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ABSTRACT

NEW HEURISTICS FOR PERFORMANCE IMPROVEMENT OF ILP-BASED
CONCEPT DISCOVERY SYSTEMS

Doğan, Abdullah

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Pınar Karagöz

Co-Supervisor : Assist. Prof. Dr. Alev Mutlu

August 2015, 57 pages

A large amount of the valuable data in daily life is stored in relational databases.
The accumulation of so much information motivates the need for extracting valuable
patterns in relational databases. Background knowledge and a set of target examples
that are stored in multiple tables are used to produce hypothesis for ILP-based concept
discovery systems. Multiple arguments on these multiple tables end up large search
spaces while building the hypothesis that arise computational efficiency problems.

In this thesis we focus on concept discovery systems that use Apriori-based special-
ization operator and work directly on relational tables. Time efficiency of these ILP
systems is directly proportional to the number of queries running on DBMS. These
queries mostly involve support and confidence calculation queries of candidate con-
cept rules generated on the search space. We aim to increase time efficiency by re-
ducing the number of running queries on these systems.

Particularly, we worked on Concept Rule Induction System (CRIS), which uses Apriori-
based specialization in hypothesis construction. The methods we propose generate the
same solutions as in CRIS. Therefore, we improve the efficiency without affecting the
accuracy negatively.

In the first method, we prune the concept descriptors using support coverage sets.
These sets are stored for memoization support of CRIS. We use the existing sets in
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our proposed method so that they are also used for pruning the search space. In
the second pruning method, we build cosine similarity matrix of attributes of each
predicate in pre-processing step. During the specialization of concept descriptors, we
prune the search space by utilizing this similarity matrix. Finally we examine the
applicability of using NoSQL system MongoDB and a NewSQL system VoltDB as a
storage for ILP system CRIS.

Keywords: Inductive Logic Programming, Concept Discovery, Cosine Similarity,
Support, Confidence
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ÖZ

TÜMEVARAN MANTIK PROGRAMLAMA TABANLI SİSTEMLER İÇİN
ZAMAN PERFORMANSINI İYİLEŞTİRME AMAÇLI YENİ SEZGİSEL

YÖNTEMLER

Doğan, Abdullah

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pınar Karagöz

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Alev Mutlu

Ağustos 2015 , 57 sayfa

Günlük hayatta çok miktarda değerli bilgi ilişkisel veri tabanlarında tutulmaktadır.
Çok fazla bilginin toplanması, ilişkisel veri tabanlarında değerli modellerin bulunma-
sını teşvik etmektedir. Tümevaran mantık programlama tabanlı keşif sistemlerinde,
çoklu tablolarda tutulan arkaplan bilgisi ve hedef örnekleri kullanılarak hipotezler
üretilir. Bu çoklu tablolardaki çoklu argümanlar hipotez üretirken geniş arama alan-
larına dolayısıyla hesaplama verimliliği problemlerine sebep olurlar.

Bu tezde, Apriori tabanlı özelleştirme operatörü kullanan ve ilişkisel tablolar üzerinde
çalışan keşif sistemleri üzerinde yoğunlaştık. Bu sistemlerdeki zaman verimliliği veri-
tabanı yönetim sisteminde çalışan sorgu sayısı ile doğru orantılıdır. Bu sorgular genel-
likle arama alanında oluşan aday kavram kurallarının kapsam ve doğruluk hesaplama
sorgularıdır. Bu sistemdeki çalışan sorguları azaltarak zaman verimliliğini arttırmayı
amaçlıyoruz.

Özellikle hipotez üretilmesi sırasında Apriori-tabanlı özelleştirme kullanan Kavram
Kural Tümevarım Sistemi (CRIS) üzerinde çalıştık. Geliştirdiğimiz yöntemler CRIS
ile aynı sonuçları üretmektedir. Dolayısıyla doğruluğu olumsuz etkilemeden verimli-
liği arttırmaktadır.
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İlk metodda kavram tanımlayıcılarını destek ölçütü kapsama kümelerini kullanarak
budadık. Bu kümeler CRIS’te tablolama desteği için kullanılmaktadır. Metodumuzda
varolan bu kümeleri, arama alanında da budama gerçekleştirecek şekilde kullandık.

İkinci budama metodunda, ön işleme olarak tabloların tüm niteliklerinin kosinüs ben-
zerliği matrisi oluşturduk. Kavram tanımlayıcılarının özelleştirmesi aşamasında kosi-
nüs matrisini kullanarak arama alanında budama yaptık.

Son olarak bir tümevaran mantık programramı olan CRIS’in bir NoSQL sistemi olan
MongoDB ve NewSQL sistemi olan VoltDB’yi depolama alanı olarak kullanabilirli-
ğini araştırdık.

Anahtar Kelimeler: Tümevaran Mantık Programlama, Kavram Keşfi, Kosinüs Ben-
zerliği, Destek Ölçütü, Güven Ölçütü
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CHAPTER 1

INTRODUCTION

Inductive logic programming is a discipline that has roots in both machine learn-

ing and logic programming. With the use of theoretical bases of logic, it overcomes

the limitations of propositional learners and find a relational representation for back-

ground knowledge [47].

Different approaches are researched in this area based on the search direction as either

top-down or bottom-up. The former starts with most general clauses and applies spe-

cialization operators to achieve the goal. The latter starts with most specific clauses

and applies generalization techniques to achieve the goal. Both methodologies use

logic-based operators.

These systems find place in wide range of fields. Since from their first definition,

they have been applied to engineering [17, 22], biochemistry [35, 44, 36], language

processing [83, 12]. Also several performance improvement techniques are searched

in these area. All aim to find the goal without loss valuable information in less time.

Such improvement techniques including reordering the literals in a clause [78], ap-

plying parallelization techniques [26], and caching techniques [12] or using query

transformations [10, 11].

In this thesis, two pruning methods are presented. Both are developed under Tabular

CRIS w-EF [55, 53], an ILP algorithm that uses Apriori-based specialization operator.

The aim in both pruning methods is to reduce the number of SQL calls to the database

because of the generated large search space due to the refinement operator.

In the first method, memoization structure of the existing algorithm extended. Cov-
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erage set of support values of parent concept descriptors which are already stored in

hash table are used to prune the specialized concept descriptors. The motivation can

be explained in terms of relational algebra. Support of a concept descriptor of length

l is a relation instance that is the result of algebraic queries which consist of selec-

tions (σ) and joins (./) applied to database relations and projected (Π) based on head

arguments of the concept descriptor. Since a "l + 1" length clause is generated from

two length "l" clauses, support of the (l+ 1) length clause can be generated using the

support instances of length l clauses. It is the result of joining length l queries thus

intersecting them.

The second pruning method is inspired from information retrieval. Cosine similarity

of argument domain vectors are used to prune concept descriptors without calculating

support queries.

In this thesis, we also present the applicability of the existing ILP system on a NoSQL

database and NewSQL database. We explore the feasibility of using an embed-

ded data model in MongoDB. In addition, we examine the performance of running

asynchronous query calls to multiple clusters in VoltDB. Lastly, we perform tests by

changing MySQL tables to Memory storage engine.

Chapters of this thesis are organized as follows. In Chapter 1, we briefly define the

problem with emphasis on our motivation behind this thesis. Chapter 2 provides

related work on ILP-based systems. In Chapter 3 we provide background about in-

ductive logic programming. Also we focus on the algorithm defined for CRIS and

related work on CRIS. In Chapter 4 we present our two pruning methods which are

extensions to CRIS wEF. Also in this chapter, we examine applicability of CRIS in

different database management systems like MongoDB and VoltDB. In Chapter 5

experimental results are presented, and in Chapter 6 the thesis is concluded with an

overview and final remarks.
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CHAPTER 2

LITERATURE SURVEY

In this chapter first we introduce related work on ILP-based concept discovery sys-

tems. Then performance improvement techniques applied to ILP-based systems are

presented.

2.1 Concept Rule Induction Systems

2.1.1 FOIL (First Order Inductive Logic Learner)

FOIL [59, 60] is a variant of sequential covering algorithm. It starts with a literal with

just left hand side, then adds a literal one at a time (top-down). When it finds a rule,

it removes positive examples which are covered by this rule then advances to learn

another rule. It supports recursive rules where the target relation can be found in the

body of the clause.

While adding a literal to the right hand side, FOIL follows the rules below:

• New literal should have at least one bounded variable.

• If it is a recursive rule (predicate of the new literal is same as the literal on

the left hand side) then restrict possible arguments to dissallow some problems

related to recursion.

To decrease the coverage of negative examples and increase coverage of positive ex-

amples, FOIL uses gain metric for evaluating literals.
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2.1.2 WARMR

An apriori based ILP system WARMR is defined in [3]. It is an extension of APRIORI

algorithm and is modified to be used for multiple relations [14, 15, 38]. It is the

earliest ILP algorithm that is applied to chemical components data [37] where patterns

for carcinogenicity relations of chemical compounds are discovered. In addition, it

is applied to telecomuncation network analysis and part-of-speech tagging of natural

language text [14]. It uses θ-subsumption based generalization [16], starts with the

most general patterns and iterate through generalization to evaluation phases where

frequencies are calculated. Language bias, minfreq. (minimum support threshold)

and a set of examples (E) are given as input and patterns in language bias that cover

above the minfreq. of examples (E) are discovered.

2.1.3 GOLEM

GOLEM [48] is a relational ILP based concept discovery system which uses relative

least general generalization (rlgg) to guide the search space. GOLEM contains two

nested loops. In the outer loop, the clauses which cover the positive examples are

randomly picked. Following in the inner loop, RLGG of uncovered positive examples

are computed and the one with the highest coverage is selected. GOLEM is applied

in various applications such as satellite fault diagnosis model [22], mesh design [17],

qualitative physics model design [7].

2.1.4 PROGOL

PROGOL [45] is a top-down ILP algorithm. It uses inverse resolution adapted [46]

to first order logic for generating hypothesis. It uses sequential covering algorithm as

in FOIL, but also uses mode declarations that define restrictions on predicates.
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2.1.5 CRIS

CRIS is a top-down ILP based concept discovery system where target is a single table

and background facts are multiple tables that reside on a database system [33, 49]. It

first generates most general hypothesis and then specializes the concept descriptors

using apriori based specialization operator. It uses support and confidence for prun-

ing infrequent rules. It finds the best concept descriptor using f-metric [28]. As in

sequential covering algoritm, at each iteration CRIS removes target instances that are

covered by the best concept descriptor. Since efficiency improvements for CRIS are

proposed in this thesis, detailed information is given in Chapter 3.

2.2 Time Performance Improvement Techniques

ILP-based concept discovery systems suffer efficiency problems because of the gen-

erated large search spaces. Therefore performance improvements has received a lot

of interest on these systems. In this section efficiency improvement methods applied

to ILP-based systems are introduced.

2.2.1 Query Packs

Blokeel et al. improves the efficiency of ILP using query packs [6]. In the proposed

method, literals with identical prefixes in the search lattice are grouped together to

form query packs. It is a tree structure where a query pack is computed once and it’s

results are used by their successors. As an example five queries given below:

p(X), I = 1.

p(X), q(X,a), I = 2.

p(X), q(X,b), I = 3.

p(X), q(X,Y), t(X), I = 4.

p(X), q(X,Y), t(X), r(Y,1), I = 5.

It is converted to disjunctive query as follows:

p(X), (I=1 or q(X,a), I=2 or q(X,b), I=3 or q(X,Y), t(X), (I=4 or r(Y,1), I=5))
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Since the literal P(X) is the prefix for all the queries, it is evaluated only once and

performance improvements can be achieved according to the cost of evaluating P(X).

TILDA and WARMR systems are re-implemented for query packs and experiments

are conducted on mutagenesis data set [77]. The results show remarkable speedups

achieved by applying query packs.

2.2.2 Query Transformations

Costa et al. proposed four query transformations in [10, 11]. In their work, first order

predicates are transformed into equivalent predicates in an efficient form. In Theta-

transformation (tθ) redundant literals in the body are eliminated based on subsump-

tion relation. In Cut-transformation (t!) dependent literals in the body of the clause

are partitioned to form equivalent classes. Each equivalent class is computed indepen-

dently. If there is no solution in a class, then there is no solution for all classes in the

clause. The third transformation called the once-transformation (to) has same effect

as cut-transformation, but partitioning process is improved by using prior knowledge.

The fourth transformation, smartcall-transformation (ts) uses the fact that coverage

list of refined clauses are subset of coverage list of their parents.

2.2.3 Reordering Literals

In [78], optimization of ILP system ALEPH is done by reordering literals. The pro-

posed method first estimates average execution time costs of the literals. Then moves

the literals with lowest estimate first in the clause. Experiments on carcinogenesis

data set [76] verifies the minimum average execution time of the clauses after re-

ordering.

2.2.4 Caching

In [12] performance improvement is achieved using memoization in P-Progol. Posi-

tive and negative coverage sets of clauses are stored in cache to be used in subsequent

search of the similar clause. In addition, a cache structure for pruned clauses are
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stored in "prune cache". The computational gain here is that; if a new clause is in the

cache then prune it without any calculation. Caching improved the time efficiency of

the ILP system. In addition to caching, this system uses constraints to limit the search

space. One of the constraints defined is related to the length of the clause; length

should not be greater than 5. Another constraint is defined for pruning the search

space; a clause should cover at least 15 positive target examples. Experimental re-

sults show that caching brings 15.75 speed-up and for small data sets 10.74 speed-up.

Additional experiments [25, 24] for for coverage caching are conducted by using the

another prolog based ILP system April [23]. Results show excessive memory usage

with the use of caching.

Tabular CRIS is another ILP system that uses cache [50]. In this system, support

and confidence query results are stored in hash tables. Repeating calls of an SQL

query is retrieved from the hash. More details about this system is given in Chapter 3

Background.

2.2.5 Parallelization

Fonseca et al. proposed a pipelined data-parallel algorithm P 2 − mdie developed

on ILP system April [23] to be used in distributed memory machines [26]. In the

proposed system target examples are split to workers. In addition, learning step is

split to stages and each stage uses only examples reserved to them. Finding the best

rule is done by pipelining. After a good rule is found in a stage , it is sent to another

stage that uses different part of the examples. At the end of the pipelining rules found

are send to the master.

There are several researches about parallelization of existing ILP systems. Parallel

extension for ILP system CLAUDIEN is described in [13]. The task is Parallelization

of C4.5 system is described in [39].
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2.2.6 Language Bias

In [57] efficiency improvement of ILP systems is achieved by using restrictions to

limit the generated hyphotheses namely declarative bias specifications.
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CHAPTER 3

BACKGROUND

In this chapter basic topics about this thesis is given. Since many relational data

mining algorithms have their roots in inductive logic programming, we first give def-

inition of relational data mining. Then detailed structure of CRIS is given. Lastly we

present information NoSQL and NewSQL systems database systems.

3.1 Relational Data Mining

Multi-relational data mining models techniques for querying, manipulating or storing

complex information in relational database [38, 20]. Tables and columns are main

components of these systems. The propositional algorithms look for patterns in a sin-

gle table. On the other hand, searching for valuable information in multiple tables is

the subject of multi-relational data mining. It has roots in inductive logic program-

ming which provides expressive language. It has been applied to wide range of areas

where data is stored in relational tables, bioinformatics, web mining, finding patterns

in business etc.

3.2 Inductive Logic Programming

Inductive Logic Programming (ILP) is a field in machine learning which aims to dis-

cover patterns from given examples and knowledge from experience [47]. It comes

from two disciplines. Finding hypothesis in inductive manner is the area of inductive

machine learning. The representation of discovered patterns and background knowl-
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edge in ILP are represented by computational logic, a subset of first order logic [20].

Given background knowledge (B), positive (P) and negative (N) examples (E), hy-

pothesis (H) in an ILP system should be complete B∧H � P and consistent B∧H 2 N

[20].

An ILP problem on sample data set elti is given in Table 3.1 where elti predicate

instances are the target and background knowledge is wife and brother predicate in-

stances.

Table 3.1: Sample ILP problem

Examples Background Knowledge
elti(nalan,bedriye) ⊕ wife(ayten,ismail) brother(yildirim,sadullah)
elti(cemile,ayten) ⊕ wife(nalan,sadullah) brother(mehmet,ismail)

wife(bedriye,yildirim)
wife(cemile,mehmet)

These systems commonly use sequential covering algorithm. In this algorithm hy-

pothesis are generated iteratively where coverage set of a hypothesis is removed from

positive examples. Then the algorithm advances building the next hypothesis until all

positive examples are removed.

A Generic ILP Algorithm 1 defined by Muggleton et al [47], candidate hypothe-

sis (QH) are stored in a queue. At each iteration, a hyphotesis (H) is deleted from

queue and inference rules are applied to the deleted one to generate new hypothesis.

Then newly generated hypothesis are added to the queue. Only promising hypothesis

continue to exist in the queue for the next iterations by applying a pruning method.

Iteration repeats until it meets the specified stop criteria.

Search space for ILP algorithms is based on θ-subsumption [21]. If a substitution θ

is applied to clause c and cθ ⊆ c′ then c θ-subsumes c′ . In addition, if θ-subsumes c′

then c entails c′ (c |= c′), also c is at least as general as c′ (c ≤ c
′). If c < c

′ then c

is more general then of c′ therefore c′ a refinement of c. Consider two clauses P1 and

P2 and their refinement C1.

P1:elti(A,B):-brother(C,D)

P2:elti(A,B):-daughter(C,A)
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QH := Initialize

repeat

Delete H from QH

Choose inference rules r1, r2...rk ∈R to be applied to H

Apply rules r1, r2...rk to H to yield H1, H2...Hn

Add H1, H2...Hn to QH

Prune QH

until Stop criteria (QH) satisfied

Algorithm 1: Generic ILP algorithm [47]

C1:elti(A,B):-brother(C,D), daughter(E,A)

Clause P1 θ-subsumes the clause C1 and since when applying θ as empty substitution

to P1, it is a subset of C1. Also P1 < C1 so P1 is a generalization of C1.

Generating hypothesis is done either by top-down manner or bottom-up manner. In

top down systems, refinement graph search operation is done by θ-subsumption.

Firstly, most general clauses are generated then they are specialized in a way that they

cover positive examples and no negative examples. In bottom-up systems, examples

and background knowledge is used to create least general generalizations based on

θ-subsumption. Firstly most specific clauses are generated then they are generalized

in a way that they cover positive examples and no negative examples.

3.3 Concept Rule Induction System (CRIS)

Two proposed pruning methods in this thesis are embedded into Tabular CRIS-wEF,

which is an extension of CRIS algorithm. In this section we give more information

about CRIS. Firstly, we present the main stages of the algorithm. Then developments

on this algorithm is presented.
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3.3.1 Algorithm of CRIS

CRIS is a top-down ILP algorithm. It starts with the generalization phase. Then

iteratively follow specialization, filtering and covering phases.

Generalization In this step, CRIS generates most general hypothesis. It first deter-

mines available constants and variables in arguments of target and each back-

ground predicates. Then target and background predicates with their feasible

arguments are combined to form a one head one body concept descriptor. Min-

imum support threshold value multiplied by count of rows in a predicate is

determinative for choosing if a nominal attribute in a predicate can be constant

or not.

As an example, consider a predicate pred1(nomArg1, numArg1) where no-

mArg1 is a nominal argument and numArg1 is a numeric argument. If mini-

mum support threshold is given as 0.3 and count of rows is 5894, then possible

constant values for nominal attributes calculated as in Table 3.2

Table 3.2: Calculating possible values for a nominal argument

SQL

SELECT nomArg1
FROM pred1
GROUP BY nomArg1
HAVING COUNT(*) >=0.3 *5894;

Sample output
1
2

Feasable values
1
2
VARIABLE

For numeric attributes, instead of searching feasible constant values, possible

range values are calculated using number of rows in the predicate and number

of target instances. Supposing that 4595.th row is calculated as a partition-

ing point for the predicate pred1. Possible starting range values for numeric

attributes can be calculated as in Table 3.3

Note that, this range values are combined with “>=” and “<=” operators in the

predicate.
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Table 3.3: Calculating possible values for a numeric argument

SQL

SELECT * FROM
(SELECT numArg1
FROM pred1
ORDER BY numArg1 limit 4595) a
ORDER BY numArg1
DESC LIMIT 1;

Sample output 0.047

Feasable values
>=0.047
<=0.047
VARIABLE

Combining all feasible values for arguments of a predicate results in most pos-

sible form of it. Sample most general form of the predicate pred1 is shown in

Table 3.4 without renaming of the variables.

Table 3.4: Generalization of pred1(nomArg1, numArg1)

Pred1 (nomArg1,numArg1)
Pred1 (1, >=0.047)
Pred1 (1, <=0.047)
Pred1 (1, VARIABLE)
Pred1 (2, >=0.047)
Pred1 (2, <=0.047)
Pred1 (2, VARIABLE)
Pred1 (VARIABLE, >=0.047)
Pred1 (VARIABLE, <=0.047)
Pred1 (VARIABLE, VARIABLE)

Specialization In this step each concept rules generated at previous step are unified

using θ-subsumption. Candidate generation is based on Apriori-based special-

ization operator. If a concept descriptor has one different body literal from any

other concept descriptors, then these concept descriptors are unified to form a

new concept descriptor with one more body literal.

C1 ∪ C2 = {C1 ∪ I21|C12 = C ∩ C2θ − C21 = I21} (3.1)

Filtering Quality measure to choose interesting rules from all possible rules in CRIS

13



is based on their support and confidence values. According to the these values,

a rule is either pruned, added to the solution set or further refined.

Definition 1. Support of a rule is the number of positive target examples ex-

plained by the rule divided by number of target examples [56].

Support(h← b) =
| bindings of variables for h that satisfy h← b |
| bindings of variables for h that satisfy h |

(3.2)

Definition 2. Confidence of a rule is the number of positive target instances

explained by the rule divided by number of instances that are deducible from

the rule [56].

Confidence(h← b) =
| bindings of variables for h that satisfy h← b |
| bindings of variables for h that satisfy b |

(3.3)

In order to select considerable rules from the set of all possible rules the CRIS

uses the constraints listed below:

• A possible rule that has support and confidence values higher then mini-

mum thresholds is added to the solution set.

• Prune the possible rules that have support less then the threshold.

• If support value of the possible rule is less then minimum threshold but

confidence value is higher then two of its parents then it is further refined.

• A possible rule that has confidence value less then any of its two parents,

then it is pruned.

Covering The best rule in the solution set is selected using f-metric. As in sequential

covering algorithm, target tuples that are satisfied by the best rule are removed

in this step.

Iteration continues until all target instances are covered by produced solutions, no

concept descriptors are produced or maximum depth is reached.

14



3.3.2 Enhancements of CRIS

There are several studies for improving efficiency of CRIS. One of the study is given

in [50] where a dynamic programming based approach of CRIS named Tabular CRIS

is proposed. The aim is to prevent repeating queries in the DBMS, since different

concept descriptors may have the same query correspondence. Tabular CRIS uses two

hash structures (for support and confidence) in the form <query,int> that stores results

of support and confidence queries. This queries are aggregate queries and all begin

with “SELECT COUNT”. Before requesting the result of the support/confidence

query from DBMS, Tabular CRIS first checks whether result of the query is already

the hash. If it finds the result in the hash then uses this result in the hash. Otherwise

sends query to the DBMS and stores the result in the for later use. The proposed

system is applied to different types of data sets and achieved high rates of hash table

hit ratios from 14% to 91%.

In [55, 53] Tabular CRIS-wEF is proposed. Support and confidence queries of con-

cept descriptors are changed to allow returning the rows instead of counts. The

queries changed from “SELECT COUNT” to “SELECT DISTINCT” form and hash

structures also changed to store the values, in the form <query, resultset>. Also, cov-

ering algorithm is modified to remove covered tuples from resultset parth of the hash

tuples. By these modifications, hash table hit ratio increased by catching repeating

queries at different epochs. Experiments show that, hash table hit ratio of datasets

that run in more than one epochs increased by this approach [53].

Mutlu et al. in [54, 56] proposed parallel version of CRIS namely pCRIS. In the

proposed method, splitting the job is done by exacly one master process and works are

done by multiple worker processes. Parallelization is applied to two time consuming

steps of CRIS. Firstly in specialization step where clauses of length l are unified to

form length l+1. Secondly in filtering step where support and confidence queries are

send to tb DBMS and evaluation of the clauses are done. The proposed algorithm

is applied to seven data sets and shown that algorithm performs better than several

ILP-based parallel learning systems for large data sets.

In [52] a hybrid graph-based concept discovery is proposed. It is a hybrid system
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that utilizes both substructure based and path-finding base aproaches. It uses acyclic

directed graph where nodes are arguments of the predicates. Experiments conducted

on four kindship datasets to compare the results with CRIS. Both generate same so-

lutions on two of the datasets and semantically identical solutions on one of them.

Another experiment conducted on family data set to compare the results with Re-

lational Paths Based Learning (RPBL) [27]. The proposed method generates more

concept descriptors than RPBL and generates concept descriptors with lesser clause

length.

3.4 Vector Space Model and Cosine Similarity

Information retrieval (IR) is a subfield of computer science which is interested in

representation, storage and access of unstructured information by searching within

relational databases, documents, text, multimedia files, and the World Wide Web

[19, 79]. The main purpose of information retrieval model is to “finding relevant

knowledge-base information or a document that fulfill user needs" [63].

An important and widely used IR model is vector-space model. In vector-space

model, the documents are represented as vectors in a common vector space [41].

Vector Space Model uses term frequency and inverse document frequency which is

known as tf-idf weighting. In tf-idf, term frequency (tf) is the number of times that

the term occurs in document or query texts and an inverse document frequency (idf)

is the inverse of the number of documents that contain the term [32].

In vector-space model, documents are ranked by some similarity value based on the

user query and the documents. [18, 61, 64, 5]. In this model, angle between the vector

representation of documents and user query is calculated by cosine function.

The cosine similarity is generally used to compute the similarity between these two

vectors. The formula of cosine similarity is given in equation 3.4 as follows:
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sim(dj, q) =
dj.q

| dj || q |
=

(
N∑
i=1

wi,jwi,q)√
N∑
i=1

w2
i,j

√
N∑
i=1

w2
i,q

dj = (wi,j, w2,j, ...wt,j)

q = (w1,q, w2,q, ...wt,q)

(3.4)

3.5 NoSQL

Software industry uses relational databases their data for a long time. RDBMSs prove

themselves by supporting concurrency control, transactions, standard query language,

rich interfaces for reporting and integration mechanism [62]. However these systems

have impedance mismatch problems such that data stored relational model should be

translated into memory structures of the programs. In addition, these systems have

efficiency problems while storing large volumes of data on clusters.

With the rise of Web 2.0 and cloud technology, performance and scalability in data

stores needs brings new technology, namely Not Only SQL or NoSQL in short. Most

of these systems are open source and are designed to run on clusters. They are not

relational and have no schema, adding a field to a record does not need changing the

structure.

They are categorized into four categories. The first one is Key-Value databases which

store blob values that are uniquely identified by a key. User can either, add, delete

or retrieve the value of the key. There is no type restriction on the value, applica-

tions are responsible for parsing it. The main advantage of these systems is scal-

ability and efficiency, the data can easily be distributed by adding more servers to

the system. Scalaris [73], Amazon DynamoDB [4], Voldemort [75], Redis [70] and

MemcacheDB [71] are some of them.

Secondly, document databases are subclass of the first category, which differs by the

structure of the values. In these systems, values are documents in the form XML,

JSON or BSON etc. that changes based on the database system. The data stored

17



inside the document should obey the rules of the form structure that the database

chooses. Since these structures enable storing flexible values, one can store scalar, the

other can store collections or any hierarchical tree value. MongoDB [72], OrientDB

[80], CouchDB [66], Couchbase [68] are some of the systems in this category.

Figure 3.1: Column family databases

Thirdly, in column family databases, data is stored by columns instead of rows. Be-

cause of storing values of columns together (see Figure 3.1), aggregations on columns

are much faster than relational tables. Also, because they have the same type, com-

pression can be applied to the columns. Cassandra [65], HBase [67], BigTable [31]

are some of the systems in this category.

Figure 3.2: Graph databases employ nodes, edges etc.

The last category, graph databases enable to store elements (nodes) and their relations

(edges) (see Figure 3.2). Traversing is done by graph-like queries. Adding more than

one edges is possible, there is no restriction on type and number of edges defined.

Neo4J [81], AllegroGraph [30] and FlockDB [74] are some of the systems in this

category.

18



Table 3.5: Common MongoDB data types

String, Double, Object,
Array, Binary data, Object id,
Boolean, Date, Null,
32-bit integer, 64-bit integer, Timestamp,
...

3.6 MongoDB

MongoDB is one of the common known document type open-source NoSQL database

[43]. Data is stored in the form of BSON documents (a JSON-like format). Docu-

ments have field-value pairs (see Figure 3.3) where value field can be array, document,

array of document or any BSON type. Documents are stored in collections. For struc-

tures larger than 16MB, MongoDB supports GridFS structure. It splits the file into

chunks and stores them separately.

Figure 3.3: Key-value pairs

Unlike relational databases, a collection is created at the first insert operation. Thus,

there is no need to define a data type for fields. Every document has _id field as

primary key. If not explicitly given, system sets a unique value with ObjectId type.

Common types used in MongoDB is given in Table 3.5 and relational terminology

counterparts are given in Table 3.6.

There are two types of document structures used for representing relationships be-

tween documents, "references" and "embedded data" (see Figure 3.4). In the former,

two documents are connected by adding a link field from one document that refer-

ences target primary key. In the latter, target document is embedded into a field or

array. Embedded model is generally used in one-to-one and one-to-many relation-

ships. Retrieving or updating child document is single atomic operation, since it is
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Table 3.6: Relational terminology vs. MongoDB terminology [43]

Relational DBMS Terms MongoDB Terms
database database
table collection
row document or BSON document
column field
index index
table joins embedded documents and linking
primary key:any unique column or
column combination as primarykey.

primary key: _id field is automati-
cally set as the PK

aggregation aggregation pipeline

inside the parent document but growth of the data may cause problems. Using embed-

ded model in many-to-many relationships causes duplication. Therefore references

model is used in many-to-many type relationships.

Because of the flexible schema, tree structures can also be stored MongoDB database:

• using parent reference inside child

• using references of child nodes as array inside parent

• using references of all ancestors inside child

The database supports a rich query language for retrieving and modifying data stored

in BSON format. For querying, it supports ordering, limiting rows, allows projecting

only necessary fields, adding conditions, using aggregate functions etc.

3.7 NewSQL

NewSQL systems are combination of relational DBMSs and NoSQL systems. They

support relational model and SQL of RDBMSs, horizontal scaling of NoSQL systems

[29]. VoltDB [82], Google Spanner [9], Clustrix [8] and NuoDB [2] are some of

NewSQL systems. Although they serve tables of relational systems, the underlying

representation of data may differ from each other.
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Figure 3.4: Reference and embedded type relationship

The support for SQL queries also differs according to the vendors. Some have restric-

tions on standard queries such as in aggregation; e.g. VoltDB does not support using

"having" clause. Also in previous versions of VolTDB it was obligatory to use stored

procedures while client interface interacts with the database or creating a table could

not be done at the console etc. Since it is a new technology developments on these

systems are still in process, every new version comes with lesser restrictions.

3.8 VoltDB

VoltDB is an in-memory NewSQL database system [82]. It supports ANSI standard

SQL. It is available in paid enterprise edition and a free open source edition with

some missing features. VoltDB supports snapshots to save the data to disk for later

use. Since it is an in memory database, once it is shutdown, the data removed from

the memory.

Figure 3.5: Partitioning
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It allows partitioning, which splits rows of a table to several nodes. A table can have

at most one partition with one or more columns. If there is a primary key, it must

be included in the partitioning columns. VoltDB also allows replicating tables to all

nodes. It is suitable for readonly and small tables, those are frequently queried. If a

table is not partitioned then it is replicated by default.

VoltDB supports asynchronous procedure calls to the database. Traditional client ap-

plications send requests to the DBMS and wait for the response, they cannot continue

processing until they got response. By using asynchronous calls, the client applica-

tion does not have to wait for the response, can continue sending another requests.

When database is ready, it notifies the client by a callback procedure and the client

gets the response. Every node has its own queue for transactions, so connecting to

multiple nodes with asynchronous calls allows the client to distribute the work and

increase throughput.
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CHAPTER 4

PROPOSED METHODS

The major problem of using ILP-based concept discovery systems is that, the use of

Apriori-based approach generates rules excessively. For a data set that has predicates

with so many arguments, there may be thousands of possible rules. Each rule has

query costs in a DBMS while calculating support and/or confidence metrics. Perfor-

mance problems reveal the need for efficient pruning methods applied to minimize

wasted effort on DBMS, without decreasing the accuracy.

In this chapter, we describe two different heuristic for pruning the queries for rule

quality assessment. In addition, we present our efforts on adapting NoSQL and

NewSQL technologies for ILP-based concept discovery.

4.1 Utilizing Coverage Lists as a Pruning Mechanism for Concept Discovery

In this thesis we focus on computational efficiency problems that arise due to the

large search spaces of ILP-based concept discovery systems. We propose a pruning

mechanism to reduce the size of the search space. In the proposed method [51],

using coverage sets as a memoization technique is extended to be able to be used as

a pruning mechanism also. The method makes an assumption: if two hypotheses are

refined via an Apriori-like operator, the coverage set for support of a refined concept

descriptors should at maximum be the intersection of the coverage sets of its parents.

The proposed algorithm is embodied into Tabular CRIS-wEF [55, 53]. It is an ILP

based concept discovery system that has memoization capabilities and uses Apriori-
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like refinement operator and uses support and confidence as quality measures. The ex-

perimental results show that the proposed method decreases the search space 4-22%.

The results are promising for the reason that pruning is done before the calculation of

support values of concept descriptors from the DBMS.

4.1.1 Motivation

The motivation behind the proposed algorithm is that if an ILP system uses Apriori-

like refinement operator and possible rules are pruned according to their support val-

ues, coverage set cardinality of a possible rule that counts for its support can not be

more than cardinality of its two parents’ coverage set intersection.

A support query of length k clause "T : −B1, B2, ..., Bk" can be represented as

πprojection_columns(S1 ./ Bk)

where Bk is a predicate in its body and projection_columns are the arguments of tar-

get predicate T. S1 is defined as:

S1 = σselection_conditions(T ./ B1 ./ B2 ./ ..Bk−1)

where selection_conditions are the constants applied to the arguments of the predi-

cates, T is the target predicate and B1, B2, ..Bk−1 are the background predicates ex-

cept from Bk.

Two length k clauses L1 and L2 that have only one different literal in the body are

unified to form clause with length k + 1. Its support query can be presented as:

C1 = πprojection_columns(S1 ./ B1k ./ B2k)

where S1 presents same literals of L1 and L2. B1k and B2k two the different literals.

Since support set of L1 is πprojection_columns(S1 ./ B1k) and suppport set of L2 is

πprojection_columns(S1 ./ B2k), if B1k and B2k does not have same variables in their

arguments, C1 should be the intersection of the support sets of L1 and L2. In the case

where they have same variables, C1 should be a subset of intersections of support sets

of L1 and L2.

Consider elti data set that has predicates as given in Table 4.1. Two clauses generated

on this data set, named P1 and P2 are given in Table 4.2 where first arguments of

the predicates are name1 and the seconds arguments are name2. Using Definition 1,
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Table 4.1: Predicates in Elti data set

Predicate name
Argument
names

elti name1,name2
brother name1,name2
husband name1,name2
mother name1,name2
sister name1,name2
son name1,name2
wife name1,name2
daughter name1,name2
father name1,name2

Table 4.2: Two Possible Clauses at Depth 2

Two Possible Clauses with length 3
P1 elti(A,B) : −brother(C,D), husband(C,A)

P2 elti(A,B) : −husband(C,A), husband(D,B)

Refinements of the clauses
C1 elti(A,B) : −brother(C,D), husband(C,A), husband(E,B)

C2 elti(A,B) : −brother(C,D), husband(C,A), husband(C,B)

C3 elti(A,B) : −brother(C,D), husband(C,A), husband(D,B)

query for the coverage set of P1 can be formed as seen at Figure 4.1 where projection

of the query comes from the head part of the clause and selection is formed due to

the similar naming of the arguments from both head and body.

At specialization step, these two clauses are unified to form clauses with length 4.

The refinements ( C1, C2, C3) of these two parent clauses ( P1, P2) can also be seen

at Table 4.2. In these refinements, first two literals come from P1 and the last literal

come from P2. In C1, each literal is bounded to the same arguments of predicates just

as their counterparts at P1 and P2.

Different from C1, relationship of arguments of C2 and C3 differs from their counter-

parts in P2. To incorporate all background facts, refinement operator generalizes the

predicates in all possible ways. In C2, name1 of 4th literal (husband(C,B)) is bounded

to name1 of the 3rd literal ((husband(C,A)) which is not bounded to the same argu-
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Figure 4.1: Two clauses and their refinements

ment of the same predicate in P2. Also in C3, name1 of 4th literal (husband(D,B)) is

bounded to name2 of the 2nd literal ((brother(C,D)) which is not bounded to the same

argument of the same predicate in P2. In these cases correct sets cannot be produces

by intersecting coverage sets of P1 and P2.

To overcome such conditions, refined concept descriptors are analyzed to explore

parents with same bindings. Table 4.3 shows the extracted concept descriptors from

the refined concept descriptors C2 and C3.

In Table 4.3, clause C2 is pruned without querying the support value from DBMS.

Intersection coverage sets of its parents P1 and PC2 is empty set.
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Table 4.3: Extracted parent concept descriptors and their coverage sets

Length 4 Length 3
C1:e(A,B) : −b(C,D), h(C,A), h(E,B)

intersection of coverage set (1,2,3,4,5,6,7,8)
P1 : e(A,B) : −b(C,D), h(C,A)

coverage set (1,2,3,4,5,6,7,8)
P2 : e(A,B) : −h(C,A), h(D,B)

coverage set (1,2,3,4,5,6,7,8)
C2:e(A,B) : −b(C,D), h(C,A), h(C,B)

intersection of coverage set ()
Pruned

P1:e(A,B) : −b(C,D), h(C,A)

coverage set (1,2,3,4,5,6,7,8)
PC2 : e(A,B) : −b(C,D), h(C,B)

coverage set ()
C3:e(A,B) : −b(C,D), h(C,A), h(D,B)

intersection of coverage set (1,2,3,4,5,6,7,8)
P1:e(A,B) : −b(C,D), h(C,A)

coverage set (1,2,3,4,5,6,7,8)
PC3 : e(A,B) : −b(C,D), h(D,B)

coverage set (1,2,3,4,5,6,7,8)

4.1.2 The Algorithm

This proposed algorithm is embedded inside Tabular CRIS-wEF, during specializa-

tion just after unifying the clauses. If two concept descriptors have the same head

predicate and only on different literal they are unified to generate one or more spe-

cific concept descriptors. The body length of the generated clauses are one more than

their parents’ body length.

To incorporate background predicates, each argument of the predicate is generalized

in all possible ways such that binding properties of the refined clause may have dif-

ferent binding properties from its parents. In that case, parents with the same binding

properties are extracted from each refined clause.

In Tabular CRIS-wEF, coverage sets of generated clauses are stored in a hash table.

After parents are extracted, coverage sets of these parents are retrieved from hash

table and their intersection is calculated. Since the main algorithm generalizes the

concept descriptors in all binding properties, missing coverage set in the hash is not

an issue.

If the intersection size is higher than the support threshold value, the algorithm con-

tinues as in Tabular CRIS-wEF.
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1: for i = 0; i < pC.size() - 1; i++) do

2: for j = i+1; j < pC.size(); j++ do

3: if unifiable(pC[i], pC[j]) then

4: tmp_pC = unify(pC[i], pC[j])

5: for k = 0; tmp_pC.size(); k++ do

6: parent[k] = getParent(k)

7: end for

8: support_set = set_intersect(parent)

9: if support_set.size() ≥ min_set_size then

10: pruneFurther(tmp_pC[k])

11: end if

12: end if

13: end for

14: end for
Algorithm 2: Coverage Set Based Pruning

4.2 Cosine Similarity-based Pruning

In this part of the thesis work, we propose a pruning method by using similarity anal-

ysis of the arguments. As in the previous pruning method, this method is also embod-

ied in Tabular CRIS-wEF [55, 53]. It is a two step algorithm. A preprocessing step is

applied before running the ILP algorithm. In this step the terms for domain vector are

collected, term-document count matrix is built and similarities of argument vectors

are calculated. The second step takes place within the concept discovery algorithm,

and it prunes the concept descriptors according to the similarities of variables in the

clause. If two literals in a clause have same variable, cosine similarity of arguments

of that variables are checked and pruned if their similarity is zero.

4.2.1 Motivation

Each predicate in an ILP system can be mapped to a table and arguments of the pred-

icate are the columns that table. In kinship data sets (daughter, elti, dunur) arguments

all belong to the same domain. An example of a relation-based data set is given in

28



Figure 4.2: Elti data set domain

Figure 4.2.

As shown in the figure, all columns in target and background tables are connected to

"name" column of Person table. Therefore all target and background column values

are subsets of this column, Person.Name. Using Person.Name tuples as terms, and

column values of target and background tables as documents, we are able to create our

term-document count matrix where each count vector v ∈ N |V | and |V | is the number

of tuples in Person.Name, N is natural number that represents count of a term in the

vector and a matrix size is A × |V | where A is the number of arguments that belong

to the same domain.

In preprocessing step, if there are M different argument domains then M separate

term-document count matrices should be created except for the ones that are supersets

of exactly one argument in the whole data set. (E.g. only one argument in pte data

set has pte_element domain, so there is no need to create a matrix for pte_element

domain).
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Figure 4.3: Term document count matrix for Person.Name domain

Preparing the count matrix is a simple process, one query for each element in the

domain is enough. For example, elti data set has eight background predicates and

one target predicate. Since every predicate have two arguments and they all have the

same domain (Person.Name), 9x2 =18 queries are enough to create a count matrix for

a domain. Table 4.4 shows a query for calculating count vector for wife.Name2 and

Figure 4.3 shows the document count matrix for Person.Name domain.

Table 4.4: Query for creating a count vector for wife.Name2

SELECT name2, COUNT(*)-1 vector FROM
(SELECT name2 FROM wife

UNION ALL
SELECT name FROM person
) t

GROUP BY name2;

Count vectors in the proposed method are stored in a database table. Calculating

the similarity of the argument vectors is completed before running CRIS and these

similarities are stored in a table (see Figure 4.4 ). At the beginning of CRIS algorithm,

cosine similarities are fetched from the database and stored in a hash table. During

the specialization step, every newly refined concept descriptor checked as follows: if

arguments of literals in a clause have the same variables and their cosine vector is

zero, then it is pruned.

SQL query for calculating the support of a hypothesis in an Apriori-based ILP sys-

tem is basically joins joins applied to tables on DBMS. Since a concept descriptor is

pruned according to the result of its support query returned from DBMS, a similarity

matrix based on the count vector can lead us estimating the result of the query without
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Figure 4.4: Cosine score table for Elti data set

Table 4.5: Example of 3 pruned clauses

Pruned Clause Description
elti(A,B):-daughter(C,A), father(C,D) Pruned, cosine(daughter.Name1, father.Name1) = 0

elti(A,B):-brother(C,D), daughter(C,B) Pruned, cosine(brother.Name1, daughter.Name1) = 0

elti(A,B):-brother(C,D), husband(D,A), daughter(C,A) Pruned, cosine(brother.Name1, daughter.Name1) = 0

running it.

The arguments of Elti data set subject to pruning based on the cosine score can be

seen at Figure 4.5. It is interesting that with the proposed method, we can distin-

guish arguments that store people with different genders. E.g. Daughter.Name1 and

Son.Name1 columns store female and male people records respectively. Consider

a literal daughter(A,B) where A is daughter of B, thus A is female. Additionally,

son(A,D) where A is son of D, thus A is male. If there is a concept descriptor has

a conjunction of daughter.Name1 and son.Name1 with same variables, it should be

pruned (e.g. elti(A,B):-daughter(C,A), son(C,A))). Cosine score of this arguments are

zero, so such conjunction of literals are pruned before running the support query in

DBMS.

In attribute-based data sets (muta, PTE, eastbound, mesh) most of the arguments

have distinct domains so creating a single term-document matrix is not enough to
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Figure 4.5: Arguments that have no relationship according to the cosine score

produce the similarity table. If more than one arguments are based on a domain, a

count matrix and similarity table is generated for that domain. There is no need to

generate a similarity table for single argument domains, their vector is assumed to be

dissimilar from other vectors ( so their cosine score with other arguments is set as

0 ). This assumption enables pruning the search spaces in a case where there is not

enough dissimilar vectors in all domains of a data set. At worst case, where there is

no dissimilar vectors to be pruned, this algorithm prunes clauses that has connected

arguments (has same variables) but in different domains.

Experiments using different data sets has shown that, the algorithm prunes the search

space up to 32% before running support queries. On the other hand, pruned queries

have lower query costs that comes up with a lower time efficiency with the average

of 5%.

4.2.2 Discussion

The arguments that are similar according to their cosine similarity is shown in Table

4.6. Although these results are not used for pruning, they may give us a shortcut to

populate all hypothesis. Consider the two different hypothesis generated for elti data
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Table 4.6: Arguments with Cosine Score=1

Argument1 Argument2 Cosine Score
elti.Name2 elti.Name1 1
husband.Name2 wife.Name1 1
mother.Name2 father.Name2 1
wife.Name2 husband.Name1 1

set:

S1:elti(A,B):-brother(C,D), wife(A,C), wife(B,D)

S2:elti(A,B):-brother(C,D), husband(C,A), husband(D,B)

We know that wife.Name2 and husband.Name1 are similar according to the cosine

score Table 4.6. In addition, wife.Name1 and husband.Name2 are similar. We can

safely generate the second solution using its similarity information. A transformation

from wife(X,Y) to husband(Y,X) with the same binding properties generates the sec-

ond solution. Although this methodology does not prevent generating all candidates

to find a solution (is that not added to the proposed method), it enables populating

more solution clauses from a single solution.

4.3 CRIS on Different DBMS Systems

4.3.1 MongoDB Implementation

In this section we investigate the feasibility of using NoSQL document oriented

database system MongoDB as a storage for CRIS. By August of 2015, this NoSQL

system took fourth place in ranking according to the worldwide popularity of databases.

Being an open source database in addition to its popularity directs our attention to this

database.

MongoDB is not intended to store relational tables. A huge difference of MongoDB

from relational DBMSs is that, it does not support join operations between collec-

tions. Using embedded data model, related data is kept in denormalized form in a

single document. A query over such a document allows us to get data that has already
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been joined. As seen in Table 3.6, a document is just a row in collection. Storing

multiple rows in a document is not a problem due to the flexible BSON format.

Table 4.7: Document Structure in a collection

{
"_id" : "<unique pattern of a clause>",
"clause" : [<array of all clauses in given pattern>],
"data" : [<array of data is placed here>]

}

Figure 4.6: A document in elti collection

We aim to store the clauses in embedded model, in a way that, we remove the need

for joining collections to retrieve the support of a concept descriptor. The document
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structure we used to store clauses and its data is given in Table 4.7. In MongoDB,

"_id" field of a document should be unique in a collection. We rename the clause

arguments according to their bindings in order to get a unique and generic id. All

bounded arguments are renamed with "S" prefix and a number starting from 1. All

unbounded arguments are renamed with "C" prefix and a number starting from 1. An

example is given in Figure 4.7.

Figure 4.7: A general renaming of elti(A,B):-brother(C,D), husband(C,A), sis-

ter(D,C)

Data field in the document stores the corresponding tuples of the clause in an array

of documents. Each document in the array has fields names according to the generic

argument names. Redundancy is reduced by storing only one of each connected argu-

ments. E.g. for clause elti(A,B) : −brother(C,D), husband(C,A), sister(D,C)

given in the Figure 4.7, we store only S1, S2, S3 and C1 fields.

Support value of a single clause is queried using aggregation pipeline framework [42].

Figure 4.8 shows the query we used for calculating support. In the support query,

documents are filtered using "match" operator. On the next stage, array is extracted

using "unwind" and grouped according to the head literal arguments where unique

head values remain. Final grouping gives the count of distinct values.

The proposed method operates in conjunction with algorithm Tabular CRIS-wEF

[55, 53]. For constructing the search space, SQL queries are retrieved from MySQL

database.

The algorithm performes poorly by using this data structure. In the nature of the

ILP based systems, clauses are unified not to miss any indirect relations between

predicates. This causes all possible combinations of clauses. Storing all these clauses

in the embedded structure causes so much insertion time which makes it impossible

to gain efficiency by aggregating from an embedded document.
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Figure 4.8: Aggregation pipeline for Calculating Support

4.3.2 Voltdb Implementation

The advantage of using a NewSQL system is to be able to use relational tables and

querying the database using well-known SQL language in a clustered environment.

Using relational tables makes it possible to convert the existing Tabular CRIS-wEF

algorithm with minimum effort. Although structure of the database remains the same,

some minor changes should be applied.

VoltDB is an in-memory database. This is another advantage of this system. Storing

the target and background instances in the main memory enables us to test the current

algorithm in traditional relational DBMS against an in-memory database. Data stored

in RAM is volatile, after the system is shutdown all data is deleted from the mem-

ory. Some work has to be done to recover tables after restart of the system. VoltDB

supports snapshots, which saves data to disks just as backups of relational systems.

Snapshots can be taken either manually of automatically but this feature is available

in paid version. Although creating a database is done by just running the VoltDB

executable with create parameter, after every start, DDL and DMLs of data set to be

tested should be applied without snapshot support.
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Another advantage of the system is supporting asynchronous calls. By using asyn-

chronous instead of synchronous calls, client applications are able to submit all the

jobs ( queries) without waiting the result back. Submitting the job and retrieving the

results are handled in different functions. In clustered environment, where there are

more than one node, it allows to split the jobs to all clusters which seems to be appro-

priate while calculating support and confidence values serially. Performance analysis

of this implementation is presented in Chapter 5.

Since it is a new born database, it has some restrictions which decreases with every

new version. It was required to use stored procedures while interacting the DB with

client applications, but it is not restricted any more. The pre-compiled procedures

bring time performance by eliminating creation of explain plans before running the

queries. Using stored procedures is not appropriable for CRIS. Because of the large

search space, ILP systems produce a lot of possibilities of queries which are not

known at run time and change by the given input parameters. For that reason, the

experiments will be be based on adHoc queries instead of stored procedures.

4.3.3 Using MySQL "Memory" Storage Engine

ILP based concept discovery systems gain performance by the use of caching. In

[12] 10.74% speed-up achieved on large data sets by the use of caching. Also in

[55], memoization improves the time efficiency, for muta data set, 14.27 speed-up is

achieved.

In this part of the work, we mimic memoization by changing the storage engine of

MySQL from InnoDB toMemory. Schema of the data sets and relations inside them

all remain same.

Tables that use Memory engine, store the data in the RAM of the server. The max-

imum size of MEMORY tables in MySQL is configurable, so only increasing a pa-

rameter to be able to store big data sets is enough.

The performance results by using Memory engine are given in Chapter 5.

37



38



CHAPTER 5

EXPERIMENTAL RESULTS

In this section, experimental results with the proposed methods are presented. First,

we give details of the testing environment; server machine, DBMS software and data

sets. Then we present the performance results of the proposed methods against Tab-

ular CRIS-wEF.

5.1 The Environment

Tests are conducted on MySQL version 5.5.44-0ubuntu0.14.04.1. The DBMS resides

on a machine with Core i7-2600K CPU processor and 7.8 GB RAM. C++ program-

ming language is used for implementing the proposed methods. MySQL Connector

is used to connect the client to the server. The client program and the DBMS software

resides on the same host.

For minimizing the caching affect of the DBMS, SQL_NO_CACHE hint is used in

the support and confidence queries. More information on caching configuration can

be obtained in [1].

5.2 Data Sets

In the experiments, seven data sets from the literature are used. Elti and Dunur are

relationship data sets. The former defines relationship between wifes of two brothers

and the latter defines relationship between parents of a married wife and husband [34].

39



The arguments on target and background knowledge on these data sets all belong to

the same domain "Person".

PTE data set includes nearly 300 classified drugs and their carcinogenicity of in-

formation whether they are carcinogenic or not [15]. The aim is to find patterns for

identifying carcinogenicity of existing chemicals as well as new chemicals. Also

to help chemists finding valuable patterns and accelerate their tests. The difference

PTENoAggr. and PTE5Aggr. data sets is that, the latter contains additional aggre-

gate predicates.

Muta (mutagenesis) data set contains 188 classified drugs according to their mu-

tagenicity [36]. Relationship between molecules and atoms and bonds are defined

as background knowledge. We aim to find valuable patterns about mutagenicity of

chemicals. Muta_small is a subset of muta data set.

Studentloan data set [58] contains 1000 student instances classified according to

their obligation of repaying the loan.

In eastbound data set information about cars; load of the car, shape of the car, shape

of the load are given as background knowledge. With these kind of attributes of cars

in a load of train , the aim is to determine whether the train belongs to east or not [40].

In mesh data set [17] shape properties and neighborhood of elements from different

dimensions are given as background knowledge. The aim is to analyze interaction

between structures consist of these elements.

Dataset information and parameters used for the datasets are given in Table 5.1.

Table 5.1: Experimental parameters for each used data sets

Data_set Num.relations Num.facts Min.sup. Min.conf. Length

Dunur 9 234 0.3 0.7 4
Elti 9 234 0.3 0.7 4
Muta_small 8 274 0.3 0.7 4
Muta 8 16,544 0.3 0.7 4
PTE_No_Aggr. 27 29,267 0.1 0.7 4
PTE_5_Aggr. 32 29,267 0.1 0.7 4
Student_loan 10 5,288 0.1 0.7 4
Mesh 26 1749 0.1 0.7 4
Eastbound 12 196 0.1 0.1 4
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5.3 Proposed Method 1 (Utilizing Coverage Lists)

Time and query improvements of proposed method 1 are given in Table 5.2. "Filtering

Queries" column shows the improvement ratio of support and confidence queries

used for filtering the infrequent rules. The algorithm has no improvement on the

count of rules and queries on eastbound data set. This no gain affects time efficiency

negatively. The highest gain in queries is achieved on dunur data set hence with the

greatest time increase. If we investigate the long running time data sets PTE 5 Aggr.,

Student Loan, Muta and Mesh data sets, improvement on queries positively affects

the running time of the algorithms. According to the table mesh data set has the

second highest percent time gain, which is much higher than expected, according to

the query gain. The reason is that, Tabular CRIS-wEF and the proposed method uses

hashing technique. Therefore improvement ratio results of "Filtering Queries" do not

show the rate of actual count of running queries (hash miss) on DBMS.

Table 5.2: Improvements of Proposed Method 1

Tabular CRIS-wEF Pruning by Coverage Lists Improvement %

Num.
Rules

Num.
Queries

Time
(mm:ss.sss)

Num.
Rules

Num.
Queries

Time
(mm:ss.sss)

Rules Filtering
Queries

Time

PTE 5 Aggr. 64322 237082 35:50.340 55729 228489 34:56.434 13.36 3.62 2.51
PTE No Aggr. 11166 43862 03:46.457 10121 42817 03:44.858 9.36 2.38 0.71
Elti 1741 5333 00:02.655 1540 5132 00:02.588 11.55 3.77 2.54
Dunur 1887 5807 00:02.086 1462 5382 00:01.862 22.52 7.32 10.72
Student Loan 305282 1441626 14:20.002 286270 1422614 14:07.700 6.23 1.32 1.43
Muta Small 6056 21044 00:10.774 5781 20769 00:10.664 4.54 1.31 1.02
Muta 62486 223644 34:04.099 56752 217910 33:40.651 9.18 2.56 1.15
Eastbound 7294 34654 00:04.091 7294 34654 00:04.248 0.00 0.00 -3.86
Mesh 56512 249084 00:27.302 51730 244302 00:25.537 8.46 1.92 6.46

Table 5.3: Improvement ratio of Num. of queries retrieved (hash miss) from DBMS
for proposed method 1

Support % (Filtering Queries)%
PTE 5 Aggr. 14.15 6.94
PTE No Aggr. 10.55 5.96
Elti 13.19 7.70
Dunur 33.57 22.84
Student Loan 44.27 29.44
Muta Small 4.54 2.13
Muta 9.18 4.16
Eastbound 0.00 0.00
Mesh 45.21 38.19
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Tabular CRIS-wEF stores support queries and their results in hash table. Before a

query is requested from DBMS, the algorithm first checks the query from the hash

table, if it is in the hash (hash hit), it retrieves the result in the there, otherwise (hash

miss) the query is requested from DBMS. The proposed algorithm does not prune

any confidence queries. Therefore time gain achieved by this algorithm is done by

eliminating running support queries. Table 5.3 lists the proportion actual running

queries namely "hash miss" queries. Table shows that, mesh data set has 38 % gain

on running queries. This describes the time gain% of mesh in Table 5.2.

5.4 Proposed Method 2 (Cosine Similarity Based Pruning)

Table 5.4: Improvements of Proposed Method 2

Tabular CRIS-wEF Pruning by Coverage Lists Improvement %

Num.
Rules

Num.
Queries

Time
(mm:ss.sss)

Num.
Rules

Num.
Queries

Time
(mm:ss.sss)

Rules Filtering
Queries

Time

PTE 5 Aggr. 64322 237082 35:50.340 58503 231191 35:15.975 9.05 2.48 1.60
PTE No Aggr. 11166 43862 03:46.457 10328 43024 03:40.578 7.50 1.91 2.60
Elti 1741 5333 00:02.655 1422 4922 00:02.470 18.32 7.71 6.99
Dunur 1887 5807 00:02.086 1279 4607 00:01.783 32.22 20.66 14.54
Student Loan 305282 1441626 14:20.002 303565 1433041 14:22.295 0.56 0.60 -0.27
Muta Small 6056 21044 00:10.774 4910 19898 00:09.631 18.92 5.45 10.61
Muta 62486 223644 34:04.099 55477 216635 33:42.752 11.22 3.13 1.04
Eastbound 7294 34654 00:04.091 6805 32665 00:03.895 6.70 5.74 4.77
Mesh 56512 249084 00:27.302 54314 238982 00:27.314 3.89 4.06 -0.05

Table 5.4 shows time and query improvements of Proposed Method 2. As in method

1, this method also has highest gain in number of queries at dunur data set.

Different from method 1, in method 2 Studentloan and mesh data sets have almost

no time gain. If we investigate further, Table 5.5 shows that, these two data sets have

minimum gains on number of running queries (hash miss). In addition, results show

that for mesh data set, 4.06 % query improvement in Table 5.4 decreases to 1.77 %

in Table 5.5 which means that, high percentage of the queries that cause improvement

are already stored in hash table.

For eastbound data set 0 % query efficiency of method 1 increased to 5.74 % which

shows that, two methods prune different sets of candidates.
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Table 5.5: Improvement ratio of Num. of queries retrieved (hash miss) from DBMS
for Proposed Method 2

Support % Filtering
Queries %

PTE 5 Aggr. 9.57 4.70
PTE No Aggr. 8.46 4.78
Elti 19.42 11.33
Dunur 36.33 24.72
Student Loan 0.00 0.00
Muta Small 18.92 8.90
Muta 11.22 5.08
Eastbound 6.70 6.72
Mesh 2.10 1.77

As in Proposed Method 1, this method is also embedded in Tabular CRIS-wEF. There-

fore only queries that are not stored in hash table are sent to DBMS (hash miss). Ta-

ble 5.5 shows performance gain on hash miss queries. According to this table, this

method has no improvement on student loan data set, that causes time worsening.

Also for mesh data set, 1.77 % improvement on queries does not overcome the time

spent for the pruning method that results in increase of running time. In most of the

data sets, "Filtering Queries" shown in Table 5.4 increases in "Filtering Queries %"

in Table 5.5, this means high percentage of pruned queries are not in hash table.

5.5 Combination of Two Pruning Methods

Table 5.6: Comparison of improvement ratio of Support queries retrieved from
DBMS (hash miss)

Proposed Method 1 Proposed Method 2 Proposed Method(1&2)

PTE 5 Aggr. 14.15 % 9.57 % 23.24 %
PTE No Aggr. 10.55 % 8.46 % 18.93 %
Elti 13.19 % 19.42 % 25.92 %
Dunur 33.57 % 36.33 % 53.48 %
Student Loan 44.27 % 0.00 % 44.27 %
Muta Small 4.54 % 18.92 % 22.54 %
Muta 9.18 % 11.22 % 18.94 %
Eastbound 0.00 % 6.70 % 6.70 %
Mesh 45.21 % 2.10 % 46.37 %

In this section, combination two pruning methods are embedded into Tabular CRIS-

wEF. This section presents the overall comparison of the proposed methods against
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Tabular CRIS-wEf.

Table 5.6 shows the improvement of support queries for each data sets. For PTE,

student loan and mesh data sets Proposed Method 1 performs pruning better then

Proposed Method 2. On the remaining data sets, Proposed Method 2 performs better.

It is also seen in the table that Proposed Method 2 is not appropriate for student loan,

and Proposed Method 1 is not appropriate for eastbound. Hence there is no need to

combine both methods for these data sets. For the remaining data sets, combination

of two methods performs better.

Table 5.7: Comparison of improvement ratio of filtering queries retrieved from
DBMS (hash miss)

Proposed Method 1 Proposed Method 2 Proposed Method(1&2)

PTE 5 Aggr. 6.94 % 4.70 % 11.41 %
PTE No Aggr. 5.96 % 4.78 % 10.70 %
Elti 7.70 % 11.33 % 15.12 %
Dunur 22.84 % 24.72 % 36.38 %
Student Loan 29.44 % 0.00 % 29.44 %
Muta Small 2.13 % 8.90 % 10.60 %
Muta 4.16 % 5.08 % 8.58 %
Eastbound 0.00 % 6.72 % 6.72 %
Mesh 38.19 % 1.77 % 39.18 %

Table 5.7 shows filtering (support + confidence) queries that are retrieved from DBMS.

All improvement ratios are decreased since both pruning methods does only support

pruning. The distribution of rates is same with the previous table.

Table 5.8: Comparison of Improvement ratio of Running time

Proposed Method 1 Proposed Method 2 Proposed Method(1&2)

PTE 5 Aggr. 2.51 % 1.60 % 4.13 %
PTE No Aggr. 0.71 % 2.60 % 3.45 %
Elti 2.54 % 6.99 % 7.47 %
Dunur 10.72 % 14.54 % 16.41 %
Student Loan 1.43 % -0.27 % 1.02 %
Muta Small 1.02 % 10.61 % 10.64 %
Muta 1.15 % 1.04 % 2.05 %
Eastbound -3.86 % 4.77 % 1.79 %
Mesh 6.46 % -0.05 % 5.82 %

The running time improvements of each proposed method are shown in Table 5.8.

For student loan and eastbound data sets, only the algorithm that prunes support
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queries (Table 5.7 and Table 5.6 ) perform better. Also as seen in the table, for mesh

data set, Proposed method 1 performs better than the combination. Proposed method

2 has almost no improvement for this data set. Gain in filtering queries (1.77%)

shown in Table 5.7 does not overcome the algorithm cost hence does not improve the

performance.

5.6 MongoDB

Because of the 16 MB restriction of document size, tests are performed at 4 data sets

muta_small, dunur, elti and eastbound those do not exceed the limitation. Average

running time results of 10 runs for each data set is given in Table 5.9.

Results show that, querying from the embedded structure does not overcome time

spent for storing the results in this structure. The problem is because of the chosen

model for the ILP system. Tabular CRIS-wEF performs 2 times better then dunur,

elti and eastbound data sets. For muta_small data set, the cost of MongoDB de-

creases because of the iteration count. Different from 3 other data sets those approach

generating solutions in 1 iteration, muta_small achieves the goal in 2 epochs. That

enables using previously generated embedded data in the collections, which decreases

the loss.

Table 5.9: Comparison of running times of Tabular CRIS-wEF and MongoDB
(mm:ss.sss)

Running Time (mm:ss.sss)

Tabular CRIS-wEF MongoDB implementation
muta_small 00:10.774 00:13.106

Dunur 00:02.086 00:04.456
elti 00:02.655 00:05.277

Eastbound 00:04.091 00:08.394

5.7 VoltDB

We will not compare the run time results of VoltDB against MySQL database. MySQL

creates preferable explain plans, thus produce better timing results than VoltDB.
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VoltDB performance even get worse while running complex queries that consist of

more than tree tables in larger databases such as pte5, muta.

Order of tables in a query is a factor while generating plans in VoltDB. The queries

are dynamically in the proposed methods, no heuristic is developed for the order of

joins.

Some of the generated SQL that run on MySQL provides error in VoltDB. Conversion

of some SQL queries needed. Also VoltDB does not allow joining two columns

that have different domains. The proposed method "cosine similarity based pruning"

eliminates such joins. Therefore we store actual running support and confidence

queries of the method 2 and test them in this database.

Experiments are conducted on 3 virtual machines using docker [69] virtualization

software on the same host. sitesperhost parameter in VoltDB configuration defines

the number of sites in a server machine. It should be set approximately 3/4 of the

number of CPUs of the system. The server has 8 cores, but 3 hosts reside on the same

machine. Therefore this parameter is set to 2 for each of the nodes and 2 × 3 = 6 in

total. Synchronous and asynchronous calls of adHoc queries are tested on 1 to 3 node

clusters. All tables are replicated to all nodes.

Table 5.10 shows average of 7 runs over given number of nodes. Results show that

asynchronous calls perform better than synchronous calls to the database, even with

a single node. Adding a node to the cluster increases the performance of async. calls.

On the other hand, for 3 of the datasets performance of sync. calls decreases after

adding nodes.

Table 5.10: VoltDB run timing results(mm:ss.sss)

Node Count=1 Node Count=2 Node Count=3

sync. async. sync. async. sync. async.
elti 00:16.693 00:13.110 00:17.271 00:08.351 00:20.820 00:06.214
dunur 00:09.153 00:07.409 00:01.954 00:00.482 00:02.211 00:00.754
muta_small 02:38.567 02:25.187 03:18.954 01:42.587 03:46.505 01:33.968
eastbound 00:02.557 00:00.856 00:02.763 00:00.614 00:04.214 00:00.519
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5.8 MySQL Memory Storage Engine

With MySQL memory engine, data inside the table is stored in the memory, only the

definition of the table is stored in the disk. Since database connection information

in Tabular CRIS-wEF is given as input parameter, there is no need to change the

structure of the developed code.

We created similar schema of data sets that only differs in "storage engine" of the

tables, they were changed from InnoDB toMEMORY . Since data is stored volatile

and flushed after shutdown, a script to copy InnoDB tables to Memory engine is

needed after a restart.

As seen at Table 5.11, by using memory engine, performance gain is over 40 % for

long running data set PTE. In addition, 25 % gain is achieved for muta data set.

These results show that, for long running data sets, creating a similar schema that

differs only by "Engine" may help testing the algorithm in higher speeds.

Table 5.11: Tabular CRIS-wEF (MEMORY Storage Engine vs. InnoDB)

InnoDB Memory Engine Time gain %
pte5Aggr 35:50.340 20:01.565 44.12
pte_noaggr 03:46.457 02:21.037 37.72
elti 00:02.655 00:02.227 16.12
Dunur 00:02.086 00:01.449 30.56
StudentLoan 14:20.002 05:34.432 61.11
muta_small 00:10.774 00:08.935 17.07
muta_01 34:04.099 25:15.102 25.88
Eastbound 00:04.091 00:03.764 7.98
Mesh 00:27.302 00:20.350 25.46
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CHAPTER 6

CONCLUSION

In this thesis, we propose two pruning methods for an ILP system that uses relational

tables. In the first pruning method we prune the search space by using intersection of

coverage sets. In the second pruning method, cosine similarity of argument vectors

of literals are used for pruning. Results show that, for student loan and mesh data

sets only proposed method 1 improves the efficiency of the algorithm. On the other

hand for eastbound data set only proposed method 2 provides efficiency. In addi-

tion, results show that these two methods prune mostly different concept descriptors.

Therefore for the rest of the data sets, combination of two pruning methods produce

more efficient results.

Results also show that gain in pruning does not reflect time efficiency. One of the rea-

sons is that calculating support requires only one query, on the other hand calculating

confidence requires two queries; one for numerator and one for denominator. Timing

cost of confidence queries are much more than support queries. E.g. for long running

data set muta, about 80 % of time spent for support+confidence queries belong to

only confidence queries and for pte about 70 % belongs to confidence queries. This

decreases the gain in time efficiency.

The data model chosen in MongoDB implementation cause high volume of data inser-

tions which causes performance problems. In addition, this model is not appropriate

for high cardinality of background instances. There may be much efficient BSON for-

mats that does not produce redundant records but increase query performance. Graph

methodologies may be more appropriate while applying ILP systems to NoSQL sys-

tem.
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By using MySQL Memory run time performance in all data sets increases. 44%

running time improvement in large data set PTE also proves that most time consum-

ing part of the Appriori-based ILP systems is querying and retrieving data from the

DBMS.

As a future work, proposed method 2 may be extended in a way that, it is used as a

reduction factor concept descriptors. In this thesis we prune the concept descriptors

that have cosine score 0. By adding a minimum cosine score threshold value to the

algorithm, it can also be used to prune additional concept descriptors whose cosine

score is higher than 0 and below the threshold.

In addition, proposed method 2 may be extended in a way that, it is used while gen-

erating the the search lattice.

50



REFERENCES

[1] Query cache select options. https://dev.mysql.com/doc/refman/
5.5/en/query-cache-in-select.html. Accessed: 2015-08-08.

[2] Newsql - scale-out sql database for the cloud | nuodb. http://www.nuodb.
com/, 2015. [Online; accessed 17-August-2015].

[3] Rakesh Agrawal. Fast Discovery of Association Rules., pages 307 – 328. Menlo
Park, Calif.:, IBM Almaden Research Center, 1996.

[4] Inc Amazon Web Services. Aws | amazon dynamodb - nosql cloud database ser-
vice. http://aws.amazon.com/dynamodb/, 2015. [Online; accessed
17-August-2015].

[5] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information re-
trieval, volume 463. ACM press New York, 1999.

[6] Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan Ramon, and
Henk Vandecasteele. Improving the efficiency of inductive logic programming
through the use of query packs. Journal of Artificial Intelligence Research,
2002.

[7] Ivan Bratko, Stephen Muggleton, and Alen Varsek. Learning qualitative models
of dynamic systems. In Proceedings of the Eighth International Workshop on
Machine Learning, pages 385–388, 1994.

[8] Clustrix. Scale-out newsql database in the cloud | distributed sql db. http:
//www.clustrix.com/, 2015. [Online; accessed 17-August-2015].

[9] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-
pher Heiser, Peter Hochschild, et al. Spanner: Google’s globally distributed
database. ACM Transactions on Computer Systems (TOCS), 31(3):8, 2013.

[10] Vítor Santos Costa, Ashwin Srinivasan, and Rui Camacho. A note on two sim-
ple transformations for improving the efficiency of an ilp system. In Inductive
Logic Programming, pages 225–242. Springer, 2000.

[11] Vítor Santos Costa, Ashwin Srinivasan, Rui Camacho, Hendrik Blockeel, Bart
Demoen, Gerda Janssens, Jan Struyf, Henk Vandecasteele, and Wim Van Laer.
Query transformations for improving the efficiency of ilp systems. The Journal
of Machine Learning Research, 4:465–491, 2003.

51

https://dev.mysql.com/doc/refman/5.5/en/query-cache-in-select.html
https://dev.mysql.com/doc/refman/5.5/en/query-cache-in-select.html
http://www.nuodb.com/
http://www.nuodb.com/
http://aws.amazon.com/dynamodb/
http://www.clustrix.com/
http://www.clustrix.com/


[12] James Cussens. Part-of-speech tagging using progol. In Inductive Logic Pro-
gramming, pages 93–108. Springer, 1997.

[13] Luc Dehaspe and Luc De Raedt. Parallel inductive logic programming. In Pro-
ceedings of the MLnet familiarization workshop on statistics, machine learning
and knowledge discovery in databases, volume 1, page 5. Citeseer, 1995.

[14] Luc Dehaspe and Luc De Raedt. Mining association rules in multiple relations.
In Inductive Logic Programming, pages 125–132. Springer, 1997.

[15] Luc Dehaspe and Hannu Toivonen. Discovery of frequent datalog patterns.
Data Mining and knowledge discovery, 3(1):7–36, 1999.

[16] B Demoen, A Srinivasan, S Wrobel, and Luc DEHASPE. Frequent pattern
discovery in first-order logic. 1998.

[17] Bojan Dolsak and Stephen Muggleton. The application of inductive logic pro-
gramming to finite element mesh design. In Inductive logic programming. Cite-
seer, 1992.

[18] Hai Dong, Farookh Khadeer Hussain, and Elizabeth Chang. A survey in tradi-
tional information retrieval models. 2008.

[19] Lauren B Doyle. Information retrieval and processing. Los Angeles, Calif.:
Melville Publ. Co, 681, 1975.

[20] Sašo Džeroski. Relational data mining. Springer, 2010.

[21] Sašo Dzeroski and Nada Lavrac. Inductive logic programming: Techniques and
applications, 1994.

[22] Cao Feng. Inducing temporal fault diagnostic rules from a qualitative model.
In Proceedings of the 8th International Workshop on Machine Learning, pages
403–406, 2014.

[23] Nuno Fonseca, Rui Camacho, Fernando Silva, and V Santos Costa. Induction
with april: A preliminary report. Technical report, Technical Report DCC-2003-
02, Department of Computer Science, University of Porto, 2003.

[24] Nuno Fonseca, Vitor S Costa, Fernando Silva, and Rui Camacho. On the im-
plementation of an ilp system with prolog. Technical report, Technical report,
DCC-FC & LIACC, UP, 2003.

[25] Nuno Fonseca, Vitor Santos Costa, Fernando Silva, and Rui Camacho. Ex-
perimental evaluation of a caching technique for ilp. In Progress in Artificial
Intelligence, pages 151–155. Springer, 2003.

[26] Nuno Fonseca, Fernando Silva, Vitor Santos Costa, Rui Camacho, et al. A
pipelined data-parallel algorithm for ilp. In Cluster Computing, 2005. IEEE
International, pages 1–10. IEEE, 2005.

52



[27] Zhiqiang Gao, Zhizheng Zhang, and Zhisheng Huang. Learning relations by
path finding and simultaneous covering. In Computer Science and Information
Engineering, 2009 WRI World Congress on, volume 5, pages 539–543. IEEE,
2009.

[28] Cyril Goutte and Eric Gaussier. A probabilistic interpretation of precision, re-
call and f-score, with implication for evaluation. In Advances in information
retrieval, pages 345–359. Springer, 2005.

[29] Katarina Grolinger, Wilson A Higashino, Abhinav Tiwari, and Miriam AM
Capretz. Data management in cloud environments: Nosql and newsql data
stores. Journal of Cloud Computing: Advances, Systems and Applications,
2(1):22, 2013.

[30] Franz Inc. Allegrograph rdfstore web 3.0’s database. http://franz.com/
agraph/allegrograph/, 2015. [Online; accessed 17-August-2015].

[31] Google Inc. Google cloud bigtable. https://cloud.google.com/
bigtable/, 2015. [Online; accessed 17-August-2015].

[32] M Karthikeyan and P Aruna. Probability based document clustering and im-
age clustering using content-based image retrieval. Applied Soft Computing,
13(2):959–966, 2013.

[33] Yusuf Kavurucu. An ILP-based concept discovery system for multi-relational
data mining. PhD thesis, Middle East Technical University, Computer Engi-
neering Department, 2009.

[34] Yusuf Kavurucu, Pinar Senkul, and Ismail Hakki Toroslu. Analyzing transitive
rules on a hybrid concept discovery system. In Hybrid Artificial Intelligence
Systems, pages 227–234. Springer, 2009.

[35] Ross D King, Stephen Muggleton, Richard A Lewis, and MJ Sternberg. Drug
design by machine learning: The use of inductive logic programming to
model the structure-activity relationships of trimethoprim analogues binding
to dihydrofolate reductase. Proceedings of the national academy of sciences,
89(23):11322–11326, 1992.

[36] Ross D King, Stephen H Muggleton, Ashwin Srinivasan, and MJ Sternberg.
Structure-activity relationships derived by machine learning: The use of atoms
and their bond connectivities to predict mutagenicity by inductive logic pro-
gramming. Proceedings of the National Academy of Sciences, 93(1):438–442,
1996.

[37] Ross D King, Ashwin Srinivasan, and Luc Dehaspe. Warmr: a data mining tool
for chemical data. Journal of Computer-Aided Molecular Design, 15(2):173–
181, 2001.

53

http://franz.com/agraph/allegrograph/
http://franz.com/agraph/allegrograph/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/


[38] Arno Knobbe, Hendrik Blockeel, Arno Siebes, and Daniel van der Wallen.
Multi-relational data mining. 1999.

[39] Richard Kufrin. Generating c4. 5 production rules in parallel. In AAAI/IAAI,
pages 565–570. Citeseer, 1997.

[40] James Larson and Ryszard S Michalski. Inductive inference of vl decision rules.
ACM SIGART Bulletin, (63):38–44, 1977.

[41] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduc-
tion to information retrieval, volume 1. Cambridge university press Cambridge,
2008.

[42] MongoDB. Aggregation Pipeline; MongoDB Manual 3.0.5. http:
//docs.mongodb.org/manual/core/aggregation-pipeline/,
2015. [Online; accessed 09-August-2015].

[43] MongoDB. MongoDB Documentation. http://docs.mongodb.org/
master/MongoDB-manual.pdf/, 2015. [Online; accessed 05-August-
2015].

[44] S Muggleton, R King, and M Sternberg. Predicting protein secondary structure
using inductive logic programming. Protein Engineering, 5(7):647–657, 1992.

[45] Stephen Muggleton. Inverse entailment and progol. New generation computing,
13(3-4):245–286, 1995.

[46] Stephen Muggleton and Wray Buntine. Machine invention of first-order pred-
icates by inverting resolution. In Proceedings of the fifth international confer-
ence on machine learning, pages 339–352, 1992.

[47] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory
and methods. The Journal of Logic Programming, 19:629–679, 1994.

[48] Stephen Muggleton, Cao Feng, et al. Efficient induction of logic programs.
Citeseer, 1990.

[49] Alev Mutlu. Improving scalability and efficiency of ILP-based and graph-based
concept discovery systems. PhD thesis, Middle East Technical University, Com-
puter Engineering Department, 2013.

[50] Alev Mutlu, Mehmet Ali Berk, and Pinar Senkul. Improving the time efficiency
of ilp-based multi-relational concept discovery with dynamic programming ap-
proach. In Computer and Information Sciences, pages 373–376. Springer, 2010.

[51] Alev Mutlu, Abdullah Dogan, and Pinar Karagoz. Utilizing coverage lists as a
pruning mechanism for concept discovery. In Information Sciences and Systems
2014, pages 269–276. Springer, 2014.

54

http://docs.mongodb.org/manual/core/aggregation-pipeline/
http://docs.mongodb.org/manual/core/aggregation-pipeline/
http://docs.mongodb.org/master/MongoDB-manual.pdf/
http://docs.mongodb.org/master/MongoDB-manual.pdf/


[52] Alev Mutlu and Pinar Karagoz. A hybrid graph-based method for concept rule
discovery. In Data Warehousing and Knowledge Discovery, pages 327–338.
Springer, 2013.

[53] Alev Mutlu and Pinar Senkul. Improving hit ratio of ilp-based concept discov-
ery system with memoization. The Computer Journal, 57(1):138–153, 2014.

[54] Alev Mutlu, Pinar Senkul, and Yusuf Kavurucu. Mpi-based parallelization for
ilp-based multi-relational concept discovery. In Machine Learning and Appli-
cations and Workshops (ICMLA), 2011 10th International Conference on, vol-
ume 1, pages 59–62. IEEE, 2011.

[55] Alev Mutlu, Pinar Senkul, and Yusuf Kavurucu. Improving the scalability
of ilp-based multi-relational concept discovery system through parallelization.
Knowledge-Based Systems, 27:352–368, 2012.

[56] Alev Mutlu, Pinar Senkul, and Yusuf Kavurucu. Improving the scalability
of ilp-based multi-relational concept discovery system through parallelization.
Knowledge-Based Systems, 27:352–368, 2012.

[57] Claire Nédellec, Céline Rouveirol, Hilde Adé, Francesco Bergadano, and Birgit
Tausend. Declarative bias in ilp. Advances in inductive logic programming,
32:82–103, 1996.

[58] Michael J Pazzani, Clifford A Brunk, and Glenn Silverstein. A knowledge-
intensive approach to learning relational concepts. In Proceedings of the Eighth
International Workshop on Machine Learning, pages 432–436, 1991.

[59] J. Ross Quinlan. Learning logical definitions from relations. Machine learning,
5(3):239–266, 1990.

[60] J Ross Quinlan and R Mike Cameron-Jones. Foil a midterm report. In Machine
Learning ECML-93, pages 1–20. Springer, 1993.

[61] Shivangi Raman, Vijay Kumar Chaurasiya, and Swaminathan Venkatesan. Per-
formance comparison of various information retrieval models used in search
engines. In Communication, Information & Computing Technology (ICCICT),
2012 International Conference on, pages 1–4. IEEE, 2012.

[62] Pramod J Sadalage and Martin Fowler. NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Pearson Education, 2012.

[63] Balwinder Saini, Vikram Singh, and Satish Kumar. Information retrieval models
and searching methodologies: Survey. Information Retrieval, 1(2), 2014.

[64] G Salton and M J McGill. Introduction to modern information retrieval. Intro-
duction to modern information retrieval, 1983.

55



[65] Open Source. The apache cassandra project. http://cassandra.
apache.org/, 2015. [Online; accessed 17-August-2015].

[66] Open Source. Apache couchdb. http://couchdb.apache.org/, 2015.
[Online; accessed 17-August-2015].

[67] Open Source. Apache hbaseTM home. http://hbase.apache.org/,
2015. [Online; accessed 17-August-2015].

[68] Open Source. Couchbase. http://www.couchbase.com/
open-source, 2015. [Online; accessed 17-August-2015].

[69] Open Source. Docker - Build, Ship, and Run Any App, Anywhere. https:
//www.docker.com/, 2015. [Online; accessed 05-August-2015].

[70] Open Source. Look up a redis command. http://redis.io/, 2015. [On-
line; accessed 17-August-2015].

[71] Open Source. Memcachedb: A distributed key-value storage system designed
for persistent. http://memcachedb.org/, 2015. [Online; accessed 17-
August-2015].

[72] Open Source. Mongodb. https://www.mongodb.org/, 2015. [Online;
accessed 17-August-2015].

[73] Open Source. Scalaris. http://scalaris.zib.de/, 2015. [Online; ac-
cessed 17-August-2015].

[74] Open Source. twitter/flockdb. https://github.com/twitter/
flockdb, 2015. [Online; accessed 17-August-2015].

[75] Open Source. Voldemort. http://www.project-voldemort.com/
voldemort, 2015. [Online; accessed 17-August-2015].

[76] Ashwin Srinivasan, Ross D King, and Douglas W Bristol. An assessment of
ilp-assisted models for toxicology and the pte-3 experiment. In Inductive Logic
Programming, pages 291–302. Springer, 1999.

[77] Ashwin Srinivasan, S Muggleton, and RD King. Comparing the use of back-
ground knowledge by inductive logic programming systems. In Proceedings of
the 5th International Workshop on Inductive Logic Programming, pages 199–
230. Department of Computer Science, Katholieke Universiteit Leuven, 1995.

[78] Jan Struyf and Hendrik Blockeel. Query optimization in inductive logic pro-
gramming by reordering literals. In Inductive Logic Programming, pages 329–
346. Springer, 2003.

56

http://cassandra.apache.org/
http://cassandra.apache.org/
http://couchdb.apache.org/
http://hbase.apache.org/
http://www.couchbase.com/open-source
http://www.couchbase.com/open-source
https://www.docker.com/
https://www.docker.com/
http://redis.io/
http://memcachedb.org/
https://www.mongodb.org/
http://scalaris.zib.de/
https://github.com/twitter/flockdb
https://github.com/twitter/flockdb
http://www.project-voldemort.com/voldemort
http://www.project-voldemort.com/voldemort


[79] Mohameth-François Sy, Sylvie Ranwez, Jacky Montmain, Armelle Regnault,
Michel Crampes, and Vincent Ranwez. User centered and ontology based infor-
mation retrieval system for life sciences. BMC bioinformatics, 13(Suppl 1):S4,
2012.

[80] Orient Technologies. Orientdb multi-model nosql databaseorientdb multi-
model nosql database. http://orientdb.com/, 2015. [Online; accessed
17-August-2015].

[81] Neo Technology. Neo4j, the world’s leading graph database. http://
neo4j.com/, 2015. [Online; accessed 17-August-2015].

[82] VoltDB. Using VoltDB. http://docs.voltdb.com/UsingVoltDB/,
2015. [Online; accessed 09-August-2015].

[83] John M Zelle and Raymond J Mooney. Learning semantic grammars with con-
structive inductive logic programming. In AAAI, pages 817–822, 1993.

57

http://orientdb.com/
http://neo4j.com/
http://neo4j.com/
http://docs.voltdb.com/UsingVoltDB/

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	LITERATURE SURVEY
	Concept Rule Induction Systems
	FOIL (First Order Inductive Logic Learner)
	WARMR
	GOLEM
	PROGOL
	CRIS

	Time Performance Improvement Techniques 
	Query Packs
	Query Transformations
	Reordering Literals
	Caching
	Parallelization
	Language Bias


	BACKGROUND
	Relational Data Mining
	Inductive Logic Programming
	Concept Rule Induction System (CRIS)
	Algorithm of CRIS
	Enhancements of CRIS

	Vector Space Model and Cosine Similarity
	NoSQL
	MongoDB
	NewSQL
	VoltDB

	PROPOSED METHODS
	Utilizing Coverage Lists as a Pruning Mechanism for Concept Discovery
	Motivation
	The Algorithm

	Cosine Similarity-based Pruning
	Motivation
	Discussion

	CRIS on Different DBMS Systems
	MongoDB Implementation
	Voltdb Implementation
	Using MySQL "Memory" Storage Engine


	EXPERIMENTAL RESULTS
	The Environment
	Data Sets
	Proposed Method 1 (Utilizing Coverage Lists)
	Proposed Method 2 (Cosine Similarity Based Pruning)
	Combination of Two Pruning Methods
	MongoDB
	VoltDB
	MySQL Memory Storage Engine

	CONCLUSION
	REFERENCES

