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ABSTRACT 

 

A HYBRID GENETIC ALGORITHM FOR MULTI MODE RESOURCE 
CONSTRAINED SCHEDULING PROBLEM FOR LARGE SIZE PROJECTS 

 

Gürel, Mustafa 

M.S., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Rifat Sönmez 

 

September 2015, 96 Pages 

 

Just like in all industries, some of the available resources, in order to finish a project 
on time, are constrained in construction industry. To be able to finish the project on 
time has high importance both for the contractor and for the owner. Project scheduling 
in which resources are limited for a particular time are called as resource constrained 
project scheduling problems (RCPSP) and occupies a significant place in construction 
management. Especially for large scale projects, little success has been achieved for 
solving multi-mode RCPSP. In the context of this thesis, RCPSPs with multiple 
execution modes for activities, are aimed to be solved. With Hybrid Genetic Algorithm 
(HGA) proposed in this thesis, finding the optimal solutions for large size construction 
projects with multiple execution modes and resource constraints is aimed. The 
proposed hybrid algorithm consists of two parts, first part is a heuristic method and 
second part is a hybrid genetic algorithm. In the first part, some of the population is 
generated with a heuristic method so that search domain of the algorithm can be 
concentrated on better results. In second part, Hybrid Genetic Algorithm, solutions are 
improved with each generation. The performance of the algorithm is verified with the 
examples available in the literature. The main contribution of this algorithm is that it 
enables the large sized real life projects to be solved with resource constraints in a fast 
and efficient way. 

Keywords: Project Management and Scheduling, Multiple Modes, Resource 
Constrained, Genetic Algorithms, Hybrid Genetic Algorithm 
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ÖZ 

 

BÜYÜK ÖLÇEKLİ PROJELERDE ÇOK MODLU KAYNAK KISITLI İŞ 
PROGRAMLAMA PROBLEMİ İÇİN GELİŞTİRİLMİŞ BİR HİBRİT GENETİK 

ALGORİTMA 

 

Gürel, Mustafa 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Rifat Sönmez 

 

Eylül 2015, 96 Sayfa 

 

Tüm sektörlerde olduğu gibi, inşaat sektöründe de, projelerin bitirilmesi için gereken 
bazı kaynaklar sınırlıdır. Projelerin zamanında bitirilebilmesi hem müteahhit hem de 
işveren açısından yüksek önem taşımaktadır. İnşaat yönetiminde önemli bir yere sahip 
olan, kısıtlı kaynakların bulunduğu proje planlama problemlerine, kaynak kısıtlı proje 
planlama problemi (KKPPP) denir. Özellikle büyük ölçekli projeler için, çok modlu 
KKPPP’nin çözümünde ufak başarılara ulaşılmıştır. Bu tezin içeriğinde, çok uygulama 
modlu aktiviteleri içeren KKPPP’ler çözülmektedir. Bu tezde önerilen melez genetik 
algoritma (MGA) ile büyük ölçülü inşaat projelerinde, kaynak kısıtları ve farklı 
uygulama modları dikkate alınarak, optimal bitiş sürelerinin bulunması amaçlanmıştır. 
Bahsedilen melez algoritma, sezgisel yöntem ve melez genetik algoritma olarak iki 
bölümden oluşmaktadır. İlk bölümde, algoritmanın popülasyonun bir kısmı sezgisel 
yöntem ile oluşturulmaktadır, bu sayede, algoritanın arama alanı daha iyi sonuçlar 
üzerinde yoğunlaştırılmıştır. İkinci bölüm olan Melez Genetik Algoritma bölümünde, 
sonuçlar her jenerasyonda daha da iyileştirilmektedir. Literatürde bulunan örnekler ile 
algoritmanın performansı test edilmiş ve algoritmanın etkinliği gösterilmiştir. Bu 
algoritmanın ana katkısı, kaynak kısıtlı, büyük ölçekli, gerçek projelerin hızlı ve etkili 
bir şekilde çözülmesine olanak sağlamaktır. 

Anahtar Kelimeler: Proje Yönetimi ve Planlaması, Çoklu Modlar, Kaynak Kısıtlı, 
Genetik Algoritmalar, Melez Genetik Algoritma 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

In today’s world, construction projects with different varieties take one of the biggest 

share in terms of investment. With developing technology and increase in the number 

of qualified engineers, competitiveness between the contractors from all around the 

world has risen. This lead contractors to give bids with less profit so that they could 

secure the project. Since the profits earned in construction works are not as high as it 

used to be, contractors searched new ways so that they could decrease the overall costs 

and increase the total profit of the project. This search lead contractors to work and 

emphasize on planning and scheduling.  

The most common method in terms of planning and scheduling is the Critical Path 

Method (CPM). In nature, CPM calculates the total project time with the given time 

input of the activities of the schedule. The logical relationships between activities, lag 

times, working hours in a day, working calendars and resource availabilities are some 

of the main parts of preparing an appropriate schedule. The schedule of the works 

should be done with utmost care and detail, otherwise, the project may not be finished 

on the planned time which may lead to dissatisfied owner, financial losses, disputes 

between shareholders or even a lawsuit which may affect the company greatly and 

may lead the company to bankruptcy.  

Although CPM is the most commonly used scheduling technique in the construction 

industry, it is not proficient at finding the optimal solution in project when resource 

constraints are available. Due to this reason, resource constrained project scheduling 

problem (RCPSP) has been given great importance. The main objective of the RCPSP 
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is to reach the minimum project duration while satisfying both resource and 

precedence constraints. In real life situations, all of the construction projects may have 

resource constraints since no construction company has infinite resource access. Even 

if the construction company has great number of resources, directing all of the 

resources to a single project will increase the cost of that project and will place a 

burden to other works that the company undertakes. This phenomenon makes RCPSP 

very significant in terms of management and planning of the construction projects. 

Although RCPSP is important, popular commercial project management software has 

very limited capabilities for solving the RCPSP (Mellentien and Trautmann 2001; 

Hekimoglu 2007; Lu et al. 2008; Bettemir and Sonmez 2014). 

Many construction projects have more than 300 activities in real life examples. As the 

project gets larger, costs increase proportionally. In order to maximize the profit 

obtained at the end of projects, they should be finished as early as possible. This means 

that daily overhead costs of the project will be decreased. Many of the RCPSP studies 

used problem examples up to 60 activities which does not reflect the nature of 

construction projects. Hegazy and Menesi (2014) has worked with a Constraint 

Programming (CP) method for large size examples up to 2000 activities. 

Many of the designed heuristics and meta-heuristics for RCPSP, cannot be performed 

with real life construction projects which have more than 300 activities. Moreover, 

methods that are able to solve the RCPSP for large scale problems, require too much 

computation time in order to reach quality solutions. The CP model that is designed 

by Hegazy and Menesi (2014), has been applied to instances that have, 10, 100, 500, 

1000, 1500 and 2000 activities. CP model has reached a solution with %9.61 deviation 

from upper bound (best known solution of the instance) in 3 hours in the largest project 

instance. As a consequence, in terms of RCPSP, the gap between literature and real 

life examples is remarkable. 

This thesis aims to develop a Hybrid Genetic Algorithm (HGA) so that high quality 

solutions in RCPSP can be obtained with shorter computational time. To be able to 

reach high quality solutions in shorter computational time is significant for real life 
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cases so that with better solutions, minimizing the overhead costs and resources can 

be done efficiently and the project may be finished earlier as efficiently as possible. 

In ordinary Genetic Algorithms, the initial population is usually generated randomly. 

In the proposed HGA, some of the initial population is generated randomly and some 

is generated with a heuristic method, in which backward scheduling is implemented 

with respect to resource constraints. In other words, in heuristic algorithm part, 

improved solutions are generated. After generating the initial population, the algorithm 

implements forward scheduling to all solutions and calculates makespan values. The 

solutions are implemented with crossover, mutation, elitism and renewal processes. 

The algorithm ends when the stopping criterion, schedule number in this case, is met. 

The order of thesis is as follows; after the introduction part, literature review continues 

as chapter 2. Chapter 3 is about genetic algorithms and their content, then comes the 

Chapter 4 in which the HGA is explained and analysis results are given. After the 

conclusion part in Chapter 5, the references are given. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

In this chapter, first Critical Path Method (CPM) is explained to give understanding of 

most widely used scheduling technique. Resource constrained project scheduling 

problem (RCPSP) is defined with some of the proposed optimization techniques. 

 

2.1. Critical Path Method 

Throughout the paper, CPM is defined as the most widely used scheduling technique. 

The first step to understand what CPM does is to understand what scheduling is. 

Scheduling is consideration of the timing and order of the activities available in a 

project in order to decide the total time when the project is completed (Mubarek 2010). 

In a CPM network, just like any scheduling method, there are some steps to reach a 

successful schedule. First of all, the work activities that will generate the network, are 

determined. After the determination of the activities, their corresponding durations are 

assigned respectively and the logical relationships (precedence, successor 

relationships) are determined. After these steps are successfully performed, schedule 

network is drawn.  

CPM is the most commonly used network analysis method and the main objective is 

to find the longest path throughout the schedule network. The illustration of the 

network can be drawn by two different procedures, which are; activity on arrow (AoA) 

and activity on node (AoN). Although both procedures reach the same results, AoN 

method is preferred by many. Some of the reasons include the widespread adaptation 
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of AoN method to computer systems. AoN network is also clearer to understand, early 

start time (EST), early finish time (EFT), late start time (LST), late finish time (LFT) 

and total float (TF) of the activities can be seen on the network. Furthermore, activity 

on node process has become the most common and outstanding procedure for 

scheduling (Lock 2007). 

As their name imply, EST and LST are the earliest and the latest times that an activity 

can start. The same logic is valid for EFT and LFT, which are the earliest and latest 

times that an activity can finish. TF can be explained as the amount of time an activity 

can be delayed without hindering the completion date of the network. TF is calculated 

by implementing forward pass and backward pass calculations. In forward pass by 

keeping activity relationships and their durations, EST and EFT values are determined. 

The calculation begins from the first activity and ends with the last one. In backward 

pass, LST and LFT values are determined, the process starts from the last activity and 

finishes at the first one. The backward pass can only be commenced only if the forward 

pass is finished.  

Critical path is the longest path in terms of completion time in a project, thus, it 

determines the total project completion time. Each of the activities in the critical path 

have TF of zero. This means that none of the activities can be delayed since it affects 

the total project and results with a delay. The activities located in critical path are called 

the critical activities.  

Each project has a definite finish time decided by the client. Planning and scheduling 

is done so that the project may be finished on time. The completion of the project may 

end up later than the given finish date if the resource constraints and implementation 

of activities are not taken into consideration. This problem can be overcome by RCPSP 

methods. 

2.2. Resource Constrained Project Scheduling Problem 

There is no project in world that the resources and budget are infinite. A construction 

company determines the budget and the amount of resources for each project so that 

every project can be completed without any problems.  
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In RCPSP, the main objective is to find the optimum duration by satisfying the 

resource constraints. In other words, with definite resources, the project is completed 

as soon as possible. 

RCPSP falls into nondeterministic polynomial-time hard (NP-hard) (Blazewicz et al. 

1983; De et al. 1997) computational complexity class. Exact methods for these 

RCPSP’s can solve only for small size or medium to small size projects. In the light 

of these reasons, numerous heuristic and meta-heuristic methods are designed and 

proposed in order to reach optimal solution in RCPSP. These methods include priority 

rule based scheduling heuristics (Özdamar and Ulusoy 1994; Hegazy et al. 2000; 

Tormos and Lova 2001), and meta-heuristics, including genetic algorithms (Chan et 

al. 1996; Hartmann 1998; Hegazy 1999; Kim and Ellis 2008; Chen and Shahandashti 

2009; Kim and Ellis 2010; Sonmez and Uysal 2014), simulated annealing (Lee and 

Kim 1996; Bouleimen and Lecocq 2003; Valls et al. 2005), tabu search (Deblaere et. 

al. 2011), and particle swarm optimization (Lu et al. 2008; Wang and Qi 2009; Chen 

2011). 

 Throughout the project, contractor spends money from the budget of the project. The 

costs of the contractor is divided into two categories. These categories are named as 

direct costs and overhead costs. Direct costs are the material costs, labor costs, 

equipment, and machinery costs. Overhead costs are expenses that cannot be grouped 

into any specific work item of direct costs. They include mobilization costs, salaries 

of indirect personnel such as cook and security, general security costs, cost of bonds 

taken from banks, site office expenses, insurance expenses and many more. As the 

project duration increases overhead costs increase and direct costs decrease. Overhead 

costs, in other words, indirect costs are assumed to have linear relationship with the 

duration of project. To define the overhead costs as linear, costs that are paid in a single 

time such as bonds and insurance expenses are excluded from daily overhead cost 

assumptions. 

With the help of RCPSP, even if the direct costs cannot be decreased, overhead costs 

are aimed to be lowered by completing project earlier while satisfying resource 
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constraints. With each day a project is completed earlier, the contractor may increase 

the profit by not spending any indirect cost. 

 

2.3. Exact, Heuristic and Meta-Heuristic Methods 

As mentioned in chapter 2.2, RCPSP examples are categorized as Non-Polynomial 

hard (NP-hard) problems in which reaching the optimal solution takes great time and 

long computation is needed. Due to these reasons, many algorithms are proposed in 

the literature to overcome the long computational time of this problem. As the 

technology develops and coding language becomes more familiar and user friendly, 

many optimization methods are implemented into various researches. RCPSP can be 

solved with exact, heuristic and meta-heuristic algorithms. 

Exact methods aim to find the global optimal solution while searching the solution 

space of the problem. Moreover, enormous amounts of computations are needed in 

order to reach the optimal solution for large problems. Consequently, as the amount of 

computation gets higher, the time required to reach the optimal solution gets higher. 

Exact solution methods also need technologically developed computer systems since 

they require big amounts of computations. Some of the most widely used exact 

methods include linear programming, dynamic programming, branch-and-bound 

method and mixed integer programming. Although exact methods are the most reliable 

optimization method and has the guarantee of reaching the optimal solution, they are 

not fully practical to be used in construction projects. Since many construction project 

schedules include more than 300 activities, trying to solve RCPSP with exact methods 

will take great time. 

Different than the exact methods, heuristic algorithms requires much less amount of 

computations and proficient at reaching solutions in much small times when compared 

with exact methods. Heuristic methods use simple calculations and procedures to solve 

problems. The main drawback of heuristic methods when it is compared with exact 

methods is that finding the optimal solution is not guaranteed. Near-optimal solutions 

are reached with the help of heuristic algorithms. Even though the solutions may not 
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be the optimal, they are branded as satisfactory solutions. The reason is that, heuristic 

methods are able to reach near-optimal solutions, which do not differ greatly from the 

optimal, in very small time. 

Lastly, meta-heuristic algorithms are those which are inspired by stochastic 

(probabilistic) incidents seen in nature. Meta-heuristic algorithms are different from 

heuristic algorithms in terms of problem dependency. Heuristic problems are designed 

as problem dependent, algorithm is coded specifically to solve a certain problem. In 

meta-heuristic algorithms, the process of finding the solution is independent of the 

nature of the problem. In this type of algorithms, evolution process is copied and the 

problem is solved throughout an iterative random search technique. With the help of 

this iterative search, prevention of being stuck around a local optima is aimed. Just like 

heuristic methods, however, meta-heuristic methods does not guarantee reaching the 

optimum solution. They also reach near-optimum solutions in short time with simple 

calculations. Some of the most widely used meta-heuristic methods are; ant colony 

optimization (ACO), simulated annealing (SA), particle swarm optimization (PSO) 

and genetic algorithms (GA).  

 

2.4. Heuristic Methods for RCPSP 

In literature, many heuristic methods are implemented to overcome RCPSP. Some 

examples are priority rule based scheduling heuristics of Hegazy et al. (2000), Tormos 

and Lova (2001) and methods that works on time-cost tradeoffs (TCT) with RCPSP, 

such as; Ahn and Erenguc (1998) and Hegazy and Menesi (2012). 

In the work of Ahn and Erenguc (1998), a heuristic method is applied to solve RCPSP 

with multimode resource alternatives, in other words, crashable modes. A multi pass 

algorithm is designed for nonpreemptive resource constrained projects. The objective 

function is to find a feasible project schedule that has the minimum project cost. In the 

method, delay penalty cost is also taken into consideration. Two main stages are 

available in the proposed heuristic method. In the first stage, a feasible schedule is 

generated and in the following stage, the aim is to improve the feasible schedule. In 
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the first stage, modes that have the cheapest normal costs are selected for each activity. 

The normal duration is assigned as the duration of the selected modes. Cost and 

duration of the activities are fixed and problem is approached as a single mode RCPSP. 

Makespan optimization is applied with minimum total float (slack) rule. In second 

stage, six different procedures are followed to improve the feasible schedule. In first 

improvement procedure, an activity is aimed to be rescheduled with changing mode, 

duration and finish time of that activity if it can be rescheduled with less cost, without 

hindering the feasibility of the project schedule. In procedure two, two adjacent 

activities are aimed to be rescheduled. In this process, completion time of the project 

is not affected. Two activities are rescheduled in order to have less cost than previous 

mode selection. In procedure 3, crashing is implemented only if the cost of crashing 

of the selected activity is less than the penalty cost that is caused by delay of the 

project. Opposite to procedure 3, uncrashing is implemented in procedure 4. The 

uncrashing is implemented to an activity if the completion time of the project is not 

affected. In procedure 5, again uncrashing of activities is implemented. However, 

procedure 5 deals with uncrashing that changes the completion time of the project. If 

the reduction in activity costs due to uncrashing of that activitiy is greater than penalty 

costs due to delays, uncrashing is accepted. In the last procedure, two different 

activities are taken into consideration, one is applied with crashing and the other with 

uncrashing. If the costs caused by crashing is less than reduction of costs caused by 

uncrashing, the procedure is accepted. Different project cases with activity numbers of 

10, 12, 14, 16, 18, 20, 25, 30, 40 and 50 are studied. 

In the heuristic algorithm of Hegazy et al. (2000), a case study obtained from Talbot 

and Patterson (1979) has been studied. The case study consists of a schedule with 20 

activities and six different resources with their corresponding availabilities. In other 

words, the case study is a RCPSP with single modes having different resource 

requirements. In the algorithm, resource substitution rules are applied to overcome 

RCPSP. It is assumed that each different resource has some substitution rule with other 

resources, in other words, a single resource of R1 is equal to 2 resources of R2. 

Carpenter and steel worker example is illustrated to further increase the understanding. 

According to Hegazy et al. (2000), a carpentry work may be carried out with a single 
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carpenter with good efficiency, moreover, steel workers may also carry out the 

carpentry work. However, their productivity will be much lower than the carpenter. 

Consequently, a carpentry work can be finished at the same time with a single 

carpenter or several steel workers. With the help of resource substitution rules, under 

allocation of one resource settles the problem of over allocation of another. 

In the heuristic work of Tormos and Lova (2001), a hybrid multi pass method in which 

random sampling procedures are combined with backward-forward method. The 

heuristic method is implemented into three sets of projects. First set is named as j30 

set. This set consists of 480 projects each project having 30 activities with 4 resource 

types. The second set is the j60 set, in which 480 projects, each having 60 activities 

with 4 resource type, are located. Last set is the j120 set, in which 600 projects with 

120 activities with 4 resource types, are located. In other words, heuristic method is 

implemented to different projects with activity numbers of 30, 60 and 120. 

Hegazy and Menesi (2012) have designed a heuristic method for multimode RCPSP 

as an add-in tool to Microsoft Project software. First step is to check whether the 

activity crashing is promising or not. If the found duration is less than the project 

completion deadline the schedule is found as promising, if the case is the opposite, 

more crashing options are tried. After the schedule is found as promising, the method 

basically follows three steps, in first step, all of the start delays, lag times, are taken as 

zero, in second step, activity that can be crashed in the cheapest way is selected and in 

the third step, resource constraints are applied to current schedule. The methodology 

continues until the project duration with the lowest cost is found or no more crashing 

of activities is possible. After the initial check of promising schedules, the modes of 

all activities are arranged so that cheapest mode of each activity would be selected. 

Beyond this point, the method continues differently with changing conditions. If all of 

activities in the critical path are crashed, the least expensive non-critical activity is 

selected and crashed. If all of the critical activities are not crashed, least expensive 

critical activity is selected and crashed. With current crashing options, resource 

constraints are applied and total cost of the project is calculated and if applicable, delay 

penalties are added. If the current solution is better than previous one in terms of cost, 
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it is labeled as the best solution. If all of the activities are not crashed, the method 

returns to start point and checks for crashing options, if all of the activities are crashed, 

best solution is worked on. In the best solution, possible uncrashing of modes are 

searched in order to decrease the total cost. If the uncrashed mode of a chosen activity 

gives lower or the same total cost, the uncrashed mode is selected. The best solution 

is presented after the algorithm stops. The proposed heuristic is applied to projects 

with activities of 9, 25, 90, 180 and 360 with multi-mode selections, which represent 

the crashing modes. The bigger projects are created by adding the project with 9 

activities several times. 

 

2.5. Meta-Heuristic Methods for RCPSP 

Chan et al. (1996) have developed a genetic algorithm (GA) to solve RCPSP. The main 

advantage of meta-heuristics such as GA over heuristic methods is that heuristic 

methods proved that they are problem dependent and unable to solve bigger problems. 

In GA method, algorithm creates a random set of initial population. Each schedule is 

represented as chromosomes in the population. After the population is created, fitness 

of the solutions are evaluated. The better solutions of the population are selected and 

paired randomly so that new generation of solutions can be created by using Crossover 

operator. Besides crossover, another operator called mutation is implemented and a 

randomly selected gene in a randomly selected chromosome is applied to mutation, in 

other words, altered. This process continues until the stopping criterion is met. The 

analysis and experiments are made with projects that have activity numbers ranging 

from 11 to 51. 

In the work of Mori and Tseng (1997), the ability of GA and a stochastic scheduling 

method (Drexl and Gruenewald, 1993) is compared with respect to finding solutions 

in multi-mode RCPSP. The proposed GA method starts initialization of the population. 

The activities are arranged with respect to their activity numbers in ascending order. 

The mode of each activity is selected in a random manner and the scheduling priority 

of the activities are determined randomly. Makespan for each solution is calculated. 
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Solutions are, then, arranged in the order of increasing project duration. This way 

population starts with the best solutions and ends with the worst ones. In the applied 

one point crossover, two parents are selected. The first parent is the best solution in 

the population and the second parent is chosen randomly from the other solutions. A 

junction activity is selected and mode assignments and scheduling priorities of that 

activity and its predecessors are taken from the first parent. The unselected activity 

priorities and mode assignments are taken from the other parent. A solution is also 

selected in a random manner in mutation. Random number of activities are selected 

and mode assignment of the selected activities are changed. Generation of the new 

population is as follows; first the solution with the minimum makespan is preserved 

just like in elitism, then, offspring from mutation and crossover are taken into 

consideration. Lastly, randomly generated new offspring are taken into consideration. 

Comparisons of the GA and stochastic method are done with projects of 20, 30, 40, 

50, 60 and 70 activities. The work of Mori and Tseng (1997) showed that GA has 

reached good results especially in larger project instances. 

Hartmann (1998) also proposed a GA method for RCPSP. The used GA is similar with 

ordinary ones. In this GA,  an initial population is created, solutions, that is, each 

member of population, is evaluated and sent to crossover operator, after crossover, 

mutation is implemented. Again, this process takes on until the stopping criterion is 

reached. The main difference of the GA proposed by Hartmann (1998) is that GA 

follows a permutation based genetic encoding which contains problem-specific 

knowledge instead of following a priority rule based representation. In permutation 

based genetic encoding, each individual, solution, is represented by an activity 

sequence. The sequence is assumed as a precedence feasible permutation of the set of 

activities. Then, as decided by the work sequence each activity is scheduled to their 

earliest feasible time. Whereas, in priority based encoding, each individual is 

represented by priority values, each value of activity having a number between 1 and 

total number of activities. The activities are scheduled one by one by following 

precedence relationship and priority values. GA in this study is applied to problem 

instances with 30 and 60 activities with single-modes having four different resources. 
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Hegazy (1999) introduced improved resource allocation and levelling heuristics within 

a GA model. In heuristic part of algorithm, each activity is given a random priority 

and the impact of these priorities are controlled. In iterative procedure of improved 

resource allocation heuristic, first a schedule is obtained by giving all activities the 

lowest priority. The algorithm changes the priority of the first activity to highest 

priority and the new project duration is calculated. If the duration is not improved, the 

priority of the selected activity is returned to lowest priority value and the next activity 

is taken into consideration. This process is done until all the activities in the schedule 

are worked with. After all activities are considered, the iterative procedure ends and 

algorithm continues with GA method. Experiments are conducted on networks with 

20, 40, 100 and 200 activities. The larger networks are obtained by adding 20 activity 

of the smallest network several times. Each activity has 6 different resources. The 

algorithm is coded using the macro language of Microsoft Project. 

Hartmann (2001) has developed a GA for multi-mode RCPSP. In his method, he first 

enhances the initial population as described by Sprecher et al. (1997). The algorithm 

will spend time only in promising areas in the search space. In this improvement 

method, the main idea is that in an optimum schedule, no activity is completed with 

inefficient modes. In other words, schedules with activities that has inefficient modes 

are omitted from the search space. After improving the solution space, GA starts with 

initialization of population. The initialization procedure has three steps. At first step, 

a mode is selected and assigned to all activities in the schedule. At second stage, mode 

selections are controlled in terms of non-renewable resource feasibility. If non-

renewable resource constraint would be exceeded in the schedule, an activity is 

selected randomly and its mode assignment is changed so that its mode assignment 

will differ from previous choice. This procedure is done until all the activity mode 

assignments are changed or until the schedule becomes feasible with respect to 

resource constraints. At third stage, mode selection of activities are temporarily fixed. 

Then by taking the precedence feasibility into consideration, activities are ordered into 

activity list. After initialization, each individual undergoes fitness evaluation process 

with respect to their makespan. Then, crossover and mutation process starts. In 

crossover, from two selected parent individuals, two offspring are created. Parents are 
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named as mother and father, the offspring are called as daughter and son. In crossover 

method two numbers are selected as q1 and q2 which are smaller than total activity 

number of the project. The crossover both handles the activity priority and mode 

selection. For instance, in the case of daughter, activities starting from the first activity 

to number q1 are taken from the mother, and activities starting from q1+1 to the last 

activity are taken from the father. Similar to this procedure, in terms of crossover of 

mode assignments, number q2 is used. This time, mode assignments from the first 

activity to q2 are taken from the mother, and mode assignments from q2+1 to the last 

are taken from the father. In the case of son, the procedure is the same, this time 

information until point q1 and q2 is taken from the father and information beyond q1 

and q2 is taken from the mother. Mutation operator in this method has 2 modifications. 

In first modification, the location of a selected activity in the activity list is swapped 

with the next one if it satisfies the precedence constraint. The second modification 

deals with the mode selection. A mode assignment is randomly changed. This way a 

mode selection which is not present in the current population may occur. The 

individuals in the algorithm are improved with various methods. In the proposed single 

pass method, mode selection of each activity is checked. The main aim is to select a 

mode for an activity so that it will be completed in a less time. If applicable, this 

procedure is applied to all of the activities, each activity is considered only once. After 

single pass improvement, a second improvement method named as multi pass 

improvement is implemented.  The single pass procedure is applied repeatedly in this 

procedure since improvement, left shift, in an activity may end up with a decrease in 

non-renewable resource constraints which creates a possibility of an improvement on 

another activity. The proposed GA is coded in ANSI C and tested under LINUX 

operating system. Project instances of 10, 12, 14, 16, 18, 20 and 30 non-dummy 

activities are used in their experiments. 

Alcaraz et al. (2003) have also developed a GA for RCPSP. Same as Hartmann they 

have implemented enhancement designed by Sprecher et al. (1997). At initialization 

part, not only feasible schedules but also infeasible schedules in terms of non-

renewable resources are taken into the population.  To create population, first, for each 

activity a mode is selected randomly. If the mode selection is infeasible, just as in the 
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work of Hartmann (2001), a random activity is selected and assigned a new random 

mode selection. This procedure is done until a feasible schedule is achieved. In 

crossover operation, two point crossover is applied and a two-phase mutation is used. 

Similar to Hartmann (2001), at first stage an activity in the activity priority list is 

relocated between the locations of its predecessors and successors. In second stage, 

each activity changes its mutation selection with a predetermined mutation probability. 

In each generation, a random replacement method is applied. With a predetermined 

probability, each individual in a population is replaced with a randomly generated new 

individual. This contributes to variability of the population and prevention of 

premature convergence. The GA is coded in Microsoft Visual C++ language. The 

experiments are done with projects of 10, 12, 14, 16, 18 and 20 number of activities, 

each activity having 3 modes, two non-renewable resources and two renewable 

resources. To test the performance of the algorithm in large problems, project instances 

of 50 and 100 activities are also used. 

Chen and Shahandashti (2009) have developed a hybrid algorithm in which GA and 

Simulated Annealing (SA) processes are combined. By combining two generic search 

methods such as GA and SA, it is aimed that GA-SA Hybrid to be applicable to all 

optimization problems. The flow of the algorithm is as follows; initial population is 

generated and the temperature, a used factor in SA, is initialized. Two solutions are 

selected with a decreasing probability of selecting less-fitted solutions in crossover, 

and later, mutation is performed with a decreasing mutation rate. If the produced 

offspring from crossover and mutation operators is better than the worst solution in the 

population, it is replaced with the worst solution. However, if the produced offspring 

is not better-fitted than the worst solution the procedure changes. The produced 

offspring is replaced with worst solution only if it the Metrepolis’s criterion 

(Metrepolis et al. 1953) is satisfied. In the proposed hybrid algorithm, multi-project 

scheduling is undertaken, 3 real life projects with 45, 46 and 39 number of activities 

respectively.  

In literature, many different GA models are available to overcome RCPSP. Chen and 

Weng (2009) have designed a two phase GA model for RCPSP. In first phase, the 
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resource constraint problem is overcome and in the second phase, TCT problem is 

dealt with. At the first step, initial population is created. In first population, genes 

represent the mode selection of activities. After initialization part, resource scheduling 

starts. For each activity, selected modes are marked. And with respect to selected 

modes, a new population is created where priority of the activities are represented with 

genes until the termination condition is reached, crossover and mutation procedures 

are implemented. Best fitted solutions are evaluated and with roulette wheel selection 

parent individuals are selected for crossover operation. The crossover operation in this 

method is one-point crossover. After crossover, uniform mutation is applied so that 

randomness in the population will not be lost. At the end of this process, shortest 

duration and the corresponding total cost, that is, the best solution for the chromosome 

representing activity modes, is stored. This process is applied to all of the 

chromosomes representing the chosen activity modes. After the priority solutions are 

decided, the GA procedure is applied to chromosomes with mode selection. This way, 

two different GA procedures are implemented in order to overcome RCPSP with TCT. 

At first GA procedure, activity priorities are determined and the best solutions are 

stored. In the second GA procedure, activity mode selections are determined. The 

method is implemented into two different projects, one having 10 activities and the 

other having 37 activities. 

Lova et al. (2009) have proposed a hybrid GA for the purpose of finding optimal 

solutions in Multi-mode RCPSP. At the start of their algorithm they implement an 

improvement process to individuals of the population so that search space of the 

algorithm can be limited. The improvement procedure used was first introduced by 

Sprecher et al. (1997) which was also implemented in the work of Hartmann (2001). 

When initial improvements are made, the GA part starts. GA follows an ordinary 

procedure. The initial population is generated with respect to improvement method 

and randomness. After creating the initial population, fitness of each solution is 

calculated. In crossover operation, two point crossover is implemented. In the 

crossover operation, parent chromosomes are called as the father and the mother. From 

parent individuals, two different offspring is generated, these are named as son and 

daughter chromosomes. Two points are selected in the chromosomes, for the son 
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chromosome, the part between the selected two points are taken from the mother 

individual and the parts beyond chosen points are taken from the father. Similar to this 

procedure, daughter chromosome is generated. The part between the selected points 

are taken from the father chromosome and, the parts beyond chosen points are taken 

from the mother. This way, two offspring is created from a pair of parents. When 

crossover is finished, mutation follows. In the process of mutation, both activity 

priority and mode selection of activities are mutated. In terms of activity priority, an 

activity is inserted into a new position in the activity priority list between its latest 

predecessor and earliest successor with a given probability of Pmut. In terms of mode, 

mutation procedure changes if that activity has feasible non-renewable mode 

assignment or not. If the selected activity has non-renewable feasible mode 

assignment, each activity randomly changes its mode assignment with the probability 

of Pmut. If the mode selection of the activity is not feasible in terms of non-renewable 

resources, the mutation procedure changes. In this case, the mutation is called as 

massive mutation. Until the non-renewable mode selection in the schedule becomes 

feasible, the mutation operator randomly selects activities from the activity list and 

assigns a random mode to selected activities. This process is applied to increase the 

diversity and variation of mode selection. At the end of mutation, with a tournament 

selection procedure, new individuals are selected with respect to their fitness to create 

a new population. Elitism is also applied to ensure the best solution survives in the 

next population. The solutions are also improved with multi-mode forward-backward 

method so that feasible project completion time can be reduced. This method is found 

especially effective when renewable or non-renewable resource constraints exist. The 

computational experiments are applied to project instances of 10, 12, 14, 16, 18, 20 

and 30. 

Although the flow of different GAs are similar, in the work of Mendes, Gonçalves and 

Resende (2009) the process is a bit different. In the proposed GA, in order to tighten 

the solution space, concept of parameterized activity schedules is used. In this concept, 

the schedules are divided into three groups; semi-active schedules, active schedules 

and non-delay schedules. Semi-active schedules are those in which activities are 

sequenced as early as possible and none of the activities can be scheduled earlier 
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without changing the sequence of activities. In active schedules, activities are again 

schedules to the earliest possible times, however, this time, they cannot be scheduled 

earlier without delaying some other activity or without violating precedence 

constraints. Active schedules are also a type of semi-active schedules. In non-delay 

schedules, all resources are used if they can trigger the processing of any activity. In 

other words, in non-delay schedule, all resources are kept idle. Non-delay schedules 

are also a type of active schedules, therefore, semi-active schedules.  To summarize, 

activity schedules can be defined as sets where non-delay schedules are subset of 

active schedules and active schedules are subset of semi-active schedules. The main 

aim of the parameterized activity schedules method is to work on schedules which are 

either active or non-delay schedules. This way processing time is decreased greatly. 

The GA part of the algorithm also shows some differences. First, the initial population 

is created with random number vectors. Chromosome representation includes the 

information about activity priorities and delay times of the each activity. In fitness 

evaluation, the main factor is again the makespan, however, another factor is also taken 

into consideration. If two schedules with the same makespan is evaluated, the one 

which has less activities ending close to the completion time, is branded more 

promising in terms of improvement. This process of evaluation is called modified 

makespan. After evaluation of fitness of each chromosome, crossover starts. 

Parameterized uniform crossover is implemented. In this crossover type, each gene is 

taken from the parents with respect to a decision. A random number is given between 

0 and 1 to each chromosome for decision. If the given number is smaller than a 

predetermined value, that gene is taken from the first parent, if the given number is 

higher than the predetermined value, that gene is taken from the second parent. The 

main difference comes from the mutation part. In this GA, common mutation 

techniques are not applied, instead, some of the worst fitted individuals are terminated 

and randomly created new individuals are inserted.  This procedure also prevents 

premature convergence. The GA ends when termination conditions are met. The 

experiments are done with test problems having 30, 60 and 120 number of activities. 

The algorithm is designed with Visual Basic version 6.0. The activities have single-

mode resource representation with four resource types. 
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Many different algorithms are created to solve RCPSP. Differential evolution (DE) is 

the method proposed by Damak, Jarboui, Siarry and Loukil (2009). DE is an algorithm 

which is created with the influence of GA. GA changes the characteristics of 

individuals with crossover and mutation operators. In DE those evolutionary methods 

are combined with geometric search mechanisms. In DE, the possible solutions are 

represented with vectors. Each solution has two vectors, the first one representing the 

activity priorities and the second one representing mode assignments. Different from 

GA, DE first implements mutation process. In this operation, three individuals are 

selected. An offspring named as mutant vector is created. Mutant vector is created by 

combining priority vectors and mode assignment vectors from all 3 parent individuals. 

After mutation process, crossover operation starts. In this procedure, the mutant 

offspring created with mutation and a randomly selected individual from the 

population are implemented with crossover. A randomly selected part of the mutated 

vector is implemented into the selected individual. The newly created solution is called 

as trial vector. At the end of mutation and crossover, if the fitness of the trial vector is 

better than the selected solution from the population, trial vector is inserted and worse 

solution is terminated. The fitness comparison is done at the end of the crossover so 

that the waste of time on the less fitted individuals will be prevented. The algorithm is 

applied to projects of 10, 12, 14, 16, 18 and 20 activities with multi-mode resource 

assignments.  

Although GA is the most commonly used optimization technique in project 

scheduling, various methods are designed for RCPSP. Artificial immune system, 

designed by Peteghem and Vanhoucke (2009), is one of the methods. In the proposed 

algorithm, inspiration is taken from the vertebrate immune system of the body. The 

immune cells have receptors, by which the disease causing elements are recognized. 

The immune cells are implemented with clonal proliferation (reproduction) with 

respect to their ability to fight efficiently with harmful elements. Different mechanisms 

such as hyper-mutation are applied to the immune cells with lower efficiency in order 

to reach efficient cells. In the proposed algorithm, the process starts with initialization. 

After that, clonal selection and affinity maturation starts. The algorithm stops seeking 

for optimal solution when the stopping criterion is reached. Since the experimented 
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problem has multi-mode resource representations, initial population is created in a 

controlled manner instead of creating it by assigning random values. The main reason 

behind this is to emphasize on the promising solution space and decrease the 

computational time required to find the optimal solution. In controlled generation, 

mode assignment of activities are done first. The main idea is to select modes so that 

each of them will be feasible in terms of non-renewable resource usage. With different 

experiments, mode assignments with lower profit values are found to be more feasible 

than other selections. After modes are selected, corresponding resource requirements 

and duration of the activities are detected. After mode assignment is done, activity 

scheduling order, in other words, activity priority list, is decided. Various techniques 

are applied to decide the activity list. These include latest finish time, latest start time, 

minimum slack and maximum remaining work priority rules. The main reason for 

applying various priority rules is that two different solutions may have the same mode 

assignment. By applying different rules, having the exact two solution in the 

population is avoided. When the population generation is finished, each individual is 

given an affinity value. If the makespan of the solution is high, the affinity value will 

be low. Proliferation of the solutions are done with respect to affinity value. If a 

solution has higher affinity value, or lower makespan, it will appear more frequently 

in the cloned population. When cloning process ends, affinity maturation starts in 

which hyper-mutation and receptor editing is done. In hyper-mutation, a solution is 

mutated with respect to its makespan and the best makespan in the population. The 

solution with a higher makespan will be performed under high mutation rates. 

Likewise, lower the makespan of the solution, lower the number of mutations it will 

face. The mutation is both applied to activity list and mode selections. In terms of 

activity list, an activity is selected randomly and moved into a new position between 

its successors and predecessors. In mode selection phase, again, a random activity is 

selected then a random element is selected from the population. The mode assignment 

of the selected solution is copied to the cloned solution that is facing mutation. In the 

last part of the algorithm, receptor editing is done. The best fitted solutions are 

preserved and the unfitted elements are terminated. The newly generated population 

becomes the start population of the next iteration. The process ends with the stopping 
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condition is met. Experiments are done with projects with 7 different size. The projects 

have activity numbers of 10, 12, 14, 16, 18, 20 and 30. 

A permutation based elitist genetic algorithm with two schemes is designed by Kim 

and Ellis (2010) to solve RCPSP and determine whether parallel or serial scheme 

provides better. The genetic algorithm procedure is same as any ordinary GA. The 

main difference is during the evaluation of fitness values, before deciding the elitist 

solution and solutions that will be selected by crossover and mutation, are done both 

with serial scheduling generation and parallel scheduling generation scheme. In serial 

scheduling scheme, the scheduling of activities are done by following the priority. The 

activity having higher priority is scheduled if the resource constraints are satisfied. In 

parallel scheduling scheme, first, the activities that have 0 number of predecessors are 

decided, then the one with having higher priority is scheduled. The predecessors of the 

scheduled activity will be taken into consideration in next step and again between the 

activities that have 0 number of predecessors, one having the highest priority is 

scheduled. In this meta-heuristic algorithm, mainly the performance difference 

between parallel and serial scheduling scheme is analyzed. The experiments are done 

on a real life project which consists of 29 activities.  

In Artificial Immune Algorithm of Mobini et al. (2010), RCPSP problem is aimed to 

be solved with optimization of makespan. In their meta-heuristic algorithm, the 

process is imitated from the natural immune system of human beings. In the algorithm, 

biological theories of clonal selection and affinity maturation is imitated. The body 

reacts to foreign invading substances, which are named as pathogens. The reaction of 

the immune system to invading pathogens are divided into two concepts, namely; 

clonal selection and affinity maturation. In clonal selection, it is stated that immune 

cells that can recognize the invading pathogens will be reproduced in great numbers. 

Some of the reproduced cells will be effecter cells so that antibodies that can defeat 

the pathogens can be created in great amounts and the others will become memory 

cells so that the same pathogen can be dealt with convenience in case of future 

expositions. In reproduction stage, cells are implemented with mutation process with 

a selective force with respect to each cells ability to deal with pathogen. Cells that can 
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deal with pathogens in a more efficient way will have high affinity values. The cells 

with high affinity values will undergo lower mutation rates, whereas, cells with lower 

affinity will undergo higher mutation rate. The algorithm is designed with respect to 

this phenomenon. In the algorithm, possible solutions to the problem are called the 

antibodies. In antibodies, priority of the activities are represented with an order, the 

activities are listed with respect to their priorities. Just as GA, in AIA initial set of 

population is generated randomly. To improve the results of the algorithm, initial 

population is improved with backward-forward method. Fitness of the individuals, 

antibodies, are evaluated with affinity evaluation process. The affinity of each 

antibody is inversely proportional with the makespan of that antibody. An antibody 

having a higher affinity value is more likely to be reproduced. After each antibody is 

reproduced with respect to their affinities, a two-phase mutation process is 

implemented to improve the antibodies. In first phase, a single point mutation is 

implemented. In single point mutation, an activity is selected randomly in the list of 

antibody. The priority of the selected activity is changed randomly between the priority 

of its predecessor and successor activities. In two point mutation process, priority each 

activity is swapped with the one without violating resource constraints. At the end of 

the mutation process, worst individuals are replaced with randomly generated 

individuals. The process continues with the new population, and the loop ends when 

the stopping criterion is met. In this method, projects of 30, 60 and 120 activities are 

worked. 

Peteghem and Vanhoucke (2010) have designed a GA, for RCPSP. In this GA, 

possible solutions are not represented with chromosomes, instead, they are represented 

with vectors. Each vector contains information about the activity priority list. The 

corresponding mode selection of each activity is represented by a mode list. For the 

sake of allowing activity preemption, the networks is converted into a new one. In this 

process, if the mode selection of the activity is assigned, in other words, the resource 

requirements and the duration is known, that activity is split into sub-activities which 

have a unit duration of one day. Moreover, splitting is applied to single activity at a 

certain time. After the splitting is done, sub-activity starting times are determined. The 

generation of schedules from the priority vectors and mode lists is accomplished with 
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2 methods. First method applies backward-forward scheduling, which is commonly 

used for Multi-mode RCPSP. The second method includes a procedure in order to 

improve mode selection. For each activity, the current mode selection is aimed to be 

improved. The main aim is to have improvement on the non-renewable resource usage. 

A mode that uses less resources has higher completion time. However, due to 

precedence constraints, this mode may fit into a place which ends up an earlier finish 

time of that activity. This procedure checks the modes of all activities to search for a 

mode that leads to an earlier finish time in that activity. This procedure is implemented 

to activities for which all sub-activities are scheduled. After these improvement 

techniques, GA starts.  First, individual vectors and mode lists are generated randomly, 

then, each is implemented into improvement methods. Each individual is evaluated in 

terms of fitness which is related with the makespan and the non-renewable resource 

constraints. If a schedule is feasible, has no excessive non-renewable resource usage, 

the fitness value is taken as the makespan. If the schedule is not feasible, the fitness 

value is taken as the makespan plus the amount of excessive non-renewable resource 

usage. The lower the fitness value, the better the schedule in terms of fitness. In 

crossover, tournament selection is used to determine the parents and one point 

crossover is implemented where a single point is selected randomly, all the information 

regarding the activity priority and mode selection, left of that point is taken from the 

first parent and the information beyond the selected point is taken from the second 

parent. In mutation, two sub procedures are implemented. In first, a random point in 

activity priority vector is altered with a predetermined mutation probability, in the 

second, a random point in mode list is selected and assigned a new value with a 

predetermined mutation rate. Same as many GAs, the algorithm stops when stopping 

criterion is fulfilled. The algorithm is designed and compiled with Visual C++ version 

6.0. Set of projects of 10, 15, 20, 25 and 30 activities are experimented on. 

A hybrid rank-based evolutionary algorithm is developed by Elloumi and Fortemps 

(2010). The RCPSP has multi-mode resource assignments. In this method, a 

preprocessing method developed by Sprecher et al. (1997) and used by Hartmann 

(2001) is used to improve initial solutions. In this method, as mentioned before, all 

inefficient modes in terms of non-renewable resources are eliminated. After this 
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process, initialization starts with assigning random priorities and random modes with 

respect to preprocessing procedure to each activity. The fitness evaluation of activities 

follows a complex procedure. At first penalty values, which are calculated from excess 

usage of non-renewable resources, and makespan of each individual is determined. 

Based on penalty values and makespan, a rank-based fitness evaluation is performed. 

At the last phase, a clustering procedure is implemented to find density values. The 

fitness of the individuals is calculated with rank and density values. After fitness 

evaluation is done crossover starts. In crossover, two randomly selected parents, 

namely, mother and father, are determined. In the crossover operation, a parent is used 

only once, so, the selected parents are marked. One point crossover is implemented in 

which, two numbers, q1 and q2, are randomly generated between 0 and total number of 

activities. In terms of activity priority, the points until q1 are taken from the first parent, 

and beyond the selected point, priority of activities, which are not selected from the 

first parent, are taken from the second parent. In mode selection crossover, the 

procedure is the same. A number q2 is randomly selected and until the selected number, 

mode assignments are taken from the first parent and again, beyond that point, mode 

selections of activities from the second parent are taken into consideration. Mutation 

operator is applied as two stages, at first stage, a point in activity priority list is selected 

and location of the selected activity is swapped with the following activity if the 

precedence rules are not violated. This procedure is done until two activities are 

permuted or attempts equal to the total number of activities are made. At the second 

phase of mutation, a randomly selected point in mode list is assigned a new value so 

that the current mode assignment changes. Roulette wheel selection is used to 

determine new generation at the end of each iteration. The stopping criteria is 

determined as number of schedules or a certain processing time. The algorithm is 

compiled with Microsoft Visual C++ 6.0. Project instances of 10, 12, 14, 16, 18, 20 

and 30 activities are used. 

Ant colony optimization is a meta-heuristic method firstly proposed by Dorigo (1992). 

In ACO proposed by Zhang (2012), multi-mode RCPSP is aimed to be solved. Theory 

of ACO lies in the behavior of ant colonies that search for food. In ACO, solutions are 

represented with paths. When an ant founds a path leading to food, it gives off a special 
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chemical substance called phermone to form phermone trails. Ants tend to follow the 

path which has higher phermone deposition. The probability of choosing a path 

increases with its phermone level. After some time, ants find the shortest path that 

leads to the food. In each cycle in the algorithm, an ant creates a RCPSP solution by 

selecting activities in order in a single activity list. According to the probabilities of 

each activity selection, a phermone value is given to the selection which shows how 

well the selection is. After each cycle, phermone levels are decreased with evaporation 

rates to overcome early convergence and stagnation. The process is repeated until the 

stopping criterion is met. In the work of Zhang (2012), since multimode resource 

representation is observed, two types of phermones are used, one representing the 

activity priority and the other representing the selected resource mode. In the 

algorithm, firstly, phermones of activity priority is worked then the mode selection of 

the selected activity is studied. The case projects used in experiments have activity 

numbers of 10 and 18. 

Backward-Forward hybrid genetic algorithm created by Sonmez and Uysal (2014) is 

another meta-heuristic method for RCPSP. In this method, cooling features of SA is 

also included. The algorithm starts with generating initial population, then, crossover 

is performed and a new child is obtained from parent individuals. In this algorithm, 

two types of mutation operator are applied.  If there is not sufficient diversification 

between the parents and the child, the first mutation process is implemented. 

Backward-forward scheduling is done on mutated child. If the predefined 

diversification value between the parents and child is met, the mutation is accepted. 

The second mutation is performed to randomly chosen individuals, again, the 

diversification between the original and new solution is compared and accepted if the 

criterion is met. Elitist selection is done to save the best solutions and the process 

proceeds till the stopping criterion is met. The temperature that is used in 

diversification calculations is decreased with each loop of iteration. The experiments 

are carried out with instances having 30, 60 and 120 number of activities. 

The last meta-heuristic method that will be covered in this paper is designed by Menesi 

and Hegazy (2014) and called as constraint programming (CP). CP is used as an 



 

 

27 
 

advanced mathematical optimization method and CP model is developed with the IBM 

ILOG modelling software and its CPLEX-CP solver engine. In this method, projects 

with 10, 100, 500, 1000, 1500 and 2000 number of activities are used. In terms of 

project size, this method exceeds the other available ones. Another distinction between 

CP and other methods is that CP implements multimode resource-constraints. 

Although, numerous researchers aimed to solve multi-mode RCPSP as shown in Table 

2.1., majority of them achieved solutions limited to small size problems. This shows 

that there is a need for a method that can solve very large problems with multi-mode 

resource assignments. All of the methods except from CP, emphasized on projects 

smaller than 500 activities and many of them preferred single-mode RCPSP. However, 

in real life, an activity can be completed with many different alternatives, of course, 

the resource requirements and the duration of the activity will change with changing 

modes. A contractor may complete an activity with more resources if it will end up 

shortening the total completion date.  

Many of the proposed methods also solve RCPSP up to certain point which does not 

reflect the true nature of construction projects. Majority of the construction projects 

have schedule networks having more than 300 activities. Although CP model is 

applied to large problems, the computational time is high and the results of the large 

problems have high deviation from the best known solutions.  

Within this context, there is a need for a method that can solve large networks having 

more than 300 activities with multimode resource constraints while reaching high 

quality solutions in short computational time.  
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Table 2.1. Heuristic and Meta-Heuristic algorithms for RCPSP 

Year of 
Publication 

Authors Method  Problem # of Activities 
Representation of 

Resources 

1997 
Mori and 

Tseng 
GA RCPSP 

20, 30, 40, 50, 60 and 
70 

Multimode Representation 

1998 
Ahn and 
Erenguc 

Heuristic 
Method 

RCPSP with 
TCT 

10, 12, 14, 16, 18, 20, 
25, 30, 40 and 50 

Multimode Representation 

2001 Hartmann GA RCPSP 
10, 12, 14, 16, 18, 20 

and 30 
Multimode Representation 

2003 
Alcaraz, 

Maroto and 
Ruiz 

GA RCPSP 
10, 12, 14, 16, 18 , 20, 

50 and 100 
Multimode Representation 

2009 
Chen and 

Weng 
Two-phase GA 

RCPSP with 
TCT 

10 and 37 Multimode Representation 
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Table 2.1. Heuristic and Meta-Heuristic algorithms for RCPSP (Continued) 

Year of 
Publication 

Authors Method  Problem # of Activities 
Representation of 

Resources 

2009 
Lova, Tormos, 
Cervantes and 

Barber 

Hybrid Genetic 
Algorithm (HGA) 

RCPSP 
10, 12, 14, 16, 18, 20 and 

30 
Multimode 

Representation 

2009 
Damak, Jarboui, 
Siarry and Loukil 

Differential Evolution 
(DE) 

RCPSP 10, 12, 14, 16, 18 and 20  
Multimode 

Representation 

2009 
Peteghem and 

Vanhoucke 
Artificial Immune 

Algorithm 
RCPSP 

10, 12, 14, 16, 18, 20 and 
30  

Multimode 
Representation 

2010 
Peteghem and 

Vanhoucke 
GA RCPSP 10, 15, 20, 25 and 30  

Multimode 
Representation 

2010 
Elloumi and 

Fortemps 
Hybrid Evolutionary 

Algorithm 
RCPSP 

10, 12, 14, 16, 18, 20 and 
30  

Multimode 
Representation 
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Table 2.1. Heuristic and Meta-Heuristic algorithms for RCPSP (Continued) 

Year of 
Publication 

Authors Method  Problem # of Activities 
Representation of 

Resources 

2012 
Hegazy and 

Menesi 
Heuristic Method 

RCPSP with 
TCT 

9, 25, 90, 180 and 
360 

Multimode Representation 

2012 Zhang 
Ant Colony 

Optimization 
(ACO) 

RCPSP 10 and 18 Multimode Representation 

2014 
Menesi and 

Hegazy 
Constraint 

Programming 
RCPSP 

10, 100, 500, 1000, 
1500 and 2000 

Multimode Representation 
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CHAPTER 3 

 

 

GENETIC ALGORITHM OPTIMIZATION 

 

 

 

In the following chapter, mainly, genetic algorithm optimization technique will be 

introduced since the proposed method is mainly based on genetic algorithms. The 

properties of the method, differences to other optimization problems and the procedure 

will be described in detail. 

 

3.1. Introduction to Genetic Algorithms 

Genetic algorithms are stochastic search algorithms which imitate the process of 

natural selection and genetics. They have been developed by John Holland in the 

University of Michigan, USA (Goldberg 1989). The main objective of their research 

was to explain the adaptations observed in nature and to design a software that can use 

the mechanics of such adaptations. The process of GA is as follows; at the beginning, 

initial set of random solutions, which are called as the population, are created. Each 

solution in the population is defined as chromosome or individual. A single 

chromosome is represented by a string of numbers, usually by binaries. These set of 

numbers represent different characteristics of the each solution. Throughout the 

process of GA, chromosomes are evolved through consecutive iterations. Each 

iteration process is called a generation. In each generation, chromosomes are evaluated 

and implemented into different operators, namely; crossover and mutation. The next 

generation of chromosomes are generated with the help of crossover and mutation. At 

the end of each generation, a fitness evaluation is done to decide which individuals 

will be terminated and which will be taken to next generation. This termination is done 
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to keep the population size constant and to provide the algorithm with the ability to 

converge into better individuals.  

3.2. Structure of GA 

As stated in the introduction, GA follows a procedure to reach the best solution. This 

procedure is as follows; 

• An initial set of solutions is created. 

• An evaluation of the fitness of the chromosomes are made. 

 

• Chromosomes are applied with genetic operators named as; crossover and 

mutation. 

 

• With a selection procedure, best fitted solutions are pointed and used in the 

next generation. 

The general structure of GA can be seen in Figure 3.1. 

 

3.3. Initialization 

In GA, mainly two different procedures are available for generating the initial 

population. First way is to create initial population with randomness. This way, the 

individuals will be created randomly while satisfying the constraints and parameters 

of the algorithm. By creating the individuals randomly, the algorithm covers a huge 

search space, the fitness of created individuals have the probability of the best and the 

worst. Second way to create individuals is by implementing a heuristic initialization 

procedure. By applying heuristic method at initialization, the algorithm starts the 

search around the better solutions obtained with heuristic method. This contributes the 

GA to find the optimum or aimed solutions in a much faster time. This contribution is 

great in large scale networks, the computational time may be decreased greatly 

compared to random initialization. The main disadvantage of heuristic initialization is 
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that, since only a certain part of the solution space is explored, the algorithm may be 

stuck at local maximum or local minimum points, in other words, the algorithm may  

Start

Create Initial 
Population

Selection Procedure 
in order to Create 
New Population

Crossover Operation

Mutation Operation

Termination 
Conditions

Evaulation of 
Individuals in Terms 

of Fitness

NO

End of Algorithm

YES

 

Figure 3.1. General Structure of Genetic Algorithm 
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not converge to the optimum solution. To overcome this problem and let the algorithm 

benefit from random and heuristic initialization, an encoding procedure is applied. 

 

3.4. Encoding 

As stated before, the individuals, chromosomes, in the population represent the 

probable solutions of a problem in GAs. The properties and parameters of the network 

are implemented into chromosomes in a such way that, in later steps of the algorithm, 

just by checking the implemented data in the chromosome, the network properties and 

information of that solution can be managed. The process of implementation of 

network properties into chromosomes is called encoding. The process of reading the 

chromosome and converting the encoded data into network characteristics and 

properties is called decoding. In GA encoded solutions are usually called as Genotype, 

likewise, the decoded solutions are called Phenotype. Since GA has roots both in 

natural sciences and computational sciences, the terminologies of both science fields 

are used.  

There are several methods used for encoding. These are; binary encoding, real number 

encoding, integer or literal permutation encoding and lastly, a general data structure 

encoding. For instance, in the work of Holland, the encoding is applied with binary 

encoding. In the research of Holland, it is found that using binary encoding may not 

be appropriate for function optimization problems. The reason is the existence of 

Hamming cliffs. Hamming cliffs can be explained in the following way. A two 

solution that are close in terms of network characteristics are close to each other in 

phenotype, decoded solution, space. However, when these networks are encoded into 

chromosomes, they may have great distance in terms of binary representation just as 

in Figure 3.2. The distance between the chromosomes in genotype, encoded solution, 

space is called the Hamming distance. The Hamming cliff is the phenomenon, where 

the distance of between two points is large in genotype space while it is minimal in 

phenotype space. 
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0 1 1 1 1 1 1  1 0 0 0 0 0 0 
 

Figure 3.2. Pair of Individuals with Hamming Cliff 

Findings of researches show that, real number encoding is the best method in order to 

solve optimization problems. 

When structure of the encoding is taken into consideration, the classification of 

encoding can be made with two types, namely; one-dimensional encoding and multi-

dimensional encoding. Also, classification can be made according to the contents of 

encoded data. This classification is, again, divided into two types, namely; solution 

only encoding and solution+parameters encoding. The first way is generally used in 

optimization problems to fully design an appropriate encoding to the problem. The 

second way is used in evolution strategies (Rechenberg 1973, Schwefel 1995), where 

the first part of encoding holds the properties of solution and second part holds strategy 

parameters which represents the variances of normal distribution for mutation process. 

3.5. Evaluation of Fitness 

In GA, in each generation, individuals are compared with each other to decide which 

individuals are better fitted in terms of objective function. To decide the fitness of 

individuals, fitness evaluation is done. To form a better population with every 

generation, a selection procedure is applied. This selection is based on the fitness of 

activities, the better fitted activities have more probability of being chosen to be in the 

next generation of population. In other words, fitness evaluation is a significant part of 

GA so that the chromosomes that will be terminated or the chromosomes that will be 

reproduced in next generation are decided. 

3.6. Genetic Algorithm Operators 

GA imitates the natural mechanism of adaptation. Operators are used to imitate the 

creation of new individuals so that the population in GA can improve with newly 

generated child chromosomes. In GA, three operators are used; these are crossover, 

mutation and selection. 
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3.6.1. Crossover 

Crossover is the main operator in GA. The performance of GA is greatly affected by 

the performance of crossover. In crossover operation, two individuals, chromosomes 

are selected. While imitating the reproduction of new individuals in nature, crossover 

creates new offspring by combining both of the parent chromosomes’ characteristics.  

In each GA, crossover operation has some probability. The crossover probability is the 

amount of offspring that will be placed into the population. As the probability of 

crossover increases, the performance of GA increases since by increased crossover 

rate, algorithm will explore the wider space in solution domain. However, if the 

crossover rate is too high, too much computational time will be needed, also, many 

less fitted solution space will be searched. All in all, an optimum crossover rate should 

be found so that it will contribute greatly to the ability of reaching the optimum 

solution.  

Three types of crossover is mainly used in GA. These are called, one-point crossover, 

two-point crossover and uniform crossover. 

In one-point crossover, a single point is marked in the chromosome. The part until the 

marked point is taken from one parent chromosome and the part coming after the 

marked point is taken from the other. Representation of one-point crossover is shown 

in Figure 3.3.  

Parent 
Chromosomes  

Offspring 
Chromosomes 

               

                 

1 1 0 1 0 0 1  1 1 0 1 1 0 1 

                 

               

                 

0 1 0 0 1 0 1  0 1 0 0 0 0 1 

                 

 

Figure 3.3 One-Point Crossover 
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In two-point crossover, the procedure is similar. Instead of marking a single point, two 

points are marked on parent chromosomes. The part between the marked points are 

taken from a parent, and parts beyond the marked points, which are not between the 

marked points, are taken prom the other parent. Representation of two-point crossover 

is shown in Figure 3.4.  

 

Parent 
Chromosomes  

Offspring 
Chromosomes 

               

                   

1 1 0 1 0 0 1  1 1 0 0 1 0 1 

                   

               

                   

0 1 0 0 1 0 1  0 1 0 1 0 0 1 

                   
 

Figure 3.4. Two-Point Crossover 

In the last most widely used crossover method, uniform crossover, genes of parent 

chromosomes are taken randomly and used to form the offspring chromosomes. In 

general, a rate of 50% is used in uniform crossover. With 50% rate, half of the 

chromosomes are taken from the first parent and other half is taken from the second 

parent chromosome. The genes are chosen randomly while satisfying the ratio. 

3.6.2. Mutation 

Mutation process is the second operator that creates new chromosomes. In mutation, 

spontaneous random changes are aimed so that genes that are not present in the initial 

population or genes that are hard to obtain from crossover operator can be created. In 

other words, role of mutation is to reach genes that are not present in population with 

random alterations.  

Alternatively, in mutation, a mutation rate (mutation probability) is implemented. Just 

like in crossover, this probability decides what percent of the population will be 
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mutated. However, the probability of mutation should not be as high as crossover so 

that the population can cover the resemblance to the parent chromosomes. A high 

mutation rate will also lead to high randomness which will end up with too long 

computational time to reach the optimum solution. 

There are several different mutation operators. Inversion mutation, insertion mutation 

and displacement mutation are the most commonly used methods. 

In inversion mutation, two genes in a chromosome is selected randomly and genes are 

swapped with each other. 

In insertion mutation, a single gene is selected and it is inserted into a random point in 

the chromosome. 

Lastly, in displacement mutation, instead of a single gene, a string of genes are 

selected. This string is inserted into a random point in the mutation. As it can be 

understood, insertion mutation is the convenient version of displacement mutation. 

3.6.3. Selection 

The last part before working with the new generation of solutions, selection procedure 

is applied. The selection is done so that GA can be directed into promising regions in 

the search domain. Commonly used selection procedures include roulette wheel 

selection, (µ+λ)-selection, tournament selection and ranking and scaling selection. 

Roulette wheel selection is proposed by Holland. The main idea is the probability of 

selecting each chromosome proportional to their fitness value. In other words, if the 

fitness of a single chromosome is high, selection of that chromosome is also high. If fi 

is the fitness of individual “i” in the population, the probability of that individual to be 

selected is found by the following equation; Pi = fi / ( ∑j=1
N fj), where N is the total 

number of individuals in the population. 

In (µ+λ)-selection method, the best individuals both from the parents and their 

offspring are selected. 

In tournament selection, just as its name implies, a tournament between the individuals 

are done. The individuals competing in the tournament is selected randomly and the 
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solution with the best fitness is selected as the winner. Tournament size can be changed 

and if the size is set as a large value, weaker chromosomes have less probability of 

being chosen. 

In ranking and scaling method, procedure is a bit different. First, chromosomes are 

ranked with respect to their fitness values, then each chromosome is given a scale 

number with respect to their ranking. With best solution having the best scale, each 

chromosome has a probability of being chosen with respect to their scale. The main 

advantage of ranking and scaling method is that rapid takeover of chromosomes having 

much better fitness than others is eliminated. 

With the completion of selection, a new population is created with individuals from 

initial population, offspring from crossover and mutated individuals from mutation. 

The process of this iteration continues until the termination condition of the algorithm 

is reached. 

3.7. Advantages of GA 

There are several reasons why GA is the most widely used optimization technique. 

One of the reasons is that the ability of adaptation. Due to nature of the algorithm, no 

complex mathematical and coding information is required. GA can handle any 

objective function and will search for solutions. GA is more efficient than most 

conventional heuristics which perform local searches and are usually designed for a 

case problem. On the other hand, GAs are designed as generic algorithms which can 

be implemented to any problem. These reasons contributes to wide usage of GAs. 
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CHAPTER 4 

 

 

HYBRID GENETIC ALGORITHM 

 

 

 

Throughout the literature, many different heuristic and meta-heuristic methods are 

suggested in order to solve resource levelling problems (RLP) in Resource Constraint 

Project Scheduling Problem (RCPSP), however, many of the methods are not 

appropriate to solve real life construction problems, which have more than 300 

activities. Many of the RCPSP solvers available in the literature are practical for short 

project schedules which are less than 150 activities. Majority of the methods require 

long computational time when they are applied to large project schedules, moreover, 

the found solutions are not considered to be high quality solutions. In real life 

situations, completing a construction project on time or as short as possible is one of 

the main objectives of the contractors, since by completing the project in shorter 

durations, overhead costs may be decreased significantly. 

For this purpose, in the context of this thesis, a hybrid genetic algorithm (HGA) is 

developed for multi-mode RCPSP. The proposed algorithm is composed of a heuristic 

method and genetic algorithm. In ordinary GA methods, search space is enormous and 

this limits the capability of the computation, and results in longer computational time. 

HGA starts with better solutions with the help of embedded Heuristic method and 

helps GA to limit the search space where better solutions are available. The main 

objective of the HGA is to reach high quality solutions with short computational time 

for large scale construction project of RCPSPs. This chapter further explains the details 

of HGA.
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4.1. Project Characteristics 

In the literature, there is a lack of algorithms that can solve large projects with 

multimode resource availabilities. Constraint Programming (CP) is suggested as an 

advanced mathematical optimization technique, to solve and optimize large scheduling 

problems from Menesi and Hegazy (2014). In CP, projects having activity numbers of 

10, 100, 500, 1000, 1500 and 2000 are analyzed on. The projects are created by adding 

the core project having 10 activities several times. The CP required 3 hours for 

reaching an optimized solution at a RLP with 2000 activities with 9.61% deviation. 

The experiments with CP has been carried out on a laptop with 2.4 GHz CPU and 4 

GB RAM. Hegazy (2014), has compared the CP method with ordinary GA, PSO and 

ACO methods and reached the solution that CP is faster and better in terms of finding 

high quality solutions. Despite this, in real life construction problems, shorter project 

duration is always favorable from the contractors’ point of view since the overhead 

costs will be much lower. Due to this reason, HGA is designed to solve multimode 

RCPSP in less time with high quality results. 

Although HGA is a generic algorithm, can work with any project instance, case study 

is taken same as Menesi and Hegazy (2014), who used the 10 activity project of Zhang 

(2012), so that the performance can be compared. In HGA, only a single resource type 

is implemented in the project. The project network can be seen in Figure 4.1. 

The case project consists of 10 activities. Each activity can be completed with different 

modes each having different durations and different resource requirements. The 

multimode representation mirrors real life resource requirements successfully. An 

activity can be completed with different allocations of resources with different time. 

As the method of implementation changes, the duration and resource requirements 

change. Activities and resource requirements are summarized in Table 4.1. 
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Figure 4.1. Project Network for the Case Project 

 

Table 4.1. Resource Requirements with respect to Activities and Modes 

 Mode 1 Mode 2 Mode 3 

Activity Number Duration 
Resource 

Requirement 
Duration 

Resource 

Requirement 
Duration 

Resource 

Requirement 

1 2 4 3 3 5 2 

2 2 4 4 2 6 1 

3 2 3 3 2 4 1 

4 1 3 3 1 - - 

5 2 3 3 2 4 1 

6 1 2 2 1 - - 

7 3 2 5 1 - - 

8 2 4 3 3 4 2 

9 3 4 4 3 5 2 

10 3 4 4 3 5 2 

 

To have convenient calculations and combining of 10 activity project severally to 

obtain bigger projects, two dummy activities are created, one as the starting point and 

the other as the end point of the network. 
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4.2. Chromosome Representation  

In Genetic Algorithm methods, an initial population of individuals, each 

corresponding to a solution, is created. The individuals, probable solutions for the 

problem, are represented by chromosomes. In HGA, chromosomes are designed as a 

single main string which represent two different characteristics of the network. The 

first part of the chromosome, which is from the first gene to total number of activities, 

represents the activity priority. Between two genes, the one having the higher number 

is scheduled first. The second part, which starts from the gene after the total number 

of activities to last gene, represents the corresponding modes of each activity and the 

chosen mode. For instance, if an activity has three modes, the gene with the highest 

number is the chosen mode. In a chromosome, the priority of the activities and their 

corresponding modes are stored. Total number of genes in a chromosome is found by 

adding the total number of activities with corresponding mode number of each activity. 

For instance, the case project of 10 activities is represented by a chromosome of 41 

genes. A dummy activity is assigned at the start and at the end of the network, this way 

creating bigger projects from the 10 activity network will be convenient. First 12 genes 

in the chromosome represents the priority of activities, including the dummy activities, 

after the first 12 genes, multimode alternatives of each activity is represented. 

Chromosome representation is shown in Figure 4.2. 

 

Figure 4.2. Chromosome Representation of HGA 

4.3. Heuristic Method 

The main difference of the proposed HGA from other methods is that it improves the 

initial population with the help of a newly developed Heuristic Algorithm. HGA 

begins with creating the initial population of 100 chromosomes. 30% of the 

chromosomes are created by assigning random real numbers between 0 and 1 to all 

genes in a chromosome. Remaining 70% of the chromosomes are created with the help 

Activity Priority Mode Selection



 

 

 

45 
 

of Heuristic Method. This process is implemented so that the initial population will 

have good starting point with good solutions which helps HGA to search promising 

areas in search domain. The reason for not creating all of the chromosomes with the 

heuristic method is so that randomness will not be lost. 30% of the population ensures 

that randomness is preserved throughout the algorithm. 

The heuristic algorithm implements backward scheduling method to decide which 

activities will be scheduled and what will be their corresponding modes. In the 

algorithm, firstly, the activities which have zero number of successors are taken into 

consideration. If there are more than 1 activity that satisfies the successor number 

condition, one of the activities is chosen randomly. After choosing an activity, the start 

time of the schedule of the activities, possible finish times with respect to backward 

scheduling, are decided. After this process, mode selection process starts. 

Corresponding modes of the activities are decided randomly. Resource requirement of 

the selected mode is checked with the available resource at the possible finish time of 

the activity. If that mode does not satisfy the resource constraint, the activity is 

scheduled to earliest date where resources are available. This process is the general 

procedure that Heuristic Method follows.  

In the calculation of possible finish time of the activities with respect to backward 

scheduling, the algorithm checks whether more than one activity can be scheduled 

starting from the same date. In other words, if their possible finish time dates are the 

same with respect to their successors, the algorithm gives priority to those activities 

and chooses the corresponding modes so that they can be scheduled together at the 

same schedule date while trying to use the resource availability to limits. When it 

comes to activities that can start at the same time, mode selection procedure differs. 

Between two activities, one of them is selected randomly and assigned a random 

corresponding mode, then, starting from the mode that has highest resource 

requirement, shortest duration, other activity is checked if they could be scheduled 

together. The reason for this selection is to ensure that resource requirement can be 

filled efficiently and possible makespan of the schedule can be arranged as early as 

possible. After an activity is scheduled, it is marked so that it will not be checked and 
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will not be tried to be scheduled again. If an activity is the only one that can be 

scheduled at that point, the mode that can fill up the resource constraint is selected. At 

the end of the heuristic method, after all the activities are scheduled and the modes are 

decided, they are transformed into numbers and transferred into genes of a 

chromosome. Instead of giving random real numbers between 0 and 1 to genes, genes 

that represent mode selection are given binary numbers of 0 and 1, 0 meaning that 

mode is not selected and 1 meaning that particular mode is selected.  A part of the 

chromosome is exampled in Figure 4.3. If that specific mode is selected that gene will 

be given the number of 1 and the others are given 0. The genes that represents priority 

of the activities are given very high real numbers, so that throughout the code, activities 

scheduled with heuristic method will always have priority over randomly generated 

ones. The activity that is scheduled last with respect to backward scheduling, will be 

given the highest priority and the priority number will be decreased by one until all 

activities are assigned with priority numbers. The reason for this arrangement is so 

that, the solution obtained from Heuristic Method can furtherly be improved with the 

forward scheduling implemented in HGA part. 

 Modes of Activity 3 Modes of Activity 4 Modes of Activity 5 

 0 0 1 1 0 1 0 0 
 

Figure 4.3. Chromosome Representation of modes in Heuristic Method 

To further explain the heuristic method, an example will be illustrated with the project 

with 10 activities. At first, activity 11, which has zero resource requirement, no 

duration and is a dummy activity, is scheduled. Since the method applies backward 

schedule, activities that have zero number of successors are activity 10 and activity 9. 

The algorithm randomly selects activity 10 and selects second mode randomly for it. 

The method checks if activity 10 and 9 can be scheduled from the same date with the 

chosen mode of activity 10. Due to their predecessor, both activity 11 in this case, their 

probable finish time dates are same. The heuristic method checks whether they can be 

scheduled backwardly together starting at the same date with any possible mode 

selection combination.  The corresponding mode of activity 9 is the third mode since 

it fills uses all of the remaining resources that are not used by activity 10. The selection 
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of mode is done so that total resource availability can be used fully. Selected modes 

are labeled together with activity number and scheduled as seen in Figure 4.4. 

 

Figure 4.4. Activity 9 and 10 with Selected Modes 

After activity 9 and 10 is scheduled, their predecessors, which are activity 6, 7 and 8, 

are arranged and taken into consideration. The algorithm randomly selects activity 6 

and checks whether it can be scheduled from the same date with others. Since 

predecessor of activities 7 and 8, which is activity 10, has a start time different than 

the predecessor of activity 6, which is activity 9, no activity can be scheduled at the 

same time with activity 6. So, the algorithm randomly selects the first mode of activity 

6 and schedules the activity as in Figure 4.5. Since activity 6 is now scheduled, activity 

3 can now be worked with. At this point, method has 3 alternatives; activity 3, 7 and 

8. Activity 7 is selected randomly and first mode of it is selected randomly. It is 

observed that activity 7 and 8 can be scheduled at the same date with respect to their 

predecessors, however, there is no mode for activity 8 that can use the remaining 

resource availability when activity 7 is implemented with the first mode. So, activity 

7 is scheduled alone and activity 8 is scheduled to the next possible date in Figure 4.6. 

 

Figure 4.5. Scheduling of Activity 6 
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Figure 4.6. Scheduling of Activity 7 and 8 

The next available activities for scheduling are; 3, 4 and 5. With respect to their 

predecessors, none of the activities can be scheduled together. Activity 4 is chosen 

randomly and scheduled with a randomly chosen mode. From the remaining activities, 

3 and 5, activity 3 is selected and scheduled with a corresponding random mode. When 

activity 3 is scheduled, number of available activities increase. Since activity 1 has no 

successors except from activity 3 and 4, it can be taken into consideration as one of 

the available activities. Between activity 1 and 5, 5 is selected randomly and scheduled 

with a random mode in Figure 4.7. After activity 5 is scheduled, its predecessor, 

activity 2, can now be branded as an available activity. Activity 1 is chosen randomly 

together with a random mode and checked if it can be scheduled together with activity 

2. Because of the reason that both of their successors has same earliest start times, they 

can be scheduled together. A mode for activity 2 that fills up the resource constraint is 

selected with respect to available resources. In the end dummy activity zero is 

scheduled and the backward scheduling finishes. 

 

Figure 4.7. Scheduling of Activity 4, 3 and 5 in Order 
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At the end of the heuristic mode, genes that represent activity priorities are assigned 

real numbers opposite of their backward schedule order, since the chromosome will 

be taken into forward scheduling for makespan calculation. The order of the schedule 

with respect to backward scheduling starts with activity 11 (dummy activity) and 

continues with 10, 9, 6, 7, 8, 4, 3, 5, 1, 2 and ends with another dummy activity which 

is activity 0. Since there are 12 activities in total, including the dummy activities, the 

Heuristic method gives priority numbers opposite to their backward scheduling order. 

The lastly scheduled activity with respect to backward schedule will be given the 

highest priority of 11 and the firstly scheduled one will be given 0. This process is 

implemented so that the schedule obtained from Heuristic Method can be furtherly 

improved with forward scheduling in HGA. Selected mode of the activities are given 

binary number of 1 and unselected modes are given 0. Both mode selections and 

priority numbers can be observed in Figure 4.8. 

 

 

Figure 4.8. Representation of Mode Assignments of Example Problem 

 

The scheduling process of heuristic method continues until all the activities are 

scheduled. The final form of the schedule is shown in Figure 4.9. The make-span of 

the backward schedule is found as 18 days. The backward schedule starts from a time 

in the future so that all activities can be scheduled backwardly without problem. Both 

mode selections and priorities are transferred into numbers and encoded into a 

chromosome so that HGA can work with the solutions. 

11 9 10 7 6 8 3 4 5 2 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1

Activity 0 1 2 3 4 5 6 7 8 9 10 11 0 116 7 8 9 101 2 3 4 5

Activity Priority Mode Selection
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Figure 4.9. Final Form of Schedule with 18 Days Makespan 

 

4.4. Hybrid Genetic Algorithm 

When 70% of initial population is created with heuristic method, that 70% and 30%, 

which are created by giving chromosomes to random numbers, are inserted into 

forward scheduling. In forward scheduling part, the gene numbers are read for each 

corresponding chromosome. From chromosomes, by checking assigned numbers, the 

method decides the priority of the activities and the selected modes for each activity. 

Schedules obtained from heuristic method are also implemented into forward schedule 

method, the reason behind this is that some activities that can start at the same time 

may have different start dates when that schedule is obtained with backward schedule. 

For instance, in the example of Heuristic Method, activities 1 and 2 can be scheduled 

together if the resource constraint is satisfied.  In Figure 4.9., Activities 1 and 2 satisfy 

the resource constraint to be scheduled together. By implementing the solution 

obtained with Heuristic Method into forward scheduling method, activity 1 and 2 can 

be started together, this way total make span of the schedule can be shortened.  

In forward scheduling, the procedure is similar with backward scheduling. Instead of 

checking successor number, in forward scheduling predecessor number of an activity 

should be 0 so that it can be scheduled. Opposite from the Heuristic Method, in 

forwards scheduling part decision of mode selection and priorities are not done. All 

chromosomes have the required information encoded. The forward method does the 

scheduling with respect to encoded data.  
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4.5. Crossover, Mutation and Renewal 

Same as ordinary GAs, HGA uses Crossover and Mutation procedures to improve the 

population. After initial population is created with Heuristic Method and randomly 

generated gene numbers, crossover and mutation procedures are implemented so that 

new individuals are introduced into the population. HGA uses a modified two point 

crossover. Initially, two chromosomes from the population is selected randomly. In 

this specific crossover method, at first stage of deciding the genes that will be crossed, 

two points are selected randomly between zero and total number of activities. By this 

way, activities between the randomly selected points are labeled. In second phase of 

the crossover operation, the corresponding modes of the randomly selected activities 

are selected. When both mode and activity selection is completed, the crossover 

operator crosses the selected genes between two chromosomes and a new individual 

is born. Child individuals created with crossover process are saved. 

After crossover operation, mutation starts. In mutation a chromosome is selected 

randomly. At the start of mutation process, a random number is generated between 0 

and 10 including both. If the generated number is lower than 2, the mutation is 

implemented into activity priority part of the chromosome, likewise, if the generated 

number is greater than 2 or equal to 2, mutation is applied to mode selection part. In 

the selected part of the chromosome, a random gene point is selected. If the selected 

part represents activity priority, the activity priority is given a random new number. 

However, if the selected gene point represents mode selection part, the procedure 

differs. The selected gene number is assigned a new number so that the current mode 

selection changes. This way, a controlled randomness is ensured and mutations that 

will not change the original schedule is avoided.  

After crossover and mutation is finished elitist method is implemented. Some of the 

best individuals are marked so that they will not be terminated when new individuals 

created with crossover and mutation are inserted into the population. At each 

generation, 3% of the population is chosen as elite individuals. 

 Some of the individuals in the population are terminated with a probability with 

respect to their fitness. Less fitted chromosomes have higher probability of being 
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terminated. New individuals are inserted instead of terminated chromosomes. And the 

whole procedure starts again from the beginning by implementing crossover, mutation, 

elitist method and termination. 

In this HGA method, each makespan calculation, which is done when the initial 

population is created and new offspring in each generation created, is considered a 

schedule counter. This counter decides the stopping criteria of the algorithm. At some 

point of the algorithm, the best solution is saved, all other individuals are terminated, 

and the algorithm creates a new population by assigning the previously saved best 

solution as the first chromosome. This process is called as the renewal process. In other 

words, at some intervals (5000 schedule) of the algorithm, the best solution is inserted 

into a new population. This procedure is implemented so that early convergence, which 

is the main disadvantage of ordinary GAs, can be prevented. The flow chart of the 

HGA is shown in Figure 4.10. 

 

 



 

 

 

53 
 

Start

Create Initial 
Population

Selection 
Procedure in 

order to Create 
New Population

Crossover 
Operation

Mutation 
Operation

Termination 
Conditions

Evaulation of 
Individuals in 

Terms of Fitness

NO

End of Algorithm

YES

Renewal 
Conditions

N
O

Create New 
Population while 
Including the best 

solution of 
Previous 

Population

YES

Choosing Elite 
Individuals

 

Figure 4.10. Flowchart of HGA 

In Figure 4.11, the example problem is inserted into forward scheduling method and 

the make span is shortened by 2 days resulting the make span with 16 days.  
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Figure 4.11. Improved Schedule with 16 Days Makespan 

In crossover operation, if activities 3 and 5 are selected, at first, priorities of the 

activities between 3 and 5 are marked, including 3 and 5. Later, Multimode alternatives 

of the same activities are marked and between the selected parents, both priority and 

mode alternatives of the selected activities are crossed. The crossed parts of the parent 

chromosome can be observed in Figure 4.12. 

 

 

Figure 4.12. Priority and Mode Alternatives in Crossover 

 

4.6. Fine-Tuning 

With fine-tuning analysis, appropriate set of parameter values for HGA are determined 

and summarized in Table 4.2. Fine-tuning analysis is done with 6 different parameters, 

namely; crossover rate, mutation rate, initial population size, renewal of the population 

in terms of schedule number and percentage of the population that is implemented into 

heuristic algorithm. The project with 100 activities is selected for analysis since it takes 

less time when compared with bigger projects. Each combination is analyzed, 10 
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results are obtained for each combination and the one with the least average standard 

deviation is selected. In the result of fine-tuning process, the combination of 40% 

crossover rate, 4% mutation rate, initial population size of 100, heuristic percentage of 

70% and renewal of 5000 schedules is selected with 1.86% standard deviation since it 

gives the best performance out of all experiments. In total, 48 experiments are done in 

fine-tuning phase. The detailed information, including the best and worst results and 

average results, about fine-tuning cases can be found in Appendix A. 

Table 4.2. Fine-tuning Parameter Selection 

Parameters 
Range of Parameters 

Selected Value 

Low Medium High 

Crossover 0,4 0,6 0,8 0,4 

Mutation 0,02 0,04 - 0,04 

Initial Population Size 50 100 - 100 

Heuristic Percentage 0,5 0,7 - 0,7 

Renewal 5000 10000 - 5000 
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CHAPTER 5 

 

 

PERFORMANCE ANALYSIS OF HGA 

 

 

 

In this chapter, the performance of HGA is compared with the state-of-art methods. 

Instead of choosing computational time as the stopping criteria, HGA uses number of 

schedules as stopping criteria. The performance analysis is done with a similar laptop 

with 2.4 GHz CPU and 8GB RAM just as Hegazy (2014) so that performance and the 

results would not be affected by the properties of the computer. The algorithm is 

designed with C# language in Microsoft Visual Studio 2013 Ultimate Edition. Average 

percentage deviations available in the Table 5.1, are the values from the best solutions 

found. Optimal solution is the best current solution found by HGA. The APD is 

calculated with the following equation;  

APD (%) = (Solution Duration-Best Known Duration) x 100 / Best Known Duration  

Computational results are summarized and presented in Table 5.1 and the relationship 

between the solution quality and processing time can be observed in Figure 5.1. The 

complete results, obtained by 40 consecutive experiments, found for each different 

project schedule with changing schedule numbers can be found in the Appendix B. For 

each project, different number of schedules are used as stopping criteria, namely; 

10000 schedule, 50000 schedule, 100000 schedule, 250000 schedule, 500000 schedule 

and 1000000 schedule for projects with activities 100 and 500, 1000, 1500 and 2000.
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5.1. Small Size Projects 

The proposed HGA is compared both with algorithms that concentrated on small size 

and large size projects.  For the schedule with 10 activities both CP and HGA found 

the optimal solution instantly. The comparison between the algorithms with respect to 

Table 5.1. Experiment Results of HGA 

Case 
Upper 
Bound 

# of 
Schedules 

HGA Solution 
Average Percentage 

Deviation (APD) 
10 

Activities 
14 10000 14 0% 

100 
Activities 

140 

10000 145.90 4.21% 

50000 143.15 2.25% 

100000 141.63 1.16% 

250000 140.45 0.32% 

500000 140.20 0.14% 

1000000 140.00 0.00% 

500 
Activities 

700 

10000 761.15 8.74% 

50000 739.03 5.58% 

100000 729.05 4.15% 

250000 719.80 2.83% 

500000 713.33 1.90% 

1000000 706.85 0.98% 

1000 
Activities 

1400 

10000 1549.83 10.70% 

50000 1503.78 7.41% 

100000 1481.25 5.80% 

250000 1459.48 4.25% 

500000 1445.80 3.27% 

1000000 1432.88 2.35% 

1500 
Activities 

2100 

10000 2341.20 11.49% 

50000 2281.48 8.64% 

100000 2252.68 7.27% 

250000 2208.05 5.15% 

500000 2184.53 4.03% 

1000000 2166.73 3.18% 
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Table 5.1. Experiment Results of HGA (Continued) 

Case 
Upper 
Bound 

# of 
Schedules 

HGA Solution 
Average Percentage 

Deviation (APD) 

2000 
Activities 

2800 

10000 3134.10 11.93% 

50000 3064.23 9.44% 

100000 3020.88 7.89% 

250000 2963.45 5.84% 

500000 2929.95 4.64% 

1000000 2909.50 3.91% 
 

computational time, number of schedules and solution quality can be observed in Table 

5.2. It can be observed that HGA outperforms all of the proposed algorithms. 

Table 5.2. Comparison between HGA and Other Methods on Small Size Projects 

Year of 
Publication 

Authors Method 
# of 

Activities 
APD 

# of 
schedules 

Computational 
Time 

2012 Zhang 
Ant Colony 

Optimization 
(ACO) 

10 0.10% - 18.3 

2014 
Menesi and 

Hegazy 

Constraint 
Programming 

(CP) 
10 0.00% - <1 sec 

2015 This work HGA 10 0.00% 1000 0.12 sec 
 

5.2. Large Size Projects 

When the project gets bigger the results start to differ. For the project with 100 

activities, HGA found APD of 2.25%, 1.16%, 0.32%, 0.14% and 0% for 10000, 50000, 

100000, 250000, 500000 and 1000000 number of schedules respectively. For the 

project with 500 activities APD results for the chosen stopping criteria are 8.74%, 

5.58%, 4.15%, 2.83%, 1.90% and 0.98%. For the 1000 activity project, APD results 

are 10.70%, 7.41%, 5.80%, 4.25%, 3.27% and 2.35%. For the 1500 activity project 

APD results are 11.49%, 8.64%, 7.27%, 5.15%, 4.03% and 3.18%. Lastly for the 

largest project of 2000 activities, APD results are 11.93%, 9.44%, 7.89%, 5.84%, 

4.64% and 3.91%.  
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As it can be understood from the data, HGA has decreasing APD as the schedule 

number increases. Especially, in large sized projects, HGA managed to obtain high 

quality results, much better than CP proposed by Hegazy and Menesi (2014). The same 

results with CP has been reached by HGA in much less computational time. When 

HGA is run with the same time as CP, the obtained results are much better than CP. 

Although, computational time and APD values are close with each other in small sized 

projects, mainly with 100 activities, HGA has great ability to solve large sized project 

instances and exceeded the CP both in terms of computational time and quality of the 

results. The best and worst results of each experiment can be found in Table 5.3. 

 The comparison between the experiment results in terms of average solution, average 

percent deviation and processing time of CP and HGA for each project instance can 

be found in Table 5.4. 
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Table 5.3. Best and Worst Results of Experiments 

 

Case 
Upper 
Bound 

# of 
Schedules 

HGA 
Average 
Solution 

HGA 
Best 

Solution 
HGA Worst Solution 

10 
Activities 

14 10000 14.00 14.00 14.00 

100 
Activities 

140 

10000 145.90 142.00 148.00 

50000 143.15 140.00 146.00 

100000 141.63 140.00 144.00 

250000 140.45 140.00 142.00 

500000 140.20 140.00 141.00 

1000000 140.00 140.00 140.00 

500 
Activities 

700 

10000 761.15 755.00 767.00 
50000 739.03 729.00 744.00 

100000 729.05 721.00 733.00 
250000 719.80 714.00 728.00 
500000 713.33 706.00 718.00 

1000000 706.85 701.00 712.00 

1000 
Activities 

1400 

10000 1549.83 1536.00 1572.00 

50000 1503.78 1489.00 1513.00 

100000 1481.25 1470.00 1490.00 

250000 1459.48 1448.00 1469.00 

500000 1445.80 1437.00 1455.00 

1000000 1432.88 1426.00 1441.00 

1500 
Activities 

2100 

10000 2341.20 2321.00 2372.00 

50000 2281.48 2260.00 2304.00 

100000 2252.68 2236.00 2267.00 

250000 2208.05 2196.00 2216.00 

500000 2184.53 2179.00 2190.00 

1000000 2166.73 2159.00 2176.00 

2000 
Activities 

2800 

10000 3134.10 3113.00 3159.00 

50000 3064.23 3042.00 3080.00 

100000 3020.88 2998.00 3036.00 

250000 2963.45 2946.00 2975.00 

500000 2929.95 2919.00 2943.00 

1000000 2909.50 2895.00 2926.00 
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Table 5.4. Comparison between HGA and CP 

Case 
Upper 
Bound 

# of 
Schedules 

HGA 
Average 
Solution 

APD 
of 

HGA 

HGA 
Processing 

time 

CP Average 
Solution 

APD of 
CP 

CP 
Processing 

time 
10 

Activities 
14 50000 14 0% Instant 14 0.00%   

    10000 145.9 4% 01:35 s 161 15.00% 1 s 

100 
Activities 

140 

50000 143.15 2.25% 6 s 143 2.14% 1 min 

100000 141.63 1.16% 12 s 140 0.00% 3 min 

250000 140.45 0.32% 30 s    
500000 140.20 0.14% 1 min    

1000000 140.00 0.00% 02:05 min       

500 
Activities 

700 

10000 761.15 8.74% 08:75 s 777.00 11.00% 1 min 

50000 739.03 5.58% 45 s 732.00 4.57% 10 min 

100000 729.05 4.15% 01:45 min 725.00 3.57% 20 min 

250000 719.80 2.83% 03:30 min 718.00 2.57% 30 min 

500000 713.33 1.90% 07:10 min 712.00 1.71% 1 h 

1000000 706.85 0.98% 14:05 min 708.00 1.14% 2 h 

1000 
Activities 

1400 

10000 1549.83 10.70% 26 s 1664.00 18.86% 1 min 

50000 1503.78 7.41% 2 min 1550.00 10.71% 10 min 

100000 1481.25 5.80% 04:20 min 1512.00 8.00% 20 min 

250000 1459.48 4.25% 10:40 min 1500.00 7.14% 30 min 

500000 1445.80 3.27% 21:30 min 1488.00 6.29% 1 h 

1000000 1432.88 2.35% 43:00 min 1467.00 4.79% 2 h 
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Table 5.4. Comparison between HGA and CP (Continued) 

Case 
Upper 
Bound 

# of 
Schedules 

HGA 
Average 
Solution 

APD 
of 

HGA 

HGA 
Processing 

time 

CP Average 
Solution 

APD of 
CP 

CP 
Processing 

time 

1500 
Activities 

2100 

10000 2341.20 11.49% 54 s 2541.00 21.00% 1 min 

50000 2281.48 8.64% 4:30 min 2330.00 10.95% 10 min 

100000 2252.68 7.27% 09:20 min 2322.00 10.57% 20 min 

250000 2208.05 5.15% 22:50 min 2316.00 10.29% 30 min 

500000 2184.53 4.03% 45:30 min 2296.00 9.33% 1 h 

1000000 2166.73 3.18% 1:30 h 2254.00 7.33% 2 h 

2000 
Activities 

2800 

10000 3134.10 11.93% 1:30 min 3406.00 21.64% 1 min 

50000 3064.23 9.44% 7:30 min 3118.00 11.36% 10 min 

100000 3020.88 7.89% 15:45 min 3107.00 10.96% 20 min 

250000 2963.45 5.84% 40 min 3102.00 10.79% 30 min 

500000 2929.95 4.64% 1:16 h 3098.00 10.64% 1 h 

1000000 2909.50 3.91% 2:35 h 3079.00 9.96% 2 h 

        3069.00 9.61% 3 h 
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Figure 5.1. Solution Quality versus Number of Schedules for Different Project Sizes 

 

All results of HGA are better in terms of APD when compared with CP. Another 

advantage HGA has over CP is that HGA reaches much better results with less 

computational time. Result comparison of CP and HGA can be observed in Table 5.4. 

The results of HGA have both better quality and less computational time. In real life 

situations in construction industry, even 1 day has big impact on the cost of the project. 

Overhead costs such as; security costs, electricity costs, accommodation costs of the 

workers and the cooking costs increase when the total project time increases. The 

average best solution found by HGA is 2909.50 days with APD of 3.91% for the 

project with 2000 activities. The best result found by CP is 3069 days with APD of 

9.61% for the same problem. The difference in total project time is approximately 160 
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days which contributes greatly to the total overhead cost of the project. If 10,000 USD, 

which is an acceptable value for medium sized projects, is spent for overhead costs per 

day, 1,600,000 USD in total can be saved throughout the project. 
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

In this thesis, the significance of the RCPCP is discussed. To solve problems with 

resource constraints and multiple modes, a hybrid genetic algorithm with a newly 

developed Heuristic Method is proposed. In the proposed Heuristic Method, backward 

scheduling is implemented and successor number of the activities together with the 

resource requirements are taken into consideration. In HGA, forward scheduling is 

implemented to all solutions, this way, advantages of backward-forward scheduling is 

used. Computational experiments show that HGA is much more efficient than other 

proposed methods. 

In literature, there is a lack of study on large problems with multimode alternatives. 

Due to this reason, a project of 10 activities having multimode resource alternatives is 

implemented. Projects with larger sizes of 100, 500, 1000, 1500 and 2000 activities 

are created by adding the project of 10 activities several times. For each project, 40 

consecutive experiments are run and average deviation from optimal solution is found. 

The main contribution of this work is that HGA can reach high quality solutions in 

large projects in short computational time, especially for large size projects. 

Experiment results show that, Heuristic Method lets the algorithm concentrate on the 

promising search areas, this way, computational time required to reach high quality 

solutions decrease significant
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Since many of the real life construction projects have more than 300 activities, main 

aim of this thesis was to reach high quality solutions in large project instances. In 

projects of 10 and 100 activities, HGA reached best known solutions. In larger 

projects, HGA reached solutions with too little deviation from best known solutions. 

When compared with CP, HGA has reached better results in the same amount of 

computational time. 

 Although large project instances reflect the size of real life construction projects, they 

do not reflect the complexity of them since they are obtained by adding the project of 

10 activities several times. This leaves a possible future research on development of 

methods that can reach high quality solutions on complex large scale projects with 

resource constraints. Although the proposed method reaches high quality solutions, 

solutions with the same makespan may have different priority and mode arrangements. 

In future works, a method can be developed for solutions with same makepsan so that 

different mode and priority arrangements can be observed. It is also observed from the 

experimental results that, with enough time HGA can reach the optimal solution for 

all project instances. In HGA single resource is defined. Another future study may be 

focused on increased resource number. 

In conclusion, there was a need for a method that can provide good solutions for large 

scale projects with multimode RCPSP. HGA is designed in order to find high quality 

solutions in large scale projects. Many of the construction projects usually delay due 

to inefficient use of resources and improper planning. In this work, the main aim is to 

overcome RCPSP in large scale projects with multimode alternatives. The 

implementation of multimode resource alternatives shows that an activity in a project 

can be finished earlier if more resources are transferred. The decision of whether to 

crash the activity or not should be given carefully so that project could be finished on 

time without violating the resource constraints. Reaching earlier finish times are 

important since with each early day, the overhead costs of the construction company 

will decrease which, in the end, contributes to the overall profit of the project.
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APPENDIX A 
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Table A.1. Fine-Tuning Experiment 

Crossover Mutation 
Population 

Size 
Heuristic 

Percentage 
New 

Population 
Best 

Solution 
Worst 

Solution 
Average 
Solution 

APD 

0.4 0.02 50 50 5000 143.00 147.00 145.00 3.57% 
0.4 0.02 50 50 10000 144.00 150.00 146.60 4.71% 

0.4 0.02 100 50 5000 142.00 145.00 143.90 2.79% 
0.4 0.02 100 50 10000 142.00 146.00 144.50 3.21% 
0.4 0.02 50 70 5000 144.00 147.00 145.20 3.71% 
0.4 0.02 50 70 10000 143.00 149.00 145.50 3.93% 

0.4 0.02 100 70 5000 140.00 145.00 142.70 1.93% 
0.4 0.02 100 70 10000 142.00 145.00 143.90 2.79% 
0.4 0.04 50 50 5000 142.00 148.00 145.10 3.64% 
0.4 0.04 50 50 10000 144.00 148.00 146.10 4.36% 

0.4 0.04 100 50 5000 140.00 145.00 143.30 2.36% 
0.4 0.04 100 50 10000 140.00 146.00 143.80 2.71% 
0.4 0.04 50 70 5000 143.00 147.00 145.20 3.71% 
0.4 0.04 50 70 10000 142.00 148.00 145.30 3.79% 

0.4 0.04 100 70 5000 141.00 144.00 142.60 1.86% 
0.4 0.04 100 70 10000 142.00 146.00 143.90 2.79% 
0.6 0.02 50 50 5000 145.00 148.00 145.90 4.21% 
0.6 0.02 50 50 10000 144.00 149.00 146.80 4.86% 

0.6 0.02 100 50 5000 142.00 146.00 144.10 2.93% 
0.6 0.02 100 50 10000 141.00 146.00 144.20 3.00% 
0.6 0.02 50 70 5000 142.00 145.00 143.90 2.79% 
0.6 0.02 50 70 10000 144.00 148.00 146.50 4.64% 
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Table A.1. Fine-Tuning Experiment (Continued) 

Crossover Mutation 
Population 

Size 
Heuristic 

Percentage 
New 

Population 
Best 

Solution 
Worst 

Solution 
Average 
Solution 

APD 

0.6 0.02 100 70 5000 141.00 145.00 143.00 2.14% 
0.6 0.02 100 70 10000 141.00 146.00 144.40 3.14% 

0.6 0.04 50 50 5000 143.00 147.00 145.50 3.93% 
0.6 0.04 50 50 10000 142.00 150.00 145.20 3.71% 
0.6 0.04 100 50 5000 141.00 145.00 143.30 2.36% 
0.6 0.04 100 50 10000 141.00 148.00 144.00 2.86% 

0.6 0.04 50 70 5000 142.00 147.00 144.40 3.14% 
0.6 0.04 50 70 10000 145.00 148.00 146.50 4.64% 
0.6 0.04 100 70 5000 142.00 146.00 143.20 2.29% 
0.6 0.04 100 70 10000 142.00 146.00 144.20 3.00% 

0.8 0.02 50 50 5000 143.00 148.00 145.00 3.57% 
0.8 0.02 50 50 10000 144.00 149.00 146.10 4.36% 
0.8 0.02 100 50 5000 143.00 145.00 143.70 2.64% 
0.8 0.02 100 50 10000 143.00 146.00 144.30 3.07% 

0.8 0.02 50 70 5000 144.00 148.00 145.70 4.07% 
0.8 0.02 50 70 10000 143.00 148.00 145.70 4.07% 
0.8 0.02 100 70 5000 142.00 145.00 143.80 2.71% 
0.8 0.02 100 70 10000 141.00 146.00 143.70 2.64% 

0.8 0.04 50 50 5000 144.00 148.00 145.40 3.86% 
0.8 0.04 50 50 10000 144.00 148.00 145.60 4.00% 
0.8 0.04 100 50 5000 143.00 146.00 144.50 3.21% 
0.8 0.04 100 50 10000 143.00 148.00 145.20 3.71% 
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Table A.1. Fine-Tuning Experiment (Continued) 

Crossover Mutation 
Population 

Size 
Heuristic 

Percentage 
New 

Population 
Best 

Solution 
Worst 

Solution 
Average 
Solution 

APD 

0.8 0.04 50 70 5000 142.00 148.00 144.20 3.00% 
0.8 0.04 50 70 10000 144.00 147.00 145.60 4.00% 

0.8 0.04 100 70 5000 141.00 146.00 143.90 2.79% 
0.8 0.04 100 70 10000 141.00 147.00 143.50 2.50% 
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Table B.1. Experiments for All Schedule Numbers  

# of 
Activities 

100 
# of 

Schedule 
10000     

 # of 
Activities 

100 
# of 

Schedule 
50000     

No Result APD No Result APD No Result APD No Result APD 

1 143 2.14% 21 148 5.71% 1 143 2.14% 21 142 1.43% 
2 145 3.57% 22 145 3.57% 2 143 2.14% 22 144 2.86% 
3 147 5.00% 23 147 5.00% 3 145 3.57% 23 143 2.14% 
4 148 5.71% 24 147 5.00% 4 141 0.71% 24 144 2.86% 

5 148 5.71% 25 144 2.86% 5 145 3.57% 25 142 1.43% 
6 143 2.14% 26 145 3.57% 6 142 1.43% 26 144 2.86% 
7 147 5.00% 27 146 4.29% 7 140 0.00% 27 145 3.57% 
8 144 2.86% 28 146 4.29% 8 142 1.43% 28 143 2.14% 

9 145 3.57% 29 146 4.29% 9 140 0.00% 29 146 4.29% 
10 147 5.00% 30 147 5.00% 10 143 2.14% 30 144 2.86% 
11 143 2.14% 31 147 5.00% 11 143 2.14% 31 144 2.86% 
12 148 5.71% 32 145 3.57% 12 144 2.86% 32 143 2.14% 

13 146 4.29% 33 148 5.71% 13 145 3.57% 33 141 0.71% 
14 142 1.43% 34 147 5.00% 14 145 3.57% 34 143 2.14% 
15 145 3.57% 35 145 3.57% 15 143 2.14% 35 144 2.86% 
16 146 4.29% 36 145 3.57% 16 144 2.86% 36 143 2.14% 

17 147 5.00% 37 146 4.29% 17 142 1.43% 37 143 2.14% 
18 148 5.71% 38 147 5.00% 18 144 2.86% 38 142 1.43% 
19 147 5.00% 39 146 4.29% 19 142 1.43% 39 143 2.14% 

20 145 3.57% 40 145 3.57% 20 144 2.86% 40 143 2.14% 

      Average 145.90 4.21%       Average 143.15 2.25% 

 



 

 

 

83
 

Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

100 
# of 

Schedule 
100000     

 # of 
Activities 

100 
# of 

Schedule 
250000     

No Result APD No Result APD No Result APD No Result APD 

1 141 0.71% 21 142 1.43% 1 140 0.00% 21 140 0.00% 

2 140 0.00% 22 141 0.71% 2 141 0.71% 22 140 0.00% 
3 141 0.71% 23 142 1.43% 3 140 0.00% 23 141 0.71% 
4 142 1.43% 24 142 1.43% 4 141 0.71% 24 140 0.00% 
5 141 0.71% 25 144 2.86% 5 140 0.00% 25 142 1.43% 

6 141 0.71% 26 140 0.00% 6 140 0.00% 26 140 0.00% 
7 142 1.43% 27 142 1.43% 7 141 0.71% 27 142 1.43% 
8 142 1.43% 28 141 0.71% 8 140 0.00% 28 141 0.71% 
9 142 1.43% 29 143 2.14% 9 141 0.71% 29 140 0.00% 

10 142 1.43% 30 142 1.43% 10 140 0.00% 30 140 0.00% 
11 142 1.43% 31 141 0.71% 11 141 0.71% 31 140 0.00% 
12 142 1.43% 32 140 0.00% 12 140 0.00% 32 140 0.00% 
13 143 2.14% 33 142 1.43% 13 141 0.71% 33 141 0.71% 

14 141 0.71% 34 142 1.43% 14 140 0.00% 34 140 0.00% 
15 141 0.71% 35 142 1.43% 15 140 0.00% 35 140 0.00% 
16 143 2.14% 36 142 1.43% 16 141 0.71% 36 141 0.71% 
17 141 0.71% 37 141 0.71% 17 140 0.00% 37 141 0.71% 

18 141 0.71% 38 141 0.71% 18 140 0.00% 38 140 0.00% 
19 141 0.71% 39 144 2.86% 19 141 0.71% 39 140 0.00% 
20 141 0.71% 40 141 0.71% 20 140 0.00% 40 141 0.71% 

      Average 141.63 1.16%       Average 140.45 0.32% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

100 
# of 

Schedule 
500000     

 # of 
Activities 

100 
# of 

Schedule 
1000000     

No Result APD No Result APD No Result APD No Result APD 

1 140 0.00% 21 140 0.00% 1 140 0.00% 21 140 0.00% 
2 140 0.00% 22 140 0.00% 2 140 0.00% 22 140 0.00% 

3 141 0.71% 23 140 0.00% 3 140 0.00% 23 140 0.00% 
4 140 0.00% 24 141 0.71% 4 140 0.00% 24 140 0.00% 
5 140 0.00% 25 140 0.00% 5 140 0.00% 25 140 0.00% 
6 140 0.00% 26 140 0.00% 6 140 0.00% 26 140 0.00% 

7 141 0.71% 27 140 0.00% 7 140 0.00% 27 140 0.00% 
8 140 0.00% 28 140 0.00% 8 140 0.00% 28 140 0.00% 
9 140 0.00% 29 140 0.00% 9 140 0.00% 29 140 0.00% 
10 141 0.71% 30 140 0.00% 10 140 0.00% 30 140 0.00% 

11 141 0.71% 31 140 0.00% 11 140 0.00% 31 140 0.00% 
12 140 0.00% 32 140 0.00% 12 140 0.00% 32 140 0.00% 
13 141 0.71% 33 140 0.00% 13 140 0.00% 33 140 0.00% 
14 141 0.71% 34 140 0.00% 14 140 0.00% 34 140 0.00% 

15 140 0.00% 35 141 0.71% 15 140 0.00% 35 140 0.00% 
16 140 0.00% 36 140 0.00% 16 140 0.00% 36 140 0.00% 
17 140 0.00% 37 140 0.00% 17 140 0.00% 37 140 0.00% 
18 140 0.00% 38 140 0.00% 18 140 0.00% 38 140 0.00% 

19 140 0.00% 39 140 0.00% 19 140 0.00% 39 140 0.00% 
20 140 0.00% 40 140 0.00% 20 140 0.00% 40 140 0.00% 

      Average 140.20 0.14%       Average 140.00 0.00% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

500 
# of 

Schedule 
10000     

 # of 
Activities 

500 
# of 

Schedule 
50000     

No Result APD No Result APD No Result APD No Result APD 

1 762 8.86% 21 756 8.00% 1 743 6.14% 21 743 6.14% 

2 760 8.57% 22 764 9.14% 2 743 6.14% 22 739 5.57% 
3 755 7.86% 23 758 8.29% 3 741 5.86% 23 741 5.86% 
4 766 9.43% 24 762 8.86% 4 744 6.29% 24 738 5.43% 
5 767 9.57% 25 760 8.57% 5 736 5.14% 25 740 5.71% 

6 764 9.14% 26 761 8.71% 6 739 5.57% 26 741 5.86% 
7 759 8.43% 27 758 8.29% 7 731 4.43% 27 737 5.29% 
8 759 8.43% 28 757 8.14% 8 739 5.57% 28 738 5.43% 
9 765 9.29% 29 759 8.43% 9 734 4.86% 29 735 5.00% 

10 756 8.00% 30 762 8.86% 10 737 5.29% 30 741 5.86% 
11 759 8.43% 31 763 9.00% 11 740 5.71% 31 738 5.43% 
12 761 8.71% 32 762 8.86% 12 744 6.29% 32 738 5.43% 
13 765 9.29% 33 763 9.00% 13 743 6.14% 33 735 5.00% 

14 758 8.29% 34 765 9.29% 14 741 5.86% 34 740 5.71% 
15 759 8.43% 35 759 8.43% 15 735 5.00% 35 742 6.00% 
16 767 9.57% 36 766 9.43% 16 736 5.14% 36 741 5.86% 
17 761 8.71% 37 767 9.57% 17 729 4.14% 37 737 5.29% 

18 762 8.86% 38 765 9.29% 18 743 6.14% 38 740 5.71% 
19 763 9.00% 39 756 8.00% 19 739 5.57% 39 743 6.14% 
20 757 8.14% 40 758 8.29% 20 737 5.29% 40 740 5.71% 

   Average 761.15 8.74%       Average 739.03 5.58% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

500 
# of 

Schedule 
100000   

  

 # of 
Activities 

500 
# of 

Schedule 
250000 

    

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 730 4.29% 21 730 4.29% 1 717 2.43% 21 716 2.29% 
2 732 4.57% 22 730 4.29% 2 723 3.29% 22 723 3.29% 

3 731 4.43% 23 731 4.43% 3 720 2.86% 23 728 4.00% 
4 729 4.14% 24 730 4.29% 4 724 3.43% 24 721 3.00% 
5 733 4.71% 25 726 3.71% 5 717 2.43% 25 718 2.57% 
6 731 4.43% 26 731 4.43% 6 721 3.00% 26 716 2.29% 

7 721 3.00% 27 727 3.86% 7 721 3.00% 27 714 2.00% 
8 731 4.43% 28 724 3.43% 8 722 3.14% 28 714 2.00% 
9 729 4.14% 29 727 3.86% 9 723 3.29% 29 717 2.43% 
10 724 3.43% 30 726 3.71% 10 717 2.43% 30 726 3.71% 

11 733 4.71% 31 730 4.29% 11 724 3.43% 31 719 2.71% 
12 724 3.43% 32 728 4.00% 12 721 3.00% 32 720 2.86% 
13 726 3.71% 33 729 4.14% 13 720 2.86% 33 724 3.43% 
14 730 4.29% 34 733 4.71% 14 719 2.71% 34 717 2.43% 

15 727 3.86% 35 731 4.43% 15 719 2.71% 35 720 2.86% 
16 726 3.71% 36 733 4.71% 16 717 2.43% 36 725 3.57% 
17 730 4.29% 37 730 4.29% 17 717 2.43% 37 720 2.86% 
18 727 3.86% 38 731 4.43% 18 717 2.43% 38 722 3.14% 

19 728 4.00% 39 730 4.29% 19 721 3.00% 39 714 2.00% 
20 732 4.57% 40 731 4.43% 20 715 2.14% 40 723 3.29% 

      Average 729.05 4.15%       Average 719.80 2.83% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

500 
# of 

Schedule 
500000     

 # of 
Activities 

500 
# of 

Schedule 
1000000     

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 709 1.29% 21 711 1.57% 1 708 1.14% 21 707 1.00% 
2 710 1.43% 22 714 2.00% 2 708 1.14% 22 704 0.57% 
3 712 1.71% 23 713 1.86% 3 708 1.14% 23 712 1.71% 
4 714 2.00% 24 715 2.14% 4 712 1.71% 24 709 1.29% 
5 714 2.00% 25 716 2.29% 5 705 0.71% 25 707 1.00% 
6 716 2.29% 26 715 2.14% 6 704 0.57% 26 708 1.14% 
7 718 2.57% 27 717 2.43% 7 703 0.43% 27 706 0.86% 
8 711 1.57% 28 711 1.57% 8 707 1.00% 28 709 1.29% 
9 717 2.43% 29 715 2.14% 9 708 1.14% 29 704 0.57% 
10 715 2.14% 30 706 0.86% 10 705 0.71% 30 707 1.00% 
11 712 1.71% 31 716 2.29% 11 706 0.86% 31 708 1.14% 
12 713 1.86% 32 712 1.71% 12 708 1.14% 32 707 1.00% 
13 712 1.71% 33 714 2.00% 13 706 0.86% 33 709 1.29% 
14 708 1.14% 34 711 1.57% 14 706 0.86% 34 711 1.57% 
15 715 2.14% 35 712 1.71% 15 701 0.14% 35 708 1.14% 
16 718 2.57% 36 716 2.29% 16 709 1.29% 36 707 1.00% 
17 712 1.71% 37 715 2.14% 17 701 0.14% 37 706 0.86% 
18 713 1.86% 38 713 1.86% 18 710 1.43% 38 704 0.57% 
19 715 2.14% 39 709 1.29% 19 709 1.29% 39 704 0.57% 
20 713 1.86% 40 715 2.14% 20 708 1.14% 40 705 0.71% 

      Average 713.33 1.90%       Average 706.85 0.98% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

1000 
# of 

Schedule 
10000     

 # of 
Activities 

1000 
# of 

Schedule 
50000     

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 1557 11.21% 21 1536 9.71% 1 1501 7.21% 21 1502 7.29% 
2 1546 10.43% 22 1547 10.50% 2 1497 6.93% 22 1504 7.43% 

3 1554 11.00% 23 1547 10.50% 3 1510 7.86% 23 1499 7.07% 
4 1552 10.86% 24 1553 10.93% 4 1508 7.71% 24 1508 7.71% 
5 1549 10.64% 25 1542 10.14% 5 1510 7.86% 25 1504 7.43% 
6 1544 10.29% 26 1555 11.07% 6 1499 7.07% 26 1506 7.57% 

7 1548 10.57% 27 1544 10.29% 7 1507 7.64% 27 1506 7.57% 
8 1553 10.93% 28 1550 10.71% 8 1500 7.14% 28 1503 7.36% 
9 1562 11.57% 29 1555 11.07% 9 1507 7.64% 29 1502 7.29% 
10 1547 10.50% 30 1545 10.36% 10 1502 7.29% 30 1505 7.50% 

11 1553 10.93% 31 1551 10.79% 11 1504 7.43% 31 1502 7.29% 
12 1542 10.14% 32 1541 10.07% 12 1500 7.14% 32 1508 7.71% 
13 1545 10.36% 33 1562 11.57% 13 1489 6.36% 33 1501 7.21% 
14 1540 10.00% 34 1555 11.07% 14 1511 7.93% 34 1502 7.29% 

15 1545 10.36% 35 1557 11.21% 15 1498 7.00% 35 1513 8.07% 
16 1542 10.14% 36 1546 10.43% 16 1506 7.57% 36 1506 7.57% 
17 1555 11.07% 37 1555 11.07% 17 1508 7.71% 37 1502 7.29% 
18 1551 10.79% 38 1572 12.29% 18 1510 7.86% 38 1502 7.29% 

19 1550 10.71% 39 1547 10.50% 19 1500 7.14% 39 1498 7.00% 
20 1548 10.57% 40 1550 10.71% 20 1507 7.64% 40 1504 7.43% 

      Average 1549.83 10.70%       Average 1503.78 7.41% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

1000 
# of 

Schedule 
100000     

 # of 
Activities 

1000 
# of 

Schedule 
250000     

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 1483 5.93% 21 1482 5.86% 1 1468 4.86% 21 1463 4.50% 

2 1481 5.79% 22 1483 5.93% 2 1466 4.71% 22 1459 4.21% 
3 1476 5.43% 23 1484 6.00% 3 1462 4.43% 23 1455 3.93% 
4 1477 5.50% 24 1479 5.64% 4 1467 4.79% 24 1461 4.36% 
5 1485 6.07% 25 1481 5.79% 5 1452 3.71% 25 1464 4.57% 

6 1479 5.64% 26 1477 5.50% 6 1467 4.79% 26 1456 4.00% 
7 1483 5.93% 27 1479 5.64% 7 1466 4.71% 27 1460 4.29% 
8 1472 5.14% 28 1481 5.79% 8 1451 3.64% 28 1469 4.93% 
9 1485 6.07% 29 1480 5.71% 9 1467 4.79% 29 1452 3.71% 

10 1486 6.14% 30 1484 6.00% 10 1457 4.07% 30 1458 4.14% 
11 1483 5.93% 31 1486 6.14% 11 1462 4.43% 31 1462 4.43% 
12 1486 6.14% 32 1489 6.36% 12 1461 4.36% 32 1461 4.36% 
13 1490 6.43% 33 1470 5.00% 13 1462 4.43% 33 1457 4.07% 

14 1487 6.21% 34 1480 5.71% 14 1449 3.50% 34 1465 4.64% 
15 1482 5.86% 35 1482 5.86% 15 1457 4.07% 35 1455 3.93% 
16 1478 5.57% 36 1484 6.00% 16 1458 4.14% 36 1451 3.64% 
17 1480 5.71% 37 1478 5.57% 17 1469 4.93% 37 1464 4.57% 

18 1481 5.79% 38 1484 6.00% 18 1452 3.71% 38 1456 4.00% 
19 1478 5.57% 39 1483 5.93% 19 1453 3.79% 39 1457 4.07% 
20 1476 5.43% 40 1476 5.43% 20 1460 4.29% 40 1448 3.43% 

      Average 1481.25 5.80%       Average 1459.48 4.25% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

1000 
# of 

Schedule 
500000   

  

 # of 
Activities 

1000 
# of 

Schedule 
1000000     

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 1452 3.71% 21 1444 3.14% 1 1431 2.21% 21 1434 2.43% 

2 1449 3.50% 22 1448 3.43% 2 1435 2.50% 22 1433 2.36% 
3 1450 3.57% 23 1440 2.86% 3 1429 2.07% 23 1435 2.50% 
4 1443 3.07% 24 1446 3.29% 4 1435 2.50% 24 1433 2.36% 
5 1447 3.36% 25 1444 3.14% 5 1433 2.36% 25 1430 2.14% 

6 1454 3.86% 26 1449 3.50% 6 1435 2.50% 26 1434 2.43% 
7 1439 2.79% 27 1441 2.93% 7 1427 1.93% 27 1435 2.50% 
8 1440 2.86% 28 1443 3.07% 8 1435 2.50% 28 1434 2.43% 
9 1441 2.93% 29 1447 3.36% 9 1433 2.36% 29 1429 2.07% 

10 1444 3.14% 30 1452 3.71% 10 1434 2.43% 30 1435 2.50% 
11 1447 3.36% 31 1446 3.29% 11 1433 2.36% 31 1441 2.93% 
12 1455 3.93% 32 1443 3.07% 12 1426 1.86% 32 1436 2.57% 
13 1444 3.14% 33 1438 2.71% 13 1428 2.00% 33 1430 2.14% 

14 1441 2.93% 34 1445 3.21% 14 1433 2.36% 34 1433 2.36% 
15 1449 3.50% 35 1454 3.86% 15 1431 2.21% 35 1429 2.07% 
16 1444 3.14% 36 1445 3.21% 16 1428 2.00% 36 1432 2.29% 
17 1446 3.29% 37 1437 2.64% 17 1437 2.64% 37 1434 2.43% 

18 1449 3.50% 38 1450 3.57% 18 1432 2.29% 38 1435 2.50% 
19 1447 3.36% 39 1451 3.64% 19 1440 2.86% 39 1436 2.57% 
20 1441 2.93% 40 1447 3.36% 20 1430 2.14% 40 1432 2.29% 

      Average 1445.80 3.27%       Average 1432.88 2.35% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

1500 
# of 

Schedule 
10000     

 # of 
Activities 

1500 
# of 

Schedule 
50000     

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 2342 11.52% 21 2341 11.48% 1 2274 8.29% 21 2285 8.81% 

2 2346 11.71% 22 2329 10.90% 2 2270 8.10% 22 2289 9.00% 
3 2331 11.00% 23 2321 10.52% 3 2268 8.00% 23 2282 8.67% 
4 2340 11.43% 24 2348 11.81% 4 2287 8.90% 24 2284 8.76% 
5 2338 11.33% 25 2337 11.29% 5 2260 7.62% 25 2284 8.76% 

6 2321 10.52% 26 2325 10.71% 6 2280 8.57% 26 2288 8.95% 
7 2350 11.90% 27 2343 11.57% 7 2286 8.86% 27 2274 8.29% 
8 2354 12.10% 28 2335 11.19% 8 2287 8.90% 28 2282 8.67% 
9 2353 12.05% 29 2340 11.43% 9 2285 8.81% 29 2276 8.38% 

10 2333 11.10% 30 2353 12.05% 10 2293 9.19% 30 2283 8.71% 
11 2344 11.62% 31 2327 10.81% 11 2284 8.76% 31 2304 9.71% 
12 2372 12.95% 32 2358 12.29% 12 2278 8.48% 32 2272 8.19% 
13 2346 11.71% 33 2346 11.71% 13 2275 8.33% 33 2276 8.38% 

14 2329 10.90% 34 2338 11.33% 14 2280 8.57% 34 2275 8.33% 
15 2337 11.29% 35 2337 11.29% 15 2284 8.76% 35 2277 8.43% 
16 2356 12.19% 36 2351 11.95% 16 2284 8.76% 36 2283 8.71% 
17 2346 11.71% 37 2346 11.71% 17 2287 8.90% 37 2284 8.76% 

18 2326 10.76% 38 2341 11.48% 18 2278 8.48% 38 2280 8.57% 
19 2356 12.19% 39 2329 10.90% 19 2294 9.24% 39 2285 8.81% 
20 2343 11.57% 40 2340 11.43% 20 2290 9.05% 40 2272 8.19% 

      Average 2341.20 11.49%       Average 2281.48 8.64% 
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 Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

1500 
# of 

Schedule 
100000     

 # of 
Activities 

1500 
# of 

Schedule 
250000     

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 2250 7.14% 21 2258 7.52% 1 2212 5.33% 21 2206 5.05% 
2 2267 7.95% 22 2256 7.43% 2 2197 4.62% 22 2196 4.57% 

3 2248 7.05% 23 2265 7.86% 3 2216 5.52% 23 2216 5.52% 
4 2241 6.71% 24 2248 7.05% 4 2214 5.43% 24 2216 5.52% 
5 2245 6.90% 25 2251 7.19% 5 2198 4.67% 25 2209 5.19% 
6 2246 6.95% 26 2253 7.29% 6 2207 5.10% 26 2209 5.19% 

7 2264 7.81% 27 2253 7.29% 7 2209 5.19% 27 2207 5.10% 
8 2252 7.24% 28 2252 7.24% 8 2204 4.95% 28 2212 5.33% 
9 2259 7.57% 29 2258 7.52% 9 2209 5.19% 29 2206 5.05% 
10 2247 7.00% 30 2267 7.95% 10 2208 5.14% 30 2208 5.14% 

11 2256 7.43% 31 2256 7.43% 11 2215 5.48% 31 2209 5.19% 
12 2258 7.52% 32 2242 6.76% 12 2205 5.00% 32 2210 5.24% 
13 2262 7.71% 33 2246 6.95% 13 2200 4.76% 33 2206 5.05% 
14 2252 7.24% 34 2259 7.57% 14 2210 5.24% 34 2215 5.48% 

15 2259 7.57% 35 2248 7.05% 15 2213 5.38% 35 2198 4.67% 
16 2251 7.19% 36 2249 7.10% 16 2203 4.90% 36 2214 5.43% 
17 2244 6.86% 37 2258 7.52% 17 2197 4.62% 37 2210 5.24% 
18 2258 7.52% 38 2246 6.95% 18 2214 5.43% 38 2208 5.14% 

19 2256 7.43% 39 2236 6.48% 19 2210 5.24% 39 2209 5.19% 
20 2254 7.33% 40 2237 6.52% 20 2213 5.38% 40 2204 4.95% 

      Average 2252.68 7.27%       Average 2208.05 5.15% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

1500 
# of 

Schedule 
500000     

 # of 
Activities 

1500 
# of 

Schedule 
# of 

Schedule 
100000   

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 2184 4.00% 21 2186 4.10% 1 2162 2.95% 21 2171 3.38% 

2 2187 4.14% 22 2185 4.05% 2 2167 3.19% 22 2163 3.00% 
3 2188 4.19% 23 2185 4.05% 3 2165 3.10% 23 2167 3.19% 
4 2183 3.95% 24 2190 4.29% 4 2168 3.24% 24 2169 3.29% 
5 2182 3.90% 25 2182 3.90% 5 2169 3.29% 25 2171 3.38% 

6 2186 4.10% 26 2180 3.81% 6 2168 3.24% 26 2165 3.10% 
7 2182 3.90% 27 2184 4.00% 7 2168 3.24% 27 2163 3.00% 
8 2187 4.14% 28 2187 4.14% 8 2165 3.10% 28 2168 3.24% 
9 2184 4.00% 29 2186 4.10% 9 2159 2.81% 29 2170 3.33% 

10 2180 3.81% 30 2184 4.00% 10 2168 3.24% 30 2168 3.24% 
11 2183 3.95% 31 2186 4.10% 11 2169 3.29% 31 2164 3.05% 
12 2186 4.10% 32 2179 3.76% 12 2176 3.62% 32 2171 3.38% 
13 2184 4.00% 33 2181 3.86% 13 2161 2.90% 33 2172 3.43% 

14 2184 4.00% 34 2185 4.05% 14 2162 2.95% 34 2165 3.10% 
15 2182 3.90% 35 2184 4.00% 15 2175 3.57% 35 2162 2.95% 
16 2188 4.19% 36 2182 3.90% 16 2165 3.10% 36 2168 3.24% 
17 2186 4.10% 37 2183 3.95% 17 2167 3.19% 37 2169 3.29% 

18 2188 4.19% 38 2184 4.00% 18 2172 3.43% 38 2164 3.05% 
19 2184 4.00% 39 2188 4.19% 19 2164 3.05% 39 2163 3.00% 
20 2182 3.90% 40 2190 4.29% 20 2162 2.95% 40 2164 3.05% 

      Average 2184.53 4.03%       Average 2166.73 3.18% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

2000 
# of 

Schedule 
10000     

 # of 
Activities 

2000 
# of 

Schedule 
50000     

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 3134 11.93% 21 3145 12.32% 1 3050 8.93% 21 3062 9.36% 
2 3124 11.57% 22 3137 12.04% 2 3064 9.43% 22 3074 9.79% 

3 3144 12.29% 23 3120 11.43% 3 3072 9.71% 23 3076 9.86% 
4 3122 11.50% 24 3128 11.71% 4 3058 9.21% 24 3074 9.79% 
5 3129 11.75% 25 3145 12.32% 5 3046 8.79% 25 3069 9.61% 
6 3130 11.79% 26 3132 11.86% 6 3067 9.54% 26 3070 9.64% 

7 3126 11.64% 27 3146 12.36% 7 3058 9.21% 27 3072 9.71% 
8 3142 12.21% 28 3153 12.61% 8 3068 9.57% 28 3063 9.39% 
9 3137 12.04% 29 3145 12.32% 9 3063 9.39% 29 3056 9.14% 
10 3113 11.18% 30 3137 12.04% 10 3053 9.04% 30 3071 9.68% 

11 3156 12.71% 31 3138 12.07% 11 3049 8.89% 31 3053 9.04% 
12 3150 12.50% 32 3130 11.79% 12 3042 8.64% 32 3062 9.36% 
13 3122 11.50% 33 3127 11.68% 13 3062 9.36% 33 3064 9.43% 
14 3117 11.32% 34 3143 12.25% 14 3064 9.43% 34 3074 9.79% 

15 3140 12.14% 35 3133 11.89% 15 3080 10.00% 35 3071 9.68% 
16 3127 11.68% 36 3123 11.54% 16 3077 9.89% 36 3070 9.64% 
17 3140 12.14% 37 3126 11.64% 17 3051 8.96% 37 3065 9.46% 
18 3122 11.50% 38 3125 11.61% 18 3063 9.39% 38 3078 9.93% 

19 3159 12.82% 39 3137 12.04% 19 3060 9.29% 39 3073 9.75% 
20 3141 12.18% 40 3119 11.39% 20 3064 9.43% 40 3061 9.32% 

      Average 3134.10 11.93%       Average 3064.23 9.44% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

2000   
# of 

Schedule 
100000   

 # of 
Activities 

2000   
# of 

Schedule 
250000   

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 3020 7.86% 21 3024 8.00% 1 2969 6.04% 21 2946 5.21% 

2 3024 8.00% 22 3020 7.86% 2 2970 6.07% 22 2962 5.79% 
3 3024 8.00% 23 3016 7.71% 3 2972 6.14% 23 2964 5.86% 
4 3023 7.96% 24 3026 8.07% 4 2959 5.68% 24 2962 5.79% 
5 3017 7.75% 25 3026 8.07% 5 2967 5.96% 25 2971 6.11% 

6 3020 7.86% 26 3025 8.04% 6 2962 5.79% 26 2969 6.04% 
7 3030 8.21% 27 3023 7.96% 7 2954 5.50% 27 2965 5.89% 
8 3015 7.68% 28 3014 7.64% 8 2959 5.68% 28 2970 6.07% 
9 3016 7.71% 29 3018 7.79% 9 2963 5.82% 29 2969 6.04% 

10 3022 7.93% 30 3021 7.89% 10 2965 5.89% 30 2975 6.25% 
11 3021 7.89% 31 3015 7.68% 11 2959 5.68% 31 2974 6.21% 
12 3020 7.86% 32 3026 8.07% 12 2959 5.68% 32 2964 5.86% 
13 3036 8.43% 33 3028 8.14% 13 2956 5.57% 33 2967 5.96% 

14 3018 7.79% 34 3019 7.82% 14 2956 5.57% 34 2960 5.71% 
15 3019 7.82% 35 3022 7.93% 15 2960 5.71% 35 2961 5.75% 
16 3023 7.96% 36 3025 8.04% 16 2965 5.89% 36 2961 5.75% 
17 3019 7.82% 37 3025 8.04% 17 2963 5.82% 37 2967 5.96% 

18 2998 7.07% 38 3018 7.79% 18 2959 5.68% 38 2966 5.93% 
19 3021 7.89% 39 3019 7.82% 19 2960 5.71% 39 2969 6.04% 
20 3017 7.75% 40 3022 7.93% 20 2962 5.79% 40 2957 5.61% 

      Average 3020.88 7.89%       Average 2963.45 5.84% 
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Table B.1. Experiments for All Schedule Numbers (Continued) 

# of 
Activities 

2000   
# of 

Schedule 
500000   

 # of 
Activities 

2000   
# of 

Schedule 
1000000   

No Result Deviation No Result Deviation No Result Deviation No Result Deviation 

1 2936 4.86% 21 2928 4.57% 1 2917 4.18% 21 2912 4.00% 
2 2923 4.39% 22 2927 4.54% 2 2903 3.68% 22 2910 3.93% 
3 2936 4.86% 23 2930 4.64% 3 2918 4.21% 23 2904 3.71% 
4 2930 4.64% 24 2934 4.79% 4 2914 4.07% 24 2910 3.93% 

5 2919 4.25% 25 2926 4.50% 5 2908 3.86% 25 2914 4.07% 
6 2926 4.50% 26 2933 4.75% 6 2910 3.93% 26 2915 4.11% 
7 2931 4.68% 27 2932 4.71% 7 2926 4.50% 27 2906 3.79% 
8 2932 4.71% 28 2930 4.64% 8 2913 4.04% 28 2908 3.86% 
9 2943 5.11% 29 2932 4.71% 9 2911 3.96% 29 2902 3.64% 
10 2936 4.86% 30 2925 4.46% 10 2911 3.96% 30 2904 3.71% 
11 2938 4.93% 31 2928 4.57% 11 2906 3.79% 31 2916 4.14% 
12 2930 4.64% 32 2931 4.68% 12 2895 3.39% 32 2914 4.07% 
13 2934 4.79% 33 2929 4.61% 13 2915 4.11% 33 2912 4.00% 

14 2934 4.79% 34 2922 4.36% 14 2909 3.89% 34 2908 3.86% 
15 2924 4.43% 35 2926 4.50% 15 2910 3.93% 35 2910 3.93% 
16 2930 4.64% 36 2928 4.57% 16 2912 4.00% 36 2911 3.96% 
17 2928 4.57% 37 2933 4.75% 17 2907 3.82% 37 2910 3.93% 

18 2934 4.79% 38 2925 4.46% 18 2902 3.64% 38 2902 3.64% 
19 2924 4.43% 39 2932 4.71% 19 2897 3.46% 39 2908 3.86% 
20 2931 4.68% 40 2928 4.57% 20 2906 3.79% 40 2914 4.07% 
      Average 2929.95 4.64%       Average 2909.50 3.91% 

 


