

Dx,11
k+1 ,E

[
∇xk log p(xk+1|xk)∇T

xk
log p(xk+1|xk)

]
, (4.31)

Dx,12
k+1 ,E

[
∇xk log p(xk+1|xk)∇T

xk+1
log p(xk+1|xk)

]
, (4.32)

Dx,21
k+1 ,E

[
∇xk+1

log p(xk+1|xk)∇T
xk

log p(xk+1|xk)
]
, (4.33)

Dx,22
k+1 ,E

[
∇xk+1

log p(xk+1|xk)∇T
xk+1

log p(xk+1|xk)
]
. (4.34)

• Posterior CRLB Recursion for the Extent State:

ĨX0 =E
[
∇ξX0

log pX0 (X0)∇T
ξX0

log pX0 (X0)
]
, (4.35)

ĨXk+1 =DX,22
k+1 + E

[
I22
k+1(xk+1, Xk+1)

]
−DX,21

k+1

(
ĨXk +DX,11

k+1

)−1

DX,12
k+1 ,

(4.36)

J̃ X
k =

(
ĨXk
)−1

, (4.37)

where I22
k+1(·, ·) is the parametric FIM for the extent state (evaluated at

the true kinematic and extent states xk+1 and Xk+1 respectively) derived
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in Chapter 3 which is equal to I22 in (3.77) and

DX,11
k+1 , E

[
∇ξXk

log p(Xk+1|Xk)∇T
ξXk

log p(Xk+1|Xk)
]
, (4.38)

DX,12
k+1 , E

[
∇ξXk

log p(Xk+1|Xk)∇T
ξXk+1

log p(Xk+1|Xk)
]
, (4.39)

DX,21
k+1 , E

[
∇ξXk+1

log p(Xk+1|Xk)∇T
ξXk

log p(Xk+1|Xk)
]
, (4.40)

DX,22
k+1 , E

[
∇ξXk+1

log p(Xk+1|Xk)∇T
ξXk+1

log p(Xk+1|Xk)
]
. (4.41)

As a result of the discussion above, the posterior CRLB derivations will be made

independently in the forthcoming subsections.

4.2.1 Derivations for the Kinematical State

The logarithm of the kinematic state transition density p(xk+1|xk) is given as

log(p(xk+1|xk)) = −1

2
log (|Q|)− 1

2
(xk+1 − Fxk)TQ−1(xk+1 − Fxk) (4.42)

up to an additive constant independent of xk and xk+1. Property 5 can easily

be applied to obtain the following gradients.

∇xk+1
log p(xk+1|xk) = −Q−1(xk+1 − Fxk), (4.43)

∇xk log p(xk+1|xk) = F TQ−1(xk+1 − Fxk). (4.44)

Using the derivatives given above, the expressions for Dx,ij
k+1, i, j = 1, 2 defined

in (4.31) to (4.34) can be calculated as below.

• Calculation of Dx,11
k+1:

Dx,11
k+1 = E

[
∇xk log p(xk+1|xk)∇T

xk
log p(xk+1|xk)

]
, (4.45)

= E
[
F TQ−1(xk+1 − Fxk)(xk+1 − Fxk)TQ−1F

]
, (4.46)

= F TQ−1E
[
(xk+1 − Fxk)(xk+1 − Fxk)T

]
Q−1F, (4.47)

= F TQ−1F. (4.48)
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• Calculation of Dx,12
k+1:

Dx,12
k+1 = E

[
∇xk log p(xk+1|xk)∇T

xk+1
log p(xk+1|xk)

]
, (4.49)

= −E
[
F TQ−1(xk+1 − Fxk)(xk+1 − Fxk)TQ−1

]
, (4.50)

= −F TQ−1E
[
(xk+1 − Fxk)(xk+1 − Fxk)T

]
Q−1, (4.51)

= −F TQ−1. (4.52)

• Calculation of Dx,21
k+1:

Dx,21
k+1 = E

[
∇xk+1

log p(xk+1|xk)∇T
xk

log p(xk+1|xk)
]
, (4.53)

= −E
[
Q−1(xk+1 − Fxk)(xk+1 − Fxk)TQ−1F

]
, (4.54)

= −Q−1E
[
(xk+1 − Fxk)(xk+1 − Fxk)T

]
Q−1F, (4.55)

= −Q−1F. (4.56)

• Calculation of Dx,22
k+1:

Dx,22
k+1 =E

[
∇xk+1

log p(xk+1|xk)∇T
xk+1

log p(xk+1|xk)
]
, (4.57)

=E
[
Q−1(xk+1 − Fxk)(xk+1 − Fxk)TQ−1

]
, (4.58)

=Q−1E
[
(xk+1 − Fxk)(xk+1 − Fxk)T

]
Q−1, (4.59)

=Q−1. (4.60)

Substituting the results given above into the recursion (4.29), we get

Ĩk+1 =Q−1 −Q−1F (Ĩk + F TQ−1F )F TQ−1 + E
[
I11
k+1(xk+1, Xk+1)

]
, (4.61)

=Q−1 −Q−1F (Ĩk + F TQ−1F )F TQ−1 + E
[
m̄k+1H

T (sXk+1 +R)−1H
]

(4.62)

where I11
k+1(·, ·) was substituted from (3.76) to obtain the second equality above.

Note that m̄k denotes the expected number of measurements at time k and it can

be dependent on the target kinematic and extent states, i.e., m̄k = m̄k(xk, Xk).

This dependence is suppressed in the expressions for the sake of brevity.

A simpler form of (4.62) can be obtained using following well-known lemma.

Lemma 1 (Matrix Inversion Lemma).

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1. (4.63)

�
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Using the matrix inversion lemma on the first two terms on the right hand side

of (4.62), we get

Ĩk+1 =
(
F Ĩ−1

k F T +Q
)−1

+ E
[
m̄k+1H

T (sXk+1 +R)−1H
]
. (4.64)

Since there is no analytical form of the expectation on the right hand side

of (4.64), it is going to be taken using Monte Carlo integration.

4.2.2 Derivations for the Extent State

The logarithm of the extent state transition density p(Xk+1|Xk) is given as

log p(Xk+1|Xk) =
nk+1 − d− 1

2
log |Xk+1|+ tr

[
−1

2

(
Xk

nk+1

)−1

Xk+1

]

− nk+1

2
log

∣∣∣∣ Xk

nk+1

∣∣∣∣ (4.65)

up to an additive constant independent of Xk and Xk+1. In order to be able to

compute the derivatives of log p(Xk+1|Xk), the following properties from matrix

calculus are required [20].

Property 8.
∂ log |X|
∂X

=(X−1)T , (4.66)

∂ tr
[
AXT

]
∂X

=A, (4.67)

∂ tr [X−1A]

∂X
=−X−TATX−T . (4.68)

�

Using the properties given above, the derivatives of log p(Xk+1|Xk) with respect

to Xk+1 and Xk can be calculated as below.

∇Xk+1
log p(Xk+1|Xk) =

nk+1 − d− 1

2

∂ log |Xk+1|
∂Xk+1

− nk+1

2

∂ tr
[
X−1
k Xk+1

]
∂Xk+1

,

(4.69)

=
nk+1 − d− 1

2
X−1
k+1 −

nk+1

2
Xk
−1, (4.70)

∇Xk log p(Xk+1|Xk) = −nk+1

2

∂ tr
[
X−1
k Xk+1

]
∂Xk

− nk+1

2

∂ log |Xk|
∂Xk

, (4.71)

=
nk+1

2
X−1
k Xk+1X

−1
k −

nk+1

2
X−1
k . (4.72)
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Under the constraints [Xk]12 = [Xk]21 and [Xk+1]12 = [Xk+1]21, the gradient of

log p(Xk+1|Xk) with respect to ξXk+1 and ξXk are given as

∇ξXk+1
log p(Xk+1|Xk) =



[
∇Xk+1

log p(Xk+1|Xk)
]

11

[
∇Xk+1

log p(Xk+1|Xk)
]

12

+
[
∇Xk+1

log p(Xk+1|Xk)
]

21

[
∇Xk+1

log p(Xk+1|Xk)
]

22


. (4.73)

∇ξXk
log p(Xk+1|Xk) =



[∇Xk log p(Xk+1|Xk)]11

[∇Xk log p(Xk+1|Xk)]12

+ [∇Xk log p(Xk+1|Xk)]21

[∇Xk log p(Xk+1|Xk)]22


. (4.74)

The matrices DX,tu
k+1 , t, u = 1, 2 defined in (4.38) to (4.41) would then have the

following form.

DX,tu
k+1 =


dtu11,11 dtu11,12 + dtu11,21 dtu11,22

dtu12,11 + dtu21,11

dtu12,12 + dtu12,21

+dtu21,12 + dtu21,22

dtu12,22 + dtu21,22

dtu22,11 dtu22,12 + dtu22,21 dtu22,22

 (4.75)

where

d11
ij,lm , E

[
[∇Xk log p(Xk+1|Xk)]ij [∇Xk log p(Xk+1|Xk)]lm

]
, (4.76)

d12
ij,lm , E

[
[∇Xk log p(Xk+1|Xk)]ij

[
∇Xk+1

log p(Xk+1|Xk)
]
lm

]
, (4.77)

d21
ij,lm , E

[[
∇Xk+1

log p(Xk+1|Xk)
]
ij

[∇Xk log p(Xk+1|Xk)]lm

]
, (4.78)

d22
ij,lm , E

[[
∇Xk+1

log p(Xk+1|Xk)
]
ij

[
∇Xk+1

log p(Xk+1|Xk)
]
lm

]
. (4.79)

We are now going to calculate the elements of dtuij,lm, t, u = 1, 2, one by one

below.
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• Calculation of d11
ij,lm:

d11
ij,lm ,E

[
[∇Xk log p(Xk+1|Xk)]ij

(
[∇Xk log p(Xk+1|Xk)]lm

)]
=E

[ [nk+1

2
X−1
k Xk+1X

−1
k −

nk+1

2
X−1
k

]
ij

×
[nk+1

2
X−1
k Xk+1X

−1
k −

nk+1

2
X−1
k

]
lm

]
=−

n2
k+1

4
E
[[
X−1
k Xk+1X

−1
k

]
ij

[
X−1
k

]
lm

]
−
n2
k+1

4
E
[[
X−1
k

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
+
n2
k+1

4
E
[[
X−1
k

]
ij

[
X−1
k

]
lm

]
+
n2
k+1

4
E
[[
X−1
k Xk+1X

−1
k

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
. (4.80)

– First term of (4.80):

E
[[
X−1
k Xk+1X

−1
k

]
ij

[
X−1
k

]
lm

]
= E

[
E
([
X−1
k Xk+1X

−1
k

]
ij

[
X−1
k

]
lm

∣∣∣Xk

)]
(4.81)

= E
[[
X−1
k E (Xk+1|Xk)X

−1
k

]
ij

[
X−1
k

]
lm

]
(4.82)

It is known that Xk+1|Xk ∼ Wd

(
Xk+1;nk+1,

Xk

nk+1

)
is Wishart dis-

tributed. Hence, the inner expectation of (4.82) is given as

E [Xk+1|Xk] = nk+1
Xk

nk+1

= Xk (4.83)

which gives

E
[[
X−1
k Xk+1X

−1
k

]
ij

[
X−1
k

]
lm

]
= E

[[
X−1
k

]
ij

[
X−1
k

]
lm

]
. (4.84)

The expectation on the right hand side above has no analytical form,

hence it is going to be taken using Monte Carlo integration.

– Second term of (4.80): This expectation can be computed in the

same way as the first term resulting in

E
[[
X−1
k

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
= E

[[
X−1
k

]
ij

[
X−1
k

]
lm

]
. (4.85)

– Third term of (4.80): This term is left as it is.
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– Fourth term of (4.80):

E
[[
X−1
k Xk+1X

−1
k

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
(4.86)

= E
[
eTi X

−1
k Xk+1X

−1
k eje

T
l X

−1
k Xk+1X

−1
k em

]
(4.87)

= eTi E
[
X−1
k Xk+1X

−1
k eje

T
l X

−1
k Xk+1

]
em (4.88)

= eTi E
[
X−1
k E

[
Xk+1X

−1
k eje

T
l X

−1
k Xk+1

∣∣Xk

]
X−1
k

]
em (4.89)

where e` ∈ R2, ` = i, j, l,m is a vector filled with all zeros except for

the `th element which is unity. For the inner expectation of (4.89),

we are going to use the following theorem.

Theorem 5 (Theorem 3.3.15(ii) from [21]). Let X ∼ Wd(n,Σ)

E(XAX) = nΣA′Σ + n tr(ΣA)Σ + n2ΣAΣ

where A is a constant matrix of size d× d. �

Using the theorem above, the inner expectation in (4.89) is given as

E
[
Xk+1X

−1
k eje

T
l X

−1
k Xk+1|Xk

]
=nk+1

Xk

nk+1

X−1
k ele

T
j X

−1
k

Xk

nk+1

+ nk+1 tr

[
Xk

nk+1

X−1
k eje

T
l X

−1
k

]
Xk

nk+1

+ n2
k+1

Xk

nk+1

X−1
k eje

T
l X

−1
k

Xk

nk+1

, (4.90)

=
1

nk+1

(
ele

T
j + tr

[
eje

T
l X

−1
k

]
Xk

)
+ eje

T
l ,

(4.91)

=
1

nk+1

(
ele

T
j +

[
X−1
k

]
lj
Xk

)
+ eje

T
l .

(4.92)

The fourth term of (4.80) is then obtained as follows.

E
[[
X−1
k Xk+1X

−1
k

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
=

1

nk+1

E
[[
X−1
k

]
il

[
X−1

]
jm

+
[
X−1
k

]
lj

[Xk]im

+ nk+1

[
X−1
k

]
ij

[
X−1
k

]
lm

]
(4.93)

Using the individual terms calculated above, the final form of (4.80) that

can be reached by analytical manipulations is given as

d11
ij,lm =

nk+1

4

(
E
[[
X−1
k

]
il

[
X−1
k

]
jm

]
+ E

[[
X−1
k

]
im

[
X−1
k

]
lj

])
(4.94)
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where expectations will be taken using Monte Carlo integration.

• Calculation of d21
ij,lm:

d21
ij,lm ,E

[[
∇Xk+1

log p(Xk+1|Xk)
]
ij

[∇Xk log p(Xk+1|Xk)]lm

]
=E

[ [
nk+1 − d− 1

2
X−1
k+1 −

nk+1

2
X−1
k

]
ij

×
[nk+1

2
X−1
k Xk+1X

−1
k −

nk+1

2
X−1
k

]
lm

]
,

=−
n2
k+1

4
E
[[
X−1
k

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
− nk+1(nk+1 − d− 1)

4
E
[[
X−1
k+1

]
ij

[
X−1
k

]
lm

]
+
n2
k+1

4
E
[[
X−1
k

]
ij

[
X−1
k

]
lm

]
+
nk+1(nk+1 − d− 1)

4
E
[[
X−1
k+1

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
. (4.95)

– First term of (4.95):

E
[[
X−1
k

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
= E

[[
X−1
k

]
ij

[
X−1
k E [Xk+1|Xk]X

−1
k

]
lm

]
. (4.96)

The inner expectation is given as Xk as shown in (4.83). Hence, we

have

E
[[
X−1
k

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
= E

[[
X−1
k

]
ij

[
X−1
k

]
lm

]
. (4.97)

– Second term of (4.95):

E
[[
X−1
k+1

]
ij

[
X−1
k

]
lm

]
= E

[[
E
[
X−1
k+1|Xk

]]
ij

[
X−1
k

]
lm

]
(4.98)

For the inner expectation in (4.98) the following theorem is used.

Theorem 6 (Theorem 3.4.1 from [21]). Let V ∼ IWp(m,Ψ), then

V −1 ∼ Wp(m− p− 1,Ψ−1). �

It is known that Xk+1|Xk ∼ Wd

(
nk+1,

Xk

nk+1

)
and Xk+1 is an d × d

matrix. Hence, according to the theorem the distribution of X−1
k+1|Xk

is given as X−1
k+1|Xk ∼ IWd

(
nk+1 + d+ 1,

(
Xk

nk+1

)−1
)
. Therefore,
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the inner expectation in (4.98) can be obtained as

E
[
X−1
k+1|Xk

]
=

nk+1

nk+1 − d− 1
X−1
k (4.99)

which yields the following result.

E
[[
X−1
k+1

]
ij

[
X−1
k

]
lm

]
=

nk+1

nk+1 − d− 1
E
[[
X−1
k

]
ij

[
X−1
k

]
lm

]
.

(4.100)

– Third term of (4.95): This term is left as it is.

– Fourth term of (4.95):

E
[[
X−1
k+1

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
= E

[
eTi X

−1
k+1ejelX

−1
k Xk+1X

−1
k em

]
(4.101)

= E
[
eTi E

[
X−1
k+1eje

T
l X

−1
k Xk+1

∣∣Xk

]
X−1
k em

]
(4.102)

where e` ∈ R2, ` = i, j, l,m is a vector filled with all zeros except for

the `th element which is unity. For calculating the inner expectation

of (4.102), the following corollary from [24] is required.

Corollary 1 ( [24]). Let X ∼ Wd(k, V ) with V nonsingular and

k ≥ d + 1, and suppose that the d × d constant matrix A is not

necessarily symmetric. Then

E
[
XAX−1

]
= (k − d− 1)−1

(
kV AV −1 − AT − tr [A] Id

)
(4.103)

where Id denotes a d× d identity matrix. �

Notice that if the transpose of the argument of the inner expectation

of (4.102), i.e., X−1
k+1eje

T
l X

−1
k Xk+1, is taken, it will have the same

form given in the corollary. Hence we have

(
X−1
k+1eje

T
l X

−1
k Xk+1

)T
= Xk+1X

−1
k ele

T
j X

−1
k+1. (4.104)

Now, the expectation of both sides of (4.104) can be taken and, using
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the corollary, the expectation can be calculated as

E
[
X−1
k+1ele

T
j X

−1
k Xk+1

]
=

1

nk+1 − d− 1

(
nk+1ele

T
j X

−1
k − eje

T
l X

−1
k

− tr
[
X−1
k ele

T
j

]
Id

)
(4.105)

=
1

nk+1 − d− 1

(
nk+1ele

T
j X

−1
k − eje

T
l X

−1
k

−
[
X−1
k

]
jl
Id

)
. (4.106)

Taking the transpose of both sides of (4.106), we get

E
[
X−1
k+1eje

T
l X

−1
k X−1

k+1

]
=

1

nk+1 − d− 1

(
nk+1X

−1
k eje

T
l −X−1

k ele
T
j

−
[
X−1
k

]
jl
Id

)
. (4.107)

After substituting (4.107) into (4.102), with some analytical manip-

ulations, we obtain

E
[[
X−1
k+1

]
ij

[
X−1
k Xk+1X

−1
k

]
lm

]
=

1

nk+1 − d− 1

(
nk+1

[
X−1
k

]
ij

[
X−1
k

]
lm

−
[
X−1
k

]
il

[
X−1
k

]
jm
−
[
X−1
k

]
jl

[
X−1
k

]
im

)
. (4.108)

Combining the individual equations obtained above, with some algebra,

d21
ij,lm can be found as below.

d21
ij,lm = −nk+1

4

(
E
[[
X−1
k

]
ij

[
X−1
k

]
lm

]
+ E

[[
X−1
k

]
jl

[
X−1
k

]
im

])
(4.109)

where the expectations should be computed using Monte Carlo integration.

• Calculation of d12
ij,lm: There is no need for a detailed calculation of this

term because we have

d12
ij,lm = d21

lm,ij. (4.110)

47



• Calculation of d22
ij,lm:

d22
ij,lm ,E

[[
∇Xk+1

log p(Xk+1|Xk)
]
ij

[
∇Xk+1

log p(Xk+1|Xk)
]
lm

]
(4.111)

=E

[ [
nk+1 − d− 1

2
X−1
k+1 −

nk+1

2
X−1
k

]
ij

×
[
nk+1 − d− 1

2
X−1
k+1 −

nk+1

2
X−1
k

]
lm

]
, (4.112)

=

(
nk+1 − d− 1

2

)2

E
[[
X−1
k+1

]
ij

[
X−1
k+1

]
lm

]
+
(nk+1

2

)2

E
[[
X−1
k

]
ij

[
X−1
k

]
lm

]
− (nk+1 − d− 1)nk+1

4
E
[[
X−1
k+1

]
ij

[
X−1
k

]
lm

]
− (nk+1 − d− 1)nk+1

4
E
[[
X−1
k

]
ij

[
X−1
k+1

]
lm

]
. (4.113)

– First term of (4.113): The expectation E
[[
X−1
k+1

]
ij

[
X−1
k+1

]
lm

]
can

be written as follows.

E
[[
X−1
k+1

]
ij

[
X−1
k+1

]
lm

]
=E

[
eTi X

−1
k+1eje

T
l X

−1
k+1em

]
(4.114)

=E
[
eTi E

[
X−1
k+1eje

T
l X

−1
k+1

∣∣Xk

]
em
]

(4.115)

where e` ∈ R2, ` = i, j, l,m is a vector filled with all zeros except for

the `th element which is unity. In order to take the inner expectation

in (4.115), the following theorem is required.

Theorem 7 (Theorem 3.4.5(i) from [21]). Let X ∼ IWd(n,Ψ). Then

E [XAX] = c1ΨAΨ + c2

[
ΨATΨ + tr (AΨ) Ψ

]
(4.116)

where A is a constant matrix of size d × d and the scalars c1 and c2

are defined as follows.

c1 =(n− 2d− 3)c2, (4.117)

c2 = [(n− 2d− 1)(n− 2d− 2)(n− 2d− 4)]−1 . (4.118)

�

Noting that X−1
k+1|Xk ∼ IW

(
nk+1 + d+ 1, nk+1X

−1
k

)
, Theorem 7 can
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be applied to take the inner expectation in (4.115) as follows.

E
[
X−1
k+1eje

T
l X

−1
k+1

∣∣Xk

]
=c1n

2
k+1X

−1
k eje

T
l X

−1
k

+ c2n
2
k+1

(
X−1
k ele

T
j X

−1
k

+ tr[eje
T
l X

−1
k ]X−1

k

)
, (4.119)

=c1n
2
k+1X

−1
k eje

T
l X

−1
k

+ c2n
2
k+1

(
X−1
k ele

T
j X

−1
k

+ [X−1
k ]ljX

−1
k

)
. (4.120)

Substituting (4.120) into (4.115), we get

E
[[
X−1
k+1

]
ij

[
X−1
k+1

]
lm

]
=E

[
c1n

2
k+1

[
X−1
k

]
ij

[
X−1
k

]
lm

+ c2n
2
k+1

( [
X−1
k

]
il

[
X−1
k

]
jm

+
[
X−1
k

]
lj

[
X−1
k

]
im

)]
(4.121)

where

c1 =(nk+1 − d− 2)c2, (4.122)

c2 = [(nk+1 − d)(nk+1 − d− 1)(nk+1 − d− 3)]−1 . (4.123)

– Second term of (4.113): This term is left as it is.

– Third term of (4.113):

E
[[
X−1
k+1

]
ij

[
X−1
k

]
lm

]
= E

[[
E
[
X−1
k+1|Xk

]]
ij

[
X−1
k

]
lm

]
. (4.124)

The inner expectation above is the same as that in (4.98). Hence we

have

E
[[
X−1
k+1

]
ij

[
X−1
k

]
lm

]
=

nk+1

nk+1 − d− 1
E
[[
X−1
k

]
ij

[
X−1
k

]
lm

]
.

(4.125)

– Fourth term of (4.113): This term is calculated in the same way

as the third term as follows.

E
[[
X−1
k

]
ij

[
X−1
k+1

]
lm

]
= E

[[
X−1
k

]
ij

[
E
[
X−1
k+1|Xk

]]
lm

]
=

nk+1

nk+1 − d− 1
E
[[
X−1
k

]
ij

[
X−1
k

]
lm

]
.

(4.126)
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Using the individual terms calculated above, the final form of (4.113) that

can be reached by analytical manipulations is given as

d22
ij,lm =

n2
k+1

4

(
c1 (nk+1 − d− 1)2 − 1

)
E
[[
X−1
k

]
ij

[
X−1
k

]
lm

]
+ c2

n2
k+1

4
(nk+1 − d− 1)2E

[[
X−1
k

]
il

[
X−1
k

]
jm

]
+ c2

n2
k+1

4
(nk+1 − d− 1)2E

[[
X−1
k

]
lj

[
X−1
k

]
im

]
. (4.127)

The expectations above are also taken using Monte Carlo integration.

The last term that needs to be calculated for the posterior CRLB of the extent

state is the term E
[
I22
k+1(xk+1, Xk+1)

]
in (4.36). Here I22

k+1(·, ·) is the parametric

FIM for the extent state (evaluated at the true kinematic and extent states xk+1

and Xk+1 respectively) derived in Chapter 3 which is equal to I22 in (3.77). For

the sake of completeness, we show I22
k+1(·, ·) below as well.

I22
k+1(·, ·) =


d11,11 d11,12 + d11,21 d11,22

d12,11 + d21,11

d12,12 + d12,21

+d21,12 + d21,22

d12,22 + d21,22

d22,11 d22,12 + d22,21 d22,22

 (4.128)

where

dij,lm ,
s2

4
m̄k+1

( [
(sXk+1 +R)−1

]
il

[
(sXk+1 +R)−1

]
jm

+
[
(sXk+1 +R)−1

]
im

[
(sXk+1 +R)−1

]
lj

)
. (4.129)

Note here again that m̄k denotes the expected number of measurements at time

k and it can be dependent on the target kinematic and extent states, i.e., m̄k =

m̄k(xk, Xk). This dependence is suppressed in the expressions for the sake of

brevity. Hence, E
[
I22
k+1(xk+1, Xk+1)

]
is given as

I22
k+1(·, ·) =


d̄11,11 d̄11,12 + d̄11,21 d̄11,22

d̄12,11 + d̄21,11

d̄12,12 + d̄12,21

+d̄21,12 + d̄21,22

d̄12,22 + d̄21,22

d̄22,11 d̄22,12 + d̄22,21 d̄22,22

 (4.130)
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where

d̄ij,lm = 0.25s2
(
E
[
m̄k+1

[
(sXk+1 +R)−1]

il

[
(sXk+1 +R)−1]

jm

]
+ E

[
m̄k+1

[
(sXk+1 +R)−1]

im

[
(sXk+1 +R)−1]

lj

])
. (4.131)

Here, Monte Carlo integration should again be used for taking the expectations.

4.3 Initialization of Posterior Cramér-Rao Lower Bound

The initial posterior CRLB’s for the kinematic and extent states are examined

separately below.

4.3.1 Initialization for the Posterior CRLB of the Kinematic State

The initial posterior FIM for the kinematic state is set as follows.

Ĩx0 =E
[
∇x0 log px0 (x0)∇T

x0
log px0 (x0)

]
. (4.132)

Assuming that px0(x0) = N (x0; x̄, P0) would easily give us the following gradient.

∂ log px0(x0)

∂x0

= −Q−1(x0 − x̄). (4.133)

Hence, Ĩx0 is given as

Ĩx0 = P−1
0 E

[
(x0 − x̄)T (x0 − x̄)

]
P−1

0 (4.134)

= P−1
0 (4.135)

which means that

Ĩx0 = P−1
0 . (4.136)

This would yield the initial posterior CRLB given below.

J̃ x
0 =P0. (4.137)
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4.3.2 Initialization for the Posterior CRLB of the Extent State

The initial posterior FIM for the extent state is set as follows.

ĨX0 =E
[
∇ξX0

log pX0 (X0)∇T
ξX0

log pX0 (X0)
]
. (4.138)

We here assume that

p(X0) =W
(
X0; n̄,

X̄

n̄

)
(4.139)

which gives us the following gradient with respect to X0.

∇X0 log pX0(X0) =
n̄− d− 1

2
X−1

0 −
n̄

2
X̄−1. (4.140)

Under the constraint [X0]12 = [X0]21, the gradient of log pX0(X0) with respect

to ξX0 is given as

∇ξX0
log pX0(X0) =



[∇X0 log pX0(X0)]11

[∇X0 log pX0(X0)]12

+ [∇X0 log pX0(X0)]21

[∇X0 log pX0(X0)]22


. (4.141)

As a result, the matrix ĨX0 will have the following form.

ĨX0 =


d0,11,11 d0,11,12 + d0,11,21 d0,11,22

d0,12,11 + d0,21,11

d0,12,12 + d0,12,21

+d0,21,12 + d0,21,22

d0,12,22 + d0,21,22

d0,22,11 d0,22,12 + d0,22,21 d0,22,22

 (4.142)

where

d0,ij,kl , E
[
[∇X0 log pX0(X0)]ij [∇X0 log pX0(X0)]kl

]
. (4.143)
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The term d0,ij,kl can be calculated as follows.

d0,ij,kl =E

[[
n̄− d− 1

2
X−1

0 −
n̄

2
X̄−1

]
ij

[
n̄− d− 1

2
X−1

0 −
n̄

2
X̄−1

]
kl

]

=
(n̄− d− 1)2

4
E
[[
X−1

0

]
ij

[
X−1

0

]
kl

]
+
n̄2

4
E
[[
X̄−1

]
ij

[
X̄−1

]
kl

]
− n̄(n̄− d− 1)

4

(
E
[[
X−1

0

]
ij

[
X̄−1

]
kl

]
+ E

[[
X̄−1

]
ij

[
X−1

0

]
kl

])
(4.144)

The expectations involved in (4.144) are calculated one by one below.

• First expectation of (4.144): This expectation involves the multiplica-

tion of two inverse Wishart distributed random matrices. By using Theo-

rem 7 we can write

E
[[
X−1

0

]
ij

[
X−1

0

]
kl

]
= c1n̄

2
[
X̄−1

]
ij

[
X̄−1

]
kl

+ c2n̄
2
[
X̄−1

]
ik

[
X̄−1

]
jl

+ c2n̄
2
[
X̄−1

]
kj

[
X̄−1

]
il

(4.145)

where

c1 = c2(n̄− d− 2), (4.146)

c2 = [(n̄− d)(n̄− d− 1)(n̄− d− 3)]−1 . (4.147)

• Second expectation of (4.144): This expectation is left as it is.

• Third expectation of (4.144): This expectation can be taken using

Theorem 6 as follows.

E
[[
X−1

0

]
ij

[
X̄−1

]
kl

]
= E

[[
X−1

0

]
ij

] [
X̄−1

]
kl

(4.148)

=
n̄

n̄− d− 1

[
X̄−1

]
ij

[
X̄−1

]
kl
. (4.149)

• Fourth expectation of (4.144): This expectation gives the same result

as the previous case.

E
[[
X̄−1

]
ij

[
X−1

0

]
kl

]
=

n̄

n̄− d− 1

[
X̄−1

]
ij

[
X̄−1

]
kl
. (4.150)

Combining the individual terms given above, we obtain d0,ij,kl as follows.

d0,ij,kl =
n̄2

4

(
c1 (n̄− d− 1)2 − 1

) [
X̄−1

]
ij

[
X̄−1

]
kl

+ c2
n̄2(n̄− d− 1)2

4

([
X̄−1

]
ik

[
X̄−1

]
jl

+
[
X̄−1

]
kj

[
X̄−1

]
il

)
(4.151)
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where the coefficients c1 and c2 are defined in (4.146) and (4.147) respectively.

4.4 Computation of Posterior Cramér-Rao Lower Bound for Semi-

Major and Semi-Minor Axes

Derivation of posterior CRLB for semi-major and semi-minor axes of the extent

ellipsoid follows the same procedure as the one in Section 3.3 except that an

expectation has to be taken over the Jacobian of the nonlinear transformation

as described in Section 2.2.2. Note that we have the semi-major and semi-minor

axes given as

a2
major,minor(X) =

X11 +X22 ∓
√

(X11 +X22)2 − 4 (X11X22 −X2
12)

2
(4.152)

where + and − signs in ∓ correspond to the semi-major and semi-minor axes of

the extension respectively. The gradients for amajor(·) and aminor(·) are given as

∇ξXamajor(X) =
1

2amajor(X)



1

2
+

X11 −X22

2
√

(trX)2 − 4 detX

2
X12√

(trX)2 − 4 detX
1

2
+

X22 −X11

2
√

(trX)2 − 4 detX


, (4.153)

∇ξXaminor(X) =
1

2aminor(X)



1

2
− X11 −X22

2
√

(trX)2 − 4 detX

−2
X12√

(trX)2 − 4 detX
1

2
− X22 −X11

2
√

(trX)2 − 4 detX


. (4.154)

Using the result of Section 2.2.2, we can write the posterior CRLB of the semi-

major and semi-minor axes as follows.

J̃ amajor

k =E
[
∇T
ξXk
amajor(Xk)

]
J̃ X
k E

[
∇ξXk

amajor(Xk)
]
, (4.155)

J̃ aminor
k =E

[
∇T
ξXk
aminor(Xk)

]
J̃ X
k E

[
∇ξXk

aminor(Xk)
]

(4.156)

where the expectations are taken using Monte Carlo integration.
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CHAPTER 5

SIMULATIONS

In this chapter, the performance of the ETT algorithm proposed in [11] and

described in Chapter 2 is compared to the parametric and posterior CRLBs in

MATLAB environment. The organization of the chapter is given as follows.

In Sections 5.1 and 5.2, parametric and posterior bound simulations are made

respectively. In each respective section, first, the implementation of the cor-

responding bound is described and then the simulation results are presented.

Finally, in Section 5.3, the dependence of the performance of the ETT algo-

rithm is tested with respect to some parameters of interest.

5.1 Parametric Cramér-Rao Lower Bound

5.1.1 Implementation

The definition and the details of parametric CRLB were presented in Chapter 3.

The most important remark concerning this bound is that the states are consid-

ered to be deterministic parameters with measurements which are contaminated

with noise.

5.1.1.1 True Target & Measurement Parameters

During the realization of the algorithm, a scenario that includes a target moving

with constant velocity, having a fixed extension size and orientation is consid-

ered. Hence, the true trajectory of the extension center is generated using a
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nearly constant velocity (CV) model. The system dynamics of the CV model is

determined by the state equation given below.

xk+1 = Fxk +Bwk (5.1)

where F is the state transition matrix for a target moving on 2 dimensional

space, defined as

F ,



1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


(5.2)

and B is the noise gain matrix,

B ,

 T 2

2
0 T 0

0
T 2

2
0 T


T

. (5.3)

wk is the process noise with wk ∼ N (0, Q) and T is the sampling time. In all

simulations, the sampling time T is set to be T = 1 s. The total duration of the

scenario is 100 s.

The matrix Q represents the process noise covariance matrix. For the para-

metric CRLB, the true target trajectories are generated by taking the ma-

trix Q to be a zero matrix. The fixed true initial state is selected to be

x0 =
[

0m 0m 500m/s 500m/s
]T

. Note that in this case, the true mo-

tion of the target does not contain any acceleration, and therefore fixed and

deterministic which is a requirement of the parametric CRLB.

The extension of the target which is ellipsoidal is represented by a positive

definite symmetric matrix with dimension of 2× 2. The orientation and the size

of the ellipsoid are determined by two sets of parameters; two eigenvectors which

control the extent direction and two eigenvalues that represent the semi-major

and semi-minor axes of the ellipsoid. The true extension state Xk is assumed to

be constant along time, i.e., we have

Xk+1 = Xk. (5.4)
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The fixed extent state Xk is formed as follows.

Xk = EΛET (5.5)

for all k where the eigenvector matrix, E, is determined by the object orientation

angle, α, as given below.

E =

 cosα − sinα

sinα cosα

 . (5.6)

The diagonal matrix Λ containing the eigenvalues in its diagonal is given as

follows.

Λ =

 a2
major 0

0 a2
minor

 . (5.7)

In the experiments, the true values of the extent parameters are taken to be

α = 45◦, amajor = 300m, aminor = 100m.

The position measurements are generated by drawing random numbers from the

following Gaussian distribution at each scan.

yik ∼ N (Hxk, sXk +R) (5.8)

where

H =

 1 0 0 0

0 1 0 0

 , (5.9)

R =σ2
v

 1 0

0 1

 , (5.10)

where σ2
v = 1000m2 and the scalar s is taken to be s = 1 in all simulations.

The number of measurements generated per scan is taken to be non-random and

constant for all time instants, i.e., mk = m for all k. Monte Carlo simulations

are conducted for different numbers of measurements. The selected values for

this purpose are m = 5, m = 20 and m = 80.

A segment of the fixed true target trajectory and a single realization of the

random measurements are displayed in Figure 5.1.
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Figure 5.1: True trajectory and a single realization of measurements.
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5.1.1.2 ETT Algorithm Parameters

After the measurements are generated, they are supplied to the ETT algorithm

described in Section 2.1.1. The parameters of the ETT algorithm are selected

as follows.

The initial kinematic and extent state estimates of the algorithm, i.e., x0|−1 and

X0|−1 are selected randomly for each Monte Carlo run as follows.

x0|−1 ∼N (x0, P0) (5.11)

X0|−1 ∼W2

(
n0,

X0

n0

)
(5.12)

where x0 and X0 are the true initial kinematic and extent states respectively

and

P0 =diag
[
75m2, 75m2, 15m2/s2, 15m2/s2

]
, (5.13)

n0 =10. (5.14)

As a result, the parametric CRLB for the kinematic state has been initialized

with P0. The parametric CRLB for the extent state is initialized with the

covariance of the Wishart distribution in (5.12) whose explicit expression is

given in (3.87) in Chapter 3.

Other initial parameters for the ETT algorithm are given as

P0|−1 =P0, (5.15)

α0|−1 =2.1. (5.16)

The ETT algorithm uses the state model in (5.1) where the process noise co-

variance Q is selected to be

Q = σ2
v

 1 0

0 1

 . (5.17)

where σ2
v = 1m2/s4. The prediction for the extent is made using the forgetting

parameter τ = 5.
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5.1.2 Results

In this subsection, the performance of the ETT algorithm is evaluated by an-

alyzing the RMS errors for its estimates and comparing these errors to (the

square root of) the CRLB results. Moreover, the changes in the RMS errors of

the ETT estimator and CRLBs are observed for different deterministic number

of measurements, mk, received in a scan. As mentioned earlier, the number of

measurements is set to 5, 20 and 80 for different Monte Carlo simulations each

involving 10000 Monte Carlo runs.

The RMS position and velocity errors in x and y axes are illustrated in Figure 5.2

along with the corresponding parametric CRLB values. It is worth to remind

that FIM of the kinematical states is directly proportional to the (expected)

number of measurements as shown in (3.76). A close examination of the results

reveals that the square-roots of the parametric CRLBs are halved as the number

of measurements is quadrupled.
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Figure 5.2: RMS errors and parametric CRLB values for kinematical states with
m = 5, m = 20 and m = 80.
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Figure 5.3 shows the parametric CRLBs and the RMS errors for the extents.

The extent matrix elements mentioned in the figure are defined as below.

X ,

 a11 a12

a21 a22

 (5.18)

where a12 = a21. Similar to the previous results, a four-fold increase in the

number of measurements yields a reduction by one-half on the parametric bounds

due to the direct relationship between the (expected) number of measurements

and the FIM of the extension, which is described in (3.74).

RMS errors obtained for the semi-major and semi-minor axes of the extension

are compared to the corresponding parametric CRLB’s in Figure 5.4. The results

in the figure look quite similar to those for the extension matrix elements.

One major observation that is obtained by examining the figures for the para-

metric CRLB is that although the RMS errors follow the corresponding bounds

at the onset of the scenario, the bound decreases so fast that the RMS error

cannot follow it any longer. This is a characteristics of the parametric CRLB

where the state is assumed to be deterministic with no process noise. The esti-

mation algorithms like Kalman filters or the ETT algorithm we work with, on

the other hand, have to use a non-zero process noise covariance matrix Q for

avoiding divergence. Hence for the parametric CRLB there is always a mismatch

between the truth and the model parameters used in the estimation algorithms.

We now examine the average CRLBs and average RMS values along time. We

define these values as the square root of the mean of CRLB values along time

and root-mean-square of the RMS values along time, respectively. Tables 5.1, 5.2

and 5.3 summarize the estimator performances and CRLBs for the kinematic

states, extent states and the semi-major semi-minor axes, respectively. It is

clear from the tables that the derived expressions ensure a lower bound to the

estimation errors. Increasing number of measurements yields to better estimates

in terms of error variances. Additionally, it can be claimed that the considered

estimator is almost efficient for kinematical state estimation, in contrast to the

extension estimation performance which fails to get closer to the bound for small

number of measurements. Similar to the extension results, semi-major and semi-
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axes with m = 5, m = 20 and m = 80.

minor axes estimation performance degrades a lot with decreasing number of

measurements. Nevertheless, the errors for all states can decrease substantially

with sufficient measurement numbers.

It is also worth to mention that when the number of measurements is quadru-

pled, the RMS errors in the position estimates drop with
√

2, while the velocity

errors are divided by 4
√

2 . A similar inference can be made for the extension

performances as follows. When the number of measurements is quadrupled, er-

rors in the extension entries and semi-major, semi-minor axes are approximately

divided by
√

2.

Tables 5.4 and 5.5 present the average standard deviations of RMS errors (along

both Monte Carlo runs and time) for the kinematic states and extension states

respectively. It is seen that the average standard deviations are quite large

meaning that the variation in the performance of the algorithm is quite large
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among the Monte Carlo runs.

Table 5.1: Average RMS errors and average parametric CRLBs for kinematical
states.

m
Kinematical state
RMS errors

Kinematical state
parametric CRLB

x[m] y[m] vx[m/s] vy[m/s] x[m] y[m] vx[m/s] vy[m/s]

5 30.5 30.5 2.1 2.1 24.0 24.0 1.5 1.5
20 18.1 18.1 1.8 1.8 13.5 13.5 1.2 1.2
80 10.8 10.8 1.5 1.5 7.7 7.7 1.0 1.0

Table 5.2: Average RMS errors and average parametric CRLBs for extension.

m
Extension
RMS error

Extension
parametric CRLB

a11[m2] a12[m2] a22[m2] a11[m2] a12[m2] a22[m2]

5 10542 9520 10519 6492 5885 6502
20 5916 5277 5896 4051 3667 4050
80 3535 3189 3525 2881 2602 2886

Table 5.3: Average RMS errors and average parametric CRLBs for semi-major
and semi-minor axes.

m RMS error Parametric CRLB

Semi-major
axis[m]

Semi-minor
axis[m]

Semi-major
axis[m]

Semi-minor
axis[m]

5 12.92 31.54 6.47 19.50
20 8.29 17.60 4.05 12.14
80 3.74 10.53 2.99 8.61

Table 5.4: Average standard deviations of RMS errors for kinematical states.

m x[m] y[m] vx[m/s] vy[m/s]

5 36.5 36.5 2.6 2.6
20 21.7 21.7 2.2 3.05
80 12.9 12.9 1.8 1.8
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Table 5.5: Average standard deviations of RMS errors for extension states.

m a11[m2] a21[m2] a22[m2]

5 13378 12155 13372
20 7224 6556 6556
80 4486 3971 4419

5.2 Posterior Cramér-Rao Lower Bound

5.2.1 Implementation

The definition and the details of the posterior CRLB were presented in Chapter

4. As explained in Chapter 4, the most distinctive feature of the posterior

CRLB is that it considers states as random variables in contrast to parametric

CRLB. As a result of this property, complicated expected values appear in its

formulation, which makes the application of Monte Carlo integration techniques

necessary.

5.2.1.1 Trajectory and Measurement Generation

The implementation of the posterior CRLB requires using Monte Carlo tech-

niques to take the expectations. In order to do so, multiple random target and

measurement scenarios are generated. The initial states for the kinematic and

extent states of the target are selected from the following pdfs.

x0 ∼N (x̄0, P0) (5.19)

X0 ∼W2

(
n0,

X0

n0

)
(5.20)

where X0 a fixed extent state with amajor = 300m, aminor = 100m, and the

orientation α = 45◦. The parameters x̄0, P0 and n0 are given as

x̄0 =x0, (5.21)

P0 =diag
[
75m2, 75m2, 15m2/s2, 15m2/s2

]
, (5.22)

n0 =20000. (5.23)
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The kinematic and extent states evolve in time according to the following tran-

sition pdfs.

p(xk+1|xk) =N (xk+1;Fxk, Q) (5.24)

p(Xk+1|Xk) =W
(
Xk+1;nk+1,

Xk

nk+1

)
(5.25)

where F is the CV state transition matrix defined in (5.2) with the sampling

period T = 1 s; the process noise covariance Q is given in (5.17) and nk+1 =

20000 for all k. The total duration of the scenarios is 100 s.

Once the random trajectories are obtained, measurements are produced for each

trajectory from the corresponding randomly generated kinematical states and

extensions. The measurement pdf from which the measurements are drawn is

the same as the one used in the parametric CRLB which is given below.

yik ∼ N (Hxk, sXk +R)

where H and R are given in (5.9) and (5.10), respectively and s = 1. The

number of measurements generated per scan is again taken to be non-random

and constant for all time instants, i.e.,mk = m for all k. Monte Carlo simulations

are conducted for different numbers of measurements. The selected values for

this purpose are m = 5, m = 20 and m = 80 as before.

Some examples of the random kinematical state trajectories and the measure-

ments generated from one of the random trajectories are shown in Figure 5.5.

5.2.1.2 Computation of Posterior Cramér-Rao Lower Bound

Posterior CRLB is implemented using the expressions derived in Chapter 4.

Many of these expressions involve the expected values whose computations are

analytically impossible. Therefore, Monte Carlo integration method is used to

take the expectations numerically. In this subsection, we explain what this

technique is by providing the theory behind it.

Monte Carlo is defined loosely by Anderson in [25] as “the art of approximating

an expectation by the sample mean of a function of simulated random variables”.
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Figure 5.5: Random trajectories and a single realization of measurements.

Though there are many other definitions in the literature, this one is quite

meaningful for the problem considered in this study. A Monte Carlo integration

method is applied when the integration of a function is not possible by means

of analytical manipulations due to nonlinearities or dimensions. Contrary to

other integration techniques, the Monte Carlo technique makes use of statistical

inference.

Let us assume that x is a random variable having the pdf fX(x) defined in X ,
i.e., x ∈ X . Then, the expected value of a function g(·) of x can be written as

follows.

E {g(x)} =

∫
x∈X

g(x)fX(x)dx. (5.26)

67



This expectation can be approximated via Monte Carlo integration by consid-

ering N independent samples of x as follows.

ĝ(x) =
1

N

N∑
i=1

g(xi). (5.27)

According to the strong law of large numbers, the greater the number of samples,

the closer the estimate gets to the true value which is mathematically expressed

as follows.

lim
N→∞

1

N

N∑
i=1

g(xi) = E [g(x)] . (5.28)

If the variance of this estimator is investigated, it can be seen that the estimation

errors decrease with 1/
√
N .

The expectations derived in Section 4.2 require the application of Monte Carlo

integration for two main reasons. First of all, the expected values are to be taken

with respect to the random variable Xk whose pdf is unidentified. Secondly,

even if the pdf were known, it might be still unachievable to compute these

expectations analytically, since they are highly nonlinear in matrix variables.

In the experiments, randomly generated kinematical states and extensions are

employed as samples in Monte Carlo integration, and the number of samples,

Nmc, is set to 10000.

5.2.1.3 ETT Algorithm Parameters

ETT algorithm is run on Nmc sets of measurements that are generated from

the random trajectories. The differences between the estimates of the ETT

algorithm and randomly generated states are calculated for each run, and the

RMS errors of estimates are computed by averaging the individual errors over

the Monte Carlo runs.

While executing the algorithm, the kinematic and extent estimates, x0|−1 and

X0|−1,respectively, are initialized as described below for each Monte Carlo run.

x0|−1 ∼N (x̄0, P0) (5.29)
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X0|−1 ∼W2

(
n0,

X0

n0

)
(5.30)

where X0 is the same fixed extent as in (5.20) in Section 5.1.1.1 and

x̄0 =x0, (5.31)

P0 =diag
[
75m2, 75m2, 15m2/s2, 15m2/s2

]
, (5.32)

n0 =10. (5.33)

The initial covariance matrix of kinematical estimate and the initial value of the

parameter α0|−1 are given below.

P0|−1 =P0, (5.34)

α0|−1 =2.1. (5.35)

The process noise covariance Q used in the ETT filter is given in (5.17) and the

forgetting parameter is set to be τ = 5.

5.2.2 Results

This section provides the performance comparison of the ETT algorithm by

means of the posterior CRLB. The comparison is made in the same way as the

previous section by using the RMS errors and the square roots of the posterior

CRLB. Similar to the parametric bound case, the results are produced for three

different measurement numbers: m = 5, m = 20 and m = 80.

The first set of results to be analyzed is the RMS errors for the kinematical

states which consist of positions and velocities in x and y coordinates. Figure

5.6 presents these results for all numbers of measurements simultaneously. It

is apparent from the figure that as the number of measurements increases, the

bounds and the errors decrease. If one examines the expressions derived for the

information submatrices and the recursion for posterior FIM in (4.4) carefully,

it can be seen that FIM is an affine function of the number of measurements

which is the main reason for the drops in the bounds.

Another observation that is quite significant is that RMS errors for all kinemati-

cal states follow the posterior CRLB almost perfectly after an initial convergence
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period, which is a strong indication that the estimator under investigation is al-

most optimal in the MMSE sense.

The observations above can be repeated for the extension estimation as well

considering Figure 5.7. Larger numbers of measurements result in smaller RMS

errors and bounds. The reasoning that the relationship between the bound and

the number of measurements being affine is valid also for the extension. Contrary

to the previous results, the RMS errors cannot reach the bounds which indicates

that a superior estimator might be developed in order to estimate extension.

The results corresponding to semi-major and semi-minor axes are shown in Fig-

ure 5.8. Since the bounds for the axes are linked to those of the extension with

a transformation independent from the number of measurements, the errors and

bounds change in a similar fashion. Furthermore, the bounds always stay below

the errors meaning that the estimation of major and minor semi-axes are not

efficient (in an estimation theoretical sense).

The comparison of average RMS errors and posterior CRLB is provided in Tables

5.6, 5.7 and 5.8. It is easy to see the decrease in the error and the bound with

respect to increasing number of measurements. The average RMS errors for the

kinematical states are pretty close to the posterior bound indicating that estima-

tor is almost optimal and hence efficient (in an estimation theoretical sense) for

kinematic states. Furthermore, the position errors and velocity errors decrease

by
√

2 and 4
√

2, respectively with quadrupled number of measurements, as in the

parametric case. There is still room for an improvement in the estimation of

extension and its features, since the average RMS errors are rather above the

bounds. A reduction by
√

2 is seen in the errors of extension and semi-major,

semi-minor axes estimates when the number of measurements is quadrupled.

Tables 5.9 and 5.10 illustrate the average standard deviations of the RMS errors

in kinematic and extent states, respectively. The variations in the RMS errors

again seem to be too large over the Monte Carlo runs although they become

lower as the number of measurements grows.
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Figure 5.6: RMS errors and posterior CRLB values for kinematical states with
m = 5, m = 20 and m = 80.
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Figure 5.7: RMS errors and posterior CRLB values for extension states with
m = 5, m = 20 and m = 80.

Table 5.6: Average RMS errors and average posterior CRLB values for kinemat-
ical states.

m
Kinematical state
RMS errors

Kinematical state
posterior CRLB

x[m] y[m] vx[m/s] vy[m/s] x[m] y[m] vx[m/s] vy[m/s]

5 33.2 33.2 3.4 3.4 31.9 31.9 3.3 3.3
20 19.8 19.8 2.9 2.9 19.2 19.2 2.8 2.8
80 11.9 11.9 2.4 2.4 9.3 13.3 2.4 2.4

Table 5.7: Average RMS errors and average posterior CRLB values for extension.

m
Extension
RMS errors

Extension
posterior CRLB

a11[m2] a21[m2] a22[m2] a11[m2] a21[m2] a22[m2]

5 10588 9577 10584 4226 3422 4225
20 5941 5318 5948 3401 2908 3399
80 3604 3296 3652 2676 2375 2677
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Table 5.8: Average RMS errors and average posterior CRLB values for semi-
major and semi-minor axes.

m RMS error Posterior CRLB

Semi-major
axis[m]

Semi-minor
axis[m]

Semi-major
axis[m]

Semi-minor
axis[m]

5 12.763 31.69 5.25 11.57
20 8.224 17.72 3.87 9.72
80 3.8 10.79 2.89 7.86

Table 5.9: Average standard deviations of RMS errors for kinematical states.

m x[m] y[m] vx[m/s] vy[m/s]

5 41.1 41.1 4.3 4.3
20 24.3 24.4 3.6 2.2
80 14.4 14.4 3.1 3.1

Table 5.10: Average standard deviations of RMS errors for extension states.

m a11[m2] a12[m2] a22[m2]

5 13714 12155 13657
20 7364 6634 6634
80 4509 4032 4703

5.3 Dependence of the Estimator Performance on Some Parameters

In the experiments of the previous subsections, the same set of parameters (ex-

cept the number of measurements) is used in the ETT filter. These parameters

are given as

Q =

 1 0

0 1

 , R =

 1000 0

0 1000

 , τ = 5. (5.36)

The algorithm performance with different numbers of measurements was inves-

tigated and it was realized that the performance becomes acceptable when the

number of measurements exceeds 20, which is so high that it may not be at-

tainable even with the state of the art radars today for even the largest targets.
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Therefore, in this section we investigate whether the performance of the algo-

rithm, the extent estimation performance in particular, can be improved for low

number of measurements by adjusting some parameters properly.

Several trials are made by adjusting the process noise covariance matrix, Q,

measurement noise covariance matrix, R, and the time constant τ used in the

ETT algorithm. Due to the fact that the experiments with the numbers of

measurements mk = 20 and mk = 80 result in acceptable performances, we only

consider the low number of measurements, mk = 5.

5.3.1 Dependence on Process Noise Covariance Matrix Q

In this subsection, the sensitivity of RMS estimation errors to the process noise

covariance matrix used in the ETT algorithm is examined. Three different

process noise covariance matrices are used, namely, Qnormal, Qhigh and Qlow.

The covariance matrix Qnormal is the one used in the previous simulations and

is given as

Qnormal =

 1 0

0 1

m2/s4. (5.37)

The standard deviations are tripled for the high process noise covariance matrix

Qhigh and reduced by three times to obtain the low process noise covariance

matrix Qlow. Hence, we have

Qhigh =32

 1 0

0 1

m2/s4, (5.38)

Qlow =

(
1

3

)2
 1 0

0 1

m2/s4. (5.39)

Note that the process noise covariance matrices given above are used only in the

ETT algorithm. The process noise covariance matrices used for generating the

true kinematical states remain the same as those in the previous subsections.

For this reason, the parametric and posterior CRLB values will remain the same

as those shown in the previous subsections.
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RMS estimation errors for the kinematical states for the cases of parametric

CRLB and posterior CRLB are shown in Figures 5.9 and 5.10 respectively. For

the case of parametric CRLB, in Figure 5.9, we see that the errors in kine-

matic state estimation decrease considerably as the process noise covariances

get smaller. Since in the case of parametric CRLB, there is no process noise in

the states, the smaller the process noise covariance used in the ETT algorithm,

the more there is model match in the filter. Hence the results get better as the

process noise covariance gets smaller.

For the case of posterior CRLB in Figure 5.10, the best estimates are obtained

when the ETT algorithm uses the process noise covariance matrix Qnormal which

is employed in the generation of the true state trajectories. The other process

noise covariance matrices result in larger estimation errors due to the model

mismatch in the filter.

The results for the extent states, semi-major and semi-minor axes are not shown

here since it has been observed that these results are insensitive to the process

noise covariance used in the ETT algorithm.
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Figure 5.9: RMS errors and parametric CRLB values for kinematical states with
different process noise covariance matrices.
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Figure 5.10: RMS errors and posterior CRLB values for kinematical states with
different process noise covariance matrices.

5.3.2 Dependence on Measurement Noise Covariance Matrix R

In this subsection, the sensitivity of RMS estimation errors to the measurement

noise covariance matrix used in the ETT algorithm is examined. Three different

measurement noise covariance matrices are used, namely, Rnormal, Rhigh and Rlow.

The covariance matrix Rnormal is the one used in the simulations of the previous

subsections and is given as

Rnormal =

 1000 0

0 1000

m2 (5.40)

The standard deviations are tripled for the high measurement noise covariance

matrix Rhigh and reduced by three times to obtain the low measurement noise

covariance matrix Rlow. Hence, we have

Rhigh =32

 1000 0

0 1000

m2, (5.41)

Rlow =

(
1

3

)2
 1000 0

0 1000

m2. (5.42)
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Note that the measurement noise covariance matrices given above are used only

in the ETT algorithm. The measurement noise covariance matrices used for

generating the measurements remain the same as those in the previous subsec-

tions. For this reason, the parametric and posterior CRLB values will remain

the same as those shown in the previous subsections.

It has been observed in the simulations that the measurement noise covariance

has almost no effect on kinematical state estimation performance. Therefore, the

kinematical state estimation results are not shown. Figures 5.11 and 5.12 show

the extent estimation performance for the parametric and posterior CRLB cases

respectively. Figures 5.13 and 5.14 illustrate the RMS errors for major and minor

semi-axes estimates for the parametric and posterior CRLB cases respectively.

It is seen in the figures that the extent estimation performance depends on the

measurement noise covariance used in the filter. The dependence of the extent

estimates on the measurement noise covariance appears significantly only in

the diagonal entries of the extent. The dependence is stronger in semi-minor

axis than in semi-major axis. It is seen that the measurement noise covariances

Rnormal and Rlow yield almost the same results which indicates that using smaller

measurement noise covariances than the actual measurement noise covariances

does not affect the extent estimation results much. This phenomenon arise from

the fact that measurement noise covariance matrix become negligible compared

to extent matrix Xk as it gets smaller. On the other hand, the use of Rhigh

noticeably degrades the estimation performance. This happens because when

the filter thinks that the measurement noise covariance is higher than its true

value, it tries to make the extent estimate considerably smaller than the true

extent to take care of the increased measurement noise covariance.

5.3.3 Dependence on Forgetting Factor τ

The final trials are made by changing the time constant τ used in the ETT

algorithm. Since the trajectories obey a CV model with a static or almost static

extension size and orientation, the parameter τ which is described as “a time

constant related to the agility with which the object may change its extension
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over time” in [11] can be set to a greater value.

It has been observed that the kinematical estimation errors are rather insensitive

to the value of τ used in the ETT algorithm. Therefore the results for the

kinematical states are not shown here.

In Figures 5.15 and 5.16, extent estimation performances are shown for the cases

of parametric and posterior CRLB respectively. Figures 5.17 and 5.18 illustrate

the performance for the estimates of the semi-major and semi-minor axes for the

cases of parametric and posterior CRLB respectively. Note that the parametric

and posterior CRLBs shown in these figures are the same as the ones obtained

form = 5 in the figures presented in the previous subsections. It is observed that

increasing the time constant leads to considerable reductions in the estimation

errors which is due to the increased model match between the filter and the

true extent. By increasing τ from 5 to 20, the errors of the extent estimates are

decreased so much that the performance with 20 measurements is achieved only

with 5 measurements. In order to find the limits of the performance dependence

on this parameter, different trials with time constants τ = 60, τ = 80 and

τ = 100 are made. By doing so, it is revealed that the estimation performance

converges to a limit which is depicted by the results obtained for τ = 100 in the

figures. In the case of parametric CRLB a very high value for τ means an almost

perfect model match between the filter and the true extent. Therefore, the RMS

errors almost reach the parametric CRLB values making the ETT algorithm

(almost) efficient. In the case of posterior CRLB, there is still a significant gap

between the CRLB and the corresponding RMS errors for τ = 100. Therefore,

for random parameter cases, there is still a chance for an improvement. Note

that it is important to emphasize here that if a more random and dynamic

extent scenario was used in the posterior CRLB case, there might have been

a significant degradation in the extent estimation performances for very high

values of τ . Overall, the time constant τ should be seen as a critical parameter

which determines the extension estimation performance for the extent estimation

scenarios considered in this work.
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Figure 5.11: RMS errors and parametric CRLB values for extension with differ-
ent measurement noise covariance matrices.
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Figure 5.12: RMS errors and posterior CRLB values for extension estimates
with different measurement noise covariance matrices.
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Figure 5.13: RMS errors and parametric CRLB values for semi-major and semi-
minor axes estimates with different measurement noise covariance matrices.
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Figure 5.14: RMS errors and posterior CRLB values for semi-major and semi-
minor axes estimates with different measurement noise covariance matrices.
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Figure 5.15: RMS errors and parametric CRLB values for extension with τ = 5,
τ = 10, τ = 20 and τ = 100.
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Figure 5.16: RMS errors and posterior CRLB values for extension with τ = 5,
τ = 10, τ = 20 and τ = 100.
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Figure 5.17: RMS errors and parametric CRLB for major and minor semi-axes
with τ = 5, τ = 10, τ = 20 and τ = 100.
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Figure 5.18: RMS errors and posterior CRLB values for major and minor semi-
axes with τ = 5, τ = 10, τ = 20 and τ = 100.
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CHAPTER 6

CONCLUSIONS

The aim of this thesis has been to evaluate the performance of a state-of-the-

art ETT algorithm proposed by Feldmann et al. in [11] by means of CRLBs.

The parameters whose estimates are included in the performance analysis are:

kinematical states, extension and its semi-major and semi-minor axes. The

problem is defined as a discrete time, nonlinear filtering problem which brings

along the necessity to establish a recursion for the assessment of the performance.

Two different CRLBs have been derived in this work; namely, the parametric

CRLB and posterior CRLB. In parametric CRLB, the system is modeled in

such a way that states to be estimated are deterministic, yet unknown and the

measurements are random. The expressions of FIM related to this bound are

derived by employing the likelihood function of the noisy measurements. This

bound is only useful for dynamic systems which has no process noise and for

evaluating the performance of unbiased estimates. For posterior CRLB, which

can be used for performance evaluation of both biased and unbiased estimators

for dynamic systems with random states, the state space representation of the

model involves the transition pdfs of the states and the likelihood function of

the observations. Using these distributions, the FIM expressions are obtained

with the help of analytical and numerical techniques. The recursion from [22]

is employed for the posterior bound; and while implementing the bound Monte

Carlo techniques are exploited.

The simulations show that the ETT algorithm can be described as an (almost)

efficient estimator for kinematical state estimation. Moreover, it has been proved
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that the estimator is capable of estimating extension and its semi-major and

semi-minor axes satisfactorily with a CV motion model. Investigation of the

effects of the number of measurements reveals that increasing the number of

measurements results in higher-quality estimates, as expected. For reaching

close extent RMS error values to the CRLB, many measurements above 10 are

required under model-mismatch conditions.

Dependence of the performance of the algorithm on several parameters has been

tested. It was seen that

• The process noise covariance matrix used in the ETT algorithm does not

affect the extent estimation performance much.

• The measurement noise covariance matrix used in the ETT algorithm does

not affect the kinematic estimation performance much.

• The time constant used in the ETT algorithm does not affect the kinematic

estimation performance much.

In addition to these, it was observed that

• The measurement noise covariance matrix used in the ETT algorithm af-

fects the extent error performance, especially for the diagonal elements of

the extent matrix and the semi-minor axis of the extent ellipse.

• The extent estimation performance is more sensitive to large values of

measurement noise covariance than small values compared to the true

measurement noise covariance.

• The extent estimation performance is closely dependent on the forgetting

time constant used in the ETT algorithm.

To the author’s best knowledge, this is the first study which derives and uses

CRLBs for examining the performance of an ETT algorithm in a random matrix

framework.

The subject of this thesis is a fruitful research area for further work. Firstly,

more studies need to be carried out in order to examine the performance of
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the algorithm under different motion models, such as a coordinated-turn model.

As a further work, the CRLB expressions for the orientation of the target ex-

tent should be derived as well. Additionally, the performance for problems that

involve agile target extents should be explored by further research. In some ex-

tended target scenarios, the target extent might be dependent on the kinematic

target states, see e.g., [1]. For these types of scenarios, it would be interesting

to derive coupled/joint CRLBs for the target kinematic and extent states.
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