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ABSTRACT

USE OF LEARNING TRAJECTORIES BASED INSTRUCTION TO
RESTRUCTURE PRE-SERVICE ELEMENTARY TEACHERS’
MATHEMATICAL CONTENT AND STUDENT KNOWLEDGE

Yilmaz, Zuhal
Ph.D., Department of Elementary Education

Supervisor: Assoc. Prof. Dr. Cigdem HASER

June 2015, 322 pages

The purpose of this study was to explore elementary pre-service teachers’
(PTs) mathematical content knowledge (MCK) and student knowledge (SK)
restructuring practices for equipartitioning related mathematical ideas. Nine senior
PTs from a private university located southeastern part of the Turkey were
voluntarily participated to Learning Trajectories Based Instruction (LTBI) teaching
experiment. Classroom video data, written works of PTs, pre-post tests and field
notes were the main sources of the data collected in the study.

The analysis of pre-test data showed that majority of PTs had a limited MCK
and SK of equipartitioning related ideas. They exhibited serious mathematical
misconceptions and errors. They rarely utilized multiple representations and
strategies in their solutions. In addition, PTs exhibited a limited ability to anticipate

students” mathematics. The analysis of the post-test data showed that LTBI helped



PTs to enhance their prior MCK and SK. They remediated their misconceptions and
errors and utilized multiple mathematical strategies and representations, They
started to anticipate a variety of students’ mathematical strategies and
misconceptions along with rich and accurate.mathematical explanations.

The findings of this study suggested an emergent framework of knowledge
restructuring practices of PTs. They employed seven practices for their MCK and
four practices for SK. PTs exhibited remediating and shifting, expanding and
challenging practices for restructuring Common Content Knowledge, internalizing
and sizing up practices for Specialized Content Knowledge, connecting and
generalizing practices for Horizon Content Knowledge. They exhibited
distinguishing and recognizing, anticipating, ordering and empathizing practices for

restructuring their SK.

Keywords: Pre-Service Elementary Teachers, Learning Trajectories Based
Instruction,  Mathematical Content  Knowledge, Student  Knowledge,

Equipartitioning



0z

OGRENME ROTALARI TEMELLI OGRETIMIN SINIF OGRETMEN
ADAYLARININ MATEMATIKSEL ALAN VE OGRENCI BILGILERINI
YENIDEN YAPILANDIRILMASINDA KULLANIMI

Yilmaz, Zuhal

Doktora, {lkdgretim Béliimii

Tez Yoneticisi: Dog. Dr. Cigdem HASER

Haziran 2015, 322 sayfa

Bu c¢aligmanin amaci siif 6gretmen adaylarinin espaylagim kavrami ile
alakali matematiksel alan bilgilerini ve &grenci bilgilerini nasil yeniden
yapilandirdiklarini  arastirmaktir.  Tiirkiye’'nin  giineydogusundaki  6zel bir
iiniversitede okuyan dokuz Ogretmen adayi, O0grenme rotalar1 temelli Ogretim
deneyine goniillii olarak katilmiglardir. Siif etkinliklerinin video c¢ekimleri,
adaylarin yazili ¢alismalari, 6n ve son test ve alan notlar1 bu ¢aligmanin veri toplama
araglaridir.

On testin analizleri dgretmen adaylarmin biiyiik bir ¢ogunlugunun es
paylasim ile alakali matematiksel diisiincelere dair kisitli bir alan bilgisine ve

Ogrenci bilgisine sahip oldugunu ortaya koymustur. Adaylar 6n testte ciddi kavram

vi



yanilgilart ve matematiksel hatalar gostermislerdir. Adaylar nadiren birden fazla
¢oziim yolu ve gosterim kullanmiglardir. Adaylar 6grencinin matematiksel
ogrenmesini anlamada kisitli bir beceri ortaya koymuslardir. Son testin analizi
ogrenme rotalar1 temelli Ogretimin adaylarin matematiksel alan bilgilerini ve
ogrenci bilgilerini iyilestirdigini ortaya koymustur. Adaylar sahip olduklar1 kavram
yanilgt ve hatalarint diizeltmislerdir ve ¢oziimlerinde farkli matematiksel yol ve
gosterim kullanmiglardir. Ek olarak, adaylar 6grencilerin matematiksel stratejilerini
ve kavram yanilgilarini tahmin etmis ve bunlar1 dogru ve zengin bir matematiksel
dille agiklamislardir.

Bu caligmanin sonucunda Ogretmen adaylarinin §grenme rotalari temelli
ogretimde bilgilerini yeniden yapilandirma eylemleri ¢ercevesi onerilmistir. Adaylar
matematiksel alan bilgilerini yedi ve 6grenci bilgilerini dort yeniden yapilandirma
eylem cesidi ile gostermislerdir. Adaylar genel alan bilgilerini diizeltme ve
degistirme, genisletme ve meydan okuma, 6zel alan bilgilerini i¢sellestirme ve
boyutlarin1 ortaya ¢ikarma, ufuk alan bilgilerini iliskilendirme ve genelleme
eylemlerini ~ gostererek  yeniden  yapilandirmislardir.  Ogrenci  bilgilerini
yapilandirirken ise ayirt etme ve tamima, dngdrme, siralama ve empati kurma

eylemlerini gostermislerdir.

Anahtar Kelimeler: Siif Ogretmen Adaylari, Ogrenme Rotalar1 Temelli Ogretim,

Matematiksel Alan Bilgisi, Ogrenci Bilgisi, Es Paylasim
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CHAPTER |

INTRODUCTION

Researchers have deeply examined how students understand, reason, and
learn, and how they develop sophisticated thinking within the past two decades
(Clements, Sarama & Julie, 2009; Fennema & Franke, 1992; Ma, 1999). Although
many researchers studied how children learn over time, possible learning obstacles
that they may encounter during learning and skills they need to acquire to learn a
concept are only one side of the their learning. On the other side, teachers’
knowledge and abilities to analyze students’ mathematical reasoning and learning
are important issues to consider because teachers have great influence on what and
how students learn over time (Darling-Hammond & Ball, 1998; Ma, 1999). Their
knowledge of mathematics has a critical influence on their practices in classroom
(Clements, Sarama & Julie, 2009; Fennema & Franke, 1992; Ma, 1999). Although
studies indicated the importance of teacher role in mathematics teaching process,
several studies (Baki, 2013; Phillip, 2008; Spitzer, Phelps, Beyers, Johnson &
Sieminski, 2011; Thipkong & Davis, 1991) have revealed that both pre-service and
in-service teachers lack complete and comprehensive content knowledge required
for the mathematics they teach. Therefore, in order to construct a better teaching and
learning environment, teachers should be trained to develop an understanding for
how children learn mathematics and to possess deep content knowledge to teach
mathematics.

Knowing deeply the mathematics itself and understanding how students
learn over time are the two critical issues that have impact on revisions and
refinements in mathematics education (Darling-Hammond & Ball, 1998; Ma, 1999).
Initially researchers suggested that Hypothetical Learning Trajectories (HLT)
(Simon, 1995) have potential to contribute our understanding of how students’
mathematical understanding evolves over time. They stated that HLT can also assist
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teachers in teaching and learning mathematics in their classrooms (Clements &
Sarama, 2004; Duncan & Hmelo-Silver, 2009).

In his seminal work, Simon (1995) defined HLT as “the learning goal, the
learning activities, and the thinking and learning in which the students might
engage” (p. 133). He perceived these trajectories as hypothetical because individual
students’ progression could not be predicted in advance (Sztajn, Wilson, Confrey &
Edington, 2012). Although Simon (1995) named these trajectories as hypothetical,
mathematics educators constructed learning trajectories (LT) that were derived from
empirical data in recent approaches. There are various working definitions of these
LTs. For instance, Corcoran, Mosher and Rogat (2009) stated LTs “...are
hypothesized descriptions of the successively more sophisticated ways student
thinking about an important domain of knowledge or practice develops as children
learn about and investigate that domain over an appropriate span of time” (p.37). In
addition, Clements and Sarama (2004) indicated LTs consisted of three parts that
are a mathematical goal, children’s developmental route to achieve that goal and a
set of instructional activities, or tasks for each level of the LT to support children
higher level of mathematical thinking.

Learning trajectory definitions have generally used comprehensive research
synthesis as a base, then they all identified a particular domain and examined how
students’ mathematical thinking and learning proceeded over time from least to
more complex nets of constructs (Yilmaz, 2011). Although these commonalities
exist among definitions, Confrey, Maloney, Nyguyen, Mojica and Myers’s (2009)
LT definition have been employed in this study because their definition had distinct
LT features:

A researcher-conjectured, empirically supported description of the
ordered network of constructs a student encounters through instruction
(i.e., activities, tasks, tools, forms of interaction, and methods of
evaluation), in order to move from informal ideas, through successive
refinements of representation, articulation and reflection, towards
increasingly complex concepts over time (p.2).

The distinct features in Confrey et al.’s (2009) definition are embedded in

the inclusion of the following phrases:



Researcher-conjectured refers to the fact that LTs are models created by
researchers who work on students’ likely paths.

Empirically supported refers to a three-step process: reviewing the
literature, asking outside experts to review the syntheses, and conducting
further studies.

Through instruction is the recognition that students will only progress if
provided appropriate opportunities, technology, and tools to learn the
material and that the sequence of those activities must be designed
intentionally to support the trajectory.

Through successive refinements indicates the needs for students’ active
involvement in the learning process and engagement in cycles of
problem-solving behavior (Confrey et al., 2009, p. 2-3).

Integrating LTs into education has great potential for contributing current
stage of knowledge on how students learn (Clements, Sarama, & Julie, 2009;
Confrey et al., 2009; Duncan & Hmelo-Silver, 2009). Yet the field has recently
started explore to what extent LTs could be integrated into mathematical teaching
practices, how LTs could be used in teacher education and used as a tool for
planning phase of the instruction, and assessing students’ learning (Clements,
Sarama & Julie, 2009; Daro, Mosher & Corcoran, 2011; Sztajn, Wilson, Confrey &
Edington, 2012). Although there are recent studies (e.g. Niess & Gillow-Wiles,
2014; Sztajn, Wilson, Edgington & Myers, 2014; Wilson, Sztajn, Edgington &
Confrey, 2013) conducted on utilization of LTs in in-service teacher training to
develop in-service teachers’ mathematical content knowledge and pedagogical
content knowledge, there are only a few studies on how pre-service teachers (PTs)
utilize LTs for the similar aim (Butterfield, Forrester, McCallum & Chinnappan,
2013; Wilson, Mojica & Confrey, 2013a). Butterfield and his colleagues’ (2013)
study was in the form of proposing utilization of LT about area and perimeter
concepts in teacher education. Wilson and his collegues (2013) study was a study
conducted with PTs through utilizing LT.

Working with PTs is an important task since PTs need necessary skills to
support students’ mathematical learning and understanding before they actively
work in the field. Preparing PTs for creating meaningful mathematical practices that
will engage their students in doing and learning mathematics is one of the main aims
of teacher education programs (Stein & Smith, 2011). To realize this aim, teacher

education programs should be designed according to students’ learning models,
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effective instructional practices, and well-integrated current learning approaches
(Elmore, 2002). Pedagogy of these programs should be grounded in assessment of
students’ understanding and reasoning (Elmore, 2002). Courses in these programs
should support PTs to acquire certain skills such as determining students’ initial
knowledge level, understanding how students’ thinking evolves over time,
launching mathematical tasks that elicit important mathematical strategies (Philipp,
2008; Stein & Smith, 1998; Smith & Stein, 2011) and ideas, eliciting possible
learning obstacles and misconception of students (Confrey, 2006), and actively
refining their mathematical content and pedagogical content knowledge (Graeber,
Tirosh, & Glover, 1989).

There may be a certain level of agreement among researchers about how
teacher-education programs should be designed (Elmore, 2002), yet it is still unclear
which design is the most effective one or how effective existent programs are. This
ambiguity aroused since several problems related to teacher education and quality of
PTs were documented in the existing literature. Some of the problems can be stated
briefly as PTs do not know the mathematics they are supposed to teach (Ball, 1990;
Phillip, 2008), the teacher education courses are insufficient to tie the theory and
practice (Ubuz, 2009), PTs do not have much opportunity to work with actual
students (Haciomeroglu & Tagkin, 2010; Jansen & Spitzer, 2009), building the
connection between the mathematics courses provided at the university and the
mathematics that PTs would teach is hard (Eraslan, 2009). Thus, mathematics
educators try to bring new approaches to redesign mathematics teacher education
(Elmore, 2002). These new approaches should have the potential to support PTs for
acquiring these skills and prepare PTs for creating a learning environment in which
all students engage in cognitively demanding mathematics.

Simon (1995) and Clement and Sarama (2013) suggested that research-based
learning trajectories are tools that educators can use to improve mathematics
learning and teaching. In addition, several researchers (Butterfield et al., 2013;
Clements & Sarama, 2013; Sztajn et al., 2012; Wilson et al., 2013a) indicated that a
learning trajectory may serve as a tool for realizing above mentioned reference
design in which PTs have the opportunity to experience practices that emphasize

students’ mathematical thinking and aims for a high level success for all students.
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Recently, Sztajn et al. (2012) coined the concept of learning trajectories
based instruction (LTBI) in which LTs are used as an instructional tool. This
emergent theory emphasized knowing students’ developmental progression in
mathematics learning (Sztajn et al, 2012). Also, this theory is a comprehensive
explanatory theory of teaching since it included the accumulated knowledge
deduced from various teaching frameworks and from the LTs research. These two
strengths of the LTBI theory have the potential to address the existent problems and
issues in teacher education. Because, in a LTBI environment, PTs have access to a
rich body of knowledge related to subject they would teach and also deep
knowledge about how the students learn that subject. Thus, they can build more
effective mathematics learning environments with the help of the experiences in the
LTBI. Yet the question is, whether in-service teachers and teacher candidates in
teacher education programs are aware of the progressions of students’ mathematical
learning along with influence of their own mathematical content knowledge.

In this instance, examination of documented literature indicated that
integrating LTs in teacher education courses is one of the areas that needs further
investigations. There is only a few number of studies that have been conducted on
how to use LTs in teacher education (such as Andreasen, 2006; Mojica, 2010;
Wilson et al., 2013a). Andreasen (2006) utilized a hypothetical learning trajectory
on place value and operations concept with 16 elementary pre-service teachers. He
examined pre-service teachers’ social interaction within the classroom while
engaging the presented mathematical tasks. Mojica (2010) conducted a study to
examine how to train PTs so that they would use a LT to teach mathematics. She
worked with a specific PTs group in which PTs had an intense mathematics courses
at the university and had intense experience on working with students prior to study.
She found that usage of LT supported these PTs’ understanding of students’
learning. She also found that PTs’ subject matter knowledge could be improved
through usage of LT.

Although the studies mentioned above utilized LT to assess teachers’ and
PTs’ progression in their mathematical knowledge, earlier studies (Andreasan,
2006; Mojica, 2010) did not situate their studies in a theory specifically linked to
LTs. Also, although these studies (Andreasen, 2006; Mojica, 2010; Wilson et al.,
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2013a) reported that PTs enhanced their mathematical content knowledge (MCK) as
a result of utilization of a LT, a detailed examination of how this change occured in
teachers’ and PTs’ knowledge levels still remained as a question. As Ball et al.
(2012) suggested the dimensions of MCK should be delineated further. Since LTBI
combined the comprehensive knowledge deduced from various teaching approaches
and LTs research, examination of the actions and practices related to enhancement
in MCK and also student knowledge (SK), as it is closely related with LTs research,
under a comprehensive explanatory teaching theory may give us a holistic view and
a rich detailed knowledge about the learner actions in their mathematical knowledge
and student knowledge construction processes. This present study has potential to
inform us about the actions of learners in LTBI teaching experience.

Clements and Sarama (2013) suggested that there is no one stable LT for
every learner and every culture. Therefore, research findings about how to use LTs
in teacher education might have limited implications for learners in other cultures.
As a result, researchers should translate LTs and the embedded instructional
knowledge within LTs for specific cultural, school, and individual contexts. This

(13

action underlies “...re-think[ing] mathematics education, ... [and] re-considering
the cultural and sociopolitical contexts children experience unique to our

educational system” (Wager & Carpenter, 2012, p.123).

1.1 Aim of the Study and Research Questions

Based on the previously discussed needs, this study will investigate
knowledge restructuring practices of pre-service elementary teachers (PTs) in a
LTBI teaching experiment conducted in a mathematics education course of a
teacher education program in Turkey. Restructuring practices refer to PTS’
repeatedly encountered actions in which they exhibited a change, a revision and a
progression in their mathematical content knowledge (MCK) and student
knowledge (SK) during the LTBI.



In order to realize this aim, this study first examined the PTs’ current
mathematical content knowledge on a particular concept: equipartitioning also

called fair sharing. Equipartitioning can be defined as:

Cognitive behaviors that have the goal of producing equal-sized groups
(form collections) or equal-sized parts (from continuous wholes), or
equal-sized combinations of wholes and parts, such as is typically
encountered by children initially in constructing “fair shares” for each of
a set of individuals. (Confrey, et al., 2009, p. 2).

Then, how PTs restructured their mathematical content knowledge and student
knowledge in relation to an equipartitioning-learning trajectory (ELT) was
investigated. ELT was selected as a tool in this study since ELT have established a
sound ground for rational number reasoning (RNR) which is one of the most
challenging mathematics topics to understand (Confrey, Maloney, Nguyen, Wilson,
& Mojica, 2008).

This study did not only focus on PTs’ mathematical strategies, it also
provided how PTs interacted with the LT and their peers throughout the research
and documented their progression in MCK. LT interpretation of MCK is evolved
around Ball, Thames and Phelps (2008)’s definitions. Ball et al. (2008) indicated
there is a further need for eliciting the meanings of Common Content Knowledge
(CCK), Specialized Content Knowledge (SCK) and Horizon Content Knowledge
(HCK). These are the types of mathematical content knowledge and from a LT point
of view, (i) CCK which refers to knowing mathematical ideas and performing
mathematical strategies that are the embedded in each level of the LT (Sztajn et al.,
2012) (ii) SCK that refers to unpacking the mathematical ideas, strategies,
misconceptions and representations that are addressed in each level of the trajectory
(Sztajn et al., 2012) and (iii) HCK that means building connections beyond and
within the mathematical ideas in the LT and deducing mathematical generalizations
for the ideas embedded in the LT (Adapted from Sztajn et al., 2012). This research
also examined the processes of how PTs started to restructure their student
knowledge. From an LTBI stand point, student knowledge refers to understanding
how students think mathematically and also realizing the difference between the

adults and students’ mathematical thinking (Sztajn et al., 2012). Within the frame of
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this research aim, this study sought answers for the following research questions:

1)

2)

3)

What are differences between pre-service elementary teachers’ (PTs)

knowledge level before and after the LTBI teaching experiment?

What is PTs’ initial knowledge about the equipartitioning/fair sharing
concepts, which they are supposed to teach?

Do PTs hold any misconceptions, difficulties, errors and knowledge gaps
related to concept of fair sharing? If yes, what are those?

What is PTs’ knowledge about the equipartitioning/fair sharing concept,

which they are supposed to teach, after the LTBI teaching experiment?

What are pre-service teachers’ restructuring practices for mathematical

content knowledge in a Learning Trajectories Based Instruction (LTBI)?

In what ways does LTBI support PTs to detect their own mathematical
misconceptions, errors and knowledge gaps and remediate them?

In what ways does LTBI support PTs to make sense of mathematical
ideas and knowledge of equipartitioning?

To what ways PTs connect the mathematical ideas embedded in the ELT

to further mathematics topics?

What are PTs’ restructuring practices for student knowledge in a LTBI?

In what ways does LTBI support PTs’ ability to understand students’

mathematical thinking and learning?

These questions were investigated by a LTBI teaching experiment in a mathematics

education course for nine pre-service elementary education teachers. An

equipartitioning learning trajectory were utilized in the experiment and instructional

tasks and items related to fair sharing ideas were created and revised prior to this

study in a three weeks pilot study where 10 elementary education PTs participated

in three hours teaching sessions per week. In the actual teaching experiment, nine

PTs participated the six weeks of sessions each lasted approximately three hours.

The data were collected through videotaped recordings of teaching sessions, field

notes, observational notes, pre and post tests and PTs’ written works.



1.2 Significance of the Study

Findings of the studies on teacher education (Ambrose, 2004; McDonough,
Clarke, & Clarke, 2002; Tirosh, 2000) conveyed a common message that PTs’
experiences with children played an important role in changes in PTs’ initial
understanding about how students might think mathematically, what kinds of
mathematical strategies they might employ, possible mathematical misconceptions
students might have, and how PTs should design their instructional activities.
However, many PTs in Turkey do not have much opportunity to work with students
in practicum and method courses in the teacher education programs due to time
constraints and an extensive curriculum to cover both in teacher education programs
and in schools (Gorgen, Cokegaliskan & Korkut, 2012; Manouchehri, 1997; Ugar
Toluk & Demirsoy, 2010).

The studies on existing practicum courses in Turkey indicated that the
practices in these courses did not meet the aims of the courses such as providing
PTs with teaching and learning experience before they actively worked as teachers
in the field (Mete, 2013). Moreover, PTs have perceived themselves as a guest in
the practicum schools. They thought that the practicum teaching was a formality
(Eraslan, 2009). Mentor teachers usually told PTs not to come to schools or did not
allow them to work with students in the classroom (Eraslan, 2009). All these
findings raised an important concern that although there existed practicum courses
in the teacher education programs, PTs still lacked actual experiences of how
students learned when they graduated. They also did not have chance to test whether
their own mathematical knowledge was sufficient to meet student needs in the
classroom.

Methods courses might seem to contribute to PTs’ knowledge, however,
their effectiveness are limited and they are not specifically designed to decrease the
gap between practice-theory (Elmore, 2002; Paker, 2008; Philipp, 2008; Zembat,
2007). In addition, although teacher candidates took some mathematics courses,
little correlation was found between the number of the higher mathematics courses
teachers have taken and the level of their students’ mathematical learning (Akbayir

& Tas, 2009; Bastiirk, 2009; Swars, Hart, Smith, Smith, & Tolar, 2007). The
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mathematics and methods courses in the teacher education programs seem to have a
limited role in providing the necessary mathematical content knowledge for PTs
(Bastiirk, 2009; Clements & Sarama, 2013; Gorgen et al., 2012; Paker, 2008;
Zembat, 2007). PTs engage in these method courses with little or no experience of
working with students on mathematical ideas and concepts (Ball, Thames & Phelps,
2008; Clements & Sarama, 2013; Mojica, 2010). They utilize their own reasoning
lenses and beliefs while trying to make sense of students’ mathematical
understanding and teaching mathematics to address their understanding. As a result,
PTs encounter difficulties to distinguish their own mathematical thinking from
students’ thinking (Ball & Forzani, 2009; Jacop, Lamb & Philipp, 2010). In
addition, teacher education courses focusing on mathematics teaching might not
provide PTs with reflection on the completeness and accurateness of their own
mathematical understanding (Jansen & Spitzer, 2009). This lack of reflection might
direct PTs to conduct mathematics instruction without essential knowledge of
students’ understanding of mathematics and the mathematical understanding
required for teaching (Philipp, 2008; Spitzer et al., 2011). Therefore, there is a need
for a tool that has potential to support PTs’ in depth understanding of students’
mathematical learning and mathematics that they are supposed to teach in these
mathematics education courses.

LTs are constructed based on empirical evidences from students’ actual
work and have provided detailed descriptions of students’ mathematical strategies
and misconceptions. As a result, embedding LTBI in methods courses may provide
a comprehensive approach to how to teach a particular mathematics concept through
integrating students’ knowledge of that concept, such as rational number reasoning,
across and among grade levels (Confrey et al., 2008). PTs can acquire the ability to
use LTs in methods courses to decide their instruction based on evidence of
students’ improvement (Corcoran et al., 2009) before they actually start their in-
service teaching. Confrey and Maloney (2011) listed conjectured values of usage of
LT for teachers as follows: “1) Know what to expect about students’ preparation, 2)
More readily manage the range of preparation of students in your class, 3) Know
what teachers in the next grade expect of your students, 4) Identify clusters of

related concepts at grade level, 5) Have the clarity about the student thinking and
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discourse to focus on conceptual development, and 6) Engage in rich uses of
classroom assessment” (p.31).

The mentioned benefits indicated that LTBI could be used as a reference tool
for teacher training programs to help PTs in several ways. First, PTs can complete
and test their knowledge of the mathematics they are supposed to teach. Second,
they can develop an understanding on how students learn and understand
mathematics. Third, they will have opportunities to learn to design instructional
activities that count students’ knowledge, misconceptions, and learning obstacles.
However, these potential practical benefits of LT should be examined through
empirical research to strengthen its influence.

With the scope of this study, utilization of ELT has the potential to address
students’ mathematical strategies and identify their misconceptions in outcome
descriptions of each level (Confrey et al., 2008). PTs can diagnose gaps in students’
understanding through checking LTs’ description of students’ cognitive strategies
and misconceptions related to certain mathematics topics. This will support PTs
when they develop or improve an idea about students’ strategies, conceptions and
possible learning obstacles and misconceptions before designing and practicing
instructional tasks. As a result, “a general theoretical framework related to cognitive
processes and sources of misconceptions could support teachers in their attempts to
foresee, interpret, explain, and make sense of students’ ways of thinking” (Tirosh,
2000, p. 23) in a methods course. Thus, LTBI has the potential to improve PTs’ both
subject matter and student knowledge (Butterfield et al., 2013).

1.3 Definitions of Important Terms

This section includes definitions of the key concepts utilized in this study.

Hypothetical Learning Trajectory (HLT): “The teacher’s prediction as to the
path by which learning might proceed. [HLT includes] the learning goal, the
learning activities, and the thinking and learning in which the students might
engage” (Simon, 1995, p. 133).

Learning Trajectory: “A researcher-conjectured, empirically supported
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description of the ordered network of constructs a student encounters through
instruction (i.e., activities, tasks, tools, forms of interaction, and methods of
evaluation), in order to move from informal ideas, through successive refinements
of representation, articulation and reflection, towards increasingly complex concepts
over time” (Confrey et al., 2009, p.2).

Learning Trajectories Based Instruction (LTBI): An explanatory framework
for teaching or an emergent theory of teaching that utilize the research on LTs to
combine and revise several frameworks on teaching deduced from the existing
research (Sztajn et al., 2012).

Equipartitioning: “Cognitive behaviors that have the goal of producing
equal-sized groups (form collections) or equal-sized parts (from continuous wholes),
or equal-sized combinations of wholes and parts, such as is typically encountered by
children initially in constructing “fair shares” for each of a set of individuals”
(Confrey et al., 2009, p.2).

Common Content Knowledge (CCK): Knowing and performing the
mathematical ideas embedded in each level of the LT (Sztajn et al., 2012).

Specialized Content Knowledge (SCK): Utilizing personal perspective to
unpack each levels of the LT. This unpacking process includes sizing up the
mathematical errors, misconceptions and testing effectiveness of multiple the
mathematical ideas, strategies and representations (Sztajn et al., 2012).

Horizon Content Knowledge (HCK): Connecting various mathematical ideas
across LT and beyond LT with further mathematical topics. Also, HCK refers to
reach a generalizable mathematical conclusions and utilization of symbols to
represent these generalizations (Adapted from Sztajn et al., 2012).

Mathematical Content Knowledge (MCK): The knowledge type that contains
CCK, SCK and HCK.

Student Knowledge (SK): Understanding students’ mathematical thinking
and learning and empathizing with them on how they can exhibit certain

mathematical misconceptions and errors (Adapted from Sztajn et al., 2012).
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1.4 Organization of the Dissertation

This dissertation was organized into seven chapters. First chapter introduced
the problems that suggested the need for this study, then the significance of the
study and the aim and research questions of the study. The second chapter started
with the discussion on the theoretical orientation of the study along with
introduction of emergent theoretical model of the LTBI that guided this study. This
followed by review of the mathematical concepts and ideas related to
equipartitioning and learning trajectories. Then, the review on problems in teacher
education was examined both in global and local context and the emergent literature
on the benefits of LT utilization in teacher education. The third chapter introduced
the methodological approach of the study through describing the context,
participants, data sources, the data analysis method, limitations and assumptions of
the study. The fourth chapter documented detailed findings related to first research
question. The fifth chapter documented detailed findings of the restructuring
practices of the PTs that cover research questions two and three. The sixth chapter
discussed the findings of the study and reported the conclusions that are deduced
from the findings of the study to answer the research questions. The last chapter
included the closing thoughts that reported the limitations, implications and possible

future research suggestions.
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CHAPTER I

LITERATURE REVIEW

2.1 Theoretical Background

This study aims to understand pre-service elementary teachers’ (PTS)
restructuring process of their mathematical content knowledge and student
knowledge in a learning trajectories based instruction (LTBI) teaching experiment.
This chapter will introduce a review of relevant literature to situate the study. The
chapter starts with introducing theoretical perspective in which the research situated.
Then, a review on the existing literature on equipartitioning concept, which is an
essential terminology for understanding Equipartitioning LT, will be presented.
Also, a review on pre-service teachers and their mathematics knowledge will be

presented.

2.1.1 Constructivism

According to Cobb, Yakel and Wood (1992) many researchers in the
mathematics education field perceived learning as a process of constructing internal
mental representations. In order to understand learning and develop learning
theories, they utilized different underlying assumptions. Over the past two decades,
the researchers, educational reformers and teachers grounded mathematics learning
in a constructivist view.

Constructivism emphasizes the idea of learner constructing their own
knowledge through engaging mathematical practices mostly through social
interaction. The learner holds an active role in the learning process and makes sense
of the knowledge through utilizing his or her own experiences, existing beliefs, and

knowledge (Cole, 1992). Thus, the core element of the constructivism can be stated
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as: Learners do not store the presented information in separate pieces; instead they
develop arguments to understand the information, and relate the information with
each other to construct and internalize new knowledge (Perkins, 1991).

At this point, understanding the various types of constructivism explaining
knowledge construction and internalization process is essential. Karagigorgi and
Symeou (2005) suggested there are two types of constructivism that are loosely
attached: first one is radical constructivism and the second one is social
constructivism. Radical constructivists assert that the reality and knowledge
construction are unique to individual and are more isolated from the social context.
On the other hand, social constructivists state that knowledge construction is not
merely an individual process; also this construction grows out of a social context
(Tobin & Tippings, 1993). This study adapted social constructivism’s assumptions
while creating a learning environment as an integral part of the Learning

Trajectories Based Instruction (LTBI).

2.1.2  Social Constructivism

Social constructivism built upon the works of two pioneer researchers:
Piaget and Vygotsky (Palinscar, 1998). Bryant (2003) stated that Piaget’s theory
forms a base for development of constructivism. The underlying reason for that
assertion is that children inflict own concepts to understand the world (Byrnes,
1996). Similar to Piaget’s theory, Vygotsky’s theory forms the other pillar of the
social constructivist theory. In this section, these two pioneer researchers’
contribution to social constructivism will be introduced.

Vygotsky (1978) emphasized the role of social context in the learning
process and discussed the facilitator role of the social communication in learning
(Scrimsher & Tudge, 2003). Thus, according to Vygotsky (1978) social
constructivism underpins the interaction between the learner and the social
environment in the process of knowledge acquisitions. It examines how this process

ends in restricting and refining both skills and knowledge (Cobb & Bowers, 1999).
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In addition, Piaget acknowledged the role of social context in learning. He
stated “...individual would not come to organize his operations in a coherent whole
if he did not engage in thought exchanges and cooperation with others...” (Piaget,
1947, p. 174). In their accounts, both Piaget (1970) and Vygotsky (1978) identified
a clear role for social exchange in intellectual development and cognitive change
(Smith, 1997). Yet, there existed a difference between Vygostky (1978) and Piaget’s
(1965) perception of social interaction. Vygosky’s approach mainly oriented
towards social interaction between learner and more capable peer. Different from
Vygostky’s approach, Piaget (1965) valued social relationships between equal
peers. This discrepancy added a great value into this study since both orientations
were merged in the study. Thus, interaction between both teacher-learner and
learner-learner enhanced the knowledge [re]construction and learning.

According to Vygotsky (1978) “learning awakens a variety of internal
development processes that are able to operate only when the ...[learner] is
interacting with people in the environment and with his peers” (p.90). On the other
hand, the social context is not merely enough to construct mathematical knowledge.
The learner’s own ability, prior experience and knowledge also play an important
role in learning. To this account, Vygotsky (1978) coined the construct of zone of

proximal development (ZPD) and defined as:

There is a gap between any student’s...actual developmental level as
determined by independent problem-solving and the level of potential
development as determined through problem-solving under adult
guidance or in collaboration with more capable peers (p.86).

Based on the definition, one can deduce that ZPD has two developmental
levels. First level describes what an individual learner can do or perform
independently. The second level describes what this learner can do with support.
There is a zone between these two levels. According to Vygotsky (1978) “the
distance between the actual developmental level as determined by independent
problem solving and the level of potential development through problem solving
under adult guidance or in collaboration with more capable peers” (p.85) is the
ZPD. As Steffe (1991) stated ZPD of a specific mathematical concept could be
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determined in a constructivist-learning environment as a result of interaction. Thus,
interaction is a key construct to support learner’s capacity to reconstruct
mathematical concepts through modifications. According to Vygotksy (1978), the
more capable peer or teacher plays an important role in the modification process
through exchanging ideas with the learner. As a result, the learner can close the gap
between the two developmental levels.

The assistance or intervention plays a crucial role for the learner in the
process of moving into next level in ZPD (Pritchard & Woollard, 2010). In this
study, LTBI was designed to build a bridge across this zone. A common practice in
the intervention studies is called instructional scaffolding. Instructional scaffolding
is also an inherent idea of Vygotsky’s ZPD. Because, ZPD is the determination of
the difference what a learner can do by self and with support.

Zhoe and Orey (1999) stated, “scaffolding is a metaphor to characterize a
special type of instructional process which works in a task-sharing situation between
teacher and the learner” (p.6). These ideas can be further delineated into two key
elements: The first one is to set the task elements beyond the learners’ capabilities
and let learner to work on the task without help. The second one is to support the
learner to attend and skilled at the features of the task. (Puntambekar & Hiibscher,
2005; Zhoe & Orey, 1999). As a result, learner can finally grasp the idea of the
presented task.

Applebee and Langer (1983) identified critical features of scaffolding in
instruction. Scaffolding is achieved through giving appropriate time and levels of
sophistication within each task with appropriate support for the learner to meet their
needs (Applebee & Langer, 1983). According to social constructivist perspective,
this scaffolding can be achieved through designing appropriate task as a first step.
Then, these tasks are implemented within instruction. Finally, learner is given
enough space to engage with the task independently and then receives support from
either their equal peers or capable peers.

The processes of scaffolding should be examined by observing how learners
are engaged in shared activities. As learners become more proficient, teacher
deduces the guidance and learners start to perform independently (Brown &

Campione, 1984). After learners complete working individually, they exchange,
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present their ideas both mathematically and verbally, and challenge each other’s
ideas. Teacher encourages and guides them while discussing each other’s ideas and
support their cooperation on solving complex situations (Resnick, Salmon, Zeitz,
Wathen & Holowchak, 1993).

In relation to Vygostky’s perspective of social interaction in ZPD, according
to Piaget (1970), creating cognitive conflicts [in this zone, during intervention and
interaction] as a result of social interaction is a key component for learning. This
cognitive conflict creates disequilibrium between learners’ existing understanding
and their experiences with the newly encountered knowledge and situation
(Palinscar, 1998). This disequilibrium also leads learner to question his or her
existing beliefs, understanding, and knowledge. Yet, creation of these conflicts
might not be sufficient to restructure their mathematical understanding and
knowledge. Forman and Kraker (1985) suggested that verbal interaction is a key
component while reconstructing knowledge and understanding. In this
disequilibrium state, learner exchanges ideas with more equal friends and tries to
restructure his or her own understanding, knowledge, or beliefs to achieve the
equilibrium again. Thus, different from Vygostky (1978), Piaget (1965) suggested,
in the process of achieving equilibrium, the interaction takes place either between
two equal friends or there exists a respective relationship between more capable
peers.

Both Vygotsky (1978) and Piaget (1965)’s perspectives addressed the role of
social process in learning as the main integral component of socially constructed
learning environment. Based on previously discussed perspectives, in this study,
social process in learning can be framed as follows:

Social interaction in the learning process should enable learners to work
collaboratively. Collaborative learning entails enabling learners to develop,
compare, and discuss a variety of perspectives and conjectures on the issue (Bednar,
Cunnigham, Duffy & Perry, 1992). In this learning environment, the ultimate aim is
to test the viability of the developed arguments and work toward reaching a shared
meaning (Cobb, 1994). To test the arguments, learners should be able to
communicate their ideas and solutions to given instructional activities. Also, they

should attentively listen to their peer’s way of thinking and solutions. Then, they
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discuss how they interpret the tasks and solve them (Cobb, 1994). At the end, this
learning environment provides learners with the opportunity to construct new
knowledge that interrelates both own and peers’ interpretations, conjectures, and
solutions. This process finally leads to a shared understanding about the task and a
system of knowledge largely consistent with one another.

To sum up, based on both researchers’ view on social constructivism, this
study adapted a theoretical position that benefits both orientations. This orientation
is closely related to Davydov’s (1988) perspective on mathematics learning
achieved in a constructive social process. According to him, in a socially
constructed instruction following characteristics should be achieved: (i) construction
of mathematical knowledge; (ii) social communications, debates and exchanging
ideas; (iii) problem solving as a part of learning activities; and (iv) both verbal and

symbolic representation of mathematics (Davydov, 1988).

2.2 Learning Trajectories

Learning trajectories ideas are mainly rooted in Simon’s (1995) Hypothetical
Learning Trajectories (HLTs) work. Simon’s (1995) HLT refers to “the teacher’s
prediction as to the path by which learning might proceed” (p.135). He perceived
these trajectories as hypothetical since individual students’ progression could not be
predicted in advance (Sztajn et al., 2012). Although Simon named these trajectories
as hypothetical, recently mathematics education researchers constructed learning
trajectories (LT) that are rooted in empirical data. Confrey et al., (2009) referred
LTs as “A researcher-conjectured, empirically supported description of the ordered
network of constructs a student encounters through instruction” (p.347). Corcoran,
Mosher and Rogat (2009) stated that students’ progression of cognition and learning
is demonstrated in LT and a LT is also rooted in actual research conducted on how
students learn and reason mathematically. Clements and Sarama (2004) stated LTs
“have three parts: a mathematical goal, a developmental path along which children

develop to reach that goal, and a set of instructional activities, or tasks, matched to
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each of the levels of thinking in that path that help children develop ever higher
levels of thinking” (p.1).

Although there are myriad of definitions exists for LTs, common features of
LTs can be deduced from the literature. LTs are based on a specific mathematics
domain (Clements & Sarama, 2004; Daro et al., 2011), are developed out of
empirical data on students’ thinking and learning progression (Clements, Sarama &
Julie, 2009; Confrey et al., 2009; Corcoran et al., 2009), emphasized the importance
of using tasks to create interaction between students and mathematical concepts
(Battista, 2004; Clement & Sarama, 2004; Wilson, Sztajn & Edgington 2013b), and
LTs require ongoing revisions and refinements which are called validation (Confrey
& Maloney, 2011; Duncan & Hmelo-Silver, 2009). In addition, all LTs, in
connection with the previously carried out research on learning, examine how
students’ mathematical understanding and thinking evolve overtime. Also, LTs
examine where mathematical learning is started and where the students are in terms
of mathematical understanding (Confrey & Maloney, 2011).

According to Daro et al. (2011) there are currently 18 different LTs on
different mathematical topics. Despite the common features among these LTs,
existing LTs are still varied in mathematical content coverage, the way they
diagnose the misconceptions, targeted grade levels and the detailed description of
proficiency levels (Daro et al. 2011). For instance, Confrey and her research team
(Confrey, Maloney, Nguyen, Mojica & Myers, 2009) developed a LT for
equipartitioning that underlies rational number reasoning. They developed a LT
consisting of 16 proficiency levels of mathematical thinking through grades K-8.
Nguyen (2010) constructed a LT on length and area. More comprehensively,
Clements, Sarama and Julie (2009) constructed 10 LTs about various mathematical
content topics, through kindergarten to 8" grades, such as numbers and operations,
and geometry. Existence of multiple learning trajectories raised important concerns:
(i) how a teacher would negotiate these LTs in their instruction, and (ii) how LTs
would be an integral part of teacher education programs. These concerns indicated a
tremendous need for further empirical examination of existing LTs. These attempts
should aim to provide both pre-service teachers and in-service teachers with a mean

to use multiple LTs for instructional and educational purposes (Daro et al., 2011;
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Sztajn et al., 2012). This need leads emergence of a new theory called Learning
Trajectories Based Instruction (LTBI). This theory will be introduced in the

following section.

2.2.1 Learning Trajectories Based Instruction

Taking students’ mathematical thinking and learning as a base for instruction
is not a new field for mathematics educators. Earlier work showed great examples of
this approach such as cognitively guided instruction (Carpenter, Fennema & Franke,
1996).

All these studies were a precursor for utilization of LTs in teacher education
or teacher professional developments. There existed some studies conducted with
teachers as a part of professional development. A few studies (Butterfield, Forrester,
McCallum & Chinnapan, 2013; Mojica, 2010) were conducted with pre-service
teachers, but these studies did not cover a whole LT. Also at the time of these
studies, a specific theoretical approach had not evolved specifically linked to LTs.
As a result, in depth examination of how mathematical knowledge evolved were not
examined under a theoretical framework linked to learning trajectories. Yet, these
studies contributed to shaping the theoretical framework LTBI.

Sztajn et al. (2012) defined LTBI as “using research on LTs to refine and
unify various frameworks from research on teaching” (p.152). They perceived LTBI
as a theory of teaching that is a possible explanatory framework for instruction.
LTBI instruction places students’ learning as a central construct in the instruction.
In this process, teachers’ knowledge of LTs shapes the instructional decisions in a
great extent (Sztajn et al., 2012).

Next section will deeply examine sub-constructs of LTBI. These sub-

constructs are various knowledge types that are the main interest of this study.
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2.2.2 Mathematical Content and Student Knowledge: Conceptualization
around LTBI

Shulman (1986), in his seminal work, identified two main dimensions of
knowledge: Subject Matter Knowledge and Pedagogical Content Knowledge. Built
upon Shulman’s work Ball et al. (2008) categorized subject matter knowledge as
“Common Content Knowledge (CCK), or mathematical knowledge that is needed in
contexts other than teaching; Specialized Content Knowledge (SCK), or the ways of
knowing mathematics that are particularly useful in understanding students’
mathematics; and, Horizon Content Knowledge (HCK), or knowledge of more
advanced topics supported by the current mathematical idea of study” (p.106).
Mathematical Content Knowledge (MCK) is a kind of subject matter knowledge
that includes all these knowledge components.

Researchers in the field of mathematics education found that teachers’ MCK
is a crucial index for teaching, and teacher should acquire a certain level of MCK to
be able to teach mathematics at a curricular level (Petrou & Goulding, 2011). Yet,
unfortunately, studies on PTs’ MCK clearly documented that majority of elementary
PTs lacked of conceptual MCK (Behr, Khoury, Harel, Post, & Lesh, 1997; Tall
1991) and at the same time they lacked an in depth understanding of mathematics
that they are required to teach (Ball, Hill & Bass, 2005). Also, the research clearly
documented that teachers could successfully perform calculations to solve
mathematical problems, yet they could not explain the procedures and mathematical
meaning of the concepts they performed (Ball, Lubienski & Mewborn, 2001).

These are all important concerns to be addressed since teachers’ MCK level
has a great impact on how they shape their classroom practices (Clements et al.,
2009; Ma, 1999) and on students’ meaningful understanding of mathematics
overtime (Darling-Hammond & Ball, 1998; Ma, 1999). All these mathematical
understanding also becomes an essential predictor of students’ success in
mathematics (Hill, Rowan, & Ball, 2005).

Knowing merely what subject content looks like and how to design
classroom practices around the subject content required different skills. Yet, there is

no specific framework in the field of teacher education to support teachers to decide
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what to teach, how to teach, how to design instruction task about it, how to represent
it, and how to address and remediate misconceptions about it. Ball and colleagues
(Ball, Hill & Bass, 2005) stated that teaching PTs more content knowledge does not
supply an answer for these questions. They indicated that along with the
mathematical content knowledge, teaching for understanding is a must. As a result,
to supply effective answers for these questions in teacher education programs, a
substantial body evidence should be utilized on how students learn mathematics and
how teachers enhance their both content and pedagogical knowledge of
mathematics. In the LT construction process, researchers considered all these
substantial body of evidence from existing research on learning and also conducted
empirical research with students, and with both pre-service and in- service teachers.

From a LTBI standpoint, Wilson, Mojica and Confrey (2013a)
conceptualized students’ mathematical thinking similar to content knowledge. As a
result, LT can be perceived as a referenced tool that combines both MCK and
student knowledge (SK) (Sztajn et al., 2012; Wilson et al., 2013a). Figure 1
represents the theoretical framework of the present study that represents the relation
between LTBI and MCK’s sub-knowledge components and SK framed by social

constructivism.
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Figure 1. A model of relation between LTBI and MCK and SK (Adapted from Sztajn et al., 2012 &
Wilson et al., 2013a)

Figure 1 depicts how MCK is conceptualized by locating LTBI at the center of the
knowledge types. The blue arrows indicated the interaction between the constructs
and LTBI. The purple colored arrows indicated that all types of knowledge have an
influence on each other, and knowledge refinement and reconstruction is an iterative
cycle.

In Figure 1, the relation between common content knowledge and LTBI
refers to both PTs’ and in-service teachers’ understanding of mathematical concepts
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and procedures they teach (Clements et al., 2009; Wilson et al., 2013a). These
concepts and procedures are addressed in each level of the trajectory and support
individuals when they perform related tasks in each respected levels (Sztajn et al.,
2012). The comprehensive final goal can be reached through mastering these
concepts and procedures through navigating each level. Then, one can reach the
ultimate mathematical goal at the highest level of the LT.

The relation between specialized content knowledge and LTBI refers to
one’s ability to devise and test multiple mathematical strategies, explanations and
representations. This process begins with the learner’s initial state of mathematical
content knowledge (Sztajn et al., 2012; Wilson et al., 2013a). In order to acquire this
sub-knowledge of MCK, one should unpack each level of LT (Sztajn et al., 2012).
Unpacking each level of the trajectory means articulation of mathematics behind
each level and sizing up possible mathematical errors and misconceptions (Sztajn et
al., 2012; Wilson, Sztajn, Edgington & Confrey, 2013, 2014).

As a result of this unpacking process, PTs first can make sense of multiple
mathematical representations and explanations embedded in the trajectory (Sztajn et
al., 2012). Second, PTs should make sense of how mathematical learning functions
as a process in which their students will construct their own mental mathematical
representations and strategies to embody the mathematical aspects of the external
representation (Cobb, Yackel &Wood, 1992). Last, PTs should learn how to
represent their MCK into understandable formats by unpacking levels of LTs
(Fennema & Franke, 2007). From a holistic view of engaging with unpacking
process of LT’s levels, PTs also have the chance to identify their MCK gaps (i.e.
misconceptions, mathematical errors) and close them (Sztajn et al., 2012; Wilson et
al., 2014).

Horizon content knowledge is perceived as the most complicated
mathematical knowledge that is targeted at the highest level of LTs (Sztajn et al.,
2012). This kind of knowledge requires mathematical abstraction, connections and
generalization that are comprised by whole LT and later beyond LT. For instance,
the highest level of Confrey and her colleagues constructed LT for fair sharing

underlies the following generalization:
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Generalize that a objects shared among b persons results in a/b objects per
person, applying strategies based on both the distributive property and ratio
reasoning, and asserting their equivalence (Confrey et al., 2009, p.10).

This type of MCK enables both PTs and in-service teachers to distinguish
imitation of mathematical ideas from actual abstraction of that mathematical idea,
which is one the most important aims of mathematics teaching and learning
(Confrey, 2006; Maher & Martino, 1997). To achieve this, prior levels of LTs laid
out routes for learning a particular mathematical knowledge, and these routes started
from least complex ideas and reached the more complex mathematical ideas. In this
process, description of each level and the mathematical strategies assist conceptual
understanding of the most sophisticated targeted mathematics that PTs required to
know (Maher, 1996). At the final stage, learner can connect mathematical ideas
within LT with further mathematical topics (Sztajn et al., 2012).

Student knowledge refers to knowing how students’ progress through levels
of LT (Stein & Smith, 2011; Sztajn et al., 2012). Then, it refers to knowing
students’ cognition in each level (Carpenter, Fennema, Peterson & Carley, 1988)
and knowing how students deal with the LT based tasks (Franklin, Yilmaz &
Confrey, 2010; Wilson et al., 2013b). This type of knowledge guides teachers on
how they utilize their MCK while planning their instruction. Planning an instruction
includes designing learning activities (Clements et al., 2009; Sztajn et al., 2012,
Wilson et al., 2013a, 2013b), predicting students’ mathematical strategies (Stein &
Smith, 2011), sequencing those strategies (Stein & Smith, 2011), and assessing
students’ learning (Confrey, 2012; Webb, 2007).

It 1s conjectured that during LTBI, PTs’ current level of knowledge will
expand. This knowledge enhancement occurred as a result of both social interaction
and the engagement in activities in LTBI. This continuous interaction and
engagement is represented in Figure 1. This interaction happens in the zone of
proximal development. LT is used as a tool that helps PTs to navigate from their
existing knowledge to a higher and complex knowledge. Continuous reconstruction
in teaching sessions (Dewey, 1902, p.11) yields a restructured mathematical content

and student knowledge.
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Although LTs provide PTs with knowledge of various possible mathematical
strategies, learning obstacles, misconceptions of students and the learning routes
that student most likely to follow, there may be remaining contingency knowledge.
Since teaching and learning is a complex process, one or one theory could not
encounter all the possible scenarios in educational settings. Yet, LTBI has the
potential to combine the puzzles from various educational researches on teaching
and learning, and also perceive mathematics in relation to learner and perceive
learner in relation to mathematics based on empirical evidences (Sztajn et al., 2012).
All these knowledge types will be deduced into sub-categories based on the
empirical data from this study. The descriptions will be provided in the

methodology section as a coding schema of the study.

2.3 Concepts, Ideas and Issues

Literature review in this part is composed into three sections. The first
section underlies the mathematical ideas and concepts that formed a base for this
study. Also, it discusses the mathematical concepts that are related with
equipartitioning. Second, the specific learning trajectory called equipartitioning-
learning trajectory (ELT) is briefly introduced. Finally, review of literature on pre-
service teachers and mathematics is discussed briefly. This review included pre-
service teacher and mathematics research in both global and local context. Then at
last, potential benefits of using learning trajectories in teacher education will be

discussed tied with the discussed issues in the literature review.

2.3.1 Equipartitioning Literature

In the existing literature, rational number reasoning has been interpreted in
myriad of ways. Although different constructs were raised in those studies, one
repeated theme is called partitioning. Partitioning has been defined throughout
literature in different ways. Kieren and Nelson (1981) defined partitioning as

dividing a whole into parts. McGee, Kervin and Chinnappan (2006) defined
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partitioning different from the other perspectives. They added two important criteria
into partitioning action as: (i) exhaustion of the whole object(s) and (ii) creation of
disjoint pieces that exhaust the whole object(s). In line with McGee et al. (2006)
perspective on partitioning, English and Halford (1995) stated the two criteria of
partitioning as; the pieces should not overlap and one should exhaust the whole
object.

Several studies (Charles & Nason, 2000; Lamon, 1996; Pothier & Sawada,
1983) were conducted to examine students’ partitioning strategies on continuous
wholes. DELTA (Diagnostic E-Learning Trajectories Approach) research team
made a comprehensive literature synthesis (can be found at the url:
gismo.fi.ncsu.edu) on rational number reasoning and classified children’s
partitioning strategies under four -later collapsed into three- cases which are
discussed in more detail in the following section. Different from previously
mentioned definitions of partitioning Confrey et al., (2008, 2009) referred
partitioning as creating only fair shares. They disagreed with the definitions of
partitioning which included breaking into uneven groups (Steffe, 2004). In order to
clarify the ambiguity of partitioning definition, they introduced a new concept called

equipartitioning. DELTA team defines equipartitioning as:

Cognitive behaviors that have the goal of producing equal-sized groups
(form collections) or equal-sized parts (from continuous wholes), or
equal-sized combinations of wholes and parts, such as is typically
encountered by children initially in constructing “fair shares” for each of

a set of individuals” (Confrey, Maloney, 2010, p.3).
This is a comprehensive definition of partitioning action since it covers
equipartitioning of both collections and wholes with any size and shape. The next
section will introduce four equipartitioning cases (A, B, and C and D) through

discussing students’ reasoning on the tasks related with particular case.

2.3.1.1 Case A

Many research (Confrey et al., 2009, Davis & Hunting, 1991; Hunting &

Sharpley, 1991; Pepper & Hunting, 1998) examined children’s ability to fairly share
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collections and their strategies as they equipartitioned collections such as counting.
Case A included fair sharing collection tasks (Confrey et al., 2008). In Case A,
children are presented with a certain amount of objects to be shared fairly among a
certain number of people.

Researchers stated that children are usually successful at sharing collections
among two or more people. They employed different strategies as they fairly share
collection. Pepper (1991) classified children’s sharing strategies under three
categories: (i) systematic strategies produced even shares; (ii) unsystematic
strategies produced even shares; and (iii) unsystematic strategies produced uneven
shares.

Pepper (1991) conducted two interviews with 75 children of ages four and
five. In the first interview, he examined children’s counting ability and in the second
interview he examined children’s partitioning strategies. In the second interview, he
asked them to share 12 biscuits between two dolls. Based on his data, he categorized
children’s actions into three. According to him, a good sharer shared collection
systematically and produced fair share at most four moves. An intermediate sharer
shared collection somehow systematically and produced fair shares using four to
seven moves. Poor sharers shared collection unsystematically and could not produce
a fair share. He found that 80% of children used dealing strategy which is “a cyclic
distribution of discrete objects (regarded as identical) with the same number
distributed to each place on each round of the cycle until there are none left” (Davis
& Pitkethly, 1990, p.145).

DELTA team also created assessment items to examine children’s
equipartitioning strategies (Yilmaz, 2011). They also found that children used both
systematic and unsystematic dealing strategies (Confrey, et al., 2008). In systematic
dealing, children tended to use initially 1-1 correspondence. For instance, they
asked students to share 15 candies among three people. Figure 2 demonstrates one
child’s 1-1 correspondence strategy.
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Figure 2. Systematic dealing: 1-1 correspondence (Retrieved from Yilmaz, 2011, p.18)

DELTA team also found that as children gained proficiency, they started to
use many to one strategy that is called composite units. As needed, they switched
between many to one and 1-1 correspondence strategy. For instance, a student
systematically shared 18 objects among three people by initially giving five objects
to each person and then giving one object to each person.

In the existing literature, researchers also closely examined children’s
justification strategies for their shares. Hunting and Sharpley (1991) reported that
counting of items in each group, visual and height comparisons of items per pile
were used to justify fair shares. In systematic dealing, some children were aware of
the fact that systematic dealing produced fair shares yet the others not. The ones
who were not aware of systematic dealing produced fair shares used formerly
mentioned strategies to justify fair shares.

Using counting as a strategy to justify fair shares generated a question: Is
there any recognizable cognitive relation between children’s ability to count and
fairly share? This question was intensively researched. Pepper (1991) asked 75
children of ages four and five to fair share 12 biscuits among three people. He found
that eighty percent of children used systematic dealing regardless of their counting
competency. Some of those children used visual or height comparisons to justify
generated fair shares even if they used systematic dealing. Seventy six percent of the
children who were identified as poor counters also used systematic dealing to
generate fair shares and they succeeded. As a result, he concluded that children’s

counting competency was not directly related with their fair sharing competency.
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Then, in 1992, Davis and Pepper deeply examined the relationship between
counting ability (i.e., good, medium, poor) and fair sharing ability of children. Built
upon Pepper’s (1991) study task (12 Biscuits among two people), Davis and Pepper
reported that children participated in this study could mentally split six discrete
objects in the ratio of 2:1 regardless of their counting ability.

Pepper and Hunting (1998) also indicated that sharing discrete items was not
directly related to the counting ability level of children. In their study, they
interviewed with 25 preschool children. Children were asked to solve three
presented tasks: 1) Sharing 12 crackers among two dolls, 2) one more dolls joins the
group, sharing 21 cookies among three dolls, and 3) sharing 15 coins among three
dolls. They found that children’s systematic dealing strategy did not involve
counting skills. Moreover, they found that there was variability among good
sharers’ counting competence that reinforced Pepper’s (1991) and Davis and
Pepper’s (1992) study findings.

All these studies indicated that counting and sharing have distinct cognitive
roots (Confrey et al., 2009). Children’s use of systematic dealing was not directly
related with children’s counting ability; rather, it was related with forming equal

groups as a result of systematic dealing actions.

2.3.1.2 Case B

Case B tasks involved equipartitioning a single whole that yields unit
fractions (Confrey et al., 2008). In early research, Piaget, Inhelder, and Szeminska
(1960) investigated children’s strategies as they partitioned single wholes. They
observed a progression in children’s ability to share single wholes as follows: First
they performed general fragmentation (chopping), and then they progressed to
make equal parts through dichotomous, trichotomous, or both methods of division.
At the final stage, they could equipartition a whole into five and six parts (Piaget et
al., 1960).

Later on, Pothier and Sawada (1983, 1989) investigated children’s

partitioning strategies on wholes. They generated a theory about how children’s
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understanding of equipartitioning a single whole progressed from the least complex
to more complex skills. They generated five proficiency levels of equipartitioning a
single whole. The first level was called sharing. In this level, children first learned
halving the whole and then they learned to create 4-splits. In this level, although
children learned halving and constructing fourths, they sometimes created unequal
shares through breaking the rectangular and circular whole. The second level was
called algorithmic halving in which children mastered repeated halving which
supported children’s ability to construct halves “to the nth power shares by doubling
the number of partitions” (Yilmaz, 2011, p.22) on circles and rectangles. The third
level was called evenness in which children could distinguish whether result of
sharing produced a fair share or not. They could check for equality of the parts. Also
in this level, child could equipartition whole(s) through algorithmic halving
strategies for even numbers of people. Pothier and Sawada (1983) demonstrated this

algorithmic halving strategy to create six equal parts as in Figure 3.

N 1

Figure 3. Repeated halving strategy: Construct sixths

The next level was called oddness in which children became aware of the
fact that algorithmic halving failed to produce odd number of fair shares such as
thirds and fifths. The highest level was called composition in which children used
multiplication facts to create larger number of fair shares. Confrey and Maloney
(2010) disagreed with Pothier and Sawada’s (1983) last level. They disputed that
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knowing multiplicative factors or facts did not come before composition. Indeed,
they suggested that children could learn multiplicative factor derived from the act of
composition of splits. For instance, children could create a 12-split on a rectangle
through composition of splits. They could first create fair 4-splits on a rectangle
through vertical cut then, they could create 3-splits on the same rectangle through
horizontal cut. As a result, they fairly shared a rectangle into 12 splits (3 x 4).

In a follow up study, Empson and Turner (2006) examined the relation
between students’ understanding of algorithmic halving and multiplicative
reasoning. Algorithmic halving includes repeatedly splitting a continuous whole into
two fairly. They worked with 30 students from grades 1%, 3" and 5" grades. These
students were engaged with paper folding tasks. They grouped students’ thinking of
folding into three categories. The first one was non-recursive thinking about folding
(Empson & Turner, 2006) in which student connected the number folding and the
parts yielded as a result of folding in a non-recursive ways. The second one was
emergent recursion which “involved the insight that folding any number of parts in
half, at any point in a sequence of folds, doubled the number of parts” (Empson &
Turner, 2006, p.51). The last one was called recursion. Only a few students made
sense of this strategy. This strategy indicated that there existed a recursive
relationship between the folding sequence and the resultant number of share
(Empson & Turner, 2006, p.51).

One major dispute on Empson and Turner (2006) work came from Confrey
et al. (2008). They argued that importance of creating equal sized parts through
folding was essential for creating fair shares. As a result, DELTA team proposed
three criteria for equipartitioning as follows: (i) create the correct number of parts;
(ii) create equal-sized parts; and (iii) exhaust the whole.

Researchers also conducted studies on how children verified whether they
created fair shares or not on the continuous whole. Pothier and Sawada (1989)
conducted over 200 clinical interviews with students from grades K-6. Students
were asked to fairly share geometric shapes or giant cookies. They grouped
students’ verifications under following categories: (i) visual estimation in which
students visually approximated whether created parts were fair or not, (ii)

techniques resulted in fair shares in which students believed that the employed

33



technique automatically created fair shares, (iii) compensatory description of parts
in which students tried to compensate unequal parts, (iv) use measurement to justify
the fair share in which students compared the widths and lengths of the shares, (v)
check for congruency in which students checked whether the created parts were the
same size and shape, and (vi) use geometry of the parts in which students did not
necessarily focus on the shape of the parts; instead, focused on geometric aspects of
wholes and parts to justify fair shares, such as area congruence. In their study, they
suggested that children should perform different ways to create same number of
splits on the same whole.

As suggested, Franklin et al. (2010) examined students’ strategies to justify
fair shares formed on the same whole with different strategies. They identified three
strategies as follows: Qualitative compensation, decomposition and composition and
transitivity, later named as property of equality of equipartitioning (Confrey,
Maloney & Corley, 2014). For instance, in Figure 4, a rectangle is shared fairly
among four parts through employing diagonal cuts. The part A and part B are fair

but not congruent.

Figure 4. Diagonal cuts form fair but non-congruent shares in terms of shape

A student who used qualitative compensation strategy to verify the
equivalence of part A and part B stated that triangle A was tall and skinner and

triangle B was short and fat so they were equal to each other. A student who
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employed composition and decomposition strategy to verify the equivalence of part
A and part B, cut the triangle A and B into half (decomposition), then reassembled
(composition) them to show the congruence. A student who employed transitivity
strategy to verify the equivalence of part A and part B, knew that creating fair shares
on a rectangle formed the parts which were congruent in terms of area.

The above literature indicated that students used different strategies to
equipartition the whole and they employed a variety of justification ways to show
they constructed fair shares.

23.13 Cases C and D

Case C and D tasks dealt with sharing multiple wholes among multiple
people. Case C tasks produced a proper fraction outcome while Case D tasks
yielded an improper fraction (Confrey et al., 2008).

A limited number of studies (Charles & Nason, 2000; Lamon, 1996)
examined students’ strategies on equipartitioning multiple wholes. The reason might
be that Case A and Case B tasks were mainly related with the instruction in early
grades (K-2) and they were investigated in depth, yet Case C and D tasks were the
later tasks and they were examined in limited number of studies with higher grades
(4-6) (Mojica, 2010).

Lamon (1996) investigated partitioning strategies of 346 students from
grades 4 to 8. Students were asked to fairly share multiple meals (i.e. cookies,
pizzas) among multiple people in 11 tasks. She identified three partitioning
strategies from students’ work: (i) preserved-pieces which meant student first dealt
with wholes and then fairly shared the remaining parts, (ii) mark all which meant
students first partitioned each whole in a certain number and then dealt with the
parts from each whole, and (iii) distribution which meant students first partitioned
each whole into an appropriate number of shares and then dealt with all.

Charles and Nason (2000), based on their literature review on
equipartitioning and conducting interviews with 12 students from 3™ grade,

developed a taxonomy for children’s partitioning strategies. They classified 12
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partitioning strategies derived from their research and literature review into three
categories: Partitive quotient construct strategies, multiplicative strategies, and
iterative sharing strategies. All partitive quotient construct strategies shared a
common feature as they used the relationship between numbers of sharers and
generated fractional name for each share. In multiplicative strategies, a
multiplicative algorithm was used to generate required number of fair shares.
Iterative sharing strategies included four different types “(i) halving the object then
halving again and again, (ii) half the objects between half the people, (iii) repeated
sizing strategy, and (iv) repeated halving and repeated sizing strategy” (Charles &
Nason, 2000, p. 203).

2.3.2 Equipartitioning Learning Trajectory

Confrey et al. (2008) have -constructed a learning trajectory for
equipartitioning (ELT) as a two-dimensional matrix display LT. The construction of
the ELT started with comprehensive literature synthesis on rational number
reasoning (RNR) (Confrey & Maloney, 2010). Then, based on theoretical
perspectives of the LT construction combined with the knowledge deduced from the
RNR assessment pilot items were constructed. These items assessed students’
progression on equipartitioning related ideas. Initially these items were piloted in
interview settings and the students’ responses were gathered and ongoing revisions
were made to finalize the items (Confrey & Maloney, 2010). An initial LT was
constructed within this process. After this construction, paper-pencil assessment
items were utilized in the field-testing at the four North Carolina school districts
(Confrey & Maloney, 2010). The DELTA research team categorized the responses
of the students in the field test and the mathematical strategies were classified in the
rubrics. Also, students’ mathematical errors and misconceptions were coded under
specific codes. Through utilizing these rubrics, each student’s work were scored and
evaluated. Ongoing revisions and refinements were made to finalize the ELT during
these times. At the end, the research team constructed and revised the two-
dimensional matrix display for the ELT (Confrey & Maloney, 2010). “The vertical
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dimension demonstrates the progression of the LT’s proficiency levels with the
sophistication increasing from bottom to top, and the horizontal dimension
represents the task classes” (Yilmaz, 2011, p.33) in the matrix. Duncan and Hmelo-
Silver (2009) stated that LP development and validation processes were
interconnected, and these processes took place in iterative rounds of testing for
empirical evidence and theoretical modification. DELTA team iteratively revised
ELT that forms as a sound ground for rational number reasoning. Figure 5
demonstrated ELT that was developed by DELTA team and used as a reference tool
in this study.

The ELT included outcome description for each levels and included more
levels related to each selected levels presented in Figure 5. These levels described
level of the progression of knowledge: using multiple methods, justification,
naming, reassembly and properties (Confrey et al., 2008). This progression is not
necessarily linear. According to Confrey, Maloney and Corley (2014) the LTs do
not follow a stage approach in which a prior level must be mastered to move into
next one. Instead, the levels in the LT ordered carefully through counting students’
prior knowledge and existing research. This order is a probabilistic claim in which
students might show various mathematical justifications and methods (Confrey,
Maloney & Corley, 2014). For instance, if a child fairly shares a rectangular whole
into four, he should justify the fair shares. Second, he should show different ways of
creating four fair shares such as through two diagonal cuts and three vertical cuts.
Then, he should name each share as 1/4™ or one out of four. He can demonstrate the
understanding that the whole is four times larger than a part, which is reassembling.
At the final stage, he can understand that although both methods (diagonal cuts and
vertical cuts) created fair shares with different shapes, he should show both shares
(one triangular to one rectangular part) are congruent in terms of area or using

composition and decomposition.

37



AB CDEZEFGHI JK

Equipartitioning Learning Trajectory _
Matrix 2 USRI = ]
(grades K-8) 2 = B o H 28 & N
U -~ 9 2 (3 2 =0 n =
Task Parameters—> .S E D g 885 2 a v
fggg2s2ss 8
8 = = = %E-%E-E'f%
, = 588853835 )2
Proficiency Levels Sdaaaddad<an

| 16 Generalize: a among b = alb

| 15  Distribufive property, multiple wholes
| 14  Direct-, Inverse- and Co-variation

| 13 Compositions of splits, multiple wholes
| 12 Equipartition multiple wholes

| 11  Assert Continuity principle

| 10  Transitivity arguments

Redistribution of shares (quantitative)
Factor-based changes (quantitative)
Compositions of splits; factor-pairs
QOualitative compensation
Re-assemble: n times as much

Name a share w1 t. the referent unit
Justify the results of equipartitioning
Equipartition single wholes

Lot S5 SRR VU~V B « N T ]

Equipartition Collections

e
-
(=

p>>n,pcloseton

all p, all n (integers)

Figure 5. The equipartitioning learning trajectory. Adapted from Confrey (2012)

On the other hand, this probabilistic claim also indicated a student’s mathematical

belief could be correct and functional in an early stage. However, this claim might

become incorrect at higher levels. As a result, the students should revise their

thoughts. Confrey et al. (2014) provided an example for this situation. A student

who equipartitioned a single whole may arrive at a conclusion that the parts must be

same size and shape to be a fair share. However, when this student worked on two

identical rectangles, first one partitioned into half diagonally and the second one

partitioned into half horizontally, this student might think the halves from each

rectangle are not same size. This example showed that although this student could

justify fair shares (level 3) when working on single whole level, same student could
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not justify the equality of shares when working on distinct identical multiple
wholes. Confrey et al. (2014) concluded that when the student realized the
equivalence of the halves in this example, this change in students’ mathematical

conclusion is not based on logical order but on experience.

2.4 Mathematics and Pre-Service Teachers

The practices of learning and teaching are intertwined, which means that
teachers and students learn from each other. According to Jacop et al., (2010) and
Stein and Smith (2011) knowledge of students’ mathematical understanding helps in
shaping teachers’ instructional practices. As a result, the ability to learn about
students’ mathematics has become an important issue in teacher education programs
(Jacobs et al., 2010; Philipp, 2008). Thus, the main goal of teacher education
programs in relation to mathematics education is to prepare future teachers with
sound knowledge of both pedagogical and mathematical content knowledge.
Consequently, PTs should possess the skills necessary to create meaningful
mathematical practices when they begin their in-service practices (Smith & Stein,
2011).

Mathematics education research has shown that meaningful mathematical
practices at schools should include important components that should be integrated
into teacher education programs. The first practice involves modeling students’
learning. This practice is based on the students’ initial level of mathematical
understanding. Also, this practice calls for teachers to determine their students’
initial level of understanding (van de Walle, 2007). The second practice utilizes
high-level tasks that engage students in mathematics activities (Smith & Stein,
2011). The third practice involves the assessment of students’ progression (Elmore,
2002). Although training teachers for the components is one of the main goals of
teacher education programs, the question remains in many countries of whether
teacher education programs prepare teacher candidates completely for their future
teaching practices (Dick, 2013; Philipp, 2008).
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Several studies (Jacobs, Lamb & Philipp, 2010; Mewborn, 2000; Philipp,
2008; Wilson et al., 2013a) have focused on how examination of students’
mathematical thinking and understanding might support teacher education. Their
findings seem to address two important results. The first is related to PTs’
mathematical difficulties, knowledge gaps and misconceptions and the second is
concerned about how different approaches can be used to fix these problems. In
addition, the results of these studies led to similar conclusions. The studies generally
indicated that teachers’ quality is a widespread main problem and teachers’
development should be supported (Rowe, 2004). The same conclusion holds for the
mathematics education field. In addition, unique problems were found in elementary
education.

Existing research conducted with pre-service elementary education teachers
showed that PTs have difficulty in distinguishing between their way of
mathematical thinking and children’s mathematical thinking. They perceived that
students’ correct mathematical answers indicated that the child had a conceptual
understanding of mathematics (Crespo, 2000; Jansen & Spitzer, 2009; Morris,
2006). During teacher education programs, PTs should acquire ability to move
beyond the simple evaluation of right or wrong answers (Jansen & Spitzer, 2009).
To obtain this ability, PTs should be exposed to students’ mathematical thinking
during their undergraduate studies and should be trained on how to meaningfully
analyze students’ mathematical works. However, the studies showed that PTs had
limited experiences on actually working with students (Mewborn, 2000; Philipp,
2008).

Findings of several studies (Mewborn, 2000; Philipp, Ambrose, Lamb,
Sowder, Thanheiser et al., 2007) have indicated that exposure to children’s
mathematical thinking supports the development of PTs’ mathematical knowledge
in relation to teaching. These studies suggested that future teachers could develop
knowledge about how students learn mathematics by working with children in a
mathematical field experience course. Although PTs participate in field experience
courses, they show weakness in understanding students’ mathematics and analyzing
students’ mathematical thinking (Jacobs et al., 2010). This weakness demonstrate

the need for PTs to practice analyzing and understanding students’ mathematical
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thinking by working with actual students’ work before taking a field experience
course (Philipp, 2008).

Some of the studies have focused on how the analysis of students’ work
helps PTs understand their future students’ mathematical thinking (Bartell, Webel,
Bowen & Dyson, 2012; Crespo, 2000; Jacobs & Philipp, 2004; Jansen & Spitzer,
2009). These studies indicated that examining students’ work and understanding
their mathematical thinking could contribute to PTs’ development. However, this
development could not occur on its own. In order to have this benefit, PTs need
opportunities to experience students’ mathematical thinking and support to learn
ways to understand their mathematical thinking. In addition, PTs should acquire the
necessary mathematical content knowledge to capture the mathematics behind
students’ work.

Bartell et al. (2012) conducted a short-term intervention study on PTs’
ability to recognize students’ conceptual understandings of mathematics. They
stated that the majority of PTs initially accepted procedural calculations that yielded
mathematically correct responses as evidence of conceptual understanding. After the
intervention, PTs exhibited significant improvement in their analysis of children’s
mathematics. They were able to pay more attention to evidences of conceptual
understanding compared to their initial perception of accepting procedures as
evidences. In some areas such as multiplication of fractions, PTs were less
successful while attending children’s conceptual understanding because PTs did not
possess sufficient content knowledge of multiplication of fractions (Bartell et al.,
2012). Thus, they concluded that mathematical content knowledge plays an
important role in understanding students’ mathematical responses yet it is not only
factor that influence the PTs ability to understand students’ mathematical responses
deeply.

Similarly, Ball (1990) conducted a study with 252 secondary mathematics
and elementary education PTs. The result of this study indicated that the majority of
PTs lacked conceptual understanding of the mathematics they would eventually
teach. According to Ball’s (1990) findings, the majority of PTs provided procedural
answers without demonstrating their understanding of the mathematics involved and

considered rules as explanations. Based on the findings of this study, Ball (1990)
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challenged three common assumptions held by PTs that were related to teaching
school mathematics: “mathematics content is easy, traditional K-12 education
includes most of what teachers need to know about mathematics, and ...
mathematics majors possess the necessary subject matter knowledge” (p.449).

Findings from several studies (Bartell et al., 2012; Lowery, 2002; Philipp,
2008; Spitzer, Phelps, Beyers, Johnson & Sieminski, 2011) could be utilized as
evidence to argue against PTs’ assumptions. For instance, pre-service teachers and
students hold the same serious learning misconceptions about topics such as the
multiplication of rational numbers, decimals, and place value (Graeber, Tirosh &
Glover, 1989; Thipkong & Davis, 1991). Likewise, the majority of PTs also lack
mathematical content knowledge:

Most PTs do not know what mathematics they need to know to teach
effectively, and many are not open to approaching the content anew in a
deeper and more conceptual way that they experienced in elementary
school know something, then children would not be expected to know it,
and if 1 do know something, | certainly don’t need to learn again”
(Philipp, 2008, p.8).

Philipp (2008) indicated that if PTs knew how to solve a mathematical
problem, they were not interested in the mathematics behind it because they
assumed that mathematics was a set of rules and the explanations based on these
rules. If they did not know the content, they believed that children did not need to
learn about the content. Ball (1990) addressed a possible solution for these

situations:

Attending seriously to the subject matter preparation of elementary and
secondary math teachers implies the need to know much more than we
currently do about how teachers can be helped to transform and increase
their understanding of mathematics, working with what they bring and
helping them move toward the kinds of mathematical understanding
needed in order to teach mathematics well (p.465).

Several studies (Ball, Levis & Thames, 2008; Ball, Sleep, Boerst & Bass,
2009; Philipp, 2008; Sztajn et al., 2012, 2014) later have been conducted on how to

draw boundaries for this sort of mathematical understanding. These studies
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discussed the current quality of teacher education programs, the information teacher
training programs should provide to PTs, whether mathematics and mathematics
teaching methods courses were sufficient for PTs to acquire a conceptual
mathematical understanding to use in their instruction. The results of these studies
indicated that mathematics teaching methods courses were not sufficient for PTs to
acquire the necessary mathematical understanding and knowledge (Philipp, 2008).
Because, it is hard to fully examine the conceptual meaning behind mathematics
during a short mathematics teaching methodology course (Manouchehri, 1997). In
addition, PTs could not connect what they learned in basic mathematics courses to
what they would teach at the elementary school level. Thus, some other steps should
be incorporated in teacher education programs.

Ball (2000) and Philipp (2008) suggested that mathematics education
content courses should be taught at universities covering elementary-level
mathematics. Philipp (2008) indicated that these courses should combine aspects of
both mathematics courses and mathematics teaching methodology courses. Also,
Ball (2000) described how one could design these courses:

To improve our sense of what content knowledge matters in teaching, we
would need to identify core activities of teaching, such as figuring out
what selecting, and modifying textbooks; and deciding among alternative
courses of action, and analyze the subject matter knowledge and insight
entailed in these activities (p.244).

Spitzer et al. (2011) conducted a two-week intervention study with
elementary PTs as a brief example of this course design. Their study showed that
even relatively short interventions could produce improvement in PTs’ ability to
attend students’ mathematical thinking. Similarly, Lowery (2002) conducted a study
and indicated that the intervention helped PTs to organize their own mathematical
content knowledge (Lowery, 2002). However, no specific type of intervention was
found to be the most effective. Instead, a variety of opportunities should be
embedded in those interventions (Boyd et al., 2009). The focus should be on
exposing PTs to the experiences evolved around and centered in big ideas (Clements
& Sarama, 2013; Confrey, 2006; Confrey et al., 2012) in mathematics and students’
mathematical thinking and understanding (Ball & Forzani, 2009).
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Although several studies documented the problems in PTs’ mathematical
content knowledge and knowledge of students’ mathematics in relation to teacher
education programs, other problems unique to elementary mathematics education
programs have also been documented in the literature. Wolf (2003) stated that the
college advisor has a great responsibility while guiding elementary PTs in their field
experiences. Yet, majority of advisors are not trained in mathematics education
field. This may cause insufficiency while guiding PTs for how to understand
students’ mathematical thinking, what kind of mathematical knowledge is needed to
capture important mathematical ideas and how to learn from students’ mathematics
(NCATE, 2010). Therefore, especially elementary PTs need mathematics education
specific support during their education at universities.

The significant issues deduced from the review of the literature on PTs and

mathematics could be summarized as:

1. Most of the PTs did not know the mathematics they would be teaching in the
future.

2. Most of the PTs were unaware of how teach mathematics effectively and to
help students develop meaningful mathematical ideas.

3. Most of the PTs could not establish a connection between the mathematics
courses and the mathematics they are supposed to teach at school.

4. Most of the PTs perceived procedural mathematical solutions as evidence of
the conceptual understanding of students’ mathematics.

5. Most of the PTs assumed that if they did not know a mathematics topic, the
students also did not need to know the same topic.

6. Elementary mathematics was assumed as simple.

7. Methods of mathematics teaching courses did not equip PTs sufficiently
with conceptual mathematical understanding required for teaching due to
time limitation.

8. Most of the PTs had limited experience with actual students during their
teacher education studies. Thus, they had a hard time to recognize the

difference between their mathematics and students’ mathematics.
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9. New mathematics education content courses should be designed around the
big ideas of mathematics to address the missing components of PTs’

mathematical content knowledge and the student knowledge.

Thus, this study seeks to provide an exemplar course design in which a
learning trajectory was utilized as a tool to situate students’ mathematical thinking
in the center of learning a long with utilization of appropriate instructional tasks.
Then, the outcomes of the study were documented in terms of how elementary PTs
restructured their mathematical content knowledge and student knowledge, as they

were engaged in a Learning Trajectory Based Instruction.

2.4.1 The Context of Turkey

The Ministry of National Education (MEB) in Turkey has initiated major
changes within school system and the curriculum to increase the quality of
education in Turkey (MEB, 2006; 2013). Within this major move, a constructivist
view of teaching and learning was adopted (MEB, 2013). As the constructivist view
suggests, the new curriculum placed students at the center of the learning activities.
The revisions also altered the traditional roles of teachers. The traditional teacher
role was to provide the necessary knowledge to the students directly. The new
curriculum describes a teacher’s role as creating a learning environment rich in
context. Considering mathematics, the teacher’s role is to guide the students to
undertake mathematics and to participate actively in meaningful activities. The role
of the teacher has moved from being a direct knowledge supplier to guiding the
students to construct their own knowledge.

However, merely changing the system and the curriculum does not alter the
current problems within learning environments. Because regardless of curriculum
quality; teachers are implementers of the curriculum and the system (Arslan &
Ozpinar, 2008). Thus, the quality of education is linked closely to teachers’ quality
and effectiveness (Baki & Gokegek, 2007; Seferoglu, 2004). This indicates that
teachers play an important role in teaching and learning mathematics. As a result,

one could say that even when the curriculum and system are well-designed, if the
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teachers do not possess the necessary skills and attributes to implement the
curriculum, the desired learning outcomes will not be achieved (Demirel & Kaya,
2006). Therefore, the importance of teacher education and teacher quality is evident.

Several factors shape teacher candidates’ teaching quality (Baki & Gokgek,
2007). The first one is their prior experiences before entering the university teacher
training programs. The second one is the experiences that they acquire within
teacher training programs. Teacher candidates have several experiences prior to
entering teacher education programs as they have observed different teachers and
experienced a variety of teaching and learning environments. All these prior
experiences and the experiences in the teacher training programs are reliable sources
in determining effective teachers (Baki & Gokegek, 2007). Highly qualified teachers
should acquire the content knowledge of their subject and the knowledge of how to
teach and of how students learn (Isik, Ciltas & Basg, 2010). Yet, existing literature
indicated that both teachers and teacher candidates lack this essential knowledge,
especially in the field of mathematics (Baki; 2013; Ugar, 2010; Zembat, 2007).

The elementary education program holds an important position among rest
of the teacher education program because elementary school teachers have an
important effect on young students’ cognitive and emotional development (Eraslan,
2009). Within these early years, if a student establishes a good academic
background, this student is more likely to be successful in advanced learning
(Aydin, Sahin & Topal, 2008). This assertion is also valid for mathematics learning,
as learning the essential mathematical ideas and skills in elementary school supports
later, more in-depth mathematical learning and understanding (Eraslan, 2008).

In Turkey, several researchers (Akbayir & Tas, 2008; Baki & Gokegek, 2007;
Bastiirk, 2007; Eraslan; 2009; Haciomeroglu & Taskin, 2010; Ubuz, 2009)
conducted studies to detect deficiencies in teacher training programs and of how
these deficiencies influenced teacher candidates’ quality. Findings from these
studies documented crucial issues to be considered related to mathematics
education. Based on the review of the Turkish studies, the general problems and
deficiencies, similar to the findings of international studies discussed earlier, could

be listed as follows:

46



1. There were few opportunities for teacher candidates to experience
mathematics teaching in real classroom settings (Bastirk, 2007,
Haci6meroglu & Taskin, 2010; Ubuz, 2009).

2. Teacher candidates had difficulty in understanding how students learn
mathematics (Bastiirk, 2007).

3. Elementary education teacher candidates did not perceive themselves
personally proficient to teach mathematics (Hacidmeroglu & Taskin, 2010).

4. Teacher candidates could not establish the connection between the
mathematics that they were supposed to teach and the basic mathematics
courses they took at the university (Eraslan, 2009).

5. Mathematics education method courses should tie the theory and practice
(Ubuz, 2009; Zembat, 2007).

6. Teacher candidates found it difficult to verbalize mathematical thoughts

upon graduation to meet the thought complexity of the student (Ubuz, 2009).

Many researchers (Baki, 2013; Cikla & Duatepe, 2002; Gokkurt, Sahin,
Soylu, & Soylu, 2013; Haser & Ubuz, 2002; Isik, 2011; Isiksal, 2006; Toluk-Ucar,
2010, 2011; Zembat, 2007) also examined both pre-service elementary mathematics
education teachers’ and elementary education teachers’ mathematical content
knowledge of various mathematics topic, specifically fractions, ratio, multiplication
and division (Haser & Ubuz, 2002; Zembat, 2007). The common major findings of
these studies could be summarized as follows. Due to the lack of mathematical
content knowledge, teacher candidates failed to provide in-depth mathematical
explanations for their solutions or to why the rules were working (Cikla & Duatepe,
2002; Zembat, 2007; Baki, 2013). Instead, they provided procedural explanations.
Although they solved the given problems procedurally and produced a correct
answer, they failed to explain why they employed a particular mathematical strategy
(Baki, 2013; Isiksal, 2006; Toluk- Ugar, 2010; Zembat, 2007). Due to lack of
knowledge on how students would learn mathematics and employ mathematical
thinking, teacher candidates experienced difficulty in identifying students’
mathematical errors and producing strategies to eliminate those errors. Because
teacher candidates did not have sufficient common content knowledge, they did not

the use correct mathematical language while explaining their mathematical thoughts
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(Toluk-Ugar, 2011). Moreover, some of the candidates utilized a language irrelevant
to mathematical language while explaining both their and students’ mathematical
solutions (Baki, 2013; Gokkurt et al., 2013). All these results conveyed that the
majority of teacher candidates graduated without having a strong mathematical
understanding regarding the mathematics that they would be teaching.

Although these studies determined the problems, they did not practically
remediate the problems. First, they all indicated some possible reasons that might
underlie these problems. Then, they provided further suggestions for handling and
solving the determined deficiencies and problems. Throughout the review of the
studies (Baki; 2013, Cikla & Duatepe, 2002; Isik; 2011; Isiksal; 2006; Toluk-Ugar;
2010; Zembat; 2007), one possible reason that caused the problems seemed to be
that the basic mathematics courses in the universities did not equip teacher
candidates with the necessary mathematical knowledge of the topics that they were
supposed to teach. This also led to questioning of the quality of both mathematics
and mathematics education courses provided in the universities (Zembat, 2007).
Toluk-Ugar (2010) also brought the issue of reducing the hours of teaching
mathematics method courses in the elementary education program. She suggested
that current time allocation for covering the content in elementary school
mathematics was not enough in the teaching mathematics courses in the elementary
education programs. As a result, in-depth examination of mathematical ideas could
not be achieved in these courses.

Thus, based on the above-mentioned problems and issues, researchers stated
(Baki; 2013, Cikla & Duatepe, 2002; Isik; 2011; Isiksal; 2006; Toluk-Ugar; 2010;
Zembat; 2007) that these courses should be redesigned to emphasize student’s
mathematics through considering the evidences gathered from the studies. To
achieve this, the time allocation for method courses should be increased (Toluk-
Ucgar, 2010) or new courses should be offered in elementary teacher education
programs (Toluk- Ugar, 2010). These courses should establish a sound base for
teacher candidates to understand how to teach the mathematics. Also, these courses
should act as a tool to improve PTs’ conceptual knowledge in elementary

mathematics.
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As a result, the balance between theory and practice and the compelling
method course contents play an important role to educate highly qualified teacher
candidates. Yet, the studies in Turkey showed that the courses towards linking
practice and theory remains insufficient in the sense of the time allocation and the
content of the method courses and teacher practicum (Yar, 2013; Yesilyurt &
Karakus, 2011). This situation causes major gaps in both mathematical content
knowledge and student knowledge of teacher candidates. Thus, the present study
sought to provide a way to design a course that aimed to close that gap through

utilization of LTBI with elementary PTs.

2.4.2 Use of Learning Trajectories in Teacher Education: Potentials

As previously discussed, empirical evidences of students’ mathematical
learning and thinking, students’ prior experiences and students’ diagnosed
mathematical misconceptions, difficulties and errors are the three components that
are used to construct LTs. Also, LTs show how students navigate through the least
complex to more complex mathematical ideas by engaging instructional tasks. This
nature of the LTs have encouraged the recent studies (Butterfield et al., 2013;
Clements & Sarama, 2013; Duncan & Hmelo-Silver, 2009; Wilson et al., 2013a) to
conjecture that coordinating teacher education programs that reflect an emphasis on
usage of LTs has great potential to develop PTs’ conceptual mathematical
understanding. This utilization has potential to support PTs to gain in-depth
knowledge about students’ mathematical thinking progression over time before they
start to teach in schools.

Although a number of LTs were recently constructed in the field of
mathematics education, practical utilization of these trajectories in teaching is in the
early stages of investigation (Butterfield et al., 2013). There is a limited number of
research on examining the use of LTs in enhancing teachers’ knowledge for
mathematics teaching and improving their instructional practices (Sztajn et al.,
2012). As a result, a need for further studies to examine the use of LTs in teacher

training and teaching practices has emerged.

49



A few emergent studies documented the potential benefits of usage of LTs in
both teacher education and in-service teacher professional development. The use of
the LTs in teacher training enhanced PTs’ own mathematical content knowledge
(Sztajn et al., 2012; Wilson et al., 2013a). The sequential task-based structure of the
LT on a specific mathematics content topic has the potential to serve as an
instructional and assessment guide for a novice teacher who has no prior teaching
experience of teaching that topic (Clements et al., 2009; Wilson et al., 2014). The
rich information about the complexity level of students’ mathematical thinking,
behaviors and understanding covered in the LTs have a potential for teachers to
maintain the cognitive demand of the presented mathematics tasks in their
instruction (Stein, Grover, & Henningsen, 1996) and sequence their instruction
around students’ mathematics.

Designing the instruction around the tasks that are deduced from individual
student’s way of learning mathematics is a key aspect of LT integration (Clements
et al.,, 2009). Sullivan, Mousley and Zevenbergen (2004) found that task
differentiation empowered students with diverse abilities to succeed in mathematics.
They indicated “carefully sequenced activities” and “prompts” helped students to be
proficient in the expected learning trajectory.

Wilson and his colleagues utilized a theoretical framework called LTBI with
in-service teachers as a part of a professional development program (Wilson et al.,
2014). They reported three teachers’ cases on how working though a LT improved
their mathematical content knowledge and pedagogical content knowledge. They
examined teachers’ discussions during professional development program and
concluded that one teacher contributed to the group discussion based on subject
matter knowledge and extended existing concepts into further mathematics, one
teacher clarified the discussion within the group and the other teacher related the
subject with pedagogical aspects necessary to implement in the classroom. All these
findings indicated that teachers utilized LT in various extents that supported their
teaching in the classroom.

A recent design of using area and perimeter-learning trajectory as theoretical
lens to examine PTs’ both content and pedagogical knowledge is proposed by
Butterfield, Forrester, McCallum and Chinnappan (2013). They suggested that LTs

50



could be used to improve PTs’ mathematical knowledge for teaching for the field of
area and perimeter. In their proposal, they also referred the emerging theory of
LTBI as a model of teaching. They supported Sztajn et al.’s (2012) opinion about
LTs’ potential to build connections within complex and multifaceted mathematical
knowledge for teaching. They utilized Ball, Thames and Phelps’s (2008) framework
of mathematical content knowledge for teaching as a tool to analyze how PTs would
progress in the study. Butterfield, Forrester, McCallum and Chinnappan plan to
work with PTs in a Graduate Diploma of Education Primary program in three
phases. The first phase aims to identify PTs’ current knowledge level of
measurement. In second phase the PTs will work with actual primary students, and
in the third phase the data from the primary school students will be gathered and
examined. Then, they listed expected outcomes of the proposed research. They
stated the area and perimeter-learning trajectory would yield an exquisite data on
both PTs’ progression on how students learn and how their own understanding of
the concepts could be developed. They suggested the result of the study might
inform teacher education course designs.

Although several researchers stated the potential benefits of LTs, Empson
(2011) considered potential pitfalls of LTs. She asserted that although LTs focused
on conceptual development in a particular area of mathematics, they might be
insufficient in addressing other features of a curriculum. Because, learning is a
complex and multidimensional process. Thus, it is so hard to embed all the
characteristics of learning in one trajectory. In addition, she suggested that the
trajectory might be subject to change in different context, with different learners and
within different countries’ educational systems. As Clements and Sarama (2013)
suggested, there is no one single stable learning trajectory. Similarly, Confrey
(2006) stated that a learner faces different learning barriers and obstacles in the
conceptual corridor of the trajectory, thus each individual has unique LTs. However,
this is the case where LTs has potential to capture the landmarks and possible
learning obstacles in this trajectory in advance.

Empson’s (2011) analysis on the LTs merged into a similar need of testing
the benefits of LT usage in teaching practices as a tool. She indicated researchers

had a critical mission of generating resources that could be used in the mathematics
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education field to optimize mathematics learning of students. To achieve that
mission, first, researchers should find ways to equip teachers with the conceptual
knowledge of mathematics and to incorporate students’ mathematics learning in
their teaching practices (Empson, 2011). Several researchers (Butterfield et al.,
2013; Confrey et al., 2012; Daro et al., 2011; Simon & Tzur, 2004; Steffe, 2004;
Sztajn et al., 2012, 2014) supported the claim that LTs could be utilized as a
teaching framework and integrating LTs into teaching practices has the potential to
realize these missions. These researchers also acknowledged the mutual role of
teachers and learners in the learning process.

LT utilization in a teacher education program as a reference tool has the
potential to provide PTs with opportunities to learn how to (i) count students’
knowledge states that are situated in learning theories, misconceptions and learning
obstacles (Confrey, 2006), (ii) understand students’ prior mathematical experiences,
(iii) launch mathematical tasks that elicit important mathematical strategies (Stein &
Smith, 1998; Stein & Smith, 2011) and (iv) iteratively revise their own subject and
pedagogical content knowledge (Graeber, Tirosh, & Glover, 1989), and (v) enhance
developing conceptual understanding of mathematics (Simon & Tzur, 2004). As a
result, integrating LT in a teacher education program have potential to inform PTs in
a systematic way about all these previously discussed pedagogical and academic
teaching skills rather than leaving them to learn those skills through trial and error

during their initial years in the profession.

2.5 Summary of Literature Review

Understanding students’ mathematical learning has been intensely
researched especially in the learning trajectories research area. Development of
students’ mathematical thinking and learning is documented in several learning
trajectories. These trajectories embedded a rich body of knowledge gathered both
from existing literature and empirical evidences of students’ work. This feature of
the LTs makes them a powerful potential tool for teaching practices that entail both
conceptual mathematical content knowledge and knowledge of students. Although

these trajectories are essential tools to capture students’ mathematics, their practical
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usage in teaching is in the early stages of the research. Also, the need for a
framework that can be utilized to train teachers have led the development of an
emergent theory called, Learning Trajectories Based Instruction (LTBI). This
emergent theory of instruction has the potential to address the problematic issues in
teacher education and teacher professional development.

Major problems related to teacher quality and their education are (1) lacking
sufficient mathematical content knowledge, (2) perceiving procedural calculations
as evidence of conceptual mathematical understanding, (3) underestimating both
students’ mathematics and complexity of elementary school mathematics, (4)
having a limited amount of experience with actual students, (5) lacking opportunity
to encounter with students’ mathematics in their university courses, (6) possessing
same mathematical misconceptions and errors as students, (7) the disconnection
between the mathematics courses at the university and the mathematics that the
teacher candidates will teach, and (8) lacking sufficient mathematics education
course hours to possess the PTs with conceptual understanding of mathematics.
Thus, the discussed issues and problems indicate a need for conducting an in depth
study that aims to address these problems. Designing mathematics teaching courses
for teacher candidates is one possible way to handle these problems. Thus, in this
dissertation study, LTBI teaching experiment was designed around the big
mathematical idea of equipartitioning that laid a foundation for important
mathematical topics such as rational numbers, fractions, multiplication, division and
ratio. In the experiment, the ultimate aim was to capture PTs’ restructuring practices
of their MCK and SK and to document the PTs’ progression in their knowledge
thought out the experiment. In addition, this teaching experiment design has the
potential to show an example of redesigned method courses around big ideas of

mathematics such as measurement.
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CHAPTER 11

METHODOLOGY

This study aimed to address how usage of Learning Trajectories Based
Instruction (LTBI) in a 6-week teaching experiment helped elementary pre-service
teachers (PTs) to restructure their mathematical content knowledge and student
knowledge. In order to examine individual PT’s restructuring process, this study
employed a constructivist teaching experiment method (Steffe & Thompson, 2000).
Table 1 shows data sources utilized for answering each research questions. In the

following sections, these data sources and how they informed the data analysis will

be discussed in detail.

Table 1

Related data sources informed each research question

Main Research Questions

Data Sources

1) What are differences between pre-service
elementary teachers’ (PTs) knowledge level before

and after the LTBI teaching experiment?

2) What are pre-service teachers’ restructuring
practices for mathematical content knowledge in a

Learning Trajectories Based Instruction (LTBI)?

3) What are PTs’ restructuring practices for student

knowledge ina LTBI?

Pre-Post tests
Video Recordings

Video Recordings
Observation Notes
Field Notes
PTs’ written works

Video Recordings
Observation Notes
Field Notes
PTs’ written works
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3.1 Study Design
3.1.1 Teaching Experiment Methodology

The teaching experiment methodology was not a widely accepted method in
mathematics education research until 1970s (Steffe & Thompson, 2000). Several
driving reasons contributed to the acceptance of this methodology. One main reason
was the need for new models that would examine the progress of students as a result
of socially constructed mathematics learning (Confrey, 1986; Sinclair, 1987). Then,
post-modern period in mathematics education research accelerated the acceptance of
teaching experiment methodology. In this period, over the past three decades,
research on understanding students’ mathematical learning and mathematical
knowledge construction overtime have increased rapidly (Steffe & Thompson,
2000). In these studies, the main focus was on considering students’ live
mathematical experiences within a classroom setting instead of merely addressing
effects of different variables on students’ learning in a quantitative research setting
(Steffe & Thompson, 2000).

Teaching experiment method evolved over time because researchers utilized
and contributed to it. In addition, further questions that a classical experimental
design could not completely answer appeared. According to Steffe and Thompson
(2000) one of the main questions was about how students created meanings.
Another question was interested in “how students learn specific mathematical
concepts rather than become interested in these issues in a pure form” (Steffe &
Thompson, 2000, p.272). These questions were needed to be addressed in the field
of mathematics education research (Confrey, 2006; Kilpatrick, 1987). In addition,
Steffe and Thompson (2000) indicated that this methodology was not a standardized
method; instead it was a tool for researchers to organize their activities. Therefore,
this methodology has been subject to ongoing revisions.

Several reseachers (Confrey, 2006; Steffe, 1991; Steffe & Thompson, 2000)
indicated that teaching experiment methodology evolved from Piagetian clinical
interview method. However, teaching experiment suggests more than Piagetian
clinical interview (Engelhardt, Corpuz, Ozimek & Rebello, 2004; Steffe, 1991).

Because the aim of clinical interview is to understand the current state of students’
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knowledge structure and thinking without aiming to alter them (Clements, 2000;
Engelhardt et al., 2004). Yet, in the teaching experiment, one aims to understand

how teaching influence the students’ existing knowledge structure and reasoning

(Steffe & Thompson, 2000).

3.1.2 Purposes of Teaching Experiment

The main purpose of teaching experiments for researchers is “to experience,
firsthand, students’ mathematical learning and reasoning” (Steffe & Thompson,
2000, p.267). Another aim of teaching experiments is to guide instructional
decisions and they also produce a mechanism that will help the enhancement of the
learning (Cobb, Confrey, diSessa, Lehrer & Schauble, 2003). The constraints the
researchers faced during the teaching help to enhance the learning. Steffe and
Thompson (2000) stated that the constraints refers to two meanings: (i) the effect of
researchers’ own language usage and guidance on students’ learning and, (ii)
student’s own misconceptions rooted in their existing mathematical knowledge. To
experience and determine these constraints, one can conduct a teaching experiment.
Finally, the experiment creates a living model of students’ mathematical activities
(Steffe & Thompson, 2000). To understand the living model of students’
mathematical activities, this research method involves “engineering particular forms
of learning and systematically studying those forms of learning with the context
defined by the means of supporting them” (Cobb et al., 2003, p.9).

In the teaching experiment settings, the researcher tries to understand two
main issues: students’ mathematics and mathematics of students (Steffe &
Thompson, 2000). First one refers to students’ own mathematical images and
realities independent of us (i.e. an external researcher). The second one refers to our
interpretation of students’ mathematics. Steffe and Thompson (2000) suggested that
the researcher would like to understand students’ mathematics with the support of
mathematics of students. As a result, examining deeply what students produce
mathematically and attempt to understand the underlying reasoning and thinking is a
major goal of a teaching experiment. This attempt is named as conceptual analysis

of students’ mathematical thoughts and reasoning by von Glasersfeld (1995). This
56



process of analysis is also called “mathematizing” (Treffers, 1987, p.51). For the
researcher, determining a learner’s mathematical knowledge and examining how the
learner constructs this knowledge could be called as mathematizing (Steffe, 1991).
In the mathematizing process, the researcher does not only aim to understand
learner’s initial mathematical knowledge but also tries to understand how
intervention or instructional activities help learners’ to reconstruct their
mathematical knowledge and reasoning. The mathematizing process is also one

major reason for conducting a teaching experiment.

3.1.3 Teaching Experiment Method Structure

Steffe (1983) stated that a sequence of teaching episodes forms a teaching
experiment. One or more students, a teaching agent and a recording method of
teaching episodes are the main components of a teaching experiment. Before
starting a teaching, the researcher should identify a learning objective for students
and the theory in mind, existing research on the mathematics topics, and the
students’ readiness are three important constructs to consider while creating these
objectives (Steffe & Thompson, 2000).

In a constructive teaching experiment, the “researcher acts as a teacher”
(Steffe, 1991, p.177). Teacher-researcher assigns mathematical attributes to students
rather than his/her mathematical realities (Steffe, 1983). Assigning mathematical
attributes to students means determining “mathematical concepts and operations
[...] that [students] have constructed” (Steffe & Thompson, 2000, p.267). Through
this theoretical lens, learning objectives place students’ readiness, prior knowledge
and further knowledge construction in the center of the learning activities.

The main orientation of the teaching episodes is to understand how learner
[re]constructs knowledge and generate ways to foster this process (Steffe, 1991). To
achieve this goal, the teacher-researcher owns two main roles. The first role is to ask
critical questions and create situations in which learner can actively learn. The
interactive mathematical discourse is a main characteristics of the situations that
teacher-researcher aims to create. The second role is to analyze how learning takes

place in teaching episodes (Steffe, 1991). In the analysis, learner’s interactions,
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language, and actions should be considered. The results of the continuous analysis
should be utilized for revising and refining future teaching episodes.

In the first stage of the teaching experiment in this present study, the teacher-
researcher “formulates an image of the students' mental operations and an itinerary
of what they might learn and how they might learn it” (Steffe & Thompson, 2000,
p.280). This learning route is determined through utilizing a body of knowledge
gathered from existing research and the learning trajectory. Learning objectives and
related instructional activities are constructed according to this possible learning
routes. The teacher-researcher knows initial learning objectives accompanied with
the knowledge of possible situations how the intended learning objectives would be
achieved in the teaching episodes. (Steff & Thompson, 2000). Although, the
teacher-researcher has a sense of likely pathways of students’ learning, these routes
are subject to revisions and refinements during teaching (Confrey, 2006; Steffe &
Thompson, 2000).

To realize learning objectives in the second stage, the teacher-researcher
constructs a series of interventions such as instructional activities (Confrey &
Lachance, 2000) that are implemented in the classroom (Cobb, 2000). Based on
classroom interactions during implementation, researchers capture and
conceptualize how learning processes become more effective and productive for
students (Cobb, 2000; Steffe & Thompson, 2000). These features of teaching
experiment studies support testing innovative instructional approaches in the
classroom such as using LTBI in mathematics method courses in teacher education
programs (Cobb et al., 2003).

3.2 Study Procedure: LTBI Teaching Experiment
3.2.1 The Participants

Nine senior female elementary pre-service teachers studying at an
elementary education program at a private university in the southeastern region of
Turkey participated in this study. Each PT had completed a basic mathematics
course and two mathematics education method courses. In the basic mathematics

course they covered the mathematics topics starting from the rational numbers up to
58



limits. In the mathematics education courses, they learned about various teaching
and learning approaches related mathematics they would teach in the elementary
schools and also examined the elementary mathematics curriculum of Turkey. They
will teach all subject areas including mathematics at elementary school level from
grades 1 to 4 upon graduation. In addition to mathematics related courses, each PT
had two teaching practicum, one of which was in an urban public school, the other
one in a rural public school, both with mathematics as an integrated part of it. In this
practicum courses, the PTs indicated that they generally just observed the mentor
teacher’s classroom.

Purposeful sampling method was used to select the participants. Also, | was
the instructor of these PTs before the teaching experiment and | had considerable
information about each PTs’ academic background and personal characteristics that
| gained through my interaction with them in and out of the class. This acquaintance
helped me to reach each PT easily. All the participants contributed to the study
voluntarily outside of their course work at the university. | was not a part of their
university at the time of the study. There were two reasons for the employed
sampling procedure. First, selecting PTs from elementary education program was in
line with the aim of this study since the scope of the mathematics covered in
Equipartitioning Learning Trajectory (K-4) is covered at elementary school level in
Turkey. This sampling technique enabled me to examine my research questions in
the most efficient way. Second, participating PTs did not have any pre-instruction
on equipartitioning and they were accessible at the time of this study in order to
obtain more in-depth data. Necessary permissions and informed consent from each
PT was obtained (See Appendix C). In the consent forms, procedure and emerging
nature of the study was explained. Then, the participants were informed about how
the findings of the study could be utilized.

Academic background of the PTs was categorized under four categories:
GPA, scholarship status, the same and last mathematics education course grade and
teaching experience (in the form of private tutoring). Some of the PTs received
scholarship from the university based on their scores on the university entrance
examination. This scholarship status was maintained through out their formal span

of education regardless of the GPA in their programs. GPA of each student was
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reported in grade-bands since PTs did not give their permissions to announce their
exact GPA. Each grade-bands consisted of 0.25 intervals. Table 2 showed the

academic background of each PT.

Table 2

Each PT's academic background

PTs GPA Scholarship Status  Last Math. Ed. Grade Teaching
Experience

1 3.00-3.25 Full BB (80-85) No

2 2.25-2.50 None CB (75-80) No

3 2.25-2.50 None CB No

4 2.25-2.50 None CB No

5 3.5-3.75 Partial BA (85-90) No

6 2.5-2.75 None BA No

7 2.75-3.00 Full BB No

8 2.75-3.00 Partial BA Yes

9 3.75-4.00 Partial BA No

Table 2 shows that two PTs received full scholarship, three PTs received
partial scholarship (50%) and four of them did not receive any scholarship from the
university based on their university entrance scores. PT2, PT3 and PT4 had lower
academic background in terms of their GPAs and scholarship status. Only one PT
had private tutoring experience. This showed that majority of PTs did not have
opportunity to work with actual students. Their later mathematics education course
grades were relatively close to each other. Three PTs’ GPAs was above 3.00 out of
4.00, two PTs’ GPAs was between 2.75-3.00, one PT’s GPA was between 2.5-2.75
and three PTs’ GPAs was between 2.25-2.50. All these distributions showed that the
experiment classroom consisted of a variety of PTs who had different levels of

course success.
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After collecting information related to each PT’s academic background, as
their instructor at the university, | also paid attention to their actions in my prior
courses. PT1, PT2, PT5 and PT7 were very expressive students based on my
observation during my instruction at the university. PT1, PT5 and PT7 could
verbalize their mathematical thoughts yet they had difficulty with expressing these
verbal thoughts mathematically. PT2 had difficulty with mathematics-related
courses and she had difficulty in utilizing both symbolic and verbal language of
mathematics. PT7 had difficulty with utilizing correct mathematical terms while
expressing her mathematical thoughts.

PT3 and PT4 were quiet students. They felt comfortable with expressing
their mathematical thoughts in written language. Yet, they had some difficulty with
using symbolic language of mathematics and using correct mathematical
terminology.

PT9 was very expressive student. Also, this PT could use mathematical
language clearly to express her mathematical thoughts. Although PT9 performed
well at mathematics courses, she stated that she “would not pursue a career with
mathematics education.” She was a double major student. She would purse another
career pathway in another field.

PT8 and PT6 both were very expressive students based on my observation
during my instruction at the university. PT8 was particularly successful at
mathematics related courses; she could use symbolic language of mathematics
effectively. PT8 had a great sense of anticipating students’ possible strategies. She
stated that her tutoring with 2" grade student helped her to understand how students

might learn.

3.2.2 Context of the Teaching Sessions

The major goal of the teaching sessions was to ensure that PTs would have a
strong mathematical background in teaching equipartitioning related concepts that
established a base for rational numbers, fractions, multiplication and ratio for grades
1 to 4. The second goal was to develop each PT’s ability to encounter students’

mathematical thinking and learning, and eventually support them in their reflective
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teaching. The teaching experiment lasted for 6 weeks. The procedure for each week
utilized instructional tasks that will be explained in the following sections in more
detail.

| was the teacher-researcher of the experiment. This study was conducted in
two phases. The first phase was the pilot study conducted with 10 elementary pre-
service teachers who did not participate in the main study and it lasted for 3 weeks.
Initial instructional activities and pre and post tests were designed and implemented
in this phase. The results of the pilot study were utilized to shape the design of the
final teaching sessions. Necessary revisions and refinements were created on the
instructional tasks and test items, which will be explained later in this chapter. The
actual teaching experiment lasted for 6 weeks. In each week, PTs and | gathered
approximately for 2 - 3 hours and certain equipartitioning learning trajectory (ELT)
levels were covered.

Learning objectives for each teaching sessions were determined based on the
proficiency levels of ELT. Each objective followed the characteristics of ELT; that
is, they were constructed from the least complex to the more complex mathematical
strategies and thinking that students might have as documented in ELT. ELT has
been studied extensively by the DELTA (Diagnostic E-Learning Trajectories
Approach) team, which | worked as a member in the past, for several years. This
team has been continuously revising and refining ELT. The specified levels of the
LT retrieved from the work of DELTA team (as cited in Pellegrino, 2009, p.16)
were used in this study as in Table 3:
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Table 3

Utilized levels of equipartitioning learning trajectory in the study (Retrieved from
Pellegrino, 2009, p.16).

Levels Description
1 Equipartition collections by dealing single units or composite units
2 Equipartition a single whole (circles and rectangles)
Criteria: correct number of parts, equal- sized parts, exhaust the whole
3. Justify fair shares - by counting, stacking, arrays, or patterns
Name the fair shares in relation to referent units
4 a. Of collections: sharing 12 among 2: half or six
b. Of single wholes: sharing a whole among n: 1/n or 1/n of
Re-assemble equal groups or parts to produce the collection or the single
5 whole as “n times as many” or “n times as much” as a single group or
part
5 [Predict (qualitatively) the] effect of changes in number of people
sharing on size of shares (qualitative compensation)
Predict, [demonstrate, and justify] outcomes of compositions of splits
7 (splits of a split of a whole) [or on collections or a single whole].
a. Two or more splits, and identification of factor- based pairs
Demonstrate and justify the effect of factor- based changes in number of
8 persons sharing on the size of shares, and vice versa, for collections or
single whole (quantitative compensation 1)
“Demonstrate and justify how extra shares can be redistributed for fewer
9 people (additive changes) sharing collections [equipartitioning over
breaking to quantify compensation]” (Yilmaz, 2012, p.5).
Demonstrate equivalence of non-congruent parts across or within
10 methods of non-prime equipartitioning
a. Decomposition/composition:
b. Transitivity: if X=Y,x=1/2X,and y = 1/2Y, thenx =y
11 Assert that a whole can be equipartitioned for all natural numbers greater
than 1 (continuity principle)
12 Equipartition multiple wholes among multiple persons and name the
resulting share in relation to referent units
13 Predict the outcome of a composition of splits on multiple wholes.
Make factor or split-based changes in a number of objects, number of
14 people sharing, the size of fair shares, or any combination thereof and

predict the effects on the other variables (direct, inverse, and covariation
to quantify compensation)
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The levels represented in Table 3 included the detailed descriptions of the
levels showed in Figure 5. Two of levels of ELT represented in Figure 5 were not
included since those levels covered mathematical ideas beyond the scope of grade 1-
4 mathematics in mathematics textbooks and standards (MEB, 2006; MEB, 2013).
In addition, Yilmaz (2011) stated that those levels were not administered to grades

K-3 in actual field-testing of ELT assessment tasks.

3.2.3 General Characteristics of Teaching Sessions

The PTs could understand the English language in written materials so each
tasks and items were constructed in English. However, the PTs felt more
comfortable with Turkish, when they expressed their thoughts aloud in the teaching
sessions. As a result, the medium for the instruction was in Turkish. Before the
teaching sessions, PTs were briefly informed about what a learning trajectory was. |
explained them we would cover the ELT together in this study. After these
explanations, the PTs received the instructional tasks. The PTs worked either
individually or in pairs on the given tasks. Instructional tasks were usually
composed of three main parts. The first part of the tasks allowed PTs to work on
given problems alone and utilize their own mathematical knowledge and strategies.
In the second part, PTs were asked to predict students’ mathematical strategies and
possible misconceptions. The last part asked what kind of revisions or utilization
techniques made this task accessible to younger children and how PTs would
implement this task. For some tasks, the last part asked PTs to determine which
further mathematical ideas these tasks were connected and contributed to.

After completing the second and third phases, PTs were asked to discuss and
exchange their ideas with their peers. The whole classroom discussion focused on
conceptual ideas rather than merely providing procedural calculations (Lambert &
Cobb, 2003). Teacher-researcher utilized ELT to guide discussion and supported the
PTs in gaining the essential knowledge related to equipartitioning-related concepts
and ideas. The general norms for this whole classroom discussion were adapted

from Cobb, Stephen, McClain and Gravemeijer (2001) as follows:
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1. PTs have to explain their reasoning related to solution way(s),

2. PTs have to listen attentively their peers’ explanations for solution way(s),

3. If there is an instance that a PT did not understand any mathematical issues
emphasized in the class, this PT has to ask further questions to clarify his or
her understanding,

4. PTs have to evaluate whether presented solutions are valid or not, and
exchange ideas and support their explanations with evidences, and

5. A shared meaning of the activity should be deduced before moving into the
next activity.

In the beginning of each teaching session, a brief summary discussion
related to the previous weeks’ content was conducted. This discussion helped in
designing new interventions based on detecting any knowledge gaps,

misconceptions, or unclear understandings about past weeks’ content.

3.3 The Teaching Experiments
3.3.1 Pilot Study

ELT was utilized as an intervention tool in a 3-weeks teaching experiment to
understand and expand the 10 sophomore elementary education PTs’ understanding
and conceptions related to equipartitioning. The PTs were the students in the same
private university and informed consent from the university were received. They
would teach elementary school mathematics from the grades 1-4 upon graduation.
None of the PTs had experience in private tutoring. They received one pure
mathematics course. At the time of the study, they only received an educational
method course that included mathematics as a part of it. The pilot and actual group
were similar in terms of teaching experience and both groups had a limited
background in mathematics. Two groups would teach same grade levels.

The assessment items and tasks that were developed for the actual
experiment was piloted. Each week, class was held for approximately 2.5-3 hours.
In the first week, PTs received pilot items and task related to equipartitioned a
single whole. In the second and third weeks, LT based instructional tasks were

utilized as intervention tools. Also, PTs received pilot items related to fair sharing
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multiple wholes, reallocation and covariation. In the pilot study, items and the tasks
related to the levels 2-4, 9, 12 and 14 were covered. Each week’s session was voice
recorded with the exception of the first session, accompanied with field notes and
PTs’ written work. The data were analyzed analytically. The analytical model will
be explained in the data analysis section.

The findings of the pilot study were utilized to revise the tasks and pre-post
tests’ items that were prepared for the actual teaching experiment. The implications
of the pilot study will be reported in the actual experiment preparation section.
Moreover, the analysis of the data gathered from the pilot study was implemented in
producing the final coding frame of the study. Detailed explanation of this will be

provided in the data analysis section.

3.3.2 Main Teaching Experiment Initial Phase: Preparation
3.3.21  Construction of Pre- and Post-Tests

A test adapted from Wilson (2009) and Mojica (2010) was utilized as the
pre-test to understand each PT’s initial knowledge level related to the ELT levels
covered in the study. A post-test was devised as a parallel form of the pre-test. The
post-test was utilized to assess the progress of each PT. These tests were referred as
parallel since the tests included adapted versions of six items and retrieved two
items from the parallel forms utilized in Wilson (2009) and Mojica (2010) studies.
Only the numbers and the minor changes in the wordings of the rest of the items
were changed between the tests while maintaining the cognitive demand and
mathematical skills required by the items. One mathematics educator, one
educational measurement and statistics doctoral student and | worked
collaboratively to establish parallel cognitive load for each item.

There were 17 open-ended items in both tests (See chapter 1V for the items).
Six items were adapted and two items were retrived from previously used tests
(Mojica, 2010; Wilson, 2009). Four items were adapted from existing research
(Confrey, Nguyen, Lee, Corley & Maloney, 2012; Empson & Turner, 2006; Lamon,
1996; Yilmaz, 2011). Five items were developed for the study and piloted. Ten

elementary school PTs who did not participate the actual teaching experiment
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received these pilot items and the final version of the items were constructed based
on their feedbacks and performances. For both tests, item 10 were anchor items and
the rest were parallel items. Anchor items address the items, which were utilized in
both pre, and post tests without any adaptation of the item. These items were
selected as anchor items since in the pre-test PTs performed poorly on these items.

Table 4 shows an example parallel item (item 17) from pre and post tests.

Table 4

Pre/post test: A parallel item example

Pre-Test Item Parallel Post-Test Item
Ali’s mum fairly shared a cake among four Ali’s mum fairly shared a cake among
of his son’s friends. Ahmet received piece four of his son’s friends. Ahmet received
A, Kaan received piece B, Gulsen received piece A, Kaan received piece B, Gulsen
piece C and Mehtap receives piece D. received piece C and Mehtap received
Figure 1 shows how Ali’s mum shared the piece D.
cake. Figure 1 shows how Ali’s mum shared

\ — the cake.

Answer the following questions:

a. Did Ali’s mum fairly share the Answer the following questions:
cake? How do you know? a. Did Ali’s mum fairly share the cake?
b. Did each person get the same How do you know?
amount of cake? Justify your b. Did each person get the same
answer. amount of cake? Justify your answer.
c. Describe the relation among four c. Describe the relation among four
friends’ shares mathematically. friends share mathematically

In the pilot study, the PTs received five items before the instructional activities.

First, three items related to collections and a single whole case were administered in
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the 1% week. Then, two reallocation and one covariation items were administered in

the 2" week. Sharing multiple wholes items were administered in the 3™ week. In

all weeks, PTs had 30 to 40 minutes to work on the items. Based on the analysis of

pilot data, items were revised. Table 5 shows two examples of the pilot and revised

items.

Table 5

Example Item Revisions

Pilot Item

Revised Item

Item 9. Didem invited her friends to her
birthday party and 4 friends showed up.
What happened to each person’s fair share
of candies when. ..

a. More friends showed up for the party?

b. Fewer friends showed up for the party?
c.Half of the friends showed up for the
party?

d.Double the number of the friends show up
for the party?

Item 16. Mustafa knows that 12 carrots will
feed 4 rabbits if they are shared fairly.
Predict the number of carrots needed for
each number of rabbits listed in the table
below, so that each rabbit will get the same
share of carrots (Adapted from Yilmaz,
2011).

Item 9. Didem invited her friends to her
birthday party and 4 friends showed up. She
fairly shared the cake among 4 friends.
What happened to each friend’s fair share of
birthday cake when...

Please justify your answers

a.More friends showed up for the party?
b.Fewer friend showed up for the party?
c.Half of the friends showed up for the
party?

d.Double the number of the friends show up
for the party?

Item 16. Mustafa knows that 6 carrots will
feed 4 rabbits if they are shared fairly.
Predict the number of carrots needed for
each number of rabbits listed in the table
below, so that each rabbit will get the same
share of carrots (Adapted from Yilmaz,
2011).

Number of rabbits | Number of carrots Number of rabbits | Number of carrots
2 2

4 12 4 6

8 8

In how many ways can you figure out
your answers? Explain your reasoning
mathematically.
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There were four main reasons for item revisions. First, the items in the pilot
study did not elicit sufficient justification of what PTs were actually thinking and
employing. For instance, Item 9 did not ask for any justification in the pilot study.
PTs only provided the short answers for the item such as increase and decrease. Yet,
the reason for selecting this item was to understand whether PTs could explain the
result of factor based change on each person fair share. Thus, in the revised item
justification was requested. Second, the items did not elicit multiple mathematical
strategies. For item 16 in the pilot study, PTs only provided one strategy to find the
solution. Yet, this item aimed to elicit different mathematical strategies. As a result,
a sentence explicitly asking for various solution ways was added. Third, the
numbers utilized in the item were friendly numbers that made item very easy. For
instance, the first set of numbers in item 16 yields an integer number as a result of
the fair sharing action. Yet, in the revised item the fair sharing action produced an
improper fraction. Lastly, the language of the item was mathematically unclear. For
instance, item 9 required fair sharing a rectangular cake among 4 people. Yet in the
pilot item, this number was not clear. Some PTs understood that the cake would be
fairly shared among 5 people, Didem and her four friends.

After all revisions, at the final stage one mathematic education researcher
with a doctoral degree and researcher-teacher examined the items in terms of how
they met the description of targeted levels of ELT. The final versions of the items
were constructed. Table 6 indicates the targeted level(s) and brief targeted-content
description of the items in both tests.
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Table 6

ELT Levels and Pre-Post Tests’ Items Alignment

Items Levels
1 Fair sharing collections and naming fair shares 1land 4
Quotient construct — Generalization of h amount of object can
2 . 11 and16
be fairly shared among p amount of people
3 Reassembly- Reversibility of discrete equipartitioning 4and5
4 Times as many- Comparing size of the whole to size of the 4and5
one share
Reallocation and justification of fair shares (case of discrete
5 . 3and 9
collections)
Reallocation and justification of fair shares (case of discrete
6 - 3and 9
collections)
Reallocation and justification of fair shares (case of discrete
7 . 3and 9
collections)
8 Sharing multiple wholes among multiple people 12
9 Compensation/ Factor based change 6, 7’1i e
10 Sharing single circle through utilizing multiple strategies and 2,3,7and
indicating possible misconceptions. 10
Sharing single rectangle through utilizing multiple strategies
L ov i . . X . 2,3,7and
11 and indicating possible misconceptions - Ordering strategies
. e 10
in terms of difficulty.
12 Ordering tasks related to fair sharing whole(s) among multiple 1-3 and 12
people-Levels 1-3 and Level 12
Predicting number of fair parts as a result of folding through
. . L . 2,4,7and
13 repeated halving. (Connecting equipartitioning idea to rational 13
number reasoning content area) Repeated halving
Predicting the multiplicative relation between number of folds
14 . . . 7 and 13
and number of fair parts created. Composition of splits
15 Sharing multiple wholes and compensation and detecting 10,12 and
students’ mathematical strategies and misconception 13
Covariational reasoning and utilization of multiple 2,5,10,12
16 - .
mathematical strategies and 14
17 Area congruence and transitivity argument 2-5and 10
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3.3.2.2 Construction of LT-Based Tasks

Although research on LT-based tasks utilization in mathematics teaching is
an emerging and new field of research, recent studies have indicated that teachers’
MCK could be enhanced through the usage of LT-based tasks (Wilson et al.,
2013b). Confrey and Lachance (2000) suggested that these tasks should have two
aspects: mathematical and pedagogical. The mathematical aspect deals with what
should be taught and the pedagogical aspect deals with how it should be taught
meaningfully. As a result, the process of task development based on LTs considers
students’ present conceptual understanding of mathematics; effective instructional
practices, and clearly articulated current mathematics teaching and learning
approaches (Confrey, 2006; Duncan & Hmelo-Silver, 2009; Elmore, 2002; Wilson
et al., 2013b).

A learning trajectory based task should provide the opportunity for students
to articulate and examine their mathematical ideas through ongoing revision and
refinements of earlier mathematical ideas (Clements et al., 2009; Confrey, 2012). In
addition, this task should be an open-ended one in which students have the
opportunity to devise multiple solution strategies and mathematical representations,
and reflect on those (Stein & Smith, 2011). An instructional task in a specific level
of LT should provide a base for moving to the next level of LT (Franklin et al.,
2010). It should also be related to other prior mathematical experiences and the
knowledge of students, and can be used for filling gaps in students’ prerequisite
knowledge if needed (Battista, 2004).

For a LT-based task, one needs to identify the following design principles:
1) recognizing underlying mathematical ideas in each level of LT, 2) capturing the
relationship between the mathematical goal of the task and students’ current
proficiency level (Stazjn et al., 2013), 3) identifying students’ possible mathematical
strategies and misconceptions in conceptual corridor of LT (Confrey, 2006), 4)
ordering these mathematical strategies according to complexity levels presented in
LT, and 5) making use of all these information embedded in LT to finalize the task
(Stazjn et al., 2013).
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In this study, LT-based task design was utilized as a reference (Confrey et
al., 2009; Sztajn et al., 2013; Wilson et al., 2013) for the tasks used. Instructional
activities used in the study were designed according to learning objectives and
targeted proficiency levels within ELT. Each task was open-ended and included two
main phases. In the first phase, PTs were expected to solve the given task, produce
different solution strategies, and provide justifications for their answers. Initially
asking PTs’ own solution strategy of the given task aimed to guide PTs to check
their own MCK and detect any mathematical misconception they might hold. In the
second phase, PTs were expected to predict K-4 students’ strategies, misconceptions
and justifications. This part of the task aimed to capture the relationship between the
mathematical goal of the task and PTs’ ability to predict students’ proficiency
levels, mathematical strategies, and misconceptions in relation to ELT. This step
helped me to realize design principles 1 and 2. In addition to these two main parts, a
third part addressed whether PTs could connect the mathematical ideas embedded
within each task to other mathematical ideas and topics. This part was included in
the task on the activity sheet. If it was not written on the activity sheet, this part was
addressed in verbal discussions.

Upon completion of each task, PTs were asked how they would utilize this
knowledge in their teaching. This discussion as a verbal part of the task design
aimed to realize design principles 3 and 4. Furthermore, the missing
misconceptions, mathematical strategies, and learning difficulties were discussed
upon the completion of each task. This step satisfied the last design principle of LT-
based task by utilizing all the embedded information within LT.

A total of ten LT-based tasks were utilized in this experiment (See Appendix
B for task examples). Three tasks were directly adapted from existing research
(Empson & Turner, 2006; Mojica, 2010; Stein and Smith, 2011). The rest of the
tasks was created based on the literature and design principles of LT-based tasks.
One researcher with a doctoral degree and one PhD candidate in the field of
educational measurement and statistics and background in mathematics education
helped me to examine each task. They analyzed each task separately while keeping

in mind the learning objectives for the particular level that the tasks aimed to
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realize. They provided their feedbacks. Then, pilot study implications were used to

modify and create the tasks. Table 7 provides an example task revision.

Table 7

Utilized Pilot Task and Their Revised Version Example

Pilot Task

Please fair share a
rectangular birthday cake
into four. Name each
child’s share.

How would elementary
school children fairly share
a rectangle into four?
Please indicate any
misconceptions.

Try the same task for 3-
splits.

Please fair share a circular
whole into six. Name each
share.

How would elementary
school children fairly share
a circular whole into four?
Please indicate any
misconceptions.

Revised Task

You and your group are given a set of color pencils
and a rectangular paper that represents a garden. You
will plant different fruits in this garden. The rules are:
Each fruit should have the same amount of space.
Color each space for each different fruit with a
different color.

Try as many as possible ways and make sure each
fruit has the same space.

Answer the following questions:

If you plant for n different fruits, how you would
fairly share the rectangular garden in different ways?
Try for n: 4, 6, 10, 12.

How do you make sure each fruit has the same
amount of space?

Name the number of parts that each of you paint.
Compare the size of the whole shape to one fruit’s
share.

Compare the size of one fruit’s share to the whole
shape.

What mathematical ideas does this task serve as a
base?

Can you fairly share a single whole for any amount
of people? If yes, why? If no, why not?

Work on the same activity for circles (n=4, 6, 10, 12). Be
sure to address students’ misconceptions or learning
difficulties while working on the task.
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Table 7 (cont’ d.)

At the end of the activity answer the following questions:

a. How is this task different from or similar to the task
of fair sharing discrete collections?

b. What kinds of misconceptions may you encounter
while implementing this task in an elementary school
classroom?

c. How is fairly sharing a circle different from or
similar to fairly sharing a rectangle?

Summary

a. How many cuts were needed to create 4, 6, 8, and 10
fair shares if only horizontal or vertical cuts were
used? What about creating n fair shares?

How should a circle be marked so that it can be fairly shared
easily?

This task was modified since, the first pilot task limited PTs’ ability to create
different number of splits on a given rectangle or circle. Creating different numbers
of shares also yielded different sharing strategies and helped PTs to examine
comprehensively the differences between odd and even splits. For instance, creating
12 splits on a given rectangle could be achieved through 11 parallel cuts, 3 parallel
cuts and 4 vertical cuts (3x4) or different composition of splits (6x2). These
different strategies all yield congruent fair shares. In addition, the first task did not
allow PTs to generate a generalization. It also did not emphasize the connection of
the task with other mathematics topic. All these constructs need to be embedded in a
LT-based design since without having a prior set of questions in mind, the verbal

discussion in the classroom in the pilot study left some missing pieces.
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3.3.2.3 Video Case Selection

At the end of the 2", 3" and 5" weeks, a video of K-2 students’ fair sharing
activities were displayed. Videos were gathered from my own master thesis
(Yilmaz, 2011). Only the covariation video in the 5™ week was captured as a part of
an interview with a 2" grade student in the United States. Informed consent was
obtained from the school, the parents and the students for the videos to be used for
research purposes as a part of my master thesis study. The videos were selected
based on three criteria: utilization of multiple strategies, displaying a common
misconception, and explicitly indicating progression in students’ mathematical
thinking. Each video was played after the instructional activities were completed. |
showed the video and paused in the necessary parts and guided the discussion about
students’ mathematical thinking. Also, in some instances, | asked the PTs what they
could ask the student if they were the ones who conducted the interview.

Utilizing video cases within the teaching sessions had three main reasons.
Although PTs had a theoretical understanding of fair sharing related concepts and
also had an understanding about how students learn fair sharing, they might not
actively apply this knowledge in real teaching practices (Kersting, Givvin, Sotelo &
Stigler, 2010). As a result, the video case activities aimed to provide PTs with the
opportunity to observe and evaluate embedded information within ELT in an actual
real student work practically. The second reason was that these analysis not only
revealed PTs” MCK but also provided evidences of how they related their MCK
with the students’ actual engagement and their ability to bring that [fair sharing]
knowledge [embedded in ELT] to bear on a mathematical tasks segment depicted in
the video clip (Kersting et al., 2010). The last reason was that the video case
analysis allowed researcher to assess PTs’ MCK more easily than traditional
assessment (Kersting, Givvin, Thompson, Santagata & Stigler, 2012). This
assessment allowed me to ask questions promptly and elicit more information about
how PTs internalized the presented video clip as they restructured their MCK and
SK. Video show case analysis brought the opportunity of observing not just PTs’
mathematical knowledge but also how PTs mobilize their mathematical knowledge

to analyze the actual teaching and learning cases. As Ball et al. (2000) suggested the
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concrete learning and teaching situations used as a measure for understanding the
progress in PTs” MCK and SK. Since, during the analysis the PTS required to apply
their theoretical knowledge about students learning to capture evidences of students’

mathematical thinking and learning in the video segments.

3.3.3 Main Teaching Experiment Second Phase: Implementation

3.3.31 Weeks 1 and 6

Pre-test was implemented in the first week of the experiment. Each PT
received the tests individually. Post-test was implemented in the 6" week in the
same way. Each test consisted of 17 open-ended items. Explanations for each item
were provided at the beginning of both tests for any unclear parts related to the
language of item or what was exactly being asked. During the administration of the
test, if PTs had any additional questions about the structure or the language of the
tests, they are allowed to ask to me individually. PTs were asked to clearly write
their mathematical thoughts along with the justifications on the given tests.
Although there was not any time restriction for both tests, the pre- and post- tests

each lasted for two and a half hours.

3.3.3.2 Week 2

The equipartitioning collections were the main topic of interest. Collection
cases in levels 1, 3, 4 and 5 of ELT were covered. In these levels, various
equipartitioning collection strategies, justification ways, naming practices for fair
shares and reassembly of equipartitioning collection cases were covered. Also, the
differences between complexity of the fair sharing collection strategies were

discussed. Learning objectives related to each level were determined as in Table 8:
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Table 8
Week 2 Learning Objectives: At the end of the Week PTs will be able to...

1 Conceptualize equipartitioning criteria (exhaust the whole, create equal sized and
correct number of shares).

2 Utilize ELT to anticipate students’ mathematical strategies, misconceptions,
difficulties and justifications related to fair sharing discrete collection.

3 Produce mathematical strategies to facilitate their students’ ability to name fair
shares and reassembly.

4 Construct connections between fair sharing collections and further mathematical
topics and ideas.

5 Produce factors of given amount of object (n) and finally formulate a
generalization related to fair sharing n objects among p people yields n/p amount
per person.

6 Practically examine students’ actual work related to mathematical ideas

embedded in levels 1, 3, 4 and 5.

In the second week, three tasks were utilized and implementation of these tasks
lasted for two and half hours. The first two tasks included the previously mentioned
three main parts of LT-based tasks (See section 3.3.2.2). Since the last task was
designed for deducing a generalization, it did not follow the same patterns as prior
tasks. The task briefly asked to deduce a mathematical generalization for n number
of objects fairly shared among p amount of people. Appendix B shows reflection
questions utilized as a guide for the classroom discussion. The question in the first

task was:

“Eight children were coloring a picture using a box of 32 crayons. They
shared all the crayons in the box fairly. How many crayons did each child
get?”

The second task aimed to realize learning objectives 2-4. The task question was:

“FEight friends are playing a Lego game. They plan to build a city. They
altogether had one pack of Lego. They shared the packet and each got 9
Legos.”

1. How much of the whole collection of Legos did each friend get? Name each
friend’s share.

2. Compare the total number of Legos in the packet to the number of Legos
each friend has.
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3. Compare the number of Legos each friend has to the total number Legos in
the packet.

The last task aimed to detect whether teachers could arrive at a general statement
that n objects can be fairly shared among p people and each share will be n/p. The
implementation of these three tasks within the teaching experiment lasted for 2
hours. Table 9 shows the related learning objectives of each task and a video
utilized in this week. The objectives were also achieved through additional verbal
discussion built upon the task or video analysis.

Table 9
Alignment of each Activity with Learning Objectives: Week 2

Activities Learning Objectives
1 2 3 4 5
Task 1 X X X
Task 2 X X X
Task 3 X X
Video
_ X X X
Analysis 1

After the implementation of these tasks, a video case analysis was done in
the last 15-20 minutes. In this video, a 1% grade student was asked to fairly share 24
candies among four friends. The student used one to one correspondence to fairly
share 24 candies and he counted each pile of candies to justify each friend’s fair

share. The analysis of this video was made through verbal discussion by paying
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attention to the student’s mathematical strategies, what he might know or not know,

and justification methods.

3.3.3.3 Weeks 3 and 4

In the third and fourth weeks of the teaching experiment, equipartitioning a

single whole was the main topic of interest. Single whole cases in levels 2-7, and 10

of ELT were covered. Fair sharing strategies, mathematical misconceptions, area

equivalence argument, part-whole relations, naming practices and folding were the

main mathematical ideas covered in these weeks. Learning objectives were

determined as in Table 10.

Table 10

Weeks 3 and 4 Learning Objectives: At the end of the Weeks PTs will be able to

1

Utilize ELT to anticipate students’ mathematical strategies, misconceptions,
difficulties and justifications related to fair sharing a single whole.

Produce mathematical strategies to facilitate their students’ mathematical
understanding and relations (transitivity argument also called property of
equality of equipartitioning).

Construct connections between fair sharing a single whole and further
mathematical topics and ideas (multiplication, area, ratio, improper fractions,
commutative property).

Generate a generalization that a single whole could be fairly shared among any
amount of people.

Practically examine students’ actual work related to mathematical ideas in
respected levels of ELT.

Generalize the relation between the number of folds and the number of fair
shares created (for generalization utilize composition of splits and repeated
halving).

In the third week, two tasks were utilized and implementation of these tasks lasted

for 2 hours. In the fourth week the last two tasks were utilized. Appendix B shows
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reflection questions utilized as a guide for the classroom discussion. Table 11 shows

the alignment of each objective with the presented tasks.

Table 11
Alignment of each Activity with the Learning Objectives: Weeks 3 and 4

Activities Learning Objectives
1 2 3 4 5 6
Task 1 X X X X
Task 2 X
Task 3 X X X
Task 4 X X X X X
Video
Analysis 2 X X %

In the third week, PTs dealt with fair sharing a rectangular whole case in the
first task. Then in the second task, they worked on fair sharing a circular whole case
(See Table 7 above for both tasks). For both tasks, PTs were asked to create several
fair sharing strategies (such as repeated halving, composition of splits, utilization of
diagonal cuts, parallel cuts or radial cut) and comparing the size of the fair shares
with different shapes. After the implementation, a video of a 2" grade student was
presented. In this video, the student was asked to fair share a rectangular cake into
four fair parts. He fairly shared this cake into four through the utilization of diagonal
cuts. PTs observed the student’s fair sharing actions and took notes on student’s
verbal descriptions. Then, a whole class discussion was conducted on how students

think about and engage with the task.
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In week 4, PTs started to work on the difficulty of ordering tasks that
involved cases of comparing a circular whole versus a rectangular whole. In
addition, the tasks addressed the difference between creating odd versus even splits
on a single whole. At last, the PTs compared utilization of composition of splits on a
circle case and a rectangle case of different tasks with different difficulty levels. PTs
ordered fair sharing single whole cases from the least complex to more complex
ones, based on their experiences in the third week and the first task in the fourth
week. They worked in groups of two and then came up with conjectured order.
These orders were written on the board and each group challenged other groups’
ideas. Then, differences and similarities of the conjectures were discussed. At the
end, the shared meaning on difficulty levels of sharing was deduced based on the
information suggested by ELT and PTs’ experiences in the instructional activities.

The last task was a folding activity (See Appendix B) adapted from Empson
and Turner (2006). This activity involved utilization of repeated halving and
composition of splits. The mathematical ideas covered by the folding activities were
predicting the result of the folding actions, understanding the role of folding to
understand radial cuts, relating folding activities with missing factor questions in
mathematics, identifying factors of a number such as 12, and understanding
composition of split as a precursor to understanding area. In addition, this activity
directly utilized students’ work of Empson and Turner’s (2006) folding activities.
PTs tried to understand each student’s work and decide what these students might
know or not know mathematically.

At the end of both weeks, PTs summarized what they learned and compared
the similarities and differences between fair sharing a single whole and discrete

collections.

3.3.34 Week 5

Reallocation, equipartitioning multiple wholes and covariation were the
main topics of interest. Mathematical ideas related to levels 9, 10 and 12 were

covered. In the prior weeks, composition of splits and the argument of area
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congruence (equivalence of the fair parts) were deeply examined. Therefore, fair
sharing of multiple wholes was discussed at a greater pace. Table 12 presents the

learning objectives of this week.

Table 12
Week 5 Learning Objectives: At the end of the Week PTs will be able to

1 Utilize ELT to anticipate students’ mathematical strategies (i.e. benchmarking,
split all), misconceptions (n+1 cuts to create n cuts, cut results in uneven shares,
parallel cut on circles), difficulties (recognizing area congruence of different
shaped fair shares), and justifications related to fair sharing multiple wholes.

2 Differentiate fair sharing discrete collections and reallocation strategies.

3 Produce multiple strategies and utilize knowledge related to covariational
reasoning.

4 Construct connections between engaged levels and further mathematical topics
and ideas (ratio, multiplication, fraction types, factors of a number).

5 Practically examine students’ actual work related to mathematical ideas

embedded in levels 9,10, and 12.

To realize each learning objective presented in Table 11, three tasks and two video
analyses were utilized in a teaching session that lasted 3 hours. The first task was
related to reallocation level. The second task was related to fair sharing multiple
whole and the last task was a covariation task. First video was related to reallocation
level and secon video was related to covariation level. Table 13 shows the alignment

of each learning objective with the related tasks.
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Table 13
Alignment of each Activity with Learning Objectives: Week 5

Activities Learning Objectives
1 2 3 4 5
Task 1 X X
Task 2 X X X
Task 3 X X
Video
Analysis 3 & 4 X X X X

The necessary background for reallocation was established by discussing in prior
weeks both qualitative and quantitative compensations in relation to single wholes
and collection cases. As a result, the implementation of first task on reallocation was
relatively easier than the other tasks. PTs came up with solutions to what happened
to each person’s share when factor based changes occurred in the number of people.

In the second task, the mathematical strategies of benchmarking and split all
for fair sharing multiple wholes were discussed. The first part of the task had a
context of a birthday party and four children trying to fairly share 6 small birthday
cakes. The second part of the task had the same context with different numbers 7
cakes among 4 people. These tasks were adapted from Wilson et al. (2013). Each
task had previously mentioned three components of LT based tasks. Upon the
completion of the task, different mathematical strategies were discussed. Then, the
equivalence of fractions, improper fractions, proper fractions and mixed numbers
was discussed.

The third task demonstrated the covariation concept. Before the task
implementation, | asked PTs the meaning of ratio, covariation, unit ratio and
fractional unit. Since, knowing the meaning of these mathematical concepts is
important to capture the idea of covariation and relate the covariation with further
mathematics topics. In addition, up to this week, the PTs had discussions on the
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meaning of fraction and also ratio terms were utilized. Then, | gave the PTs the third
task (see appendix B, adapted from Stein and Smith, 2011). When the PTs finished
the task, several mathematical strategies (such as unit ratio, additive strategy,
scaling up, scaling factor and others) of solving a covariation task were discussed.
Then, | asked the PTs to came up with the definition of unit ratio, ratio unit, unit
fraction, covariation and ratio concepts based on what they had experienced in the
week 5 teaching session. The PTs worked in two groups to define these concepts. At
the end, the whole class with the help of the teacher-researcher saturated their
definitions for these concepts.

At the last part of this week’s teaching session, two video analyses were
done in approximately 35 minutes. In the first video, a 2™ grade student was asked
to solve a reallocation departure task. In this task, initially 40 crayons were fairly
shared among five children. Then, one child left the group. The task asked how the
remaining friends could fairly share the crayons after one child left the group. The
student first represented the original share of each child in an array format by using
manipulatives (8 crayons per child). Then, she took the last column and distributed
8 crayons among the rest of the four children by utilizing composite unit as 2
crayons per child.

In the second video, one 3" grader was constructing relation between fair
sharing discrete collections to covariational reasoning. This video comprehensively
covered fair sharing collections, naming each fair share, justification of fair share
and covariation. This feature of the video helped both the PTs and me to revisit the
big ideas that were discussed in the prior teaching sessions. In the video, initially a
2" grade student was asked to fairly share 6 candies among 2 people and asked to

find one person share. | showed the children a ratio table shown in Figure 6.

# candies # people

Figure 6. Ratio table
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This table helped children to realize there were two quantities involved in
the questions, and that they both vary together as the size of the one person’s share
remained the same. In the case of the number of people being doubled or halved,
what would happen to each person’s share was discussed and represented on the
table. The relation between the numbers on the table was examined. Eventually the
student stated an informal definition of ratio concept.

Upon the completion of the video case analyses, a whole class discussion
took place. The PTs shared their analysis of what the student did in the videos and
they exchanged ideas. In addition, PTs discussed the differences between the
reallocation and covariation concepts based on the video analysis and their

experience on the tasks.

3.4 Data Collection Tools

The main data sources in this study were classroom observations and field
notes, video recordings of each teaching experiment session, written works of PTs

and pre and post-tests.

3.4.1 Pre/Post-Tests

A pre-test was utilized to understand each PT’s current level of
understanding related to the ELT levels covered in the study. The post-test was
utilized to assess the progress of each PT after the experiment. PTs’ written
responses were utilized to examine changes in their mathematical misconceptions,
knowledge gaps, thinking strategies and the representations they employed. As a
result, the PTs’ written work on both tests provided additional evidence to document
how each PT restructured and enhanced their MCK and SK after the intervention.
The implementation of pre- and post-tests took a total of 5 Hours. The construction

of the tests was explained in detail in the previous sections of this chapter.
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3.4.2 Classroom Observations: Video Data

In this study, a video recording of each teaching session was obtained for
observation purposes. In the third and fifth week, due to technical problems with
card memory, the last half hour of the teaching session were not recorded, yet
observation and field notes were taken. Observation notes were taken during the
experiment, yet the parts that | did not have time to take notes simultaneously were
recorded as field notes upon the completion of the teaching session. The reason for
selecting video recording was that it would be difficult to collect and remember a
great amount of detailed information related to each teaching session without
capturing each moment with a video recording (Powell, Francisco, & Maher, 2003).
Video recordings have a great potential to provide rich audio and visual data about
the participants’ strategies and actions during teaching sessions (Bottorff, 1994). In
addition, it helped the researcher to reexamine PTs’ actions during teaching sessions
and ensure the triangulation of the data. This reexamination also illuminated the
possible discrepancies between what PTs performed in post-test and what they
actually performed in the teaching sessions.

There were two video cameras in the classroom. One camera captured the
classroom view and the other captured the board view. The microphones of the
videos were on. As a teacher-researcher, | also utilized my phone to capture critical
discussions within groups or the interesting work of an individual PT while
circulating the classroom. In addition, due the resolution quality of the video, one

PT took the photographs of the PTs’ written work on the board when instructed.

3.4.3 PTs’ Written Work and Field Notes

The PTs written works on the tasks utilized during the teaching sessions
were gathered in each week. The written works were utilized as supportive evidence
for the video analysis. These written works also helped teacher-researcher to
examine each PT’s mathematical thinking and mathematical strategies on each item

and the tasks being engaged. Although teacher-researcher tried to give the chance to
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every PT to express their mathematical thoughts during the classroom discussion,
sometimes this was not possible. In such instances, the PTs’ written work was an
effective tool to capture all the PTs’ mathematical thinking and understanding.

After each teaching session, teacher-researcher wrote field notes. The main
focus of these notes were:

1. Describing the critical events that took place within a particular group of PTs
or each individual PT’s work that the video recording might not have
captured (Polman, 2006a). For instance, the instance of a PT tried to teach
another PT a particular mathematical strategy was recorded in the notes.

2. Describing the particular action of a PT while working a specific task that
the video recording might not have captured closely. For instance, paying
close attention to how manipulative materials or different mathematical
representations were used by PTs during the course of tasks (Polman,
2006b).

3. Describing the context and the PTs’ actions in the instance of technical
difficulties in which video recording was not functioning properly.

These field notes were utilized as a tool that enriched the content of the data

analysis. Notes also provided the missing details from the video data.

3.5 Data Analysis
3.5.1 Analysis of Pre-Post Tests

In order to analyze data from pre- and post-tests, rubrics were created (See
Appendix A). Each rubric aimed to categorized PTs’ responses into performance
levels. These levels were determined based on three criteria. First, the utilization of
existing literature and Confrey’s et al. (2008; 2009; 2012) and DELTA research
team’s studies on the related items. For instance, to create the rubric for the folding
tasks, Empson and Turner’s (2006) study was utilized. Second, the previously tested
items’ rubrics were adapted or retrieved from Wilson (2009) and Mojica (2010).
They were adapted because scorers could not categorize some PTs’ responses under

any specified levels. Third, the rubrics were constructed by ongoing revisions and
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refinements on the newly created items through categorization of each PT’s
responses with the support of the PhD candidate student and the mathematics
education researcher with doctoral degree.

Revisions on the rubrics were made based on the shared scoring of items by
one PhD candidate in the field of educational measurement and statistics with a
background in mathematics education. She and | scored a small sample of the data
(we randomly selected four PTs’ pre and post tests) and then we compared our
scoring. When there was a disagreement in the scoring, the rubrics were revised and
refined. In addition, in the instance of failure to categorize PTs’ response categories
the rubrics were revised and refined. This process of revisions and refinements on
rubrics continued until each scorer reached a consensus of the PTs’ scores on the
selected items. Table 14 presents a finalized example rubric for item 17 (see Table 4

for the item).

Table 14
Rubric for Item 17: Area Congruence , Naming and Justification of Fair Shares

Correct . .
responses Complete Explanations Incomplete Explanations
Utilize decomposition or composition of Verbally compare the size of
Parts a and shapes or area congruence as a personal each share (B is the smallest
b: no . strategy to reach the declaration of equivalent  gne because it is skinnier or C
For part c: fractions. Then order the fractions. is the largest since it is wider
B<A=D<C & and taller)
cir Name parts correctly and order the fractions &
C>A=D>B correctly. Name the parts erroneously.
Score Description
3 Correct response with a complete explanation
9 Correct response for part a and b but failed to declare the relation between two
parts. (ie A&C, A&B)
1 Correct response with an incomplete explanation
Incorrect response with incomplete, unreasonable, or no explanation
0 Correct response with unreasonable explanation

No response
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In Table 14, each score on the rubric indicates a performance level. The top
score indicates the PTs provided a correct answer along with the required
justifications and mathematical strategies. The lowest score indicates the PTs failed
to provide the correct response along with the correct justifications. The score levels
on the rubrics for each test are varied between 2-4 points. However, majority of the
items scored on the levels between a maximum score of 3 and a minimum score of
0. The reason for that variation is the performances levels of a PT could show on
different items varied.

In the scoring process, inter and intra rater reliability were found by
employing Miles and Huberman's (1994) approach. In this approach, first the
number of the agreements among the scorers was determined. Then, this number
divided by the total number of agreements and disagreements. In this approach, 90%
and higher results are perceived as high reliability. Then, the result is converted into
the percent. When two separate researchers scored the pre-post tests, in both tests
there were two disagreements in the scoring of PTs’ answers. As a result the inter-
rater reliability was calculated as 2/17=0.117, 0.12x100=12, and 100-12=88. Thus
the inter-rater reliability was 88%. Also as a researcher, | scored each test twice two
months apart. The intra-rater reliability was found as 94%.

Throughout the process, | presented two items, upon one of which the PhD
candidate and | failed to agree on the scoring, to the experts in the field of
mathematics education in a national research meeting. The scoring for these two
items was determined after the experts and | reached a consensus.

The written responses of each PT on both tests were utilized to provide
evidences for their mathematical content knowledge and student knowledge level
and how it is progressed or restructured. Although each PT’s performance was
scored through utilization of rubric, the final score were not communicated with
PTs. The reason for scoring was to determine individual PTs’ performances on both
tests. Since the rubrics were not utilized as a mean of determining a grade at the end
of the teaching experiments, the data yielded from the rubrics were utilized only as
descriptive and qualitative evidences of each PT’s performance and progression

after the teaching experiment.
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3.5.2 Analysis of Teaching Sessions’ Video Data
3.5.2.1 Model for Data Analysis

In this study, Powell et al.”’s (2003) analytical model for analyzing video data
was used. This model included seven steps as follows: “1) viewing attentively the
video data, 2) describing the video data, 3) identifying critical events, 4)
transcribing [necessary sections and constructing video clips], 5) coding, 6)
constructing storyline, and 7) composing narrative” (p.413).

According to Powell et al. (2003) in the first step, the entire video should be
watched carefully several times to understand the overall flow. In this phase, I kept
in mind the purpose of the research and watched the videos accordingly. This phase
helped me to identify the points for starting the analysis. In the second step, | tried
to organize the rich information in the video data. Organizing this massive amount
of information in a meaningful way was a considerable challenge. To overcome this
challenge in this study. | ... noted [data] in an ethnographic-like fashion particular
time-coded transitions of situations, activities, or meanings” (Powell et al. 2003, p.
416). Verbal and written descriptions of related activities were composed to map out
the video data.

In the third step, significant moments and critical events related to the
research questions were determined. | referred to Maher’s (2002) critical events
description. According to Mabher, critical events would show evidence of significant
change and contrasting act of participants from their initial understanding. In this
study, | looked for a significant change in PTs’ understanding of how students
reasoned mathematically and PTs’ understanding of equipartitioning. In addition, |
detected the changes in PTs’ mathematical strategies and their varieties.

In the fourth step, the time intervals for these critical events were
determined. Then, video clips of these critical events were composed. After that,
transcription of these sections was done. | had been trained and gained the
experience on how to transcribe and accumulate transcription during my work in the
DELTA research team at North Carolina State University. These experiences helped
me in the transcribing the critical events. In each transcription, a verbal description

of the context was provided. Context included gestures, silence, and the objects in
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the environment, time, and materials.

In the fifth step, each transcription was examined deeply and the video was
re-examined if necessary. First, significant themes and statements were selected.
Then, video-data transcription was examined iteratively to form categories that
captured the commonality or pattern of significant themes, statements, and actions.
This iterative examination continued until saturation of the coding schema was
achieved. In the coding procedure, shared examination of the data between the
mathematics education researcher, elementary school teacher and | ensured the
reliability of the formed codes. The elementary school teacher had four years of
teaching experience. She shared her opinions on the examination of the data as a
consultant in the process of the data analysis. In addition, the mathematics education
researcher with a doctoral degree and | used this coding schema to test whether it
measured the intended outcome and gave consistent qualitative results. In the
following sections the coding schema formulation will be explained in detail and the
final codes will be provided.

In the last two steps, the determined coding schema was utilized to interpret
the data. While constructing the story line, | tried to *“ come up with insightful and
coherent organizations of the critical events, often involving complex flowcharting”
(Powell et al., 2003, p.430). Repeated and shared viewing of the video data was
utilized to refine and revise interpretation of the particular critical event coded in the
data until a clear and coherent interpretation of the meaning was established. In
composing the narrative stage, the evidences from the video data were utilized to
report the findings of the study. Actual quotes from the participants and photos of
PTs’ works were used for reporting purposes as a form of empirical evidence for
each finding. In addition, narrative communicated the overall meaning of the coded
data.

3.5.2.2  Qualitative Analysis: Pilot Study

The findings of the pilot study revealed three main restructuring evidences

of PTs: Changes in content, misconceptions and learning difficulties, and
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understanding students’ thinking models. Below, how these categories appeared in
the pilot study was given with evidences of classroom instances recorded in the pilot
study.

The initial evidence was that PTs changed their prior knowledge related to
fair sharing. For instance, PTs did not know the difference between fair sharing
collections and a single whole. They assumed both cases of fair sharing
demonstrated same mathematical ideas. After the experiment, PTs realized both
cases of fair sharing actually related but had some differences. If a PT stated that “I
did not know ...”, these sorts of statements were gathered and classified under the
first category: Changes in content knowledge. For instance, in the second week of
the pilot, PTs were engaged with reallocation items and tasks. One PT stated that “I
did not think marking the common amount in each friend’s share and dealing the
rest. | would combine all collections and share them all.” This PT was engaging
with reallocation uneven shares task and she exhibited an indication of learning a
new strategy called reallocation.

The second evidence of PTs was categorized under misconceptions and
learning difficulties code. Although PTs knew the word ‘misconceptions’, they
could not come up with any student misconceptions prior to the experiment.
Through examining students’ work and working on the tasks, all PTs in the pilot
study indicated some possible misconceptions and provided solution ways to
remediate these misconceptions during the intervention. For instance, Figure 7
shows one PT’s work that emphasized one of the coded misconceptions of students
in ELT called additive misconception (Confrey et al., 2010).

Figure 7. Additive misconception: Times as many
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In Figure 7, PT stated “when sharing [the rectangle] for four, since students
perceive the part [one person receive] separate from the whole, student might say:
part is one third of the whole.” Similarly, the PT indicated, students could state that
“the whole is three times larger than a part or two more than the part.” To over come

this misconception, this PT suggested a solution strategy as:

PT: As we learned in class, | would emphasize multiplicative relation
between the whole and a person’s share. And let the students iterate a
person’s share 4 times on the given whole. Students can understand that the
whole is four times larger.

The rest of the misconceptions anticipated during intervention were;
utilizing n+1 cuts to create n parts. PTs examined some students’ works. In these
works, one of the students exhibited this misconception and all PTs could detect n+1
misconceptions. None of the PTs indicated utilizing parallel cut strategy on circles
could be a misconception prior to experiment. When PTs examined a student’s work
on this case, they suggested that in the prior task (fair sharing a rectangle), students
could use parallel cuts, so they used the same strategy on circles. These evidences
from PTs’ works in the pilot study indicated that utilization LTs actually helped PTs
to learn about these misconceptions.

In addition to detecting possible students’ misconceptions, some PTs also
presented the same misconceptions and learning difficulties as students did. For
instance, one PT stated diagonal cuts did not create fair shares on rectangles in the
third week of the pilot. This PT was having difficulty to understand the area
congruence between two different shaped triangles formed as a result of diagonally
equipartitioned a rectangular whole into four. Another example for this case was
that two PTs did not know how to split a circular cake into six and asked for help
from another PT. The main reason for this learning difficulty was that this PT did

not know how to employ a radial cut. The interaction took place as follows:

PT1: Can you show me how to create three splits on circles? (PTs having
hard time to locate the radial cuts to create 3-splits on the given circle)

PT2: Start here (pointed to the center of the circle). Then you share the circle
into three, and then share each one-third into two.

T: How do you determine this? (Pointing out the center of the circle)
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PT2: Measure diameter and take the midpoint of it.
T: What about younger elementary school students who cannot measure?
PT2: I don’t know.

This conversation indicated that PT2 had a hard time to think in terms of
students’ thinking level. Also, PT1 did not know how to create radial cut to split a
circle into three. After this conversation, a folding task was utilized to show how to
determine and utilize the center of a circle to create odd number of splits on a circle.
Through this activity, both PTs learned how to find the center of a circle and then
how to create radial cuts. This action also categorized under the changes in content
knowledge. PT1 learned a new mathematical strategy called radial cut utilization.
PT2 expanded her existing knowledge on fair sharing circles through learning how
to determine center of a circle without measuring.

PTs generally thought that students would engage the tasks the way PTs did.
Yet, the discussions and the mathematical strategies of students ordered in LT
showed that students actually engaged in these tasks in a different way. As indicated
above, PT2 had a hard time finding another way for showing the center of the circle
that a younger student could understand or employ. Prior to pilot intervention,
majority of PTs (n=8) were having hard time to distinguish students’ mathematical
thinking from their mathematical thinking. These sorts of instances coded under a
third category called understanding students’ thinking model. PTs usually utilized
the statements such as “They used division, if they did not use division how can
they solve this? I think they cannot.” Yet, with the help of engagement with tasks
and instructors’ guidance, the PTs finally came up with a sense of how students
thought mathematically. Such instances were coded as understanding students’
thinking models.

Another clear example for this category was detected when PTs were asked

“how could young students name each person’s share, when a rectangle is split into
four?” Eight out of 10 PTs thought students would say each [friend] got%of the

cake. Those PTs also predicted students’ naming strategy. They stated, ““ students
would tell, each got a quarter.” Although this answer was not an incorrect answer, it
was less likely to be an answer of young elementary school children. After the

intervention, PTs showed evidence of an understanding variation in students’
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responses. For instance, one PT stated, “I think younger students cannot solve this
problem directly with mathematical symbols. They can use a concrete object or
drawing to show each friend’s share and name it as a part or piece.” Figure 8
represents this PT’s expectations of students’ drawing of fair sharing a rectangular

cake for four friends.

Figure 8. Fair sharing for four people and each person’s share

In this figure, the PT drew three different correct representations and also
included an incorrect representation of fair sharing. And she wrote on her paper
“each friend got the amount of cake as shown in the picture.” This example
indicated that PTs became aware of the fact that younger students may not think in
the same way and as complex as they solved the problems.

As a result, findings of the pilot study helped me to generate three initial
codings as (i) changes in content knowledge, (ii) misconceptions and learning
difficulties, and (iii) understanding students’ thinking.

These preliminary findings of the pilot study led to further examination of
how PTs would become aware of students’ mathematical learning and thinking, and
also how they restructure their mathematical content knowledge for what they were
supposed to teach in a mathematics education course that is integrated with use of
LT. Each PT showed evidences of utilizing LT to change their initial mathematical
content knowledge. Data from PTs eventually led the codes. For instance, one set of

PT’s behavior was coded as anticipating. This code was deduced since individual
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PTs indicated that they were not aware of how students engaged with the fair

sharing tasks before. Table 15 shows the initial action codes under three main

categories.

Table 15
Initial Categories and Examples from Individual PTs

General Sub-Category

Category Name Description

Example

PTs are aware of their

—

é §’ Revisin incomplete initial knowledge

8 = g on equipartitioning and they

c E revise them.

Eg) L PTs add newly presented

50 Exoandin information on

& P g equipartitioning into their

existing knowledge.

Supporting PTs seek for support while

dealing with presented tasks.

PTs use ELT to identify and

remedy students’
misconceptions.

Identification
and remediation

Misconceptions
and Learning
Difficulties

:2 0 : PTs can order students’

) rdering ible strateqies f "

El (Adapted from possible strategies Trom the
o i : less to the more complex
= Smith & Stein, ones using ELT

£ < 2011) gELT.

§<

% Anticipatin PTs anticipate students’

2 (Smith g Ste?n possible mathematical

> 2011) ' strategies and misconceptions

through usage of ELT.

“I thought that children can

do ...but actually it is not
like that.”

“Wow I did not think before
that children can do ...”

“Can you show me how to
(?”

“One out of four means you
have one whole and four
parts in it.”

“I think this is easier than
the other...why students use
this strategy.”

“I can teach first repeated
halving, then teach odd-
splits to him.”

“They can use parallel cuts
on circles.”

In this step of analysis, although an initial coding schema was formulated

based on individual experiences of PTs, mainly PTs’ verbal or written explanations
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were recorded individually. Then, the narrative for each PT’s experiences of pilot

teaching experiment was composed.

3.5.2.3 Qualitative Analysis: Main Study

During the time of the pilot study, although some research existed on how
LTs might effect PTs’ and teachers’ knowledge, the theoretical framework for
examining this effect had not been determined. Yet, upon the completion of the
pilot, an emergent theory started to be constructed as LTBI. The findings of the pilot
study indicated that the PTs had changed their content knowledge and their
knowledge about how students learned mathematics. These findings were parallel
with the approach of LTBI. As a result, the coding schema of the pilot study guided
me to select LTBI theoretical framework for the main study. Then, through
analytical examination of the main study data along with revisiting the existing
literature on LTBI, the initial coding was refined and elaborated.

Examination of the data across participants delineated categorical data that
were utilized to construct categorical combinations that helped me to develop initial
themes: Changes in mathematical content knowledge and changes in student
knowledge. Then, examination of the critical events of each participant provided
action categories that represented the process. The final product for this research
consisted of a cross-participant analysis constructed from the knowledge
reconstruction practices of each participant when LTBI was used in the teaching
sessions.

In actual experiment analysis, | also worked on generating “abstractions
across participants” (p.195). Although some details might exhibit differences for
each participant, |1 would seek for “a general explanation that fits each of the
individual [participants]” (Yin, 1994, p.112). To achieve this abstraction and
generality, the findings of each participant were examined holistically. Through
deducing a pattern within data, a general coding schema was generated. This pattern
helped me to see “processes and outcomes that occur across many cases, to

understand how they are qualified by local conditions, and thus develop more
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sophisticated descriptions and more powerful explanations” (Miles & Huberman,
1994, p.172).

The changes in PTs’ content specific knowledge were later coded as
Common Content Knowledge. Misconceptions and learning difficulties were
handled under Mathematical Content Knowledge and coded as Specialized Content
Knowledge. When the PTs connected the equipartitioning related ideas with each
other and with further mathematics, this was coded as Horizon Content Knowledge.
Understanding students’ thinking model was later coded as Student Knowledge. Yet,
there were not specific categories that addressed each PT’s reconstruction practices
under each category. Thus, each PT’s experiences in LTBI was documented through
systematic interpretive data analysis (Schwandt, 1998). Their responses in the
classroom and the ways they developed an understanding of fair sharing were
recorded across points in time. These experiences helped me to create categories
that conceptualized the utility of LTs. Table 16A and 16B showed final categories

of knowledge restructuring practices of PTs
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3.6 Reliability and Validity Issues

According to Lincoln and Guba (1985) "...there can be no validity without
reliability, a demonstration of the former [validity] is sufficient to establish the latter
[reliability]" (p.316). In addition, in order to ensure the reliability of the data
collected from the observation, intra-observer reliability and inter-observer
reliability should be established. According to Creswell (2007), the intra-observer
reliability referred to the extent the observer was consistent with his or her coding
schema. In order to ensure this reliability, the video data were coded twice in this
study by the researcher herself. Creswell (2007) stated that inter-observer reliability
referred to the extent independent observers would come to an agreement about the
coded data. As a result, one more mathematics educator with doctoral degree coded
the video data in this study. Video excerpt of critical events were determined in the
teaching sessions. Within each excerpt various restructuring practices of the PTs
was captured and coded. The intra-rater reliability was found as 95%. The inter-rater
reliability was 90%. The pre-post tests were scored also twice by the teacher-
researcher. The intra-rater reliability was found as 94%. Also, randomly selected
four PTs’ pre and post-tests were scored separately by a PhD candidate in
educational measurement and I. The inter-reliability was found as 88%. All
reliabilities were calculated by Miles and Huberman’s (1994) approach.

In this study, in order to ensure the validity, triangulation was used.
According to Mathison (1988) triangulation was a typical method to improve
validity and reliability of the study. Patton (1990) stated that triangulation could be
achieved in a study through combining multiple data collection methods. In this
study, video data of teaching sessions, classroom observations and field notes, and
PTs’ written works were collected to answer the research questions. In addition,
according to Creswell and Miller (2000), triangulation also involved “a validity
procedure where researchers search for convergence among multiple and different
sources of information to form themes or categories in a study” (p.126). In this
study the qualitative data gathered from different data sources (PTs written works,
pre-post test data, observations, field notes etc.) were examined two times and

coding schema of the study was composed. Codes’ descriptions were provided in
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detail and empirical evidences from the gathered data were provided for each code.
This detailed description of codes also ensured that other researchers could take
these codes and test whether they could be used as a framework for other studies.

Mathison (1988) stated that triangulation could be achieved through multiple
viewing of the data. In this study, each video data for each teaching session were
examined through shared multiple viewing with other colleagues including, the
doctoral candidate in educational measurement field with a background in
mathematics education, one elementary teacher, one researcher with a doctoral
degree in mathematics education, and several mathematics education researchers. In
this shared discussion, the coding schema of the study was discussed by
mathematics education researchers and saturated. These gatherings contributed to
the saturation of the codes and creating a common meaning for the observed events
or behaviors in the video data (Creswell, 2007).

At last, Merriam (2002) indicated that one could increase the validity of the
findings through long-term observations in a qualitative study. Because one could
verify or refute the findings of the study via cross checking findings against data. In
this study, an emergent pattern related to PTs’ knowledge restructuring process was
deduced within 3 weeks pilot study. Then, in the main study, 6 weeks of observation
took place. Within this time frame, the mathematics educator and | continuously
discussed the data and picked the negative cases to test the findings of the study.
This time frame (9 weeks total) helped me to collect data that yielded a more

accurate and detailed picture of the phenomenon under examination.

3.7 Researcher’s Role

The aim of the teaching experiments is to observe the learners in their
settings and report this to the audience. The challenge is in such kind of qualitative
study “is to combine participation and observation so as to become capable of
understanding the program as an insider while describing the program for outsiders”
(Patton, 1990, p.207). Thus, creating a balanced relation between the participant and
the teacher-researcher is a key for accurate and unbiased reporting.
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In this teaching experiment, | was the teacher-researcher. The PTs knew the
researcher-teacher from their previous university course. This acquaintance between
the PTs and | helped the PTs to share their ideas freely without having a fear of
being judged. This also saved time for me from the preparation time in which the
PTs got used to the atmosphere of the teaching experiment. As a result, this time
was used for instructional purposes.

During the implementation, since | knew each PT personally, this helped me
to select which PT to present his or her work first in the class. In the instance of a
PT remaining silent, I could ask this PT to share her thoughts, solution ways freely
and the PT answered positively to this request. This ensured an ongoing interaction
even in the silent moments during the experiment. In addition, this helped me to
stabilize the amount of my inputs during the teaching. Thus, I could set myself
aside, let PTs to discuss and then | observe the PTs.

Being a teacher-researcher of the course, | could use my knowledge of the
learning trajectory to plan the tasks, orchestrating the discussion in the
implementation in LTBI. With this knowledge, | assisted the PTs to think on the
tasks in different ways, to reflect on the more complex mathematical ideas.

In the data analysis part, knowing the academic background of the PTs and
their mathematical success level helped me to interpret the significance of the
improvement in each PT’s mathematical content knowledge and student knowledge.

One of the disadvantages of knowing each PT was that the PTs were very
comfortable in the class and this rarely caused some distractions in the classroom. In
such instances, | addressed the situation through warning the PTs with a warm tone
to focus on the presented tasks and reminding them there would be whole class
discussion after they completed individual works. These moments lasted for very
short times, a maximum of one or two minutes.

Second disadvantage of being the teacher-researcher was that the PTs might
perceive me as an authority in the classroom in terms of mathematical knowledge.
However, in the beginning of the experiment, I made it clear that the PTs’
contribution regardless of their correctness or incorrectness was valuable for this

course and through active engagement in the course we should all progress together.
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| also informed the PTs that | would also learn from their experiences and

mathematical thinking in the experiment.

3.8 Assumptions and Limitations

In the study, the PTs participated to the study outside of the their course time
at the university. The course content was not graded and did not affect their GPAs.
Each PT willingly allocated their personal time to enhance their mathematical
understanding. Also, at the beginning of the experiment, all the PTs were informed
that speaking their thoughts aloud was very critical. Then, as a researcher-teacher, |
emphasized that | was interested in their mathematical thinking and this interest was
independent of evaluation of their answers as correct or incorrect. As a result, |
assumed that the PTs participated the study without having an intention to impress
the researcher-teacher. They all gave their sincere responses in the teaching
sessions.

The first limitation of the study was time. Since the time was limited, only
three weeks of pilot study were conducted. As a result, only newly developed items
could be piloted. Although the adapted and retrieved items were utilized in prior
research studies, these items could not be piloted with the PTs in Turkey for this
study. The second limitation was, since the course was based on voluntary
participation and the PTs allocated a limited time (maximum of 3 hours per week)
for the study, each week’s content was very intense. In addition, the formative
assessment of the PTs’ mathematical understanding was realized through analysis of
the students’ works and videos not through real-world in class application in an
elementary school. The familiarity with the researcher-teacher did not seem to be a
limitation from the PTs’ point of view. Because, the PTs felt free to express their
thoughts in the teaching sessions and were easily adapted to the course flow.

Another limitation related to time was that the pre-post tests were conducted
within a long duration. This long time duration might have led changes in PTs’
performances in the items when they became exhausted. However, the examination

of the PTs reactions during the tests did not convey a message of exhaustion. Also,
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voluntary participation was another motivation factor that kept PTs actively working
on the presented items.

Another limitation of the study was that | was the researcher-teacher of the
course. My theoretical orientation might have the potential to affect the results of
the study. To minimize this effect triangulation was employed. The data from
multiple sources (i.e., pre-post tests, written works, observational and field notes,
video data) were compared and contrasted to test the validity of the results. In
addition, a mathematics educator, one doctoral student in education measurement
field and an elementary school teacher analyzed the data and shared their own

interpretations of the data.
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CHAPTER IV

PRE/POST-TEST FINDINGS

This section will compare the results of pre- and post-tests through providing
descriptive analysis and qualitative evidences from PTs’ written works. Then, each
PT’s progress will be examined on each item. In order to document the progress of
each PT, both descriptive and qualitative analysis results will be disseminated. The
PT’s scores on each item denote a certain performance level represented in rubrics
(See Appendix A). All these findings will be reported to provide answers for the

first research question and its related sub-questions as follows:

1) What are differences between pre-service elementary teachers’ (PTs)

knowledge level before and after the LTBI teaching experiment?

e What is PTs’ initial knowledge about the equipartitioning/fair sharing
concepts, which they are supposed to teach?

e Do PTs hold any misconceptions, difficulties, errors and knowledge gaps
related to concept of fair sharing? If yes, what are those?

e What is PTs’ knowledge about the equipartitioning/fair sharing concept,
which they are supposed to teach, after the LTBI teaching experiment?

4.1 Individual Analysis of Each Item and the PT

Item 1

The first item was scored on the base of 4 points and asked to fairly share
discrete collections and then provide different mathematical names for each share.
In the pre-test the question asked to fairly share 18 candies among 3 friends through

utilizing the line on the given picture of three friends and 18 candies (Adapted from
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Mojica, 2010). A parallel item was asked in the post-test that included 24 candies
among 3 friends case.

In both tests, all PTs fairly shared the collection. Yet, PTs performed poorly
on naming the fair shares. Figure 9 shows the comparisons of each PT's score on
this item in both tests.

Item 1-Score Comparision
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Figure 9. Each PT’s score on pre-post tests: Item 1

Figure 9 shows that the overall performance of PTs increased in the item 1 in the
post-test. The mean score of item 1 in pre-test was found as 0.88 and as 2.00 in the
post-test. Figure 9 also shows that all PTs could fairly share the given collection, yet
they failed to provide different mathematical names for each person share in the pre-
test. All the PTs, except PT3, named each share only as a count, six candies, in the
pre-test and did not provide any other name. PT3 could not name each person’s
share even if she fairly distributed candies among three friends. This finding

indicated that many PTs were not knowledgeable about the various mathematical

naming for fair shares such as ratio (6 candies per person), fractions (é of whole

candies, %) and operators (Confrey et al., 2010) before the experiment. Yet, in the
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post-test, all PTs except PT2 and PT7 could utilize at least two different
mathematical naming for fair shares.

In the pre-test, PT1, PT3, PT5, PT7, and PT9 shared the collection by ones
to each friend. This strategy is called 1-1 correspondence. The rest of the PTs
utilized composite unit strategy and they gave three candies at once to each friend.

In the post-test, PT1, PT5 and PT9 showed a considerable progress. These
PTs provided three different mathematical names for each fair share including ratio,
fractions, and count. PT4, PT6 and PT8 provided two different mathematical names
of fair shares including either ratio or fractions and count. PT3 could name each
person’s share as a count in the post-test. These findings indicated that majority of
PTs (n = 7) seemed to expanded their mathematical content knowledge related to
mathematical naming of a fair share. They internalized the embedded knowledge
within ELT.

No change was recorded in PT2 and PT7 in terms of knowledge about
naming a fair share. Contrary to their performances in the post-test, these PTs
actively participated the discussions and their contributions to the discussion
provided evidences related to naming a fair share through using ratio or fraction in
the teaching sessions. This contradiction might show that PT2 and PT7 did not
completely retain the knowledge upon teaching sessions. PT4, PT6 and PT8 failed
to receive full credits in the post-test since full credits required providing at least
three mathematical names. My personal communication with the PTs showed that
these PTs did not think it was necessary to use general mathematical name for each
person’s share such as a part, some portion of the whole collection. Yet, younger
students used these names frequently (Confrey et al., 2008, 2010). PTs thought that
students would not use these general naming. This showed that PTs could not

completely anticipate students' mathematical thinking.

Item 2

The second item was an anchor item. This item assessed whether PTs could
find a general name for a share resulting from equipartitioning. The question was
“For given any amount of objects (n) and any amount of people (p). How would you

name each person share and why?”
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This item was scored on the base of 3. The overall mean for the item in the
pre-test was 2.77 and in the post-test was 2.55. There was a slight decline in the
overall mean score in the post-test that | did not anticipate. Seven PTs could provide
a correct answer and complete justifications for the generalization in both tests.
Although PT3 and PT7 mentioned a specific case and some sorts of generality in the
pre-test, both PTs only utilized a specific case in the post-test without mentioning a
generality. For instance, in the pre-test, PT3 utilized an example, 6 candies and
6:3=2, and said each individual would get n/p candies. On the other hand, in the
post-test, she only gave the example of 10 candies among 5 people. Then she did
not relate this example with n (number of objects) and p (number of people). One
possible reason for the thought shift in PT3 and PT7 might be failed to connect
concrete examples with the abstract generalization. These PTs might have thought
that young children could not achieve this kind of generalization. Thus, they
perceived their answers as sufficient. These findings indicated that many PTs (n = 7)
produced a generalizable mathematical idea as a result of the LTBI teaching

experiment.

Item 3

The third item was identified as one of the easiest items on the tests. The
item required finding the total number of pencils through utilizing different
strategies. The question on the pre-test was asked to find the total number of pencils
if a box of pencils were shared among three friends and each got 13 pencils. A
parallel item was asked in the post-test in which each of seven friends got six
pencils.

This item focused on the reversibility of discrete collections. PTs were
expected to employ additive and multiplicative strategies. This item was scored on
the base of 4. The overall mean for the pre-test was 3.22 and for the post-test was
3.88. In the pre-test, PT1, PT2 and PT7 utilized additive strategy such as,
13+13+13=39. Rest of the PTs utilized both additive and multiplicative strategies.
In the post test, only PT7 did not receive full credits, since she only showed
multiplicative strategy to find total number of crayons as 6 (pencils) x 7 (students)=

42 pencils. The rest of the PTs used both multiplicative and additive strategy to find
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the number of pencils in the original collection. These findings indicated that
although PTs knew multiplication and that it could be used for finding the total
number of pencils in the collection, they did not exhibit the ability to reverse the
operation of equipartitioning in the pre-test. This ability indicated the recognition of
combining equal groups to re-create the entire collection. This recognition later
entails “n times as many relation” between the size of whole collection and equal
groups. These findings indicated PTs started to make sense of multiple

mathematical strategies and used them upon intervention.

Item 4

Item 4 assessed the PTs’ ability to anticipate and explain students’
mathematical strategies and misconceptions related to reassembly. Reassembly
underlies the part-whole relation (n times as many or n times as much), one of the
hardest concepts for the young children to understand (Confrey et al., 2009;

Thompson & Saldanha, 2003). Pre-test item was as follows:

Three friends had total 13 same size Legos. They combined all the Legos to
build a Lego tower. Then, they compared the size of one Lego piece with the
size of the Lego tower. Three friends provided different answers:

a) Fatma suggested the height of Lego tower was 12 times as long as one Lego
piece.

b) Ayse suggested the height of Lego tower 2 times as long as one Lego Piece.

c) Berrin suggested the height of Lego tower 13 times as long as one Lego
Piece.

Then, PTs were asked first to determine which statement (s) was correct or
incorrect. They were asked to explain why the statements were correct or incorrect.
At the end, they were also required to explain the each friend’s understanding of
reassembly. In the post-test a parallel item that included three friends and each has 7
seven Legos. Each friend also suggested parallel mathematical statements.

This item was scored on the base of 4. Figure 10 compared PTs’ scores on

pre-and post-tests.
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Figurel0. Each PT’s score on pre-post tests: Item 4

The overall mean for the pre-test was 2.22 and post-test was 3.55. Figure 10 shows
that except PT4, all of the PTs could select which of the students’ response
descriptions was correct in the pre-test. However, PT3 received only 1 point since
she did not provide a complete sensible mathematical explanation for the correct
response. As Wilson (2009) stated, even some teachers may hold the same
mathematical misconceptions as students do. This was demonstrated in the pre-test
by PT4’s additive misconception. Figure 11 shows PT4’s additive misconception.

Figure 11. PT4’s additive misconception: Part-whole relation
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In figure 11, PT4 described the relation between the size of the Lego tower
and one Lego piece as 12 times more and decided that Fatma's answer was correct.

In the pre-test, only PT2 explained the correct strategy, detected both
students’ additive misconception and described why the students perceived the
relation between size of the tower and a single Lego piece as two times as long as.
Researchers (Confrey et al., 2009; Pothier & Sawada, 1983) suggested that young
students might perceive each share as half regardless of their size. For some children
breaking into half could create any number of parts such as half in five pieces.

In the post-test, the PTs were asked to compare the size of a Lego tower
composed of 7 Legos to 1 Lego piece. In the post-test, PT1, PT2, PT5, PT6, PT7
and PT8 provided correct answers and explained the underlying mathematical
reasons behind each friend’s answers completely. PT4 corrected her misconception;
she also reached a level that she could identify students’ misconceptions in their
responses. PT4 stated that Fatma exhibited a misconception since she put each Lego
on top of each other and did not count the Lego in the bottom.

In the pre-test, although only PT1 and PT5 identified additive misconception
in Fatma’s response, in the post-test, 5 of the PTs could completely articulate
students’ mathematical thinking and misconceptions. Four PTs (PT3, PT4, PT7 and
PT9) still could not provide an explanation for Ayse’s mathematical thinking.
However, when these 4 PTs’ work were deeply examined and their progress were
documented through comparing their performances on pre- and post-tests, it
appeared that PT3 and PT4 made considerable progress. Both PT3 and PT4, unlike
their performance in the pre-test, could explained both Fatma's and Berrin's
mathematical reasoning behind their answers in the post-test. Only PT9 did not
show any progress, yet she could still provide a complete explanation for Fatma's
and Berrin's responses. PT9 still could not explain how Ayse stated the relation as 2
times as long. These findings indicated that PTs could anticipate the reasons behind
both students' misconceptions and correct mathematical strategies. Also, they could
explain the reasons behind these misconceptions after teaching sessions. This
indicated that the PTs started to enhance their knowledge about students’
mathematics. Correcting their own mathematical misconception that an elementary

student could also possess seemed to be an indicator of restructuring their CCK.

112



Items 5 and 7

Both item 5 and item 7 assessed the reallocation of uneven shares (Yilmaz,
2011). Yilmaz (2011) defined this type of reallocation tasks as “Given a set of
objects unfairly shared among a number of people but that could have been fairly
shared, participants adjust the shares to obtain fair shares” (p. 6). The difference
between item 5 and item 7 was that item 5 included a picture of the initial shares
while item 7 did not. Yilmaz (2011) found that when younger students were
presented with the items with pictures, they utilized reallocation strategy. But when
the item did not include a pictorial representation, they added up all the collection
and fairly shared among the number of the existing people. This feature of the item
assessed whether PTs who took the test could make sense of the role of different
representations.

The pre-test item 5 included the picture of cookies unevenly shared among
four people and the PTs were asked to fairly share it and justify their fair shares.

The picture in the item 5 stem is shown in the Figure 12.

- OO0
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7 cookies

3 cookies

Figure 12. The picture of uneven shares in the pre-test item 5’s stem

The post-test included a parallel item with a picture of the uneven shares as

shown in the Figure 13 below. Item 7 included a verbal description of the each
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friend’s uneven shares in the pre-test as Pelin had three chips, Meryem had 6 chips,
Tamer had 4 chips and Sinan had 7 chips. In the post-test the verbal description
was; Pelin had 4 marbles, Meryem had 7 marbles, Tamer had 5 marbles and Sinan
had 8 marbles. For both items, the PTs were asked to fairly share the collection and
justify fair shares.

In the pre-test, the overall mean for these two items did not differ greatly.
The mean for item 5 was 1.88 out of 3 and the mean for item 7 was 1.55 out of 3 in
the pre-test. In the post-test, the mean for item 5 increased up to 2.77 and item 7
increased up to 2.55. When each PT’s responses to both items were examined, the
same trend as Yilmaz (2011) observed with young children could be observed. PTs
also employed reallocation strategy more frequently (n = 7) when the item stem
included the picture of original share, similar to the young children. Figure 13

shows PT4’s reallocation strategy on item 5.

Figure 13. Reallocation of uneven shares: Detecting common shares in each share strategy

In Figure 13, PT4 drew a line that showed each friend’s had equal common amount
of bottle caps (n = 4). Then, she drew a second line in which she completed the
missing bottle caps (in Can’s and Salih’s shares) by taking one bottle cap that
exceeded this line (Derya’s and Ayse’s shares). Then, she represented redistribution

of remaining parts by utilizing arrows.
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In the post-test, except PT2 and PT7, all seven PTs could utilize reallocation
strategy with correct justifications. For item 7, five PTs utilized reallocation strategy
with correct justifications. In addition to these findings, PT3 exhibited great
progress in both items upon intervention. Although she received 0 credit for item 5
in the pre-test, she received full credit (3) in the post-test. Similarly she increased
her score from 1 to 3 for item 7. None of the PTs exhibited a decline after the
intervention for both items. All these findings and the increase in the mean indicated
that PTs expanded their mathematical knowledge and learn a new strategy called
reallocation. Utilization of a different strategy also seemed to be an indication of
expansion in their CCK.

Item 6

Item 6 assessed the reallocation departure case (Yilmaz, 2011). Yilmaz
defined this type of reallocation tasks as “Given a set of objects already fairly shared
among a number of people, participants adjust the shares based on the departure of
one or more people” (p.6). Yilmaz (2011) stated that younger children redistribute
the share of the person(s) who left the group in this type of tasks. The items on the
pre-test and post-test are briefly described below:

Pre-test: Ali has a sleepover party with his five friends. His mother gave him
six bags of strawberry candies. Each bag contained 5 candies. Mustafa is
allergic to strawberry and could not eat his candies.

Post-test: Ali has a sleepover party with his six friends and Mustafa was
allergic to the candy. They had seven bags of candies each contained six
candies.

Common item stem for each item: Show how the boys can share the candies
and describe each boy’s share after Mustafa leave his candies. Explain your
answer.

This item was scored on the base of 3. Figure 14 shows each PT’s performance on

item 6 in both tests.
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Item 6-Score Comparision
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Figure 14. Each PT's score on pre-post tests: Item 6

In the pre-test, only PT5, PT7, PT8 and PT9 utilized both reallocation and collection
strategy to solve the task. The other five PTs utilized only collection strategy. Yet,
only two out of five PTs (PT1 and PT4) could completely justify their collection
strategy. For instance, PT1 drew a picture of utilization of 1-1 correspondence
strategy to show how she distributes the whole collection. On the other hand, PT2
and PT3 only wrote 30+5=6 without explaining the relationship between this
division operation and the action of equipartitioning collections.

After the intervention, six PTs utilized both collection and reallocation
strategies and the rest utilized collection strategy with complete justifications. One
of the justifications was commutative property of multiplication. In her study,
Yilmaz (2011) stated that reallocation arrival and departure tasks serve as an
important base for understanding commutative property of multiplication. Similarly,
in the post-test, three PTs indicated that 6x7 (first number indicates number of
objects in each person share and second number indicates number person) and 7x6
should be equal. PT3 utilized both commutative strategy and array representation to
justify the answer. The PTs drew two arrays with the dimensions 6x7 and 7x6 and
wrote area on top two arrays. These finding indicated that PTs actually started to
utilize variety of mathematical strategies embedded in LT. Also, they enhanced their

ability to justify their responses through utilizing multiple mathematical
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explanations and representations.
Item 8

Item 8 (Adapted from Lamon, 1996 retrieved from Mojica, 2010) required
fair sharing multiple wholes among multiple people in two different contexts with
the same number of wholes and people. PTs were asked whether these two tasks
were mathematically equivalent or not (see Figure 16 below for the tasks). PTs
could justify the mathematical equivalence of two tasks by utilizing a mathematical
model, an area model, by indicating each friend’s share in relation to a whole, and
by stating context was an extraneous variable. This item was scored on the base of
3. The overall mean of this item in the pre-test was 1.66 and overall mean in the
post-test 2.55. Figure 15 shows each PT’s comparative scores on this item in both

tests.

Item 8-Score Comparision
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Figure 15. Each PT's scores on Pre-Post tests: Item 8

Although there was an increase in the mean of this item in the post-test, PT2
and PT3’s scores declined as shown in the Figure 15. On the other hand, PT7 and
PT8’s scores increased dramatically. Although none of the PTs provided a complete

explanation for why two tasks were mathematically equivalent in the pre-test, after
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the LTBI, six PTs could provide a complete explanation in the post-test.

In the pre-test, except PT7 and PT8, the rest of the PTs received 2 points
since they all indicated the tasks were mathematically equivalent. Yet they failed to
provide a complete justification for that claim. Their justifications lacked the
mathematical name of each friend’s share and lacked the mathematical model or
area model for that share. For instance, PT3 only wrote a 3+5 operation under each
task as a justification without explaining the meaning of the division operation.

PT7 did not received any credit for this item since she made a mathematical
error while determining the referent whole. Figure 16 represents PT7’s written work
on the pre-test.
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Figure 16. Mathematical error: Determine the referent whole

Figure 16 shows that PT7 fairly shared three pies among six people instead of five.
This action of the PT resulted in 18 equal pieces. Then, she distributed each % piece

to each friend. At the end, she stated, “She is left with two pieces.” Actually, she
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should have 3 pieces left. Then, she tried to fairly share the two pieces and gave

each person % of an apple pie. This action of the PT was not mathematically correct

since she was not fairly sharing the original whole pie; instead she was sharing 1; of

an apple pie among 5 friends in each distribution cycle. The resulting share should

be %+5=%. As a result, she should have concluded each friend got: 1g+3+1+1—:3—.

1 1 1 2
Yet, she concluded each person got St In the second case, she gave each

person directly%of a pie. Based on her mathematical errors, she concluded these

two situations were not mathematically equivalent.
According to Confrey et al. (2009; 2010), students could utilize two
strategies while fair sharing multiple wholes. The first strategy is called

benchmarking and the second strategy is called split all. PT7 tried to utilize split all
strategy in both parts. In the first part, she distributed pieces (% of a pie) to each

person, and then she tried to fairly share the remaining pieces. Unfortunately, she
could not determine her referent whole correctly. She made mathematical error
while redistributing the remaining pieces. Her solution to the second task was to

utilize the split all strategy. She split each pie into five and then deal eachlgth

among five people. In the post-test, PT7 used both strategies: benchmarking for the
first task and split all for the second one. Then she concluded that both tasks were
mathematically equivalent but their problem context was different. This showed that
PT7 corrected her mathematical misunderstanding about referent whole and utilized
multiple mathematical strategies as students did.

In the post-test, PT1, and PT4, PT5, PT6, PT7, PT8 and PT9 stated that both
tasks were mathematically equivalent and justified that claim. All the mentioned

PTs except PT9 modeled both tasks mathematically as either 5 +~ 4 or % +... J%, or

5X(12)' For instance, PT5 utilized this justification. Figure 17 showed PT5’s work on

the item.
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Figure 17. Mathematical modeling to show mathematical equivalence of tasks

As seen in Figure 17, PT5 modeled each person’s share and wrote each person

“received one whole and a quarter, 1 %” under the first task. Then she modeled each
person’s share for the second task, mathematically explaining the model as % +...

5 .
+% = and stating “112 = 1 whole and a quarter”. Then she concluded, “these are

mathematically equivalent yet the context is not equivalent.” Only PT9 explained
that pie type was an extraneous variable. She stated “Task 1 & 2 are mathematically
equivalent, because type of pie doesn’t matter.”

Figure 15 shows a performance decline in PT2 and PT3’s efforts in post-test
after LTBI. PT2 modeled each friend’s share for each task correctly, yet she did not
state whether the two tasks were mathematically equivalent or not. In the pre-test,
PT2 used a similar strategy with a conclusion sentence. PT3 exhibited an interesting
mathematical error while fair sharing multiple wholes among multiple people. She
divided the number of people with the number of the whole. Thus, she concluded
that the tasks were not mathematically equivalent.

All the findings of item 8 indicated that in the pre-test, six PTs found the
amount of pie each friend got for each task, yet they failed to provide a sensible

explanation for why these two tasks were mathematically equivalent. This showed
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that simply carrying out the calculations to find a friend’s share did not address a
coherent understanding of the mathematical explanations behind the calculations.
Most of the PTs did not have this understanding prior to the LTBI experiment. After
experiment, in the post-test, the evidence indicated that seven PTs have acquired

this understanding.

Item 9
Item 9 assessed the effects of factor-based change that happened in the
number of the people who shares the collection or the whole, on the size of the new

shares of each person. The item in both tests was briefly described as:

Pre-test: Didem invited her friends to her birthday party and 4 friends
showed up. What happens to each person’s fair share of a cake when... ()
More friends shows up for the party (b) Fewer friends shows up for the
party. (c) Half of the friends show up for the party. (d)Number of the friends
doubles show up for the party. Please justify you answers.

Post-test: Didem invited her friends to a sleepover party and 6 friends
showed up. She prepared a bag of chips for each friend and each contained
same amount of chips. What happens to each person’s fair share when... ...
(a) More friends shows up for the party (b) Fewer friends shows up for the
party. (c) One thirds of the friends show up for the party (d)Number of the
friends triples show up for the party. Please justify you answers.

The first two parts of the item assessed qualitative compensation, in which
the PTs could verbally describe the changes in the size of the share as a result of
factor-based change. The last two parts of the item assessed quantitative
compensation in which the PTs were required to show the result of factor base
change mathematically.

This item was scored on the base of 4. The overall mean of this item the in
pre-test was 1.88, and the overall mean in the post-test was 3.11. Figure 18 showed

each PT’s score on both tests.
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Item 9-Score Comparision

Q Q SN N NN
3 —"'\‘ N h—::—::— h—h—
@ NI
g 'Y Y Y YAy
B T, SN N NN
LN NN N N NN
N N NN
PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9
PRE-TEST 1 2 3 1 0 2 2 4 2
% POST-TEST 4 0 4 0 4 4 4 4 4

Figure 18. Each PT's score on pre-post tests: Item 9

Figure 18 shows that in the pre-test, eight PTs could not provide a complete
explanation for why each person’s share size had changed based on a factor-based
change in the number of sharers. Four PTs received 2 points since they produced
correct answers along with limited mathematical explanations for their answers or
they could provide complete explanation for some cases. For instance, PT2 utilized
verbal and pictorial representations to show the factor-based change on each friends
share when the number of friends halved in the pre-test. Figure 19 shows her work.

Figure 19. Pictorial representation to show the effects of factor-based change

In Figure 19, PT2 initially fairly shared a cake for 4 people (the original number of
people) then she marked one person’s share as half of the circle, drew an arrow, and
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wrote “one person.” She explained, “Each person gets two times larger than the size
of each person’s share normally.”

PT5 received 0 point in the pre-test since she did not even conclude whether
a person share size increased or decreased correctly when the number of people
increased or decreased. Only PT8 provided a complete explanation. PT8 wrote,
“There is an inverse relation between the amount of cake in [each friend’s share]
and the number of the friends.” This showed that none of the PTs (expect PT8) had
a robust mathematical understanding that led to a generalizable idea such as inverse
relation.

In the post-test, seven PTs (PT1, PT3, PT5, PT6, PT7, PT8 and PT9)
provided a correct response along with complete explanations. Table 17 shows the

distribution of the mathematical explanations of each PT.

Table 17
Distribution of PT’s Sensible Explanation Type(s) in the Post-test

Explanation PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9
Inverse Relation with
Mathematical X X X X X

Explanation(s)

Area Model with
Mathematical X X X
Explanation(s)

Table 17 shows that five PTs perceived the inverse relation between the number of
the sharers and the share size. PT9 showed this relation through both verbal and
mathematical representations. She wrote “n/p” on the top of item 9 and said, “When
the denominator (p) increases, the amount of each person’s share decreases; when
p decreases, the amount of each person’s share increases.” Also, PT9 represented
this inverse relation mathematically. Figure 20 showed her mathematical response

for the case of one-third of the friends showing up for the party.
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Figure 20. Mathematical representation for the inverse relation between the number of

people and each person share size

In Figure 20, PT9 showed mathematically how each person’s share changed from
“a” to “3a”. Then she concluded, “The amount of each person’s share increases 3
times.”

Unexpectedly, PT2 and PT4 exhibited misconceptions and produced
incorrect responses in the post-test unlike their performances in the pre-test. They
could not perceive the inverse relation between the number of sharers and the size of
each fair share. For instance, when they were asked, “What happens to each
person’s share when number of friends showing up for the party triples?”, PT2’s
response was, “3 x (chips/6)” where 6 represented the initial number of the people
expected to come to the party. In the post-test, PT2 tried to provide a symbolic
representation to generate the answer. Piaget (1960) suggested that providing a
general abstract response would be more difficult than providing a concrete
response. Thus, in the post-test, trying to mathematically represent the inverse
relation between number of the people and the share size might be harder than
providing a pictorial representation as she did in the pre-test for PT2.

PT4 exhibited a misconception that showed she failed to grasp multiplicative
roots of fair sharing in the post-test. She responded that each friend’s share
“decreases/increases as the number of the friends decreases/increases.” To find the
change when one-third of the friends came to the party, she first found the number
of friends that came to party as 6x%=2. Then, she stated each friend’s share was
“decreased by 2 friends” and failed to provide a sound reasoning for her response. It

seemed that PT3 did not understand the problem situation and was confused about
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the relationship between the decrease rate between the number of people and its
relation to the share size.

The findings of item 9 indicated that majority of the PTs (n = 7) failed to
provide a sensible mathematical explanation for effects of factor-based change in
the number of sharers on each share size prior to LTBI. After the teaching
experiment, they could explain the effects of the factor-based change on the size of
the fair shares through utilizing multiple representations including symbolic and

pictorial.

Item 10

Item 10 was an anchor item that required anticipation of students’ various
fair sharing strategies and misconception of fair sharing a circular whole (Retrieved
from Mojica, 2010, p.251). The PTs were asked to draw and describe the variety of
strategies that they anticipated an elementary school children might use to fairly
share a circular whole into six. Then, the item asked for classification of the
strategies in which (I) meant unsophisticated, (II) meant intermediate and (I1)
meant sophisticated.

| made a general explanation of the meanings for these levels of
sophistication for PTs. | told them the unsophisticated strategies included the
incorrect strategies, the intermediate and sophisticated strategies included the
correct ones with different mathematical complexity levels. (See rubrics in the
appendix A for the detailed description of these levels of sophistication). This item
was scored on the base of 3. The overall mean of this item in the pre-test was 0.33
and the overall mean in the post-test was 2.44. Figure 21 shows each PT’s score

comparison.
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Figure 21. Each PT's score on pre-post tests: Item 10

Figure 21 shows that in the pre-test, the many PTs (n=6) could not anticipate the
variety in students’ mathematical strategies for fair sharing multiple wholes. Also,
none of the PTs anticipated misconceptions. Only PT4, PT6 and PT8 showed one
way of correct fair sharing strategy along with one incorrect strategy. Yet, these PTs
failed to categorize the complexity of these mathematical strategies. The only
correct mathematical strategy with a correct description recorded in the pre-test was
“a composition of cuts to create all congruent pieces.” The PTs first split a circle
into half or one-third then split the half into three or the third into half by utilizing
radial cuts. In the pre-test, none of the PTs could provide correct and complete
mathematical explanations for other strategies. Also, some of their explanations
exhibited mathematical misconceptions and showed that PTs lacked common
content knowledge. PT2 was an example of this lack of knowledge. Figure 22

shows PT2’s work on the pre-test.
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Figure 22. PT2’ incorrect ways for fair sharing a circular whole

Figure 22 shows that PT2 considered both representations as fair shares. She
classified the first fair sharing strategy as the most sophisticated (I11) and the other
one as intermediate (I1). She explained the first strategy as “In the figure, the ones
[parts] on the side are same and the parts outside the edge [the 16 parts inside
circle, the 4x4 square] are the same. Each person receives 6 pieces.” She explained
the second strategy as “Pieces are equal sized: the middle part is equal to the parts
on the sides. Each person receives 1 piece.” The PT2’s mathematical explanations
included several problems. Mathematically, her rationale could be inscribing a
square in the circle, and stating that the "parts on the sides" -meaning the parts
between the circle and the inscribed square- were the same. However, if she shared
for 4 or 8, the argument would make more sense. It seems she wanted to produce a
proof of her response but she was unable to elaborate one. This might indicate that
she did not understand what the parts in her representation constituted
mathematically.

For the second strategy, she found parts that could potentially be equal (the
arcs), but could not prove that the inside piece was the same size. She called the
boundary of the circle and arcs as sides. For both strategies, PT2 had met two
criteria of equipartitioning: exhaust the whole and create the correct number of
parts. She failed to meet the creating same size parts criteria. PT2 corrected her
misconception in the post-test. She classified those sorts of strategies as incorrect in

the post-test.
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PT3’s response was another example of incomplete mathematical
descriptions. She tried to utilize successive radial cuts to create six fair shares on the
given circle. Then she explained one of her strategy, “This looks more equal.”

Figure 23 shows another strategy of PT3.

Figure 23. Incomplete mathematical description

Figure 23 shows that in the pre-test PT3 could employ two criteria of
equipartitioning: exhaust the whole and create correct number of share. Yet, she
failed to identify the equivalence of each share. This figure also shows that PT3 was
aware of the importance of “center” concepts while utilizing radial cuts. She wrote
“l put a point on the center, thus fair sharing becomes easy.”

In the post-test, she could identify all equipartitioning criteria including;
creating equal parts. She utilized the center of the circle correctly to employ radial
cuts to create six fair shares. In addition, PT3 could provide a complete
mathematical explanation as “first | cut the circle into half through the center, then |
split the halves into three.” Although this PT showed small progress in terms of
scores, the post-test result documented that a basic misunderstanding related to fair
sharing and justification of fair shares were remediated through LTBI. A variety of

responses derived from all PTs” efforts in post-test are shown in Table 18.
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Table 18 shows that in the post-test, PTs began to anticipate a variety of strategies
and misconceptions that were not recorded prior to the LTBI teaching experiment in
the pre-test. PT1, PT5, PT7, PT8, and PT9 were able to anticipate possible strategies
as represented in Table 18. These five PTs showed at least two correct and two
incorrect strategies along with correct mathematical descriptions of the strategies
showed in Table 18. Within these PTs, PT1, PT5, and PT7 could not fairly share a
circular cake into six along with correct mathematical description in the pre-test. This
finding showed that after LTBI, these PTs made considerable progress and they
learned new fair sharing strategies that a student might use along with correct
mathematical justifications.

When the strategies deduced from the PTs’ responses were examined in both
tests, LTBI helped PTs to internalize a variety of fair sharing strategies along with
correct mathematical descriptions and classifications. The incorrect mathematical
descriptions did not arise again in the post-test. Although PTs had several
misconceptions as discussed above in the pre-test, they did not exhibit any
misconception in the post-test. They were also able to anticipate students’
mathematical strategies and presentations. Then, they could order these strategies
from the least to the most sophisticated ones.

Item 11

Item 11 was retrieved from Mojica (2010, p.252) and focused on anticipating
students’ several fair sharing strategies and misconceptions of a rectangular whole.
The PTs were asked to draw and describe the variety of strategies that they
anticipated an elementary school children might use to fairly share a rectangular
whole into four in the pre-test and into eight in the post-test. Then, the items asked
for classification of these strategies as correct and incorrect.

This item was scored on the base of 4. The overall mean of this item in pre-
test was 2.22 and overall mean in the post-test was 3.77. Charles and Nason (2000),
and Confrey et al. (2009; 2010) stated that the tasks were ordered according to
difficulty levels in ELT. They indicated that based on students’ works, fair sharing
rectangular whole(s) was easier than fair sharing circular whole(s), since the

utilization of radial cuts on circles make fair sharing a circle more difficult. The same
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pattern of difficulty level was observed in the PTs’ performances on item 10 and
item 11. PTs performed better on fair sharing the rectangular whole task than the fair
sharing the circular whole in the pre-test. Figure 24 shows each PTs score

comparison on this item on both tests.

Item 11-Score Comparision
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Figure 24. Each PT's scores on pre-post tests: ltem 11

Figure 24 shows that PTs showed a considerable progress in LTBI. All PTs both
expanded their mathematical content knowledge and revised their existing
misconceptions or awareness of their misconceptions. PT1, PT3, PT6 and PT9
showed a substantial progress after the teaching sessions, since they all could show at
least 3 correct strategies and 1 misconception in the post-test. On the other hand, on
the pre-test, these four PTs utilized 3 successive parallel or vertical cuts to split a
rectangle into four fair parts. Also, they all used two diagonal cuts to create four
parts. Yet, they all stated utilization of diagonal cuts did not create a fair share and
stated that this strategy was incorrect. In addition, PT2 exhibited this misconception
too. This was one of the major misconceptions observed in the PTs’ answer(s) on the

pre-test. Figure 25 shows PT9’s response, which represented this misconception.
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Figure 25. Utilization of diagonal cuts: PT9’s misconception

In Figure 25, PT9 identified the utilization of diagonal cuts as an incorrect strategy to
create four fair shares on a rectangle. She explained, “Although 4 parts are created,
they are not equal.” This showed that these PTs were not aware that each part was
congruent in terms of area. In the post-test, none of the PTs showed this
misconception. Instead, they used diagonal cuts to create four equal parts and
justified their reasoning. This documented that LTBI helped PTs to remediate their
misconceptions and they connected fair sharing actions with another mathematical
topic, such as area.

In the pre-test, except PT4, all the PTs had difficulty with generating a
sensible mathematical description of their fair sharing actions. For instance, although
PT8 utilized parallel cuts, composition of splits (2x2) and diagonal cuts, her
description for composition of split strategy (2x2) was “I folded [rectangle] in four.”
She tried to explain that she folded the paper in half twice horizontally so that four
equal parts were created. However, she expressed the number of folds employed
incorrectly. She confused the concepts of split into four and fold into four.

Another illustrative example of the utilization of incorrect/insufficient
mathematical language and explanations in the pre-test work was from PT9. In the
pre-test, PT9 utilized two diagonal cuts, giving each person two parts. She did not
provide a sensible mathematical description of fair sharing action.

In the post-test, all the PTs anticipated both incorrect and correct strategies
and classified them correctly. In addition, the PTs such as PT8 and PT9 revised their
insufficient/incorrect mathematical language and explanations. In the post-test,
unlike her performance in the pre-test, PT8 explained her composition of split
strategy correctly as “first, split the [rectangle] into half, then split each half into
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four. [To split each half into four] first split each part into half, then half again.”
This explanation indicated that after LTBI session, PT8 learned a new strategy called
repeated halving and made sense of mathematical strategies embedded in ELT. PT9
utilized diagonal cuts as well as parallel and vertical cuts to split a rectangle into four

equal parts. Figure 26 shows PT9’s work and mathematical description.
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Figure 26. Equivalence of non-congruent parts strategy and its justification

In the figure above, PT9 utilized the equivalence of non-congruent part strategy and
classified this strategy as correct. The triangular parts are congruent in terms of area.
She explained the fair sharing actions as “diagonals were marked and intersected.
Then, a line that passes through the intersection point from the mid point of the sides
was marked.” This PT could explain correctly what she did in each step
mathematically.

Figure 24 shows that after LTBI teaching experiment were completed, seven
out of nine PTs (PTs 3-9) included all possible fair sharing strategies and predicted
the incorrect strategies in the post-test. A variety of responses derived from all PTs’
efforts in the post-test are showed in Table 19. Also, the frequency (f) of these

strategies in both tests are presented.
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All the findings above indicated the PTs could anticipate a variety of
students’ strategies in post-test more than in the pre-test (see the frequencies in Table
19 above). Also, after intervention, the PTs could produce mathematically acceptable
descriptions and justification for the anticipated strategies. In addition, within these
descriptions, the PTs started to utilize their knowledge from other mathematics topics
such as measurement and geometry. These evidences of PTs’ progress could be

considered as indicators of PTs’ restructuring of their prior MCK and SK.

Item 12

Item 12 was adapted from Mojica (2010) and assessed the PTs’ ability to
order and justify which equipartitioning task would be difficult for K-2 students. For
instance, in the pre-test one comparison was fair sharing a rectangular cake among
four friends versus three friends. Knowing the difficulty level of each task helps
teachers to design their instructional sequences (Smith & Stein, 2012). This item was
scored on the base of 4. The overall mean of this item in the pre-test was 1.88 and

overall mean in the post-test was 3.00. Figure 27 shows each PT’s score comparison.

Item 12-Score Comparision
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Figure 27. Each PT's scores on pre-post tests: ltem 12
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Figure 27 shows that, all the PTs performed better in the post-test upon
intervention, except PT3 and PT4. Among all the PTs, PT7 and PT8 showed a
particularly great progress in the post-test. For both tests, there were five
characteristics of fair sharing tasks that determined the difficulty of the task: (i)
utilization of radial cuts is harder than the utilization of parallel cuts (Confrey et al.,
2008); (ii) creating an odd number of splits is harder than the creating even number
of splits (Charles & Nason, 2000); (iii) the tasks that require a composition of splits
are harder than the ones that do not (Confrey et al., 2008); (iv) dichotomous fair
sharing is easier (Piaget et al. 1960); and (v) fair sharing circular whole(s) is harder
than fair sharing rectangular whole(s) (Ball, 1993; Charles & Nason, 2000).

In the pre-test, the majority of the PTs (n = 7) utilized two criteria to order
the tasks and justify their decisions. PT1, PT2, and PT3 anticipated that
dichotomous fair sharing was easier for young students. Thus, they marked the tasks
that involved repeated halving as easy. For the item part that asked to compare
“sharing 7 cookies among 2 children versus sharing 2 cookies among 7 children
cases”, P1, PT2, PT3, PT4, PT6, PT7 and PTS8 thought if the number of the objects
were greater than the number of the receivers, these sorts of tasks would be easy for
students.

Only PT9 and PT5 utilized other characteristics to decide the difficulty level
along with correct justifications. For one instance, PT9 decided fair sharing a
rectangular cake among four friends was more difficult than fair sharing a
rectangular cake into three. This judgment was not correct according to Ball (1993)
and Charles and Nason (2000). Yet, she justified her reasoning as “Since there is
more than one way for splitting into four but there is only one way for splitting into
three.” This may indicate that this particular PT paid attention to producing multiple
ways of splitting to decide the difficulty level of the item. According to her, if a
certain number of shares could be created through multiple ways, this sharing action
was the most difficult one. Parallel to the pre-test response but with a minor
difference, PT9 challenged the required response in the post-test. This time she
suggested that sharing a rectangular cake among eight friends was as difficult as
sharing a rectangular cake among three friends. In this case, in item 11, PT9 had a

valid argument in terms of comparing difficulty levels according to odd versus even
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number of splits on a rectangular whole. At the same, she still held her prior belief
that multiple ways for splitting was also another criteria for deciding difficulty level
of the task in addition to odd versus even splits criteria.

Although in the pre-test seven PTs utilized two task characteristics to
determine their answers, the PTs realized new characteristics of equipartitioning
tasks that should be considered while ordering the difficulty in the post-test. In the
pre-test, except PT5 and PT9, none of the PTs were aware of the last characteristics.
When the same number of splits was created on a circle and a rectangle (i.e. 3 splits
on a rectangle versus a circle), they could not differentiate the difficulty level of
these tasks. Yet in the post-test, except PT3, all the PTs decided that splitting circle
was more difficult than splitting a rectangle. All the PTs had parallel statements,
such as: “for splitting a circle, one should use radial cuts. To do that one should
determine the center of the circle first.” In addition, except PT3, the rest of the PTs
realized that splits that required compositions were more difficult than those that did
not require composition. As a result, in the post-test, except PT3, all the PTs were
aware of all the characteristics and ordered the tasks correctly, along with
mathematically sound explanations.

PT3 and PT4 did not show any increase in their scores in the post-test. Yet,
PT4 only marked the easier tasks in the post-test along with the correct
justifications. Since the rubric of the item required to mark harder tasks and noted
that 1 point would be subtracted for each wrongly marked response, PT4 failed to
receive full credit. From a conceptual viewpoint, PT4 also utilized various fair
sharing task characteristics to make her decisions. Only PT3 did not restructure and
enhance her prior mathematical content knowledge and student knowledge based on
the correct mathematical knowledge. She drew each fair sharing task and stated
under this drawing which was easier. Then, she decided which task was easier for
students. Although, in the pre-test she performed better, there was a decline in the
post-test.

Overall the findings of this item indicated that eight of the nine PTs could
anticipate the task difficulty for students. In addition, they provided answers for why
a particular task was harder than another. They changed their initial thoughts and

reasons for which task was more difficult. This showed a shift in their mathematical
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thinking, that the PTs’ became capable of detecting their incomplete or different

prior knowledge on equipartitioning and revised them after LTBI.

Item 13

Item 13 was adapted from Empson and Turner (2006) and it was an item
about repeated halving through the utilization of folding. This folding task
demonstrated the emergent multiplicative thinking in partitioning (Empson &
Turner, 2006). The pre-test item asked “Ceren folded a rectangular piece of paper
in half five times. How many equal parts did she create? Show your work.” The post
test item asked to find number of equal parts if the paper was folded into half seven
times.

This item was scored on the base of 2. The overall mean of this item in the
pre-test was 1.33 and overall mean in the post-test was 2.00. Kieran (1995) stated
that even young children “are aware of the multiplicative nature of the patterns in
such folding” (p.51). In the pre-test, PT2, PT4 and PT7 could not perceive this
multiplicative pattern or misinterpreted this multiplicative pattern. For instance, PT4
replied, “When | fold once, [the whole] is divided into 2 parts. When | fold twice, 4
parts. So, the relation between the number of folds and the number of the parts
created is two times. Thus, when I fold [the rectangular whole] 5 times [into halves]
2x5=10 fair parts.” This PT did not correctly interpret the multiplicative relation.
She could not see that the each fold created 2" parts in which n represented the
number of folds. Instead, her interpretation of multiplicative relation was that 2xn
parts created. In the post-test, she drew the picture of first three folds in the instance
of folding a rectangular paper into half seven times. Then, she wrote 8x2=16,
16x2=32, 32x2=64, 64x2=128. This answer indicated that this PT revised her
formerly misinterpreted knowledge of multiplicative relation in folding.

PT7’s work in the pre-test is documented below in Figure 28. She failed to
link different representations, as she could not link pictorial representation with

mathematical representation.
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Figure 28. Repeated folding into half pictorial representation: No explicit link to symbolic

representation

Figure 28 shows that PT7 tried to model each folding through drawing. She failed to
represent explicitly the number of the equal parts created in the rectangular whole as
a result of each fold into half. Yet, she showed that the size of resulting fair parts
was reducing. She did not state any information related to resultant part such as the
name. One could assert that she received one half of the whole, then she halved
again this half part. She repeated this 5 times. Unfortunately, there was not a solid
evidence for this claim in PT7’s work.

Different from the pre-test, in the post-test PT7 first drew each folding
action up to three folds in half and she could utilize the representations correctly. In
her drawings, she worked on the same whole and drew the resultant fair parts. Then,

she mathematically showed how many fair parts were created, utilizing both count

of 128 parts and naming each part as fraction 518. Figure 29 shows the PT’s work.
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Figure 29. Folding into half: Pictorial and symbolic representation

When we compared the progression of PT4 and PT7, one can say that PT7 showed
more advanced progressions, since she perceived the relation between number of
folds and fair parts apart from thinking about the resultant share of each halving.
She perceived the relation functional multiplication which was “how a given
outcome could be produced using a sequence of more than two folds” (Empson &
Turner, 2006, p.51). Whereas, PT4 saw the relation as emergent recursion in which
she first drew three and saw the result of each action. Then, she took the resultant
number of equal parts and recursively doubled it. These strategies were more
apparent in the teaching session. This evidence showed that after the LTBI, the PTs
started to exhibit different representations and strategies embedded within LT. Thus,
one could say that upon intervention, PTs could perceive the multiplicative relation
between number of folds and number of fair shares created in the instance of
repeated halving through folding. Also, the PTs connected the embedded repeated
halving strategy within LT and with further mathematical ideas multiplication and

early functions.

Item 14

Different from item 13, item 14 (Adapted from Empson & Turner, 2006)
involved the utilization of a series of folds to create a targeted number of fair parts,
instead of predicting the number of equal parts resultant from folding actions. The

pre-test item was:
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Engin learns origami in his school. In order to create a ship, he needs to
fold a rectangular paper to create 24 equal parts. How many ways can he
fold the paper? Explain your answer. (The post-test item included 36 equal
parts)

Also, | reminded the PTs to explain their answers in many ways as they can
for the item.

This item was more complex than the previous item since it required
reaching target numbers that had prime factorization and any combination of the
prime factors, such as 2 and 3 forms 6 (Empson & Turner, 2006). This item
addressed the composition of splits idea of equipartitioning a single whole. This
item was scored on the base of 3. The overall mean in pre-test was 0.77 and in the

post-test was 1.66. Figure 30 shows the score comparison of each PT on both tests.

Item 14-Score Comparision
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Figure 30. Each PT's scores on pre-post tests: Item 14

Figure 30 shows that this item was difficult for many PTs (n = 6) in the pre-test.
They could not come up with several ways of folding to create 24 equal-sized parts
on a rectangular paper. Five PTs could not produce any answer. PT2 and PT4
thought there existed an additive relation between number of folds and the number
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of equal parts created. Both PTs thought when they folded a rectangular paper into
half it would create 2 equal-sized parts. Then, if you would fold again into half, it
would create 4-equal sized parts. PT3 wrote, “If | fold once, it would split into 2; if |
fold twice, it would split into 4, if I fold three times, it would split into 6... As a
result, | should fold 12 times to create 24 parts. [They wrote] 12x2=24.” PT6 wrote
that she needed to fold the rectangular paper five times. Yet, she did not specify the
number of folds for each time. PT7 wrote “l would reach the result [24-equal sized
parts] in five steps, in the first step | would fold into half, in the second step | would
fold into 4, in the third step | would fold into eight, in the fourth step | would fold
into 16 and in the fifth step |1 would fold into 24.” This explanation of the PT had a
mathematical language error; she would say, “split into” instead of “fold into”.
Since, the folding is a recursive action, if this student fold into 24 it directly created
24 parts. She probably meant that she would split each part created as a result of
folding into a certain number. If she would fold into 2 then fold into 4, then this
action would create 2x4=8 equal sized parts. PT3 said if she would fold the paper
into half six times, she would create 24 parts. Because, in each time the number of
parts would increase by 4. And on the sixth fold she would have 24 parts. Thus, she
exhibited an additive misconception.

PT1 and PT8 showed three different ways of folding to create 24 equal-sized
parts. Both PTs came up with a combination of folds such as 2-3-4 (fold into half,
then fold into three and fold into four). Yet, these PTs did not come up with a
mathematical deduction based on this combination of the folds and 24. Only PT9
came up with a mathematical conclusion and said, “I could use the combination of
factors of 24.” Then she wrote down various combinations of the factors such as
2x2, 2x3, 3x8, 4x6 and 12x2 (2x3x4).

In the post-test, PT6 showed a great progress and reached a mathematical
conclusion that any combinations of the prime factors of 36 could be used. In
addition, PT1 and PT8 also reached this conclusion. As discussed above, although
PT1 and PT8 came up with several ways of folding, they did not come up with this
mathematical conclusion. PT3 and PT4 corrected their initial additive

misconception; they perceived the multiplicative relation between number of folds
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and the number of the parts created. For instance, PT3 wrote the result of each fold

as follows:

1 =2 [Fold into] Half

2 =>4 [Fold into] Third

3 =12 [Fold into] Third

4 =36
This PT utilized a folding action four times. She represented 3 folding actions (fold
into half, third, and third). Yet, she started with 2 equal parts. She did not explicitly
write folding into half took place twice. Mathematically, PT3 employed
2X2%x3x3=36.

PT5 represented the result of each fold through utilizing area model. She

drew a picture in which she first folded the paper into half horizontally, and then

folded it in half vertically (%x%%). Then she folded it into three horizontally

1

(ixgzﬁ) and this created 12 parts. Then, she folded again into three vertically

(%x§:;—6). This created 36 equal sized parts. In the pre-test, PT7 could not specify

the result of each fold, but in the post-test she used an area model along with verbal
mathematical description of the folding actions to show how to create 36 equal-

sized parts as a result of folding. She stated, “First | would fold into four [PT7 drew

horizontal cuts] (ith, quarter). Then | would fold into nine [PT7 drew vertical cuts]

(% of each quarter).” PT2 left the answer for this item blank in the post-test.

Overall findings of this item indicated that four PTs could come up with a
general mathematical conclusion—the combination of the prime factors of the given
number of parts— to state how many ways of folding could be employed and they
corrected their misconceptions. PT7 and PT5 newly learned how to utilized area
model to represent the result of each folding. Only PT2 did not exhibit any
difference in her performance in the post-test. However, her orientation towards
these types of tasks in the teaching session will be discussed in the next part of the
findings chapter.
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Item 15
Item 15 was related to sharing multiple wholes and compensation and

adapted from Mojica (2010). The items in the pre and post-tests were as follows:

Pre-test: 18 friends went to a restaurant and ordered 12 pizzas. The friends
were sitting into two tables. How can 12 pizzas be fairly shared between the
tables?
Hasan suggested that 9 friends can sit on each table and receive 6 pizzas.
Ahmet suggested that10 friends sit at one table and receive 7 pizzas and 8
friends sit at other table and receive 5 pizzas.
Post-test: 9 friends went to a restaurant and ordered 15 pizzas. The friends
were sitting into two tables. How can 12 pizzas be fairly shared between the
tables?
Hasan suggested that 3 friends sit one table and receive 10 pizzas and 6
friends sit on the other and receive 4 pizzas.
Ahmet suggested that 4 friends sit at one table and receive 6 pizzas and 5
friends sit at other table and receive 9 pizzas.
Pre-post tests common questions:

e Decide which of the suggested strategies is correct and why?

e What is unclear about mathematical understanding of the friend who
produced incorrect strategy?

This item was scored on the base of 3. Figure 31 shows each PT’s score.

Item 15-Score Comparision
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Figure 31. Each PT's scores on pre-post tests: Item 15
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Figure 31 shows that the overall mean of this item in pre-test was 1.66 and
the overall mean in the post-test was 2.88. In the pre-test, all of the PTs could
determine which friend suggested the correct strategy. Yet, the justification ways for
the correct strategy varied. PT1 could explain why Ahmet’s strategy was incorrect,
yet they failed to provide a complete explanation for why Hasan’s strategy was
correct. PT1 stated that in Hasan’s strategy each friend received fair shares but she
did not mathematically justify why each friend received fair shares. Similarly, PT2,
PT3, PT4 and PT5 only determined the correct strategy and found friends’ shares

indicating they all received g of a pizza. Yet, these PTs failed to explain why

Ahmet’s strategy was incorrect and what was unclear about Ahmet’s understanding
of fair shares.

In the pre-test, PT7 could determine correct strategy and yet failed to give a
sensible and complete mathematical justification (g pizzas per friend, ratios are

equal). This PT stated that each friend’s share was not equal in Ahmet’s strategy,
but did not provide a complete mathematical explanation for this claim. Conversely,
PT6 stated, “the shares are not equal in [Ahmet’s strategy], Ahmet thought more
people should receive more pizza. Also he might think 10-7=8-5 and the difference
is 3, the same.” On the other hand, PT6 decided that Hasan’s strategy was correct
since “the same number of people received the same number of pizza.” Since PT6
did not mathematically show how this situation led to fair shares, she did not receive
full credits. Only PT8 and PT9 provided correct answers along with correct
justifications.

Figure 31 shows that in the post-test, majority of PTs (n = 8) could produce
correct answers along with correct justifications. Eight PTs could identify each
friend’s share and decide whether the shares were equal or not. Also, they
concluded Ahmet employed an additive thinking instead of multiplicative thinking
while comparing each friend’s share on each table.

The findings related to this item indicated that, although in the pre-test the
PTs could determine correct and incorrect strategies, they failed to understand and
explain students’ mathematical thinking. Ball and Thames (2008) suggested,

“recognizing a wrong answer is common content knowledge (CCK), while sizing up
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the nature of the error [is] specialized content knowledge (SCK)” (p.401). As a

result, in the post-test eight of the PTs restructured their SCK.

ltem 16

Item 16 was a covariation item. The pre and post-test items were:

Pre-test: Mustafa knows that 6 carrots will feed 4 rabbits if they are shared
fairly. Predict the number of carrots needed for each number of rabbits
listed in the table below, so that each rabbit will get the same share of
carrots (Adapted from Yilmaz, 2011).

Number of rabbits | Number of carrots
2

4 6

8

Post-test: Mustafa knows 5 carrots will feed 12 rabbits if they are shared
fairly. Predict the number of carrots needed for each number of rabbits
listed in the table below, so that each rabbit get the same share of carrots
(Adapted from Yilmaz, 2011).

Number of rabbits | Number of carrots
4

12 5

36

PTs were expected to utilize several mathematical strategies and explain

their reasoning mathematically. Stein and Smith (2012) determined the five

mathematical ways to solve this sort of tasks as:

1.

Unit rate: Find the number of carrots eaten by a rabbit and multiply by the
number of rabbits to find the required number of carrots.

Scale factor: Perceive the vertical multiplicative relations: if the number of
the rabbits doubles, so does the number of carrots.

Scaling up: Add 3 carrots for every two rabbits until reaching the required
number of rabbits.

Additive: Add 1.5 carrots 8 times to find the number of carrots.

Others: Drawing pictures to show each rabbit’s share and repeatedly copy
this drawing to represents required number of carrots for required number of
rabbits.

This item was scored on the base of 4. The overall mean of this item in the
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pre-test was 1.88 and in the post-test was 3.00. Figure 32 shows each PT’s score

comparison on this item in both tests.

Item 16-Score Comparision
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Figure 32. Each PT's scores on pre-post tests: Item 16

The score’s on the Figure 32 indicated that the majority of PTs (n = 7) failed to
produce various mathematical solutions. PT1 could not produce a correct answer for
the item. PT3 also produced an incorrect answer. Figure 33 shows PT3’s work in the
pre-test.

4 6
2 X

X= Il

Tets ofenhy Ver:

Figure 33. Mathematical error of PT3: Assuming existence of inverse relation between two
quantities in covariation task
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In the figure above, PT3 set a proportion, yet she failed to identify the direct
proportion and instead she stated, “there is an inverse proportion.” Prior to the
experiment, this PT knew that she would set a proportion, yet she did not acquire a
conceptual understanding of the proportion concept. PT2, PT4, PT5, PT6, and PT7
only showed a single mathematical solution. PT8 and PT9 provided three different
strategies, yet these strategies did not include unit rate, scaling factor or scaling up
strategies at once.

In the post-test, PT1 and PT3 showed a considerable progress. Unlike their
performance in the pre-test, they could come up with three different strategies to
solve the task. PT3 perceived the direct relation between the number of carrots and
the number of rabbits and seemed to remediate her initial incorrect mathematical
understanding (inverse relation). Also, PT4, PT5, PT6, and PT7 produced at least
three different mathematical strategies to solve the task in the post-test unlike their
pre-test performance where they could produce only one correct strategy. Table 20
shows the PTs’ mathematical strategies that were correctly performed to solve the

item in both tests.

Table 20
Each PT’s Mathematical Strategies to Solve Covariation Item in Pre-Post Tests

Pre-test Post-Test

Rate  FaciorUp Adve TRO Ll Facior up Addive PO
PT1 X X X
PT2 X X
PT3 X X X
PT4 X X X X
PT5 X X X
PT6 X X X X X
PT7 X X X
PT8 X X X X X X
PT9 X X X X
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Table 20 shows that after the teaching sessions the most of the PTs utilized both unit
rate and scaling factor strategies. This shows that all the PTs could recognize
equivalence either within a ratio as a:b (Noelting, 1980) or between ratios as a2:al
(Noelting, 1980). Then, PTs could preserve this “ratio while covarying the number
of the collections or whole to be shared [with] the number of receivers” (Yilmaz,
2011, p.92).

Seven PTs utilized the scaling factor strategy in which they recognized that
the number of rabbits triples as the number of carrots does. They recognized
between ratios in which al (12) represented the initial number of rabbits and a2 (36)
represented the new number of the rabbits a2:al (36:12) as 3. Then they preserved this
ratio and found the new number of carrots (15) required for the new number rabbits

(36). Picture of PT1’s work is a clear example of this understanding.

2 | /2 3 \
DNRL X )
X= | g lxouu c

12 ile 36 ocasiodll  Tlish:
5 ,'.g X OTQS'(‘\&a 49 a‘mc',

Figure 34. Scaling factor strategy: Preserving between ratio in covariation item

In the figure above, PT1 showed the relation between 12 and 36 with lines and
wrote 3. In her explanation, the relationship between 12 and 36 should exist
between 5 and x. Then, she found x=15.

Table 20 shows that eight PTs utilized unit rate strategy in the post-test.
These PTs first found each rabbit’s share as 15—2 and that was called unit ratio. Then

they preserved this ratio while covarying the quantities. PT9’s work was one of the

clear examples for this strategy. PT9 wrote, “First, the amount of carrot required to
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feed one rabbit should be found. Then the amount [of carrot] should be found for

the required number of rabbits. If% is the required amount for one rabbit, then for

4 rabbits: 4x— =2, [For 36 rabbits], 36 x 2 =152
12 3 12

Findings from item 16 indicated that PTs became aware of several
mathematical strategies to solve the covariation task. This means they enhanced
their common content knowledge, since this knowledge type required PTs to know
the mathematics itself to solve a task (Wilson et al., 2013). Also, some PTs were
aware of their prior misunderstandings or misconceptions that seemed remediated.
This meant that these PTs elaborated errors and developed strategies for how to fix
it. In addition, eight PTs linked the covariation concept with direct proportion
strategy. This evidence also showed that PTs had perceived the connections between

various mathematical topics.

Item 17
Item 17 was the last item in both tests. This item assessed whether PTs could
demonstrate the equivalence of non-congruent parts created by non-prime splits on a

given rectangle. The items in the pre and post test were:

Ali’s mum shared a cake among four of his son’s friend. Ahmet receives part
A, Kaan receives part B, Gulsen receives part C and Mehtap receives part
D. The Figures below is shown Ali’s mum sharing respectively in pre and
post-tests.

In both test, first the PTs required to decide and explain whether the

rectangular cake was equipartitioned. Then, they were asked to compare each share
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of A, B, C and D. Finally, PTs asked to indicate the mathematical relation among
the each share.

When a single whole was equipartitioned into a number of parts, these parts
were all equivalent in size, yet these parts did not have to be “congruent” in terms of
shape. There were three mathematical strategies to indicate the equivalence of non-
congruent parts. These were qualitative compensation, composition and
decomposition, and indicating area congruence. This item was scored on the base of
3. The overall mean of this item in the pre-test was 1.55 and the overall mean in the

post-test was 2.66. Figure 35 shows score comparison of each PT on both tests.

Item 17-Score Comparision
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PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9
Pre-Test 0 1 1 1 3 3 1 2 2
™ Post-Test 3 1 3 3 2 3 3 3 3

Figure 35. Each PT's score on pre-post tests: Iltem 17

In the pre-test only PT5 and PT6 could indicate the mathematical relations among
parts A, B, C and D. For instance, PT6 utilized the area congruence strategy to
indicate the equivalence of the fractions. Figure 36 shows this PT’s work.
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Figure 36. Symbolic notation for each share area to evaluate equivalence of the shares

In the figure above, PT6 utilized “S” as an area unit for 312 of the rectangle.

Then she determined the size of each part by utilizing unit “S”. Then she concluded
that, A and D received the same amount, B received less than these and C received
more than these. Then she mathematically indicated this relation as

“8B=4A=4D=2C". PTS5 found the fractional name for each part. For parts A and D,

1

1 1 1 . 1 1 1
she wrote “ =+ 4 = - x —and this equals to —. For part B, she wrote =+~ 4 = = x -
4 4 4 16 8 8 4

and this equals to 312 For part C, she wrote i +2= % X % and this equals to % Then,

she concluded, “the shares A and D are equal and part B is 2 times larger than part
C. Also, Part B is half of parts A and D and one-fourth of part C.” PT8 and PT9 also
indicated the mathematical relations between the sizes of the parts. Yet, they failed
to provide a complete mathematical explanation. For instance, Figure 37 shows
PT8’s work.

Figure 37. Composition-decomposition strategy to evaluate equivalence of shares A, B, C
&D
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Figure 37 shows PT8 utilized decomposing for each part. Then she indicated
friend A received 2 pieces, B received 1 piece, C received 4 pieces and D received 2
pieces. Then this PT concluded C>D=A>B. Although the PT’s response was
correct, she did not mathematically indicate the size of “one piece”.

The rest of the PTs (n = 5), except PT1, could provide correct answer. Yet,
they failed to provide a sensible mathematical explanation for their claim or they
named the parts erroneously. For instance, PT4 stated “C received 2 times as much

as A, A received 2 times as much as B, A and D received equal parts”. Yet, this PT4
named each part erroneously as A:%, B= % C:% and D:%. This response indicated

PT failed to identify the referent whole. PT2, PT3 and PT7 also made the same
error.

In the post-test, majority of the PTs (n = 7) received the full score on the
item. Except PT2 and PT5, all the PTs provided mathematical justifications for why
the parts are congruent in terms of area. PTsl1-4 and PT7 could name each share
and fixed their mathematical error from the pre-test. Only PT2 failed to identify the
referent whole as she did in the pre-test. The rest could identify the referent whole
correctly and utilize fractional names for each part to decide the mathematical
relations among the parts. In the pre-test, PT1 could not generate any response. Yet
in the post-test, this PT also utilized the fractional name of each part, then order the
fractions. Based on her ordering, the PT determined the mathematical relations
among the parts correctly. PT9, PT6, and PT4 indicated area equivalence and also
utilized composition of splits.

4.2 Analysis of Overall Performance of PTs

A comparison of the PTs’ mathematical performances on both tests showed
a noticeable increase in performance. The total scoring for both tests was 56. The
pre-test scores’ mean was 30.11 and the post-test scores’ mean was 47.44. The
difference between these two means was 17.33 points. Figure 38 shows comparison

of each PT’s total scores on both tests.
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Pre-Post Test Score Comparision (Total Score
56)
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PT1 | PT2 | PT3 | PT4 | PT5 | PT6 | PT7 | PT8 | PT9

Pre-Test 27 26 21 27 33 29 24 42 41
A Post-Test | 54 33 39 43 52 51 45 55 56

Figure 38. Overall performances of each PT on both tests

Figure 38 shows that all the PTs’ performances were increased by LTBI
teaching sessions. Some PTs showed more progress than other PTs. PT1 exhibited
the best progress. PT2 showed the least progress. As discussed, PT2 had difficulty
with mathematics related courses in utilizing both the symbolic and verbal language
of mathematics prior to study. This issue was addressed briefly as a result of this
study. In the teaching sessions she could communicate her mathematical ideas
verbally correctly. Yet, she still had some problems with symbolic use of

mathematical language.

4.3 Summary of PTs> Knowledge Levels Before-After LTBI

The findings deduced from the PTs’ performance on the pre-test showed that
PTs did not initially have an in-depth knowledge about equipartitioning. They did
not put intense thought on what equipartitioning was and which mathematical ideas
and concepts were related with the equipartitioning. They generally focused on a
single idea of equipartitioning as creating same groups or parts and employed single

mathematical strategy to generate answers. Also, they exhibited a limited ability to
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highlight the connections between the equipartitioning and further mathematical
topics.

After the LTBI, the PTs generated responses that could be counted as an
evidence for that they could focus on various aspects of equipartitioning in the post-
test. They learned different cases of equipartitioning, utilized different mathematical
naming practices, new mathematical strategies, and representations. Also, their
responses to the items showed that they utilized different mathematics topics such as
proportion, ratio, fractions, exponential numbers and area on equipartitioning items.
This would be considered as an indication for expanding their knowledge about
equipartitioning through creating a web of connections between equipartitioning and
related mathematical topics.

The pre-test findings also showed that the PTs acquired serious mathematical
misconceptions and mathematical errors related to equipartitioning. These were (1)
failing to perceive multiplicative relation between the size of the share and the size
of the whole (2) failing to identify the equivalence of the shares that are congruent
in terms of area yet not in shape (3) creating n cuts to create n fair parts (4) utilizing
combination of parallel and vertical cuts on circles to create fair parts similar to
what they employed on the rectangles (5) failing to identify multiplicative relation
between folds and the resultant number of fair shares (6) employing additive
misconceptions in detecting the patterns and (7) failing to identify whether direct or
inverse relation existed between variables in the factor based change item and
covariation item. All these misconceptions and errors showed that PTs had mostly
incorrect and incomplete MCK prior to the LTBI experiment.

After the LTBI experiment, PTs did not exhibit these misconceptions and
errors in the post-test. Also, they could employ correct strategies along with correct
explanations for the items that they exhibited a misconception or error in the pre-
test. This showed that PTs enhanced their incomplete and incorrect MCK prior to
experiment as a result of LTBI.

The pre-test findings also indicated that the PTs exhibited serious
mathematical difficulties especially when they worked with the items out of PTs’
initial conception of equipartitioning. These items were fair sharing circular whole

in a variety of ways, engaging with covariation item in variety of ways, and the
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items related the folding with equipartitioning ideas. The first difficulty was that
PTs could not produce various mathematical strategies to solve a item. The second
difficulty was related to employing fully correct mathematical language to justify
their answers. The third difficulty was employing new strategies on the items that
they did not face frequently the mathematical context before such as folding and
creating odd splits on circles. At last, the PTs had difficulty with visualize the
mathematical context in the item and then expressing their mathematical thoughts
by utilizing various representations.

After the LTBI experiment, majority of PTs overcame their mathematical
difficulties. They utilized various mathematical representations in their solutions.
They utilized various mathematical strategies as required. Also, their mathematical
language became more precise, rich and accurate when they justified their
responses. They started to use the terminologies related to equipartitioning that they
utilized in the LTBI accurately. Some of these terminologies were ratio,
multiplicative relation, inverse relation, parallel cut, radial cut, split, equivalent, and
congruent.

They exhibited a limited proficiency in predicting students’ possible
strategies. The general tendency among PTs was predicting only possible correct
responses that were also affected by their mathematical orientation towards the
presented item. Also, when they presented with cases of students’ responses on a
particular item, majority of them could detect whether the students’ response was
correct or not. However, only a few PTs could partially explain why the responses
are incorrect or correct mathematically.

After the LTBI, the findings related to post-test showed that the PTs
improved their ability to predict students’ various mathematical strategies including
both correct and incorrect ones. Also, majority of them could provide
mathematically more precise and accurate explanations about the cases of students’
incorrect responses. They could identify students’ possible mathematical thinking,
misconceptions or errors behind the presented responses.

All these findings indicated that LTBI seemed to remediate PTs’
misconceptions and contributed the restructuring of CCK. Moreover, through

learning new mathematical ideas and concepts related to equipartitioning seemed to

159



enhance their CCK. Then, LTBI helped to enhance their student knowledge as the
PTs started to anticipate a variety of students’ mathematical strategies and
misconceptions and could explain the underlying reasons behind students’
mathematical solutions. Also, the PTs enhanced their SCK as their descriptions of
fair sharing actions in the post-test became mathematically more accurate. In
addition, they acknowledged that different mathematical representations carried out
different mathematical meanings and these representations could be used to teach
different mathematical ideas and concepts. Lastly, the post-test findings indicated
that PTs enhanced their HCK since they related equipartitioning related ideas with
further mathematics topics such as area, equivalent fractions, ratio, direct
proportion, exponential numbers, multiplication and division. In addition, the PTs

could produce generalizable mathematical ideas.
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CHAPTER V

TEACHING SESSIONS FINDINGS

This part will introduce how each PT restructured her mathematical content
knowledge (MCK) and student knowledge (SK) in each week of the LTBI teaching
experiment. The findings related to research questions two and three will be

reported. The questions are:

Research Question 2: What are pre-service teachers’ restructuring practices for
mathematical content knowledge in a Learning Trajectories Based Instruction
(LTBI)?
e In what ways does LTBI support PTs to detect their own mathematical
misconceptions, errors and knowledge gaps and remediate them?
e In what ways does LTBI support PTs to make sense of mathematical
ideas and knowledge of equipartitioning?
e To what ways PTs connect the mathematical ideas embedded in the ELT
to further mathematics topics?
Research Question 3: What are PTs’ restructuring practices for student
knowledge ina LTBI?
e In what ways does LTBI support PTs’ ability to understand students’

mathematical thinking and learning?

In this chapter, the restructuring process of MCK will be examined under
three components of MCK and related practices. These components are Horizon
Content Knowledge (HCK), Specialized Content Knowledge (SCK) and Common
Content Knowledge (CCK). Restructuring process of student knowledge (SK) will
be examined under four practices called distinguishing, anticipating-recognizing,
ordering and empathizing. The findings were reported in a chronological order of

each week’s content. The content of the each week were determined according to
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the suggested route in the ELT. In each week, the findings related to knowledge
restructuring practices of the PTs were reported through considering the logical flow
within the instruction.

The following sections of this chapter presented how PTs restructured SK
and MCK in each week. The findings will be reported starting from the second
week of the study, since pre-test was administered to see the PTs current knowledge
level of equipartitioning in the first week. The findings related to pre and post tests
were reported in the first part of the findings Chapter IV.

5.1 Week 2

5.1.1 Restructuring Student Knowledge

The first task asked the PTs to fairly share 32 crayons among eight children.
Their written responses showed that they solved this task through division. When
the PTs were asked to predict several strategies of elementary school students to
solve the task, they came up with different mathematical strategies and
representations of equipartitioning 32 crayons among eight children. To achieve this
anticipation the PTs utilized the given manipulatives. This showed that the PTs
could distinguish their own mathematical thinking from the students since they
produced three different representations and three different mathematical strategies
for equipartitioning the 32 crayons when they had opportunity to manipulate
concrete materials to reflect on possible students’ strategies. Figure 39 shows the
PT1, PT7 and PT8’s representation for fairly sharing 32 crayons among eight

children as an anticipation of students’ strategies.
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Figure 39. Dealing by ones and forming groups of fair shares strategy

Figure 39 shows the initial process and the final process of the sharing. PT1 started
the process. PT1 gave one item at a time to each friend. PT7 and PT8 helped PT1
and verbally described their dealing by ones strategy as “here one for you and so
on.” While they were working on completing each cycle, PT8 dealt an object
without paying attention to the order. PT7 warned PT8 and said “don’t change the
order; this may confuse the children’s mind.” At the end of the fourth cycle, the PTs
exhausted the 32 objects. PT8 wrote under each group “4” then she wrote “4 + 4+...
4=32, [n=8]". PT1 and PT7 counted one group share as four then they counted by
four to make sure the exhausted the whole collection as “4, &8, 12, 16, 20, 24, 28,
32”. They utilized repeated addition and counting by groups of four as ways for
checking whether they exhausted the whole collection. Also, this was an indication
that the PTs employed additive reasoning in their reassembly actions.

PT8 suggested a different fair sharing strategy. She stated, “we can deal by
twos, we can give two [objects] to each [child].” Then, she gave two objects to each
child systematically, completed the first cycle, and stated “they could deal the rest
of the objects by twos, t00.” After that, PT7 stated, “They could give three objects
then give one object to each friend.” These actions of the PTs shows that they
anticipated that students could start with composite unit strategy and switch back to
1-1 correspondence strategy if needed to fairly share a collection.

PT3 and PT5 in one group and PT6 and PT9 in another group also utilized

the dealing by ones strategy. PT3 and PT5 utilized the same grouping representation
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and 1-1 correspondence strategy as shown in Figure 39. PT6 and PT9 also
systematically gave one object per child at a time. However, they created a different
representation of the shares. Figure 40 shows PT6 and PT9’s representation.

Figure 40. Stacking representation of each fair share

PT2 and PT4 also utilized systematic dealing by ones strategy. They created

an array representation. Figure 41 shows their representation.

Figure 41. Array representation of fair shares
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When all the PTs finished their works on the first two parts of the first task,
a class discussion took place on the characteristics of different representations and
students’ predicted fair sharing strategies. The written responses of the PTs only
included one predicted strategy as “systematic dealing by ones” for fair sharing 32
crayons among eight friends. As discussed above only PTS8 utilized “composite
unit” strategy. In the whole class discussion, the PTs selected the similar strategies
and described their similarities. They all indicated either a student could deal one
object or groups of objects at a time. PT8 also suggested that the students could deal
in an order. At the end of this interaction, | introduced the formal descriptions of the
strategies utilized and described by the PTs. The PTs were introduced other possible
students’ mathematical strategies for equipartitioning collections as (1)
unsystematic dealing by ones and creating even shares, (ii) systematic dealing by
ones and creating even shares, and (iii) utilizing composite unit and creating even
shares.

PTs focused on the strategies that were systematic and yielded only even
shares until this stage of the teaching session. However, the students could also
employ the strategies that were unsystematic and might or might not create fair
shares. None of the PTs predicted these strategies. This was a general tendency of
the PTs observed in the first week of the LTBI teaching experiment. The PTs did
not anticipate that a student might generate an incorrect solution and these solutions
could be an effective tool for further mathematical discussion. To guide the PTs to

become aware of possible incorrect strategies, | started a conversation as follows:

T: Ok, all of you provided the ways that yielded fair shares. Do you think
that this will be the general response trend of your students in an elementary
school classroom?

PTs: No

T: Why?

PTs: [Thinking, no response]

PTs could not completely anticipate the way an elementary school student
might be engaged with fair sharing collection tasks. | prompted the PTs to think on

different strategies by suggesting scenarios of students’ solution ways:
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T: Ok, if a student gives me one [object], gives you [pointing a PT] two, and
gives you four. Is this a systematic way of dealing?

PT9: Yes, It is systematic.

PT1, PT4 and PT7: It is not systematic.

T: For those who said systematic, why? And those for who said
unsystematic, why?

PT2: Actually, it is systematic since student deals the objects to all receivers.
PT4: It is not systematic since student did not give equal amount to each.
PT8: For instance, one can deal the objects increasing by ones. Gives one
[object] to first person, two objects to second person and three objects to
third person. Then reverse the order. One can create their own systematic
way.

T: What if a student deals randomly?

PT3, PT5, PT7 and PT9: It is not systematic.

T: Why?

PT3: They did not deal the objects in a predictable pattern.

PT6: Yes, in a same way.

T: Ok, is there any way a student starts fair sharing unsystematically and
ends up with fair shares?

All the PTs: Yes. They can count and make them fair at the end.

The discussion above showed that the PTs elaborated on the meaning of the
systematics versus unsystematic dealing. In the prior classification, the
characteristics of both dealing strategies were assumed as explicit. However, PT2
and PT4 did not conceptualize differences between systematic and unsystematic
strategies correctly. The discussion on the difference between systematic and
unsystematic dealing on the presented scenarios helped PTs to understand the
distinction between these strategies. This situation also was an evidence for
restructuring SCK since the PTs made sense of several mathematical strategies for
the fair sharing collection ideas embedded in the ELT. Also, PTs started to
anticipate students’ mathematical thinking correctly as a result of identifying
students’ mathematical strategies in the presented cases. In addition, they learned a
new strategy of students to create fair shares called unsystematic dealing.

| carried the discussion into a further context of focusing on incorrect
strategies by asking whether the students always employed the strategies that
created fair shares. PTs agreed on a common conclusion that they did not. PT2 said,
“The student can confuse the order when she gives objects to people.” PT8 agreed
with her and stated, “At the end, the children should show that they fairly shared

especially in unsystematic dealing.” These responses of the PTs leaded a new areca
166



of discussion on how elementary school children can make sure that they created
fair shares. Before discussing the justifications ways, | asked the PTs to order these

mathematical strategies from the least to the most complex:

T: Ok, what might be the most complex strategy?

PT9: Systematic one.

T: Which of the strategies were systematic?

PT9: 1-1 correspondence.

PT3: Dealing by twos.

T: Ok. Which one is the most complex?

The PTs all together: Dealing by twos.

T: Why?

PT9: They learn counting by ones at first (other PTs approved through
nodding heads).

PT6: Counting by ones is the easy.

PT7: You have to form group in the other strategy [referring dealing by
twos].

T: What did we call this strategy?

PT3, PT8 and PT9: Composite unit.

The discussion above showed that PT6 and PT9 utilized their HCK to
support their claim about the order. They related the complexity of each strategy
with the students’ counting skills. At the end, the PTs ordered the strategies from the
least to most complex as addressed in the ELT. All the PTs came up with the
following order of the possible strategies for the least and the most complex: the
least complex strategies as unsystematic dealing and creating unfair shares,
unsystematic dealing and creating fair shares, and systematically dealing by 1’s (1-1
correspondence), and creating fair shares; and the most complex strategies as
composite unit strategy and creating fair shares.

After discussing various dealing strategies, PT3 commented, “different from
students, we always use short cut operations as divisions. | would not show the
other ways in my teaching until now. Since, anyone specifically asked for it before.”
The rest of the PTs also showed their agreement with their friends either with
similar comments or mimics. | completed her comment and said “to develop an
understanding of the ultimate complex mathematical ideas, we should consider
these foundation strategies.” PT3’s comment indicated that she realized students’

way of mathematical learning which were different than her perspectives. Her

167



experience in LTBI helped her to realize that distinction and the connection between
her mathematics and students’ mathematics. This is an indication of distinguishing

practice for restructuring SK.

5.1.2 Restructuring Mathematical Content Knowledge

In this week, none of the PTs challenged the presented information within
the LTBI teaching experiment. Also, none of the PTs exhibited a misconception
related to equipartition discrete collections. The PTs expanded their prior
knowledge through learning several strategies of students for distributing and
justification ways for the fair shares.

In this week, students’ possible incorrect strategies or responses generated a
new discussion on how PTs could size up students’ errors while dealing with fair
sharing collection tasks. For this purpose, the task asked the ways elementary school
student might justify their solutions. To search answer for this question, I turned
back to prior representations of the PTs (see figures 40 and 41 above). These
representations were utilized as a tool to elaborate on how PTs could guide their
students to justify their fair shares.

I initially selected PT6 and PT9’s representation of stacking objects. The

conversation took place as follows:

T: Why did you put the objects on top of each other?

PT9: We showed they all were equal height.

T: What is the advantage of showing “they all were equal heights”?

PT9: They all received equal amounts. Same height convinced visually that
all received the same amount. The same height showed that this is a fair
share.

PT6: They are both physically and numerically same.

This conversation showed that this representation could be useful to visually
justify the fair shares. All the PTs indicated that this could be a way for students to
justify their fair shares. As a result, making sense of a particular representation
helped the PTs to learn a justification way called: visual height comparison. This
evidence was also coded under restructuring SCK since the PTs realized that
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different representations conveyed different mathematical meanings. This
discussion on visual height comparison strategy started a new discussion in which

the PTs elaborated on the meaning of the collection concept:

PT3: Ok, I said the same thing. For instance, you asked for fair sharing three
objects and you had two different erasers and one pencil. How did the child
compare?

PT4: Yes, the height comparison did not work for this.

T: Ok, if the height comparison did not work for those situations, what did
we call something as “collection”?

PT3 and other PTs: The objects should all have same properties.

The discussion above showed that, although PTs fairly shared the given collections
in the task one, they could not put specific thoughts on “What is a collection?” until
they realized height comparison can be a way of justification of the fair shares. This
discussion on the meanings of the collection seemed to result in confusion in PT’s
ideas of “collection” concept where they clarified the concept by determining the
characteristics of “a collection”. They concluded that all the objects in a collection
should be identical. PT3’s leading question helped the other PTs to internalize the
collection concept embedded in ELT.

After the discussion, I directed the attention back to the representation types:

T: Are there any differences or similarities between array representation and
stacking?

PT2: Yes, there are. In our representation [showed the array representation,
see Figure 41 above] children thought in a simple way and could see easily
[showed the objects within each group one by one].

PT4: In here [showed the array], student saw the number of objects
explicitly [showed each friend’s share]. Yet, in the stacking representation,
student could not see that number explicitly and might perceive all objects in
a stack as a one piece.

PT9: Yes, the number of objects in each group is more explicit in the array
representation. This is one by one [showed the array].

The discussion above indicated that the PTs were aware that each representation
communicated different mathematical meanings. The first representation (stacking)
communicated height comparison (measurement) as a way of justification, and the

second representation communicated count (number) as a way of justification. At
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the end, all the PTs indicated that utilization of these justification strategies had the
potential to address students’ incorrect strategies.

At the beginning of the week, all the PTs asserted that they knew the fair
sharing concepts and could fairly share the discrete collections. Then, | asked them
to define fair sharing or equipartitioning concepts and the PTs constructed some
informal definitions. They stated that fair sharing means, “getting same amount of
something.” This definition showed that the PTs could not fully internalize the
required criteria of equipartitioning (fair sharing) although they could fairly share.
After the PTs engaged with the first task (fair sharing 32 crayons among 8 children)
they made an in-depth examination of the concept equipartitioning. A part of the

discussion took place is as follows:

T: Up to now, we examined fair sharing and its strategies. To be an

equipartition, what characteristics a sharing should have?

PTs: [waited]

T: In order to say an action is an equipartition, what are necessary
conditions?

PT8: At the end, each group should have the same number of elements in it.

Each set should have the same number of elements.

T: Ok. Anything else?

PTs: Thinking [no response for a while approximately 1.5 minute]

T: Ok. Let’s think on this situation; I have eight objects and want to fairly

share these objects between two people. | give two objects for each and

leave the rest.

PT9: Oo, all needs to be consumed.

PT2: We should finish them all [at the same time with PT9’s comment].

Other PTs: [Approved]

| wrote the two criteria on the board: Exhaust the whole and each groups has

equal amounts. Then, the discussion continued as follows:

T: Now, what do you think about these two criteria, are they enough to say
that something is equipartitioned?

PT8: Yes.

PT6 and PT5: No.

PT9: No. | would check whether I deal to each group. We should create the
right number of the group.

PT5: [I] check the number of the group [At the same time with PT9].

| wrote the third criteria on the board as creating correct number of groups.
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The discussion above showed that only one criteria of equipartitioning came
into the PTs minds immediately. Then, my inputs helped them to realize two other
criteria of the equipartitioning. In this restructuring process, PT2, PT5, PT6 and PT9
more explicitly expressed their mathematical thoughts. They reflected on their
experience in the teaching session and evaluated the case of “I have 8 objects and
fairly share these objects between 2 people. I give 2 objects for each and leave the
rest” that [ presented in the light of this experience.

In the first and the second tasks, the PTs were also asked to examine the
relations between the part and the whole. All the PTs connected the initial fair
sharing situation with the division concept and the reverse action called reassembly

with multiplication concept:

T: Based on your experiences in first two tasks, which mathematical topics
equipartitioning collections lay a foundation for?

PT9: I think division and multiplication [PT1, PT6 and PT8 responded at the
same time].

T: Why do you think so?

PT6: Yes I agree, we divide whole collection to find each friend’s share.
PT9: In task 1, we had a whole collection of 32 pencils, and we shared this
among eight friends. To find each friend’s share, I can use division. 32
divided by eight equals to four. So each friend has four pencils.

PT8: Division gives us the result of fair sharing [action].

PT1: Yes, it gives number of the objects in each group.

PT3: We used grouping in fair sharing.

T: Yes, we called this division “partitive division”. In this division, one
knows how many groups to be created and find the number of object in each

group.

The conversation above indicated that PTs connected the equipartitioning
collections with partitive division and they were aware of this division would
answer how many in one group (one person’s share). The conversation continued as

follows:

T: What about the second task?

PT3: Reverse of the first.

T: What do you mean by saying “reverse”?

PT3 [along with similar comments from whole class]: Reverse of the
division, [that is] multiplication.

PT8: Multiplication is the inverse operation of the division.

171



T: Ok. How do you all relate second task with multiplication?

PT6: To find number or the objects in the original collection, I multiplied
four pencils and 8 friends.

T: Any other comments?

PT9: In the first task, division gives me the number of object in each group.
In the second task, I know the number of pencil each friend had, and know
the number of friends. Thus, | multiplied these numbers to find the total.

The conversation above showed that all the PTs agreed that multiplication
was the reverse operation of division as reassembly was the reverse action of
equipartitioning. All the PTs utilized a verbal mathematical language in some
extent. Among these PTs, PT8 and PT9 utilized more precise and correct
mathematical language to indicate that reassembly was the reverse action of fair
sharing and indicate how these equipartitioning ideas were connected to
multiplication and division. This an indication of the PTs connection
equipartitioning related ideas with further mathematical topics as a part of
enhancing their HCK. Utilization of more accurate mathematical terminology is also
an indication for restructuring their existed CCK.

Another restructuring of HCK practice was detected when the whole class
discussed array representation of the fair shares. PT1 and PT6 stated, “Array
representation of the fair shares of each friend in each task will set a foundation for

area concept.” Then a conversation took place between PTs as follows:

T: [I drew an array representation for 2x3 on the board. Figure below shows
the representation]
N N

Which [topic] can this representation lay a foundation for?

PT6: Area.

PT7: How? | did not understand. [PT7 and PT1 discussed together]

PT1: Think, as it is a multiplication. You multiply the number of the unit(s)
on the sides.

PT8: Also for multiplication.

T: How?

PT6: Teacher, if we look at the thing [referred the array representation] on
the board both horizontally and vertically, we have two multiplications, 2x3
and 3x2, both give same result. [PT8 nodded her head to show her
agreement]

PT5: We can explain commutative property of multiplication with this.
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PT4: Also the concrete representation of multiplication exists.

The discussions above show that same representation led PT4, PT5, PTB6,
PT7, and PT8 to come with various connections between array representation of the
shares and further mathematics topics. PT8 initiated an idea that this representation
served a base for multiplication concept. Then, PT6 explained how multiplication
operation was embedded in the representation. PT5 came up with a more specific
statement after PT6 indicated that both 2x3 and 3x2 could be deduced from this
representation and both operations yielded the same results. This statement of PT6
underlined the 2-dimensional nature of multiplication. PT5 captured this nature and
stated that these sorts of representations could be used for teaching commutative
property of multiplication. Then, PT4 concluded that this representation could be
used as a way to represent multiplication concept concretely. As a result, this
representation and thought exchange on the representations helped the PTs to
associate rectangular array display with the idea of division and multiplication.

Although PTs did not partition a space and construct an array that was
composed of rectangular parts as units in the discussion above, PT1’s explanation
showed the emergence of this idea. Because, she stated two concepts “units [on the]
sides”. This usage indicated that PT1 visualized this array as a rectangular space
partitioned into six and perceived each part as a rectangular unit that covered the
whole space. This discussion continued in the next week.

The last task was asked finding various “n”’s for 36 jellybeans fairly shared
among “n” people. In this task, all the PTs indicated different “n”s have to divide 36
without a remainder. PT3 and PT4 explained this deduction in a more precise way.
They stated that this task would help students to understand finding factors of a
number. I revised the PTs’ conclusion and corrected as positive factors. PT6 and
PT9 added that this task also served for understanding prime factorization. After
that, a generalization question was posed: “Can you fairly share discrete collections
for any amount of people? If yes, why? If no, why?” PT1, PT2, PT3, PT5, PT6,
PT8, and PT9 wrote “no” as an answer. They all merged a common conclusion that
discrete collection could be fairly shared among “n” many people, if n divided the
number of objects in the collection evenly. PT9 explained this generalization in a

more formal way. She wrote “If n (amount of object) and “p” (number of people), n
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could be any positive integer greater than 0 and n--p=k and kxp=n.” This
mathematical explanation of PT9 showed both equipartitioning (n -+ p=k) and
reversibility of partitioning (kxp=n). The findings reported above showed that all of
the PTs could associate the fair sharing collection tasks with several further
mathematical ideas such as, prime factorization idea, multiplication and division
idea and fraction.

The second task asked the PTs to compare the size of the each person share
to the whole collection and compare the size of the whole collection to one person
share in the instance of each eight friends owned nine Legos and wanted to build a

city plan through utilizing all Legos. Many PTs (n = 6) named each person share as

%of the whole collection. PT1 and PT8 named each person share by first finding the

total number of Legos as 8x9=72, then naming each person’s share as %. PT2

named each person’s share as one out of eight. All the PTs indicated the relation
between the whole collection size and the each share size as 8 times. This showed
that the PTs perceived the multiplicative relation between the size of the whole

compared to the size of the part.

5.2 Week 3

In this week, equipartitioning single rectangular and circular whole was the
content of the experiment. Various partitioning and justification strategies, naming
practices, and transitivity argument (property of equality of equipartitioning) were
covered. First, the findings related to restructuring MCK, then restructuring SK
were reported. This order of reporting was based on the logical and chronological
flow of the LTBI that restructuring MCK was followed by the tasks in the
experiment focusing on SK.
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5.2.1 Restructuring Mathematical Content Knowledge

The first task required PTs to utilize several fair sharing strategies to create
different number of splits on a rectangular and circular whole. At first, the PTs
created four fair shares on a given rectangle. They utilized different fair sharing
strategies such as utilizing successive parallel or vertical cuts, utilizing vertical and
parallel cut together to form composition of splits, and utilizing diagonal cuts.
Although the PTs utilized these strategies, the way they employed the cuts differed
in terms of mathematical complexity. PT2, PT4 and PT6 utilized successive parallel
or vertical cuts however, they utilized a visual approximation to determine the size
of the shares as they located the cuts.

Three PTs utilized folding to locate the cuts. They first folded the rectangles
to create four fair shares. Two PTs used repeated halving strategy to create four fair
shares instead of using successive parallel cuts. One PT utilized measurement
strategy to mark the long side of the rectangle. After the PTs completed their
individual works, | selected several strategies of the PTs and asked them to group
the similar ones. Based on PTs comments, | grouped the rectangles on the board as

shown in Figure 42.

Figure 42. The PTs’ various splitting strategies
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The PTs discussed whether all the rectangles on the board were
equipartitioned into four. PT1, PT2, PT3, PT4 and PT7 believed the orange
rectangle was not split into four evenly. The discussion took place as:

T: What do you think about this group? [Pointed the green rectangle and
orange rectangle]

PT7: I think, the green one is more reasonable.

T: Why?

PT7: Because the parts are equal. Yet, the part on the sides and the parts on
the bottom of the other one [orange rectangle], are not equal. Because, when
you fold the orange rectangle, the parts do not overlap completely. However,
when you fold the green one, the parts overlap completely.

PT4: | agree, since this is a rectangle, the angles are not equal [pointed the
angles formed in the intersection of diagonal and the angle at the vertex of
the triangles formed].

PT5 and PT8: No, the rectangle is fairly shared. The parts are equal [sized].
PT1: Do you think this is fairly shared? [Pointed the orange rectangle
partitioned into four with two diagonal cuts]

PT8: Yes, | am sure. When you multiply side and height of the triangles,
their areas are equal.

The PTs exhibited a mathematical misconception that the diagonal cuts
would not create fair shares. PT7 tried to justify this claim with the folding
explanation mentioned above. Also, PT4 only focused on the angle at the vertex of
the triangle to decide whether the triangles were congruent. This showed that both
PTs tried to justify their mathematical thinking with incorrect mathematical
explanations that also pointed the lack of conceptual understanding of area
congruence of the shares. PT8’s explanation was also supported by PT5 and PTO.
PT9 marked one part from both rectangles with the letters A and B as shown in
Figure 43.

Figure 43. Labeled the parts from both rectangles
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PT9 drew dot line that split the part A into half. Then, eight PTs except PT2
indicated that they could cut the part [A] into two equal triangles and rotate one of
them and form a rectangle that was exactly the same size as part [B]. This was a
composition and decomposition strategy to indicate the congruence of the shares.
Also, PT5, PT8 and PT9 indicated the areas of them [part A and B] were equal. In
addition to these two strategies to show the equivalence of the shares, PT6 and PT9
indicated that since both rectangular wholes were the same size and they were both
equipartitioned into four parts, the parts were equal. PT6 indicated this relation
mathematically as “when you symbolized one part with A and the other one with B.
The first rectangle is composed of 4As and the second rectangle is composed of 4Bs.
Thus, 44=4B that is A=B.” Then, PT5 stated “This is a very highly complicated
[mathematical] thinking level.” These interactions among the PTs showed that
majority of PTs (n = 8) produced several mathematical strategies and explained
them correctly within the classroom. This is an indicator for that the PTs
internalized transitivity argument embedded in the ELT. This discussion served for
making sense of the underlying mathematical explanations in the representations
and different fair sharing strategies.

The PTs utilized a correct mathematical language since they emphasized the
correct referent whole. They did not merely say both share was i. They indicated

that the same size wholes equipartitioned into four. This showed that the PTs had a
good understanding of the quantity meaning of the fraction. At the end, all of the
PTs explained the area congruence of the shares through utilizing the same
strategies. This showed that the transfer of the learned mathematical ideas was
successfully achieved. As a result, the five PTs remediated their incorrect
mathematical understanding and also shifted their way of mathematical thinking.
These PTs reacted as “Yes, areas are equal, how did | make this mistake?”

The PTs utilized an incomplete mathematical language when they expressed
their mathematical thinking. The PTs (n = 3) utilized mathematically incomplete
description to refer the equality of the share size. They stated that the parts were
equal. However, they did not supply an answer for which quality of the parts were
equal. | asked PTs in the follow-up discussion about what they referred to when

they said “equal”. Four PTs stated “area” and the rest said, “size”. This showed that
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although the PTs employed a correct mathematical thinking, they still needed
support to utilize correct mathematical language to communicate their mathematical
thought aloud and | tried to provide this support to help them communicate their
thoughts in the discussions.

Another discussion on the purple and blue rectangle pair followed the

examination of the first pair of rectangles in class:

T: Can you explain how you shared the rectangle? [Referring the purple one]
PT6: | split the rectangle into four horizontally.

T: Can you explain the process of the splitting? Which cut did you draw
first?

PT4: [intervene] Visual approximation. [PT2 also nodded her head]

PT6: First, I drew the cut on the top. Then, | drew the cut underneath of that
cut based on my visual approximation of the share size.

T: Is there anyone who performed this differently?

PT5 and PT7: With folding.

PTO: I drew the first cut from the middle [of the rectangle].

PT1: First, | split the rectangle into half, then I split the halves into two
again.

PT5: The shares are not fair enough with visual approximation.

The discussion above indicated the three PTs utilized a visual approximation
to adjust the location of the cuts for maintaining the size of the shares. The other
PTs claimed that this strategy was ineffective to create fair shares. Because, the
visual approximation did not ensure the equality of the share size. This examination
of the mathematical strategies and their representations helped the PTs to
understand the pitfalls of their employed strategy of visual approximation. PT1,
PT5, PT7 and PT9 did not merely point out the pitfalls of the visual approximation;
they also suggested alternative strategies of repeated halving and folding into half
twice. They claimed these strategies would produce more precise fair shares. They
employed the strategies correctly and could explain why they were appropriate to
use in this particular problem.

The three PTs who utilized visual approximation became aware of the
pitfalls of their strategy and learned new strategies to ensure the equality of the
shares. Only PT3 suggested measurement could be used to adjust the location of the
shares. She stated, “We can measure the side length of the rectangle and divide it

into four and marked each part.” This comment of PT3 illuminated the connection
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between the measurement concept and equipartitioning. After this PT3 input, the
rest of the PTs realized this connection.

One main issue aroused when | drew a rectangle that was split into eight and
two parts were allocated to each fruit type:

T: Let’s compare this [pointed the rectangle split into four by 2x2]
representation of the fair sharing and this one [pointed the rectangle split into
four by 2x4].

PTO9: Fractions.

T: Which contents of the fractions?

PT5, PT6 and PT9: Reducing and expanding fractions.

T: What do we call them?

PT1 and PT4: Equivalent fractions.

The discussion pointed that my input helped the PTs to see the connection
between composition of splits and the equivalent fractions. To clarify whether the
PTs actually built a connection among these mathematics topics, | asked the PTs to

name each share. PTs (n = 8) named each share as%and g Then, they indicated

these fractions represented the same amount. As a result, these fractions were
equivalent. PT3 also stated that this equipartitioning tasks could be utilized to
represent the idea of equivalent fractions concretely.

When PTs were asked to equipartition a rectangular whole into eight and
later in fifteen, they made use of the same strategies. They utilized combinations of
vertical, horizontal and diagonal cuts to create eight fair shares. To create eight fair
parts, many PTs (n = 5) used repeated halving. Three PTs marked the long side of
the rectangle seven times to create eight fair shares. Only PT2 used visual
approximation in the process of splitting. These findings demonstrated that eight
PTs improved their inefficient strategy of fair sharing task they exhibited before.

At the end of splitting into four and eight tasks, the PTs compared the
mathematics behind each task. PT8 stated since the whole remained the same, the
amount of the share reduced. PT7 added, “When you split into four, you created four
parts. When you split into eight, since the number of parts increased, the share size
reduced” These comments indicated that these PTs started to develop an
understanding of factor based change. This showed that the PTs started to build

connection across the mathematical ideas embedded in the ELT.
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Another connecting practice was observed when PT1, PT5, PT6, PT7 and
PT9 employed composition of splits to create eight fair shares. They indicated that
they used factors of eight while employing composition of splits strategy. Then, |
asked “Think of a case that you want to create 12 equal parts, how would you do
this sharing?” Same PTs stated, “It could be 6x2, 12x1 and 4x3.” After these
comments, all the PTs indicated factors of the number were another mathematics
topics related to these tasks. I corrected the PTs’ mathematical wording by saying
“the positive factors”.

When the PTs were asked to create 15 equal parts on the rectangle. They had
difficulty with creating equal sized shares. For instance, PT2 and PT3 stated that it
was difficult for them. Then, the PTs developed arguments about why
equipartitioning into 15 parts was harder than creating the prior splits of four and
eight. PT6 said, “This means as the magnitude of the numbers increases and the size
of the shares decreases, the task becomes harder.” PT9 argued against this response
and said, “No, it is because of odd numbers. We could not employ repeated
halving.” PT4 later added:

When we fold this [rectangular] paper, in each time [the number of parts]
increases by two. Thus, we create equal shares however, to create 15 equal
shares, this is not the case. We should fold every time to create each part.
When we fold into half [she showed this action on the rectangle], the parts
overlapped. Thus, we are sure they are equal [sized].

After the discussion, the PTs realized why they experienced difficulty with
creating fifteen fair shares. They eventually reached a common conclusion as PT7
stated, “There is a serious difference between creating 2-splits and 3-splits in terms
of [mathematical] difficulty. Thus, we should start from even splits then move into
odd splits.”

In addition to the findings on fair sharing strategies, the PTs had discussion
on naming practices. All PTs could correctly name each share. However, they

exhibited different perceptions about the meaning of the fractional naming such as

1 . .
= The interaction went as follows:
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PT6: The number at the top [numerator] represents the single whole.
T: Does anyone argue differently?

PT1: For one part, we named as % Thus, this [number 1 in the numerator]

represents one of the parts.

T: So, this one in the numerator represents the whole or not?

PT1: 15 is denominator and 1 is the numerator, so 1 represents the share.
PT6: We split the whole into 15, we did not split the 15 into one.

PT8: But, we received one out of 15 [parts].

PT5: Yes, one out of fifteen.

PT8: What if it is two-fifteenth?

PT6: But, in here my statement is also correct since we split a whole into 15.
PT7: In the elementary school teaching, teachers also teach this to the
students as comparing one part to the total number of parts.

PT6: We multiply a number with % means dividing the whole into 15.
However, if we take one of the parts, we received % [of the whole].

PT1: Let say % so in this instance do we split 3 wholes into 15?

The discussion between the PTs (n = 5) showed that the PTs interpreted
meaning of the fraction differently. PT1, PT5, PT7 and PT8 knew the part-whole
meaning of the fraction (Lamon, 1999). PT6 knew two meanings; the division and
part-whole. PT1’s last question also pointed the division meaning of the fraction if
multiple wholes were fairly shared among 15 receivers. PT7’s comment also
indicated how teachers, that they observed, also focused on merely one meaning of
the fraction. After this discussion, various meanings of the fraction including part-
whole, division, ratio and operator were briefly introduced and discussed. However,
| allocated less time on the ratio and division meaning since these would be the
focus of the following weeks. At the end, the PTs agreed that fraction had multiple
meanings in various settings.

After working on the equipartitioning rectangular single whole tasks, the PTs
were asked to work on the circular singular whole and create the same number of
splits respectively 4, 6, 12 and 15 splits. All of the PTs could split the circular paper
into four fairly. However, PT3, PT4 and PT8 had difficulty with creating odd
number of splits on the given circular paper. They had difficulty to locate the cuts
and adjust their degrees to create equal sized parts on the circle. For instance, PT3
tried to use repeated halving strategy on the circle, as she utilized in the fair sharing

a rectangle task. Then, she realized, this strategy did not work in the circle when
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creating 15 splits. Next, she erased her cuts and created three equal parts and tried to
fairly share each one third. As she split each third, she counted how many parts she
created. This showed that PT3 did not think of the positive factors of 15 as she
created split of splits. Based on this, a discussion took place on split of splits

strategy:

T: Why do you split the circle differently?

PT6: Their factors, teacher. For instance, to create six parts we utilized the
factors of six; two and three. We can do the same for 10 as two and five.

T: Alright, can we reverse this splitting action?

PT4 and PT6: Yes.

T: How?

PT3: We can first split into five and split each part into two again.

T: What does this show to us mathematically?

PT5 and PT8: 2x5 and 5x2 give us the same number.

PT1, PT6 and PT8: It is commutative property of multiplication.

The discussion above helped PT3 to restructure her thoughts through shifting
her way of operating split of splits strategy. She was able to decide how many parts
should be created in each part after the discussion. At the end, she first split the
circle into three and split each third into five evenly without counting the number of
parts formed. In addition, the PTs realized that the orders of the factors while
creating the cuts would not affect the outcome. Three PTs connected this idea with
commutative property of multiplication and area. PT6, PT8 and PT9 realized the
multiplication of the factors gave the number of the parts in the whole and these
parts were the unit to find the area.

Other connecting practice was captured when the PTs engaged with
partitioning a circle into 12 evenly.

T: What are the similarities and differences between fair sharing a circle into
six and 12?

PT1: A person who knows to split in six can also split into 12.

PT5: | agree. Because, a whole equipartitioned into 12 could be fairly shared
among six people.

T: Good, can we connect PT1’s and PT5’s statements with further
mathematical topic(s)?

PT5: Teacher, when we fairly shared a rectangle, we did not come up with
this strategy but you drew and asked us. Similarly, if a student
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equipartitioned [a circle] into 12, [the student] could give 2 parts at a time to
each person.

PTO: It is like composite unit [strategy].

PT8: Teacher, we could teach equivalent fractions.

PT6: Yes yes, % and 12—2 are equivalent fractions.

Rest of the PTs: [agreed with their friend’s statement]

The discussion above helped PTs to reach a common conclusion that
equivalent fractions ideas inherently embedded in these tasks. PT5 started with a
verbal description of the idea of equivalent fractions. Her comment triggered other
thoughts, PT8 and PT6 named the thought initiated by PT5’s mathematically. At the
end, the collaborative effort of these PTs helped other PTs to connect the fair
sharing single whole tasks with equivalent fractions. They supported their claims
with their prior experience on fair sharing a rectangle in the experiment.

After finishing employing different number of cuts on the circular whole, 1
asked the PTs to discuss the difficulties that they experienced as they tried to create
the fair shares. PT7 and PT8 indicated that without measuring the angles, it was
difficult to locate the cuts onto exact position in the instance of creating odd splits
on a circle. Other PTs also shared their experiences of creating into odd versus even

number of splits as follows:

PT2 and PT3: 15 [split] is so difficult, teacher.

PT7: 1 agree.

PT1: Actually it is not so difficult. If you can split into three, you can also
splitinto 15 evenly.

T: Ok, good point. What about the rest who found creating 15 splits harder?
PT4: When we created even splits, we directly cut [the circle] into half.
Then, we split the parts [each half] again. But, in here [15-splits] we did not
do this.

PT3: | halved the circle, then | tried to create 15 parts starting from there.
Yet, | could not. Then I erased my initial cut and split the circle into three.
Rest of the PTs: Yes, we agree.

PT9: Teacher, initially it was really difficult to split the circle into five
evenly. For instance, | first created three equal parts. Then, split each part
into five again.

T: How many of you experienced the same difficulty?

All PTs: [They all raised hand or verbally agreed.]
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The discussion above showed that majority of the PTs (n = 8) had difficulty
with creating odd number of splits. They realized creating three equal parts on a
circle was easier than creating five equal parts. The PTs also realized creating two
and four splits were the easiest ones. These findings showed two important results.
First, the PTs experienced the mathematical task difficulty exactly in the same order
that was suggested in ELT. In addition, the PTs identified the possible reasons

behind their own mathematical difficulty.

5.2.2 Restructuring Student Knowledge

The PTs were asked to anticipate various equipartitioning strategies of the
students and they were able to produce both correct and incorrect strategies. Only
PT9 predicted chopping strategy of the students in which students randomly created
cuts without paying attention to the three criteria of the equipartitioning. Rest of the
PTs indicated their agreement with her. However, none of them came up with this
thought until PT9 suggested it. PT3, PT5 and PT8 anticipated a student
misconception that was also coded in the ELT. They anticipated employing n cuts to
create n fair parts. For instance, PT5 anticipated this misconception and showed this
through drawing it. Then she explained her drawing as “I drew 15 cuts to create 15
splits [on the rectangle].” After that, | guided a discussion on generalization for
finding the number of parallel or vertical cuts to create fair parts on a rectangular

whole:

T: To create four fair parts, how many vertical or parallel cut should be
used?

PTs: Three.

T: For five?

PTs: Four.

T: What about n parts?

PTs: n-1,

This conversation showed that the PTs were aware of the correct mathematical way

to create the required number of fair parts. Producing a generalizable response for
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creating n parts one should employ n cuts was an example of practice for HCK that
was aroused after examination of possible students’ misconceptions.

The PTs also anticipated various incorrect mathematical strategies of the
students when they worked on the circle. Figure 44 shows the selected of work of
PTs.

. . /’-_\

Figure 44. Various splitting strategies on the circle

I asked PTs to decide whether these were all fairly shared or not. All the PTs
indicated the ones marked with star were not fairly shared. The discussion on why
they were not fairly shared took place as the following:

T: Why do you think these are not fairly shared?

PT4 and PT5: They do not have middle points.

PT1: Mine [the green one in the middle] has that.

T: Ok,... what is the mathematical misconception or error under these?

PT1: The children utilized repeated having strategy in the way that they
employed on the rectangle.

T: What about the pink one in the first row?

PT3: The student employed parallel cut as s/he did in the rectangles.
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Although PT3 did not anticipate the parallel cut misconception when she
worked on the given task alone, she recognized the misconception and explained
why a student might employ this strategy.

| asked the PTs the possible ways to eliminate this parallel cut
misconception. PT1, PT4, PT5, PT7 and PT8 indicated that the students could cut
the parts and put on top of each other. Thus, they could see that the parts would not
completely overlap. PT8 also indicated that the importance of the radial cut should
be emphasized for creating fair parts on the circle. She suggested that a teacher
should stand and open both arms. Then, the teacher could turn around and form a
circle.

At the end of the discussion on the strategies to fairly share both rectangles
and circles, the PTs reached a common conclusion about the mathematical
complexity of the strategies and they exhibited ordering practice. Although they did
not specify such an order at the beginning of the experiment, at the end they stated
that fair sharing rectangles was easier than fair sharing circles. Also, they ordered
the tasks from easy to difficult as creating two-splits, 2" splits, odd number of splits,
and at last composition of splits based on their experiences in the LTBI. This order
was also suggested in the ELT. This pointed that the PTs also experienced the same
mathematical difficulty as students did when they created into odd number of splits
on single whole. This experience seemed to helped them to empathize the
mathematical difficulty that students might encounter as they learned
equipartitioned single whole.

After my guiding question, another student misconception was anticipated
related to reassembly practices:

T: How many times is the whole larger from the part? How can a student

respond to this question?

PT4: 14.

PT1, PT2, PT7,PT8 and PT9: 15 times.

T: Why do you think “14 times”?

PT5: The student did not count one part. Counted the rest of the parts.

PT9: But, this is an incorrect response.

T: Ok. What can you do if a student cannot see the whole is 15 times larger

than size of a part?

PT7: The student can combine the parts to create the whole and count how

many parts are needed to form the whole again. [She drew 15 parts
186



separately and an empty whole on a paper.] The student could cut the parts
and placed on the whole like a puzzle.

The discussion above showed that PT4 captured possible additive
misconception of the students. However, the majority of the PTs (n=5) focused on
the correct response. PT9 clearly indicated that 14 was an incorrect response and it
was unnecessary to focus on that response. This showed that the PTs mainly focused
on correct responses rather than thinking the possibility of incorrect responses that
would be produced by the students. However, at the end, all the PTs learned this
misconception and also suggested some strategies to remediate it. Furthermore, they
started to realize that the anticipation of students’ mathematical thinking did not
merely entail correct responses.

PT7 suggested a way to remediate this misconception that included iteration,
an important measurement idea. PT7 suggested making repeated the measurement
of the parts to go back to the original whole. | explained this inherent idea of
measurement in PT7’s suggestion. My direct input and the interaction among PTs
finally led them to restructure the way they anticipated students’ mathematics.

At the end of this week, an analysis of 2™ grade student video, in which the
student fairly shared a rectangular cake among four friends through utilization of
diagonal cuts, was performed in the class. All of the PTs stated that the student

utilized the correct way. | paused the video and asked:

T: What do you ask this student next?”

PT3: Yes, | learned the diagonal cut would produce four fair shares.
However, I will ask to the students after he employed the cut “How do you
know that the rectangle fair shared?”

PT1: Yes, we should check whether he really understands it.

T: Ok, after you asked for justifications, what are the possible responses of
the student?

PT2: He cuts the parts in half and puts one on top of the other.

T: What did we call this strategy?

PT7: Composition-decomposition.

T: Any other?

PT6: Teacher, since he is a 2" grade student, | think he will not use any
other way.

PT7: Yes, I don’t think he will compare the length of the sides or the
thickness of the parts.
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The student in the video started to explain his strategy as “When people cut
this way they think the parts will be different.” Then, I paused the video and asked

PTs what they understood from this statement:

PT9: He may want to say the parts are not fairly shared.
PT1: Yes, but we don’t know for sure.

T: Why do you think so?

PT1: Teacher, we don’t know what different means to him.
Rest of the PTs: This is very important.

PT1 stated, “Although we assume the student try to mean something, we
cannot be sure until we ask the student.” Rest of the PTs (n = 8) agreed that
understanding students’ mathematical thinking could be achieved first observing the

students’ actions and then asking them directly what they meant or what they did.
Different from the PTs anticipation, the student cut each i out and combined

the ones congruent to each other in terms of shape and indicated both forms a
parallelogram and they were fair. Many PTs stated that they would never think in
this way. This showed that although the PTs could anticipate the students’ strategy,
there is always a possibility for encountering a different strategy when they worked
with students. Thus, differentiating their own way of mathematical thinking from
the students was a key practice. In this video analysis activity, all of the PTs realized
that the student could think differently than what they learned or anticipated so far
about students’ mathematics. This realization was evidence for that all of the PTs
could recognize the student’s justification strategy even if they did not anticipate it
in advance. The discussion on this issue continued when | paused the video and

asked:

T: Ok, he used a different composition and decomposition strategy from
what you anticipated. What do you want to ask to the student?
PT8: I will show the two different shaped parts and ask if those are fair?

The PTs (n = 5) wanted to ask similar questions. For instance, PT4 stated
“What about these parts?” and PT1 “Is there any other way to show these parts are
equal?” These showed that majority of the PTs started to acquire questioning skills

to elicit the student’s mathematical thinking.
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5.3 Week 4

In this week, two main courses of activities took place. The first activity
included a task that asked PTs to order the given tasks in terms of difficulty along
with the mathematical justification. The second activity included the folding tasks.
The findings related to first course of activities will be reported together under
restructuring practices for SK and MCK since the task asked PTs’ to anticipate the
difficulty of the given tasks for elementary school children. Even if the task
primarily assessed the PTs’ knowledge of students, the PTs utilized their MCK and
restructured it in the progress of this task engagement.

The findings related to second course of activity will be reported in the

regular order that was also followed in week 3 and week 5.

5.3.1 Restructuring Student Knowledge and Mathematical Content
Knowledge

The PTs (n = 5), including PT1, PT3, PT5, PT7 and PT8, could compare
correctly the difficulty level of the tasks that included creating the same number of
splits separately on a circular whole and rectangular whole. In addition, these PTs
provided correct mathematical justifications for their claims. For instance, the PTs
were asked to compare equipartitioning a rectangular and a circular cake into eight
parts. These PTs indicated that fair sharing a rectangular cake into eight was easier
than fair sharing a circular cake into eight. They all indicated radial cut utilization
made fair sharing a circular harder for the students. Also, they stated a student could
use repeated halving to create eight equal parts on rectangle. Only PT5 stated
students could use folding easily on a rectangle.

Although PT6 indicated splitting a circular cake into eight evenly is harder
than the rectangular case, she could not provide a reasonable and correct
mathematical justification for her claim and only stated the reason as “one could
draw more cuts while sharing the circle.” PT2 correctly ordered the tasks yet she

did not provide any justification.
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PT4 and PT9 asserted both tasks were equivalent in terms of difficulty. Both
PTs indicated since eight was an even number, creating eight splits on the circle and

rectangle could be achieved through repeated halving. PT9 wrote this assertion as:

One could form eight splits on a rectangle through composition of splits four
and two. To form eight splits on a circle, one could split the circle into four
by drawing diagonals, then one could split each part into half.

I opened these PTs’ responses to the discussion. Other PTs indicated that for some
students this might be the case. However, for the students who did not employ radial
cut before, fair sharing the circle was still harder than fair sharing the rectangle.
These findings related to first question of the first task revealed that majority of PTs
could anticipate students’ mathematical thinking complexity while engaging the
tasks. They used this anticipation to justify their task difficulty order. Also, PTs (n =
5) could order the tasks in terms of difficulty considering an elementary school
student mathematical thinking, not their own mathematical thinking. Their
conjectured order was consistent with the order suggested by the ELT. This was an
evidence of these PTs could distinguish their own mathematical thinking from the
students’ thinking. However, the two PTs challenged the suggested task difficulty
order in the task. PT4 and PT9’s challenge was approved at a certain degree among
the rest of the PTs.

Many PTs correctly compared the difficulty level of the tasks that included
creating odd versus even number of splits separately on a circular whole or
rectangular whole. The first problem asked PTs to order fairly sharing a rectangular
cake among four versus five people cases. Six of the PTs including, PT1, PT4, PT6,
PT7, PT8 and PT9 ordered the task correctly along with a complete mathematical
justification. They all indicated that creating odd number of splits on a rectangular
whole was harder than creating 2" splits. Because, to create four splits, a student can
use repeated halving. PT3 and PT5 understood wording of the problems incorrectly
since the problems were in English. They confused the meaning of the word
rectangular with circular and compared the difficulty level correctly based this
understanding. For instance, PT3 indicated that creating odd number of splits on

circle was harder than creating even number of splits and that to create four parts on
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a circle, student could use folding through diagonals. Although PT2 correctly
ordered the task difficulty, she did not provide any justification. After classroom
discussion, PT2 indicated she also thought in this way. These showed that the PTs
could order the tasks that they anticipated for a student from the least difficult to
most difficult. Also, they could anticipate what a student could employ to solve each
fair sharing case and use this anticipation in their justification.

The second problem asked the PTs to compare difficulty level of the tasks
that included fair sharing a circular cake among six people versus five people. Eight
PTs indicated creating six splits is the easy one. The common conclusion deduced
from these eight PTs responses was, although creating six splits on the circular cake
required composition of splits of two and three, fairly sharing a circle into half was
an easy task and fairly sharing each half into third was also easier than directly
creating five splits on the circle. This finding showed a contradictory conclusion
with the knowledge embedded in the ELT. Since, the ELT suggested the order of
the tasks from the least to the most difficult ones should be half, 2"-splits, odd splits
then composition of splits. In here, all of the PTs challenged the existing knowledge
of ELT with a reasonable mathematical explanation.

Only PT2 came up with an incorrect response. She stated “because the
number six is greater than number five, creating six fair parts is harder than the
other one.” T opened this explanation for discussion. The rest of the PTs explained
their above-mentioned reasoning for how they decided to the order. Also, some of
them (n = 3) gave contradictory examples such as creating seven versus eight splits.
PT3 indicated creating eight splits on the circle or rectangle could be achieved by
repeated halving, on the other hand creating seven splits evenly was very difficult.
Although seven was smaller than eight, creating seven fair shares was more difficult
than creating eight fair shares. After these kinds of examples, when | examined her
returned written work, | saw that she made a note under her work stating “Look at
whether the number is even or odd. Also, look at the numbers when you multiply
them that gives you the number you shared for.” This written note of the PT2
showed, she revised her incorrect response and shifted her mathematical thinking.

The last question was related to comparing difficulty level of composition of

splits to creating odd number of splits on either a rectangular or a circular whole.
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The question asked for fairly sharing a rectangular cake among five versus 15
people. Except PT3, all PTs indicated that creating 15 fair shares was more difficult
than the other case. Common points deduced from their justifications indicated that
one should know creating five and three splits to create 15 equal parts. PT3 gave an
interesting response: “We could split 3x5. This is easier for splitting into 15. Since,
children played games such as XOX and SOS and they employed this splits
frequently. [This is not] difficult for them].” Although, this PT grounded her claim
to children’s real life experience in which the children employed composition of
splits strategy to create 15 parts, she was not aware of the fact that to create 15 equal
parts, children had to know how to create 5 equal parts. The composition splits of
three and five formed 15 equal parts and the task asked to compare five splits versus
15 splits on the rectangle. These findings indicated majority of PTs (n = 8) could
order the tasks correctly and they produced complete mathematical explanations for
conjectured orders. This showed that PTs could predict the possible learning paths
of elementary school children in the equipartitioning single whole topic. Based on
this, they decided in which order instructional tasks should be presented to the

students.

5.3.2 Restructuring Mathematical Content Knowledge: Folding Activities

The PTs were asked to fold a rectangular paper into half four times and find
the number of the fair shares created as a result of folding. More than half the PTs (n
= 5) had difficulty with processing the task. They could not generate a procedure
that would directly produce the solution. Thus, they asked whether they could use
the rectangular paper to show. This introduction to the basic folding task indicated
that many PTs (n=5) displayed a mathematical difficulty in building the
mathematical relation between the number of folds and the number of fair shares
created. As a result, they could not solve the problem mathematically in the first
place. Therefore, | asked them not to try folding the given rectangular paper first,
but to try to imagine the folding action abstractly and tie to mathematics behind
each folding action with equipartitioning of the single whole.
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PTs started to work on the task individually after my suggestion. Then, each
worked to form his or her own strategy. Within these strategies, PT8 and PT9
utilized exponential numbers and supported their claim with pictorial representation.
PT7 utilized fractions along with the pictorial representation. PT1, PT5 and PT6
merely used drawings to show the result of each folding. PT2 and PT3 exhibited
mathematical misconceptions and PT4 could not come up with a strategy. PT2
exhibited an additive misconception. She drew a picture for each fold. Figure 45

shows her drawings.
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Figure 45. Additive misconception exhibited in folding task

She explained her strategy as she drew it on the board:

PT2: First, | folded the rectangle into half (the second drawing from the left
in the Figure 45). Then, | folded this half-folded rectangle into half again.
[She drew a rectangle partitioned into fourths]. In the next stage, six parts
were created. Then, eight parts were created.

T: Can you explain how you created six [parts]?

PT2: | thought that it [number of the parts] increases by two. Then, two- four
then six and then eight.

After this conversation, some of the PTs (n = 4) argued against her
explanation and solution strategy. For instance, PT7 said, “l perceived it not
additively, instead it increases multiplicatively. So, two times each time.” Then, I
asked if anyone used the drawing strategy as PT2 employed and find a different
answer. PT5, PT6 and PT9 responded. PT5 first showed result of each folding by
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drawing and also she folded concrete rectangle into half three times. After both
representation, PT2 was convinced and she said, “Yes it did create 16 equal parts.”
At that point, PT3 said, “I thought, every time | folded, 2 equal parts were created.
When | folded once, it created 2 equal parts. Then, | asked if I fold four times, how
many equal parts | will create. So, | created eight equal parts.” Figure 46 shows her

strategy.

Figure 46. Setting direct proportion to find the number of parts created as a result of folding

Based on the discussion on the strategies of others, PT3 started to realize that there
was something wrong in her mathematical strategy, yet she could not explain why
and asked, “What is wrong with my strategy?” Then, I drew a table on the board that
included the suggested the equal number of parts created as a result of each folding
actions. The numbers in the parentheses represented the correct responses that the
other PTs provided. | encourage PTs to get help from this representation to explain

the problem in PT3’s strategy.

Number of Fold Equal Parts Created
1 2
2 4
3 6 (8)
4 8 (16)
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The PTs stated there was multiplicative relation between the number of the
parts created and each repeated folding action as multiplication by two. Thus, in
each step one should multiply the number of parts by two to find the new resultant
number of parts. PT8 and PT9 also stated the relation could be represented by
exponentials. They said the relation was not between the order number of the folds
and the number of parts created. PT9 said “1x2=2, 2x2=4 but, 3x2=6 does not
produce the correct answer. Only the number of parts increases multiplicatively by
two as a result of each folding.” After PT9’s explanation PT3 indicated that she
understood why her strategy did not work. She stated, “l set a proportion between
the number of fold in order and the number of parts, instead | should have focused
on the results of each folding into half.”

After these discussions, | asked for other strategies. PT8 and PT9 stated that
they used exponential numbers. PT8 explained her strategy. Figure 47 shows PT8’s

work.
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Figure 47. Relating results of the folding action with exponentials

In the figure above, the PT explained the strategy as: “For the first step, | took 2°
since there is no folding [she drew a rectangle on the board]. Then, | folded once

into half, this is 21. So, it created 2 equal parts. [Then she drew the results of each
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fold on the rectangle]. Thus, through 2¢, it created 16 equal parts.” This PT found
the resultant number of share by utilizing another mathematics topic exponential
numbers. Other PTs also agreed with their friend. PT2, PT3 and PT4 stated that they
had never thought in that way before. At this point, PT7 raised her hand and shared
her thoughts:

PT7: I used a similar strategy to PT8’s strategy. Mine is the reverse one.

[She explained her strategy with mathematical symbols as: Ixoxa lzi.]

22 2 2 16
T: How many equal parts did you create?
All PTs: 16 equal parts.
T: How do you know?

PT7: 1—16 represents a person’s share. Thus, 16 equal parts were created.

PT8: So, to represent this [strategy] with exponential numbers, we should
say 21 and then so forth.

This conversation indicated that PT7 also tied her prior knowledge of

reassembly to find the total number of parts created. She found one person’s share
and indicated if one person’s share was %, the whole should be 16 times larger.

Thus, she stated 16 parts were created. PT8 also revealed the relation between two
strategies. She used exponential numbers to explain both strategies. Rest of the PTs
(n = 7) also agreed with this explanation. For instance, PT5 said “We could find
directly either the number of parts created or we could name each person’s share,
then find number of the parts in the whole.” These findings pointed out connecting
various strategies and making sense of multiple mathematical explanations for the
same task. PTs used multiple mathematical explanations and representations in the
process of the discussion.

At the end of the task, the PTs were asked to deduce a general mathematical
conclusion about how many parts would be created as a result of repeated folding
into half. All PTs, except PT4, concluded that 2™ parts would be created. PT1, PT6,
PT8 and PT9 also concluded that this repeated folding into half was similar to
repeated halving strategy, as they learned in the last week. These instances showed
that PTs reached a general solution that could be called generalization practice and

they connected the mathematical ideas embedded within LT.
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Next folding task aimed to test whether PTs could transfer their knowledge
to different settings and capture the connections across tasks. In the task, they were
asked to fold a rectangular paper into half then third two times. In this task, many
PTs (n = 5) showed a consistent pattern with their solution ways as in prior task.
Differently, PT4 could generate a correct pictorial representation for this task and
was able to explain her strategy. PT2 and PT3 did not exhibit the same
misconceptions again. They could produce correct strategy along with correct
mathematical explanations. PT2, PT4 and PT6 drew pictures, and PT7 utilized

multiplication strategy in two ways: 2.3.3=18 equal parts and %x%x%zlig then she

concluded %Was the size of one share. PT1, PT3 and PT5 utilized multiplication

along with pictorial representation. PT8 and PT9 used exponential numbers strategy
as 21x31x31=21x32=18.

In this task, discussion on different pictorial representations also yielded
conceptual understanding of transitivity concepts embedded in the LT. Figure 48
shows PT4 and PT6’s drawings.

Figure 48. PT4 and PT6’s drawings: The transitivity argument

The drawing on the left, first, PT4 folded the rectangle into half vertically. Then, she
folded into three horizontally and then she folded into three again vertically. On the
other hand in the drawing on the right, PT6 first folded into half horizontally, then
folded into three vertically and then folded again into three horizontally. Both PTs
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created 18 equal parts, yet the parts were not congruent in terms of shape. Then a

discussion started as follows:

T: Is there anything we can talk about mathematically when we look at both
drawings?

PT6: This part and that part, their shapes are not same.

T: What do you think all, these parts are equal or not?

PTs: They are equal.

T: How do we show they are equal?

PT5, PT6 and PT7: We can put one part on top of the other one. Then, we
could cut the longer one into half [decomposing], then we put them on top of
each other [composing]. Thus, one covers the other completely.

This discussion indicated that the PTs deeply examined the mathematical
ideas behind each representation and tied with previously learned equipartitioning

idea called transitivity. None of the PTs could conclude that each part was % of the

same sized rectangle. Thus, they were equal sized parts. | reminded this strategy.
PTs indicated they would not think of that.
Only PT9 stated their areas were equal. She wrote 3.6=6.3 in both

representations. | probed this idea further:

T: What is the result of 18 represented as a result of both calculations?

The majority of the PTs (n = 6): The area of the rectangular whole.

T: Ok, what is the unit for the area?

The PTs: [Thinking]

PT1: The parts

PT8 and PT9: The number of parts in each whole.

T: What are the shapes of the parts?

PTs: They are different rectangles.

T: Different in terms of?

PTs: Shape.

T: How is the number of rectangles equal in both wholes even if they are
different shape rectangles?

Majority of the PTs (PT1, PT4, PT5, PT6, PT7, PT8 and PT9): We showed
previously, their sizes are equal.

The discussion above showed that the PTs realized different shaped
rectangular units could be utilized to find the area of the rectangular whole. Also,
the PTs indicated area equivalence of different rectangular units and as a result the

area of the both whole was found as 18.
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The third task focused on utilizing different number of folds to create the
same number of equal parts. In this task, two scenarios were presented to the PTs. In
the first scenario, Ayse folded a paper into four then into three. In the second task,
Fatma folded same sized paper into six and then into an unknown number. The
question asked to find that unknown number. All PTs could find this number as two.
To reach that answer, first all of the PTs found the number of equal parts created by
Ayse. Then, they found which folding action was necessary for Fatma to create the
same number of equal parts. The performance of each PT showed that they all
correctly utilized mathematical strategies to solve the problem. Although all PTs
found the correct solution, there existed some problems. For instance, PT3 had a
problem while utilizing drawing strategy to find 12 equal parts. Although she found
the correct answer, the way that she showed her work on the drawing revealed a
mathematical error in employing parallel cuts. PT1 and PT5 captured the error and

explained why it was incorrect:

PT3: [To create four fair shares, she drew four horizontal cut and erased the
extra piece]

All PTs: This would not create four fair shares.

PT1: In primary schools, teachers erase the extra piece.

All PTs: [Nodded their heads.]

PT5: They said students to split into four. Then, they drew five parts and
erased the extra part.

PT1: I would do that too, if | were a student. Because my teacher is doing it.

This showed that the PTs started to capture mathematical errors in other
friends’ strategy and correct it. They could even build connections between the
errors they observed in the LTBI sessions and their experiences in the school. Then,
they acknowledged the importance of having a correct mathematical knowledge
while teaching mathematics to students. After this discussion, | checked whether
PTs addressed the factors that led this mathematical error. The conversation carried

out as:

T: Which criterion of equipartitioning was not achieved in PT3’s
representation?

PT1, PT4 and PT5: She did not exhaust the whole and create the correct
number of fair shares.
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This showed that the PTs were able to build connections across levels of LT
and also they applied basic mathematical criteria of equipartitioning across all
levels.

| asked the underlying mathematical ideas or topics in this type of folding
tasks. Two PTs stated as finding the missing factors. They said, “Four times three
and six times two is equal to each other.” PT6, PT8 and PT9 shared thought was
“Through this, we are finding the area of the rectangle.” PT3 said, “This could be a
concrete representation of multiplication.” PTS5 also approved PT3’s statement. PT8

tried to build a connection as the following:

PT8: I think this also sets a base for the least common multiple (LCM).

T: How?

PT8: The LCM of four and three is 12. |1 would find the unknown number
and six and their LCM should be 12. So this number is two.

T: Does this hold for every case?

PT8: [Thinking] It holds for some but not all.

T: Can you give a counter example?

PT8: [She thinks for a while] Actually, it did not even work in here.

These findings indicated that majority of PTs (n = 7) also connected various
mathematical ideas such as exponentials, missing factors, positive factors of a
positive number, multiplication, equipartitioning and fractions to the folding
activity. They did not perceive folding activity merely as folding a paper and
creating equal parts. In addition, PT8 came to a level that she started to test her own
claim.

Last activity focused on finding different combination of folds to create the
same number of equal parts. All of the PTs found various strategies and represented
the result of each fold mathematically. This showed that PT1, PT2, PT3, PT4 and
PT5 progressed into pictorial representation to more complex mathematical
representation when their initial solution strategies were compared to current
strategy. This indicated that these PTs enhanced their existing knowledge through
employing more complex mathematical strategies to solve the task. In addition to
these findings, this task generated an important interaction among PTs:
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PT9: This task could form a base to find [positive] factors of a positive
integer. 36 equal parts could be created through various combinations of
these factors as a fold.

PT6: This is another way for what we did last week that was fairly sharing a
single whole. We called that to get 12 we could fairly share [the whole] by
12x1, 4x3 and 6x2.

Other PTs: [agreed with PT5 and PT9] Yes.

T: What did we call this splitting strategy, the one PT6 described?

PTs: [All were thinking, none of them remembered the name.]

T: Composition of splits.

PTs: Yes.

Also, PT9’s commented on how to connect the task with other mathematics
topic called finding positive factors of a positive number helped the rest of the PTs
to see this connection. In the pre-test item 14, many PTs could not utilize this
mathematical reasoning to find the various combinations.

As a result, through analyzing different representations including pictorial,
table and mathematical representations, all of the PTs (n = 9) made sense of how
these representations were connected to each other and understood the mathematics
behind them. Also, through discussing their peers’ strategies and representations,
PT2 and PT3 remediated their misconceptions. In addition, PT4 could solve the next
similar folding task and she developed ideas for how folding actions created fair
shares. Moreover, the PTs who started with concrete representations to solve the
given task moved into abstract mathematical representations.

PT8 and PT9 thought in a more abstract way than their peers. They could
generalize the mathematical ideas and apply in other settings. Moreover, they also
argued against their own generalization, which they admitted as a new experience
for them. Unlike their prior performances in the pretest, all of the PTs could explain
their mathematical thought at the end of the activities. This showed that they made
sense of the possible explanations behind procedural calculations and be able to
communicate these explanations. This showed that the PTs started to internalize the

mathematical ideas and strategies embedded in the ELT.
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5.3.3 Restructuring Student Knowledge: Folding Tasks

In the first task, thinking about the result of folding action abstractly was
difficult for many PTs (n = 5). They urged a need for using a concrete material to
employ the folds. Also, PT4 indicated “Even we could not imagine it easily, how
can a student [imagine]?” and PT1 stated, “I could not solve this; I am not
expecting a student can solve this.” These two comments of the PTs potentially
addressed two findings: First, elementary mathematics is not always elementary
(Phillips, 2008) and second, PTs had a perception about mathematics that they could
not solve a problem, a student also could not (Phillips, 2008).

PTs started to realize students actually could solve these tasks too. When
they analyzed students’ actual work adapted from Empson and Turner (2006) the
same PTs saw that students worked on the folding tasks by drawing. Thus, they also
started to anticipate students’ mathematical strategies while engaging the tasks.

As discussed previously, in the first task, two PTs exhibited misconceptions.
PT3 utilized ratio reasoning and PT2 used additive reasoning while trying to figure
out the number of the resultant equal parts created as a result of the folds employed.
The discussion on these misconceptions also merged into a shared conclusion
among PTs. They concluded that they might also hold the same misconceptions as
students did. This was an indication that the PTs started to understand how a student
could exhibit a mathematical misconception.

In the third task, PT6 indicated that folding a rectangular paper into four and
then into three, and folding the same sized paper into six and two would yield 12
equal parts. Yet, the shares did not look same. The justification ways to indicate the
each share from each rectangle was listed earlier as the composition and
decomposition and area congruence of the shares. Many PTs (n = 6) indicated that
these strategies could be also employed by students to indicate the equivalence of
these shares. In addition, PT3, PT5, PT6 and PT8 indicated that a student might
compare the length of the sides. For instance PT5 said, “Student could say, this part
[pointed the 4x3, rectangle] is fatter and [pointed the other part] and this part is
skinner but taller.” This finding indicated that the PTs distinguished their own
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justification ways from students’ justification ways. Because, they discussed an
additional justification way called qualitative compensation in the ELT.
In the session, PTs discussed the ways that a student could employ to find

the total number of fair shares created as a result of folding(s):

PT4 and PT5: They could use multiplication. [They gave an example from a
task.] They could say three times six.

PT7: They could count by ones.

PT8: They can add the parts formed as a result of each folding. For instance,
when you folded into half, it created 2 parts and when you folded it into
three again, in each half there would be three parts, so [the result is] 3+3.

T: I would not suggest leading your students to find the number of equal
parts created through addition. Why do you think, | would not suggest this?
PT6: Student could say five. If you folded into two, it created two equal
parts. Student might think, if folding into two created two parts, folding into
three would create three parts and they could add them [2+3] and said five.
PT2, PT5 and PT9: Yes, this could happen.

In the discussion above, the PTs started to challenge their peers’ suggestions.
To argue against a statement, the PTs developed reasonable mathematical
explanations. In this case, PT6 realized the potential misleading danger of
employing additive strategy while finding the total number of fair shares created.
This situation indicated that this particular PT internalized possible mathematical
strategies that students could utilize. This internalization entailed perceiving
potential benefits and danger in the suggested mathematical strategies,
representations and explanations.

One task in the session included the case of Ayse’s solution. She stated that
there would be 12 equal parts, if you fold a rectangular paper into half four times.
While working on this task, all the PTs recognized the answer of Ayse was
incorrect. However, they (n = 8) had difficulty with explaining the possible error or
misconception that might lead Ayse to generate this incorrect response. In this
instance, PT4 could not figure out the possible underlying reason behind the
response and wrote, “l think, the student just threw a random answer.” PT2 and PT3
only wrote a general statement. For instance, PT3 wrote, “The student did not
understand fractions.” She did not explain how she figured out this based on the

evidence deduced from Ayse’s work. PT1 tried to connect Ayse’s answer with the
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misconception that was stimulated earlier in the teaching sessions. PT1 wrote her

interpretation of Ayse’s answer as:

It is not an additive misconception, as we saw earlier. If it was an additive
misconception, Ayse would say eight equal parts. First fold yielded two
equal parts, then the second four. So, plus two six and then eight. 1 am
nervous, | could not figure out why she responded as 12.

PT1’s response indicated that she was aware that there was something wrong
in the answer. She tried to address this through using her prior experience. However,
this seemed a new situation, and her existing knowledge was not sufficient to
anticipate and explain Ayse’s mathematical thinking. This situation made PT1
uncomfortable. However, she also indicated, “l learned why it is important to
understand and think through students’ mathematical thinking.”

PT7 and PT9 focused on possible drawing errors while representing each
fold. PT9 wrote in her written work that Ayse correctly folded the rectangle into
half twice. However, then she might fold each half of the rectangle into three. PT9

drew this as follows:

Figure 49. PT9’s anticipation of Ayse’s mathematical thinking

PT7 also utilized same argument to explain possible mathematical thought of the

student. Both explanations indicated that the PTs were aware that the answer was

not correct. However, PTs tried to suit an explanationfor how this answer might be
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produced without having a solid ground for their claims. PT5, PT6 and PT8 focused
on possible misconceptions that Ayse exhibited when she tried to perceive the
number pattern. This patterning activity was a widely encountered strategy of the
students (Van de Walle, 2007). PT6’s written work on how student might think is

shown in Figure 50.

Figure 50. PT6’s anticipation: Patterning activity

PT6 explained the work as:

First, student think 2x2=4, | think the student knew the first fold created two
parts, then the second fold created four parts. Then, she realized that the
multiplier was increased by two. Thus, in the next fold, she multiplied two
by four, 2x4=8. Similarly, 2x6=12. The student correctly solved first two
steps [folding into half twice]. Then she did not check the rest.

PT6’s explanation indicated that the student merely employed a patterning
activity in the third and fourth step without paying attention whether the perceived
pattern reflected the correct relation between the folding actions and the resultant
number of share. Another anticipation was from PT5, she indicated that student
might have employed right mathematical thinking in the first two folds since the
pattern was deduced from these steps. PT5 stated, “The first fold created two equal
sized parts, the second fold created four [equal parts]. Then, student might think

fourth one would create 6 (4+2). Then, she might fold all the parts into half again
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and produced 12 equal parts.” PT8 also provided similar explanation for what this
student might think as she solved the problem. These explanations of the PTs
showed that the PTs started to size up students’ errors and anticipate their
mathematical thinking.

In conclusion, all PTs (n = 9) tried to develop some conjectures on what the
student might think when she gave this particular response of 12. However, none of
the PTs were sure about their analysis of students’ mathematical thinking and
response. Some PTs (n = 5) explicitly stated that they were not comfortable with
this situation. At that point, I asked, “Think about a situation, as a teacher, you
asked this problem in the examination or used this problem in the classroom
activity. And your student responded as 12 parts as Ayse did. What would you do?”
The discussion was developed as follows:

PT1: I would ask directly, why she did in this way.

PT4: | think, we should ask this [justification, why] to the students even if
the students produced correct response.

PT3: Yes, if teacher did not ask, we could not know whether student really
understood it.

Rest of the PTs: [Approved with similar comments.]

This final discussion showed that PTs realized that it was not entirely
possible to anticipate students’ mathematical thinking. Moreover, the PTs also came
to conclusion that they should not only focus on the incorrect answers while
examining students’ mathematical thinking. Focusing on incorrect answers was a
general tendency among majority of the PTs when the teaching experiment started.

In the last activity, the PTs were asked to examine two students’ work
examples of folding a rectangular paper that yielded 12 equal sized parts. All of the
PTs indicated the students’ answers were correct. Many PTs (n = 6) could explain
students’ possible mathematical thinking while employing the particular strategy
based on the evidence shown in the students” works. Rest of the PTs (n = 3) started
with some assumptions while evaluating the students’ responses. This also showed
that these PTs had difficulty with distinguishing their own mathematical thinking
from students’ mathematical thinking. For instance, PTS8 stated, “I think the student

did not know that six was a factor of 12. Since, student knew three and four were the
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factors of 12, student utilized 4.3=12 while folding.” Here, she assumed that student
did not know six times two was equal to twelve. However, there was no evidence
about this in the student’s work.

During the discussion on several occasions, the PTs started their
explanations with the assumptions that had no evidence from student’s work. In
such cases, | asked PTs how they inferred their assumptions. These kind of
questions guided PTs to look for evidence from the students’ works. For instance,
PT1’s explanation of student’s thinking based on the student’s work is shown in the

Figure below.
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Figure 51. Student’s representation of folding resulted in 12 equal parts (Retrieved from
Empson & Turner, 2006)

Since the child goes one, two, three and four and so forth. This means this
child used this numeration pattern for three parts; columns [pointed the 1/3
of the rectangle]. Thus, this means the child folded [the rectangle first] into
third vertically. Then, the child folded [the rectangle] into half horizontally.
Since, the child first numbered the upper parts first [pointed numbers 1 and
2], then the lower parts [pointed numbers 3 and 4]. Since, the child wanted to
produce 12 parts; child folded the rectangle into half again.

PT1 grounded each inference about student’s mathematical strategy to the

observable evidence from the student’s work.
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5.4 Week 5

In week, three main courses of activities were took place. The first course of
activities was related to reallocation level of ELT. The second course of activities
was related to fair sharing multiple whole level of the LT. The last course of
activities was focused on the covariation level of the LT. The order of the levels in
LT formed the logical flow the activities took place in the week5. Thus, the findings
first related to reallocation, then sharing multiple wholes and at last covariation will
be reported in this week.

5.4.1 Reallocation

In the second and third weeks of the teaching experiment, PTs were engaged
with the idea of factor-based change. In week 5, the first task was a reallocation
task. Since, PTs examined the relation between factor-based change and the size of

the share, conceptualizing the reallocation navigated rather smoothly in week 5.

54.1.1  Restructuring Mathematical Content Knowledge

PTs were presented with a reallocation departure task in which 24 cookies
were fairly shared among three people, and then one people left the group. Then, the
new share of each remaining person was asked. Majority of the PTs (n=8) used fair
sharing a collection strategy. They recompiled the cookies and divided 24 cookies
into two. Thus, they found each person’s share as 12 cookies. Only one PT utilized a
different strategy. PT6 redistributed the extra share among the number of the people
left. She fairly shared four cookies between two people and concluded each received
two more cookies. She stated that they had four cookies earlier, now they had six
cookies in total. Other PTs (n = 8) indicated that they did not think of this strategy.

To check whether other PTs conceptually understood the reallocation

concept, I posed “If you have an unknown number of marbles fairly shared among
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six children and then, two children left the group, what will be each child’s new
share?” Six PTs could produce a general solution for the task. These PTs both
represented collection and reallocation strategies mathematically. For instance, PT4
mathematically explained her reallocation strategy as follows:

PT4: x marbles among six [children], each child gotzmarbles. 6-2=4
child left, &6 =<

X 4 12

Z.

PT3: Directly saying is feasier than this.

T: What do you think about PT3’s claim?

PT1: [PTS5, PT7, and PT9 also disagreed with PT3] Yes, when we write the
reallocation strategy mathematically, it seems hard. However, in reality it is
easy to redistribute left children’s shares [extra shares]. It is so easy if you
have huge numbers to divide.

PT8: Yes, this is true. If the question includes three digit numbers initially
[number of objects in the initial collection], I think reallocation is easy. At
least, students work with small numbers.

Child [who left] gave to each child [remains]. g + 1’6—2 =

This discussion above showed that PTs could discuss on the mathematical
representations of the strategies and their effectiveness in the practical application.
They understood the connection between the symbolic representation of the strategy
and the real actions to employ this strategy.

Another issue was raised related to the effect of the task representation on
students’ mathematical strategy. PT1, PT5 and PT6 claimed that the representation
of the initial share in the problem would more likely to influence students’

mathematical strategy. As PT5 explained:

For the first task, if the representation was composed of rows and columns
[the array representation] students more likely combined all objects back
together. Then, they would split the collection again into existing number of
people.

These discussions helped PTs made sense of how different representations carried
various mathematical messages to the students. PT1, PT5, and PT6 were able to
explain how different representations might affect the way students engage with the

problem. Rest of the PTs also agreed with their peer’s explanations.
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In the instance of describing the new size of each child’s share, PT9 built a

connection between the reallocation and factor-based change ideas. She stated:

As we did earlier [in the pre-test], if more people show up to the party, in the
instance of fairly sharing a cake, the amount of cake each person got
decreases and vice versa. In reallocation, we worked with collections but
number of the sharer changes [a factor-based change occur], so the share
changes.

Built upon PT9’s comment, PT8 indicated that this was the equivalence of
multiplying the factors of the same number. She supported this thought with her
experience in the first task. Six cookies times four children was 6x4 and this should
be equal to two children times the number of cookies. Then, she wrote 6 x 4 =2 x 0.
Since two was half of four, the unknown number [number of cookies per child]
should be two times six, which was 12. However, PT8 also questioned into what
extent her mathematical inference could be applied to other cases:

PT9: In this case, two is half of four so six needs to be half of a number that
is 12. Students may think this way every time. Similarly, they believe that
every fair sharing action results in half.

T: Think about this case. For instance, 24 objects among six people and two
people left. You can make different factor based changes in here and observe
how these affect each person’s share.

PT8: OK 6 x 4 = 4 x 6. This is commutative property [of multiplication].
But the case is not half and twice times.

In the interaction above, PT9 pointed the result of factor-based change
qualitatively and PT8 addressed the effect quantitatively. These two PTs connected
the mathematical ideas within the ELT with each other respectively reallocation and
factor-based change. Also, PT8 particularly tested her general conclusion about the
effect of factor-based change and the reallocation. As a result of these discussions,
rest of the PTs (n=7) also agreed with their friends through verbally stating their
approval. PT1 and PT7’s written works also indicated the same line of mathematical
reasoning.

In the instance of evenly distributing the uneven shares, all the PTs indicated
that they would combine all the collection and divide it to the number of the people.

Then, | asked if they could think of other ways. PTs produced different
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redistribution strategies in which some coins were taken from one-person share and
dealt among the others until everyone got a fair share. Also, the PTs justified why

they selected the particular person’s share to redistribute:

PT1: There were seven people with different numbers of coins in their
shares. Then, one person left. I would get rid of the person who had the
minimum amount of coins, which was two coins. Then, | started to
redistribute [the coins] until all had the same number of coins in their shares.
PT6: After, you distributed the two coins, you would distribute from the
share which included more coins to the ones had fewer coins.

PT4: 1 would distribute the two coins to the person who had few coins [she
pointed the share who had four coins]. Then, | would mark with a line from
the place everyone has the same amount of coins, which is now five coins.
Then, | would redistribute coins above this line among the six people.

PT1: Also, they could use height comparison to justify their fair shares.

T: Ok, think about the situation in which the task did not include the pictorial
representation of each person’s share.

PT8: Students would not reallocate.

PT1: They would use division. [It is also called] collection strategy.

In this discussion, the PTs attempted to justify their solutions strategies. Four
different redistribution strategies were stated by the PTs verbally. This helped other
PTs to internalize their peer’s mathematical solution. In addition, PTs discussed the
pedagogical aspect of the task by focusing on the possible effects of pictorial
representation of the initial shares on students’ mathematical solution strategy. It
also created variation to decide how to redistribute the objects. Then, all of the PTs
acknowledged that they would think the effects of the different representations
when they would present a task to their students since multiple representations
conveyed different messages to the students. Also, PT1 and PT4 indicated the height
comparison justification strategy could be helpful in this task to understand whether
the shares became equal. Rest of the PTs also indicated with different words that the
stacking representation of the shares in the problem might lead students to use
height comparison to decide whether the shares became even at the end of the
reallocation. At the end, majority of PTs (n = 8) indicated they did not think of the
reallocation strategy initially. Thus, they learned a new mathematical strategy to

produce correct mathematical solution
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5.4.1.2  Restructuring Student Knowledge

For the reallocation tasks, PTs initially could not distinguish their own way
of thinking from students’ thinking. Because, they all thought students would use
division to find the new share size. As they progressed in LTBI teaching
experiment, with the help of guidance and social interaction within classroom, PTs
started to realize that students might solve the presented tasks with different
strategies. The PTs’ (n = 9) written works showed that they anticipated that students
would draw pictures and then evenly shared the collection. Within these PTs, seven
of them drew both reallocation and collection strategy of the students. For instance,

Figure 52 shows two PTs’ written works of student’s possible reallocation

strategies.
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Figure 52. Two reallocation strategy representations

In the Figure 52 PT1 redistributed extra share, then she redistributed from
the share that had more coins to the other shares. In the picture on the right in Figure
52, PT6 shared the extra share among the remaining number of people. She divided
extra eight coins into two. Then, she gave 4 coins to each remaining person and

found each remaining person had 12 coins. PT2 and PT3 showed only collection
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strategy in their written work as anticipation for students’ mathematical strategy.
The PTs also indicated they could use division based on the students’ grade level.
They suggested that in higher grades, students could use division and in early
grades, they could use reallocation or collection strategy. These evidences showed
that the PTs started to distinguish their mathematical thinking from younger
students’ mathematical thinking. Also, PTs ordered the students’ preferred strategies
based on grade levels.

At the end of the week, a video of 2" grade student was shown in the
classroom. Initially, 1 only showed the introduction part of the video that included
the problem stem. The problem stated that five children fairly shared 40 crayons and
each got eight crayons. One child left the group and the student was asked to find
new share of each child. Then, all PTs asked to predict the student’s solution

strategy.

PT3: Which grade is this student in?

T: 2" grade.

PT1, PT3, PT5: Ok, she can use division to solve the task, since they know
division at that grade.

PT2: But, the number may be great for the children to divide.

PT4: Yes, it may. Also, it [the question’s stem] gave the initial situation
[size] of the share [eight crayons per children].

PT8: Yes, this is very important. If this is given, | think student may not use
division.

PT1: Ok then, can we say, presence of the picture of the initial share
different than no presence of it?

PT5: Yes, it was. We discussed before.

The discussion above indicated that the PTs could analyze the factors that
might influence the way the students engage with the presented problem. As they
analyzed the problem, initially PTs thought the grade level of the student was an
indicator of the strategy being used by the student. Later, as a result of the idea
exchange among PTs, they considered the possibility of utilization of different
strategies as a result of different factors. Two influential factors were the magnitude
of the numbers utilized in the problem and the initial share size information

provided in the problem stem. Thus, PTs could reason about the factors that might
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affect students’ strategies. Then, based on these factors the PTs shaped their
anticipation of students’ mathematical strategies.

When | resumed the video, the PTs realized the problem did not include the
pictorial representation. As a result, two lines of thought were discussed in the class.
The first one was, the student could picture the initial situation or could use
manipulative if given. Then, she could reallocate the left friend’s share. The second
one was, the student could use division or collection strategy. PT5, PT7 and PT9
supported this claim. The rest of the PTs (n = 6) supported the first claim. However,
both groups indicated both strategies produced correct answer and could be utilized.
This showed that although PTs predicted this particular student’s strategy differently
by employing different line of reasoning, they also acknowledged the possibility of
utilization of both strategies. When the PTs saw that the student used manipulative
to model the initial situation, they all agreed the student would reallocate the extra
share. They predicted the student’s strategy correctly.

I also asked the PTs to pay attention to the student’s mathematical language
when she explained her solution strategy. All the PTs immediately indicated the
student used 1-1 correspondence strategy when she redistributed the extra eight
crayons. PT8 paid attention to her naming practice “She stated that | gave two
crayons per each person. She did not turn back and count what she gave. This
showed that she could keep track of what she gave to each.” These findings showed
that the PTs could understand the students’ mathematical thinking and supported
their claims with the evidence that they observed from the student’s work and

actions.

5.4.2 Fair Sharing Multiple Wholes

In the third and fourth weeks of the teaching experiment, PTs were engaged
with the concepts of transitivity and sharing single whole. The second task of this
week was related to the cases of fair sharing multiple wholes. Because, the PTs
encountered the transitivity argument and justification of fair shares argument

before, the mathematical strategies and naming practices that a person could employ
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while working on sharing multiple wholes was the main focus of the tasks in this

week.
54.2.1  Restructuring Mathematical Content Knowledge

All the PTs successfully produced correct responses along with meaningful
explanations and justifications as they engaged with sharing multiple whole tasks.
Four PTs did not pay attention to the referent whole while naming each share. This
was an important issue to address in the experiment. In the first problem, PTs were
asked to fairly share 12 pizzas among four tables. Then, they asked to find how
much of the pizza received by each table. PT5, PT6, PT8 and PT9 stated as one
fourth of the whole. Rest of the PTs approved their peers’ responses by nodding
their heads; also their written responses included the similar responses. | asked what
they meant by the whole. After this question, PT9 asked number of pizzas in the

beginning. PT6 responded asl2. Then, she stated, “Each table received i of the

whole pizza, the whole pizza is 12 pizzas.” This discussion aimed to clarify the

ambiguity in PTs’ responses. After the discussion, PTs agreed on each table
received i of the 12 pizzas.

The second problem asked PTs to fairly share 15 pizzas among four people.
PTs utilized different strategies and all strategies were discussed together. Five PTs
utilized benchmarking strategy. Among these PTs, PT3, PT5 and PT6 utilized
composite unit while fairly sharing pizzas. PT3 and PT6 gave three pizzas to each
person, and then they split the remaining three pizzas into four evenly and
distributed the parts between four people. Differently, PT5 split two of the

remaining pizzas into half and the one pizza into four evenly. Then, she distributed a

half and a quarter to each person. She concluded each person received “3 + % + % =

3 % = 3.75”. PT2 and PT4 dealt the pizzas by ones, then split the remaining pizzas
into four and evenly distributed the one fourth to each person. PT7 and PT9 used

division to find each person’s share as, 15+4= 3.75. Also, they indicated 1:5 = 3.75.
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PT9 generalized her strategy as the number of pizza was divided by the number of
people

Two strategies could be employed for sharing multiple wholes (Confrey et
al., 2009; 2010). First one is benchmarking employed by five PTs. Second one is
split all, in which PTs should split each pizza into the number of the people and
distribute the shares evenly. None of the PTs used the second strategy in this

problem. PT1 used a totally different strategy. Figure 53 showed her strategy:

a @ @ & B . y o M

Figure 53. Out of sequence fair sharing multiple wholes strategy

She explained her strategy shown in the Figure 53 as:

It could be this way: three pizzas assigned to each table [she pointed the last
row in the picture above]. The last one is remains empty [the last table did
not receive the last pizza]. Then one quarter could be taken and redistributed
to the fourth table. So, there are three pizzas and three quarter pizzas on each

table. This is 3 % .

This PT employed a redistribution strategy in sharing multiple whole tasks. This
strategy was not documented in the ELT.

The PTs could represent each share through connecting division, fractions
and decimals concepts. PT5’s answer “3 +% +% = 3% = 3.75” was one of the
explicit responses that illuminated the connection among these mathematical
concepts. After this task, a discussion took place on the connection between mixed

fractions and improper fractions:
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T: OK, we see various responses here. Think of these responses. What sorts
of mathematical ideas can we deduce from these responses?

PT6: These tasks can also help student to convert mixed fractions to
improper fractions. PT5 showed the mixed fraction in her answer, PT8 gave
the improper fraction answer. So, if we can discuss these two answers, we
could see the connection [between these fraction types].

PT3: The pictures help students to see concrete representation of the mixed
fraction.

PT5: We know 0.25 is a quarter. Thus, we have three wholes and three
quarters that means 3.75. [This is] decimal representation of mixed fraction.

The discussion above showed that PTs built their mathematical conclusions
on their peers’ mathematical strategies and responses. They reached a generalizable
conclusion: in the instance of number of people was fewer than the number of the
objects to be fairly shared, improper fraction or mixed fraction was produced. PT3,
PT5, PT8 and PT9 stated this conclusion in their written works. PT3 and PT5 stated
this conclusion verbally. PT8 and PT9 represented this conclusion in a
mathematically generalized form. PT8 symbolized the number of objects to be fairly

shared with the letter “n” and the number of people with the letter “p”. Then, she

wrote g was an improper fraction.

The last task asked the PTs to fairly share four cakes among seven people.

All PTs produced correct response. The majority of PTs (n = 7) gave the response
directly by dividing the number of cake by number of people, as % This is an

example for the division meaning of fractions. | reminded this meaning of the
fraction to the PTs. In the whole class discussion, all PTs also indicated if the
number of objects to be shared was fewer than the number of people; the resultant
share was represented by a proper fraction.

After the intervention, majority of PTs (n=7) realized the difference between
sharing single whole tasks and multiple wholes tasks that the sharing multiple
wholes tasks could produce both proper and improper fractions. PT3 stated that to
perform these [sharing multiple wholes] tasks, students should gain a certain level
of proficiency in fractions since improper fractions were involved. In addition, only
PT8 and PT9 indicated a major difference between equipartitioning single whole

and multiple wholes cases. PT8 stated:
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PT8: In the single whole our numerator is always one and this is a proper
fraction. In the multiple whole [sharing] numerator is not one and the
fraction could be proper or improper fraction.

T: What do we call the fractions in which the numerator is one and
denominator is a positive integer number?

PTs: [silence]

T: We call that unit fraction.

This interaction showed although PT8’s comment illuminated the connection
between the fair sharing a single whole tasks and unit fraction, the PTs did not know
the name of the mathematical concept they were referring to. Or, even if they knew,

they could not connect the ideas.

5.4.2.2  Restructuring Student Knowledge

In the first task, PTs were asked to fairly share 12 pizzas among four tables.
To find the number of pizza on each table, all PTs used division as their strategy and
students’ strategy. Then, I guided PTs to think more deeply on other possible
strategies:

T: Think about a student who does not know division.

All PTs: [They could use] one to one correspondence strategy.

T: Anything else?

PT9: They could deal by forming groups.

T: What you mean by saying “forming groups”?

PT9: They could deal by twos or threes.

PT1: Student might know counting by twos. So, they could give two pizzas
at a time to one table.

PT5: They could also count by three. Thus, three pizzas per table.

T: What do we call the mathematical concept behind these strategies?
PT2, PT3, PT5, PT8 and PT9: Composite unit.

Initially, all the PTs did not fully distinguish their own way of mathematical
thinking from the students’ thinking since they assumed all students would use
division as they did to solve the task. With my help and guidance, PTs started to
anticipate students’ strategies and addressed why students might employ different

strategies rather than their initial perspectives on students’ possible strategies. This
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finding showed that although PTs knew the strategies, there should be guidance for
them to retrieve that knowledge from their internal cognitive schema and use it.

In this week, one possible student misconception was captured in an actual
work of a student. In this work, the student thought for fair sharing 7 cakes among 4
people and 5 cakes between 2 people, each person received the same size cake
piece. All the PTs indicated that the student’s claim was incorrect. Many PTs (n=5)
explained why the student produced such conclusion and why the response was
incorrect. Then, they suggested possible ways to eliminate this misconception.

PT6’s response was a clear example for this. Figure 54 shows her work.
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Figure 54. Eliminating additive misconception in fair sharing multiple whole: Showing
each person share

In the figure above, PT6 first determined students’ additive misconception.
Then, she suggested utilization of concrete representation of split all strategy would
help the student to understand his/her mathematical error. However, PT6’s
suggestion for eliminating the error did not illuminate the multiplicative change
under factor based change; which addressed that the number of people was halved
so the number of cakes.
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Four PTs explained why the response was incorrect. However, they could
not determine the misconception of the student. Then, they showed the amount of
cake that each person got. They showed the unevenness of the shares through
comparing the fractions. PT3 indicated that the ratios of the cases were not
equivalent. She wrote, “Seven to four and five to two is not equal. Thus, this is not a
fair share.” PT3’s response was an initial reasoning for understanding the concept
of ratio with units attached. After, PT3’s comment, three PTs perceived the between
ratio (Noelting, 1980) which was a ratio with no unit. For instance, PT4 stated,
“Since the number of the people is halved, the number of the cake is needed to be
halved.” These detections of PTs also tied sharing multiple wholes with covariation

level of the LT that was also covered in the activities in this week.

5.4.3 Covariation

The covered contents, which were understanding multiplicative relationship
between part and the whole(s) (called as naming practices and reassembly) and
understanding qualitative and quantitative compensation laid a foundation for

understanding covariation concept in this week.

5.4.3.1  Restructuring Mathematical Content Knowledge

In this week, PTs were asked to find the total number of cookies to feed 12
babies if 2 babies could eat 5 cookies. All the PTs could produce correct answer as
30 cookies. Yet, they all set a direct proportion to solve the task. On the other hand,
they also indicated other mathematical solution strategies could be employed and
these strategies were the strategies a student would more likely employ. Each PT

employed variety of strategies is shown in Table 21.
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Table 21
Distribution of each PT’s Mathematical Strategies on Covariation Task: Teaching Sessions

PTs  Proportion Un?t Scale  Scaling Equivglent Equivalence (ﬁ?ﬁéz

Ratio Factor Up Fractions Class :
strategies)

PT1 X X

PT2 X X X

PT3 X X

PT4 X X X X

PT5 X X X

PT6 X X

PT7 X X

PT8 X X X X

PT9 X X X

In the unit ratio strategy, PTs found the number of cookies required to feed
one baby. Then, PTs utilized this unit to find the number of total cookies to feed 12
babies.

PT5 wrote that for one baby 2.5 [cookies] were needed and for 12 babies.
Then, she multiplies 2.5 and 12 and found 30 [cookies] were needed. Five out of
six PTs who utilized this unit ratio strategy also employed a quantitative reasoning
in which they directly utilized mathematical symbols and operations in their
solutions. Only PT2 utilized informal reasoning in which she drew picture to find
each baby’s share. Then, she found the total number of cookies required to feed 12
babies with both utilizing multiplication and addition. This also showed that the PT2
utilized scaling up strategy through preserving each baby’s share while employing

repeated addition. Figure 55 shows her both strategies.
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Figure 55. Scaling up and repeated addition strategies of PT2

Four out of six PTs who utilized unit ratio strategy also showed scaling up strategy.
Different from PT2’s strategy, rest of the PTs utilized scaling up strategy without
finding each baby’s share. Figure 56 shows PT4’s work is an example for this kind

of scaling up strategy.

Figure 56. Scaling up strategy: Preserving 2 babies share
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PT4 explained her strategy as “Two babies received five cookies, |
repeatedly grouped this two [babies] and five [cookies] until | reached 12 babies,
then | counted by fives: 5, 10, 15, 20, 25, 30.” The PTs who did not employ both
strategies, agreed with their peers and some of them also explained their strategies.
For instance, PT1 found each baby’s share as two whole and one half cookies. After
that, she added two cookies 12 times and found 24 whole cookies. Then, she added
half cookie 12 times and said 12 half cookies made six whole cookies. Thus, she
stated that she had 24 + 6= 30 [cookies]. This finding showed that PTs learned new
strategies to solve the problem through examining and understanding their peer’s
strategies and representations.

Only PT4 and PT8 used two strategies different than the rest of the strategies
utilized by other PTs (n = 7). These strategies were respectively scaling factor and
equivalence class. PT8 recognized the ratio without a unit. The number of babies
scaled by the factor of six, so the number of babies should also be scaled by the
factor of six. As a result, the proportion between two ratios was set. PT8 explained
her strategy as “Through 2x6=12 [a person] found the number of babies, and again
6x5= 30.” After her explanation, PT3, PT5, PT6, PT7 and PT9 acknowledged that
the multiplicative relation between quantities remained same. This finding showed
that although the PTs’ made sense of the mathematical strategy that the PT8 utilized
in the classroom, they did not directly think of that strategy when they first worked
on the task alone.

A follow up discussion on the scale factor strategy took place among six
PTs:

PT8: The [multiplicative] relation between the quantities is six times. A
student might think this as five times more so [the student] can give 25
cookies.

PT9: Additive misconception.

PT3: Also, they can fail to distinguish whether there is a direct relation or
inverse relation existed when they set the proportion.

T: How would you address these misconceptions?

PT8: We could discuss whether the amount increases together or not.

PT5: As the number of babies increases, the number of cookies should
increase.

PT7: We should understand the relation between the quantities.

T: What are those quantities?
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PT5: Number of babies.

PT4: Number of cookies.

T: [I constructed a ratio table]. What sorts of relationships can a child
capture in this table?

PT7: Both additive and multiplicative.

PT8: Multiplicative.

The discussion above indicated that PT8 and PT9 anticipated possible student
misconception. Then, many PTs (n = 6) discussed how they could eliminate the
misconception. Also, they realized the key issue for eliminating the misconception
was to capture the relation between two quantities. This was an important
understanding to develop a complete ratio and proportional reasoning when PTs
worked with students. They anticipated student misconception and they sized up the
misconception by first dealing with the possible underlying reasons such as failing
to perceive multiplicative relation or direct relation. Then, they produced ways to
remediate them such as discussing the effects of change in one quantity on the other
one.

Only PT4 utilized equivalence class strategy (Cikla & Duatepe, 2002) that
rest of the PTs did not think of. After PT4’s work, rest of the PTs stated that they
had never thought of this way before. In her written work, PT4 found 5 cookies to 2

babies and the equivalence classes of the fraction g and wrote: “10 cookies to 4

babies, 15 cookies to 6 babies, then continued like these and found 30 cookies to 12
babies.”

PT5 brought the issue of difference between reallocation, factor based
change and covariation. PT5 stated in reallocation and factor based change that the
whole to be fairly shared remained the same even if the number of people changed.
However, in covariation both quantities changed. This comment started a discussion

on the formal definition of covariation:

T: So, what is the definition of covariation?

PTs: [thinking]

T: Think about what we did in this week’s covariation task.

PTs: [thinking]

T: OK, let’s throw some key words that you think that are related to
covariation concept.

PT4: Two quantities.
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PT6: Unit ratio.

PT5: One person’s share.

PT9: Proportion.

PT8: Multiplicative relation.

T: Cool, now try to come up with a definition that includes the essence of the
thought PT5 suggested [difference between covariation and reallocation].
What is the thing that you preserve?

PT9: The size of the one-person’s share.

PT1: Rate

After, determination of the key words and understanding the share size
preserved in the covariation, the PTs worked in two groups. In the first group, PT2,
PT4, PT6 and PT9 worked together and came up with the definition as “The same
change occurs on two related quantities in which a person’s share remains same.”

Then the interaction continued:

T: Nice. What are those quantities?

PTS: The number of objects and the number of people.
PT9: Can we say the ratios are same?

T: What you mean by saying “the same”?

PT6: Not the same, they are equivalent.

PT9: Yes, | mean that but [I chose] wrong word for it.

The discussion above showed that PT9 initially did not differentiate the
same ratios and equivalent ratios concepts. As a result of my probe, PT6 helped PT9
to see the error in her mathematical language. Then, PT9 remediated the error and

shifted her language from an incorrect term to the correct one. Then | concluded:

T: OK, PT6 and PT9 suggested the equivalence of ratios. So, can anyone tell
me, what are those ratios?

PT5: Number of cookies to babies.

Rest of the PTs: Yes.

T: Who can show the equivalence of the ratios?

PT8: 5/2=30/12, they are also equivalent fractions.

After the discussions mentioned above, | asked other group to come up with
a new definition. They defined covariation in fair sharing context as “Same change
occurs in the number of people and objects that results in preserving ratios: objects

to person.”
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T: This is a nice definition. We could say when a factor-based change occurs
in the number of the sharer, the same factor based change occurs in the
number of objects, in which the size of each person’s share is preserved or
the equivalence of ratios is preserved.

Although they could solve the covariation tasks and intuitively understand
the covariation concept, they could not produce a formal definition initially. In the
discussion, PTs utilized their own experience to form a formal definition of
covariation concept in the context of equipartitioning. Thus, at the end of the
interaction, all of the PTs learned the formal definition of covariation.

In this week, none of the PTs exhibited any misconception or mathematical
error. They anticipated possible student misconceptions and discussed the possible

underlying reasons behind these misconceptions. The interaction occurred as:

T: Can you anticipate any misconception of students?

PT5: Here, it is increased by 10 [2 babies to 12 babies] so this could also be
increased by ten [5 cookies to 15 cookies].

T: So, what would be a student response for this case?

PT8: Fifteen cookies.

PT6: Fifteen.

T: OK, how could you remediate this misconception?

PTS8: I would ask to the students to find each baby’s share. This means, I
would turn to equipartitioning again.

PT3 and PT4: |1 would ask, too.

PT5: [Build upon PT8’s response] Child could show that each baby gets 2.5
cookies, and then when [this child] split 15 cookies into 2.5 cookies, the
child could see there are six babies not 12 babies.

PT8: Or, child could distribute one cookie per baby, then [the child] could
split the remaining 3 cookies into small pieces and distribute those pieces.
As a result, the child could see 15 cookies are not enough to feed each baby
so that a baby receives 2.5 cookies.

PT9: Or child could add 2.5 cookies until reach 15 cookies and track how
many times the child used 2.5 cookies.

In the discussion, PT5 anticipated the possible additive misconception. In
this misconception, students added a certain number to one quantity and added the
same number to the other quantity to find the unknown quantity. In this task, since
the number of babies changed from 2 to 12, the student added 10 cookies to 5
cookies and found 15 cookies. PT6 and PT8 also agreed with PT5’s anticipation and
they directly stated the response of student who had this kind of additive
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misconception. The rest of the PTs also indicated with their gestures that they
agreed with PT5. PT1, PT4 and PT9 had written this misconception into their notes
before this discussion.

PT5, PT8 and PT9 suggested some ways to fix this misconception when |
asked for it. They both utilized their knowledge of ELT. PT5 utilized the reassembly
reasoning. She found the answer of how many 2.5 cookies existed in 15 cookies.
PT8 suggested two ways for remediating the misconception. The first one was
finding each person share and check whether each baby received 2.5 cookies if 15
cookies were available. This strategy could be used in fair sharing multiple whole
tasks. She elaborated the second one on PT5’s suggestion. Because, PT5 did not
specify the way to find answer whether 15 cookies could actually feed six babies.
PT8 used benchmarking strategy to show this. PT9 employed a measurement
perspective. She iterated 2.5 cookies as a unit, then she found 2.5 cookies should be
utilized 6 times to reach 15 cookies. As a result of this, a child could see 15 cookies
only enough to feed 6 babies not 12 babies.

These findings showed that PT5, PT8 and PT9 utilized their existing ELT
knowledge to size up and remediate the misconception. The other PTs (n = 6)
understood how these were. Also, PT1, PT2, PT3, PT4 and PT7 stated that they did
not think like the way the PT9 suggested to remediate the misconception.

As a closure, | drew a ratio table on the board. The PTs examined this table
representation and tried to find out what kind information this table conveyed. Also,
they discussed the possible benefits of using this representation. PT4 indicated the
table could help students to see the connections between the numbers given in the
problem. PT9 also agreed with PT4 and added the table helps us to organize the
given data in the task. PT5 indicated students could see horizontal relation (within-
state ratio) and PT2 indicated students could see also vertical relation (between

ratio). After PT2 and PT5’s comment, PT1 asked a question:

PT1: Teacher, the difference between these quantities is the unit, right?

T: Can you please construct the ratios? What do you observe about the unit?
PT1: In the first one, babies to babies, there is no unit. In the second one,
babies to cookies, there is a unit.

227



PT1’s written work also named the ratios addressed by PT2 and PT5. Figure 57

shows the PT1’s written work:

Figure 57. Recognition of ratio types

She wrote the ratio between the number of babies [12:2] and the ratio between the
number of cookies and babies [5b:2c, b=babies and c=cookies]. Then, she indicated
that the ratio between number babies was a ratio without a unit. The ratio between
the number of cookies and babies was a ratio with unit. This horizontal relation was
called within-state ratio (Noelting, 1980), a:b, in which a represented the number of
the cookies and b represented the number of babies. After this interaction between
PT1 and me, the rest of the PTs indicated that they did not know these ratio types.
For instance, PT6 stated that she did not know the ratio concept completely.

The initial examination of the table representation helped PTs to understand
the embedded relations within the table. This was an evidence of internalizing
multiple representations for the ideas in the. Also, this examination illuminated the
knowledge gap in PTs’ ratio understanding. They learned new concepts such as
ratio with/without units.

At the end of the week, | asked to PTs which mathematics topics covariation
task laid a foundation. PT5 indicated changes in the number of cookies and the
number of babies was same. PT7 stated that two ratios were equivalent. When we
set a proportion, we utilized the equivalence between these two ratios. Also, PT7
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wrote that the equivalence of the ratios formed a proportion. She wrote: “ Pl and

proportion, two ratios is equivalent.”

After PT7’s comment, many of PTs (n=5) admitted that they did not know
the meaning of the proportion as equivalence of two ratios. PT1, PT2, PT3, PT4 and
PT5 admitted that in the direct proportion, they only performed cross multiplication
and knew if one quantity increased, the other quantity also increased. This was an
evidence of lack of conceptual understanding of mathematics. Then, they realized
the conceptual relationship between ratio and proportion. They closed a gap and
thought about the proportion in a different way. At the end of the teaching session,
all PTs reached a shared conclusion that covariation set a base for ratio and

proportion.
5.4.3.2  Restructuring Student Knowledge

In this week, all PTs could distinguish their own mathematical thinking from
younger students’ thinking. Although PTs set up a direct proportion to solve the
problem, they stated that the elementary school students would solve the task
differently. Then, they anticipated several mathematical strategies that a student
might use to solve the task. These strategies were represented in Table 21 above.
Also, majority of PTs (n = 7) utilized drawings that modeled the task when they
anticipated students’ possible strategies. In addition, among those strategies the PTs
found the incorrect strategy. This incorrect strategy inherited an additive
misconception. The students could perceive the change in one quantity additively
(change in number of babies, 12-2=10) and they could add this change to the other
quantity (the number of babies, 5+10=15). Another additive misconception was
anticipated as, the student might perceive the factor-based change additively. Factor
based change was six times (2x6=12 babies), yet the student might think the change
as five times, neglecting the initial relation of 5 cookies to 2 babies. Then, they
could reflect this change on the other quantity as 5x5= 25 cookies.

The PTs also concluded the least complex strategy was scaling up since, in

this strategy students used additive reasoning instead of perceiving multiplicative
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relationship between quantities. Many PTs (n = 6) thought that it was hard for
students to perceive multiplicative relationship since they worked on addition in
early grades in school. Then, a discussion took place on the factors that could help
the students to see the multiplicative relation easily:

T: 5:2 is not an easy relation to capture in the task. What kind of relations
may be easy for students?

PT5: Half.

PT4: Quarters.

Two PTs: 2 times.

These PTs’ (n = 4) responses indicated that PTs ordered the tasks according
to difficulty levels. They concluded in fair sharing tasks that students first learned
the concepts of half, two times and quarters. Also, students could learn repeated
halving or doubling. Thus, these students could recognize these relations easily.
This showed that PTs could order the task difficulty by taking into consideration the
students’ readiness level including their prior experiences and current mathematical
knowledge.

The last activity of this week was watching a 2" grade student’s video. In
this video, PTs tried to capture the student’s mathematical strategies, difficulties and
errors. Also, they tried to illuminate the connections between the student’s actions
and mathematical knowledge of equipartitioning they have been learned so far.

| informed the PTs that the student knew division and fair sharing. The first
task was fairly sharing 24 candies among six children. PTs recognized that the
student utilized 1-1 correspondence to deal the candies among six children. The
children formed groups of four candies in an array format. The teacher in the video
asked to the student, “How did you decide to stop giving the candies?” Then, the
student counted the candies by ones up to 24.

T: Why do you think that she asked this question?

PT5: She checked whether the student exhausted the whole candies.

PT1: Yes, one criteria of equipartitioning.

PT7: She counted by ones to check whether she consumed all 24 candies.
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The interaction above shows that the PTs could capture students’
mathematics and situate their anticipation of the student’s mathematical thinking
and reasoning on the evidence gathered from her actions and language. In addition,
PTs utilized their mathematical knowledge of equipartitioning to make sense of the
student’s mathematics.

The student circled six candies in the array format and the teacher asked the
reason for that particular action. The student stated “Since 24 divided by four is six,
so I circled six candies per child.” Then PTI1 said that “Now, the student used
division to find each person share, not 1-1 correspondence? She only drew the
array structure [3x8] by drawing one candy at a time.”

A discussion took place on how this explanation of the student informed us.
Majority of PTs (n = 7) indicated that to understand student’s mathematical thinking
and solution, we should evaluate the whole process. For instance, PT3 stated, “Here,
if the teacher thought that the student gave correct answer and moved to the next
mathematics problem, we would not be able to see that student utilized division to
find each person share.” PT5 added, “Yes, it is important to ask students how and
why you did it even though child gave a correct response.” These PTs’ comments
showed that they have developed the idea that to understand a student mathematical
understanding was not focusing on the correct answer and accepting it an evidence
for conceptual understanding. This finding showed that the PTs restructured their
knowledge about how they anticipated students’ mathematical thinking, strategies
and how they made sense of student’s mathematical knowledge.

| checked whether the PTs captured the naming practices of the student:

T: How did the child name each share?
PT6: Six candies per child.

PT2: Six candies.

T: What did we call these naming practices?
PT9: The first one is ratio.

PT1: The second one is counting.

The comments of the PTs above showed that they learned the different
naming practices embedded in the ELT and utilized this mathematical knowledge of

equipartitioning to recognize the student’s mathematical naming practices.
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The teacher in the video asked students if there was any relation between the
numbers 24 and 4. The student could not answer the question. Then, the teacher
presented another problem. The problem asked for fairly sharing six candies among
three children. A discussion on this teacher input took place as follows:

T: Why did the teacher change the problem?

PT3: Teacher, 24 is really greater than four.

PT2: Yes, six and three is easy since six is two times larger than three.

PT1: Teacher, we had learned that the young students could understand the
relations such as half, double easily. The teacher may think this. The student
could not see the six times relation between 24 and 4.

PT5: [The teacher]| wanted to start from the student’s [readiness] level.

This discussion showed that the PTs could utilize their knowledge of
students and equipartitioning to understand the logic behind the teacher’s input.
Also, they recognized the importance of counting students’ prior knowledge level
while presenting the mathematical tasks in an order.

After the discussion, | resumed the video. The student shared the six candies
among three children and indicated each child got two candies. The teacher asked
for justification. The student stated, “Two plus two plus two is six” and the

following discussion took place among PTs:

PT7: The student used composite unit.

PT3: The student verified her answer with addition.

T: Which idea of equipartitioning this verification is related with?

PT6: Reassembly.

T. OK, do you think this student exhibits a complete understanding of
reassembly?

PT8: The student did not establish the multiplicative relation.

PT5: Yes, two times three is equal to six.

The discussion above suggested that the PTs could identify level of mathematical
thinking complexity of the student based on the evidence gathered from the
student’s response. Because, they learned the student’s progressions along the LT in

the teaching experiment.
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5.5 Summary of Teaching Sessions’ Findings: Restructuring Practices for

Knowledge Types

The findings revealed that the PTs exhibited seven knowledge restructuring
practices for Mathematical Content Knowledge and four for Student Knowledge.
The findings above also indicated the PTs enhanced their MCK and SK as they
progressed in the LTBI teaching experiment as a result of social interactions among
peers and the researcher, the LT-based tasks supported this progress.

The findings showed that the PTs exhibited two practices to restructure their
HCK. The first practice is called “connecting” (Adapted from Wilson et al., 2013).
In this practice, PTs were engaged in two activities. First, PTs built connections
across the mathematical ideas embedded in the ELT. Also, they discussed the
interdependence among the various ideas of the equipartitioning concept. Second,
PTs associated the equipartitioning ideas with the further mathematical topics
including ratio, rate, proportion, multiplication, division, fractions and area. The
second practice is called “generalizing” in which the PTs expressed the
mathematical ideas in generalizable forms and extended the mathematical concepts
and ideas.

The PTs exhibited two restructuring practices of SCK. The first one is called
“internalizing”. In this practice as PTs progressed in the experiment, they made
sense of a variety mathematical explanations, strategies and representations for the
ideas in the trajectory (Wilson et al., 2013). The PTs discussed various strategies for
solving a mathematical task and explaining and revealing the mathematics behind
the task. Also, they demonstrated the mathematical concepts and strategies in
different ways including drawings, and material usage. This practice provided PTs
with more opportunities to understand the mathematics behind each equipartitioning
tasks and concepts. In this internalization process, PTs also learned to utilize
accurate mathematical language to communicate their mathematical thinking. The
second SCK practice is called “sizing up” that refers to examining the underlying
reasons behind the mathematical errors, difficulties and misconceptions. The PTs
examined either their own or students’ errors, difficulties and misconceptions. Prior

to experiment and in the early phase of the experiment, the PTs exhibited a tendency
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to focus merely on correct response and ignore the incorrect ones. However, as they
progressed, they developed an understanding and knowledge for examining both
types of responses. As a result, they exhibited a deeper conceptual understanding
about the mathematical aspects of the errors, difficulties and misconceptions.

The PTs exhibited three restructuring practices for CCK. The first practice is
called “remediating and shifting”. In the experiment, the PTs showed that they
possessed various mathematical errors, difficulties and misconceptions, with the
help of the LT, the PTs remediated these existing errors and misconceptions and
overcame their mathematical difficulties. At the end, they changed their way of
mathematical understanding and perception of the task being engaged. The second
practice is called “expanding”. The findings revealed that prior to experiment and at
the initial phase of the teaching sessions, PTs had knowledge gaps in their skills for
solving a mathematical task correctly. After the LTBI, PTs learned new
mathematical strategies, concepts, ideas and representations to solve the problem.
At the end, PTs seemed to acquire necessary skills to solve a mathematical task
along with a conceptual understanding of the mathematics that was being employed
in the solution. The third emergent practice is called “challenging”. These actions of
PTs were coded as emergent practice since challenging actions were recorded in
limited numbers in the experiment. One of the possible reasons of this rare
observation of the action could be that the PTs challenged the presented information
within the ELT in this emergent practice and developed a reasonable mathematical
counter argument. This is a hard task for a PT to exhibit frequently. This emergent
practice appeared in two forms. First, the PTs directly challenged the information
provided by the researcher-teacher. Second, the PTs challenged their peers’
mathematical claims including solutions, strategies, explanations and
representations.

The first restructuring practice for SK is called “distinguishing and
recognizing” (Adapted from Mojica, 2010). In many instances at the beginning of
the teaching sessions, the PTs solved the given task in their own way and
occasionally these strategies were the ones that young elementary school students
could employ. Realizing this difference between their own mathematical thinking

and students’ mathematical thinking was recorded as distinguishing (Adapted from
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Mojica, 2010). In the LTBI, the PTs actively analyzed the students’ work, then they
could recognize the students’ mathematical thinking and they justified this
recognition from the evidence gathered from students’ work and behavior. The
second practice is called “anticipating” (Adapted from Stein & Smith, 2011). In this
practice, the PTs anticipated student’s possible strategies and misconceptions and
explained the possible underlying reasons behind them. Prior to experiment, the PTs
exhibited a limited proficiency in anticipating students’ mathematics in advance. As
they engaged in the LTBI and exchanged their anticipation with their friends, they
developed an understanding of students’ mathematical thinking and strategies that
included both the correct and incorrect ones. The third practice is called “ordering”
(Adapted from Stein & Smith, 2011) in which the PTs ordered the students’
mathematical strategies from the least complex to the most with the help of their
CCK, SCK and the LT. Also, the PTs identified the possible factors that affected the
equipartitioning task complexity. The curricular knowledge of the PTs was also an
effective factor in displaying ordering practice since the PTs ordered the task
complexity and the strategy complexity through counting the students’ readiness
level, in other words, their grades in elementary school. The fourth practice is called
“empathizing”. In the instance of PTs showed a misconception, mathematical error
or had a mathematical difficulty while engaging with the task, they indicated that
the elementary school mathematics was not so easy, as they assumed prior to
experiment. They restated their understanding of how a student could acquire a
mathematical misconception, difficulty and error that seemed very easy to them.
They acknowledged that as teacher candidates, they could also possess the same
misconception, error or difficulty as students did.
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CHAPTER VI

CONCLUSION AND DISCUSSION

Schoenfeld (2011) simplified the differences between a theory and a
framework by stating that, “A framework tells you what to look at and what its
impact might be. A theory tells you how things fit together. It says how and why
things work the way they do, and it allows for explanations and even predictions of
behavior” (p.4). A theory aims to give a clear picture of the phenemona in a
particular domain and it aims to provide explanations for the predicted events (Liehr
& Smith, 1999). A theory consists of interelated structures and concepts that can be
used to systematically explain the phenomena under examination (Chinn & Kramer,
1999; Liehr & Smith, 1999). On the other side, a framework demonstrated the
impact of a theory on practice (Liehr & Smith, 1999) and tested the theory in
emprical settings. According to Liehr and Smith (1999) a framework could be used
to explain the consistencies or discrepancies in the predicted events through
utilizing the findings of the research. Practices are the ways of testing a theory and
they are deduced from conducting research (Liehr & Smith, 1999).

Learning Trajectories Based Instruction (LTBI), an emergent teaching
theory, combines both the theoretical perspectives deduced from the existing
research on particular mathematics content and the empirical evidence related to
how students learn mathematics. The present study utilized LTBI and investigated
how it could be practically implemented within pre-service teachers’ (PTs) training.
The findings of the study revealed the knowledge restructuring practices of the PTs
through an examination of their initial knowledge levels and their progression and
actions in the teaching experiment. The progressions were addressed through
common categories in which PTs exhibited evidence for revisions, refinements, and
changes in mathematical content knowledge (MCK) and student knowledge (SK).
Thus, documenting the practical utilization and impact of a theory in a particular
context, I propose a framework for PTs’ knowledge restructuring practices when
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they engage in LTBI. Analysis on both pilot and actual experiment data illustrated
the similarities and differences between the ways the PTs participated in LTBI and
exhibited evidence for restructuring MCK types and SK. As a result, this study
examined the importance and practical implications of the LTBI theory of teaching

in teacher education.

6.1 Restructuring Practices for Mathematical Content Knowledge: Emergent

Framework

Several researchers (Ball, 1990; Fernandez, Llimares, & Valls, 2013;
Philipp, 2008; Wilson et al., 2013) suggest that developing MCK is an important
index for enhancing teaching practices. However, documentation detailing how PTs
develop their MCK is needed in the field of mathematics education (Ball et al.,
2008; Butterfield et al., 2013; Sherin, Jacobs, & Philipp; 2011). The results from
this study documented the MCK restructuring practices of PTs. The PTs were
capable of restructuring their CCK, SCK, and HCK, which are integral parts of
MCK. This restructuring also resulted in enhancement in PTs’ MCK when
compared to the level of knowledge prior to this experiment.

At the end of the study, the PTs were capable of producing multiple
solutions, representations and strategies for the presented tasks along with a
conceptual understanding of the content employed in the tasks. In addition to these
capabilities, the PTs reached a mathematical knowledge level at which they were
capable of either arguing against the presented information in the LT or generating
mathematical strategies not addressed in the LT.

Moreover, the PTs captured their own mathematical misconceptions and
errors and corrected them. They were capable of determining underlying reasons
behind the misconceptions, errors, and difficulties. They built connections across
the levels of the LT and beyond the LT with further mathematical topics along with

sensible mathematical explanations that illuminated these connections.
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6.1.1 Restructuring Practices for Common Content Knowledge

6.1.1.1  Remediating and Shifting

Parallel with findings of earlier studies (Ball, 1990; Baki, 2013; Philipp,
2008; Spitzer et al., 2011; Zembat, 2007), prior to the experiment in this study, more
than half of the PTs exhibited serious mathematical misconceptions, errors, and
difficulties in the pretest. However, as they engaged with the LT-based tasks and
interacted with their peers and the researcher-teacher, they gained proficiency and
remediated their existing misconceptions and errors. Then, they shifted their prior
mathematical orientations.

The pretest results also indicated that although majority of the PTs generally
produced a single correct response for the presented items, some of the PTs
produced incorrect responses for some equipartitioning items. PTs encountered
different mathematical strategies utilized by their peers and they became capable of
producing multiple solutions and performed these solutions correctly.

During the experiment, some PTs showed the same mathematical errors and
misconceptions that elementary school students showed. The medium of the
experiment let them think aloud their mathematical thought processes and exchange
and discuss their mathematical thoughts with their peers. The discussion and the
understanding of their peers’ strategies helped those PTs procedurally solve the
given problems correctly. Although this was an indication for remediating their
initial incomplete CCK, the PTs who solved the given tasks correctly still lacked the
sufficient SCK to differentiate the responses indicating procedural knowledge and
those indicating conceptual understanding (Morris, 2006). They usually could not
produce a complete mathematical explanation for why their procedure worked on
the given problem in the early stages of the experiment and in the pretest which
raised the need for restructuring their SCK. The conclusions about the SCK

restructuring practices will be addressed in the following section.
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6.1.1.2  Expanding

The results of this study have shown that prior to the experiment in the
pretest, the majority of the PTs performed a single procedural solution to generate
the correct answer. As they engaged with LT- based tasks and interacted with one
another, they realized there were more to equipartitioning related ideas. They
encountered new mathematical strategies, concepts, and representations in
reviewing their peers’ solutions and in some instances | brought some cases.

During the experiment and in the pretest, majority of the PTs exhibited a
certain degree of understanding about a mathematical concept and idea. They
focused on some aspects of the concept and the idea without considering the other
aspects. In such instances, | selected several PTs’ works focused on one aspect of
the concept and used them to initiate a discussion. The social exchange in the class
during the discussions supported the PTs in learning multiple aspects of the
concepts. As Bransford, Derry, Berliner, and Hammerness (2005) suggested, the
initial knowledge levels of people can influence understanding the others knowledge
levels. Exchanging those strategies in the classroom discussion helped the PTs learn
different justification strategies for fair shares; hence, they expanded their CCK.
Wilson et al. (2013) stated that teachers with different mathematical content
knowledge influenced the way they engaged and learned mathematics. They stated
that the different knowledge levels played a mediator role in learning. Similarly, in
this study, the ways the PTs participated in the discussions and the solutions and
representations they produced for their mathematical arguments were affected by
their initial CCK. Because of these existing differences, the PTs shaped each other’s
CCK restructuring practice and mathematical learning.

In this study, expanding CCK of the PTs supported them in identifying
various students’ mathematical thinking and strategies in advance. Also, they used
their CCK to deeply examine the mathematical thought processes of their peers and
their students in their teaching practices. In this study, building a comprehensive and
correct CCK played an important role in restructuring PTs’ student knowledge.
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6.1.1.3  Challenging

Parallel with the Empson’s (2011) argument about the pitfall of LTs, the
results of the study showed that the PTs’ mathematical actions in the LTBI were not
fully coherent with the suggested mathematical ideas and progression in the LT. In
addition, as Clements and Sarama (2013) suggested, there is no one single trajectory
for every learner. Such a trajectory may be subject to change based on the learner’s
knowledge level, experience, and the learning setting. The results of this study
addressed these concerns through practical usage of the LT in a learning and
teaching setting and opening such instances for discussion.

In this study, challenging was recorded as emergent practice of the PTs since
the instances for challenging were observed occasionally in the teaching experiment
and in the tests. Challenging was observed in two forms. In the first form, the PTs
produced mathematical strategies for solving equipartitioning LT-based tasks,
which were “out of sequence” (Empson, 2011, p.380). These strategies were
referred as “out of sequence” since the LT did not include descriptions of these
strategies. In the second form, a few PTs challenged the suggested ideas and
progression in the LT and produced alternative reasonable mathematical
explanations for the progression. In both instances, the PTs supported their claims
with reasonable mathematical arguments and provided counter examples. This
practice of the PTs indicated that they reached a level at which they started to
develop sound mathematical arguments against the presented knowledge through
utilizing their mathematical content knowledge and experiences in the LTBI.
Therefore, as PTs progressed in the LTBI, they were able to produce new lines of
mathematical reasoning and understanding that were more independent from my
guidance and the sequence suggested by the LT.

In the experiment, these instances were utilized as a tool for creating rich
learning opportunities and fruitful discussion opportunities for the PTs (Phillipp,
2008). Thus, an important conclusion of this study is that “out of sequence”
instances helped the rest of the PTs to learn more about the equipartitioning related
ideas in addition to the existing ideas in the LT. Moreover, the challenging practice

of some PTs also influenced the expanding practices of the rest of the PTs. Based on
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this, one could conclude that a particular PT’s challenging restructuring practice
could trigger another knowledge restructuring practice for another PT. Therefore,
these knowledge restructuring practices were interconnected and an enhancement in

one of them had the potential to influence other practices.

6.1.2 Restructuring Practices for Specialized Content Knowledge

6.1.2.1 Internalizing

The present study has shown that, although the PTs utilized a mathematical
concept and idea while engaging in the LT-based equipartitioning tasks, they did not
fully internalize the meaning of that concept or idea. However, the socially
constructed learning environment in the LTBI teaching experiment helped PTs to
gain insight regarding the meaning of these concepts and ideas. This elaboration led
PTs to learn multiple aspects of the mathematical ideas and concepts, including both
working and formal definitions. For instance, although the PTs could perform
equipartitioning, they could not define what equipartitioning was. As they worked
on different equipartitioning tasks and reflected on their mathematical actions in
each task, they began to internalize three criteria of equipartitioning and then they
were able to clearly define the concept.

The classroom interaction experiences and guidelines for searching multiple
solutions were found to be essential elements to understand the mathematics behind
the multiple representations, including table, verbal, pictorial and mathematical
representations. The PTs realized that different representations conveyed various
mathematical meanings, for example they presented the same quantity with two
different representations when they fairly shared a single whole. The analysis of the
different representations led PTs to discuss different mathematical topics such as the
equivalent fractions. The PTs also connected these various representations and went
beyond the verbal descriptions of their mathematical solutions. Similar to Simon
and Tzur’s (2004) findings, the PTs in this study also could integrate their reasons
for utilizing a particular representation to show their SCK. To achieve this, the PTs
did not provide the initial explanations of their solutions that included only a verbal
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explanation of the algorithm being employed in the pre-test and in initial phases of
the experiment. At the end of the LTBI, they could describe the mathematical
concepts and solutions by connecting mathematical symbols and the representations
being used. In addition, they could utilize mathematically more precise and correct
language.

As a result, as PTs’ SCK was restructured and broadened, they started to
realize and create links between different ways of thinking, representations, and
strategies produced by their peers and themselves. Internalizing the mathematical
meanings behind these strategies, explanations, and representations guided the PTs

to enrich their SCK of equipartitioning.

6.1.2.2  Sizing Up

One of the important implications of this study was that PTs might not be
sufficiently challenged in the teacher education program to examine mathematical
solutions deeply. The results of this study support Bartell et al.’s (2012) findings in
that the PTs assumed that solving a given mathematical problem procedurally was
an indication of an internalized understanding of the mathematics involved in the
problem. In addition, when a task was solved incorrectly, they assumed there was
nothing to discuss. As Crespo (2000) suggested, the PTs directly assumed the
student did not know the required mathematics if they produced an incorrect
answer.

Prior to the LTBI, the PTs did not have a clear understanding of sizing up
the underlying reasons behind students’ mathematical errors, misconceptions, and
difficulties. The majority of them indicated that the students did not know the
mathematics required to solve the problem or they did not generate a sensible
explanation that illuminated the factors that led to the incorrect student response.
My encouragement for the PTs to discuss and explore each step of the solution and
then to compare them with the correct solutions helped them begin to extract the

underlying reasons behind the incorrect responses. As PTs engaged with more

242



incorrect solutions, the PTs’ reasoning to solve the mathematical meanings behind
the responses became more detailed and more explanatory rather than judgmental.

The results of the study showed that in addition to gaining the knowledge of
sizing up the reasons behind incorrect solutions, the PTs also possessed the
knowledge of examining the conceptual knowledge behind the mathematically
correct solutions. In parallel with the findings of several studies (Bartell et al., 2012;
Phillipp, 2008), the PTs did not think about examining the correct responses. They
assumed that producing correct response was enough evidence for a comprehensive
mathematical knowledge of the topic. This was the case for the PTs in the early
phase of the LTBI teaching experiment. Nonetheless, as PTs developed the habit of
asking questions about the completeness and meanings of the calculations and the
strategies and representations in the teaching experiment, they were capable of
eliciting the mathematical thinking processes and interconnectedness of the
mathematical ideas even in the correct responses. One PT explained this situation
as; they should search for an answer even when they see a correct response. This
showed that the PTs restructured their SCK by acquiring the skills for sizing up the
reasons behind each mathematical misconception, error, and difficulty that they
faced in the students’ responses. In this sizing up process, the PTs utilized their
CCK of the equipartitioning and related mathematics.

During the experiment and in the pretest, some of the PTs also exhibited
serious mathematical misconceptions, errors, and difficulties. In such instances, the
PTs who did not exhibit the same misconception or error argued against their
friends. In these arguments, the PTs utilized their CCK and HCK to show that their
claims were correct. They also utilized counter examples to show that their claims
were valid. Forming such arguments and exchanging the mathematical ideas within
the classroom helped the PTs to restructure their SCK; as a result, they could size up
their peers' incorrect responses. In addition, the implication of sizing up practice
rooted in peers’ incorrect responses triggered another restructuring practice called
remediating and shifting for the ones who exhibited the misconception, error, or
difficulty. Also, the PTs practiced testing their arguments and producing counter
examples by utilizing their mathematical knowledge while trying to discredit their

peer’s claims. This phenomenon in the study formed the basis for restructuring their
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HCK in the generalization practice. These interactions showed, once again, that
these knowledge restructuring practices were interconnected, and advances in one

had the potential to start the process in other practices.

6.1.3 Restructuring Practices for Horizon Content Knowledge
6.1.3.1  Connecting

Sztajn et al. (2012) indicated that connecting is an integral part of LTBI.
According to them, connecting refered to addressing the relations between the
students’ strategies and mathematical idea development. They also stated that HCK
refered to the understanding of the most complicated mathematical idea that was
situated at the highest level of the LT. In this study, connecting practice included the
PTs’ ability and knowledge to build the connections across levels of the LT, and it
also entailed the PTs’ ability to perceive the connections between the mathematical
ideas in the LT and further mathematical topics. This practice was achieved not only
through examining the relations between the different mathematical strategies,
solutions, and ideas suggested by the PTs, but also, with the help of the further
prompting, connecting practices were observed when PTs detected the possible
contribution of the presented mathematical idea with further mathematics.

Equipartitioning serves as a basis for further mathematics, including
multiplication, division, measurement, ratio and proportion, and fractions (Confrey
et al., 2008). At the end of the study, the PTs connected (1) equipartitioning
collections with partitive division; (2) the reverse action of equipartitioning with
multiplication; (3) equipartitioning single whole with area, unit concept, and
multiplicative factors of a positive integer; (4) utilization of a composite unit of the
composition of factors to split a whole fairly with equivalent fractions; and (5)
comparison of the equipartitioning single whole and multiple wholes with fraction
types and meaning of the fractions, including (6) covariation with ratio types and
equivalence of two ratios in covariation tasks with proportion.

The important conclusion based on these results could be that perceiving this
interconnected web of mathematical knowledge was an evidence for that the PTs
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were building a conceptual MCK (Ball & Bass, 2009). Therefore, utilizing LTBI in
teaching resulted in better conceptual understanding of the mathematics that the PTs
were supposed to teach. Another important conclusion of this study was that | and
the PTs did not merely focus on covering the equipartitioning concept. Rather,
within implementation of the LTBI, the socially constructed learning environment
provided the PTs a means to think of the equipartitioning related ideas more deeply

and to see the interconnected structure of the mathematics.

6.1.3.2 Generalizing

Prior to the teaching experiment, many of the PTs exhibited a limited ability
to determine a ground for their mathematical assertions and deductions. They failed
to explain how they reached mathematical conclusions. Initially, in the teaching
sessions, when the PTs were asked for generalizations, they performed a “pattern-
spotting” activity (Noss, Healy, & Hoyles, 1997). Besides, in the pretest, when they
asked for a mathematical generalization, the majority of the PTs could not even
perceive the pattern between the variables.

The findings of this study indicated that opportunities to engage in LT-based
tasks that asked for mathematical generalizations led the PTs to enhance their
knowledge about abstracting and generalizing a detected pattern. LTBI supported
the PTs in engaging in the activities and interactions to perceive the links between
what they were doing and observing and the mathematical meanings behind their
actions. Thus, at the end of the study, the PTs utilized their restructured SK and
MCK to determine a sound basis for their claims, and they explained what led them
to this conclusion. They finally possessed the knowledge of generalizing to express
these links in mathematically abstract and generalizable forms.

The findings of this study showed that LTBI helped the PTs to understand a
method sufficient to calculate mathematical objects, conditions, or generalizations
(Carraher, Martinez & Schliemann, 2007). Moreover, PTs became capable of
examining and discussing underlying structures behind the mathematical

generalizations by manipulating the given concrete materials or conditions, arguing
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against their peers’ mathematical explanations, and deductions. All these have
indicated that the PTs restructured their HCK.

6.2 Restructuring Practices for Student Knowledge: Emergent Framework

According to Sztajn et al. (2012) and other studies (e.g., Bartell et al., 2012;
Jacobs et al., 2010; Philips, 2008), knowledge of students entails the ability to
recognize their mathematical thinking. This recognition requires the knowledge of
students’ mathematics (Jacobs et al., 2010). This mathematics includes the
knowledge of students’ misconceptions, errors, difficulties, and strategies as they
learn mathematics (Jacobs et al., 2010; Stein & Smith, 2011; Wilson et al., 2013).
Parallel to previous studies, the present study documented the actual practices of the
PTs to reshape their existing knowledge to identify students’ mathematics. As
Sherin et al. (2011) indicated, there has been a need for this line of research in the
mathematics education field. The knowledge restructuring practices deduced from
the data of this study exhibited how PTs’ knowledge of students changed over the
course of the LTBI teaching experiment on equipartitioning related mathematical
ideas. The results of the study showed that the LTBI teaching experiment was
successful in supporting PTs in restructuring their knowledge about students’
mathematics of equipartitioning.

Prior to the teaching experiment, the majority of the PTs exhibited a limited
knowledge about how students engaged with mathematical thinking and how they
learned mathematics. The majority of the PTs failed to provide a robust
understanding of students’ mathematics. The results of this study indicated that a
LTBI teaching experiment helped the PTs to restructure and enhance their limited
student knowledge, and it supported them in understanding and explaining students’
mathematical learning and thinking. This conclusion was also supported by the
earlier studies of LTs conducted with either teachers or PTs (Mojica, 2010; Wilson,
2009; Wilson et al., 2013). The restructuring practices documented in the study
were anticipating, distinguishing and recognizing, ordering and emphaticizing.

These practices are important for PTs to decide which part of mathematics learned
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is important for their future teaching practices through focusing on students’
mathematical thinking (Philipp, 2008; Wilson et al., 2013). Also, this helps them to
avoid imposing their mathematical thinking onto students (Crespo, 2000).
Enhancement in student knowledge motivates the PTs to achieve conceptual
mathematics learning rather than mere procedural knowledge accumulation
(Philipp, 2008).

6.2.1 Anticipating

Similar to Stein and Smith’s (2011) perspective about anticipating practice,
in this study, anticipating practice required the PTs to know in advance the various
mathematical ways students might exhibit as they worked on the presented
mathematical tasks. Knowledge of students’ possible mathematical approaches
could help PTs set the learning paths in future teaching that considers the students’
input. The findings of the study have shown that, initially, the PTs exhibited a
tendency of predicting only mathematically correct strategies. Also, as Crespo
(2000) suggested, the PTs in this study had a tendency to impose their mathematical
approaches in their prediction. This also showed that distinguishing practice was
also essential to acquire the knowledge for anticipating student strategies. As PTs
encountered more student work and drew upon the experienced ideas of the LT in
the study, they exhibited distinguishing practices. As a result, they could think more
independently from their own mathematical lenses when they envisioned the
students’ mathematics in advance.

On the other hand, when PTs were asked to examine students’ mathematical
thinking on a given actual student work, they focused on merely incorrect answers
because they assumed that students producing correct answers had acquired
sufficient mathematical knowledge (Philipp, 2008; Spitzer et al., 2011). This
implied that the PTs did not envision the possible mathematical approaches of the
students in advance, including correct and incorrect ones, in the early phases of the
LTBI. The LTBI allowed me to further elaborate on this issue. At the end, the PTs
acquired the knowledge of students’ mathematical approaches toward a task
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including strategies, errors, misconceptions, and difficulties. Furthermore, they
started to realize that the anticipation of students’ mathematical thinking did not
merely entail correct responses. They acknowledged the importance of knowing that
the students could exhibit mathematical misconceptions and errors. They came to an
understanding that the detailed analysis of these incorrect ways in their teaching
could yield fruitful mathematical learning.

As the LTBI progressed, the PTs used the prior knowledge of the LT and
they interacted more on the variety of the mathematical approaches of the students.
They also utilized a correct mathematical terminology to describe the anticipated
strategies. At this level, one important implication of this study was recorded. The
PTs asked for the grade levels of the students so they could predict the mathematical
approaches in advance by considering students’ prior knowledge level and future
mathematical goals. As the in-service teachers acknowledged this need in Wilson et
al.’s (2013) study, the PTs in this study also needed this information. Although the
PTs acquired the knowledge of ordering students’ strategies described in the LT
regarding their sophistication levels, they still needed the grade level information.
The result of the study acknowledged the importance of the Empson’s (2011)
critique of the LT on the ways children undertand and utilize the mathematical
strategies influenced by various factors including which classroom they are in and
their individual charecteristics. The ELT did not include the grade level or age
information for the particular proficiency level. Another important implication of
this result is that both PTs and in-service teachers needed to see this information in
the LT. This lack of information in the LT was handled through the input by me and
the PTs during classroom interaction.

6.2.2 Distinguishing and Recognizing

In this study, the PTs initially solved the given tasks in their own way, and
occasionally these strategies were the ones a young elementary school student could
employ. Realizing this difference between their own mathematical thinking and

students’ mathematical thinking was called “distinguishing” (adapted from Mojica,
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2010). As Philipp (2008) reported, the PTs assumed that the children would use the
same line of mathematical reasoning as they solved the problem. For instance, in
many instances, many of the PTs thought students would use division to solve
simple equipartitioning collection tasks. However, the students, especially the
younger ones, used counting, drawing, and dealing to solve a given task. By the end
of the experiment, the PTs were capable of distinguishing between their
mathematical strategies and the children’s strategies. As a result, they generated a
variety of mathematical strategies and representations in addition to their own
mathematical solution methods. Some of the PTs noted these strategies and
representations, and students would solve this way to show they could distinguish
their mathematical thinking from the students’ thinking.

Before the experiment, the majority of the PTs were capable of deciding
whether a student produced mathematically correct response or not. Also, a few PTs
sometimes failed to decide the correctness of the students’ response or strategy in
the pretest. Because, they also shared the same mathematical misconceptions or
errors the students did. In addition, when PTs were asked to notice students’
mathematical thinking in students’ actual work, the PTs did not recognize the
evidences of students’ mathematical thinking in the actual work; instead, they only
evaluated whether students could generate a correct response. As Spitzer et al.
(2011) found, the PTs in this study also initially exhibited a tendency to doubt
students’ mathematical understanding when their work included an incorrect
response.

Initially, the PTs who could detect the correctness of the response or the
strategy exhibited a limited ability of attending to the significant details about
students’ mathematical thinking. Parallel with the Bartell et al.’s (2012) findings,
this study has shown that the PTs had difficulty in recognizing students'
mathematical thinking. Thus, the design of the study allowed for PTs to attend to the
students' possible mathematical strategies by bringing different strategies into
discussion from each PT’s suggestion and actual student work. Also, similar to
Morris’ (2006) findings, the PTs often recognized unrelated evidences to explain
and argue about students’ mathematical thinking. Morris (2006) stated that the PTs
utilized the teacher's explanation to back up their claims. In this study, different
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from the Morris's (2006) findings, the PTs utilized their mathematical content
knowledge to back up their claims without rooting their assumptions into actual
evidence in the student work. They created assumptions about the students’
mathematical thinking based on their mathematical reasoning and knowledge, yet
they could not show actual evidence to validate their assumptions from the students’
work. This tendency of the PTs was restructured during the experiment and at the
end, the PTs could recognize actual evidence of students’ mathematical thinking in
the presented works and utilized this evidence for explaining student mathematics.
In addition, the PTs acknowledged the importance of this recognition for creating
fruitful mathematical discussion in their teaching.

As a result, at the end of the LTBI experiment, the PTs’ ability to attend to
the students’ mathematical thinking and to provide evidence for that mathematical
thinking from actual student work has been enhanced. This also showed that the PTs
started to recognize significant details about students’ mathematics in their actual
work, regardless of whether students produced correct or incorrect responses. This
restructuring practice was supported through social interactions between me and

PTs, and active engagement in LT-based tasks.

6.2.3 Ordering

Prior to the experiment, the PTs exhibited a limited proficiency in ordering
the task difficulty and mathematical ideas’ complexity. As Jacobs et al. (2010)
stated, the ability of ordering required knowledge of students” mathematics. As PTs
encountered students” mathematical thinking in the LTBI experiment and engaged
in the activities that helped them to discuss and interpret students’ mathematical
strategies during the LTBI, the PTs started to pay attention to various dimensions
that made a task easy or difficult for the students. The PTs used their restructured
SCK and CCK to understand why the task might be difficult for the students.
Because SCK required PTs to identify mathematical sophistication for the task in
terms of internalizing hidden mathematical structure (Ball et al., 2008). In addition,
in restructuring practice, the PTs also discussed the underlying reasons behind the
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mathematical difficulties. CCK helped PTs employ various strategies correctly on
given tasks. The PTs drew their identification of the task order upon both on their
CCK and SCK, and their personal mathematical difficulties faced while engaging
LT-based tasks.

As a result, they could order the mathematical strategies, tasks from the least
to the most complex in the LTBI as it was suggested by the LT with an exception in
the challenging practice. This ordering practice helped PTs to understand in which
order they could navigate their future students (Mojica, 2010; Stein & Smith, 2011).
One PT explained: “I would start my lesson on fair sharing single whole differently.
... However, now | know the mathematical thinking behind each strategy and which
strategy is the least complex one.” Also, this knowledge helped the PTs to
understand where to start and where to finish their teaching (Clements & Sarama,
2013; Mojica, 2010).

In addition to utilizing their experience in the LTBI and their CCK and SCK,
the PTs took into consideration of students’ grade level in their ordering. They
asserted that the students’ readiness level played an important role in their
proficiency in solving given mathematical tasks. As Confrey (2006) suggested, all
students brought their personal experiences and prior knowledge into the classroom
and that shaped their learning route within the trajectory. The PTs considered this
prior knowledge of students to decide how students navigate the least complex to

the most complex mathematical ideas as they progressed in the experiment.

6.2.4 Empathizing

Several studies (Bartell et al., 2012; Crespo, 2000; Jansen & Spitzer, 2009;
Philipp, 2008; Spitzer et al., 2011; Wilson et al., 2013) focused on understanding the
differences between the students’ mathematical thinking and our thinking level.
These studies documented the importance of recognizing students’ thinking ability.
They also addressed that students thought differently from the way teachers and
teacher candidates thought. As a result, perceiving mathematics through the lens of
students was an important asset for teachers and PTs. This ability and knowledge of
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understanding student work and examining their mathematical thinking is an
essential element for teaching mathematics. This study’s findings also supported the
results documented from the previous studies. However, this study also revealed an
important practice related to enhancing student knowledge. Realizing the difference
between the ways of mathematical thinking was important, yet it was not merely
enough to possess a comprehensive understanding of student’s mathematics. Being
capable of empathizing with students’ thinking was also important in teaching and
learning practices. This practice helped PTs avoid being judgmental and evaluative
about students’ mathematical work immediately. Instead, they perceived them as an
opportunity for rich learning.

In the beginning of the study, the PTs thought that the content related to
equipartitioning was very easy. However, as they engaged with the tasks, the PTs
actually uncovered a misconception, mathematical error, or had mathematical
difficulty. The discussion on the various mathematical strategies and solutions
produced by the PTs helped them to remediate their misconceptions and errors.
Thus, they realized that elementary school mathematics was not as easy as they
assumed (Philipp, 2008). Also, they acknowledged that they also shared some
mathematical misconceptions that the elementary school students did. One of the
PTs in the study explained, “we understand better how a student can show a
misconception that seems so easy to us. Even if as teacher candidates we exhibited

the same [misconception].”
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CHAPTER VII

IMPLICATIONS

As Lowery (2002) suggested, the PTs should be trained in ways that will be
similar to what they will be teaching. Demands of teaching mathematics, such as
examining the validity of a mathematical argument, selecting the most effective
mathematical representation of the content being taught, mathematical knowledge,
and skills required for teaching are rarely addressed in university level mathematics
courses (Ball et al., 2008; Toluk- Ugar, 2010; Zembat, 2007). Based on that, the
mathematical knowledge learned in university level courses remains insufficient for
meeting these sorts of mathematics demands. One important conclusion of this
study is that the LTBI teaching experiment at the university level helped the PTs to
acquire a deep and comprehensive MCK and the necessary knowledge to teach
conceptual mathematics. Also, it helped them to recognize students' mathematical
thinking in a particular big mathematical idea called equipartitioning. As Ball et al.
(2005) suggested, acquiring MCK is not sufficient to capture the conceptual
evidence of learning in student mathematics. The structure of LTBI in this study
provided opportunities for PTs to engage with both aspects and to restructure their
MCK and SK.

The findings of the study have implications on how to prepare PTs. The
courses at the university level typically do not provide PTs with immediate access to
actual students (Lowery, 2002; Philipp, 2008; Philipp et al., 2007). Within the
design of this LTBI research, the PTs had opportunities to possess a body of rich
knowledge of students deduced from the mathematics teaching and learning
research and LT based research. Designing a teaching environment that situated
around students’ mathematics is an effective alternative for the current course
design provided at the universities. PTs realized both the similarities and differences
between their own way of mathematical thinking and the students’ thinking. This

understanding could help future teachers overcome their existing anxiety
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(Hacidmeroglu & Taskin, 2010) related to teaching elementary school mathematics
to young children.

Another important implication of the study is that the PTs’ judgmental
disposition toward students’ mathematical thinking was challenged. Prior to the
LTBI, they made assumptions about students’ mathematical abilities, which
Clements and Sarama (2013) referred underestimate students’ mathematics and
perceiving correct response evidence for conceptual understandings and incorrect
responses as evidence for not knowing the mathematics. However, restructuring
their SK helped the PTs to deeply understand elementary mathematics and how
students learned it. As a result, the PTs became less judgmental about students’
mathematical thinking; instead, they tried to understand “what sense the [student] is
or is not making” (Philipp, 2008, p. 23). This helped them to avoid their initial
judgmental discourse (Ball & Chazan, 1994; Philipp, 2008) and set realistic
mathematical learning goals for their students (Clements & Sarama, 2013).

Researchers indicated that the current mathematics education course
structures at the university levels might not challenge the PTs mathematically (Ball,
1990, Ball et al., 2008; 2008; Philipp, 2008; Ubuz & Yayan, 2010). The design of
this study has an important implication on how PTs could be challenged to generate
various mathematical strategies and justifications based on solid mathematical
evidence. In addition, the PTs were engaged in a learning environment in which
they asked to utilize and restructure their MCK. The structures of the LTBI teaching
experiment resulted in a better mathematical understanding and the PTs transformed
their prior mathematical knowledge, which will be more useful for their future
teaching practices.

Grossman and McDonald (2008) stated that voicing teaching work was the
action of composing connected and learnable elements without making them
isolated and unrelated, this has been one of the important challenges of teacher
education. Ball and Forzani (2009) stated that this challenge was rooted in the
difficulty for teachers to situate their teaching practices in relation to various
connected mathematics ideas and the students being taught. The findings of this
study have an implication on addressing this challenge because the PTs” HCK and

SK were interconnected in this study. The PTs did not experience equipartitioning
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concepts in the teaching session as an isolated mathematical construct. Instead, the
LT-based tasks and the social interactions in the classroom helped them to relate
various mathematics topics with equipartitioning. Also the knowledge of
mathematical sophistication of the content or tasks based on the students’ levels
counted as a part of ordering practice for SK. Thus, PTs had a chance to face the
challenge suggested by Grossman and McDonald (2008) prior to their future
teaching practices.

Hammerness, Darling-Hammond, and Bransford (2005) indicated, “The
knowledge, skills, and attitudes needed for optimal teaching are not something that
can be fully developed in teacher education programs. Instead, teacher education
candidates need to be equipped for lifelong learning” (p.358). At the end of the
experiment, the PTs realized it was not possible to completely understand students’
mathematics in advance, but they acknowledged the importance of interacting with
students and asking about their mathematical thinking directly. This realization for
the PTs showed that they recognized the importance of learning from their students’
mathematical thinking as they experienced a variety of contexts for their future
teaching practices. Spitzer et al. (2011) also supported the claim that developing this
understanding was essential for preparing PTs for a rewarding teaching career.

The interaction between the practices documented in this study also showed
that the socially constructed learning environment was a key practice for creating a
fruitful learning environment. In this environment, the PTs learned from each other
not merely by perceiving as the instructor or the given LT as an ultimate authority
of knowledge. As Vygostky’s (1978) ZPD suggested, in this study, the PTs were
capable of producing independent mathematical line of reasoning with the help of
their MCK, SK and their experiences in the experiment. As Piaget (1965) suggested
the interaction between the PTs through bringing their different mathematical ideas,
solution ways even exhibiting different mathematical misconceptions and
difficulties helped the PTs to reconstruct their MCK. The PTs’ feedback to their
peers’ mathematical works led improvements and revisions in their current
knowledge level. This is also an essential part of social contructivist learning
environment. Experiencing this socially constructed learning environment in which

the PTs discussed both their own and their peers’ mathematical arguments with
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respect would helped them to create this social learning dynamics in their future
classroom teaching.

Ball et al. (2008) examined the sub-categories of MCK and they indicated
there is a further need for detailing the mathematical practices of the teachers. As
Ball et al. (2008) suggested, this study also framed the mathematical practices that a
teacher candidate should engage so that they learn how to teach mathematics to their
students. Defining these practices as clear as possible has a potential to inform the
design of the mathematics education courses including the instructional materials
utilized for teaching.

Final implications of this study would be on the dynamics of LTBI teaching
experiment based on my personal experiences while conducting this present study.
In this LTBI, the PTs occasionally jump around the ideas within the LT. This
showed that the levels of the LT were not linear for the PTs. In the instances of the
jumps between the levels of ELT, the researcher-teacher should give them flexibility
to examine this jump. For instance, the transitivity level is placed at the level 10 of
the ELT and the fair sharing single whole is placed at the level of 3 the ELT. The
PTs’ misconceptions of diagonal cuts would not create fair shares in the case of
splitting a rectangle into four led PTs and | to discuss the transitivity argument.
Also, this also had an implication on the way that researcher-teacher perceived the
design of LTBI. One should not perceive each level as a set of facts followed by
each other. Instead, one should focus on the connections across the levels and
encourage the PTs to perceive those relations. This perception was also important
for the PTs to utilize their prior experiences and knowledge to reconstruct their
knowledge that is an essential part of socially constructed learning.

Another important implication on the dynamics is that PTs could produce
unexpected mathematical strategies, solutions and explanations in the LTBI. In such
instances, one should focus on the mathematics behind the unexpected actions and
use this as an opportunity for further mathematical discussions rather than stick on
only the suggested mathematical ideas by the LT. A final comment on the dynamics
can be, although the LT did not include the knowledge related to a variety
components of the learning environment such as initial knowledge level, students’

grade level information, motivation level, the researcher should consider these
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dimensions while designing the LTBI. Also, knowing the national mathematical
curriculum scope of the topic being engaged in the experiment would help the PTs
to transfer their knowledge in their future teaching practices in their local country.
The instructional tasks, mathematical goal, students’ individual progressions
commonly included descriptions in all LT definitions, and the social interaction
appeared as one of the most influential factor that determined the trajectory of each
PT in this present study. This implies that socially constructed learning environment
is a key aspect that determines the learning trajectory of the individuals. Thus,
utilization of LTs in socially constructed learning environment has potential to alter
the trajectory descriptions for individuals. Also, it might add new dimensions to
existent description of LTs such as learners’ capability to communicate in classroom
settings, exchange ideas, verbalize and mathematize their thoughts in the actual
socially constructed classroom environment. The impact of socially constructed
learning environment on each learner’s trajectory would be examined in further

studies.

7.1 Future Research Suggestions

This research qualitatively provided analysis of PTs’ knowledge
restructuring practices as a part of LTBI. Only 9 PTs participated in the actual
teaching experiment. This number also limits the generalization of findings. But in
qualitative research the major aim is not generalization but deeply examination the
activity being studied (Creswell, 2007). The knowledge restructuring practices
frame generated in this study could be utilized in different research settings such as
with different PTs, in different universities and in different countries. These case-
based replications would contribute the validation of the framework generated from
the study. Moreover, well-controlled quantitative studies could be conducted to
determine the effects of LTBI on PTs” MCK and SK. In addition, these sorts of
research results may provide a useful guidance for the researchers, educators and
policy makers designing method courses that are based on students’ mathematical

thinking and learning.
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Existing LT based research conducted with both PTs and in-service teachers
were targeted teaching mathematics to younger students. One future suggestion can
be conducting LT based research that targets to train PTs and teachers that will
teach high school students.

In this study, a complete ELT was utilized as an intervention tool to
restructure PTs’ mathematical understanding of fair sharing. There are currently 18
LTs and new research studies can be conducted through utilization of these LTs in
teacher education. Also combinations of these LTs around the big mathematical
ideas could be used in a designed teacher education course.

There are several instructional approaches that existed in mathematics
education field (Clements & Sarama, 2013), the framework deduced from this study
also can be tested in different teaching designs. This testing will add into existing
knowledge related to how PTs or teachers restructure their existing knowledge
under different learning and teaching environment. This testing will also explain the
possible external factors (i.e. utilization of technology) that also have potential to
contribute the enhancement in their knowledge levels.

Finally, the study also showed that the PTs’ followed learning trajectories
within the LTBI. This LT is determined based on the PTs’ mutual efforts,
interactions and experiences in the LTBI. This route includes how PTs engaged with
the LT, their ways of progression, how they perceive the students’ learning route
across LT, and how they capture the relations among the levels of LT. These
experiences of the PTs in the experiment that utilized LT as a reference tool for
teaching is potentially emphasized a new construct that could be called Learning to
Teach Trajectory (LTT). LTT progressions of PTs and also teachers can be
examined under both qualitative and quantitative research designs. The dynamics of

how PTs and teachers learn to teach trajectory can be determined.

7.2 Implications on my Future Career

This research gave me the opportunity to document the practices of PTs in a
LTBI teaching experiment. The practices deduced from this study would be my
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guideline especially in the preparation phase of the further studies. While
conducting this research, | utilized only a particular LT called ELT. In my future
career, | plan to utilize multiple learning trajectories documented in the literature.
One of the big challenges in this process would be deciding which part of the LTs |
should negotiate and then, designing the instruction around them through utilizing
the framework deduced from this study. Another challenge would be aligning the
embedded information in multiple LTs with the mathematics curriculum in Turkey.
Searching responses to address these challenges would be one of the further
research goals for my future research career.

Another important implication deduced from this study was that each PT
shaped and influenced their peers’ learning trajectories and knowledge restructuring
practices during the experiment. From this point of view, | would like to deeply
examine which characteristics and abilities of the PTs and learning environment
have an influence on individual LT of a PT and also have an influence on the shared
LT followed by the PTs during the instruction. To examine this process, | would
like to work with diverse group of PTs. In addition, if possible, I would like to
conduct a longitudinal study to observe which of the factors, such as prior
knowledge, mathematical ability, and ability of verbalizing thoughts, are the
prominent ones.

Last important implication would be determining the practices and progress
of PTs with diverse backgrounds (such as academic, social) to determine the impact
of LTBI on different groups of PTs. This examination would help me to test further
whether employing LTBI in different settings with different groups of learners yield
fruitful results in terms of learning and teaching mathematics, as it is defined a

comprehensive explanatory emergent theory of teaching (Sztajn et al., 2012).
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APPENDICES

APPENDIX A - PRE/POST TESTS RUBRICS

The same scoring guide were utilized both tests. Since both tests included parallel
items and the numbers in the item stem changes the numbers in the correct answers
is subject to change. The rubric below showed the correct answers for the pre-test
and post-test subsequently that are separated with the sign “/”” when needed.

ITEM 1. Fair sharing collections and naming fair shares (Adapted from Mojica,
2010, p. 215)
la. Correct Answers:

e Draw lines from each candies or group of candies to the each friend
or
e Indicate explicitly each friends get 6 candies (drawing, mathematical
expressions)
2b. A Variety of Naming Practices:

=

Count — 6 candies or numerical expressions (e.g. 18 + 3).

2. Ratio — 6 candies per friend, 12 candies per 2 friends, 18 candies per 3
friends; 6 candies to each friend.

3. Fraction — 6/18, 1/3, other equivalent fractions, or word equivalents (e.g.
“one third”).

4. Operator — 6/18 of the coins, 1/3 of the coins.

General mathematical name — thirds, fraction, quotient, fair share, a part,

equal group of candies, equal portions, equipartition, partitions, portions.

o1

Scoring guide

Score | Description

1a correct AND includes at least four naming practices from the 1b list

1a correct AND includes three naming practices from the 1b list

1a correct AND includes two naming practices from the 1b list

1a correct AND includes one naming from 1b list

O, INWi>~

la correct or incorrect AND no attempt or superfluous names
la and 1b incorrect
No response
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ITEM 2.

Quotient construct (Retrieved from Mojica, 2010, p. 216)

Possible Correct Responses:

° CGn/q79
13 . 2
L] n - q

* “n divided by q”
* “] gth of n”
* “n one-qths”

Scoring Guide

Score | Description

3 Correct response

2 Specific case used as explanation with some mention of generality
(e.g., “1/qth” without a reference to the unit orn + q=1/3 or “n =18, q =
3,18/3=6")
Note: If includes a general statement and then makes a specific case as an
example, score as 3.

1 Specific case used as explanation with no mention of generality (e.g. “6”
or “1/3”)
Specific case used that is incorrect with some mention of generality (e.g.,
“6/3” with reference to “n/q”)

0 No mention of generality or specific case used
Specific case used with incorrect generality
Superfluous answer
Incorrect Response
No response

ITEM 3. Reassembly- Reversibility of discrete equipartitioning.

Correct response: 39 pencils / 42 pencils

Scoring guide

Score | Description

4 Correct response and employ both multiplicative and additive strategies to
find the solution

3 Correct response and employ merely multiplicative strategy to find the
solution

2 Correct response and employ merely additive strategy to find the solution

1 Correct response but no or unreasonable explanation of solution way

0 Incorrect answer with unreasonable explanation OR no response
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ITEM 4. Times as many- Comparing size of the whole to size of the one share

Correct response: Berrin’s answer is correct.

Complete explanations:

1.

Fatma’s understanding: Perceive the relation between one lego piece and the
whole tower additively (whole tower 12 lego more than one lego piece/
whole tower 6 lego more than one lego piece) and state this relations as lego
tower 12 times as long as one lego piece/ 6 times as long as one lego piece.
Ayse’s understanding: Name the part whole relation regardless of the size of
the share and called two times as long as. Because, young children used to
call a fair share half regardless of the size of the share (Yilmaz, 2011). The
reversibility of a half is two times longer.

OR

Perceive one piece of lego as one share and the rest of the whole tower (12
lego pieces) as another share, in total there are two pieces. State the relation
between size of the one lego piece and size of the whole lego tower as lego
tower two times as long as one lego tower.

Berrin’s understanding: Perceive the relation between one lego piece and the

whole tower multiplicatively and state the relation correctly as 13 times as
long as/ 7 times as long as.

Scoring guide

Score | Description

4 Correct response and complete explanation for each friend’s understanding
of reassembly

3 Correct response, but fail to provide correct explanation for at most one
friend’s understanding

2 Correct response, but fail to provide correct explanation for at most one
friends’ understanding and provide incomplete explanations for others
Provide one correct explanation and some sorts of explanation for other two
friends but the explanations are not quite complete

1 Correct response, but provide incorrect or unreasonable explanation
Provide some sorts of explanation for two friends but the explanations are
not quite complete

0 Incorrect response and provide no/incorrect/unreasonable explanation

No response

ITEM 5. Reallocation and justification of fair shares (case of discrete collections)

Correct response: 6 cookies per friend and justify fair share of each friend
correctly/9 bottle caps per friend and justify fair share of each friend correctly.
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Correct justifications:

owphpE

5.
6.
7.

Explaining their careful use of one-to-one correspondence in rounds.
Counting the number of objects in each group.

Stacking the objects and comparing the height of each stack.

Constructing arrays from objects and compare them (Confrey et al., 2010;
Yilmaz, 2011).

Utilizing composite units to create fair shares

Utilize inverse operations division and multiplication

Asserts equipartitioning creates automatically fair shares (Yilmaz, 2011).

Scoring Guide

Score | Description

3 Reallocate from each friends share and provide both correct response and
justification(s)

2 Reallocate from each friends share and provide both correct response but
incorrect/unreasonable justification(s)
Utilize fair sharing collection strategies and provide both correct response
and justification(s)

1 Utilize fair sharing collection strategies and provide correct response but
no/ incorrect/unreasonable justification(s)

0 Incorrect response and provide no/incorrect/unreasonable explanation
No response

ITEM 6.

Correct Response: 6 candies per Friend

ITEM7.

Correct Response: 5 chips per Friend / 6 marbles per Friend

Scoring Note: For both Item 6 & 7 Scoring Guide and Justifications same as Item 5

ITEM 8 Sharing Multiple Wholes among Multiple People (Adapted from Mojica,
2010, p.217)

Correct response: Yes — both result in 3/5/ Yes — both result in 5/4

Complete explanations:
The explanations were same for the post-test with different numbers.

Mathematically modeled the first task as 3 + 5 and the second task as 1/5
+... +1/5 or 3(1/5)
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Utilize an area model to illustrate this argument

Indicates each task includes the situation of five friends received 1/5 of the
total

Explains that pie type is an extraneous variable

Incomplete explanations:

Both result in 3/5

Both involve sharing 3 things among 5 people

Both involve the same values/units; may use an area model to illustrate this
argument

Both involve same operation 3:5

Scoring Guide:

Score | Description

3 Correct response with complete explanation

2 Correct response with one of the incomplete explanations

1 Respond no but state second problem demands 1/5™ of each pizza
Respond no but provides a complete explanation

0 Incorrect response and provide no/incorrect/unreasonable explanation

No response

Note: If students showed a complete work but missed stating conclusion sentence
about mathematical equivalence of tasks, deduce 1 point.

ITEM 9 Compensation/ Factor Based Change (Adapted from Mojica, 2009, p. 221)

Correct responses:

Qoo

Less than

More than

Two times larger / Three times larger

Two times smaller OR Half of the initial share / Three times smaller OR one
third of the initial share

Complete explanations:

A

@

mmoo

Utilize qualitative compensation to state the changes (larger or smaller) in
size of shares based on changes in the number of persons sharing.

Utilize qualitative compensation to state the changes (larger or smaller) in
size of shares based on changes in the number of persons sharing

One fourth < one half

Uses an area model to illustrate this argument with text or symbols
One-fourth > One eighth

Uses an area model to illustrate this argument with text or symbols
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Incomplete explanations:

1.

Implied comparisons of fractions that do not use text or symbols (e.g. an
area model or fraction notation with out words or “> < =" symbols

Scoring Guide

Score | Description

4 Correct answer and complete explanation for a-d

3 Correct answer and complete explanation for any combination of three (A,B
&C; A,B&Detc.)

2 Correct answer and complete explanation for either A&B or C&D or A&C
or B&D
Correct response and provide at least one complete explanation for a-d and
provide incomplete explanation for the rest.

1 Correct response and incomplete explanation for any combination of three
(A&B&C or A&C&D or B&C&D)

0 Correct response and unreasonable or no explanation for a-d

Incorrect response
No response

ITEM 10 Knowledge of variety and correct/incorrect strategies and ability to sort
the strategies from least complex to more complex ones (Retrieved from Mojica,
2010, p.228)

I. Unsophisticated

Cannot be done

Breaking with no attention to creating equal-sized pieces and correct number
of equal sized pieces

Creating correct number of pieces but of unequal size without composition
Creating the wrong number of equal-sized pieces

Failure to exhaust the whole

nor n—1 parallel cuts

Sequential radial cuts

Use of landmark fractions and then dividing the remainder because cannot
do the split

I1. Intermediate

Must exhaust whole
A composition of cuts to create all congruent pieces
Incorrect compositions

I11. Sophisticated

Must exhaust whole

A composition of cuts to create incongruent pieces

Correct or incorrect use of equivalence (e.g. creating 8 congruent pieces and
giving 2 per person)
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Notes:
1.

Strategies that simply change the orientation of the cuts should be counted
only once (e.g. 5 horizontal parallel cuts and 5 vertical parallel cuts count as
only one strategy)

Unless specifically labeled or described as a composition, count a strategy as
parallel cuts.

Repeated examples with the distinction of measuring should only count once
(i.e. if three strategies are repeated but say ‘actually measure to find the
center’ count all three of these only once).

Landmark strategy is different from a composition (e.g. a 3-split on a 2-split)
because with a composition, still attending to each piece, whereas with
landmarks, the actions focus on remaining piece after distribution.

Scoring notes:

1.
2.

Subtract one point for incorrect or no labeling of correct/incorrect strategies
Subtract one point for 50% of the strategies have complete descriptions.
Descriptions may be written or numbers but specific (e.g. ‘cut into fourths’
is specific, ‘1/4ths’ is not)

Scoring Guide

Score

Description

3

Indicates 2 correct and 2 incorrect strategy
Indicates 3 correct and 1 incorrect strategy

2

Indicates 2 correct and 1 incorrect strategy

Indicates 1 correct and 2 or 3 incorrect strategy
Indicates 3 correct strategies and no incorrect strategy
Indicates 3 or 4 incorrect strategies

Indicates 1 correct and 1 incorrect strategy with correct labels
Indicates 2 correct strategy and no incorrect strategy
Indicates 2 incorrect strategy and no correct strategy

Indicates 1 correct strategy
Indicates 1 incorrect strategy

Indicate no strategy

ITEM

11 Knowledge of variety and correct/incorrect strategies (Adapted from

Mojica, 2010, p. 229).

Incorrect Strategies

1.

oakrwn

Breaking with no attention to creating equal-sized pieces and correct number

of equal sized pieces

Creating correct number of pieces but of unequal size without composition

Creating the wrong number of equal-sized pieces

Failure to exhaust the whole

nor n—1 parallel cuts

Use of landmark fractions and then dividing the remainder because cannot
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do the split

Correct Strategies

Prerequisite: Exhaust whole and create correct number of fair shares
1. A composition of cuts to create all congruent pieces in terms of area

2.

Notes

1.

Correct or incorrect use of equivalence (e.g. creating 8 congruent pieces and
giving 2 per person)

Strategies that simply change the orientation of the cuts should be counted
only once (e.g. 4 horizontal parallel cuts and 4 vertical parallel cuts count as
only one strategy)

Unless specifically labeled or described as a composition, count a strategy as
parallel cuts.

Scoring Guide

Score | Description

4 Indicates 3 correct strategies and at least 2 incorrect strategies with correct
labels

3 Indicates 3 correct and fewer than 2 incorrect strategy with correct labels
Indicates 2 correct and 2 incorrect strategy with correct labels

2 Indicates 2 correct and 1 incorrect strategy with correct labels

1 Indicates 1 correct and 1 incorrect strategy with correct labels
Indicates 2 correct strategy with correct label
Indicates at least three strategy without labeling incorrect and correct ones

0 Indicates fewer than 3 strategies without labeling incorrect and correct ones

Indicates strategies that are all incorrect
Indicates no strategy

ITEM 12 Ordering task difficulty (Adapted from Mojica, 2010).

Correct Responses: Pre-Test Correct Responses: Post-Test

a. 7 cookies among 2 a. 2 cookies among 9

Complete Explanations: Complete Explanations:

1. Indicates sharing among 2 easier 1. Indicates sharing among 2 easier
than sharing among 7 than sharing among 9

2. Dealing is easier 2. Dealing is easier

3. Odd splits harder than even splits 3. Odd splits harder than even splits

4. Dividing a larger number into a 4. Dividing a larger number into a
smaller number is easier smaller number is easier

b. around cake among 3 b. around cake among 6
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Complete Explanations:

1.
2.

C.

Indicates 3-splits is harder
Indicates repeated halving is
easier

a rectangular cake among 3

Complete Explanations:

1.
2.

3.

4.

d.

Indicates 3-splits is harder

Indicates repeated halving is
easier

Indicates odd splits harder than
even splits

Use symmetry because 4 is an
even number
a round cake among 3

Complete Explanations:

1.
2.

Indicates radial cut is harder
Indicates parallel cut is easier

Scoring Guide

Complete Explanations:

1.
2.

C.

Indicates 3-splits is harder
Indicates repeated halving is
easier

a rectangular cake among 3

Complete Explanations:

1.
2.

3.

4.

d.

Indicates 3-splits is harder
Indicates repeated halving is
easier

Indicates odd splits harder than
even splits

Use symmetry because 8 is an

even number
a round cake among 3

Complete Explanations:

1.
2.

€.

Indicates radial cut is harder
Indicates parallel cut is easier

A rectangular cake among 12

Complete Explanations:

1.

2.

3.

Indicates 3-splits is harder while
creating 12 equal parts

Repeated halving is easier (4-
splits)

Use symmetry because 4 is an
even number

12 fair parts
composition of splits

required

Score | Description

4 At least 4 correct responses and provide complete explanation

3 4 correct responses and 2 or 3 complete explanations
3 correct responses with 3 complete explanations

2 3 or 4 incorrect responses with 3 or 4 complete explanations (it may be
possible that the student circled the easier tasks)
3 correct responses and provide less than 3 complete explanations
2 correct responses with 2 complete explanations

1 Less than 4 correct responses with incomplete explanation
1-4Acorrect response(s) with a complete explanation

0 No response

Incorrect responses

Correct responses with unreasonable, or no explanation
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ITEM 13 Repeated halving (Adapted from Empson & Turner, 2006 and Mojica,

2010)

Correct response: 32 equal parts / 128 equal parts

Show your work: Utilizes one the ways presented below:

1.

2.

3.

Indicates the multiplicative relation between number of folds and number of
fair parts created and denotes this relation with exponential numbers (e.g.

2.2.2.2.2.2.2=128 parts 2")

Indicates relation between the a fair part compared the size of the whole as a
result of folding. (e.g. }2.%5.%4.%%..4.%:.2=1/128)

Finds resulting number of fair parts after each folding until all the folding
action completed. (1% fold: 2 parts, 2" fold: 4 parts, 3" fold: 8 parts....)

4. Show the resultant number of fair shares as a result of each folding.

Scoring guide:

Score | Description

2 Correct response with correct explanation of the work

1 Incorrect response as a result of missing one folding action (ie. 64 fair
parts)

0 Incorrect response

Unreasonable response
No response

ITEM 14 Composition of splits (Adapted from Wilson, 2009)

Correct ways: Includes the possible ways of permutation of the folds to create 24
fair shares in the pre-test and 36 fair shares in the post-test.

wmn

Pre-Test
Indicates the generalization of
how to find required number of
fair shares.
Half, half, half, third —Category 1
Fourth, half, third — Category 2
Half, half, sixth or fourth, sixth —
Category 3
23 parallel folds— Category 4

ok w

Post-Test
Indicates the generalization of
how to find required number of
fair shares.
Half, half, third, third —Category
1
Fourth, third, third — Category 2
Half, third, sixth — Category 3
35 parallel folds— Category 4

Note: The order of the folds does not important and the drawing of the folds for the
categories above is accepted as correct response.
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Scoring Guide

Score | Description

3 Indicates way from all 4 categories or indicates mathematical
generalization and show at least one example that fits into category 1,2 or
3.

2 Indicates way from 3 categories

1 Indicates way from 2 categories OR Indicates 1 way from categories 1, 2
or 3

0 Indicates 1 way from category 4 only OR No response

ITEM 15 Compensation, sharing multiple wholes and justification of fair shares
Correct response: Hasan’s strategy
Complete explanations:

1. Explains in Hasan’s strategy people at both tables get the same amount of
pizza, and in Ahmet’s strategy people at both tables do not get the same
amount of pizza (i.e. person in Hasan’s table gets 2/3" of a pizza but in
Ahmet’s 10 people sits in a table and each receives 7/10" of the pizza, and
on the other table each received 5/8™ pizza)

2. Utilize models or drawings to show the argument stated in 1.

For the post test: State number of people doubles so as number of pizzas doubles
Complete Explanations for Ahmets’ Understanding of Fair Sharing

1. Ahmet shows an additive misconception, since 10-7=3 and 8-5=3 the
differences between amount of pizza is same so they are fair

2. Ahmet could not use ratios of people per pizza correctly and could not fairly
share multiple wholes among multiple people

Incomplete Explanations for part a:

1. Utilizes qualitative compensation and stated the shares determined in
Hasan’s tables are smaller/larger or are different than Ahmet’s tables or vice
versa while not explicitly addressing the other.

Incomplete Explanations for part b:

1. Ahmet could not fairly share the multiple wholes, give few pizzas to more
people.
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Scoring Guide

Score | Description

3 Correct response with complete explanation for part a and b

2 Correct response with complete explanation for part a and provide
incomplete explanation for part b or vice versa
Incorrect response by computational error with complete explanation

1 Correct response with incomplete explanation for part a and part b
Correct response with one complete explanation for either part a or part b
Incorrect response with complete explanation for either part a or part b

0 Incorrect response with incomplete, unreasonable, or no explanation

Correct response with unreasonable explanation
No response

ITEM 16 Covariation and utilization of multiple strategies

Correct Responses

Pre-Test Post-Test
Number of Number of Number of Number of
rabbits carrots rabbits carrots
2 3 4 5/3
4 6 12 5
8 12 36 15

Correct Strategies and explanations (Adapted from Smith & Stein, 2011)

1.

2.

3.

4.
S.

Unit rate: find the number of carrots eaten by a rabbit and multiply by the
number of rabbits to find the required number of carrots.
Scale factor: perceive the vertical multiplicative relations: number of the

rabbits triples so the number of carrots

Scaling up: e.g. Add 5 carrots for every twelve rabbits until reaching
required number of rabbits

Additive: e.g. Add % carrots 8 times to find the number of carrots

Utilize direct proportion or other strategies not listed above

Scoring Guide

Score | Description

4 Utilizes 4 or 5 different strategies with correct answer
Utilize 3 different strategies including first three strategy

3 Utilizes 3 different strategies with correct answer but not include all first
three strategies
Utilizes 2 strategies that certainly includes first two strategies with correct
answer

2 Utilizes 2 different strategies with correct answer but not include




necessarily first two strategy

=

Utilizes 1 strategy with correct answer

0 No response
Incorrect answer

ITEM 17- Area congruence, justification fair shares and transitivity argument
Correct response:

Pre Test: Not fairly shared and the relation between the parts: B<A=D<C or
C>A=D>B

Post Test: Not fairly shared and the relation between the parts: B=D<A<C or
C>A>B=D

Complete Explanations

1. Utilize decomposition or composition of shapes or area congruence personal
strategy to reach his declaration of equivalent fractions. Then order the
fractions.

Incomplete Explanations
1. Verbally compares the size of each share (B is the smallest one because it is
skinnier or C is the largest since it is wider and taller)
2. Made errors while naming each share

Scoring Guide

Score | Description

3 Correct response with complete explanation

2 Correct response for part a and b but fail to declare the relation between
two parts. (ie A&C, A&B)

1 Correct response with incomplete explanation

0 Incorrect response with incomplete, unreasonable, or no explanation
Correct response with unreasonable explanation
No response
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APPENDIX B

EXAMPLE INSTRUCTIONAL TASKS AND REFLECTION QUESTIONS

The instructional tasks and reflection questions were subject to revisions throughout
the teaching experiment based on the interaction and the needs aroused within the
classroom.

N

Week 2: Reflection questions for equipartitioning collection

What do you about the mathematical contribution of activities in this

teaching session for learning advance mathematical topics?

What have you learned about fair sharing today?

What kind of learning difficulty or misconceptions that you may observe as

you work with students on this fair sharing collection tasks.

How do you plan to address these difficulties and misconceptions?

a. How does ELT help in this process?

b. Can we always create a fair share for any given numbers of groups and
objects? Why or why not?

Week 3: Task 1 — Equipartitioning single whole

ACTIVITY 1
You and your group are given a set of color pencils and a rectangular paper
that represents a garden. You will plant different fruits in this garden. The
rules are:
Each fruit should have the same amount of space.
Color each space for each different fruit with a different color.
Try as many as possible ways and make sure each fruit has the same space.

Answer the following questions:

2.

oo

If you plant for n different fruits, how you would fairly share the rectangular
garden in different ways?

Try forn: 4, 6, 10, 12.

How do you make sure each fruit has the same amount of space?

Name the number of parts that each of you paint.

Compare the size of the whole shape to one fruit’s share.

Compare the size of one fruit’s share to the whole shape.
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e. What mathematical ideas does this task serve as a base?
f. Can you fairly share a single whole for any amount of people? If yes, why?
If no, why not?

Work on the same activity for circles (n=4, 6, 10, 12). Be sure to address students’
misconceptions or learning difficulties while working on the task.

At the end of the activity answer the following questions:

a. How is this task different from or similar to the task of fair sharing discrete
collections?

b. What kinds of misconceptions may you encounter while implementing this
task in an elementary school classroom?

c. How is fairly sharing a circle different from or similar to fairly sharing a
rectangle?

Summary

a. How many cuts were needed to create 4, 6, 8, and 10 fair shares if only
horizontal or vertical cuts were used? What about creating n fair shares?

b. How should a circle mark so that it can be easily fairly shared?

Week 4: Folding task (Adapted from empson & turner, 2006)

ACTIVITY 4
1. If you fold a paper into half, in half again twice and finally in half again how
many equal parts will you have when you opened the paper?

e How would you solve the task?

e How would an elementary school student solve the task?

o Ifyou fold the paper half then, 2 times, 3 times, 4 times.... n times in half
how many equal parts will you have when you opened the paper?

2. If you fold a paper into half, then in thirds and finally in third again how
many equal parts will | have when | opened the paper? (Adapted from
Turner et al., 2007).

e How would you solve the task?
e How would an elementary school student solve the task?

3. Fatma folded a rectangular paper into four equal parts then 3 equal parts.
Ahmet folded his rectangular paper into 6 equal parts. How many equal
parts does Ahmet need to fold to make exact same equal parts as Fatma did?
e How would you solve the task?
¢ How would an elementary school student solve the task?
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Which mathematical idea can be emphasized through this problem?

Note: Be sure to include any drawings or other representations that support your
explanation.

CASE ANALYSIS

1. When Ayse a first grader were asked to predict number of fair shares created
by folding a piece of rectangular paper in half 4 times her reply was “12
parts” (Adapted from Turner et al., 2007).

What is Ayse’s understanding of creating fair shares through paper
folding?

How would you help Ayse to perceive the relation between number of
parts created and each fold?

2. Two students’ strategies to fold the same size rectangular paper to create 12
equal parts are shown below.

a = =
\ mo%@[ﬂ 1215 1p|ale

et omon

b
N ng>lz
g h

Figure 1. Two strategies to create 12 equal parts (Retrieved from Empson & Turner,

2006, p.)

What does each step represent?

What can you tell about each student’s strategy?

What are the possible mathematical ideas can be deduced from these two
strategies? (Hint: Think previously discussed lessons).

REFLECTION ACTIVITY

1. Which mathematical idea/topic folding tasks underlies?

2. What is the connection between using folding to create fair shares and
multiplication?

3. What is the connection between using folding to create fair shares and
division?

294



4. What is the connection between using folding to create fair shares and
fractions? (Hint: Think about naming the fair shares).

Week 5 — Covariation Activity (Adapted from Smith & Stein, 2011)

Five cookies are enough to feed 2 babies for one day in their breakfast. In order to
feed 12 babies how many cookies that you need? (Adapted from Stein and Smith,
2012)

First Part

Please answer followings.
1. For the presented task, provide your own solution ways.
2. Explain how you will solve the task.
3. Did each baby receive a fair share? How do you know?

Second Part
Please answer followings.
1. For the presented task, provide the solution ways that you expect to see in an
elementary school classroom.
2. In what ways elementary school student might justify their solutions.

Note: Be sure to include any drawings or other representations that support your
anticipation of student justification(s).
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APPENDIX C

SAMPLE INFORMED CONSENT FORM

Goniillii Katilim Formu

Ben Zuhal Yilmaz, Orta Dogu Teknik Universitesi (ODTU) Egitim Fakiiltesi
[Ikdgretim Boliimii’nde doktora dgrencisiyim. ilkdgretim Boliimii’nde Y.Dog.Dr.
Cigdem Haser tarafindan danigsmanlig yiiriitiilen doktora tez ¢alismam kapsaminda
goniilliiliik esash dizayn edilmis matematik egitimi metot dersinde sizlerle ¢aligsmak
istemekteyim. Calismanin amaci, 6grenme rotalarini dizayn edilmis metot dersi
icinde kullaniminin 6gretmen adaylarmin matematiksel anlamalarini  nasil
yapilandirdiklarini incelemektir. Calismaya katilim tamimiyle goniilliiliikk temelinde
olmalidir. Bu ¢alisma siiresince Egitim Fakiiltesi Simif Ogretmeni adaylari ile bire-
bir goriismeler yapip es paylasim Ogrenme rotasini kullanarak goniillilk esash
olusturulan bir matematik 6gretimi metot dersini birlikte islemeyi planlamaktayim.

Calisma kapsaminda Ogrenme rotasinin siz  Ogretmen adaylarinin
kullanabilecekleri matematiksel stratejileri anlamadaki etkisi, 6grenme rotasinda
gomiilii olan matematiksel bilgiyi sizlerin nasil kullandiginiz video ya kayit edilecek
ve gozlemlenecektir. Smif i¢i gézlemde ve yapilan video kayitlar1 6 hafta ve her
hafta 2.5 saat siirecektir. Ders icinde kullanilacak olan aktiviteler sizinle
paylasilacak olup, igerigi es paylasim konusu hakkinda matematik gorevleri
icermektedir. Ders igi etkinliklerin video ¢ekimine ek olarak sizlere 17 agik uglu
matematik sorusunun yer aldigi ilk ve son test ¢alismanin basinda ve sonunda
uygulanacaktir. Videoya c¢ekilen dersler ve test degerlendirmeleri sadece
arastirmanin data analizinde arastirmacilar tarafindan kullanilacak olup, elde edilen
veriler doktora tezinde ve bilimsel yayinlarda kullanilacaktir.

Bu calisma bagli bulundugunuz programin zorunlu katilim gerektiren bir
stireci degildir. Bu ¢aligmaya katilmaniz ilkdgretim 6grencilerinin matematigi nasil
ogrendigi hakkinda bilgi edinmek ve bu bilgiyi kendi O6gretmenlik hayatinizda
kullanmaniz agisindan fayda saglayacaktir. Eger bu ¢alisma icin goniillii olursaniz
bana sagladiginiz analiz edilmemis bilgi boliimiiniiz, size ders veren 0gretim iiyeleri
ya da diger kuruluslarla paylasilmayacaktir. Bu goriisme, katilanlara zarar
getirebilecek herhangi bir psikolojik ya da fiziksel bir 15 icermemektedir. Arastirma
sonuglarinin tiniversite ¢apinda 6gretmenlik egitiminde metot derslerinin igeriginin
yapilandirilmasi ve gelistirilmesi amacl ¢aligmalara ve uygulamalara yararl bir etki
yapmas1 beklenmektedir.

Ders i¢i aktiviteler ve birebir goriisme kisisel rahatsizlik verecek sorular
icermemektedir. Ancak, katilim sirasinda sorulardan ya da herhangi baska bir
nedenden otiirli kendinizi rahatsiz hissederseniz cevaplama isini yarida birakip
cikmakta serbestsiniz. Bodyle bir durumda arastirmay1 yapan kisiye devam etmek
istemeyeceginizi bildirmeniz yeterli olacaktir. Bu ¢alismaya katildiginiz i¢in
simdiden tesekkiir ederiz. Calisma hakkinda daha fazla bilgi almak i¢in Orta Dogu
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Universitesi Egitim Fakiiltesi [lkdgretim Bolumu Doktora Ogrencisi Zuhal Yilmaz
(E-posta: yilmaz.zuhal@metu.edu.tr/zyilmazncsu@gmail.com) ve Orta Dogu
Teknik Universitesi Egitim Fakiiltesi Ilkogretim Matematik Ogretmenligi Y.Dog.
Dr. Cigdem Haser (Oda No:105; Tel: 210 6415; E-posta: chaser@metu.edu.tr) ile
iletisim kurabilirsiniz.

Eger bu calisma i¢in goniillii olmak istiyorsaniz liitfen asagida verilen yere adinizi,
soyadiniz1 ve tarihi yazip imzalaymiz. Liitfen asagidaki iletisim yollarindan tercih
ettiginiz birinin bilgisini veriniz. Size o yolu kullanarak goériisme i¢in tercih ettiginiz
zamani soracagim.

Tesekkiirler.

Isim, soy isim: Imza :

Tarih

Tercih ettiginiz iletisim yolu bilgisi:

TIf: (Ofis) (Cep)

Elektronik posta:

Eger bu c¢aligma kapsaminda yapacagimiz ders i¢i etkinliklerinizin ve
goriismelerin ses kaydinin alinmasina izin veriyorsaniz liitfen asagida verilen yere
admizi, soyadinizi ve tarihi yazip imzalaymiz. Gorlisme sirasinda dilediginiz zaman
kaydin durdurulmasini isteyebilir ya da en basindan itibaren kayit edilmemesini
isteyebilirsiniz.

Isim, soy isim: Imza :

Tarih
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APPENDIX E

TURKISH SUMMARY

Ogrencilerin matematigi nasil &grendikleri, anladiklari ve matematik
hakkinda akil yiirlitme becerilerini nasil gelistirdikleri {izerine bir¢cok arastirma
(Clements, Sarama ve Julie, 2009; Fennema ve Franke, 1992; Ma, 1999) yapilmustir.
Fakat Ogrencilerin matematigi zaman igerisinde nasil Ogrendikleri, 6grenmenin
sadece bir boyutunu olusturmaktadir. Diger bir Onemli boyutunu ise Ogretim
ortamint olusturmada en 6nemli faktorlerden biri olan 6gretmenlerdir (Ma, 1999).
Bu sebeple, dgretmenin alan bilgisi seviyesi ve Ogrencilerin 6grenmesini anlama
bilgisi ve becerisi, 0grencilerin neyi nasil 6grendikleri lizerinde ¢ok 6nemli bir role
sahiptir (Darling-Hammond ve Ball, 1998; Ma, 1999). Arastirmacilar Varsayimsal
Ogrenme Rotalarinin (Hypothetical Learning Trajectories) &grencilerin zaman
icerisinde nasil matematigi Ogrendiklerini anlamamizda Onemli role sahip
olduklarini ileri sirmiislerdir (Clements ve Sarama, 2004; Duncan ve Hmelo-Silver,
2009). Ayni zamanda varsayimsal Ogrenme rotasi bilgisinin Ogretmenlerin
matematigi 6gretme ve dgrenmelerinde etkisinin olacagini belirtmislerdir (Clements
ve Sarama, 2004; Duncan ve Hmelo-Silver, 2009).

Ogrenme rotalar1 literatiirde farkli sekillerde kavramsallastirilmislardir.
Biitiin farkli kavramsallastirmalar temelde Simon’in 1995 yilinda varsayimsal
ogrenme rotas1 olarak ifadelendirdigi kavrama dayanmaktadir. Simon (1995)
varsayimsal 6grenme rotalarini 6gretmenin dgrenmenin izleyecegi yol hakkindaki
tahminleri seklinde tanimlamistir. Simon Ogrenme rotasini varsayimsal olarak

13

nitelendirmesinin sebebini su sekilde ifade etmistir “ .... Varsayimsaldir, ¢linkii
6grenme rotasi kesin olarak dnceden ongoriilemez ve o beklenen egilimi karakterize
etmektedir” (1995, s.135). Simon’in (1995) ifadelendirdigi bu yaklagim, 6grenme
rotalarmnin deneysel veriler ile yapilandirilmasinin temelini olusturmustur. Bu
deneysel veriler ile ¢alismalar yapan bir ¢ok arastirmaci 6grenme rotasi kavramini
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tanimlamislardir. Bunlardan bazilar1 su sekildedir. Corcoran, Mosher ve Rogat
(2009) o6grenme rotalarimi belirli bir konu alaninda ve uygun bir siire igerisinde
ogrencilerin az karmagiktan ¢ok karmasik diistinmeye gecis surecinde izleyecekleri
varsayimsal bir rota olarak tanimlamislardir. Confrey ve arkadaglari (2009) 6grenme
rotalarin1 aragtirma sentezi, deneysel veriler ve O6gretim faaliyetleri ve araglari
boyutunda tanimlamislardir. Oncelikle belirli bir matematik konu alaninda yapilan
aragtirmalarin kapsamli bir sentezi yapilip, bu c¢aligmalarin 6grencinin o konu
alanin1 nasil Ogrendiginin rotasi belirlenir. Daha sonra arastirmaci bu bilgiler
1s1ginda  etkinlikler tasarlar ve Ogrencilerle birebir ¢alisip Ogrencinin zaman
icerisinde az karmagik disiincelerden daha karmasik diisiinmeye nasil gegtigini
deneysel veriler ile saptar (Franklin, Yilmaz ve Confrey, 2010). Bu siire¢ her zaman
devamli bir degerlendirmeyi, yansimay1 ve dgrenme rotasinin revizyon edilmesini
iceren dinamik bir siirectir. Bu ¢alismada ise Confrey ve arkadaslarinin (2009)
tanimlamasi benimsenmistir.

Tiirkiye’deki ve uluslararasi ¢aligmalar, 6gretmen adaylarinin 6gretecekleri
matematigi tam olarak bilmediklerini (Eraslan, 2009; Hacidmeroglu ve Taskin,
2010), 6grencilerin sahip olduklar1 matematiksel kavram yanilgilarina ve zorluklara
sahip olduklarini (Butterfield, Forrester, McCallum ve Chinnapan, 2013), kavramsal
matematik bilgi eksikliklerinin yanlis 6gretme uygulamalarina sebebiyet verdigini
(Phillip, 2008), ilkogretim matematigini basit bulma egilimi gosterdiklerini (Phillip,
2008), tniversitelerde verilen matematik dersleri ile Ogretecekleri matematik
arasindaki baglantiyr kurmada zorlandiklarin1 (Eraslan, 2009), &grencilerin
matematigi nasil Ogrendigini anlayacaklari ¢ok az imkana tniversite egitimleri
sirasinda sahip olduklarini (Haciomeroglu ve Tagkin, 2010; Jansen ve Spitzer, 2009)
ve liniversite seviyesinde verilen matematik egitimi derslerinin gerekli kavramsal alt
yapiy1 saglamada yetersiz oldugunu (Ubuz, 2009) ortaya koymustur. Bu sebeple,
alan bilgilerini birlikte gelistirebilecekleri, arastirmanin ve gercek 0Ogrenci
caligmalarinin pratiginin birlestirildigi ortamlarda egitilmelidir. Bu egitim siiresinde
ogretmen adaylarmin  davranislar1  ve  gelismeleri tespit edilmeli ve

degerlendirilmelidir.
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Elmore’a (2002) gore arastirmacilar arasinda bu 6gretmen egitimi ortaminin
nasil tasarlanmasi gerektigi hakkinda belirli bir derecede goriis birligi olmasina
karsin, hangi programin en etkili sekilde kullanilabilecegi hakkinda bir birlik
bulunmamaktadir. Yeni c¢aligmalar (Butterfield, Forrester, McCallum ve
Chinnappan, 2013; Wilson, Mojica ve Confrey, 2013) 6grenme rotalarinin mevcut
ogretmen egitiminde kullanilmalarinin 6gretmen adaylarinin kavramsal matematik
anlamalarin1 gelistirme potansiyeline sahip oldugunu 6ne siirmektedirler. Buna ek
olarak, Ogrencinin matematik O0grenmesini temel alarak olusturulan bu rotalarin
kullaniminin, adaylarin Ogrencinin matematigini daha iyi 6grenmelerine temel
hazirlayacagini da belirtmektedirler. Bu sekilde, 0Ogretmen adaylar1 meslek
hayatlarina baslamadan 6nce 6grencilerin matematiksel kavram yanilgilarini, akil
yiirtitmelerini ve zorluklarin1 6grenme firsatini elde edebileceklerdir (Mojica, 2010;
Sztajn, Confrey, Wilson ve Edgington, 2012).

Ogrenme rotalarmin egitimin igerisine entegre edilmesinin grencilerin
matematigi nasil 6grendiklerinin anlagilmasindaki faydali ve etkili rol oynadigini bir
¢ok arastirma ortaya koymustur (Clements, Sarama, ve Julie, 2009; Confrey ve
digerleri, 2009; Duncan ve Hmelo-Silver, 2009). Buna ek olarak, matematik egitimi
alaninda son zamanlarda 6gretme ve 0grenme ortaminin dnemli bir bileseni olan
ogretmenlerin 0grenme rotalarmi1  kullanimi iizerine arastirmalar yapilmaya
baglanmistir (Daro, Mosher ve Corcoran, 2011; Niess ve Gillow-Wiles, 2014; Sztajn
ve digerleri, 2012; Wilson, Edgington ve Myers, 2014; Wilson, Sztajn, Edgington
ve Confrey, 2013). Cok az sayida caligma ise Ogretmen egitiminde kullanimi
tizerine yapilmistir (Butterfield ve digerleri, 2013; Wilson, Mojica ve Confrey,
2013a). Bu ¢aligmalardan Mojica (2010) nin c¢alismasi Ogrenme rotalari
kullaniminin, 6grenciler ile birebir ¢aligmanin yogun olarak yapildigi 6zel bir
programa kayitli olan 6gretmen adaylarinin matematik alan bilgisini gelistirmesinde
etkili oldugunu ortaya koymustur. Ancak, bu ¢alismadaki gibi olmayip, genel olarak
egitim fakiiltelerinde 6grenciler ile birebir g¢alisma tecriibesini yogun sekilde
yagamayan Ogretmen adaylar1 i¢in boyle bir ¢alisma yapilmamistir. Diger bir
arastirma ise Butterfield ve digerleri (2013) tarafindan yapilmis olup bir ¢alisma

oOnerisi seklindedir.
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Yakin zamanda, 6grenme rotalar1 arastirmacilarindan Sztajn ve digerleri
(2012), ogretmen egitiminde kaynak olarak kullanilabilecek yeni bir ogretim
kuraminm ileriye siirmiislerdir. Sztajn ve digerleri (2012) bu 6gretim kuramini
ogrenme rotalar1 temelli 6gretim (learning trajectories based instruction) olarak
isimlendirmiglerdir. Bu kurami ‘“‘arastirmalarda ortaya konulan 6grenme iizerine
olan ¢esitli c¢erceveleri birlestirmek ve yenilemek icin G6grenme rotalari
aragtirmalarini kullanmaktir” (s.152) seklinde tanimlamislardir. Dolayist ile bu
calisma, yukarida tartisilan Ogretmen egitimindeki sorunlara ve Ogretmen
adaylarinin kalitesine dair durumlara dayanarak, mevcut durumun iyilestirilmesi
adina ¢6zlim olabilecegi arastirmacilar tarafindan 6nerilen, 6grenme rotalar1 temelli
ogretim kuramini sinif 6gretmen adaylar ile gerceklestirilen bir 6gretim deneyinde
uygulamistir. Bu caligmanin amaci ise 6gretmen adaylarinin espaylasim ile ilgili
mevcut matematik alan  bilgilerini  ve 06grenci bilgilerini ne sekilde
yapilandirdiklarini incelemektir. Espaylasim konusunun se¢ilme amaclarindan en
temeli bu kavramin ilkogretimde dgretilen, 6grencilerin 6grenmekte zorluk yasadigi
ve birgok ileri matematik konusuna temel hazirlanmasina katkisi olan bir konu
olmasidir. Egpaylasim ¢arpma, bolme, rasyonel sayilar, kesirler, oran, orant1 gibi
ogrenciler tarafindan anlasilmast zor olan matematik konularina temel
hazirlamaktadir (Confrey, Maloney, Nguyen, Wilson, ve Mojica, 2008).

Bu c¢alismada sadece 6gretmen adaylarinin matematik alan bilgilerinin ve
ogrenci bilgilerinin ne kadar ilerledigi incelenmemistir. Bu ilerleme siirecinde,
ogretmen adaylarinin Ball, Thames ve Phelps’ (2008) in ortaya koymus oldugu
matematik alan bilgisinin tiirleri olan genel alan bilgisi, 6zel alan bilgisi ve ufuk
alan bilgilerini yeniden yapilandirma siirecindeki eylemleri belirlenmistir. Ogrenci
bilgilerinin de  gelismesinde  Ogretmen  adaylarimin  hangi  eylemleri
gerceklestirdikleri arastirilmistir. Bu ¢alismada bu bilgi cesitleri 6grenme rotalari
temelli 6gretim kuraminin getirdigi yaklasim ile tanimlanmistir. Genel alan bilgisi
O0grenme rotasiin her bir diizeyinde belirtilen matematiksel diisiinceleri bilme ve
uygulayabilme, ézel alan bilgisi 6grenme rotasinin igermis oldugu matematiksel
bilgileri, kavram yanilgilarini, hatalar1 irdeleyebilme ve Ogrenme rotasindaki
matematiksel bilgileri ve fikirleri birden fazla gosterim gesidi ve stratejisi ile

inceleyebilme ve ufuk alan bilgisi ise 6grenme rotasindaki matematiksel fikirleri ve
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bilgileri birbirleri ile ve ileri matematik konular ile iliskilendirme ve buna ek
olarak genellenebilir matematiksel sonuglara ulasabilme olarak tanimlanmistir
(Sztajn ve digerleri, 2012). Son olarak 6grenci bilgisi Sztajn ve digerlerinin (2012)
tanimlamalarindan uyarlanarak tanimlanmigtir. Bu bilgi ¢esidi, 6grencinin
matematiksel Ogrenmesini ve diisiinmesini anlama ve Ogrencilerin diisiinme
yaklasimlari ile empati kurabilmedir.

Yukarida irdenilen ihtiyaglar ve calismanin gerekliligi kapsaminda, bu

caligma {i¢ ana arastirma sorusuna cevap bulmayi amaglamigtir:
1. Ogretmen adaylarmim 6grenme rotalar1 temelli 6gretimden 6nceki ve sonraki
matematik alan bilgileri ve 6grenci bilgileri arasindaki farklar nelerdir?

e Ogretmen adaylarmin &grenme rotalar1 temelli Ogretimden once
ogretmeleri gereken espaylasim kavramina dair olan bilgi diizeyleri
nedir?

e Ogretmen adaylari espaylasim konusuna dair herhangi bir kavram
yanilgisi, bilgi eksikligi, zorluk ya da hataya sahipler midir? Sahiplerse,
bunlar nelerdir?

e Ogretmen adaylarinin 6grenme rotalar1 temelli &gretimden sonra
ogretmeleri gereken espaylasim kavramina dair olan bilgi diizeyleri
nedir?

2. Ogretmen adaylarmin &grenme rotalar1 temelli dgretim deneyindeki matematik
alan bilgilerini yeniden yapilandirma eylemleri nelerdir?

e Ogrenme rotalar1 temelli 6gretim 6gretmen adaylarmin matematiksel
kavram yanilgilarini, hatalarint ve zorluklarini tespit etmelerinde ve
tyilestirmelerinde nasil bir rol oynamistir?

e Ogrenme rotalar1 temelli 6gretim hangi sekillerde 6gretmen adaylarmin
espaylasim ile ilgili matematiksel stratejileri, gosterimleri ve fikirleri
anlamalarina destek olmustur?

e Ogretmen adaylari &grenme rotasindaki espaylasim ile ilgili
matematiksel fikirleri ileri matematik ile nasil iligkilendirmislerdir?

3. Ogretmen adaylarin Ogrenme rotalar1 temelli O6gretim deneyinde 6grenci

bilgilerini yeniden yapilandirma eylemleri nelerdir?
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o Ogrenme rotalar1 temelli 6gretim hangi sekillerde gretmen adaylarinin
ogrenciler ile ilgili matematiksel bilgileri ve fikirleri anlamalarina destek

olmustur?

Yontem

Ogretim deneylerinin ana amaci1 Ogrencilerin ilk elden matematik
O0grenmelerini ve akil yiiriitmelerini anlamak (Thompson, 2000) ve &gretim
kararlarin1 buna gore yonlendirmek ve ayni zamanda daha iyi bir 6grenme
saglamaktir (Cobb, Confrey, diSessa, Lehrer ve Schauble, 2003) Ogretim deneyleri
ogrencilerin matematiksel etkinliklerinin, davraniglarinin modelini ortaya ¢ikarmada
etkili bir yontemdir (Steffe ve Thompson, 2000). Bu sebeple, bu ¢aligmada sinif
Ogretmeni adaylariin matematik alan bilgilerini ve 6grenci bilgilerini 6grenme
rotalar1 temelli 6gretimde hangi yollar ve eylemler ile yeniden yapilandirdiklarini
incelemek amaci ile yapilandirmaci 6gretim deneyi yontemi (Steffe ve Thompson,
2000) kullanilmastir.

Bu calismada, 6gretim deneyi ii¢ asamada gerceklesmistir. ilk asamada
ogretim etkinlikleri ve degerlendirme sorular1 yaklasik 3 haftalik bir siire¢ igerisinde
aragtirmact ve doktora egitimine sahip bir matematik egitimci ile birlikte
gelistirilmistir veya mevcut bulunan aragtirmalardan (Empson ve Turner, 2006;
Mojica, 2010; Wilson, 2009) uyarlanmistir. Iki asamada gelistirilen bu
materyallerden yeni gelistirilenler 3 hafta siiren bir pilot ¢aligmada kullanilmis ve
eksiklikleri, calisan ve c¢alismayan yonleri tespit edilmistir. Son asamada ise 6
haftalik  asil  Ogrenme deneyi uygulanmistir. Bu asamalar asagida
detaylandirilmaktadir.

Asil 6grenme deneyinden Once, yeni gelistirilen degerlendirme sorularinin
ve kullanilacak etkinliklerin 3 hafta boyunca haftada yaklasik 3 saat boyunca 10
simif 6gretmeni aday ile bir araya gelerek pilot calismalar1 yapilmistir. Arastirmaci
ayn1 zamanda 6gretim deneyinde dgretmen roliindedir. Bu pilot ¢aligmada 6gretmen
adaylarinin verilen etkinliklerdeki ve sorulardaki stratejileri ve karsilastiklart

zorluklarin saptanmasi i¢in her bir derste ses kaydi alinmistir. Ses kaydi verilerini
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desteklemek amaci ile 6gretmen adaylarinin yazili ¢alismalar1 ve sinif i¢i onemli
etkinliklerin fotograflar1 da alimmustir. Pilot c¢alismanin sonunda etkinlikler ve
degerlendirme sorular1 revize edilmistir. Ornegin, dgretmen adaylarmin verdikleri
cevaplar1 detaylandirilmalarinin beklenildigi degerlendirme sorularmma dogrulama
sorular1 eklenmistir. Pilot calismada toplanan verilerin analizleri bilgi yapilandirma
eylemleri kategorilerinin ilk taslagini olusturmada kullanilmistir.

Bu pilot ¢alismanin sonucuna gore belirlenen kategoriler su sekildedir: (1)
alan bilgisindeki degisiklik, (2) kavram yanilgilari ve égrenme zorluklar:t ve (3)
ogrencilerin diigiinme yapilarini anlamak. Bu {i¢ kategorinin her birine bagli olan alt
eylemler de kodlanmustir. Birinci kategori altinda genisletme ve degistirme, iKinci
kategori altinda destekleme tamimlama ve diizeltme, tuglincii kategori altinda ise
swralama ve ongérme eylemleri (Smith ve Stein, 2011°den uyarlanmistir) yer
almaktadir. Bu kategoriler ve onlara bagli eylemlerin her biri asil ¢alismada revize
edilmis, genisletilmis ve yeniden diizenlenmistir. Bulgular kisminda her bir eylemin
aciklamalar1 ve 6rneklendirmeleri ayrintili olarak verilmistir.

Pilot ¢aligmanin ardindan Tiirkiye’de 6zel bir {iniversitede son sinif olan 9
smif Ogretmeni adayr ile asil Ogrenme rotalar1 temelli Ogretim deneyi
gerceklestirilmistir. Arastirmact ayni zamanda Ogretim deneyinde Og8retmen
roliindedir. Ogretim deneyi baslamadan 6nce arastirmaci calismanin icerigini ve
amacint  belirten goniilli  katilm formunu biitiin  6gretmen adaylarindan
imzalamalari rica etmis ve her bir 6gretmen aday1 goniillii olarak iiniversitedeki ders
saatlerinin disinda arastirmaci ile calismay1 gerceklestirmek {izere bulugmuslardir.
Ogretmen adaylarinin espaylasim ogrenme rotasma dair bir on tecriibeleri
bulunmamak ile birlikte, her bir aday bir temel matematik dersi ve gézleme dayali
okul deneyimi dersi almigtir. Ogretmen adaylarinin iki tanesi tam bursa, ii¢ tanesi
yarim egitim bursuna sahiptir. Her bir 6gretmen adaymin matematik konu alaninda
basar1 seviyeleri birbirinden farkli olup, basar1 seviyesi her bir diizeyden dengeli
dagilim olacak sekilde bilingli olarak secilmislerdir. Ogretmen adaylarindan sadece
birisinin 6zel ders tecriibesi bulunmaktadir. Diger 6gretmen adaylar1 gozlem dersleri
disinda 6grenciler ile birebir caligmamustir.

Asil Ogretim deneyi alti hafta siirmiis olup, bu alti haftanin ilk ve son

haftalarinda ac¢ik uglu 17 sorudan olusan espaylasim Ogrenme rotasindaki
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diizeylerdeki matematiksel fikir ve kavramlarin igerildigi Mojica (2010) ve Wilson
(2009) nin kullanmis oldugu On-son testin uyarlanarak genisletilmis hali
kullanilmugtir. ik ve son testin uygulanmasi arasinda gegen siire alt1 haftadir. On-
testten sonra bir hafta ara verildikten sonra 6gretim etkinliklerinin uygulandigi dort
haftalik bir 6gretim deneyi baslamistir. Her hafta arastirmaci-6gretmen ve 6gretmen
adaylar yaklasik 3 saat siiren 6gretim deneyini uygulamistir. Ogretim deneyinin
ikinci  haftasinda belirli bir toplulugu es paylastirma, paylasgimin adil
gerceklestirildigini dogrulama, her bir paylasimi isimlendirme {izerine odaklanmig
toplam 3 adet 6gretim etkinligi ve bir 6grenci video analizi kullanilmustir. Ugiincii
haftasinda, bir biitiinii es pargalara ayirma, parcalarin esitligini dogrulama ve erken
geciskenlik argiimanin gelisimi, paylar1 isimlendirme, yeniden birlestirme (biitiin-
parga arasindaki carpimsal iliski) ve birlesik bolme tizerine iki etkinlik ve bir
ogrenci video analizi kullanilmigtir. Dordiincii hafta katlama, dikdortgensel ve
dairesel biitiinleri es paylastirma arasindaki karmasiklik ve zorluk diizeyi farklarinin
tespiti, Empson ve Turner’den (2006) uyarlanan espaylasim ile katlama arasindaki
iliskiyi bulma {izerine iki etkinlik ve yazili ger¢ek Ogrenci katlama caligmalarinin
incelenmesi yapilmistir. Besinci haftada ise birden fazla biitiinii espaylastirma,
kovaryasyon ve yeniden dagitma iizerine toplam 3 adet etkinlik ve 2 6grenci video
analizi yapilmistir.

Ogretim deneyinin uygulanmasi sirasinda gozlem notlar1, her bir dgretim
oturumunun video kayitlari, 6grencilerin yazili ¢aligmalar1 ve resimlenen 6grenci
caligmalar1 veri toplama gerecleri olarak kullanilmistir. Buna ek olarak, arastirmaci-
ogretmen ders sirasinda gozlemledigi fakat ¢ekilen videonun tam olarak igerigini
yansitmayacagini diisiindiigii ya da teknik olarak video ¢ekmede sorun yasandigi
kisimlar1 her bir dersin bitiminde alan notlarina yazmstir.

On- ve son-testin analizleri, Wilson (2009) ve Mojica’nin (2010) ortaya
koymus oldugu rubriklerin uyarlanmast ve yeni degerlendirme sorularina
arastirmaci ve 6lgme degerlendirme alaninda doktora yapmakta olan bir 6grenci ile
birlikte rubrik gelistirilmesinden sonra, iki aragtirmaci tarafindan her bir 6gretmen
adaymnin testlerde vermis olduklari cevaplarin puanlanmasi yapilmustir. ki
aragtirmacinin puanlamalar1 arasindaki gilivenirlik %88 olarak bulunmustur.

Puanlamalarinin uyusmadig1 degerlendirme sorularinda puanlayicit ve arastirmaci
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ortak karara varmak tiizere tartismiglardir. Ortak karara varilamayan durumlar
arastirmact matematik egitimi arastirmalar1 {izerine yapilan bir ¢alistaydaki
aragtirmacilar ile tartismis ve bir sonuca ulastirmistir. Bununla birlikte aragtirmact
on- ve son-testleri ara ile iki kez puanlamis ve puanlamalar arasindaki uyum yiizdesi
%94 olarak ¢ikmustir.

Video kaydi verileri ve 6gretmen adaylarimin ¢alisma kagitlar1 analizlerde
ana veri kaynagt olarak kullanilirken, diger veri kaynaklar1 bulgularin
netlestirilmesinde ve desteklenmesinde kullanilmiglardir. Video kaydi verileri,
Powell, Francisco, ve Maher’in (2003) analitik modeli kullanilarak analiz edilmistir.
Bu model yedi basamaktan olusmaktadir; 1) video verisinin dikkatli sekilde
izlenmesi 2) video verisinin tanimlanmasi 3) kritik ve dnemli olaylarin tespiti 4)
video verisinin gerekli kisimlarinin yaziya dokiilmesi ve video kisimlarinin
kesilmesi 5) kodlama, 6) videodaki igerigin ana temasinin olusturulmasi, 7)
anlatinin olusturulmasi” (s.413). Birinci basamakta arastirmacti, video kaydi verisini
arastirma sorularimi akilda tutarak dikkatli bir sekilde izlemistir. Ikinci basamakta,
aragtirma sorularina cevap tasiyabilecek nitelikte video kaydi verisinin igeriginin
nelerden olustugunu, ve analiz i¢in nelere dikkat edilebilecegini tanimlamistir.
Uglincii  basamakta, &gretmen adaylarinin  davranislarindaki  kritik ~ olaylart
belirlemistir. Bu kritik olaylar 6gretmen adaylarinin farkl: bir strateji kullandiklari,
matematiksel alan bilgilerini ve 6grencilerinin hakkindaki bilgilerini gelistirdikleri,
degistirdikleri gibi onemli olaylardan olugmaktadir. Besinci basamakta kodlama iki
kisi tarafindan ayr1 ayr1 yapilmistir. Arastirmaci ve doktora derecesine sahip bir
matematik egitimcisi belirlenen kritik olaylarin ortak noktalarmi ifadelendiren
kodlamalar1 pilot verideki kodlamalar1 goz oniline alarak gelistirmiglerdir. Bununla
birlikte, dort yillik 6gretmenlik tecriibesi olan bir sinif 6gretmeni ise veri analizi ve
kodlama siiresinde fikirlerini kodyalan arastirmacilarla paylagsmistir. Verilerin
kodlanmasinin ayr1 yapilmasi giivenirligi saglamanin bir yontemi olarak bu
caligmada kullanilmstir.

Verilerin analizi neticesinde ortaya cikan kodlar su sekildedir. Ogretmen
adaylar1 ufuk alan bilgilerini iki tlir eylemi ile yeniden yapilandirmistir. Bunlar
iliskilendirme (Wilson ve ark.’dan (2013) uyarlanmstir) ve genellemedir. Ozel alan

bilgileri i¢sellestirme ve boyutlarint ortaya ¢ikarma eylemleri ile yeniden
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yapilandirmiglardir. Genel alan bilgilerini ise diizeltme ve degistirme, genisletme ve
meydan okuma (aksini iddia etme) eylemlerini ortaya koyarak yeniden
yapilandirmislardir. Ogretmen adaylar1 6grenci bilgilerini ise dért tiir eylem ile
yeniden yapilandirmiglardir. Bunlar, ayurt etme (Mojica’dan (2010) uyarlanmistir)
ve tanima, stralama (Stein veve Smith’ten (2011) uyarlanmustir), ongérme (Stein ve
Smith’ten (2011) uyarlanmistirve) ve empati kurmadwr. Bu kodlamalar ¢alismanin
aynt zamanda bulgulari oldugu i¢in bulgular igerisinde ileriki paragraflarda
detaylandirilmiglardir.

Creswell’e (2007) gore nitel ¢alismalarda glivenirlik ayni kodlayicinin veriyi
iki farkli zamanda kodlamasi ve birbirinden farkli kodlayicilarin verileri bagimsiz
sekilde kodlamalart ile saglanir. Bu calismada arastirmaci kendisi veriyi iki kez
kodlamis ve iki kodlama arasindaki tutarlilik %95 olarak bulunmustur. Bir
matematik egitimcisi ve arastirmaci bagimsiz olarak ayni video verisinden tespit
edilen kritik olaylar1 kodladiklarinda 90% olarak bulunmustur. Bu calismada
giivenilirligi saglamak icin ticleme (triangulation) metodu kullanilmistir. Bu yontem
iki sekilde kullanilmigtir. Birincisi birden fazla veri kaynagindan Ogretmen
adaylarinin bilgilerini yeniden yapilandirmalarina dair ayrintili bilgi toplanmistir
(Patton, 1990). Bu farkli kaynaklardan toplanan veriler elde edilen sonuglarin
dogrulugunu netlestirmistir. Ikinci olarak, ayn: video verileri birden fazla alaninda
uzman Kkisi ile birlikte aragtirmacinin ortak izleme ile analizi siiresince bir sonuca
ulagtirtlmigtir (Mathison, 1988). Buna ek olarak, aragtirmaci da video kaydi verisini
birden fazla sayida izlemis ve analiz etmistir. Bu ortak ve tek basma izleme
siirecinde negatif ve alternatif sonuglar karsilagtirilmig ve incelenmis (Merriam,
2002), kodlamalara ayrintili alintilar ya da gorsel deliller se¢ilmistir. Biitiin bu siire¢
yapilan nitel ¢caligmanin kalitesini arttirmaya yonelik adimlar olarak uygulanmustir.

Bu calismanin varsayimlar1 ve olas1 smirliliklart ise su sekilde tespit
edilmistir. Ogretmen adaylar1 iiniversitedeki dersleri i¢in ayirdiklari zamanlariin
disinda bu caligmaya goniillii olarak haftada yaklasik 3 saat katilmislardir. Bu
calismadaki  Ogretmen  adaylarinin  performanslart  notlandirilmamis  ve
performanslari iiniversitedeki not ortalamalarim etkilememistir. Ogretmen adaylar
goniilli olarak matematik bilgilerini gelistirmek i¢in bu calismaya katildiklarini

belirtmislerdir. Ayn1 zamanda, arastirmaci 6gretmen adaylar1 tarafindan 6nceden
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tanindig1 i¢in her bir 6gretmen aday1 goriislerini 6gretim deneyi sirasinda agikga
belirtmekten ¢ekinmemistir. Bununla birlikte, arastirmacit 6gretmen adaylarini
calismadan 6nce bu ¢aligmada onlar1 yargilamayacagini ve birlikte 6greneceklerini
belirtmistir. Bu sebeplerden yola ¢ikarak 6gretmen adaylarinin vermis olduklari
cevaplarda ve 6gretim deneyi sirasindaki diisiincelerinde samimi ve dogru olduklari
varsayilmistir.

Bu calismanin ilk kisitliligi zaman olarak belirlenmistir. Zaman kisitlamast
sebebi ile pilot caligma 3 haftada gergeklestirilmis ve bu siirec icerisinde sadece yeni
degerlendirme sorular1 test edilmis, onceki calismalarda kullanilan degerlendirme
sorular1 direkt olarak asil calismada kullamlmustir. ikincisi, 6gretmen adaylarinin
her hafta sadece azami 3 saatlerini goniillii olarak bu ¢alismaya vermis olmalaridir.
Bunun neticesinde, her haftada islenen konunun yogunlugu artmistir. Buna ek
olarak, 6gretmen adaylarinin 6grendikleri bilgilerini staj okullarinda denemeleri i¢in
firsat olmamustir. Bu durumun giderilmesi i¢in 6gretim deneyi iginde gergek
ogrencilerin matematiksel ¢alismalar1 ve videolart 6gretmen adaylari ile birlikte
analiz edilmistir. Arastirmacinin 6gretmen adaylarmin karsilikli birbirini tanimasi
bir sinirhlik olarak ele alinmamistir. Bu durum 6gretmen adaylarinin 6gretim
deneyine alisma siirecini kisaltarak, ogretim deneyindeki zamanin azami derece
verimli kullanilmasina olanak saglamistir. Arastirmact aym zamanda Ogretim
deneyinin Ogretmeni olma durumunun analizler {izerindeki olasi yonlendirici

etkisini ortadan kaldirmak i¢in iigleme metodunu kullanmustir.

Bulgular ve Sonuclar

Bu ¢alismanin 6n- ve son-test sonuglar1 6gretmen adaylarinin matematiksel
alan bilgilerini ve 6grenci bilgilerini 1y1 bir sekilde ilerlettiklerini gdstermektedir.
On-testin nitel analizi 6gretmen adaylarinin &gretim deneyine katilmadan &nce
ilkogretim seviyesinde dgretilecek bir konu olan espaylasim konusu ile ilgili birden
fazla kavram yanilgisina sahip oldugunu ortaya koymustur. Bununla birlikte,
ogretmen adaylarmin Ggrencilerin egpaylasim konusu ile ilgili matematiksel akil

yiriitmeleri ve disilinceleri hakkinda kisithh bir bilgiye sahip olduklar1 agiga
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cikmistir. Ogretmen adaylarmin biiyiik ¢ogunlugu ogrencilerinin de kendilerinin
uygulamis oldugu matematiksel stratejiyi kullanacaklarimi diisiinmiiglerdir. Ayrica,
Ogretmen adaylar1 on-testteki sorulari tek bir ¢oziim yolu ¢ézmeye caligsmiglardir.
Bununla birlikte testlerde yer alan bir¢ok soru ¢6ziim yollarmin dogrulanmasini
gerektirmektedir. On-testte Ogretmen adaylarinin bir kismi iiretmis olduklari
cevaplar1 sadece kisith bir sekilde agiklayabilmis ve bu agiklamalarinda kisith bir
sekilde kavramsal olarak dogru bir dil kullanabilmislerdir. Son-testte ise, 6gretmen
adaylar1 tretmis olduklart cevaplart Ogretim deneyinde Ogrenmis olduklar
matematiksel kavram ve diisiinceleri kullanarak agiklayabilmislerdir. Ek olarak,
ogretmen adaylar1 sahip olduklar1 kavram yanilgilarini diizeltmis ve ¢6ziim yollari
icin gecerli matematiksel agiklamalar getirebilmislerdir. Ogretmen adaylar
Ogrencilerin matematiksel diisiinme yollarin1 diisiinmeleri gereken sorularda ise,
kiigiik ¢ocuklar icin somut gosterimler iceren matematiksel stratejileri igeren
tahminlerde bulunurken, daha ileri yastaki ¢ocuklar icin sembolik gosterimlerin
oldugu stratejileri belirleyebilmislerdir. Biitin bu 06n- ve son-test arasindaki
Ogretmen adaylarinin performanslari arasindaki fark, O6grenme rotalari temelli
Ogretim deneyinin, amacin1 gerceklestirmede basarili oldugunu destekler
niteliktedir.

Ogretim deneyi sirasinda, dgretmen adaylarinin matematiksel alan bilgisinin
alt tlirleri olan 6zel alan bilgisi, genel alan bilgisi ve ufuk alan bilgilerini toplam
yedi eylem tiirii sergileyerek yeniden yapilandirdiklari bulunmustur. Ufuk alan
bilgilerini yeniden yapilandirma eylemleri genelleme ve iliskilendirme olarak
bulunmustur. Genelleme eylemini gosteren 6gretmen adaylari espaylasim ile ilgili
bir durumu genel gecer kurallar ile ifade edebilmislerdir. Ornegin, &gretmen
adaylarmin biiyiik bir cogunlugu katlama etkinliginde her bir katin sonucu olusan es
parga sayisim iislii sayilar ile genel olarak gdsterememistir. Ogretim deneyinde ise,
tim Ogretmen adaylar1 her bir katlama ile olusan parca sayisini {islii sayilari
kullanarak genelleyebilmislerdir. Diger bir 6rnek ise, 6gretmen adaylarin hangi es
paylasim durumunun basit, bilesik ve tam sayili kesir olusturdugunu matematiksel
olarak ifadelendirmesi olarak verilebilir. Ogretmen adaylari paylasilan nesne
sayisini ya da biitiin sayisin1 “n” ile ve paylastirilanlarin sayisin1 “p” ile temsil

etmisler ve eger n> p ise basit ve n<p ise bilesik kesir olusur genellemesine
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ulasmuslardir. [liskilendirme eyleminde ise 6gretmen adaylar1 iki tiirde bilgilerini
yapilandirmuslardir. Ik basta sadece bdlme islemi ile ilgili oldugunu diisiindiikleri
ve bildikleri es paylasimi daha sonra da kesir tiirleri, kesrin anlami, ¢arpma, bolme,
oran ve oranti, Usli sayilar, Olgme gibi ileri matematik konulart ile
iliskilendirmislerdir. Ek olarak, bu iliskileri nasil kurduklarin1 matematiksel delillere
ve Ogretim deneyindeki tecriibe ve bilgilerine dayandirarak agiklayabilmislerdir.
Ikinci olarak Ogretim deneyi Oncesinde ve baslarinda, ogretmen adaylar
espaylasimin kendi igerisindeki farkli uygulamalarini diislinmemisler ve sadece es
paylasimi bir biitiinii es parcalara bolme olarak ele almislardir. Ogretim deneyine
katildikca Ogretmen adaylari es paylasimin gesitli uygulamalarini 6grenmis ve
bunlar1 6grenme rotasindaki bilgilere paralel olarak iliskilendirmislerdir.

Bu calismada, adaylarin 6zel alan bilgilerini yeniden yapilandirma eylemleri
i¢sellestirme ve boyutlarim ortaya ¢ikarma olarak bulunmustur. Ogretmen adaylar
Ogretim deneyinin baglarinda, bir matematiksel kavram, stratejiyi ya da diisiinceyi
verilen sorularda ya da etkinliklerde kullandiklar1 halde tam olarak tiim boyutlari ile
tanimlamakta giicliik ¢ekmislerdir. Icsellestime eyleminde Ogretmen adaylari
kullanmis olduklar1 bu stratejilerin, kavramlarin, fikirlerin arka planindaki
matematigi anlamig ve tecriibelerinden yola ¢ikarak bu matematigi
aciklayabilmislerdir. Ornegin, dgretmen adaylar1 dgretim deneyinin basinda kesir
kavraminin anlamini sadece bir biitiinii es parcalara bolme olarak bilirken, 6gretim
deneyinin son haftasinda kesirlerin paylastirma, bélme ve oran anlamini sirast ile bir
biitiinii es pargalara ayirma, bir ¢oklugu dagitma ve kovaryasyon etkinlikleri
aracilig ile 6grenmislerdir. Boyutlarini ortaya ¢ikarma eyleminde ise Ogretmen
adaylar1 espaylagim ile ilgili kavram yanilgilarini, hatalar1 ve zorluklari incelemis ve
bunlara sebebiyet verebilecek faktorleri saptamislardir. Ogrenme deneyinde tecriibe
kazandik¢a 6gretmen adaylar1 bu faktorleri saptamak i¢in nasil genel alan bilgilerini
kullanacaklarini, nasil soru sorulacagimi smif i¢i etkilesim ve etkinliklerde
ogrenmislerdir. Bununla birlikte 6rnegin bir kavram yanilgisinin temelinde yatan
etkenleri aciga c¢ikardiktan sonra ortadan kaldirmak i¢in hangi matematik
bilgisinden ve gosteriminden yararlanacaklari bilgisini edinmislerdir.

Ogretmen adaylar1 genel alan bilgilerini yapilandirirken ise ii¢ ayr1 eylem

ortaya koymuslardir. Bunlardan birincisi diizeltme veve degistirme’dir. Bu eylemde
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On-testte ya da 6grenme deneyi sirasinda {izerinde ¢alistig1 soruda ya da etkinlikte
matematiksel bir hata veya kavram yanilgis1 gosteren Ogretmen adaylari, simif
icerisinde biitlin cevaplarin sunulup ve tartisilmast esnasinda yapmis oldugu hatay1
ya da yanilgiyr fark etmis ve diizeltme eylemi gostermistir. Ornegin, kovaryasyon
etkinliginde kurabiye sayisindaki artisin ve paylastiran bebek sayisi arasindaki
artisin ayni oranda oldugunu fark etmeyen bir 6gretmen adayi, bu soruyu ¢ézerken
toplamsal bir artis miktar1 oldugunu ileri stirmiistiir. Bu 6gretmenin vermis oldugu
bu yanit1 diger 6gretmen adaylar1 her bir bebegin aldig1 miktar1 gorseller ile ifade
ederek, bu 6gretmen adayinin akil yiiriitmesine ve ¢6ziim yolunun yanlis oldugunu
anlamasina ve daha sonrasinda dogru ¢6ziim yolunu bulmasina yardimci olmustur.
Ikinci eylem ise, genisletmedir. Bu eylemde dgretmen adaylar1 mevcut bilgilerinde
olan espaylasim konusunu, dnceden bilmedikleri bilgileri edinerek genisletmistir.
Bu eylem iki sekilde gerceklesmistir. Ilk olarak, dgretmen adaylarinin her birinin
farkli genel alan bilgisine sahip olmalar1 ve bunlar1 birbirleri ile paylasmalari
neticesinde, birbirlerinin bilgilerini genisletmislerdir. Ornegin, bir gretmen
adaymnin kullanmis oldugu farkli bir matematiksel stratejiyi diger 6gretmen adayzi ile
paylagmasi neticesi 6gretmen adayi bu stratejiyi dogru sekilde kullanabilir hale gelip
ogretim deneyinin devaminda kullanmustir. Ikinci olarak, arastirmaci - dgretmenin
ogretmen adaylarinin diisiinemedikleri durumlar1 ve matematiksel fikirleri 6grenme
rotasinin yardimiyla soru ve etkinlik halinde onlara deneyin igerisinde gelisecek
sekilde sunmasi ile gerceklesmistir. Son eylem ¢esidi ise meydan okuma ya da
aksini iddia etmedir. Bu eylem, 6gretim deneyinde yer yer karsilasilan bir eylemdir.
Bu eylemde, 6gretmen adayr sahip oldugu matematik alan bilgisini ve Ogretim
deneyindeki 6grenme rotasina dair tecriibelerini kullanarak, 6grenme rotasinda 6ne
stirlilen matematiksel fikirlere birebir uyusmayan zorlayici arglimanlar gelistirmis
ve bunu delillendirmistir. Ornegin, espaylasim &grenme rotasi espaylastirma
konusunda bir biitiinii bir sayinin pozitif ¢carpanlarini kullanarak parcalara ayirmanin
tek sayiya ayirmaktan daha zor oldugunu ifade etmektedir. Fakat, bir 6gretmen
adayr bu durumun her sayr i¢in gecerli olamayacagini savunmus ve bu savini
matematiksel ornekler ile desteklemistir. Bu 6gretmen adayi, “sekize ayirma gibi
ikinin kuvvetini  kullanarak veya sekiz sayistmin ¢arpanlarimi  kullanarak

yvapulabilecek bir espaylasim durumu, bir biitiinii mesela iice es olarak
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paylastirmaktan daha kolaydy” 6rnegini vermistir.

Ogretmen adaylar1 6grenci bilgilerini yeniden yapilandirirken ise dort ayri
eylem ¢esidini gostermislerdir. Birincisi, ayirt etme (Mojica’dan (2010)
uyarlanmistir) ve tamima dir. Aywt etme eyleminde O6gretmen adaylari kendi
matematiksel diistinme sekillerinin 6grencinin matematiksel diistinmesinden farkli
oldugunu anlamuslardir. Ornegin, Ogretmen adaylarmin bir ¢ogu On-testte bir
toplulugu espaylastirmada bolme islemini kullanmis ve kiigiik yastaki d6grencilerin
de bdlme kullanacaklarmi diisiinmiislerdir. Ogrenme deneyi icerisinde ise, dgretmen
adaylar1 aragtirmacinin vermis oldugu somut materyalleri kullanarak 6grencilerin
direkt bolme islemini kullanmadan 6nce birebir dagitma, ya da birden fazla nesneyi
aynm anda dagitma gibi stratejiler kullanabileceklerinin farkina varmiglardir. Bir
ogretmen adayr bu durumu su sekilde ifadelendirmistir: “Ogrencilerden farkl
olarak, biz her zaman en kisa yol olan bélme islemini kullandik. Ben diger
yontemleri 6grencilerime derslerimde gostermezdim. Ciinkii, kimse bana daha once
[baska stratejileri] sormadi.” Tanima eyleminde ise, dgretmen adayi bu ayrimi
ogrencilerin gercek calismalarinda saptamis ve kendi diisiincesinden nasil farkll
oldugunu ortaya koymustur.

Ikincisi ve {iglinciisii Stein ve Smith’den (2011) uyarlanan eylemlerdir.
Bunlar sirasi ile siralama ve ongérmedir. Siralama eyleminde 6gretmen adaylari, bir
ogrenci icin espaylasim konusu ile ilgili matematiksel stratejileri, gorevleri ve
sorular1 az karmasik olandan ¢ok karmagsik olana dogru siralama bilgisine sahip
olmuslardir. Ornegin, dgretim deneyinin baginda dgretmen adaylar1 dikdortgensel
bir biitiin ile dairesel bir biitlinii espaylastirma arasinda zorluk farkinin olmadigini
diisiinmiislerdir. Ogretim deneyi sirasinda ise, dairesel bir biitiinii es paylastirmayi
somut materyaller iizerinde yapmaya caligmiglar ve ozellikle tek sayida ayirim
kullanacaklar1 durumlarda dairesel kesmenin kullanilmasinin dairesel bir biitiinii es
paylastirmay1 daha zor hale getirdigini fark etmislerdir. Ikinci eylem olan
ongormede ise, 6gretmen adaylar1 bir 6grencinin sunulan bir espaylasim gorevinde
kullanabilecegi olasi stratejileri, gosterimleri ve bu gdrevin ¢oziim siirecinde
gosterebilecegi olasi kavram yanilgilarini, hatalar1 ve zorluklar1 6nceden tahmin
edebilmistir. Ornegin, hicbir 6gretmen adayr On-testte dgrencilerin bir dairesel

biitiinii egpaylastirmadaki kavram yanilgilarimi tahmin edemez iken, son-testte
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Ogretmen adaylarinin hepsi en azindan bir kavram yanilgisim1 6ngdrmiistiir. Son
saptanan eylem ise empati kurmadir. Ogretmen adaylart Ogrencilerin kavram
yanilgilarina sahip olmalar1 durumu ile kendilerinin de benzer kavram yanilgilarina
sahip olma durumlari arasinda empati kurmuslardir. Ogretim deneyinin baslarinda
ve oOn-testte, 6gretmen adaylarinin yanlis cevap veren bir 0grencinin matematik
bilgisini degerlendirirken konuyu bilmedigi yargisi ile gecistirdikleri gozlenmistir.
Ogretim deneyi ilerledikce, ogretmen adaylari da oOgrencilerin sahip oldugu
yanilgilar sergilemisler ve bunlar1 nasil diizelteceklerini tartigsmislardir. Bu durum,
Ogretmen adaylarimin Ogrencilerin hatalarim1 ve yanilgilarini yargilamamalarini
saglamistir. Bir 0gretmen adayi bu durumu sdyle ifade etmistir: “Biz 6gretmen
olarak bu yamlgilara sahip isek, égrencilerin sahip olmasi cok normal. Onemli olan

bu yanmilgilar: gidermeye ¢calismaktir.”

Tartisma

Schoenfeld (2011) kuram ve gergeve arasindaki farki basit bir dille su
sekilde ifade etmistir: Cerceve neye bakmaniz gerektigini ve gérmeniz gereken olasi
etkiyi soylerken; kuram pargalarin bir araya nasil geldiklerini ve uyum
sagladiklarin1 sdyler. Kuram bir seyin ni¢in ve nasil ¢alisacagini sdylerken, ¢ergeve
bunun uygulamada nasil ac¢iga ¢iktigmin gostergesidir. Ogrenme rotalari temelli
ogretim son yillarda ortaya g¢ikan ve gelisen bir 6gretim kuramidir. Bu kuram
mevcut Ogretim kuramlarin1 ve Ogrenme rotalar1 calismalarinin perspektifi ile
birlestirip, matematik O6gretiminde kullanimmin nasil olacagint ve potansiyel
faydalarin1 ifadelendirmektedir. Arastirmacilarin (Butterfield ve digerleri, 2013;
Sherin, Jacobs, ve Philipp; 2011) belirttigi gibi bilginin sadece ilerlediginin tespiti
degil, bu ilerleme siirecinde onun nasil yapilandirildiginin tespiti, kullanilan
kuramlarmin islerligini anlamak agisindan onemlidir ve bu alanda calismalara
ithtiya¢ duyulmaktadir.

Bu c¢alismanin 6nemli sonuglarindan biri bu ihtiyaca cevap verme ve daha
sonra yapilacak farkli 6grenme rotalarinin kullanilacagi ¢aligmalara yon gosterme
potansiyelinin olmasidir. Bu ¢alisma, 6grenme rotalar1 temelli 6gretim kuramini

ogretmen adaylarinin katilmis oldugu bir 6gretim deneyinde kullanarak, bu kuramin
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kullanomi1  sirasinda ve neticesinde ortaya ¢ikan etkileri ve eylemleri
siiflandirmistir. Bu kuramin pratikte nasil sonuglar ortaya ¢ikardigini ve bilgiyi
gelistirmede hangi eylemlerin gerceklestirilmesine zemin hazirladigini gdsteren bir
cerceve ortaya konulmustur. Bu cergeve Ogretmen adaylarinin bilgilerindeki
ilerlemenin hangi davranis tiirlerinin neticesinde agiga c¢iktiginin tespiti agisindan
onem tasimaktadir.

Bu calismanin 6nemli bir diger sonucu Ogretmen adaylart matematigin
birbirinden ayr1 yapiya sahip olan konular toplulugu olmadigini 6grenmeleri
olmustur. Basta espaylasim konusunu ¢ok basit olarak nitelendiren o6gretmen
adaylar1, ufuk alan bilgilerinin yeniden yapilandirmalariyla bu konunun bircok ileri
matematik konusu ile iligkili oldugunu O&grenmis ve bu iliskileri O0grenme
deneyindeki deneyimleri ve alan bilgileri ile iligskilendirmislerdir. Bunun neticesinde
Ogretmen adaylar1 0gretecekleri ilkogretim matematiginin diistindiikleri gibi basit
olmadig1 kanisina ulasmislardir. Bu kanm1 Ball (1990) ve Phillipp (2008) tarafindan
belirtilen matematik egitimine dair 6gretmen ve 6gretmen adaylarinin sahip oldugu
ana zorluklardan biridir. Bu 0Ogretim deneyindeki tecriibeler ve etkilesimler
neticesinde 6gretmen adaylarinin sahip olduklar bilgileri yeniden yapilandirmalar
ve genisletmeleri bu zorlugun asilmasinda da rol oynamaistir.

Bu ¢alisma 6grenme rotalarini kullanan onceki ¢alismalardan farkli olarak,
ogretmen adaylarinin 6grencilerden farkli bir matematiksel diisiinme sistemine
(Mojica, 2010) sahip olduklar: bilgisini yapilandirmalarin1 sagladig1 kadar, onlarla
birlikte ortak kavram yanilgilarina ya da hatalara sahip olabileceklerini anlamalarini
saglamistir. Birgok arastirma yetiskinlerin matematiksel diisiinmesinin ¢ocuklardan
farkli oldugu tespitini yapmis ve bu farkin anlasilmasinin ¢ocuklara matematik
ogretiminde ne kadar 6nemli oldugunu vurgulamistir. Bu galismada ise diistinceler
arasindaki bu farkin anlasilmasinin 6nemi vurgulandig kadar, 6gretmen adaylarinin
ogrencilerin matematiksel diisiinmelerinde ya da matematik sorularint ¢ézme
stireglerinde izledikleri yollarda sahip olduklart yaklasimlar ile kendi izledikleri
stireclerdeki benzerlikleri gz oniine alarak empati kurmalarmin 6nemli oldugunu
aciga cikarmugtir. Ogretmen adaylari 6gretim deneyinin baslarinda ve &n-testte,
yanlis bir Ogrenci cevabi gordiiklerinde bu 6grencinin soruyu ¢ozecek yeterli
matematigi bilmedigini ya da yanlis bildigini diisiinmekteydiler. Fakat, 6§renme
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deneyinin i¢inde yasadiklar tecriibeler neticesinde 6gretmen adaylar1 kendilerinin
baz1 espaylasim durumlarina dair Ogrencilerin gostermis olduklar1 kavram
yanilgilarina ve hatalarina sahip olduklarini gordiiler. Bunun neticesinde dgretmen
adaylari, bunlarin nasil diizeltilecegi iizerine yogunlagmalar1 ve kendi bilgilerini de
kavramsal diizeyde arttirmalar1 gerektigini belirtmislerdir. Ogretmen adaylarimin
ogretim deneyi sonunda 6grenciler ile bu empatiyi kurmalari, yanlis cevap tireten bir
Ogrenciyi yargilamaktan ziyade, yanliga gotiiren sebepleri irdeleme farkindaligina
sahip olduklarimi gostermektedir. Bu 6gretim deneyinin sonucunda gelisen anlayis
aynt zamanda Ogretmen adaylar1 igin Ogrenciler bu hatayr nasil yaparlar,
ilkogretimde ogretilen matematik ¢ok kolaydir (Philipp, 2008) gibi olan ilk
varsayimlarint da degistirmelerini saglamistir. Bu anlayisa sahip Ogretmen
adaylarinin sdylemleri O6grencilerinin kavram yanilgilarin1 tespit ettiklerinde,
Ogrencinin matematik O6grenmesini yargilamak yerine, bu yanilginin sebeplerini
aramay1 ve bu durumlar1 nasil liretken sinif tartismalarina ¢evirecegini 6grendikleri
yoniinde olmustur.

Ogretim deneyinin sonucunda literatiirde tespit edilen 6gretmen adaylarinin
ogretecekleri matematigi tam olarak bilmemeleri (Ball, 1990; Zembat, 2007),
ogrenciler ile benzer kavram yanilgilarina sahip olmalar1 (Butterfield ve digerleri,
2013) ve ogrencilerin bu matematigi daha nasil 1yi 6grenirler noktasindaki bilgi
eksiklikleri (Phillips, 2008) problemleri espaylasim konusu igerisinde ele alimuistir.
Ogretim deneyinin sonunda, dgretmen adaylari hem genel alan bilgilerini hem de
Ozel alan bilgilerini genisleterek ve iyilestirerek 6gretecekleri konuyu birden fazla
boyutu ile O6grenmislerdir. Ayni1 zamanda, cesitli matematiksel gosterimleri,
stratejileri ve agiklamalar1 6gretim deneyinde kullanmislardir. Bununla birlikte, bu
gosterimlerin  ve stratejilerin  altindaki matematiksel mesajlar1 irdeleyerek
ogrenmislerdir. Ogretmen adaylarinin sahip olduklar1 bilgi seviyelerinin bu
noktalarda ilerlemesi, o6gretecekleri matematigin ileride Ogrencileri ig¢in daha
ulagilabilir ve anlamli olmasina katki saglamaktadir (Philipp, 2008; Sherin ve
digerleri, 2011).

Bu caligmanin bir diger 6dnemli sonucu ise, 6gretmen adaylarinin 6grenme
rotasinin ileri stlirdiigli siralamayi, yapilandirmig olduklari matematiksel alan

bilgilerini ve ogrenme deneyindeki tecriibelerini kullanarak alternatif fikirler

316



uretmeleridir. Bununla birlikte, 6grenme rotasinin i¢inde belirtilmeyen matematiksel
stratejileri de kullanmislardir. Bu durum, her bir kisi i¢in sabit bir 6grenme rotasinin
olmadigin1 gostermektedir (Clements ve Sarama, 2013). Bu durum, 6grenenin farkl
hazirbulunusluk diizeyine, bilgi birikimine sahip olmasi sonucu ortaya ¢ikmistir ve
aynt zamanda o6gretmen adaylariin izledikleri 6grenme rotasinin farklilagsmasini

saglamistir.

Simirhlik ve Oneriler

Bu c¢alismanin birinci sinirlihigi c¢alismaya az sayida Ogretmen adayi
katilmasidir. Bu sinirlilik her ne kadar her bir Ogretmen adayinin mevcut
matematiksel alan bilgilerini ve 0Ogrenci bilgilerini Yyeniden yapilandirma
eylemlerinin ortaya g¢ikarilmasina ve derinlemesine incelenmesine zemin hazirlasa
da calismanin genellenebilirligi agisindan bir sinir teskil etmektedir. Bu ¢alismada
sunulan c¢ergeve farkli biiyiikliklerdeki oOrneklemler ile test edilmeli ve
gelistirilmelidir. Bu ¢esit ¢alismalar iki farkli tasarimla yapilabilir. Birinci olarak
nicel deneysel calismalarda, 6grenme rotalari temelli 6gretim kullanilarak bu
bilgilerin yeniden yapilandirilmasinda 6gretim ortamindaki baska faktorlerin etkileri
ve kuramin etkileri arastirilabilir. kinci olarak, bu c¢alismada sadece espaylasim
ogrenme rotasi kullanilmistir, bagska 6grenme rotalarinin kullanildigi nitel caligmalar
ile bu ¢ercevenin islerligi test edilmeli ve 6gretim faaliyetleri agiga ¢ikarilmalidir.

Clements ve Sarama’nin (2013) ifadelendirdigi gibi her bir bireyin kendine
0zgii bir 6grenme rotast vardir ve bu rota bireyin i¢inde bulundugu sartlara, egitim
durumuna ve tecriibelerine gore sekillenir. Her ne kadar bu calismada farkhi
akademik yeterlilige sahip 6gretmen adaylar secilmis olsa da, 6gretmen adaylarinin
hepsi 0Ozel bir {niversitede egitim gormektedirler. Dolayisiyla, devlet
iiniversitelerinde okuyan Ogretmen adaylar1 ile bu calismaya benzer caligmalar
yiiriitiilebilir ve bu ¢alismalarin sonuglar1 birbirleri ile karsilagtirilarak bu ¢alismada
ortaya konulan ¢ergevenin gecerligi sinanabilir. Bu sekildeki calismalar aym
zamanda caligmanin bulgularmin genellenebilirliginin test edilmesi adina 6nem

tagimaktadir.
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Daro, Mosher veve Corcoran’a (2011) gore matematik egitimi alaninda
mevcut 18 adet 6grenme rotasi bulunmaktadir. Bu 6grenme rotalarinin 6gretmen
adaylarinin alan bilgilerini ve 6grenci bilgilerini gelistirmesindeki rolleri aragtirmali
ve birden fazla 6grenme rotasinin birlikte kullanilmasiyla yapilacak ¢aligmalarin da
etkileri arastirllmalidir. Birden fazla 6grenme rotasinin bir arada kullanilmasiyla
yapilacak calismalar, matematik egitiminin nasil yapilandirilmasi, hangi sira ile
yapilmasi gerektigine 11k tutabilecek niteliktedir (Clements veve Sarama, 2013).
Buna ek olarak, bu 6grenme rotalarinin icermis oldugu bilgilerin ve matematiksel
siralamanin, egitim miifredatlarinin i¢ine entegre edilmesi (Confrey, Maloney, ve
Corley, 2014) ve bu entegrasyonun arastirmalar ile test edilmesi mevcut miifredat
gelistirme calismalarina da 11k tutar nitelikte olacaktir.

Yukarida belirtilen ve dikkatli bir gsekilde tasarlanmis hem nitel hem de nicel
caligmalarin sonuglar1 6gretmen egitimine dair alanyazin taramasinda saptanan
problemlerin ¢dziimiine yardimci olma potansiyeline sahiptir. Ayni zamanda,
Ogretmen adaylarina Ogrencilerin matematigi nasil ogrendiklerini
anlamlandirabilecekleri bir matematiksel alt yapi kazandirilmasi igin, 6gretmen
egitimindeki matematik egitimi derslerinin nasil yapilandirabilecegine dair bilgi

verme ag¢isindan bu ¢aligmalarin yapilmasi dnemlidir.
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