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ABSTRACT

AN INTERACTIVE APPROACH TO TWO-RESPONSE PRODUCT AND
PROCESS DESIGN OPTIMIZATION WITH STATISTICAL INFERENCES

Özate³, Melis

M.S., Department of Industrial Engineering

Supervisor : Prof. Dr. Gülser Köksal

Co-Supervisor : Prof. Dr. Murat Köksalan

July 2015, 74 pages

In this study, an interactive approach has been developed for two-response prod-

uct and process design optimization problems treating the single response prob-

lems as a special case. This approach considers preferences of the decision maker

explicitly and the correlation between the responses. It uses a prede�ned set of

objectives that are commonly encountered in the literature and industrial ap-

plications. However, instead of presenting all objective values at each iteration,

a set of performance measures are used to represent the objectives in a way to

communicate with the decision maker better. A signi�cant part of this com-

munication utilizes visual aids such as speci�cation and prediction regions of a

solution. Thus, the decision maker is able to decide better which objective can

be sacri�ced by how much in order to improve an unsatisfactory objective in the

next iteration. The developed approach is demonstrated on two examples; one

exempli�es binary response problem and the other is on single response prob-

lem. The advantages and disadvantages of the developed approach and issues
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for covering more than two responses are discussed.

Keywords: Multiresponse problems, robust product and process design opti-

mization, multi response surface optimization, interactive approaches
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ÖZ

�K� YANITLI ÜRÜN VE SÜREÇ TASARIM OPT�M�ZASYONU �Ç�N
�STAT�ST�KSEL ÇIKARIMLI ETK�LE��ML� B�R YAKLA�IM

Özate³, Melis

Yüksek Lisans, Endüstri Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Gülser Köksal

Ortak Tez Yöneticisi : Prof. Dr. Murat Köksalan

Temmuz 2015 , 74 sayfa

Bu çal�³mada, iki yan�tl� ürün ve süreç tasar�m optimizasyonu problemleri için

etkile³imli bir yakla³�m geli³tirildi. Buna ek olarak, tek yan�tl� problemler ge-

li³tirilen yöntemin özel durumu olarak incelendi. Bu yakla³�m, karar vericinin

tercihlerini aç�k bir ³ekilde dikkate almakta ve yan�tlar aras�ndaki korelasyonu

gözetmektedir. Problemin çözümünde literatür ve endüstriyel uygulamalar te-

mel al�narak olu³turulmu³ amaç fonksiyonlar� kullan�lmaktad�r. Karar vericiye

her iterasyonda tüm amaç de§erlerini sunmak yerine, bu amaçlar� yans�tacak

ve karar verici ile daha iyi ileti³im kurulmas�n� sa§layacak bir grup performans

ölçüsü belirlenmi³tir. Karar verici ile ileti³imin önemli bir bölümü, çözümün

spesi�kasyon ve tahmin bölgelerinin görselleriyle desteklenmektedir. Böylece ka-

rar verici yetersiz gördü§ü amac� iyile³tirmek için bir sonraki iterasyonda hangi

amaçtan ne kadar fedakarl�k edece§ine daha rahat karar verebilmektedir. Geli³-

tirilen yakla³�m iki uygulamayla örneklendirilmi³tir. Örneklerden bir iki yan�tl�
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problemlerin di§eri ise tek yan�tl� problemlerin çözümünü örneklendirmektedir.

Yöntemin avantaj ve dezavantajlar� ve ikiden fazla yan�t olan durumlarda ne

gibi çözüm önerileri sunulabilece§i tart�³�lm�³t�r.

Anahtar Kelimeler: Çok yan�tl� problemler, robust ürün ve süreç tasar�m opti-

mizasyonu, çok yan�tl� yüzey optimizasyonu, etkile³imli yakla³�mlar
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CHAPTER 1

INTRODUCTION

In recent years, achieving high quality in products and processes through o�-line

quality engineering methods [89] has been of an ever-increasing interest due to

the competitive market conditions. The purpose of o�-line quality engineering,

also known as robust engineering [89], is to increase the competitiveness of the

new products and processes by reducing their cost and improving their quality

via research and development at the design stage. There are several design pa-

rameters a�ecting the quality (or performance) of the products and processes to

be considered simultaneously. As a part of o�-line quality engineering, robust

parameter design aims to increase the quality and reliability of a product or

process by �nding the optimal setting of the input variables (parameters) that

makes the product or process insensitive to the uncontrollable variations in the

system. On the other hand, quality is typically multidimensional [13]. In other

words, quality of a product is de�ned by multiple quality characteristics of a

product or process. In addition, in most cases, an optimal design setting for

a response (or quality characteristic) is not optimal for some other responses.

This problem is referred to as a multi response product and process design or

multi response problem [36]. In most of the multi response product and process

design problems, considering each response separately causes incompatible so-

lutions in practice due to the con�icting nature of the responses. Therefore, in

order to �nd a compromising solution, the multiple responses should be taken

into account simultaneously. In this regard, there have been several approaches

to these problems. Most of the approaches in the literature use multi-response

surface optimization (MRSO) techniques. These approaches �rst design experi-
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ments to gather data to build empirical relationship functions as models of the

relationships between responses (or performance measures) of interest and sev-

eral controllable design variables, and then treat these functions as objectives or

constraints in an optimization model.

Even though, there are di�erent opinions about the classi�cation of MRSO ap-

proaches such as [75,97], they are viewed as multi objective optimization (MOO)

problems by many researchers such as Park and Kim [71], Lee et al. [50]. Thus,

the MRSO approaches are analysed under three categories of MOO literature

according to the timing of articulation of the decision maker's (DM) prefer-

ence information as prior, progressive (or interactive) and posterior preference

articulation methods. Prior preference articulation approaches require all nec-

essary information about preferences of the DM prior to the solution procedure.

Interactive approaches take preferences of the DM progressively during the so-

lution procedure. Finally, posterior approaches do not require any information

on the DM's preferences before or during the problem solving procedure. DM's

preferences are incorporated after a representative set of solutions are identi�ed.

Most of the existing approaches in the MRSO literature are prior approaches

requiring all preference information before problem solving, which is very di�-

cult in practice. These approaches tend to combine the multiple responses into

a single function to optimize them simultaneously such as desirability function

approaches [19,26,35,40,74] and loss function approaches [42,73,92]. In addition,

some approaches utilize MOO methods such as goal programming [34, 75] and

goal attainment [96]. Yet, in many cases, such aggregations fail to satisfactorily

represent the decision makers' preferences.

Moreover, in multi response problems, responses may statistically and prefer-

entially depend on each other. However, some approaches such as desirability

function based methods do not take into account the possible correlations be-

tween responses. Furthermore, some studies such as [92] consider the variances

of the responses as constant over the experimental region, which contradicts

with the aim of the robust parameter design.

Additionally, modelling and estimation di�culties are encountered in MRSO
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problems due to limiting assumptions of the modelling approaches such as nor-

mality of the errors of a model with zero mean and constant variance. In some

cases, data transformations are required to satisfy those assumptions. For in-

stance, logarithmic transformation of the data is performed in several cases

where the response variable follows log-normal distribution [84]. However, those

transformations are usually used erroneously which a�ects the solution of the

problem [7,47,68].

In this study, to overcome many of the aforementioned de�ciencies, we develop an

interactive approach for two-response product and process design optimization

problems as well as addressing the single response problem as a special case. We

assume that properly collected data is available prior to the implementation of

the developed method, since data collection is out of the scope of this thesis.

At the model building stage, we use ordinary least squares (OLS) regression

which is a commonly used approach [23] for building the functional relationship

models between responses and the controllable input variables. We �t separate

models to means and variances of the responses and that of the correlation

coe�cient between the responses. At the optimization stage, our method follows

an interactive procedure that explicitly considers the preferences of the DM. It is

based on some concepts of the STEP method (STEM) proposed in [5]. Moreover,

we de�ne a set of performance measures that are commonly encountered in the

literature and industrial applications. At each iteration, instead of presenting all

objective values, we use those performance measures to represent the objectives

in a way to facilitate the communication with the DM. In addition, we consider

the possible correlations between the responses by these performance measures.

Furthermore, we support this communication by visual aids such as presentation

of speci�cation and prediction regions of the solution at each iteration. In this

way, the DM can decide better which objective can be sacri�ced by how much

in order to improve an unsatisfactory objective in the proceeding iteration.

In Chapter 2, we review the studies that are related to our work. We provide

background information on response surface methodology (RSM), Taguchi's ro-

bust parameter design (RPD) and multi objective optimization. We give details

on STEP Method concepts of which are exploited in this study. Finally, we sum-
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marize MRSO approaches and we address their contributions and limitations.

In Chapter 3, we explain the development of the method in detail. First we

brie�y explain data collection procedure commonly used in the literature and

industrial applications. Then, we present the model building stage and the

performance measures that are functions of the mean, variance and correlation

coe�cient models. In addition, the estimation di�culties encountered due to

the limiting assumptions of the modelling methods are addressed and ways of

handling these di�culties are proposed. Lastly, we introduce the developed

interactive procedure and how the aforementioned visual aids are exploited at

each step of this procedure. We discuss convergence issues and nonlinearity of

the method.

In Chapter 4, we illustrate the developed approach on two examples. First ex-

ample is polymer experiment which is used in the literature [42, 64,92]. Second

example is generated for illustrating how the developed method is applied to

a single response problem in which the response variable is log normally dis-

tributed.

In Chapter 5, we summarize our method for two response product and process

design problems. We discuss the strengths and the limitations of our method

when comparing the existing methods in the literature. Finally, we address

issues for covering more than two responses and handling further problems on

modelling and estimation as future research directions.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, studies in the literature that are most relevant to this thesis

are presented. These studies are grouped into four sections as response surface

methodology, robust parameter design, multi objective optimization and multi

response surface optimization.

2.1 Response Surface Methodology

Response surface methodology (RSM) is a set of statistical and mathematical

techniques used to build a functional relationship between response of interest

and a number of inputs presumed to a�ect the response. The foundations of

RSM date back to the studies in the early 1930s or even earlier [37]. Nevertheless,

G.E.P. Box and K.B. Wilson have been known as the pioneers of RSM since their

work in 1951 [37,64,80]. Believing that their method is to be of value in the other

�elds, their aim is to �nd out the optimum conditions in chemical investigations

to attain maximum yield [12]. As predicted, RSM has been used and applied in

various areas after their development [12,37].

The main objectives of RSM are

1. To explore and quantify the relationship between the value of a response

and the settings of a group of factors that can be used to predict the value

of response for a given setting of factors and

2. To discover the settings of the factors where the best value of the response
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of interest is achieved [10,37,38].

The statistical and mathematical techniques used in RSM covers (1) designing

a set of experiments to gather measurements of the response of interest, (2)

building a mathematical model by using the data collected in the experiments

and test the model via hypotheses and (3) determining the optimal settings of

experimental factors by using statistical experimentation techniques, regression

modeling and elementary optimization methods respectively [37,64].

Let us de�ne the response variable, y, as a quantity for measuring quality (perfor-

mance measure or quality characteristic). Its value is assumed to be in�uenced

by the changes in the levels of processing conditions or input variables, which are

called factors usually to be formed by transforming natural variables to coded

variables. The values of the factors denoted by x1, x2, · · · , xk can be controlled

by the experimenter.

The relationship between y and x is generally approximated by building a low-

order polynomial in the form of the following model [38]:

y = f ′(x)β + ε (2.1)

where x = (x1, x2, · · · , xk), f(x) is a vector function containing p elements of

powers and cross-products of powers of factors (up to a speci�c degree, d >

1), β denotes a vector of p unknown constant coe�cients and ε is a random

experimental error often assumed to be normally distributed with zero mean

and variance σ2. ε contains measurement error on the response, some sources of

variation inherent in the process such as background noise, the e�ect of other

unknown variables, and so on [64]. With this formulation, expected value of y

(mean response, µ(x)) becomes by f ′(x)β.

To build such a relationship given by (2.1), �rst-order and second-order models

are commonly used in most of the cases. If the true response surface of interest

is approximated over a small region of the input variables (factors) where there

is a little curvature in true response function, then the �rst-order model given
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by (2.2) is considered to be appropriate:

y = β0 +
k∑
i=1

βi xi + ε . (2.2)

The degree of curvature in the true response function is usually high and hence,

the �rst-order model is not adequate. In such cases, second-order model provided

in (2.3) is used:

y = β0 +
k∑
i=1

βi xi +
∑∑

i<j

βij xi xj +
k∑
i=1

βi x
2
i + ε . (2.3)

Moreover, since second order models can take various functional forms and es-

timating βs are easy by the method of least squares, these models are widely

used in RSM [64].

In addition to the modelling issues, designing the experiments to gather data on

response and optimization of the models to �nd the optimal setting of the input

variables are important parts of response surface methodology. Experiments are

usually conducted sequentially on the purpose of searching a smaller region of

factors containing optimum and approximating relationship model more accu-

rately in that region. In that framework, di�erent experimental designs are used

to obtain the �rst and the second degree models. These designs are called �rst-

order designs and second-order designs, respectively. The most common �rst

order designs are 2k factorial (k is the number of control variables), Plackett-

Burman and simplex designs. The most frequently used second order designs

are the 3k factorial, central composite, and the Box-Behnken designs [38]. Opti-

mization methods employed to �nd the optimum settings of factors also change

depending on the nature of the �tted model. The method of steepest ascent

(or descent) is a proper technique for �rst degree models to move toward the

optimum response sequentially. For second degree models, the most common

approach is ridge analysis. It is basically the method of steepest ascent applied

to second-order surfaces as constrained optimization [10,38].

In order to have a detailed understanding on the methods involved in response

surface methodology, the books [10,37,64] can be referred. Additionally, [28,38,

66] provide reviews on RSM techniques.
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2.2 Taguchi's Robust Parameter Design

Robust parameter design (RPD) is a method that is a part of quality engineering

introduced by Genichi Taguchi during 1950s in Japan and 1980s in the United

States [89]. The aim of RPD is to increase the quality and reliability of a product

or process by �nding the optimal setting of the input variables (referred to as

parameters by Taguchi [88]) that make the response of the system (product or

process) under consideration insensitive to the uncontrollable variations in the

system. Taguchi introduces that all factors are not controllable in a designed

experiment [38,80]. There exist some other factors so called noise factors which

are hard (i.e., costly) or impossible to control. There are mainly three types

of noise factors, which are external noise such as environmental conditions in-

disposing the product or process, internal noise owing to the changes occurring

after production (during warehousing or usage) and unit-to-unit noise which is

the di�erence seen from product to product [88].

Taguchi relates quality to cost and de�nes robust design as the design that

minimizes the average loss not only to producer, but also to the customer and

society [72]. He introduces a quadratic loss function as:

L(y) = k (y − t)2 , (2.4)

where y is the response of interest, k is the constant de�ning loss and t is the

target value. The expected value of L(y) is

Q = E[L(y)] = k
(
σ2 + (µ− t)2

)
, (2.5)

where µ and σ2 are the mean and variance of y. As seen in (2.4) and (2.5), when

the response deviates from its target value, a loss is arisen. Following from the

aforementioned fact, that variation from the desired target performance de�nes

quality. Thus, to �nd the setting of control factors minimizing the average loss,

Taguchi de�nes performance criteria, which is derived from average loss, known

as signal-to-noise (S/N) ratios considering both the process mean and variance.

S/N ratios are formulated according to the goal of the experiment (Table 2.1)

which might be either smaller the better or larger the better or target is best,

where the target value is either zero or in�nity or a speci�ed value t respectively.
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All of these S/N ratios are formed to be maximized independent of the goal of

the experiment and each experimental run is to be replicated to calculate S/N

ratio. For further details on those derivations, [72] can be referred.

Table2.1: S/N rations and optimization models according to the goals of the
experiment

Problem Type
Signal to Noise Ratio

(S/N Ratio)
Optimization Model

Larger the better

(y is positive)

−10 log

(
1

n

n∑
i=1

1

y2

)
−10 log

(
1

y2

(
1 + 3

s2

y2

))
Max E(Y ) = f1(x1, x2, · · · , xk)
Min V (Y ) = f2(x1, x2, · · · , xk)

s.t.

li 6 xi 6 ui
E(Y ) > 0

V (Y ) > 0

Smaller the better

(y is positive or zero)
−10 log

(
1

n

n∑
i=1

1

y2

)
−10 log (ȳ2 + s2)

Max E(Y ) = f1(x1, x2, · · · , xk)
Min V (Y ) = f2(x1, x2, · · · , xk)

s.t.

li 6 xi 6 ui
E(Y ) > 0

V (Y ) > 0

Nominal the best, Type 1

(y is proportional to s2, y > 0,
target is �nite and positive)
Nominal the best, Type 2

(y is independent from s2,
y is free, target is zero)

−10 log

(
ȳ2

s2

)
or

−10 log

 ȳ2 − s2

n
s2


−10 log s2

Min (E(Y )− Target)
Min V (Y )

s.t.

li 6 xi 6 ui
E(Y ) = f1(x1, x2, · · · , xk) > 0

V (Y ) = f2(x1, x2, · · · , xk) > 0

In Taguchi's RPD, orthogonal arrays, which are simple experimental matrices

developed by Rao in 1946 [27], are used to assign the controllable and uncon-

trollable input variables to an experimental layout. Mostly, the smallest size of

an orthogonal array is selected according to the number of controllable input

variables and the number of levels [72]. In an experimental layout, orthogonal

array of controllable input variables are called inner array and orthogonal array

of noise variables having multiple combinations of experiments for a row of inner

array are called outer array [27,52,72]. In Figure 2.1, an experimental layout is

represented and in that �gure, inner array and outer array variables are coloured

by red and blue respectively.

Once the S/N ratios are calculated for each run (row of inner array) as illus-

trated in Figure 2.1 by using the measured response values, analysis of variance

(ANOVA) is widely used in order to determine the signi�cant factors (and factor
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Figure 2.1: Illustration of an experimental layout of robust parameter design

interactions) [81]. The decision of whether a factor is signi�cant or not is also

supported by the main e�ect plots for means of S/N ratios. After �nding the

signi�cant factors (and factor interactions), the optimum setting of the factors

(controllable inputs) is de�ned by selecting the levels where the mean S/N ratio

is highest on the main e�ect plots. Yet, in the presence of signi�cant interac-

tions, it is not easy to identify them via orthogonal arrays. The speci�ed setting

should be tested through con�rmation experiments. To conduct these experi-

ments, one way of obtaining variations may be the utilization of outer array. For

a detailed understanding of Taguchi's quality engineering and robust parameter

design, [72, 81, 88, 89] and some overview studies such as [33, 70, 80] are useful

references.

Although the Taguchi method has been used in various �elds because of its

simple procedures [8, 16, 68, 88], the statistical techniques used by his method

have been the matter of much debate since its introduction [68]. It has been

shown that his method cannot estimate the interactions between controllable

inputs and a great number of experimental runs are needed. Moreover, S/N

ratios are not capable of distinguishing the inputs a�ecting the mean and the

ones a�ecting the variance. The studies [8, 64, 68] provide some criticisms on

Taguchi's parameter design techniques. As the results of these criticisms, the

response surface approach has been suggested to be utilized to have an approach

which statistically sound more and which is more e�cient for analysis within the

concept of Taguchi's RPD [64].
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To consider the variance of the response within the concept of Taguchi's RPD,

RSM approaches basically propose modelling the variance in addition to the

mean model. Variance modelling is �rst studied by Bartlett and Kendall in

1946 [4]. The variance model is formulated as:

log(s2i ) = x′i γ + ε∗i , (2.6)

where s2i is the sample variance of n replications at design setting xi and γ is

a k dimensional vector of dispersion e�ects. Assuming the independence of the

errors in the mean model and normality with log(σ2) = x′i γ, they point out

that the errors in the variance model are normal with constant variance. Thus,

under these assumptions the maximum likelihood estimation of the dispersion

e�ects simply becomes the ordinary least squares estimation. Finally, the model

for the mean is assumed to be:

yij = x′i β + εij σi , (2.7)

where β is the k dimensional vector of location e�ects.

Box and Meyer [11] are the �rst to introduce the variance modelling in the

concept of RPD. Their motivation is based on the fact that the formulation of

S/N ratios require replications which may be impractical when many controllable

input variables exist. Hence, they make the use of mean and variance models to

separate the location and dispersion e�ects.

After Taguchi's introduction of his methods, many researchers have studied un-

coupling the mean and the variance of the response of interest and suggested

the use of separate models to achieve a better understanding of the process in

terms of mean and variance. In that manner, the robust design problem can be

handled through utilizing response surface methodology [64] and that makes the

separate modelling of the mean and the variance attractive to the robust design

problems.

Mainly, two response surface approaches which are dual response and single

model approach are developed for robust parameter design in 1990s [38,80]. The

dual response approach proposed by Vining and Myers [93] in 1990 [38, 70, 80]

is based on the dual response problem introduced by Myers and Carter [65] as
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stated in [80]. In that approach, two separate models are �tted to the mean

and the variance of the response of interest in order to satisfy the objectives

related with them simultaneously. Thus, the problem becomes a multi objective

optimization problem as shown in Table 2.1.

If µ̂y and σ̂2
y are denoted as the models obtained by approximating separate re-

sponse surface for the mean and the variance, respectively, then σ̂2
y is minimized

subject to the equality constraint, µ̂y = t, where t denotes the target value, when

the problem is target is best type problem. To solve a similar optimization prob-

lem, Del Castillo and Montgomery [17] suggest the use of inequality constraints

instead of equality constraints due to the fact that equality constraints do not

always produce a local optima. They have proposed a nonlinear programming

procedure to solve these problems. Later, Lin and Tu [55] have come up with a

procedure aiming to minimize mean square error (MSE) including bias (devia-

tion of the response mean from the target value) and variance. Similarly, various

extensions of dual response approach have been studied by many researchers and

some example studies are [21,32,39,49,56,90].

In single model approach, by using combined array design suggested by [94], the

mean and the variance functions of the response are estimated by taking uncon-

ditional expectation and �nding unconditional variance of a model containing

both noise and controllable input variables [67].

Additionally, there are some other approaches that consider the problems con-

sisting of separate mean and variance models as a multi objective optimization

problems and study robust optimization based on optimization techniques such

as weighted sum method, compromise decision support problem and physical

programming [70]. Those approaches ensure that the problems can be solved in

a continuous space of input parameters contrary to the Taguchi method. For

further understanding on those approaches, the study [70] and the references it

provides can be referred.
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2.3 Multi Objective Optimization

Multi objective optimization (MOO), also known as multi criteria optimization,

is a �eld of multiple criteria decision making, which is one of the sub-disciplines of

operations research and aims to solve more than one mathematical optimization

problem simultaneously [87]. MOO methods are widely used techniques in many

real life problems due to the multiple criteria concern nature of the most of the

optimization problems in real life.

In MOO problems, it is always assumed that the decision maker (DM) is involved

in the solution procedure at some stage [44]. Those procedures are classi�ed into

prior, interactive and posterior preference articulation approaches according to

the stages that the DM's preferences are involved during the problem solving.

Prior preference articulation approaches assume that all necessary information

about preferences of the DM can be obtained prior to the solution procedure.

Those procedures are widely used in practice. However, it is very di�cult or

impossible to obtain all information about the DM's preferences prior to the

problem solving. Even the DM may not be aware of her/his preferences. Thus,

these approaches may result in solutions that do not satisfy the DM when the

preference parameters are not well-estimated.

Posterior approaches do not require any information about the DM's preferences

before or during the problem solving procedure. When the problem is solved,

the resulting alternatives are presented to the DM to take her/his preference.

In most cases, a large number of solution alternatives are presented to the DM

which makes di�cult to select the satisfactory solution among all.

Interactive approaches extract preferences of the DM progressively during the

solution procedure. Steuer [87] states that �The future of multiple objective pro-

gramming is in its interactive application�. These approaches ensure feedback

between the DM and the model which helps the DM to learn more about her/his

problem and eventually to reach a preferred solution [71, 87]. Some examples

of interactive procedures are STEM [5], GDF [24], Z-W method [99] and vi-

sual interactive approach [45]. The multi objective optimization approaches are
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reviewed in detail in the studies [22, 29, 44, 59, 87]. Particularly for interactive

approaches [60, 85] can be referred.

In this study, we utilize some concepts of the STEP method and use in multi

response surface optimization problem. The STEP method is brie�y explained

in the following sub section.

2.3.1 STEP Method

The STEP method (STEM) is one of the �rst interactive approaches to multi

objective optimization problems. It is introduced by Benayoun and others in

1971 for maximization of multi objective linear problems [5]. In addition, STEM

has been modi�ed to be used for multi objective nonlinear problems as stated

in [59].

STEM proposes that the DM can indicate the responses that have acceptable

values and those whose values are unacceptable (too high) in each iteration of

the solution procedure. Then, the DM can tolerate the values of some objec-

tive function values to increase in order to improve unacceptable function values

due to the fact that the solutions are searched in Pareto optimal set (the set

of feasible solutions for which it is not possible to improve any objective with-

out sacri�cing from at least one other objective). In the below formulation all

objectives are of minimization type. To generate new solutions, the following

weighted Tchebyche� problem given by (2.8) is used:

min max[wi |zi(x)− z∗i |]

subject to

x ∈ S

(2.8)

In (2.8), the objective functions are assumed to be bounded over a feasible region

S. A vector called ideal objective vector, z∗, is used as a reference point in the

calculations. The reference points are determined by separately minimizing each

objective function subject to the feasible region S. The results determined by

minimizing each response form the corresponding row of payo� table illustrated

in Figure 2.2. The ranges of non-dominated solutions are required to obtain
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weighting vector, w. The idea is to bring all objective functions into a similar

scale by the help of the weighting vector. The nadir objective vector, znad, is

approximated from the payo� table by choosing the maximum element of each

column.

Figure 2.2: Illustration of payo� table

The weighting vector is calculated by the formula:

wi =
ei
k∑
j=1

ej

, i = 1, · · · , k, (2.9)

where for every i = 1, · · · , k

ei =
1

z∗i

znadi − z∗i
znadi

(2.10)

or

ei =
znadi − z∗i

max
(
| znadi |, | z∗i |

) (2.11)

where the denominator cannot take zero value [59]. According to these formulas,

for the objective functions that are farther from their ideal objective vector

component, the weight becomes larger.

After DM states classi�cation of objective functions and allowable values from

the acceptable objective values, it is ensured that unsatisfactory objective values

do not get worse. The procedure ends when the DM does not desire to change

any of the objective function values or continues until DM is not satis�ed with

any of the components. In the latter case, STEM algorithm fails at �nding a

satisfactory solution. It should be noted that it is not possible to comment on

convergence of STEM according to a value function since it does not assume an

underlying value function.

STEM has many advantages such as the simplicity of the underlying ideas, ease

of handling preference information and less complicatedness of the concepts
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presented to the DM. On the other hand, it may be di�cult to estimate the

appropriate amount of increment for the DM. For further extensions of STEM

algorithm, [59,87] and the references provided within those can be reviewed.

2.4 Multi Response Surface Design Optimization

Previous sections introduces that there are several factors a�ecting the quality of

a product and those factors are de�ned as controllable and uncontrollable input

variables. The factors are to be considered to determine the optimal settings

of controllable design variables to consistently produce high quality of products

and processes. Taguchi's methodology and RSM approaches to these design

problems focus on one response of interest. However, quality of a product is

typically de�ned by multiple responses of a product or process where optimal

design solution for a response may not be optimal with regard to some other

responses. This problem is referred to as a multi response optimization (MRO)

problem [36] or multi response product and process design. In these problems,

analysing each response separately results in incompatible solutions in practice.

Thus, in order to �nd a compromising solution, the multiple responses should be

considered simultaneously. In this regard, there have been several approaches

to these problems.

As stated in [36], although there are some multi response experiments there has

not been much attention on multi response experiments until the studies [9, 98]

pointing out parameter estimation problem in multi response models. These

works have been followed by various studies.

Most of the approaches in the literature use multi response surface optimization

(MRSO) techniques. MRSO can be formally de�ned as:

optimize {ŷ1, ŷ2, · · · , ŷk}

subject tox ∈ Ω
(2.12)

where ŷi(x)s are the estimated response models for y = (y1, y2, · · · , yk) denoting
k response variables which are determined by the controllable design variables

x and Ω is the experimental region [31]. These approaches commonly suggest
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a three stage solution procedure involving data collection via experimental de-

sign, model building and optimization. Each of these three stages carries high

importance due to the fact that the success of the optimization depends on the

accuracy of the �tted model and designed experiments used for building models.

In the �rst stage, experiments are designed to collect response data and to iden-

tify statistically signi�cant controllable factors. In the second stage, empirical

relationship models are built as functions of the relationships between responses

(or performance measures) of interest and several controllable design variables

(i.e., multiple regression). In the last stage, the empirical models are treated as

objectives or constraints in an optimization model to determine the setting of

input variables (controllable factors) satisfying certain system requirements.

Even though, MRSO problems have been considered as MOO problems recently,

there are still several di�erent opinions on the categorization of the existing

approaches. [97] supports that all existing MRO approaches can be classi�ed

into dual response approach, desirability function and loss function-based opti-

mization. According to [75] MRSO approaches are divided into two categories

which are loss function approach and MOO approaches, on the other hand; [71]

supports that all MRSO approaches can regarded as special cases of MOO ap-

proaches so that MRSO approaches can be classi�ed into the same three cate-

gories of MOO methods. In this study, the latter idea has been followed and the

MRSO approaches are analysed under three categories of MOO literature: prior,

interactive and posterior preference articulation methods, which are determined

with respect to the stage where the DM's preferences are articulated.

2.4.1 Prior Methods

Desirability function, generalized distance and loss function approaches are well-

known conventional approaches in the MRSO literature. These approaches ag-

gregate the objectives into a single one to optimize them simultaneously. Since,

this is a very similar approach to assuming a utility function to be optimized,

they are a part of prior methods. Moreover, there are some studies utilizing goal

programming to solve MRSO problems such as [34,75]. In addition, approaches
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such as weighted p-norm, displaced ideal, weighting, neutral compromise and

global criterion methods reviewed in [2] are considered as prior methods. Fur-

thermore, there are some other approaches which can be counted as prior meth-

ods. The study in [13] proposes an approach to determine the optimal setting of

controllable input variables by maximizing the probability of meeting speci�ca-

tions for all responses simultaneously. In [54], a process capability index based

desirability function approach is proposed. In [3], location and dispersion e�ects

are considered simultaneously. [6] uses principle component based multivariate

capability index as an objective function.

2.4.1.1 Desirability Function Approach

Desirability function approach is �rst introduced in [26] and it has become the

most popular approach for multi response surface optimization problems due to

its simplicity and �exibility [53]. Desirability function transforms an estimated

response yi(x) (where x denotes vector of input variables) into a scale free value,

di, called desirability which is assigned to a value from 0, where one or more

unacceptable characteristics exist, to 1, where all response values are acceptable.

By combining the individual desirability values, the overall desirability, D, is

de�ned which turns the MRSO problem into a single response problem to reach

an optimal solution which ensures that none of the responses lie outside of the

acceptable limits.

The study [19] modi�es overall desirability, introduced as the geometric mean of

the individual desirability values in [26], to add robustness. It proposes di�erent

forms of individual desirability functions for nominal-the-best (target is best),

smaller-the-better and larger-the-better type responses. Then, using weighted

geometric mean is considered in [20] in order to consider relative importance

of the responses while aggregating the individual desirability values. In [18],

desirability functions that are di�erentiable everywhere are introduced and the

problems are to be solved with gradient based optimization procedures. [74] pro-

poses di�erent models that can be divided into two groups which are minimizing

the deviation of responses from their targets and centring the responses between
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their upper and lower bounds set. Later, a function form is suggested by using

exponential functions in [40]. These functions can generate various shapes when

their parameters are adjusted. Desirability function approaches have been pre-

ferred by many researchers such as in the studies [41,46,95] and so on. For further

extensions of desirability functions, useful references are provided in [14,71].

2.4.1.2 Generalized Distance Function and Loss Function Approaches

Several MRSO methods have been proposed based on generalized distance func-

tion and loss function extending Taguchi's quadratic loss function. These tech-

niques consider both mean and variance-covariance e�ects. By using this infor-

mation from several responses, they construct a single function to represent the

expected loss to be minimized. Uncertainty and the correlation structure are

addressed through the use of variance-covariance matrices for the responses [71].

The study in [35] introduces generalized distance approach (GDA) which is basi-

cally minimizing the Mahalanobis distance between responses and their individ-

ual ideal optimum found over the experimental region. The correlations among

the responses and the quality of predictions are taken into account. However,

preferences of the DM are not considered and all response variables depend on

the same input variables [15].

A loss function for MRO is proposed in [73] by extending Taguchi's single re-

sponse quadratic loss function to a multi response one. Then, a new loss function

is presented in [92]. That function includes the predicted response, ŷ(x) instead

of y(x) in expected multi response squared error loss suggested in [73]. In [1]

weight parameters are used to penalize the loss incurred when the response value

is o� the target. The study in [42] introduces predicted responses in the loss

function. The de�nition has three desired properties of small bias, high robust-

ness and high quality of predictions. It is desired that deviation of expected

responses from their targets and variances of the true and predicted responses

to be small at the compromise optimal [42]. It is indicated in [42] that [1,35,92]

assume that variance of responses (Σy(x)) is constant over the experimental

space (equal robustness), unlike [73].
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2.4.2 Interactive Approaches

Some studies utilize interactive MOO approaches for optimization stage of MRSO

problems. In those studies, an iterative solution procedure is followed. The DM

is provided with a solution and s/he adjusts the preference parameters (directly

or indirectly) at each iteration. Then, the optimization problem is solved by

using the adjusted preference parameters and a new solution is obtained. These

iterations continue until the DM is satis�ed.

In [77], an interactive method which combines goal programming and RSM

is proposed to meet user speci�ed goals. Instead of solving a complete goal

programming model, RSM is used to achieve a single highest ranked goal. Once

it is achieved, the same procedure is repeated for the next highest ranked goal

without violating the previous achievements. The DM may accept the solution

for a goal under consideration or s/he may want to continue through more

investigation which requires another experimental design that brings additional

cost in practice. The DM's preferences are based on the point estimations and

hence, the prediction variance is not considered. As stated by the authors, the

method proposed in [77] does not address the cases where the error variance is

not constant and/or the errors are correlated.

In [62] and [71], interactive approaches to MRSO problems are proposed based

on GDF algorithm [25]. In these methods, trade-o� weights are speci�ed by

the DM. In [62], response surface models are built only for the means of the

responses. Thus, uncertainty is not considered and that may result in unrealistic

solutions. In [71], prediction variance is taken into consideration during the

solution procedure. However, the DM is presented directly with desirability and

prediction variance values which may not be easy to be interpreted by the DM.

No additional performance metrics are used to ease the interpretation.

An interactive approach using univariate capability indices as performance mea-

sures is developed in [43]. This approach is based on parametric achievement

scalarizing program proposed in [45]. At each iteration the DM chooses a de-

sirable point in objective space (by observing the Cpk values of the responses)
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and the direction or weight parameters are adjusted based on that point. Those

Cpk estimations are point estimations thus uncertainty in the predictions are

not considered. In addition Cpk values may not be su�cient to represent the

preferences of the DM satisfactorily.

In [51], the approach assumes a general monotone utility function which cov-

ers a wide variety of preference structures. During the solution procedure, se-

ries of pairwise comparisons are performed. Estimated utility functions such as

weighted desirability functions are constructed. At each iteration, utility func-

tions are updated according to the preference information provided by the DM

and a new solution is obtained to be compared with the previous solution. In

this approach, the uncertainty in the response surface models and the variances

of the responses which may not be constant over the experimental region are

not taken into account. This may lead to unrealistic solutions in practice.

Furthermore, some STEM based approaches exist in the MRSO literature. In

[61], the DM needs to provide least satisfactory performance measure at a given

solution. Di�erently from STEM, he does not need to identify the amount to

be sacri�ced from a satisfactory performance measure. Then a new solution

where the provided least satisfactory performance measure is improved at the

expense of other performance measures by gradient search is generated. Since

the allowable values of the satisfactory performance measures are not satis�ed

by the DM, it may be di�cult to reach a satisfactory solution.

In [30, 31], at each iteration the DM is allowed to adjust the shape of the de-

sirability function by adjusting the bounds or the target values of responses.

However, to adjust the preference parameter values directly may be di�cult for

the DM. In addition, using desirability functions as only performance measures

may not represent the preferences of the DM properly.

2.4.3 Posterior Approaches

Posterior articulation approaches are not commonly utilized to solve MRSO

problems. There are a few studies under this group.
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An ε-constraint method based approach for dual response optimization problems

is introduced in [49]. In this approach, after �nding the non-dominated solutions

without any preference information, alternative intervals are de�ned and they

are presented to DM graphically to facilitate DM's decision making. When the

number of objectives, which is two in dual response problems, is more than two,

this graphical representation may not be helpful.

For multi response surface optimization problems, a posterior preference artic-

ulation approach is proposed in [50]. This approach initially �nds the set of

non-dominated solutions without taking the preferences of DM. Then, DM se-

lects the best solution from the non-dominated solutions presented. At this

stage, an interactive selection method based on pairwise comparisons is utilized

to ease the DM's decision making.
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CHAPTER 3

DEVELOPMENT OF THE METHOD

Most of the approaches mentioned in the previous chapter aggregate the objec-

tives into a single one to optimize them simultaneously. However, in many cases,

such aggregations fail to satisfactorily represent the decision makers' preferences.

Moreover, in multi response robust product and process parameter design prob-

lems, responses may statistically and preferentially depend on each other. In

addition, modelling and estimation di�culties are encountered in these prob-

lems due to reasons including limiting assumptions of the modelling approaches,

insu�ciency of data, representation of results in appropriate scales and multiple

dimensions.

In this study, to overcome many of those de�ciencies, an interactive approach

has been developed for binary response product and process design optimization

problems with an emphasis on the single response special case. This approach

addresses three stages of MRSO, which are data collection (via experimental

design), building empirical relationship functions, and optimization. Yet, data

collection is not a primary concern in this study. It is assumed that data are

collected properly prior to the implementation of the developed method.

At the model building stage, we utilize ordinary least squares (OLS) regression,

a commonly used approach [23] for building the functional relationship models

of means and variances of the responses of interest and that of the correlation

coe�cient between the responses. By using these models, we formulate a set of

performance measures that can be of use in the design optimization process.
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At the optimization stage, our method follows an interactive procedure explic-

itly considering preferences of the DM, similar to the STEM algorithm. At each

iteration of the optimization procedure, instead of presenting all objective func-

tion values to the DM, the aforementioned set of performance measures that

facilitates communication with the DM is presented. Moreover, this commu-

nication is supported by visual aids such as presentation of speci�cation and

prediction regions of the solution at each iteration. Thus, the decision maker

is able to decide better which objective can be sacri�ced by how much in order

to improve an unsatisfactory objective in the next iteration. Di�erently from

STEM, the DM can turn back to the solutions s/he is presented in the previous

iterations, which means that s/he can use this method to learn the limitations of

the current technology and how the objectives behave according to the changes

in each other by searching the space.

This chapter is organized as follows. Common data collection procedure used in

the literature and industrial applications is brie�y summarized. Then, the model

building stage is explained and the performance measures formed by using the

mean, variance and correlation coe�cient models are introduced. Thereafter,

the estimation di�culties encountered due to the limiting assumptions of the

modelling methods are addressed and ways of handling these di�culties are

proposed. In addition, the interactive approach followed in the optimization

stage and how the aforementioned visual aids are used at each step of this

procedure are presented. Finally, convergence of the interactive procedure and

nonlinearity of the objective functions are discussed.

3.1 Data Collection

Experiments are designed in order to collect response values for di�erent settings

of controllable input variables (design parameters). There are several di�erent

experimental designs in the literature (as those presented in [38, 80]). A com-

monly used experimental layout for collecting data through experimental design

is illustrated in Figure 3.1, where yij denotes jth replication for ith response in

the corresponding experimental run; A, B, C, D, E, F and G are controllable
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Figure 3.1: Illustration of an experimental layout where each run is replicated
four times according to an experimental design

input variables forming the inner array, and H, I and J are uncontrollable input

variables forming the outer array. Each of the factors is assumed to have two

levels denoted by �1� and �2�, in this layout. However, more or mixed levels can

also be used in other cases.

In general, each experimental run is replicated r times in order to calculate

sample means and sample variances of the response variables and the correlation

coe�cient for the run. The number of replications can be determined according

to the design of the outer array. When it is not possible to control noise factors

during the experiments, runs can be replicated in a random manner. Some

researchers discuss disadvantages of the methods using designed experiments

requiring replications [11]. They state that it is usually impractical to replicate

the runs of an experiment which leads to an extensive number of runs. Even

though there exists methods to model the variances without replicating the

experiments, replicated experiments provide a better insight to approximate

response surface models especially when the separate models for variances of

the responses are utilized [47].

3.2 Empirical Model Building

We �t models for means and variances of the response variables separately.

Besides, we �t a model for the correlation coe�cient to be used for calculating
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the performance measures explained in the following parts of this section. In

order to estimate those models, we use ordinary least squares (OLS) regression

which is a widely used approach for this purpose [23]. The model for each

response is built in the following form:

yi = X i βi + εi , i = 1, 2 , (3.1)

where yi = [yi1, yi2, · · · , yin]T is a vector of observations for the ith response

variable,

X =


1 x11 · · · x1p

1 x21 · · · x2p
...

...
. . .

...

1 xn1 · · · xnp

 (3.2)

is an n × (p + 1) design matrix specifying values of the regressors (i.e. con-

trollable input variables or their functions) at each and every observation (if

certain regressors are not included in the model their columns are chosen as

zero vectors, and categorical variables are treated as binary dummy variables),

βi = [βi1, βi2, · · · , βin]T is a vector of coe�cients of the model for the ith response

variable, and εi = [εi1, εi2, · · · , εin]T is the random error vector. The elements of

εi are assumed to be independent across time, and have the following properties:

1. E(εi) = 0 which implies that E(εij) = 0 for j = 1, · · · , n,

2. Cov(εi) = σ2 I or equivalently V ar(εij) = σ2 (constant) and

Cov(εij, εil) = 0, ∀(j, l), j 6= l.

Furthermore, εi is assumed to follow a normal distribution to be able to make

con�dence statements and test hypotheses [79]. In order to satisfy these prop-

erties, the response variables may need to be transformed to another scale using

logarithm or power transformation functions [47, 58, 63]. Some di�culties asso-

ciated with these transformations are �nding an appropriate one, interpreting

the results in the transformed scale and estimating the response in the original

scale.

In addition to OLS regression, there are other regression methods such as gener-

alized least squares (GLS) regression, weighted least squares (WLS) regression,
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seemingly unrelated regression (SUR) and multivariate regression (MVR) that

are used in MRSO problems to develop empirical models [23,78]. These methods

di�er from each other with respect to their assumptions. Yet, all these methods

assume that the error terms are distributed normally.

If the variance of a response is constant over the experimental region (ho-

moscedasticity, or homogeneity of variance), and each response surface model

has potentially a di�erent set of regressors and correlations exist between the

responses, then SUR is an appropriate method to use [83,98].

MVR, on the other hand, can be viewed as a special case of SUR when the

same set of regressors is used to estimate the models of all responses. In that

case, MVR provides the same set of coe�cients (β) whether the correlations

between responses are ignored (the case of OLS) or taken into consideration

(the case of MVR or SUR). Yet, prediction variance (variance of β) estimates

of SUR are smaller than those of MVR or OLS when responses are correlated

and di�erent set of regressors are used [23]. MVR may yield a large set of

regressors, that is; �tted models include insigni�cant factors which lead to high

prediction variance [42]. This is a disadvantage of the MVR method. The same

disadvantage applies to an equivalent approach to MVR: using OLS regression

for all responses separately with the same set of regressors.

If variances of a response at di�erent design variable settings are non-homogene-

ous (heteroscedastic errors) and there exists correlation between the response

variances at di�erent design variable settings (serial correlation or autocorrela-

tion), then GLS can be used to build an empirical model of that response. A

special case of GLS is WLS when there is heteroscedasticity but no serial correla-

tion. In the latter case, it may also be possible to transform the response data to

stabilize the variance and then apply OLS regression. In the case of multiple cor-

related responses, SUR and GLS regression approaches can be combined [57,86].

However, estimation approaches used might not be e�cient especially for small

and medium size data. Furthermore, variance-covariance matrix estimation and

construction of con�dence regions of the estimated parameters using such an

approach need further investigation.
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In this study, variances of responses cannot be considered as constant at dif-

ferent settings of the controllable design parameters due to the nature of the

robust design problem and we aim to consider possible correlations between the

responses. In this general case, none of the parametric regression approaches

discussed above dominates the others when their disadvantages are considered

besides advantages. We prefer to use OLS regression with data transforma-

tion whenever necessary due to its common use in the literature, well-known

properties and consistent and e�cient estimators under speci�c conditions.

In OLS regression, in order to satisfy that errors of a model has normal dis-

tribution with zero mean and constant variance σ2, data transformations are

commonly used. Especially log-normal linear models are postulated to build

empirical models for variance of a response and correlation between two re-

sponses as functions of the controllable design variables. To illustrate, log σ̂2

and tanh−1ρ̂ (equivalently
1

2
log

1 + ρ

1− ρ
) are approximately normally distributed

with zero mean and constant variance [4, 76]. In addition, in [84] log-normality

is stated to have been observed in various applications. Thus, in this study

we consider such log transformations of data to satisfy the assumptions of OLS

regression.

We observe that these transformations are generally used erroneously and those

errors a�ect the solution of the problem [7, 48, 69]. In most of the applications,

after obtaining the log-normal model of a mean response (or performance mea-

sure), to �nd its equivalent in the original scale, direct back transformation of

the predicted mean value to the original scale is used. This leads to �nd the

median (instead of the mean) of the response (or performance measure) in the

original scale. In order to minimize such back transformation errors, we follow

the approach proposed in [84].

They propose two estimators one minimizing mean squared error (MSE), the

other minimizing bias. Their simulation results indicate that the estimator which

minimizes MSE is more appropriate for this study. Details about this estimator

are provided below.
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A log-normal linear model assumes that

log(z) = X β + ε (3.3)

where X is the design matrix, β is the vector of regression coe�cients and ε is

the vector of random errors with εj ∼ N(0, σ2) and z is the vector of observations

on the response, z, (or performance measure) which is typically mean or variance

or correlation coe�cient in our case. The conditional mean of response variable

given x0 can be written in the original scale as follows:

E (z | x0) = exp

(
xT0 β +

1

2
σ2

)
(3.4)

where x0 is the given set of regressors. The estimator minimizing MSE is de�ned

as

µ̂MM = exp

[
xT0 β̂ +

mRSS

2 (n− p+ 1 + 3n v0)m+ 3RSS

]
(3.5)

where β̂ is the vector of OLS estimators for coe�cients, n is the number of

observations, p is the number of regressors and m = n− (p+ 1). RSS is residual

sum of squares calculated as

log(z)T
[
I −X

(
XT X

)−1
XT
]

log(z) (3.6)

and

v0 = xT0
(
XT X

)−1
x0 . (3.7)

3.2.1 Performance Measures (Objectives)

We determine a set of performance measures to obtain a solution for the problem.

These measures are designed to ease interaction with the decision maker and to

support the optimization process. The measures take into account uncertainties

lying in the estimated functions.

Suppose that there are two responses with certain target values to be considered

in an MRSO problem. Then the performance measures are de�ned as follows:

1. Distance to target

Distance to target is a typical performance measure commonly used in
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the literature and industrial applications [78]. We de�ne this as L1-norm

of the di�erence between estimated mean model and its target value as

follows:

| µ̂i(x)− ti | , i ∈ {1, 2} (3.8)

where µ̂i(x) is the model for the mean of the response i, estimated by OLS

regression, x is the design solution under consideration and ti is the target

value for response i.

If the means of the responses do not satisfy the assumptions of OLS re-

gression and logarithmic transformation is appropriate for satisfying those

assumptions, then µ̂i(x) represents the estimated mean model in the orig-

inal scale obtained by Equation (3.5).

2. Response variance

Estimating models for variances of the responses, σ̂2
i (x), has been com-

monly used to reach robust design solutions since Taguchi's introduction of

RPD. As stated in [4], log-normal linear model of variance approximately

satis�es the assumptions of OLS regression. Thus, we de�ne estimated

model for variance of response i as follows:

log σ̂2
i (x) , i ∈ {1, 2} (3.9)

where x is the vector of controllable design variable values under consid-

eration. These models are estimated by �tting models to the logarithm of

sample variances calculated for each run (as illustrated in Figure 3.1 by s2i )

using OLS regression. Then, we �nd the estimated model in the original

scale by using the Equation (3.5) when it is required.

3. Area of the 99.73% prediction region

In order to consider possible correlations between responses we use a per-

formance measure, area of the prediction region, which provides informa-

tion on both the means and variances of the responses. 99.73% correspond-

ing to middle 99.73% of the distribution corresponds to natural tolerance

limits (NTLs) which are referred to as three sigma limits for a normally

distributed process. If those limits are within the speci�cations it typically
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means that the process is capable of meeting the speci�cations. Thus we

prefer to use 99.73% prediction region in this study.

First, we form the prediction region as a function of controllable input

variables. We cannot assume variances of the responses to be constant at

di�erent settings of the parameters due to the nature of the considered ro-

bust design problem and we aim to consider possible correlations between

the responses. None of the parametric regression approaches are appropri-

ate for that type of problem. A combination of SUR and GLS regressions

can be used [86]. However, developing these models is beyond the scope of

this thesis. Thus, for illustrative purposes we apply OLS regression sepa-

rately for means and variances of each response and correlation coe�cient

then, we predict Σ by using empirical models, σ̂2
1(x), σ̂2

1(x) and ρ̂.

Σ̂(x) =

 σ̂2
1(x) ρ̂ σ̂1(x) σ̂2(x)

ρ̂ σ̂1(x) σ̂2(x) σ̂2
2(x)

 (3.10)

σ̂2
1(x), σ̂2

1(x) and ρ̂ are the estimated models for variances of the responses

and correlation coe�cient in the original scale, respectively. They are

formulated according to equations (3.5) - (3.7) as:

σ̂2
1(x) = e

xT β̂log σ̂21(x)
+

mRSSβ̂
log σ̂21(x)

2m (n− p+ 1 + 3n v0) + 3RSSβ̂
log σ̂21(x)



σ̂2
2(x) = e

xT β̂log σ̂22(x)
+

mRSSβ̂
log σ̂22(x)

2m (n− p+ 1 + 3n v0) + 3RSSβ̂
log σ̂22(x)


(3.11)

and

ρ̂ =
e

xT β̂tanh−1ρ̂+

mRSSβ̂tanh−1ρ̂

2m (n− p+ 1 + 3n v0) + 3RSSβ̂tanh−1ρ̂


− 1

e

xT β̂tanh−1ρ̂+

mRSSβ̂tanh−1ρ̂

2m (n− p+ 1 + 3n v0) + 3RSSβ̂tanh−1ρ̂


+ 1

(3.12)

where n is the number of observations, p is the number of regressors and

m = n−(p+1); xT β̂log σ̂2
1(x)

, xT β̂log σ̂2
2(x)

and xT β̂tanh−1ρ̂ denote estimated

models for log σ̂2
1(x), log σ̂2

2(x) and tanh−1ρ̂ =
1

2
log

1 + ρ

1− ρ
. RSS values

and v0 are determined by equations (3.6) and (3.7).
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Furthermore, we calculate the prediction ellipsoids (prediction regions

when the number of responses is two) by using the equation of MVR

given in Equation (3.13) below. Since the assumptions of MVR (constant

Σ and common set of regressors) are not satis�ed, the prediction ellipsoids

calculated from this formula can be considered as a rough estimate. As

a future study one can develop more appropriate empirical models and

prediction ellipsoid for this case combining SUR and GLS or using non

parametric regression and prediction region estimation methods.

The 100 (1− α)% prediction ellipsoid used in this study is

(
βT x0 − µ̂(x)

)T ( n

n− r − 1
Σ̂(x)

)−1 (
βT x0 − µ̂(x)

)
6

(
1 + xT0

(
XT X

)−1
x0

[
M (n− r − 1)

n− r −M
FM,n−r−M(α)

]) (3.13)

where x0 is the given set of regressors, µ̂(x) = [µ̂1(x), µ̂2(x)]T is the vec-

tor estimated models of response means,X is the design matrix specifying

values of regressors, Σ̂(x) is the variance-covariance matrix given by Equa-

tion (3.10), β is the true vector of coe�cients which is unknown, n is the

number of observations, r is the number of regressors andM is the number

of responses [79].

The area of an ellipse de�ned in Equation (3.13) is found as follows:

A(x) = k2

∣∣∣∣ n

n− r − 1
Σ̂(x)

∣∣∣∣
1

2
c2 (3.14)

where

c2 =

(
1 + xT0

(
XT X

)−1
x0

[
M (n− r − 1)

n− r −M
FM,n−r−M(α)

])
(3.15)

and k2 is a constant term calculated by using gamma function [79]. Since

the constant term is same for all settings of parameters, it does not a�ect

the preferences of the DM. Thus, it is removed from the function and hence

A(x) =

∣∣∣∣ n

n− r − 1
Σ̂(x)

∣∣∣∣
1

2
c2 (3.16)

where c2 is given by (3.15). These measures correspond to a prediction

interval and length of that prediction interval in single response problems.
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3.3 The Interactive Optimization Approach

Even though Taguchi's RPD considers a single response, it actually corresponds

to a multi objective optimization problem where mean and variance of the re-

sponse are considered as the objectives to satisfy. From this point of view, we

can say that for an RPD problem involving M responses there are at least 2M

objectives to be considered in the multi objective optimization problem. With

the addition of objectives such as that on the area of the prediction region this

number increases.

For two responses, the RPD problem can be expressed as the following MRSO

problem:

(P1) Min |µ̂1(x)− t1|

Min |µ̂2(x)− t2|

Min σ̂2
1(x)

Min σ̂2
2(x)

MinA(x)

s.t.

x ∈ S

(3.17)

where µ̂i(x) and σ̂2
i (x) denote response surface models for mean and variance

of the ith response variable, respectively, x is the vector of controllable input

variable values to be determined and ti is the target value for response i.

For this speci�c problem we brie�y de�ne several concepts from multiobjective

decision making area. Let x,x′ ∈ S be two points in the objective space and

z(x) = (z1(x), · · · , z5(x)) and z(x′) = (z1(x
′), · · · , z5(x′)). z(x′) is set to

dominate z(x) if and only if zi(x′) 6 zi(x) ∀i ∈ {1, · · · , 5} and zi(x′) < zi(x)

for at least one i. If there exists such an x′ ∈ S, then z(x) is set to be dominated.

If there does not exist such an x′ ∈ S, then z(x) is set to be non dominated.

Naturally, we are interested in non dominated points only.
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3.3.1 The Interactive Procedure

In order to solve problem (P1) given by (3.17), we suggest an interactive proce-

dure which is a modi�cation of the STEM algorithm. At this stage, we change

our notation slightly to ensure a better understanding of the solution procedure.

The optimization model of interest (P1), given by (3.17), is converted into the

model (P ′1) provided as:

(P1) Min |µ̂1(x)− t1| → Min z1(x) (P ′1)

Min |µ̂2(x)− t2| → Min z2(x)

Min σ̂2
1(x) → Min z3(x)

Min σ̂2
2(x) → Min z4(x)

MinA(x) → Min z5(x)

s.t.

x ∈ S

(3.18)

As brie�y mentioned in Chapter 2, the STEM algorithm suggests that, before

a decisive interaction is established certain alterations on (P ′1) model are to be

done. Accordingly, ideal objective vector (z∗), nadir objective vector (znad)

and weight coe�cients (w) are to be calculated. The components of the ideal

objective vector are obtained by minimizing each of the objective functions in-

dividually subject to the constraints as:

Min zj(x) + ζ

5∑
j=1

zj(x)

s.t.

x ∈ S

(3.19)

where j ∈ {1, 2, · · · , 5}, ζ is a very small constant and the second term in

the objective function is a standard augmentation term to avoid dominated

points [87]. Resulting solutions are written in corresponding rows of the payo�

matrix given as:

P =


z11 z12 · · · z15

z21 z22 · · · z25
...

...
. . .

...

z51 z52 · · · z55

 (3.20)
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where zjk denotes the value of objective k found by solving Equation (3.19) for

jth objective subject to x ∈ S. In other words, the solutions of minimizing each

response form the corresponding row of payo� matrix. Diagonal elements of the

payo� matrix are the ideal objective values, z∗j . By using the maximum of each

column, nadir point of each objective, znadj [59] is approximated. In other words,

we �nd the payo� nadir vector. Then by using z∗j and znadj values, weights of

the objectives (w) are found by using the equations (2.9)-(2.11).

Using the above mentioned values, (P ′1) is converted into the weighted Tcheby-

che� problem for the initialization phase of the STEM, (P ′′1 ), as:

(P ′′1 ) Min max
j∈{1,2,··· ,5}

[
wj
∣∣zj(x)− z∗j

∣∣]
s.t.

x ∈ S

(3.21)

where x is the vector of controllable input parameters and j ∈ {1, 2, · · · , 5}.
The aim is to minimize the maximum distance between the solution and the

ideal objective values. We convert (P ′′1 ) into (P ′′′1 ) to manipulate the min max

objective function.

(P ′′′1 ) Min a

s.t.

a > wj
(
zj(x)− z∗j

)
x ∈ S

(3.22)

where a ∈ R and j ∈ {1, 2, · · · , 5}. After solving (P ′′′1 ), we represent the

solutions to the DM and interaction with the DM starts. The following part

explains the interaction with DM at a given iteration for one and two response

design parameter optimization problems.

3.3.1.1 Interaction with the DM

In order to communicate with the DM better, the solutions found at each itera-

tion of the interactive procedure are represented to the DM by using the visual

aids displayed in Figure 3.2.
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Figure 3.2: Visualization of a solution for single response problem (on the left)
and binary response problem (on the right) at an iteration

As illustrated in Figure 3.2 (on the right), prediction region and simultaneous

prediction intervals for each response, area of the prediction region, speci�ca-

tion region and the probability of conformance to speci�cations for an unknown

future value at a design solution are presented to the DM at each iteration. The

aim of this visual support is to help the DM in determining the values that s/he

can sacri�ce from acceptable objective values and to inform the DM about the

quality level that can be obtained at the presented solution. We expect that the

DM learns the relationship between the objective values and the visualization of

the solutions; that is s/he can understand the structure of the problem through

the iterations and start to make more appropriate inferences about the objec-

tive functions' values. In addition, s/he can de�ne the value to be sacri�ced as

a percentage of the current value.

We consider the single response problem as a special case of the two response

problem in our study. In Figure 3.2 (on the left), for single response problems,

the performance measures represented to the DM at a given iteration are illus-

trated. In this case, to be illustrated in Chapter 4, prediction region and area

become prediction interval and distance between upper and lower limits of the

prediction interval, respectively.

Suppose that at the hth iteration, the DM �nds value of the ith objective, zi(xh),
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acceptable, but decides to sacri�ce as much as ∆h
i from this objective to improve

the others. Then, the corresponding weight of the objective, wi, is taken as zero

to drop zi(x
h) from the objective set and a new constraint is added to the

mathematical model to ensure that zi(xh+1) is not worse than
(
zi(x

h) + ∆h
i

)
at

the next iteration h+ 1. Thus, (P ′′′1 ) assumes the following form:

(P ′′′′1 ) Min a

s.t.

a > wj
(
zj(x)− z∗j

)
∀j 6= i

zi(x
h+1) 6 zi(x

h) + ∆h
i

zj(x
h+1) 6 zj(x

h) ∀j 6= i

x ∈ S

(3.23)

The iterations continue until the DM �nds all objective function values as sat-

isfactory or acceptable, and desires to stop the optimization process.

3.3.2 Convergence of the Interactive Procedure

As we have previously stated it is not possible to comment on convergence of

STEM according to a value function since it does not assume an underlying

value function. The convergence of the solution procedure highly depends on

how much the DM sacri�ces from the objective function values at each iteration.

To assume an underlying value function does not help to estimate the values to

be sacri�ced at an iteration. Thus, a satisfactory solution may be reached either

in a short or long span of time. In some cases, a satisfactory solution may not

exist due to the nature of the process in�uenced by factors such as technology,

methods and materials used in the process. Then, the iterations proposed by the

optimization procedure can help the DM to discover the di�culty of obtaining

satisfactory robust design solutions and justify a tolerance design study.

In our approach, the DM is allowed to search the solution space back and forth.

This provides �exibility to explore and learn the structure of the solution space.

Thus, we believe that the DM learns structure of the problem through the iter-

ations and searches the solution space better in time so that the time to reach
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a satisfactory solution is not expected to be long. However, in some cases the

DM may be tired of answering questions and willing to stop before a potential

satisfactory solution is reached.

3.3.3 Nonlinearity of the Mathematical Models

In MRSO problems, the linear regression models �t to the performance measures

may be nonlinear in term of the controllable input variables (i.e., second order

models). Therefore, the objective functions z1(x) - z5(x) are typically nonlinear.

We give speci�cs for an example problem in Chapter 4. Thus, a nonlinear

multi objective optimization problem is solved at each iteration of the interactive

solution procedure explained previously. In order to solve those problems, we use

BARON [82,91] under MATLAB. BARON guarantees to �nd the global optimal

solution under mild assumptions. In our study, BARON terminated with the

proved-global optimal solution in most of the cases. In one exception for the

two response problem illustrated in Chapter 4, BARON did not guarantee global

optimality. In order to reach global optimum, the area of the prediction region

function is partitioned into regions and the optimization is performed for each

region. Then the global optimum is obtained by picking the optimum of the

regional optima. That is a heuristic approach to handle the case speci�c to the

provided example. Further investigations on how the structure of the function

a�ects the solution are required to provide better solution approaches which

guarantee the global optimality.
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CHAPTER 4

ILLUSTRATIVE EXAMPLES

In this chapter, we illustrate the solution procedure on two examples. First, we

consider a two response product and process design problem studied in the liter-

ature. Then, we illustrate our procedure on a single response problem which we

generated. Latter example clari�es the data transformation when the response

does not satisfy the assumptions of OLS regression. In each illustration, we

exemplify the interactive procedure by acting as the DM.

4.1 Two Response Product and Process Design Optimization Prob-

lem

We illustrate the solution procedure on the polymer example presented by Myers

and Montgomery [64] and used in many studies such as Vining [92], Ko et. al. [42]

and Köksalan and Plante [43]. The aim of the experiment is to determine the

settings of the parameters; reaction time (x1), reaction temperature (x2) and

amount of catalyst (x3), to maximize the conversion (y1) of a polymer and

achieve a target value of 57.5 for the thermal activity (y2). The values within

(80, 100) and (55, 60) are acceptable for y1 and y2, respectively.

In the original experiment each run involves one observation as given in Table

4.1. However, to construct the prediction region and to �nd its area we need to

estimate the variance-covariance matrix.
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Table4.1: Polymer Experiment Data

x1 x2 x3 y1(conversion) y2(thermal activity)

-1 -1 -1 74 53.2
1 -1 -1 51 62.9
-1 1 -1 88 53.4
1 1 -1 70 62.6
-1 -1 1 71 57.3
1 -1 1 90 67.9
-1 1 1 66 59.8
1 1 1 97 67.8

-1.68 0 0 76 59.1
1.68 -1.68 0 79 65.9
0 -1.68 0 85 60.0
0 1.68 0 97 60.7
0 0 -1.68 55 57.4
0 0 1.68 81 63.2
0 0 0 81 59.2
0 0 0 75 60.4
0 0 0 76 59.1
0 0 0 83 60.6
0 0 0 80 60.8
0 0 0 91 58.9

For this purpose, we generate a speci�ed number of replications for each run by

assuming an underlying model for variances of responses and covariance depend-

ing on the controllable input variables. In the literature, replicating experimental

runs �ve times is a common application. Fewer number of replications might be

insu�cient to make reliable statistical inferences. Yet, increasing the number of

replications brings additional experimental costs, that might not be practical.

Thus, in this study, we generate �ve replications for each run. The following

models, introduced by Ko et al. [42], are used:

y1i(x)

y2i(x)

 =

y1(x)

y2(x)

+ εi , i = 1, 2, · · · , 5 (4.1)

where the original experiment data shown in Table 4.1 is represented by y1(x)
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and y2(x), and

εi ∼ N

0

0

 ,
σ11(x) σ12(x)

σ21(x) σ22(x)

 (4.2)

where σ11(x) = exp(3 − x21 − 3x23), σ22(x) = exp(2 − 2x21 − x23) and σ12(x) =

σ21(x) = 0.03σ11(x)σ22(x). The variance takes largest value at x1 = x3 = 0 by

this setting.

Using the generated data presented in Tables 4.2-4.4, we estimate the responses,

their variances and the correlation coe�cient as follows:

µ̂1(x) = 81.1 + 1.03x1 + 3.81x2 + 6.17x3

− 2.02x21 + 3.14x22 − 5.21x23 + 1.97x1x2 + 11.7x1 x3 − 4x2 x3

µ̂2(x) = 60.2 + 3.51x1 + 2.26x3

log σ2
1(x) = 1.04 + 0.02x1 + 0.001x3 − 0.371x21 − 1.31x23 − 0.019x1 x3

log σ2
2(x) = 0.73− 0.084x1 + 0.078x3 − 0.88x21 − 0.411x23 + 0.019x1 x3

tanh−1ρ̂12 = 0.139− 0.0595x1 + 0.0364x3

− 0.0161x21 − 0.0335x23 + 0.12x1 x3

(4.3)
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Table4.2: The replications generated for the �rst response, y1, for polymer ex-
ample and the measures calculated from the data

x1 x2 x3 y11 y12 y13 y14 y15 ȳ1 s21 log s21

-1 -1 -1 74.06 73.10 74.58 73.74 74.10 73.92 0.30 -0.52
1 -1 -1 50.86 52.23 50.69 50.61 51.08 51.10 0.43 -0.36
-1 1 -1 88.47 88.39 88.64 89.52 88.70 88.74 0.20 -0.69
1 1 -1 69.22 69.54 70.34 69.46 69.90 69.69 0.19 -0.72
-1 -1 1 70.42 71.05 70.87 70.29 71.19 70.76 0.15 -0.81
1 -1 1 90.31 91.16 90.64 89.90 90.34 90.47 0.22 -0.66
-1 1 1 65.07 65.14 65.75 65.17 66.27 65.48 0.27 -0.57
1 1 1 97.62 97.25 97.21 97.20 96.46 97.15 0.18 -0.75
-1.68 0 0 77.13 75.81 75.68 74.81 74.89 75.66 0.88 -0.06
1.68 0 0 78.64 78.38 77.28 77.54 79.93 78.35 1.10 0.04
0 -1.68 0 81.86 91.54 85.54 90.37 82.89 86.44 18.96 1.28
0 1.68 0 90.79 98.89 97.43 101.85 94.45 96.68 17.95 1.25
0 0 -1.68 55.01 54.92 54.98 54.95 55.01 54.97 0.00 -2.82
0 0 1.68 81.08 81.07 80.94 81.03 81.05 81.03 0.00 -2.51
0 0 0 84.75 74.62 77.51 87.30 85.17 81.87 30.07 1.48
0 0 0 77.96 77.43 74.09 76.72 76.82 76.60 2.23 0.35
0 0 0 73.31 79.83 75.07 73.07 75.68 75.39 7.38 0.87
0 0 0 83.72 81.16 83.28 81.21 78.91 81.66 3.71 0.57
0 0 0 76.71 84.37 81.25 79.64 74.34 79.26 15.23 1.18
0 0 0 86.57 97.20 93.01 86.43 93.81 91.40 22.55 1.35

Table4.3: The replications generated for the second response, y2, for polymer
example and the measures calculated from the data

x1 x2 x3 y21 y22 y23 y24 y25 ȳ2 s22 log s22

-1 -1 -1 52.97 53.16 54.26 52.21 53.43 53.21 0.55 -0.26
1 -1 -1 62.20 61.48 62.10 63.09 62.47 62.27 0.34 -0.47
-1 1 -1 53.78 53.15 53.81 54.06 53.44 53.65 0.13 -0.89
1 1 -1 62.37 62.25 62.27 62.35 62.85 62.42 0.06 -1.22
-1 -1 1 57.49 58.10 57.22 56.45 57.15 57.28 0.36 -0.45
1 -1 1 67.36 67.99 67.77 68.32 67.22 67.73 0.20 -0.70
-1 1 1 59.12 59.83 59.57 60.26 59.75 59.71 0.17 -0.77
1 1 1 67.28 68.01 67.36 67.49 67.06 67.44 0.13 -0.90
-1.68 0 0 58.96 58.90 58.58 58.87 59.06 58.88 0.03 -1.48
1.68 0 0 66.21 65.86 65.82 65.90 65.97 65.95 0.02 -1.62
0 -1.68 0 55.18 66.64 57.62 59.69 61.78 60.18 19.02 1.28
0 1.68 0 54.37 62.13 62.05 64.23 62.18 60.99 14.54 1.16
0 0 -1.68 57.07 57.83 57.43 56.37 57.36 57.21 0.29 -0.53
0 0 1.68 63.73 62.70 62.36 65.05 62.69 63.31 1.22 0.08
0 0 0 57.18 59.60 59.23 61.61 56.06 58.74 4.71 0.67
0 0 0 66.47 57.04 58.93 61.82 59.88 60.83 12.91 1.11
0 0 0 57.01 55.26 59.58 59.66 56.66 57.63 3.72 0.57
0 0 0 60.08 58.39 55.99 58.83 61.35 58.93 4.03 0.60
0 0 0 61.44 61.37 62.69 62.09 62.36 61.99 0.33 -0.48
0 0 0 53.29 60.12 58.43 50.11 58.80 56.15 18.15 1.26
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Table4.4: The correlation coe�cient values, ρ, calculated from the generated
data for each run and corresponding transformed values

x1 x2 x3 ρ
1

2
log

1 + ρ

1− ρ
-1 -1 -1 0.57 0.28
1 -1 -1 -0.78 -0.46
-1 1 -1 0.70 0.38
1 1 -1 0.14 0.06
-1 -1 1 0.53 0.26
1 -1 1 -0.03 -0.01
-1 1 1 0.03 0.01
1 1 1 0.40 0.18

-1.68 0 0 -0.01 -0.01
1.68 0 0 0.42 0.20
0 -1.68 0 0.67 0.35
0 1.68 0 0.87 0.58
0 0 -1.68 -0.11 -0.05
0 0 1.68 0.31 0.14
0 0 0 -0.13 -0.06
0 0 0 0.43 0.20
0 0 0 -0.71 -0.38
0 0 0 -0.56 -0.28
0 0 0 -0.24 -0.10
0 0 0 0.95 0.80

Now, we need to convert these estimated models into the performance measures

(or objectives) de�ned in Section 3.2.1 of Chapter 3, that are distances to cor-

responding targets, response variances and area of prediction region to move on

to the optimization stage. Throughout this section, the objectives are denoted

as zj(x).

1. Distance to corresponding targets

z1(x) = |µ̂1(x)− t1|

= |81.1 + 1.03x1 + 3.81x2 + 6.17x3

− 2.02x21 + 3.14x22 − 5.21x23

+1.97x1 x2 + 11.7x1 x3 − 4x2 x3 − 100|

z2(x) = |µ̂2(x)− t2| = |60.2 + 3.51x1 + 2.26x3 − 57.5|

(4.4)

2. Response variances

In the optimization stage, we use estimated models for log-transformed

response variances as objectives. It is equivalent to minimize response
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variances in the original scale or in the log scale since the log is a monotonic

transformation.

z3(x) = log σ̂2
1(x) = 1.04 + 0.02x1 + 0.001x3

− 0.371x21 − 1.31x23 − 0.019x1 x3

z4(x) = log σ̂2
2(x) = 0.73− 0.084x1 + 0.078x3

− 0.88x21 − 0.411x23 + 0.019x1 x3

(4.5)

3. Area of the prediction region

In order to form the area of the prediction region as a function of control-

lable input variables, ρ and Σ are required to be estimated.

The empirical model for tanh−1ρ̂ is given as:

tanh−1ρ̂ = 0.139− 0.0595x1 + 0.0364x3

− 0.0161x21 − 0.0335x23 + 0.12x1 x3
(4.6)

If we follow the back transformation procedure explained in Chapter 3, we

obtain ρ in the original scale as:

ρ̂ =
e

xT β̂tanh−1ρ̂+

mRSSβ̂tanh−1ρ̂

2m (n− p+ 1 + 3n v0) + 3RSSβ̂tanh−1ρ̂


− 1

e

xT β̂tanh−1ρ̂+

mRSSβ̂tanh−1ρ̂

2m (n− p+ 1 + 3n v0) + 3RSSβ̂tanh−1ρ̂


+ 1

(4.7)

where n = 20 (the number of observations), p = 5 (the number of regres-

sors), m = 14 and

x =



1

x1

x3

x21

x23

x1 x3


, β̂tanh−1ρ̂ =



0.1390

−0.0595

0.0364

−0.0161

−0.0335

0.1200


,

RSSβ̂tanh−1ρ̂
= 1.5514 , v0 = xT

(
XT X

)−1
x ,

(4.8)

where X is the design matrix specifying levels of the regressors at each
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observation as:

X =


1 x11 x13 x211 x213 x11 x13

1 x21 x23 x221 x223 x21 x23
...

...
...

...
...

...

1 xn1 xn3 x2n1 x2n3 xn1 xn3

 , n = 20. (4.9)

In Equation (4.9), an entity xij is the level of the decision variable j at

observation i. Hence, the entities are obtained according to Table 4.1.

Thus, by using response variances and ρ̂, we form Σ̂ in the original scale

according to (3.10) by using:

σ̂2
1(x) = e

xT β̂log σ̂21(x)
+

14RSSβ̂
log σ̂21(x)

28 (16 + 60 v0) + 3RSSβ̂
log σ̂21(x)



σ̂2
2(x) = e

xT β̂log σ̂22(x)
+

14RSSβ̂
log σ̂22(x)

28 (16 + 60 v0) + 3RSSβ̂
log σ̂22(x)


(4.10)

where x and v0 are given by (4.8) and

β̂log σ̂2
1(x)

=



1.0400

0.0200

0.0010

−0.3710

−1.3100

−0.9190


, β̂log σ̂2

2(x)
=



0.7300

−0.0840

0.0780

−0.8800

−0.4110

0.0190


,

RSSβ̂
log σ̂21(x)

= 1.3307 , RSSβ̂
log σ̂22(x)

= 3.4416

(4.11)

We present natural tolerance limits (or 3σ limits) to DM which include

99.73% of the variable for a normal distribution. In other words, we present

99.73% prediction region at each iteration. Since we use the formulation of

MVR regression in order to show the prediction region, we need to use the

same set of regressors in empirical models of the response means. How-

ever, we �t separate models for the means of the responses by using OLS

regression, that is, we may have di�erent set of regressors. For illustrative

purposes, as a common set of regressors we choose the union of the regres-

sors included in each mean model then assign 0 value to the coe�cients
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of the regressors which are not used in corresponding model. In this case,

we have nine regressors which are included in the estimated model of �rst

response mean. Thus, the area of 99.73% prediction region is obtained

according to Equation (3.16) by setting (n, r,M) = (20, 9, 2). Hence, the

last performance measure, z5(x) becomes:

z5(x) =
∣∣∣2 Σ̂(x)

∣∣∣12 c2 (4.12)

where c2 is given by (3.15).

4.1.1 The Interactive Procedure

Before starting the interactive procedure, we need to �nd the payo� matrix, P ,

ideal and nadir objective vectors, z∗ and znad, and weighting coe�cients, w,

as we explain previously. Using the formulations given by equations (3.19) and

(3.20), the payo� matrix, P is obtained as:

P =



0.0001 11.0057 −3.2831 −1.8180 2.2250

23.4915 0.0000 0.3790 0.4218 15.3341

21.6478 6.9936 −3.7934 −2.8500 2.5736

14.2822 12.3936 −3.7228 −2.8702 2.4601

5.8121 12.3936 −3.7228 −2.8702 1.2030


(4.13)

and using P , z∗ and znad are obtained as explained in Section 3.3.1 and depicted

in Figure 2.2:

z∗ =



0.0001

0.0000

−3.7934

−2.8702

1.2030


, znad =



23.4915

12.3936

0.3790

0.4218

15.3341


(4.14)
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and �nally w is determined by the equations (2.9)-(2.11) as:

w =



0.1935

0.1935

0.2128

0.2219

0.1783


. (4.15)

Once the necessary calculations are available, the interactive procedure is ready

to be performed. In the illustration of the procedure, no real decision maker

is collaborated with and no underlying utility function is preassumed. We ex-

emplify the steps of the interactive process by considering the cases on behalf

of the DM. That is to say, the procedure is carried on by considering example

responses from the DM such as what the DM would like to have or would say

in a particular situation.

First, we set iteration counter to zero (h = 0) and in order to present the initial

solution to the DM, we solve the problem given by equation (3.22) using the

values obtained in equations (4.14) and (4.15). That is, we solve

(P 0) Min a

s.t.

a > w1 (z1(x)− 0.0001)

a > w2 (z2(x)− 0)

a > w3 (z3(x) + 3.7934)

a > w4 (z4(x) + 2.8702)

a > w5 (z5(x)− 1.2030)

1.68 > x1 > −1.68

1.68 > x2 > −1.68

1.68 > x3 > −1.68

(4.16)

where z1(x)-z5(x) are given by equations (4.4), (4.5) and (4.12). The format of

the presentation may require care in order to obtain correct preference informa-

tion and not to overload the DM with information. However, we do not address

these issues here. Mainly, some or all of the information in Table 4.5 can be

provided to the DM.
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Table4.5: Initial solution, corresponding values of the objectives and additional
information, p, which is the probability of being within speci�cation limits

h x1 x2 x3 µ̂1(x) µ̂2(x) σ̂2
1(x) σ̂2

2(x) A(x) ρ̂ p

0 -1.1 1.58 -1.68 95.05 52.55 0.01 0.23 6.57 0.13 1.6 10−7

Probability of conforming speci�cations is very low as seen in the results given

in Table 4.5. In addition, in Figure 4.1, it is shown that µ̂2(x) is not within

the corresponding speci�cations. Thus, the DM may sacri�ce from area, A(x),

of the prediction region in order to improve the mean values of the responses.

Suppose that area of the prediction region up to 10 is acceptable for the DM

thus s/he sacri�ces 3.4433 units from A(x) given by Equation (3.16).

After taking the DM's preferences, we set h = 1 and another mathematical

model (P 1) is to be formed. We remove A(x) from the objective set and restrict

its value by 10 (equivalently 6.5567 + 3.4433). As a result of this relaxation, we

expect that the area will increase.

(P 1) Min a

s.t.

a > w1 (z1(x)− 0.0001)

a > w2 (z2(x)− 0)

a > w3 (z3(x) + 3.7934)

a > w4 (z4(x) + 2.8702)

10 > z5(x)

1.68 > x1 > −1.68

1.68 > x2 > −1.68

1.68 > x3 > −1.68

(4.17)

where z1(x)-z5(x) are given by equations (4.4), (4.5) and (4.12). We solved (P 1)

and present the solutions and corresponding objective values to the DM as given

in Table 4.6 and Figure 4.2.

As shown in Table 4.6 and Figure 4.2 mean values of the responses are improved
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Figure 4.1: Visualization of the solution (h = 0) for the two response problem

Table4.6: First iteration results and corresponding objective values and addi-
tional information, p, which is the probability of being within speci�cation limits

h x1 x2 x3 µ̂1(x) µ̂2(x) σ̂2
1(x) σ̂2

2(x) A(x) ρ̂ p

1 -0.96 1.68 -1.62 95.67 53.19 0.02 0.31 10 0.11 5.32 10−4

and the area of the prediction region is at its limit. This shows that there is a

tradeo� between those objectives. In addition, probability of conforming speci-

�cations is slightly increased. Since µ̂2(x) is still far from its speci�cations, the

DM does not �nd this acceptable. S/he may sacri�ce more from the area of the

prediction region to improve µ̂2(x). S/he may think that approximately 3.5 unit

increase in the area of the prediction region improves µ̂2(x) by approximately

0.5 unit. Then, the DM may sacri�ce 20 more units from area to obtain value

of µ̂2(x) within its speci�cations.

After taking the DM's preferences, we set h = 2 and form the corresponding

mathematical model (P 2). A(x) has been already removed from the objective
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Figure 4.2: Visualization of the solution (h = 1) for the two response problem

set. We only change its allowable limit by 30.

(P 2) Min a

s.t.

a > w1 (z1(x)− 0.0001)

a > w2 (z2(x)− 0)

a > w3 (z3(x) + 3.7934)

a > w4 (z4(x) + 2.8702)

30 > z5(x)

1.68 > x1 > −1.68

1.68 > x2 > −1.68

1.68 > x3 > −1.68

(4.18)

where z1(x)-z5(x) are given by equations (4.4), (4.5) and (4.12). (P 2) is solved

and the solutions and corresponding objective values are presented to the DM
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as given in Table 4.7 and Figure 4.3.

Table4.7: Second iteration results and corresponding objective values and ad-
ditional information, p, which is the probability of being within speci�cation
limits

h x1 x2 x3 µ̂1(x) µ̂2(x) σ̂2
1(x) σ̂2

2(x) A(x) ρ̂ p

2 -0.94 1.68 -1.12 96.89 54.39 0.15 0.59 26.56 0.11 0.21

Figure 4.3: Visualization of the solution (h = 2) for the two response problem

Table 4.7 and Figure 4.3 show that the mean of the second response is still out

of its speci�cations. In addition, the area of the prediction region is not on the

limit determined by the DM. This shows that increasing the area will no longer

be helpful to improve µ̂2(x). Now, the DM may �nd the value of µ̂1(x) as

acceptable and sacri�ce from the corresponding objective value by 6.8846 which

means that the distance between µ̂1(x) and its target is allowed to take values

up to 10. Thus, we remove µ̂1(x) from the objective set and keep the constraint
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on A(x) unchanged. We restrict the distance between µ̂1(x) and corresponding

target value by 10. Hence, the next problem (P 3) becomes:

(P 3) Min a

s.t.

10 > z1(x)

a > w2 (z2(x)− 0)

a > w3 (z3(x) + 3.7934)

a > w4 (z4(x) + 2.8702)

30 > z5(x)

1.68 > x1 > −1.68

1.68 > x2 > −1.68

1.68 > x3 > −1.68

(4.19)

where z1(x)-z5(x) are given by equations (4.4), (4.5) and (4.12). (P 3) is solved

and the solutions and corresponding objective values are presented to the DM

as given in Table 4.8 and Figure 4.4.

Table4.8: Third iteration results and corresponding objective values and ad-
ditional information, p, which is the probability of being within speci�cation
limits

h x1 x2 x3 µ̂1(x) µ̂2(x) σ̂2
1(x) σ̂2

2(x) A(x) ρ̂ p

3 -0.47 1.68 -1.62 90 54.91 0.04 0.54 17.81 0.05 0.45

It can be observed from the solutions provided by Table 4.8 and Figure 4.4,

the constraint on the area becomes redundant, since it does not reach its limit

speci�ed by the DM. That means that even though the DM sacri�ces from area

of the prediction region it may not get worse as long as the variances are in the

objective set. Thus, the DM needs to sacri�ce some units from the variances to

improve the second objective. Since it is not easy to understand variances as

values, we allow the DM to state his/her preferences on variances by percentages.

In this step, the DM may understand that it is not possible to obtain a solution

that minimizes the area of the prediction region and the distance between the

mean values of the responses to their targets. Then, s/he may decide that the
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Figure 4.4: Visualization of the solution (h = 3) for the two response problem

area of the prediction region is more important than the individual values of

variances. As the area is limited by 30, s/he may no longer need to limit the

variances and decide to set them free to see how the other objectives are a�ected.

Thus, we remove variances from the objective set and keep the constraint on

A(x) the same. We maintain restricting the distance between µ̂1(x) and its

corresponding target value by 10. To proceed, the problem is reformulated as
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(P 4):

(P 4) Min a

s.t.

10 > z1(x)

a > w2 (z2(x)− 0)

30 > z5(x)

1.68 > x1 > −1.68

1.68 > x2 > −1.68

1.68 > x3 > −1.68

(4.20)

where z1(x), z2(x) and z5(x) are given by equations (4.4), (4.5) and (4.12). (P 4)

is solved and the solutions and corresponding objective values are presented to

the DM as given in Table 4.9 and Figure 4.5.

Table4.9: Fourth iteration results and corresponding objective values and ad-
ditional information, p, which is the probability of being within speci�cation
limits

h x1 x2 x3 µ̂1(x) µ̂2(x) σ̂2
1(x) σ̂2

2(x) A(x) ρ̂ p

4 -0.55 1.31 -0.77 90 56.56 0.79 1.25 30 0.08 0.92

The area of the prediction region and the distance between µ̂1(x) and its target

are on their limits. We observe the best value of the second objective so far.

That directly a�ects the probability of conformance which is increased to 0.92.
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Figure 4.5: Visualization of the solution (h = 4) for the two response problem

We expect that the DM learns about his/her problem and his/her preferences

through the iterations. It is obvious that there is no solution minimizing the area

of the prediction region while bringing the means of the responses to their targets

with current limitations of the system. In order to improve the objectives, the

DM needs to improve the current technology or equipment or so on. Thus, we

assume that this solution is acceptable for the DM and s/he is willing to stop

the procedure in this step.

4.2 Single Response Product and Process Design Optimization Prob-

lem

In order to present how our method may be applied on a single response problem

whose response is a non-normally distributed random variable, we assume an

experimental layout shown in Table 4.10.
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Table4.10: The generated data for the single response problem, corresponding
sample variances, s2, and transformed values

x z1 z2 z3 z4 z5 s2 log s2 y1 y2 y3 y4 y5

1 7.72 3.30 13.96 13.94 11.53 20.92 3.04 2.04 1.19 2.64 2.64 2.44
3 27.11 75.13 56.67 140.6 73.55 17.34 102 7.46 3.30 4.32 4.04 4.95 4.30
5 735.58 367.82 352.41 773.27 175.38 6.83 104 11.13 6.60 5.91 5.86 6.65 5.17
7 1.43 103 1.55 103 2.4 103 5.78 103 5.47 103 4.56 106 15.33 7.27 7.35 7.78 8.66 8.61

In order to illustrate the solution procedure, arbitrarily picked four di�erent

settings (x1 = 1, x2 = 3, x3 = 5 and x4 = 7) of one controllable variable, x, are

studied. For each setting, we generate log-normally distributed response values

replicated �ve times according to an underlying model. For a given setting i,

each observation j on the response variable, y, is generated as follows:

yij = ezij , i ∈ {1, · · · , 4}, j ∈ {1, · · · , 5} (4.21)

where

zij = µi + εij , εij ∼ N(0, 2) and µi = xi . (4.22)

In order to satisfy the assumptions of OLS regression, logarithmic transformation

is applied to the response values and zij values are obtained, which are already

known in our case, since we generate the data by those. Then, we �t a model for

means of zi's (µlog yi values). Moreover, we calculate sample variances of zi's for

each setting and we transform those values into the log scale and �t a model for

log σ2
y(x). In addition, we calculate sample variances for each setting by using

original data, i.e. V ar(yi), and after transforming those values into the log scale,

we �t a model for log σ2
log y(x).

µ̂log y(x) = 1.27 + 0.95x

log σ̂2
log y(x) = −0.93− 0.08x+ 0.01x2

log σ̂2
y(x) = 0.98 + 2.135x

(4.23)

Now, we can calculate the performance measures explained in Section 3.2.1 of

Chapter 3 which are distance to target, response variance and area of the predic-

tion region. In a single response problem, variance-covariance matrix, prediction

region and the area of the prediction region become variance, prediction interval

and the length of the prediction interval, respectively.
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1. Distance to target

z1(x) = |µ̂log y(x)− log t| = |1.27 + 0.95x− log 200| (4.24)

where t is the target value which is 200 in this example.

2. Response variance

In the optimization stage, we use estimated model for log-transformed

response variance as objective. It is equivalent to minimization response

variance in the original scale or in the log scale, since the log is a monotonic

transformation.

z2(x) = log σ2
y(x) = 0.98 + 2.135x (4.25)

3. Length of the prediction interval

It is easy to show that in a single response problem, prediction regions

corresponds to prediction interval. OLS regression formulation of 100 (1−
α)% prediction interval is

µ̂log y ± tn−r−1
(α

2

)√
σ̂2
log y

(
1 + xT0

(
XTX

)
x0

)
(4.26)

where

x0 =

1

x

 , X =


1 1

1 3

1 5

1 7

 ,

n = 4 , r = 1 , α = 0.0027 and t2(0.00135) = 27.189.

(4.27)

σ̂2
log y is the estimated variance of zi's in the original scale, that are obtained

by using (3.4) - (3.6).

Length of 99.73% prediction interval, L(x), is de�ned as

z3(x) = L(x) = 2

(
tn−r−1

(α
2

)√
σ̂2
log y

(
1 + xT0

(
XTX

)
x0

))
(4.28)

4.2.1 The Interactive Procedure

As an initial phase of STEP method we calculate payo� matrix, P , ideal and

nadir objective vectors, z∗ and znad, and weighting coe�cients, w. Using the
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formulations given by equations (3.19) and (3.20) the payo� matrix, P is ob-

tained as:

P =


0.00 9.99 35.30

3.07 3.12 43.00

0.21 9.52 35.25

 (4.29)

and using P , z∗ and znad are obtained as explained in Section 3.3.1 and depicted

in Figure 2.2:

z∗ =


0.00

3.1150

35.25

 , znad =


3.07

9.99

43.00

 (4.30)

and �nally w is determined by the equations (2.9)-(2.11) as:

w =


0.54

0.37

0.10

 . (4.31)

Once P , z∗, znad and w are available, the interactive procedure is ready to

be performed. Similar to the previous example presented in Section 4.1, no real

decision maker is collaborated with and we exemplify the steps of the interactive

process by considering the cases on behalf of the DM.

For the very �rst iteration (h = 0) and the initial solution to the DM is to be

presented. For this purpose, the problem given by equation (3.22) is solved for

the single response by using the values obtained in equations (4.30) and (4.31).

That is, we solve

(P 0) Min a

s.t.

a > w1 (z1(x)− 0.00)

a > w2 (z2(x)− 3.12)

a > w3 (z3(x)− 35.25)

7 > x > 1

(4.32)

where z1(x), z2(x) and z3(x) are given by equations (4.24), (4.25) and (4.28).

Some or all of the information that corresponds to the solution of (P 0) can be

represented to the DM as given in Figure 4.6.
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Figure 4.6: Visualization of the solution (h = 0) for the single response problem
in the original scale

Figure 4.7: Visualization of the solution (h = 0) for the single response problem
in the log scale

As we stated in (4.26), we �nd prediction intervals for zi's. Then, we directly

back transform them, due to the fact that the percentage of data remaining in

the tails is preserved, since logarithmic transformation is a monotonic transfor-

mation. As we show in Figure 4.6, 99.73% prediction intervals which correspond

to natural tolerance limits (NTLs) are too wide. This may partially indicate that

estimation of prediction intervals in the original scale is not appropriate. Thus,

for this speci�c case of single response problems where the response follows a
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non normal distribution we prefer to represent solutions to the DM in the log

scale.

Now, the DM is required to state his/her preferences according to Figure 4.7,

since the prediction interval is wider than speci�cation limits, we assume that

the DM decides to sacri�ce approximately 2.5 units from the mean value in

order to decrease the length of the prediction interval. According to the DM's

preference, we are to start another iteration h = 1 and another mathematical

model (P 1) is formed by restricting the �rst objective by 6.

(P 1) Min a

s.t.

6 > z1(x)

a > w2 (z2(x)− 3.12)

a > w3 (z3(x)− 35.25)

(4.33)

where z1(x), z2(x) and z3(x) are given by equations (4.24), (4.25) and (4.28).

Figure 4.8: Visualization of the solution (h = 1) for the single response problem
in the log scale

P 1 is solved and the solutions and corresponding objective values are presented

to the DM as given in Figure 4.8. As observed from 4.8, sacri�cing from mean

value does not improve length of the prediction interval. Thus, the DM learns

that it is not possible to decrease the length of the prediction interval with
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current limitations and s/he is willing to stop sacri�cing from the mean value

of the response. Thus, s/he may decide to sacri�ce from the length of the

prediction interval in order to bring the mean value within the speci�cation

limits. We assume that s/he speci�es the allowable limit of the length of the

interval as 60. Now, the length of the prediction interval is expected to increase

owing to this relaxation. The next problem to be solved for the second iteration,

h = 2, becomes:

(P 2) Min a

s.t.

a > w1 (z1(x)− 0.00)

a > w2 (z2(x)− 3.12)

60 > z3(x)

(4.34)

where z1(x), z2(x) and z3(x) are given by equations (4.24), (4.25) and (4.28).

Figure 4.9: Visualization of the solution (h = 2) for the single response problem
in the log scale

After presenting the results of (P 2) with Figure 4.9, the DM observes that the

length of the prediction interval is not on its limit and there is no signi�cant

improvement on mean value. Since limiting the length of the prediction interval

limits the variance of the response, the DM may want to remove the variance
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from the objective set to improve the mean value. After taking into account this

preference, the next problem for the third iteration, h = 3, becomes:

(P 3) Min a

s.t.

a > w1 (z1(x)− 0.00)

60 > z3(x)

(4.35)

where z1(x) and z3(x) are given by equations (4.24) and (4.28).

Figure 4.10: Visualization of the solution (h = 3) for the single response problem
in the log scale

As observed from Figure 4.10, the mean value of the response is improved. It is

almost at the target value. Thus, we assume that this is a desirable solution for

the DM and the DM is willing to stop at this step.
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CHAPTER 5

CONCLUSION

Within the scope of this thesis study, we address model building and optimiza-

tion stages of the multi response surface optimization for two response product

and process design problem. In this regard, we consider the general case where

the responses may be correlated and variances of responses are not constant at

the di�erent settings of the controllable design parameters.

We mainly focus on optimization stage. We develop an interactive approach

to two response product and process design problems and address the single

response problem as a special case. This approach involves some concepts of

STEM Method [5]. We de�ne a set of performance measures (objectives) that

represent the objectives of the problem and facilitate the communication with

the DM at each iteration. The studied performance measures are distances be-

tween means of the responses and the corresponding targets, response variances

and area of the prediction region. In addition, we use visual aids to ease the

decision making at each iteration.

Furthermore, we study the model building stage. We are required to build the

empirical models for means and variances of the responses and the correlation

coe�cient in order to formulate the performance measures to be used in the opti-

mization stage. For this purpose, we utilize OLS regression which is a commonly

studied approach in the literature [23]. Moreover, we consider data transforma-

tions due to the limiting assumptions of OLS regression. Owing to wide observa-

tion of log-normality, we restrict our focus on logarithmic transformation. The

main di�culty of using data transformation is to back transform the data to the
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original scale for the DM to have a better understanding on the performance

measures. Therefore, to obtain the estimates of the performance measures in

the original scale, we follow the estimation approach presented in [84] instead of

performing direct back transformation.

To illustrate the steps of the interactive procedure, the developed method is

applied on two examples. The �rst example is for two response problems. In that

example, we show how the de�ned performance measures and their re�ections

on the visual aids help the interaction with the DM. Similarly, in the second

example, application of the method on a single response problem is illustrated.

Compared to the literature, we explicitly consider the preferences of the DM

on the objectives through the interactive procedure, yet most of the approaches

such as desirability function based and loss function approaches aggregate mul-

tiple objectives into a single objective function. Aggregation implicitly enforces

a global preference on the objectives of the problem, however the preferences

can change among the DMs. Thus, such aggregations may fail to represent the

preferences of DMs satisfactorily. For instance, the loss function approach can-

not consider the cases where the solutions closer to the lower speci�cation limit

can be preferred, since it is de�ned as a symmetric function. Moreover, some of

the studies in the literature such as desirability function based approaches can-

not consider the possible correlations between the responses. In our approach,

the performance measures (i.e., area of the prediction region) we use to show

joint behaviour of the responses provides better insight to the DM on the prob-

lem. Besides, the most of the interactive approaches in the literature use point

estimation of the response means and determine the optimal setting of the con-

trollable input variables with respect to these estimations. In addition, most

of them do not consider the correlations between responses and heterogeneity

of the error variances. Those may lead to unrealistic solutions in practice. In

our method, we consider the possible estimation errors by presenting prediction

regions to the DM at each iteration. To improve the perception, the density

along the prediction region is depicted by colouring the contour lines. Contrary

to some of the studies, we take into account the heterogeneity of the variance by

formulating the variance-covariance structure as a function of controllable input
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variables.

In order to achieve the aforementioned improvements, we encounter several dif-

�culties related to modelling and estimation throughout this study. Since we

consider a general case where the variances are heterogeneous and possible corre-

lations exist among the responses, none of the parametric regression approaches

discussed in Chapter 3 dominates the others when their disadvantages are con-

sidered besides advantages. Thus, we prefer to use OLS regression in order to

exploit its well-known properties for �tting separate models to means and vari-

ances of the responses and correlation coe�cient. Then, we use those models to

predict variance-covariance matrix to be used in the MVR regression formula-

tion of the prediction region. That is a rough estimate of the prediction region

which requires further improvements in order to achieve realistic solutions. In

that manner, the idea of combining some of the regression methods might be

considered. Apart from those, multivariate normality is required to perform

those estimations in our study. However, this may not be the case in real prob-

lems and non-normality of the responses may be encountered as we illustrate

for a single response problem. To extend our approach to those cases where

multivariate normality might not be present, non parametric methods can be

utilized to be able to make inferences on joint behaviour of the responses.

In some robust product and process design problems, responses are categorical.

Our method can be extended to cover these cases by considering the use of em-

pirical modelling approaches such as logistic regression and Poisson regression.

However, development of more appropriate performance measures for interaction

with the DM is an area that needs to be studied further.

Finally, we developed our method for up to two responses. In order to extend

our approach for the cases where three or more responses are of interest, we

mainly need to consider how the solutions and corresponding performance mea-

sures are represented to the DM. For three response problems, we may still use

current framework by representing prediction ellipsoid and using volume of the

ellipsoid. For more responses we may think of showing binary combinations of

the responses to obtain prediction regions or de�ning additional performance
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measures such as multivariate capability indices to facilitate the communication

with the DM.
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