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ABSTRACT

DEVELOPMENT OF A MODEL UPDATING TECHNIQUE FOR
NONLINEAR SYSTEMS

Canbaloglu, Guveng
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. H. Nevzat Ozgiiven
September 2015, 264 pages

In structural dynamics, obtaining an accurate numerical model is very crucial.
However there are usually discrepancies between calculated dynamic behavior from
numerical models and the ones obtained experimentally, and therefore it will be
necessary to update the numerical models. In real life applications, structures usually
have nonlinearity, and for nonlinear structures, in order to update the numerical
model, firstly nonlinearity in the structure can be identified, and then updating
procedure may be applied to the linear part of the model. Application of such an
approach may not be straightforward, especially for nonlinear systems having

multiple nonlinearities including friction type of nonlinearity.

In this thesis, a new model updating technique for nonlinear structures that have
multiple nonlinearities including friction type of nonlinearity is developed. The
method identifies multiple nonlinearities in the structure and simultaneously extracts
the FRFs of the underlying linear system. The accuracy of the method developed is
first verified by using nonlinear lumped SDOF and MDOF systems, as well as with

nonlinear structure using simulated experimental data. Then, as experimental studies,
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method developed is applied to a real test system and finally to an engineering
system (nonlinear gun barrel of a battle tank). It is shown that, the method developed
can be successfully applied both to a test system and to a complex engineering
problem for obtaining an accurate nonlinear model. In conclusion, the validation and
application of the model updating method developed for nonlinear structures are
demonstrated successfully with both simulated case studies and experimental real life

applications.

Keywords: Nonlinear Model Updating, Nonlinear Identification, Nonlinear Systems,

Numerical Model
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Oz

DOGRUSAL OLMAYAN YAPILAR iCiN MODEL GUNCELLEME
YONTEMI GELISTIiRILMESI

Canbaloglu, Guveng
Doktora, Makina Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. H. Nevzat Ozgiiven
Eylal 2015, 264 sayfa

Yapisal dinamikte, dogru bir sayisal model elde etmek olduk¢a onemlidir. Ancak
sayisal modellerden hesaplanan dinamik davraniglarla deneyden elde edilmis
sonuglar arasinda her zaman farkliliklar mevcuttur, bu yilizden sayisal modellerin
guncellenmesi gerekmektedir. Ger¢ek hayat uygulamalarinda, yapilar g¢ogunlukla
dogrusal olmayan oOzelliklere sahiptir ve dogrusal olmayan yapilar icin, sayisal
modelleri gilincelleyebilmek i¢in ilk once yapidaki dogrusal olmayan Ozellikler
belirlenebilir, daha sonra da giincelleme prosedirii modelin dogrusal olan kismina
uygulanabilir. Bu yaklagimin uygulamasi, 6zellikle siirtiinme tipi dogrusal olmayan
ozellik iceren ¢oklu dogrusal olmayan Ozelliklere sahip sistemlerde ¢ok basit

olmayabilir.

Bu tezde, siirtlinme tipi dogrusal olmayan 6zellik igeren ¢oklu dogrusal olmayan
Ozelliklere sahip dogrusal olmayan yapilar igin yeni bir model glincelleme yontemi
gelistirilmigtir. 'YOntem, yapidaki dogrusal olmayan Ozellikleri belirleyip ayni
zamanda yapinin dogrusal kisminin frekans tepki fonksiyonlarini da ¢ikarmaktadir.

Gelistirilen yontemin dogrulugu ilk olarak, gercek olmayan deneysel veri kullanan
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dogrusal olmayan tek ve ¢ok serbestlik derecesine sahip sistemlerle ayn1 zamanda da
dogrusal olmayan bir yapryla gosterilmistir. Deneysel calisma olarak, gelistirilen
yontem once gercek bir test sistemine son olarak da bir mihendislik sistemine (savas
tank1 namlusu) uygulanmistir. Gelistirilen yontemin, bir test sistemine ve karmasik
bir muhendislik sistemine, dogru bir dogrusal olmayan model elde etmek igin
basariyla uygulanabildigi gosterilmistir. Sonug olarak, dogrusal olmayan yapilar igin
gelistirilmis olan model giincelleme yonteminin dogrulamasi ve uygulamasi hem
sayisal calismalarla hem de deneysel gercek hayat uygulamalariyla basariyla

gosterilmistir.

Anahtar Kelimeler: Dogrusal Olmayan Model Giincelleme, Dogrusal Olmayan

Eleman Tanimlama, Dogrusal Olmayan Modeller, Sayisal Model
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CHAPTER 1

INTRODUCTION

1.1 Structural Model Updating

Structural modeling is one of the key steps in the design stage of a system. There is
always iteration in the design stage, therefore it is important to have accurate
structural model of the system so that predictions can be made for different design
alternatives before any production. Finite element (FE) method is the most common
numerical method used for predicting and simulating the dynamic response of
engineering structures. Once the design is completed, the prototype can be
experimentally investigated. However, due to the cost of making experiment at all
possible forcing conditions, it is a common practice to verify the mathematical model
used in design stage by comparing the simulated responses with experimentally
measured ones. However, there are always discrepancies between the dynamic
behavior of the structures obtained by the test and simulation due to the assumptions
used in FE model. FE analysis may yield inaccuracies, mainly due to the modelling
errors. If the modal analysis results are considered, the aim is to obtain either the
frequency response functions (FRFs) or the modal properties (natural frequency,
modeshapes, modal damping) of the structure. However, the results obtained by the
FE analysis may have similarities with the experimental results up to a certain limit.
Therefore, the FE models have to be updated by using the experimental test data.
With the comparison and correlation of experimental and simulation results,
numerical changes are applied to original system matrices or to updating parameters
selected in the FE model, so that the FE analysis results match better with the

experimental results.



Most of the structures in engineering problems have nonlinear behaviors therefore
this makes accurate structural modelling much more difficult. It is more complex to
deal with nonlinear structure both experimentally and analytically. In order to have
accurate analytical model of nonlinear structures, experimental system identification
plays a key role. In order to apply model updating techniques developed for linear
systems to nonlinear structures and to correct linear system matrices, linear dynamic
behaviors of the structure have to be experimentally obtained which may require
identification of nonlinearity first. However, for systems having complex
nonlinearities including friction type of nonlinearity, obtaining linear dynamic
behavior and also identifying nonlinearity simultaneously is not a straight forward
task. Yet, if the linear dynamic behavior can be extracted, then by applying linear
model updating techniques, FE models can be corrected. Thus using these linear FE
models and identified nonlinearities, updated nonlinear models of the structure can

be constructed.

1.2 Literature Survey

In the literature there are various model updating techniques proposed, in order to
have more accurate mathematical models. However most of these methods can be
applicable only to linear systems. Dascotte and Vanhonacker [1] developed a
computer code in order to update the FE models automatically. Sensitivity of natural
frequencies was used in the updating method and iterative solution method was
employed. Nalitolela et al. [2] presented a model updating technique which is
capable of solving the problems arising from incomplete modes and unmeasured
degrees of freedom. Roy et al. [3] studied an updating method which is based on
direct energy approach. Modal expansion was applied to experimental modes and
those expanded modes were used to correlate the kinetic and strain energies of the
FE model to the experimental results. Brughmans et al. [4] used sensitivity based
model updating method, and tuned FE model of an aircraft by using the ground

vibration test results of the aircraft. Link and Zhang [5] investigated the effect of



using different residual error vectors on the performance of the updating method.
This study was demonstrated on a real test structure. Ibrahim et al. [6] used direct
updating method for the model updating of FE models. In the updating procedure,
there was no modal identification and mode pairing; only input and output
measurements were used. Aiad et al. [7] studied direct model updating approach and
mass and stiffness matrices were updated globally based on the modeshapes and
natural frequencies obtained experimentally. Jung and Ewins [8] used inverse
eigensensitivity method for model updating and investigated the effect of
measurement noise on the method by studying different noise levels. In order to
investigate the potential errors causing the discrepancies between analytical and
experimental normal modes, Miccoli and Agostoni [9] used the sensitivity based
model updating for correlating the experimental and analytical models of a plate with
stiffeners at its edges. Dascotte et al. [10] studied a sensitivity based model updating
method. The stability problem encountered during the solution was solved by using
different scaling factors for sensitivity matrix. Imregun et al. [11] presented a model
updating method which is based on FRF data. The proposed method was investigated
under different conditions such as incompleteness of the experimental data, noisy
experimental measurements or excitation direction used in the experiments. Then in
a later study this FRF based model updating method was applied to a plate-beam like
structure by Imregun et al. [12]. Hemez [13] presented sensitivity based updating
method in order to correlate the damped analytical and experimental structures.
Lenoir et al. [14] proposed a model updating technique which uses experimental
forced responses. Mottershead et al. [15] updated FE model of an aluminum space
frame by using various updating parameter sets and the results were compared and
investigated for each of different updating parameter sets. In a later work, a new
method was developed for structural model updating and identification of joint
stiffness by Li [16]. Modak et al. [17] presented a constrained optimization based
model updating method and studied the updating of a FE model of a structure using
experimental modal data and its use for the prediction of the effects of structural

modifications. Kim and Park [18] proposed a multi objective optimization technique



for the FE model updating in order to improve the parameter selection in the
updating procedure. Cottin and Reetz [19] investigated the effect of number of
natural frequencies and accuracy of measurement to obtain reliable model parameter
estimation for a given set of model parameters for the dynamic model updating. Lin
[20] used and further developed a FRF based model updating method to identify
damping matrices of structural systems, as well as mass and stiffness matrices for
proportionally and non-proportionally damped structures. Carvalho et al. [21]
proposed a new method which is capable of handling the difficulty of the incomplete
measured data for the updating of FE matrix in an undamped model. Arora et al. [22]
studied on the updating of the FE model using the FRF data with damping
identification using complex modal data. Firstly, FRF based model updating
technique was employed to update the mass and stiffness matrices, then the damping
was identified by using updated mass and stiffness matrices. In their later study,
Arora et al. [23] made a detailed comparison of two approaches of obtaining damped
FE model updating methods with the objective that the FRFs obtained from damped
updated FE models is able to predict the measured FRFs accurately. Kozak et al. [24]
presented a new model updating method based on minimization of an index called
Miscorrelation Index (MCI). This index mainly localizes the coordinates in FE
model that has errors. The proposed model updating method was demonstrated on
simulated and real test cases. Tarazaga et al. [25] presented the modified Quadratic
Compression Method in order to update the mass and stiffness matrices of a model.
Adhikari and Friswell [26] proposed an approach to take account the distributed
nature of the parameters to be updated by expressing the parameters as spatially
correlated random fields. In the approach, those fields were expanded in a spectral
decomposition which is Karhunen-Loeve expansion. In a more recent study, Zapico-
Valle et al. [27] presented an updating method for FE models by minimizing an error
function defined in the time domain using an adaptive sampling algorithm for the
parameters to be updated. Mottershead et al. [28] presented a basic introduction to
the most important procedures of computational model updating based on the

sensitivity approach, including tutorial examples and gave a detail literature survey.



Yuen [29] studied on the model updating for mechanical or structural systems in case
of incomplete modal measurements and applied the approach to a 1600 degrees of
freedom spring mass system to demonstrate the efficiency of the proposed approach
for large structure. Then in a very recent study, Sipple and Sanayei [30] proposed a
FRF based FE model updating method to make parameter estimation of the
University of Central Florida Grid Benchmark Structure and demonstrated the
usefulness of the presented approach. Very recently, Boulkaibet et al. [31] studied
the use of the Shadow Hybrid Monte Carlo (SHMC) in model updating of structures.
They investigated the efficiency and accuracy of the SHMC method by applying the

method to two real structures.

In engineering problems there are usually nonlinearities in structures; therefore it is
vital to have model updating methods for nonlinear structures as well. In literature
there are different studies performed to update directly the nonlinear model of a
structure. Hasselman et al. [32] presented Principal Components Analysis for model
correlation and updating of nonlinear structures. In the Principal Components
Analysis mainly singular value decomposition of response time histories is
performed. Principal Components Analysis was also used by Anderson et al. [33] for
the correlation of experimental and numerical results and for the updating of model
parameters of a nonlinear FE model using crash test data. In a later study, the
minimization of the parameter correlation in the model updating of nonlinear
structures was studied by Anderson and Hasselman [34]. Burton et al. [35] correlated
time responses of a nonlinear structural model with the experimental data and
investigated the efficiency of model reduction for the model validation. Lenaerts et
al. [36] studied the use of the proper orthogonal modes of displacements for the
identification of parameters of nonlinear dynamical structures with an optimization
procedure based on the difference between the experimental and simulated proper
orthogonal modes. Hemez and Doebling [37] emphasized the need of validating
numerical models based on time domain data for nonlinear, transient, structural

dynamics by using various numerical and experimental test cases in their study. In a



later study, Meyer and Link [38] proposed a method for the identification of local
nonlinear stiffness and damping parameters and updated the selected linear and
nonlinear parameters of an initial model by minimizing the differences between
analytical and experimental responses. In a more recent work, Isasa et al. [39]
presented an approach which is based on multi-harmonic balance method and

extended constitutive relation error for the updating of nonlinear models.

For nonlinear structures, it is possible to employ the model updating techniques
developed for the linear systems, provided that the dynamic characteristics of the
linear part of the structure are extracted, which may require identification of
nonlinearity in the system first. However, for systems having complex nonlinearities
including friction type of nonlinearity, extraction of linear dynamic characteristics
and at the same time identifying nonlinearity is not a straight forward task. In early
1980’s Masri et al. [40] used the restoring force surface method for the identification
of nonlinearity in the nonlinear MDOF systems. Crawley et al. [41, 42] proposed a
force state mapping method which is very similar to restoring force surface method
for the identification of nonlinear elements in structures and joints. Yasuda et al. [43]
proposed a new method for identifying nonlinear MDOF systems based on harmonic
balance principle for determining the unknown coefficients of the polynomials which
represent the nonlinearity in the system. In early 1990’s Benhafsi et al. [44] used
describing function method to parametrically identify the nonlinearities in structures.
Rice [45] presented an approach for nonlinear identification by using an equivalent
linearization approach for the analysis of weakly nonlinear structures. In the middle
of 1990’s, Soize [46] studied the identification of a SDOF nonlinear system driven
by a broad-band or a colored Gaussian noise by employing a stochastic linearization
approach with random parameters which approximate the power spectral density
function. Thouverez and Jezequel [47] studied the identification of localized
nonlinearity in structures by using an approach which is based on the Volterra
kernels. Richards and Singh [48] proposed a spectral method which is based on a

reverse path formulation for the identification MDOF nonlinear systems. They made



some modifications on reverse path formulation in order to use it for MDOF
nonlinear systems. In a later work, Kerschen et al. [49] investigated the performance
of the restoring force surface method for the identification of nonlinear systems by
studying the vibrations of a fixed-free beam with two different kinds of nonlinearity.
Ozer et al. [50] proposed a method for localization of nonlinearity and parametric
identification of the nonlinearity. Then in a later study, Ozer et al. [51] extended their
previous study and used describing functions and Sherman-Morrison method to
identify the nonlinearity in structures. Kerschen et al. [52] used restoring force
surface method to identify the nonlinearities in a system consists of a wire rope
isolator maintained between a base and load mass. In a later study Bellizzi and
Defilippi [53] presented a technique to identify the parameters involved in the
nonlinear terms of randomly excited mechanical systems. Thothadri et al. [54]
extended the nonlinear system identification method which is based on harmonic
balance to MDOF systems and employed the method to both theoretical and
experimental systems. Muravyov and Rizzi [55] proposed a method for determining
the nonlinear modal stiffness coefficients for a FE model. Kerschen et al. [56]
studied conditioned reverse path method to identify the dynamic characteristics of a
continuous nonlinear system consisting of an experimental cantilever beam with a
geometrical nonlinearity. Haroon et al. [57] proposed a technique for the
identification of nonlinear mechanical systems without using an input measurement
data. They combined time and frequency domain techniques to identify a nonlinear
system. In a later study, Kerschen et al. [58] presented a very detailed literature
survey in which more than 400 papers were cited for nonlinear system identification.
Spottswood and Allemang [59] proposed a method for obtaining nonlinear modal
models and identifying nonlinear parameters. They demonstrated the application of
the approach on a fixed-fixed beam test structure. Pai and Palazotto [60] presented an
amplitude and frequency modulation method (AFMM) based on empirical mode
decomposition (EMD) and Hilbert-Huang transform (HHT), and developed a
perturbation analysis for the identification of nonlinearities and system parameters

by analyzing transient and steady-state responses. Marchesiello and Garibaldi [61]



used nonlinear subspace identification (NSI) method for the identification of
clearance type of nonlinearity by applying the method to an experimental problem.
Xueqi et al. [62] presented an approach which is based on direct parameter
estimation and Legendre series approximation in order to identify parameters for a
nonlinear system with symmetrical piecewise linear restoring forces. Worden et al.
[63] applied various time and frequency based nonlinear identification methods to a
damper of an automobile. Carrella and Ewins [64] proposed a method which is based
on measuring different amplitudes of vibration response for identifying and
quantifying nonlinearities in structures. In a more recent study by Arslan et al. [65],
two different methods which are capable of identifying nonlinearities in structures
were introduced and applied on a nonlinear test system. They used low forcing level
excitations in the experiments in order to obtain the linear FRFs of the structure.
Jalali et al. [66] applied the describing function inversion method to a clamped beam
in order to identify the nonlinearities in the structure. In a recent study, Aykan and
Ozgiiven [67] proposed a method based on describing function inversion for
detection, localization, characterization and parametric identification of nonlinear
elements by using incomplete experimental data. By using describing function
inversion, identification of the restoring force of multiple nonlinearities which exist
at the same location was performed. Very recently, Eriten et al. [68] presented
nonlinear system identification (NSI) approach in which experimental measurements
are combined with slow-flow dynamic analysis and empirical mode decomposition.
Then the method reconstructs the dynamics through reduced-order models for

investigating effects of frictional connections in bolted structures.

When multiple nonlinearities exist in a structure together with friction type of
nonlinearity, it will not be possible to accurately measure the linear FRFs at low
levels of force excitation, and furthermore it will be more difficult to identify
nonlinearity in the system. Aykan and Ozgiiven [69] presented an approach (later
called as Direct Nonlinearity by Describing Functions (DDF) method) for the

nonlinear identification by using nonlinear FRF measurements, and using



nonlinearity matrix they demonstrated that FRFs measured at low forcing levels may
deviate from the linear FRFs of the structures. The most recent publications in this
area include the papers written from this present thesis study: A new method named
Pseudo Receptance Difference Method (PRD) for obtaining linear FRFs in order to
update linear model parameters of a nonlinear structure having multiple
nonlinearities including friction type of nonlinearity is presented in references [70]
and [71]. Very recently, the proposed method is experimentally validated by

applying the approach to a real nonlinear T-beam test structure [72].

1.3 Motivation

ASELSAN Inc. is the largest research and development defence industry company in
Turkey. Main mission of ASELSAN Inc. is to design, manufacture and integrate
military products by using its own research and development capabilities. One of the
critical research areas of ASELSAN Inc. is to design stabilized weapons, turret or
targeting systems and to integrate these systems to different platforms such as
helicopters, aircrafts and battle tanks. Since integration of these systems may change
the dynamic characteristics of the platforms, and also since the systems have various
moving components which make the dynamic modelling very complex, integrations
of such systems to these platforms are very challenging. Examples of such

integration projects are shown in Figure 1.1 and Figure 1.2.

Figure 1.1 Integration of a targeting system to an aircraft



Figure 1.2 Integration of a turret system to a helicopter

It is very important to understand the dynamic behavior of the platforms in order to
increase the overall performance of the systems integrated to platforms. An example
of that is to increase the shooting performance of a battle tank (Figure 1.3) with

integration of tank fire control system.

Figure 1.3 Integration of a tank fire control system to a battle tank
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The common problem encountered in such type of integration projects is to model
the structural behaviors of the platforms or systems accurately. This modelling is
commonly performed by using FE methods. However in all these types of integration
projects there are nonlinear behaviors due to joints or moving components in the
system or due to joints and driving systems on the platforms. Therefore the ultimate
purpose is to have a mathematical model that simulates the nonlinear dynamic
behavior of the system or the platform accurately. Since there are always
discrepancies between predictions of the dynamic models and experimentally
measured values, these models have to be updated. Although linear dynamic
characteristics of systems can be obtained by using low excitation levels, sometimes
this approach may not give accurate results. This happens when the excitation
forcing is not low enough, or if there are multiple nonlinearities including friction
type of nonlinearity in the system. Then linear dynamics of the system cannot be
accurately obtained. Therefore in order to construct an accurate nonlinear model,
nonlinearity in the system has to be identified and also the linear dynamics of the
system has to be extracted. Then nonlinear model of the system can be obtained by
model updating of the linear model first and then by combining the updated model

with the identified nonlinearity.

These engineering problems are the main motivation of this thesis.

1.4 Outline of the Thesis

The outline of this thesis is given below:

In Chapter 2, the theory of model updating approach proposed for nonlinear
structures is given. The theory of the proposed model updating approach for

nonlinear structures which is capable of identifying the nonlinearities and extracting

the linear FRFs simultaneously, is presented by explaining the identification of

11



nonlinearities and obtaining of linear FRFs. Then the theory of model updating of

linear FE models by inverse eigensensitivity method is given.

In Chapter 3, the verification of the PRD method is demonstrated through some case
studies (nonlinear lumped SDOF, MDOF systems and a nonlinear structure). In the
first case study, by using nonlinear FRF measurements (with and without polluted
data), nonlinearities are identified and the linear FRFs are obtained for a nonlinear
SDOF system. In the second case study, application of PRD method to a nonlinear
MDOF system that has multiple nonlinearities including friction is demonstrated. In
the third case study, a nonlinear simulated experimental structure (T-beam with cubic
stiffness and dry friction nonlinearities) is used to verify the PRD method. In the
fourth case study, the effect of the excitation frequency at which measurements are
made, on the accuracy of the proposed method is investigated by using the T-beam
structure used in the third case study. As a final case study, in order to compare the
proposed PRD method with DDF method, nonlinear parameter value is calculated for
a SDOF system with cubic stiffness nonlinearity, and the results found by these two

methods are compared.

In Chapter 4, the proposed model updating approach is applied to a real T-beam test
system to illustrate the verification of the method on a real nonlinear system. In the
first section, by applying PRD method, both linear FRFs and the nonlinearities in the
system are obtained from experimentally measured nonlinear FRFs. The linear FE
model of the system which is modelled in ANSYS is updated for the first mode of
the structure by employing the inverse eigensensitivity method and also by using the
linear FRFs obtained through PRD method. By using the identified nonlinearity and
the updated linear FE model, updated nonlinear model of the T-beam is obtained.
Predicted nonlinear FRFs of the system are compared with the measured FRFs at
different forcing levels in order to illustrate the accuracy of the updated nonlinear
model of the system. In the second section of this chapter, linear FRFs are obtained

from experimentally measured nonlinear FRFs for the first, second and third global
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mode of the test system by using PRD method. Then the linear FE model of the test
system is updated for the first three global modes of the structure by using the
extracted linear FRFs employing first the PRD method and then using ANSYS
Design Exploration Optimization. Combining updated linear FE models with the
identified nonlinearity, updated nonlinear models of the test structure are
constructed. Finally, in order to demonstrate the accuracy of the updated nonlinear
models of the system, predicted and measured FRFs of the test structure are

compared at different forcing levels.

In Chapter 5, application of PRD method to real engineering problem is given.
Detailed structural model of a nonlinear gun barrel of a battle tank at the fundamental
frequency is studied and model updating of the nonlinear gun barrel is performed by
using the proposed model updating approach. First, using the PRD method, both
linear FRFs and the nonlinearities in the system are obtained from experimentally
measured nonlinear FRFs. Furthermore, in order to compare the results obtained by
using the PRD method, both linear FRFs and the nonlinearities in the system are also
calculated by using the DDF method. Linear FE model of the gun barrel built in
ANSYS is updated by using the linear FRFs obtained through the PRD method.
Combining updated linear FE model of the gun barrel with the identified
nonlinearity, updated nonlinear model of the gun barrel is constructed. Finally,
predicted and measured FRFs of the gun barrel are compared at different forcing
levels in order to demonstrate the accuracy of the updated nonlinear model of the
system. To sum up, using this real engineering problem, the performance of the
proposed method on real engineering problem is examined and it is shown that, the

method can be applied to a real engineering problem successfully.

In Chapter 6 brief summary and conclusions is given.
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CHAPTER 2

THEORY

2.1 Introduction

In this chapter, mainly the theory of model updating approach proposed for nonlinear
structures is presented. Firstly, modelling of nonlinearities is briefly described in
Section 2.2. After the brief explanation of modelling nonlinearities, calculation of
nonlinear response by using describing function method is presented in Section 2.3.
In Section 2.4, theory of the proposed model updating approach for nonlinear
structures is given by explaining the nonlinear identification, obtaining linear FRFs

and model updating of linear FE models by inverse eigensensitivity method.
2.2 Modeling Nonlinearities

For a nonlinear MDOF system, the equation of motion can be written as
[M]{R@)} +[C]{x)} +i[D]{x(t)} +[K]{x(®)} +{N(x, %, t)} ={ f,. (t)} (2.1)

where [M], [C], [D], [K] represent mass, viscous damping, structural damping
and stiffness matrices of the system, respectively. {x(t)} , {f(t)} stand for

displacement response and external forcing vector, respectively, i and dot are the

imaginary number and derivation with respect to time, respectively. All the nonlinear

internal forces are represented by {N(x,x,t)} vector which depends on displacement

and velocity. If we consider the r' element of the nonlinear internal forcing vector
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{N(x,x,t)} and show that element asN,, for a “n” degrees of freedom system, we

can define N, as

N, =>n, r=1,2,..,n (2.2)

In Equation (2.2), if r#j, n, represents the nonlinear internal force between the
coordinates r and j, and if r=j, n; stands for the nonlinear internal force between

ground and the coordinate r. Let us define intercoordinate displacement between the

coordinates r and j as

X =% =X for r#j (2.3)
X =X for r=j (2.4)

Note that n; can be any function of displacement and velocity, therefore we can

represent it with the following equation.

Ny =Ny (X5 %) (2.5)

If we consider the external forcing vector {fext (t)}, we can express it in complex

vector form as

{ fou (t)} = {Fext } e (2.6)
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Let us define the product of angular frequency @ and time t as generic angle ¢ and

rewrite the Equation (2.6) as
{ fext (t)} = { Fext } eie (27)

In Equation (2.7), {F,,} is the external forcing amplitude vector. When a nonlinear

system is excited with a harmonic force, the response is not composed of terms with
only input forcing frequency, but composed of terms with also harmonics of that
frequency. Therefore, the response is periodic and this response can be defined by

Fourier series representation as

(X} = T (X} _e™ 2.8)

m=0

In Equation (2.8), m is the degree of harmonic order and {X}m represents the

complex amplitude displacement response of the m™ harmonic. If we consider the
complex amplitude displacement response attached to coordinate r, for the m™

harmonic we can define it as
(X )y =(IXel <) =[] e (29)

Equation (2.9) is the magnitude and the phase notation form of the complex

displacement response. In Equation (2.9) ‘Xr‘m and (‘/’r)m is the magnitude and

phase of the complex amplitude displacement response. If we consider the Fourier
series representation of the response given in Equation (2.8) it has infinite terms
which are practically not possible to calculate; therefore truncation has to be applied
to the formulation by just considering the first p harmonics. Then the response can

expressed approximately as
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O > X 0] = 3 (X} e (2.10)

m=0 m=0

Since Fourier series representations are obtained for the responses, then we can
extend these formulation for the relative displacement responses (i.e. intercoordinate
displacement response) between arbitrary coordinates. Let us define relative
displacement response between coordinates r and j as

X t)=x(t)- X; (t) (2.11)

Fourier series representation of er (t) can be written as

%= x0,= 3 (Xg) e™ 212)

m=0

In Equation (2.12), (er )m is given by
(x”.)m =(xr)m—(xj)m for r# j (2.13)

If we consider the complex relative displacement response (er) for the m™
m

harmonic, we can express it as

(er)m :(‘er

2vs) =|(%4),

Equation (2.14) is the magnitude and the phase notation form of the complex relative

amplitude displacement response between coordinates r and j. In Equation (2.14),
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and (://rj )m is the magnitude and phase of the complex amplitude relative

‘(er ),

displacement response. Similarly performing truncation for the Fourier series

representation and considering only the first p harmonics, approximate relative

response can be written as

p
er =X

2 imo
2 xy (t), = ma)(xrj )m e (2.15)

2.3 Calculation of Nonlinear Response by Using Describing Function Method

In this section, brief theory of the nonlinear response calculation by using describing

function method [73] will be given. Let us consider n, (the nonlinear internal force

between the coordinates r and j) which is defined by the Equation (2.5). Assuming

that for simplicity n; is dependent only on displacement, Fourier series

representation of this force can be written as

= _ 5 imo
ng=ng (%)= mzo(n,,- (er))m e (2.16)

(nrj (er))m terms can be obtained by Fourier integrals and they are given as

1 2z
(ny (x”.))=2— [ni(x;)do  for m=0 (2.17)
T o
i 2z i
(nrj (x”.)):— [n;(x)e"™de  form=0 (2.18)
7T o
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If nonlinear element is odd, then (nrj (x”.)) in Equation (2.17) will be zero. When,

only single harmonic response is assumed, Equation (2.16) will simplify to the
following form

(%) = (izfnrj (%, )’ eje‘@ (2.19)
T o

N (X;) can also defined by using describing function Vy - The vy is actually the

equivalent linear complex stiffness of n, (x;) for harmonic x, . Also, v, is a

function of the absolute value of complex amplitude displacement response, and by

using those definitions we can write the nonlinear internal forces as

) X e (2.20)

NG (%) =Vy (‘er
If the nonlinear force representations in Equation (2.19) and (2.20) are compared, we

can easily write the following equation.

H 2z

I i

Vi =—— | ny(x;)e’do (2.21)
JZ"X o

r

Budak and Ozgiiven [74] express the nonlinear forcing vector in a nonlinear structure
as a matrix multiplication form for harmonically excited nonlinear systems and this
form of nonlinear forces were employed in response calculation of nonlinear systems

in different studies [75,76]. The internal nonlinear forces are defined as

(N %)} =[AX,X)]{X}e (2.22)
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[A(X, X)] is the “nonlinearity matrix” which was first presented by Budak and

Ozgliven [74] for certain types of nonlinearities. Then Tanrikulu et al. [77] used
nonlinearity matrix and define it for any type of nonlinearity by using describing

functions.

The elements of [A(X, )'()] are defined with the following equations [77]:

Ay =ve+dvy r=L2..,n (2.23)
j=1

j#r

A =—v

rj r?

r<j, r=12..,n (2.24)

If we consider the nonlinear MDOF system which was defined by Equation (2.1), we
can express FRF matrix (in the form of receptances) of the linear part of this

nonlinear system as
[H"]=[-o’[M]+io[C]+i[D]+[K]]" (2.25)

Similarly by using the nonlinearity matrix we can write the nonlinear FRF matrix (in

the form of receptances) of the same nonlinear system as
[H" ]=[-e*[M]+io[C]+i[D]+[K]+[a]]" (2.26)

Note that, In Equation (2.26), nonlinear FRF matrix [H NL} is response dependent.

Then by using the definition of receptance we can find the response of the system. It

is given by the following equation.

(X}=[H" [{F.} 2.27)
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Since nonlinear FRF matrix [HNL] is response dependent, in order to solve

Equation (2.27), iteration has to be made. Performing iterations, the nonlinear
response of the system can be calculated. As a starting initial guess, linear response
of the nonlinear system can be used. By using the linear responses, initial
nonlinearity matrix can be obtained. Then by using Equation (2.27), the new
responses can be estimated. This iteration goes on until certain error criterion is
satisfied. In this thesis, in order to solve Equation (2.27), fixed point iteration method

is used. The iteration step is given by the following equation.

(X}, =[H" (X)) (R} (2.28)

Iterations are repeated until the relative error given below drops below a certain

value.

'} n=12,.,N (2.29)

where N is the number of degrees of freedom.

In order to avoid divergence or to obtain faster convergence, relaxation is applied to

the fixed point iteration:
(X7} =(2){X},, +@-2){X},, 0<a<1 (2.30)

where 1 is the weighting factor.

In this thesis, single harmonic describing functions of nonlinearities are used. The
single harmonic describing functions of different nonlinearities can be found in [73].
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For the nonlinearity types that are used in Chapter 3, single harmonic describing

function representations are given below [78].

Figure 2.1 Single harmonic describing function of cubic stiffness

v 7sin"(7kX72’uNj
=

F(x) e

UN

v=k for|kX|<uN

_AuN(uN —Xk)
X x m TkX?

k for‘kX‘>ﬂN
/ . l(k_ZyN] 1_(1{X—2;1N} +&_E

Vo=
T X 15¢ Tz 2

Figure 2.2 Single harmonic describing function of dry friction model

2.4 Model Updating of Nonlinear System

In this section theory that is used for model updating approach for nonlinear

structures is explained. Firstly theory of the proposed Pseudo Receptance Difference
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(PRD) method is given for nonlinear identification and obtaining nonlinearities [70].
Then in the next section, theory of DDF method [79] that is proposed by Aykan and
Ozgiiven is presented. Then as the final part in this section, model updating of linear
FE models by using inverse eigensensitivity method is explained.

2.4.1 Nonlinear Identification and Obtaining Linear FRFs by PRD Method
In this section the theory of the PRD method developed will be given. PRD method
developed is based on the main theory given in [50, 74, 77]. Let us consider the FRF

matrix of the linear part of the nonlinear system given by Equation (2.25) and the

response level dependent nonlinear FRF matrix given by Equation (2.26). If we take

the inverses of [H NL] and [H L] matrices, we can write the following equations:
[H]" =[-e[M]+io[C]+i[D]+[K]] (2.31)

[H"]" =[-w*[M]+io[C]+i[D]+[K]+[A]] (2.32)

Subtracting Equation (2.31) from Equation (2.32), the equation given below is

obtained.
[A]=[H" ] -[H"]" (2.33)

Let us consider a nonlinear MDOF system that has multiple nonlinearities including

friction type of nonlinearity, then it is possible to partition the nonlinearity matrix

[4] as
[A] = [Af :|+[AHF] (2.34)
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In Equation (2.34), [AHF] represents the nonlinearity matrix due to nonlinearities

which act dominantly at high forcing levels of excitation and [Af] represents

nonlinearity matrix due to friction type of nonlinearity.

Substituting Equation (2.34) into Equation (2.33) gives the following equation.
-1 -1
(A J+[Awe]=[H™ ] =[HY] (2.35)

Depending on the level of the excitation force, [Af]and [Aye | matrices will have

negligible terms. For low forcing levels, [Af]will have larger terms compared to

those of [AHF]. Therefore at low forcing levels, Equation (2.35) can approximately

be written as
(A =[] -[H ] (2.36)

On the other hand, when the structure is excited at high forcing levels, [A,. ] will be

dominant and the terms of [Af] will be negligible. Then at high forcing levels

Equation (2.35) can approximately be written as

(A ]=[H™ ] -[H] (2.37)

If Equation (2.36) is used once and Equation (2.37) is used several times for FRFs
measured at the same frequency but at different forcing levels, nonlinearities in the

system can be identified and the linear FRFs of the structure can be extracted.
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Firstly, let us excite the system once at low forcing level, by using Equation (2.36),

the following equation can be written.

[ac]=[H™] -[H] (2.38)

Then let the system be excited (n-1) times at different high forcing levels. Using
Equation (2.37), the following set of equations can be obtained.

(A, =[H™] " -[H]" (2.39)
(Al =[R™] 7 -[H] (2.40)
[AHF ]4 - [H N.L :'4_1 _[H L]4_1 (2.41)
[Ae], =[H™] " -[Ht] (2.42)

Equations from (2.39) to (2.42) can be written in a more compact form as
(A =[H™] 7[R ] i=23...n (2.43)

Subtracting Equation (2.38) from each of the equations given in Equation (2.43), a

new set of equations is obtained and it is given below.

(Al -[A ] =[H"] " -[H™]" i=12,...(n-1) (2.44)
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In Equation (2.44), subscript 1 indicates low level of force excitation case, subscripts
2, 3, ... n indicate high level of force excitation cases. Since the linear FRF matrix
does not depend on the force excitation level and it is always constant for different
force excitation levels, as can be seen above, these terms drop out and they do not

exist in Equation (2.44).

Considering the set of equations given in Equation (2.44), at the left hand sides of the
equations, both zero and nonzero elements exist. These nonzero elements are related
to nonlinear coordinates (coordinates to which nonlinear elements are attached) and
they can be represented by polynomial functions of response amplitudes with
unknown coefficients. These polynomial functions are the describing functions of the
corresponding nonlinearities in the structure. Since there are always more data points
than the number of unknown coefficients, in order to obtain the unknown
coefficients, least square fit can be applied. Performing polynomial fit for (n-1) data
points in a least square sense, the equation of the corresponding regression curve can
be obtained, to calculate unknown coefficients. If the nonlinearity in the structure is
more complex, polynomial fit may be insufficient; therefore it may be more proper to
use nonlinear fit. By comparing the terms of the regression equation with the
corresponding describing functions, identification of the nonlinearity can be
performed parametrically. Once the nonlinearities in the structure are identified, then

linear FRFs can easily be obtained by employing the equation given below:

][l 1 o] 249

From Equation (2.45) it can be observed that full matrix inversions have to be made
in order to obtain the linear FRF of the structure. This is the main drawback of the
above equation. However, for most of the nonlinear structures, nonlinear elements in

the structure are localized therefore the nonlinearity matrix can be partitioned as
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[A]= {[Aa""] [O]} (2.46)

where subscript a stands for the coordinates where nonlinear elements are attached to

(“nonlinear coordinates” in short). Pre-multiplication of all the terms in Equation

(2.33) by [H L]and post- multiplication by[H NL} yields the following equation.

[HeJals J=[ReJHe TR ][ TR T[] (2.47)
Performing some simplifications, Equation (2.47) reduces to
[HJlA][ ™ J=[ R J0]-0H ] (2.48)

Substituting the nonlinearity matrix given in Equation (2.46) into Equation (2.48),

the following equation is obtained:

o ol Bl el
o e [M .l

(2.49)

Subscript b in Equation (2.49) stands for linear coordinates. Making matrix
multiplication for the left hand side of the equation and considering the first

submatrix of the resultant matrix, the following equation can be written:

[HY A HY e = H S [ H™ ] (2.50)
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Pre-multiplication of all terms in Equation (2.50) with [HLaa]_l and post-

multiplication with [H NLaa]_l yields

[H Laa}‘l[H Laa:I[Aaa]I:H NLaa:I[H NLaa]—l _

g 4 M . (2.51)
"'[HLaa} I:HLaa:II:H NLaa] _I:HLaa] I:H NLaajI[HNLaa}
Performing some simplifications, Equation (2.51) reduces to
(A ]=[H" ] -[H% ] (2.52)

When the resulting equation given above is compared to Equation (2.33), it is
observed that they are similar equations. Therefore proposed approach for nonlinear
identification and linear FRF calculation can be applied to Equation (2.52). Then the

linear FRF matrix for the nonlinear coordinates can be written as

-1

[t =] o] 253

As can be seen from Equation (2.53), considerable reduction in computational effort

will be achieved for the structures that have localized nonlinearities.

Once the linear FRFs are obtained by using Equation (2.53), then these linear FRFs
can be used for the model updating of a FE model. In several model updating
methods, measuring FRFs at limited number of coordinates is enough. Therefore,
having FRF of even a single coordinate may be sufficient for applying model
updating method. However, if FRFs of the linear coordinates are also necessary to
employ the model updating method, then the other 3 matrix equations obtained from
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Equation (2.49) have to be solved. Then it would be necessary to measure the

nonlinear responses at required linear coordinates as well.

When multiple measurement points are used on a structure, then all the elements of
the nonlinear FRF matrix need to be obtained, which may be difficult in practice. For
structures having localized nonlinearities, which can be modelled as nonlinear
elements connected to a single coordinate, the measurement at this single coordinate
can be considered, which reduces Equation (2.44) to a very simple algebraic

equation:

1 1 i=1,2,..(n-1) (2.54)

HFE,; N f; H NL - H NL
i+1 1

Since all the matrix inversions vanish and are reduced to inversions of scalar values,
it is much simpler to calculate the right hand side of Equation (2.54) for all i values
by using experimental measurements. Similarly, for the calculation of linear FRFs of

the system, it is possible to write the following equation:

LL = %—Af (2.55)
HY H™, '

All of the above equations are valid at any frequency. However for an arbitrary
excitation frequency, the difference between the linear and nonlinear FRFs may be
very small, so that this may make the identification of nonlinearity very difficult.
Therefore nonlinear identification can be performed most accurately at frequencies

where system response is mostly affected from the existence of nonlinearity.
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2.4.2 Nonlinear Identification and Obtaining Linear FRFs by DDF Method

DDF method [79] is based on the same equation given by Equation (2.33). The
method is capable of both identifying nonlinearity and obtaining linear FRFs of a
nonlinear structure that has multiple nonlinearities. Considering two different force

excitation levels F; and F,, Equation (2.33) can be written as

[AL=[H™]"-[H"]" for F=F, (2.56)
(A, =[H™] "-[H'] " for F=F, (2.57)

Noting that [H L} is not dependent on the force level, subtracting Equation (2.56)

from Equation (2.57), the following equation can be obtained.
(AL -[a],=[H" ][] (258)

As seen from Equation (2.58), linear FRF matrix [H L] cancels out in the resulting

equation. For structures having localized nonlinearities, which can be modelled as
nonlinear elements connected to a single coordinate, the measurement at this single
coordinate can be considered, which reduces Equation (2.58) to a very simple

algebraic equation:

1 1
_A = - 2.59
1T NG TN (2.59)

As seen from Equation (2.59), the terms on the right hand side of Equation (2.59) can

be experimentally measured. Assuming that nonlinearity matrix is dependent on
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displacements only, if a polynomial function is assumed for the nonlinearity matrix,

then it can be expressed as
A(X)=) cxX (2.60)
i=1

In order to solve Equation (2.59), number of equations must be at least as many as
the order of the polynomial. Since Equation (2.59) is valid at any frequency, the
necessary number of equations can be obtained by using nonlinear FRF
measurements at different frequencies. Generally the number of equations is much
more than the number of unknowns (coefficients of the polynomial function). Then,

least square fit for the polynomial coefficients can be applied.

Considering an i order polynomial for nonlinearity matrix, and substituting

Equation (2.60) into Equation (2.59) yields the following equation

i i 1 1
(C X, +C, X2 +...+CXp) — (C X, +C X +...+C,X,) = NG, NG (2.61)

which can also be written in compact form as

Cl
i i1l C 1 1
[xz—x1 X2 —x2 ... xz—xJ 52 = WL, TN (2.62)
c

Since the above equation is valid for any frequency, measuring nonlinear FRFs at

“n” different frequencies (n > i), the following set of equations can be written
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Xz(wl)_xi(a)l) Xzz(a)l)_xf(a)l) X;(a)l)_xi(a)l) C,
X, (@,) — X% (@) Xzz(a)z)_xf(wz) e Xo(@) =% (@) C.z _

X (0,)-x (@) X% (0,)-X(0,) - X(0,)-x(o,)] ¢
= o
H™, (@) H™ (@) (2.63)
1 1

| HY (@) H™ (o)
11
L H NLZ (a)n) H NLl(a)n)_

Equation (2.63) can be solved by using pseudo inversion in order to obtain the
polynomial coefficients. Once the nonlinearities are identified, then by using either
of Equation (2.56) or (2.57), the linear FRFs of the system can be calculated.

2.4.3 Model Updating of Linear FE Models-Inverse Eigensensitivity Method

Since the FRFs of the underlying linear part of a nonlinear structure can be
calculated by using either of the methods given in last two sections, then any model
updating approach developed for a linear system can be employed for the model
updating of the structure. One of the common methods used for model updating is
the inverse eigensensitivity method [80]. The most advantageous aspect of this
method is that there is no need to apply a model reduction /expansion method. Only
the information at the measured coordinates and natural frequencies are necessary for

the application of the method.

Inverse eigensensitivity method is based on the following equation:

{Ar}=[S]{Ap} (2.64)
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where {Ar} is the residual vector between the reference and actual responses, {Ap}

is the change that needs to be done in parameter vector, and [S] is the sensitivity

matrix.

If we consider the modal analysis context, we can redefine each term in Equation
(2.64). In Equation (2.64), {I’} consists of modeshapes and natural frequencies, {p}

consists of geometrical dimensions or material properties used in the mathematical or

FE model, and [S] is the modal sensitivity matrix. Sensitivity matrix [S] in

Equation (2.64) can be expressed as

[s]=| ¢ . (2.65)

In Equation (2.65), S, ™ represents the sensitivity of the n™ modal parameter to the

m™ updating parameter. It can also be defined mathematically as the partial
derivative of the ™ modal parameter to the m™ updating parameter and it is given by

the following equation:

or
S, =" (2.66)

n apm

In order to calculate the sensitivities for simple structures, modal parameters can be
formulated as the functions of updating parameters and by using these functions the
sensitivities can be obtained performing simple differentiation. However it is not
straightforward to calculate the sensitivities for complex structures, therefore it is

necessary to use numerical differentiation.

34



Once [S] matrix and {Ar} vector are calculated, then{Ap} vector can be obtained

by using Equation (2.67):
{ap}=[s]" {ar} (2.67)

Usually, the number of unknowns is less than the number of equations, therefore in

order to solve Equation (2.64) for {Ap}, least square solution should be applied.

Furthermore, since the relation between the modal parameters and updating
parameters are generally nonlinear, iteration has to be performed in order to calculate
the updating parameters.
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CHAPTER 3

CASE STUDIES WITH SIMULATED EXPERIMENTAL DATA-
APPLICATION OF MODEL UPDATING APPROACH TO NONLINEAR
SYSTEMS

In this chapter, applications of the PRD method to nonlinear lumped SDOF and
MDOF systems, and a nonlinear structure are demonstrated. In the first case study
nonlinearities are identified and the linear frequency response function is calculated
for a nonlinear SDOF system, by using nonlinear FRF measurements. Firstly, pure
theoretical data is used in the analysis and then polluted data is used in the analysis in
order to simulate the experimental measurements more realistically. In the second
case study, PRD method is applied to a nonlinear MDOF system. The system has
multiple nonlinearities including friction. In this case study, simulated experimental
data is used in the analysis. As a third case study, PRD method is applied to a
nonlinear structure where the simulated experimental results are obtained from the
FE model of the structure. The nonlinear structure is a T-beam which has cubic
stiffness and dry friction nonlinearities. In order to simulate the experimental
measurements, again polluted data is used in the analysis. Identification of
nonlinearities and calculation of linear FRFs of the system are presented by using the
approach proposed. In obtaining all simulated experimental data, harmonic balance
approach is used. In the fourth case study, the effect of the excitation frequency at
which measurements are made, on the accuracy of the proposed method is
investigated. The nonlinear T-beam used in the third case study is employed.
Applying the PRD method, the values of the nonlinear parameters are calculated by
using the simulated experimental FRF values obtained at a different excitation

frequency each time. Then these nonlinear parameter values are compared with each
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other. In the first four case studies, cubic stiffness and only stiffness part of the
frictional nonlinearity are identified, since in the experimental studies given Chapter
4 and Chapter 5, all the nonlinearities including friction are identified in terms of
describing functions. As a final case study, in order to compare the proposed PRD
method with DDF method, the value of the nonlinear parameter is calculated for a
SDOF system with cubic stiffness nonlinearity. Identified nonlinear parameter values

are compared to each other.

3.1 Application of PRD Method to a SDOF Lumped System

In this case study, nonlinear SDOF system with cubic stiffness and dry friction
nonlinearities is used. Firstly, pure theoretical data is used in the analysis and
nonlinearities are identified by using the PRD method. As a next study in this section

the same nonlinear SDOF system is analyzed by using a polluted data.
3.1.1 Application of PRD Method without Polluted Data
The nonlinear SDOF system used in this case study has cubic stiffness and dry

friction nonlinearities. The dry friction model and nonlinear SDOF system studied

are given in Figure 3.1.

Friction Force A

x4t)
un | :
—————— V'V >‘k; VY / ;
™ slope = f\’f

-
<8

1 Displacement

friction

(@) (b)
Figure 3.1 (a) SDOF nonlinear system (b) Dry friction model

Slip
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The parameters of these nonlinear elements and the properties of the system are

given as follows:

m, =0.1kg, k,=2x10° N/m and y (loss factor)=0.01
K" =1x 10" N/m®

#=0.1, Normal Force=10 N and k; =3x10°> N/m

Firstly, low amplitude harmonic force (F=0.01N) is used to excite the system. At this
forcing level, response of the system and the linear frequency response of the system
obtained disregarding both friction and cubic stiffness nonlinearity are compared to

each other. This comparison is given in Figure 3.2.
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Frequency [Hz]

Figure 3.2 Harmonic response of the system for F=0.01N

It is observed from Figure 3.2 that, friction is the only nonlinear effect, because at
low forcing level, response amplitudes are low and nonlinear internal forces due to

cubic stiffness are negligible. It is clearly seen from Figure 3.2 that, there is a shift in
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the resonance frequency due to the stiffness component of frictional nonlinearity.
Afterwards, by increasing the amplitude of the harmonic excitation force 30N at a
time, between 100N and 400N, the responses of the system are calculated for 11
different higher excitation forcing cases. In Figure 3.3, nonlinear harmonic responses

are shown for only the forcing levels of F=130N and F=280N.

Monlinear response
— Linear respanse

T ;
Monlinear response
Linear response

LogiDisplacerment [m])
Log{Displacement [m])

i i ; ; ; ; i 45 ; i ; ; ; ; ;
1] 200 400 600 g00 1000 1200 1400 1600 0 200 400 500 800 1000 1200 1400 1800

Frequency [Hz] Freguency [Hz]
(@) (b)
Figure 3.3 Harmonic response of the system for (a) F = 130N, (b) F = 280N

Since nonlinear forces due to friction is negligible at high forcing levels, as observed
from the Figure 3.3, only nonlinear forces due to cubic stiffness will be effective, and
this will cause a jump around resonance in the frequency response of the system
which is a typical response characteristic of a vibratory system with cubic stiffness.
PRD method is applied by using low forcing level excitation and 11 different FRFs
obtained at the excitation frequency of 710 Hz.

The equation of the regression curve is obtained by employing “polyfit” function of
MATLAB. Since equation of the regression equation is directly related with the
corresponding describing functions, by comparing the terms of the regression

equation with those of the corresponding describing functions, the values of the
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nonlinear parameters are calculated. The regression curve obtained is shown in
Figure 3.4.
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Figure 3.4 Polynomial regression curve for the available data points

The estimated values of the nonlinear parameters are as follows:
k" =9.9x10° N/m® and k, =3x10° N/m

It can be seen that there is a perfect match between the estimated and the actual

values of the nonlinear parameters.
Estimated and actual linear frequency responses are also compared in Figure 3.5. As

expected, estimated linear frequency response matches perfectly with the actual

linear frequency responses of the system.
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Figure 3.5 Comparison of the estimated and actual linear frequency responses of the

system

3.1.2 Application of PRD Method with Polluted Data

In this case study, the same nonlinear SDOF system used in previous case study is
analyzed. In order to simulate the experimental data, theoretical data is polluted with
5% noise that has normal distribution. The standard deviation used in the noise is 5%
of the amplitude of the original response. The system is excited with a low forcing
amplitude and then with 11 different high forcing amplitudes. In Figure 3.6, the
response of the system at low excitation force (F=0.01N) and the linear frequency
response of the system obtained disregarding both friction and cubic stiffness
nonlinearity are compared to each other. The frequency responses of the system for
F=130N and F=280N are also shown in Figure 3.7.
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Figure 3.6 Frequency response of the system for F=0.01N with 5% noise
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Figure 3.7 Frequency response of the system with 5% noise for
(@) F=130N (b) F = 280N

At the excitation frequency of 710 Hz, the polynomial regression curve is obtained

for 11 different data points as shown in Figure 3.8.
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Figure 3.8 Polynomial regression curve for the available data points

Identified nonlinear parameters and comparison of these values with the actual ones

are given in Table 3.1.

Table 3.1 Comparison of nonlinear parameters

Nonlinear Parameters Estimated Actual Error (%)
k* (N/m°) 9.9 x 10° 1 x 10% -1.0
ks (N/m) 3.1x10° 3x10° 3.3

It is observed from Table 3.1 that, the estimated nonlinear parameters are slightly

different from the actual nonlinear parameters due to using polluted data.
The linear frequency response calculated by using PRD method is compared with the

actual one in Figure 3.9. As observed from Figure 3.9 there is a perfect agreement
between the calculated linear frequency response and the actual one.
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Figure 3.9 Comparison of the calculated and actual linear frequency responses of the

system

3.2 Application of PRD Method to a MDOF Lumped System

In this case study, PRD method is applied to a nonlinear 2 DOF system (Figure 3.10)
that has cubic stiffness and dry friction nonlinearities. Polluted data is used in the
analysis of the system. The same dry friction model given in previous case study is

used here as well.

|—D X (1) |—} X, (1)
—/ V'V ch- VVA——

4 o AAAAAAA m MV
1 k2 k3
dry

friction

Figure 3.10 2 DOF nonlinear system used in the case study
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The nonlinear responses of the system are calculated by using the harmonic balance
method. Nonlinear parameter values used in the case study and linear system

properties are given as follows:

m,=0.1kg, m,=05kg, k,=k,=k;=1x10° N/m and y (loss factor)=0.005
1=0.1, Normal Force=10N and k, =8x10* N/m

K" =1x 10" N/m®

In order to simulate the experimental data, theoretical FRF data obtained from
harmonic balance analysis of the system is polluted with 5% noise that has normal
distribution. The standard deviation used in the noise is 5% of the amplitude of the
original response. The system is excited with a low forcing amplitude and then with
11 different high forcing amplitudes. The frequency responses of the system at
forcing levels of F;=0.01N and F;=100N are shown in Figure 3.11 and Figure 3.12,
respectively together with the linear frequency response of the system obtained

disregarding both friction and cubic stiffness nonlinearity.
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Figure 3.11 Frequency responses of the system with 5% noise for F;=0.01N

(a) 1% coordinate, (b) 2" coordinate
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As can be observed from Figure 3.11, for low forcing amplitudes, friction is the only
nonlinear effect, which causes a shift in the resonance frequency due to the stiffness
component of the frictional nonlinearity. The frictional nonlinearity is much more

effective in the 2" mode.
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Figure 3.12 Frequency responses of the system with 5% noise for F;=100N

(a) 1% coordinate, (b) 2™ coordinate

As can be seen in Figure 3.12, since nonlinear forces due to friction is negligible at
high forcing levels, the nonlinearity due to cubic stiffness is the only nonlinear effect
and it changes the response of the system around 2™ resonance considerably by
causing a jump. It is observed that, existence of the stiffness nonlinearity does not
considerably affect the 1% mode of the system, as in the low forcing level case. By
applying PRD method, the nonlinear parameters are calculated and they are given in

Table 3.2. The corresponding regression curve is also shown in Figure 3.13.
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Table 3.2 Comparison of nonlinear parameters

Nonlinear Parameters Estimated Actual Error (%)
k* (N/m®) 9.9 x 10° 1x10% -1.0
ke (N/m) 8.03 x 10* 8 x 10 0.4

@ Data Points

Inverse Pseudo Receptance Difference [Nfm|

Regression Curve

25

3

Relative Amplitude [m]

Figure 3.13 Polynomial regression curve for the available data points

It is seen from Table 3.2 that, there is a perfect match between the estimated and

actual nonlinear parameters.

As mentioned in the theory chapter, excitation frequency is a free parameter in PRD
method (i.e., derived equations are valid for any excitation frequency and for any
forcing level), the effect of the excitation frequency used in the experiments on the

performance of PRD method needs to be investigated. This investigation will be

given in Section 3.4.
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3.3 Application of PRD Method to a Nonlinear Structure

In the third case study, application of the PRD method to a nonlinear structure is
given. The nonlinear structure used in this case study is a T-beam that has cubic
stiffness and dry friction nonlinearities. In order to simulate the nonlinear response
of the system, first FE model of the linear part of the T-beam is constructed in
ANSYS, and linear FRFs are obtained by performing modal analysis in ANSYS.
Then using the nonlinear parameters for cubic stiffness and dry friction and
calculated linear FRFs, nonlinear responses are obtained by employing the harmonic
balance method. Afterwards, in order to have more realistic simulated experimental
measurements, the calculated FRFs are polluted by addition of noise to the FRFs.
Finally, the nonlinearities in the system are identified and linear FRFs of the test
system are obtained by using the simulated experimental data and applying the PRD
method. In Figure 3.14 dry friction model and nonlinear T-beam used in the case

study are shown.
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Figure 3.14 (a) Nonlinear T-beam test system, (b) Dry friction model
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As seen from Figure 3.14, T-beam is composed of a cantilever beam with its free end
Is maintained between two thin identical beams. All the end conditions of the beams

are fixed. Geometric and material properties of these beams are given Table 3.3

Table 3.3 Geometric and material properties of the T-beam

Modulus of Density
Height | Length | Width | Elasticity (E) | Poisson’s )
(mm) | (mm) | (mm) (GPa) Ratio (v) | (kg/m®)
Beaml 8 430 12 210 0.3 7850
Beam? 1.5 400 13 210 0.3 7850

The nonlinear parameter values and loss factor for the system are given below:

4=0.01, Normal Force=50 N, k; =3x10* N/m and k" =3x10° N/m®
y (loss factor)=0.02

In order to calculate the linear FRFs of the T-beam, ANSYS is used. The mesh used
in the FE model is given Figure 3.15. The FE model has 152 elements (SOLID 186)
and 1331 nodes.

Figure 3.15 FE mesh used in ANSYS
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By performing modal analysis in ANSYS, the linear driving point FRFs of the
structure at the tip of the beam 1 (point 1 in Figure 3.14) in Z (transverse) direction
are obtained. By using the nonlinear parameters and the calculated linear FRFs, the
nonlinear driving point FRFs at the tip of beam 1 are calculated by employing the
harmonic balance method. The nonlinear responses are obtained for various forcing
levels. In order to simulate experimental measurements, calculated FRF values are
polluted with 5% noise which has normal distribution. The standard deviation of the
noise is 5% of the amplitude of the original response. Firstly, low amplitude
harmonic force (F1=0.01N) is used to excite the system. At this forcing level,
frequency response of the system is compared with the linear frequency response of
the system obtained disregarding both friction and cubic stiffness nonlinearity. These

FRFs are given in Figure 3.16.
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Figure 3.16 Frequency response of the system at F;=0.01 N with 5% noise

o1



As can be seen in Figure 3.16, for low forcing amplitudes, friction is the only
nonlinear effect, which causes a shift in the resonance frequency due to the stiffness
component of the frictional nonlinearity. Afterwards, by increasing the amplitude of
the harmonic excitation force 5N at a time between 10N and 50N, the responses of
the system are calculated for 9 different higher excitation forcing cases. The
nonlinear harmonic responses at only the forcing levels of F1=25N and F;=50N are

shown in Figure 3.17 and Figure 3.18, respectively.
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Figure 3.17 Frequency responses of the test system for F; = 25N
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Figure 3.18 Frequency responses of the test system for F; = 50N
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As can be seen in Figure 3.17 and Figure 3.18, since the nonlinear forces due to
friction are negligible compared to other forces at high forcing levels, the
nonlinearity due to cubic stiffness is the only nonlinear effect, and it changes the
response of the system around 1% and 3" resonances considerably by causing a jump.
It is observed that existence of the stiffness nonlinearity affects the 2" mode of the
system slightly due to the relatively small deflection of the point where cubic

stiffness is attached.

By using the FRFs obtained for low and several high forcing levels, at the excitation
frequency of 42 Hz, the equation of the regression curve is obtained. By comparing
the terms of the regression equation with the corresponding describing functions,
frictional stiffness and cubic stiffness parameters are identified. The corresponding

regression curve is also shown in Figure 3.19.
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Figure 3.19 Polynomial regression curve fitted to data points
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The estimated nonlinear parameters are compared with the actual ones in Table 3.4.

Table 3.4 Comparison of nonlinear parameters

PNonllnear Estimated Actual Error (%)
arameters

k* (N/m°) 3.04 x 10° 3 x 10° 1.3

ke (N/m) 2.99 x 10* 3 x 10 -0.3

It is observed from Table 3.4 that there is a very small discrepancy between the
estimated and actual nonlinear parameter values. This difference is mainly due to
polluting the theoretical FRFs to simulate actual experiments and thus to have more
realistic values that should be expected in real applications.

Once the nonlinear parameters are identified, by applying PRD method, linear
frequency response of the system is calculated. The calculated linear frequency
response is compared with the actual linear frequency response of the system in
Figure 3.20. As can be seen from Figure 3.20, there is perfect agreement between the

calculated and actual linear frequency responses.
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Figure 3.20 Comparison of the calculated and actual linear frequency response of the

system
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3.4  Effect of Excitation Frequency Used on the Performance of PRD Method

In this case study, in order to see the effect of choosing different frequencies of
excitation in the application of the PRD method, on the performance of the method,
the simulated test results obtained at various different frequencies are analyzed. The
system used in this test is the nonlinear T-beam used in Section 3.3. By using the
simulated test results obtained at different frequencies, nonlinearities in the system
are identified. The identified nonlinear parameters by using different excitation
frequencies are compared with each other, as well as with the actual values. The

comparison is given in Table 3.5.

Table 3.5 Comparison of nonlinear parameters identified by using different

excitation frequencies (Actual values: k* = 3.0 x 10° N/m*, ks = 3.0 x 10* N/m)

II:E;(;ItuaetA?:n Estimated | Errorin | Estimated | Error in
(qHz) y k*(N/m3) k* (%) ks (N/m) ki (%)

36.0 2.96 x 10° -1.33 3.02 x 10* 0.67
37.0 3.07x 10° 2.33 2.99 x 10* -0.33
38.0 3.12 x 10° 4.00 2.96 x 10* -1.33
39.0 2.89 x 10° -3.67 3.04 x 10* 1.33
40.0 2.98 x 10° -0.67 3.01 x 10* 0.33
41.0 2.97 x 10° -1.00 3.01 x 10* 0.33
42.0 3.03 x 10° 1.00 299x10* | -0.33
43.0 3.01 x 10° 0.33 3.01 x 10* 0.33
44.0 3.01 x 10° 0.33 3.01 x 10* 0.33
45.0 3.02 x 10° 0.67 3.01 x 10* 0.33
46.0 3.05 x 10° 1.67 298x10* | -0.66
47.0 2.91 x 10° -3.00 3.04 x 10* 1.33
48.0 2.90 x 10° -3.33 3.04 x 10* 1.33

Since the nonlinear forces affect the first mode more, excitation frequencies are
selected around the first resonance of the system. It can be seen from Table 3.5 that
more accurate estimates are obtained for the nonlinear parameters, cubic stiffness
and frictional stiffness, when the excitation frequency is closer to the first resonance

of the linear system. Although there are some exceptions, in general, the error in the
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estimated nonlinear parameters tends to increase when excitation frequency deviates

from the resonance frequency.

3.5 Comparison of the Performances of PRD and DDF Methods in Nonlinear

Identification

In this case study, in order to compare DDF and proposed method, a SDOF system
with cubic stiffness nonlinearity is used. The system used in the case study is shown
in Figure 3.21.

I_.X1(')

BV, VY —

NN N NN

Figure 3.21 Nonlinear SDOF system

The parameters of these nonlinear elements and the properties of the system are

given as follows:

m, =0.1kg, k, =2x10° N/m and y (loss factor)=0.01
k" =1x10'° N/m?®
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Nonlinear responses are calculated by using the harmonic balance method. In order
to simulate the experimental measurements more realistically, polluted data is used
in the analysis. The noise used in the case study has normal distribution and it has a
standard deviation of 5% of the amplitude of the original response at that frequency.

3.5.1 Identification of Nonlinearity Using DDF Method

In this section, DDF method is applied for nonlinear identification by using different
forcing sets and frequency ranges. In the analysis, 3 different forcing pairs
(F1=100N-F»=450N, F1=100N-F,=350N, F;=150N-F,=450N) are used and for each
of the forcing pairs, nonlinear parameter is identified using the DDF method.
Furthermore since the method is dependent on the frequency used in the equations,
different frequency ranges are considered for each force pair in the analysis. In
Figure 3.22 and Figure 3.23, nonlinear response and linear response of the

underlying linear system are shown for the forcing levels used in the analysis.
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Figure 3.22 Frequency response of the system with 5% noise
(a) F=100N, (b) F=150N
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Figure 3.23 Frequency response of the system with 5% noise
(@) F=350N, (b) F=450N

Then making use of these nonlinear responses, the nonlinear cubic stiffness
parameter is identified using different frequency ranges. Comparison of the nonlinear
parameters identified using different frequency ranges are given in Table 3.6 for the
set of forcing F1=100N-F,=350N.

Table 3.6 Comparison of nonlinear parameters identified using different frequency

ranges (F1=100N-F,=350N)

Frequency Range
(Hz) 600-850 650-900 700-950
Identified Cubic
Stiffness Value
(N/m°) 9.389 x 10° | 9.389 x 10° | 9.374 x 10°

Error (%) -6.11 -6.11 -6.26

As observed from Table 3.6 that using different frequency ranges does not affect the
nonlinear parameters estimated for this forcing pair, but there is a considerable
difference between the estimated and the actual cubic stiffness values, the error

ranging between 6.11% and 6.26%, depending on the frequency range used.
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Similarly, comparison of the nonlinear parameters identified using different

frequency ranges are given in Table 3.7 for the set of forcing F;=150N-F,=450N.

Table 3.7 Comparison of nonlinear parameters identified using different frequency
ranges (F1=150N-F,=450N)

Frequency Range
(Hz) 600-850 650-900 700-950
Identified Cubic
Stiffness Value
(N/m?) 9.828 x 10° | 9.827 x 10° | 9.823 x 10°

Error (%) -1.72 -1.73 -1.77

It is observed from Table 3.7 that using different frequency ranges does not affect the
nonlinear parameters estimated for this forcing pair. For all cases there is a slight
difference between the estimated and actual cubic stiffness values, the error ranging
between 1.72% and 1.77%.

Finally, comparison of the nonlinear parameters identified using different frequency

ranges are given in Table 3.8 for the set of forcing F1=100N-F,=450N.

Table 3.8 Comparison of nonlinear parameters identified using different frequency
ranges (F1=100N-F,=450N)

Frequency Range
(Hz) 600-850 650-900 700-950
Identified Cubic
Stiffness Value
(N/m°) 1.026 x 10'° | 1.026 x 10*° | 1.027 x 10"

Error (%) 2.6 2.6 2.7

As in the first and second forcing pair, it is observed that using different frequency
ranges does not affect the nonlinear parameters estimated for this forcing pair.
Estimated cubic stiffness values are close to the actual value, the error ranging
between 2.6% and 2.7%.
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If the results obtained for each of three forcing pairs are compared, it can be
concluded that worst estimation of the nonlinear parameter is obtained for the set of
forcing F1=100N-F,=350N where the difference between the low and high force is

lowest.

3.5.2 ldentification of Nonlinearity Using PRD Method

The nonlinear parameter is identified by using PRD method, by exciting the structure
at 710 Hz at 12 different forcing levels ranging between F=50N and F=400N.

The regression curve used for nonlinear parameter estimation and the estimated

nonlinear parameters are given in Figure 3.24 and Table 3.9, respectively.
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Figure 3.24 Regression curve

Table 3.9 Estimated nonlinear parameter

Nonlinear Estimated Actual Error (%)
Parameters
k* (N/m°) 9.99x 10° 10 x 10° -0.1

60



As can be seen in Table 3.9, the nonlinear parameter is calculated very accurately.
Furthermore, if the nonlinear parameter values identified by using PRD and DDF

methods are compared, it can be seen that a better estimate is obtained for cubic
stiffness value with PRD method for that case study.
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CHAPTER 4

EXPERIMENTAL VALIDATION OF MODEL UPDATING APPROACH-
APPLICATION TO A NONLINEAR T-BEAM

In this chapter, the proposed model updating approach for nonlinear systems is
applied to a real test system. The test system is a nonlinear T-beam which is similar
to the test structure used in the study of Ferreira [81], Siller [82] and also of
Josefsson et al. [83]. Firstly, applying the PRD method, both linear FRFs and the
nonlinearities in the system are obtained from experimentally measured nonlinear
FRFs. Then, test structure is modelled in ANSY'S and the linear FE model of T-beam
Is constructed. In the first section of this chapter, this linear FE model of the system
is updated for the first mode of the structure by employing the inverse
eigensensitivity method and also by using the linear FRFs calculated through PRD
method. Combining the updated linear FE model with the identified nonlinearity,
updated nonlinear model of the T-beam is obtained. Finally, in order to demonstrate
the accuracy of the updated nonlinear model of the system, predicted nonlinear FRFs
of the system are compared with the measured FRFs at different forcing levels. In the
second section of this chapter, linear FRFs are obtained from experimentally
measured nonlinear FRFs for the first, second and third global modes of the test
system by using PRD method. Then the linear FE model of the test system is built in
ANSYS and the linear FE model of the test structure is updated for the first three
global modes of the structure by using the extracted linear FRFs employing first the
PRD method and then using ANSYS Design Exploration Optimization. Using the
identified nonlinearity and updated linear FE models, updated nonlinear models of

the test structure are constructed. Finally, predicted and measured FRFs of the test
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structure are compared at different forcing levels in order to show the accuracy of the

updated nonlinear models of the system.

4.1 Experimental Study 1-Model Updating for a Single Mode

In the first experimental study, in order to validate the model updating approach for

nonlinear systems, a nonlinear T-beam test system is used.

By applying the PRD method, both linear FRFs and the nonlinearities in the T-beam
system are obtained from experimentally measured nonlinear FRFs. Then, linear FE
model of the T-beam is constructed in ANSYS. For the first mode of the structure,
the linear FE model of the system is updated by employing the inverse
eigensensitivity method and using the obtained linear FRFs through the PRD
method. By using the updated linear FE model and the identified nonlinearity,
updated nonlinear mathematical model of the T-beam is obtained. Finally, nonlinear
FRFs of the system are predicted at different forcing levels and they are compared
with the experimental ones in order to show the accuracy and performance of the

updated nonlinear model of the T-beam.

4.1.1 Experimental Setup

The T-beam test set-up consists of a fixed-free beam where its free end is maintained
between two thin identical beams. The boundary conditions of the thin beams are
fixed-fixed. Nonlinearity in the test structure is mainly due to thin beams that are
assembled to the free end of the cantilever beam. Geometric details and the

dimensions of the test system are shown in Figure 4.1.
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—SEE DETAIL D

Figure 4.1 Nonlinear T-beam test system

Maintaining perfect fixed boundary conditions are very difficult in real life
applications, therefore in order to maintain the fixed boundary conditions in the
experimental setup, dimensions of the beams used in the experiments are longer than
their effective length of 380 mm and 420 mm, so that adequate parts of the beams are
clamped between fixture blocks. The material used for the beams is St37. The test rig

used in the experiments is shown in Figure 4.2.

Figure 4.2 Test rig used in the experiment
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In the experiments performed in this study, B&K Type 4808 modal shaker is used as
an exciter. Since the voltage supplied from the signal generator is generally low,
B&K Type 2712 power amplifier is used in order to increase the excitation force
level of the shaker. Acceleration output and input force are measured with B&K
Type 4507B accelerometer and B&K Type 8230-002 force transducer, respectively.
As a data acquisition system, B&K Type 3560C frontend is used in all the
experiments. The equipment used in the experiments is given Table 4.1 and it is

shown in Figure 4.3.

Table 4.1 Equipment used in the modal testing

Data Acquisition System Briel&Kjaer Type 3560 C Frontend
Shaker Briel&Kjaer Type 4808
Force Transducer Briel&Kjaer Type 8230-002
Power Amplifier Briel&Kjaer Type 2712
Accelerometer Briel&Kjaer 4507B

Figure 4.3 View of the equipment used in the experiments
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4.1.2 First Set of Experiments

In the first set of experiments, the test system is excited with a random input force.
Since the accuracy of the PRD method depends on the frequency of excitation and it
is shown that more accurate results are obtained when the system is excited at around
the resonance frequency of the linear part of the system, a quick test that does not
excite the nonlinearities considerably is selected. In random excitation, excitation
force level is kept very low and driving point FRFs at the tip of beam 1 in transverse
direction are measured. The flow chart defining the test procedure is given in Figure
4.4,

Data Acquisition
Computer < System
l Force Transducer o
and Accelerometer utput
Voltage Input v
e Test
l Structure
Signal Generator
Input

i

Random ; Power
—»| Shaker
Signal > Amplifier

Figure 4.4 Experimental procedure followed in random excitation vibration test

The measurements are performed in the frequency range of 0-200 Hz and frequency
resolution is 0.25 Hz. In order to minimize the noise in the experiment, 130 averages

are taken. By using the force and acceleration measurements, driving point FRF
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curve at the tip of beam 1 in transverse direction is obtained and it is shown in Figure
4.5,
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Figure 4.5 The driving point FRF at the tip of beam 1 in transverse direction

As seen from Figure 4.5, fundamental natural frequency of the structure in transverse
direction is approximately 41 Hz. After finding the approximate linear fundamental
natural frequency of the structure, T-beam is excited at around that frequency with a
pure sine signal at a number of different forcing levels in order order to apply PRD
method. Firstly the structure is excited at a low forcing level and then at a number of
high forcing levels. The main advantage of PRD method is that, in order to apply the
method, vibration controller is not necessary as in the cases of constant forcing or

constant amplitude testing over a certain frequency range.
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In order to demonstrate the effect of using different frequencies of excitation on the
performance of PRD method, six different excitation frequencies (39 Hz, 39.5 Hz, 40
Hz, 40.5 Hz, 41 Hz and 41.5 Hz) are used. By applying PRD method that uses each
of these frequencies, nonlinearities in the structure are obtained in the form of

describing functions.

4.1.2.1 Application of PRD Method at 39 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental
measurements at 39 Hz by applying PRD method. Curve fitting is performed for the
calculated real and imaginary pats of describing function and the fitted curves are
shown in Figure 4.6.
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Figure 4.6 Calculated describing function (a) Real part (b) Imaginary part

For the real part and imaginary part of describing function, 2" order and 4™ order
polynomial functions are fit, respectively. Corresponding coefficients of the

polynomial functions are given in Table 4.2.
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Table 4.2 Coefficients of the polynomials fit to the data for real and imaginary parts

of the describing function

P4 Ps P2 P1 Po
Real Part of
Describing Function
p,X* + PX+ Py 1.56x10° | -2.48 x10° | -190
Imaginary Part of
Describing Function
pX’+ X+ pX + PX+ Dy | 2.7x10" | 1.1x10% | -1.49x10° | 8.0x10° | -109

4.1.2.2 Application of PRD Method at 39.5 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental

measurements at 39.5 Hz by applying PRD method. Curve fitting is performed for

the calculated real and imaginary pats of describing function and the fitted curves are

shown in Figure 4.7.
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Figure 4.7 Calculated describing function (a) Real part (b) Imaginary part
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For the real part and imaginary part of describing function, 2" order and 4™ order

po
po

lynomial functions are fit, respectively. Corresponding coefficients of the

lynomial functions are given in Table 4.3.

Table 4.3 Coefficients of the polynomials fit to the data for real and imaginary parts

of the describing function

P4 P3 P2 P1 Po
Real Part of
Describing Function
P, + pX+ P, | 1.54x10° | -2.45x10° | -190

Imaginary Part of
Describing Function

Pt + X+ P+ PX+ Dy | -2 7x10M | 1.1x10% | -1.51x10° | 8.1x10° | -111

4.1.2.3 Application of PRD Method at 40 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental
measurements at 40 Hz by applying PRD method. Curve fitting is performed for the

cal

culated real and imaginary pats of describing function and the fitted curves are

shown in Figure 4.8.
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For the real part and imaginary part of describing function, 2" order and 3 order
polynomial functions are fit, respectively. Corresponding coefficients of the

polynomial functions are given in Table 4.4.

Table 4.4 Coefficients of the polynomials fit to the data for real and imaginary part

of the describing function

P3 P2 P1 Po
Real Part of Describing Function
p,X* + X+ P, 1.59x10° | -2.49x10° | -181
Imaginary Part of Describing
Function
pX 4 PX° + pX+ Py -6.0x10% | 2.15x108 | -1.52x10° | -36

4.1.2.4 Application of PRD Method at 40.5 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental
measurements at 40.5 Hz by applying PRD method. Curve fitting is performed for
the calculated real and imaginary pats of describing function and the fitted curves are

shown in Figure 4.9.
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For the real part and imaginary part of describing function, 2" order and 3 order

polynomial functions are fit, respectively. Corresponding coefficients of the

polynomial functions are given in Table 4.5.

Table 4.5 Coefficients of the polynomials fit to the data for real and imaginary part

of the describing function

P3 P2 P1 Po
Real Part of Describing Function
p,X* + X+ P, 1.56x10° | -2.46x10° | -188
Imaginary Part of Describing
Function
pX + PX° + pX+ Py -6.4x10% | 2.26x10° | -1.63x10° | -35

4.1.2.5 Application of PRD Method at 41 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental

measurements at 41 Hz by applying PRD method. Curve fitting is performed for the

calculated real and imaginary pats of describing function and the fitted curves are

shown in Figure 4.10.
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For the real part and imaginary part of describing function, 2" order and 3 order

polynomial functions are fit, respectively. Corresponding coefficients of the

polynomial functions are given in Table 4.6.

Table 4.6 Coefficients of the polynomials fit to the data for real and imaginary part

of the describing function

P3 P2 P1 Po
Real Part of Describing Function
P,X* + X+ Py 1.58x10° | -2.62x10° | -191
Imaginary Part of Describing
Function
pX + PX° + pX+ Py -2.38x10% | 9.0x10° | -9.32x10° | 264

4.1.2.6 Application of PRD Method at 41.5 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental

measurements at 41.5 Hz by applying PRD method. Curve fitting is performed for

the calculated real and imaginary pats of describing function and the fitted curves are

shown in Figure 4.11.
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For the real part and imaginary part of describing function, 2" order and 3 order
polynomial functions are fit, respectively. Corresponding coefficients of the

polynomial functions are given in Table 4.7.

Table 4.7 Coefficients of the polynomials fit to the data for real and imaginary part

of the describing function

P3 P2 P1 Po
Real Part of Describing Function
p,X* + X+ P, 1.54x10° | -2.56x10° | -190
Imaginary Part of Describing
Function
pX + pX° + X+ Py 2.32x10%° | 8.8x10° | -9.11x10° | 259

If the coefficients for the real part of describing functions obtained using the
measurements at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz are compared,
we can see that estimated coefficients are very similar. However, when we compare
the imaginary parts of describing functions obtained by using the measurements at 39
Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5, it is observed that there are

considerable differences between the functions.

Final test in the first set of experiments is the measurement of frequency responses
between 37 Hz and 47 Hz at a number of constant forcing levels. In the experiments
stepped sine signal is used. In the frequency range of interest, the resolution of the
frequency is set as 0.25 Hz. However, in order to perform constant force vibration
testing over the desired frequency range, it is necessary to control the force level.
Since there is no automatic controller in the experiments, for every frequency point
this control is maintained manually by checking the measured force and adjusting
voltage signal generated by the signal generator. The flow chart defining the test
procedure is given in Figure 4.12. Measured FRFs for F=0.05N are also shown in
Figure 4.13.
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Figure 4.12 Experimental procedure followed in constant force vibration test
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Figure 4.13 Measured FRF at F=0.05N
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As seen from Figure 4.13, the FRF curve measured at F=0.05N looks like a linear
FRF curve, as expected. However, as it will be shown later that, even though the
forcing level used in the experiment is very low, the measured FRF curve is different

from the linear FRF curve of the system.

4.1.3 Second Set of Experiments

Main purpose of the second set of experiments is to obtain measured nonlinear FRFs
that will be used for the verification of PRD method and of the proposed model

updating approach.

Stepped sine testing is used with a frequency resolution of 0.25 Hz at constant force
levels. Similarly, for every frequency point force control is maintained manually by
checking the measured force and adjusting voltage signal generated by the signal
generator. In the experiments, 3 different forcing levels (F=0.6N, F=0.7N, F=0.8N)
are used. The corresponding FRFs for F=0.6N, F=0.7N, F=0.8N are shown in Figure
4.14.

22 ! ! ! ! ! ! !

R T e e e

Log(FRF [miN])

- 1
37 38 39 40 41 42 43 44 45 46 47
Frequency [Hz]

Figure 4.14 Measured FRFs at F=0.6N, F=0.7N, F=0.8N

7



4.1.4 Application of PRD Method for Obtaining Linear FRFs

In this section, PRD method is used in order to predict the linear FRF of the structure
by using the measured FRF values at F=0.05N and the describing functions obtained
in Section 4.1.2. Since, different describing functions are obtained for each of six
different excitation frequencies, in order to investigate the effects of excitation
frequency on the performance of the PRD method; six separate linear FRF curves are
predicted. Each FRF curves predicted by using the describing functions obtained
from experiments made at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz are
compared with the measured FRFs at F=0.05N in Figure 4.15, and with each other in
Figure 4.16 at the first mode.
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Figure 4.15 Comparison of measured FRF at F=0.05N and predicted linear FRFs by
using PRD method using experiments conducted at (a) 39 Hz (b) 39.5 Hz (c) 40 Hz
(d) 40.5 Hz (e) 41 Hz (f) 41.5 Hz
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Figure 4.16 Comparison of predicted linear FRFs by using PRD method using
experiments conducted at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz

It is seen from Figure 4.15 that, the linear FRF curves of the system that are
predicted by applying the PRD method proposed, are not accurately represented by
the FRF curve measured at low forcing level (F = 0.05N). As it was shown in
Chapter 3 that PRD method yields the FRFs of the underlying linear system in a
nonlinear system accurately, it can be concluded that even a very low forcing level is
used in the experiments, the FRFs of the underlying linear system cannot be
accurately represented by the FRFs measured at low forcing levels. Furthermore, as
seen from Figure 4.16 that linear FRFs obtained using the describing functions
identified from the tests made at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz
do not differ much from each other, even though identified imaginary parts of the

describing functions from these tests are rather different from each other.
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4.1.5 Model Updating of the Test System and Verification of the Updated
Model

In this section, firstly the structure is modelled in ANSYS and the linear FE model of
the structure is built. Then this linear FE model of the test structure is updated by
using the obtained linear FRFs employing first the PRD and then the inverse
eigensensitivity method. Once the updated linear FE model is built then it is possible
to have the updated nonlinear model of the test system. Therefore by combining
updated linear FE model and the identified nonlinearity, updated nonlinear model of
the test structure is constructed. As a final step, in order to show the accuracy of the
updated nonlinear model, FRFs of the test structure calculated by using the updated
nonlinear model are compared with the measured nonlinear FRFs at different forcing

levels.

In Figure 4.17, the FE model of the test structure built in ANSYS is shown. Material

properties used in the analysis of the initial FE model are also given in Table 4.8.

Figure 4.17 FE model of the test structure
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Table 4.8 Material properties used in the initial FE model

Modulus of Poisson’s | Density (p)
Elasticity (E) (GPa) Ratio (v) (kg/m®)
Beaml 210 0.3 7850
Beam?2 210 0.3 7850

By performing modal analysis in ANSYS, the first natural frequency and the driving
point FRF at the tip of beam 1 in Z (transverse) direction are calculated for the initial
FE model of the structure. In ANSYS, sufficient number of modes (100) is used to
calculate FRFs, in order to minimize truncation error. Comparisons of the linear
FRFs obtained from FE analysis with those obtained from experiments by using PRD

method are shown in Figure 4.18.
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Figure 4.18 Comparison of the linear FRFs obtained from initial FE model with

those obtained by using PRD method

In Table 4.9, the natural frequency obtained from FE analysis is also compared with

the one obtained from experiments.
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Table 4.9 Comparison of the first natural frequency obtained from initial FE model

with the experimental value obtained by using PRD method

Mode Natural Frequency | Natural Frequency
(PRD Method) (Initial FE Model) | Error (%)
Number
(H2) (Hz2)
1 40.75 46.48 14.06

As can be observed from Table 4.9 and Figure 4.18, the results are considerably
different; therefore it is necessary to update the FE model of the structure. Since
generally modulus of elasticity (E) of the materials has considerable uncertainties the
modulus of elasticity is selected as an updating parameter in the FE model. For the
selected parameter, element of the sensitivity matrix is calculated by using the

following central difference approximation with O(h*), at each iteration step.

_r(pi+2)+8r(pi+1)_8r(pi—1)+r(pi—2) (4 1)
12Ah '

rl(pi):

In Equation (4.1), Ah is the step size used. After 5 iterations, updating parameter is
converged to 161.5 GPa. The convergence graph of this parameter is given in Figure
4.19.
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Figure 4.19 Convergence of the modulus of elasticity of the beams
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Using the converged value for the modulus of elasticity, the FE model is updated.
Performing modal analysis in ANSYS for the updated FE model of the structure, the
first natural frequency of the updated linear model is calculated. The comparisons of
the first natural frequency obtained from updated model with that of initial FE
model, as well as with the natural frequency obtained from experiments by using
PRD method are given in Table 4.10.

Table 4.10 Comparison of the first natural frequency obtained from initial and

updated FE models with experimental value obtained by using PRD method

Natural Natural Natural
Mode Frequency Frequency Error | Frequency | Error
Number | (PRD Method) (Initial FE (%) | (Updated FE | (%)
(H2) Model) (Hz) Model) (Hz)
1 40.75 46.48 14.06 40.75 0.00

As can be seen in Table 4.10 the first natural frequency is very accurately estimated

by using the updated FE model.

In order to see the performance of the updated FE model in the prediction of other
natural frequencies which are not used in updating the FE model, the second natural
frequency of the system is calculated by using the updated linear model and it is
compared with that obtained from the initial FE model, as well as with the measured
one (Table 4.11).

Table 4.11 Comparison of the second natural frequency obtained from initial and

updated FE models with experimental value obtained by using PRD method

Natural Natural Natural
Mode Frequency Frequency Error Frequency Error
Number | (Experimental) | (Initial FE (%) | (Updated FE | (%)
(Hz) Model) (Hz) Model) (Hz)
2 177.75 198.05 11.42 173.63 -2.32
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As can be seen in Table 4.11 , there is a considerable improvement in the calculated

value of the second natural frequency.

In Figure 4.20, the comparasion of the linear FRFs calculated from experimentally
measured nonlinear FRFs by using PRD method with those obtained from the initial
and updated FE models is given. It is observed from Figure 4.20 that, there is a

considerable improvement when updated FE model is used.

Log(FRF [mN])

Linear FRF-PRD Methad

Linear FRF-Initial FE Model

Linear FRF-Updated FE Model
I T

38 40 42 44 46 43 50 52
Frequency [Hz]

Figure 4.20 Comparison of the linear FRF obtained by using PRD method from
experimentally measured values, with those calculated from, initial and updated FE

models

Since the ultimate goal is to predict nonlinear responses accurately from the updated
model, for F=0.6N, F=0.7N and F=0.8N, experimentally measured nonlinear FRFs
are compared with those obtained from the initial and updated models (composed of
original and updated FE models, respectively, combined with identified
nonlinearity). The results obtained are shown in Figure 4.21. It is seen from Figure
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4.21 that, considerable improvements are obtained for the FRFs calculated with the

updated model for all forcing levels.
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Figure 4.21 Comparison of FRFs obtained from initial and updated models with the
experimental ones for (a) F=0.6N (b) F=0.7N (c) F=0.8N

4.1.6 Investigation of Effect of Finite Difference Formula Used for Sensitivity

Calculation on the Model Updating Performance

As mentioned in the theory part, in the inverse eigensensitivity method, Srnpm

(element of a Modal sensitivity matrix [S]) which stands for the sensitivity of the n™

response to the m™ updating parameter is mathematically obtained by calculating the
partial differential of the n™ response to the m™ updating parameter. In this section, in
order to calculate the sensitivities, different numerical differentiation formulas are

used, and the effect of using different finite difference formulas on the model

updating performance is investigated.
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In this analysis, the same initial FE model of the T-beam test structure is used. The
FE model of the test structure is shown in Figure 4.17, and the material properties

used in the initial FE model are given in Table 4.8.
In the model updating of the FE model, four different finite difference formulas are
used in turn, in order to calculate numerical differentiation and approximate the

sensitivities. Numerical differentiation formulas used in the analysis are given below.

1. Central difference formula with error order of O(h*) :

) _ —I‘( pi+2) +8I’( pi;_l;g:r( pi—l) + r( pi—z) (4'2)

r(p,

2. Central difference formula with error order of O(h?) :

r( pi+1) — r( pifl) (4 3)
2Ah '

r'( pi) =
3. Backward difference formula with error order of O(h) :

r(pi)_r(pifl) (44)

rl(pi): Ah

4. Forward difference formula with error order of O(h) :

r(Pa) = r(p) (4.5)

rl(pi): AR

where Ah is the step size used for the parameter in the analysis.
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Since most of the uncertainty is generally in the modulus of elasticity (E) of the
materials, again, the modulus of elasticity is selected as an updating parameter in FE
model. For the selected parameter, element of the sensitivity matrix is calculated
using each of the finite difference formula at each iteration step. For all of the cases,
after 5 iterations, updating parameter is converged to 161.5 GPa. The convergence
graphs of this parameter by using the numerical differentiation with central
difference formula with error order of O(h?), central difference formula with error
order of O(h?), backward difference formula with error order of O(h) and forward
difference formula with error order of O(h), are given in Figure 4.22, Figure 4.23,

Figure 4.24 and Figure 4.25, respectively.
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Figure 4.22 Convergence of the modulus of elasticity of the beams, for the

numerical differentiation with central difference formula with error order of O(h*)
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Figure 4.23 Convergence of the modulus of elasticity of the beams for the numerical

differentiation central difference formula with error order of O(h?)
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Figure 4.24 Convergence of the modulus of elasticity of the beams for the numerical
differentiation with backward difference formula with error order of O(h)
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differentiation with forward difference formula with error order of O(h)

For the calculation of the sensitivities, the number of FE analysis that needs to be run
is different for each of the finite difference formula. Therefore, the total computation

time that is used in the model updating procedure is compared for each of the finite

difference formula. The results are given in Table 4.12.

Table 4.12 Computation time comparison of the different finite difference formulas

# of FE # of Computation
Finite Difference Formula Analysis | Iteration Time (s)
Performed| Performed
Central difference formula with 21 5 640.5
error order of O(h*)
Central difference formula with 13 5 396.5
error order of O(h%)
Backward difference formula with 10 5 305
error order of O(h)
Forward difference formula with 10 5 305
error order of O(h)
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As seen from Table 4.12, although the number of iteration is same for all the cases,
total computation time is much larger for updating procedure that uses central
difference formula with error order of O(h*), due to the number of FE analysis that
needs to be done at each iteration step. Also, updating procedure that uses first order
forward and backward difference formula has the smallest computation time. Based
on these results, it is recommended that in updating of FE models forward or
backward difference formula should be used in order to reduce computational effort
which is consistent with the recommendations given in [84].

4.2 Experimental Study 2-Model Updating for Three Modes

In this section, the approach suggested for model updating of a nonlinear system is
applied again on the nonlinear experimental T-beam test system given in Section 4.1.
The main difference of the study in this section from the study given in Section 4.1 is
that, the first three global modes of the T-beam are considered in the model updating
in this section. First, using identified nonlinearities obtained by the PRD method in
the previous test, linear FRFs are obtained from experimentally measured nonlinear
FRFs for the first, second and third global modes of the test system. Then, linear FE
model of the test system is built in ANSYS and the linear FE model of the test
structure is updated for the first three global modes of the structure by using the
extracted linear FRFs employing the PRD method and then using ANSYS Design
Exploration Optimization. Combining the updated linear FE model and the identified
nonlinearity, updated nonlinear model of the test structure is obtained. Finally, in
order to show the accuracy of the updated nonlinear model of the system, for
different forcing levels, FRFs calculated using the updated nonlinear model are

compared with the measured FRFs of the test structure.
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4.2.1 First Set of Experiments

In the first set of experiments, the structure is excited with a random input force. In
random excitation, low excitation signal level is selected. The measurements are
performed in the frequency range of 0-300 Hz and frequency resolution is 0.25 Hz.
In order to minimize the noise in the experiment, 130 averages are taken. By using
the force and acceleration measurements, driving point FRFs at the tip of beam 1 in

transverse direction are obtained and they are shown in Figure 4.26.

Log(FRF [m/N]}

50 100 150 200 250 300
Frequency [Hz]

Figure 4.26 The measured driving point FRF at the tip of beam 1 in transverse

direction (random excitation)

It is observed from the results, that first three natural frequency of the global modes
of the structure is in between 0-300 Hz. It will be shown in Section 4.2.4.1 that, a
local mode exists in between the second and third global mode of system. Therefore

this local mode is not considered in the next set of experiments.
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As a final test in this set of experiments, a constant low forcing level excitation
experiment is performed between 175 Hz and 181 Hz (around the second natural
frequency) and between 257 Hz and 267 Hz (around the third natural frequency).
Stepped sine constant force test is performed for the given test set-up. In the
frequency range of interest, the resolution of the frequency is set as 0.25 Hz.
However, in order to perform constant force vibration testing over the desired
frequency range, it is necessary to control the force level. Since there is no automatic
controller in the experiments, for every frequency point this control is maintained
manually by checking the measured force and adjusting voltage signal generated by
the signal generator. In Figure 4.27 and Figure 4.28, measured FRFs at F=0.05N are

shown for the second and third modes, respectively.
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Figure 4.27 Measured FRF at F=0.05N
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Figure 4.28 Measured FRF at F=0.05N

It is observed from the Figure 4.27 and Figure 4.28 that, the FRFs measured at
F=0.05N seem like a linear FRF.

4.2.2 Second Set of Experiments

Main purpose of the second set of experiments is to obtain the measurement data that
will be used for the verification of PRD method and the proposed model updating
approach. Stepped sine testing is performed with a frequency resolution of 0.25 Hz at
constant force levels. Similarly, for every frequency point force control is maintained
manually by checking the measured force and adjusting voltage signal generated by
the signal generator. In the experiments, 3 different forcing levels (F=0.6N, F=0.7N,
F=0.8N) are used. The measured FRFs are shown in Figure 4.29 and Figure 4.30 for

the second and third modes of the structure, respectively.
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Figure 4.29 Measured FRF at F=0.6N, F=0.7N, F=0.8N
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Figure 4.30 Measured FRF at F=0.6N, F=0.7N, F=0.8N

From Figure 4.29 and Figure 4.30, it is observed that measured FRFs are very similar
to each other. In order to compare these FRFs with the FRFs measured at F=0.05N,
these FRFs are also plotted in the same graph with the FRFs measured at F=0.05N
and they are shown in Figure 4.31 and Figure 4.32 for the second and third modes of

the structure, respectively.

94



Log(FRF [m/N]}

44 —a—F=00sn |

—=—F=06N |
4 45H —a—F=07N |-B
—s—F=08N

45 I I i i i i i
170 172 174 176 178 180 182 184 186

Frequency [Hz]

Figure 4.31 Measured FRF at F=0.05N, F=0.6N, F=0.7N, F=0.8N
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Figure 4.32 Measured FRF at F=0.05N, F=0.6N, F=0.7N, F=0.8N

From Figure 4.31 and Figure 4.32, it is observed that, the FRFs are very similar at
low and high forcing levels, which indicates that nonlinearity in the structure does

not affect these modes significantly.
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4.2.3 Application of PRD Method for Obtaining Linear FRFs

In this section, PRD method is used in order to predict the linear FRF of the structure
by using the measured FRF values at F=0.05N and the describing function values
obtained in Section 4.1.2. Since, different describing function values are obtained for
each of six different excitation frequencies, in order to investigate the effects of
excitation frequency on the performance of the PRD method; six separate linear FRF
curves are predicted. FRF curves predicted by using the describing functions
obtained from experiments made at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5
Hz are compared with the measured FRFs at F=0.05N in Figure 4.33, as well as with
each other (Figure 4.34) for the second natural frequency. Similar comparisons are
shown in Figure 4.35 and Figure 4.36 for the third natural frequency. Since similar
comparisons were also given in Section 4.1.4 for the first natural frequency, they are

not given here again.
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Figure 4.33 Comparison of measured FRF at F=0.05N and predicted linear FRFs by
using PRD method using experiments conducted at (a) 39 Hz (b) 39.5 Hz (c) 40 Hz
(d) 40.5 Hz (e) 41 Hz (f) 41.5 Hz
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Figure 4.34 Comparison of predicted linear FRFs by using PRD method using
experiments conducted at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz
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Figure 4.35 Comparison of measured FRF at F=0.05N and predicted linear FRFs by
using PRD method using experiments conducted at (a) 39 Hz (b) 39.5 Hz (c) 40 Hz
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Figure 4.36 Comparison of predicted linear FRFs by using PRD method using
experiments conducted at 39 Hz, 39.5 Hz, 40 Hz, 40.5 Hz, 41 Hz and 41.5 Hz

As can be seen from Figure 4.33 and Figure 4.35, linear FRFs obtained by using the
PRD method is very close to the FRFs measured at low forcing level (F=0.05N) for
the second and third modes of the structure. Also it is observed from Figure 4.34 and
Figure 4.36 that linear FRFs obtained using the describing functions identified from
the tests made at six different frequencies are very close to each other. These
observations indicate that nonlinearity in the structure does not affect the second and

third modes significantly.

4.2.4 Model Updating of the Test System and Verification of the Updated
Model

In this section, linear FE model of the test system is built in ANSYS and then the
linear FE model is updated by employing the approach proposed. Before the

construction of the initial FE model, mesh sensitivity analysis is performed for the
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linear FE model of the structure. Then, the linear FE model of the test structure is
updated by using the extracted linear FRFs employing the PRD method and then
using ANSYS Design Exploration Optimization.

In the updating of the FE model, different updating parameter sets are used and for
these updating parameters, different candidates for the updated FE model are
obtained by using ANSYS. Measured and predicted FRFs for all the updated linear
FE models are compared to each other and the performance of the updated models
are investigated. Using the identified nonlinearity and updated linear FE models,
updated nonlinear models of the test structure are constructed. Finally, predicted and
measured FRFs of the test structure are compared at different forcing levels in order
to show the accuracy of the updated nonlinear models of the system.

4.2.4.1 Mesh Sensitivity Analysis for the FE Model of the Structure

In this section before the construction of the initial FE model in ANSYS, mesh
sensitivity analysis is performed in order to see the effect of the mesh sizing on the
estimation of the first three natural frequencies of the global modes of the structure.
FE model of the test structure used in the mesh sensitivity analysis is same as the one
used in Section 4.1.5. In the mesh sensitivity analysis, firstly an initial modal analysis
is performed in order to find the first three global modes of the system. The results

are shown in Figure 4.37.
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Figure 4.37 The modeshapes of the T-beam structure

It is observed from Figure 4.37 that, the first three global modes of the system are the
first, second and sixth modes of structure calculated by ANSYS. Third, fourth and
fifth modes are local modes of the thin beam (beam 2) since beam 1 does not move

in these modes.

After finding the first three global modes of the structure, several modal analyses are
performed in ANSYS and for each of the cases, the first three natural frequencies of
the global modes of the structure are obtained. Parameters of the sizing of the mesh

are organized according to the Table 4.13.
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Table 4.13 Parameters of the sizing of the mesh

h:i/H w1/W Wo/W li/L & /L
6 6 6 40-210
7 7 7 40-210
8 8 8 40-210
9 9 9 40-210
10 10 10 40-210

In Table 4.13, hy, wi, wy, |3, I, are the height of the beam 1, width of beam 1, width
of beam 2, length of beam 1 and length of beam 2, respectively. H, W, and L are the
height, width and length of the mesh element. In the analysis, SOLID 186 element is
used. The variation of the first natural frequency with respect to mesh sizing

parameters is shown in Figure 4.38, Figure 4.39 and Figure 4.40.
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Figure 4.38 Variation of the first natural frequency with respect to mesh sizing
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Figure 4.39 Variation of the first natural frequency with respect to mesh sizing
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Figure 4.40 Variation of the first natural frequency with respect to mesh sizing

As seen from Figure 4.38, Figure 4.39 and Figure 4.40, the first natural frequency is
converged approximately to 46.4 Hz after I;/L and I,/L reach to approximately 60-80
range. Similarly, the variation of the second natural frequency with respect to mesh

sizing parameters is shown in Figure 4.41, Figure 4.42 and Figure 4.43.
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Figure 4.41 Variation of the second natural frequency with respect to mesh sizing
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Figure 4.42 Variation of the second natural frequency with respect to mesh sizing
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Figure 4.43 Variation of the second natural frequency with respect to mesh sizing

As seen from Figure 4.41, Figure 4.42 and Figure 4.43, the second natural frequency
is converged to the frequency band of 197-197.5 Hz, after I,/L and I,/L reach to
approximately 60-80 range. Finally, the variation of the third natural frequency with
respect to mesh sizing parameters is shown in Figure 4.44, Figure 4.45 and Figure
4.46.
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Figure 4.44 Variation of the third natural frequency with respect to mesh sizing
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Figure 4.46 Variation of the third natural frequency with respect to mesh sizing

As seen from Figure 4.44, Figure 4.45 and Figure 4.46, the third natural frequency is
converged to the frequency band of 280-282 Hz, after I:/L and /L reach to
approximately 60-80 range. From these observations, I1/L and I,/L values are kept
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approximately in 60-80 range in the mesh sizing of the FE model used in the further

analysis.

4.2.4.2 Model Updating of the Test System

In this section, by using the observations made from mesh sensitivity analysis, initial
linear FE model of the test system is built in ANSY'S and then the linear FE model is
updated by using the measured nonlinear FRFs and employing the approach
proposed. The linear FE model of the test structure is updated by using the calculated
linear FRFs employing first the PRD method and then by using the ANSYS Design
Exploration Optimization. In the updating of the FE model, different updating
parameter sets are used. For these updating parameter sets, different candidates for
the updated FE model are obtained by using ANSYS.

In order to investigate the performance of the updated linear FE models, measured
and predicted linear FRFs are compared for all updated FE models. Using the
identified nonlinearity and updated FE models, updated nonlinear mathematical
models of the test structure are built. Finally, in order to demonstrate the accuracy of
the updated nonlinear models of the system, for all the updated nonlinear
mathematical models, predicted FRFs of the test structure are compared with the

measured FRFs at different forcing levels.
Initial FE model of the test structure is shown in Figure 4.47 and the material

properties used for the beams in the initial FE model are the same as the ones used in
Section 4.1.5 (Table 4.8).
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accelerometer

force transducer

Figure 4.47 FE model of the test structure

In the initial FE model, in order to minimize the modeling errors, accelerometer and
force transducer used in the experiments are modeled as rigid masses. Since they are
modeled as rigid, modulus of elasticity for the accelerometer and force transducer are
taken 10 times larger than the modulus of elasticity of the beams. Mass values are
obtained from the datasheet of the accelerometer and force transducer. These values
are given in Table 4.14.

Table 4.14 Mass of the accelerometer and force transducer

Transducer Type Mass (gr)
Force Transducer Bruel&Kjaer Type 8230-002 30.2
Accelerometer Briel&Kjaer Type 4507B 4.8

The first three natural frequency of the global modes of the structure and the driving
point FRFs at the tip of beam 1 in Z (transverse) direction are calculated by
performing modal analysis in ANSYS. Comparisons of the natural frequencies
obtained from FE analysis with those obtained from experiments by using PRD

method are given in Table 4.15. Linear FRFs obtained from measured nonlinear
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FRFs by using PRD method are compared with linear FRFs obtained from FE

analysis. This comparison is shown in Figure 4.48.

Table 4.15 Comparison of the first three natural frequencies obtained from initial FE

model with those obtained from measured nonlinear FRFs by using PRD method

Mode | Natural Frequency Natural Frequency Error
Number | (PRD Method) (Hz) | (Initial FE Model) (Hz) (%)
1 40.75 41.4 1.595

2 178 193.3 8.596

3 260.5 266.0 2.115
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Figure 4.48 Comparison of the linear FRFs obtained from initial FE model with
those obtained by using PRD method for the (a) first mode (b) second mode (c) third

mode
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As can be seen in Table 4.15 and Figure 4.48, there are considerable discrepancies
between the results; therefore it is necessary to update the FE model of the test

structure.

As an updating parameter set, two sets of parameters are selected. In the first set,
modulus of elasticity (E), height of beam 1 (hl), height of beam 2 (h2) are selected
as updating parameters, in the second set, modulus of elasticity (E), height of beam 2
(h2), width of beam 1 (w1l) are selected as updating parameters. Since most of the
uncertainty is generally in modulus of elasticity of the materials, this parameter exists
in both of the parameter sets. Furthermore variation in the height of beam (h2) has a
considerable effect on the natural frequencies; this parameter also exists in both of
the parameter sets. Using these parameter sets, FE model of the structure is updated

by employing ANSY'S Design Exploration Optimization.

Based on manufacturing tolerances and variation of modulus of elasticity of St37, the
bounds given Table 4.16 are defined for the parameters used in the analysis.

Table 4.16 Bounds for the updating parameters

Modulus of
Elasticity (E) h, hy W1
(GPa) (mm) | (mm) | (mm)
Lower Bound 185 135 | 7.7 | 11.7
Upper Bound 210 165 | 8.3 | 12.3

For those parameter sets, 5 different updated FE model candidates are calculated by
ANSYS.

4.2.4.2.1 Updated FE Model 1

For the updated FE model 1, the updating parameters are calculated as given in Table
4.17.
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Table 4.17 Updating parameters for updated FE model 1

Modulus of
Elasticity (E) | h; hy
(GPa) (mm) | (mm)
189.4 1.600 | 7.727

Using these parameter values, the first three natural frequencies of the updated linear
model are calculated. The comparisons of the results with those of initial FE model,
as well as with the natural frequencies obtained from experiments by using PRD

method are given in Table 4.18.

Table 4.18 Comparison of the first three natural frequencies obtained from initial

and updated FE models with experimental values obtained by using PRD method

Natural
Mode Natural Frequency Error Flr\leztgggclzy Error
Number Frequency (PRD | (Initial FE (%) | (Updated FE | (%)
Method) (Hz) Model)
Model 1) (Hz)
(Hz)
1 40.75 41.4 1.595 40.76 0.025
2 178 193.3 8.596 178.69 0.389
3 260.5 266.0 2.115 268.07 2.907

As can be seen in Table 4.18, the first and second natural frequencies are very
accurately estimated by using the updated FE model. However for the third natural

frequency, updated model gave poor results.

In Figure 4.49, the linear FRFs calculated from experimentally measured nonlinear
FRFs by using PRD method are compared with those obtained from initial and
updated FE models. As can be seen in Figure 4.49, there is a considerable
improvement for the first and second modes of the structure when updated FE model

is used.
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Figure 4.49 Comparison of the linear FRFs obtained from experimentally measured
values by using PRD method, with those calculated from initial and updated FE

models for (a) first mode (b) second mode (c) third mode

4.2.4.2.2 Updated FE Model 2

For the updated FE model 2, the updating parameters are calculated as given in Table

4.19.

Table 4.19 Updating parameters for updated FE model 2

Modulus of
Elasticity (E) h, hy
(GPa) (mm) | (mm)
186.9 1.596 | 7.826
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Using these parameter values, the first three natural frequencies of the updated linear
model are calculated. The comparisons of the results with those of initial FE model,
as well as with the natural frequencies obtained from experiments by using PRD

method are given in Table 4.20.

Table 4.20 Comparison of the first three natural frequencies obtained from initial

and updated FE models with experimental values obtained by using PRD method

Natural
Mode Natural Frequency Error Flr\leztlljjggtl:y Error
Number Frequency (PRD | (Initial FE (%) | (Updated FE | (%)
Method) (Hz) Model)
Model 2) (Hz)
(Hz)
1 40.75 41.4 1.595 40.57 -0.434
2 178 193.3 8.596 179.66 0.932
3 260.5 266.0 2.115 265.70 1.996

As can be seen in Table 4.20, there is a considerable improvement in the first and
second natural frequencies and a slight improvement in the third natural frequency

when the updated FE model is used.

In Figure 4.50, the linear FRFs calculated from experimentally measured nonlinear
FRFs by using PRD method are compared with those obtained from initial and
updated FE models. As can be seen in Figure 4.50, considerable improvement is
obtained for the first and second modes of the structure when updated FE model is

used. However for the third mode, almost no improvement is obtained.

112



2.2
2.4
2.6
z
<
E 23
[
o
.
g 3
3.2
I 1 : 1
34l Linear FRF-PRD Method ! !
| mm——- Linear FRF-Initial FE Model : H : P
Linear FRF-Updated FE Madel H H : |
36 T T T T ; 1 1 I 1
37 38 39 40 Lyl 42 43 44 45 46 47
Frequency [Hz]
41 . 4
4.15 [\‘\ 4 4.1 "\
42 I 42
| D | AVIR!
g 4% A [ 3 { Y
E [ £ / i
5
é 43 2 E 44 i '
5 { Ed i 3
k] ' S 45 J LY
'J v ¥ 1
/ P IRy \
44 i H 46 i )
L \ [ [ A
Linear FRF-PRD Method ! | —— Linear FRF-PRD Method \
A e Linear FRF-Initial FE Mode! i v AN —emem Linear FRF-Initial FE Model
Linear FRF-Updated FE Model i i Linear FRF-Updated FE Model N
450 175 180 185 190 195 200 250 255 260 265 270 275 280
Frequency [Hz] Fraquency [Hz]

Figure 4.50 Comparison of the linear FRFs obtained from experimentally measured
values by using PRD method, with those calculated from initial and updated FE

models for (a) first mode (b) second mode (c) third mode

4.2.4.2.3 Updated FE Model 3

For the updated FE model 3, the updating parameters are calculated as given in Table

4.21.

Table 4.21 Updating parameters for updated FE model 3

Modulus of
Elasticity (E) h, hy
(GPa) (mm) | (mm)
193.6 1.559 | 7.726
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Using these parameter values, the first three natural frequencies of the updated linear
model are calculated. The comparisons of the results with those of initial FE model,
as well as with the natural frequencies obtained from experiments by using PRD
method are given in Table 4.22.

Table 4.22 Comparison of the first three natural frequencies obtained from initial

and updated FE models with experimental values obtained by using PRD method

Natural
Mode Natural Frequency Error Flr\leztlljjggtl:y Error
Number Frequency (PRD | (Initial FE (%) | (Updated FE | (%)
Method) (Hz) Model)
Model 3) (Hz)
(Hz)
1 40.75 41.4 1.595 40.39 -0.894
2 178 193.3 8.596 180.32 1.304
3 260.5 266.0 2.115 264.24 1.437

As can be seen in Table 4.22, there is a considerable improvement in the second
natural frequency. Also the error for the first natural frequency decreased to the half
of its initial value. Furthermore a better estimate is obtained for the the third natural

frequency when the updated FE model is used.

In Figure 4.51, the linear FRFs calculated from experimentally measured nonlinear
FRFs by using PRD method are compared with those obtained from initial and
updated FE models. As can be seen in Figure 4.51, considerable improvement is
obtained for the second mode of the structure when updated FE model is used.
However, for the first and third modes, the improvement is less compared to the

improvement in the second mode.

114



ra
ra
T
1
e,
|

]
=

r
=

ra
=

-----------------------------------

Log(FRF [m/N]}

34[ Linear FRF-PRD Method i
----- Linear FRF-Initial FE Model
Linear FRF-Updated FE Model ‘ i :
36 : : : T

2 T |
37 38 39 40 41 42 43 44 45 46 A7
Frequency [Hz]

(a)

41 , 4 T
: Iy e
415 f JAt 41 A SR
i A
it L
42 I 42 itk
\ [ A
N i L
= 425 { = 43
£ o B \
£ i E ; |
i Y
g4 1 g 44 i Y
& H & ! \
z i S / ;
S 438 3 45 A
H T ] 3
i H i \
/ i : / ; h
44 H 45 / \
! \ i | [ A '
445 — Linear FRF-PRD Method H 4 — Linear FRF-PRD Method A
| Linear FRF-Initial FE Model H \|l AT Linear FRF-Initial FE Model
Linear FRF-Updated FE Model H 4 Linear FRF-Updated FE Model X
45
170 175 180 185 190 195 200 250 265 260 265 270 275 280
Frequency [Hz] Frequency [Hz]

(b) (©)
Figure 4.51 Comparison of the linear FRFs obtained from experimentally measured
values by using PRD method, with those calculated from initial and updated FE

models for (a) first mode (b) second mode (c) third mode

4.2.4.2.4 Updated FE Model 4

For the updated FE model 4, the updating parameters are calculated as given in Table
4.23.

Table 4.23 Updating parameters for updated FE model 4

Modulus of

Elasticity (E) h, Wy
(GPa) (mm) | (mm)
185.3 1.594 |11.868
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Using these parameter values, the first three natural frequencies of the updated linear
model are calculated. The comparisons of the results with those of initial FE model,
as well as with the natural frequencies obtained from experiments by using PRD
method are given in Table 4.24.

Table 4.24 Comparison of the first three natural frequencies obtained from initial

and updated FE models with experimental values obtained by using PRD method

Natural
Mode Natural Frequency Error Flr\leztlljjggtl:y Error
Number Frequency (PRD | (Initial FE (%) | (Updated FE | (%)
Method) (Hz) Model)
Model 4) (Hz)
(Hz)
1 40.75 41.4 1.595 40.64 -0.258
2 178 193.3 8.596 182.60 2.582
3 260.5 266.0 2.115 264.54 1.550

As can be seen in Table 4.24, there is a considerable improvement in the first natural
frequency. Also the error for the second natural frequency decreased considerably.
Furthermore a better estimate is obtained for the the third natural frequency when the

updated FE model is used.

In Figure 4.52, the linear FRFs calculated from experimentally measured nonlinear
FRFs by using PRD method are compared with those obtained from initial and
updated FE models. As can be seen in Figure 4.52, considerable improvement is
obtained for the first mode of the structure when updated FE model is used.
However, for the second and third modes, the improvement is less compared to the

improvement in the first mode.
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Figure 4.52 Comparison of the linear FRFs obtained from experimentally measured
values by using PRD method, with those calculated from initial and updated FE
models for (a) first mode (b) second mode (c) third mode

4.2.4.2.5 Updated FE Model 5

For the updated FE model 5, the updating parameters are calculated as given in Table

4.25.

Table 4.25 Updating parameters for updated FE model 5

Modulus of

Elasticity (E) h, Wy
(GPa) (mm) | (mm)
190.5 1.551|12.124
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Using these parameter values, the first three natural frequencies of the updated linear
model are calculated. The comparisons of the results with those of initial FE model,
as well as with the natural frequencies obtained from experiments by using PRD
method are given in Table 4.26.

Table 4.26 Comparison of the first three natural frequencies obtained from initial

and updated FE models with experimental values obtained by using PRD method

Natural
Mode Natural Frequency Error Flr\lezttjjggtl:y Error
Number Frequency (PRD | (Initial FE (%) | (Updated FE | (%)
Method) (Hz) Model)
Model 5) (Hz)
(Hz)
1 40.75 41.4 1.595 40.38 -0.914
2 178 193.3 8.596 184.72 3.774
3 260.5 266.0 2.115 261.26 0.293

As can be seen in Table 4.26, there is a considerable improvement for the third
natural frequency. However, improvement is less in the first and second natural

frequencies when the updated FE model is used

In Figure 4.53, the linear FRFs calculated from experimentally measured nonlinear
FRFs by using PRD method are compared with those obtained from initial and
updated FE models. As can be seen in Figure 4.53, considerable improvement is
obtained for the third mode of the structure when updated FE model is used.
However, for the first and second modes, the improvement is less compared to the

improvement in the third mode.
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Figure 4.53 Comparison of the linear FRFs obtained from experimentally measured

values by using PRD method, with those calculated from initial and updated FE

models for (a) first mode (b) second mode (c) third mode

4.2.4.2.6 Comparison of the Updated FE Models

In this section, each of natural frequencies and FRFs obtained by the updated FE

models are compared to each other as well as with those of initial FE model, and also

with the ones obtained from measured nonlinear FRFs by using PRD method.
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In Table 4.27, the first natural frequencies obtained from each updated linear model
are compared with each other as well as with that of initial FE model. The natural
frequency obtained from measured nonlinear FRFs by using PRD method are also
given in the same table.

Table 4.27 Comparison of the first natural frequency obtained from initial and

updated FE models with experimental value obtained by using PRD method

Natural Natural
Frequency | Frequency Natural
(PRD (Initial FE E(E/r(;r Up'\c/ll?)tgglsFE Frequency E((r)/rc;r
Method) Model) ° (Hz) 0
(H2) (H2)
Uﬂ?ggz? lF E 40.76 | 0.025
Updated P& | 4057 | -0.434
40.75 414 | 1.595 Ufr?jgee? g E 4039 | -0.894
Ufr?jgee? EE 40.64 | -0.258
Ufﬁj;i? 5F E 4038 | -0.914

As can be seen from Table 4.27, updated model 1 gives the best value and the
updated model 5 gives the worst value for the first natural frequency. In Figure 4.54,
the linear FRFs obtained by using PRD method from experimentally measured
nonlinear FRFs are compared with those calculated from initial and updated FE

models.
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Figure 4.54 Comparison of the linear FRFs obtained from experimentally measured
nonlinear FRFs by using PRD method, with those calculated from initial and updated
FE models

As can be seen from Figure 4.54, similar conclusions can be obtained for linear FRFs
as well. That is, updated model 1 is the best as far as the linear FRF prediction is

concerned.

The second and third natural frequencies of the updated linear models are compared
with each other as well as with those of the initial FE model. The second and third
natural frequencies obtained from measured nonlinear FRFs by using PRD method

are also given in Table 4.28 and Table 4.29, respectively.
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Table 4.28 Comparison of the second natural frequency obtained from initial and

updated FE models with experimental value obtained by using PRD method

Natural Natural
Frequency | Frequency Natural
(PRD (Initial FE E(l(’)/n;r Up&%tgglsFE Frequency E(l(r)/rgr
Method) Model) 0 (Hz) 0
(H2) (Hz)
Uf:j;‘;? f E 178.69 0.389
Uf:j;‘;? 2': E 179.66 0.932
178 193.3 850 | Updated FE 180.32 1.304
model 3
UF&?:;‘Z‘;';E 182.60 2,582
UE’;’S;‘Z? 5F E 184.72 3.774

Table 4.29 Comparison of the third natural frequency obtained from initial and

updated FE models with experimental value obtained by using PRD method

Natural Natural
Frequency | Frequency Natural
(PRD (Initial FE E(z/n;r Up&%tgglsFE Frequency E([)/”;r
Method) Model) 0 (Hz) 0
(H2) (H2)
Ufrfjéz? 1F E | 26807 2.907
Ufrfjéee? 2F E 265.70 1.996
260.5 266.0 | 2.115 Ufrfjéfe? g E 264.24 1.437
Uf::;ee? IE 264.54 1.550
Uﬂ?jgee? g E 261.26 0.293

As can be seen from Table 4.28, updated model 1 gives the best value, and the
updated model 5 gives the worst value for the second natural frequency. However it
is observed from Table 4.29 that updated model 5 gives the best value, and the

updated model 1 gives the worst value for the third natural frequency.
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In Figure 4.55, the linear FRFs obtained by using PRD method from experimentally
measured nonlinear FRFs are compared with those calculated from initial and

updated FE models.
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Figure 4.55 Comparison of the linear FRFs obtained from experimentally measured
nonlinear FRFs by using PRD method, with those calculated from initial and updated

FE models for (a) second mode (b) third mode

As can be seen from Figure 4.55, similar conclusions can be obtained for linear FRFs
as well. That is, updated model 1 is the best in the second mode and updated model 5

is the best in the third mode, as far as the linear FRF predictions are concerned.

Since the ultimate goal is to have accurate nonlinear response predictions from the
updated model, nonlinear FRFs measured experimentally for F=0.6N, F=0.7N and
F=0.8N are compared with those obtained from the initial and updated models
(composed of original and updated FE models combined with identified
nonlinearity). The results are given in Figure 4.56, Figure 4.57 and Figure 4.58, for

the first, second and third modes of the structure, respectively.
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Figure 4.57 Comparison of FRFs obtained from initial and updated models with the
experimental ones for (a) F=0.6N (b) F=0.7N (c) F=0.8N
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For the first mode, as can be seen in Figure 4.56, the best match between measured
and predicted FRFs is observed when the updated model 1 is used. For the second
mode, as can be seen in Figure 4.57, again the updated model 1 gives the best
prediction. However, as observed from Figure 4.58, updated model 5 gives the best
predictions for nonlinear FRFs around third mode of the structure. From these
results we can conclude that depending on the candidate updating parameter sets,
best response prediction may vary. Therefore, it is recommended to construct
different updated models, and choose the one which represents the actual system in

the mode(s) we are interested in, or give priority to.
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CHAPTER 5

MODEL UPDATING OF A NONLINEAR GUN BARREL OF ABATTLE
TANK

Predicting the dynamic behavior of the tip of a gun barrel especially at the
fundamental mode is critical when the shooting and stabilization performance of the
tank is considered. In this perspective, detailed model of the gun barrel at the
fundamental mode is studied in this chapter. The method developed for model
updating of nonlinear systems is applied to a gun barrel of a battle tank. An
equivalent single degree of freedom nonlinear model of the system is built for the
fundamental mode of system. First, using the PRD method, both linear FRFs and the
nonlinearities in the system are obtained from experimentally measured nonlinear
FRFs. Afterwards, linear FE model of the test structure is built in ANSYS and it is
updated by using the linear FRFs obtained through the PRD method. Thus, an
updated nonlinear model of the test structure is constructed by using the identified
nonlinearity and updated linear FE model of the system. Finally, predicted and
measured FRFs of the test structure are compared at different forcing levels in order
to demonstrate the accuracy of the updated nonlinear model of the system.
Furthermore, in order to compare the performance of PRD method with that of DDF
method, both linear FRFs and the nonlinearities in the system are also obtained by
using the DDF method.

5.1 Experimental Setup

The test set-up, which consists of the gun barrel of a battle tank, is shown in Figure
5.1.
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Figure 5.1 Gun barrel test setup

In the experiments performed in this study, the structure is excited with B&K Type
4808 modal shaker via a push-rod. In order to increase the excitation level of the
shaker, B&K Type 2712 power amplifier is used. Acceleration responses and the
forces applied are measured with B&K Type 4507B accelerometer and B&K Type
8230-002 force transducer, respectively. In all the measurements, as a data
acquisition system, B&K Type 3560C frontend is used. The equipment used in the

experiments is given in Table 5.1 and it is shown in Figure 5.2.

Table 5.1 Equipment used in the experiments

Data Acquisition System Briel&Kjaer Type 3560 C Frontend
Shaker Bruel&Kjaer Type 4808
Force Transducer Briel&Kjaer Type 8230-002
Power Amplifier Briel&Kjaer Type 2712
Accelerometer Briel&Kjaer 4507B
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Figure 5.2 Equipment used in the experiments

5.2 First Set of Experiments

In the first set of experiments, the structure is excited with a random force. In random
excitation tests, 6 different force levels are used starting from a very low to high
forcing levels. Since the accuracy of the PRD method proposed for obtaining linear
FRFs and nonlinear identification depends on the excitation frequency and it is
shown that when the structure is excited at around the linear resonance frequency of
the structure method gives more accurate results, in the first random excitation test

low excitation signal level is selected.
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In all the random excitation tests, the frequency range is selected between 0-100 Hz
and a frequency resolution of 0.0625 Hz is used in measurements. In order to
minimize the noise in measurements, 21 averages are taken. In all the random
excitation tests, 6 accelerometers are used and the gun barrel is excited with the

shaker located at the tip of the gun barrel.

The accelerometer and the shaker locations and geometry constructed in the PULSE

software are shown in Figure 5.3.

Figure 5.3 Test geometry constructed in PULSE software

The node numbering starts from the tip of gun barrel (node number 1) and continues
till the root end of the gun barrel (node number 6) that is accessible from outside of

the tank. The shaker is located at node 1 as shown in Figure 5.3.
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The force levels used in the random excitation tests are shown in Figure 5.4, and

their root mean square (rms) values are given in Table 5.2.

Force [N]
=]

P oA

Force Level 1
Force Level 2
Force Level 3
Force Level 4
Faorce Level 5
: : : : Farce Level B
1 1 1 1 1 T T

i] 10 20 30 40 50 G0 70 a0 90 100

Frequency [Hz]

Figure 5.4 Force levels used in random excitation tests

Table 5.2 Force levels used in random excitation tests

Force Level Rms (N)
0.88
1.829
2.809
3.859
7.888

21.851

OO WIN|F

For the given excitation levels, FRFs are measured by using B&K Pulse software, the
FRF at node 1 (tip of gun barrel) and corresponding coherences are shown in Figure
5.5 and Figure 5.6, respectively.
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Figure 5.5 Measured FRFs at node 1
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Figure 5.6 Coherence of the FRFs measured at node 1
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As the first observation from Figure 5.5, it can be said that FRFs are slightly different
for different random excitation force levels. Therefore in order to see differences
more clearly, resonance regions are zoomed in and shown in Figure 5.7, Figure 5.8

and Figure 5.9, respectively.
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Figure 5.7 Measured FRFs at node 1 between 5-15 Hz
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Figure 5.8 Measured FRFs at node 1 between 15-40 Hz
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Figure 5.9 Measured FRFs at node 1 between 45-55 Hz

As can be seen from Figure 5.7, Figure 5.8 and Figure 5.9, natural frequencies are
shifted when the force level changes. Especially at the fundamental mode of the gun
barrel this effect is much more pronounced. These observations give a clear
indication of nonlinearity in the structure. In order to see the dynamical characteristic
of the gun barrel in more detail, for each of the force levels, modal analysis is
performed and the corresponding modal parameters are extracted by using ME’scope

modal analysis software.

5.2.1 Modal Analysis of the Gun Barrel for the Random Excitation Force
Level 1

After performing the measurements, the modal analysis is performed between 0-55

Hz in ME’scope modal analysis software. By using the stabilization diagram (Figure

5.10) algorithm modal parameters are extracted and they are given in Table 5.3.
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Figure 5.10 Stability diagram

Table 5.3 Extracted modal parameters

Mode | Natural Frequency | Modal Damping
Number (H2) Ratio (%)
1 7.501 0.955
2 12.368 1.531
3 22.203 0.870
4 52.191 0.499

After extracting the modal parameters, FRFs are synthesized and these synthesized
FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.11,
and for nodes 3, 4, 5 and 6 in Figure 5.12.
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Figure 5.12 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5and (d) 6

The modeshapes of the gun barrel are also obtained and they are shown in Figure
5.13.
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Figure 5.13 (a) First (b) second (c) third (d) fourth modeshapes

When the modeshapes of the gun barrel are studied, the first, second and fourth
modes of the structure are found to be dominant modes. Second mode may be related
with flexibility of joint at the root however it is not a dominant mode which can be
observed from the FRF curves. In order to check the complexity of the modes,

complexity plots of modes are drawn and shown in Figure 5.14.
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Figure 5.14 Complexity plot of (a) first (b) second (c) third (d) fourth modeshapes
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It is observed from the complexity plots that all the modes are almost real since all
the modeshape components stand on the horizontal line (0-180 phase angle line) of

the complexity plot.

Furthermore, in order to see how the modes are correlated to each other, MAC
diagram and the corresponding MAC matrix values are given in Figure 5.15 and in

Table 5.4, respectively.

Figure 5.15 MAC diagram

Table 5.4 MAC matrix values

Modeshape 1 2 3 4
1 1.0000 0.8760 0.3050 0.0001
2 0.8760 1.0000 0.6520 0.0845
3 0.3050 0.6520 1.0000 0.5350
4 0.0001 0.0845 0.5350 1.0000

As seen from MAC matrix, second modeshape is very similar to first and third

modehaspes of the structure.
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5.2.2 Modal Analysis of the Gun Barrel for the Random Excitation Force
Level 2

Similarly, by using the stabilization diagram (Figure 5.16) algorithm,

parameters are extracted for this modal test and they are given in Table 5.5.
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Figure 5.16 Stability diagram
Table 5.5 Extracted modal parameters
Mode Natural Frequency Modal Damping
Number (Hz) Ratio (%)

1 7.473 1.033

2 12.364 1.837

3 22.169 0.903

4 52.174 0.496
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After extracting the modal parameters, FRFs are synthesized and these synthesized
FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.17,
and for nodes 3, 4, 5 and 6 in Figure 5.18.
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Figure 5.17 Synthesized and measured FRFs at nodes (a) 1 and (b) 2

WG TRELS WE TS LIS

[ f [ - - /
: i TN R | |
B / \\\; P W___,....a-r’/‘( T A v \ P
H ) \ T H / = e
£ f Ty Ve £ / \,: g - \“ o
P oM E TN ' 'y .,‘w.«,vr g
il E 4L N o
HII HUI A WLy e
7 o i
; Al I (C)
daont ( ) o] !

WAL FRAL 0% WS IFELIL L0

[} i
£ i
i |
i I\

W N ™

o " v
i

i
H
daont

5 [] [ F] 3 ] ® [] 3 ] 5 5 [] 5 F) 5 ] 5 [] [3 ] 5
13 2

Figure 5.18 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5and (d) 6
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Very similar modeshapes, complexity plots and MAC matrices are obtained as in the

random excitation force level 2 test case.

5.2.3 Modal Analysis of the Gun Barrel for the Random Excitation Force
Level 3

Modal parameters are extracted for this modal test, similarly, by using the
stabilization diagram (Figure 5.19) algorithm and they are given in Table 5.6.
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Figure 5.19 Stability diagram

Table 5.6 Extracted modal parameters

Mode Natural Frequency | Modal Damping
Number (Hz) Ratio (%)
1 7.449 1.171
2 12.229 2.193
3 22.144 0.941
4 52.161 0.504
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After extracting the modal parameters, FRFs are synthesized and these synthesized
FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.20,
and for nodes 3, 4, 5 and 6 in Figure 5.21.
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Figure 5.21 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5and (d) 6
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Very similar modeshapes, complexity plots and MAC matrices are obtained as in the

random excitation force level 2 test case.

5.2.4 Modal Analysis of the Gun Barrel for the Random Excitation Force
Level 4

Similarly, by using the stabilization diagram (Figure 5.22) algorithm, modal
parameters are extracted for this modal test and they are given in Table 5.7.

E ::, Eﬂ
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Figure 5.22 Stability diagram
Table 5.7 Extracted modal parameters
Mode Natural Frequency | Modal Damping
Number (H2) Ratio (%)

1 7.416 1.345

2 11.105 0.769

3 12.177 2.637

4 22.111 0.985

5 52.150 0.513
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Different from the previous results, 5 modes are extracted from the stabilization
diagram algorithm. After extracting the modal parameters, FRFs are synthesized and
these synthesized FRFs are shown together with the measured FRFs for nodes 1 and
2 in Figure 5.23, and for nodes 3, 4, 5 and 6 in Figure 5.24.
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Figure 5.24 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (c) 5and (d) 6
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(a) (b)

Figure 5.25 (a) First (b) second (c) third (d) fourth (e) fifth modeshapes

When the modeshapes of the gun barrel are studied, the first, fourth and fifth modes
of the structure are found to be dominant modes. However, the second and third
mode may be related with flexibility of joint at the root however they are not
dominant modes which can be observed from the FRF curves. In order to check the
complexity of the modes, complexity plots of modes are drawn and shown in Figure
5.26.

Figure 5.26 Complexity plot of (a) first (b) second (c) third (d) fourth (e) fifth
modeshapes
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It is observed from the complexity plots that, all the modes are almost real since all
the modeshape components lie on the horizontal line (0-180 phase angle line) of the

complexity plot.

Furthermore in order to see how these modes are correlated to each other, MAC
diagram and the corresponding MAC matrix values are given in Figure 5.27 and in
Table 5.8.

Figure 5.27 MAC diagram

Table 5.8 MAC matrix values

Modeshape 1 2 3 4 5
1 1.0000 | 0.9110 0.8600 | 0.3050 | 0.0001
2 0.9110 1.0000 0.9880 | 0.5920 | 0.0541
3 0.8600 | 0.9880 1.0000 | 0.6750 | 0.0897
4 0.3050 | 0.5920 0.6750 1.0000 | 0.5320
5 0.0001 | 0.0541 0.0897 0.5320 1.0000

As seen from MAC matrix, the first, second and third modeshapes have very similar

shapes.
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5.2.5 Modal Analysis of the Gun Barrel for the Random Excitation Force
Level 5

After performing the measurements for that force level, the modal analysis is
performed between 0-55 Hz in ME’scope modal analysis software. By using the
stabilization diagram (Figure 5.28) algorithm modal parameters are extracted and

they are given in Table 5.9.

i
S

i 1 B H

+H
[T STTETETTR TS ni@nnnon;g_tigi_igijn;ﬂu; =1

Figure 5.28 Stability diagram

Table 5.9 Extracted modal parameters

Mode Natural Frequency Modal Damping
Number (H2) Ratio (%)
1 7.341 1.621
2 11.053 1.187
3 12.044 3.093
4 22.018 1.115
5 52.112 0.533
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After extracting the modal parameters, FRFs are synthesized and these synthesized

FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.29,

and for nodes 3, 4, 5 and 6 in Figure 5.30.
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Figure 5.30 Synthesized and measured FRFs at nodes (a) 3, (b) 4, (¢c) 5and (d) 6
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In this analysis, very similar modeshapes, complexity plots and MAC matrices are

obtained as in the random excitation force level 4 test case.

5.2.6 Modal Analysis of the Gun Barrel for the Random Excitation Force

Level 6

Similarly, by using the stabilization diagram (Figure 5.31) algorithm,

parameters are extracted for this modal test and they are given in Table 5.10.

modal
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Figure 5.31 Stability diagram
Table 5.10 Extracted modal parameters
Mode Natural Frequency Modal Damping
Number (Hz) Ratio (%)
1 7.196 2.368
2 10.929 2.498
3 11.755 2.926
4 21.785 1.483
5 52.034 0.580
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After extracting the modal parameters, FRFs are synthesized and these synthesized
FRFs are shown together with the measured FRFs for nodes 1 and 2 in Figure 5.32,
and for nodes 3, 4, 5 and 6 in Figure 5.33.
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Figure 5.32 Synthesized and measured FRFs at nodes (a) 1 and (b) 2
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Figure 5.33 Synthesi!zed and measured FRFs at nodes (a) 3, (t;) 4,(c)5and (d) 6
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Similar modeshapes, complexity plots and MAC matrices are obtained for this test

case as in the random excitation force level 4 test case as well.

5.2.7 Comparisons of the Modal Analysis Results of Each Random Excitation

Force Level

In this section modal parameters extracted are compared to each other for all the
random excitation force level cases. The natural frequency comparison is given in

Table 5.11 and it is shown in Figure 5.34.
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Figure 5.34 Natural frequency comparison for different force levels
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Table 5.11 Natural frequency comparison for different force levels

Force | Force | Force | Force | Force | Force
Level 1 | Level 2 | Level 3 | Level 4 | Level 5| Level 6
N':J/lr(r):z)eer Natural Frequency (Hz)
1 7.501 7.473 7.449 7.416 7.341 7.196
2 Radaiad Radaiad Radaiad 11.105 | 11.053 | 10.929
3 12.368 | 12.364 | 12.229 | 12.177 | 12.044 | 11.755
4 22.203 | 22.169 | 22.144 | 22.111 | 22.018 | 21.785
5 52.191 | 52.174 | 52.161 | 52.15 | 52.112 | 52.034

As seen from Figure 5.34 and Table 5.11, for the first three force levels, the second
mode of the structure cannot be extracted from modal analysis. Also it is clearly seen
that as the force level increases the natural frequencies tend to decrease for all the

modes.

Similar comparison can be made for the damping values extracted from the analysis.
The comparison of the damping values for each of the force levels is given in Table
5.12 and shown in Figure 5.35.

Table 5.12 Damping ratio comparison for different force levels

Force | Force | Force | Force | Force | Force
Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6
Mode
Number Modal Damping Ratio (%)
1 0.955 1.033 1.171 1.345 1.621 2.368
2 fadaded fadaded Sk 0.769 1.187 2.498
3 1.531 1.837 2.193 2.637 3.093 2.926
4 0.87 0.903 0.941 0.985 1.115 1.483
5 0.499 0.496 0.504 0.513 0.533 0.58
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Figure 5.35 Damping ratio comparison for different force levels

As observed from Figure 5.35 and Table 5.12, as the force level increases damping
values of the modes tend to increase for all the modes except the third mode. Only in

the third mode the damping value drops for force level 6.
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From results of random excitation tests, clear indication of the existence of
nonlinearity in the system is seen. Since the fundamental mode of the gun barrel is
under consideration, we can also conclude that, for the fundamental mode, as the
force level increases in the random excitation tests, damping value of the

fundamental mode increases and natural frequency decreases.

It is also observed that, fundamental frequency of the gun barrel is around 7.5 Hz for
lowest excitation force level. In order to apply the PRD method, the structure is
excited at around that frequency with a pure sine excitation at different forcing
levels. The structure is excited at a low forcing level and then at a number of high
forcing levels. The advantage of this method is that, there is no need for any
vibration controller as in the cases of constant forcing or constant amplitude testing

over a certain frequency range.

In order to see the effect of choosing different frequencies of excitation on the
performance of the method, five different excitation frequencies (7.5 Hz, 7 Hz, 7.125
Hz, 7.25 Hz, and 7.375 Hz) are used, and for each of these excitation frequencies,

describing functions of the nonlinearities are obtained by using PRD method.
5.2.8 Application of PRD Method at 7.5 Hz for Identifying Nonlinearity
Real and imaginary parts of the describing function are obtained from experimental
measurements at 7.5 Hz by applying PRD method. Curve fitting is performed for the

calculated real and imaginary parts of describing function and the fitted curves are

shown in Figure 5.36.
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For the real and imaginary parts of the describing function, 3" order polynomial
functions are fit. Corresponding coefficients of the polynomial functions are given in
Table 5.13.

Table 5.13 Coefficients of the polynomials fit to the data for real and imaginary parts

of the describing function

Ps P2 P1 Po

Real Part of Describing
Function

3 2
PX DX+ PX+ Dy | -2.62x10" | 7.62x10"° | -9.64x10 | -565
Imaginary Part of
Describing Function

X P X+ PX+D, | 3.12¢10% | -4.18x10%° | 3.77x107 | -518

5.2.9 Application of PRD Method at 7 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental
measurements at 7 Hz by applying PRD method. Curve fitting is performed for the
calculated real and imaginary parts of describing function and the fitted curves are
shown in Figure 5.37.
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For the real and imaginary parts of the describing function, 3" order polynomial

functions are fit. Corresponding coefficients of the polynomial functions are given in
Table 5.14.

Table 5.14 Coefficients of the polynomials fit to the data for real and imaginary part

of the describing function

P3 P2 P1 Po

Real Part of Describing
Function

pX*+ X"+ pX+ Ry | 252x10% | 2.72x10% | -1.32x10° | -579
Imaginary Part of
Describing Function

pX X"+ DX+ Dy | 2.03x10™ | -1.79x10M | 6.17x107 | -1260

5.2.10 Application of PRD Method at 7.125 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental
measurements at 7.125 Hz by applying PRD method. Curve fitting is performed for
the calculated real and imaginary parts of describing function and the fitted curves
are shown in Figure 5.38.
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For the real and imaginary parts of the describing function, 3" order polynomial

functions are fit. Corresponding coefficients of the polynomial functions are given in

Table 5.15.

Table 5.15 Coefficients of the polynomials fit to the data for real and imaginary part

of the describing function

P3 P2 P1 Po
Real Part of Describing
Function
pyX*+ X + PX+ Py -1.33x10* | 1.88x10% |-1.21x10% | -608
Imaginary Part of
Describing Function
P+ X+ pX+Dy | 7.84x10% | -9.78x10% | 5.21x107 | 523

5.2.11 Application of PRD Method at 7.25 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental

measurements at 7.25 Hz by applying PRD method. Curve fitting is performed for

the calculated real and imaginary parts of describing function and the fitted curves

are shown in Figure 5.39.
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For the real and imaginary parts of the describing function, 3" order polynomial

functions are fit. Corresponding coefficients of the polynomial functions are given in

Table 5.16.

Table 5.16 Coefficients of the polynomials fit to the data for real and imaginary part

of the describing function

P3 P2 P1 Po
Real Part of Describing
Function
pyX + X + PX+ Py -1.30x10* | 1.85x10% | -1.24x10% | -618
Imaginary Part of
Describing Function
P+ X +pX+ Dy | 5.84x10% | -7.62x10%° | 4.75x107 | -483

5.2.12 Application of PRD Method at 7.375 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental
measurements at 7.375 Hz by applying PRD method. Curve fitting is performed for

the calculated real and imaginary parts of describing function and the fitted curves

are shown in Figure 5.40.
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For the real and imaginary parts of the describing function, 3" order polynomial

functions are fit. Corresponding coefficients of the polynomial functions are given in
Table 5.17.

Table 5.17 Coefficients of the polynomials fit to the data for real and imaginary part

of the describing function

Ps p2 p1 Po

Real Part of Describing
Function

pX*+ X"+ PX+ R | 151x10% | 2.1x10% | -1.34x10° | -628
Imaginary Part of
Describing Function

P+ P X"+ DX+ Dy | 1.05x10% | -1.27 x10™ | 6.36x107 | -498

5.2.13 Comparison of Nonlinearities Identified by Using PRD Method at
Different Frequencies

In this section, the real and imaginary parts of the describing function obtained from

experimental measurements at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz by
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using PRD method are compared to each other. Comparisons of the real and
imaginary parts of the describing functions are shown in Figure 5.41 and Figure 5.42,

respectively.
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Figure 5.41 Comparison of identified real parts of the describing function
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When we compare the real part of describing functions obtained using the
measurements at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz, it can be observed
from Figure 5.41 that identified functions are similar to each other. As seen from
Figure 5.42, the identified imaginary parts of describing functions are also similar to
each other. However, we can see larger deviations in the describing function
obtained when the measurement at 7 Hz is used, especially at larger response
amplitudes. From the results we can conclude that the excitation frequency used in
PRD method, does not have significant effect on the identified nonlinearity, if the
excitation frequency is approximately in the 5% range of the resonance of the

underlying linear system.

As a final test in this set of experiments, frequency responses between 6 Hz and 8 Hz
are measured for a constant low forcing level excitation. Stepped sine test is used as
an excitation type by using the given test set-up. Frequency resolution of 0.03125 Hz
is used around the resonance region, and a frequency resolution of 0.25 Hz is used
elsewhere. Excitation signal is a pure sinusoidal signal. However, in order to perform
constant force vibration testing over the frequency range, a manual control strategy is
used in the experiments. This control is maintained by checking the forcing level and
changing the excitation voltage supplied to the shaker. In Figure 5.43, measured
FRFs for F=0.5N are shown.
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Figure 5.43 Measured FRF at F=0.5N

It is observed from Figure 5.43 that the FRF curve obtained for F=0.5N seems like a
linear FRF curve, as expected. However, as it will be shown below, the measured
FRF and the linear FRF curves of the system are different from each other even

though a very low forcing is used in the experiment.
5.3 Second Set of Experiments

In the second set of experiments, the main purpose is to perform measurements
which will be used to study the performance of the PRD method and the model
updating approach proposed. A set of stepped sine constant force tests is used in the
experiments. Frequency resolution of resolution of 0.03125 Hz is used around the

resonance region and away from the resonance region larger frequency resolution is
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used. Similarly, the constant force excitation is maintained by manually checking the
forcing level and changing the excitation voltage supplied to the shaker at each
frequency point. The structure is excited at 3 different forcing levels (F=5N,
F=10.4N, F=15N).The measured FRFs are shown in Figure 5.44.

—a—F = 5N
a—F = 10.4N
-4 | —e—F = 15N

Log(FRF [r/N])

572 | i I 1 | 1
B B.25 5.5 B.75 7 7.2 7.8 775 g
Freguency [Hz]

Figure 5.44 Measured FRF at F=5N, F=10.4N, F=15N

Also, these measured FRFs are shown with the FRF obtained at low forcing level

(F=0.5N) in the same graph (Figure 5.45).
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Figure 5.45 Measured FRF at F=0.5N, F=5N, F=10.4N, F=15N

5.4  Application of PRD Method for Obtaining Linear FRFs

Using the describing function values obtained by applying PRD method and the FRF
values measured at F=0.5N in the first set of experiments, linear FRFs of the
structure are predicted. Since, describing functions are obtained at 5 different
excitation frequencies, in order to study the effects of test frequency on the
performance of the method; five separate linear FRF curves are predicted. The linear
FRF curves predicted by using the describing functions obtained from experiments
made at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz are compared with the FRFs
measured at F=0.5N in Figure 5.46, Figure 5.47 and Figure 5.48 and with each other
in Figure 5.49.
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Figure 5.47 Comparison of measured FRFs at F=0.5N with predicted linear FRFs by
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Figure 5.49 Comparison of predicted linear FRFs by using PRD method at 7 Hz,
7.125Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz

As can be observed from Figure 5.46, Figure 5.47 and Figure 5.48, FRFs measured at
low forcing level (F = 0.5N) do not accurately represent the linear FRFs of the
system which can be obtained by using the PRD method proposed. FRFs measured at
even a very low forcing level may not represent the linear FRF accurately. It is also
observed from Figure 5.49 that linear FRFs obtained using the describing functions
identified from the tests made at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz have
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discrepancies around the resonance (deviation of the peak amplitude from the mean
amplitude value is approximately less than 9%). Based on these observations, if the
excitation frequency used in PRD method is approximately in the 5% range of the
resonance of the underlying linear system, there are no large discrepancies in the
predicted linear FRFs. In the next section, in order to further investigate the effects of
test frequency on the performance of the method, predicted nonlinear FRFs
(regenerated nonlinear FRFs by using linear FRFs and identified nonlinearity
obtained by PRD method) are compared with experimental nonlinear FRFs at F=5N,
F=10.4N and F=15N.

5.5 Prediction of Nonlinear FRFs by Using Linear FRFs and Identified
Nonlinearity Obtained by PRD Method

In this section, by using the identified nonlinearity and linear FRFs predicted by
using the PRD method at 7 Hz, 7.125 Hz, 7.25Hz, 7.375 Hz and 7.5 Hz, the
nonlinear FRFs at F=5N, F=10.4N and F=15N are calculated (regenerated). The
regenerated FRFs are compared with the experimental measurements for F=5N. The

results are given in Figure 5.50, Figure 5.51 and Figure 5.52.
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Figure 5.50 Comparison of measured and predicted FRFs at F=5N (PRD method is
used at (a) 7.5 Hz (b) 7 Hz)
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Figure 5.52 Comparison of measured and predicted FRFs at F=5N (PRD method is
used at 7.375 Hz)

Regenerated nonlinear FRF curves are also compared with each other as well as with

the experimental one for F=5N as shown in Figure 5.53.
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Figure 5.53 Comparison of experimental and regenerated FRFs by using PRD
method at 7 Hz, 7.125 Hz, 7.25 Hz, 7.375 Hz and 7.5 Hz

As can be seen from Figure 5.53, regenerated nonlinear FRFs match very good with
the experimental nonlinear FRFs at F=5N. Similarly, the comparison of the
regenerated and experimental nonlinear FRF curves at F=10.4N are given in Figure
5.54, Figure 5.55 and Figure 5.56.
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Figure 5.54 Comparison of measured and predicted FRFs at F=10.4N (PRD method

is used at (a) 7.5 Hz (b) 7 Hz)
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Figure 5.56 Comparison of measured and predicted FRFs at F=10.4N (PRD method
is used at 7.375 Hz)

Regenerated nonlinear FRF curves are also compared with each other as well as with

the experimental one for F=10.4N as shown in Figure 5.57.
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Figure 5.57 Comparison of experimental and regenerated FRFs by using PRD
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As can be observed from the Figure 5.57, regenerated nonlinear FRFs and
experimental nonlinear FRFs matches are in good agreement at F=10.4N. Finally, the
comparison of the predicted and experimental nonlinear FRFS at F=15N are given in
Figure 5.58, Figure 5.59 and Figure 5.60.
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Figure 5.58 Comparison of measured and predicted FRFs at F=15N (PRD method is

used at (a) 7.5 Hz (b) 7 Hz)
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Figure 5.59 Comparison of measured and predicted FRFs at F=15N (PRD method is
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Similarly, regenerated nonlinear FRF curves are also compared with each other as

well as with the experimental one for F=15N as shown in Figure 5.61.
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From Figure 5.61, it is seen that there is a very good agreement between the

regenerated and experimental nonlinear FRFs at F=15N.

Since the predicted FRFs are close to each other regardless of the frequency used in
PRD method, it is better to quantify the similarity between the regenerated and
experimental FRFs, by using the Frequency Response Assurance Criteria (FRAC)

given below [85].

2

‘{Hxn ("))}H {HArj (a))}
({erj (@)} {Hy, (w)})({HArj (@)} {H (w)})

FRAC = (5.1)

In Equation (5.1) {HX”. (a))} and {H Al (a))} are the experimental and calculated

FRFs over the frequency spectrum o respectively. Superscript H represents the
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complex conjugate transpose. FRAC value changes between zero and one. FRAC
value of unity represents full correlation between experimental and calculated FRFs
and FRAC value of zero indicates no correlation between experimental and
calculated FRFs.

By using the Equation (5.1) FRAC values are calculated for all the excitation

frequency cases at all forcing levels. The results are given in Table 5.18.

Table 5.18 FRAC values for PRD method

PRD Method
Forcing | Used at | Used at | Used at | Used at | Used at
Level | 7.5Hz 7.125Hz| 7.25Hz | 7.375Hz
5N 0.9823 0.9820 | 0.9678 | 0.9429
10.4N | 0.9826 0.9902 | 0.9788 | 0.9622
15N | 0.9843 | 0.9748 0.9486 | 0.9492

From Table 5.18, it is seen that the FRAC values are very close to 1 for most of the
cases at all forcing levels the worst value being approximately 0.95. At F=5N and
F=10.4N, the FRFs predicted by PRD method using 7 Hz have slightly larger value
compared to the other cases. Similarly, at F=15N, the FRFs predicted by PRD
method using 7.125 Hz has slightly larger FRAC value compared to the other cases.
The worst results are obtained at 7.375 Hz. However, it may not be possible to

observe a trend.

5.6 Application of DDF Method for Identifying Nonlinearity

In this section, nonlinearity of the gun barrel is identified by using DDF method [79].
As mentioned in theory part, since nonlinear FRF measurements at two constant
forcing levels are necessary for the application of the method, we can construct a
total of 3 force combinations by using the experimental measurements made at 3

forcing levels. These force combinations are given in Table 5.19.
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Table 5.19 Force combinations used in DDF method

Force Low Forcing High Forcing
Combination Level Level
1 F=5N F=10.4N
2 F=5N F=15N
3 F=10.4N F=15N

In order to investigate the effect of choosing different force levels on the accuracy of
the DDF method, for each of force combination case, nonlinearities are identified

and are compared to each other.
5.6.1 Force Combination 1
Real and imaginary parts of the describing function are obtained from experimental

measurements by applying DDF method. Curves fitted to the real and imaginary

parts of the describing function values obtained through DDF method are shown in

Figure 5.62.

Describing Function [MN/m]

Describing Function [MN/m]

(a)

(b)

Figure 5.62 Calculated describing function (a) Real part (b) Imaginary part
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For the real and imaginary parts of describing function, 3 order polynomial

functions are fit. Corresponding coefficients of the polynomial functions are given in
Table 5.20.

Table 5.20 Coefficients of the polynomials fit to the data for the real and imaginary

parts of the describing function

Ps p2 P1
Real Part of Describing
Function
pX° + X + Py -1.06x10% | 1.26x10" | -1.00x10°
Imaginary Part of
Describing Function
pX’ + X + PX 8.43x10" | -8.08 x10° | 4.52x107

5.6.2 Force Combination 2

Real and imaginary parts of the describing function are obtained from experimental
measurements by applying DDF method. Curves fitted to the real and imaginary

parts of the describing function values obtained through DDF method are shown in
Figure 5.63.

T
fitted curve : : : fitted curve

Describing Function [M/m]
Describing Function [M/m]

(b)
Figure 5.63 Calculated describing function (a) Real part (b) Imaginary part
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For the real and imaginary parts of describing function, 3 order polynomial
functions are fit. Corresponding coefficients of the polynomial functions are given in
Table 5.21.

Table 5.21 Coefficients of the polynomials fit to the data for the real and imaginary

parts of the describing function

Ps p2 P1
Real Part of Describing
Function
poX + X + Py 8.42x10° | 1.14x10" | -9.73x10’
Imaginary Part of
Describing Function
pX" + X + PX 0.83x10% | -1.03 x10" | 5.20x107

5.6.3 Force Combination 3

Real and imaginary parts of the describing function are obtained from experimental
measurements by applying DDF method. Curves fitted to the real and imaginary
parts of the describing function values obtained through DDF method are shown in
Figure 5.64.

Describing Function [M/m]

Describing Function [M/m]

(b)
Figure 5.64 Calculated describing function (a) Real part (b) Imaginary part
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For the real and imaginary parts of describing function, 3 order polynomial
functions are fit. Corresponding coefficients of the polynomial functions are given in
Table 5.22.

Table 5.22 Coefficients of the polynomials fit to the data for the real and imaginary

parts of the describing function

Ps p2 P1
Real Part of Describing
Function
pX° + X + Py -1.27x10% | 1.71x10" | -1.15x10°
Imaginary Part of
Describing Function
pX’ + X + PX 9.74x10% | -1.05 x10" | 5.23x107

5.7 Comparison of Identified Nonlinearity Using DDF Method with Each of

the Force Combinations

In this section, calculated real and imaginary parts of the describing function
obtained from experimental measurements by using DDF method are compared to
each other for each of the force combinations employed. The comparisons are shown
in Figure 5.65 and Figure 5.66 for the real and imaginary parts of the describing

functions, respectively.
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As seen from Figure 5.65 and Figure 5.66, calculated real and imaginary parts of the

describing functions are quite similar for different force combinations, therefore it
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can be concluded that the forcing level used in the application of the DDF method
does not have a significant effect on the identified nonlinearities. However, it is more
important to compare the predicted nonlinear FRFs by using the nonlinearities
identified employing different force combinations.

5.8 Application of DDF Method for Obtaining Linear FRFs

Using the describing function values obtained and the measured nonlinear FRF
values, linear FRFs of the structure are predicted by applying DDF method for each
force combination. For each force combination, there are two possibilities for
obtaining the linear FRFs: Either of the low forcing or high forcing levels can be
used. These possibilities are shown in Table 5.23.

Table 5.23 Possible linear FRF calculation

Force Force Level Used to Case

Combination Calculate Linear FRF No
1 F=5N 1
F=10.4N 2

9 F=5N 3
F=15N 4

F=10.4N 5

3 F=15N 6

Both of the low forcing level or high forcing levels are used separately in the
prediction of the linear FRF, in order to study the effects of choosing low or high
forcing levels on the performance of the linear FRF prediction of the method. Six
different linear FRF curves predicted are compared with the FRFs measured at
F=0.5N in Figure 5.67 and Figure 5.68, and with each other in Figure 5.69.
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Figure 5.67 Comparison of measured FRFs at F=0.5N with predicted linear FRFs by
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Figure 5.69 Comparison of measured FRFs at F=0.5N with predicted linear FRFs by
using DDF method

As can be observed from Figure 5.67 and Figure 5.68, FRFs measured at low forcing
level (F=0.5N) deviate from the linear FRFs of the system which can be obtained by
using the DDF method. It is observed from Figure 5.69 that there are slight
differences at the resonance region for each of six linear FRFs obtained by using
DDF method (deviation of the peak amplitude from the mean amplitude value is
approximately 10%). Therefore we can conclude that force combinations and using
either of low or high forcing levels to calculate linear FRFs do not have considerable

effects on the predicted linear FRFs.

5.9 Prediction of Nonlinear FRFs by Using Linear FRFs and Identified
Nonlinearity Obtained from DDF Method

In this section, by using the identified nonlinearity and linear FRFs by using the DDF
method, the nonlinear FRFs at F=5N, F=10.4N and F=15N are regenerated for all the
six different combinations. Firstly, the results are compared with nonlinear FRFs
experimentally measured at F=5N. The results are given in Figure 5.70, Figure 5.71
and Figure 5.72.
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Figure 5.70 Comparison of measured FRFs at F=5N with predicted nonlinear FRFs
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Figure 5.71 Comparison of measured FRFs at F=5N with predicted nonlinear FRFs

by using (a) DDF method-case 3 (b) DDF method-case 4
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Figure 5.72 Comparison of measured FRFs at F=5N with predicted nonlinear FRFs
by using (a) DDF method-case 5 (b) DDF method-case 6

From these results, it can be concluded that the regenerated nonlinear FRFs match
pretty well with experimentally measured ones at F=5N. The nonlinear FRFs
regenerated in 6 different cases are also compared with each other as well as with the

experimental one and it is shown in Figure 5.73.
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Figure 5.73 Comparison of measured FRFs at F=5N with predicted nonlinear FRFs
by using DDF method
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As can be seen from Figure 5.73, around the resonance frequency there are
discrepancies between 6 different nonlinear FRF curves and the experimental

nonlinear FRF curve at F=5N.

Similarly, the comparison of the regenerated and experimental nonlinear FRF curves
at F=10.4N are given in Figure 5.74, Figure 5.75 and Figure 5.76.
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Figure 5.74 Comparison of measured FRFs at F=10.4N with predicted nonlinear
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Figure 5.75 Comparison of measured FRFs at F=10.4N with predicted nonlinear
FRFs by using (a) DDF method-case 3 (b) DDF method-case 4
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Figure 5.76 Comparison of measured FRFs at F=10.4N with predicted nonlinear
FRFs by using (a) DDF method-case 5 (b) DDF method-case 6

From the results, it can be concluded that there is a good agreement between the
regenerated nonlinear FRFs and measured ones at F=10.4N. The nonlinear FRFs
regenerated in 6 different cases are also compared with each other as well as with the

experimental one and it is shown in Figure 5.77.
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Figure 5.77 Comparison of measured FRFs at F=10.4N with predicted nonlinear
FRFs by using DDF method
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As can be seen from the Figure 5.77, around the resonance frequency there are slight
discrepancies between 6 different regenerated nonlinear FRF curves and the

experimental nonlinear FRF curve at F=10.4N.

Finally, the comparison of the regenerated and experimental nonlinear FRF curves at
F=15N are given in Figure 5.78, Figure 5.79 and Figure 5.80.
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Figure 5.79 Comparison of measured FRFs at F=15N with predicted nonlinear FRFs
by using (a) DDF method-case 3 (b) DDF method-case 4
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Figure 5.80 Comparison of measured FRFs at F=15N with predicted nonlinear FRFs
by using (a) DDF method-case 5 (b) DDF method-case 6

It is observed from the figures given above that, regenerated nonlinear FRFs match
pretty well with experimentally measured ones at F=15N. The nonlinear FRFs
regenerated in 6 different cases are also compared with each other as well as with the

experimental ones and it is shown in Figure 5.81.
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As can be seen from Figure 5.81, regenerated nonlinear FRFs and the experimental

nonlinear FRFs are similar at F=15N.

If we compare the results shown in Figure 5.73, Figure 5.77 and Figure 5.81, the
nonlinear FRFs regenerated in 6 different cases seem to match better with the
experimental measurements as the force level increases. In order to have better
observations, the similarity between the regenerated and experimental FRFs is
quantified. At all forcing levels, FRAC values are calculated for all cases and the

calculated FRAC values are given in Table 5.24.

Table 5.24 FRAC values for DDF method
Forcing DDF Method
Level | Casel | Case2 | Case 3 | Case4 | Case5 | Case 6
5N 0.9631 | 0.9483 H 0.9555 | 0.9624 | 0.9475
10.4N | 0.9669 | 0.9773 | 0.9665 | 0.9669 | 0.9803
15N | 0.9763 | 0.9793 | 0.9711 | 0.9753 | 0.9642 |

From Table 5.24, it is observed that the FRAC values are very close to 1 for all
cases. The highest FRAC value in each forcing level is obtained in a different case.
However, there is no significant change in the FRAC values for the combinations
used in DDF method. Furthermore, we cannot see a clear increasing trend in FRAC
value as the force level increases, which is consistent with the observations made in
the results shown in Figure 5.73, Figure 5.77 and Figure 5.81. Therefore we can say
that, force combinations and the force level used to calculate linear FRF do not have

a significant effect on the predicted FRFs.

5.10 Comparison of PRD and DDF Method for Identifying Nonlinearity and
Obtaining Linear FRFs

In this section, firstly, real and imaginary parts of the describing functions identified
from experimentally measured nonlinear FRFs by using PRD and DDF methods are
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compared to each other. This comparison is shown in Figure 5.82 and Figure 5.83 for

the real and imaginary parts of the describing functions, respectively.
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As can be seen from Figure 5.82 and Figure 5.83, real and imaginary parts of the
describing functions identified from experimentally measured nonlinear FRFs by
using PRD and DDF methods are pretty close to each other. However, it is seen that,
the real and imaginary parts of describing functions identified from measured FRFs
at 7 Hz by using PRD method deviates from the other identified nonlinearities,

especially at higher displacement values.

Secondly, predicted linear FRFs obtained by using PRD and DDF methods are

compared in Figure 5.84.
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As can be observed from Figure 5.84, there are some discrepancies between
predicted linear FRFs obtained by using PRD and DDF methods especially around
the resonance region. One of the reasons of these discrepancies is the differences in
the identified imaginary part of the describing functions. Therefore we can say that

the methods are more sensitive to damping nonlinearity predictions.

As a final comparison, regenerated nonlinear linear FRFs calculated by using PRD
and DDF methods at F=5N, F=10.4N and F=15N are compared. The comparison is
given in Figure 5.85, Figure 5.86 and Figure 5.87 for F=5N, F=10.4N and F=15N,

respectively.
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Figure 5.85 Comparison of predicted nonlinear FRFs by using PRD and DDF
methods at F=5N
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Figure 5.86 Comparison of predicted nonlinear FRFs by using PRD and DDF
methods at F=10.4N
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Figure 5.87 Comparison of predicted nonlinear FRFs by using PRD and DDF
methods at F=15N
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As can be observed from Figure 5.85, Figure 5.86 and Figure 5.87, although there are
discrepancies around the resonance region between FRF curves, in general,
regenerated nonlinear FRFs seems to be similar to each other for all the forcing
levels tested (F=5N, F=10.4N and F=15N). In order to make better observations, the
similarity between the regenerated and experimental FRFs is quantified. FRAC
values are calculated and given in Table 5.25, in order to compare the regenerated

FRFs at all forcing levels.

Table 5.25 FRAC values for PRD and DDF methods

Forcing Forcing Forcing
Level Level Level
Using 5N 10.4N 15N
PRD | 7.5Hz | 0.9823 0.9826 0.9843
Method | 7Hz | 0.9945 | 0.9748

7.125Hz | 0.9820 0.9902 | 0.9864

7.25Hz | 0.9678 0.9788 0.9486
7.375Hz | 0.9429 0.9622 0.9492
Case Case Case
DDF No No No

Method 5 0.9624 3 0.9665 1 0.9763
6 0.9475 4 0.9669 2 0.9793

At F=5N, only FRAC values of DDF method-cases 5 and 6 are compared to the ones
of PRD method because, as mentioned earlier, DDF method-cases 5 and 6 use
F=10.4N and F=15N to obtain the linear FRF and nonlinearity, therefore it is more
meaningful to compare only FRAC values of DDF method-cases 5 and 6 with FRAC
values of PRD method. At F=10.4N and F=15N, only FRAC values of DDF method-
cases 3 and 4 and DDF method-cases 1 and 2 are compared to the corresponding
ones obtained by PRD method, because of a similar reason. As seen from Table 5.25,
at all forcing levels, PRD method has higher FRAC values and therefore PRD

method give a better prediction for nonlinear FRFs.
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5.11 Model Updating of the FE Model of the Gun Barrel

In this section firstly linear FE model of the gun barrel is constructed and then it is
updated by using the linear FRFs obtained through the PRD method and by applying
inverse eigensensitivity method. The updated nonlinear model of the gun barrel is
constructed by using the identified nonlinearity and updated linear FE model of the
system. Then the nonlinear FRFs of the system are calculated at different forcing
levels by using the updated model. Finally, predicted and measured FRFs of the
system are compared and thus the accuracy of the updated nonlinear model of the

system is studied.
5.11.1 FE Modeling of the Gun Barrel
In order to model the gun barrel in FE analysis software, firstly the components and

the mechanism of the gun barrel should be understood. Typical gun barrel of a battle

tank is shown in Figure 5.88.

trunnion axis

TN/ Tk

gun tube thermal shrouds
shielding & armor rear components of
the mechanism

Figure 5.88 Gun barrel of a battle tank
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As seen from Figure 5.88, gun barrel is mainly composed of gun tube, thermal
shrouds, shielding-armor and rear components of the mechanism. The main part of
the rear components is the elevation motor assembly and which drives the gun barrel
around the trunnion axis. The simplified model of the gun barrel system is shown in
Figure 5.89.

2

Figure 5.89 Simplified model of gun barrel system

Simplified model of the gun barrel system is composed of turret, elevation motor
assembly and gun tube. Elevation motor assembly is modelled by a linear stiffness
which acts force along the gun tube axis. The link names and the joints between the

links are given in Table 5.26 and Table 5.27, respectively.

Table 5.26 Link names of the system

Link 1 Turret
I\Ilr:) 2 | Elevation Motor Assembly
3 Gun Tube
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Table 5.27 Joint locations in the gun barrel system

1 Pin Joint Turret-Elevation Motor Assembly
Pin Joint
Joint | 2 (at trunnion Turret-Gun Tube
No axis)
Lo Gun Tube-Elevation Motor
3 Pin Joint
Assembly

The geometric and material properties of the gun tube (Figure 5.90) of the gun barrel

system are also given in Table 5.28.

Figure 5.90 Gun Tube

Table 5.28 Geometrical and material properties of the gun tube

Material Carbon Steel (0.4 % Carbon)
Modulus of Elasticity (GPa) 207
Length (m) 6.6
Inner Diameter (mm) 120

In the FE model constructed, mass of the thermal shrouds are neglected. The
shielding-armor and the rear components of the system are modelled as point masses

with mass and inertia properties given in Table 5.29 [86].
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Table 5.29 Mass and inertia properties

Mass (kg) Inertia (kg.m?)
Shielding-Armor 650 29.6
Rear Components of the
System 1845 667

The stiffness of the elevation motor is taken as 140x10° N/m by using similar
elevation motor properties used to drive a different gun barrel system [86]. However,
there is an uncertainty in the value of stiffness of the elevation motor, therefore this

parameter will be used as the updating parameter in FE model updating.

5.11.2 Mesh Sensitivity Analysis for the FE Model of Gun Barrel

In this section before the construction of the initial FE model of the gun barrel in
ANSYS, mesh sensitivity analysis is performed in order to see the effect of mesh
sizing on the estimation of the fundamental natural frequencies of the structure.
Constructed geometry and the FE model of the gun barrel used in the mesh
sensitivity analysis is shown in Figure 5.91 and Figure 5.92, respectively.

Figure 5.91 Constructed geometry of the gun barrel in ANSYS
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Figure 5.92 FE model of the gun barrel

Global mesh size for the FE model is varied between 0.1-0.01m, and for each of the
global mesh size, modal analyses are performed in ANSYS. Fundamental natural
frequency of the gun barrel is calculated for each case. In the analysis SOLID 186
element is used. The variation of the fundamental natural frequency with respect to
global mesh sizing and the fundamental modeshape is shown in Figure 5.93 and

Figure 5.94, respectively.
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Figure 5.93 Variation of the fundamental natural frequency of the gun barrel with

respect to global mesh sizing
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e —

Figure 5.94 Fundamental modeshape of the gun barrel

As seen from Figure 5.93, fundamental natural frequency is converged
approximately to 6.38 Hz after global mesh size reaches to approximately 0.05m.
From the observations made for the mesh sensitivity analysis, mesh sizing of the

initial FE model is selected as 0.05m.
5.11.3 Model Updating of the FE Model of Gun Barrel System

In this section, by using the observations made from mesh sensitivity analysis, initial
linear FE model of the gun barrel is built in ANSYS and then the linear FE model is
updated by employing the approach proposed. Since the best FRAC value is obtained
for the PRD method using 7 Hz (shown in Section 5.10), the linear FE model of the
gun barrel is updated by using the extracted linear FRFs employing the PRD method
at 7 Hz and then applying inverse eigensensitivity method. Furthermore, FE model of
the gun barrel is also updated by using ANSYS Design Exploration Optimization and
the results obtained by two different updating techniques are compared with each
other. In order to investigate the performance of the updated linear FE model,
predicted FRFs are compared with the measured ones. Using the identified
nonlinearity and updated linear FE model, updated nonlinear mathematical model of

the gun barrel system is built. Finally, in order to demonstrate the accuracy of the
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updated nonlinear model of the system, predicted and measured FRFs of the gun

barrel are compared at different forcing levels.

In the initial FE model, the stiffness of the elevation motor is taken as 140x10° N/m.
The fundamental natural frequency and the driving point FRF at the tip of gun barrel
(node 1 in the experiments) in transverse direction are calculated in ANSYS by using
the FE model. In ANSYS, sufficient number of modes (100) is used to calculate
FRFs, in order to minimize truncation error. Comparisons of the fundamental natural
frequency and the linear FRFs obtained from FE analysis with those obtained from

experiments by using PRD method are given in Table 5.30 and Figure 5.95,

respectively.

Table 5.30 Comparison of the fundamental natural frequency obtained from initial

FE model with the one obtained from experimental FRFs by using PRD method

Natural Natural
Mode Frequency Error
Number Fmgﬁg‘g ((HPZF;D (Initial FE (%)
Model) (Hz)
1 7.46875 6.375 -14.64

=1 ERTE NO L U SO T T AP RN N 4

N
[N)
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Lag(FRF [mi])
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: Linear FRF-FPRD kethod
: — — —Linear FRF-Initial FE Model
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Figure 5.95 Comparison of the linear FRFs obtained from initial FE model with

those obtained from experimental FRFs by using PRD method
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As can be seen in Table 5.30 and Figure 5.95, there are considerable differences
between two results; therefore the FE model of the gun barrel needs to be updated.
As mentioned earlier there is a considerable uncertainty in the elevation motor
stiffness, therefore elevation motor stiffness is selected as the updating parameter in
the FE model. For the selected parameter, element of the sensitivity matrix is
calculated by using the forward difference approximation with O(h) which is given

by Equation (5.2), at each iteration step.

r(puy) = r(p) (5.2)

rl(pi): AR

After 9 iterations, stiffness of the elevation motor is converged to 499x10° N/m. The

convergence graph of stiffness of the elevation motor is given in Figure 5.96.

m

Elewation Motor Stiffness(k ) [N/m]

’ i i i i i i i

1 2 3 4 5 5} 7 a g
lteration Murnber

Figure 5.96 Convergence of the stiffness of the elevation motor

The same stiffness value (499x10° N/m) is also found by using ANSYS Design
Exploration Optimization. Using the elevation motor stiffness value, the FE model is
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updated. Then, the fundamental natural frequency of the updated linear model of the
gun barrel is calculated and compared with that of the initial FE model, as well as
with the fundamental natural frequency obtained from experiments by using PRD
method, in Table 5.31.

Table 5.31 Comparison of the fundamental natural frequency obtained from initial

and updated FE models with the value obtained from measurements by using PRD

method
antgggl Natural Natural
Mode (IgRD y Frequency | Error | Frequency | Error
Number Method) (Initial FE (%) | (Updated FE | (%0)
(H2) Model) (Hz) Model) (Hz)
1 7.46875 6.375 -14.64 7.46875 0.00

As can be seen in Table 5.31, the fundamental natural frequency of the gun barrel is

perfectly estimated by using the updated FE model.

In order to see the performance of the updated FE model in the prediction of other
natural frequencies which are not used in updating the FE model, the second and
third natural frequency of the gun barrel in transverse direction are calculated by
using the updated linear FE model and it is compared with those obtained from the

initial FE model, as well as with the measured ones (Table 5.32).

Table 5.32 Comparison of the second and third natural frequency obtained from

initial and updated FE models with experimental values

Natural Natural Natural
Mode Frequency Frequency | Error | Frequency | Error
Number | (Experimental) | (Initial FE (%) | (Updated FE | (%)
(Hz) Model) (Hz) Model) (Hz)
2 22.203 17.777 -19.94 21.816 -1.742
3 52.191 43.897 -15.89 45.694 -12.45
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As can be seen in Table 5.32, there is a considerable improvement in the calculated
value of the second natural frequency, and only a slight improvement in the

calculated value of the third natural frequency of the gun barrel.

In Figure 5.97, the linear FRFs obtained from experimentally measured nonlinear
FRFs by using PRD method are compared with those calculated from the initial and
updated FE models of the gun barrel. As can be seen in Figure 5.97 again a

considerable improvement is obtained for the updated FE model.
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Figure 5.97 Comparison of the linear FRF obtained by using PRD method from
experimentally measured nonlinear FRFs, with those calculated from, initial and

updated FE models
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Since the ultimate goal is to have accurate nonlinear response predictions from the
updated FE model of the gun barrel, nonlinear FRFs experimentally measured at
F=5N, F=10.4N and F=15N are compared with those obtained from the initial and
FE updated models (composed of original and updated FE models, respectively,
combined with identified nonlinearity). The results are given in Figure 5.98, Figure
599 and Figure 5.100 for the forcing levels F=5N, F=10.4N and F=15N,

respectively.
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Figure 5.98 Comparison of FRFs obtained from initial and updated models with the

experimental ones for F=5N
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Figure 5.99 Comparison of FRFs obtained from initial and updated models with the

experimental ones for F=10.4N
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Figure 5.100 Comparison of FRFs obtained from initial and updated models with the
experimental ones for F=15N
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As can be observed in Figure 5.98, Figure 5.99 and Figure 5.100, considerable
improvements are obtained with the updated FE model of the structure at all forcing
levels. If the peak responses of the nonlinear FRF curves are observed, better match
IS obtained with the updated FE model at F=15N. From these results it can be
concluded that, the developed model updating approach for nonlinear system is very
successfully applied to a complicated real engineering problem (gun barrel of a battle
tank) and a very good nonlinear model of the gun barrel system is constructed for the

fundamental mode of the system.
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CHAPTER 6

SUMMARY AND CONCLUSION

In this thesis, a new model updating technique for nonlinear structures having local
nonlinearities is developed. As it is not easy to accurately model nonlinearity in a
structure theoretically, it is a usual practice to identify nonlinearity from
experimental measurements. Still the linear part of the model may need to be updated
when theoretical and experimental responses do not mach. When there are multiple
nonlinearities including friction in a structure; it is not possible to obtain the linear
FRF of the system accurately by using low forcing levels in the experiments. In this
thesis, a model updating approach for nonlinear structures having multiple
nonlinearities including friction type of nonlinearity is presented. The approach is
based on the method developed (PRD method) to calculate linear FRFs of a
nonlinear structure by using nonlinear FRFs measured at various forcing levels. The
method simultaneously identifies multiple nonlinearities in the system parametrically
as well. Although there are various nonlinear identification methods, the method
proposed here has the feature of extracting the FRFs of the underlying linear system
while identifying nonlinearity in the system. After obtaining linear FRFs, inverse
eigensensitivity method is employed to update the FE model of the linear part of the

nonlinear structure.

Firstly, verifications of the PRD method for nonlinear lumped SDOF, MDOF
systems and a nonlinear structure are demonstrated by using simulated experimental
data, and thus the accuracy of the method is studied. It is clearly observed that for the
lumped case studies with and without polluting data, PRD method is very successful
in the estimation of nonlinear parameters and linear FRFs, even for systems with

multiple nonlinearities including friction type of nonlinearity. As a more complex
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case study, the application of PRD method to a nonlinear experimental structure (T-
beam which has cubic stiffness and dry friction nonlinearities) is given. Again, in this
case study, simulated experimental results are used. In order to simulate the
nonlinear response of the system, first FE model of the linear part of the T-beam is
built in ANSYS, and linear FRFs are obtained by performing modal analysis in
ANSYS. Then using the nonlinear parameters for cubic stiffness and dry friction and
calculated linear FRFs, nonlinear responses are obtained by employing the harmonic
balance method. The calculated FRF values are polluted and used as measured
nonlinear FRF data. Then employing PRD method, the nonlinearities in the system
are identified and the FRFs are calculated. It is observed that identified nonlinearities
and calculated linear FRFs match quite well with actual values. The effect of the
excitation frequency (at which measurements are made) on the accuracy of PRD
method is also investigated by using the nonlinear T-beam. By using PRD method at
a different excitation frequency each time, the values of the nonlinear parameters are
calculated and it is shown that, more accurate identification is possible when the
excitation frequency is closer to the resonance of the underlying linear system.
Although there are some exceptions, in general, the error in the estimated nonlinear
parameter values tends to increase when excitation frequency deviates from the
resonance frequency. As a final case study, in order to compare the proposed PRD
method with the recently developed DDF method which identifies nonlinearity and
simultaneously extracts the linear FRFs, the value of nonlinear parameter is
calculated for a SDOF system with cubic stiffness nonlinearity. When the results
obtained from PRD and DDF method are compared, it is seen that, better estimates
are obtained for the nonlinearity by using PRD method for that case study. When
only the results of DDF method is investigated, it is also observed that, worst
estimation of the nonlinear parameter for the DDF is obtained for the force set where

the difference between the low and high force used in DDF method is minimum.

After verifying the accuracy of PRD method by using simulated case studies, PRD

method is applied to a real test system (T-beam) for model updating of a real
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nonlinear system. Firstly, applying PRD method, both linear FRFs and the
nonlinearities in the system are obtained from experimentally measured nonlinear
FRFs. In order to demonstrate the effect of using different frequencies of excitation
on the performance of PRD method, six different excitation frequencies are used. By
applying PRD method that uses each of these frequencies at a time, nonlinearities in
the structure are identified in the form of describing functions, and linear FRFs are
obtained. It is seen that linear FRFs obtained using the describing functions identified
from the tests conducted at different frequencies are not considerably different from
each other, even though identified imaginary parts of the describing functions from
these tests are rather different from each other. Linear FE model of the system
modeled in ANSYS is updated for the first mode of the structure by employing the
inverse eigensensitivity method and also by using the linear FRFs calculated through
PRD method. It is observed that very good match is obtained between the results of
updated model and experimental ones. Combining the updated linear FE model with
the identified nonlinearity, updated nonlinear model of the T-beam is obtained. It is
shown that, considerable improvements are obtained for the FRFs calculated with the
updated model for all forcing levels. Consequently, the proposed method is
successfully applied to a real test system and the accuracy of the method is verified

by using this set up.

As a next experimental work, for the same T-beam, linear FRFs are obtained from
experimentally measured nonlinear FRFs for the first, second and third global modes
of the test system by using PRD method. The linear FE model of the test structure is
updated for the first three global modes of the structure by using the extracted linear
FRFs employing first the PRD method and then using ANSYS Design Exploration
Optimization. From these sets of experiments it is observed that the linear FRFs of
the system that are obtained by applying the PRD method proposed, are not
accurately represented by the FRFs measured at low forcing level (F = 0.05N). As it
was shown in Chapter 3 that PRD method yields the FRFs of the underlying linear

system in a nonlinear system accurately, it can be concluded even a very low forcing
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level is used in the experiments, the measured FRFs at this low forcing level may not

represent the linear FRFs accurately.

As a next study on the T-beam, the effect of using different finite difference formula
on the model updating performance is investigated. In order to calculate the
sensitivities, different numerical differentiation formulas are used. It is seen that
although the number of iteration is same for all the cases, total computation time is
smaller for the updating procedure that uses the first order forward and backward
difference formula. So it is concluded that, in the model updating of FE models,
forward or backward difference formula should be used in the sensitivity calculations

in order to reduce computational effort.

Finally, model updating approach proposed is applied to a real engineering structure,
which is the gun barrel of a battle tank. In the first set of experiments, the structure is
excited with random forcing. Since the fundamental natural frequency of the gun
barrel is under consideration, it is clearly shown that as the force level increases in
the random excitation tests damping value of the fundamental mode increases and
natural frequency decreases. From the results of random excitation tests, the
nonlinearity in the system is clearly detected. In order to study the effect of using
different frequencies of excitation on the performance of PRD method, once again,
different excitation frequencies are used. By applying PRD method that uses each of
these frequencies at a time, nonlinearities in the structure are parametrically
identified in the form of describing functions, and also the linear FRFs are obtained.
It is observed that FRFs measured at low forcing levels do not accurately represent
the linear FRFs of the system. However, they can be obtained by using the PRD
method proposed. FRFs measured at even a very low forcing level may not represent
the linear FRFs accurately. It is also observed that linear FRFs obtained through PRD
method which use the describing functions identified from the tests made at different
frequencies have discrepancies around the resonance (deviation of peak amplitude

from the mean amplitude value is approximately less than 9%). Based on these
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observations, it can be concluded that if the excitation frequency used in PRD
method is approximately in the 5% range of the resonance of the underlying linear
system, there are no significant differences in the predicted linear FRFs. As a further
study, nonlinearity of the gun barrel is identified by using DDF method. It is
observed that the real and imaginary parts of the describing functions calculated by
using different force combinations are very similar. Therefore it is concluded that
forcing levels used in the method do not have a significant effect on the identified
nonlinearities. Although it is also observed that the FRF values at the resonance
region are slightly different for each of six linear FRFs obtained by the using DDF
method, it can be concluded that force combinations and using either of low or high
forcing levels to calculate linear FRFs do not have a considerable effect on the
predicted linear FRFs. From the study of the nonlinear FRFs regenerated employing
the identified nonlinearity and linear FRFs obtained from DDF method, it is observed
that force combinations and using either of low or high forcing levels to calculate
linear FRFs do not have a considerable effect on the predicted nonlinear FRFs. When
the regenerated nonlinear FRFs obtained from PRD and DDF method are compared
with experimentally measured nonlinear FRFs, by using FRAC values, it is observed
that PRD method has higher FRAC values and therefore it is concluded that PRD
method gives better results, as far as regeneration of nonlinear FRFs from identified
nonlinearities and predicted linear FRFs are concerned.

After obtaining linear FRFs through the PRD method, linear FE model of the gun
barrel constructed in ANSYS is updated by using inverse eigensensitivity method. It
is observed that the fundamental natural frequency of the gun barrel is perfectly
estimated by using the updated FE model. Furthermore there is a considerable
improvement in the calculated value of the second natural frequency, and a slight
improvement in the calculated value of the third natural frequency of the gun barrel.
Then the updated nonlinear model of the test structure is constructed by using the
identified nonlinearity and updated linear FE model of the system. Finally, predicted

and measured FRFs of the test structure are compared at different forcing levels and
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it is seen that considerable improvement is obtained for the updated FE model of the

gun barrel at all forcing levels.

In conclusion the model updating approach is validated with different simulated case
studies, a real experimental test system and an engineering structure. The main
advantage of PRD method is that, for the application of the method there is no need
for any vibration controller as in the cases of constant forcing or constant amplitude
testing over a certain frequency range. Furthermore, the method simultaneously
identifies multiple nonlinearities in the system parametrically and it has a feature of
extracting the FRFs of the underlying linear system simultaneously. It is thus
concluded that the method proposed can successfully be applied to complex

engineering problems for obtaining accurate nonlinear models.

As a future work, model updating of nonlinear structures that have distributed
nonlinearities over the structure rather than local nonlinearities may be studied. In
this case, all the elements of the nonlinear FRF matrix need to be obtained
experimentally, which may be a difficult task. Therefore a detailed investigation
would be necessary to handle this difficulty. Also, as a further improvement,
rotational DOFs can be included in the formulation for the updating of more complex
structures. Finally, the possibility of using random excitation or impact testing should

be investigated to obtain accurate linear FRFs of nonlinear structures.
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ABSTRACT

Most of the model updating methods used in structural dynamics are for linear systems. However, in real life applications
structures may have nonlinearity. In order to apply model updating techniques to a nonlinear structure, linear FRFs of the
structure have to be obtained. The linear dynamic behavior of a nonlinear structure can be obtained experimentally by using
low forcing level excitations, if friction type of nonlinearity does not exist in the structure. However when the structure has
multiple nonlinearities including friction type of nonlinearity, nonlinear forces due to friction will be more pronounced at low
forcing level excitations. Then it will not be possible to measure linear FRFs by using low level forcing. In this study a
method is proposed to obtain linear FRFs of a nonlinear structure having multiple nonlinearities including friction type of
nonlinearity by using experimental measurements made at low and high forcing levels. The motivation is to obtain FRFs of
the linear part of the system that can be used in model updating of a nonlinear system. The method suggested can also be
used as a nonlinear identification method for nonlinear systems. The proposed method is validated with different case studies
using SDOF and lumped MDOF systems and simulated experimental data. The effect of the excitation frequency, at which
experiments are carried out, on the accuracy of the proposed method, is also demonstrated.

KEYWORDS

Nonlinear identification, nonlinearity, friction nonlinearity, model updating, nonlinear structures

1 INTRODUCTION

Structural modcling is onc of the most important stages in the design of a structure. Since design stage is iterative, the need
for structural modeling has come into prominence and accurate prediction of the dynamic response of a structure has become
a vital step in the design stage. With the development ot computation technology, finite element (FE) method has established
itself as the most common numerical method used for obtaining the dynamic response of engineering structures. However,
application of FE method may yield inaccuracies arising from numerical and modeling errors. Due to these errors, there are
always discrepancies between the dynamic responses obtained by FE method and experiment; therefore FE models need to be
updated by using the experimental resulls and changing sowme of (he parameters used in the FE model.

Over the last three decades various model updating methods have been developed in order to have correct analytical models
that reflect the real dynamic responses better. However, most of the model updating methods available in the literature are for
linear systems. Berman [1] updated the analytical mass matrix by using incomplete set of measured modes in order to achieve
the orthogonality of the mass maltrix. In order Lo correlate the FE model and test resulls of an aerospace structure, Sidhu and
Ewins [2] proposed a method in which the error matrix equation was used. Caesar [3] used Berman’s direct system matrix
update method, suggested improvements on this method and applied the extended method to a test model. In a later study,
Caesar [4] described the methods for updating mass and stiffness matrices based on the eigendynamic behavior of linear
structures. Visser and Imregun [5] investigated the use of a model updating techmique by using FRFs. They discussed the
requirement for minimum measured data for successful implementation of the technigque and applied the updating technigue
to different systems in order to demonstrate the effectiveness of the method. Larsson and Sas [6] worked on model updating

*G. Canbaloglu, H.N. Ozgiiven, Obtaining Linear FRFs for Model Updating in
Structures with Multiple Nonlinearities Including Friction, Topics in Nonlinear
Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference on Structural
Dynamics, pp.145-157, 2013.
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technique employing forced vibration testing. They proposed a set of updating equations based on force response data and
investigated the limitation in the measurements and numerical aspects in the formulations. Bollinger [7] presented
constrained optimization theory in order to improve FE model. Lammens et al. [8] optimized reduced analytical dynamic
stiffness matrix by solving a linearized set of equations, and updated the FE model of an engine sub frame. Girard et al. [9]
extended energy approach for the model updating of a rotating shaft mounted on hydrodynamic bearings. They applied the
method to a simple shaft model including mass, stiffness and damping parameters. Billet et al. [10] used an updating method
based on minimization of an error in constitutive relation in order to update a nuclear reactor building scale model.
Mottershead et al. [11] compared the selection of different updating parameters in the model updating of an aluminum space
frame. In a more recent work, Kozak et al. [12] presented a new error localization method and an updating routine and they
applied the routine to different case studies.

Since most of the structures have nonlinear behavior, it is vital to have model updating techniques for nonlinear structures as
well. In order to apply model updating techniques developed for linear systems to nonlinear structures and to correct linear
system matrices, linear dynamic behaviors of the structure have to be experimentally obtained which may require
identification of nonlinearity first. In early 1990°’s Benhafsi et al. [13] worked on the parametric identification of
nonlinearities in structures by using describing function method. In a later study, Richards and Singh [14] studied on the
identification of nonlinearities that are in the form of polynomial forms and they approximated the nonlinear elastic forces as
polynomial functions. Chong and Imregun [15, 16] presented an identification procedure in terms of variable modal
parameters for nonlinear systems. Adams and Allemang [17] derived a method for estimating the parameters of nonlinear
models and demonstrate the implementation of this method on simulated data for SDOF and MDOF lumped parameter
systems. One of most detailed nonlinear system identification literature survey was performed by Kerschen et al. [18] in
which more than 400 papers are cited. Ozer et al. [20] extended their previous study [19] and identified the nonlinearity in
structures by using describing functions and Sherman-Morrison method. Jalali et al. [21] used the inversion of describing
functions in order to identify the nonlinearities in the structure.

In a recent study by Arslan et al. [22], two different methods which are capable of identifying nonlinearities in structures are
implemented on a test rig containing a nonlinear element. They used low forcing level excitations in the experiments in order
to obtain the linear FRFs of the structure. However, when there are multiple nonlinearities including friction type of
nonlinearity, it will not be possible to measure the linear FRFs at low level of force excitation. Since most of the model
updating methods are applied to linear analytical models it is important to obtain linear FRFs of a nonlinear structure first. In
the present study a method is proposed to obtain linear FRFs in order to update linear model parameters of a nonlinear
structure having multiple nonlinearities including friction type of nonlinearity. The proposed method is validated with
different case studies using SDOF and lnmped MDOF systems. In these case studies simulated experimental data is used. The
effect of the excitation frequency, at which experiments are carried out, on the accuracy of the proposed method, is also
demonstrated with a case study. The method suggested can also be used as a nonlinear identification method.

2  THEORY

The proposed method in this study is based on the theory developed by Budak and Ozgtiven [23, 24] for expressing the
nonlinear forcing vector in a nonlinear structure as a matrix multiplication form for harmonically excited nonlinear MDOF
systems. They expressed the nonlinear internal force vector in a nonlinear MDOF system as

[N} =[AG 5)]{ X} 48]

where {N (x,)'c)} stands for the nonlinear internal forcing vector, {X } is a complex response amplitude vector and

[A(x,ic)] is the “nonlinearity matrix” which was first presented by Budak and Ozgliven [23, 24] for certain types of

nonlinearities, and later by Tanrikulu et al. [25] for any type of nonlinearity by using describing functions. The elements of
nonlinearity matrix are written in terms of describing functions, such that the describing functionV,; represents the

nonlinearity in the system by giving the best average restoring force between coordinates r and j.

The elements of [A(x, )'c)] are given as follows [25]:

A”:V”+ZV ,r=12,..,n 2
A

e
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Aj=—v,, r=j, r=L2,..n @

The response level dependent nonlinear FRF matrix (in the form of receptances) for a nonlinear system can be written as
follows:

[HNLJ:|:—co2[M]+ia)[C]+i[D]+[K]+A]1 @
where [M ], [C], [D], [K ] represent the mass, viscous damping, structural damping and stiffness matrices, respectively.

Considering the linear part of this nonlinear system, the linear FRF matrix (in the form of receptances) can be written as
follows:

(B2 ]=[-? (] +io[c]+i[D]+[K]] i

Taking the inverses of [H NL} and [H LJ matrices given in equations (4) and (5), and then subtracting the second from the

first, the following equation is obtained:
-1 -1
[a]=[&™ | -[H"] (6)

After some matrix manipulations, the linear FRF matrix can be obtained as

[t [ —[A]T @

For a nonlinear MDOF system with multiple nonlinearities including friction type of nonlinearity, nonlinearity matrix [A]

can be partitioned as
[A]:[A;‘}r[AHF] 8)

where [A P J is the nonlinearity matrix due to friction and [A HF] is the nonlinearity matrix due to remaining nonlinearities

that are dominant at high forcing levels of excitation. Substituting equation (8) into equation (6), the following equation can
be obtained:

[Af}[AHF]=[HNLT—[HLT ©

When the structure is excited at low forcing levels, [A f} will be dominant and [AHF] will have negligible terms. Then, at

low forcing levels equation (9) can be approximated as
-1 -1
[Af]E[HNLJ 7[HLJ (10

On the other hand, for high forcing levels, [AHF] will be more pronounced compared to frictional nonlinear forces, therefore

equation (9) can be approximated at high forcing levels as
-1 -1
[Age]=[H] -[H"] (11)

Then, by using equations (10) and (11), and measuring FRFs experimentally several times at the same frequency but at
different forcing levels, the linear FRFs can be obtained and the nonlinearities can be identified as explained below.
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Let us assume that a certain set of experiments are performed at a constant frequency o, at different forcing levels. Firstly, let
the system be excited at a low forcing level, and then (n-7) times at different high forcing levels. Using equations (10) and
(11), the following equations can be written:

=[] ] (12
[Auel, =[] 1] (13)
[Aue =[] -[H7] (14)
[Agel, =[], (82, (15)
[Age], =[] " -[1*] " (16)

where subscript 1, 2, 3, ... n indicates forcing cases. If the equation at low forcing level (equation 12) is subtracted from each
of the following ones, a new set of equations will be obtained:

[Aue, A, ] =[] -[a] " an
(e ), ] =[] L] (18)
[Auel, [, ] =[], [0 (19)
[Aur], —[4, ] = [HNLMl —[HNLII (20

Sinee the linear FRF matrix is not forcing level dependent, then these terms will be canceled out and they will not appear in
the resulting equations as can be seen above. There are both zero and nonzero elements in the nonlinearity matrices at the left
hand sides of the equations, and nonzero elements are related to nonlinear coordinates. These nonzero elements which can be
written as polynomial functions of response amplitndes with unknown coefficients are the describing functions of the
corresponding nonlinearities. Since it is always possible to take data points more than the unknown coefficients, least square
fit can be used for obtaining the unknown coefficients. In order to find the unknown coefficients, polynomial fit for (n-I) data
points is applied in a least square sense and the equation of the corresponding regression curve is obtained. For more complex
nonlinearities where polynomial fit may be insufficient, nonlinear fit can also be used. Once the unknown coefficients are
obtained, by comparing the terms of the regression equation with the corresponding describing functions, nonlinearities are
identified and then linear FRFs can easily be calculated by using one of the equations from (12) to (16}, one of which is given
below.

() =[[] [, lr (1)

The equations (17) to (20) will be reduced to very simple algebraic equations for a SDOF system:
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For a SDOF system, since all the matrix inversions simplify to inversions of a scalar, it is much easier to obtain the right hand
sides of the above eguations by using experimental measurements. Then linear FRFs of the system can be calculated by using
the following eqguation:

i 1
e A
HL] H;\i,l h

(26}

Equation (26) is valid for low forcing level at any frequency; therefore it is possible to obtain the linear FRFs over the desired
frequency range, It should be noted that, although the above equations are valid for a harmonic excitation and therefore
harmonic vibration of the system at any frequency, the difference between linear and nonlinear FRFs at an arbitrary
frequency may be negligible. making it very difficult to identify the nonlinearity accurately. Hence, the identification can be
made most accurately at frequencies where the nonlinearity has the maximum effect on the system response.

3 CASESTUDIES

In this section, applications of the proposed method to SDOF and MDOF noalinear systems are presented. The first case
study is purely a theoretical one and it iflustrates the identification of noniincarities and calculation of the linear frequency
response of a nonlinear system from nonlinear FRF measurements. The second case stady is an extension of the first one, in
which potluted data is used in the analysis in order to simulate the experimental measurements more realistically. In the third
case study, the proposed approach is applied to a MIDOF system with multiple nonlinearities including friction. In this case
study, again simulated experimental data is used. Finally. in order to study the effect of the excitation frequency at which
measurements are made, on the acouracy of the proposed method, the same MDOF system is considered. The nenlinear
parameters ave identified by using simulated expesimental FRF values obtained at different excitation frequency each time
and the identified values arc compared with each other. In obtaining all simulated experimental results, harmonic balance
approach is used.

3.1 Application of the Approach to a SDOF System

a this case study, the proposed method is applied to a4 SDOF systen with cubic stiffness and dry friction nonlinearities. The
systern and the dry friction model used in the case study are given in Fig. 1.
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Fig.1 () SDOF nonlinear system, (b) Dry friction model
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The parameters of these nonlinear elements and the properties of the system are given as follows:

my=0.0kg, k;=2x10° N/m and y(loss factor)=0.01

k=12 10% N/m?

#=0.1, Normal Force=I10N and ky =3x 10° Nfm

Firstly, the system is excited harmonically with a low forcing amplitude (F=0.01 N). The harmonic response of the system at

this forcing level is compared with the linear frequency response of the system obtained disregarding both friction and cubic
stiffness nonlinearity (Fig. 2).
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Fig.2 Harmonic response of the system for F=0.01 N

As can be seen in Fig. 2, since at low forcing level nonlinear internal forces due to cubic stiffness are negligible, the only
nonlinear effect is due to friction. Frictional internal force causes a shift in the resonance frequency due to its stiffness
component. Afterwards, 11 different higher excitation cases are considered by taking the amplitude of the harmonic
excitation force between 100 N and 300 N and the responses of the system are obtained. In Fig. 3, nonlinear harmonic
responses at only the forcing levels of F=130 N and F=280 N are shown.
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Since frictional nonlinearity is negligible at high forcing levels, as can be seen from the Fig. 3, only the cubic stiffness
nonlinearity will be effective, and it will change the frequency response of the system around resonance causing a jump,
which is a typical response behavior of cubic stiffness element. All above computations are based on the nonlinear
identification made by using 11 different FRFs obtained at the excitation frequency of 710 Hz. By using “polyfit” function of
MATLAB, equation of the regression curve is obtained and nonlinear parameters are identified by comparing the terms of the
regression equation with the corresponding describing functions. The regression curve obtained can be seen in Fig. 4.
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Fig.4 Polynomial regression curve for the available data points

The nonlinear parameters estimated are given below:
K" =9.9x10° Nfm® and k; =3x10° NJm

It can be seen that the estimated parameters perfectly match with the actual values. The linear FRF of the system now can be
calculated by using equation (26). The comparison of the estimated and actual linear frequency response is given in Fig. 5. As
expected, there is a perfect match between estimated and actual linear frequency responses of the system.
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Fig.5 Comparison of the estimated and actual linear frequency responses of the system
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3.2 Application of the Approach to a SDOF System with Polluted Data

In the second case study, in order to simulate the experimental data, theoretical data is polluted with 5% noise. The noise has
normal distribution and standard deviation of 5% of the amplitude of the original response. In the analysis, SDOF nonlinear
system with the same parameters as in the first case study is used. The system is excited with a low forcing amplitude and
then with 11 different high forcing amplitudes. In Fig. 6, the FRF of the nonlinear system for F=0.01 N is compared with the
linear frequency response of the system obtained disregarding both friction and cubic stiffness nonlinearity. The frequency
responses of the system for F=130 N and F=280 N are given in Fig. 7.
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Fig.6 Frequency response of the system at F=0.01 N with 5% noise

£ E.
3 @
E 5
[=3 o
Z 2
[=X Q.
g ! 4
! =
1
a
i I l ] I
| 1 | | | I
| 1 | | | I
5 I L L L i 1 L -4. L : | : 1
0 200 400 600 800 1000 1200 1400 1600 [ 200 400 600 800 1000 1200 1400 1600
Frequency[Hz] Frequency[Hz]
(a) (b)

Fig.7 Frequency response of the system with 5% noise for (a) F = 130N, (b) F =280 N

At the excitation frequency of 710 Hz, 11 different data points are generated and the polynomial regression curve given in
Fig. 8 is obtained.
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Fig.8 Polynomial regression curve for the available data points
Tdentified nonlinear parameters and comparison of these values with the actual ones are given in Table 1.
Table 1 Comparison of nonlinear parameters
Nonlinear Parameters Estimated Actual % Error
k* (N/m’) 9.9x 10° 1x 10% 1
ky (N/m) 3.1x 10° 3x 10° 3.3

As can be seen in Table 1, there is a slight difference between the estimated and actual nonlinear parameters, mainly due to
addition of noise to the theoretical data. Comparison of the estimated and actual linear frequency responses is given in Fig. 9.
As expected, estimated linear frequency response matches perfectly with the actual one.
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Fig.9 Comparison of the estimated and actual linear frequency response of the system with 5% noise
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3.3

Application of the Approach to a MDOF System with Polluted Data

In the third case study, application of the proposed approach to a nonlinear MDOF system with polluted data is illustrated
(Fig. 10). The same dry friction model given in previous case study is used here as well.
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Fig.10 MDOF nonlinear system used in Case Study 3

Parameters of the nonlinear element and the properties of the other system elements are given as follows:

my=0.1, my=0.5kg, ky=ky=ky=1x10% Nfm and y(loss factor)=0.005

#=0.1, Normal Force=10 N and ks =8x 16* Nfm

k= 1x 100 Nfw?

In order to simulate the experimental data, theoretical data is polluted with 5% noise. The noise has normal distribution and
standard deviation of 5% of the amplitude of the original response. The system is excited with a low forcing level and then
with 11 different high forcing levels. The frequency responses of the system at forcing levels of F=0.01 N and F=100 N are
given in Fig. 11 and 12, respectively.
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Fig.11 Frequency responses of the system with 5% noise for F=0.01 N
(a) 1* coordinate, (b) 2™ coordinate

As can be seen in Fig. 11, for low forcing amplitudes, the only nonlinear effect is due to friction and frictional internal force
causes a shift in the resonance frequency. The frictional nonlinearity is much more effective in the 2™ mode.
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In Fig. 12, it can be seen that, since frictional nonlinear internal forces are negligible for high forcing level, the nonlinearity
changes the response of the system around 2" resonance considerably by causing a jump, which is mainly due to cubic
stiffness. As in the low forcing level case, 1" mode is not much affected from the existence of the stiffness nonlinearity in the
system. The nonlinear parameters given in Table 2 are estimated as explained in the first case study (Fig. 13).

Table 2 Comparison of nonlinear parameters

Inverse Pseudo Receptance Difference

Nonlinear Parameters Estimated Actual % Error
k* (N/m’) 9.9x 10° 1x 10" 1
kg (N/m) 8.03x 10* 8x 10* 0.4
x10*
a T T T
© DataPoints ! ' '
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Fig.13 Polynomial regression curve for the available data points

As can be seen from the values in Table 2, estimated and actual nonlinear parameters are in perfect match, However, since in
the proposed approach, excitation frequency is a free parameter (i.e., the equations are valid for any forcing level and
therefore vibration at any frequency), the effect of the excitation frequency used in the experiments on the performance of the
method should be analyzed.
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34  Performance of the Method at Different Excitation Frequencies

As the last case study, in order to see the effect of excitation frequency on the proposed method, different simulated tests at
various frequencies are performed for the MDOF nonlinear system given in the previous case study. For each test case,
nonlinearities are identified and they are compared with the actual nonlinear parameters. Comparison of the results is given in
Table 3.

Table 3 Comparison of nonlinear parameters identified by using different excitation frequencies

Excitation Estimated k* (Actnal k*| % Error | Estimated k¢ Actual k¢ % Error
Frequency (Hzy [  (N/m®) (N/m’) for k* (N/m) (N/m) for Kk,
725 9.9 x10° 1 8.03x 10* 0.4
730 9.9x 10° 1x 10%° 1 7.67 x 10° 8x 10* 4.1
745 9.9 x 10° 1 163 x 10* 103.8

Since the nonlinear forces affect the 2™ mode more, excitation frequencies are selected around the 2™ resonance of the
system. As can be seen from Table 3, for all the excitation frequencies used, cubic stiffness values are successfully estimated.
However, the frictional stiffness value is highly affected from the selection of excitation frequency, even though all
frequencies are around the resonarnce region. It is observed that when the excitation frequency is closer to the 2™ resonance of
the linear frequency response, estimated values become more accurate.

4 DISCUSSION AND CONCLUSIONS

‘When there are multiple nonlinearities including friction in a system, it is not possible to obtain the linear frequency response
of the system by using low forcing levels in the experiments. In this paper, an approach for obtaining the linear FRFs of a
nonlinear system with multiple nonlinearities including friction is proposed. The basic motivation is to have FRFs of the
linear part of a nonlinear structure, so that they can be used in model updating.

In the method proposed, FRF values are measured at all coordinates that we are interested in, but at a constant frequency o
and at different forcing levels. First, the system is excited at a low forcing level, and then several times at different high
forcing levels. By using the measured nonlinear FRFs, first the nonlinearities are identified and then linear FRFs are obtained
in order to use them in model updating of nonlinear systems.

The method is validated with different case studies using SDOF and MDOF systems and simulated experimental data. In the
first and second case studies, application of the approach is demonstrated on a SDOF nonlinear system. It is shown that the
approach is very successful in identifying multiple nonlinearities in the system, as well as in determining the linear FRF. In
simulated experimental case study it is observed that, the noise added to the data affects the values of the identified nonlinear
parameters and linear frequency response. In the third case study, the method is applied to a MDOF nonlinear system by
using simulated experimental data again. The results obtained show that nonlinearities can be identified very accurately by
using nonlinear FRFs measured at low and high forcing levels. In the last case study, the effect of the excitation frequency
used in the experiments on the performance of the method is investigated. From the results obtained it is concluded that
excitation frequency should be close to the resonance frequency, otherwise the accuracy of the identified friction nonlinearity
can be deteriorated considerably.

Consequently, it can be said that the method can successfully be used for the identification of nonlinearity and calculation of
the linear FRFs of a nonlinear structure with multiple nonlinearities including friction. The applicability and accuracy of the
approach proposed is demonstrated only on simple SDOF and MDOF systems. The method needs to be tested on real
structures, in order to apply it to obtain FRFs of the linear part of a nonlinear structure that can be used in model updating of
the nonlinear structure.
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ABSTRACT

There are always certain discrepancies between modal data of a structure obtained from its mathematical model and
experimentally measured ones. Therefore it is a general practice to update the theoretical model by using experimental
measurements in order to have a more accurate model. Since in several real life engineering problems there exist structural
nonlinearities, model updating of nonlinear structures come into prominence. To be able to apply one of the well-established
model updating methods, the linear FRFs of a nonlinear structure are to be measured. Although it may be possible to obtain
linear FRFs of a nonlinear structure experimentally with a certain approximation by using low level forcing in FRF
measurement, when there is frictional type of nonlinearity, this is not possible. In this study a model updating method for
nonlinear structures is proposed. A noble method developed recently by the authors to obtain linear FRFs of nonlinear
structures having multiple nonlinearities including friction type of nonlinearity is used in the nonlinear model updating
approach proposed. The method is validated by applying the method developed to a nonlinear test system.

KEYWORDS

Nonlinear model updating, model updating, nonlinear structures, norlinearity, friction nonlinearity.

1 INTRODUCTION

Numerical structural modeling is a common practice to obtain dynamic response of engineering structures, and finite element
(FE) method has established itself as the most common numerical method. Since FE methods have certain inaccuracies due to
modeling errors, experimental and FE method results do not always match perfectly. In order to correct the mathematical
model so that these discrepancies will be eliminated, some of the parameters used in the FE models need to be changed by
using model updating techniques.

In literature, various model updating methods were proposed in order to have accurate mumerical structural models. However;
most of these methods are for linear systems. Sidhu and Ewins [1] used the error matrix equation to correlate FE model and
test results of an aerospace structure better. Dascotte and Vanhonacker [2] developed an automatic updating procedure based
on natural eigenfrequency sensitivity. Brughmans and Lembregts [3] studied the effect of experimental modal parameter
estimation techniques for normal mode shapes on an optimization procedure for FE mass and stiffness matrices. Nalitolela et
al. [4] presented a method which is based on exact model reduction and perturbation of both the actual structure and its
analytical model by adding mass or stiffness to produce accurate dynamic models. In order to update FE models Roy et al. [5]
proposed direct energy approach which uses the expanded set of experimental modes to relate the kinetic and strain energies
of each part of a FE model to the experimental data. Visser and Imregun [6] investigated the use of FRFs for model updating,
and discussed the requirement for minimum measured data for successful implementation of the technique. Brughmans et al.
[7] discussed the application of a FE model updating technique, based on a forward sensitivity formulation, to a twin
propeller commuter aircraft. [brahim et al. [8] developed direct updating technique for nonconservative FE models by using
input and output experimental data. Link and Zhang [9] presented different updating techniques based on the minimization of
different residual vectors and applied these techniques to a test structure in order to investigate the sensitivity of updating
results in these methods. Jung and Ewins [10] presented the application of the inverse eigensensitivity method for model
updating using arbitrarily chosen macro elements to a simple frame. Aiad et al. [11] presented an approach to update both

* G. Canbaloglu, H.N. Ozgiiven, Model Updating of Nonlinear Structures, Nonlinear
Dynamics, Volume 2: Proceedings of the 32nd IMAC, A Conference and Exposition
on Structural Dynamics, pp.69-182, 2014.
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mass and stiffness matrices. Miccoli and Agostoni [12] used the sensitivity analysis in order to localize the areas of potential
errors causing the discrepancies between analytical and experimental normal modes. Luber and Sensburg [13] presented an
update method which exploits the elastic behavior of a structure. Dascotte et al. [14] combined different parameters in an
objective function to use sensitivity based model update method. Hemez [15] presented a sensitivity based updating method
for damped FE models using modal parameters, receptance and static data. Lindholm [16] presented an example of updating
FE models using nonlinear weighted least squares in a Bayesian statistics context. Lenoir et al. [17] presented a new model
updating method based on the modal synthesis of experimental forced responses. Mottershead et al. [18] used different
updating parameter sets and compared the effect of the selection of different updating parameters in the model updating of an
aluminum space frame. Jung et al. [19] presented a hybrid optimization technique based on the genetic algorithm and Nelder-
Mead simplex method for FE model updating of bridge structure. Kozak et al. [20] presented a new error localization method
and an updating routine and they used the routine in different case studies. In a more recent work Boulkaibet et al. [21]
proposed the use of the Shadow Hybrid Monte Carlo technique for the problem of determining the most probable FE model
updating parameters for a given data.

In engineering problems most of the structures show nonlinear behavior, therefore it is important to have model updating
techniques for nonlinear structures as well. Hasselman et al [22] proposed Principal Components Analysis for nonlinear
model correlation and updating. Principal Components Analysis of nonlinear systems is based on singular value
decomposition of a collection of response time history. Anderson et al. [23] used Principal Components Analysis in order to
correlate and update a nonlinear FE model using crash test data. In a later work Anderson and Hasselman [24] studied the
minimization of the parameter correlation for model updating of nonlinear systems. Burton et al. [25] applied combined
model reduction and singular value decomposition approach for nonlinear model updating. Zhang and Guo [26] proposed a
model updating and validation procedure to build accurate FE model for a frame structure with nonlinear thin-walled
component. Silva et al. [27] conducted a comparative study using different metries for nonlinear model updating based on
vibration test data. Harmonic balance, constitutive relation error, restoring force surface and Karhunen-Logve decomposition
methods are compared.

In order to apply model updating techniques developed for linear systems to nonlinear structures the linear dynamic behavior
of a nonlinear structure has to be experimentally obtained which may require identification of nonlinearity first. One of the
most detailed nonlinear system identification literature surveys was given by Kerschen et al. [28] in which more than 400
papers are cited. After that study, several new nonlinear identification methods are developed. Tn these studies the general
aim is to detect, localize and parametrically identify nonlinearity in a structure. Very recently Canbaloglu and Ozgiiven [29]
developed a method to obtain linear FRFs of a nonlinear structure from FREF measurements, without fully identifying
nonlinearities, the ultimate goal being to update linear model parameters of a nonlinear structure having multiple
nonlinearities including friction type of nonlinearity. In this study, this method [29] is used in developing a nonlinear model
updating approach, and it is applied to a nonlinear test system in order to validate the nonlinear model updating approach.

2 THEORY
The model updating method proposed in this study for nonlinear structures is based on the approach recently developed by
Canbaloglu and Ozgiiven [29]. The response level dependent nonlinear FRF matrix (in the form of receptances) for a

nonlinear system can be written as follows:

-1
[ |=[-e?[M] +io[C]+i[ D] +[K]+4] 5))
where [M], [C], [D], |K] represent mass, viscous damping, structural damping and stiffness matrices, respectively. [A] is
the “nonlinearity matrix” which was first presented by Budak and Ozgtiven [30, 31] for certain types of nonlinearities, and

later by Tanrikulu et al. [32] for any type of nonlinearity by using describing functions. The FRF matrix of the linear part of
this nonlinear system, in the form of receptances, can be written as follows:

(1t =]~ [M]+ico[c]+i[D]+[K]]1 2)
Performing some matrix manipulations the following equation can be obtained:

[A]=[AJ+[AHF]=[HNL}71—[HL}71 (3)
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where [ A, } is the nonlinearity matrix due to friction and [AHF] is the nonlinearity matrix due to remaining nonlinearities
that are dominant at high forcing levels of excitation. When the structure is excited at low forcing levels, [A f] will be

dominant and [AHF] will have negligible terms. Then, at low forcing levels equation (3) can be approximated as
[Tt AR
[a;]=[a™ ] 7] @

On the other hand, for high forcing levels, [AHF] will be more pronounced compared to frictional nonlinear forces, therefore

equation (3) can be approximated at high forcing levels as
-1 -1
[Ape]=[#" ] ~[H"] &)

Then, by using equations (4) and (5), and measuring FRFs experimentally several times at the same frequency but at different
forcing levels, the linear FRFs can be obtained and the nonlinearities can be identified. Firstly, let the system be excited once
at a low forcing level, and then (z-1) times at different high forcing levels. Using equations (4) and (5), the following set of
equations can be written:

(M) = (A ]1 =[HNLL171 -[HNLF i=12,..(a=1) @)

i

where subscript 1 indicates low forcing case and subscripts 2, 3, ... n indicate high forcing cases. The detailed formulation
can be found in [29]. In the nonlinearity matrices at the left hand sides of the equations, nonzero elements are related to
nonlinear coordinates (coordinates to which nonlinear elements are attached). These nonzero elements which can be written
as polynomial functions of response amplitudes with unknown coefficients are the describing functions of the corresponding
nonlinearities. In order to find the unknown coefficients, polynomial fit for (r-1) data points is applied in a least square sense,
and the equation of the corresponding regression curve is obtained. By comparing the terms of the regression equation with
the corresponding describing functions, nonlinearities are identified and then linear FRFs can easily be calculated as [29]

[t =[ [ NLF-[AJJI )

One of the drawbacks of the above equation is that it requires the full matrix inversions. However, for most of the nonlinear
structures, nonlinearity is local and it possible to partition the nonlinearity matrix as

S

where subscript a represents coordinates where nonlinear elements are comnected (“nonlinear coordinates” in short). Pre-

multiplying all the terms in equation (3) by [H L J and post-multiplying by [H N J , the following equation is obtained:

il <L T [ ] ©)

Substituting equation (8) into equation (9), following equation can be written:

B [[AMJ [OT (%] [ ]| ([ ] (]| 2% ] [

(t) (]| 01 O[] [ny]) 7| [t [nt)|7| [, [%] "
Here subscript & corresponds to linear coordinates.
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Performing matrix multiplication for the left hand side and considering the first submatrix of the resultant matrix, the
following equation is obtained:

L1t (A Y = [ 1 - (1)

-1 -1
Pre-multiplying all terms in the equation (11) with [H L a J and post-multiplying with [H NL aa} equation (11) reduces to

[A)=[, [ -[at, ] (12)

from which the linear FRF matrix for the nonlinear coordinates can be obtained as:

[t =| [ [ LT a3)

It is obvious that computational effort will be considerably reduced for locally nonlinear structures. Once the linear FRFs are
calculated by using equation (13), then these linear FRFs can be used in the model updating process of a FE model. Note that
in several model updating methods having FRFs of limited number of coordinates is sufficient. Therefore, having FRF of
even a single coordinate may be enough for model updating. However, depending on the model updating method employed,
if FRFs of linear coordinates are also required, then all the remaining submatrix equations given in equation (10) need to be
solved. That would also require the measurement of nonlinear responses at required linear coordinates as well.

One of the common methods used for model updating is the sensitivity analysis. In the sensitivity analysis, a response vector
{r} is corrected by changing the parameter vector{ p} . Sensitivity analysis is based on the following equation given below:

{ar}=1[s]{ap} (14)

where {Ar} is the residual vector between the reference and actual response, {Ap} is the change needs to be done in
parameter vector and [ S] is the sensitivity matrix. Considering model updating in the modal analysis context, {r} vector is
composed of mode shapes and natural frequencies, {p} vector composed of geometrical parameters or material properties
used in the FE model and sensitivity matrix [S] is the modal sensitivity matrix which can be calculated analytically or

numerically. Sensitivity matrix [S] can be written as
[s]=] @ "~ ¢ (15)

In equation (15), S,ﬁ‘l7 = stands for the sensitivity of the n™ response to the m™ updating parameter. Mathematically, S,np’” is

the partial differential of the nt response to the m? updating parameter and defined as,

S P — arn
" op,

(16)

For simple structures modal parameters can be written as the functions of updating parameters, and the corresponding
sensitivities can be calenlated by simple differentiation. However for complex structures it is easier to calculate the
sensitivities by numerical differentiation. In this study, centered difference approximation with Ok is used to calculate the
sensitivities as given in the following equation:
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Obtaining the sensitivity matrix [$] and {Ar} vector, {Ap} which is the change needs to be done in parameter vector can be
calculated from the following equation:

{ap)=[sT"{ar} as)

Since the number of equations is usually more than the number of unknowns, least square solution is necessary to solve
equation (18). This solution is obtained iteratively.

3 APPLICATION OF THE PROPOSED MODEL UPDATING APPROACH TO SIMULATED TEST SYSTEM

In this section, an application of the proposed model updating approach to a continuous nonlinear simulated experimental test
system is presented. Test system is a T-beam with cubic stiffness and dry friction nonlinearities. In order to simulate the
nonlinear response of the system, first the linear part of the T-beam used in the simulated experiment is modeled with FE and
linear FRFs are calculated, then using linear FRFs and the nonlinear parameters for cubic stiffness and dry friction, nonlinear
responses are calculated by using the harmonic balance method. Then the results are polluted and in the analysis the polluted
data is used in order to simulate the experimental measurements more realistically. Using the approach proposed. the
nonlinearities are identified and estimated experimental linear FREs of the test system are calculated. On the other hand
theoretical linear FE model of the test system is built in ANSYS and in order to reflect the effect of uncertainties on material
properties, the material properties in the theoretical linear FE model are taken slightly different from the ones used in the
simulated test system. Performing modal analysis for the FE model, the theoretical linear FRFs are obtained and compared
with the experimental linear FREs. Then using sensitivity approach, updating parameters are selected from the candidate
parameters used in the theoretical linear FE model and the first three flexural natural frequencies are corrected by updating
selected parameters. The nonlinear T-beam test system and the dry friction model used are given in Fig. 1.
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Displacement
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Fig.1 (a) Nonlinear T-beam test system, (b) Dry friction model
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T-beam is composed of two separate beams, geometric and material properties of these beams are given Table 1.

Table 1 Geometric and material properties the T-beam

Height Length Width | Modulus of Elasticity (E) | Poisson’s | Density (p)

(mm) (mm) (mm) (GPa) Ratio (v) (kg/m*)
Beaml 8 430 12 210 0.3 7850
Beam2 1.5 400 13 210 03 7850
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The parameters of the nonlinear elements and loss factor for the system are given as follows

=001, Normal Force=50N, k; =3x10* N/m and & =3x10° N/m’

¥ (loss factor)=0.02

In order to obtain the nonlinear FRFs of the T-beam that will be used as simulated experimental values, ANSYS is used. The
mesh used in the FE model is given Fig. 2.

0000 0050 e1000m)
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0075

Fig.2 FE mesh used in ANSYS

The linear driving point FRFs of the structure at the tip of the Beam! in Z (transverse) direction are calculated by using the
ANSYS results and employing the harmonic balance method. The nonlinear driving point FRFs at the tip of Beaml are
calculated for different forcing levels. In order to simulate experiment, calculated FRF values are polluted with 5% noise. The
noise has normal distribution and standard deviation of 5% of the amplitude of the original response. First, the system is
excited harmonically with a low forcing amplitude (F=0.01 N). The harmonic response of the system at this forcing level is
compared with the linear frequency response of the system obtained disregarding both friction and cubic stiffness
nonlinearity in Fig. 3.

Log(Displacement[m])

- i i i i i
0 50 100 150 200 250 300
Frequency[Hz]

Fig.3 Frequency response of the system at Fo=0.01 N with 5% noise
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Since nonlinear internal forces due to cubic stiffness are negligible at low forcing level, as can be seen in Fig. 3, the only
nonlinear effect observed is due to friction. The shifts in the resonance frequencies are due to the stiffness component of
friction. Similar response curves are obtained for 9 different higher excitation cases by taking the amplitude of the harmonic
excitation force between 10 N and 50 N. The nonlinear harmonic responses at only the forcing levels of Fy=25 N and Fy=50
N are shown in Fig. 4.
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T T
Experimental Nonlinear Response
Experimental Linear Response

: ~— Experimental Nonlinear Response
=*| ===== Experimental Linear Response

Log(Displacement(m])

Log(Displacement[m])
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Frequency[Hz] Frequency[Hz]
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Fig.4 Frequency responses of the system with 5% noise for (a) Fy=25N, (b) Fy =50 N

As can be seen from Fig. 4, since at high forcing levels frictional nonlinearity is negligible, the nonlinearity changes the
response of the system around 1 and 3™ resonance considerably by causing a jump, which is mainly due to cubic stiffness.
2" mode of the system is slightly affected from the existence of the stiffness nonlinearity in the system, since at this mode the
deflection of the point where cubic stiffness is attached is relatively small. By using the FRFs obtained for low and several
high forcing levels, at the excitation frequency of 42 Hz, the equation of the regression curve is obtained and without fully
identifying all the nonlinear parameters, frictional stiffness and cubic stiffness parameters are identified by comparing the
terms of the regression equation with the corresponding describing functions. The regression curve obtained is given in Fig.
5:

© Data Points
Regression Curve /

Inverse Psuedo Receptance Difference

26 i i i
14 16 18 2 22 24 26 28
Response Amplitude -3

Fig.5 Polynomial regression curve fitted to data points
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Identified nonlinear parameters and comparison of these values with the actual ones are given in Table 2.

Table 2 Comparison of nonlinear parameters

Nonlinear Estimated Actual Error (%)
Parameters

k* (N/m®) 3.04x 10° 3% 10° 13

k¢ (N/m) 2.99x 10* 3x 10* 0.3

As can be seen in Table 2, there is a very small difference between the estimated and actual nonlinear parameters, Main
reason of that discrepancy is having noisy data (used to simulate actual experiments). However, it is shown in the previous
study [29] that once the nornlinearities are identified with reasonable accuracy, linear FRF of the nonlinear structure can be
calculated quite accurately. From the calculated linear FRF, the first three natural frequencies of the simulated test system are

obtained (Table 3).

Table 3 The first three flexural natural frequencies of the simulated test system

On the other hand, the theoretical linear FE model of the system is built by taking the modulus of elasticity and density of the
beams slightly different from the ones used in simulated test (Table 4). The effect of these variations on the first 3 natural

Mode Natural Frequency
Number (Simulated Test) (Hz)
1 43.1
2 185.8
3 2582

frequencies of the linear part is given in Table 5.

Table 4 Material properties used in the original FE model

Modulus of Elasticity (E) Poisson’s Density (p)
(GPa) Ratio (v) {(kg/m®)
Beaml 200 0.3 7950
Beam2 200 0.3 7950

Then, the driving point FRFs at the tip of Beaml in Z (transverse) direction are calculated by using the theoretical FE model,
and just to see the effect of using slightly different modulus of elasticity and density in the theoretical model, these FRFs are
compared with the exact values obtained from the FE model of the simulated test system (Fig. 6). Note that in practical
applications the linear FRFs of the actual nonlinear system cannot be directly measured, and it is the intension of this study to

calculate these FRFs from measured FRFs of the nonlinear system.

Table 5 Comparison of the natural frequencies obtained from theoretical FE model with the actual values

Mode Actual Natural Frequency Natural Frequency Calculated
Number (From FE Model of Simulated from Theoretical FE Model
Test System) (Hz) (Hz)
1 43.1 41.8
2 185.8 180.3
3 258.2 250.4
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Fig.6 Comparison of the linear responses obtained from theoretical FE model and linear model of the actual system

As can be seen in Table 5 and Fig 6, there are discrepancies between the natural frequencies and linear responses obtained
from theoretical FE model and actual values. In order to improve these results, FE model needs to be updated. However, the
major problem in practical applications is that when the structure is nonlinear the FRF curve for the linear part cannot be
accurately obtained especially when there is friction type of nonlinearity along with other types of nonlinearities.

In the theoretical linear FE model of the system, height of the Beam! (hl), height of the Beam?2 (h2), length of the Beam?2
(L.2), modulus of elasticity of the Beam/ and Beam2 are decided to be the candidates for updating parameters. Selection of
the updating parameters is carried out based on the sensitivity of natural frequencies to these parameters. By changing one
parameter while keeping all the others constant, several different parameter sets are built. Running several FE analyses for
these parameter sets, percentage changes in the natural frequencies with respect to percentage changes in parameters and the
average sensitivity values are estimated for the first three flexural natural frequencies. The results are given in Fig.7 to 9.
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Fig.7 (a) Change in 1% natural frequency with respect to change in parameters (b) Average sensitivity values
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Fig.8 (2) Change in 2™ natural frequency with respect to change in parameters (b) Average sensitivity values

As can be seen in Fig.7 and and Fig.9, 1 and 3" flexural natural frequencies have the highest sensitivity values to the height
and length of Beam?2. On the other hand, 2™ flexural natural frequency has the highest sensitivity to the height of Beam/ and
length of Beam? as seen in Fig.8. Using these results, height of the Beam2 (h2), and length of the Beam? (L2) are selected as
the updating parameters in theoretical linear FE model. For the selected parameters, elements of the sensitivity matrix are
calculated using the centered difference approximation with O(*) which is given in equation (17) at each iteration step. After
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Fig.9 (a) Change in 3" natural frequency with respect to change in parameters (b) Average sensitivity values

8 iterations, updating parameters are converged and convergence graphs of these parameters are given in Fig. 10.
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Fig.10 (a) Convergence of the height of Beam?2 (b) Convergence of the length of Beam2
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Using the converged parameter values (h2=1.295mm, 1.2=362.1mm), FE model is updated and modal analysis is performed
in order to calculate the natural frequencies of the updated model. These natural frequencies are compared with those of the
theoretical FE model and also with the natural frequencies of the actual system in Table 6. Note again that the last set of
values cannot be directly measured in practical application; here we make use of the advantage of making simulated
experiments.

Table 6 Comparison of natural frequencies obtained from the theoretical FE model (h2=1.5mm, 1.2=400mm) with those of
the updated FE model (h2=1.295mm, 1.2=362.1mm)

Natural Frequency Natural Frequency Natural Frequency
NM"db‘; (Exact Value) (Theoretical Model) E(’,;,";' (Updated Model) E(f,]“;'
umber (Hz) (Hz) “ (Hz) i
1 43.1 41.8 -3.02 42.1 -2.32
2 185.8 180.3 -2.96 185.4 -0.22
3 258.2 250.4 -3.02 258.4 0.08

As can be seen in Table 6, there are considerable improvements for the 2°* and 3" natural frequencies and a slight
improvement in the 1% natural frequency. In Fig.11, the linear responses obtained from theoretical and updated FE models are
compared. Exact response is also given in the same figure in order to show the improvement achieved with updating process.
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Fig.11 Comparison of linear responses obtained from theoretical and updated FE models with the linear model of the actual
system

As can be seen in Fig.11, around 2™ and 3" resonance regions considerable improvements are obtained in the frequency
response when updated FE model is used. Since the ultimate goal is to have accurate nonlinear response predictions from the
updated model, experimental nonlinear responses are compared with those obtained from the initial theoretical model and
nonlinear responses obtained by using updated model for Fy=0.01 N and F,=25 N in Fig.12 and Fig.13, respectively.
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Fig.13 Comparison of nonlinear responses obtained from theoretical and updated models with experimental one for
F=25N

As can be observed in Fig.12 and 13 that there are considerable improvements around 2™ and 3™ resonance regions in the
updated nonlinear response, and these are the modes which require corrections in this application. The reason for not having
similar improvements around anti-resonance frequencies is discussed below.
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4  DISCUSSION AND CONCLUSIONS

In this study a model updating method for nonlinear structures is developed. In the nonlinear model updating approach
proposed, the method developed recently by the aunthors to obtain linear FRFs of nonlinear structures having multiple
nonlinearities including friction type of nonlinearity is used. Nonlinear model updating method proposed is validated with a
nonlinear simulated test system.

The method is based on measuring FRFs of a nonlinear structure at a low forcing level, as well as at several different high
foreing levels. Then, by using the FRF values measured at a single frequency the FRF of the corresponding linear part of the
structure is calculated, so that any FRF based model updating method can be applied to correct the mathematical model for
the linear part of the system. In this approach, the most of the nonlinearities in the system are also identified. Although
friction type of nonlinearity cannot be fully identified (normal force and friction coefficient cannot be identified), all
nonlinear effects are removed from the measured nonlinear FRF, and thus FRF of the linear part can accurately be calculated.

The nonlinear test system used in this study is a T-beam with cubic stiffness and dry friction nonlinearity. In order to simulate
experimental measurements, the nonlinear responses at the tip point of Beam! are calculated by using FE model and the
nonlinear parameters via harmonic balance method. These responses are first polluted with random noise in order simulate
experimental results more realistically. Then, the linear FRF of the system is determined from the simulated experimental
measurements of the nonlinear system by using the method suggested. On the other hand, the theoretical FE model of the
system is constructed with certain errors in material properties. This mathematical model is used as the theoretical model to
be updated.

Since there exists discrepancies between the natural frequencies calculated from the theoretical linear FE model and those
obtained from the simulated test results, as expected, the theoretical linear FE model is updated by using Inverse Eigen
Sensitivity method. The sensitivity of natural frequencies to the candidate parameters for model updating is obtained by
performing several FE analyses. Using the sensitivity values, updating parameters are selected among the candidate
parameters. The selected updating parameters are the ones with highest average sensitivity values for the first three natural
frequencies. Once the updating parameters are selected, iterations are continuved until a convergence is obtained for the
solution of values for updating parameters. Note that the selected parameters may not be the actual parameters which are in
error, as it is the case in this application. Still the method work with acceptable accuracy as can be seen from the results
presented in this study.

Then, the natural frequencies calculated using the updated FE model are compared with the values found from theoretical FE
model. As we know the exact values due to using simulated experiments rather than actual test results, it was easy to see the
improvements. It is observed that there are improvements in all natural frequencies, and in the 2™ and 3" natural frequencies
where the differences between the responses obtained from the initial theoretical model and experiments are maximum, the
improvements are considerably important. Finally, both linear and nonlinear updated responses are compared with the results
obtained by using the theoretical model, as well as with simulated experimental results. The nonlinear harmornic responses are
calculated for the harmonic forcing amplitudes of Fy=0.01 N and F4=25 N. It is observed that there is again a considerable
improvement around 2 and 3" natural frequencies in the updated nonlinear and linear responses. This improvement is less
pronounced around the anti-resonance regions which may be due to the model updating method used. Therefore, when our
concern in model updating is not limited with resonance regions, then a different method may be employed for linear model
updating part of the approach suggested. Therefore, it is concluded that the general approach proposed in this study is very
successful in updating linear FE part of a nonlinear system.
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ABSTRACT

In real life applications most of the structures have nonlinearities, which restrict us applying model updating techniques
available for linear structures. Well-established FREF based model updating methods would easily be extended to a nonlinear
system if the FRFs of the underlying linear system (linear FRFs) could be experimentally measured. When frictional type of
nonlinearity co-exists with other types of nonlinearities, it is not possible to obtain linear FRFs experimentally by using low
level forcing. Pseudo Receptance Difference (PRD) method, recently developed by the authors, calculates linear FREs of a
nonlinear structure by using FRFs measured at various forcing levels, and simultaneously identifies multiple nonlinearities in
the system. Then any model updating method can be used to update the linear part of the mathematical model. In this present
work, the PRD method is used to predict the linear FRFs from nonlinear FRFs, and the inverse eigensensitivity method is
emploved to update the linear finite element (FE) model of a nonlinear structure. A real nonlinear T-beam test structure is
used to validate the accuracy of the proposed method. First, the linear FRFs are calculated from nonlinear FRFs measured at
different forcing levels, and simultaneously, the nonlinearities in the structure are identified. Then the FE model of the linear
part of the structure is updated. Finally, the accuracy of the updated nonlinear model of the test structure is demonstrated by
comparing the calculated and measured FRFs of the test structure at several different forcing levels.

KEYWORDS

Nonlinear model updating, nonlinearity, nonlinear identification, friction nonlinearity, nonlinear structures

1 INTRODUCTION

Accurate prediction of the dynamic response of a structure is a vital step in the design stage of engineering structures. FE
method is the most common numerical method used for obtaining dynamic response of engineering structures. However,
usage of FE methods may yield certain inaccuracies arising from modeling errors, Due to these errors experimental and FE
method results do not always match perfectly. Therefore FE models need to be updated by using the experimental results and
changing some of the parameters used in the FE model.

Various model updating methods were developed in order to correct the mathematical models. However most of the model
updating methods available in literature are for linear systems. Nalitolela et al. [1] proposed a method which is based on exact
model reduction and perturbation of both the actual structure and its analytical model by adding mass or stiffness in order to
produce accurate dynamic models. Roy et al. [2] proposed direct energy approach to relate the kinetic and strain energies of
each part of a FE model to the experimental data. Brughmans et al. [3] applied a FE model updating technique, based on a
forward sensitivity formulation, to a twin propeller commuter aircraft. Link and Zhang [4] applied different updating
techniques to a test structure in order to investigate the sensitivity of updating results in these methods. Jung and Ewins [5]
studied the application of the inverse eigensensitivity method for model updating using arbitrarily chosen macro elements to a
simple frame. In order to investigate the potential errors causing the discreparcies between analytical and experimental
normal modes, Miccoli and Agostoni [6] used the sensitivity analysis. Hemez [7] studied an updating method which is based
on sensitivity approach for damped FE models. A new model updating method is proposed by Lenoir et al. [8] which is based
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Difference (PRD) Method for Nonlinear Model Updating , Nonlinear Dynamics,
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on the modal synthesis of experimental forced responses. Mottershead et al. [9] studied the effect of the selection of different
updating parameters in the model updating of an aluminum space frame. In order to update a bridge structure Jung et al. [10]
presented a hybrid optimization technique based on the genetic algorithm and Nelder-Mead simplex. Kozak et al. [11]
proposed a new error localization method and an updating routine and applied the routine in different case studies. In a more
recent work Boulkaibet et al. [12] studied the use of the Shadow Hybrid Monte Carlo technique to determine the selection of
updating parameters. Fei and Jiang [13] studied the criteria of evaluating initial models that will be used in the updating
procedure. In a very recent work, Boulkaibet et al. [14] proposed the use of Separable Shadow Hybrid Monte Carlo method
for the updating of FE models. Hemez [15] briefly overviewed the first 30 years of FE model updating development, from the
mid-1960’s to the mid-1990’s and categorized FE model updating methods into broad categories that each offers their own
benefits and limitations.

Since most of the structures have nonlinear behavior, it is vital to have model updating techniques for nonlinear structures as
well. Hasselman et al. [16] studied Principal Components Analysis which is based on singular value decomposition of a
collection of response time history, for nonlinear model correlation and updating. In a later work Anderson and Hasselman
[17] addressed the issue of the minimizing the correlation of parameter estimates in the updating of nonlinear systems. Burton
et al. [18] studied the combined model reduction and singular value decomposition approach for model updating of nonlinear
structures. Silva et al. [19] studied harmonic balance, constitutive relation error, restoring force surface and Karhunen-Logve
decomposition methods for nonlinear model updating, and compared with each other. Canbaloglu and Ozgliven, very
recently, developed a method to obtain linear FRFs of nonlinear structures having multiple nonlinearities including friction
type of nonlinearity, from nonlinear FRF measurements [20] and used this method in the nonlinear model updating approach
proposed [21]. The method is validated by applying the method developed to a nonlinear test system.

For nonlinear structures, it is possible to use model updating techniques developed for the linear systems, if the linear
dynamic behaviors of the structure are obtained which may require identification of nonlinearity first. Kerschen et al. [22]
presented a literature survey which is one of the most detailed nenlinear system identification literature surveys in which
more than 400 papers were cited. The method developed by Canbaloglu and Ozgiiven [20] aims to obtain linear FRFs of a
nonlinear structure from FRF measurements, without fully identifying nonlinearities, the ultimate goal being to update linear
model parameters of a nonlinear structure having multiple nonlinearities including friction type of nonlinearity. Very
recently, Doranga and Wu studied [23] the Nonlinear Resonant Decay method for parameter identification of nonlinear
dvnamic systems. Grappasonni et al. [24] presented a method for identification of an experimental cantilever beam with a
geometrically nonlinear thin beam clamped with prestress. Aykan and Altuntop [25] implemented the method developed for
parametrically identifying nonlinearities from measured frequency response functions [26] to a gearbox. Londono and
Cooper [27] developed a technique for the experimental identification of structures exhibiting geometric nonlinearities, in
particular aircraft with highly flexible wings. In this study, the method [20, 21] developed by the authors for nonlinear model
updating, is experimentally validated by applying the approach to a real nonlinear T-beam test structure. First, the linear
FRFs are calculated from nonlinear FRFs measured at different forcing levels, and simultaneously the nonlinearities in the
structure are identified. Then the FE model of the linear part of the structure is updated. Finally, in order to demonstrate the
accuracy of the updated nonlinear model of the test structure, predicted and measured FRFs of the test structure are compared
at several different forcing levels.

2 THEORY
The model updating method recently developed by Canbaloglu and Ozgtiven [20, 21] is used in this study for updating the FE
model of a nonlinear structure. Since the theory of the method is given in detail in references 20 and 21, just a very brief

summary is presented here.

For a nonlinear system, it is possible to write the following equatiorn.
-1 -1
[A]=[Af]+[Ayp]=[HNL} _[HLJ (L

where [A], [Af] [Azr ], [HNL} [H L} are the nonlinearity matrix, nonlinearity matrix due to friction, nonlinearity

matrix due to remaining nonlinearities that are dominant at high forcing levels of excitation, response level dependent
nonlinear and linear FRF matrices, respectively. Measuring FRFs experimentally several times at the same frequency but at
different forcing levels the following set of equations can be written:
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In equation (2), subscript 1 indicates low forcing case and subscripts 2, 3, ... n indicate high forcing cases. The detailed
derivation of the formulation can be found in [20]. The nonzero elements in the nonlinearity matrices at the left hand sides
which can be written as polynomial functions of response amplitudes with unknown coefficients are the describing functions
of the corresponding nonlinearities. Polynomial fit for (n-1) data points is applied in a least square sense and the equation of
the corresponding regression curve is obtained in order to find the unknown coefficients. By comparing the terms of the
regression equation with the corresponding describing functions, nonlinearities are identified and then linear FRFs can easily
be calculated as [20]

[t = [ -] T @)

One of the drawbacks of the above equation is that it requires the full matrix inversions. Therefore the formulation is
improved for nonlinear structures where the nonlinearity is local [21]. For local nonlinearities it possible to partition the
nonlinearity matrix as

8] [0
[A]{ o] [oﬂ @

where subscript a represents coordinates where nonlinear elements are connected (“nonlinear coordinates” in short). Pre-
multiplying all the terms in equation (1) by [H L} , post-multiplying by [HNL} and using equation (4) for the nonlinearity

matrix, the following equation is obtained:

A [7] {[%1 [o]} %] (]| (A% ] [0 ]] (%] [#%)]

) [, |01 Do) ) o

] [ ]| | [] [i]] | [] (%]

Here subscript & corresponds to linear coordinates.

Considering the first submatrix of the resultant matrix and performing some matrix manipulations, the linear FRF matrix for
the nonlinear coordinates can be obtained as [21]

CANEArvil ©

It is obvious that for locally nonlinear structures computational effort will be considerably reduced by using the above
equation compared with equation (3). Once the linear FRFs are calculated by using equation (6), then they can be used in the
model updating process of a FE model. Note that in several model updating methods having FRFs of limited number of
coordinates is sufficient. Therefore, having FRF of even a single coordinate may be enough for model updating.

One of the common methods used for model updating is the inverse eigensensitivity method [28], which is based on the
following equation:

{ar)=[sliar} @

Here, {r} is the response vector composed of mode shapes and natural frequencies, {p} is the parameter vector composed of
geometrical parameters or material properties used in the FE model, and [S§] is the modal sensitivity matrix. Modal

sensitivity matrix [§] can be written as
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In equation (8), S, ™ stands for the sensitivity of the n" response to the m™ updating parameter. For complex structures it is
easier to calculate the sensitivities by numerical differentiation. In this study, centered difference approximation with O i) is
used to obtain the sensitivities as given in the following equation:

—r(Pia) +8r(piy ) —8r(pi )+ r(piy) (9
12Ap

r(p)=

After obtaining the sensitivity matrix [$] and {Ar} vector, {Ap} which gives the changes required to be made in parameter
vector, can be obtained from the following equation:

~1

{ap}=[s] {ar} (10)
3 EXPERIMENTAL STUDY

In this section, PRD method developed recently [20] is applied to a nonlinear experimental test system. The test system is a
T-beam which is similar to the test rig used by Ferreira [29] and also by Siller [30]. Using the PRD method, both linear FRFs
and the nonlinearities in the system are obtained from experimentally measured nonlinear FRFs.

3.1  Experimental setup

The test set-up is a T-beam which consists of a cantilever beam with its free end is maintained between two thin identical

beams having fixed-fixed boundary conditions. The thin beams which are attached to the free end of the cantilever beam are
the main source of nonlinearity in the test structure. The dimensions of the T-beam are given in Fig.1.

All dimensions in mm

Fig.1 Nonlinear T-beam test system

In order to maintain the fixed boundary conditions, beams are manufactured longer than their original dimensions, so that
adequate parts of the beams are fixed between fixture blocks. The material used for the beams is St37. The test rig used in the
experiments is shown in Fig.2.
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Fig.2 Test rig used in the experiment

In the experiments performed in this study, the structure is excited with B&K Type 4808 modal shaker via a push-rod. In
order to increase the excitation level of the shaker, B&K Type 2712 power amplifier is used. Acceleration responses and the
forces applied are measured with B&K Type 4507B accelerometer and B&K Type 8230-002 force transducer, respectively.
In all the measurements, as a data acquisition system, B&K Type 3560C frontend is used. The equipment used in the
experiments is shown in Fig.3.

Fig.3 View of the equipment used in the experiments

3.2 First set of experiments

In order to apply the PRD method, a set of experiments is conducted on the test setup. Firstly, the structure is excited with a
random excitation. Since the method proposed by Canbaloglu and Ozgiiven [20, 21] depends on frequency of excitation, and
it is shown that method works better around a linear resonance frequency of the structure, a quick test which does not excite
nonlinearities considerably is made. In random excitation, low excitation signal level is selected and using this excitation
type, driving point FRF at the tip of beam 1 in transverse direction is measured. The frequency range is selected between 0-
100 Hz and a frequency resolution of 0.25 Hz is used in the measurements. In order to eliminate the noise in measurements,
130 averages are taken. After the analysis of the measurements, driving point FRF at the tip of beam 1 in transverse direction
is obtained as shown in Fig.4.
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Fig.4 The driving point FRF at the tip of beam 1 in transverse direction

From Fig.4, it is observed that the first resonance of the structure in transverse direction is around 41 Hz. Therefore in order
to apply the proposed method, the structure is excited at around that frequency with a pure sine excitation at different forcing
levels. The structure is excited at a low forcing level and then at a number of high forcing levels. The advantage of this
method is that, there is no need for any vibration controller as in the cases of constant forcing or constant amplitude testing
over a certain frequency range.

In order to study the effect of choosing different frequencies of excitation on the performance of the method, two different
excitation frequencies (39 Hz, 40 Hz) are used and for each of these excitation frequencies, describing functions of the
nonlinearities are obtained by using the method proposed.

3.2.1  Application of the PRD method at excitation frequency 39 Hz

In Fig.5, the calculated real and imaginary parts of the describing function obtained from experimental measurements by
using PRD method and the corresponding fitted curves are shown.
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Fig.5 Calculated describing function (a) Real part (b) Imaginary part

For the real part of describing function, 2" order, for the imaginary part of the describing function 4™ order polynomials are
fit. The coefficients estimated are given in Table 1.
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Table 1 Coefficients of the polynomials fit to the data for real and imag

yinary parts of the describing function

P4 | A] Pz 1 Po
Real Part of Describing Function
X+ P py - 1.56x10° | -2.48 x10° | -190
Imaginary Part of Describing Function
px+ 4 X+ patpy -2.74x10* | 1.10x10” | -1.49x10° | 8.0x10° | -109

322  Application of the PRD method at excitation frequency 40 Hz

In Fig.6, calculated real and imaginary parts of the describing function obtained from experimental measurements by using

PRD method and the corresponding fitted curves are shown.
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Fig.6 Calculated describing function (a) Real part (b) Imaginary part

For the real part of describing function, 2™ order, for the imaginary part of the
fit. The coefficients estimated are given in Table 2.

Table 2 Coefficients of the polynomials fit to the data for real and imagin

describing function 3™ order polynomials are

part of the describing function

| 1] Pz P1 Po
Real Part of Describing Function
PX + pX+py — | 1.59x10° | -2.49x10° | -181
Imaginary Part of Describing Function
P’ + pox’ + pat py -6.0x10" | 2.15x10° | -1.52x10° | -36

If we compare the coefficients for the real part of describing functions obtained using the measurements at 39 Hz and 40 Hz,

it can be observed that coefficients are very close to each other. However

when coefficients for the imaginary part of

describing functions obtained by using the measurements at 39 Hz and 40 Hz are observed, it is seen that there are

differences between the coefficients.

As a final test in this set of experiments, a constant low forcing level excitation experiment is performed between 37 Hz and
47 Hz. Stepped sine constant force test is performed for the given test set-up. Frequency resolution of 0.25 Hz is used in the
experiment. Pure sine signal is used as the excitation signal. However, in order to make constant force vibration testing over
the frequency range, a control strategy is needed in the experiments. This control is maintained manually by checking the
forcing level and changing the excitation voltage supplied to the shaker iteratively for each frequency point. In Fig.7,

measured FRFs at F=0.05 N are shown.
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Fig,7 Measured FRF at F=0.05 N
It is observed from the Fig.7 that, the FREFs measured at F=0.05 N seem like a linear FRF, which is an expected result.
3.3 Second set of experiments

In the second set of experiments, the aim is to perform the measurements which will be used to verify the PRD method and
the model updating approach proposed. A set of stepped sine constant force tests is performed on the given set-up. Frequency
resolution of .25 Hz is used in the experiment, Similarly, the constant force excitation is maintained by manually checking
the forcing level and changing the excitation voltage supplied to the shaker at each frequency point. The structure is excited
with 3 different forcing levels (F=0.6 N, F=0.7 N, F=(0.8 N).The measured FRFs are shown in Fig.8.
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Fig.8 Mecasured FRF at F=0.6 N, F=0.7 N, F=0.8 N
4 APPLICATION OF THE PRD METHOD

Using the describing function values obtained and the FRF values measured at F=0.05 N in the first set of experiments, linear
FRF of the structure is predicted by applying PRD method. Since, describing function values are obtained at two different
excitation frequencies, in order to study the effects of test frequency on the performance of the method, two separate linear
FRF curves are predicted. The two linear FRF curves predicted by using the describing functions obtained from experiments
made at 39 Hz and 40 Hz are compared with the FRFs measured at F=0.05 N in Fig.9, and with each other in Fig.10.
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Fig.10 Comparison of predicted linear FRF by using PRD method using experiments conducted at 39 Hz and 40 Hz

As can be observed from Fig.9, FREs measured at low forcing level (F = 0.05 N) deviate from the linear FREFs obtained by
using the proposed PRD method. It was recently shown [21] that PRD method yields the FRFEs of the underlying lincar
system in a nonlinear system accurately; therefore it can be concluded here that FRFs measured even at a very low forcing
level may not represent the linear FRF accurately, which is consistent with the observations made in a recent study [26].
Furthermore, it is observed from Fig.10 that linear FRFs obtained using the describing functions identified from the tests
made at 39 Hz and 40 Hz are very close to cach other, although the imaginary parts of the describing functions identified
from these tests are slightly different from each other.

5 MODEL UPDATING OF THE TEST SYSTEM AND VERIFICATION OF THE UPDATED MODEL

In this section, linear FE model of the test system is built in ANSYS and then the linear FE model is updated by employing
the approach proposed. The accuracy of the updated nonlinear model of the test structure is also demonstrated. First, the PRD
method is applied; thus the describing functions representing the nonlinearity in the system are identified and the linear FRFs
are predicted from the measured nonlinear FRIFs, Secondly, the lincar FIE model of the test structure is updated by using the
linear FRFs and applying inverse eigensensitivity method. Using the identified nonlinearity and updated linear FE model
updated nonlinear model of the test structure is constructed. Finally, predicted and measured FREs of the test structure are
compared at different forcing levels in order to demonstrate the accuracy of the updated nonlinear model of the system.

The FE model of the test structure is shown in Fig.11 and the material properties used in the initial FE model is given Table
3.
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Fig.11 FE model of the test structure

Table 3 Material properties used in the initial FEE model
Modulus of Elasticity (E) Poisson’s Density (p)
(GPa) Ratio (v) (kg/m®)
Beaml 210 0.3 7850
Beam?2 210 0.3 7850

The first natural frequency and the driving point FRF at the tip of beam 1 in Z (transverse) direction are calculated in ANSYS
by using the FE model. Comparisons of the natural frequency and linear FRFs obtained from FE analysis with those obtained

from experiments by using PRD method are given in Table 4 and Fig.12, respectively.

Table 4 Comparison of the first natural frequency obtained from initial FE model with the experimental value obtained by
using PRD method
Mode Natural Frequency Natural Frequency Error
Number (PRD method) (Hz) (Initial FE model) (Hz) (%)
5.77

1 40.75

43.1

2
4 — Linear FRF-Initial FE model
===='Linear FRF-PRD method
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Fig.12 Comparison of the linear FRFs obtained from initial FE model with those obtained by using PRD method

As can be seen in Table 4 and Fig.12, there are discrepancies between the results; therefore the FE model of the test structure
needs to be updated. Since most of the uncertainty is generally in modulus of elasticity of the materials, as an updating
parameter in FE model, the modulus of elasticity is selected. For the selected parameter, element of the sensitivity matrix is
calculated using the centered difference approximation with O(i*) which is given in equation (9), at each iteration step. After
5 iterations, updating parameter is converged to 188 GPa. The convergence graph of this parameter is given in Fig. 13.
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Fig.13 Convergence of the modulus of elasticity of the beams

Using the converged value of E, the FE model is updated. Then the first natural frequency of the updated linear model is
calculated and compared with that of initial FE model, as well as with the natural frequency obtained from experiments by
using PRD method in Table 5.

Table 5 Comparison of the first natural frequency obtained from initial and updated FE models with experimental value
obtained by using PRD method

Mode Natural Frequency Natural Frequency Error Natural Frequency Error
Number | (PRD method) (Hz) (Initial FE model) (Hz) (%) (Updated FE model) (Hz) (%)
1 40.75 43.1 5.77 40.75 0.00

As can be seen in Table 5, the first natural frequency is very accurately estimated by using the updated FE model. In Fig.14,
the linear FREs obtained by using PRD method from experimentally measured nonlinear FREs are compared with those
calculated from, initial and updated FE models. As can be seen in Fig.14, considerable improvement is obtained when
updated FE model is used.
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Fig.14 Comparison of the linear FRF obtained by using PRD method from experimentally measured values,
with those calculated from, initial and updated FE models.

Since the ultimate goal is to have accurate nonlinear response predictions from the updated model, nonlinear FRFs measured
experimentally for F=0.6 N, F=0.7 N and F=0.8 N are compared with those obtained from the initial and updated models
(composed of original and updated FE combined with identified nonlinearity). The results are given in Fig.15. As observed in
Fig.15 there is a considerable improvement in the FRFs calculated with the updated model for all forcing levels.
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Fig.15 Comparison of FRFs obtained from initial and updated models with the experimental ones for
(a) F=0.6 N (b) F=0.7 N (¢} F=0.8 N

6  SUMMARY AND CONCLUSIONS

In this study, a nonlinear T-beam test structure is used to validate the accuracy of the nonlinear model updating approach
suggested. Pseudo Receptance Difference (PRD) method, recently developed by the authors [20] calculates the linear FRFs
of a nonlinear structure by using nonlinear FRFs experimentally measured at various forcing levels. The method, at the same
time, identifies nonlinearities in the system. In the approach suggested, first, the linear FRFs are calculated from
experimentally measured nonlinear FRFs, and the nonlinearities in the structure are identified. Then by using the linear FRFs
obtained employing PRD method, FE model of the linear part of the structure is updated. In this work the inverse
eigensensitivity method is used to update the linear FE model. Finally, the accuracy of the updated nonlinear model of the
test structure is demonstrated by comparing calculated and measured FRFs of the nonlinear test structure at several different
forcing levels.

In the experiments, firstly the structure is excited with a random excitation in order to find the range of frequencies where the
first resonance occurs. Then, in order to apply the PRD method, the structure is excited at a constant frequency (which is
close to the resonance frequency of the underlying linear system) with a pure sine excitation at different forcing levels.
Finally, a set of stepped sine constant force experiments is performed on the test structure in order to measure nonlinear FRFs
at various forcing levels.

Computationally; by applying the PRD method, first the describing functions of the nonlinearities are identified from test
results, and then using these describing functions and the FRE values measured at low forcing level, linear FREs of the
structure are predicted. In the model updating of the FE model of the linear part of the structure, the predicted linear FRFs of
the test system are used.

In this study it is shown that in a nonlinear structure, FRFs measured at a low forcing level (F=0.05 N, in this experimental
work) may deviate from the actual FRI's of the linear part of the system. So it can be concluded that if sufficiently low
forcing level cannot be applied in the experiments, or if there is friction type of nonlinearity in the system along with other
types of nonlincarity, then the linear FREs cannot be directly measured accurately. It is furthermore experimentally
demonstrated that PRD method is very successful in predicting linear FREs of a nonlinear structure from measured nonlinear
FRFs, It is also observed that the frequency at which the experiments are made for the application of PRI method does not
have a considerable effect on the accuracy of the predicted linear FRFs, as long as it is close to the resonance frequency.

Finally, the nonlinear model updating approach proposed is validated in this experimental study by comparing the nonlinear
FRFs measured at various forcing levels, with those obtained from the original and updated models (which are defined by the
original and updated FE models combined with identified nonlinearity). It is shown that with the updated nonlinear model
considerable improvements can be obtained in predicting FRFs of a nonlinear structure at different forcing levels.
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