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ABSTRACT 

 

 

 

DEVELOPMENT OF A MODEL UPDATING TECHNIQUE FOR 

NONLINEAR SYSTEMS 

 

 

 

Canbaloğlu, Güvenç 

Ph.D., Department of Mechanical Engineering 

 Supervisor: Prof. Dr. H. Nevzat Özgüven 

September 2015, 264 pages 

 

 
 
In structural dynamics, obtaining an accurate numerical model is very crucial. 

However there are usually discrepancies between calculated dynamic behavior from 

numerical models and the ones obtained experimentally, and therefore it will be 

necessary to update the numerical models. In real life applications, structures usually 

have nonlinearity, and for nonlinear structures, in order to update the numerical 

model, firstly nonlinearity in the structure can be identified, and then updating 

procedure may be applied to the linear part of the model. Application of such an 

approach may not be straightforward, especially for nonlinear systems having 

multiple nonlinearities including friction type of nonlinearity. 

 

In this thesis, a new model updating technique for nonlinear structures that have 

multiple nonlinearities including friction type of nonlinearity is developed. The 

method identifies multiple nonlinearities in the structure and simultaneously extracts 

the FRFs of the underlying linear system. The accuracy of the method developed is 

first verified by using nonlinear lumped SDOF and MDOF systems, as well as with 

nonlinear structure using simulated experimental data. Then, as experimental studies, 
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method developed is applied to a real test system and finally to an engineering 

system (nonlinear gun barrel of a battle tank). It is shown that, the method developed 

can be successfully applied both to a test system and to a complex engineering 

problem for obtaining an accurate nonlinear model. In conclusion, the validation and 

application of the model updating method developed for nonlinear structures are 

demonstrated successfully with both simulated case studies and experimental real life 

applications.  

 

Keywords: Nonlinear Model Updating, Nonlinear Identification, Nonlinear Systems, 

Numerical Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

ÖZ 

 

 

 

DOĞRUSAL OLMAYAN YAPILAR İÇİN MODEL GÜNCELLEME 

YÖNTEMİ GELİŞTİRİLMESİ 

 

 

 

Canbaloğlu, Güvenç 

Doktora, Makina Mühendisliği Bölümü 

     Tez Yöneticisi: Prof. Dr. H. Nevzat Özgüven 

Eylül 2015, 264 sayfa 

 

 
Yapısal dinamikte, doğru bir sayısal model elde etmek oldukça önemlidir. Ancak 

sayısal modellerden hesaplanan dinamik davranışlarla deneyden elde edilmiş 

sonuçlar arasında her zaman farklılıklar mevcuttur, bu yüzden sayısal modellerin 

güncellenmesi gerekmektedir. Gerçek hayat uygulamalarında, yapılar çoğunlukla 

doğrusal olmayan özelliklere sahiptir ve doğrusal olmayan yapılar için, sayısal 

modelleri güncelleyebilmek için ilk önce yapıdaki doğrusal olmayan özellikler 

belirlenebilir, daha sonra da güncelleme prosedürü modelin doğrusal olan kısmına 

uygulanabilir. Bu yaklaşımın uygulaması, özellikle sürtünme tipi doğrusal olmayan 

özellik içeren çoklu doğrusal olmayan özelliklere sahip sistemlerde çok basit 

olmayabilir.  

 

Bu tezde, sürtünme tipi doğrusal olmayan özellik içeren çoklu doğrusal olmayan 

özelliklere sahip doğrusal olmayan yapılar için yeni bir model güncelleme yöntemi 

geliştirilmiştir. Yöntem, yapıdaki doğrusal olmayan özellikleri belirleyip aynı 

zamanda yapının doğrusal kısmının frekans tepki fonksiyonlarını da çıkarmaktadır. 

Geliştirilen yöntemin doğruluğu ilk olarak, gerçek olmayan deneysel veri kullanan 
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doğrusal olmayan tek ve çok serbestlik derecesine sahip sistemlerle aynı zamanda da 

doğrusal olmayan bir yapıyla gösterilmiştir. Deneysel çalışma olarak, geliştirilen 

yöntem önce gerçek bir test sistemine son olarak da bir mühendislik sistemine (savaş 

tankı namlusu) uygulanmıştır. Geliştirilen yöntemin, bir test sistemine ve karmaşık 

bir mühendislik sistemine, doğru bir doğrusal olmayan model elde etmek için 

başarıyla uygulanabildiği gösterilmiştir. Sonuç olarak, doğrusal olmayan yapılar için 

geliştirilmiş olan model güncelleme yönteminin doğrulaması ve uygulaması hem 

sayısal çalışmalarla hem de deneysel gerçek hayat uygulamalarıyla başarıyla 

gösterilmiştir. 

 

Anahtar Kelimeler: Doğrusal Olmayan Model Güncelleme, Doğrusal Olmayan 

Eleman Tanımlama, Doğrusal Olmayan Modeller, Sayısal Model 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

1.1 Structural Model Updating 

 

Structural modeling is one of the key steps in the design stage of a system. There is 

always iteration in the design stage, therefore it is important to have accurate 

structural model of the system so that predictions can be made for different design 

alternatives before any production. Finite element (FE) method is the most common 

numerical method used for predicting and simulating the dynamic response of 

engineering structures. Once the design is completed, the prototype can be 

experimentally investigated. However, due to the cost of making experiment at all 

possible forcing conditions, it is a common practice to verify the mathematical model 

used in design stage by comparing the simulated responses with experimentally 

measured ones. However, there are always discrepancies between the dynamic 

behavior of the structures obtained by the test and simulation due to the assumptions 

used in FE model. FE analysis may yield inaccuracies, mainly due to the modelling 

errors. If the modal analysis results are considered, the aim is to obtain either the 

frequency response functions (FRFs) or the modal properties (natural frequency, 

modeshapes, modal damping) of the structure. However, the results obtained by the 

FE analysis may have similarities with the experimental results up to a certain limit. 

Therefore, the FE models have to be updated by using the experimental test data. 

With the comparison and correlation of experimental and simulation results, 

numerical changes are applied to original system matrices or to updating parameters 

selected in the FE model, so that the FE analysis results match better with the 

experimental results.  
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Most of the structures in engineering problems have nonlinear behaviors therefore 

this makes accurate structural modelling much more difficult. It is more complex to 

deal with nonlinear structure both experimentally and analytically. In order to have 

accurate analytical model of nonlinear structures, experimental system identification 

plays a key role. In order to apply model updating techniques developed for linear 

systems to nonlinear structures and to correct linear system matrices, linear dynamic 

behaviors of the structure have to be experimentally obtained which may require 

identification of nonlinearity first. However, for systems having complex 

nonlinearities including friction type of nonlinearity, obtaining linear dynamic 

behavior and also identifying nonlinearity simultaneously is not a straight forward 

task. Yet, if the linear dynamic behavior can be extracted, then by applying linear 

model updating techniques, FE models can be corrected. Thus using these linear FE 

models and identified nonlinearities, updated nonlinear models of the structure can 

be constructed. 

 

1.2 Literature Survey 

 

In the literature there are various model updating techniques proposed, in order to 

have more accurate mathematical models. However most of these methods can be 

applicable only to linear systems. Dascotte and Vanhonacker [1] developed a 

computer code in order to update the FE models automatically. Sensitivity of natural 

frequencies was used in the updating method and iterative solution method was 

employed. Nalitolela et al. [2] presented a model updating technique which is 

capable of solving the problems arising from incomplete modes and unmeasured 

degrees of freedom. Roy et al. [3] studied an updating method which is based on 

direct energy approach. Modal expansion was applied to experimental modes and 

those expanded modes were used to correlate the kinetic and strain energies of the 

FE model to the experimental results. Brughmans et al. [4] used sensitivity based 

model updating method, and tuned FE model of an aircraft by using the ground 

vibration test results of the aircraft. Link and Zhang [5] investigated the effect of 
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using different residual error vectors on the performance of the updating method. 

This study was demonstrated on a real test structure. Ibrahim et al. [6] used direct 

updating method for the model updating of FE models. In the updating procedure, 

there was no modal identification and mode pairing; only input and output 

measurements were used. Aiad et al. [7] studied direct model updating approach and 

mass and stiffness matrices were updated globally based on the modeshapes and 

natural frequencies obtained experimentally. Jung and Ewins [8] used inverse 

eigensensitivity method for model updating and investigated the effect of 

measurement noise on the method by studying different noise levels. In order to 

investigate the potential errors causing the discrepancies between analytical and 

experimental normal modes, Miccoli and Agostoni [9] used the sensitivity based 

model updating for correlating the experimental and analytical models of a plate with 

stiffeners at its edges. Dascotte et al. [10] studied a sensitivity based model updating 

method. The stability problem encountered during the solution was solved by using 

different scaling factors for sensitivity matrix. Imregun et al. [11] presented a model 

updating method which is based on FRF data. The proposed method was investigated 

under different conditions such as incompleteness of the experimental data, noisy 

experimental measurements or excitation direction used in the experiments. Then in 

a later study this FRF based model updating method was applied to a plate-beam like 

structure by Imregun et al. [12]. Hemez [13] presented sensitivity based updating 

method in order to correlate the damped analytical and experimental structures. 

Lenoir et al. [14] proposed a model updating technique which uses experimental 

forced responses. Mottershead et al. [15] updated FE model of an aluminum space 

frame by using various updating parameter sets and the results were compared and 

investigated for each of different updating parameter sets. In a later work, a new 

method was developed for structural model updating and identification of joint 

stiffness by Li [16]. Modak et al. [17] presented a constrained optimization based 

model updating method and studied the updating of a FE model of a structure using 

experimental modal data and its use for the prediction of the effects of structural 

modifications. Kim and Park [18] proposed a multi objective optimization technique 
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for the FE model updating in order to improve the parameter selection in the 

updating procedure. Cottin and Reetz [19] investigated the effect of number of 

natural frequencies and accuracy of measurement to obtain reliable model parameter 

estimation for a given set of model parameters for the dynamic model updating. Lin 

[20] used and further developed a FRF based model updating method to identify 

damping matrices of structural systems, as well as mass and stiffness matrices for 

proportionally and non-proportionally damped structures. Carvalho et al. [21] 

proposed a new method which is capable of handling the difficulty of the incomplete 

measured data for the updating of FE matrix in an undamped model. Arora et al. [22] 

studied on the updating of the FE model using the FRF data with damping 

identification using complex modal data. Firstly, FRF based model updating 

technique was employed to update the mass and stiffness matrices, then the damping 

was identified by using updated mass and stiffness matrices. In their later study, 

Arora et al. [23] made a detailed comparison of two approaches of obtaining damped 

FE model updating methods with the objective that the FRFs obtained from damped 

updated FE models is able to predict the measured FRFs accurately. Kozak et al. [24] 

presented a new model updating method based on minimization of an index called 

Miscorrelation Index (MCI). This index mainly localizes the coordinates in FE 

model that has errors. The proposed model updating method was demonstrated on 

simulated and real test cases. Tarazaga et al. [25] presented the modified Quadratic 

Compression Method in order to update the mass and stiffness matrices of a model. 

Adhikari and Friswell [26] proposed an approach to take account the distributed 

nature of the parameters to be updated by expressing the parameters as spatially 

correlated random fields. In the approach, those fields were expanded in a spectral 

decomposition which is Karhunen-Loève expansion. In a more recent study, Zapico-

Valle et al. [27] presented an updating method for FE models by minimizing an error 

function defined in the time domain using an adaptive sampling algorithm for the 

parameters to be updated. Mottershead et al. [28] presented a basic introduction to 

the most important procedures of computational model updating based on the 

sensitivity approach, including tutorial examples and gave a detail literature survey. 
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Yuen [29] studied on the model updating for mechanical or structural systems in case 

of incomplete modal measurements and applied the approach to a 1600 degrees of 

freedom spring mass system to demonstrate the efficiency of the proposed approach 

for large structure. Then in a very recent study, Sipple and Sanayei [30] proposed a 

FRF based FE model updating method to make parameter estimation of the 

University of Central Florida Grid Benchmark Structure and demonstrated the 

usefulness of the presented approach. Very recently, Boulkaibet et al. [31] studied 

the use of the Shadow Hybrid Monte Carlo (SHMC) in model updating of structures. 

They investigated the efficiency and accuracy of the SHMC method by applying the 

method to two real structures. 

 

In engineering problems there are usually nonlinearities in structures; therefore it is 

vital to have model updating methods for nonlinear structures as well. In literature 

there are different studies performed to update directly the nonlinear model of a 

structure. Hasselman et al. [32] presented Principal Components Analysis for model 

correlation and updating of nonlinear structures. In the Principal Components 

Analysis mainly singular value decomposition of response time histories is 

performed. Principal Components Analysis was also used by Anderson et al. [33] for 

the correlation of experimental and numerical results and for the updating of model 

parameters of a nonlinear FE model using crash test data. In a later study, the 

minimization of the parameter correlation in the model updating of nonlinear 

structures was studied by Anderson and Hasselman [34]. Burton et al. [35] correlated 

time responses of a nonlinear structural model with the experimental data and 

investigated the efficiency of model reduction for the model validation. Lenaerts et 

al. [36] studied the use of the proper orthogonal modes of displacements for the 

identification of parameters of nonlinear dynamical structures with an optimization 

procedure based on the difference between the experimental and simulated proper 

orthogonal modes. Hemez and Doebling [37] emphasized the need of validating 

numerical models based on time domain data for nonlinear, transient, structural 

dynamics by using various numerical and experimental test cases in their study. In a 
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later study, Meyer and Link [38] proposed a method for the identification of local 

nonlinear stiffness and damping parameters and updated the selected linear and 

nonlinear parameters of an initial model by minimizing the differences between 

analytical and experimental responses. In a more recent work, Isasa et al. [39] 

presented an approach which is based on multi-harmonic balance method and 

extended constitutive relation error for the updating of nonlinear models. 

 

For nonlinear structures, it is possible to employ the model updating techniques 

developed for the linear systems, provided that the dynamic characteristics of the 

linear part of the structure are extracted, which may require identification of 

nonlinearity in the system first. However, for systems having complex nonlinearities 

including friction type of nonlinearity, extraction of linear dynamic characteristics 

and at the same time identifying nonlinearity is not a straight forward task. In early 

1980’s Masri et al. [40] used the restoring force surface method for the identification 

of nonlinearity in the nonlinear MDOF systems. Crawley et al. [41, 42] proposed a 

force state mapping method which is very similar to restoring force surface method 

for the identification of nonlinear elements in structures and joints. Yasuda et al. [43] 

proposed a new method for identifying nonlinear MDOF systems based on harmonic 

balance principle for determining the unknown coefficients of the polynomials which 

represent the nonlinearity in the system. In early 1990’s Benhafsi et al. [44] used 

describing function method to parametrically identify the nonlinearities in structures. 

Rice [45] presented an approach for nonlinear identification by using an equivalent 

linearization approach for the analysis of weakly nonlinear structures. In the middle 

of 1990’s, Soize [46] studied the identification of a SDOF nonlinear system driven 

by a broad-band or a colored Gaussian noise by employing a stochastic linearization 

approach with random parameters which approximate the power spectral density 

function. Thouverez and Jezequel [47] studied the identification of localized 

nonlinearity in structures by using an approach which is based on the Volterra 

kernels. Richards and Singh [48] proposed a spectral method which is based on a 

reverse path formulation for the identification MDOF nonlinear systems. They made 
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some modifications on reverse path formulation in order to use it for MDOF 

nonlinear systems. In a later work, Kerschen et al. [49] investigated the performance 

of the restoring force surface method for the identification of nonlinear systems by 

studying the vibrations of a fixed-free beam with two different kinds of nonlinearity. 

Özer et al. [50] proposed a method for localization of nonlinearity and parametric 

identification of the nonlinearity. Then in a later study, Özer et al. [51] extended their 

previous study and used describing functions and Sherman-Morrison method to 

identify the nonlinearity in structures. Kerschen et al. [52] used restoring force 

surface method to identify the nonlinearities in a system consists of a wire rope 

isolator maintained between a base and load mass. In a later study Bellizzi and 

Defilippi [53] presented a technique to identify the parameters involved in the 

nonlinear terms of randomly excited mechanical systems. Thothadri et al. [54] 

extended the nonlinear system identification method which is based on harmonic 

balance to MDOF systems and employed the method to both theoretical and 

experimental systems. Muravyov and Rizzi [55] proposed a method for determining 

the nonlinear modal stiffness coefficients for a FE model. Kerschen et al. [56] 

studied conditioned reverse path method to identify the dynamic characteristics of a 

continuous nonlinear system consisting of an experimental cantilever beam with a 

geometrical nonlinearity. Haroon et al. [57] proposed a technique for the 

identification of nonlinear mechanical systems without using an input measurement 

data. They combined time and frequency domain techniques to identify a nonlinear 

system. In a later study, Kerschen et al. [58] presented a very detailed literature 

survey in which more than 400 papers were cited for nonlinear system identification. 

Spottswood and Allemang [59] proposed a method for obtaining nonlinear modal 

models and identifying nonlinear parameters. They demonstrated the application of 

the approach on a fixed-fixed beam test structure. Pai and Palazotto [60] presented an 

amplitude and frequency modulation method (AFMM) based on empirical mode 

decomposition (EMD) and Hilbert–Huang transform (HHT), and developed a 

perturbation  analysis for the identification of nonlinearities and system parameters 

by analyzing transient and steady-state responses. Marchesiello and Garibaldi [61] 
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used nonlinear subspace identification (NSI) method for the identification of 

clearance type of nonlinearity by applying the method to an experimental problem. 

Xueqi et al. [62] presented an approach which is based on direct parameter 

estimation and Legendre series approximation in order to identify parameters for a 

nonlinear system with symmetrical piecewise linear restoring forces. Worden et al. 

[63] applied various time and frequency based nonlinear identification methods to a 

damper of an automobile. Carrella and Ewins [64] proposed a method which is based 

on measuring different amplitudes of vibration response for identifying and 

quantifying nonlinearities in structures. In a more recent study by Arslan et al. [65], 

two different methods which are capable of identifying nonlinearities in structures 

were introduced and applied on a nonlinear test system. They used low forcing level 

excitations in the experiments in order to obtain the linear FRFs of the structure. 

Jalali et al. [66] applied the describing function inversion method to a clamped beam 

in order to identify the nonlinearities in the structure. In a recent study, Aykan and 

Özgüven [67] proposed a method based on describing function inversion for 

detection, localization, characterization and parametric identification of nonlinear 

elements by using incomplete experimental data. By using describing function 

inversion, identification of the restoring force of multiple nonlinearities which exist 

at the same location was performed. Very recently, Eriten et al. [68] presented 

nonlinear system identification (NSI) approach in which experimental measurements 

are combined with slow-flow dynamic analysis and empirical mode decomposition. 

Then the method reconstructs the dynamics through reduced-order models for 

investigating effects of frictional connections in bolted structures. 

 

When multiple nonlinearities exist in a structure together with friction type of 

nonlinearity, it will not be possible to accurately measure the linear FRFs at low 

levels of force excitation, and furthermore it will be more difficult to identify 

nonlinearity in the system. Aykan and Özgüven [69] presented an approach (later 

called as Direct Nonlinearity by Describing Functions (DDF) method) for the 

nonlinear identification by using nonlinear FRF measurements, and using 
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nonlinearity matrix they demonstrated that FRFs measured at low forcing levels may 

deviate from the linear FRFs of the structures. The most recent publications in this 

area include the papers written from this present thesis study: A new method named 

Pseudo Receptance Difference Method (PRD) for obtaining linear FRFs in order to 

update linear model parameters of a nonlinear structure having multiple 

nonlinearities including friction type of nonlinearity is presented in references [70] 

and [71]. Very recently, the proposed method is experimentally validated by 

applying the approach to a real nonlinear T-beam test structure [72]. 

 

1.3 Motivation 

 

ASELSAN Inc. is the largest research and development defence industry company in 

Turkey. Main mission of ASELSAN Inc. is to design, manufacture and integrate 

military products by using its own research and development capabilities.  One of the 

critical research areas of ASELSAN Inc. is to design stabilized weapons, turret or 

targeting systems and to integrate these systems to different platforms such as 

helicopters, aircrafts and battle tanks. Since integration of these systems may change 

the dynamic characteristics of the platforms, and also since the systems have various 

moving components which make the dynamic modelling very complex, integrations 

of such systems to these platforms are very challenging. Examples of such 

integration projects are shown in Figure 1.1 and Figure 1.2.   

 

 

 

 

Figure 1.1 Integration of a targeting system to an aircraft 
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Figure 1.2 Integration of a turret system to a helicopter 

 

 

 

It is very important to understand the dynamic behavior of the platforms in order to 

increase the overall performance of the systems integrated to platforms. An example 

of that is to increase the shooting performance of a battle tank (Figure 1.3) with 

integration of tank fire control system.   

 

 

 

 

Figure 1.3 Integration of a tank fire control system to a battle tank 
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The common problem encountered in such type of integration projects is to model 

the structural behaviors of the platforms or systems accurately. This modelling is 

commonly performed by using FE methods. However in all these types of integration 

projects there are nonlinear behaviors due to joints or moving components in the 

system or due to joints and driving systems on the platforms. Therefore the ultimate 

purpose is to have a mathematical model that simulates the nonlinear dynamic 

behavior of the system or the platform accurately. Since there are always 

discrepancies between predictions of the dynamic models and experimentally 

measured values, these models have to be updated. Although linear dynamic 

characteristics of systems can be obtained by using low excitation levels, sometimes 

this approach may not give accurate results. This happens when the excitation 

forcing is not low enough, or if there are multiple nonlinearities including friction 

type of nonlinearity in the system. Then linear dynamics of the system cannot be 

accurately obtained. Therefore in order to construct an accurate nonlinear model, 

nonlinearity in the system has to be identified and also the linear dynamics of the 

system has to be extracted. Then nonlinear model of the system can be obtained by 

model updating of the linear model first and then by combining the updated model 

with the identified nonlinearity.   

 

These engineering problems are the main motivation of this thesis. 

 

1.4 Outline of the Thesis 

 

The outline of this thesis is given below: 

 

In Chapter 2, the theory of model updating approach proposed for nonlinear 

structures is given. The theory of the proposed model updating approach for 

nonlinear structures which is capable of identifying the nonlinearities and extracting 

the linear FRFs simultaneously, is presented by explaining the identification of 
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nonlinearities and obtaining of linear FRFs. Then the theory of model updating of 

linear FE models by inverse eigensensitivity method is given. 

 

In Chapter 3, the verification of the PRD method is demonstrated through some case 

studies (nonlinear lumped SDOF, MDOF systems and a nonlinear structure). In the 

first case study, by using nonlinear FRF measurements (with and without polluted 

data), nonlinearities are identified and the linear FRFs are obtained for a nonlinear 

SDOF system. In the second case study, application of PRD method to a nonlinear 

MDOF system that has multiple nonlinearities including friction is demonstrated. In 

the third case study, a nonlinear simulated experimental structure (T-beam with cubic 

stiffness and dry friction nonlinearities) is used to verify the PRD method. In the 

fourth case study, the effect of the excitation frequency at which measurements are 

made, on the accuracy of the proposed method is investigated by using the T-beam 

structure used in the third case study. As a final case study, in order to compare the 

proposed PRD method with DDF method, nonlinear parameter value is calculated for 

a SDOF system with cubic stiffness nonlinearity, and the results found by these two 

methods are compared. 

 

In Chapter 4, the proposed model updating approach is applied to a real T-beam test 

system to illustrate the verification of the method on a real nonlinear system. In the 

first section, by applying PRD method, both linear FRFs and the nonlinearities in the 

system are obtained from experimentally measured nonlinear FRFs. The linear FE 

model of the system which is modelled in ANSYS is updated for the first mode of 

the structure by employing the inverse eigensensitivity method and also by using the 

linear FRFs obtained through PRD method. By using the identified nonlinearity and 

the updated linear FE model, updated nonlinear model of the T-beam is obtained. 

Predicted nonlinear FRFs of the system are compared with the measured FRFs at 

different forcing levels in order to illustrate the accuracy of the updated nonlinear 

model of the system. In the second section of this chapter, linear FRFs are obtained 

from experimentally measured nonlinear FRFs for the first, second and third global 
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mode of the test system by using PRD method. Then the linear FE model of the test 

system is updated for the first three global modes of the structure by using the 

extracted linear FRFs employing first the PRD method and then using ANSYS 

Design Exploration Optimization. Combining updated linear FE models with the 

identified nonlinearity, updated nonlinear models of the test structure are 

constructed. Finally, in order to demonstrate the accuracy of the updated nonlinear 

models of the system, predicted and measured FRFs of the test structure are 

compared at different forcing levels. 

 

In Chapter 5, application of PRD method to real engineering problem is given. 

Detailed structural model of a nonlinear gun barrel of a battle tank at the fundamental 

frequency is studied and model updating of the nonlinear gun barrel is performed by 

using the proposed model updating approach. First, using the PRD method, both 

linear FRFs and the nonlinearities in the system are obtained from experimentally 

measured nonlinear FRFs. Furthermore, in order to compare the results obtained by 

using the PRD method, both linear FRFs and the nonlinearities in the system are also 

calculated by using the DDF method. Linear FE model of the gun barrel built in 

ANSYS is updated by using the linear FRFs obtained through the PRD method. 

Combining updated linear FE model of the gun barrel with the identified 

nonlinearity, updated nonlinear model of the gun barrel is constructed. Finally, 

predicted and measured FRFs of the gun barrel are compared at different forcing 

levels in order to demonstrate the accuracy of the updated nonlinear model of the 

system. To sum up, using this real engineering problem, the performance of the 

proposed method on real engineering problem is examined and it is shown that, the 

method can be applied to a real engineering problem successfully.   

 

In Chapter 6 brief summary and conclusions is given. 
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CHAPTER 2 

 

 

2 THEORY 

 

 

 

2.1 Introduction 

 

In this chapter, mainly the theory of model updating approach proposed for nonlinear 

structures is presented. Firstly, modelling of nonlinearities is briefly described in 

Section 2.2. After the brief explanation of modelling nonlinearities, calculation of 

nonlinear response by using describing function method is presented in Section 2.3. 

In Section 2.4, theory of the proposed model updating approach for nonlinear 

structures is given by explaining the nonlinear identification, obtaining linear FRFs 

and model updating of linear FE models by inverse eigensensitivity method. 

 

2.2 Modeling Nonlinearities 

 

For a nonlinear MDOF system, the equation of motion can be written as  

 

               ( ) ( ) ( ) ( ) ( , , ) ( )     extM x t C x t i D x t K x t N x x t f t  (2.1) 

   

where  M ,  C ,  D ,  K  represent mass, viscous damping, structural damping 

and stiffness matrices of the system, respectively.  ( )x t ,  ( )extf t  stand for 

displacement response and external forcing vector, respectively, i  and dot are the 

imaginary number and derivation with respect to time, respectively. All the nonlinear 

internal forces are represented by  ( , , )N x x t  vector which depends on displacement 

and velocity. If we consider the r
th 

element of the nonlinear internal forcing vector
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 ( , , )N x x t  and show that element as rN , for a “n” degrees of freedom system, we 

can define rN  as 

 

1

1, 2, ...,
n

r rj

j

N n r n


    (2.2) 

 

In Equation (2.2), if r≠j, rjn represents the nonlinear internal force between the 

coordinates r and j, and if r=j, rjn  stands for the nonlinear internal force between 

ground and the coordinate r. Let us define intercoordinate displacement between the 

coordinates r and j as 

 

  
rj r j

x x x for r j   (2.3) 

 

 
rj r

x x for r j   (2.4) 

   

Note that rjn can be any function of displacement and velocity, therefore we can 

represent it with the following equation. 

 

 ( , ) rj rjrj rj
n n x x   (2.5) 

 

If we consider the external forcing vector  ( )extf t , we can express it in complex 

vector form as 

 

   ( ) ext ext

i tf t F e   (2.6) 
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Let us define the product of angular frequency   and time t  as generic angle   and 

rewrite the Equation (2.6) as  

 

   ( ) ext ext

if t F e   (2.7) 

 

In Equation (2.7),  extF  is the external forcing amplitude vector. When a nonlinear 

system is excited with a harmonic force, the response is not composed of terms with 

only input forcing frequency, but composed of terms with also harmonics of that 

frequency. Therefore, the response is periodic and this response can be defined by 

Fourier series representation as 

 

   
0

( ) 




 
im

m
m

x t X e   (2.8) 

 

In Equation (2.8), m is the degree of harmonic order and  
m

X represents the 

complex amplitude displacement response of the m
th

 harmonic. If we consider the 

complex amplitude displacement response attached to coordinate r, for the m
th

 

harmonic we can define it as     

 

    ( )
  r

m

i r m
r r r mm

X X X e   (2.9) 

 

Equation (2.9) is the magnitude and the phase notation form of the complex 

displacement response. In Equation (2.9) 
r m

X  and   r m
 is the magnitude and 

phase of the complex amplitude displacement response.  If we consider the Fourier 

series representation of the response given in Equation (2.8) it has infinite terms 

which are practically not possible to calculate; therefore truncation has to be applied 

to the formulation by just considering the first p harmonics. Then the response can 

expressed approximately as 
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     
0 0

( ) ( ) 

 

  
p p

im

m m
m m

x t x t X e   (2.10) 

 

Since Fourier series representations are obtained for the responses, then we can 

extend these formulation for the relative displacement responses (i.e. intercoordinate 

displacement response) between arbitrary coordinates. Let us define relative 

displacement response between coordinates r and j as 

 

( ) ( ) ( ) 
rj r j

x t x t x t   (2.11) 

  

Fourier series representation of ( )
rj

x t can be written as 

 

 
0 0

( ) ( ) 
 

 

  m

im
rj rj rj mm m

x t x t X e   (2.12) 

 

In Equation (2.12),   rj m
X  is given by 

 

     rj r jmm m
X X X for r j     (2.13) 

 

If we consider the complex relative displacement response  rj m
X  for the m

th
 

harmonic, we can express it as     

 

      ( )
  rj

m

i rj m

rj rj rjm m
X X X e   (2.14) 

 

Equation (2.14) is the magnitude and the phase notation form of the complex relative 

amplitude displacement response between coordinates r and j. In Equation (2.14), 
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 rj m
X  and   rj m

 is the magnitude and phase of the complex amplitude relative 

displacement response. Similarly performing truncation for the Fourier series 

representation and considering only the first p harmonics, approximate relative 

response can be written as
 

 

 
0 0

( ) ( ) 

 

  m

p p
im

rj rj rj mm m

x t x t X e   (2.15) 

 

2.3 Calculation of Nonlinear Response by Using Describing Function Method 

 

In this section, brief theory of the nonlinear response calculation by using describing 

function method [73] will be given. Let us consider rjn (the nonlinear internal force 

between the coordinates r and j) which is defined by the Equation (2.5). Assuming 

that for simplicity rjn  is dependent only on displacement, Fourier series 

representation of this force can be written as 

 

 
0

( ) ( ) 




  rj rj

im
rj rj rj mm

n n x n x e   (2.16) 

 

 ( )rjrj m
n x  terms can be obtained by Fourier integrals and they are given as 

 

 
2

0

1
( ) ( ) 0

2






 rj rjrj rj
n x n x d for m   (2.17) 

 

 
2

0

( ) ( ) 0



 


 rj rj

im
rj rj

i
n x n x e d for m   (2.18) 
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If nonlinear element is odd, then  ( )rjrj
n x  in Equation (2.17) will be zero. When, 

only single harmonic response is assumed, Equation (2.16) will simplify to the 

following form 

 

2

0

( ) ( )



 


 
  
 
rj rj

i i
rj rj

i
n x n x e d e   (2.19) 

 

( )rjrj
n x  can also defined by using describing function rj

v . The rj
v  is actually the 

equivalent linear complex stiffness of ( )rjrj
n x  for harmonic rjx . Also, rj

v  is a 

function of the absolute value of complex amplitude displacement response, and by 

using those definitions we can write the nonlinear internal forces as 

  

 ( ) rj

i
rj rj rj rj

n x v X X e   (2.20) 

             

If the nonlinear force representations in Equation (2.19) and (2.20) are compared, we 

can easily write the following equation. 

 

2

0

( )



 


  rj

i
rj rj

rj

i
v n x e d

X
  (2.21) 

 

Budak and Özgüven [74] express the nonlinear forcing vector in a nonlinear structure 

as a matrix multiplication form for harmonically excited nonlinear systems and this 

form of nonlinear forces were employed in response calculation of nonlinear systems 

in different studies [75,76]. The internal nonlinear forces are defined as 

 

    ( , ) ( , )   i tN x x x x X e   (2.22) 
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 ( , ) x x is the “nonlinearity matrix” which was first presented by Budak and 

Özgüven [74] for certain types of nonlinearities. Then Tanrıkulu et al. [77] used 

nonlinearity matrix and define it for any type of nonlinearity by using describing 

functions.  

The elements of  ( , ) x x  are defined with the following equations [77]: 

 

1

1, 2, ..., 





   
j r

n

rr rr rj

j

r n   (2.23) 

 

, , 1, 2, ...,    rj rj r j r n   (2.24) 

 

If we consider the nonlinear MDOF system which was defined by Equation (2.1), we 

can express FRF matrix (in the form of receptances)  of the linear part of this 

nonlinear system as 

 

       
1

2 


          
LH M i C i D K   (2.25) 

 

Similarly by using the nonlinearity matrix we can write the nonlinear FRF matrix (in 

the form of receptances) of the same nonlinear system as 

 

         
1

2 


            
NLH M i C i D K   (2.26) 

 

Note that, In Equation (2.26), nonlinear FRF matrix   
NLH  is response dependent. 

Then by using the definition of receptance we can find the response of the system. It 

is given by the following equation. 

 

      
NL

extX H F   (2.27) 
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Since nonlinear FRF matrix   
NLH  is response dependent, in order to solve 

Equation (2.27), iteration has to be made. Performing iterations, the nonlinear 

response of the system can be calculated. As a starting initial guess, linear response 

of the nonlinear system can be used. By using the linear responses, initial 

nonlinearity matrix can be obtained. Then by using Equation (2.27), the new 

responses can be estimated. This iteration goes on until certain error criterion is 

satisfied. In this thesis, in order to solve Equation (2.27), fixed point iteration method 

is used. The iteration step is given by the following equation. 

 

      
1

NL

exti i
X H X F


 
 

   (2.28) 

 

Iterations are repeated until the relative error given below drops below a certain 

value. 

 

1max , 1,2,...,
n n

i i

n

i

X X
e n N

X


 

   
 

   (2.29) 

 

where N is the number of degrees of freedom.  

 

In order to avoid divergence or to obtain faster convergence, relaxation is applied to 

the fixed point iteration: 

 

       *

11
1 , 0 1

i ii
X X X  


       (2.30) 

 

 where  is the weighting factor. 

 

In this thesis, single harmonic describing functions of nonlinearities are used. The 

single harmonic describing functions of different nonlinearities can be found in [73]. 
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For the nonlinearity types that are used in Chapter 3, single harmonic describing 

function representations are given below [78]. 

 

 

 

 

Figure 2.1 Single harmonic describing function of cubic stiffness 

 

 

 

 

Figure 2.2 Single harmonic describing function of dry friction model 

 

 

 

2.4 Model Updating of Nonlinear System 

 

In this section theory that is used for model updating approach for nonlinear 

structures is explained. Firstly theory of the proposed Pseudo Receptance Difference 
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(PRD) method is given for nonlinear identification and obtaining nonlinearities [70]. 

Then in the next section, theory of DDF method [79] that is proposed by Aykan and 

Özgüven is presented. Then as the final part in this section, model updating of linear 

FE models by using inverse eigensensitivity method is explained.  

 

2.4.1 Nonlinear Identification and Obtaining Linear FRFs by PRD Method 

 

In this section the theory of the PRD method developed will be given. PRD method 

developed is based on the main theory given in [50, 74, 77]. Let us consider the FRF 

matrix of the linear part of the nonlinear system given by Equation (2.25) and the 

response level dependent nonlinear FRF matrix given by Equation (2.26). If we take 

the inverses of   
NLH  and   

LH  matrices, we can write the following equations: 

 

       
1

2 


          
LH M i C i D K   (2.31) 

 

         
1

2 


            
NLH M i C i D K   (2.32) 

 

Subtracting Equation (2.31) from Equation (2.32), the equation given below is 

obtained.  

 

 
1 1 

        
NL LH H   (2.33) 

 

Let us consider a nonlinear MDOF system that has multiple nonlinearities including 

friction type of nonlinearity, then it is possible to partition the nonlinearity matrix 

   as 

 

         f HF   (2.34) 



25 

 

In Equation (2.34),  HF  represents the nonlinearity matrix  due to nonlinearities 

which act dominantly at high forcing levels of excitation and   f  represents 

nonlinearity matrix due to friction type of nonlinearity.  

 

Substituting Equation (2.34) into Equation (2.33) gives the following equation. 

 

 
1 1 

             
NL L

f HF H H   (2.35) 

        

Depending on the level of the excitation force,   f and  HF  matrices will have 

negligible terms. For low forcing levels,   f will have larger terms compared to 

those of  HF . Therefore at low forcing levels, Equation (2.35) can approximately 

be written as 

 

1 1 

           
NL L

f H H   (2.36) 

 

On the other hand, when the structure is excited at high forcing levels,  HF  will be 

dominant and the terms of   f  will be negligible. Then at high forcing levels 

Equation (2.35) can approximately be written as 

 

 
1 1 

        
NL L

HF H H   (2.37) 

 

If Equation (2.36) is used once and Equation (2.37) is used several times for FRFs 

measured at the same frequency but at different forcing levels, nonlinearities in the 

system can be identified and the linear FRFs of the structure can be extracted.  
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Firstly, let us excite the system once at low forcing level, by using Equation (2.36), 

the following equation can be written. 

 

1 1

1 1 1

 

           
NL L

f H H   (2.38)    

 

Then let the system be excited (n-1) times at different high forcing levels. Using 

Equation (2.37), the following set of equations can be obtained. 

 

 
1 1

2 2 2

 

        
NL L

HF H H   (2.39)   

         

 
1 1

3 3 3

 

        
NL L

HF H H   (2.40) 

       

 
1 1

4 4 4

 

        
NL L

HF H H
  (2.41) 

    

 
1 1 

        
NL L

HF n n n
H H   (2.42)                

 

Equations from (2.39) to (2.42) can be written in a more compact form as  

 

 
1 1

2,3,...,
 

         
NL L

HF i i i
H H i n   (2.43) 

          

Subtracting Equation (2.38) from each of the equations given in Equation (2.43), a 

new set of equations is obtained and it is given below. 

 

 
1 1

1 1 1 1
1,2,..., ( 1)

 

 
               

NL NL

HF fi i
H H i n   (2.44) 
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In Equation (2.44), subscript 1 indicates low level of force excitation case, subscripts 

2, 3, … n  indicate high level of force excitation cases. Since the linear FRF matrix 

does not depend on the force excitation level and it is always constant for different 

force excitation levels, as can be seen above, these terms drop out and they do not 

exist in Equation (2.44). 

 

Considering the set of equations given in Equation (2.44), at the left hand sides of the 

equations, both zero and nonzero elements exist. These nonzero elements are related 

to nonlinear coordinates (coordinates to which nonlinear elements are attached) and 

they can be represented by polynomial functions of response amplitudes with 

unknown coefficients. These polynomial functions are the describing functions of the 

corresponding nonlinearities in the structure. Since there are always more data points 

than the number of unknown coefficients, in order to obtain the unknown 

coefficients, least square fit can be applied. Performing polynomial fit for (n-1) data 

points in a least square sense, the equation of the corresponding regression curve can 

be obtained, to calculate unknown coefficients. If the nonlinearity in the structure is 

more complex, polynomial fit may be insufficient; therefore it may be more proper to 

use nonlinear fit. By comparing the terms of the regression equation with the 

corresponding describing functions, identification of the nonlinearity can be 

performed parametrically. Once the nonlinearities in the structure are identified, then 

linear FRFs can easily be obtained by employing the equation given below: 

 

1
1

11 1


              

L NL

fH H   (2.45)     

 

From Equation (2.45) it can be observed that full matrix inversions have to be made 

in order to obtain the linear FRF of the structure. This is the main drawback of the 

above equation. However, for most of the nonlinear structures, nonlinear elements in 

the structure are localized therefore the nonlinearity matrix can be partitioned as 
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 
   
   

0

0 0

 
   

 

aa
  (2.46) 

                   

where subscript a stands for the coordinates where nonlinear elements are attached to 

(“nonlinear coordinates” in short). Pre-multiplication of all the terms in Equation 

(2.33) by   
LH and post- multiplication by   

NLH  yields the following equation. 

 

 
1 1 

                                
L NL L NL NL L L NLH H H H H H H H   (2.47) 

     

Performing some simplifications, Equation (2.47) reduces to 

 

                     
L NL L NLH H H I I H   (2.48) 

 

Substituting the nonlinearity matrix given in Equation (2.46) into Equation (2.48), 

the following equation is obtained: 

 

   
   

0

0 0

                       
                     

          
          
                    

L L NL NL

aa ab aa abaa

L L NL NL

ba bb ba bb

L L NL NL

aa ab aa ab

L L NL NL

ba bb ba bb

H H H H
...

H H H H

H H H H
...

H H H H

  (2.49) 

 

Subscript b in Equation (2.49) stands for linear coordinates. Making matrix 

multiplication for the left hand side of the equation and considering the first 

submatrix of the resultant matrix, the following equation can be written: 

 

                 
L NL L NL

aa aa aa aa aaH H H H   (2.50) 
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Pre-multiplication of all terms in Equation (2.50) with 
1

  
L

aaH and post-

multiplication with 
1

  
NL

aaH  yields  

 

 
1 1

1 1 1 1

 

   

               

                      

L L NL NL

aa aa aa aa aa

L L NL L NL NL

aa aa aa aa aa aa

H H H H ...

... H H H H H H

  (2.51) 

 

Performing some simplifications, Equation (2.51) reduces to 

 

 
1 1 

        
NL L

aa aa aaH H   (2.52) 

 

When the resulting equation given above is compared to Equation (2.33), it is 

observed that they are similar equations. Therefore proposed approach for nonlinear 

identification and linear FRF calculation can be applied to Equation (2.52). Then the 

linear FRF matrix for the nonlinear coordinates can be written as 

 

1
1

1 1 1aa

L NL

aa aa fH H


              
  (2.53) 

          

As can be seen from Equation (2.53), considerable reduction in computational effort 

will be achieved for the structures that have localized nonlinearities.  

 

Once the linear FRFs are obtained by using Equation (2.53), then these linear FRFs 

can be used for the model updating of a FE model. In several model updating 

methods, measuring FRFs at limited number of coordinates is enough. Therefore, 

having FRF of even a single coordinate may be sufficient for applying model 

updating method. However, if FRFs of the linear coordinates are also necessary to 

employ the model updating method, then the other 3 matrix equations obtained from 
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Equation (2.49) have to be solved. Then it would be necessary to measure the 

nonlinear responses at required linear coordinates as well.  

 

When multiple measurement points are used on a structure, then all the elements of 

the nonlinear FRF matrix need to be obtained, which may be difficult in practice. For 

structures having localized nonlinearities, which can be modelled as nonlinear 

elements connected to a single coordinate, the measurement at this single coordinate 

can be considered, which reduces Equation (2.44) to a very simple algebraic 

equation:  

 

1 1

1 1

1 1
1 2 1





     
iHF f NL NL

i

i , ,...,( n )
H H

  (2.54)   

        

Since all the matrix inversions vanish and are reduced to inversions of scalar values, 

it is much simpler to calculate the right hand side of Equation (2.54) for all i values 

by using experimental measurements. Similarly, for the calculation of linear FRFs of 

the system, it is possible to write the following equation:  

 

1

1 1

1 1
  fL NLH H

  (2.55) 

 

All of the above equations are valid at any frequency. However for an arbitrary 

excitation frequency, the difference between the linear and nonlinear FRFs may be 

very small, so that this may make the identification of nonlinearity very difficult. 

Therefore nonlinear identification can be performed most accurately at frequencies 

where system response is mostly affected from the existence of nonlinearity. 
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2.4.2 Nonlinear Identification and Obtaining Linear FRFs by DDF Method 

 

DDF method [79] is based on the same equation given by Equation (2.33). The 

method is capable of both identifying nonlinearity and obtaining linear FRFs of a 

nonlinear structure that has multiple nonlinearities. Considering two different force 

excitation levels F1 and F2, Equation (2.33) can be written as 

 

 
1 1

11 1 1

 

         
NL LH H for F F   (2.56) 

   

 
1 1

22 2 2

 

         
NL LH H for F F   (2.57)                

 

Noting that   
LH  is not dependent on the force level, subtracting Equation (2.56)

from Equation (2.57), the following equation can be obtained. 

 

   
1 1

2 1 2 1

 

          
NL NLH H   (2.58) 

               

As seen from Equation (2.58), linear FRF matrix   
LH  cancels out in the resulting 

equation. For structures having localized nonlinearities, which can be modelled as 

nonlinear elements connected to a single coordinate, the measurement at this single 

coordinate can be considered, which reduces Equation (2.58) to a very simple 

algebraic equation:  

 

1 1

2 1
2 1

   
NL NLH H

  (2.59) 

        

As seen from Equation (2.59), the terms on the right hand side of Equation (2.59) can 

be experimentally measured. Assuming that nonlinearity matrix is dependent on 
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displacements only, if a polynomial function is assumed for the nonlinearity matrix, 

then it can be expressed as  

 

 
1





  i

i

i

x c x   (2.60) 

 

In order to solve Equation (2.59), number of equations must be at least as many as 

the order of the polynomial. Since Equation (2.59) is valid at any frequency, the 

necessary number of equations can be obtained by using nonlinear FRF 

measurements at different frequencies. Generally the number of equations is much 

more than the number of unknowns (coefficients of the polynomial function). Then, 

least square fit for the polynomial coefficients can be applied.  

 

Considering an i
th

 order polynomial for nonlinearity matrix, and substituting 

Equation (2.60) into Equation (2.59) yields the following equation 

 

2 2

1 2 2 2 2 1 1 2 1 1

1 1

2 1

( ... ) ( ... )       i i

i i NL NLH H
c x c x c x c x c x c x   (2.61) 

 

which can also be written in compact form as 

 

1

22 2

2 1 2 1 2 1

1 1

2 1

i i

i

NL NLH H

c

c
x x x x x x

c



 
 
       
 
 

  (2.62) 

 

Since the above equation is valid for any frequency, measuring nonlinear FRFs at 

“n” different frequencies (n > i), the following set of equations can be written 
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2 2
12 1 1 1 2 1 1 1 2 1 1 1

2 2
22 2 1 2 2 2 1 2 2 2 1 2

2 2

2 1 2 1 2 1

2 1 1 1

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
...

( ) ( ) ( ) ( ) ( ) ( )

1 1

( ) ( )

1

...

i i

i i

i i
in n n n n n

NL NL

NL

cx x x x x x

cx x x x x x

cx x x x x x

H H

H

     

     

     

 

     
   

      
   
   

      



2 1 2

2 1

1

( ) ( )

1 1

( ) ( )

NL

NL NL

n n

H

H H

 

 

 
 
 
 

 
 
 
 
 
  

  (2.63) 

 

Equation (2.63) can be solved by using pseudo inversion in order to obtain the 

polynomial coefficients. Once the nonlinearities are identified, then by using either 

of Equation (2.56) or  (2.57), the linear FRFs of the system can be calculated. 

 

2.4.3 Model Updating of Linear FE Models-Inverse Eigensensitivity Method 

 

Since the FRFs of the underlying linear part of a nonlinear structure can be 

calculated by using either of the methods given in last two sections, then any model 

updating approach developed for a linear system can be employed for the model 

updating of the structure. One of the common methods used for model updating is 

the inverse eigensensitivity method [80]. The most advantageous aspect of this 

method is that there is no need to apply a model reduction /expansion method. Only 

the information at the measured coordinates and natural frequencies are necessary for 

the application of the method. 

 

Inverse eigensensitivity method is based on the following equation: 

 

      r S p   (2.64) 
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where  r  is the residual vector between the reference and actual responses,
  p

is the change that needs to be done in parameter vector,  and  S  is the sensitivity 

matrix.  

 

If we consider the modal analysis context, we can redefine each term in Equation 

(2.64). In Equation (2.64), r  consists of modeshapes and natural frequencies,  p  

consists of geometrical dimensions or material properties used in the mathematical or 

FE model, and  S  is the modal sensitivity matrix. Sensitivity matrix  S  in 

Equation (2.64) can be expressed as 

  

 

1

1 1

1

 
 

  
 
 

m

m

n n

pp

r r

pp

r r

S S

S

S S

  (2.65)     

 

In Equation (2.65), m

n

p

rS  represents the sensitivity of the n
th

 modal parameter to the 

m
th

 updating parameter. It can also be defined mathematically as the partial 

derivative of the n
th

 modal parameter to the m
th

 updating parameter and it is given by 

the following equation: 

 





m

n

p n
r

m

r
S

p
  (2.66) 

   

In order to calculate the sensitivities for simple structures, modal parameters can be 

formulated as the functions of updating parameters and by using these functions the 

sensitivities can be obtained performing simple differentiation. However it is not 

straightforward to calculate the sensitivities for complex structures, therefore it is 

necessary to use numerical differentiation.  
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Once  S  matrix and  r vector are calculated, then p  vector can be obtained 

by using Equation (2.67): 

 

      
1

p S r


     (2.67) 

            

Usually, the number of unknowns is less than the number of equations, therefore in 

order to solve Equation (2.64) for  p , least square solution should be applied. 

Furthermore, since the relation between the modal parameters and updating 

parameters are generally nonlinear, iteration has to be performed in order to calculate 

the updating parameters. 
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CHAPTER 3 

 

 

3 CASE STUDIES WITH SIMULATED EXPERIMENTAL DATA-

APPLICATION OF MODEL UPDATING APPROACH TO NONLINEAR 

SYSTEMS 

 

 

 

In this chapter, applications of the PRD method to nonlinear lumped SDOF and 

MDOF systems, and a nonlinear structure are demonstrated. In the first case study 

nonlinearities are identified and the linear frequency response function is calculated 

for a nonlinear SDOF system, by using nonlinear FRF measurements. Firstly, pure 

theoretical data is used in the analysis and then polluted data is used in the analysis in 

order to simulate the experimental measurements more realistically. In the second 

case study, PRD method is applied to a nonlinear MDOF system. The system has 

multiple nonlinearities including friction. In this case study, simulated experimental 

data is used in the analysis. As a third case study, PRD method is applied to a 

nonlinear structure where the simulated experimental results are obtained from the 

FE model of the structure. The nonlinear structure is a T-beam which has cubic 

stiffness and dry friction nonlinearities. In order to simulate the experimental 

measurements, again polluted data is used in the analysis. Identification of 

nonlinearities and calculation of linear FRFs of the system are presented by using the 

approach proposed. In obtaining all simulated experimental data, harmonic balance 

approach is used. In the fourth case study, the effect of the excitation frequency at 

which measurements are made, on the accuracy of the proposed method is 

investigated. The nonlinear T-beam used in the third case study is employed. 

Applying the PRD method, the values of the nonlinear parameters are calculated by 

using the simulated experimental FRF values obtained at a different excitation 

frequency each time. Then these nonlinear parameter values are compared with each 
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other. In the first four case studies, cubic stiffness and only stiffness part of the 

frictional nonlinearity are identified, since in the experimental studies given Chapter 

4 and Chapter 5, all the nonlinearities including friction are identified in terms of 

describing functions. As a final case study, in order to compare the proposed PRD 

method with DDF method, the value of the nonlinear parameter is calculated for a 

SDOF system with cubic stiffness nonlinearity. Identified nonlinear parameter values 

are compared to each other. 

 

3.1 Application of PRD Method to a SDOF Lumped System 

 

In this case study, nonlinear SDOF system with cubic stiffness and dry friction 

nonlinearities is used. Firstly, pure theoretical data is used in the analysis and 

nonlinearities are identified by using the PRD method. As a next study in this section 

the same nonlinear SDOF system is analyzed by using a polluted data. 

 

3.1.1 Application of PRD Method without Polluted Data 

 

The nonlinear SDOF system used in this case study has cubic stiffness and dry 

friction nonlinearities. The dry friction model and nonlinear SDOF system studied 

are given in Figure 3.1. 

 

 

 

 
  (a)              (b) 

Figure 3.1 (a) SDOF nonlinear system (b) Dry friction model 
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The parameters of these nonlinear elements and the properties of the system are 

given as follows: 

 

6
1 1

* 10 3

m = 0.1 kg,  k = 2x 10  N m and   (loss factor)= 0.01 

k 1x 10 N m





 

5
f0.1, Normal Force 10 N and k 3x 10 N m                                            |                 

  

Firstly, low amplitude harmonic force (F=0.01N) is used to excite the system. At this 

forcing level, response of the system and the linear frequency response of the system 

obtained disregarding both friction and cubic stiffness nonlinearity are compared to 

each other. This comparison is given in Figure 3.2. 

 

 

 

 

Figure 3.2 Harmonic response of the system for F=0.01N 

 

 

 

It is observed from Figure 3.2 that, friction is the only nonlinear effect, because at 

low forcing level, response amplitudes are low and nonlinear internal forces due to 

cubic stiffness are negligible. It is clearly seen from Figure 3.2 that, there is a shift in 
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the resonance frequency due to the stiffness component of frictional nonlinearity. 

Afterwards, by increasing the amplitude of the harmonic excitation force 30N at a 

time, between 100N and 400N, the responses of the system are calculated for 11 

different higher excitation forcing cases. In Figure 3.3, nonlinear harmonic responses 

are shown for only the forcing levels of F=130N and F=280N. 

 

   
         (a)           (b) 

Figure 3.3 Harmonic response of the system for (a) F = 130N, (b) F = 280N 

 

 

 

Since nonlinear forces due to friction is negligible at high forcing levels, as observed 

from the Figure 3.3, only nonlinear forces due to cubic stiffness will be effective, and 

this will cause a jump around resonance in the frequency response of the system 

which is a typical response characteristic of a vibratory system with cubic stiffness. 

PRD method is applied by using low forcing level excitation and 11 different FRFs 

obtained at the excitation frequency of 710 Hz.  

 

The equation of the regression curve is obtained by employing “polyfit” function of 

MATLAB. Since equation of the regression equation is directly related with the 

corresponding describing functions, by comparing the terms of the regression 

equation with those of the corresponding describing functions, the values of the 



41 

 

nonlinear parameters are calculated. The regression curve obtained is shown in 

Figure 3.4. 

 

 

 

 

Figure 3.4 Polynomial regression curve for the available data points 

 

 

 

The estimated values of the nonlinear parameters are as follows: 

 

* 9 3 5
fk 9.9x 10 N m and k 3x 10 N m 

 

 

It can be seen that there is a perfect match between the estimated and the actual 

values of the nonlinear parameters.  

 

Estimated and actual linear frequency responses are also compared in Figure 3.5. As 

expected, estimated linear frequency response matches perfectly with the actual 

linear frequency responses of the system. 
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Figure 3.5 Comparison of the estimated and actual linear frequency responses of the 

system 

 

 

 

3.1.2 Application of PRD Method with Polluted Data 

 

In this case study, the same nonlinear SDOF system used in previous case study is 

analyzed. In order to simulate the experimental data, theoretical data is polluted with 

5% noise that has normal distribution. The standard deviation used in the noise is 5% 

of the amplitude of the original response. The system is excited with a low forcing 

amplitude and then with 11 different high forcing amplitudes. In Figure 3.6, the 

response of the system at low excitation force (F=0.01N) and the linear frequency 

response of the system obtained disregarding both friction and cubic stiffness 

nonlinearity are compared to each other. The frequency responses of the system for 

F=130N and F=280N are also shown in Figure 3.7. 
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Figure 3.6 Frequency response of the system for F=0.01N with 5% noise 

 

 

 

 
          (a)                                                               (b)  

Figure 3.7 Frequency response of the system with 5% noise for  

(a) F = 130N (b) F = 280N 

 

 

 

At the excitation frequency of 710 Hz, the polynomial regression curve is obtained 

for 11 different data points as shown in Figure 3.8. 
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Figure 3.8 Polynomial regression curve for the available data points 

 

 

 

Identified nonlinear parameters and comparison of these values with the actual ones 

are given in Table 3.1. 

 

Table 3.1 Comparison of nonlinear parameters 

Nonlinear Parameters Estimated Actual   Error (%) 

 k* (N/m
3
) 9.9 x 10

9
 1 x 10

10
 -1.0 

kf (N/m) 3.1 x 10
5
 3 x 10

5
 3.3 

 

It is observed from Table 3.1 that, the estimated nonlinear parameters are slightly 

different from the actual nonlinear parameters due to using polluted data.  

 

The linear frequency response calculated by using PRD method is compared with the 

actual one in Figure 3.9. As observed from Figure 3.9 there is a perfect agreement 

between the calculated linear frequency response and the actual one. 

 



45 

 

 

Figure 3.9 Comparison of the calculated and actual linear frequency responses of the 

system  

 

 

 

3.2 Application of PRD Method to a MDOF Lumped System 

 

In this case study, PRD method is applied to a nonlinear 2 DOF system (Figure 3.10) 

that has cubic stiffness and dry friction nonlinearities. Polluted data is used in the 

analysis of the system. The same dry friction model given in previous case study is 

used here as well. 

 

 

 

 

Figure 3.10 2 DOF nonlinear system used in the case study 
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The nonlinear responses of the system are calculated by using the harmonic balance 

method. Nonlinear parameter values used in the case study and linear system 

properties are given as follows: 

 

6
1 2 1 2 3m = 0.1 kg, m = 0.5 kg ,  k = k = k = 1x 10  N m and   (loss factor)= 0.005  

4
f0.1, Normal Force 10 N and k 8x 10 N m        

* 10 3k 1x 10 N m                                       

 

In order to simulate the experimental data, theoretical FRF data obtained from 

harmonic balance analysis of the system is polluted with 5% noise that has normal 

distribution. The standard deviation used in the noise is 5% of the amplitude of the 

original response. The system is excited with a low forcing amplitude and then with 

11 different high forcing amplitudes. The frequency responses of the system at 

forcing levels of F1=0.01N and F1=100N are shown in Figure 3.11 and Figure 3.12, 

respectively together with the linear frequency response of the system obtained 

disregarding both friction and cubic stiffness nonlinearity. 

 

 

 

 
         (a)                                                               (b)  

Figure 3.11 Frequency responses of the system with 5% noise for F1=0.01N  

(a) 1
st
 coordinate, (b) 2

nd
 coordinate 
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As can be observed from Figure 3.11, for low forcing amplitudes, friction is the only 

nonlinear effect, which causes a shift in the resonance frequency due to the stiffness 

component of the frictional nonlinearity. The frictional nonlinearity is much more 

effective in the 2
nd

 mode. 

 

 

 

 
          (a)                                                               (b)  

Figure 3.12 Frequency responses of the system with 5% noise for F1=100N  

(a) 1
st
 coordinate, (b) 2

nd
 coordinate 

 

 

 

As can be seen in Figure 3.12, since nonlinear forces due to friction is negligible at 

high forcing levels, the nonlinearity due to cubic stiffness is the only nonlinear effect 

and it changes the response of the system around 2
nd

 resonance considerably by 

causing a jump. It is observed that, existence of the stiffness nonlinearity does not 

considerably affect the 1
st
 mode of the system, as in the low forcing level case. By 

applying PRD method, the nonlinear parameters are calculated and they are given in 

Table 3.2. The corresponding regression curve is also shown in Figure 3.13. 
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Table 3.2 Comparison of nonlinear parameters 

Nonlinear Parameters Estimated Actual   Error (%) 

 k* (N/m
3
) 9.9 x 10

9
 1 x 10

10
 -1.0 

kf (N/m) 8.03 x 10
4
 8 x 10

4
 0.4 

 

 

 

 

Figure 3.13 Polynomial regression curve for the available data points 

 

 

 

It is seen from Table 3.2 that, there is a perfect match between the estimated and 

actual nonlinear parameters.  

 

As mentioned in the theory chapter, excitation frequency is a free parameter in PRD 

method (i.e., derived equations are valid for any excitation frequency and for any 

forcing level), the effect of the excitation frequency used in the experiments on the 

performance of PRD method needs to be investigated. This investigation will be 

given in Section 3.4. 
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3.3 Application of PRD Method to a Nonlinear Structure 

 

In the third case study, application of the PRD method to a nonlinear structure is 

given. The nonlinear structure used in this case study is a T-beam that has cubic 

stiffness and dry friction nonlinearities.  In order to simulate the nonlinear response 

of the system, first FE model of the linear part of the T-beam is constructed in 

ANSYS, and linear FRFs are obtained by performing modal analysis in ANSYS. 

Then using the nonlinear parameters for cubic stiffness and dry friction and 

calculated linear FRFs, nonlinear responses are obtained by employing the harmonic 

balance method. Afterwards, in order to have more realistic simulated experimental 

measurements, the calculated FRFs are polluted by addition of noise to the FRFs. 

Finally, the nonlinearities in the system are identified and linear FRFs of the test 

system are obtained by using the simulated experimental data and applying the PRD 

method. In Figure 3.14 dry friction model and nonlinear T-beam used in the case 

study are shown. 

 

 

 

 
  (a)                                                              (b) 

Figure 3.14  (a) Nonlinear T-beam test system, (b) Dry friction model 
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As seen from Figure 3.14, T-beam is composed of a cantilever beam with its free end 

is maintained between two thin identical beams. All the end conditions of the beams 

are fixed. Geometric and material properties of these beams are given Table 3.3 

 

Table 3.3 Geometric and material properties of the T-beam 

  

Height 

(mm) 

Length 

(mm) 

Width 

(mm) 

Modulus of 

Elasticity (E) 

(GPa)   

Poisson’s 

Ratio () 

Density 

() 

(kg/m
3
) 

Beam1 8 430 12 210  0.3 7850 

Beam2 1.5 400 13 210  0.3 7850 

 

The nonlinear parameter values and loss factor for the system are given below: 

 

4 * 9 3
f0.01, Normal Force 50 N, k 3x 10 N m and k 3x 10 N m       

 (loss factor)= 0.02





   
               

                          |                 

In order to calculate the linear FRFs of the T-beam, ANSYS is used. The mesh used 

in the FE model is given Figure 3.15. The FE model has 152 elements (SOLID 186) 

and 1331 nodes. 

 

 

 

 

Figure 3.15 FE mesh used in ANSYS 
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By performing modal analysis in ANSYS, the linear driving point FRFs of the 

structure at the tip of the beam 1 (point 1 in Figure 3.14) in Z (transverse) direction 

are obtained. By using the nonlinear parameters and the calculated linear FRFs, the 

nonlinear driving point FRFs at the tip of beam 1 are calculated by employing the 

harmonic balance method. The nonlinear responses are obtained for various forcing 

levels. In order to simulate experimental measurements, calculated FRF values are 

polluted with 5% noise which has normal distribution. The standard deviation of the 

noise is 5% of the amplitude of the original response. Firstly, low amplitude 

harmonic force (F1=0.01N) is used to excite the system. At this forcing level, 

frequency response of the system is compared with the linear frequency response of 

the system obtained disregarding both friction and cubic stiffness nonlinearity. These 

FRFs are given in Figure 3.16. 

 

 

 

 

 Figure 3.16 Frequency response of the system at F1=0.01 N with 5% noise

  



52 

 

As can be seen in Figure 3.16, for low forcing amplitudes, friction is the only 

nonlinear effect, which causes a shift in the resonance frequency due to the stiffness 

component of the frictional nonlinearity. Afterwards, by increasing the amplitude of 

the harmonic excitation force 5N at a time between 10N and 50N, the responses of 

the system are calculated for 9 different higher excitation forcing cases. The 

nonlinear harmonic responses at only the forcing levels of F1=25N and F1=50N are 

shown in Figure 3.17 and Figure 3.18, respectively. 

 

 

 

 

Figure 3.17 Frequency responses of the test system for F1 = 25N 

 

 

 

 

Figure 3.18 Frequency responses of the test system for F1 = 50N 
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As can be seen in Figure 3.17 and Figure 3.18, since the nonlinear forces due to 

friction are negligible compared to other forces at high forcing levels, the 

nonlinearity due to cubic stiffness is the only nonlinear effect, and it changes the 

response of the system around 1
st
 and 3

rd
 resonances considerably by causing a jump. 

It is observed that existence of the stiffness nonlinearity affects the 2
nd

 mode of the 

system slightly due to the relatively small deflection of the point where cubic 

stiffness is attached. 

 

By using the FRFs obtained for low and several high forcing levels, at the excitation 

frequency of 42 Hz, the equation of the regression curve is obtained. By comparing 

the terms of the regression equation with the corresponding describing functions, 

frictional stiffness and cubic stiffness parameters are identified. The corresponding 

regression curve is also shown in Figure 3.19. 

  

 

 

 

Figure 3.19 Polynomial regression curve fitted to data points 
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The estimated nonlinear parameters are compared with the actual ones in Table 3.4. 

 

Table 3.4 Comparison of nonlinear parameters 

Nonlinear 

Parameters 
Estimated Actual Error (%) 

 k* (N/m
3
) 3.04 x 10

9
 3 x 10

9
 1.3 

kf (N/m) 2.99 x 10
4
 3 x 10

4
 -0.3 

 

It is observed from Table 3.4 that there is a very small discrepancy between the 

estimated and actual nonlinear parameter values. This difference is mainly due to 

polluting the theoretical FRFs to simulate actual experiments and thus to have more 

realistic values that should be expected in real applications.  

 

Once the nonlinear parameters are identified, by applying PRD method, linear 

frequency response of the system is calculated. The calculated linear frequency 

response is compared with the actual linear frequency response of the system in 

Figure 3.20. As can be seen from Figure 3.20, there is perfect agreement between the 

calculated and actual linear frequency responses. 

 

 

 

 

Figure 3.20 Comparison of the calculated and actual linear frequency response of the 

system 
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3.4 Effect of Excitation Frequency Used on the Performance of PRD Method 

 

In this case study, in order to see the effect of choosing different frequencies of 

excitation in the application of the PRD method, on the performance of the method, 

the simulated test results obtained at various different frequencies are analyzed. The 

system used in this test is the nonlinear T-beam used in Section 3.3. By using the 

simulated test results obtained at different frequencies, nonlinearities in the system 

are identified. The identified nonlinear parameters by using different excitation 

frequencies are compared with each other, as well as with the actual values. The 

comparison is given in Table 3.5. 

 

Table 3.5 Comparison of nonlinear parameters identified by using different 

excitation frequencies (Actual values: k* = 3.0 x 10
9
 N/m

3
, kf = 3.0 x 10

4 
N/m) 

Excitation 

Frequency 

(Hz) 

Estimated 

k* (N/m
3
) 

Error in 

k* ( % ) 

Estimated 

kf (N/m) 

Error in 

kf  ( % ) 

36.0 2.96 x 10
9
 -1.33 3.02 x 10

4
 0.67 

37.0 3.07x 10
9
 2.33 2.99 x 10

4
 -0.33 

38.0 3.12 x 10
9
 4.00 2.96 x 10

4
 -1.33 

39.0 2.89 x 10
9
 -3.67 3.04 x 10

4
 1.33 

40.0 2.98 x 10
9
 -0.67 3.01 x 10

4
 0.33 

41.0 2.97 x 10
9
 -1.00 3.01 x 10

4
 0.33 

42.0 3.03 x 10
9
 1.00 2.99 x 10

4
 -0.33 

43.0 3.01 x 10
9
 0.33 3.01 x 10

4
 0.33 

44.0 3.01 x 10
9
 0.33 3.01 x 10

4
 0.33 

45.0 3.02 x 10
9
 0.67 3.01 x 10

4
 0.33 

46.0 3.05 x 10
9
 1.67 2.98 x 10

4
 -0.66 

47.0 2.91 x 10
9
 -3.00 3.04 x 10

4
 1.33 

48.0 2.90 x 10
9
 -3.33 3.04 x 10

4
 1.33 

 

Since the nonlinear forces affect the first mode more, excitation frequencies are 

selected around the first resonance of the system. It can be seen from Table 3.5 that 

more accurate estimates are obtained for the nonlinear parameters, cubic stiffness 

and frictional stiffness, when the excitation frequency is closer to the first resonance 

of the linear system. Although there are some exceptions, in general, the error in the 
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estimated nonlinear parameters tends to increase when excitation frequency deviates 

from the resonance frequency. 

 

3.5 Comparison of the Performances of PRD and DDF Methods in Nonlinear 

Identification 

 

In this case study, in order to compare DDF and proposed method, a SDOF system 

with cubic stiffness nonlinearity is used. The system used in the case study is shown 

in Figure 3.21.  

 

 

 

 

Figure 3.21 Nonlinear SDOF system 

 

 

 

The parameters of these nonlinear elements and the properties of the system are 

given as follows: 

 

6
1 1

* 10 3

m = 0.1 kg,  k = 2x 10  N m and   (loss factor)= 0.01 

k 1x 10 N m



  
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Nonlinear responses are calculated by using the harmonic balance method. In order 

to simulate the experimental measurements more realistically, polluted data is used 

in the analysis. The noise used in the case study has normal distribution and it has a 

standard deviation of 5% of the amplitude of the original response at that frequency. 

 

3.5.1 Identification of Nonlinearity Using DDF Method 

 

In this section, DDF method is applied for nonlinear identification by using different 

forcing sets and frequency ranges. In the analysis, 3 different forcing pairs 

(F1=100N-F2=450N, F1=100N-F2=350N, F1=150N-F2=450N) are used and for each 

of the forcing pairs, nonlinear parameter is identified using the DDF method. 

Furthermore since the method is dependent on the frequency used in the equations, 

different frequency ranges are considered for each force pair in the analysis. In 

Figure 3.22 and Figure 3.23, nonlinear response and linear response of the 

underlying linear system are shown for the forcing levels used in the analysis. 

 

 

 

  
       (a)                                                                (b) 

Figure 3.22 Frequency response of the system with 5% noise  

(a) F=100N, (b) F=150N 
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             (a)                                                         (b) 

Figure 3.23 Frequency response of the system with 5% noise 

(a) F=350N, (b) F=450N 

 

 

 

Then making use of these nonlinear responses, the nonlinear cubic stiffness 

parameter is identified using different frequency ranges. Comparison of the nonlinear 

parameters identified using different frequency ranges are given in Table 3.6 for the 

set of forcing F1=100N-F2=350N. 

 

Table 3.6 Comparison of nonlinear parameters identified using different frequency 

ranges (F1=100N-F2=350N) 

Frequency Range 

( Hz ) 600-850 650-900 700-950 

Identified Cubic 

Stiffness Value 

(N/m
3
) 9.389 x 10

9
 9.389 x 10

9
 9.374 x 10

9
 

Error ( % ) -6.11 -6.11 -6.26 

 

As observed from Table 3.6 that using different frequency ranges does not affect the 

nonlinear parameters estimated for this forcing pair, but there is a considerable 

difference between the estimated and the actual cubic stiffness values, the error 

ranging between 6.11% and 6.26%, depending on the frequency range used. 
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Similarly, comparison of the nonlinear parameters identified using different 

frequency ranges are given in Table 3.7 for the set of forcing F1=150N-F2=450N. 

 

Table 3.7 Comparison of nonlinear parameters identified using different frequency 

ranges (F1=150N-F2=450N) 

Frequency Range 

( Hz ) 600-850 650-900 700-950 

Identified Cubic 

Stiffness Value 

(N/m
3
) 9.828 x 10

9
 9.827 x 10

9
 9.823 x 10

9
 

Error ( % ) -1.72 -1.73 -1.77 

 

It is observed from Table 3.7 that using different frequency ranges does not affect the 

nonlinear parameters estimated for this forcing pair. For all cases there is a slight 

difference between the estimated and actual cubic stiffness values, the error ranging 

between 1.72% and 1.77%. 

 

Finally, comparison of the nonlinear parameters identified using different frequency 

ranges are given in Table 3.8 for the set of forcing F1=100N-F2=450N. 

 

Table 3.8  Comparison of nonlinear parameters identified using different frequency 

ranges (F1=100N-F2=450N) 

Frequency Range 

( Hz ) 600-850 650-900 700-950 

Identified Cubic 

Stiffness Value 

(N/m
3
) 1.026 x 10

10
 1.026 x 10

10
 1.027 x 10

10
 

Error ( % ) 2.6 2.6 2.7 

 

As in the first and second forcing pair, it is observed that using different frequency 

ranges does not affect the nonlinear parameters estimated for this forcing pair. 

Estimated cubic stiffness values are close to the actual value, the error ranging 

between 2.6% and 2.7%. 
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If the results obtained for each of three forcing pairs are compared, it can be 

concluded that worst estimation of the nonlinear parameter is obtained for the set of 

forcing F1=100N-F2=350N where the difference between the low and high force is 

lowest.  

 

3.5.2 Identification of Nonlinearity Using PRD Method 

 

The nonlinear parameter is identified by using PRD method, by exciting the structure 

at 710 Hz at 12 different forcing levels ranging between F=50N and F=400N.   

 

The regression curve used for nonlinear parameter estimation and the estimated 

nonlinear parameters are given in Figure 3.24 and Table 3.9, respectively.  

 

 

 

 

Figure 3.24 Regression curve 

 

 

 

Table 3.9 Estimated nonlinear parameter 

 Nonlinear 

Parameters 
Estimated Actual Error (%) 

 k* (N/m
3
) 9.99x 10

9
 10 x 10

9
 -0.1 
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As can be seen in Table 3.9, the nonlinear parameter is calculated very accurately.  

Furthermore, if the nonlinear parameter values identified by using PRD and DDF 

methods are compared, it can be seen that a better estimate is obtained for cubic 

stiffness value with PRD method for that case study. 
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CHAPTER 4 

 

 

4 EXPERIMENTAL VALIDATION OF MODEL UPDATING APPROACH-

APPLICATION TO A NONLINEAR T-BEAM 

 

 

 

In this chapter, the proposed model updating approach for nonlinear systems is 

applied to a real test system. The test system is a nonlinear T-beam which is similar 

to the test structure used in the study of Ferreira [81], Siller [82] and also of 

Josefsson et al. [83]. Firstly, applying the PRD method, both linear FRFs and the 

nonlinearities in the system are obtained from experimentally measured nonlinear 

FRFs. Then, test structure is modelled in ANSYS and the linear FE model of T-beam 

is constructed. In the first section of this chapter, this linear FE model of the system 

is updated for the first mode of the structure by employing the inverse 

eigensensitivity method and also by using the linear FRFs calculated through PRD 

method. Combining the updated linear FE model with the identified nonlinearity, 

updated nonlinear model of the T-beam is obtained. Finally, in order to demonstrate 

the accuracy of the updated nonlinear model of the system, predicted nonlinear FRFs 

of the system are compared with the measured FRFs at different forcing levels. In the 

second section of this chapter, linear FRFs are obtained from experimentally 

measured nonlinear FRFs for the first, second and third global modes of the test 

system by using PRD method. Then the linear FE model of the test system is built in 

ANSYS and the linear FE model of the test structure is updated for the first three 

global modes of the structure by using the extracted linear FRFs employing first the 

PRD method and then using ANSYS Design Exploration Optimization. Using the 

identified nonlinearity and updated linear FE models, updated nonlinear models of 

the test structure are constructed. Finally, predicted and measured FRFs of the test 
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structure are compared at different forcing levels in order to show the accuracy of the 

updated nonlinear models of the system. 

 

4.1 Experimental Study 1-Model Updating for a Single Mode 

 

In the first experimental study, in order to validate the model updating approach for 

nonlinear systems, a nonlinear T-beam test system is used.  

 

By applying the PRD method, both linear FRFs and the nonlinearities in the T-beam 

system are obtained from experimentally measured nonlinear FRFs. Then, linear FE 

model of the T-beam is constructed in ANSYS. For the first mode of the structure, 

the linear FE model of the system is updated by employing the inverse 

eigensensitivity method and using the obtained linear FRFs through the PRD 

method. By using the updated linear FE model and the identified nonlinearity, 

updated nonlinear mathematical model of the T-beam is obtained. Finally, nonlinear 

FRFs of the system are predicted at different forcing levels and they are compared 

with the experimental ones in order to show the accuracy and performance of the 

updated nonlinear model of the T-beam. 

 

4.1.1 Experimental Setup 

 

The T-beam test set-up consists of a fixed-free beam where its free end is maintained 

between two thin identical beams. The boundary conditions of the thin beams are 

fixed-fixed. Nonlinearity in the test structure is mainly due to thin beams that are 

assembled to the free end of the cantilever beam. Geometric details and the 

dimensions of the test system are shown in Figure 4.1. 
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Figure 4.1 Nonlinear T-beam test system 

 

 

 

Maintaining perfect fixed boundary conditions are very difficult in real life 

applications, therefore in order to maintain the fixed boundary conditions in the 

experimental setup, dimensions of the beams used in the experiments are longer than 

their effective length of 380 mm and 420 mm, so that adequate parts of the beams are 

clamped between fixture blocks. The material used for the beams is St37. The test rig 

used in the experiments is shown in Figure 4.2.  

 

 

 

 

Figure 4.2 Test rig used in the experiment  
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In the experiments performed in this study, B&K Type 4808 modal shaker is used as 

an exciter. Since the voltage supplied from the signal generator is generally low, 

B&K Type 2712 power amplifier is used in order to increase the excitation force 

level of the shaker. Acceleration output and input force are measured with B&K 

Type 4507B accelerometer and B&K Type 8230-002 force transducer, respectively. 

As a data acquisition system, B&K Type 3560C frontend is used in all the 

experiments. The equipment used in the experiments is given Table 4.1 and it is 

shown in Figure 4.3.   

 

Table 4.1 Equipment used in the modal testing

 
Data Acquisition System Brüel&Kjaer  Type 3560 C Frontend 

Shaker Brüel&Kjaer  Type 4808 

Force Transducer Brüel&Kjaer  Type 8230-002 

Power Amplifier Brüel&Kjaer  Type 2712 

Accelerometer Brüel&Kjaer  4507B 

 

 

 

 

Figure 4.3 View of the equipment used in the experiments 
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4.1.2 First Set of Experiments 

 

In the first set of experiments, the test system is excited with a random input force. 

Since the accuracy of the PRD method depends on the frequency of excitation and it 

is shown that more accurate results are obtained when the system is excited at around 

the resonance frequency of the linear part of the system, a quick test that does not 

excite the nonlinearities considerably is selected. In random excitation, excitation 

force level is kept very low and driving point FRFs at the tip of beam 1 in transverse 

direction are measured. The flow chart defining the test procedure is given in Figure 

4.4. 

 

 

 

 

Figure 4.4 Experimental procedure followed in random excitation vibration test 

 

 

 

The measurements are performed in the frequency range of 0-200 Hz and frequency 

resolution is 0.25 Hz. In order to minimize the noise in the experiment, 130 averages 

are taken. By using the force and acceleration measurements, driving point FRF 
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curve at the tip of beam 1 in transverse direction is obtained and it is shown in Figure 

4.5. 

 

 

 

 

Figure 4.5 The driving point FRF at the tip of beam 1 in transverse direction 

 

 

 

As seen from Figure 4.5, fundamental natural frequency of the structure in transverse 

direction is approximately 41 Hz. After finding the approximate linear fundamental 

natural frequency of the structure, T-beam is excited at around that frequency with a 

pure sine signal at a number of different forcing levels in order order to apply PRD 

method. Firstly the structure is excited at a low forcing level and then at a number of 

high forcing levels. The main advantage of PRD method is that, in order to apply the 

method, vibration controller is not necessary as in the cases of constant forcing or 

constant amplitude testing over a certain frequency range.  

 



69 

 

In order to demonstrate the effect of using different frequencies of excitation on the 

performance of PRD method, six different excitation frequencies (39 Hz, 39.5 Hz, 40 

Hz, 40.5 Hz, 41 Hz and 41.5 Hz) are used. By applying PRD method that uses each 

of these frequencies, nonlinearities in the structure are obtained in the form of 

describing functions. 

 

4.1.2.1 Application of PRD Method at 39 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 39 Hz by applying PRD method. Curve fitting is performed for the 

calculated real and imaginary pats of describing function and the fitted curves are 

shown in Figure 4.6. 

 

 

 

 
      (a)                                                     (b) 

Figure 4.6 Calculated describing function (a) Real part (b) Imaginary part 

 

 

 

For the real part and imaginary part of describing function, 2
nd

 order and 4
th

 order 

polynomial functions are fit, respectively. Corresponding coefficients of the 

polynomial functions are given in Table 4.2.  
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Table 4.2 Coefficients of the polynomials fit to the data for real and imaginary parts 

of the describing function

 

 

p4 p3 p2 p1 p0 

Real Part of 

Describing Function  
2

2 1 0p x p x p    --- --- 1.56x10
9
 -2.48 x10

6
 -190 

Imaginary Part of 

Describing Function
4 3 2

4 3 2 1 0p x p x p x p x p     -2.7x10
14

 1.1x10
12

 -1.49x10
9
 8.0 x10

5
 -109 

 

4.1.2.2 Application of PRD Method at 39.5 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 39.5 Hz by applying PRD method. Curve fitting is performed for 

the calculated real and imaginary pats of describing function and the fitted curves are 

shown in Figure 4.7. 

 

 

 

 
      (a)                                                      (b) 

Figure 4.7 Calculated describing function (a) Real part (b) Imaginary part 
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For the real part and imaginary part of describing function, 2
nd

 order and 4
th

 order 

polynomial functions are fit, respectively. Corresponding coefficients of the 

polynomial functions are given in Table 4.3.  

 

Table 4.3 Coefficients of the polynomials fit to the data for real and imaginary parts 

of the describing function

 

 

p4 p3 p2 p1 p0 

Real Part of 

Describing Function  
2

2 1 0p x p x p    --- --- 1.54x10
9
 -2.45 x10

6
 -190 

Imaginary Part of 

Describing Function 
4 3 2

4 3 2 1 0p x p x p x p x p     -2.7x10
14

 1.1x10
12

 -1.51x10
9
 8.1 x10

5
 -111 

 

4.1.2.3 Application of PRD Method at 40 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 40 Hz by applying PRD method. Curve fitting is performed for the 

calculated real and imaginary pats of describing function and the fitted curves are 

shown in Figure 4.8. 

 

 

 

 
     (a)                                                      (b) 

Figure 4.8 Calculated describing function (a) Real part (b) Imaginary part 
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For the real part and imaginary part of describing function, 2
nd

 order and 3
rd

 order 

polynomial functions are fit, respectively. Corresponding coefficients of the 

polynomial functions are given in Table 4.4.  

 

Table 4.4 Coefficients of the polynomials fit to the data for real and imaginary part 

of the describing function 

 

p3 p2 p1 p0 

Real Part of Describing Function  
2

2 1 0p x p x p    --- 1.59x10
9 -2.49x10

6 -181 
Imaginary Part of Describing 

Function 
3 2

3 2 1 0p x p x p x p    -6.0x10
10 2.15x10

8 -1.52x10
5 -36 

 

4.1.2.4 Application of PRD Method at 40.5 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 40.5 Hz by applying PRD method. Curve fitting is performed for 

the calculated real and imaginary pats of describing function and the fitted curves are 

shown in Figure 4.9. 

 

 

 

 

     (a)                                              (b) 

Figure 4.9 Calculated describing function (a) Real part (b) Imaginary part 



73 

 

For the real part and imaginary part of describing function, 2
nd

 order and 3
rd

 order 

polynomial functions are fit, respectively. Corresponding coefficients of the 

polynomial functions are given in Table 4.5.  

 

Table 4.5 Coefficients of the polynomials fit to the data for real and imaginary part 

of the describing function 

 

p3 p2 p1 p0 

Real Part of Describing Function  
2

2 1 0p x p x p    --- 1.56x10
9 -2.46x10

6 -188 
Imaginary Part of Describing 

Function 
3 2

3 2 1 0p x p x p x p    -6.4x10
10 2.26x10

8 -1.63x10
5 -35 

 

4.1.2.5 Application of PRD Method at 41 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 41 Hz by applying PRD method. Curve fitting is performed for the 

calculated real and imaginary pats of describing function and the fitted curves are 

shown in Figure 4.10. 

 

 

 

 
     (a)                                               (b) 

Figure 4.10 Calculated describing function (a) Real part (b) Imaginary part 
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For the real part and imaginary part of describing function, 2
nd

 order and 3
rd

 order 

polynomial functions are fit, respectively. Corresponding coefficients of the 

polynomial functions are given in Table 4.6.  

 

Table 4.6 Coefficients of the polynomials fit to the data for real and imaginary part 

of the describing function 

 

p3 p2 p1 p0 

Real Part of Describing Function  
2

2 1 0p x p x p    --- 1.58x10
9 -2.62x10

6 -191 
Imaginary Part of Describing 

Function 
3 2

3 2 1 0p x p x p x p    -2.38x10
10 9.0x10

8 -9.32x10
5 264 

 

4.1.2.6 Application of PRD Method at 41.5 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 41.5 Hz by applying PRD method. Curve fitting is performed for 

the calculated real and imaginary pats of describing function and the fitted curves are 

shown in Figure 4.11. 

 

 

 

 
    (a)                                                  (b) 

Figure 4.11 Calculated describing function (a) Real part (b) Imaginary part 
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For the real part and imaginary part of describing function, 2
nd

 order and 3
rd

 order 

polynomial functions are fit, respectively. Corresponding coefficients of the 

polynomial functions are given in Table 4.7.  

 

Table 4.7 Coefficients of the polynomials fit to the data for real and imaginary part 

of the describing function 

 

p3 p2 p1 p0 

Real Part of Describing Function  
2

2 1 0p x p x p    --- 1.54x10
9 -2.56x10

6 -190 
Imaginary Part of Describing 

Function 
3 2

3 2 1 0p x p x p x p    -2.32x10
10 8.8x10

8 -9.11x10
5 259 

 

If the coefficients for the real part of describing functions obtained using the 

measurements at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz are compared, 

we can see that estimated coefficients are very similar. However, when we compare 

the imaginary parts of describing functions obtained by using the measurements at 39 

Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5, it is observed that there are 

considerable differences between the functions. 

 

Final test in the first set of experiments is the measurement of frequency responses 

between 37 Hz and 47 Hz at a number of constant forcing levels. In the experiments 

stepped sine signal is used. In the frequency range of interest, the resolution of the 

frequency is set as 0.25 Hz. However, in order to perform constant force vibration 

testing over the desired frequency range, it is necessary to control the force level. 

Since there is no automatic controller in the experiments, for every frequency point 

this control is maintained manually by checking the measured force and adjusting 

voltage signal generated by the signal generator. The flow chart defining the test 

procedure is given in Figure 4.12. Measured FRFs for F=0.05N are also shown in 

Figure 4.13. 
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Figure 4.12 Experimental procedure followed in constant force vibration test

  

 

 

 

Figure 4.13 Measured FRF at F=0.05N 

 



77 

 

As seen from Figure 4.13, the FRF curve measured at F=0.05N looks like a linear 

FRF curve, as expected. However, as it will be shown later that, even though the 

forcing level used in the experiment is very low, the measured FRF curve is different 

from the linear FRF curve of the system. 

 

4.1.3 Second Set of Experiments 

 

Main purpose of the second set of experiments is to obtain measured nonlinear FRFs 

that will be used for the verification of PRD method and of the proposed model 

updating approach.  

 

Stepped sine testing is used with a frequency resolution of 0.25 Hz at constant force 

levels. Similarly, for every frequency point force control is maintained manually by 

checking the measured force and adjusting voltage signal generated by the signal 

generator. In the experiments, 3 different forcing levels (F=0.6N, F=0.7N, F=0.8N) 

are used. The corresponding FRFs for F=0.6N, F=0.7N, F=0.8N are shown in Figure 

4.14. 

 

 

 

 

Figure 4.14 Measured FRFs at F=0.6N, F=0.7N, F=0.8N 
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4.1.4 Application of PRD Method for Obtaining Linear FRFs 

 

In this section, PRD method is used in order to predict the linear FRF of the structure 

by using the measured FRF values at F=0.05N and the describing functions obtained 

in Section 4.1.2. Since, different describing functions are obtained for each of six 

different excitation frequencies, in order to investigate the effects of excitation 

frequency on the performance of the PRD method; six separate linear FRF curves are 

predicted. Each FRF curves predicted by using the describing functions obtained 

from experiments made at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz are 

compared with the measured FRFs at F=0.05N in Figure 4.15, and with each other in 

Figure 4.16 at the first mode.  

 

 

 

 
   (a)                                     (b)             (c) 

 
  (d)                                     (e)             (f) 

Figure 4.15 Comparison of measured FRF at F=0.05N and predicted linear FRFs by 

using PRD method using experiments conducted at (a) 39 Hz (b) 39.5 Hz (c) 40 Hz 

(d) 40.5 Hz (e) 41 Hz (f) 41.5 Hz 
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Figure 4.16 Comparison of predicted linear FRFs by using PRD method using 

experiments conducted at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz 

 

 

 

It is seen from Figure 4.15 that, the linear FRF curves of the system that are 

predicted by applying the PRD method proposed, are not accurately represented by 

the FRF curve measured at low forcing level (F = 0.05N). As it was shown in 

Chapter 3 that PRD method yields the FRFs of the underlying linear system in a 

nonlinear system accurately, it can be concluded that even a very low forcing level is 

used in the experiments, the FRFs of the underlying linear system cannot be 

accurately represented by the FRFs measured at low forcing levels. Furthermore, as 

seen from Figure 4.16 that linear FRFs obtained using the describing functions 

identified from the tests made at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz 

do not differ much from each other, even though identified imaginary parts of the 

describing functions from these tests are rather different from each other.  
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4.1.5 Model Updating of the Test System and Verification of the Updated 

Model 

 

In this section, firstly the structure is modelled in ANSYS and the linear FE model of 

the structure is built. Then this linear FE model of the test structure is updated by 

using the obtained linear FRFs employing first the PRD and then the inverse 

eigensensitivity method. Once the updated linear FE model is built then it is possible 

to have the updated nonlinear model of the test system. Therefore by combining 

updated linear FE model and the identified nonlinearity, updated nonlinear model of 

the test structure is constructed. As a final step, in order to show the accuracy of the 

updated nonlinear model, FRFs of the test structure calculated by using the updated 

nonlinear model are compared with the measured nonlinear FRFs at different forcing 

levels. 

 

In Figure 4.17, the FE model of the test structure built in ANSYS is shown. Material 

properties used in the analysis of the initial FE model are also given in Table 4.8. 

 

 

 

 

Figure 4.17 FE model of the test structure 
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Table 4.8 Material properties used in the initial FE model 

  
Modulus of 

Elasticity (E) (GPa)   

Poisson’s 

Ratio () 

Density () 

(kg/m
3
) 

Beam1 210  0.3 7850 

Beam2 210  0.3 7850 

 

By performing modal analysis in ANSYS, the first natural frequency and the driving 

point FRF at the tip of beam 1 in Z (transverse) direction are calculated for the initial 

FE model of the structure. In ANSYS, sufficient number of modes (100) is used to 

calculate FRFs, in order to minimize truncation error. Comparisons of the linear 

FRFs obtained from FE analysis with those obtained from experiments by using PRD 

method are shown in Figure 4.18.  

 

 

 

 

Figure 4.18 Comparison of the linear FRFs obtained from initial FE model with 

those obtained by using PRD method 

 

 

 

In Table 4.9, the natural frequency obtained from FE analysis is also compared with 

the one obtained from experiments.  
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Table 4.9 Comparison of the first natural frequency obtained from initial FE model 

with the experimental value obtained by using PRD method 

Mode 

Number 

Natural Frequency 

(PRD Method) 

(Hz) 

Natural Frequency 

(Initial FE Model) 

(Hz) 

Error (%) 

1 40.75 46.48 14.06 

 

As can be observed from Table 4.9 and Figure 4.18, the results are considerably 

different; therefore it is necessary to update the FE model of the structure. Since 

generally modulus of elasticity (E) of the materials has considerable uncertainties the 

modulus of elasticity is selected as an updating parameter in the FE model. For the 

selected parameter, element of the sensitivity matrix is calculated by using the 

following central difference approximation with O(h
4
), at each iteration step.  

 

' 2 1 1 2( ) 8 ( ) 8 ( ) ( )
( )

12

i i i i
i

r p r p r p r p
r p

h

      



  (4.1) 

 

In Equation (4.1), h  is the step size used. After 5 iterations, updating parameter is 

converged to 161.5 GPa. The convergence graph of this parameter is given in Figure 

4.19. 

 

 

 

 

Figure 4.19 Convergence of the modulus of elasticity of the beams 
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Using the converged value for the modulus of elasticity, the FE model is updated. 

Performing modal analysis in ANSYS for the updated FE model of the structure, the 

first natural frequency of the updated linear model is calculated. The comparisons of 

the first natural frequency obtained from updated model with that of initial FE 

model, as well as with the natural frequency obtained from experiments by using 

PRD method are given in Table 4.10.   

 

Table 4.10 Comparison of the first natural frequency obtained from initial and 

updated FE models with experimental value obtained by using PRD method 

Mode 

Number 

Natural 

Frequency 

(PRD Method) 

(Hz) 

Natural 

Frequency 

(Initial FE 

Model) (Hz) 

Error 

(%) 

Natural 

Frequency 

(Updated FE 

Model) (Hz) 

Error 

(%) 

1 40.75 46.48 14.06 40.75 0.00 

 

As can be seen in Table 4.10 the first natural frequency is very accurately estimated 

by using the updated FE model.  

 

In order to see the performance of the updated FE model in the prediction of other 

natural frequencies which are not used in updating the FE model, the second natural 

frequency of the system is calculated by using the updated linear model and it is 

compared with that obtained from the initial FE model, as well as with the measured 

one (Table 4.11). 

 

Table 4.11 Comparison of the second natural frequency obtained from initial and 

updated FE models with experimental value obtained by using PRD method 

Mode 

Number 

Natural 

Frequency 

(Experimental) 

(Hz) 

Natural 

Frequency 

(Initial FE 

Model) (Hz) 

Error 

(%) 

Natural 

Frequency 

(Updated FE 

Model) (Hz) 

Error 

(%) 

2 177.75 198.05 11.42 173.63 -2.32 
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As can be seen in Table 4.11 , there is a considerable improvement in the calculated 

value of the second natural frequency. 

 

In Figure 4.20, the comparasion of the linear FRFs calculated from experimentally 

measured nonlinear FRFs by using PRD method with those obtained from the initial 

and updated FE models is given. It is observed from Figure 4.20 that, there is a 

considerable improvement when updated FE model is used. 

 

 

 

 

Figure 4.20 Comparison of the linear FRF obtained by using PRD method from 

experimentally measured values, with those calculated from, initial and updated FE 

models 

 

 

 

Since the ultimate goal is to predict nonlinear responses accurately from the updated 

model, for F=0.6N, F=0.7N and F=0.8N, experimentally measured nonlinear FRFs 

are compared with those obtained from the initial and updated models (composed of 

original and updated FE models, respectively, combined with identified 

nonlinearity). The results obtained are shown in Figure 4.21. It is seen from Figure 
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4.21 that, considerable improvements are obtained for the FRFs calculated with the 

updated model for all forcing levels. 

 

 

 

   
                         (a)                                        (b)                                       (c)                                                           

Figure 4.21 Comparison of FRFs obtained from initial and updated models with the 

experimental ones for (a) F=0.6N (b) F=0.7N (c) F=0.8N 

 

 

 

4.1.6 Investigation of Effect of Finite Difference Formula Used for Sensitivity 

Calculation on the Model Updating Performance 

 

As mentioned in the theory part, in the inverse eigensensitivity method, m

n

p

rS  

(element of a Modal sensitivity matrix  S ) which stands for the sensitivity of the n
th

 

response to the m
th

 updating parameter is mathematically obtained by calculating the  

partial differential of the n
th

 response to the m
th

 updating parameter. In this section, in 

order to calculate the sensitivities, different numerical differentiation formulas are 

used, and the effect of using different finite difference formulas on the model 

updating performance is investigated.  
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In this analysis, the same initial FE model of the T-beam test structure is used. The 

FE model of the test structure is shown in Figure 4.17, and the material properties 

used in the initial FE model are given in Table 4.8. 

 

In the model updating of the FE model, four different finite difference formulas are 

used in turn, in order to calculate numerical differentiation and approximate the 

sensitivities. Numerical differentiation formulas used in the analysis are given below. 

 

1. Central difference formula with error order of O(h
4
) :  

 

 
' 2 1 1 2( ) 8 ( ) 8 ( ) ( )
( )

12

i i i i
i

r p r p r p r p
r p

h

      



  (4.2) 

 

2. Central difference formula with error order of O(h
2
) : 

 

 
' 1 1( ) ( )
( )

2

i i
i

r p r p
r p

h

 



  (4.3) 

 

3. Backward difference formula with error order of O(h) : 

 

 
' 1( ) ( )
( ) i i

i

r p r p
r p

h





  (4.4) 

 

4. Forward difference formula with error order of O(h) : 

 

 
' 1( ) ( )
( ) i i

i

r p r p
r p

h

 



  (4.5) 

 

where h  is the step size used for the parameter in the analysis. 

 



87 

 

Since most of the uncertainty is generally in the modulus of elasticity (E) of the 

materials, again, the modulus of elasticity is selected as an updating parameter in FE 

model. For the selected parameter, element of the sensitivity matrix is calculated 

using each of the finite difference formula at each iteration step. For all of the cases, 

after 5 iterations, updating parameter is converged to 161.5 GPa. The convergence 

graphs of this parameter by using the numerical differentiation with central 

difference formula with error order of O(h
4
), central difference formula with error 

order of O(h
2
), backward difference formula with error order of O(h) and forward 

difference formula with error order of O(h),  are given in Figure 4.22, Figure 4.23, 

Figure 4.24 and Figure 4.25, respectively. 

                

 

 

 

Figure 4.22 Convergence of the modulus of elasticity of the beams, for the 

numerical differentiation with central difference formula with error order of O(h
4
) 
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Figure 4.23 Convergence of the modulus of elasticity of the beams for the numerical 

differentiation central difference formula with error order of O(h
2
) 

 

 

 

 

Figure 4.24 Convergence of the modulus of elasticity of the beams for the numerical 

differentiation with backward difference formula with error order of O(h)  
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Figure 4.25 Convergence of the modulus of elasticity of the beams for the numerical 

differentiation with forward difference formula with error order of O(h) 

 

 

 

For the calculation of the sensitivities, the number of FE analysis that needs to be run 

is different for each of the finite difference formula. Therefore, the total computation 

time that is used in the model updating procedure is compared for each of the finite 

difference formula. The results are given in Table 4.12. 

 

Table 4.12 Computation time comparison of the different finite difference formulas 

Finite Difference Formula 

# of FE 

Analysis 

Performed 

# of 

Iteration 

Performed 

Computation 

Time (s) 

Central difference formula with 

error order of O(h
4
) 

21 5 640.5 

Central difference formula with 

error order of O(h
2
) 

13 5 396.5 

Backward difference formula with 

error order of O(h) 

10 5 305 

Forward difference formula with 

error order of O(h) 

10 5 305 
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As seen from Table 4.12, although  the number of iteration is same for all the cases, 

total computation time is much larger for updating procedure that uses central 

difference formula with error order of O(h
4
), due to the number of FE analysis that 

needs to be done at each iteration step. Also, updating procedure that uses first order 

forward and backward difference formula has the smallest computation time.  Based 

on these results, it is recommended that in updating of FE models forward or 

backward difference formula should be used in order to reduce computational effort 

which is consistent with the recommendations given in [84]. 

 

4.2 Experimental Study 2-Model Updating for Three Modes 

 

In this section, the approach suggested for model updating of a nonlinear system is 

applied again on the nonlinear experimental T-beam test system given in Section 4.1. 

The main difference of the study in this section from the study given in Section 4.1 is 

that, the first three global modes of the T-beam are considered in the model updating 

in this section. First, using identified nonlinearities obtained by the PRD method in 

the previous test, linear FRFs are obtained from experimentally measured nonlinear 

FRFs for the first, second and third global modes of the test system. Then, linear FE 

model of the test system is built in ANSYS and the linear FE model of the test 

structure is updated for the first three global modes of the structure by using the 

extracted linear FRFs employing the PRD method and then using ANSYS Design 

Exploration Optimization. Combining the updated linear FE model and the identified 

nonlinearity, updated nonlinear model of the test structure is obtained. Finally, in 

order to show the accuracy of the updated nonlinear model of the system, for 

different forcing levels, FRFs calculated using the updated nonlinear model are 

compared with the measured FRFs of the test structure. 
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4.2.1 First Set of Experiments 

 

In the first set of experiments, the structure is excited with a random input force. In 

random excitation, low excitation signal level is selected. The measurements are 

performed in the frequency range of 0-300 Hz and frequency resolution is 0.25 Hz. 

In order to minimize the noise in the experiment, 130 averages are taken. By using 

the force and acceleration measurements, driving point FRFs at the tip of beam 1 in 

transverse direction are obtained and they are shown in Figure 4.26. 

 

 

 

 

Figure 4.26 The measured driving point FRF at the tip of beam 1 in transverse 

direction (random excitation) 

 

 

 

It is observed from the results, that first three natural frequency of the global modes 

of the structure is in between 0-300 Hz. It will be shown in Section 4.2.4.1 that, a 

local mode exists in between the second and third global mode of system. Therefore 

this local mode is not considered in the next set of experiments. 
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As a final test in this set of experiments, a constant low forcing level excitation 

experiment is performed between 175 Hz and 181 Hz (around the second natural 

frequency) and between 257 Hz and 267 Hz (around the third natural frequency).  

Stepped sine constant force test is performed for the given test set-up. In the 

frequency range of interest, the resolution of the frequency is set as 0.25 Hz. 

However, in order to perform constant force vibration testing over the desired 

frequency range, it is necessary to control the force level. Since there is no automatic 

controller in the experiments, for every frequency point this control is maintained 

manually by checking the measured force and adjusting voltage signal generated by 

the signal generator. In Figure 4.27 and Figure 4.28, measured FRFs at F=0.05N are 

shown for the second and third modes, respectively. 

 

 

 

 

Figure 4.27 Measured FRF at F=0.05N 
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Figure 4.28 Measured FRF at F=0.05N 

 

 

 

It is observed from the Figure 4.27 and Figure 4.28 that, the FRFs measured at 

F=0.05N seem like a linear FRF. 

 

4.2.2 Second Set of Experiments 

 

Main purpose of the second set of experiments is to obtain the measurement data that 

will be used for the verification of PRD method and the proposed model updating 

approach. Stepped sine testing is performed with a frequency resolution of 0.25 Hz at 

constant force levels. Similarly, for every frequency point force control is maintained 

manually by checking the measured force and adjusting voltage signal generated by 

the signal generator. In the experiments, 3 different forcing levels (F=0.6N, F=0.7N, 

F=0.8N) are used. The measured FRFs are shown in Figure 4.29 and Figure 4.30 for 

the second and third modes of the structure, respectively. 
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Figure 4.29 Measured FRF at F=0.6N, F=0.7N, F=0.8N 

 

 

 

 

Figure 4.30 Measured FRF at F=0.6N, F=0.7N, F=0.8N 

 

 

 

From Figure 4.29 and Figure 4.30, it is observed that measured FRFs are very similar 

to each other. In order to compare these FRFs with the FRFs measured at F=0.05N, 

these FRFs are also plotted in the same graph with the FRFs measured at F=0.05N 

and they are shown in Figure 4.31 and Figure 4.32 for the second and third modes of 

the structure, respectively. 
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Figure 4.31 Measured FRF at F=0.05N, F=0.6N, F=0.7N, F=0.8N 

 

 

 

 

Figure 4.32 Measured FRF at F=0.05N, F=0.6N, F=0.7N, F=0.8N 

 

 

 

From Figure 4.31 and Figure 4.32, it is observed that, the FRFs are very similar at 

low and high forcing levels, which indicates that nonlinearity in the structure does 

not affect these modes significantly. 
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4.2.3 Application of PRD Method for Obtaining Linear FRFs 

 

In this section, PRD method is used in order to predict the linear FRF of the structure 

by using the measured FRF values at F=0.05N and the describing function values 

obtained in Section 4.1.2. Since, different describing function values are obtained for 

each of six different excitation frequencies, in order to investigate the effects of 

excitation frequency on the performance of the PRD method; six separate linear FRF 

curves are predicted. FRF curves predicted by using the describing functions 

obtained from experiments made at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 

Hz are compared with the measured FRFs at F=0.05N in Figure 4.33, as well as with 

each other (Figure 4.34) for the second natural frequency. Similar comparisons are 

shown in Figure 4.35 and Figure 4.36 for the third natural frequency. Since similar 

comparisons were also given in Section 4.1.4 for the first natural frequency, they are 

not given here again. 

 

 

 

 

                   (a)                                       (b)                  (c) 

 
                          (d)                                       (e)         (f) 

Figure 4.33 Comparison of measured FRF at F=0.05N and predicted linear FRFs by 

using PRD method using experiments conducted at (a) 39 Hz (b) 39.5 Hz (c) 40 Hz  

(d) 40.5 Hz (e) 41 Hz (f) 41.5 Hz 
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Figure 4.34 Comparison of predicted linear FRFs by using PRD method using 

experiments conducted at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz 

 

 

 

 

                   (a)                                      (b)                  (c) 

 
                         (d)                                      (e)       (f) 

Figure 4.35 Comparison of measured FRF at F=0.05N and predicted linear FRFs by 

using PRD method using experiments conducted at (a) 39 Hz (b) 39.5 Hz (c) 40 Hz  

(d) 40.5 Hz (e) 41 Hz (f) 41.5 Hz 
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Figure 4.36 Comparison of predicted linear FRFs by using PRD method using 

experiments conducted at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz 

 

 

 

As can be seen from Figure 4.33 and Figure 4.35, linear FRFs obtained by using the 

PRD method is very close to the FRFs measured at low forcing level (F=0.05N) for 

the second and third modes of the structure. Also it is observed from Figure 4.34 and 

Figure 4.36 that linear FRFs obtained using the describing functions identified from 

the tests made at six different frequencies are very close to each other. These 

observations indicate that nonlinearity in the structure does not affect the second and 

third modes significantly. 

 

4.2.4 Model Updating of the Test System and Verification of the Updated 

Model 

 

In this section, linear FE model of the test system is built in ANSYS and then the 

linear FE model is updated by employing the approach proposed. Before the 

construction of the initial FE model, mesh sensitivity analysis is performed for the 
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linear FE model of the structure. Then, the linear FE model of the test structure is 

updated by using the extracted linear FRFs employing the PRD method and then 

using ANSYS Design Exploration Optimization.  

 

In the updating of the FE model, different updating parameter sets are used and for 

these updating parameters, different candidates for the updated FE model are 

obtained by using ANSYS. Measured and predicted FRFs for all the updated linear 

FE models are compared to each other and the performance of the updated models 

are investigated. Using the identified nonlinearity and updated linear FE models, 

updated nonlinear models of the test structure are constructed. Finally, predicted and 

measured FRFs of the test structure are compared at different forcing levels in order 

to show the accuracy of the updated nonlinear models of the system.  

 

4.2.4.1 Mesh Sensitivity Analysis for the FE Model of the Structure 

 

In this section before the construction of the initial FE model in ANSYS, mesh 

sensitivity analysis is performed in order to see the effect of the mesh sizing on the 

estimation of the first three natural frequencies of the global modes of the structure.  

FE model of the test structure used in the mesh sensitivity analysis is same as the one 

used in Section 4.1.5. In the mesh sensitivity analysis, firstly an initial modal analysis 

is performed in order to find the first three global modes of the system. The results 

are shown in Figure 4.37. 
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Figure 4.37 The modeshapes of the T-beam structure 

 

 

 

It is observed from Figure 4.37 that, the first three global modes of the system are the 

first, second and sixth modes of structure calculated by ANSYS. Third, fourth and 

fifth modes are local modes of the thin beam (beam 2) since beam 1 does not move 

in these modes. 

 

After finding the first three global modes of the structure, several modal analyses are 

performed in ANSYS and for each of the cases, the first three natural frequencies of 

the global modes of the structure are obtained. Parameters of the sizing of the mesh 

are organized according to the Table 4.13.  
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Table 4.13 Parameters of the sizing of the mesh 

h1/H w1/W w2/W l1/L & l2/L 

6 6 6 40-210 

7 7 7 40-210 

8 8 8 40-210 

9 9 9 40-210 

10 10 10 40-210 

 

In Table 4.13, h1, w1, w2, l1, l2 are the height of the beam 1, width of beam 1, width 

of beam 2, length of beam 1 and length of beam 2, respectively. H, W, and L are the 

height, width and length of the mesh element. In the analysis, SOLID 186 element is 

used. The variation of the first natural frequency with respect to mesh sizing 

parameters is shown in Figure 4.38, Figure 4.39 and Figure 4.40. 

 

 

 

 

Figure 4.38 Variation of the first natural frequency with respect to mesh sizing  
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Figure 4.39 Variation of the first natural frequency with respect to mesh sizing  

 

 

 

 

Figure 4.40 Variation of the first natural frequency with respect to mesh sizing  

 

 

 

As seen from Figure 4.38, Figure 4.39 and Figure 4.40, the first natural frequency is 

converged approximately to 46.4 Hz after l1/L and l2/L reach to approximately 60-80 

range. Similarly, the variation of the second natural frequency with respect to mesh 

sizing parameters is shown in Figure 4.41, Figure 4.42 and Figure 4.43. 
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Figure 4.41 Variation of the second natural frequency with respect to mesh sizing  

 

 

 

 

Figure 4.42 Variation of the second natural frequency with respect to mesh sizing  
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Figure 4.43 Variation of the second natural frequency with respect to mesh sizing  

 

 

 

As seen from Figure 4.41, Figure 4.42 and Figure 4.43, the second natural frequency 

is converged to the frequency band of 197-197.5 Hz, after l1/L and l2/L reach to 

approximately 60-80 range. Finally, the variation of the third natural frequency with 

respect to mesh sizing parameters is shown in Figure 4.44, Figure 4.45 and Figure 

4.46. 

 

 

 

 

Figure 4.44 Variation of the third natural frequency with respect to mesh sizing  
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Figure 4.45 Variation of the third natural frequency with respect to mesh sizing  

 

 

 

 

Figure 4.46 Variation of the third natural frequency with respect to mesh sizing  

 

 

 

As seen from Figure 4.44, Figure 4.45 and Figure 4.46, the third natural frequency is 

converged to the frequency band of 280-282 Hz, after l1/L and l2/L reach to 

approximately 60-80 range. From these observations, l1/L and l2/L values are kept 
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approximately in 60-80 range in the mesh sizing of the FE model used in the further 

analysis. 

 

4.2.4.2 Model Updating of the Test System 

 

In this section, by using the observations made from mesh sensitivity analysis, initial 

linear FE model of the test system is built in ANSYS and then the linear FE model is 

updated by using the measured nonlinear FRFs and employing the approach 

proposed. The linear FE model of the test structure is updated by using the calculated 

linear FRFs employing first the PRD method and then by using the ANSYS Design 

Exploration Optimization. In the updating of the FE model, different updating 

parameter sets are used. For these updating parameter sets, different candidates for 

the updated FE model are obtained by using ANSYS.  

 

In order to investigate the performance of the updated linear FE models, measured 

and predicted linear FRFs are compared for all updated FE models. Using the 

identified nonlinearity and updated FE models, updated nonlinear mathematical 

models of the test structure are built. Finally, in order to demonstrate the accuracy of 

the updated nonlinear models of the system, for all the updated nonlinear 

mathematical models, predicted FRFs of the test structure are compared with the 

measured FRFs at different forcing levels. 

 

Initial FE model of the test structure is shown in Figure 4.47 and the material 

properties used for the beams in the initial FE model are the same as the ones used in 

Section 4.1.5 (Table 4.8). 
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Figure 4.47 FE model of the test structure 

 

 

 

In the initial FE model, in order to minimize the modeling errors, accelerometer and 

force transducer used in the experiments are modeled as rigid masses. Since they are 

modeled as rigid, modulus of elasticity for the accelerometer and force transducer are 

taken 10 times larger than the modulus of elasticity of the beams. Mass values are 

obtained from the datasheet of the accelerometer and force transducer. These values 

are given in Table 4.14. 

 

Table 4.14 Mass of the accelerometer and force transducer

 Transducer Type Mass (gr) 

Force Transducer Brüel&Kjaer  Type 8230-002 30.2 

Accelerometer Brüel&Kjaer  Type 4507B 4.8 

 

The first three natural frequency of the global modes of the structure and the driving 

point FRFs at the tip of beam 1 in Z (transverse) direction are calculated by 

performing modal analysis in ANSYS. Comparisons of the natural frequencies 

obtained from FE analysis with those obtained from experiments by using PRD 

method are given in Table 4.15. Linear FRFs obtained from measured nonlinear 
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FRFs by using PRD method are compared with linear FRFs obtained from FE 

analysis. This comparison is shown in Figure 4.48. 

 

Table 4.15 Comparison of the first three natural frequencies obtained from initial FE 

model with those obtained from measured nonlinear FRFs by using PRD method 

Mode 

Number 

Natural Frequency 

(PRD Method) (Hz) 

Natural Frequency 

(Initial FE Model) (Hz) 

Error 

(%) 

1 40.75 41.4 1.595 

2 178 193.3 8.596 

3 260.5 266.0 2.115 
 

 

 

 
(a) 

 
                (b)                          (c) 

Figure 4.48 Comparison of the linear FRFs obtained from initial FE model with 

those obtained by using PRD method for the (a) first mode (b) second mode (c) third 

mode 
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As can be seen in Table 4.15 and Figure 4.48, there are considerable discrepancies 

between the results; therefore it is necessary to update the FE model of the test 

structure.  

 

As an updating parameter set, two sets of parameters are selected. In the first set, 

modulus of elasticity (E), height of beam 1 (h1), height of beam 2 (h2) are selected 

as updating parameters, in the second set, modulus of elasticity (E), height of beam 2 

(h2), width of beam 1 (w1) are selected as updating parameters. Since most of the 

uncertainty is generally in modulus of elasticity of the materials, this parameter exists 

in both of the parameter sets. Furthermore variation in the height of beam (h2) has a 

considerable effect on the natural frequencies; this parameter also exists in both of 

the parameter sets. Using these parameter sets, FE model of the structure is updated 

by employing ANSYS Design Exploration Optimization.  

 

Based on manufacturing tolerances and variation of modulus of elasticity of St37, the 

bounds given Table 4.16 are defined for the parameters used in the analysis. 

 

Table 4.16 Bounds for the updating parameters

 

  

Modulus of 

Elasticity (E) 

(GPa)   

h2 

(mm) 

h1 

(mm) 

w1 

(mm) 

Lower Bound 185 1.35 7.7 11.7 

Upper Bound 210 1.65 8.3 12.3 

 

For those parameter sets, 5 different updated FE model candidates are calculated by 

ANSYS.   

 

 

4.2.4.2.1 Updated FE Model 1 

 

For the updated FE model 1, the updating parameters are calculated as given in Table 

4.17. 
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Table 4.17 Updating parameters for updated FE model 1

 Modulus of 

Elasticity (E) 

(GPa)   

h2 

(mm) 

h1 

(mm) 

189.4 1.600 7.727 

 

Using these parameter values, the first three natural frequencies of the updated linear 

model are calculated. The comparisons of the results with those of initial FE model, 

as well as with the natural frequencies obtained from experiments by using PRD 

method are given in Table 4.18. 

 

Table 4.18 Comparison of the first three natural frequencies obtained from initial 

and updated FE models with experimental values obtained by using PRD method

 

Mode 

Number 

Natural 

Frequency (PRD 

Method) (Hz) 

Natural 

Frequency 

(Initial FE 

Model) 

(Hz) 

Error 

(%) 

Natural 

Frequency 

(Updated FE 

Model 1) (Hz) 

Error 

(%) 

1 40.75 41.4 1.595 40.76 0.025 

2 178 193.3 8.596 178.69 0.389 

3 260.5 266.0 2.115 268.07 2.907 

 

As can be seen in Table 4.18, the first and second natural frequencies are very 

accurately estimated by using the updated FE model. However for the third natural 

frequency, updated model gave poor results.  

 

In Figure 4.49, the linear FRFs calculated from experimentally measured nonlinear 

FRFs by using PRD method are compared with those obtained from initial and 

updated FE models. As can be seen in Figure 4.49, there is a considerable 

improvement for the first and second modes of the structure when updated FE model 

is used. 
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(a) 

 
                (b)                           (c) 

Figure 4.49 Comparison of the linear FRFs obtained from experimentally measured 

values by using PRD method, with those calculated from initial and updated FE 

models for (a) first mode (b) second mode (c) third mode 

 

 

 

4.2.4.2.2 Updated FE Model 2 

 

For the updated FE model 2, the updating parameters are calculated as given in Table 

4.19. 

 

Table 4.19 Updating parameters for updated FE model 2

 Modulus of 

Elasticity (E) 

(GPa)   

h2 

(mm) 

h1 

(mm) 

186.9 1.596 7.826 
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Using these parameter values, the first three natural frequencies of the updated linear 

model are calculated. The comparisons of the results with those of initial FE model, 

as well as with the natural frequencies obtained from experiments by using PRD 

method are given in Table 4.20. 

 

Table 4.20 Comparison of the first three natural frequencies obtained from initial 

and updated FE models with experimental values obtained by using PRD method

 

Mode 

Number 

Natural 

Frequency (PRD 

Method) (Hz) 

Natural 

Frequency 

(Initial FE 

Model) 

(Hz) 

Error 

(%) 

Natural 

Frequency 

(Updated FE 

Model 2) (Hz) 

Error 

(%) 

1 40.75 41.4 1.595 40.57 -0.434 

2 178 193.3 8.596 179.66 0.932 

3 260.5 266.0 2.115 265.70 1.996 

 

As can be seen in Table 4.20, there is a considerable improvement in the first and 

second natural frequencies and a slight improvement in the third natural frequency 

when the updated FE model is used.  

 

In Figure 4.50, the linear FRFs calculated from experimentally measured nonlinear 

FRFs by using PRD method are compared with those obtained from initial and 

updated FE models. As can be seen in Figure 4.50, considerable improvement is 

obtained for the first and second modes of the structure when updated FE model is 

used. However for the third mode, almost no improvement is obtained. 
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(a) 

 
                      (b)                         (c) 

Figure 4.50 Comparison of the linear FRFs obtained from experimentally measured 

values by using PRD method, with those calculated from initial and updated FE 

models for (a) first mode (b) second mode (c) third mode 

 

 

 

4.2.4.2.3 Updated FE Model 3 

 

For the updated FE model 3, the updating parameters are calculated as given in Table 

4.21. 

 

Table 4.21 Updating parameters for updated FE model 3

 Modulus of 

Elasticity (E) 

(GPa)   

h2 

(mm) 

h1 

(mm) 

193.6 1.559 7.726 
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Using these parameter values, the first three natural frequencies of the updated linear 

model are calculated. The comparisons of the results with those of initial FE model, 

as well as with the natural frequencies obtained from experiments by using PRD 

method are given in Table 4.22. 

 

Table 4.22 Comparison of the first three natural frequencies obtained from initial 

and updated FE models with experimental values obtained by using PRD method

 

Mode 

Number 

Natural 

Frequency (PRD 

Method) (Hz) 

Natural 

Frequency 

(Initial FE 

Model) 

(Hz) 

Error 

(%) 

Natural 

Frequency 

(Updated FE 

Model 3) (Hz) 

Error 

(%) 

1 40.75 41.4 1.595 40.39 -0.894 

2 178 193.3 8.596 180.32 1.304 

3 260.5 266.0 2.115 264.24 1.437 

 

As can be seen in Table 4.22, there is a considerable improvement in the second 

natural frequency. Also the error for the first natural frequency decreased to the half 

of its initial value. Furthermore a better estimate is obtained for the the third natural 

frequency when the updated FE model is used.  

 

In Figure 4.51, the linear FRFs calculated from experimentally measured nonlinear 

FRFs by using PRD method are compared with those obtained from initial and 

updated FE models. As can be seen in Figure 4.51, considerable improvement is 

obtained for the second mode of the structure when updated FE model is used. 

However, for the first and third modes, the improvement is less compared to the 

improvement in the second mode. 
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(a) 

 
                      (b)                         (c) 

Figure 4.51 Comparison of the linear FRFs obtained from experimentally measured 

values by using PRD method, with those calculated from initial and updated FE 

models for (a) first mode (b) second mode (c) third mode 

 

 

 

4.2.4.2.4 Updated FE Model 4 

 

For the updated FE model 4, the updating parameters are calculated as given in Table 

4.23. 

 

Table 4.23 Updating parameters for updated FE model 4

 Modulus of 

Elasticity (E) 

(GPa)   

h2 

(mm) 

w1 

(mm) 

185.3 1.594 11.868 
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Using these parameter values, the first three natural frequencies of the updated linear 

model are calculated. The comparisons of the results with those of initial FE model, 

as well as with the natural frequencies obtained from experiments by using PRD 

method are given in Table 4.24. 

 

Table 4.24 Comparison of the first three natural frequencies obtained from initial 

and updated FE models with experimental values obtained by using PRD method

 

Mode 

Number 

Natural 

Frequency (PRD 

Method) (Hz) 

Natural 

Frequency 

(Initial FE 

Model) 

(Hz) 

Error 

(%) 

Natural 

Frequency 

(Updated FE 

Model 4) (Hz) 

Error 

(%) 

1 40.75 41.4 1.595 40.64 -0.258 

2 178 193.3 8.596 182.60 2.582 

3 260.5 266.0 2.115 264.54 1.550 

 

As can be seen in Table 4.24, there is a considerable improvement in the first natural 

frequency. Also the error for the second natural frequency decreased considerably. 

Furthermore a better estimate is obtained for the the third natural frequency when the 

updated FE model is used. 

 

In Figure 4.52, the linear FRFs calculated from experimentally measured nonlinear 

FRFs by using PRD method are compared with those obtained from initial and 

updated FE models. As can be seen in Figure 4.52, considerable improvement is 

obtained for the first mode of the structure when updated FE model is used. 

However, for the second and third modes, the improvement is less compared to the 

improvement in the first mode. 
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(a) 

 
                     (b)                         (c) 

Figure 4.52 Comparison of the linear FRFs obtained from experimentally measured 

values by using PRD method, with those calculated from initial and updated FE 

models for (a) first mode (b) second mode (c) third mode 

 

 

 

4.2.4.2.5 Updated FE Model 5 

 

For the updated FE model 5, the updating parameters are calculated as given in Table 

4.25. 

 

Table 4.25 Updating parameters for updated FE model 5

 Modulus of 

Elasticity (E) 

(GPa)   

h2 

(mm) 

w1 

(mm) 

190.5 1.551 12.124 
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Using these parameter values, the first three natural frequencies of the updated linear 

model are calculated. The comparisons of the results with those of initial FE model, 

as well as with the natural frequencies obtained from experiments by using PRD 

method are given in Table 4.26. 

 

Table 4.26 Comparison of the first three natural frequencies obtained from initial 

and updated FE models with experimental values obtained by using PRD method

 

Mode 

Number 

Natural 

Frequency (PRD 

Method) (Hz) 

Natural 

Frequency 

(Initial FE 

Model) 

(Hz) 

Error 

(%) 

Natural 

Frequency 

(Updated FE 

Model 5) (Hz) 

Error 

(%) 

1 40.75 41.4 1.595 40.38 -0.914 

2 178 193.3 8.596 184.72 3.774 

3 260.5 266.0 2.115 261.26 0.293 

 

As can be seen in Table 4.26, there is a considerable improvement for the third 

natural frequency. However, improvement is less in the first and second natural 

frequencies when the updated FE model is used 

 

In Figure 4.53, the linear FRFs calculated from experimentally measured nonlinear 

FRFs by using PRD method are compared with those obtained from initial and 

updated FE models. As can be seen in Figure 4.53, considerable improvement is 

obtained for the third mode of the structure when updated FE model is used. 

However, for the first and second modes, the improvement is less compared to the 

improvement in the third mode. 
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(a) 

 
                       (b)                          (c) 

Figure 4.53 Comparison of the linear FRFs obtained from experimentally measured 

values by using PRD method, with those calculated from initial and updated FE 

models for (a) first mode (b) second mode (c) third mode 

 

 

 

4.2.4.2.6 Comparison of the Updated FE Models 

 

In this section, each of natural frequencies and FRFs obtained by the updated FE 

models are compared to each other as well as with those of initial FE model, and also 

with the ones obtained from measured nonlinear FRFs by using PRD method. 
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In Table 4.27, the first natural frequencies obtained from each updated linear model 

are compared with each other as well as with that of initial FE model. The natural 

frequency obtained from measured nonlinear FRFs by using PRD method are also 

given in the same table.  

 

Table 4.27 Comparison of the first natural frequency obtained from initial and 

updated FE models with experimental value obtained by using PRD method 

Natural 

Frequency 

(PRD  

Method) 

(Hz) 

Natural 

Frequency 

(Initial FE 

Model) 

(Hz) 

Error 

(%) 

Updated FE 

Models 

Natural 

Frequency  

(Hz) 

Error 

(%) 

40.75 41.4 1.595 

Updated FE 

model 1 
40.76 0.025 

Updated FE 

model 2 
40.57 -0.434 

Updated FE 

model 3 
40.39 -0.894 

Updated FE 

model 4 
40.64 -0.258 

Updated FE 

model 5 
40.38 -0.914 

 

As can be seen from Table 4.27, updated model 1 gives the best value and the 

updated model 5 gives the worst value for the first natural frequency. In Figure 4.54, 

the linear FRFs obtained by using PRD method from experimentally measured 

nonlinear FRFs are compared with those calculated from initial and updated FE 

models. 

 



121 

 

 

Figure 4.54 Comparison of the linear FRFs obtained from experimentally measured 

nonlinear FRFs by using PRD method, with those calculated from initial and updated 

FE models 

 

 

 

As can be seen from Figure 4.54, similar conclusions can be obtained for linear FRFs 

as well. That is, updated model 1 is the best as far as the linear FRF prediction is 

concerned. 

 

The second and third natural frequencies of the updated linear models are compared 

with each other as well as with those of the initial FE model. The second and third 

natural frequencies obtained from measured nonlinear FRFs by using PRD method 

are also given in Table 4.28 and Table 4.29, respectively. 
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Table 4.28  Comparison of the second natural frequency obtained from initial and 

updated FE models with experimental value obtained by using PRD method 

Natural 

Frequency 

(PRD 

Method) 

(Hz) 

Natural 

Frequency 

(Initial FE 

Model) 

(Hz) 

Error 

(%) 

Updated FE 

Models 

Natural 

Frequency  

(Hz) 

Error 

(%) 

178 193.3 8.596 

Updated FE 

model 1 
178.69 0.389 

Updated FE 

model 2 
179.66 0.932 

Updated FE 

model 3 
180.32 1.304 

Updated FE 

model 4 
182.60 2.582 

Updated FE 

model 5 
184.72 3.774 

 

Table 4.29  Comparison of the third natural frequency obtained from initial and 

updated FE models with experimental value obtained by using PRD method 

Natural 

Frequency 

(PRD 

Method) 

(Hz) 

Natural 

Frequency 

(Initial FE 

Model) 

(Hz) 

Error 

(%) 

Updated FE 

Models 

Natural 

Frequency  

(Hz) 

Error 

(%) 

260.5 266.0 2.115 

Updated FE 

model 1 
268.07 2.907 

Updated FE 

model 2 
265.70 1.996 

Updated FE 

model 3 
264.24 1.437 

Updated FE 

model 4 
264.54 1.550 

Updated FE 

model 5 
261.26 0.293 

 

As can be seen from Table 4.28, updated model 1 gives the best value, and the 

updated model 5 gives the worst value for the second natural frequency. However it 

is observed from Table 4.29 that updated model 5 gives the best value, and the 

updated model 1 gives the worst value for the third natural frequency. 
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In Figure 4.55, the linear FRFs obtained by using PRD method from experimentally 

measured nonlinear FRFs are compared with those calculated from initial and 

updated FE models. 

 

 

 

 
           (a)          (b) 

Figure 4.55 Comparison of the linear FRFs obtained from experimentally measured 

nonlinear FRFs by using PRD method, with those calculated from initial and updated 

FE models for (a) second mode (b) third mode 

 

 

 

As can be seen from Figure 4.55, similar conclusions can be obtained for linear FRFs 

as well. That is, updated model 1 is the best in the second mode and updated model 5 

is the best in the third mode, as far as the linear FRF predictions are concerned. 

 

Since the ultimate goal is to have accurate nonlinear response predictions from the 

updated model, nonlinear FRFs measured experimentally for F=0.6N, F=0.7N and 

F=0.8N are compared with those obtained from the initial and updated models 

(composed of original and updated FE models combined with identified 

nonlinearity). The results are given in Figure 4.56, Figure 4.57 and Figure 4.58, for 

the first, second and third modes of the structure, respectively. 
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      (a)                                            (b)        

 
                                                                   (c) 

Figure 4.56 Comparison of FRFs obtained from initial and updated models with the 

experimental ones for (a) F=0.6N (b) F=0.7N (c) F=0.8N 

 

 

 

 
        (a)                                      (b)                                        (c) 

Figure 4.57 Comparison of FRFs obtained from initial and updated models with the 

experimental ones for (a) F=0.6N (b) F=0.7N (c) F=0.8N 
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       (a)                                       (b)                                       (c) 

Figure 4.58 Comparison of FRFs obtained from initial and updated models with the 

experimental ones for (a) F=0.6N (b) F=0.7N (c) F=0.8N 

 

 

 

For the first mode, as can be seen in Figure 4.56, the best match between measured 

and predicted FRFs is observed when the updated model 1 is used. For the second 

mode, as can be seen in Figure 4.57, again the updated model 1 gives the best 

prediction. However, as observed from Figure 4.58, updated model 5 gives the best 

predictions for  nonlinear FRFs around third mode of the structure. From these 

results we can conclude that depending on the candidate updating parameter sets, 

best response prediction may vary. Therefore, it is recommended to construct 

different updated models, and choose the one which represents the actual system in 

the mode(s) we are interested in, or give priority to. 

 

 

 

 

 

 

 



126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 

 

CHAPTER 5 

 

 

5 MODEL UPDATING OF A NONLINEAR GUN BARREL OF A BATTLE 

TANK 

 

 

 

Predicting the dynamic behavior of the tip of a gun barrel especially at the 

fundamental mode is critical when the shooting and stabilization performance of the 

tank is considered. In this perspective, detailed model of the gun barrel at the 

fundamental mode is studied in this chapter. The method developed for model 

updating of nonlinear systems is applied to a gun barrel of a battle tank. An 

equivalent single degree of freedom nonlinear model of the system is built for the 

fundamental mode of system. First, using the PRD method, both linear FRFs and the 

nonlinearities in the system are obtained from experimentally measured nonlinear 

FRFs. Afterwards, linear FE model of the test structure is built in ANSYS and it is 

updated by using the linear FRFs obtained through the PRD method. Thus, an 

updated nonlinear model of the test structure is constructed by using the identified 

nonlinearity and updated linear FE model of the system. Finally, predicted and 

measured FRFs of the test structure are compared at different forcing levels in order 

to demonstrate the accuracy of the updated nonlinear model of the system. 

Furthermore, in order to compare the performance of PRD method with that of DDF 

method, both linear FRFs and the nonlinearities in the system are also obtained by 

using the DDF method. 

 

5.1 Experimental Setup 

 

The test set-up, which consists of the gun barrel of a battle tank, is shown in Figure 

5.1.  
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Figure 5.1 Gun barrel test setup 

 

 

 

In the experiments performed in this study, the structure is excited with B&K Type 

4808 modal shaker via a push-rod. In order to increase the excitation level of the 

shaker, B&K Type 2712 power amplifier is used. Acceleration responses and the 

forces applied are measured with B&K Type 4507B accelerometer and B&K Type 

8230-002 force transducer, respectively. In all the measurements, as a data 

acquisition system, B&K Type 3560C frontend is used. The equipment used in the 

experiments is given in Table 5.1 and it is shown in Figure 5.2.   

 

Table 5.1 Equipment used in the experiments 

Data Acquisition System Brüel&Kjaer  Type 3560 C Frontend 

Shaker Brüel&Kjaer  Type 4808 

Force Transducer Brüel&Kjaer  Type 8230-002 

Power Amplifier Brüel&Kjaer  Type 2712 

Accelerometer Brüel&Kjaer  4507B 
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Figure 5.2 Equipment used in the experiments 

 

 

 

5.2 First Set of Experiments 

 

In the first set of experiments, the structure is excited with a random force. In random 

excitation tests, 6 different force levels are used starting from a very low to high 

forcing levels. Since the accuracy of the PRD method proposed for obtaining linear 

FRFs and nonlinear identification depends on the excitation frequency and it is 

shown that when the structure is excited at around the linear resonance frequency of 

the structure method gives more accurate results, in the first random excitation test 

low excitation signal level is selected.  
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In all the random excitation tests, the frequency range is selected between 0-100 Hz 

and a frequency resolution of 0.0625 Hz is used in measurements. In order to 

minimize the noise in measurements, 21 averages are taken. In all the random 

excitation tests, 6 accelerometers are used and the gun barrel is excited with the 

shaker located at the tip of the gun barrel.  

 

The accelerometer and the shaker locations and geometry constructed in the PULSE 

software are shown in Figure 5.3.  

 

 

 

 

Figure 5.3 Test geometry constructed in PULSE software 

 

 

 

The node numbering starts from the tip of gun barrel (node number 1) and continues 

till the root end of the gun barrel (node number 6) that is accessible from outside of 

the tank. The shaker is located at node 1 as shown in Figure 5.3. 
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The force levels used in the random excitation tests are shown in Figure 5.4, and 

their root mean square (rms) values are given in Table 5.2. 

 

 

 

 

Figure 5.4 Force levels used in random excitation tests 

 

 

 

Table 5.2 Force levels used in random excitation tests 

Force Level Rms (N) 

1 0.88 

2 1.829 

3 2.809 

4 3.859 

5 7.888 

6 21.851 

 

For the given excitation levels, FRFs are measured by using B&K Pulse software, the 

FRF at node 1 (tip of gun barrel) and corresponding coherences are shown in Figure 

5.5 and Figure 5.6, respectively. 
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Figure 5.5 Measured FRFs at node 1 

 

 

 

 

Figure 5.6 Coherence of the FRFs measured at node 1 
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As the first observation from Figure 5.5, it can be said that FRFs are slightly different 

for different random excitation force levels. Therefore in order to see differences 

more clearly, resonance regions are zoomed in and shown in Figure 5.7, Figure 5.8 

and Figure 5.9, respectively.  

 

 

 

 

Figure 5.7 Measured FRFs at node 1 between 5-15 Hz 

 

 

 

 

Figure 5.8 Measured FRFs at node 1 between 15-40 Hz 
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Figure 5.9 Measured FRFs at node 1 between 45-55 Hz 

 

 

 

As can be seen from Figure 5.7, Figure 5.8 and Figure 5.9, natural frequencies are 

shifted when the force level changes. Especially at the fundamental mode of the gun 

barrel this effect is much more pronounced. These observations give a clear 

indication of nonlinearity in the structure. In order to see the dynamical characteristic 

of the gun barrel in more detail, for each of the force levels, modal analysis is 

performed and the corresponding modal parameters are extracted by using ME’scope 

modal analysis software.  

 

5.2.1 Modal Analysis of the Gun Barrel for the Random Excitation Force 

Level 1 

 

After performing the measurements, the modal analysis is performed between 0-55 

Hz in ME’scope modal analysis software. By using the stabilization diagram (Figure 

5.10) algorithm modal parameters are extracted and they are given in Table 5.3. 
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Figure 5.10 Stability diagram 

 

 

 

Table 5.3 Extracted modal parameters 

Mode 

Number 

Natural Frequency 

(Hz) 

Modal Damping 

Ratio (%) 

1 7.501 0.955 

2 12.368 1.531 

3 22.203 0.870 

4 52.191 0.499 

 

After extracting the modal parameters, FRFs are synthesized and these synthesized 

FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.11, 

and for nodes 3, 4, 5 and 6 in Figure 5.12. 
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Figure 5.11 Synthesized and measured FRFs at nodes (a) 1 and (b) 2 

 

 

 

  

Figure 5.12 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5 and (d) 6 

 

 

 

The modeshapes of the gun barrel are also obtained and they are shown in Figure 

5.13. 
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Figure 5.13 (a) First (b) second (c) third (d) fourth modeshapes  

 

 

 

When the modeshapes of the gun barrel are studied, the first, second and fourth 

modes of the structure are found to be dominant modes. Second mode may be related 

with flexibility of joint at the root however it is not a dominant mode which can be 

observed from the FRF curves. In order to check the complexity of the modes, 

complexity plots of modes are drawn and shown in Figure 5.14. 

 

 

 

 

Figure 5.14 Complexity plot of (a) first (b) second (c) third (d) fourth modeshapes  
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It is observed from the complexity plots that all the modes are almost real since all 

the modeshape components stand on the horizontal line (0-180 phase angle line) of 

the complexity plot. 

 

Furthermore, in order to see how the modes are correlated to each other, MAC 

diagram and the corresponding MAC matrix values are given in Figure 5.15 and in 

Table 5.4, respectively. 

 

 

 

 

Figure 5.15 MAC diagram 

 

 

 

Table 5.4 MAC matrix values 

Modeshape 1 2 3 4 

1 1.0000 0.8760 0.3050 0.0001 

2 0.8760 1.0000 0.6520 0.0845 

3 0.3050 0.6520 1.0000 0.5350 

4 0.0001 0.0845 0.5350 1.0000 

 

As seen from MAC matrix, second modeshape is very similar to first and third 

modehaspes of the structure. 
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5.2.2 Modal Analysis of the Gun Barrel for the Random Excitation Force 

Level 2 

 

Similarly, by using the stabilization diagram (Figure 5.16) algorithm, modal 

parameters are extracted for this modal test and they are given in Table 5.5. 

 

 

 

 

Figure 5.16 Stability diagram 

 

 

 

Table 5.5 Extracted modal parameters 

Mode 

Number 

Natural Frequency 

(Hz) 

Modal Damping 

Ratio (%) 

1 7.473 1.033 

2 12.364 1.837 

3 22.169 0.903 

4 52.174 0.496 
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After extracting the modal parameters, FRFs are synthesized and these synthesized 

FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.17, 

and for nodes 3, 4, 5 and 6 in Figure 5.18. 

 

 

 

 

Figure 5.17 Synthesized and measured FRFs at nodes (a) 1 and (b) 2 

 

 

 

  

Figure 5.18 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5 and (d) 6 
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Very similar modeshapes, complexity plots and MAC matrices are obtained as in the 

random excitation force level 2 test case. 

 

5.2.3 Modal Analysis of the Gun Barrel for the Random Excitation Force 

Level 3 

 

Modal parameters are extracted for this modal test, similarly, by using the 

stabilization diagram (Figure 5.19) algorithm and they are given in Table 5.6. 

 

 

 

 

Figure 5.19 Stability diagram 

 

 

 

Table 5.6 Extracted modal parameters 

Mode 

Number 

Natural Frequency 

(Hz) 

Modal Damping 

Ratio (%) 

1 7.449 1.171 

2 12.229 2.193 

3 22.144 0.941 

4 52.161 0.504 
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After extracting the modal parameters, FRFs are synthesized and these synthesized 

FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.20, 

and for nodes 3, 4, 5 and 6 in Figure 5.21. 

 

 

 

 

Figure 5.20 Synthesized and measured FRFs at nodes (a) 1 and (b) 2 

 

 

 

  

Figure 5.21 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5 and (d) 6 
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Very similar modeshapes, complexity plots and MAC matrices are obtained as in the 

random excitation force level 2 test case. 

 

5.2.4 Modal Analysis of the Gun Barrel for the Random Excitation Force 

Level 4 

 

Similarly, by using the stabilization diagram (Figure 5.22) algorithm, modal 

parameters are extracted for this modal test and they are given in Table 5.7. 

 

 

 

 

Figure 5.22 Stability diagram 

 

 

 

Table 5.7 Extracted modal parameters 

Mode 

Number 

Natural Frequency 

(Hz) 

Modal Damping 

Ratio (%) 

1 7.416 1.345 

2 11.105 0.769 

3 12.177 2.637 

4 22.111 0.985 

5 52.150 0.513 
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Different from the previous results, 5 modes are extracted from the stabilization 

diagram algorithm. After extracting the modal parameters, FRFs are synthesized and 

these synthesized FRFs are shown together with the measured FRFs for nodes 1 and 

2 in Figure 5.23, and for nodes 3, 4, 5 and 6 in Figure 5.24. 

 

 

 

 

Figure 5.23 Synthesized and measured FRFs at nodes (a) 1 and (b) 2 

 

 

 

  

Figure 5.24 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5 and (d) 6 
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Figure 5.25 (a) First (b) second (c) third (d) fourth (e) fifth modeshapes  

 

 

 

When the modeshapes of the gun barrel are studied, the first, fourth and fifth modes 

of the structure are found to be dominant modes. However, the second and third 

mode may be related with flexibility of joint at the root however they are not 

dominant modes which can be observed from the FRF curves. In order to check the 

complexity of the modes, complexity plots of modes are drawn and shown in Figure 

5.26. 

 

 

 

 

Figure 5.26 Complexity plot of (a) first (b) second (c) third (d) fourth (e) fifth 

modeshapes 
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It is observed from the complexity plots that, all the modes are almost real since all 

the modeshape components lie on the horizontal line (0-180 phase angle line) of the 

complexity plot.  

 

Furthermore in order to see how these modes are correlated to each other, MAC 

diagram and the corresponding MAC matrix values are given in Figure 5.27 and in 

Table 5.8. 

 

 

 

 

Figure 5.27 MAC diagram 

 

 

 

Table 5.8 MAC matrix values 

Modeshape 1 2 3 4 5 

1 1.0000 0.9110 0.8600 0.3050 0.0001 

2 0.9110 1.0000 0.9880 0.5920 0.0541 

3 0.8600 0.9880 1.0000 0.6750 0.0897 

4 0.3050 0.5920 0.6750 1.0000 0.5320 

5 0.0001 0.0541 0.0897 0.5320 1.0000 

 

As seen from MAC matrix, the first, second and third modeshapes have very similar 

shapes. 
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5.2.5 Modal Analysis of the Gun Barrel for the Random Excitation Force 

Level 5 

 

After performing the measurements for that force level, the modal analysis is 

performed between 0-55 Hz in ME’scope modal analysis software. By using the 

stabilization diagram (Figure 5.28) algorithm modal parameters are extracted and 

they are given in Table 5.9. 

 

 

 

 

Figure 5.28 Stability diagram 

 

 

 

Table 5.9 Extracted modal parameters 

Mode 

Number 

Natural Frequency 

(Hz) 

Modal Damping 

Ratio (%) 

1 7.341 1.621 

2 11.053 1.187 

3 12.044 3.093 

4 22.018 1.115 

5 52.112 0.533 
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After extracting the modal parameters, FRFs are synthesized and these synthesized 

FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.29, 

and for nodes 3, 4, 5 and 6 in Figure 5.30. 

 

 

 

 

Figure 5.29 Synthesized and measured FRFs at nodes (a) 1 and (b) 2 

 

 

 

  

Figure 5.30 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5 and (d) 6 
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In this analysis, very similar modeshapes, complexity plots and MAC matrices are 

obtained as in the random excitation force level 4 test case. 

 

5.2.6 Modal Analysis of the Gun Barrel for the Random Excitation Force 

Level 6 

 

Similarly, by using the stabilization diagram (Figure 5.31) algorithm, modal 

parameters are extracted for this modal test and they are given in Table 5.10. 

 

 

 

 

Figure 5.31 Stability diagram 

 

 

 

Table 5.10 Extracted modal parameters 

Mode 

Number 

Natural Frequency 

(Hz) 

Modal Damping 

Ratio (%) 

1 7.196 2.368 

2 10.929 2.498 

3 11.755 2.926 

4 21.785 1.483 

5 52.034 0.580 
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After extracting the modal parameters, FRFs are synthesized and these synthesized 

FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.32, 

and for nodes 3, 4, 5 and 6 in Figure 5.33. 

 

 

 

 

Figure 5.32 Synthesized and measured FRFs at nodes (a) 1 and (b) 2 

 

 

 

  
Figure 5.33 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5 and (d) 6 
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Similar modeshapes, complexity plots and MAC matrices are obtained for this test 

case as in the random excitation force level 4 test case as well. 

 

5.2.7 Comparisons of the Modal Analysis Results of Each Random Excitation 

Force Level 

 

In this section modal parameters extracted are compared to each other for all the 

random excitation force level cases. The natural frequency comparison is given in 

Table 5.11 and it is shown in Figure 5.34. 

 

 

 

 

Figure 5.34 Natural frequency comparison for different force levels 
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Table 5.11 Natural frequency comparison for different force levels 

  
Force 

Level 1 

Force 

Level 2 

Force 

Level 3 

Force 

Level 4 

Force 

Level 5 

Force 

Level 6 

Mode 

Number 
Natural Frequency (Hz) 

1 7.501 7.473 7.449 7.416 7.341 7.196 

2 *** *** *** 11.105 11.053 10.929 

3 12.368 12.364 12.229 12.177 12.044 11.755 

4 22.203 22.169 22.144 22.111 22.018 21.785 

5 52.191 52.174 52.161 52.15 52.112 52.034 

 

As seen from Figure 5.34 and Table 5.11, for the first three force levels, the second 

mode of the structure cannot be extracted from modal analysis. Also it is clearly seen 

that as the force level increases the natural frequencies tend to decrease for all the 

modes. 

 

Similar comparison can be made for the damping values extracted from the analysis. 

The comparison of the damping values for each of the force levels is given in Table 

5.12 and shown in Figure 5.35. 

 

Table 5.12 Damping ratio comparison for different force levels 

  

Force 

Level 1 

Force 

Level 2 

Force 

Level 3 

Force 

Level 4 

Force 

Level 5 

Force 

Level 6 

Mode 

Number Modal Damping Ratio (%) 

1 0.955 1.033 1.171 1.345 1.621 2.368 

2 *** *** *** 0.769 1.187 2.498 

3 1.531 1.837 2.193 2.637 3.093 2.926 

4 0.87 0.903 0.941 0.985 1.115 1.483 

5 0.499 0.496 0.504 0.513 0.533 0.58 
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Figure 5.35 Damping ratio comparison for different force levels 

 

 

 

As observed from Figure 5.35 and Table 5.12, as the force level increases damping 

values of the modes tend to increase for all the modes except the third mode. Only in 

the third mode the damping value drops for force level 6. 
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From results of random excitation tests, clear indication of the existence of 

nonlinearity in the system is seen. Since the fundamental mode of the gun barrel is 

under consideration, we can also conclude that, for the fundamental mode, as the 

force level increases in the random excitation tests, damping value of the 

fundamental mode increases and natural frequency decreases.  

 

It is also observed that, fundamental frequency of the gun barrel is around 7.5 Hz for 

lowest excitation force level. In order to apply the PRD method, the structure is 

excited at around that frequency with a pure sine excitation at different forcing 

levels. The structure is excited at a low forcing level and then at a number of high 

forcing levels. The advantage of this method is that, there is no need for any 

vibration controller as in the cases of constant forcing or constant amplitude testing 

over a certain frequency range.  

 

In order to see the effect of choosing different frequencies of excitation on the 

performance of the method, five different excitation frequencies (7.5 Hz, 7 Hz, 7.125 

Hz, 7.25 Hz, and 7.375 Hz) are used, and for each of these excitation frequencies, 

describing functions of the nonlinearities are obtained by using PRD method. 

 

5.2.8 Application of PRD Method at 7.5 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 7.5 Hz by applying PRD method. Curve fitting is performed for the 

calculated real and imaginary parts of describing function and the fitted curves are 

shown in Figure 5.36. 
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(a)                                                                 (b) 

Figure 5.36 Calculated describing function (a) Real part (b) Imaginary part 

 

 

 

For the real and imaginary parts of the describing function, 3
rd

 order polynomial 

functions are fit. Corresponding coefficients of the polynomial functions are given in 

Table 5.13.  

 

Table 5.13 Coefficients of the polynomials fit to the data for real and imaginary parts 

of the describing function 

 

p3 p2 p1 p0 

Real Part of Describing 

Function  
3 2

3 2 1 0  p x p x p x p   -2.62x10
13

 7.62x10
10

 -9.64x10
7
 -565 

Imaginary Part of 

Describing Function 
3 2

3 2 1 0  p x p x p x p  3.12x10
13

 -4.18x10
10

 3.77x10
7
 -518 

 

5.2.9 Application of PRD Method at 7 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 7 Hz by applying PRD method. Curve fitting is performed for the 

calculated real and imaginary parts of describing function and the fitted curves are 

shown in Figure 5.37. 
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     (a)                                                                (b) 

Figure 5.37 Calculated describing function (a) Real part (b) Imaginary part 

 

 

 

For the real and imaginary parts of the describing function, 3
rd

 order polynomial 

functions are fit. Corresponding coefficients of the polynomial functions are given in 

Table 5.14.  

 

Table 5.14 Coefficients of the polynomials fit to the data for real and imaginary part 

of the describing function 

 

p3 p2 p1 p0 

Real Part of Describing 

Function  
3 2

3 2 1 0  p x p x p x p   -2.52x10
14

 2.72x10
11

 -1.32x10
8
 -579 

Imaginary Part of 

Describing Function 
3 2

3 2 1 0  p x p x p x p  2.03x10
14

  -1.79x10
11

 6.17x10
7
 -1260 

 

5.2.10 Application of PRD Method at 7.125 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 7.125 Hz by applying PRD method. Curve fitting is performed for 

the calculated real and imaginary parts of describing function and the fitted curves 

are shown in Figure 5.38. 
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       (a)                                                               (b) 

Figure 5.38 Calculated describing function (a) Real part (b) Imaginary part 

 

 

 

For the real and imaginary parts of the describing function, 3
rd

 order polynomial 

functions are fit. Corresponding coefficients of the polynomial functions are given in 

Table 5.15.  

 

Table 5.15 Coefficients of the polynomials fit to the data for real and imaginary part 

of the describing function 

 

p3 p2 p1 p0 

Real Part of Describing 

Function  
3 2

3 2 1 0  p x p x p x p   -1.33x10
14

 1.88x10
11

 -1.21x10
8
 -608 

Imaginary Part of 

Describing Function 
3 2

3 2 1 0  p x p x p x p  7.84x10
13

  -9.78x10
10

 5.21x10
7
 523 

 

5.2.11 Application of PRD Method at 7.25 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 7.25 Hz by applying PRD method. Curve fitting is performed for 

the calculated real and imaginary parts of describing function and the fitted curves 

are shown in Figure 5.39. 
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        (a)                                                               (b) 

Figure 5.39 Calculated describing function (a) Real part (b) Imaginary part 

 

 

 

For the real and imaginary parts of the describing function, 3
rd

 order polynomial 

functions are fit. Corresponding coefficients of the polynomial functions are given in 

Table 5.16.  

 

Table 5.16 Coefficients of the polynomials fit to the data for real and imaginary part 

of the describing function 

 

p3 p2 p1 p0 

Real Part of Describing 

Function  
3 2

3 2 1 0  p x p x p x p   -1.30x10
14

 1.85x10
11

 -1.24x10
8
 -618 

Imaginary Part of 

Describing Function 
3 2

3 2 1 0  p x p x p x p  5.84x10
13

  -7.62x10
10

 4.75x10
7
 -483 

 

5.2.12 Application of PRD Method at 7.375 Hz for Identifying Nonlinearity 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements at 7.375 Hz by applying PRD method. Curve fitting is performed for 

the calculated real and imaginary parts of describing function and the fitted curves 

are shown in Figure 5.40. 
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        (a)                                                               (b) 

Figure 5.40 Calculated describing function (a) Real part (b) Imaginary part 

 

 

 

For the real and imaginary parts of the describing function, 3
rd

 order polynomial 

functions are fit. Corresponding coefficients of the polynomial functions are given in 

Table 5.17.  

 

Table 5.17 Coefficients of the polynomials fit to the data for real and imaginary part 

of the describing function 

 

p3 p2 p1 p0 

Real Part of Describing 

Function  
3 2

3 2 1 0  p x p x p x p   -1.51x10
14

 2.1x10
11

 -1.34x10
8
 -628 

Imaginary Part of 

Describing Function 
3 2

3 2 1 0  p x p x p x p  1.05x10
14

  -1.27 x10
11

 6.36x10
7
 -498 

 

5.2.13 Comparison of Nonlinearities Identified by Using PRD Method at 

Different Frequencies 

 

In this section, the real and imaginary parts of the describing function obtained from 

experimental measurements at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz by 
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using PRD method are compared to each other. Comparisons of the real and 

imaginary parts of the describing functions are shown in Figure 5.41 and Figure 5.42, 

respectively. 

 

 

 

 

Figure 5.41 Comparison of identified real parts of the describing function  

 

 

 

 

Figure 5.42 Comparison of identified imaginary parts of the describing function  
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When we compare the real part of describing functions obtained using the 

measurements at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz, it can be observed 

from Figure 5.41 that identified functions are similar to each other. As seen from 

Figure 5.42, the identified imaginary parts of describing functions are also similar to 

each other. However, we can see larger deviations in the describing function 

obtained when the measurement at 7 Hz is used, especially at larger response 

amplitudes. From the results we can conclude that the excitation frequency used in 

PRD method, does not have significant effect on the identified nonlinearity, if the 

excitation frequency is approximately in the 5% range of the resonance of the 

underlying linear system. 

 

As a final test in this set of experiments, frequency responses between 6 Hz and 8 Hz 

are measured for a constant low forcing level excitation. Stepped sine test is used as 

an excitation type by using the given test set-up. Frequency resolution of 0.03125 Hz 

is used around the resonance region, and a frequency resolution of 0.25 Hz is used 

elsewhere. Excitation signal is a pure sinusoidal signal. However, in order to perform 

constant force vibration testing over the frequency range, a manual control strategy is 

used in the experiments. This control is maintained by checking the forcing level and 

changing the excitation voltage supplied to the shaker. In Figure 5.43, measured 

FRFs for F=0.5N are shown. 
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Figure 5.43 Measured FRF at F=0.5N 

 

 

 

It is observed from Figure 5.43 that the FRF curve obtained for F=0.5N seems like a 

linear FRF curve, as expected. However, as it will be shown below, the measured 

FRF and the linear FRF curves of the system are different from each other even 

though a very low forcing is used in the experiment. 

 

5.3 Second Set of Experiments 

 

In the second set of experiments, the main purpose is to perform measurements 

which will be used to study the performance of the PRD method and the model 

updating approach proposed. A set of stepped sine constant force tests is used in the 

experiments. Frequency resolution of resolution of 0.03125 Hz is used around the 

resonance region and away from the resonance region larger frequency resolution is 
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used. Similarly, the constant force excitation is maintained by manually checking the 

forcing level and changing the excitation voltage supplied to the shaker at each 

frequency point. The structure is excited at 3 different forcing levels (F=5N, 

F=10.4N, F=15N).The measured FRFs are shown in Figure 5.44. 

 

 

 

 

Figure 5.44 Measured FRF at F=5N, F=10.4N, F=15N 

 

 

 

Also, these measured FRFs are shown with the FRF obtained at low forcing level 

(F=0.5N) in the same graph (Figure 5.45). 
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Figure 5.45 Measured FRF at F=0.5N, F=5N, F=10.4N, F=15N 

 

 

 

5.4 Application of PRD Method for Obtaining Linear FRFs 

 

Using the describing function values obtained by applying PRD method and the FRF 

values measured at F=0.5N in the first set of experiments, linear FRFs of the 

structure are predicted. Since, describing functions are obtained at 5 different 

excitation frequencies, in order to study the effects of test frequency on the 

performance of the method; five separate linear FRF curves are predicted. The linear 

FRF curves predicted by using the describing functions obtained from experiments 

made at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz are compared with the FRFs 

measured at F=0.5N in Figure 5.46, Figure 5.47 and Figure 5.48 and with each other 

in Figure 5.49. 
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        (a)          (b) 

Figure 5.46 Comparison of measured FRFs at F=0.5N with predicted linear FRFs by 

using PRD method at (a) 7.5 Hz (b) 7 Hz 

 

 

 

 
        (a)           (b) 

Figure 5.47 Comparison of measured FRFs at F=0.5N with predicted linear FRFs by 

using PRD method at (a) 7.125 Hz (b) 7.25 Hz 
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Figure 5.48 Comparison of measured FRFs at F=0.5N with predicted linear FRFs by 

using PRD method at 7.375 Hz  

 

 

 

 

Figure 5.49 Comparison of predicted linear FRFs by using PRD method at 7 Hz, 

7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz 

 

 

 

As can be observed from Figure 5.46, Figure 5.47 and Figure 5.48, FRFs measured at 

low forcing level (F = 0.5N) do not accurately represent the linear FRFs of the 

system which can be obtained by using the PRD method proposed. FRFs measured at 

even a very low forcing level may not represent the linear FRF accurately. It is also 

observed from Figure 5.49 that linear FRFs obtained using the describing functions 

identified from the tests made at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz have 
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discrepancies around the resonance (deviation of the peak amplitude from the mean 

amplitude value is approximately less than 9%). Based on these observations, if the 

excitation frequency used in PRD method is approximately in the 5% range of the 

resonance of the underlying linear system, there are no large discrepancies in the 

predicted linear FRFs. In the next section, in order to further investigate the effects of 

test frequency on the performance of the method, predicted nonlinear FRFs 

(regenerated nonlinear FRFs by using linear FRFs and identified nonlinearity 

obtained by PRD method) are compared with experimental nonlinear FRFs at F=5N, 

F=10.4N and F=15N. 

 

5.5 Prediction of Nonlinear FRFs by Using Linear FRFs and Identified 

Nonlinearity Obtained by PRD Method 

 

In this section, by using the identified nonlinearity and  linear FRFs predicted by 

using the PRD method at 7 Hz, 7.125 Hz, 7.25Hz, 7.375 Hz and 7.5 Hz, the 

nonlinear FRFs at F=5N, F=10.4N and F=15N are calculated (regenerated). The 

regenerated FRFs are compared with the experimental measurements for F=5N. The 

results are given in Figure 5.50, Figure 5.51 and Figure 5.52.  

 

 

 

 
(a)       (b) 

Figure 5.50 Comparison of measured and predicted FRFs at F=5N (PRD method is 

used at (a) 7.5 Hz (b) 7 Hz) 
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        (a)         (b) 

Figure 5.51 Comparison of measured and predicted FRFs at F=5N (PRD method is 

used at (a) 7.125 Hz (b) 7.25 Hz) 

 

 

 

 

Figure 5.52 Comparison of measured and predicted FRFs at F=5N (PRD method is 

used at 7.375 Hz) 

 

 

 

Regenerated nonlinear FRF curves are also compared with each other as well as with 

the experimental one for F=5N as shown in Figure 5.53. 
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Figure 5.53 Comparison of experimental and regenerated FRFs by using PRD 

method at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz  

 

 

 

As can be seen from Figure 5.53, regenerated nonlinear FRFs match very good with 

the experimental nonlinear FRFs at F=5N. Similarly, the comparison of the 

regenerated and experimental nonlinear FRF curves at F=10.4N are given in Figure 

5.54, Figure 5.55 and Figure 5.56.  

 

 

 

 
       (a)                     (b) 

Figure 5.54 Comparison of measured and predicted FRFs at F=10.4N (PRD method 

is used at (a) 7.5 Hz (b) 7 Hz) 
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       (a)                     (b) 

Figure 5.55 Comparison of measured and predicted FRFs at F=10.4N (PRD method 

is used at (a) 7.125 Hz (b) 7.25 Hz) 

 

 

 

 

Figure 5.56  Comparison of measured and predicted FRFs at F=10.4N (PRD method 

is used at 7.375 Hz) 

 

 

 

Regenerated nonlinear FRF curves are also compared with each other as well as with 

the experimental one for F=10.4N as shown in Figure 5.57. 
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Figure 5.57  Comparison of experimental and regenerated FRFs by using PRD 

method at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz 

 

 

 

As can be observed from the Figure 5.57, regenerated nonlinear FRFs and 

experimental nonlinear FRFs matches are in good agreement at F=10.4N. Finally, the 

comparison of the predicted and experimental nonlinear FRFS at F=15N are given in 

Figure 5.58, Figure 5.59 and Figure 5.60. 

 

 

 

 
         (a)              (b) 

Figure 5.58 Comparison of measured and predicted FRFs at F=15N (PRD method is 

used at (a) 7.5 Hz (b) 7 Hz) 
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        (a)          (b) 

Figure 5.59 Comparison of measured and predicted FRFs at F=15N (PRD method is 

used at (a) 7.125 Hz (b) 7.25 Hz) 

 

 

 

 

Figure 5.60 Comparison of measured and predicted FRFs at F=15N (PRD method is 

used at 7.375 Hz) 

 

 

 

Similarly, regenerated nonlinear FRF curves are also compared with each other as 

well as with the experimental one for F=15N as shown in Figure 5.61. 
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Figure 5.61 Comparison of experimental and regenerated FRFs by using PRD 

method at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz 

 

 

 

From Figure 5.61, it is seen that there is a very good agreement between the 

regenerated and experimental nonlinear FRFs at F=15N.  

 

Since the predicted FRFs are close to each other regardless of the frequency used in 

PRD method, it is better to quantify the similarity between the regenerated and 

experimental FRFs, by using the Frequency Response Assurance Criteria (FRAC) 

given below [85]. 

 

   
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H

Xrj Arj

H H

Xrj Xrj Arj Arj

H H
FRAC

H H H H
  (5.1) 

   

In Equation (5.1)   ( )XrjH and  ( )ArjH  are the experimental and calculated 

FRFs over the frequency spectrum  respectively. Superscript H represents the 
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complex conjugate transpose. FRAC value changes between zero and one. FRAC 

value of unity represents full correlation between experimental and calculated FRFs 

and FRAC value of zero indicates no correlation between experimental and 

calculated FRFs. 

 

By using the Equation (5.1) FRAC values are calculated for all the excitation 

frequency cases at all forcing levels. The results are given in Table 5.18. 

 

Table 5.18 FRAC values for PRD method 

Forcing 

Level  

PRD Method 

Used at 

7.5Hz 

Used at 

7Hz 

Used at 

7.125Hz 

Used at 

7.25Hz 

Used at 

7.375Hz 

5N 0.9823 0.9922 0.9820 0.9678 0.9429 

10.4N 0.9826 0.9945 0.9902 0.9788 0.9622 

15N 0.9843 0.9748 0.9864 0.9486 0.9492 

 

From Table 5.18, it is seen that the FRAC values are very close to 1 for most of the 

cases at all forcing levels the worst value being approximately 0.95. At F=5N and 

F=10.4N, the FRFs predicted by PRD method using 7 Hz have slightly larger value 

compared to the other cases. Similarly, at F=15N, the FRFs predicted by PRD 

method using 7.125 Hz has slightly larger FRAC value compared to the other cases. 

The worst results are obtained at 7.375 Hz. However, it may not be possible to 

observe a trend.  

 

5.6 Application of DDF Method for Identifying Nonlinearity 

 

In this section, nonlinearity of the gun barrel is identified by using DDF method [79]. 

As mentioned in theory part, since nonlinear FRF measurements at two constant 

forcing levels are necessary for the application of the method, we can construct a 

total of 3 force combinations by using the experimental measurements made at 3 

forcing levels. These force combinations are given in Table 5.19. 
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Table 5.19 Force combinations used in DDF method 

Force 

Combination 

 Low Forcing 

Level  
High Forcing 

Level 

1 F=5N F=10.4N 

2 F=5N F=15N 

3 F=10.4N F=15N 

 

In order to investigate the effect of choosing different force levels on the accuracy of 

the DDF method, for each of force combination case, nonlinearities are identified 

and are compared to each other.  

 

5.6.1 Force Combination 1 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements by applying DDF method. Curves fitted to the real and imaginary 

parts of the describing function values obtained through DDF method are shown in 

Figure 5.62. 

 

 

 

 
         (a)                                                              (b) 

Figure 5.62 Calculated describing function (a) Real part (b) Imaginary part 
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For the real and imaginary parts of describing function, 3
rd

 order polynomial 

functions are fit. Corresponding coefficients of the polynomial functions are given in 

Table 5.20.  

 

Table 5.20 Coefficients of the polynomials fit to the data for the real and imaginary 

parts of the describing function 

 

p3 p2 p1 

Real Part of Describing 

Function  
3 2

3 2 1 p x p x p x   -1.06x10
14

 1.26x10
11

 -1.00x10
8
 

Imaginary Part of 

Describing Function 
3 2

3 2 1 p x p x p x  8.43x10
13

  -8.08 x10
10

 4.52x10
7
 

 

5.6.2 Force Combination 2 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements by applying DDF method. Curves fitted to the real and imaginary 

parts of the describing function values obtained through DDF method are shown in 

Figure 5.63. 

 

 

 

 
       (a)                                                                (b) 

Figure 5.63 Calculated describing function (a) Real part (b) Imaginary part 
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For the real and imaginary parts of describing function, 3
rd

 order polynomial 

functions are fit. Corresponding coefficients of the polynomial functions are given in 

Table 5.21.  

 

Table 5.21 Coefficients of the polynomials fit to the data for the real and imaginary 

parts of the describing function 

 

p3 p2 p1 

Real Part of Describing 

Function  
3 2

3 2 1 p x p x p x   -8.42x10
13

 1.14x10
11

 -9.73x10
7
 

Imaginary Part of 

Describing Function 
3 2

3 2 1 p x p x p x  9.83x10
13

  -1.03 x10
11

 5.20x10
7
 

 

5.6.3 Force Combination 3 

 

Real and imaginary parts of the describing function are obtained from experimental 

measurements by applying DDF method. Curves fitted to the real and imaginary 

parts of the describing function values obtained through DDF method are shown in 

Figure 5.64. 

 

 

 

 
        (a)                                                              (b) 

Figure 5.64 Calculated describing function (a) Real part (b) Imaginary part 
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For the real and imaginary parts of describing function, 3
rd

 order polynomial 

functions are fit. Corresponding coefficients of the polynomial functions are given in 

Table 5.22.  

 

Table 5.22 Coefficients of the polynomials fit to the data for the real and imaginary 

parts of the describing function 

 

p3 p2 p1 

Real Part of Describing 

Function  
3 2

3 2 1 p x p x p x   -1.27x10
14

 1.71x10
11

 -1.15x10
8
 

Imaginary Part of 

Describing Function 
3 2

3 2 1 p x p x p x  9.74x10
13

  -1.05 x10
11

 5.23x10
7
 

 

5.7 Comparison of Identified Nonlinearity Using DDF Method with Each of 

the Force Combinations  

 

In this section, calculated real and imaginary parts of the describing function 

obtained from experimental measurements by using DDF method are compared to 

each other for each of the force combinations employed. The comparisons are shown 

in Figure 5.65 and Figure 5.66 for the real and imaginary parts of the describing 

functions, respectively. 
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Figure 5.65 Comparison of identified real parts of describing functions  

 

 

 

 

Figure 5.66 Comparison of identified imaginary parts of describing functions  

 

 

 

As seen from Figure 5.65 and Figure 5.66, calculated real and imaginary parts of the 

describing functions are quite similar for different force combinations, therefore it 
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can be concluded that the forcing level used in the application of the DDF method 

does not have a significant effect on the identified nonlinearities. However, it is more 

important to compare the predicted nonlinear FRFs by using the nonlinearities 

identified employing different force combinations. 

 

5.8 Application of DDF Method for Obtaining Linear FRFs  

 

Using the describing function values obtained and the measured nonlinear FRF 

values, linear FRFs of the structure are predicted by applying DDF method for each 

force combination. For each force combination, there are two possibilities for 

obtaining the linear FRFs: Either of the low forcing or high forcing levels can be 

used. These possibilities are shown in Table 5.23. 

 

Table 5.23 Possible linear FRF calculation  

Force 

Combination 

Force Level Used to 

Calculate Linear FRF  

Case 

No 

1 
F=5N 1 

F=10.4N 2 

2 
F=5N 3 

F=15N 4 

3 

F=10.4N 5 

F=15N 6 

 

Both of the low forcing level or high forcing levels are used separately in the 

prediction of the linear FRF, in order to study the effects of choosing low or high 

forcing levels on the performance of the linear FRF prediction of the method. Six 

different linear FRF curves predicted are compared with the FRFs measured at 

F=0.5N in Figure 5.67 and Figure 5.68, and with each other in Figure 5.69.  
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                (a)         (b) 

Figure 5.67 Comparison of measured FRFs at F=0.5N with predicted linear FRFs by 

using (a) DDF method-case 1 (b) DDF method-case 2 

 

 

 

  
               (a)          (b) 

  
                (c)         (d) 

Figure 5.68 Comparison of measured FRFs at F=0.5N with predicted linear FRFs by 

using (a) DDF method-case 3 (b) DDF method-case 4 (c) DDF method-case 5 (d) 

DDF method-case 6 
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Figure 5.69 Comparison of measured FRFs at F=0.5N with predicted linear FRFs by 

using DDF method 

 

 

 

As can be observed from Figure 5.67 and Figure 5.68, FRFs measured at low forcing 

level (F=0.5N) deviate from the linear FRFs of the system which can be obtained by 

using the DDF method. It is observed from Figure 5.69 that there are slight 

differences at the resonance region for each of six linear FRFs obtained by using 

DDF method (deviation of the peak amplitude from the mean amplitude value is 

approximately 10%). Therefore we can conclude that force combinations and using 

either of low or high forcing levels to calculate linear FRFs do not have considerable 

effects on the predicted linear FRFs. 

 

5.9 Prediction of Nonlinear FRFs by Using Linear FRFs and Identified 

Nonlinearity Obtained from DDF Method 

 

In this section, by using the identified nonlinearity and linear FRFs by using the DDF 

method, the nonlinear FRFs at F=5N, F=10.4N and F=15N are regenerated for all the 

six different combinations. Firstly, the results are compared with nonlinear FRFs 

experimentally measured at F=5N. The results are given in Figure 5.70, Figure 5.71 

and Figure 5.72.  
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         (a)         (b) 

Figure 5.70 Comparison of measured FRFs at F=5N with predicted nonlinear FRFs 

by using (a) DDF method-case 1 (b) DDF method-case 2 

 

 

 

  
         (a)          (b) 

Figure 5.71 Comparison of measured FRFs at F=5N with predicted nonlinear FRFs 

by using (a) DDF method-case 3 (b) DDF method-case 4 
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             (a)          (b) 

Figure 5.72 Comparison of measured FRFs at F=5N with predicted nonlinear FRFs 

by using (a) DDF method-case 5 (b) DDF method-case 6 

 

 

 

From these results, it can be concluded that the regenerated nonlinear FRFs match 

pretty well with experimentally measured ones at F=5N. The nonlinear FRFs 

regenerated in 6 different cases are also compared with each other as well as with the 

experimental one and it is shown in Figure 5.73. 

 

 

 

 

Figure 5.73 Comparison of measured FRFs at F=5N with predicted nonlinear FRFs 

by using DDF method 
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As can be seen from Figure 5.73, around the resonance frequency there are 

discrepancies between 6 different nonlinear FRF curves and the experimental 

nonlinear FRF curve at F=5N.   

 

Similarly, the comparison of the regenerated and experimental nonlinear FRF curves 

at F=10.4N are given in Figure 5.74, Figure 5.75 and Figure 5.76. 

 

 

 

  
               (a)          (b) 

Figure 5.74 Comparison of measured FRFs at F=10.4N with predicted nonlinear 

FRFs by using (a) DDF method-case 1 (b) DDF method-case 2 

 

 

 

  
               (a)          (b) 

Figure 5.75 Comparison of measured FRFs at F=10.4N with predicted nonlinear 

FRFs by using (a) DDF method-case 3 (b) DDF method-case 4 
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           (a)          (b) 

Figure 5.76 Comparison of measured FRFs at F=10.4N with predicted nonlinear 

FRFs by using (a) DDF method-case 5 (b) DDF method-case 6 

 

 

 

From the results, it can be concluded that there is a good agreement between the 

regenerated nonlinear FRFs and measured ones at F=10.4N. The nonlinear FRFs 

regenerated in 6 different cases are also compared with each other as well as with the 

experimental one and it is shown in Figure 5.77. 

 

 

 

 

Figure 5.77 Comparison of measured FRFs at F=10.4N with predicted nonlinear 

FRFs by using DDF method 
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As can be seen from the Figure 5.77, around the resonance frequency there are slight 

discrepancies between 6 different regenerated nonlinear FRF curves and the 

experimental nonlinear FRF curve at F=10.4N.   

 

Finally, the comparison of the regenerated and experimental nonlinear FRF curves at 

F=15N are given in Figure 5.78, Figure 5.79 and Figure 5.80. 

 

 

  
                (a)         (b) 

Figure 5.78 Comparison of measured FRFs at F=15N with predicted nonlinear FRFs 

by using (a) DDF method-case 1 (b) DDF method-case 2 

 

 

 

  
               (a)          (b) 

Figure 5.79 Comparison of measured FRFs at F=15N with predicted nonlinear FRFs 

by using (a) DDF method-case 3 (b) DDF method-case 4 

 



188 

 

  
                (a)         (b) 

Figure 5.80 Comparison of measured FRFs at F=15N with predicted nonlinear FRFs 

by using (a) DDF method-case 5 (b) DDF method-case 6 

 

 

 

It is observed from the figures given above that, regenerated nonlinear FRFs match 

pretty well with experimentally measured ones at F=15N. The nonlinear FRFs 

regenerated in 6 different cases are also compared with each other as well as with the 

experimental ones and it is shown in Figure 5.81. 

 

 

 

 

Figure 5.81 Comparison of measured FRFs at F=15N with predicted nonlinear FRFs 

by using DDF method 
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As can be seen from Figure 5.81, regenerated nonlinear FRFs and the experimental 

nonlinear FRFs are similar at F=15N.  

 

If we compare the results shown in Figure 5.73, Figure 5.77 and Figure 5.81, the 

nonlinear FRFs regenerated in 6 different cases seem to match better with the 

experimental measurements as the force level increases. In order to have better 

observations, the similarity between the regenerated and experimental FRFs is 

quantified. At all forcing levels, FRAC values are calculated for all cases and the 

calculated FRAC values are given in Table 5.24.  

 

Table 5.24 FRAC values for DDF method 

Forcing 

Level  

DDF Method 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

5N 0.9631 0.9483 0.9681 0.9555 0.9624 0.9475 

10.4N 0.9669 0.9773 0.9665 0.9669 0.9803 0.9856 

15N 0.9763 0.9793 0.9711 0.9753 0.9803 0.9642 

 

From Table 5.24, it is observed that the FRAC values are very close to 1 for all 

cases. The highest FRAC value in each forcing level is obtained in a different case. 

However, there is no significant change in the FRAC values for the combinations 

used in DDF method. Furthermore, we cannot see a clear increasing trend in FRAC 

value as the force level increases, which is consistent with the observations made in 

the results shown in Figure 5.73, Figure 5.77 and Figure 5.81. Therefore we can say 

that, force combinations and the force level used to calculate linear FRF do not have 

a significant effect on the predicted FRFs. 

 

5.10 Comparison of PRD and DDF Method for Identifying Nonlinearity and 

Obtaining Linear FRFs 

 

In this section, firstly, real and imaginary parts of the describing functions identified 

from experimentally measured nonlinear FRFs by using PRD and DDF methods are 
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compared to each other. This comparison is shown in Figure 5.82 and Figure 5.83 for 

the real and imaginary parts of the describing functions, respectively. 

 

 

 

 

Figure 5.82 Comparison of real parts of describing functions identified by using 

DDF and PRD method 

 

 

 

 

Figure 5.83 Comparison of imaginary parts of describing functions identified by 

using DDF and PRD method 



191 

 

As can be seen from Figure 5.82 and Figure 5.83, real and imaginary parts of the 

describing functions identified from experimentally measured nonlinear FRFs by 

using PRD and DDF methods are pretty close to each other. However, it is seen that, 

the real and imaginary parts of describing functions identified from measured FRFs 

at 7 Hz by using PRD method deviates from the other identified nonlinearities, 

especially at higher displacement values. 

 

Secondly, predicted linear FRFs obtained by using PRD and DDF methods are 

compared in Figure 5.84. 

  

 

 

 

Figure 5.84 Comparison of predicted linear FRFs obtained by using PRD and DDF 

methods 
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As can be observed from Figure 5.84, there are some discrepancies between 

predicted linear FRFs obtained by using PRD and DDF methods especially around 

the resonance region. One of the reasons of these discrepancies is the differences in 

the identified imaginary part of the describing functions. Therefore we can say that 

the methods are more sensitive to damping nonlinearity predictions. 

 

As a final comparison, regenerated nonlinear linear FRFs calculated by using PRD 

and DDF methods at F=5N, F=10.4N and F=15N are compared. The comparison is 

given in Figure 5.85, Figure 5.86 and Figure 5.87 for F=5N, F=10.4N and F=15N, 

respectively. 

 

 

 

 

Figure 5.85 Comparison of predicted nonlinear FRFs by using PRD and DDF 

methods at F=5N 
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Figure 5.86 Comparison of predicted nonlinear FRFs by using PRD and DDF 

methods at F=10.4N 

 

 

 

 

Figure 5.87 Comparison of predicted nonlinear FRFs by using PRD and DDF 

methods at F=15N 
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As can be observed from Figure 5.85, Figure 5.86 and Figure 5.87, although there are 

discrepancies around the resonance region between FRF curves, in general, 

regenerated nonlinear FRFs seems to be similar to each other for all the forcing 

levels tested (F=5N, F=10.4N and F=15N). In order to make better observations, the 

similarity between the regenerated and experimental FRFs is quantified. FRAC 

values are calculated and given in Table 5.25, in order to compare the regenerated 

FRFs at all forcing levels. 

 

Table 5.25 FRAC values for PRD and DDF methods 

PRD 

Method 

Using 

Forcing 

Level 

5N 

 

Forcing 

Level 

10.4N 

 

Forcing 

Level 

15N 

7.5Hz 0.9823 0.9826 0.9843 

7Hz 0.9922 0.9945 0.9748 

7.125Hz 0.9820 0.9902 0.9864 

7.25Hz 0.9678 0.9788 0.9486 

7.375Hz 0.9429 0.9622 0.9492 

DDF 

Method 

Case 

No 

 

Case 

No 

 

Case 

No 

 5 0.9624 3 0.9665 1 0.9763 

6 0.9475 4 0.9669 2 0.9793 

 

At F=5N, only FRAC values of DDF method-cases 5 and 6 are compared to the ones 

of PRD method because, as mentioned earlier, DDF method-cases 5 and 6 use 

F=10.4N and F=15N to obtain the linear FRF and nonlinearity, therefore it is more 

meaningful to compare only FRAC values of DDF method-cases 5 and 6 with FRAC 

values of PRD method. At F=10.4N and F=15N, only FRAC values of DDF method-

cases 3 and 4 and DDF method-cases 1 and 2 are compared to the corresponding 

ones obtained by PRD method, because of a similar reason. As seen from Table 5.25, 

at all forcing levels, PRD method has higher FRAC values and therefore PRD 

method give a better prediction for nonlinear FRFs.  
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5.11 Model Updating of the FE Model of the Gun Barrel  

 

In this section firstly linear FE model of the gun barrel is constructed and then it is 

updated by using the linear FRFs obtained through the PRD method and by applying 

inverse eigensensitivity method. The updated nonlinear model of the gun barrel is 

constructed by using the identified nonlinearity and updated linear FE model of the 

system. Then the nonlinear FRFs of the system are calculated at different forcing 

levels by using the updated model. Finally, predicted and measured FRFs of the 

system are compared and thus the accuracy of the updated nonlinear model of the 

system is studied. 

 

5.11.1 FE Modeling of the Gun Barrel 

 

In order to model the gun barrel in FE analysis software, firstly the components and 

the mechanism of the gun barrel should be understood. Typical gun barrel of a battle 

tank is shown in Figure 5.88.  

 

 

 

 

Figure 5.88 Gun barrel of a battle tank 
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As seen from Figure 5.88, gun barrel is mainly composed of gun tube, thermal 

shrouds, shielding-armor and rear components of the mechanism. The main part of 

the rear components is the elevation motor assembly and which drives the gun barrel 

around the trunnion axis. The simplified model of the gun barrel system is shown in 

Figure 5.89. 

 

 

 

 

Figure 5.89 Simplified model of gun barrel system 

 

 

 

Simplified model of the gun barrel system is composed of turret, elevation motor 

assembly and gun tube. Elevation motor assembly is modelled by a linear stiffness 

which acts force along the gun tube axis. The link names and the joints between the 

links are given in Table 5.26 and Table 5.27, respectively.  

 

Table 5.26 Link names of the system 

Link 

No 

1 Turret 

2 Elevation Motor Assembly 

3 Gun Tube 
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Table 5.27 Joint locations in the gun barrel system 

Joint 

No 

1 Pin Joint Turret-Elevation Motor Assembly 

2 

Pin Joint            

(at trunnion 

axis) 

Turret-Gun Tube 

3 Pin Joint 
Gun Tube-Elevation Motor 

Assembly 

 

The geometric and material properties of the gun tube (Figure 5.90) of the gun barrel 

system are also given in Table 5.28. 

 

 

 

 

Figure 5.90 Gun Tube 

 

 

 

Table 5.28 Geometrical and material properties of the gun tube 

Material Carbon Steel (0.4 % Carbon) 

Modulus of Elasticity (GPa) 207 

Length (m) 6.6 

Inner Diameter (mm) 120 

 

In the FE model constructed, mass of the thermal shrouds are neglected. The 

shielding-armor and the rear components of the system are modelled as point masses 

with mass and inertia properties given in Table 5.29 [86]. 
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Table 5.29 Mass and inertia properties 

  Mass (kg) Inertia (kg.m
2
) 

Shielding-Armor 650 29.6 

Rear Components of the 

System 1845 667 

 

The stiffness of the elevation motor is taken as 140x10
6 

N/m by using similar 

elevation motor properties used to drive a different gun barrel system [86]. However, 

there is an uncertainty in the value of stiffness of the elevation motor, therefore this 

parameter will be used as the updating parameter in FE model updating. 

 

5.11.2 Mesh Sensitivity Analysis for the FE Model of Gun Barrel 

 

In this section before the construction of the initial FE model of the gun barrel in 

ANSYS, mesh sensitivity analysis is performed in order to see the effect of mesh 

sizing on the estimation of the fundamental natural frequencies of the structure.  

Constructed geometry and the FE model of the gun barrel used in the mesh 

sensitivity analysis is shown in Figure 5.91 and Figure 5.92, respectively. 

 

 

 

 

Figure 5.91 Constructed geometry of the gun barrel in ANSYS 
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Figure 5.92 FE model of the gun barrel 

 

 

 

Global mesh size for the FE model is varied between 0.1-0.01m, and for each of the 

global mesh size, modal analyses are performed in ANSYS. Fundamental natural 

frequency of the gun barrel is calculated for each case. In the analysis SOLID 186 

element is used. The variation of the fundamental natural frequency with respect to 

global mesh sizing and the fundamental modeshape is shown in Figure 5.93 and 

Figure 5.94, respectively. 

 

 

 

 

Figure 5.93 Variation of the fundamental natural frequency of the gun barrel with 

respect to global mesh sizing 
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Figure 5.94 Fundamental modeshape of the gun barrel  

 

 

 

As seen from Figure 5.93, fundamental natural frequency is converged 

approximately to 6.38 Hz after global mesh size reaches to approximately 0.05m. 

From the observations made for the mesh sensitivity analysis, mesh sizing of the 

initial FE model is selected as 0.05m. 

 

5.11.3 Model Updating of the FE Model of Gun Barrel System 

 

In this section, by using the observations made from mesh sensitivity analysis, initial 

linear FE model of the gun barrel is built in ANSYS and then the linear FE model is 

updated by employing the approach proposed. Since the best FRAC value is obtained 

for the PRD method using 7 Hz (shown in Section 5.10), the linear FE model of the 

gun barrel is updated by using the extracted linear FRFs employing the PRD method 

at 7 Hz and then applying inverse eigensensitivity method. Furthermore, FE model of 

the gun barrel is also updated by using ANSYS Design Exploration Optimization and 

the results obtained by two different updating techniques are compared with each 

other. In order to investigate the performance of the updated linear FE model, 

predicted FRFs are compared with the measured ones. Using the identified 

nonlinearity and updated linear FE model, updated nonlinear mathematical model of 

the gun barrel system is built. Finally, in order to demonstrate the accuracy of the 
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updated nonlinear model of the system, predicted and measured FRFs of the gun 

barrel are compared at different forcing levels. 

 

In the initial FE model, the stiffness of the elevation motor is taken as 140x10
6 
N/m. 

The fundamental natural frequency and the driving point FRF at the tip of gun barrel 

(node 1 in the experiments) in transverse direction are calculated in ANSYS by using 

the FE model. In ANSYS, sufficient number of modes (100) is used to calculate 

FRFs, in order to minimize truncation error. Comparisons of the fundamental natural 

frequency and the linear FRFs obtained from FE analysis with those obtained from 

experiments by using PRD method are given in Table 5.30 and Figure 5.95, 

respectively. 

 

Table 5.30 Comparison of the fundamental natural frequency obtained from initial 

FE model with the one obtained from experimental FRFs by using PRD method 

Mode 

Number 

Natural 

Frequency (PRD 

Method) (Hz) 

Natural 

Frequency 

(Initial FE 

Model) (Hz) 

Error 

(%) 

1 7.46875 6.375 -14.64 

 

 

 

 

Figure 5.95 Comparison of the linear FRFs obtained from initial FE model with 

those obtained from experimental FRFs by using PRD method 
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As can be seen in Table 5.30 and Figure 5.95, there are considerable differences 

between two results; therefore the FE model of the gun barrel needs to be updated. 

As mentioned earlier there is a considerable uncertainty in the elevation motor 

stiffness, therefore elevation motor stiffness is selected as the updating parameter in 

the FE model. For the selected parameter, element of the sensitivity matrix is 

calculated by using the forward difference approximation with O(h) which is given 

by Equation (5.2), at each iteration step.  

 

 
' 1( ) ( )
( ) i i

i

r p r p
r p

h

 



  (5.2) 

 

After 9 iterations, stiffness of the elevation motor is converged to 499x10
6 
N/m. The 

convergence graph of stiffness of the elevation motor is given in Figure 5.96. 

 

 

 

 

Figure 5.96 Convergence of the stiffness of the elevation motor 

 

 

 

The same stiffness value (499x10
6 

N/m) is also found by using ANSYS Design 

Exploration Optimization. Using the elevation motor stiffness value, the FE model is 
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updated. Then, the fundamental natural frequency of the updated linear model of the 

gun barrel is calculated and compared with that of the initial FE model, as well as 

with the fundamental natural frequency obtained from experiments by using PRD 

method, in Table 5.31. 

 

Table 5.31 Comparison of the fundamental natural frequency obtained from initial 

and updated FE models with the value obtained from measurements by using PRD 

method 

Mode 

Number 

Natural 

Frequency 

(PRD 

Method) 

(Hz) 

Natural 

Frequency 

(Initial FE 

Model) (Hz) 

Error 

(%) 

Natural 

Frequency 

(Updated FE 

Model) (Hz) 

Error 

(%) 

1 7.46875 6.375 -14.64 7.46875 0.00 

 

As can be seen in Table 5.31, the fundamental natural frequency of the gun barrel is 

perfectly estimated by using the updated FE model.  

 

In order to see the performance of the updated FE model in the prediction of other 

natural frequencies which are not used in updating the FE model, the second and 

third natural frequency of the gun barrel in transverse direction are calculated by 

using the updated linear FE model and it is compared with those obtained from the 

initial FE model, as well as with the measured ones (Table 5.32). 

 

Table 5.32 Comparison of the second and third natural frequency obtained from 

initial and updated FE models with experimental values 

Mode 

Number 

Natural 

Frequency 

(Experimental) 

(Hz) 

Natural 

Frequency 

(Initial FE 

Model) (Hz) 

Error 

(%) 

Natural 

Frequency 

(Updated FE 

Model) (Hz) 

Error 

(%) 

2 22.203 17.777 -19.94 21.816 -1.742 

3 52.191 43.897 -15.89 45.694 -12.45 
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As can be seen in Table 5.32, there is a considerable improvement in the calculated 

value of the second natural frequency, and only a slight improvement in the 

calculated value of the third natural frequency of the gun barrel. 

 

In Figure 5.97, the linear FRFs obtained from experimentally measured nonlinear 

FRFs by using PRD method are compared with those calculated from the initial and 

updated FE models of the gun barrel. As can be seen in Figure 5.97 again a 

considerable improvement is obtained for the updated FE model. 

 

 

 

 

Figure 5.97 Comparison of the linear FRF obtained by using PRD method from 

experimentally measured nonlinear FRFs, with those calculated from, initial and 

updated FE models  
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Since the ultimate goal is to have accurate nonlinear response predictions from the 

updated FE model of the gun barrel, nonlinear FRFs experimentally measured at 

F=5N, F=10.4N and F=15N are compared with those obtained from the initial and 

FE updated models (composed of original and updated FE models, respectively, 

combined with identified nonlinearity). The results are given in Figure 5.98, Figure 

5.99 and Figure 5.100 for the forcing levels F=5N, F=10.4N and F=15N, 

respectively. 

 

 

 

 

Figure 5.98 Comparison of FRFs obtained from initial and updated models with the 

experimental ones for F=5N  
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Figure 5.99 Comparison of FRFs obtained from initial and updated models with the 

experimental ones for F=10.4N 

 

 

 

 

Figure 5.100 Comparison of FRFs obtained from initial and updated models with the 

experimental ones for F=15N 
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As can be observed in Figure 5.98, Figure 5.99 and Figure 5.100, considerable 

improvements are obtained with the updated FE model of the structure at all forcing 

levels. If the peak responses of the nonlinear FRF curves are observed, better match 

is obtained with the updated FE model at F=15N. From these results it can be 

concluded that, the developed model updating approach for nonlinear system is very 

successfully applied to a complicated real engineering problem (gun barrel of a battle 

tank) and a very good nonlinear model of the gun barrel system is constructed for the 

fundamental mode of the system. 
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CHAPTER 6 

 

 

6 SUMMARY AND CONCLUSION 

 

 

 

In this thesis, a new model updating technique for nonlinear structures having local 

nonlinearities is developed. As it is not easy to accurately model nonlinearity in a 

structure theoretically, it is a usual practice to identify nonlinearity from 

experimental measurements. Still the linear part of the model may need to be updated 

when theoretical and experimental responses do not mach. When there are multiple 

nonlinearities including friction in a structure; it is not possible to obtain the linear 

FRF of the system accurately by using low forcing levels in the experiments. In this 

thesis, a model updating approach for nonlinear structures having multiple 

nonlinearities including friction type of nonlinearity is presented. The approach is 

based on the method developed (PRD method) to calculate linear FRFs of a 

nonlinear structure by using nonlinear FRFs measured at various forcing levels. The 

method simultaneously identifies multiple nonlinearities in the system parametrically 

as well. Although there are various nonlinear identification methods, the method 

proposed here has the feature of extracting the FRFs of the underlying linear system 

while identifying nonlinearity in the system. After obtaining linear FRFs, inverse 

eigensensitivity method is employed to update the FE model of the linear part of the 

nonlinear structure. 

 

Firstly, verifications of the PRD method for nonlinear lumped SDOF, MDOF 

systems and a nonlinear structure are demonstrated by using simulated experimental 

data, and thus the accuracy of the method is studied. It is clearly observed that for the 

lumped case studies with and without polluting data, PRD method is very successful 

in the estimation of nonlinear parameters and linear FRFs, even for systems with 

multiple nonlinearities including friction type of nonlinearity. As a more complex 
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case study, the application of PRD method to a nonlinear experimental structure (T-

beam which has cubic stiffness and dry friction nonlinearities) is given. Again, in this 

case study, simulated experimental results are used. In order to simulate the 

nonlinear response of the system, first FE model of the linear part of the T-beam is 

built in ANSYS, and linear FRFs are obtained by performing modal analysis in 

ANSYS. Then using the nonlinear parameters for cubic stiffness and dry friction and 

calculated linear FRFs, nonlinear responses are obtained by employing the harmonic 

balance method. The calculated FRF values are polluted and used as measured 

nonlinear FRF data. Then employing PRD method, the nonlinearities in the system 

are identified and the FRFs are calculated. It is observed that identified nonlinearities 

and calculated linear FRFs match quite well with actual values. The effect of the 

excitation frequency (at which measurements are made) on the accuracy of PRD 

method is also investigated by using the nonlinear T-beam. By using PRD method at 

a different excitation frequency each time, the values of the nonlinear parameters are 

calculated and it is shown that, more accurate identification is possible when the 

excitation frequency is closer to the resonance of the underlying linear system. 

Although there are some exceptions, in general, the error in the estimated nonlinear 

parameter values tends to increase when excitation frequency deviates from the 

resonance frequency. As a final case study, in order to compare the proposed PRD 

method with the recently developed DDF method which identifies nonlinearity and 

simultaneously extracts the linear FRFs, the value of nonlinear parameter is 

calculated for a SDOF system with cubic stiffness nonlinearity. When the results 

obtained from PRD and DDF method are compared, it is seen that, better estimates 

are obtained for the nonlinearity by using PRD method for that case study.  When 

only the results of DDF method is investigated, it is also observed that, worst 

estimation of the nonlinear parameter for the DDF is obtained for the force set where 

the difference between the low and high force used in DDF method is minimum. 

 

After verifying the accuracy of PRD method by using simulated case studies, PRD 

method is applied to a real test system (T-beam) for model updating of a real 
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nonlinear system. Firstly, applying PRD method, both linear FRFs and the 

nonlinearities in the system are obtained from experimentally measured nonlinear 

FRFs. In order to demonstrate the effect of using different frequencies of excitation 

on the performance of PRD method, six different excitation frequencies are used. By 

applying PRD method that uses each of these frequencies at a time, nonlinearities in 

the structure are identified in the form of describing functions, and linear FRFs are 

obtained. It is seen that linear FRFs obtained using the describing functions identified 

from the tests conducted at different frequencies are not considerably different from 

each other, even though identified imaginary parts of the describing functions from 

these tests are rather different from each other. Linear FE model of the system 

modeled in ANSYS is updated for the first mode of the structure by employing the 

inverse eigensensitivity method and also by using the linear FRFs calculated through 

PRD method. It is observed that very good match is obtained between the results of 

updated model and experimental ones. Combining the updated linear FE model with 

the identified nonlinearity, updated nonlinear model of the T-beam is obtained. It is 

shown that, considerable improvements are obtained for the FRFs calculated with the 

updated model for all forcing levels. Consequently, the proposed method is 

successfully applied to a real test system and the accuracy of the method is verified 

by using this set up.  

 

As a next experimental work, for the same T-beam, linear FRFs are obtained from 

experimentally measured nonlinear FRFs for the first, second and third global modes 

of the test system by using PRD method. The linear FE model of the test structure is 

updated for the first three global modes of the structure by using the extracted linear 

FRFs employing first the PRD method and then using ANSYS Design Exploration 

Optimization. From these sets of experiments it is observed that the linear FRFs of 

the system that are obtained by applying the PRD method proposed, are not 

accurately represented by the FRFs measured at low forcing level (F = 0.05N). As it 

was shown in Chapter 3 that PRD method yields the FRFs of the underlying linear 

system in a nonlinear system accurately, it can be concluded even a very low forcing 
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level is used in the experiments, the measured FRFs at this low forcing level may not 

represent the linear FRFs accurately.  

 

As a next study on the T-beam, the effect of using different finite difference formula 

on the model updating performance is investigated. In order to calculate the 

sensitivities, different numerical differentiation formulas are used. It is seen that 

although the number of iteration is same for all the cases, total computation time is 

smaller for the updating procedure that uses the first order forward and backward 

difference formula. So it is concluded that, in the model updating of FE models, 

forward or backward difference formula should be used in the sensitivity calculations 

in order to reduce computational effort. 

 

Finally, model updating approach proposed is applied to a real engineering structure, 

which is the gun barrel of a battle tank. In the first set of experiments, the structure is 

excited with random forcing. Since the fundamental natural frequency of the gun 

barrel is under consideration, it is clearly shown that as the force level increases in 

the random excitation tests damping value of the fundamental mode increases and 

natural frequency decreases. From the results of random excitation tests, the 

nonlinearity in the system is clearly detected. In order to study the effect of using 

different frequencies of excitation on the performance of PRD method, once again, 

different excitation frequencies are used. By applying PRD method that uses each of 

these frequencies at a time, nonlinearities in the structure are parametrically 

identified in the form of describing functions, and also the linear FRFs are obtained. 

It is observed that FRFs measured at low forcing levels do not accurately represent 

the linear FRFs of the system. However, they can be obtained by using the PRD 

method proposed. FRFs measured at even a very low forcing level may not represent 

the linear FRFs accurately. It is also observed that linear FRFs obtained through PRD 

method which use the describing functions identified from the tests made at different 

frequencies have discrepancies around the resonance (deviation of peak amplitude 

from the mean amplitude value is approximately less than 9%). Based on these 
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observations, it can be concluded that if the excitation frequency used in PRD 

method is approximately in the 5% range of the resonance of the underlying linear 

system, there are no significant differences in the predicted linear FRFs. As a further 

study, nonlinearity of the gun barrel is identified by using DDF method. It is 

observed that the real and imaginary parts of the describing functions calculated by 

using different force combinations are very similar. Therefore it is concluded that 

forcing levels used in the method do not have a significant effect on the identified 

nonlinearities. Although it is also observed that the FRF values at the resonance 

region are slightly different for each of six linear FRFs obtained by the using DDF 

method, it can be concluded that force combinations and using either of low or high 

forcing levels to calculate linear FRFs do not have a considerable effect on the 

predicted linear FRFs. From the study of the nonlinear FRFs regenerated employing 

the identified nonlinearity and linear FRFs obtained from DDF method, it is observed 

that force combinations and using either of low or high forcing levels to calculate 

linear FRFs do not have a considerable effect on the predicted nonlinear FRFs. When 

the regenerated nonlinear FRFs obtained from PRD and DDF method are compared 

with experimentally measured nonlinear FRFs, by using FRAC values, it is observed 

that PRD method has higher FRAC values and therefore it is concluded that PRD 

method gives better results, as far as regeneration of nonlinear FRFs from identified 

nonlinearities and predicted linear FRFs are concerned. 

 

After obtaining linear FRFs through the PRD method, linear FE model of the gun 

barrel constructed in ANSYS is updated by using inverse eigensensitivity method. It 

is observed that the fundamental natural frequency of the gun barrel is perfectly 

estimated by using the updated FE model. Furthermore there is a considerable 

improvement in the calculated value of the second natural frequency, and a slight 

improvement in the calculated value of the third natural frequency of the gun barrel. 

Then the updated nonlinear model of the test structure is constructed by using the 

identified nonlinearity and updated linear FE model of the system. Finally, predicted 

and measured FRFs of the test structure are compared at different forcing levels and 
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it is seen that considerable improvement is obtained for the updated FE model of the 

gun barrel at all forcing levels.  

 

In conclusion the model updating approach is validated with different simulated case 

studies, a real experimental test system and an engineering structure. The main 

advantage of PRD method is that, for the application of the method there is no need 

for any vibration controller as in the cases of constant forcing or constant amplitude 

testing over a certain frequency range. Furthermore, the method simultaneously 

identifies multiple nonlinearities in the system parametrically and it has a feature of 

extracting the FRFs of the underlying linear system simultaneously. It is thus 

concluded that the method proposed can successfully be applied to complex 

engineering problems for obtaining accurate nonlinear models. 

 

As a future work, model updating of nonlinear structures that have distributed 

nonlinearities over the structure rather than local nonlinearities may be studied. In 

this case, all the elements of the nonlinear FRF matrix need to be obtained 

experimentally, which may be a difficult task. Therefore a detailed investigation 

would be necessary to handle this difficulty. Also, as a further improvement, 

rotational DOFs can be included in the formulation for the updating of more complex 

structures. Finally, the possibility of using random excitation or impact testing should 

be investigated to obtain accurate linear FRFs of nonlinear structures. 
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