
i

A HYBRID GENETIC ALGORITHM FOR MULTI MODE RESOURCE
CONSTRAINED SCHEDULING PROBLEM FOR LARGE SIZE PROJECTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA GÜREL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CIVIL ENGINEERING

SEPTEMBER 2015

ii

iii

Approval of the thesis:

A HYBRID GENETIC ALGORITHM FOR MULTI MODE RESOURCE
CONSTRAINED SCHEDULING PROBLEM FOR LARGE SIZE PROJECTS

Submitted by MUSTAFA GÜREL in partial fulfillment of the requirements for the
degree of Master of Science in Civil Engineering Department, Middle East
Technical University by,

Prof. Dr. Gülbin Dural Ünver

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ahmet Cevdet Yalçıner

Head of Department, Civil Engineering

Assoc. Prof. Dr. Rifat Sönmez

Supervisor, Civil Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Mustafa Talat Birgönül

Civil Engineering Dept., METU

Assoc. Prof. Dr. Rifat Sönmez

Civil Engineering Dept., METU

Asst. Prof. Dr. Aslı Akçamete Güngör

Civil Engineering Dept., METU

Asst. Prof. Dr. Güzide Atasoy Özcan

Civil Engineering Dept., METU

Asst. Prof. Dr. Önder Halis Bettemir

Civil Engineering Dept., İnönü University

Date: 03.09.2015

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last name :

Signature :

v

ABSTRACT

A HYBRID GENETIC ALGORITHM FOR MULTI MODE RESOURCE
CONSTRAINED SCHEDULING PROBLEM FOR LARGE SIZE PROJECTS

Gürel, Mustafa

M.S., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Rifat Sönmez

September 2015, 96 Pages

Just like in all industries, some of the available resources, in order to finish a project
on time, are constrained in construction industry. To be able to finish the project on
time has high importance both for the contractor and for the owner. Project scheduling
in which resources are limited for a particular time are called as resource constrained
project scheduling problems (RCPSP) and occupies a significant place in construction
management. Especially for large scale projects, little success has been achieved for
solving multi-mode RCPSP. In the context of this thesis, RCPSPs with multiple
execution modes for activities, are aimed to be solved. With Hybrid Genetic Algorithm
(HGA) proposed in this thesis, finding the optimal solutions for large size construction
projects with multiple execution modes and resource constraints is aimed. The
proposed hybrid algorithm consists of two parts, first part is a heuristic method and
second part is a hybrid genetic algorithm. In the first part, some of the population is
generated with a heuristic method so that search domain of the algorithm can be
concentrated on better results. In second part, Hybrid Genetic Algorithm, solutions are
improved with each generation. The performance of the algorithm is verified with the
examples available in the literature. The main contribution of this algorithm is that it
enables the large sized real life projects to be solved with resource constraints in a fast
and efficient way.

Keywords: Project Management and Scheduling, Multiple Modes, Resource
Constrained, Genetic Algorithms, Hybrid Genetic Algorithm

vi

ÖZ

BÜYÜK ÖLÇEKLİ PROJELERDE ÇOK MODLU KAYNAK KISITLI İŞ
PROGRAMLAMA PROBLEMİ İÇİN GELİŞTİRİLMİŞ BİR HİBRİT GENETİK

ALGORİTMA

Gürel, Mustafa

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Rifat Sönmez

Eylül 2015, 96 Sayfa

Tüm sektörlerde olduğu gibi, inşaat sektöründe de, projelerin bitirilmesi için gereken
bazı kaynaklar sınırlıdır. Projelerin zamanında bitirilebilmesi hem müteahhit hem de
işveren açısından yüksek önem taşımaktadır. İnşaat yönetiminde önemli bir yere sahip
olan, kısıtlı kaynakların bulunduğu proje planlama problemlerine, kaynak kısıtlı proje
planlama problemi (KKPPP) denir. Özellikle büyük ölçekli projeler için, çok modlu
KKPPP’nin çözümünde ufak başarılara ulaşılmıştır. Bu tezin içeriğinde, çok uygulama
modlu aktiviteleri içeren KKPPP’ler çözülmektedir. Bu tezde önerilen melez genetik
algoritma (MGA) ile büyük ölçülü inşaat projelerinde, kaynak kısıtları ve farklı
uygulama modları dikkate alınarak, optimal bitiş sürelerinin bulunması amaçlanmıştır.
Bahsedilen melez algoritma, sezgisel yöntem ve melez genetik algoritma olarak iki
bölümden oluşmaktadır. İlk bölümde, algoritmanın popülasyonun bir kısmı sezgisel
yöntem ile oluşturulmaktadır, bu sayede, algoritanın arama alanı daha iyi sonuçlar
üzerinde yoğunlaştırılmıştır. İkinci bölüm olan Melez Genetik Algoritma bölümünde,
sonuçlar her jenerasyonda daha da iyileştirilmektedir. Literatürde bulunan örnekler ile
algoritmanın performansı test edilmiş ve algoritmanın etkinliği gösterilmiştir. Bu
algoritmanın ana katkısı, kaynak kısıtlı, büyük ölçekli, gerçek projelerin hızlı ve etkili
bir şekilde çözülmesine olanak sağlamaktır.

Anahtar Kelimeler: Proje Yönetimi ve Planlaması, Çoklu Modlar, Kaynak Kısıtlı,
Genetik Algoritmalar, Melez Genetik Algoritma

vii

Dedicated to my family and my beloved friend, İzel Akdeniz

viii

ACKNOWLEDGEMENTS

During the journey of two years in my Master’s degree, I have felt many different

emotions. I have faced many challenges during my courses and during the thesis work

in Construction Engineering and Management Division of Civil Engineering

Department of Middle East Technical University. During this period, I enjoyed

learning new concepts and making great effort in order to be successful. I would not

be able to overcome the difficulties I have faced without the suggestions and support

of the academic members and my friends.

First of all, I would like to show my gratitude to my supervisor, Assoc. Prof. Dr. Rifat

Sönmez, who has always supported me and gave his valuable advice throughout the

Master studies. Without his support and help, I would not be able to finish this thesis

and reach good results.

I specially thank my dear family. During this journey, they have never doubted me and

made me smile. Both my parents; Ayşe Gül Gürel and Faruk Gürel, and my brother,

Kaan Gürel, has supported me and kept my morale high.

I want to show my appreciation and gratitude to my dear friend, İzel Akdeniz. Without

her, it would be very difficult for me to be able to complete this thesis work. She have

always kept a smile on her face even when I was stressful and desperate.

Finally, I thank all of my friends for their continuous support for their friendship.

ix

TABLE OF CONTENTS

ABSTRACT ……………………………………………………………………... v

ÖZ ………………………………………………………………………………... vi

ACKNOWLEDGEMENTS ………………………………………........................ viii

TABLE OF CONTENTS …………………………………………………………ix

LIST OF TABLES ………………………………………………………………..xi

LIST OF FIGURES ……………………………………………………………….xii

LIST OF ABBREVIATIONS …………………………………………………….xiii

CHAPTERS

1. INTRODUCTION …………………………………………………………….1

2. LITERATURE REVIEW ……………………………………………………..5

2.1. Critical Path Method ……………………………………………………..5

2.2. Resource Constrained Project Scheduling Problem ……………………...6

2.3. Exact, Heuristic and Meta-Heuristic Methods ………………………….. 8

2.4. Heuristic Methods for RCPSP …………………………………………... 9

2.5. Meta-Heuristic Methods for RCPSP ……………………………………. 12

3. GENETIC ALGORITHM OPTIMIZATION ………………………………...31

3.1. Introduction to Genetic Algorithms ……………………………………... 31

3.2. Structure of GA …………………………………………………………. 32

3.3. Initialization ……………………………………………………………... 32

3.4. Encoding ……………………………………………………………….... 34

3.5. Evaluation of Fitness ……………………………………………………..35

3.6. Genetic Algorithm Operators …………………………………………….35

3.6.1. Crossover ………………………………………………………….36

x

3.6.2. Mutation ………………………………………………………….. 37

3.6.3. Selection ………………………………………………………….. 38

3.7. Advantages of GA ………………………………………………………. 39

4. HYBRID GENETIC ALGORITHM ……………………………………….... 41

4.1. Project Characteristics …………………………………………………... 42

4.2. Chromosome Representation ……………………………………………. 44

4.3. Heuristic Method ………………………………………………………... 44

4.4. Hybrid Genetic Algorithm ………………………………………………. 50

4.5. Crossover, Mutation and Renewal ……………………………………… 51

4.6. Fine-Tuning ……………………………………………………………... 54

5. PERFORMANCE ANALYSIS OF HGA …………………………………… 57

5.1. Small Size Projects ……………………………………………………… 58

5.2. Large Size Projects ……………………………………………………… 59

6. CONCLUSION ……………………………………………………………….67

REFERENCES …………………………………………………………………... 69

APPENDICES

A. FINE-TUNING EXPERIMENT ………………………………………… 77

B. DATA RELATIVE TO CHAPTER 5……………………………………. 81

xi

LIST OF TABLES

TABLES

Table 2.1. - Heuristic and Meta-Heuristic algorithms for RCPSP ………………. 28

Table 4.1. - Resource Requirements with respect to Activities and Modes ……... 43

Table 4.2. - Fine-tuning Parameter Selection ……………………………………. 55

Table 5.1. - Experiment Results of HGA ………………………………………... 58

Table 5.2. - Comparison between HGA and Other Methods on Small Size Projects

……………………………………………………………………………………. 59

Table 5.3. - Best and Worst Results of Experiments …………………………….. 61

Table 5.4. - Comparison between HGA and CP …………………………………. 62

Table A.1. - Fine-Tuning Experiment …………………………………………… 78

Table B.1. - Experiments for All Schedule Numbers…………………………….. 82

xii

LIST OF FIGURES

FIGURES

Figure 3.1. - General Structure of Genetic Algorithm …………………………… 33

Figure 3.2. - Pair of Individuals with Hamming Cliff …………………………… 35

Figure 3.3. - One-Point Crossover ……………………………………………….. 36

Figure 3.4. – Two-Point Crossover ……………………………………………….37

Figure 4.1. - Project Network for the Case Project ………………………………. 43

Figure 4.2. - Chromosome Representation of HGA ……………………………... 44

Figure 4.3. - Chromosome Representation of modes in Heuristic Method ……… 46

Figure 4.4. - Activity 9 and 10 with Selected Modes ……………………………. 47

Figure 4.5. - Scheduling of Activity 6……………………………………………. 47

Figure 4.6. - Scheduling of Activity 7 and 8 …………………………………….. 48

Figure 4.7. - Scheduling of Activity 4, 3 and 5 in Order ………………………… 48

Figure 4.8. - Representation of Mode Assignments of Example Problem ………. 49

Figure 4.9. - Final Form of Schedule with 18 Days Makespan ………………….. 50

Figure 4.10. - Flowchart of HGA ………………………………………………... 53

Figure 4.11. - Improved Schedule with 16 Days Makespan ……………………... 54

Figure 4.12. - Priority and Mode Alternatives in Crossover …………………….. 54

Figure 5.1 - Solution Quality versus Number of Schedules for Different Project Sizes

……………………………………………………………………………………. 64

xiii

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization
AIA Artificial Immune Algorithm

AoA Activity on Arrow
AoN Activity on Node
APD Average Percent Deviation
CP Constrained Programming

CPM Critical Path Method
CPU Central Processing Unit
DE Differential Evolution
EFT Early Finish Time

EST Early Start Time
GA Genetic Algorithm
GB Gigabyte
GHz Gigahertz

HGA Hybrid Genetic Algorithm
LFT Late Finish Time
LST Late Start Time
Np-Hard Non-Polynomial Hard

PSO Particle Swarm Optimization
RAM Random Access Memory
RCPSP Resource Constrained Project Scheduling Problem
RLP Resource Levelling Problem

SA Simulated Annealing
TCT Time-Cost Tradeoff
TF Total Float
USD United States Dollar

xiv

1

CHAPTER 1

INTRODUCTION

In today’s world, construction projects with different varieties take one of the biggest

share in terms of investment. With developing technology and increase in the number

of qualified engineers, competitiveness between the contractors from all around the

world has risen. This lead contractors to give bids with less profit so that they could

secure the project. Since the profits earned in construction works are not as high as it

used to be, contractors searched new ways so that they could decrease the overall costs

and increase the total profit of the project. This search lead contractors to work and

emphasize on planning and scheduling.

The most common method in terms of planning and scheduling is the Critical Path

Method (CPM). In nature, CPM calculates the total project time with the given time

input of the activities of the schedule. The logical relationships between activities, lag

times, working hours in a day, working calendars and resource availabilities are some

of the main parts of preparing an appropriate schedule. The schedule of the works

should be done with utmost care and detail, otherwise, the project may not be finished

on the planned time which may lead to dissatisfied owner, financial losses, disputes

between shareholders or even a lawsuit which may affect the company greatly and

may lead the company to bankruptcy.

Although CPM is the most commonly used scheduling technique in the construction

industry, it is not proficient at finding the optimal solution in project when resource

constraints are available. Due to this reason, resource constrained project scheduling

problem (RCPSP) has been given great importance. The main objective of the RCPSP

2

is to reach the minimum project duration while satisfying both resource and

precedence constraints. In real life situations, all of the construction projects may have

resource constraints since no construction company has infinite resource access. Even

if the construction company has great number of resources, directing all of the

resources to a single project will increase the cost of that project and will place a

burden to other works that the company undertakes. This phenomenon makes RCPSP

very significant in terms of management and planning of the construction projects.

Although RCPSP is important, popular commercial project management software has

very limited capabilities for solving the RCPSP (Mellentien and Trautmann 2001;

Hekimoglu 2007; Lu et al. 2008; Bettemir and Sonmez 2014).

Many construction projects have more than 300 activities in real life examples. As the

project gets larger, costs increase proportionally. In order to maximize the profit

obtained at the end of projects, they should be finished as early as possible. This means

that daily overhead costs of the project will be decreased. Many of the RCPSP studies

used problem examples up to 60 activities which does not reflect the nature of

construction projects. Hegazy and Menesi (2014) has worked with a Constraint

Programming (CP) method for large size examples up to 2000 activities.

Many of the designed heuristics and meta-heuristics for RCPSP, cannot be performed

with real life construction projects which have more than 300 activities. Moreover,

methods that are able to solve the RCPSP for large scale problems, require too much

computation time in order to reach quality solutions. The CP model that is designed

by Hegazy and Menesi (2014), has been applied to instances that have, 10, 100, 500,

1000, 1500 and 2000 activities. CP model has reached a solution with %9.61 deviation

from upper bound (best known solution of the instance) in 3 hours in the largest project

instance. As a consequence, in terms of RCPSP, the gap between literature and real

life examples is remarkable.

This thesis aims to develop a Hybrid Genetic Algorithm (HGA) so that high quality

solutions in RCPSP can be obtained with shorter computational time. To be able to

reach high quality solutions in shorter computational time is significant for real life

3

cases so that with better solutions, minimizing the overhead costs and resources can

be done efficiently and the project may be finished earlier as efficiently as possible.

In ordinary Genetic Algorithms, the initial population is usually generated randomly.

In the proposed HGA, some of the initial population is generated randomly and some

is generated with a heuristic method, in which backward scheduling is implemented

with respect to resource constraints. In other words, in heuristic algorithm part,

improved solutions are generated. After generating the initial population, the algorithm

implements forward scheduling to all solutions and calculates makespan values. The

solutions are implemented with crossover, mutation, elitism and renewal processes.

The algorithm ends when the stopping criterion, schedule number in this case, is met.

The order of thesis is as follows; after the introduction part, literature review continues

as chapter 2. Chapter 3 is about genetic algorithms and their content, then comes the

Chapter 4 in which the HGA is explained and analysis results are given. After the

conclusion part in Chapter 5, the references are given.

4

5

CHAPTER 2

LITERATURE REVIEW

In this chapter, first Critical Path Method (CPM) is explained to give understanding of

most widely used scheduling technique. Resource constrained project scheduling

problem (RCPSP) is defined with some of the proposed optimization techniques.

2.1. Critical Path Method

Throughout the paper, CPM is defined as the most widely used scheduling technique.

The first step to understand what CPM does is to understand what scheduling is.

Scheduling is consideration of the timing and order of the activities available in a

project in order to decide the total time when the project is completed (Mubarek 2010).

In a CPM network, just like any scheduling method, there are some steps to reach a

successful schedule. First of all, the work activities that will generate the network, are

determined. After the determination of the activities, their corresponding durations are

assigned respectively and the logical relationships (precedence, successor

relationships) are determined. After these steps are successfully performed, schedule

network is drawn.

CPM is the most commonly used network analysis method and the main objective is

to find the longest path throughout the schedule network. The illustration of the

network can be drawn by two different procedures, which are; activity on arrow (AoA)

and activity on node (AoN). Although both procedures reach the same results, AoN

method is preferred by many. Some of the reasons include the widespread adaptation

6

of AoN method to computer systems. AoN network is also clearer to understand, early

start time (EST), early finish time (EFT), late start time (LST), late finish time (LFT)

and total float (TF) of the activities can be seen on the network. Furthermore, activity

on node process has become the most common and outstanding procedure for

scheduling (Lock 2007).

As their name imply, EST and LST are the earliest and the latest times that an activity

can start. The same logic is valid for EFT and LFT, which are the earliest and latest

times that an activity can finish. TF can be explained as the amount of time an activity

can be delayed without hindering the completion date of the network. TF is calculated

by implementing forward pass and backward pass calculations. In forward pass by

keeping activity relationships and their durations, EST and EFT values are determined.

The calculation begins from the first activity and ends with the last one. In backward

pass, LST and LFT values are determined, the process starts from the last activity and

finishes at the first one. The backward pass can only be commenced only if the forward

pass is finished.

Critical path is the longest path in terms of completion time in a project, thus, it

determines the total project completion time. Each of the activities in the critical path

have TF of zero. This means that none of the activities can be delayed since it affects

the total project and results with a delay. The activities located in critical path are called

the critical activities.

Each project has a definite finish time decided by the client. Planning and scheduling

is done so that the project may be finished on time. The completion of the project may

end up later than the given finish date if the resource constraints and implementation

of activities are not taken into consideration. This problem can be overcome by RCPSP

methods.

2.2. Resource Constrained Project Scheduling Problem

There is no project in world that the resources and budget are infinite. A construction

company determines the budget and the amount of resources for each project so that

every project can be completed without any problems.

7

In RCPSP, the main objective is to find the optimum duration by satisfying the

resource constraints. In other words, with definite resources, the project is completed

as soon as possible.

RCPSP falls into nondeterministic polynomial-time hard (NP-hard) (Blazewicz et al.

1983; De et al. 1997) computational complexity class. Exact methods for these

RCPSP’s can solve only for small size or medium to small size projects. In the light

of these reasons, numerous heuristic and meta-heuristic methods are designed and

proposed in order to reach optimal solution in RCPSP. These methods include priority

rule based scheduling heuristics (Özdamar and Ulusoy 1994; Hegazy et al. 2000;

Tormos and Lova 2001), and meta-heuristics, including genetic algorithms (Chan et

al. 1996; Hartmann 1998; Hegazy 1999; Kim and Ellis 2008; Chen and Shahandashti

2009; Kim and Ellis 2010; Sonmez and Uysal 2014), simulated annealing (Lee and

Kim 1996; Bouleimen and Lecocq 2003; Valls et al. 2005), tabu search (Deblaere et.

al. 2011), and particle swarm optimization (Lu et al. 2008; Wang and Qi 2009; Chen

2011).

 Throughout the project, contractor spends money from the budget of the project. The

costs of the contractor is divided into two categories. These categories are named as

direct costs and overhead costs. Direct costs are the material costs, labor costs,

equipment, and machinery costs. Overhead costs are expenses that cannot be grouped

into any specific work item of direct costs. They include mobilization costs, salaries

of indirect personnel such as cook and security, general security costs, cost of bonds

taken from banks, site office expenses, insurance expenses and many more. As the

project duration increases overhead costs increase and direct costs decrease. Overhead

costs, in other words, indirect costs are assumed to have linear relationship with the

duration of project. To define the overhead costs as linear, costs that are paid in a single

time such as bonds and insurance expenses are excluded from daily overhead cost

assumptions.

With the help of RCPSP, even if the direct costs cannot be decreased, overhead costs

are aimed to be lowered by completing project earlier while satisfying resource

8

constraints. With each day a project is completed earlier, the contractor may increase

the profit by not spending any indirect cost.

2.3. Exact, Heuristic and Meta-Heuristic Methods

As mentioned in chapter 2.2, RCPSP examples are categorized as Non-Polynomial

hard (NP-hard) problems in which reaching the optimal solution takes great time and

long computation is needed. Due to these reasons, many algorithms are proposed in

the literature to overcome the long computational time of this problem. As the

technology develops and coding language becomes more familiar and user friendly,

many optimization methods are implemented into various researches. RCPSP can be

solved with exact, heuristic and meta-heuristic algorithms.

Exact methods aim to find the global optimal solution while searching the solution

space of the problem. Moreover, enormous amounts of computations are needed in

order to reach the optimal solution for large problems. Consequently, as the amount of

computation gets higher, the time required to reach the optimal solution gets higher.

Exact solution methods also need technologically developed computer systems since

they require big amounts of computations. Some of the most widely used exact

methods include linear programming, dynamic programming, branch-and-bound

method and mixed integer programming. Although exact methods are the most reliable

optimization method and has the guarantee of reaching the optimal solution, they are

not fully practical to be used in construction projects. Since many construction project

schedules include more than 300 activities, trying to solve RCPSP with exact methods

will take great time.

Different than the exact methods, heuristic algorithms requires much less amount of

computations and proficient at reaching solutions in much small times when compared

with exact methods. Heuristic methods use simple calculations and procedures to solve

problems. The main drawback of heuristic methods when it is compared with exact

methods is that finding the optimal solution is not guaranteed. Near-optimal solutions

are reached with the help of heuristic algorithms. Even though the solutions may not

9

be the optimal, they are branded as satisfactory solutions. The reason is that, heuristic

methods are able to reach near-optimal solutions, which do not differ greatly from the

optimal, in very small time.

Lastly, meta-heuristic algorithms are those which are inspired by stochastic

(probabilistic) incidents seen in nature. Meta-heuristic algorithms are different from

heuristic algorithms in terms of problem dependency. Heuristic problems are designed

as problem dependent, algorithm is coded specifically to solve a certain problem. In

meta-heuristic algorithms, the process of finding the solution is independent of the

nature of the problem. In this type of algorithms, evolution process is copied and the

problem is solved throughout an iterative random search technique. With the help of

this iterative search, prevention of being stuck around a local optima is aimed. Just like

heuristic methods, however, meta-heuristic methods does not guarantee reaching the

optimum solution. They also reach near-optimum solutions in short time with simple

calculations. Some of the most widely used meta-heuristic methods are; ant colony

optimization (ACO), simulated annealing (SA), particle swarm optimization (PSO)

and genetic algorithms (GA).

2.4. Heuristic Methods for RCPSP

In literature, many heuristic methods are implemented to overcome RCPSP. Some

examples are priority rule based scheduling heuristics of Hegazy et al. (2000), Tormos

and Lova (2001) and methods that works on time-cost tradeoffs (TCT) with RCPSP,

such as; Ahn and Erenguc (1998) and Hegazy and Menesi (2012).

In the work of Ahn and Erenguc (1998), a heuristic method is applied to solve RCPSP

with multimode resource alternatives, in other words, crashable modes. A multi pass

algorithm is designed for nonpreemptive resource constrained projects. The objective

function is to find a feasible project schedule that has the minimum project cost. In the

method, delay penalty cost is also taken into consideration. Two main stages are

available in the proposed heuristic method. In the first stage, a feasible schedule is

generated and in the following stage, the aim is to improve the feasible schedule. In

10

the first stage, modes that have the cheapest normal costs are selected for each activity.

The normal duration is assigned as the duration of the selected modes. Cost and

duration of the activities are fixed and problem is approached as a single mode RCPSP.

Makespan optimization is applied with minimum total float (slack) rule. In second

stage, six different procedures are followed to improve the feasible schedule. In first

improvement procedure, an activity is aimed to be rescheduled with changing mode,

duration and finish time of that activity if it can be rescheduled with less cost, without

hindering the feasibility of the project schedule. In procedure two, two adjacent

activities are aimed to be rescheduled. In this process, completion time of the project

is not affected. Two activities are rescheduled in order to have less cost than previous

mode selection. In procedure 3, crashing is implemented only if the cost of crashing

of the selected activity is less than the penalty cost that is caused by delay of the

project. Opposite to procedure 3, uncrashing is implemented in procedure 4. The

uncrashing is implemented to an activity if the completion time of the project is not

affected. In procedure 5, again uncrashing of activities is implemented. However,

procedure 5 deals with uncrashing that changes the completion time of the project. If

the reduction in activity costs due to uncrashing of that activitiy is greater than penalty

costs due to delays, uncrashing is accepted. In the last procedure, two different

activities are taken into consideration, one is applied with crashing and the other with

uncrashing. If the costs caused by crashing is less than reduction of costs caused by

uncrashing, the procedure is accepted. Different project cases with activity numbers of

10, 12, 14, 16, 18, 20, 25, 30, 40 and 50 are studied.

In the heuristic algorithm of Hegazy et al. (2000), a case study obtained from Talbot

and Patterson (1979) has been studied. The case study consists of a schedule with 20

activities and six different resources with their corresponding availabilities. In other

words, the case study is a RCPSP with single modes having different resource

requirements. In the algorithm, resource substitution rules are applied to overcome

RCPSP. It is assumed that each different resource has some substitution rule with other

resources, in other words, a single resource of R1 is equal to 2 resources of R2.

Carpenter and steel worker example is illustrated to further increase the understanding.

According to Hegazy et al. (2000), a carpentry work may be carried out with a single

11

carpenter with good efficiency, moreover, steel workers may also carry out the

carpentry work. However, their productivity will be much lower than the carpenter.

Consequently, a carpentry work can be finished at the same time with a single

carpenter or several steel workers. With the help of resource substitution rules, under

allocation of one resource settles the problem of over allocation of another.

In the heuristic work of Tormos and Lova (2001), a hybrid multi pass method in which

random sampling procedures are combined with backward-forward method. The

heuristic method is implemented into three sets of projects. First set is named as j30

set. This set consists of 480 projects each project having 30 activities with 4 resource

types. The second set is the j60 set, in which 480 projects, each having 60 activities

with 4 resource type, are located. Last set is the j120 set, in which 600 projects with

120 activities with 4 resource types, are located. In other words, heuristic method is

implemented to different projects with activity numbers of 30, 60 and 120.

Hegazy and Menesi (2012) have designed a heuristic method for multimode RCPSP

as an add-in tool to Microsoft Project software. First step is to check whether the

activity crashing is promising or not. If the found duration is less than the project

completion deadline the schedule is found as promising, if the case is the opposite,

more crashing options are tried. After the schedule is found as promising, the method

basically follows three steps, in first step, all of the start delays, lag times, are taken as

zero, in second step, activity that can be crashed in the cheapest way is selected and in

the third step, resource constraints are applied to current schedule. The methodology

continues until the project duration with the lowest cost is found or no more crashing

of activities is possible. After the initial check of promising schedules, the modes of

all activities are arranged so that cheapest mode of each activity would be selected.

Beyond this point, the method continues differently with changing conditions. If all of

activities in the critical path are crashed, the least expensive non-critical activity is

selected and crashed. If all of the critical activities are not crashed, least expensive

critical activity is selected and crashed. With current crashing options, resource

constraints are applied and total cost of the project is calculated and if applicable, delay

penalties are added. If the current solution is better than previous one in terms of cost,

12

it is labeled as the best solution. If all of the activities are not crashed, the method

returns to start point and checks for crashing options, if all of the activities are crashed,

best solution is worked on. In the best solution, possible uncrashing of modes are

searched in order to decrease the total cost. If the uncrashed mode of a chosen activity

gives lower or the same total cost, the uncrashed mode is selected. The best solution

is presented after the algorithm stops. The proposed heuristic is applied to projects

with activities of 9, 25, 90, 180 and 360 with multi-mode selections, which represent

the crashing modes. The bigger projects are created by adding the project with 9

activities several times.

2.5. Meta-Heuristic Methods for RCPSP

Chan et al. (1996) have developed a genetic algorithm (GA) to solve RCPSP. The main

advantage of meta-heuristics such as GA over heuristic methods is that heuristic

methods proved that they are problem dependent and unable to solve bigger problems.

In GA method, algorithm creates a random set of initial population. Each schedule is

represented as chromosomes in the population. After the population is created, fitness

of the solutions are evaluated. The better solutions of the population are selected and

paired randomly so that new generation of solutions can be created by using Crossover

operator. Besides crossover, another operator called mutation is implemented and a

randomly selected gene in a randomly selected chromosome is applied to mutation, in

other words, altered. This process continues until the stopping criterion is met. The

analysis and experiments are made with projects that have activity numbers ranging

from 11 to 51.

In the work of Mori and Tseng (1997), the ability of GA and a stochastic scheduling

method (Drexl and Gruenewald, 1993) is compared with respect to finding solutions

in multi-mode RCPSP. The proposed GA method starts initialization of the population.

The activities are arranged with respect to their activity numbers in ascending order.

The mode of each activity is selected in a random manner and the scheduling priority

of the activities are determined randomly. Makespan for each solution is calculated.

13

Solutions are, then, arranged in the order of increasing project duration. This way

population starts with the best solutions and ends with the worst ones. In the applied

one point crossover, two parents are selected. The first parent is the best solution in

the population and the second parent is chosen randomly from the other solutions. A

junction activity is selected and mode assignments and scheduling priorities of that

activity and its predecessors are taken from the first parent. The unselected activity

priorities and mode assignments are taken from the other parent. A solution is also

selected in a random manner in mutation. Random number of activities are selected

and mode assignment of the selected activities are changed. Generation of the new

population is as follows; first the solution with the minimum makespan is preserved

just like in elitism, then, offspring from mutation and crossover are taken into

consideration. Lastly, randomly generated new offspring are taken into consideration.

Comparisons of the GA and stochastic method are done with projects of 20, 30, 40,

50, 60 and 70 activities. The work of Mori and Tseng (1997) showed that GA has

reached good results especially in larger project instances.

Hartmann (1998) also proposed a GA method for RCPSP. The used GA is similar with

ordinary ones. In this GA, an initial population is created, solutions, that is, each

member of population, is evaluated and sent to crossover operator, after crossover,

mutation is implemented. Again, this process takes on until the stopping criterion is

reached. The main difference of the GA proposed by Hartmann (1998) is that GA

follows a permutation based genetic encoding which contains problem-specific

knowledge instead of following a priority rule based representation. In permutation

based genetic encoding, each individual, solution, is represented by an activity

sequence. The sequence is assumed as a precedence feasible permutation of the set of

activities. Then, as decided by the work sequence each activity is scheduled to their

earliest feasible time. Whereas, in priority based encoding, each individual is

represented by priority values, each value of activity having a number between 1 and

total number of activities. The activities are scheduled one by one by following

precedence relationship and priority values. GA in this study is applied to problem

instances with 30 and 60 activities with single-modes having four different resources.

14

Hegazy (1999) introduced improved resource allocation and levelling heuristics within

a GA model. In heuristic part of algorithm, each activity is given a random priority

and the impact of these priorities are controlled. In iterative procedure of improved

resource allocation heuristic, first a schedule is obtained by giving all activities the

lowest priority. The algorithm changes the priority of the first activity to highest

priority and the new project duration is calculated. If the duration is not improved, the

priority of the selected activity is returned to lowest priority value and the next activity

is taken into consideration. This process is done until all the activities in the schedule

are worked with. After all activities are considered, the iterative procedure ends and

algorithm continues with GA method. Experiments are conducted on networks with

20, 40, 100 and 200 activities. The larger networks are obtained by adding 20 activity

of the smallest network several times. Each activity has 6 different resources. The

algorithm is coded using the macro language of Microsoft Project.

Hartmann (2001) has developed a GA for multi-mode RCPSP. In his method, he first

enhances the initial population as described by Sprecher et al. (1997). The algorithm

will spend time only in promising areas in the search space. In this improvement

method, the main idea is that in an optimum schedule, no activity is completed with

inefficient modes. In other words, schedules with activities that has inefficient modes

are omitted from the search space. After improving the solution space, GA starts with

initialization of population. The initialization procedure has three steps. At first step,

a mode is selected and assigned to all activities in the schedule. At second stage, mode

selections are controlled in terms of non-renewable resource feasibility. If non-

renewable resource constraint would be exceeded in the schedule, an activity is

selected randomly and its mode assignment is changed so that its mode assignment

will differ from previous choice. This procedure is done until all the activity mode

assignments are changed or until the schedule becomes feasible with respect to

resource constraints. At third stage, mode selection of activities are temporarily fixed.

Then by taking the precedence feasibility into consideration, activities are ordered into

activity list. After initialization, each individual undergoes fitness evaluation process

with respect to their makespan. Then, crossover and mutation process starts. In

crossover, from two selected parent individuals, two offspring are created. Parents are

15

named as mother and father, the offspring are called as daughter and son. In crossover

method two numbers are selected as q1 and q2 which are smaller than total activity

number of the project. The crossover both handles the activity priority and mode

selection. For instance, in the case of daughter, activities starting from the first activity

to number q1 are taken from the mother, and activities starting from q1+1 to the last

activity are taken from the father. Similar to this procedure, in terms of crossover of

mode assignments, number q2 is used. This time, mode assignments from the first

activity to q2 are taken from the mother, and mode assignments from q2+1 to the last

are taken from the father. In the case of son, the procedure is the same, this time

information until point q1 and q2 is taken from the father and information beyond q1

and q2 is taken from the mother. Mutation operator in this method has 2 modifications.

In first modification, the location of a selected activity in the activity list is swapped

with the next one if it satisfies the precedence constraint. The second modification

deals with the mode selection. A mode assignment is randomly changed. This way a

mode selection which is not present in the current population may occur. The

individuals in the algorithm are improved with various methods. In the proposed single

pass method, mode selection of each activity is checked. The main aim is to select a

mode for an activity so that it will be completed in a less time. If applicable, this

procedure is applied to all of the activities, each activity is considered only once. After

single pass improvement, a second improvement method named as multi pass

improvement is implemented. The single pass procedure is applied repeatedly in this

procedure since improvement, left shift, in an activity may end up with a decrease in

non-renewable resource constraints which creates a possibility of an improvement on

another activity. The proposed GA is coded in ANSI C and tested under LINUX

operating system. Project instances of 10, 12, 14, 16, 18, 20 and 30 non-dummy

activities are used in their experiments.

Alcaraz et al. (2003) have also developed a GA for RCPSP. Same as Hartmann they

have implemented enhancement designed by Sprecher et al. (1997). At initialization

part, not only feasible schedules but also infeasible schedules in terms of non-

renewable resources are taken into the population. To create population, first, for each

activity a mode is selected randomly. If the mode selection is infeasible, just as in the

16

work of Hartmann (2001), a random activity is selected and assigned a new random

mode selection. This procedure is done until a feasible schedule is achieved. In

crossover operation, two point crossover is applied and a two-phase mutation is used.

Similar to Hartmann (2001), at first stage an activity in the activity priority list is

relocated between the locations of its predecessors and successors. In second stage,

each activity changes its mutation selection with a predetermined mutation probability.

In each generation, a random replacement method is applied. With a predetermined

probability, each individual in a population is replaced with a randomly generated new

individual. This contributes to variability of the population and prevention of

premature convergence. The GA is coded in Microsoft Visual C++ language. The

experiments are done with projects of 10, 12, 14, 16, 18 and 20 number of activities,

each activity having 3 modes, two non-renewable resources and two renewable

resources. To test the performance of the algorithm in large problems, project instances

of 50 and 100 activities are also used.

Chen and Shahandashti (2009) have developed a hybrid algorithm in which GA and

Simulated Annealing (SA) processes are combined. By combining two generic search

methods such as GA and SA, it is aimed that GA-SA Hybrid to be applicable to all

optimization problems. The flow of the algorithm is as follows; initial population is

generated and the temperature, a used factor in SA, is initialized. Two solutions are

selected with a decreasing probability of selecting less-fitted solutions in crossover,

and later, mutation is performed with a decreasing mutation rate. If the produced

offspring from crossover and mutation operators is better than the worst solution in the

population, it is replaced with the worst solution. However, if the produced offspring

is not better-fitted than the worst solution the procedure changes. The produced

offspring is replaced with worst solution only if it the Metrepolis’s criterion

(Metrepolis et al. 1953) is satisfied. In the proposed hybrid algorithm, multi-project

scheduling is undertaken, 3 real life projects with 45, 46 and 39 number of activities

respectively.

In literature, many different GA models are available to overcome RCPSP. Chen and

Weng (2009) have designed a two phase GA model for RCPSP. In first phase, the

17

resource constraint problem is overcome and in the second phase, TCT problem is

dealt with. At the first step, initial population is created. In first population, genes

represent the mode selection of activities. After initialization part, resource scheduling

starts. For each activity, selected modes are marked. And with respect to selected

modes, a new population is created where priority of the activities are represented with

genes until the termination condition is reached, crossover and mutation procedures

are implemented. Best fitted solutions are evaluated and with roulette wheel selection

parent individuals are selected for crossover operation. The crossover operation in this

method is one-point crossover. After crossover, uniform mutation is applied so that

randomness in the population will not be lost. At the end of this process, shortest

duration and the corresponding total cost, that is, the best solution for the chromosome

representing activity modes, is stored. This process is applied to all of the

chromosomes representing the chosen activity modes. After the priority solutions are

decided, the GA procedure is applied to chromosomes with mode selection. This way,

two different GA procedures are implemented in order to overcome RCPSP with TCT.

At first GA procedure, activity priorities are determined and the best solutions are

stored. In the second GA procedure, activity mode selections are determined. The

method is implemented into two different projects, one having 10 activities and the

other having 37 activities.

Lova et al. (2009) have proposed a hybrid GA for the purpose of finding optimal

solutions in Multi-mode RCPSP. At the start of their algorithm they implement an

improvement process to individuals of the population so that search space of the

algorithm can be limited. The improvement procedure used was first introduced by

Sprecher et al. (1997) which was also implemented in the work of Hartmann (2001).

When initial improvements are made, the GA part starts. GA follows an ordinary

procedure. The initial population is generated with respect to improvement method

and randomness. After creating the initial population, fitness of each solution is

calculated. In crossover operation, two point crossover is implemented. In the

crossover operation, parent chromosomes are called as the father and the mother. From

parent individuals, two different offspring is generated, these are named as son and

daughter chromosomes. Two points are selected in the chromosomes, for the son

18

chromosome, the part between the selected two points are taken from the mother

individual and the parts beyond chosen points are taken from the father. Similar to this

procedure, daughter chromosome is generated. The part between the selected points

are taken from the father chromosome and, the parts beyond chosen points are taken

from the mother. This way, two offspring is created from a pair of parents. When

crossover is finished, mutation follows. In the process of mutation, both activity

priority and mode selection of activities are mutated. In terms of activity priority, an

activity is inserted into a new position in the activity priority list between its latest

predecessor and earliest successor with a given probability of Pmut. In terms of mode,

mutation procedure changes if that activity has feasible non-renewable mode

assignment or not. If the selected activity has non-renewable feasible mode

assignment, each activity randomly changes its mode assignment with the probability

of Pmut. If the mode selection of the activity is not feasible in terms of non-renewable

resources, the mutation procedure changes. In this case, the mutation is called as

massive mutation. Until the non-renewable mode selection in the schedule becomes

feasible, the mutation operator randomly selects activities from the activity list and

assigns a random mode to selected activities. This process is applied to increase the

diversity and variation of mode selection. At the end of mutation, with a tournament

selection procedure, new individuals are selected with respect to their fitness to create

a new population. Elitism is also applied to ensure the best solution survives in the

next population. The solutions are also improved with multi-mode forward-backward

method so that feasible project completion time can be reduced. This method is found

especially effective when renewable or non-renewable resource constraints exist. The

computational experiments are applied to project instances of 10, 12, 14, 16, 18, 20

and 30.

Although the flow of different GAs are similar, in the work of Mendes, Gonçalves and

Resende (2009) the process is a bit different. In the proposed GA, in order to tighten

the solution space, concept of parameterized activity schedules is used. In this concept,

the schedules are divided into three groups; semi-active schedules, active schedules

and non-delay schedules. Semi-active schedules are those in which activities are

sequenced as early as possible and none of the activities can be scheduled earlier

19

without changing the sequence of activities. In active schedules, activities are again

schedules to the earliest possible times, however, this time, they cannot be scheduled

earlier without delaying some other activity or without violating precedence

constraints. Active schedules are also a type of semi-active schedules. In non-delay

schedules, all resources are used if they can trigger the processing of any activity. In

other words, in non-delay schedule, all resources are kept idle. Non-delay schedules

are also a type of active schedules, therefore, semi-active schedules. To summarize,

activity schedules can be defined as sets where non-delay schedules are subset of

active schedules and active schedules are subset of semi-active schedules. The main

aim of the parameterized activity schedules method is to work on schedules which are

either active or non-delay schedules. This way processing time is decreased greatly.

The GA part of the algorithm also shows some differences. First, the initial population

is created with random number vectors. Chromosome representation includes the

information about activity priorities and delay times of the each activity. In fitness

evaluation, the main factor is again the makespan, however, another factor is also taken

into consideration. If two schedules with the same makespan is evaluated, the one

which has less activities ending close to the completion time, is branded more

promising in terms of improvement. This process of evaluation is called modified

makespan. After evaluation of fitness of each chromosome, crossover starts.

Parameterized uniform crossover is implemented. In this crossover type, each gene is

taken from the parents with respect to a decision. A random number is given between

0 and 1 to each chromosome for decision. If the given number is smaller than a

predetermined value, that gene is taken from the first parent, if the given number is

higher than the predetermined value, that gene is taken from the second parent. The

main difference comes from the mutation part. In this GA, common mutation

techniques are not applied, instead, some of the worst fitted individuals are terminated

and randomly created new individuals are inserted. This procedure also prevents

premature convergence. The GA ends when termination conditions are met. The

experiments are done with test problems having 30, 60 and 120 number of activities.

The algorithm is designed with Visual Basic version 6.0. The activities have single-

mode resource representation with four resource types.

20

Many different algorithms are created to solve RCPSP. Differential evolution (DE) is

the method proposed by Damak, Jarboui, Siarry and Loukil (2009). DE is an algorithm

which is created with the influence of GA. GA changes the characteristics of

individuals with crossover and mutation operators. In DE those evolutionary methods

are combined with geometric search mechanisms. In DE, the possible solutions are

represented with vectors. Each solution has two vectors, the first one representing the

activity priorities and the second one representing mode assignments. Different from

GA, DE first implements mutation process. In this operation, three individuals are

selected. An offspring named as mutant vector is created. Mutant vector is created by

combining priority vectors and mode assignment vectors from all 3 parent individuals.

After mutation process, crossover operation starts. In this procedure, the mutant

offspring created with mutation and a randomly selected individual from the

population are implemented with crossover. A randomly selected part of the mutated

vector is implemented into the selected individual. The newly created solution is called

as trial vector. At the end of mutation and crossover, if the fitness of the trial vector is

better than the selected solution from the population, trial vector is inserted and worse

solution is terminated. The fitness comparison is done at the end of the crossover so

that the waste of time on the less fitted individuals will be prevented. The algorithm is

applied to projects of 10, 12, 14, 16, 18 and 20 activities with multi-mode resource

assignments.

Although GA is the most commonly used optimization technique in project

scheduling, various methods are designed for RCPSP. Artificial immune system,

designed by Peteghem and Vanhoucke (2009), is one of the methods. In the proposed

algorithm, inspiration is taken from the vertebrate immune system of the body. The

immune cells have receptors, by which the disease causing elements are recognized.

The immune cells are implemented with clonal proliferation (reproduction) with

respect to their ability to fight efficiently with harmful elements. Different mechanisms

such as hyper-mutation are applied to the immune cells with lower efficiency in order

to reach efficient cells. In the proposed algorithm, the process starts with initialization.

After that, clonal selection and affinity maturation starts. The algorithm stops seeking

for optimal solution when the stopping criterion is reached. Since the experimented

21

problem has multi-mode resource representations, initial population is created in a

controlled manner instead of creating it by assigning random values. The main reason

behind this is to emphasize on the promising solution space and decrease the

computational time required to find the optimal solution. In controlled generation,

mode assignment of activities are done first. The main idea is to select modes so that

each of them will be feasible in terms of non-renewable resource usage. With different

experiments, mode assignments with lower profit values are found to be more feasible

than other selections. After modes are selected, corresponding resource requirements

and duration of the activities are detected. After mode assignment is done, activity

scheduling order, in other words, activity priority list, is decided. Various techniques

are applied to decide the activity list. These include latest finish time, latest start time,

minimum slack and maximum remaining work priority rules. The main reason for

applying various priority rules is that two different solutions may have the same mode

assignment. By applying different rules, having the exact two solution in the

population is avoided. When the population generation is finished, each individual is

given an affinity value. If the makespan of the solution is high, the affinity value will

be low. Proliferation of the solutions are done with respect to affinity value. If a

solution has higher affinity value, or lower makespan, it will appear more frequently

in the cloned population. When cloning process ends, affinity maturation starts in

which hyper-mutation and receptor editing is done. In hyper-mutation, a solution is

mutated with respect to its makespan and the best makespan in the population. The

solution with a higher makespan will be performed under high mutation rates.

Likewise, lower the makespan of the solution, lower the number of mutations it will

face. The mutation is both applied to activity list and mode selections. In terms of

activity list, an activity is selected randomly and moved into a new position between

its successors and predecessors. In mode selection phase, again, a random activity is

selected then a random element is selected from the population. The mode assignment

of the selected solution is copied to the cloned solution that is facing mutation. In the

last part of the algorithm, receptor editing is done. The best fitted solutions are

preserved and the unfitted elements are terminated. The newly generated population

becomes the start population of the next iteration. The process ends with the stopping

22

condition is met. Experiments are done with projects with 7 different size. The projects

have activity numbers of 10, 12, 14, 16, 18, 20 and 30.

A permutation based elitist genetic algorithm with two schemes is designed by Kim

and Ellis (2010) to solve RCPSP and determine whether parallel or serial scheme

provides better. The genetic algorithm procedure is same as any ordinary GA. The

main difference is during the evaluation of fitness values, before deciding the elitist

solution and solutions that will be selected by crossover and mutation, are done both

with serial scheduling generation and parallel scheduling generation scheme. In serial

scheduling scheme, the scheduling of activities are done by following the priority. The

activity having higher priority is scheduled if the resource constraints are satisfied. In

parallel scheduling scheme, first, the activities that have 0 number of predecessors are

decided, then the one with having higher priority is scheduled. The predecessors of the

scheduled activity will be taken into consideration in next step and again between the

activities that have 0 number of predecessors, one having the highest priority is

scheduled. In this meta-heuristic algorithm, mainly the performance difference

between parallel and serial scheduling scheme is analyzed. The experiments are done

on a real life project which consists of 29 activities.

In Artificial Immune Algorithm of Mobini et al. (2010), RCPSP problem is aimed to

be solved with optimization of makespan. In their meta-heuristic algorithm, the

process is imitated from the natural immune system of human beings. In the algorithm,

biological theories of clonal selection and affinity maturation is imitated. The body

reacts to foreign invading substances, which are named as pathogens. The reaction of

the immune system to invading pathogens are divided into two concepts, namely;

clonal selection and affinity maturation. In clonal selection, it is stated that immune

cells that can recognize the invading pathogens will be reproduced in great numbers.

Some of the reproduced cells will be effecter cells so that antibodies that can defeat

the pathogens can be created in great amounts and the others will become memory

cells so that the same pathogen can be dealt with convenience in case of future

expositions. In reproduction stage, cells are implemented with mutation process with

a selective force with respect to each cells ability to deal with pathogen. Cells that can

23

deal with pathogens in a more efficient way will have high affinity values. The cells

with high affinity values will undergo lower mutation rates, whereas, cells with lower

affinity will undergo higher mutation rate. The algorithm is designed with respect to

this phenomenon. In the algorithm, possible solutions to the problem are called the

antibodies. In antibodies, priority of the activities are represented with an order, the

activities are listed with respect to their priorities. Just as GA, in AIA initial set of

population is generated randomly. To improve the results of the algorithm, initial

population is improved with backward-forward method. Fitness of the individuals,

antibodies, are evaluated with affinity evaluation process. The affinity of each

antibody is inversely proportional with the makespan of that antibody. An antibody

having a higher affinity value is more likely to be reproduced. After each antibody is

reproduced with respect to their affinities, a two-phase mutation process is

implemented to improve the antibodies. In first phase, a single point mutation is

implemented. In single point mutation, an activity is selected randomly in the list of

antibody. The priority of the selected activity is changed randomly between the priority

of its predecessor and successor activities. In two point mutation process, priority each

activity is swapped with the one without violating resource constraints. At the end of

the mutation process, worst individuals are replaced with randomly generated

individuals. The process continues with the new population, and the loop ends when

the stopping criterion is met. In this method, projects of 30, 60 and 120 activities are

worked.

Peteghem and Vanhoucke (2010) have designed a GA, for RCPSP. In this GA,

possible solutions are not represented with chromosomes, instead, they are represented

with vectors. Each vector contains information about the activity priority list. The

corresponding mode selection of each activity is represented by a mode list. For the

sake of allowing activity preemption, the networks is converted into a new one. In this

process, if the mode selection of the activity is assigned, in other words, the resource

requirements and the duration is known, that activity is split into sub-activities which

have a unit duration of one day. Moreover, splitting is applied to single activity at a

certain time. After the splitting is done, sub-activity starting times are determined. The

generation of schedules from the priority vectors and mode lists is accomplished with

24

2 methods. First method applies backward-forward scheduling, which is commonly

used for Multi-mode RCPSP. The second method includes a procedure in order to

improve mode selection. For each activity, the current mode selection is aimed to be

improved. The main aim is to have improvement on the non-renewable resource usage.

A mode that uses less resources has higher completion time. However, due to

precedence constraints, this mode may fit into a place which ends up an earlier finish

time of that activity. This procedure checks the modes of all activities to search for a

mode that leads to an earlier finish time in that activity. This procedure is implemented

to activities for which all sub-activities are scheduled. After these improvement

techniques, GA starts. First, individual vectors and mode lists are generated randomly,

then, each is implemented into improvement methods. Each individual is evaluated in

terms of fitness which is related with the makespan and the non-renewable resource

constraints. If a schedule is feasible, has no excessive non-renewable resource usage,

the fitness value is taken as the makespan. If the schedule is not feasible, the fitness

value is taken as the makespan plus the amount of excessive non-renewable resource

usage. The lower the fitness value, the better the schedule in terms of fitness. In

crossover, tournament selection is used to determine the parents and one point

crossover is implemented where a single point is selected randomly, all the information

regarding the activity priority and mode selection, left of that point is taken from the

first parent and the information beyond the selected point is taken from the second

parent. In mutation, two sub procedures are implemented. In first, a random point in

activity priority vector is altered with a predetermined mutation probability, in the

second, a random point in mode list is selected and assigned a new value with a

predetermined mutation rate. Same as many GAs, the algorithm stops when stopping

criterion is fulfilled. The algorithm is designed and compiled with Visual C++ version

6.0. Set of projects of 10, 15, 20, 25 and 30 activities are experimented on.

A hybrid rank-based evolutionary algorithm is developed by Elloumi and Fortemps

(2010). The RCPSP has multi-mode resource assignments. In this method, a

preprocessing method developed by Sprecher et al. (1997) and used by Hartmann

(2001) is used to improve initial solutions. In this method, as mentioned before, all

inefficient modes in terms of non-renewable resources are eliminated. After this

25

process, initialization starts with assigning random priorities and random modes with

respect to preprocessing procedure to each activity. The fitness evaluation of activities

follows a complex procedure. At first penalty values, which are calculated from excess

usage of non-renewable resources, and makespan of each individual is determined.

Based on penalty values and makespan, a rank-based fitness evaluation is performed.

At the last phase, a clustering procedure is implemented to find density values. The

fitness of the individuals is calculated with rank and density values. After fitness

evaluation is done crossover starts. In crossover, two randomly selected parents,

namely, mother and father, are determined. In the crossover operation, a parent is used

only once, so, the selected parents are marked. One point crossover is implemented in

which, two numbers, q1 and q2, are randomly generated between 0 and total number of

activities. In terms of activity priority, the points until q1 are taken from the first parent,

and beyond the selected point, priority of activities, which are not selected from the

first parent, are taken from the second parent. In mode selection crossover, the

procedure is the same. A number q2 is randomly selected and until the selected number,

mode assignments are taken from the first parent and again, beyond that point, mode

selections of activities from the second parent are taken into consideration. Mutation

operator is applied as two stages, at first stage, a point in activity priority list is selected

and location of the selected activity is swapped with the following activity if the

precedence rules are not violated. This procedure is done until two activities are

permuted or attempts equal to the total number of activities are made. At the second

phase of mutation, a randomly selected point in mode list is assigned a new value so

that the current mode assignment changes. Roulette wheel selection is used to

determine new generation at the end of each iteration. The stopping criteria is

determined as number of schedules or a certain processing time. The algorithm is

compiled with Microsoft Visual C++ 6.0. Project instances of 10, 12, 14, 16, 18, 20

and 30 activities are used.

Ant colony optimization is a meta-heuristic method firstly proposed by Dorigo (1992).

In ACO proposed by Zhang (2012), multi-mode RCPSP is aimed to be solved. Theory

of ACO lies in the behavior of ant colonies that search for food. In ACO, solutions are

represented with paths. When an ant founds a path leading to food, it gives off a special

26

chemical substance called phermone to form phermone trails. Ants tend to follow the

path which has higher phermone deposition. The probability of choosing a path

increases with its phermone level. After some time, ants find the shortest path that

leads to the food. In each cycle in the algorithm, an ant creates a RCPSP solution by

selecting activities in order in a single activity list. According to the probabilities of

each activity selection, a phermone value is given to the selection which shows how

well the selection is. After each cycle, phermone levels are decreased with evaporation

rates to overcome early convergence and stagnation. The process is repeated until the

stopping criterion is met. In the work of Zhang (2012), since multimode resource

representation is observed, two types of phermones are used, one representing the

activity priority and the other representing the selected resource mode. In the

algorithm, firstly, phermones of activity priority is worked then the mode selection of

the selected activity is studied. The case projects used in experiments have activity

numbers of 10 and 18.

Backward-Forward hybrid genetic algorithm created by Sonmez and Uysal (2014) is

another meta-heuristic method for RCPSP. In this method, cooling features of SA is

also included. The algorithm starts with generating initial population, then, crossover

is performed and a new child is obtained from parent individuals. In this algorithm,

two types of mutation operator are applied. If there is not sufficient diversification

between the parents and the child, the first mutation process is implemented.

Backward-forward scheduling is done on mutated child. If the predefined

diversification value between the parents and child is met, the mutation is accepted.

The second mutation is performed to randomly chosen individuals, again, the

diversification between the original and new solution is compared and accepted if the

criterion is met. Elitist selection is done to save the best solutions and the process

proceeds till the stopping criterion is met. The temperature that is used in

diversification calculations is decreased with each loop of iteration. The experiments

are carried out with instances having 30, 60 and 120 number of activities.

The last meta-heuristic method that will be covered in this paper is designed by Menesi

and Hegazy (2014) and called as constraint programming (CP). CP is used as an

27

advanced mathematical optimization method and CP model is developed with the IBM

ILOG modelling software and its CPLEX-CP solver engine. In this method, projects

with 10, 100, 500, 1000, 1500 and 2000 number of activities are used. In terms of

project size, this method exceeds the other available ones. Another distinction between

CP and other methods is that CP implements multimode resource-constraints.

Although, numerous researchers aimed to solve multi-mode RCPSP as shown in Table

2.1., majority of them achieved solutions limited to small size problems. This shows

that there is a need for a method that can solve very large problems with multi-mode

resource assignments. All of the methods except from CP, emphasized on projects

smaller than 500 activities and many of them preferred single-mode RCPSP. However,

in real life, an activity can be completed with many different alternatives, of course,

the resource requirements and the duration of the activity will change with changing

modes. A contractor may complete an activity with more resources if it will end up

shortening the total completion date.

Many of the proposed methods also solve RCPSP up to certain point which does not

reflect the true nature of construction projects. Majority of the construction projects

have schedule networks having more than 300 activities. Although CP model is

applied to large problems, the computational time is high and the results of the large

problems have high deviation from the best known solutions.

Within this context, there is a need for a method that can solve large networks having

more than 300 activities with multimode resource constraints while reaching high

quality solutions in short computational time.

28

Table 2.1. Heuristic and Meta-Heuristic algorithms for RCPSP

Year of
Publication

Authors Method Problem # of Activities
Representation of

Resources

1997
Mori and

Tseng
GA RCPSP

20, 30, 40, 50, 60 and
70

Multimode Representation

1998
Ahn and
Erenguc

Heuristic
Method

RCPSP with
TCT

10, 12, 14, 16, 18, 20,
25, 30, 40 and 50

Multimode Representation

2001 Hartmann GA RCPSP
10, 12, 14, 16, 18, 20

and 30
Multimode Representation

2003
Alcaraz,

Maroto and
Ruiz

GA RCPSP
10, 12, 14, 16, 18 , 20,

50 and 100
Multimode Representation

2009
Chen and

Weng
Two-phase GA

RCPSP with
TCT

10 and 37 Multimode Representation

29

Table 2.1. Heuristic and Meta-Heuristic algorithms for RCPSP (Continued)

Year of
Publication

Authors Method Problem # of Activities
Representation of

Resources

2009
Lova, Tormos,
Cervantes and

Barber

Hybrid Genetic
Algorithm (HGA)

RCPSP
10, 12, 14, 16, 18, 20 and

30
Multimode

Representation

2009
Damak, Jarboui,
Siarry and Loukil

Differential Evolution
(DE)

RCPSP 10, 12, 14, 16, 18 and 20
Multimode

Representation

2009
Peteghem and

Vanhoucke
Artificial Immune

Algorithm
RCPSP

10, 12, 14, 16, 18, 20 and
30

Multimode
Representation

2010
Peteghem and

Vanhoucke
GA RCPSP 10, 15, 20, 25 and 30

Multimode
Representation

2010
Elloumi and

Fortemps
Hybrid Evolutionary

Algorithm
RCPSP

10, 12, 14, 16, 18, 20 and
30

Multimode
Representation

30

Table 2.1. Heuristic and Meta-Heuristic algorithms for RCPSP (Continued)

Year of
Publication

Authors Method Problem # of Activities
Representation of

Resources

2012
Hegazy and

Menesi
Heuristic Method

RCPSP with
TCT

9, 25, 90, 180 and
360

Multimode Representation

2012 Zhang
Ant Colony

Optimization
(ACO)

RCPSP 10 and 18 Multimode Representation

2014
Menesi and

Hegazy
Constraint

Programming
RCPSP

10, 100, 500, 1000,
1500 and 2000

Multimode Representation

31

CHAPTER 3

GENETIC ALGORITHM OPTIMIZATION

In the following chapter, mainly, genetic algorithm optimization technique will be

introduced since the proposed method is mainly based on genetic algorithms. The

properties of the method, differences to other optimization problems and the procedure

will be described in detail.

3.1. Introduction to Genetic Algorithms

Genetic algorithms are stochastic search algorithms which imitate the process of

natural selection and genetics. They have been developed by John Holland in the

University of Michigan, USA (Goldberg 1989). The main objective of their research

was to explain the adaptations observed in nature and to design a software that can use

the mechanics of such adaptations. The process of GA is as follows; at the beginning,

initial set of random solutions, which are called as the population, are created. Each

solution in the population is defined as chromosome or individual. A single

chromosome is represented by a string of numbers, usually by binaries. These set of

numbers represent different characteristics of the each solution. Throughout the

process of GA, chromosomes are evolved through consecutive iterations. Each

iteration process is called a generation. In each generation, chromosomes are evaluated

and implemented into different operators, namely; crossover and mutation. The next

generation of chromosomes are generated with the help of crossover and mutation. At

the end of each generation, a fitness evaluation is done to decide which individuals

will be terminated and which will be taken to next generation. This termination is done

32

to keep the population size constant and to provide the algorithm with the ability to

converge into better individuals.

3.2. Structure of GA

As stated in the introduction, GA follows a procedure to reach the best solution. This

procedure is as follows;

• An initial set of solutions is created.

• An evaluation of the fitness of the chromosomes are made.

• Chromosomes are applied with genetic operators named as; crossover and

mutation.

• With a selection procedure, best fitted solutions are pointed and used in the

next generation.

The general structure of GA can be seen in Figure 3.1.

3.3. Initialization

In GA, mainly two different procedures are available for generating the initial

population. First way is to create initial population with randomness. This way, the

individuals will be created randomly while satisfying the constraints and parameters

of the algorithm. By creating the individuals randomly, the algorithm covers a huge

search space, the fitness of created individuals have the probability of the best and the

worst. Second way to create individuals is by implementing a heuristic initialization

procedure. By applying heuristic method at initialization, the algorithm starts the

search around the better solutions obtained with heuristic method. This contributes the

GA to find the optimum or aimed solutions in a much faster time. This contribution is

great in large scale networks, the computational time may be decreased greatly

compared to random initialization. The main disadvantage of heuristic initialization is

33

that, since only a certain part of the solution space is explored, the algorithm may be

stuck at local maximum or local minimum points, in other words, the algorithm may

Start

Create Initial
Population

Selection Procedure
in order to Create
New Population

Crossover Operation

Mutation Operation

Termination
Conditions

Evaulation of
Individuals in Terms

of Fitness

NO

End of Algorithm

YES

Figure 3.1. General Structure of Genetic Algorithm

34

not converge to the optimum solution. To overcome this problem and let the algorithm

benefit from random and heuristic initialization, an encoding procedure is applied.

3.4. Encoding

As stated before, the individuals, chromosomes, in the population represent the

probable solutions of a problem in GAs. The properties and parameters of the network

are implemented into chromosomes in a such way that, in later steps of the algorithm,

just by checking the implemented data in the chromosome, the network properties and

information of that solution can be managed. The process of implementation of

network properties into chromosomes is called encoding. The process of reading the

chromosome and converting the encoded data into network characteristics and

properties is called decoding. In GA encoded solutions are usually called as Genotype,

likewise, the decoded solutions are called Phenotype. Since GA has roots both in

natural sciences and computational sciences, the terminologies of both science fields

are used.

There are several methods used for encoding. These are; binary encoding, real number

encoding, integer or literal permutation encoding and lastly, a general data structure

encoding. For instance, in the work of Holland, the encoding is applied with binary

encoding. In the research of Holland, it is found that using binary encoding may not

be appropriate for function optimization problems. The reason is the existence of

Hamming cliffs. Hamming cliffs can be explained in the following way. A two

solution that are close in terms of network characteristics are close to each other in

phenotype, decoded solution, space. However, when these networks are encoded into

chromosomes, they may have great distance in terms of binary representation just as

in Figure 3.2. The distance between the chromosomes in genotype, encoded solution,

space is called the Hamming distance. The Hamming cliff is the phenomenon, where

the distance of between two points is large in genotype space while it is minimal in

phenotype space.

35

0 1 1 1 1 1 1 1 0 0 0 0 0 0

Figure 3.2. Pair of Individuals with Hamming Cliff

Findings of researches show that, real number encoding is the best method in order to

solve optimization problems.

When structure of the encoding is taken into consideration, the classification of

encoding can be made with two types, namely; one-dimensional encoding and multi-

dimensional encoding. Also, classification can be made according to the contents of

encoded data. This classification is, again, divided into two types, namely; solution

only encoding and solution+parameters encoding. The first way is generally used in

optimization problems to fully design an appropriate encoding to the problem. The

second way is used in evolution strategies (Rechenberg 1973, Schwefel 1995), where

the first part of encoding holds the properties of solution and second part holds strategy

parameters which represents the variances of normal distribution for mutation process.

3.5. Evaluation of Fitness

In GA, in each generation, individuals are compared with each other to decide which

individuals are better fitted in terms of objective function. To decide the fitness of

individuals, fitness evaluation is done. To form a better population with every

generation, a selection procedure is applied. This selection is based on the fitness of

activities, the better fitted activities have more probability of being chosen to be in the

next generation of population. In other words, fitness evaluation is a significant part of

GA so that the chromosomes that will be terminated or the chromosomes that will be

reproduced in next generation are decided.

3.6. Genetic Algorithm Operators

GA imitates the natural mechanism of adaptation. Operators are used to imitate the

creation of new individuals so that the population in GA can improve with newly

generated child chromosomes. In GA, three operators are used; these are crossover,

mutation and selection.

36

3.6.1. Crossover

Crossover is the main operator in GA. The performance of GA is greatly affected by

the performance of crossover. In crossover operation, two individuals, chromosomes

are selected. While imitating the reproduction of new individuals in nature, crossover

creates new offspring by combining both of the parent chromosomes’ characteristics.

In each GA, crossover operation has some probability. The crossover probability is the

amount of offspring that will be placed into the population. As the probability of

crossover increases, the performance of GA increases since by increased crossover

rate, algorithm will explore the wider space in solution domain. However, if the

crossover rate is too high, too much computational time will be needed, also, many

less fitted solution space will be searched. All in all, an optimum crossover rate should

be found so that it will contribute greatly to the ability of reaching the optimum

solution.

Three types of crossover is mainly used in GA. These are called, one-point crossover,

two-point crossover and uniform crossover.

In one-point crossover, a single point is marked in the chromosome. The part until the

marked point is taken from one parent chromosome and the part coming after the

marked point is taken from the other. Representation of one-point crossover is shown

in Figure 3.3.

Parent
Chromosomes

Offspring
Chromosomes

1 1 0 1 0 0 1 1 1 0 1 1 0 1

0 1 0 0 1 0 1 0 1 0 0 0 0 1

Figure 3.3 One-Point Crossover

37

In two-point crossover, the procedure is similar. Instead of marking a single point, two

points are marked on parent chromosomes. The part between the marked points are

taken from a parent, and parts beyond the marked points, which are not between the

marked points, are taken prom the other parent. Representation of two-point crossover

is shown in Figure 3.4.

Parent
Chromosomes

Offspring
Chromosomes

1 1 0 1 0 0 1 1 1 0 0 1 0 1

0 1 0 0 1 0 1 0 1 0 1 0 0 1

Figure 3.4. Two-Point Crossover

In the last most widely used crossover method, uniform crossover, genes of parent

chromosomes are taken randomly and used to form the offspring chromosomes. In

general, a rate of 50% is used in uniform crossover. With 50% rate, half of the

chromosomes are taken from the first parent and other half is taken from the second

parent chromosome. The genes are chosen randomly while satisfying the ratio.

3.6.2. Mutation

Mutation process is the second operator that creates new chromosomes. In mutation,

spontaneous random changes are aimed so that genes that are not present in the initial

population or genes that are hard to obtain from crossover operator can be created. In

other words, role of mutation is to reach genes that are not present in population with

random alterations.

Alternatively, in mutation, a mutation rate (mutation probability) is implemented. Just

like in crossover, this probability decides what percent of the population will be

38

mutated. However, the probability of mutation should not be as high as crossover so

that the population can cover the resemblance to the parent chromosomes. A high

mutation rate will also lead to high randomness which will end up with too long

computational time to reach the optimum solution.

There are several different mutation operators. Inversion mutation, insertion mutation

and displacement mutation are the most commonly used methods.

In inversion mutation, two genes in a chromosome is selected randomly and genes are

swapped with each other.

In insertion mutation, a single gene is selected and it is inserted into a random point in

the chromosome.

Lastly, in displacement mutation, instead of a single gene, a string of genes are

selected. This string is inserted into a random point in the mutation. As it can be

understood, insertion mutation is the convenient version of displacement mutation.

3.6.3. Selection

The last part before working with the new generation of solutions, selection procedure

is applied. The selection is done so that GA can be directed into promising regions in

the search domain. Commonly used selection procedures include roulette wheel

selection, (µ+λ)-selection, tournament selection and ranking and scaling selection.

Roulette wheel selection is proposed by Holland. The main idea is the probability of

selecting each chromosome proportional to their fitness value. In other words, if the

fitness of a single chromosome is high, selection of that chromosome is also high. If fi

is the fitness of individual “i” in the population, the probability of that individual to be

selected is found by the following equation; Pi = fi / (∑j=1
N fj), where N is the total

number of individuals in the population.

In (µ+λ)-selection method, the best individuals both from the parents and their

offspring are selected.

In tournament selection, just as its name implies, a tournament between the individuals

are done. The individuals competing in the tournament is selected randomly and the

39

solution with the best fitness is selected as the winner. Tournament size can be changed

and if the size is set as a large value, weaker chromosomes have less probability of

being chosen.

In ranking and scaling method, procedure is a bit different. First, chromosomes are

ranked with respect to their fitness values, then each chromosome is given a scale

number with respect to their ranking. With best solution having the best scale, each

chromosome has a probability of being chosen with respect to their scale. The main

advantage of ranking and scaling method is that rapid takeover of chromosomes having

much better fitness than others is eliminated.

With the completion of selection, a new population is created with individuals from

initial population, offspring from crossover and mutated individuals from mutation.

The process of this iteration continues until the termination condition of the algorithm

is reached.

3.7. Advantages of GA

There are several reasons why GA is the most widely used optimization technique.

One of the reasons is that the ability of adaptation. Due to nature of the algorithm, no

complex mathematical and coding information is required. GA can handle any

objective function and will search for solutions. GA is more efficient than most

conventional heuristics which perform local searches and are usually designed for a

case problem. On the other hand, GAs are designed as generic algorithms which can

be implemented to any problem. These reasons contributes to wide usage of GAs.

40

41

CHAPTER 4

HYBRID GENETIC ALGORITHM

Throughout the literature, many different heuristic and meta-heuristic methods are

suggested in order to solve resource levelling problems (RLP) in Resource Constraint

Project Scheduling Problem (RCPSP), however, many of the methods are not

appropriate to solve real life construction problems, which have more than 300

activities. Many of the RCPSP solvers available in the literature are practical for short

project schedules which are less than 150 activities. Majority of the methods require

long computational time when they are applied to large project schedules, moreover,

the found solutions are not considered to be high quality solutions. In real life

situations, completing a construction project on time or as short as possible is one of

the main objectives of the contractors, since by completing the project in shorter

durations, overhead costs may be decreased significantly.

For this purpose, in the context of this thesis, a hybrid genetic algorithm (HGA) is

developed for multi-mode RCPSP. The proposed algorithm is composed of a heuristic

method and genetic algorithm. In ordinary GA methods, search space is enormous and

this limits the capability of the computation, and results in longer computational time.

HGA starts with better solutions with the help of embedded Heuristic method and

helps GA to limit the search space where better solutions are available. The main

objective of the HGA is to reach high quality solutions with short computational time

for large scale construction project of RCPSPs. This chapter further explains the details

of HGA.

42

4.1. Project Characteristics

In the literature, there is a lack of algorithms that can solve large projects with

multimode resource availabilities. Constraint Programming (CP) is suggested as an

advanced mathematical optimization technique, to solve and optimize large scheduling

problems from Menesi and Hegazy (2014). In CP, projects having activity numbers of

10, 100, 500, 1000, 1500 and 2000 are analyzed on. The projects are created by adding

the core project having 10 activities several times. The CP required 3 hours for

reaching an optimized solution at a RLP with 2000 activities with 9.61% deviation.

The experiments with CP has been carried out on a laptop with 2.4 GHz CPU and 4

GB RAM. Hegazy (2014), has compared the CP method with ordinary GA, PSO and

ACO methods and reached the solution that CP is faster and better in terms of finding

high quality solutions. Despite this, in real life construction problems, shorter project

duration is always favorable from the contractors’ point of view since the overhead

costs will be much lower. Due to this reason, HGA is designed to solve multimode

RCPSP in less time with high quality results.

Although HGA is a generic algorithm, can work with any project instance, case study

is taken same as Menesi and Hegazy (2014), who used the 10 activity project of Zhang

(2012), so that the performance can be compared. In HGA, only a single resource type

is implemented in the project. The project network can be seen in Figure 4.1.

The case project consists of 10 activities. Each activity can be completed with different

modes each having different durations and different resource requirements. The

multimode representation mirrors real life resource requirements successfully. An

activity can be completed with different allocations of resources with different time.

As the method of implementation changes, the duration and resource requirements

change. Activities and resource requirements are summarized in Table 4.1.

43

Figure 4.1. Project Network for the Case Project

Table 4.1. Resource Requirements with respect to Activities and Modes

 Mode 1 Mode 2 Mode 3

Activity Number Duration
Resource

Requirement
Duration

Resource

Requirement
Duration

Resource

Requirement

1 2 4 3 3 5 2

2 2 4 4 2 6 1

3 2 3 3 2 4 1

4 1 3 3 1 - -

5 2 3 3 2 4 1

6 1 2 2 1 - -

7 3 2 5 1 - -

8 2 4 3 3 4 2

9 3 4 4 3 5 2

10 3 4 4 3 5 2

To have convenient calculations and combining of 10 activity project severally to

obtain bigger projects, two dummy activities are created, one as the starting point and

the other as the end point of the network.

44

4.2. Chromosome Representation

In Genetic Algorithm methods, an initial population of individuals, each

corresponding to a solution, is created. The individuals, probable solutions for the

problem, are represented by chromosomes. In HGA, chromosomes are designed as a

single main string which represent two different characteristics of the network. The

first part of the chromosome, which is from the first gene to total number of activities,

represents the activity priority. Between two genes, the one having the higher number

is scheduled first. The second part, which starts from the gene after the total number

of activities to last gene, represents the corresponding modes of each activity and the

chosen mode. For instance, if an activity has three modes, the gene with the highest

number is the chosen mode. In a chromosome, the priority of the activities and their

corresponding modes are stored. Total number of genes in a chromosome is found by

adding the total number of activities with corresponding mode number of each activity.

For instance, the case project of 10 activities is represented by a chromosome of 41

genes. A dummy activity is assigned at the start and at the end of the network, this way

creating bigger projects from the 10 activity network will be convenient. First 12 genes

in the chromosome represents the priority of activities, including the dummy activities,

after the first 12 genes, multimode alternatives of each activity is represented.

Chromosome representation is shown in Figure 4.2.

Figure 4.2. Chromosome Representation of HGA

4.3. Heuristic Method

The main difference of the proposed HGA from other methods is that it improves the

initial population with the help of a newly developed Heuristic Algorithm. HGA

begins with creating the initial population of 100 chromosomes. 30% of the

chromosomes are created by assigning random real numbers between 0 and 1 to all

genes in a chromosome. Remaining 70% of the chromosomes are created with the help

Activity Priority Mode Selection

45

of Heuristic Method. This process is implemented so that the initial population will

have good starting point with good solutions which helps HGA to search promising

areas in search domain. The reason for not creating all of the chromosomes with the

heuristic method is so that randomness will not be lost. 30% of the population ensures

that randomness is preserved throughout the algorithm.

The heuristic algorithm implements backward scheduling method to decide which

activities will be scheduled and what will be their corresponding modes. In the

algorithm, firstly, the activities which have zero number of successors are taken into

consideration. If there are more than 1 activity that satisfies the successor number

condition, one of the activities is chosen randomly. After choosing an activity, the start

time of the schedule of the activities, possible finish times with respect to backward

scheduling, are decided. After this process, mode selection process starts.

Corresponding modes of the activities are decided randomly. Resource requirement of

the selected mode is checked with the available resource at the possible finish time of

the activity. If that mode does not satisfy the resource constraint, the activity is

scheduled to earliest date where resources are available. This process is the general

procedure that Heuristic Method follows.

In the calculation of possible finish time of the activities with respect to backward

scheduling, the algorithm checks whether more than one activity can be scheduled

starting from the same date. In other words, if their possible finish time dates are the

same with respect to their successors, the algorithm gives priority to those activities

and chooses the corresponding modes so that they can be scheduled together at the

same schedule date while trying to use the resource availability to limits. When it

comes to activities that can start at the same time, mode selection procedure differs.

Between two activities, one of them is selected randomly and assigned a random

corresponding mode, then, starting from the mode that has highest resource

requirement, shortest duration, other activity is checked if they could be scheduled

together. The reason for this selection is to ensure that resource requirement can be

filled efficiently and possible makespan of the schedule can be arranged as early as

possible. After an activity is scheduled, it is marked so that it will not be checked and

46

will not be tried to be scheduled again. If an activity is the only one that can be

scheduled at that point, the mode that can fill up the resource constraint is selected. At

the end of the heuristic method, after all the activities are scheduled and the modes are

decided, they are transformed into numbers and transferred into genes of a

chromosome. Instead of giving random real numbers between 0 and 1 to genes, genes

that represent mode selection are given binary numbers of 0 and 1, 0 meaning that

mode is not selected and 1 meaning that particular mode is selected. A part of the

chromosome is exampled in Figure 4.3. If that specific mode is selected that gene will

be given the number of 1 and the others are given 0. The genes that represents priority

of the activities are given very high real numbers, so that throughout the code, activities

scheduled with heuristic method will always have priority over randomly generated

ones. The activity that is scheduled last with respect to backward scheduling, will be

given the highest priority and the priority number will be decreased by one until all

activities are assigned with priority numbers. The reason for this arrangement is so

that, the solution obtained from Heuristic Method can furtherly be improved with the

forward scheduling implemented in HGA part.

 Modes of Activity 3 Modes of Activity 4 Modes of Activity 5

 0 0 1 1 0 1 0 0

Figure 4.3. Chromosome Representation of modes in Heuristic Method

To further explain the heuristic method, an example will be illustrated with the project

with 10 activities. At first, activity 11, which has zero resource requirement, no

duration and is a dummy activity, is scheduled. Since the method applies backward

schedule, activities that have zero number of successors are activity 10 and activity 9.

The algorithm randomly selects activity 10 and selects second mode randomly for it.

The method checks if activity 10 and 9 can be scheduled from the same date with the

chosen mode of activity 10. Due to their predecessor, both activity 11 in this case, their

probable finish time dates are same. The heuristic method checks whether they can be

scheduled backwardly together starting at the same date with any possible mode

selection combination. The corresponding mode of activity 9 is the third mode since

it fills uses all of the remaining resources that are not used by activity 10. The selection

47

of mode is done so that total resource availability can be used fully. Selected modes

are labeled together with activity number and scheduled as seen in Figure 4.4.

Figure 4.4. Activity 9 and 10 with Selected Modes

After activity 9 and 10 is scheduled, their predecessors, which are activity 6, 7 and 8,

are arranged and taken into consideration. The algorithm randomly selects activity 6

and checks whether it can be scheduled from the same date with others. Since

predecessor of activities 7 and 8, which is activity 10, has a start time different than

the predecessor of activity 6, which is activity 9, no activity can be scheduled at the

same time with activity 6. So, the algorithm randomly selects the first mode of activity

6 and schedules the activity as in Figure 4.5. Since activity 6 is now scheduled, activity

3 can now be worked with. At this point, method has 3 alternatives; activity 3, 7 and

8. Activity 7 is selected randomly and first mode of it is selected randomly. It is

observed that activity 7 and 8 can be scheduled at the same date with respect to their

predecessors, however, there is no mode for activity 8 that can use the remaining

resource availability when activity 7 is implemented with the first mode. So, activity

7 is scheduled alone and activity 8 is scheduled to the next possible date in Figure 4.6.

Figure 4.5. Scheduling of Activity 6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
e
so

u
r
c
e
 U

sa
g

e

Time (days)

10-M2

9-M3

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
e
s
o

u
r
c
e
 U

s
a

g
e

10-M2

6-M1 9-M3

Time (days)

48

Figure 4.6. Scheduling of Activity 7 and 8

The next available activities for scheduling are; 3, 4 and 5. With respect to their

predecessors, none of the activities can be scheduled together. Activity 4 is chosen

randomly and scheduled with a randomly chosen mode. From the remaining activities,

3 and 5, activity 3 is selected and scheduled with a corresponding random mode. When

activity 3 is scheduled, number of available activities increase. Since activity 1 has no

successors except from activity 3 and 4, it can be taken into consideration as one of

the available activities. Between activity 1 and 5, 5 is selected randomly and scheduled

with a random mode in Figure 4.7. After activity 5 is scheduled, its predecessor,

activity 2, can now be branded as an available activity. Activity 1 is chosen randomly

together with a random mode and checked if it can be scheduled together with activity

2. Because of the reason that both of their successors has same earliest start times, they

can be scheduled together. A mode for activity 2 that fills up the resource constraint is

selected with respect to available resources. In the end dummy activity zero is

scheduled and the backward scheduling finishes.

Figure 4.7. Scheduling of Activity 4, 3 and 5 in Order

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
e
so

u
r
c
e
 U

sa
g
e

10-M2
7-M1

8-M3 6-M1 9-M3

Time (days)

Time (days)

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
e
s
o
u

r
c
e
 U

s
a
g
e

10-M2

9-M3

Time (days)

6-M1

7-M1

8-M3

4-M13-M3

5-M1

49

At the end of the heuristic mode, genes that represent activity priorities are assigned

real numbers opposite of their backward schedule order, since the chromosome will

be taken into forward scheduling for makespan calculation. The order of the schedule

with respect to backward scheduling starts with activity 11 (dummy activity) and

continues with 10, 9, 6, 7, 8, 4, 3, 5, 1, 2 and ends with another dummy activity which

is activity 0. Since there are 12 activities in total, including the dummy activities, the

Heuristic method gives priority numbers opposite to their backward scheduling order.

The lastly scheduled activity with respect to backward schedule will be given the

highest priority of 11 and the firstly scheduled one will be given 0. This process is

implemented so that the schedule obtained from Heuristic Method can be furtherly

improved with forward scheduling in HGA. Selected mode of the activities are given

binary number of 1 and unselected modes are given 0. Both mode selections and

priority numbers can be observed in Figure 4.8.

Figure 4.8. Representation of Mode Assignments of Example Problem

The scheduling process of heuristic method continues until all the activities are

scheduled. The final form of the schedule is shown in Figure 4.9. The make-span of

the backward schedule is found as 18 days. The backward schedule starts from a time

in the future so that all activities can be scheduled backwardly without problem. Both

mode selections and priorities are transferred into numbers and encoded into a

chromosome so that HGA can work with the solutions.

11 9 10 7 6 8 3 4 5 2 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1

Activity 0 1 2 3 4 5 6 7 8 9 10 11 0 116 7 8 9 101 2 3 4 5

Activity Priority Mode Selection

50

Figure 4.9. Final Form of Schedule with 18 Days Makespan

4.4. Hybrid Genetic Algorithm

When 70% of initial population is created with heuristic method, that 70% and 30%,

which are created by giving chromosomes to random numbers, are inserted into

forward scheduling. In forward scheduling part, the gene numbers are read for each

corresponding chromosome. From chromosomes, by checking assigned numbers, the

method decides the priority of the activities and the selected modes for each activity.

Schedules obtained from heuristic method are also implemented into forward schedule

method, the reason behind this is that some activities that can start at the same time

may have different start dates when that schedule is obtained with backward schedule.

For instance, in the example of Heuristic Method, activities 1 and 2 can be scheduled

together if the resource constraint is satisfied. In Figure 4.9., Activities 1 and 2 satisfy

the resource constraint to be scheduled together. By implementing the solution

obtained with Heuristic Method into forward scheduling method, activity 1 and 2 can

be started together, this way total make span of the schedule can be shortened.

In forward scheduling, the procedure is similar with backward scheduling. Instead of

checking successor number, in forward scheduling predecessor number of an activity

should be 0 so that it can be scheduled. Opposite from the Heuristic Method, in

forwards scheduling part decision of mode selection and priorities are not done. All

chromosomes have the required information encoded. The forward method does the

scheduling with respect to encoded data.

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
e
s
o

u
r
c
e
 U

s
a

g
e

10-M2

9-M3

7-M1

6-M1

4-M1

8-M3

3-M3

5-M1

1-M1

2-M3

Time (days)

51

4.5. Crossover, Mutation and Renewal

Same as ordinary GAs, HGA uses Crossover and Mutation procedures to improve the

population. After initial population is created with Heuristic Method and randomly

generated gene numbers, crossover and mutation procedures are implemented so that

new individuals are introduced into the population. HGA uses a modified two point

crossover. Initially, two chromosomes from the population is selected randomly. In

this specific crossover method, at first stage of deciding the genes that will be crossed,

two points are selected randomly between zero and total number of activities. By this

way, activities between the randomly selected points are labeled. In second phase of

the crossover operation, the corresponding modes of the randomly selected activities

are selected. When both mode and activity selection is completed, the crossover

operator crosses the selected genes between two chromosomes and a new individual

is born. Child individuals created with crossover process are saved.

After crossover operation, mutation starts. In mutation a chromosome is selected

randomly. At the start of mutation process, a random number is generated between 0

and 10 including both. If the generated number is lower than 2, the mutation is

implemented into activity priority part of the chromosome, likewise, if the generated

number is greater than 2 or equal to 2, mutation is applied to mode selection part. In

the selected part of the chromosome, a random gene point is selected. If the selected

part represents activity priority, the activity priority is given a random new number.

However, if the selected gene point represents mode selection part, the procedure

differs. The selected gene number is assigned a new number so that the current mode

selection changes. This way, a controlled randomness is ensured and mutations that

will not change the original schedule is avoided.

After crossover and mutation is finished elitist method is implemented. Some of the

best individuals are marked so that they will not be terminated when new individuals

created with crossover and mutation are inserted into the population. At each

generation, 3% of the population is chosen as elite individuals.

 Some of the individuals in the population are terminated with a probability with

respect to their fitness. Less fitted chromosomes have higher probability of being

52

terminated. New individuals are inserted instead of terminated chromosomes. And the

whole procedure starts again from the beginning by implementing crossover, mutation,

elitist method and termination.

In this HGA method, each makespan calculation, which is done when the initial

population is created and new offspring in each generation created, is considered a

schedule counter. This counter decides the stopping criteria of the algorithm. At some

point of the algorithm, the best solution is saved, all other individuals are terminated,

and the algorithm creates a new population by assigning the previously saved best

solution as the first chromosome. This process is called as the renewal process. In other

words, at some intervals (5000 schedule) of the algorithm, the best solution is inserted

into a new population. This procedure is implemented so that early convergence, which

is the main disadvantage of ordinary GAs, can be prevented. The flow chart of the

HGA is shown in Figure 4.10.

53

Start

Create Initial
Population

Selection
Procedure in

order to Create
New Population

Crossover
Operation

Mutation
Operation

Termination
Conditions

Evaulation of
Individuals in

Terms of Fitness

NO

End of Algorithm

YES

Renewal
Conditions

N
O

Create New
Population while
Including the best

solution of
Previous

Population

YES

Choosing Elite
Individuals

Figure 4.10. Flowchart of HGA

In Figure 4.11, the example problem is inserted into forward scheduling method and

the make span is shortened by 2 days resulting the make span with 16 days.

54

Figure 4.11. Improved Schedule with 16 Days Makespan

In crossover operation, if activities 3 and 5 are selected, at first, priorities of the

activities between 3 and 5 are marked, including 3 and 5. Later, Multimode alternatives

of the same activities are marked and between the selected parents, both priority and

mode alternatives of the selected activities are crossed. The crossed parts of the parent

chromosome can be observed in Figure 4.12.

Figure 4.12. Priority and Mode Alternatives in Crossover

4.6. Fine-Tuning

With fine-tuning analysis, appropriate set of parameter values for HGA are determined

and summarized in Table 4.2. Fine-tuning analysis is done with 6 different parameters,

namely; crossover rate, mutation rate, initial population size, renewal of the population

in terms of schedule number and percentage of the population that is implemented into

heuristic algorithm. The project with 100 activities is selected for analysis since it takes

less time when compared with bigger projects. Each combination is analyzed, 10

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
e
so

u
r
c
e
 U

sa
g

e

1-M1

2-M3

4-M1

3-M3

7-M1
5-M1

6-M1

Time (days)

9-M3

8-M3
10-M2

Modes of Activities 3,4 and 5

11 9 10 7 6 8 3 4 5 2 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1

Activity 0 1 2 3 4 5 6 7 8 9 10 11 0 11

Priority of Activities 3,4 and 5

1 2 3 4 5 6 7 8 9 10

55

results are obtained for each combination and the one with the least average standard

deviation is selected. In the result of fine-tuning process, the combination of 40%

crossover rate, 4% mutation rate, initial population size of 100, heuristic percentage of

70% and renewal of 5000 schedules is selected with 1.86% standard deviation since it

gives the best performance out of all experiments. In total, 48 experiments are done in

fine-tuning phase. The detailed information, including the best and worst results and

average results, about fine-tuning cases can be found in Appendix A.

Table 4.2. Fine-tuning Parameter Selection

Parameters
Range of Parameters

Selected Value

Low Medium High

Crossover 0,4 0,6 0,8 0,4

Mutation 0,02 0,04 - 0,04

Initial Population Size 50 100 - 100

Heuristic Percentage 0,5 0,7 - 0,7

Renewal 5000 10000 - 5000

56

57

CHAPTER 5

PERFORMANCE ANALYSIS OF HGA

In this chapter, the performance of HGA is compared with the state-of-art methods.

Instead of choosing computational time as the stopping criteria, HGA uses number of

schedules as stopping criteria. The performance analysis is done with a similar laptop

with 2.4 GHz CPU and 8GB RAM just as Hegazy (2014) so that performance and the

results would not be affected by the properties of the computer. The algorithm is

designed with C# language in Microsoft Visual Studio 2013 Ultimate Edition. Average

percentage deviations available in the Table 5.1, are the values from the best solutions

found. Optimal solution is the best current solution found by HGA. The APD is

calculated with the following equation;

APD (%) = (Solution Duration-Best Known Duration) x 100 / Best Known Duration

Computational results are summarized and presented in Table 5.1 and the relationship

between the solution quality and processing time can be observed in Figure 5.1. The

complete results, obtained by 40 consecutive experiments, found for each different

project schedule with changing schedule numbers can be found in the Appendix B. For

each project, different number of schedules are used as stopping criteria, namely;

10000 schedule, 50000 schedule, 100000 schedule, 250000 schedule, 500000 schedule

and 1000000 schedule for projects with activities 100 and 500, 1000, 1500 and 2000.

58

5.1. Small Size Projects

The proposed HGA is compared both with algorithms that concentrated on small size

and large size projects. For the schedule with 10 activities both CP and HGA found

the optimal solution instantly. The comparison between the algorithms with respect to

Table 5.1. Experiment Results of HGA

Case
Upper
Bound

of
Schedules

HGA Solution
Average Percentage

Deviation (APD)
10

Activities
14 10000 14 0%

100
Activities

140

10000 145.90 4.21%

50000 143.15 2.25%

100000 141.63 1.16%

250000 140.45 0.32%

500000 140.20 0.14%

1000000 140.00 0.00%

500
Activities

700

10000 761.15 8.74%

50000 739.03 5.58%

100000 729.05 4.15%

250000 719.80 2.83%

500000 713.33 1.90%

1000000 706.85 0.98%

1000
Activities

1400

10000 1549.83 10.70%

50000 1503.78 7.41%

100000 1481.25 5.80%

250000 1459.48 4.25%

500000 1445.80 3.27%

1000000 1432.88 2.35%

1500
Activities

2100

10000 2341.20 11.49%

50000 2281.48 8.64%

100000 2252.68 7.27%

250000 2208.05 5.15%

500000 2184.53 4.03%

1000000 2166.73 3.18%

59

Table 5.1. Experiment Results of HGA (Continued)

Case
Upper
Bound

of
Schedules

HGA Solution
Average Percentage

Deviation (APD)

2000
Activities

2800

10000 3134.10 11.93%

50000 3064.23 9.44%

100000 3020.88 7.89%

250000 2963.45 5.84%

500000 2929.95 4.64%

1000000 2909.50 3.91%

computational time, number of schedules and solution quality can be observed in Table

5.2. It can be observed that HGA outperforms all of the proposed algorithms.

Table 5.2. Comparison between HGA and Other Methods on Small Size Projects

Year of
Publication

Authors Method
of

Activities
APD

of
schedules

Computational
Time

2012 Zhang
Ant Colony

Optimization
(ACO)

10 0.10% - 18.3

2014
Menesi and

Hegazy

Constraint
Programming

(CP)
10 0.00% - <1 sec

2015 This work HGA 10 0.00% 1000 0.12 sec

5.2. Large Size Projects

When the project gets bigger the results start to differ. For the project with 100

activities, HGA found APD of 2.25%, 1.16%, 0.32%, 0.14% and 0% for 10000, 50000,

100000, 250000, 500000 and 1000000 number of schedules respectively. For the

project with 500 activities APD results for the chosen stopping criteria are 8.74%,

5.58%, 4.15%, 2.83%, 1.90% and 0.98%. For the 1000 activity project, APD results

are 10.70%, 7.41%, 5.80%, 4.25%, 3.27% and 2.35%. For the 1500 activity project

APD results are 11.49%, 8.64%, 7.27%, 5.15%, 4.03% and 3.18%. Lastly for the

largest project of 2000 activities, APD results are 11.93%, 9.44%, 7.89%, 5.84%,

4.64% and 3.91%.

60

As it can be understood from the data, HGA has decreasing APD as the schedule

number increases. Especially, in large sized projects, HGA managed to obtain high

quality results, much better than CP proposed by Hegazy and Menesi (2014). The same

results with CP has been reached by HGA in much less computational time. When

HGA is run with the same time as CP, the obtained results are much better than CP.

Although, computational time and APD values are close with each other in small sized

projects, mainly with 100 activities, HGA has great ability to solve large sized project

instances and exceeded the CP both in terms of computational time and quality of the

results. The best and worst results of each experiment can be found in Table 5.3.

 The comparison between the experiment results in terms of average solution, average

percent deviation and processing time of CP and HGA for each project instance can

be found in Table 5.4.

61

Table 5.3. Best and Worst Results of Experiments

Case
Upper
Bound

of
Schedules

HGA
Average
Solution

HGA
Best

Solution
HGA Worst Solution

10
Activities

14 10000 14.00 14.00 14.00

100
Activities

140

10000 145.90 142.00 148.00

50000 143.15 140.00 146.00

100000 141.63 140.00 144.00

250000 140.45 140.00 142.00

500000 140.20 140.00 141.00

1000000 140.00 140.00 140.00

500
Activities

700

10000 761.15 755.00 767.00
50000 739.03 729.00 744.00

100000 729.05 721.00 733.00
250000 719.80 714.00 728.00
500000 713.33 706.00 718.00

1000000 706.85 701.00 712.00

1000
Activities

1400

10000 1549.83 1536.00 1572.00

50000 1503.78 1489.00 1513.00

100000 1481.25 1470.00 1490.00

250000 1459.48 1448.00 1469.00

500000 1445.80 1437.00 1455.00

1000000 1432.88 1426.00 1441.00

1500
Activities

2100

10000 2341.20 2321.00 2372.00

50000 2281.48 2260.00 2304.00

100000 2252.68 2236.00 2267.00

250000 2208.05 2196.00 2216.00

500000 2184.53 2179.00 2190.00

1000000 2166.73 2159.00 2176.00

2000
Activities

2800

10000 3134.10 3113.00 3159.00

50000 3064.23 3042.00 3080.00

100000 3020.88 2998.00 3036.00

250000 2963.45 2946.00 2975.00

500000 2929.95 2919.00 2943.00

1000000 2909.50 2895.00 2926.00

62

Table 5.4. Comparison between HGA and CP

Case
Upper
Bound

of
Schedules

HGA
Average
Solution

APD
of

HGA

HGA
Processing

time

CP Average
Solution

APD of
CP

CP
Processing

time
10

Activities
14 50000 14 0% Instant 14 0.00%

 10000 145.9 4% 01:35 s 161 15.00% 1 s

100
Activities

140

50000 143.15 2.25% 6 s 143 2.14% 1 min

100000 141.63 1.16% 12 s 140 0.00% 3 min

250000 140.45 0.32% 30 s
500000 140.20 0.14% 1 min

1000000 140.00 0.00% 02:05 min

500
Activities

700

10000 761.15 8.74% 08:75 s 777.00 11.00% 1 min

50000 739.03 5.58% 45 s 732.00 4.57% 10 min

100000 729.05 4.15% 01:45 min 725.00 3.57% 20 min

250000 719.80 2.83% 03:30 min 718.00 2.57% 30 min

500000 713.33 1.90% 07:10 min 712.00 1.71% 1 h

1000000 706.85 0.98% 14:05 min 708.00 1.14% 2 h

1000
Activities

1400

10000 1549.83 10.70% 26 s 1664.00 18.86% 1 min

50000 1503.78 7.41% 2 min 1550.00 10.71% 10 min

100000 1481.25 5.80% 04:20 min 1512.00 8.00% 20 min

250000 1459.48 4.25% 10:40 min 1500.00 7.14% 30 min

500000 1445.80 3.27% 21:30 min 1488.00 6.29% 1 h

1000000 1432.88 2.35% 43:00 min 1467.00 4.79% 2 h

63

Table 5.4. Comparison between HGA and CP (Continued)

Case
Upper
Bound

of
Schedules

HGA
Average
Solution

APD
of

HGA

HGA
Processing

time

CP Average
Solution

APD of
CP

CP
Processing

time

1500
Activities

2100

10000 2341.20 11.49% 54 s 2541.00 21.00% 1 min

50000 2281.48 8.64% 4:30 min 2330.00 10.95% 10 min

100000 2252.68 7.27% 09:20 min 2322.00 10.57% 20 min

250000 2208.05 5.15% 22:50 min 2316.00 10.29% 30 min

500000 2184.53 4.03% 45:30 min 2296.00 9.33% 1 h

1000000 2166.73 3.18% 1:30 h 2254.00 7.33% 2 h

2000
Activities

2800

10000 3134.10 11.93% 1:30 min 3406.00 21.64% 1 min

50000 3064.23 9.44% 7:30 min 3118.00 11.36% 10 min

100000 3020.88 7.89% 15:45 min 3107.00 10.96% 20 min

250000 2963.45 5.84% 40 min 3102.00 10.79% 30 min

500000 2929.95 4.64% 1:16 h 3098.00 10.64% 1 h

1000000 2909.50 3.91% 2:35 h 3079.00 9.96% 2 h

 3069.00 9.61% 3 h

64

Figure 5.1. Solution Quality versus Number of Schedules for Different Project Sizes

All results of HGA are better in terms of APD when compared with CP. Another

advantage HGA has over CP is that HGA reaches much better results with less

computational time. Result comparison of CP and HGA can be observed in Table 5.4.

The results of HGA have both better quality and less computational time. In real life

situations in construction industry, even 1 day has big impact on the cost of the project.

Overhead costs such as; security costs, electricity costs, accommodation costs of the

workers and the cooking costs increase when the total project time increases. The

average best solution found by HGA is 2909.50 days with APD of 3.91% for the

project with 2000 activities. The best result found by CP is 3069 days with APD of

9.61% for the same problem. The difference in total project time is approximately 160

100 Activities

500 Activities

1000 Activities

1500 Activities

2000 Activities

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

10000 50000 100000 250000 500000 1000000

D
e

v
ia

ti
o

n

Number of Schedules

65

days which contributes greatly to the total overhead cost of the project. If 10,000 USD,

which is an acceptable value for medium sized projects, is spent for overhead costs per

day, 1,600,000 USD in total can be saved throughout the project.

66

67

CHAPTER 6

CONCLUSION

In this thesis, the significance of the RCPCP is discussed. To solve problems with

resource constraints and multiple modes, a hybrid genetic algorithm with a newly

developed Heuristic Method is proposed. In the proposed Heuristic Method, backward

scheduling is implemented and successor number of the activities together with the

resource requirements are taken into consideration. In HGA, forward scheduling is

implemented to all solutions, this way, advantages of backward-forward scheduling is

used. Computational experiments show that HGA is much more efficient than other

proposed methods.

In literature, there is a lack of study on large problems with multimode alternatives.

Due to this reason, a project of 10 activities having multimode resource alternatives is

implemented. Projects with larger sizes of 100, 500, 1000, 1500 and 2000 activities

are created by adding the project of 10 activities several times. For each project, 40

consecutive experiments are run and average deviation from optimal solution is found.

The main contribution of this work is that HGA can reach high quality solutions in

large projects in short computational time, especially for large size projects.

Experiment results show that, Heuristic Method lets the algorithm concentrate on the

promising search areas, this way, computational time required to reach high quality

solutions decrease significant

68

Since many of the real life construction projects have more than 300 activities, main

aim of this thesis was to reach high quality solutions in large project instances. In

projects of 10 and 100 activities, HGA reached best known solutions. In larger

projects, HGA reached solutions with too little deviation from best known solutions.

When compared with CP, HGA has reached better results in the same amount of

computational time.

 Although large project instances reflect the size of real life construction projects, they

do not reflect the complexity of them since they are obtained by adding the project of

10 activities several times. This leaves a possible future research on development of

methods that can reach high quality solutions on complex large scale projects with

resource constraints. Although the proposed method reaches high quality solutions,

solutions with the same makespan may have different priority and mode arrangements.

In future works, a method can be developed for solutions with same makepsan so that

different mode and priority arrangements can be observed. It is also observed from the

experimental results that, with enough time HGA can reach the optimal solution for

all project instances. In HGA single resource is defined. Another future study may be

focused on increased resource number.

In conclusion, there was a need for a method that can provide good solutions for large

scale projects with multimode RCPSP. HGA is designed in order to find high quality

solutions in large scale projects. Many of the construction projects usually delay due

to inefficient use of resources and improper planning. In this work, the main aim is to

overcome RCPSP in large scale projects with multimode alternatives. The

implementation of multimode resource alternatives shows that an activity in a project

can be finished earlier if more resources are transferred. The decision of whether to

crash the activity or not should be given carefully so that project could be finished on

time without violating the resource constraints. Reaching earlier finish times are

important since with each early day, the overhead costs of the construction company

will decrease which, in the end, contributes to the overall profit of the project.

69

REFERENCES

Ahn, T., and Erenguc, S.S. (1998). “The resource constrained project scheduling

problem with multiple crashable modes: A heuristic procedure.” European Journal of

Operational Research, 107, 250-259.

Alcaraz, J. Maroto, C. and Ruiz, R. (2003). Solving the multi-mode

resourceconstrained project scheduling problem with genetic algorithms. Journal of

the Operational Research Society, 54, 614–626.

Bettemir, O., and Sonmez, R. (2014). “Hybrid genetic algorithm with simulated

annealing for resource-constrained project scheduling.” Journal of Management in

Engineering, 10.1061/(ASCE)ME.1943-5479.0000323 , 04014082.

Blazewicz, J., Lenstra, J., and Rinnooy Kan, A.H.G. (1983). “ Scheduling subject to

resource constraints: classification and complexity.” Discrete Applied Mathematics,

5, 11–24.

Chan, W. T., Chua, D. K. H., and Kannan, G. (1996). “Construction Resource

Scheduling with Genetic Algorithms.” Journal of Construction Engineering and

Management, 122(2), 125-132.

Chen, P. H., and Shahandashti, S.M. (2009). “Hybrid of genetic algorithm and

simulated annealing for multiple project scheduling with multiple resource

constraints.” Automation inConstruction, 18, 434–443.

Chen, P. H. and Weng, H. (2009). “A two-phase GA model for resource-constrained

project scheduling.“ Automation in Construction, 18, 485–498

70

Damak, N. Jarboui, B. Siarry, P. and Loukil, T. (2009). Differential evolution for

solving multi-mode resource constrained project scheduling problems. Computers and

Operations Research, 36, 2653-2659.

De, P., Dunne, E. J., Ghosh, J. B., and Wells, C. E. (1997). “Complexity of the Discrete

Time-Cost Tradeoff Problem for Project Networks.” Operations Research, 45(2), 302–

306.

Dorigo, M. (1992). “Optimization, learning and natural algorithms.” Ph.D. thesis,

Politecnico di Milano, Italy.

Drexl, A., and Gruenewald, J. (1993). "Nonpreemptive multi-mode resource-

constrained project scheduling", IIE Transactions 25, 74-81.

Elbeltagi, E., Hegazy, T., and Grierson, D. (2005). Comparison among five

evolutionary-based optimization algorithms. Advanced Engineering Informatics,

19(1), 43-53. doi: 10.1016/j.aei.2005.01.004.

Elbeltagi, E., Hegazy, T., and Grierson, D. (2007). A modified shuffled frog-leaping

optimization algorithm: applications to project management. Structure and

Infrastructure Engineering, 3(1), 53-60. doi: 10.1080/15732470500254535.

Elloumi, S. and Fortemps, P. (2010). A hybrid rank-based evolutionary algorithm

applied to multi-mode resource-constrained project scheduling problem. European

Journal of Operational Research, 205, 31–41.

El-Rayes, K., and Moselhi, O. (1998). Resource-driven scheduling of repetitive

activities. Construction Management and Economics, 16(4), 433-446. doi:

10.1080/014461998372213.

71

Gen, M., Cheng, R. and Lin, L. (2008) Network Models and Optimization,

Multiobjective Genetic Algorithm Approach, MA: Springer-Verlag

Goldberg, D. (1989). Genetic Algorithms in search, Optimization, and Machine

Learning, MA: Addison-Wesley., 1-44.

Hartmann, S. (1998). “A competitive genetic algorithm for resource constrained

project scheduling.” Naval Research Logistics, 45(7), 733–75.

Hartmann, S. (2001). Project scheduling with multiple modes: A genetic algorithm.

Annals of Operations Research, 102, 111–135.

Hegazy, T. (1999). “Optimization of resource allocation and leveling using genetic

algorithms.” Journal of Construction Engineering and Management, 125(3), 167–175.

Hegazy, T., and Menesi, W. (2012). “Heuristic Method for Satisfying Both Deadlines

and Resource Constraints.” Journal of Construction Engineering and Management,

138(6), 688-696.

Hegazy, T., Shabeeb, A., El-Beltagi, E., and Cheema, T. (2000). “Algorithm for

Scheduling with Multi-Skilled Constrained Resources.” Journal of Construction

Engineering and Management, 126(4), 414-421.

Hekimoglu, O. (2007). Comparison of the resource allocation capabilities of project

management software packages in resource constrained project scheduling problems.

M.S. thesis, Middle East Technical Univ., Ankara, Turkey.

Heppner, F., and Grenander, U. (1990). A Stochastic Nonlinear Model for Coordinated

Bird Flocks. Ubiquity of Chaos, 233-238.

72

Holland, J. (1992). Adaptation in Natural and Artificial System, Ann Arbor: University

of Michigan Press; 1975, MA: MIT Press.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence: University of

Michigan Press.

Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimization for

recurrent network design. IEEE Trans Syst Man Cybern B Cybern, 34(2), 997-1006.

Kennedy, J., and Eberhart, R. (1995). Particle swarm optimization. 1995 IEEE

International Conference on Neural Networks Proceedings, Vols 1-6, 1942-1948.

Kerzner, H. (2009). Project Management: A Systems Approach to Planning,

Scheduling, and Controlling: John Wiley & Sons.

Kim, J. L., and Ellis R. D. (2010). “Comparing Schedule Generation Schemes in

Resource-Constrained Project Scheduling Using Elitist Genetic Algorithm.” Journal

of Construction Engineering and Management, 136(2) 160–169.

Kim, J. L., and Ellis, R. D. (2008). “Permutation-based elitist genetic algorithm for

optimization of large-sized resource-constrained project scheduling.” Journal of

Construction Engineering and Management, 134(11) 904–913.

Lock, D. (2007). Project Management: 9Th Edition: Gower.

Lova, A. Tormos, P. Cervantes, M. and Barber, F. (2009). An efficient hybrid genetic

algorithm for scheduling projects with resource constraints and multiple execution

modes. International Journal of Production Economics, 117 (2), 302–316.

73

Lu, M., Lam, H-C., and Dai, F. (2008). “Resource-constrained critical path analysis

based on discrete event simulation and particle swarm optimization.” Automation in

Construction, 17, 670–681.

Mellentien, C., and Trautmann, N. (2001). “Resource allocation with project

management software.” OR Spektrum, 23, 383–394

Mendes, J. Gonçalves, J. and Resende, M. (2009). A random key based genetic

algorithm for the resource constrained project scheduling problem. Computers and

Operations Research, 36, 92 – 109.

Menesi, W. and Hegazy, T. (2014). "Multimode Resource-Constrained Scheduling

and Leveling for Practical-Size Projects." J. Manage. Eng., 10.1061/(ASCE)ME.1943-

5479.0000338 , 04014092.

Mobini, M., Mobini, Z., Rabbani, M. (2010). “An Artificial Immune Algorithm for the

project scheduling problem under resource constraints.” Journal: Applied Soft

Computing - ASC, vol. 11, no. 2, pp. 1975-1982, 2011

DOI: 10.1016/j.asoc.2010.06.013.

Mori, M. and Tseng, C. (1997). A genetic algorithm for multi-mode resource

constrained project scheduling problem. European Journal of Operational Research,

100, 134–141.

Mubarak, S. (2010). Construction Project Scheduling and Control: John Wiley & Sons.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, (1953).

Equation of state calculations by fast computing machines, Journal of Chemical

Physics 21 (6) 1087–1092.

74

Peteghem, V.V. and Vanhoucke, M. (2009). An artificial immune system for the multi-

mode resource-constrained project scheduling problem. In: EvoCOP, Springer, Berlin,

Tubingen, Germany.

Peteghem, V.V. and Vanhoucke, M. (2010). A genetic algorithm for the preemptive

and non-preemptive multi-mode resource-constrained project scheduling problem.

European Journal of Operational Research, 201, 409–418.

Rechenberg, I. (1973). Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution, Stuttgart: Fromman-Holzboog.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model.

Paper presented at the Proceedings of the 14th annual conference on computer graphics

and interactive techniques.

Schwefel, H. (1995). Evolution and Optimum Seeking, New York: Wiley & Sons.

Shi, Y. H., and Eberhart, R. (1998). A modified particle swarm optimizer. 1998 Ieee

International Conference on Evolutionary Computation - Proceedings, 69-73. doi:

10.1109/Icec.1998.699146.

Sonmez, R., and Uysal, F., (2014). “Backward-Forward Hybrid Genetic Algorithm for

Resource-Constrained Multiproject Scheduling Problem.” Journal of Computing in

Civil Engineering, 10.1061/(ASCE)CP.1943-5487.0000382, 04014072.

Sprecher, A., Hartmann, S. and Drexl, A., (1997). An exact algorithm for project

scheduling with multiple modes.OR Spektrum 19,195–203.

Talbot, F., and Patterson, J. H. (1979). ‘‘Optimal methods for scheduling projects

under resource constraints.’’ Proj. Mgmt. Quarterly, 10(4), 26 – 33.

75

Tormos, P., and Lova, A. (2001). “A competitive heuristic solution technique for

resource constrained project scheduling.” Annals of Operations Research,102(1/4),

65–81.

Zhang, H. (2012). “Ant colony optimization for multimode resource constrained

project scheduling.” J. Manage. Eng., 10.1061/(ASCE) ME.1943-5479.0000089, 150–

159.

76

77

APPENDIX A

FINE-TUNING EXPERIMENT

78

Table A.1. Fine-Tuning Experiment

Crossover Mutation
Population

Size
Heuristic

Percentage
New

Population
Best

Solution
Worst

Solution
Average
Solution

APD

0.4 0.02 50 50 5000 143.00 147.00 145.00 3.57%
0.4 0.02 50 50 10000 144.00 150.00 146.60 4.71%

0.4 0.02 100 50 5000 142.00 145.00 143.90 2.79%
0.4 0.02 100 50 10000 142.00 146.00 144.50 3.21%
0.4 0.02 50 70 5000 144.00 147.00 145.20 3.71%
0.4 0.02 50 70 10000 143.00 149.00 145.50 3.93%

0.4 0.02 100 70 5000 140.00 145.00 142.70 1.93%
0.4 0.02 100 70 10000 142.00 145.00 143.90 2.79%
0.4 0.04 50 50 5000 142.00 148.00 145.10 3.64%
0.4 0.04 50 50 10000 144.00 148.00 146.10 4.36%

0.4 0.04 100 50 5000 140.00 145.00 143.30 2.36%
0.4 0.04 100 50 10000 140.00 146.00 143.80 2.71%
0.4 0.04 50 70 5000 143.00 147.00 145.20 3.71%
0.4 0.04 50 70 10000 142.00 148.00 145.30 3.79%

0.4 0.04 100 70 5000 141.00 144.00 142.60 1.86%
0.4 0.04 100 70 10000 142.00 146.00 143.90 2.79%
0.6 0.02 50 50 5000 145.00 148.00 145.90 4.21%
0.6 0.02 50 50 10000 144.00 149.00 146.80 4.86%

0.6 0.02 100 50 5000 142.00 146.00 144.10 2.93%
0.6 0.02 100 50 10000 141.00 146.00 144.20 3.00%
0.6 0.02 50 70 5000 142.00 145.00 143.90 2.79%
0.6 0.02 50 70 10000 144.00 148.00 146.50 4.64%

79

Table A.1. Fine-Tuning Experiment (Continued)

Crossover Mutation
Population

Size
Heuristic

Percentage
New

Population
Best

Solution
Worst

Solution
Average
Solution

APD

0.6 0.02 100 70 5000 141.00 145.00 143.00 2.14%
0.6 0.02 100 70 10000 141.00 146.00 144.40 3.14%

0.6 0.04 50 50 5000 143.00 147.00 145.50 3.93%
0.6 0.04 50 50 10000 142.00 150.00 145.20 3.71%
0.6 0.04 100 50 5000 141.00 145.00 143.30 2.36%
0.6 0.04 100 50 10000 141.00 148.00 144.00 2.86%

0.6 0.04 50 70 5000 142.00 147.00 144.40 3.14%
0.6 0.04 50 70 10000 145.00 148.00 146.50 4.64%
0.6 0.04 100 70 5000 142.00 146.00 143.20 2.29%
0.6 0.04 100 70 10000 142.00 146.00 144.20 3.00%

0.8 0.02 50 50 5000 143.00 148.00 145.00 3.57%
0.8 0.02 50 50 10000 144.00 149.00 146.10 4.36%
0.8 0.02 100 50 5000 143.00 145.00 143.70 2.64%
0.8 0.02 100 50 10000 143.00 146.00 144.30 3.07%

0.8 0.02 50 70 5000 144.00 148.00 145.70 4.07%
0.8 0.02 50 70 10000 143.00 148.00 145.70 4.07%
0.8 0.02 100 70 5000 142.00 145.00 143.80 2.71%
0.8 0.02 100 70 10000 141.00 146.00 143.70 2.64%

0.8 0.04 50 50 5000 144.00 148.00 145.40 3.86%
0.8 0.04 50 50 10000 144.00 148.00 145.60 4.00%
0.8 0.04 100 50 5000 143.00 146.00 144.50 3.21%
0.8 0.04 100 50 10000 143.00 148.00 145.20 3.71%

80

Table A.1. Fine-Tuning Experiment (Continued)

Crossover Mutation
Population

Size
Heuristic

Percentage
New

Population
Best

Solution
Worst

Solution
Average
Solution

APD

0.8 0.04 50 70 5000 142.00 148.00 144.20 3.00%
0.8 0.04 50 70 10000 144.00 147.00 145.60 4.00%

0.8 0.04 100 70 5000 141.00 146.00 143.90 2.79%
0.8 0.04 100 70 10000 141.00 147.00 143.50 2.50%

81

APPENDIX B

DATA RELATIVE TO CHAPTER 5

82

Table B.1. Experiments for All Schedule Numbers

of
Activities

100
of

Schedule
10000

 # of
Activities

100
of

Schedule
50000

No Result APD No Result APD No Result APD No Result APD

1 143 2.14% 21 148 5.71% 1 143 2.14% 21 142 1.43%
2 145 3.57% 22 145 3.57% 2 143 2.14% 22 144 2.86%
3 147 5.00% 23 147 5.00% 3 145 3.57% 23 143 2.14%
4 148 5.71% 24 147 5.00% 4 141 0.71% 24 144 2.86%

5 148 5.71% 25 144 2.86% 5 145 3.57% 25 142 1.43%
6 143 2.14% 26 145 3.57% 6 142 1.43% 26 144 2.86%
7 147 5.00% 27 146 4.29% 7 140 0.00% 27 145 3.57%
8 144 2.86% 28 146 4.29% 8 142 1.43% 28 143 2.14%

9 145 3.57% 29 146 4.29% 9 140 0.00% 29 146 4.29%
10 147 5.00% 30 147 5.00% 10 143 2.14% 30 144 2.86%
11 143 2.14% 31 147 5.00% 11 143 2.14% 31 144 2.86%
12 148 5.71% 32 145 3.57% 12 144 2.86% 32 143 2.14%

13 146 4.29% 33 148 5.71% 13 145 3.57% 33 141 0.71%
14 142 1.43% 34 147 5.00% 14 145 3.57% 34 143 2.14%
15 145 3.57% 35 145 3.57% 15 143 2.14% 35 144 2.86%
16 146 4.29% 36 145 3.57% 16 144 2.86% 36 143 2.14%

17 147 5.00% 37 146 4.29% 17 142 1.43% 37 143 2.14%
18 148 5.71% 38 147 5.00% 18 144 2.86% 38 142 1.43%
19 147 5.00% 39 146 4.29% 19 142 1.43% 39 143 2.14%

20 145 3.57% 40 145 3.57% 20 144 2.86% 40 143 2.14%

 Average 145.90 4.21% Average 143.15 2.25%

83

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

100
of

Schedule
100000

 # of
Activities

100
of

Schedule
250000

No Result APD No Result APD No Result APD No Result APD

1 141 0.71% 21 142 1.43% 1 140 0.00% 21 140 0.00%

2 140 0.00% 22 141 0.71% 2 141 0.71% 22 140 0.00%
3 141 0.71% 23 142 1.43% 3 140 0.00% 23 141 0.71%
4 142 1.43% 24 142 1.43% 4 141 0.71% 24 140 0.00%
5 141 0.71% 25 144 2.86% 5 140 0.00% 25 142 1.43%

6 141 0.71% 26 140 0.00% 6 140 0.00% 26 140 0.00%
7 142 1.43% 27 142 1.43% 7 141 0.71% 27 142 1.43%
8 142 1.43% 28 141 0.71% 8 140 0.00% 28 141 0.71%
9 142 1.43% 29 143 2.14% 9 141 0.71% 29 140 0.00%

10 142 1.43% 30 142 1.43% 10 140 0.00% 30 140 0.00%
11 142 1.43% 31 141 0.71% 11 141 0.71% 31 140 0.00%
12 142 1.43% 32 140 0.00% 12 140 0.00% 32 140 0.00%
13 143 2.14% 33 142 1.43% 13 141 0.71% 33 141 0.71%

14 141 0.71% 34 142 1.43% 14 140 0.00% 34 140 0.00%
15 141 0.71% 35 142 1.43% 15 140 0.00% 35 140 0.00%
16 143 2.14% 36 142 1.43% 16 141 0.71% 36 141 0.71%
17 141 0.71% 37 141 0.71% 17 140 0.00% 37 141 0.71%

18 141 0.71% 38 141 0.71% 18 140 0.00% 38 140 0.00%
19 141 0.71% 39 144 2.86% 19 141 0.71% 39 140 0.00%
20 141 0.71% 40 141 0.71% 20 140 0.00% 40 141 0.71%

 Average 141.63 1.16% Average 140.45 0.32%

84

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

100
of

Schedule
500000

 # of
Activities

100
of

Schedule
1000000

No Result APD No Result APD No Result APD No Result APD

1 140 0.00% 21 140 0.00% 1 140 0.00% 21 140 0.00%
2 140 0.00% 22 140 0.00% 2 140 0.00% 22 140 0.00%

3 141 0.71% 23 140 0.00% 3 140 0.00% 23 140 0.00%
4 140 0.00% 24 141 0.71% 4 140 0.00% 24 140 0.00%
5 140 0.00% 25 140 0.00% 5 140 0.00% 25 140 0.00%
6 140 0.00% 26 140 0.00% 6 140 0.00% 26 140 0.00%

7 141 0.71% 27 140 0.00% 7 140 0.00% 27 140 0.00%
8 140 0.00% 28 140 0.00% 8 140 0.00% 28 140 0.00%
9 140 0.00% 29 140 0.00% 9 140 0.00% 29 140 0.00%
10 141 0.71% 30 140 0.00% 10 140 0.00% 30 140 0.00%

11 141 0.71% 31 140 0.00% 11 140 0.00% 31 140 0.00%
12 140 0.00% 32 140 0.00% 12 140 0.00% 32 140 0.00%
13 141 0.71% 33 140 0.00% 13 140 0.00% 33 140 0.00%
14 141 0.71% 34 140 0.00% 14 140 0.00% 34 140 0.00%

15 140 0.00% 35 141 0.71% 15 140 0.00% 35 140 0.00%
16 140 0.00% 36 140 0.00% 16 140 0.00% 36 140 0.00%
17 140 0.00% 37 140 0.00% 17 140 0.00% 37 140 0.00%
18 140 0.00% 38 140 0.00% 18 140 0.00% 38 140 0.00%

19 140 0.00% 39 140 0.00% 19 140 0.00% 39 140 0.00%
20 140 0.00% 40 140 0.00% 20 140 0.00% 40 140 0.00%

 Average 140.20 0.14% Average 140.00 0.00%

85

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

500
of

Schedule
10000

 # of
Activities

500
of

Schedule
50000

No Result APD No Result APD No Result APD No Result APD

1 762 8.86% 21 756 8.00% 1 743 6.14% 21 743 6.14%

2 760 8.57% 22 764 9.14% 2 743 6.14% 22 739 5.57%
3 755 7.86% 23 758 8.29% 3 741 5.86% 23 741 5.86%
4 766 9.43% 24 762 8.86% 4 744 6.29% 24 738 5.43%
5 767 9.57% 25 760 8.57% 5 736 5.14% 25 740 5.71%

6 764 9.14% 26 761 8.71% 6 739 5.57% 26 741 5.86%
7 759 8.43% 27 758 8.29% 7 731 4.43% 27 737 5.29%
8 759 8.43% 28 757 8.14% 8 739 5.57% 28 738 5.43%
9 765 9.29% 29 759 8.43% 9 734 4.86% 29 735 5.00%

10 756 8.00% 30 762 8.86% 10 737 5.29% 30 741 5.86%
11 759 8.43% 31 763 9.00% 11 740 5.71% 31 738 5.43%
12 761 8.71% 32 762 8.86% 12 744 6.29% 32 738 5.43%
13 765 9.29% 33 763 9.00% 13 743 6.14% 33 735 5.00%

14 758 8.29% 34 765 9.29% 14 741 5.86% 34 740 5.71%
15 759 8.43% 35 759 8.43% 15 735 5.00% 35 742 6.00%
16 767 9.57% 36 766 9.43% 16 736 5.14% 36 741 5.86%
17 761 8.71% 37 767 9.57% 17 729 4.14% 37 737 5.29%

18 762 8.86% 38 765 9.29% 18 743 6.14% 38 740 5.71%
19 763 9.00% 39 756 8.00% 19 739 5.57% 39 743 6.14%
20 757 8.14% 40 758 8.29% 20 737 5.29% 40 740 5.71%

 Average 761.15 8.74% Average 739.03 5.58%

86

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

500
of

Schedule
100000

 # of
Activities

500
of

Schedule
250000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 730 4.29% 21 730 4.29% 1 717 2.43% 21 716 2.29%
2 732 4.57% 22 730 4.29% 2 723 3.29% 22 723 3.29%

3 731 4.43% 23 731 4.43% 3 720 2.86% 23 728 4.00%
4 729 4.14% 24 730 4.29% 4 724 3.43% 24 721 3.00%
5 733 4.71% 25 726 3.71% 5 717 2.43% 25 718 2.57%
6 731 4.43% 26 731 4.43% 6 721 3.00% 26 716 2.29%

7 721 3.00% 27 727 3.86% 7 721 3.00% 27 714 2.00%
8 731 4.43% 28 724 3.43% 8 722 3.14% 28 714 2.00%
9 729 4.14% 29 727 3.86% 9 723 3.29% 29 717 2.43%
10 724 3.43% 30 726 3.71% 10 717 2.43% 30 726 3.71%

11 733 4.71% 31 730 4.29% 11 724 3.43% 31 719 2.71%
12 724 3.43% 32 728 4.00% 12 721 3.00% 32 720 2.86%
13 726 3.71% 33 729 4.14% 13 720 2.86% 33 724 3.43%
14 730 4.29% 34 733 4.71% 14 719 2.71% 34 717 2.43%

15 727 3.86% 35 731 4.43% 15 719 2.71% 35 720 2.86%
16 726 3.71% 36 733 4.71% 16 717 2.43% 36 725 3.57%
17 730 4.29% 37 730 4.29% 17 717 2.43% 37 720 2.86%
18 727 3.86% 38 731 4.43% 18 717 2.43% 38 722 3.14%

19 728 4.00% 39 730 4.29% 19 721 3.00% 39 714 2.00%
20 732 4.57% 40 731 4.43% 20 715 2.14% 40 723 3.29%

 Average 729.05 4.15% Average 719.80 2.83%

87

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

500
of

Schedule
500000

 # of
Activities

500
of

Schedule
1000000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 709 1.29% 21 711 1.57% 1 708 1.14% 21 707 1.00%
2 710 1.43% 22 714 2.00% 2 708 1.14% 22 704 0.57%
3 712 1.71% 23 713 1.86% 3 708 1.14% 23 712 1.71%
4 714 2.00% 24 715 2.14% 4 712 1.71% 24 709 1.29%
5 714 2.00% 25 716 2.29% 5 705 0.71% 25 707 1.00%
6 716 2.29% 26 715 2.14% 6 704 0.57% 26 708 1.14%
7 718 2.57% 27 717 2.43% 7 703 0.43% 27 706 0.86%
8 711 1.57% 28 711 1.57% 8 707 1.00% 28 709 1.29%
9 717 2.43% 29 715 2.14% 9 708 1.14% 29 704 0.57%
10 715 2.14% 30 706 0.86% 10 705 0.71% 30 707 1.00%
11 712 1.71% 31 716 2.29% 11 706 0.86% 31 708 1.14%
12 713 1.86% 32 712 1.71% 12 708 1.14% 32 707 1.00%
13 712 1.71% 33 714 2.00% 13 706 0.86% 33 709 1.29%
14 708 1.14% 34 711 1.57% 14 706 0.86% 34 711 1.57%
15 715 2.14% 35 712 1.71% 15 701 0.14% 35 708 1.14%
16 718 2.57% 36 716 2.29% 16 709 1.29% 36 707 1.00%
17 712 1.71% 37 715 2.14% 17 701 0.14% 37 706 0.86%
18 713 1.86% 38 713 1.86% 18 710 1.43% 38 704 0.57%
19 715 2.14% 39 709 1.29% 19 709 1.29% 39 704 0.57%
20 713 1.86% 40 715 2.14% 20 708 1.14% 40 705 0.71%

 Average 713.33 1.90% Average 706.85 0.98%

88

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

1000
of

Schedule
10000

 # of
Activities

1000
of

Schedule
50000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 1557 11.21% 21 1536 9.71% 1 1501 7.21% 21 1502 7.29%
2 1546 10.43% 22 1547 10.50% 2 1497 6.93% 22 1504 7.43%

3 1554 11.00% 23 1547 10.50% 3 1510 7.86% 23 1499 7.07%
4 1552 10.86% 24 1553 10.93% 4 1508 7.71% 24 1508 7.71%
5 1549 10.64% 25 1542 10.14% 5 1510 7.86% 25 1504 7.43%
6 1544 10.29% 26 1555 11.07% 6 1499 7.07% 26 1506 7.57%

7 1548 10.57% 27 1544 10.29% 7 1507 7.64% 27 1506 7.57%
8 1553 10.93% 28 1550 10.71% 8 1500 7.14% 28 1503 7.36%
9 1562 11.57% 29 1555 11.07% 9 1507 7.64% 29 1502 7.29%
10 1547 10.50% 30 1545 10.36% 10 1502 7.29% 30 1505 7.50%

11 1553 10.93% 31 1551 10.79% 11 1504 7.43% 31 1502 7.29%
12 1542 10.14% 32 1541 10.07% 12 1500 7.14% 32 1508 7.71%
13 1545 10.36% 33 1562 11.57% 13 1489 6.36% 33 1501 7.21%
14 1540 10.00% 34 1555 11.07% 14 1511 7.93% 34 1502 7.29%

15 1545 10.36% 35 1557 11.21% 15 1498 7.00% 35 1513 8.07%
16 1542 10.14% 36 1546 10.43% 16 1506 7.57% 36 1506 7.57%
17 1555 11.07% 37 1555 11.07% 17 1508 7.71% 37 1502 7.29%
18 1551 10.79% 38 1572 12.29% 18 1510 7.86% 38 1502 7.29%

19 1550 10.71% 39 1547 10.50% 19 1500 7.14% 39 1498 7.00%
20 1548 10.57% 40 1550 10.71% 20 1507 7.64% 40 1504 7.43%

 Average 1549.83 10.70% Average 1503.78 7.41%

89

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

1000
of

Schedule
100000

 # of
Activities

1000
of

Schedule
250000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 1483 5.93% 21 1482 5.86% 1 1468 4.86% 21 1463 4.50%

2 1481 5.79% 22 1483 5.93% 2 1466 4.71% 22 1459 4.21%
3 1476 5.43% 23 1484 6.00% 3 1462 4.43% 23 1455 3.93%
4 1477 5.50% 24 1479 5.64% 4 1467 4.79% 24 1461 4.36%
5 1485 6.07% 25 1481 5.79% 5 1452 3.71% 25 1464 4.57%

6 1479 5.64% 26 1477 5.50% 6 1467 4.79% 26 1456 4.00%
7 1483 5.93% 27 1479 5.64% 7 1466 4.71% 27 1460 4.29%
8 1472 5.14% 28 1481 5.79% 8 1451 3.64% 28 1469 4.93%
9 1485 6.07% 29 1480 5.71% 9 1467 4.79% 29 1452 3.71%

10 1486 6.14% 30 1484 6.00% 10 1457 4.07% 30 1458 4.14%
11 1483 5.93% 31 1486 6.14% 11 1462 4.43% 31 1462 4.43%
12 1486 6.14% 32 1489 6.36% 12 1461 4.36% 32 1461 4.36%
13 1490 6.43% 33 1470 5.00% 13 1462 4.43% 33 1457 4.07%

14 1487 6.21% 34 1480 5.71% 14 1449 3.50% 34 1465 4.64%
15 1482 5.86% 35 1482 5.86% 15 1457 4.07% 35 1455 3.93%
16 1478 5.57% 36 1484 6.00% 16 1458 4.14% 36 1451 3.64%
17 1480 5.71% 37 1478 5.57% 17 1469 4.93% 37 1464 4.57%

18 1481 5.79% 38 1484 6.00% 18 1452 3.71% 38 1456 4.00%
19 1478 5.57% 39 1483 5.93% 19 1453 3.79% 39 1457 4.07%
20 1476 5.43% 40 1476 5.43% 20 1460 4.29% 40 1448 3.43%

 Average 1481.25 5.80% Average 1459.48 4.25%

90

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

1000
of

Schedule
500000

 # of
Activities

1000
of

Schedule
1000000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 1452 3.71% 21 1444 3.14% 1 1431 2.21% 21 1434 2.43%

2 1449 3.50% 22 1448 3.43% 2 1435 2.50% 22 1433 2.36%
3 1450 3.57% 23 1440 2.86% 3 1429 2.07% 23 1435 2.50%
4 1443 3.07% 24 1446 3.29% 4 1435 2.50% 24 1433 2.36%
5 1447 3.36% 25 1444 3.14% 5 1433 2.36% 25 1430 2.14%

6 1454 3.86% 26 1449 3.50% 6 1435 2.50% 26 1434 2.43%
7 1439 2.79% 27 1441 2.93% 7 1427 1.93% 27 1435 2.50%
8 1440 2.86% 28 1443 3.07% 8 1435 2.50% 28 1434 2.43%
9 1441 2.93% 29 1447 3.36% 9 1433 2.36% 29 1429 2.07%

10 1444 3.14% 30 1452 3.71% 10 1434 2.43% 30 1435 2.50%
11 1447 3.36% 31 1446 3.29% 11 1433 2.36% 31 1441 2.93%
12 1455 3.93% 32 1443 3.07% 12 1426 1.86% 32 1436 2.57%
13 1444 3.14% 33 1438 2.71% 13 1428 2.00% 33 1430 2.14%

14 1441 2.93% 34 1445 3.21% 14 1433 2.36% 34 1433 2.36%
15 1449 3.50% 35 1454 3.86% 15 1431 2.21% 35 1429 2.07%
16 1444 3.14% 36 1445 3.21% 16 1428 2.00% 36 1432 2.29%
17 1446 3.29% 37 1437 2.64% 17 1437 2.64% 37 1434 2.43%

18 1449 3.50% 38 1450 3.57% 18 1432 2.29% 38 1435 2.50%
19 1447 3.36% 39 1451 3.64% 19 1440 2.86% 39 1436 2.57%
20 1441 2.93% 40 1447 3.36% 20 1430 2.14% 40 1432 2.29%

 Average 1445.80 3.27% Average 1432.88 2.35%

91

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

1500
of

Schedule
10000

 # of
Activities

1500
of

Schedule
50000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 2342 11.52% 21 2341 11.48% 1 2274 8.29% 21 2285 8.81%

2 2346 11.71% 22 2329 10.90% 2 2270 8.10% 22 2289 9.00%
3 2331 11.00% 23 2321 10.52% 3 2268 8.00% 23 2282 8.67%
4 2340 11.43% 24 2348 11.81% 4 2287 8.90% 24 2284 8.76%
5 2338 11.33% 25 2337 11.29% 5 2260 7.62% 25 2284 8.76%

6 2321 10.52% 26 2325 10.71% 6 2280 8.57% 26 2288 8.95%
7 2350 11.90% 27 2343 11.57% 7 2286 8.86% 27 2274 8.29%
8 2354 12.10% 28 2335 11.19% 8 2287 8.90% 28 2282 8.67%
9 2353 12.05% 29 2340 11.43% 9 2285 8.81% 29 2276 8.38%

10 2333 11.10% 30 2353 12.05% 10 2293 9.19% 30 2283 8.71%
11 2344 11.62% 31 2327 10.81% 11 2284 8.76% 31 2304 9.71%
12 2372 12.95% 32 2358 12.29% 12 2278 8.48% 32 2272 8.19%
13 2346 11.71% 33 2346 11.71% 13 2275 8.33% 33 2276 8.38%

14 2329 10.90% 34 2338 11.33% 14 2280 8.57% 34 2275 8.33%
15 2337 11.29% 35 2337 11.29% 15 2284 8.76% 35 2277 8.43%
16 2356 12.19% 36 2351 11.95% 16 2284 8.76% 36 2283 8.71%
17 2346 11.71% 37 2346 11.71% 17 2287 8.90% 37 2284 8.76%

18 2326 10.76% 38 2341 11.48% 18 2278 8.48% 38 2280 8.57%
19 2356 12.19% 39 2329 10.90% 19 2294 9.24% 39 2285 8.81%
20 2343 11.57% 40 2340 11.43% 20 2290 9.05% 40 2272 8.19%

 Average 2341.20 11.49% Average 2281.48 8.64%

92

 Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

1500
of

Schedule
100000

 # of
Activities

1500
of

Schedule
250000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 2250 7.14% 21 2258 7.52% 1 2212 5.33% 21 2206 5.05%
2 2267 7.95% 22 2256 7.43% 2 2197 4.62% 22 2196 4.57%

3 2248 7.05% 23 2265 7.86% 3 2216 5.52% 23 2216 5.52%
4 2241 6.71% 24 2248 7.05% 4 2214 5.43% 24 2216 5.52%
5 2245 6.90% 25 2251 7.19% 5 2198 4.67% 25 2209 5.19%
6 2246 6.95% 26 2253 7.29% 6 2207 5.10% 26 2209 5.19%

7 2264 7.81% 27 2253 7.29% 7 2209 5.19% 27 2207 5.10%
8 2252 7.24% 28 2252 7.24% 8 2204 4.95% 28 2212 5.33%
9 2259 7.57% 29 2258 7.52% 9 2209 5.19% 29 2206 5.05%
10 2247 7.00% 30 2267 7.95% 10 2208 5.14% 30 2208 5.14%

11 2256 7.43% 31 2256 7.43% 11 2215 5.48% 31 2209 5.19%
12 2258 7.52% 32 2242 6.76% 12 2205 5.00% 32 2210 5.24%
13 2262 7.71% 33 2246 6.95% 13 2200 4.76% 33 2206 5.05%
14 2252 7.24% 34 2259 7.57% 14 2210 5.24% 34 2215 5.48%

15 2259 7.57% 35 2248 7.05% 15 2213 5.38% 35 2198 4.67%
16 2251 7.19% 36 2249 7.10% 16 2203 4.90% 36 2214 5.43%
17 2244 6.86% 37 2258 7.52% 17 2197 4.62% 37 2210 5.24%
18 2258 7.52% 38 2246 6.95% 18 2214 5.43% 38 2208 5.14%

19 2256 7.43% 39 2236 6.48% 19 2210 5.24% 39 2209 5.19%
20 2254 7.33% 40 2237 6.52% 20 2213 5.38% 40 2204 4.95%

 Average 2252.68 7.27% Average 2208.05 5.15%

93

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

1500
of

Schedule
500000

 # of
Activities

1500
of

Schedule
of

Schedule
100000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 2184 4.00% 21 2186 4.10% 1 2162 2.95% 21 2171 3.38%

2 2187 4.14% 22 2185 4.05% 2 2167 3.19% 22 2163 3.00%
3 2188 4.19% 23 2185 4.05% 3 2165 3.10% 23 2167 3.19%
4 2183 3.95% 24 2190 4.29% 4 2168 3.24% 24 2169 3.29%
5 2182 3.90% 25 2182 3.90% 5 2169 3.29% 25 2171 3.38%

6 2186 4.10% 26 2180 3.81% 6 2168 3.24% 26 2165 3.10%
7 2182 3.90% 27 2184 4.00% 7 2168 3.24% 27 2163 3.00%
8 2187 4.14% 28 2187 4.14% 8 2165 3.10% 28 2168 3.24%
9 2184 4.00% 29 2186 4.10% 9 2159 2.81% 29 2170 3.33%

10 2180 3.81% 30 2184 4.00% 10 2168 3.24% 30 2168 3.24%
11 2183 3.95% 31 2186 4.10% 11 2169 3.29% 31 2164 3.05%
12 2186 4.10% 32 2179 3.76% 12 2176 3.62% 32 2171 3.38%
13 2184 4.00% 33 2181 3.86% 13 2161 2.90% 33 2172 3.43%

14 2184 4.00% 34 2185 4.05% 14 2162 2.95% 34 2165 3.10%
15 2182 3.90% 35 2184 4.00% 15 2175 3.57% 35 2162 2.95%
16 2188 4.19% 36 2182 3.90% 16 2165 3.10% 36 2168 3.24%
17 2186 4.10% 37 2183 3.95% 17 2167 3.19% 37 2169 3.29%

18 2188 4.19% 38 2184 4.00% 18 2172 3.43% 38 2164 3.05%
19 2184 4.00% 39 2188 4.19% 19 2164 3.05% 39 2163 3.00%
20 2182 3.90% 40 2190 4.29% 20 2162 2.95% 40 2164 3.05%

 Average 2184.53 4.03% Average 2166.73 3.18%

94

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

2000
of

Schedule
10000

 # of
Activities

2000
of

Schedule
50000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 3134 11.93% 21 3145 12.32% 1 3050 8.93% 21 3062 9.36%
2 3124 11.57% 22 3137 12.04% 2 3064 9.43% 22 3074 9.79%

3 3144 12.29% 23 3120 11.43% 3 3072 9.71% 23 3076 9.86%
4 3122 11.50% 24 3128 11.71% 4 3058 9.21% 24 3074 9.79%
5 3129 11.75% 25 3145 12.32% 5 3046 8.79% 25 3069 9.61%
6 3130 11.79% 26 3132 11.86% 6 3067 9.54% 26 3070 9.64%

7 3126 11.64% 27 3146 12.36% 7 3058 9.21% 27 3072 9.71%
8 3142 12.21% 28 3153 12.61% 8 3068 9.57% 28 3063 9.39%
9 3137 12.04% 29 3145 12.32% 9 3063 9.39% 29 3056 9.14%
10 3113 11.18% 30 3137 12.04% 10 3053 9.04% 30 3071 9.68%

11 3156 12.71% 31 3138 12.07% 11 3049 8.89% 31 3053 9.04%
12 3150 12.50% 32 3130 11.79% 12 3042 8.64% 32 3062 9.36%
13 3122 11.50% 33 3127 11.68% 13 3062 9.36% 33 3064 9.43%
14 3117 11.32% 34 3143 12.25% 14 3064 9.43% 34 3074 9.79%

15 3140 12.14% 35 3133 11.89% 15 3080 10.00% 35 3071 9.68%
16 3127 11.68% 36 3123 11.54% 16 3077 9.89% 36 3070 9.64%
17 3140 12.14% 37 3126 11.64% 17 3051 8.96% 37 3065 9.46%
18 3122 11.50% 38 3125 11.61% 18 3063 9.39% 38 3078 9.93%

19 3159 12.82% 39 3137 12.04% 19 3060 9.29% 39 3073 9.75%
20 3141 12.18% 40 3119 11.39% 20 3064 9.43% 40 3061 9.32%

 Average 3134.10 11.93% Average 3064.23 9.44%

95

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

2000
of

Schedule
100000

 # of
Activities

2000
of

Schedule
250000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 3020 7.86% 21 3024 8.00% 1 2969 6.04% 21 2946 5.21%

2 3024 8.00% 22 3020 7.86% 2 2970 6.07% 22 2962 5.79%
3 3024 8.00% 23 3016 7.71% 3 2972 6.14% 23 2964 5.86%
4 3023 7.96% 24 3026 8.07% 4 2959 5.68% 24 2962 5.79%
5 3017 7.75% 25 3026 8.07% 5 2967 5.96% 25 2971 6.11%

6 3020 7.86% 26 3025 8.04% 6 2962 5.79% 26 2969 6.04%
7 3030 8.21% 27 3023 7.96% 7 2954 5.50% 27 2965 5.89%
8 3015 7.68% 28 3014 7.64% 8 2959 5.68% 28 2970 6.07%
9 3016 7.71% 29 3018 7.79% 9 2963 5.82% 29 2969 6.04%

10 3022 7.93% 30 3021 7.89% 10 2965 5.89% 30 2975 6.25%
11 3021 7.89% 31 3015 7.68% 11 2959 5.68% 31 2974 6.21%
12 3020 7.86% 32 3026 8.07% 12 2959 5.68% 32 2964 5.86%
13 3036 8.43% 33 3028 8.14% 13 2956 5.57% 33 2967 5.96%

14 3018 7.79% 34 3019 7.82% 14 2956 5.57% 34 2960 5.71%
15 3019 7.82% 35 3022 7.93% 15 2960 5.71% 35 2961 5.75%
16 3023 7.96% 36 3025 8.04% 16 2965 5.89% 36 2961 5.75%
17 3019 7.82% 37 3025 8.04% 17 2963 5.82% 37 2967 5.96%

18 2998 7.07% 38 3018 7.79% 18 2959 5.68% 38 2966 5.93%
19 3021 7.89% 39 3019 7.82% 19 2960 5.71% 39 2969 6.04%
20 3017 7.75% 40 3022 7.93% 20 2962 5.79% 40 2957 5.61%

 Average 3020.88 7.89% Average 2963.45 5.84%

96

Table B.1. Experiments for All Schedule Numbers (Continued)

of
Activities

2000
of

Schedule
500000

 # of
Activities

2000
of

Schedule
1000000

No Result Deviation No Result Deviation No Result Deviation No Result Deviation

1 2936 4.86% 21 2928 4.57% 1 2917 4.18% 21 2912 4.00%
2 2923 4.39% 22 2927 4.54% 2 2903 3.68% 22 2910 3.93%
3 2936 4.86% 23 2930 4.64% 3 2918 4.21% 23 2904 3.71%
4 2930 4.64% 24 2934 4.79% 4 2914 4.07% 24 2910 3.93%

5 2919 4.25% 25 2926 4.50% 5 2908 3.86% 25 2914 4.07%
6 2926 4.50% 26 2933 4.75% 6 2910 3.93% 26 2915 4.11%
7 2931 4.68% 27 2932 4.71% 7 2926 4.50% 27 2906 3.79%
8 2932 4.71% 28 2930 4.64% 8 2913 4.04% 28 2908 3.86%
9 2943 5.11% 29 2932 4.71% 9 2911 3.96% 29 2902 3.64%
10 2936 4.86% 30 2925 4.46% 10 2911 3.96% 30 2904 3.71%
11 2938 4.93% 31 2928 4.57% 11 2906 3.79% 31 2916 4.14%
12 2930 4.64% 32 2931 4.68% 12 2895 3.39% 32 2914 4.07%
13 2934 4.79% 33 2929 4.61% 13 2915 4.11% 33 2912 4.00%

14 2934 4.79% 34 2922 4.36% 14 2909 3.89% 34 2908 3.86%
15 2924 4.43% 35 2926 4.50% 15 2910 3.93% 35 2910 3.93%
16 2930 4.64% 36 2928 4.57% 16 2912 4.00% 36 2911 3.96%
17 2928 4.57% 37 2933 4.75% 17 2907 3.82% 37 2910 3.93%

18 2934 4.79% 38 2925 4.46% 18 2902 3.64% 38 2902 3.64%
19 2924 4.43% 39 2932 4.71% 19 2897 3.46% 39 2908 3.86%
20 2931 4.68% 40 2928 4.57% 20 2906 3.79% 40 2914 4.07%
 Average 2929.95 4.64% Average 2909.50 3.91%

