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ABSTRACT

RECENT DEVELOPMENTS IN PORTFOLIO OPTIMIZATION
VIA DYNAMIC PROGRAMMING

Omole, Oluwakayode John

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Yeliz Yolcu Okur

Co-Supervisor : Prof. Dr. Gerhard Wilhelm Weber

August 2015, 61 pages

Optimal control is one of the benchmark methods used to handle portfolio optimization
problems. The main goal in optimal control is to obtain a control process that optimizes
the objective functional. In this thesis, we investigate optimal control problems for
diffusion and jump-diffusion processes. Consequently, we present and prove concepts
such as the Dynamic Programming principle, Hamilton-Jacobi-Bellman Equation and
Verification Theorem. As an application of our results, we study optimization problems
in finance and insurance. In this thesis, we use the Dynamic Programming approach
to solve optimal control problems. In the applications, we provide a detailed study of
optimal strategies that maximize the expected utility of investors and insurers in finite,
random and infinite time horizons. In all applications considered, explicit solutions are
obtained for the optimal value function and optimal controlprocesses.

Keywords: Hamilton-Jacobi-Bellman Equation, Dynamic Programming Principle,
Stochastic Optimal Control, Financial Mathematics, Actuarial Sciences

vii



viii



ÖZ

DİNAM İK PROGRAMLAMA YOLUYLA PORTFOLYO
OPṪIMİZASYONUNDAKİ GÜNCEL GEL̇IŞMELER

Omole, Oluwakayode John

Yüksek Lisans, Finansal Matematik

Tez Yöneticisi : Doç. Dr. Yeliz Yolcu Okur

Ortak Tez Ÿoneticisi : Prof. Dr. Gerhard Wilhelm Weber

Ağustos 2015, 61 sayfa

Portföy optimizasyonu problemlerinin çözümlerinde, optimal kontrol temel yöntemlerden
biridir. Optimal kontrolde esas amaç, hedeflenen fonksiyonu optimize eden kontrol
sürecini elde etmektir. Bu tezde, difüzyon ve sıçramak-difüzyon s̈urecleri için optimal
kontrol problemleri incelenmiştir. Bu nedenle, dinamik programlama ilkesi, Hamilton-
Jacobi-Bellman Denklemi ve Verification Teoremleri gibi kavramlar sunulmuştur.
Sonuçlarımızın uygulaması olarak, dinamik programlama yaklaşımı ile finans ve aktüerya
bilimlerinde var olan optimizasyon problemleri incelenmiştir. Uygulamalar kısmında,
sonlu, rassal ve sonsuz zaman dilimler altında; yatırımcıların ve sigorta şirketlerinin
beklenen fayda fonksiyonunu maksımıze eden optimal stratejiler üzerine detaylı bir
calışma yapılmıştır.̇Incelenen ẗum uygulamlarda, optimal değer fonksiyonu ve opti-
mal kontrol s̈ureci için analitik sonuçlar elde edilmiştir.

Anahtar Kelimeler: Hamilton-Jacobi-Bellman Denklemi, Dinamik Programlamaİlkesi,
Stokastik Optimal Kontrol, Finansal Matematik, Aktüerya Bilimleri
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CHAPTER 1

INTRODUCTION

The work of Markowitz (see [22], [23]) led to the emergence ofthe theory of Portfolio
Optimization. Markowitz sought for the highest portfolio return for a given level of
risk where the risk is measured by the standard deviation or variance of the portfolio’s
rate of return. Markowitz’s approach to portfolio optimization was termed the Mean-
Variance approach. The mean-variance approach has evolvedin the literature. Sharpe
[31], building on the work of Markowitz, developed the single-index model in which
portfolio returns depend only on market index and the covariance between return of
assets is ignored. This result yielded the Capital Asset Pricing Model (CAPM).

Optimal control methods is one of the benchmark methods usedto handle portfolio
optimization problems. Optimal control problems can be viewed as dynamic problems
that involve choosing the best path in a system with many feasible paths. In gen-
eral terms, we describe optimal control problems and worry about technical details in
chapters 3 and 4. An optimal control problem consists of a state processX, a control
processu and a cost functionalJ(u). The state process which is influenced by the
control takes values inRn and the control processu takes values in control setU ⊂ R

n

for n ≥ 1. The choice ofU depends on the problem to be solved. In this thesis, control
systems described by Stochastic Differential Equations (SDE) are considered.

The cost functionalJ(u), which is to be optimized, appropriates the expected cost
value to every admissible control [19]. It is of the form

J(u) = E

[∫ T

t

f(s,X t,x
s , us)ds+ g(T,X t,x

T )

]
,

wheret is the initial time,T (finite or infinite) is the terminal time,x is the initial state,
XT is the terminal state andf andg are given functions known as the running cost
and terminal cost, respectively. Furthermore,J(u) is called a functional because the
control processu is a function of time. The main problem (or the main goal) in optimal
control is to obtain a control processu that optimizes the cost functionalJ(u) over all
admissible controls. There are several forms of the optimalcontrol problem described
above, and some applications will be explored chapters 3 and4. Some illustrations of
optimal control problems from different applications include:

• Attempt the softlanding of a spacecraft on the lunar space using least amount of
fuel,
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• Power a railroad car by rocket engines on both sides and attempt to arrive at the
origin at zero velocity in the shortest amount of time,

• Optimize reinsurance and dividend policy in the presence ofrisks so that the
insurance company maximizes the expected total dividend payout in a given
time interval.

Optimal control problems can be solved via Pontryagin’s Maximum Principle or Dy-
namic Programming (DP) principle [19]. The maximum principle and the DP principle
were developed simultaneously but independently. This thesis focuses on the use of
DP principle to solve optimization problems. The Markovianproperty of the prob-
lem makes the use of DP principle suitable. Dynamic Programming was initiated by
Richard Bellman in the 1950s in [5]. Richard Bellman said, ‘in place of determining
the optimal sequence of decisions from the fixed state of the system, we wish to de-
termine the optimal decision to be made at any state of the system. Only if we know
the latter, do we understand the intrinsic structure of the solution’ [5]. The principle
claims, in other words, that for any period, if the value of the state variable at the pe-
riod is a point on an optimal path, then the remaining decisions made after this period
must incorporate an optimal policy whose initial conditionis the value of the state
variable at this period. DP principle reduces the optimal control problem to the prob-
lem of solving the Hamilton-Jacobi-Bellman (HJB) Equation. When the HJB equation
can be solved, then the optimal value function and optimal control process are found.
Moreover, the Verification Theorem that guarantees this. Materials that cover stochas-
tic optimal control in details include Fleming & Soner [12],Kyrlov [2], Fleming &
Rishel, [11] and Yong & Zhou[35].

In [24], Merton established the framework for dynamic portfolio choice under uncer-
tainty and applied DP principle to solve the problems. In thepaper, Merton sought
to maximize the expected utility of running consumption andterminal wealth. In this
seminal paper, a closed-form solution to the stochastic control problem faced when
the utility function of the investor was assumed to be a powerfunction was derived.
Merton’s approach has been extended in many studies. For example, portfolio se-
lection with trading constraints, limited borrowing and nobankruptcy was studied by
Zariphopoulou [36]. Davis & Norman [10] considered the Merton problem and ob-
tained explicit solutions for the case where there is proportional transaction cost, i.e.,
the transaction costs are proportional to the amount transacted. Fleming & Hernandez
[13] extended Merton’s problem to the case where volatilityis assumed to be stochas-
tic.

Stochastic control for insurers has been of great interest in recent years. One of the fun-
damental applications in insurance theory is to use stochastic control theory to mini-
mize the infinite time ruin probability (or maximize the survival probability). The
survival probability is the probability that, for a given initial surplus, the surplus will
not become negative [21]. Control variables are chosen as investment, reinsurance or
dividend payments. Since insurance companies actively participate in investment ac-
tivities, it is only natural to find trading strategies that will maximize their utilities. In
[7], Browne studied the surplus process of the insurance company that is described by
a Brownian motion with drift. In this pioneering work, the optimal investment strategy
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to maximize the expected exponential utility of terminal wealth was found. Moore
& Yong [25] incorporated reinsurance policy into Merton’s classical optimal invest-
ment and consumption framework. The optimal consumption, investment and insur-
ance strategies that maximize the insurer’s expected discounted utility of consumption
and bequest over a fixed or random horizon were found. Hipp & Plum [15] used the
Cramer-Lundberg model to describe the risk process when the surplus of an insurer is
invested in risky assets. They were able to find explicit solutions for the case where
the claim size follows an exponential distribution. Yang & Zhang [34] were also able
to find closed form solutions for the optimal investment strategy of an insurer whose
utility function is taken to be exponential. The risk process of the insurer was modelled
by a jump-diffusion process. The models can also be generalized to where reinsurance
is present. Lin & Yang [20] considered the problem of obtaining the optimal invest-
ment and reinsurance strategy that will maximize the exponential utility of terminal
wealth of an insurer. The insurer in the problem was allowed to invest in a risk-free
asset and a risky asset whose dynamics allows for jumps modelled by a jump-diffusion
process. Also, the surplus process of the insurer was modelled by a jump-diffusion
process. They were able to obtain closed-form solutions. Cao& Wan [8] obtained the
optimal reinsurance and investment policy of an insurer when the surplus process of
the insurer follows a Brownian motion with drift. Inspired bythe AIG bailout case,
Zou & Cadenillas [37] obtained explicit solutions to optimalinvestment and risk con-
trol strategies that maximize the expected utility of terminal wealth of an insurer for
various utility functions. Stochastic control in insurance is studied in details in a recent
book by Schmidli in [30].

In this thesis, we introduce stochastic optimal control through their applications in fi-
nance with and without presence of jumps and particularly deal with cases in which
closed-form solutions are obtained. In general, the financial market consists of a
risk-free asset and a risky asset. We also review results to exemplify applications of
stochastic control in insurance. In the insurance applications that will be considered,
we maximize the expected utility of the insurer and their preferences are modelled by
exponential utility function because it is the only utilityfunction under which the prin-
ciple of ‘zero utility’ gives a fair premium that is dependent on the level of reserve
of an insurance company. The thesis is organized as follows.Chapter 2 introduces
some mathematical tools that will be needed to model financial assets and solve opti-
mization problems. In Chapter 3, we set up the mathematical framework of stochastic
optimal control problems and outline the dynamic programming principle. After, the
HJB Equation with its proof is provided. Finally, in Chapter 3, we discuss an applica-
tion of stochastic optimal control in engineering followedby applications in finance.
The financial applications focus on Merton’s portoflio consumption problem for two
cases. In the first case, the investor exhibits Constant Relative Risk Aversion (CRRA)
in a fixed time horizon. In the second case, the investor’s preferences is a power utility
function in a random time horizon. Lastly, we deal with Merton’s portfolio applica-
tion for the case where the utility function is CRRA. Chapter 4 looks more closely
at optimal control problems for jump-diffusion processes and three applications are
discussed. The first application is in finance and the final twoapplications are in in-
surance. In the first application, the dynamics of the asset price is represented with a
jump-diffusion model. The aim in this application is to find aclosed-form expression
for the optimal investment and consumption strategy that will maximize the utility of

3



the investor over an infinite time horizon. In the second application, the wealth process
of the insurer is affected by the presence of a stochastic cash flow which is given by:

Surplus= Initial Capital+ Premium Income− Cumulated Insurance Claims.

The objective for this application is to find the optimal investment strategy that will
maximize the expected exponential utility of terminal wealth of an insurer. In the third
application, the insurer is allowed to invest in a financial market and purchase propor-
tional reinsurance to reduce and share risk. The aim in the problem is to obtain the
optimal investment and reinsurance strategy which maximizes the expected exponen-
tial utility of terminal wealth of an insurer where the insurer’s risk is modelled by a
jump-diffusion process.
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CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some mathematical tools needed to model financial mar-
kets and solve optimization problems. We shall work in the continuous time setup in
this thesis. The time intervalT can be boundedT = [0, T ], 0 < T < ∞, or unbounded
T = [0,∞]. In this chapter, we refer to Lamberton & Lapeyre [18], Gan, Ma & Xie
[14] and Cont & Tankov [9] for further details.

2.1 Diffusion Models

Definition 2.1. (Stochastic Process) A continuous stochastic process in a spaceE
endowed with aσ-algebraξ is a family(Xt)t≥0 of random variables from a probability
space(Ω,F ,P) into (E, ξ).
The measurable space(E, ξ) is referred to as the state space. For eachω ∈ Ω, the
mappingX(ω) : t 7→ Xt(ω) is called the path of the process for the eventω. In some
cases, we also study vector-valued continuous stochastic processes.

Definition 2.2. (Filtration ) A filtration on (Ω,F ,P) is an increasing family(Ft)t≥0 of
σ-algebras ofF such thatFs ⊆ Ft for all s ≤ t.
Ft represents the information available up till timet. It increases as time elapses.

Definition 2.3. (Natural Filtration ) Let (Xt)t≥0 be a stochastic process. The natural
filtration

(
FX

t

)
t≥0

of X is defined as

FX
t := σ(Xs : s ≤ t), t ≥ 0.

Here,FX
t can be interpreted as the whole information concerning the process that can

be observed from its paths between time 0 andt.

Definition 2.4. (Adapted Process) A process(Xt)t≥0 is adapted to(Ft)t≥0 if for all t,
Xt is Ft- measurable.
In other words, an adapted process is a process whose value can be determined by the
information available at timet.

5



Definition 2.5. (Stopping time) A random variableτ taking values inR+ ∪ {∞} is a
stopping time with respect to the filtration(Ft)t≥0 if for any t ≥ 0,

{τ ≤ t} ∈ Ft.

Definition 2.6. (Standard Brownian Motion) A continuous stochastic process(Wt)t≥0

is called a standard Brownian motion if it satisfies:

a. W0 = 0,P a.s.

b. For all0 ≤ s ≤ t, the incrementWt − Ws is a random variable normally dis-
tributed with expectation 0 and variancet− s.

c. For all0 ≤ s ≤ t, the incrementWt −Ws is independent ofσ(Wu, u ≤ s).

Remark2.1. The distribution ofWt is given by 1√
2πt

exp
(
−x2

2t

)
dx.

Brownian motion is used to model random behaviour that evolves over time. Such
random behaviour represents the fluctuations of an asset’s price.

Definition 2.7. (Martingale) Consider the filtered space(Ω,F , (Ft)t≥0,P). An adapted
family (Xt)t≥0 of integrable random variables, i.e.,E [|Mt|] < ∞ for all t ≥ 0 is a su-
permartingale if

E [Xt|Fs] ≤ Xs, a.s., ∀s ≤ t;

(Xt)t≥0 is called a submartingale if

E [Xt|Fs] ≥ Xs, a.s.∀s ≤ t.

Finally,X is said to be martingale if

E [Xt|Fs] = Xs, a.s.∀s ≤ t.

Definition 2.8. (It ô process) Let (Wt)t≥0 be anFt-Brownian motion on a filtered prob-
ability space(Ω,F , (Ft)t≥0,P). A stochastic process(Xt)0≤t≤T is called an It̂o process
if it has the form

Xt = X0 +

∫ t

0

Usds+

∫ t

0

VsdWs, (2.1)

whereX0 is F0-measurable,(Ut)0≤t≤T and(Vt)0≤t≤T areFt-adapted,
∫ t

0
|Us|ds < ∞

P a.s.,
∫ t

0
|Vs|

2ds < ∞ P a.s.

For convenience, Eqn. (2.1) can be written in its differential form as

dXt = Utdt+ VtdWt.

Theorem 2.1. (It ô Formula) LetXt be an It̂o processdXt = Utdt+ VtdWt. Suppose
f(·) ∈ C2(R) is a twice continuously differentiable function. Then,

Yt = f(Xt) = f(X0)+

∫ t

0

f
′

(Xs)Usds+

∫ t

0

f
′

(Xs)VsdWs+
1

2

∫ t

0

f
′′

(Xs)d 〈X,X〉s ,
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where〈X,X〉t =
∫ t

0
V 2
s ds.

Furthermore, supposef(·, ·) ∈ C1,2 is a function in(t, x) which is once differentiable
with respect tot and twice differentiable with respect tox, then the It̂o formula gives
us

f(t,Xt) = f(0, X0) +

∫ t

0

f
′

s(s,Xs)ds+

∫ t

0

f
′

x(s,Xs)Usds+

∫ t

0

f
′

x(s,Xs)VsdWs

+
1

2

∫ t

0

f
′′

xx(s,Xs)d 〈X,X〉s .

Proof. The detailed proof of the theorem can be seen in Karatzas & Shreve [16]

Definition 2.9. (Martingale Representation Theorem) Consider the filtered probabil-
ity space(Ω,F , (Ft)t≥0,P). Assume that(FW

t )t≥0 is the natural filtration generated
by the Brownian motionWt. LetMt be a square integrable martingale relative to this
filtration. Then, there exists anF-adapted processφ such that

Mt = M0 +

∫ t

0

φsdWs.

In other words, any martingale adapted with respect to a Brownian motion can be
expressed as a stochastic integral with respect to the Brownian motion.

Definition 2.10. (Stochastic Differential Equations) Consider the filtered probability
space(Ω,F , (Ft)t≥0,P). Suppose we have the equation

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (2.2)

wherex is aF0-measurable random variable,b : R+ × R → R, σ : R+ × R → R and
(Wt)t≥0 is anFt-Brownian motion. Such equations are called Stochastic Differential
Equations (SDEs).

Remark2.2. The stochastic process(Xt)t≥0 that solves Eqn. (2.2) isFt-adapted and
is called adiffusion processand satisfies:

a. For allt ≥ 0,
∫ t

0
b(s,Xs)ds and

∫ t

0
σ(s,Xs)dWs exist.

That is,
∫ t

0
|b(s,Xs)|ds < ∞ and

∫ t

0
|σ(s,Xs)|

2ds < ∞Pa.s.

b. Eqn. (2.2). That is,

∀t ≥ 0Pa.s., Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs.

Theorem 2.2. (Existence and Uniqueness of a solution)Letb(·) andσ(·) be continu-
ous functions. Suppose there exists a constantC > 0 such that the following conditions
are satisfied for allx, y andt:

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| < C|x− y|, (Lipschitz condition)
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|b(t, x)|+ |σ(t, x)| < C(1 + |x|), (Linear growth condition)

E
[
|x|2
]
< ∞.

Then there exists a unique solution to the SDE in Eqn.(2.2).
Furthermore, the solution(Xs)0≤s≤T satisfies

E
[
sup0≤s≤T |Xs|

2
]
< ∞.

Proof. The proof of the theorem can be seen in Lamberton & Lapeyre [18].

The SDEs can be extended to the multidimensional case. The existence and uniqueness
theorem of the multidimensional case is similar to the theorem above. We refer readers
Lamberton & Lapeyre [18] for more details.

Definition 2.11. (Markov Property) Let f be a bounded Borel function. TheFt-
adapted process(Xt)t≥0 is said to satisfy the Markov property if for allt and0 < s < t,

E [f(Xt)|Fs] = E [f(Xt)|Xs] .

The Markov property states that the future states of a process (Xt)t≥0 that satisfies the
property depends only on the present statex and not on the previous history of the
process that preceded it.
The diffusion process(Xt)t≥0 which is the solution of the SDE in Eqn. (2.2) satisfies
the Markov property. Therefore, we can denote the solution by (X t,x

s : s ≥ t). That is,
Xt is the solution of the SDE in Eqn. (2.2) starting fromx and timet. The Markovian
property of the diffusion process makes the use of the dynamic programming approach
to solve optimal control problems appropriate.
Note:X0,x

s = X
t,Xx

t
s P a.s.∀s ≥ t.

Definition 2.12. (Infinitesimal generator) Let X = (Xt)t≥0 with Xt ∈ R
n be a dif-

fusion process. Then the infinitesimal generatorL of (Xt)t≥0 is defined on functions
f : Rn → R by

(Lf) (x) = limt↓0
E[f(Xt)]− f(x)

t
, x ∈ R

n (if the limit exists).

Theorem 2.3.Let(Xt)t≥0 be an n-dimensional Itô diffusion process,dXt = b(Xt)dt+
σ(Xt)dWt whereb, σ are continuous functions andWt is an n-dimensional Brownian
motion. Moreover, supposef ∈ C2

0(R
n). Then(Lf) (x) exists and

(Lf) (x) =
∑

i

bi(x)
∂f

∂xi

(x) +
1

2

∑

i,j

(σσT )ij(x)
∂2f

∂xi∂xj

(x).

Proof. The proof can be found in Øksendal [26].
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As previously noted, diffusion processes have continuous paths and are useful in mod-
eling price movements. Black Scholes model is one of the well known examples of dif-
fusion models. Diffusion models are very practical in complete markets where claims
can be perfectly hedged. In diffusion models, large sudden price movements do not
happen.
In real markets, asset prices undergo abrupt jumps in some periods, have strong price
movements in a short time and often display discontinuous behaviours. Hence, not all
empirical studies are solved by diffusion models. Models with jumps take these into
consideration and seem to be more superior than diffusion models. Furthermore, they
take into account the risks that cannot be hedged and thus integrate the risk into the ex-
posure of the portfolio. Finally, models with jumps reproduce more realistic properties
of presence of jumps in observed prices.

2.2 Jump-Diffusion and Lévy Processes

Financial models with jumps can be categorized into two. Onecategory consists of
jump-diffusion models and the other consists of models thathave infinite number of
jumps in each interval (Ĺevy process). Every jump-diffusion model has two main parts.
A diffusion part that has a Brownian component and a jump part which is a compound
Poisson process with finite activity. The class of infinite activity models do not always
contain a Brownian component as the dynamics of the process essentially move by
jumps. These models are said to give more realistic description of observed price
movements. Now, we introduce jump-diffusion processes andsome of the well-known
examples. We finalize with the Itô-Doeblin Formula.

2.2.1 Jump-Diffusion Processes

A jump diffusion is a process of the form:

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt. (2.3)

As previously mentioned, jump diffusion processes have twoparts; the diffusion part
and the jump part. The jump part is represented byJt. Here,J = (Jt) is an adapted,
right continuous pure jump process.Jt is the value ofJ after the jump andJt− is
the value ofJ immediately before the jump. The jump process(Jt) has finitely many
jumps in every time interval and is constant between jumps. The compound Poisson
process which will be examined in details below, is a jump process with finite activity,
i.e., it has finite number of jumps at any interval so(Jt) covers for compound Poisson
process here. Now, we define Poisson and compound Poisson processes.

Definition 2.13. (Poisson Process) Consider the sequence(τj)j∈N of independent
exponential random variables with parameterλ and Tn =

∑n

j=1 τj. The process
(Nt : t ≥ 0) given by

Nt =
∑

n∈N
1{t≥Tn}

9



is called a Poisson process with intensityλ.

Properties:

• The Poisson process(Nt : t ≥ 0) counts the number of jumps which occur be-
tween time 0 andt.

• The jumps occur atTj with size of 1 only and the interval between jumps are
exponentially distributed.

• The Poisson process(Nt : t ≥ 0) takes values inN ∪ {0} with the relation

P {Nt = n} =
(λt)ne−λt

n!
, (n = 0, 1, 2, ...) .

• A Poisson process is a Lévy process.

• The characteristic function of a Poisson process is given by

E
[
eiuNt

]
= exp

(
λt(eiu − 1)

)
.

Definition 2.14. (Compound Poisson process) A compound Poisson process is a stochas-
tic process(Rt : t ≥ 0) with intensityλ > 0 and jump size distributionG defined as

Rt =
Nt∑

i=1

Yi,

where(Nt : t ≥ 0) is the Poisson process with intensityλ and(Yj)j∈N is a sequence of
i.i.d. random variables with distributionG.

Properties:

• In the compound Poisson process, the interval between jumpsare exponential
but the jump sizes have arbitrary distribution.

• A compound Poisson process is a Lévy process.

• The characteristic function of the compound Poisson process has the form

E
[
eiuRt

]
= exp

(
λt

∫

R

(eiu − 1)G(dr)

)
.

For a calculation of the characteristic function, see Cont & Tankov [9].

Theorem 2.4. (It ô-Doeblin Formula)Let (Xt) be a jump process given by Eqn.(2.3).
Supposef(·) ∈ C2(R) is a twice continuously differentiable function. Then,

f(Xt) = f(X0) +

∫ t

0

f
′

(Xs)bsds+

∫ t

0

f
′

(Xs)σsdWs +
1

2

∫ t

0

f
′′

(Xs)σ
2
sds

+
∑

0≤s≤t

[f(Xs)− f(Xs−)] . (2.4)

10



Proof. The proof can be found in Shreve [32].

The theorem follows from the fact that if there is a jump inX from Xs− to Xs, it
generally leads to a jump inf(X) from f(Xs−) to f(Xs). It is not always possible to
write Eqn. (2.4) in differential form but for the scope of this thesis, it can be written as
we shall be dealing with cases where the jump part is a compound Poisson process:

f(Xt) = f(X0) +

∫ t

0

f
′

(Xs)bsds+

∫ t

0

f
′

(Xs)σsdWs +
1

2

∫ t

0

f
′′

(Xs)σ
2
sds

+

∫ t

0

[f(Xs)− f(Xs−)] dNs,

where(Ns) is a Poisson process as defined in Definition 2.13

2.2.2 Lévy Processes

So far, we have given useful details about jump-diffusion processes that are needed in
application. Now, important results about Levy processes will be detailed. For further
details on properties of Levy processes, see Øksendal [27],Okur [28], Cont & Tankov
[9] and Applebaum [1].

Definition 2.15. (Lévy Process) Let (Ω,F , (Ft)t≥0,P) be a filtered probability space.
The c̀adl̀ag (i.e. left continuous with right sided limits) stochastic process(Lt : t ≥ 0)
is called a Ĺevy process if it has the following properties:

i. Stationary increments: for anys ≤ t, Lt − Ls is equal in distribution toLt−s.

ii. Independent increments: for any0 ≤ t1 < t2 < ... < tn, the random variables
L0, Lt − L0,...,Ltn − Ltn−1 are independent.

iii. Stochastic continuity: ∀ǫ > 0, limh↓0 P (|Lt+h − L0| ≥ ǫ) = 0.

iv. L0 = 0 almost surely.

The jump ofLt at timet ≥ 0 is given by

∆Lt = Lt − Lt−.

Define

• B as the family of all Borel subsetsU ⊆ R such that the closure ofU does not
contain 0.

• For U ∈ B, the jump measureM([t1, t], U) is the number of jumps of size
∆Lt ∈ U that occur between timest1 andt, (t1 < t).

11



Definition 2.16. (Lévy measure) The Lévy measure of(Lt : t ≥ 0) is defined by

v(U) := E [M([0, 1], U)] .

That is, the Ĺevy measurev(U) of the process(Lt) is the expected number, per unit
time, of jumps whose sizes are inU .
The differential form of the jump processM([0, 1], U) is written asM(dt, dz). The
compensated jump measure of(Lt) is given by

M̃(dt, dz) = M(dt, dz)− v(dz).

Theorem 2.5. (Lévy-Khintchine Formula)Let (Lt) be a Levy process. Then its char-
acteristic function is given by the Lévy-Khintchine formula:

E
[
eiuLt

]
= exp

{
t

(
iuµ−

σ2u2

2
+

∫

R

(
eiuz − 1− iuz1|z|<1

)
v(dz)

)}
,

whereµ ∈ R andσ2 ≥ 0 are constants andv is the jump measure onB satisfying
∫

R

min(1, z2)v(dz) < ∞.

Theorem 2.6. (Ito-Lévy Decomposition)Let (Lt) be a Ĺevy process andv its Lévy
measure. Then, there exista1 andb ∈ R such that

Lt = a1t+ bWt +

∫ t

0

∫

|z|<1

zM̃(ds, dz) +

∫ t

0

∫

|z|≥1

zM(ds, dz).

If the Lévy process is square integrable, i.e.,E[L2
t ] < ∞, then

∫
|z|≥1

|z|2v(dz) < ∞.
Herewith, the representation becomes

Lt = a1t+ bWt +

∫ t

0

∫

|z|<1

zM̃(ds, dz) +

∫ t

0

∫

|z|≥1

zM(ds, dz)

= a1t+ bWt +

∫ t

0

∫

|z|<1

zM̃(ds, dz) +

∫ t

0

∫

|z|≥1

z(M̃(ds, dz) + v(dz)dt)

= a1t+ bWt +

∫ t

0

∫

R

zM̃(ds, dz) + t

∫

|z|≥1

zv(dz)

= at+ bWt +

∫ t

0

∫

R

zM̃(ds, dz),

where

a = a1t+ t

∫

|z|≥1

zv(dz).

The Decomposition Theorem points out that every Lévy process is a linear combina-
tion of Brownian motion with drift and a possibly infinite sum of independent com-
pound Poisson process.
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Remark2.3. Lévy process demonstrates strong Markov property, i.e., theprocess
(Lt+s − Lt)s≥0 has the same probability law as process(Ls)0≤s≤t.

Remark2.4. Consider the SDE of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt +

∫

Rn

h(t,Xt−, z)M̃(dt, dz);X0 = x, (2.5)

where the deterministic functionsb : R × R
n → R

n, σ : R × R
n → R

n×m and
h : R × R

n × R
n → R

n×l satisfy the Lipschitz continuity condition with respect tol
and the linear growth condition inl, uniformly in t. Thereby, guaranteeing that there
exists a unique c̀adl̀ag adapted solution(Xt) such thatE[|Xt|

2] < ∞, ∀t to Eqn. (2.5).
Such processes are calledItô-Lévy processes.

Remark2.5. Jump diffusion processes can be looked at in another way which is out-
lined below:
If b(t, l) = b(l), σ(t, l) = σ(t) andh(t, x, z) = h(x, z), then the corresponding SDE is
of the form

dXt = b(Xt)dt+ σ(Xt)dWt +

∫

Rn

h(Xt−, z)M̃(dt, dz). (2.6)

Solutions of the SDE (2.6) are calledLévy-diffusions. Again, the above model is punc-
tuated by jumps at random intervals. The jumps could represent cases like crashes or
large movements in asset price.

Theorem 2.7. (Infinitesimal generator)Let (Xt) be a Ĺevy-diffusion process as de-
fined in Eqn.(2.6)and supposef ∈ C2

0(R
n). Then,(Lf) (x) exists and

(Lf) (x) =
n∑

i=1

bi(x)
∂f

∂xi

(x) +
1

2

n∑

i,j=1

(σσT )ij(x)
∂2f

∂xi∂xj

(x)

+

∫

R

l∑

k=1

{
f(x+ h(k)(x, z))− f(x)−∇f(x) · h(k)(x, z)

}
vk(dzk).
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CHAPTER 3

OPTIMAL CONTROL FOR DIFFUSION PROCESSES:
APPLICATIONS IN ENGINEERING AND FINANCE

In stochastic control problems in finance, the aim is to find trading strategies that mo-
tivate minimal costs and maximal expected utility. Typically, there is a state process
whose dynamics is altered with a control process. In this chapter, the state processes
are described by Stochastic Differential Equations (SDEs)called diffusion models.
Among all possible decisions, we choose the optimal one to achieve the best expected
result depending on the objective. The decisions, also called control processes, are
made based on the available information. We try to obtain theoptimal control pro-
cess that maximizes the value of the state process. The maximal value is called the
optimal value function. The Dynamic Programming (DP) principle for the stochas-
tic control problem leads to the Hamilton-Jacobi-Bellman (HJB) Equation. Since the
value function is unknown, we make a guess and then show that it satisfies the equa-
tion. Furthermore, the verification theorem is used to show that the guess is indeed
the value function. In the applications, we focus on problems where explicit solutions
can be found. Stochastic control problems have applications in economics, finance,
insurance, engineering, to name a few.
The content of this chapter is as follows. In the first section, the mathematical frame-
work for optimal control problems is set up. In the second part, we state the general
control problem, outline the dynamic programming principle and then present the HJB
Equation. The proofs of the HJB Equation and the VerificationTheorem are also out-
lined. Finally in the third section, an application of stochastic optimal control in en-
gineering is given. The application, called The Linear Quadratic Regulator, involves
finding an optimal process that keeps an initially excited system close to its equilibrium
position. Afterwards, we focus on applications in finance. In the first financial applica-
tion, the optimal investment and consumption problem is studied for an investor who
has an initial endowment and is allowed to consume and investin a financial market
with a risk-free asset and a risky asset. In the second application, we consider Merton’s
portflio allocation problem where the aim is to maximize expected utility of terminal
wealth of an investor over finite time horizon.
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3.1 The Formal Problem

In this section, the general class of optimal control problems is studied. Consider the
following controlled system of SDEs:

{
dXt = b(t,Xt, ut)dt+ σ(t,Xt, ut)dWt;

Xt = x,
(3.1)

whereb : R×R
n×U −→ R

n, σ : R×R
n×U −→ R

n×d are two continuous functions,
respectively, satisfying the conditions

1. ‖b(t, x, u)− b(t, y, u)‖+ ‖σ(t, x, u)− σ(t, y, u)‖ ≤ C ‖x− y‖ ,

2. ‖b(t, x, u) + b(t, y, u)‖ ≤ C(1 + ‖x‖+ ‖y‖),

whereC < +∞ is a constant. We note that‖·‖ is a generic notation for Euclidean
norms in the corresponding Euclidean spaces.

Here,X = (Xt) with Xt ∈ R
n is ann-dimensional state process controlled by a

processu = (Ut) with ut ∈ U ⊆ R
k, and(Wt) is ad-dimensional Brownian motion.

The process(ut) isFd
t - adapted since the decision at timet depends on past observed

values of state processX. So we shall be dealing with control processu defined by

ut = u(t,Xt).

The functionut is called a feedback control because the control depends on the state
process at timet, for all t ∈ R.

Definition 3.1. (Admissible Processes) A control processu is admissible ifu(t, x) ∈
U for all t ∈ R and allx ∈ R

n and if for any given initial point(t, x), Eqn. (3.1) has a
unique solution. The set of all admissible control processes is denoted byA.

Objective Function:
Let f : R × R

n × R
k −→ R , g : Rn −→ R be given functions. We can then define

the value function as the function

J : A −→ R,

defined by

J(t, x, u) = E

[∫ T

t

f(s,X t,x
s , us)ds+ g(T,X t,x

T )

]

for all (t, x) ∈ [0, T ]×R
n andu ∈ A, where(X t,x

s ) denotes the solution of Eqn. (3.1)
starting fromx at timet: Xt = x. We note thatf represents the running cost whileg
represents the terminal cost.
Thus, the objective is to maximize the value functionJ over feedback control processes
u ∈ A. We introduce the value function:

V (t, x) := supu∈AJ(t, x, u).

If V (t, x) = J(t, x, û), we call (û(t, x)) an optimal control processandV (t, x) is
called theoptimal value functionfor the problem.
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3.2 Hamilton-Jacobian-Bellman Equation

3.2.1 The Control Problem

The control problem is to maximize the value function

J(t, x, u) = E

[∫ T

t

f(s,X t,x
s , us)ds+ g(T,X t,x

T )

]

given the dynamics

dXt = b(t,Xt, ut)dt+ σ(t,Xt, ut)dWt;

Xt = x.

We note that the SDE above is as described in Eqn. (3.1).

3.2.2 Dynamic Programming Principle

We shall now describe the Dynamic Programming principle which closely follows [6].
The principle is based on the intuition that the control problem can be divided into
two parts. The first part involves the notion that the optimalcontrol û on the interval
[t, T ] can be obtained by looking for the optimal control on(t + h, T ] and the second
involves maximizing over all control processes on[t, t+ h].
Fix (t, x) ∈ [0, T ] × R

n and considerh ∈ R such thatt + h < T . On time interval
[t, T ], we first use the optimal control̂u and then use the admissible control processu
defined by

u(s, y) =

{
u(s, y), if (s, y) ∈ [t, t+ h)× R

n,
û(s, y), if (s, y) ∈ (t+ h, T ]× R

n.

As for the optimal control̂u, we know thatJ(t, x, û) = V (t, x).
For the control processu,

J (t, x, u) = E

[∫ T

t

f(s,X t,x
s , us)ds+ g(T,X t,x

T )

]

= E

[∫ t+h

t

f(s,X t,x
s , us)ds

]
+ E

[∫ T

t+h

f(s,X t,x
s , ûs)ds+ g(T,X t,x

T )

]

= E

[∫ t+h

t

f(s,X t,x
s , us)ds

]
+ E

[
V
(
t+ h,X

t,x
t+h

)]
.

SinceV (t, x) = J (t, x, û) ≥ J(t, x, u) on [0, T ],

V (t, x) ≥ E

[∫ t+h

t

f(s,X t,x
s , us)ds+ V

(
t+ h,X

t,x
t+h

)]
. (3.2)

Equality in Eqn. (3.2) holds if and only if the arbitrarily chosen control processu is an
optimal control̂u. This leads us to the following important theorem.
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Theorem 3.1. (Hamilton-Jacobi-Bellman Equation)Assume that there exists an op-
timal control procesŝu and that the optimal value functionV is regular in the sense
thatV ∈ C1,2, then:

i) V satisfies the HJB Equation

Vt(t, x) + supu∈A (f(t, x, u) + (LuV ) (t, x)) = 0, ∀(t, x) ∈ [0, T ]× R
n, (3.3)

with
V (T, x) = g(x), ∀x ∈ R

n, (3.4)

where(LuV ) (t, x) = b(x, u)Vx +
1
2
tr(σ(x, u)σT (x, u))Vxx is the infinitesimal

generator as defined in Definition 2.12.

ii) For each (t, x) ∈ [0, T ] × R
n the supremum in the HJB Equation above is at-

tained byu = û(t, x).

Remark3.1. We sometimes write the partial differential equation of Eqn. (3.3) in the
form

Vt(t, x) +H(t, x, Vx(t, x), Vxx(t, x)) = 0, ∀(t, x) ∈ [0, T ]× R
n.

The functionH is called theHamiltonianof the associated control problem.
For (t, x, r, s) ∈ [t, x) ∈ [0, T ]× R

n × R
n × Sn, whereSn is ann× n square matrix.

H(t, x, r, s) = supu∈A[b(x, u) · r +
1

2
tr(σ(x, u)σT (x, u) · s+ f(t, x, u)].

Remark3.2. Eqn. (3.3) is called theHamilton-Jacobi-Bellman Equationor Dynamic
Programming Equation.

Proof. Assume thatV is smooth enough. So, apply Itô formula toV
(
t+ h,X

t,x
t+h

)

betweent andt+ h:

V (t+ h,X
t,x
t+h) = V (t, x) +

∫ t+h

t

Vt(s,X
t,x
s )ds+ Vx(s,X

t,x
s )dX t,x

s

+
1

2

∫ t+h

t

Vxx(s,X
t,x
s )d 〈X,X〉s ,

V (t+ h,X
t,x
t+h) = V (t, x) +

∫ t+h

t

Vt(s,X
t,x
s )ds+

∫ t+h

t

Vs(s,X
t,x
s )bds

+

∫ t+h

t

Vx(s,X
t,x
s )σdWs +

1

2

∫ t+h

t

Vxx(s,X
t,x
s )d 〈X,X〉s ,

V (t+ h,X
t,x
t+h) = V (t, x) +

∫ t+h

t

Vt(s,X
t,x
s ) + Vx(s,X

t,x
s )b+

1

2
Vxx(s,X

t,x
s )ds

+

∫ t+h

t

Vx(s,X
t,x
s )σdWs,
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V (t+ h,X
t,x
t+h) = V (t, x) +

∫ t+h

t

[
Vt(s,X

t,x
s ) + (LuV ) (s,X t,x

s )
]
ds

+

∫ t+h

t

Vx(s,X
t,x
s )σdWs.

Now, we take expectation and substitute into the Eqn. (3.2) to get

V (t+ h,X
t,x
t+h) ≥ E

[∫ t+h

t

f(s,X t,x
s , us)ds+ V (t+ h,X

t,x
t+h)

]

+ E

[∫ t+h

t

[
Vt(s,X

t,x
s ) + (LuV ) (s,X t,x

s )
]
ds+

∫ t+h

t

Vx(s,X
t,x
s )σdWs

]
.

Assuming enough integrability, the expected value of the integral with Brownian mo-
tion is zero.
So,

0 ≥ E

[∫ t+h

t

f(s,X t,x
s , us)ds+ Vt(s,X

t,x
s )ds+ (LuV ) (s,X t,x

s )ds

]
.

Let us divide the inequality through byh and take the limit ash goes to zero and by
the Mean Value theorem, we understand

0 ≥ Vt(t, x) + (LuV ) (t, x) + f(t, x, u).

Since the control processu is arbitrary, the inequality holds for allu ∈ U . So, we have
the following:

Vt(t, x) + supu∈U ((LuV ) (t, x) + f(t, x, u)) = 0,

since the equality holds if and only if the arbitrarily chosen control process is the
optimal control procesŝu.
Consequently,V (T, x) = g(x) for all x ∈ R

n.

Remark3.3. The theorem states that if an optimal controlû exists, then the optimal
value functionV satisfies the HJB equation in Eqn. (3.3) andat point t, f(t, x, û) +(
LûV

)
(t, x), (u ∈ U) attains its maximum. Thus, the theorem has the form of a

necessary condition. Luckily, the HJB equation is also a sufficient condition for our
optimal control problem. The next result, commonly referred to as the verification
theorem, states the condition.

Theorem 3.2. (Verification Theorem)Let P be a function inC1,2 ([0, T ]× R
n) that

solves the HJB Equation

Pt(t, x) + supu∈A (f(t, x, u) + (LuP ) (t, x)) = 0, ∀(t, x) ∈ [0, T ]× R
n (3.5)

with terminal condition
P (T, x) = g(x), ∀x ∈ R

n.

Suppose there exists an admissible control processû ∈ A such that for each(t, x), u
attains the supremum in the HJB equation. In other words,

supu∈A {f(t, x, u) + (LuP ) (t, x)} = f(t, x, u) +
(
LûP

)
(t, x),
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such that the SDE which is as defined in Eqn.(3.1)

dXs = b (s, û(s,Xs)) ds+ σ (s, û(s,Xs)) dWs;

Xt = x,

admits a unique solution̂X t,x
s . Then,P = V , the optimal value function and̂u is the

optimal feedback control.

Proof. SupposeP andû are as given. Fix(t, x) ∈ [0, T ]×R
n and choose an arbitrary

control processu ∈ A.
Apply Itô formula toP (T,X t,s

T )

P (T,X t,s
T ) = P (t, x) +

∫ T

t

Pt(s,X
t,x
s )ds+

∫ T

t

Px(s,X
t,x
s )dX t,x

s

+
1

2

∫ T

t

Pxx(s,X
t,x
s )d 〈X,X〉s ,

P (T,X t,s
T ) = P (t, x) +

∫ T

t

(
Pt(s,X

t,x
s ) + (LuP ) (s,X t,x

s )
)
ds

+

∫ T

t

Px(s,X
t,x
s )σdWs. (3.6)

We know thatP solves the HJB Equation in Eqn. (3.5) . So,

Pt(t, x) + f(t, x, u) + (LuP ) (t, x) ≤ 0, ∀u ∈ A.

Thus,
Pt(t,X

t,x
s ) + f(s,X t,x

s ) + (LuP ) (s,X t,x
s ) ≤ 0

Pt(t,X
t,x
s ) + (LuP ) (s,X t,x

s ) ≤ −f(s,X t,x
s )

From the boundary condition, we conclude thatP (T, x) = g(x).
Hence,

P (T,X t,s
T ) = g(X t,s

T ) ≤ P (t, x)−

∫ T

t

f(s,X t,s
T )ds+

∫ T

t

Px(s,X
t,x
s )σdWs.

So,

P (t, x) ≥

∫ T

t

f(s,X t,s
T )ds+ g(X t,s

T )−

∫ T

t

Px(s,X
t,x
s )σdWs.

Now we take the expectation of both sides and notice that the expectation of the integral
with Brownian motion is zero. This implies that

P (t, x) ≥ E

[∫ T

t

f(s,X t,s
T )ds+ g

(
X

t,s
T

)]
= J(t, x, u).

Sinceu ∈ A has been arbitrary,

P (t, x) ≥ supu∈UJ(t, x, u) = V (t, x).
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It is left to show thatP (t, x) ≤ V (t, x).
We have, by assumption, that

Pt(t, x) + f(t, x, û) +
(
LûP

)
(t, x) = 0,

Thus,
Pt(t, x) +

(
LûP

)
(t, x) = −f(t, x, û).

Applying Itô formula toP
(
T, X̂

t,s
T

)
yields

P (T, X̂ t,s
T ) = P (t, x) +

∫ T

t

Pt(s, X̂
t,x
s )ds+

∫ T

t

Px(s, X̂
t,x
s )dX̂ t,x

s

+
1

2

∫ T

t

Pxx(s, X̂
t,x
s )d

〈
X̂, X̂

〉
s
,

P (T, X̂ t,s
T ) = P (t, x) +

∫ T

t

Pt(s, X̂
t,x
s )ds+

(
LûP

)
(s, X̂ t,x

s )ds

+

∫ T

t

Dxp(s, X̂
t,x
s )σdWs.

So,

P (T, X̂ t,s
T ) = g(X̂ t,s

T = p(t, x)− f(s, X̂ t,x
s ) +

∫ T

t

Px(s, X̂
t,x
s )σdWs.

Let us take expectation of both sides and notice that the expected value of the integral
with Brownian motion is zero. Hence,

P (t, x) = E

[∫ T

t

f(s, X̂ t,s
T )ds+ g(X̂ t,s

T )

]
= J(t, x, u) ≤ V (t, x).

Therefore,P (t, x) ≥ V (t, x) ≥ J(t, x, û) = P (t, x).
That is,P = V andû is an optimal feedback control process.

Remark3.4. We have proved the HJB Equation and the Verification Theorem for a
maximization problem. The results are the same for a minimization problem. In that
case, the objective function is represented by

J(t, x, u) = E

[∫ T

t

f(s,X t,x
s , us)ds+ g(T,X t,x

T )

]
,

the value function is given by

V (t, x) = infu∈AJ(t, x, u)

and the associated HJB Equation is

Vt(t, x) + infu∈Af(t, x, u) + (LuV ) (t, x) = 0, ∀(t, x) ∈ [0, T ]× R
n,

V (T, x) = g(x), ∀x ∈ R
n.
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Remark3.5. We can extend the optimal control problem to cases where the state vari-
able is constrained within a domain. Consider the SDE as described in (3.1):

dXt = b(t,Xt, ut)dt+ σ(t,Xt, ut)dWt;

Xt = x.

We define the stopping time byτ = inf {t > 0|(t,Xt) ∈ ∂D} ∧ T , where we have the
time interval[0, T ], the domainD ⊆ [0, T ] × R

n anda ∧ b := min(a, b). Also, the
control process is admissible, i.e.,ut ∈ A. The value function to be optimized is the
form

J(t, x, u) = E

[∫ τ

0

f(s,X t,x
s , us)ds+ g(τ,X t,x

τ )

]
.

The problem is solved using the HJB equation and VerificationTheorem.

Remark3.6. (Infinite Horizon): The infinite horizon problems follow similar argu-
ments as the finite horizon problems. In such problems, the time horizon isT = ∞.
To guarantee that the value function is finite, the running cost is exponentially dis-
counted. The value function to be optimized is of the form

J(x, u) = E

[∫ ∞

0

e−βsf(Xx
s , us)ds

]
,

V (x) = J(x, û) represents the optimal value function andû the optimal control pro-
cess. The associated HJB equation is of the form

βV (x)− supu∈A (f(x, u) + (LuV ) (x)) = 0, ∀x ∈ R
n.

The proof is the same as that for the finite horizon case.

3.3 Applications

In this section, we first deal with a well known application ofoptimal control in engi-
neering: The Linear Quadratic Regulator. In the control problem, the objective is to
find the optimal control process that will keep an initially excited system close to its
equilibrium position. Then, we study Merton’s Optimal Consumption and Portfolio
problem for two cases. In the first case, the objective is to maximize the expected util-
ity of consumption and terminal wealth of an investor over finite time horizon. In the
second case, the objective is to maximize the expected utility from consumption over
random time horizon. We end the section with the optimization problem of an investor
with initial endowment who is allowed to invest in a financialmarket that consists of
a risk-free asset and a risky asset. The aim is to maximize expected utility of terminal
wealth of an investor over finite time horizon.

3.3.1 The Linear Quadratic Regulator

First, we study the following optimal control problem in engineering. The system
dynamics are linear and the cost is quadratic. The objectiveis to minimize the quadratic
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cost:

J(t, x, u) =

∫ t1

0

{
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

}
dt+ xT (t1)Sx(t1), (3.7)

given the dynamics

dXt = {A(t)x(t) + B(t)u(t)} dt+ P (t)dWt,

whereXt ∈ R
n andu(t) ∈ R

k, the controlu is unconstrained. Here,Q, R, S, A, B
andP are known matrices;S andQ(t) satisfyS = ST � 0 andQ = QT � 0, that is,
S andQ(t) are symmetric positive semidefinite;R(t) = RT (t) ≻ 0, i.e., symmetric
positive definite and, hence, invertible for allt ∈ [0, t1].
Our aim in the problem is to keepxt close to0, mainly at the final timet1, while using
minimum controlu.
Before giving the solution of the problem, here is a motivation. Consider a system that
is initially excited and is not in equilibrium with initial statex(t) = x 6= 0. We regard
the initial state statex 6= 0 as undesirable so that the objective of the control problem
is to find a controlu(t) that will return the system back to its equilibrium position
x(t) = 0 in the shortest possible time. Minimizing the quadratic cost functional in
Eqn. (3.7) gives the quantitative measure of the objective.Notice that the quadratic
nature of the terms in Eqn. (3.7) guarantees that the quadratic cost functional remains
non-negative for allt. In Eqn. (3.7),Q andR penalize the state and higher values are
more heavily penalized since the objective is to minimize the cost of value whileS
penalizes the control effort.
We now proceed to the solution of our optimal control problem. Assume there exists an
optimal control̂u and an optimal value functionV . By Theorem 3.1, the corresponding
HJB equation is given by

Vt(t, x) + infu∈Rk

(
xTQ(t)x+ uTR(t)u+ Vx(t, x)(A(t)x+ B(t)u)

)

+
1

2

∑

i,j

Vxx(t, x)[PP T ]i,j = 0 (3.8)

with boundary condition
V (t1, x) = xTSx. (3.9)

For arbitrary(t, x), we will find the minimizing control̂u. SinceR(t) ≻ 0, the infimum
of uTRu is a minimum and we set the gradient of Eqn. (3.8) to be zero. The quantity
inside the braces in the HJB equation is maximized byu satisfying

2uTR(t) + Vx(t, x)B(t) = 0,

which gives the optimal strategy

û = −
1

2
R−1(t)BT (t)Vx(t, x). (3.10)

To apply the verification theorem, we need to know the value functionV that solves the
HJB equation in Eqn. (3.8). We make a guess about the structure ofV . It is reasonable

23



thatV is a quadratic function because of the boundary condition ofEqn. (3.9). Hence,
we make the guess

V (t, x) = xTM(t)x+N(t),

whereM(t) is a symmetric matrix function of time for allt andN(t) is a scalar func-
tion. So,

Vt(t, x) = xTM ′(t) +N ′(t),

Vx(t, x) = 2xTM(t) = 2M(t)x,

Vxx(t, x) = 2M(t).

If we substitute the above results into the candidate optimal strategy in Eqn. (3.10), we
get

û = −
1

2
R−1(t)BT (t) · 2xTM(t)

= −R−1(t)BT (t)M(t)x.

Substitute this into the HJB Equation of Eqn. (3.8)

xTM ′(t) +N ′(t) + xTQ(t)x+ xTM(t)B(t)R−1(t)R(t)R−1(t)BT (t)M(t)x

+ 2xTM(t)A(t)x− 2xTM(t)R−1(t)BT (t)M(t)x+
∑

i,j

M(t)i,j[PP T ]i,j = 0.

So,

xTM ′(t) +N ′(t) + xTQ(t)x+ xTM(t)B(t)R−1(t)R(t)R−1(t)BT (t)M(t)x

+ xTAT (t)M(t)x+ xTM(t)A(t)x− 2xTM(t)R−1(t)BT (t)M(t)x

+ tr
[
P TM(t)P

]
= 0.

This implies that

xT
{
M ′(t) +Q(t)−M(t)B(t)R−1(t)BT (t)M(t) + AT (t)M(t) +M(t)A(t)

}

+N ′(t) + tr
[
P TM(t)P

]
= 0.

For the equation to hold for allt andx, we have the equations

M ′(t) +Q(t)−M(t)B(t)R−1(t)BT (t)M(t) + AT (t)M(t) +M(t)A(t) = 0

and
tr
[
P TM(t)P

]
+N ′(t) = 0.

Thus, we have the following pairs of systems of Ordinary Differential Equations (ODEs)
{
M ′(t) = M(t)B(t)R−1(t)BT (t)M(t)− AT (t)M(t)−M(t)A(t)−Q(t);

M(t1) = S,

(3.11)
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{
N ′(t) = −tr(P TM(t)P );

N(t1) = 0.
(3.12)

Eqn (3.11) is known as the Ricatti equation and it can be solvednumerically forM(t)
and Eqn. (3.12) is integrated to obtainN(t). It can then be concluded by the Verifica-
tion Theorem that the optimal value function is given by

V (t, x) = xTM(t)x+

∫ t1

t

tr[P TM(s)P ]ds,

and the optimal control is given by

û = −R−1(t)BT (t)M(t)x.

3.3.2 Merton’s Optimal Consumption and Portfolio Problem

In this section, we formulate the optimization problem of aninvestor who has an initial
endowment and is allowed to consume and invest in a financial market with a risk-free
asset and a risky asset. The problem is considered for two cases. In the first case, the
objective is to maximize the expected utility of consumption and terminal wealth of
an investor over finite time horizon. In second case, the objective is to maximize the
expected utility from consumption over random time horizon.

Consider a market with two assets: a risk-free asset and a risky asset. The risk-free
asset follows the price process

dS0
t = rS0

t dt,

wherer is the risk-free interest rate. The price process of the risky asset is given by
the Black Scholes model so that it solves the SDE

dSt = St [µdt+ σdWt] ,

whereµ andσ are the rate of return and the volatility of the risky asset respectively and
Wt represents the Brownian Motion on a filtered probability space (Ω,F , (Ft)t≥0,P).
We denote the proportion of wealth invested in risky asset attime t by wt, the propor-
tion of wealth invested in the risk-free asset at timet by (1− wt) and the consumption
rate at timet by ct. LetXt represent the investor’s total wealth at timet. Given that at
time t, the initial wealth of an investor isx, we assume that the trading strategy is self-
financing, that there is continuous trading and that unlimited short selling is allowed.
The wealth process of the investor therefore evolves according to

dX
w,c
t =

wtXtdSt

St

+
[1− wt]XtdS

0
t

S0
t

− ctdt,

dX
w,c
t = wtXt[µdt+ σdWt] + [1− wt]Xtrdt− ctdt.

Hence, we have the initial value problem
{
dX

w,c
t = Xt[wt(µ− r)]dt+ [rXt − ct]dt+ wtσXtdWt;

X0 = x.
(3.13)
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The wealth process is influenced by the admissible strategyu = (w, c) ∈ A(x) with∫∞
0
[|wt|

2 + ct]dt < ∞.
The aim of the investor is to determine his/her optimal investment and consumption up
to a final timeT :

J(t, x, u) = E

[∫ T

0

f(t, ct)dt+ g(XT )

]
, (3.14)

subject to Eqn. (3.13),ct ≥ 0, Xt > 0, x > 0, wheref(t, ct) = e−βtU(ct); U(c) is a
strictly concave utility function. LetV (t, x) = supu∈AJ(t, x, u). That is,V (t, x) is the
optimal value function.

Case 1: Optimal consumption and optimal terminal wealth over finite time hori-
zon

We consider the problem for the case whereby the investor exhibits constant relative
risk aversion. So, we let

U(c) =
cγ

γ
; γ 6= 0; γ < 1.

Then, the utility is an increasing concave function of resources used in consumption.
Here,g(x) = xγ

γ
. So, the investor wants to maximize

E

[∫ T

0

e−βt c
γ

γ
dt+

X
γ
T

γ

]
,

given the dynamics

dX
w,c
t = Xt[wt(µ− r)]dt+ [rXt − ct]dt+ wtσXtdWt.

It follows from Theorem 3.1 that the corresponding HJB Equation is:

Vt+supc≥0,w∈R

(
e−βt c

γ

γ
+ wx(µ− r)Vx + (rx− c)Vx +

1

2
σ2w2x2Vxx

)
= 0 (3.15)

with terminal condition

V (T, x) =
xγ

γ
. (3.16)

The first-order conditions for a regular interior maximum are:
(1) e−βtcγ−1 − Vx = 0
This implies that the optimal consumption is given by

ĉ =
[
eβtVx

] 1
γ−1 , (3.17)

(2) x(µ− r)Vx + σ2x2wVxx = 0.
This implies that the optimal investment is given by

ŵ =
−Vx

xVxx

·
µ− r

σ2
. (3.18)
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To apply the verification theorem, the optimal value functionV is needed. We therefore
make a guess about the structure ofV :

{
V (t, x) = m(t)xγ

γ
;

m(T ) = 1.

Hence,

Vt =
m′(t)xγ

γ
,

Vx = m(t)xγ−1,

Vxx = (γ − 1)m(t)xγ−2.

Now, we insert the above partial derivatives into Eqns. (3.17) and (3.18) to get

ĉ(t, x) =
[
eβtm(t)xγ−1

] 1
γ−1 =

[
eβtm(t)

] 1
γ−1 x, (3.19)

ŵ(t, x) =
−m(t)xγ−1

x(γ − 1)m(t)xγ−2
.
µ− r

σ2
= −

µ− r

(γ − 1)σ2
. (3.20)

We wish to show that the value functionV (t, x) = m(t)xγ

γ
solves the HJB Equation of

Eqn. (3.15). To do this, we substitute its partial derivatives and Eqns. (3.19) and (3.20)
into the HJB Equation (3.15):

m′(t)xγ

γ
+
e−βt[eβtm(t)]

γ
γ−1xγ

γ
−
xγ(µ− r)2m(t)

(γ − 1)σ2
+(rx−(eβtm(t))

1
γ−1x)m(t)xγ−1

+
σ2(µ− r)2x2(γ − 1)m(t)xγ−2

(γ − 1)2σ4
= 0.

Thus,

m′(t)xγ

γ
+

e
βt

γ−1m(t)
γ

γ−1xγ

γ
−

xγ(µ− r)2m(t)

(γ − 1)σ2
+ rm(t)xγ − e

βt
γ−1m(t)

γ
γ−1xγ

+
xγ(µ− r)2m(t)

2(γ − 1)σ2
= 0,

i.e.,

m′(t)xγ

γ
+

e
βt

γ−1m(t)
γ

γ−1
xγ

(1− γ)

γ
−

xγ(µ− r)2m(t)

(γ − 1)σ2
+ rm(t)xγ

+
xγ(µ− r)2m(t)

2(γ − 1)σ2
= 0.

This gives us the equation of the form

xγ
(
m′(t) + Am(t) + Bm(t)

γ
γ−1

)
= 0,
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whereA = − (µ−r)2

σ2(γ−1)
andB =

(
1−γ

γ

)
e

βt
γ−1 .

For the equation to hold for allt andx, m(t) must be a solution of the ODE with
terminal condition:

{
m′(t) + Am(t) + Bm(t)

γ
γ−1 = 0;

m(T ) = 1.
(3.21)

If we taken(t) := m(t)
1

1−γ , thenm(t) = n(t)1−γ andn′(t) = m′(t)m(t)
γ

1−γ

1−γ
. We notice

that Eqn. (3.21) becomes

(1− γ)n′(t)m(t)
−γ
1−γ + An(t)1−γ +Bn(t)−γ = 0,

implying that {
n′(t) + An(t)

1−γ
+ B

1−γ
= 0;

n(T ) = 1.
(3.22)

Solving the Linear Differential Equation of Eqn. (3.22), weobtain the explicit solution

n(t) = e
A

1−γ
(T−t) +

1− γ

γ(A−B)

[
e

(A−B)T
1−γ − e

(A−B)t
1−γ

]
e

A(T−t)
(1−γ) .

Hence,

m(t) = n(t)1−γ =

[
e

A
1−γ

(T−t) +
1− γ

γ(A−B)

[
e

(A−B)T
1−γ − e

(A−B)t
1−γ

]
e

A(T−t)
(1−γ)

]1−γ

.

Conclusion:
We have shown that if we define the value function asV (t, x) = m(t)xγ

γ
, wherem(t)

is as explicitly obtained as above, and if we define the optimal investmentŵ as in
Eqn. (3.19) and optimal consumption̂c as in Eqn. (3.20), thenV (t, x) satisfies the
HJB Equation and̂w andĉ give the maximum value in the equation. Therefore, by the
Verification Theorem, the optimal consumption and investment strategy (̂w, ĉ) of the
investor is given by

ĉ(t, x) =
[
eβtm(t)

] 1
γ−1 x,

ŵ(t, x) = −
µ− r

(γ − 1)σ2
=

µ− r

(1− γ)σ2
.

Remark3.7. It is noticeable that for an investor with a Constant Relative Risk Aversion
utility, the optimal consumption is proportional to the wealth of the investor at each
stage and that the optimal investment is independent of the wealth at each stage.

Case 2: Optimal consumption over random time horizon

We consider the problem for the case whereg = 0 in Eqn. (3.14). In this prob-
lem, the investor closes his/her position when the wealth process is zero. That is, the
position is closed at a random time horizonτ :

τ := inf {t > 0|Xt = 0} .
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The objective function is given by the value function

V (x) = sup(w,c)∈A(x)E

[∫ τ

0

e−βtU(ct)

]
,

whereU(ct) = cγ , β > 0, subject to
{
dX

w,c
t = Xt[wt(µ− r)]dt+ [rXt − ct]dt+ wtσXtdWt;

X0 = x.

The corresponding HJB equation is given by:

Vt+supc≥0,w∈R

(
e−βtcγ + wx(µ− r)Vx + (rx− c)Vx +

1

2
σ2w2x2Vxx

)
= 0; (3.23)

V (T, x) = 0. (3.24)

The first-order conditions for a regular interior maximum are:
(1) γe−βtcγ−1 − Vx = 0.
This implies that the optimal consumption is given by

ĉ =

[
eβtVx

γ

] 1
γ−1

, (3.25)

(2) x(µ− r)Vx + σ2x2wVxx = 0.
This implies that the optimal investment is given by

ŵ =
−Vx

xVxx

·
µ− r

σ2
. (3.26)

To apply the Verification Theorem, the optimal value function V is needed. We guess
that {

V (t, x) = e−βtm(t)xγ;

m(T ) = 0.

Therefore,

Vt = e−βtm′(t)xγ − βe−βtm(t)xγ,

Vx = γe−βtm(t)xγ−1,

Vxx = γ(γ − 1)e−βtm(t)xγ−2.

Now, we substitute the above partial derivatives into Eqns.(3.25) and (3.26) to get

ĉ(t, x) =

[
eβtγe−βtm(t)xγ−1

γ

] 1
γ−1

= m(t)
1

γ−1x (3.27)

ŵ(t, x) =
−γe−βtm(t)xγ−1

xγ(γ − 1)e−βtm(t)xγ−2
·
µ− r

σ2
= −

µ− r

(γ − 1)σ2
. (3.28)
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Now we shall substitute the partial derivatives of Eqns. (3.27) and (3.28) into the HJB
Equation in Eqn. (3.23) to show thatV (t, x) = e−βtm(t)xγ solves the HJB Equation:

e−βtm′(t)xγ − βe−βtm(t)xγ + e−βtxγm(t)−
γ

1−γ +
x(µ− r)2γe−βtm(t)xγ−1

(1− γ)σ2

+ rxγe−βtm(t)xγ−1 − xm(t)−
1

γ−1γe−βtm(t)xγ−1

+
x2σ2(µ− r)2γ(γ − 1)e−βtm(t)xγ−2

2(1− γ)2σ4
= 0.

This implies that

e−βtxγ

[
m′(t)−m(t)

[
−β +

γ(µ− r)2

σ2(1− γ)
+ rγ

]
+ (1− γ)m(t)

−γ
1−γ

]
= 0,

giving us

xγ
[

˙m(t) + Am(t) + Bm(t)
−γ
1−γ

]
= 0,

where

A = −β +
γ(µ− r)2

σ2(1− γ)
+ rγ andB = 1− γ.

For the equation to hold for allt andx, m(t) must be a solution of the ODE:
{
m′(t) + Am(t) + Bm(t)

γ
γ−1 = 0;

m(T ) = 0.
(3.29)

The explicit solution of the Bernoulli Equation in Eqn. (3.29) above is obtained as in
Case 1.
Conclusion:

We have now proved that if the value function is defined byV (t, x) = e−βtm(t)xγ,
where m(t) is the solution of the Bernoulli Equation in Eqn. (3.29) and if we define
the optimal investment̂w as in Eqn. (3.27) and optimal consumptionĉ as in Eqn.
(3.28), thenV (t, x) satisfies the HJB Equation and̂w and ĉ give the maximum value
in the equation. Therefore, by the Verification Theorem, theoptimal consumption and
investment strategy (̂w, ĉ) of the investor is given by

ĉ(t, x) = m(t)
1

γ−1x,

ŵ(t, x) = −
µ− r

(γ − 1)σ2
.

3.3.3 Merton’s Portfolio Allocation Problem

In the previous section, we obtained the optimal consumption and investment strategies
for an investor with an initial endowment who is allowed to consume and invest in a
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financial market. Now, we consider a portfolio allocation problem under a similar setup
but without consumption. Again, the financial market consists of a risk-free asset and
a risky asset. The risk-free asset follows the price process

dS0
t = rS0

t dt.

The price process of the risky asset is given by the Black Scholes model so that it
solves the SDE

dSt = St(µdt+ σdWt).

The proportion of total wealth invested in the risky asset atany time is denoted bywt.
The remaining proportion of wealth(1− wt) is invested in the risk-free asset. The
wealth processX(t) of the investor corresponding to the strategyw(t), is the solution
of the SDE with initial condition

{
dXw

t = wtX(t)dS(t)
S(t)

+ [1− wt]Xt
dS0

t

S0
t
;

X0 = x > 0,

i.e, {
dXw

t = Xt[wt(µ− r) + r]dt+ σwtXtdWt;

X0 = x > 0.

The control process is said to be admissible ifE

[∫ T

0
|w2

t |dt
]
< ∞. Here, we recall

thatA(x) denotes the set of all admissible portfolios.
The objective of the investor is to choose an allocation of the wealth in such a way
that will maximize the expected utility of his/her terminalwealth. That is, the value
function is defined by:

V (t, x) = supw∈A(x)E [U(XT )] .

We choose the power utility of CRRA typeU(x) = xγ

γ
for γ < 1, γ 6= 0. We note that

γ is called the relative risk aversion coefficient.
The corresponding HJB Equation is

{
Vt + supw∈A(x)

[
(xw(µ− r) + rx)Vx +

σ2w2x2Vxx

2

]
= 0;

V (T, x) = xγ

γ
.

(3.30)

Taking the second order derivative with respect tow, we get thatσ2x2Vxx < 0, since
V (x) is a strictly concave utility function. Hence, from the first-order condition for a
regular interior maximum which is:

x(µ− r)Vx + wσ2x2Vxx = 0,

we get that thew attains a maximum at

ŵ =
−Vx

xVxx

·
µ− r

σ2
. (3.31)
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We shall guess that the value function is of the form

V (t, x) = p(t)
xγ

γ
.

Therefore,

Vt = p′(t)
xγ

γ
,

Vx = p(t)xγ−1,

Vxx = (γ − 1)p(t)xγ−2.

Substitute the partial derivatives into Eqn. (3.31) to obtain the candidate optimal in-
vestment

ŵ =
−Vx

xVxx

·
µ− r

σ2
=

−p(t)xγ−1

x(γ − 1)p(t)xγ−2
·
µ− r

σ2
=

µ− r

(1− γ)σ2
.

Now, substitute the value function into the HJB Equation (3.30) to show that it solves
the following equation:

xγp′(t)

γ
+

xγ(µ− r)2γp(t)

(1− γ)σ2
+ rxγγp(t) +

σ2(µ− r)2xγγ(γ − 1)p(t)

2(1− γ)2σ4
= 0,

thus,

p′(t) + rγp(t) +
(µ− r)2

2(1− γ)σ2
γp(t) = 0.

Hence,p(t) must satisfy the ODE with terminal value:
{
p′(t) + Ap(t) = 0;

p(T ) = 1.

whereA = γ
[
r + (µ−r)2

2(1−γ)σ2

]
.

Thus,
p(t) = eA(T−t).

Conclusion:
We have shown by the Verification Theorem that the value function given by

V (t, x) = eA(T−t)x
γ

γ

satisfies the HJB Equation and so it is the optimal value function and the optimal
proportion of wealth to invest in risky asset is given by

ŵ =
µ− r

(1− γ)σ2
.
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Remark3.8. The verification theorem is an important step in the use of DP principle to
solve optimal control problems. The DP principle with the application of Itô formula
is used to derive the HJB Equation for an optimal control problem. Afterwards, the
verification theorem is used to guarantee that the value function that satisfies the HJB
equation is indeed the optimal value function. It is assumedin the verification theorem
that the value function is smooth enough. However, this is not always the case and it is
sometimes hard to check for the smoothness of the value function. In such cases that
the value function is not smooth enough, the theory ofviscosity solutionsis used. The
theory of viscosity solutions can be applied to linear and non-linear PDEs regardless of
the order. In [36], Zariphopoulou initiated the study of viscosity solutions in finance.
A detailed treatment of viscosity solutions in finance is done by Pham in [29].
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CHAPTER 4

OPTIMAL CONTROL FOR JUMP-DIFFUSION PROCESSES:
APPLICATIONS IN FINANCE AND INSURANCE

Empirical studies in finance and insurance have found evidence of discontinuities,
called jumps, in financial and insurance variables. In this chapter, we present three
applications of optimal control for jump processes. In the first application, the investor
is faced with a portfolio-consumption problem. The investor can consume and invest
in a financial market that consists of a risk-free and a risky asset. Risky asset prices
are known to make sudden large movements in cases of rare events such as wars and
economical crisis. Therefore, the dynamics of the price of the risky asset is represented
with a Lévy-diffusion model and a closed-form expression for the optimal investment
and consumption strategy that will maximize the utility of the investor over an infinite
time horizon is obtained. In the second application, we are concerned with the op-
timization problem of finding the optimal investment strategy that will maximize the
expected utility of terminal wealth of an insurer. The wealth process of the insurer is
affected by the risk process (presence of a stochastic cash flow) which is given by:

Surplus= Initial Capital+ Premium Income− Cumulated Insurance Claims.

The amount of cumulated insurance claims, which is paid by the insurer to the insured,
is represented by a compound Poisson process. The premium income is the amount
paid by the insured to the insurer for the insurance policy. Hence, the risk process is
modelled by a jump-diffusion process. The third and final application is devoted to
obtain the optimal investment and reinsurance strategy that maximizes the expected
utility of terminal wealth of an insurer. To reduce risk, theinsurer is allowed to in-
vest in a financial market and purchase proportional reinsurance. Similar to the second
application, a jump-diffusion process is used to model the insurer’s risk process. In
the last two applications, the utility preferences of the insurers are assumed to be ex-
ponential. It is common to use exponential utility in insurance because it is the only
utility function under which the principle of ‘zero utility’ gives a fair premium that is
dependent on the level of reserve of an insurance company.

The Control Problem:
The general control problem is to maximize the value function

J(t, x, u) = E

[∫ T

t

f(s,X t,x
s , us)ds+ g(X t,x

T )

]
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given the dynamics

dXt = b(Xt, ut)dt+ σ(Xt, ut)dWt +

∫

R

h(Xt−, ut−, z)M̃(dt, dz);

Xt = x,

where theb, σ, h are deterministic functions satisfying the Lipschitz continuity and
linear growth conditions. Hence, guaranteeing that there exists a unique c̀adl̀ag adapted
solution(Xt) to the equation. More details can be found about existence ofuniqueness
in Chapter 2.
The objective in optimal control is to obtain a control processu ∈ A that maximizes
the value functionJ over all admissible controls. We introduce the value function:

V (t, x) := supu∈AJ(t, x, u).

If V (t, x) = J(t, x, û), we callû(t, x) anoptimal control processandV (t, x) is called
theoptimal value functionfor the problem.

4.1 Merton’s Optimal Portfolio and Consumption Problem under Jump-Diffusion
Process

In this problem, we study the portfolio-consumption selection of an investor facing
risks that are modelled by Brownian motion and Lévy-diffusion processes. The wealth
process accounts for events that lead to large price movements and sudden breaks in
the prices of the risky asset. The random changes in the riskyasset are modelled by
Brownian motion and a compound Poisson process which has constant jump sizes at
random intervals. Let(Ω,F , (Ft)t≥0 ,P) be a filtered probability space. Furthermore,
(Wt) is a Brownian motion defined on the filtered probability space and is adapted to
the filtration(Ft : t ≥ 0). In the financial market, there is one risk-free asset and one
risky asset. The risk-free asset follows the price process

dS0
t = rS0

t dt,

wherer > 0 is the risk-free interest rate. The price process of the risky asset satisfies
the following SDE with jumps

dSt = St

(
µdt+ σdWt +

∫ ∞

−1

zM̃(dt, dz)

)
,

whereµ > 0 andσ ∈ R represent the rate of return and volatility of the risky asset
respectively. It is assumed that

∫∞
−1

|z|dv(z) < ∞ andµ > r.
Let (ct) which is an adapted, càdl̀ag (right continuous with left limits) process be the
consumption rate at timet ≥ 0, (wt) be the proportion of the total wealth invested in
risky asset at timet ≥ 0. Hence,(1− wt) is the proportion of total wealth invested in
risk-free asset at timet for t ≥ 0. It is assumed that there is no transaction cost. The
investor has initial wealthx > 0. The wealth process of the investor evolves according
to

dXt =
wtXt−
St−

dSt +
(1− wt)Xt−

S0
t

dS0
t − ctdt,
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or,

dXt = wtXt−

[
µdt+ σdWt +

∫ ∞

−1

zM̃(dt, dz)

]
+ (1− wt)Xt−rdt− ctdt.

So,
{
dXt = wtXt−

[
(µ− r)dt+ σdWt +

∫∞
−1

zM̃(dt, dz)
]
+ r (Xt − ct) dt;

X0 = x.
(4.1)

The objective of the investor is to choose the optimal investment proportion and con-
sumption rate in a way that will maximize his utility

J(t, x, u) = E

[∫ ∞

0

e−βt U(ct)dt

]
,

whereβ > 0, U(·) is a differentiable, bounded and strictly concave utility function.
The investor exhibits constant relative risk aversion. That is, the utility function is
given by cγ

γ
, 0 < γ < 1. The investment criterion is to choose the admissible control

process, i.e., the optimal investment-consumption strategy ut = (wt, ct) ∈ A such that

V (t, x) = sup(wt,ct)∈AJ(t, x, u).

Note that the controlut = (wt, ct) is admissible ifwt, ct areFt-adapted and c̀adl̀ag and
the total wealthXt is non-negative for allt ≥ 0. We writeut ∈ A, whereA is the set
of all admissible strategies.
The following theorem gives the corresponding HJB equationfor the value function
V (t, x).

Theorem 4.1. (Hamilton-Jacobi-Bellman Equation)AssumeV (t, x) is continuously
differentiable int ∈ [0, T ] and twice continuously differentiable inx ∈ R. Then
V (t, x) satisfies the HJB equation

e−βt c
γ

γ
+ supu∈A (LuV ) (t, x) = 0, (4.2)

where the infinitesimal generator ofV is given by;

(LuV ) (t, x) = Vt + [(µ− r)wx+ xr − c]Vx +
1

2
σ2w2x2Vxx

+

∫ ∞

−1

{V (t, x+ zwx)− V (t, x)− Vxzwx} v(dz).

Proof. The proof follows from the Theorem 3.1

To apply the Verification Theorem that guarantees that the solution to the HJB Equation
in Eqn. (4.2), we shall make a guess about the optimal value functionV . Let us define
V as:

V (t, x) = Ne−βtxγ.
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This implies

Vt = −βNe−βtxγ,

Vx = γNe−βtxγ−1,

Vx = γ(γ − 1)Ne−βtxγ−2.

Considering the partial derivatives, we get that

e−βt c
γ

γ
+ (LuV ) (t, x) = e−βt c

γ

γ
− βNe−βtxγ

+ [(µ− r)wx+ xr − c] γNe−βtxγ−1 +
1

2
σ2w2x2γ(γ − 1)Ne−βtxγ−2

+

∫ ∞

−1

(
Ne−βt(x+ zwx)γ −Ne−βtxγ − γNe−βtxγ−1zwx

)
v(dz).

This implies that

e−βt c
γ

γ
+ (LuV ) (t, x) = e−βt c

γ

γ
− cγNe−βtxγ−1

+Ne−βtxγ

[
−β + γ[(µ− r)w + r] +

1

2
σ2w2γ(γ − 1) +

∫ ∞

−1

{(1 + zw)γ − 1− γwz} v(dz)

]
.

Now, we shall differentiatee−βt cγ

γ
+ (LuV ) (t, x) with respect toc andw to find the

critical points where the maximum is attained. It can be checked that the expression is
concave with respect toc andw.
First, we differentiate with respect toc and equate to zero to obtain the maximum:

e−βtcγ−1 −Ne−βtxγ−1γ = 0,

cγ−1 −Ne−βtxγ−1γ = 0.

This implies the optimal consumption is given by

ĉ = (Nγ)
1

γ−1 x.

Second, we differentiate with respect tow and equate to zero to obtain the maximum:

Ne−βtxγ

[
γ(µ− r)− σ2wγ(1− γ) +

∫ ∞

−1

{
γ(1 + zw)γ−1z − γz

}
v(dz)

]
= 0.

This implies that the optimal investment in risky assetŵ satisfiesL(w) = 0, where
L(w) is given by:

L(w) = µ− r − σ2w(1− γ)−

∫ ∞

−1

{
1− (1 + zw)γ−1z

}
v(dz).

We notice that
L(0) = µ− r > 0
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and

L(1) = µ− r − σ2(1− γ)−

∫ ∞

−1

{
1− (1 + z)γ−1z

}
v(dz).

So if µ − r < σ2(1 − γ) +
∫∞
−1

{1− (1 + z)γ−1z} v(dz), then there existsw = ŵ ∈

(0, 1].
Substitutêc andŵ into the HJB Equation in order to show that the value functionsolves
the HJB Equation

0 = e−βt (Nγ)
γ

γ−1xγ

γ
− (Nγ)

1
γ−1xγNe−βtxγ−1 +Ne−βtxγ [−β + γ[(µ− r)ŵ + r]

+
1

2
σ2ŵ2γ(γ − 1) +

∫ ∞

−1

{(1 + zŵ)γ − 1− γŵz} v(dz)

]
,

thus,

(Nγ)
1

γ−1 − (Nγ)
1

γ−1γ − β + γ[(µ− r)ŵ + r] +
1

2
σ2ŵ2γ(γ − 1)

+

∫ ∞

−1

{(1 + zŵ)γ − 1− γŵz} v(dz) = 0,

hence

(Nγ)
1

γ−1 (1− γ) = β − γ[(µ− r)ŵ + r] +
1

2
σ2ŵ2γ(γ − 1)

+

∫ ∞

−1

{(1 + zŵ)γ − 1− γŵz} v(dz).

So,

N =
1

γ

[(
1

1− γ

[
β − γ[(µ− r)ŵ + r] +

1

2
σ2ŵ2γ(γ − 1)

+

∫ ∞

−1

{(1 + zŵ)γ − 1− γŵz} v(dz)
])γ−1]

Below, we summarize our result.

Theorem 4.2. Consider the wealth process in Eqn.(4.1) and the utility function de-
fined by cγ

γ
, 0 < γ < 1, with the objective to maximize the utility over infinite time

horizon, the optimal value function of the investor is givenby

V (t, x) = Ne−βtxγ,

whereN is as given in Eqn.(4.1). Furthermore, the optimal consumption is given by

ĉ = (Nγ)
1

γ−1 x

andŵ satisfyingL(w) = 0 is the optimal investment in the risky asset.
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4.2 Optimal Investment for Insurers with Jump-Diffusion Ri sk Processes

In this application, we focus on the control problem of finding the optimal investment
strategy that maximizes the expected utility of terminal wealth of an insurer which was
studied by Yang & Zhang in [34]. A closed form expression is obtained for the optimal
strategy of an insurer that is allowed to invest when the utility function is exponential.

Let (Ω,F ,P) be a probability space with filtration(Ft : t ≥ 0). We have two standard
Brownian motions(W 1

t : t ≥ 0) and(W 2
t : t ≥ 0) adapted to(Ft : t ≥ 0) on the prob-

ability space.
The wealth process of the insurer is affected by the presenceof a stochastic cash flow
modelled by:

Surplus= Initial Capital+ Premium Income− Cumulated Insurance Claims.

The stochastic cash flow denoted by(Pt : t ≥ 0) is modelled as:

dPt = adt+ bdW 2
t − dRt, (4.4)

wherea and b > 0 are constants;Rt =
∑Nt

i=1 Yi as defined in Definition 2.14 is a
compound Poisson process which denotes cumulated insurance claims with intensity
λ > 0 and jump size distributionG. Here, (Nt : t ≥ 0) is a Poisson process with
parameterλ which denotes the total number of claims up to time t andYi is the size
of the ith claim and assumed to be independent of the claim number process. We
shall assume that(W 1

t : t ≥ 0) and(W 2
t : t ≥ 0) are two correlated Brownian motions

with correlation coefficientρ such thatρ2 6= 1. In our case, the stochastic flow(Pt)
guarantees that the risk to the insurer cannot be totally eliminated. We also assume
that continuous trading is allowed, neither transaction cost nor tax is involved, and all
assets are infinitely divisible.
The market consists of two assets: a risky asset and a risk-free asset. The risk-free
asset follows the price process

dS0
t = rS0

t dt, (4.5)

wherer(·) is the risk-free interest rate. The price process of the risky asset satisfies the
SDE

dSt = µStdt+ σStdW
1
t , (4.6)

whereµ(·) andσ(·) are the rate of return and volatility of the risky asset, respectively.
We assume thatµ > r.

Let Kt be the amount in the risky asset at timet andXt −Kt be the amount invested
in the risk-free asset at timet so thatXt represents the company’s total wealth. The
wealth process of the insurer, denoted byXK

t satisfies

dXK
t = Kt

dSt

St

+ {Xt −Kt}
dS0

t

S0
t

+ dPt (4.7)

or, if we insert, Eqns. (4.4) , (4.5) and (4.6) into Eqn. (4.7),

dXK
t = Kt

[
µdt+ σdW 1

t

]
+ [Xt −Kt] rdt+ adt+ bW 2

t − dRt.
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So,

dXK
t = [(µ− r)Kt + rXt + a] dt+ σKtdW

1
t + bW 2

t − dRt; X0 = x ∈ R, (4.8)

wherex > 0 is the initial wealth. The wealth process is influenced by theinvestment
strategyK = (Kt : t ≥ 0) with

∫ T

0
|Kt|

2dt < ∞, T < ∞. The investment strategy
Kt ∈ A(x) is admissible. Here,A is the set of all admissible strategies.
The objective of the investor is to maximize the expected utility of terminal wealth

V (t, x) := supK∈AE
[
U(XK

T )|XK
t = x

]
,

whereV (·) is the value function,U(·) is a differentiable, bounded and strictly concave
utility function and

(
XK

t : t ≥ 0
)

is the wealth process under the investment policyK.
SinceU(·) is concave, there exists a unique optimal strategyK∗ such that the value
function attains its maximum.
Suppose that the preferences of the insurer are exponential. That is, the utility function
is given by

U(x) = m−
α

η
e−ηx, α > 0, η > 0.

The utility function has constant absolute risk aversion parameterη, i.e.,η = −Uxx(x)
Ux(x)

.
The following theorem gives the associated HJB equation forthe value functionV (t, x).

Theorem 4.3.(Hamilton-Jacobi-Bellman Equation)Let
(
XK

t : t ≥ 0
)

satisfy the dy-
namics of the wealth process in Eqn.(4.8) and G be the jump-size distribution of
the compound Poisson processRt. AssumeV (t, x) is continuously differentiable in
t ∈ [0, T ] and twice continuously differentiable inx ∈ R. ThenV (t, x) satisfies the
HJB equation

supK∈A
(
LKV (t, x)

)
+ λ

∫ ∞

0

[V (t, x− y)− V (t, x)]G(dy) = 0 (4.9)

with terminal condition

V (T, x) = U(x) = m−
α

η
e−ηx, (4.10)

where

(
LKV

)
(t, x) = Vt + [(µ− r)K + rx+ a]Vx +

1

2

[
σ2K2 + b2 + 2ρbσK

]
Vxx.

Proof. The proof follows from the Theorems 2.4 and 3.1.

The Verification Theorem is important to show that under someconditions, a solution
to the HJB equation above gives us the optimal investment strategy. Below, we give
the theorem and derive the proof.
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Theorem 4.4. (Verification Theorem)Suppose that there exists a smooth function
P (t, x) ∈ C1,2([0, T ],R) that satisfies the HJB Equation of Eqn.(4.9) with terminal
condition of Eqn.(4.10)subject to the boundary conditions, then the value function
V (t, x) = P (t, x).
Furthermore, suppose that there exists aK∗ ∈ A such thatK∗ attains a supremum in
the HJB equation for all(t, x) ∈ [0, T ] × R, thenK∗ defines the optimal investment
strategy.

Proof. LetK ∈ A. By Itô formula, it follows that fort ∈ [s, T ],

P (T,XK
T ) = P (t, x)+

∫ T

t

Pt(s,X
K
s )ds+

∫ T

t

[
(µ− r)Ks + rXK

s− + a
]
Px(s,X

K
s )ds

+

∫ T

t

σKs−Px(s,X
K
s )dW 1

s+

∫ T

t

bdW 2
s+

1

2

∫ T

t

[
σ2K2

s− + b2 + 2ρbσKs−
]
Pxx(s,X

K
s )ds

+

∫ T

t

∫ ∞

0

[
P (t,XK

s− − y)− P (t,XK
s−)
]
M̃(ds, dy),

thus,

P (T,XK
T ) = P (t, x)+

∫ T

t

Pt(s,X
K
s )ds+

∫ T

t

[
(µ− r)Ks + rXK

s− + a
]
Px(s,X

K
s )ds

+

∫ T

t

σKs−Px(s,X
K
s )dW 1

s+

∫ T

t

bdW 2
s+

1

2

∫ T

t

[
σ2K2

s− + b2 + 2ρbσKs−
]
Pxx(s,X

K
s )ds

+

∫ T

t

∫ ∞

0

[
P (t,XK

s− − y)− P (t,XK
s−)
] (

M̃(ds, dy)− λG(dy)dt
)

+ λ

∫ T

t

∫ ∞

0

[
P (t,XK

s− − y)− P (t,XK
s−)
]
G(dy)dt.

Taking expectation of both sides gives

E
[
P (T,XK

T )
]
= P (t, x)

+ E

[(
LKP

)
(t,XK

s−)ds+ λ

∫ T

t

∫ ∞

0

[
P (t,XK

s− − y)− P (t,XK
s−)
]
G(dy)dt

]
.

This implies that

E
[
P (T,XK

T )
]
≤ P (t, x)+

E

[∫ T

t

supK∈A
(
LKP

)
(t,XK

s−)ds+

∫ T

t

λ

∫ ∞

0

[
P (t,XK

s− − y)− P (t,XK
s−)
]
G(dy)dt

]
.

Therefore,
E
[
P (T,XK

T )
]
≤ P (t, x);

so,

P (t, x) ≥ supK∈AE[P (T,XK
T )] = supK∈AE[U(XK

T )] = V (t, x). (4.11)
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We shall now thatP (t, x) ≤ V (t, x)
Suppose that∃K∗ ∈ A such thatK∗ attains a supremum in the HJB Equation of Eqn.
(4.9). That is,

Pt + [(µ− r)K∗ + rx+ a]Px +
1

2

[
σ2K∗2 + b2 + 2ρbσK∗]Pxx

+ λ

∫ ∞

0

[P (t, x− y)− P (t, x)]G(dy) = 0. (4.12)

By applying It̂o formula,

P (T,XK∗

T ) = P (t, x) +

∫ T

t

Pt(s,X
K∗

s )ds+

∫ T

t

[
(µ− r)K∗

s + rXK∗

s− + a
]
Pxds

+

∫ T

t

σK∗
s−PxdW

1
s +

∫ T

t

bdW 2
s +

1

2

∫ T

t

[
σ2K∗2

s− + b2 + 2ρbσK∗
s−

]
Pxxds

+

∫ T

t

∫ ∞

0

[
P (t,XK∗

s− − y)− P (t,XK∗

s− )
]
M̃(ds, dy),

thus,

P (T,XK∗

T ) = P (t, x) +

∫ T

t

(
LK∗

P
)
(s,XK∗

s− )ds+

∫ T

t

σK∗
s−PxdW

1
s +

∫ T

t

bdW 2
s

+

∫ T

t

∫ ∞

0

[
P (t,XK∗

s− − y)− P (t,XK∗

s− )
] (

M̃(ds, dy)− λG(dy)dt
)

+ λ

∫ T

t

∫ ∞

0

[
P (t,XK∗

s− − y)− P (t,XK∗

s− )
]
G(dy)dt.

Taking expected values of both sides gives

E
[
P (T,XK∗

T )
]
= P (t, x)+

E

[∫ T

t

(
LkP

)
(t,XK

s−)ds+

∫ T

t

λ

∫ ∞

0

[
P (t,XK∗

s− − y)− P (t,XK
s−)
]
G(dy)dt

]
.

(4.13)

From Eqn. (4.12), Eqn. (4.13) becomesE
[
P (T,XK∗

T )
]
= P (t, x),

Hence,

P (t, x) = E
[
P (T,XK∗

T )
]
≤ supK∈AE

[
P (T,XK∗

T )
]
= supK∈AE

[
U(XK∗

T )
]
= V (t, x).

Therefore,
P (t, x) ≤ V (t, x) (4.14)

Combining Eqns. (4.11) and (4.14), we get

P (t, x) ≥ V (t, x) = supE
[
U(XK∗

T )
]
≥ P (t, x).

That is,
P (t, x) = V (t, x) = E

[
U(XK∗

T )
]
.
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Closed form solution for optimal policy

So far, we have described the problem, given the associated HJB equation and proved
the verification theorem. Now, we solve for the optimal valuefunction and the optimal
investment strategy. First, we give the result in the theorem below and outline the so-
lution process in the proof.

Theorem 4.5. Consider the wealth process in Eqn.(4.8) and the utility function de-
fined by

U(x) = m−
α

η
e−ηx,

with objective to maximize the expected utility of terminal wealth, the optimal invest-
ment policy is given by

K∗ =
µ− r

ησ2
e−r(T−t) −

ρb

σ
,

and the optimal value function is given by

V (t, x) = m−
α

η
exp

(
−ηxer(T−t) −

1

2

(
µ− r

σ

)2

(T − t) + n(T − t)

)
,

wheren(T − t) satisfies the ODE

n′(T − t) = −ηer(T−t)

[
a− ρb

(
µ− r

σ

)]
+

1

2
b2(1− ρ)2η2e2r(T−t)

+ λ

∫ ∞

0

[
ηyer(T−t) − 1

]
G(dy),

with the initial value

n(0) = 0.

Proof. Step 1: Obtain the candidate optimal investment strategyK∗ and substitute
into HJB (4.9).
Let us assume that the HJB Equation of Eqn. (4.9) has a classical solution satisfying
Vx > 0 andVxx < 0. Then we differentiate the HJB Equation with respect toK to
obtain the candidate optimalK∗ via

(µ− r)Vx + σ2K∗ + ρbσVxx,

namely,

K∗ =
(µ− r)Vx

σ2Vxx
−

ρb

σ
. (4.15)
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We substitute Eqn. (4.15) into the HJB Equation of Eqn. (4.9)to obtain

Vt +

[
(µ− r)2Vx

σ2
Vxx −

(µ− r)ρb

σ
+ rx+ a

]
Vx

+
1

2

[
σ2

(
(µ− r)Vx

σ2Vxx
−

ρb

σ

)2

+ b2 + 2ρbσ

(
(µ− r)Vx

σ2Vxx
−

ρb

σ

)]

+ λ

∫ ∞

0

[V (t, x− y)− V (t, x)]G(dy) = 0,

i.e.,

Vt +

[
rx+ a−

(µ− r)ρb

σ

]
Vx −

1

2

(
µ− r

σ

)2
V 2
x

Vxx

+
1

2
b2(1− ρ)2Vxx

+ λ

∫ ∞

0

[V (t, x− y)− V (t, x)]G(dy) = 0. (4.16)

Step 2: Guess the value function that solves Eqn. (4.9) and take the partial derivatives
of the value function.
We guess a solution to Eqn. (4.9) of the form

V (t, x) = m−
α

η
exp

(
−ηxer(T−t) −

1

2

(
µ− r

σ

)2

(T − t) + n(T − t)

)
, (4.17)

wheren(·) is a function such thatV (t, x) solves Eqn. (4.14) and the terminal condition
in Eqn. (4.10) implies thatn(0) = 0. From Eqn. (4.17), we obtain

Vt(t, x) = −
α

η

[
ηxrer(T−t) +

1

2

(
µ− r

σ

)2

− n′((T − t)

]

exp

{
−ηxer(T−t) −

1

2

(
µ− r

σ

)2

(T − t) + n(T − t)

}
,

hence,

Vt(t, x) = −
α

η

[
ηxrer(T−t) +

1

2

(
µ− r

σ

)2

− n′((T − t)

]
×
[
−
η

α
(V (t, x)−m)

]
.

Therefore,

Vt(t, x) = [V (t, x)−m]

[
ηxrer(T−t) +

1

2

(
µ− r

σ

)2

− n′(T − t)

]
, (4.18)

and

Vx(t, x) = αer(T−t)exp

(
−ηxer(T−t) −

1

2

(
µ− r

σ

)2

(T − t) + n(T − t)

)
,

45



thus,
Vx(t, x) = αer(T−t)

[
−
η

α
(V (t, x)−m)

]
.

Therefore,
Vx(t, x) =

[
−ηer(T−t)

]
[V (t, x)−m] , (4.19)

Vxx(t, x) = −αηe2r(T−t)exp

(
−ηxer(T−t) −

1

2

(
µ− r

σ

)2

(T − t) + n(T − t)

)
,

Vxx(t, x) =
[
−αηe2r(T−t)

[
−
η

α
(V (t, x)−m)

]]
.

Therefore, we get
Vxx(t, x) =

[
η2e2r(T−t)

]
[V (t, x)−m] . (4.20)

Step 3: Simplify the expression
∫∞
0

[V (t, x− y)− V (t, x)]G(dy) that is found in the
HJB Eqn. (4.16).

∫ ∞

0

[V (t, x− y)− V (t, x)]G(dy) =

∫ ∞

0

[(
m−

α

η
exp

{
−η(x− y)er(T−t) −

1

2

(
µ− r

σ

)2

(T − t) + n(T − t)

})]
G(dy)

−

∫ ∞

0

[(
m−

α

η
exp

{
−ηxer(T−t) −

1

2

(
µ− r

σ

)2

(T − t) + n(T − t)

})]
G(dy).

This becomes
∫ ∞

0

[V (t, x− y)− V (t, x)]G(dy) =

∫ ∞

0

−
α

η

[(
exp

{
−η(x− y)er(T−t) −

1

2

(
µ− r

σ

)2

(T − t) + n(T − t)

})
(
ηyer(T−t) − 1

)
]
G(dy).

Hence,
∫ ∞

0

[V (t, x− y)− V (t, x)]G(dy) =

[
−α

η
·
−η

α
(V (t, x)−m)(ηyer(T−t) − 1)

]
G(dy)

=

∫ ∞

0

[V (t, x)−m][ηyer(T−t) − 1]G(dy),

and, so,
∫ ∞

0

[V (t, x− y)− V (t, x)]G(dy) = [V (t, x)−m]

∫ ∞

0

[ηyer(T−t)−1]G(dy). (4.21)
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Step 4:Substitute the candidate optimal investment strategy and the partial derivatives
of the value function into HJB Eqn. (4.16).

Substituting Eqn. (4.19) and Eqn. (4.20) into Eqn. (4.15), we get that the supremum
is achieved atK∗ and so the optimal investment strategy is given by:

K∗ =
[µ− r][−ηer(T−t)][V (t, x)−m]

σ2[η2e2r(T−t)][V (t, x)−m]
−

ρb

σ
.

Thus,

K∗ =
µ− r

ησ2
e−r(T−t) −

ρb

σ

We substitute Eqns. (4.18) - (4.21) into Eqn. (4.16) to get

[V (t, x)−m] ·

[
ηxrer(T−t) +

1

2

(
µ− r

σ

)2

− n′(T − t)

]

+

[
rx+ a−

(µ− r)ρb

σ

]
·
[
−ηer(T−t)

]
[V (t, x)−m]

−
1

2

(
µ− r

σ

)2
η2e2r(T−t) [V (t, x)−m]2

[η2e2r(T−t)] [V (t, x)−m]

+
1

2
b2(1− ρ)2

[
η2e2r(T−t)

]
[V (t, x)−m]

+ λ [V (t, x)−m]

∫ ∞

0

[ηyer(T−t) − 1]G(dy) = 0,

hence,

1

2

(
µ− r

σ

)2

− n′(T − t)−

[
a−

(µ− r)ρb

σ

] [
ηer(T−t)

]
−

1

2

(
µ− r

σ

)2

+
1

2
b2(1− ρ)2

[
η2e2r(T−t)

]
+ λ

∫ ∞

0

[ηyer(T−t) − 1]G(dy) = 0

and, thus,

n′(T − t) = −ηer(T−t)

[
a− ρb

(
µ− r

σ

)]
+

1

2
b2(1− ρ)2η2e2r(T−t)

+ λ

∫ ∞

0

[
ηyer(T−t) − 1

]
G(dy), (4.22)

with the initial value
n(0) = 0.

If the distribution of the jumpy is known, one can find a closed form expression of
n(·). Hence, we can say that the value function satisfies the HJB Eqn. in Eqn. (4.9).
Notice that by substituting the optimal investment into thewealth process, the resulting
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optimal wealth process can be rewritten as a linear SDE plus ajump process as outlined
below:

dXK∗

t =

[
(µ− r)

[
(µ− r)e−r(T−t)

ησ2
−

ρb

σ

]
+ rX∗

t + a

]
dt

+ σ

[
(µ− r)e−r(T−t)

ησ2
−

ρb

σ

]
dW 1

t + bW 2
t − dRt,

hence,

dXK∗

t =

[
(µ− r)2e−r(T−t)

ησ2
−

(µ− r)ρb

σ
+ rX∗

t + a

]
dt+

√(
µ− r

ηρ
e−r(T−t)

)2

+ b2(1− ρ2)dWt − dRt,

where

Wt =

(µ−r)e−r(T−t)

ησ
− ρb

√(
µ−r

ηρ
e−r(T−t)

)2
+ b2(1− ρ2)

is another standard Brownian motion. It is known that the linear SDE admits a unique
strong solution. Therefore, since the value function is twice continuously differen-
tiable, the conditions of the verification theorem is satisfied.

4.3 Optimal Investment and Reinsurance for Insurers with Jump-Diffusion Risk
Processes

This application is devoted to the study of the optimal investment and reinsurance
strategy that maximizes the expected utility of terminal wealth of an insurer. This ap-
plication follows the problem put forward by Lin & Yang in [20]. As in the previous
application, the risk process of the insurer is modelled by acompound Poisson process.
To reduce risk, the insurer is allowed to invest in a financialmarket with one risk-free
and one risky asset and purchase proportional reinsurance.A closed form solution is
obtained for the optimal strategy when the utility preference of the insurer is exponen-
tial.
Let (Ω,F , (Ft)t≥0 ,P) be a filtered probability space andW 1

t andW 2
t are standard

Brownian motions adapted to the filtration(Ft)t≥0. We are concerned with modelling
the surplus process given by

Surplus= Initial Capital+ Income− Outflow.

The surplus process of the insurer is also affected by the presence of a stochastic cash
flow and so the surplus of the insurer at timet is denoted by(Mt : t ≥ 0) modelled as:

dMt = adt+ bdW 1
t − dRt
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whereM0 > 0 denotes the initial capital;a > 0 denotes the premium rate per unit
time; Rt =

∑N1
t

j=1 Yj as defined in Definition 2.14 is a compound Poisson process
which denotes cumulated claims with intensityλ1 > 0 and jump size distributionG
with G(0) = 0. Here, (N1

t : t ≥ 0) is a Poisson process with parameterλ1 which
denotes the total number of claims up to timet andYj is the size ofjth claim and is
independent of the claim number process with density function g with first and second
momentE[Y ] = µ1 andE[Y 2] = µ2, respectively. To share risk, the insurer uses
reinsurance so that the reinsurer can cover some parts of theclaim. The amount of
claim to be paid by the primary insurer or cedent is the retention levelc of insurance
acquired by the insurer. In this problem, the part of the claim Y the cedent has to pay
is given bycY . Hence, the reinsurer pays the remaining(1 − c)Y of the claim. Here,
c ∈ (0, 1) corresponds to the proportional reinsurance. The insurer uses the variance
premium principle so the insurance pays a premium of

(1− c)λ1µ1 + α(1− c)2λ1µ2,

where
a ≤ (µ1 + αµ2), α > 0.

After reinsurance, the surplus process becomes

dMt =
[
a− (1− c)λ1µ1 − α(1− c)2λ1µ2

]
t+ bdW 1

t − cdRt (4.23)

The market consists of two assets: a risk-free asset that follows the process

dS0
t = rS0

t dt, (4.24)

wherer > 0 is the risk-free interest rate and a risky asset that satisfies the SDE with
jumps

dSt = St

(
µdt+ σdW 2

t +

∫

R

zN(dt, dz)

)
. (4.25)

Here,µ > 0, σ > 0 are constants that represent the rate of return and volatility of
the risky asset respectively and

∫ t

0

∫
R
zN(dt, dz) :=

∑N2
t

j=1 Zj is a compound Poisson
process with parameterλ2 > 0. Also,Zj are i.i.d. random variables with distribution
H. We shall assume that(W 1

t : t ≥ 0) and(W 2
t : t ≥ 0) are two correlated Brownian

motions with correlation coefficientρ ∈ [−1, 1]. We also assume thatµ ≥ r and
that continuous trading is allowed, no transaction cost/tax and all assets are infinitely
divisible.
Let Kt be the amount invested in risky asset at timet andXt − Kt be the amount
invested in the risk-free asset at timet. Here,Xt is the insurer’s total wealth. The
wealth process of the insurer evolves according to

dXu
t = Kt

dSt

St

+ (Xt −Kt)
dS0

t

S0
t

+ dMt. (4.26)

If we insert Eqns. (4.23) , (4.24) and (4.25) into Eqn. (4.26), we obtain:

dXu
t = Kt

[
µdt+ σdW 2

t +

∫

R

zN(dt, dz)

]
+ (Xt −Kt) rdt

+
[
a− (1− ct)λ1µ1 − α(1− ct)

2λ1µ2

]
dt− ctdRt + bW 1

t ,
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i.e.,

dXu
t =

[
(µ− r)Kt + rXt + a− (1− ct)λ1µ1 − α(1− ct)

2λ1µ2

]
dt

+ σKtdW
2
t + bW 1

t − ctdRt +Kt

∫

R

zN(dt, dz). (4.27)

The initial wealth of the insurer is given byX0 = x > 0. The wealth process is influ-
enced by the control policyut = (Kt, ct) with ct ∈ [0, 1] and

∫ T

0
|Kt|

2dt < ∞, for any
T < ∞. Here,(Kt), (ct) are adapted to the filtration(Ft)t≥0. The control policy(ut),
whereut ∈ A is admissible. Here,A is the set of all admissible strategies.

Let ϕY (r) = E[erY ] =
∫∞
0

erY ϕG(y) be the moment generating function ofY . Sup-
pose that there exists aθ such thatϕY (r) ↑ θ. Then,

∫∞
0

dG(y) = 1 andd is increasing,
convex and continuous on[0, θ).
Suppose the utility preference of the insurer is exponential. That is, the utility function
is defined by:

U(x) = m−
α

η
e−ηx, α > 0, η > 0

whereη represents the coefficient of absolute risk aversion, i.e.,η = −Uxx(x)
Ux(x)

.

Objective: The objective of the insurer is to find an optimal investment/reinsurance
strategy that will maximize the expected utility of terminal wealth

V (t, x) := supu∈AE [U(Xu
T )|X

u
t = x] ,

whereV (·) is the value function,(Xu
t : t ≥ 0) is the wealth process influenced by the

control policyu. SinceU(·) is an increasing concave function, there exists a unique

optimal control policŷu =
(
K̂, ĉ

)
such that the value function attains a maximum.

We use the Dynamic Programming principle to solve the problem posed above. The
following theorem gives the corresponding HJB equation to the value functionV (t, x).

Theorem 4.6. (Hamilton-Jacobi-Bellman Equation)Let (Xu
t : t ≥ 0) satisfy the dy-

namics of the wealth process in Eqn.(4.27)and G, H are jump-size distributions of
the compound Poisson processRt and the Poisson processZj, respectively. Assume
V (t, x) and its partial derivativesVt, Vx andVxx are continuous on[0, T ] × R, then
V (t, x) satisfies the HJB Equation

0 = supu∈A
{
Vt +

[
K[µ− r] + rx+ a− (1− c)λ1µ1 − α(1− c)2λ1µ2

]
Vx

+
1

2

[
K2σ2 + b2 + 2kσbρ

]
Vxx + λ1

∫ ∞

0

[V (t, x− cy)− V (t, x)]G(dy)

λ2

∫ ∞

−∞
[V (t, x+Kz)− V (t, x)]H(dz)

}
(4.28)

for (t, x) ∈ [0, T )× R with the boundary condition

V (T, x) = U(x) = m−
α

η
e−ηx. (4.29)
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Proof. The proof follows from the Theorems 2.4 and 3.1.

The Verification Theorem below allows us to derive an optimalpolicy for the problem
from a smooth solution to the HJB equation in Eqn. (4.28).

Theorem 4.7. (Verification Theorem)Assume that the HJB Equation in Eqn.(4.28)
with terminal condition in Eqn.(4.29) has a solutionP (t, x) which is continuously
differentiable ont ∈ [0, T ] and twice continuously differentiable onx ∈ R. Then,
subject to boundary conditions, the value function isV (t, x) = P (t, x). Now suppose
that there exists admissible control policyû = (K̂, ĉ) ∈ A such that for each(t, x),
P (t, x) attains the supremum in the HJB Equation thenû = (K̂, ĉ) is the optimal
control policy andP = V is the optimal value function.

Proof. The proof is similar to that of Theorem 4.4.

Closed form solution for optimal control policy

Thus far, we have described the problem of the insurer, giventhe corresponding HJB
equation to the value functionV (t, x) and the verification theorem. Now, we solve for
the optimal value function and the optimal reinsurance-investment strategy. First, we
give the result in the theorem below and outline the solutionprocess in the proof.

Theorem 4.8. Consider the wealth process of Eqn.(4.27) and the utility function
defined by

U(x) = m−
α

η
e−ηx,

with the objective to maximize expected utility of terminal wealth, the optimal invest-
ment strategy satisfies

µ− r − ησ2Ker(T−t) + λ2

∫ ∞

−∞
−ηzer(T−t)exp

(
−ηKzer(T−t)

)
H(dz) = 0,

the optimal reinsurance strategŷc satisfies

µ1 + 2(1− c)αµ2 −

∫ ∞

0

y exp
(
ηcyer(T−t)

)
G(dy) = 0

and the optimal value function of the insurer is given by

V (t, x) = m−
α

η
exp

(
−ηxer(T−t) + n(T − t)

)

wheren(T − t) satisfies the following ODE:

n′(T − t) = −ηer(T−t)
[
K[µ− r] + rx+ a− (1− ĉ)λ1µ1 − α(1− ĉ)2λ1µ2

]

+
1

2
η2e2r(T−t)

[
K̂2σ2 + b2 + 2K̂σbρ

]
+ λ1

∫ ∞

0

exp
(
ηĉyer(T−t)

)
G(dy)

+ λ2

∫ ∞

−∞
exp
(
−ηK̂zer(T−t)

)
H(dz)
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with the initial conditionn(0) = 0.

Proof. Step 1: Guess the value function that satisfies the HJB equation in Eqn. (4.28)
and take the partial derivatives of the value function.

We make a guess about the optimal value functionV of the form

V (t, x) = m−
α

η
exp

{
−ηxer(T−t) + n(T − t)

}
, (4.30)

wheren(·) is a function such thatV (t, x) solves the HJB Equation in Eqn. (4.28) and
its initial value isn(0) = 0 from Eqn. (4.29).
We proceed to obtain the partial derivatives

Vt(t, x) = −
α

η

[
ηxrer(T−t) − n′(T − t)

]
exp

{
−ηxer(T−t) + n(T − t)

}

= −
α

η

[
ηxrer(T−t) − n′(T − t)

] [
−
η

α
(V (t, x)−m)

]
,

i.e.,
Vt(t, x) = [V (t, x)−m]

[
ηxrer(T−t) − n′(T − t)

]
(4.31)

and

Vx(t, x) = αer(T−t)exp
{
−ηxer(T−t) + n(T − t)

}

= αer(T−t)
[
−
η

α
(V (t, x)−m)

]
.

Therefore,
Vx(t, x) = −ηer(T−t) [V (t, x)−m] , (4.32)

Vxx(t, x) = −αηe2r(T−t)exp
(
−ηxer(T−t) + n(T − t)

)

= −αηe2r(T−t)
[
−
η

α
(V (t, x)−m)

]
.

Therefore,
Vxx(t, x) = η2e2r(T−t) [V (t, x)−m] . (4.33)

Step 2: Simplify the expressions
∫∞
0

[V (t, x− cy)− V (t, x)]G(dy) and∫∞
−∞ [V (t, x+Kz)− V (t, x)]H(dz) that are found in the HJB Eqn. (4.28).

∫ ∞

0

[V (t, x− cy)− V (t, x)]G(dy) =

∫ ∞

0

[
m−

α

η
exp

{
−η(x− cy)er(T−t) + n(T − t)

}]
G(dy)

−

∫ ∞

0

[
m−

α

η
exp

(
−ηxer(T−t) + n(T − t)

)]
G(dy),

52



thus,
∫ ∞

0

[V (t, x− cy)− V (t, x)]G(dy) =

∫ ∞

0

−
α

η
exp

{
−ηxer(T−t) + n(T − t)

}
exp

(
ηcyer(T−t)−1

)
G(dy).

Hence,
∫ ∞

0

[V (t, x− y)− V (t, x)]G(dy) = [V (t, x)−m]

∫ ∞

0

exp
{
ηcyer(T−t)

}
G(dy),

(4.34)

∫ ∞

−∞
[V (t, x+Kz)− V (t, x)]H(dz) =

∫ ∞

−∞

[
m−

α

η
exp

{
−η(x+Kz)er(T−t) + n(T − t)

}]
H(dz)

−

∫ ∞

−∞

[
m−

α

η
exp

(
−ηxer(T−t) + n(T − t)

)]
H(dz),

thus,
∫ ∞

−∞
[V (t, x+Kz)− V (t, x)]H(dz) =

∫ ∞

−∞
−
α

η
exp

{
−ηxer(T−t) + n(T − t)

}
exp

{
−ηKzer(T−t)−1

}
H(dz).

Herewith,
∫ ∞

−∞
[V (t, x+Kz)− V (t, x)]H(dz) = [V (t, x)−m]

∫ ∞

−∞
exp

{
−ηKzer(T−t)

}
H(dz).

(4.35)

Step 3: Substitute the partial derivatives of the value function into HJB Eqn. (4.28)
to check if it solves the equation and to obtain the optimal investment and reinsurance
strategy.

Substituting Eqns. (4.31) to (4.35) into the HJB Equation (4.28), we obtain

0 = supu∈A
(
−ηer(T−t) [V (t, x)−m]

[
K[µ− r] + rx+ a− (1− c)λ1µ1 − α(1− c)2λ1µ2

]

+ [V (t, x)−m]
[
ηxrer(T−t) − n′(T − t)

]

+
1

2
η2e2r(T−t) [V (t, x)−m]

[
K2σ2 + b2 + 2kσbρ

]

+ λ1[V (t, x)−m]

∫ ∞

0

exp
{
ηcyer(T−t)

}
G(dy)

+ λ2 [V (t, x)−m]

∫ ∞

−∞
exp

{
ηKzer(T−t)

}
H(dz)

)
,
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i.e.,

0 = supu∈A
(
−ηer(T−t)

[
K[µ− r] + rx+ a− (1− c)λ1µ1 − α(1− c)2λ1µ2

]
− n′(T − t)

+
1

2
η2e2r(T−t)

[
K2σ2 + b2 + 2kσbρ

]
+ λ1

∫ ∞

0

exp
{
ηcyer(T−t)

}
G(dy)

+ λ2

∫ ∞

−∞
exp

{
−ηKzer(T−t)

}
H(dz)

)
. (4.36)

Now, we shall differentiate the left-hand side of Eqn. (4.36) with respect toK andc to
find the critical points where the maximum is attained.
First, we differentiate with respect toK and equate to zero:

− (µ− r)er(T−t) + η2e2r(T−t)
[
Kσ2 + σbρ

]

+ λ2

∫ ∞

−∞
−ηzer(T−t)exp

{
−ηKzer(T−t)

}
H(dz) = 0.

Thus,

µ− r − ησ2Ker(T−t) + λ2

∫ ∞

−∞
−ηzer(T−t)exp

{
−ηKzer(T−t)

}
H(dz) = 0.

This implies that the optimal investment in risky assetK̂ satisfiesL(K) = 0, where

L(K) := µ− r − ησ2Ker(T−t) + λ2

∫ ∞

−∞
−ηzer(T−t)exp

{
−ηKzer(T−t)

}
H(dz).

We notice that

L′(K) = −ησ2er(T−t) − λ2ηe
r(T−t)

∫ ∞

−∞
η2exp

(
−ηKzer(T−t)

)
H(dz) < 0.

So,L(K) is a decreasing function. Also limK→−∞L(K) > 0 and limK→∞L(K) < 0

Therefore, there existŝK such thatL(K) = 0.
Second, we differentiate with respect toc and equate to zero:

−ηer(T−t)λ1µ1−2ηer(T−t)(1−c)αλ1µ2+λ1ηe
r(T−t)

∫ ∞

0

exp
{
ηcyer(T−t)

}
G(dy) = 0.

Thus,

µ1 + 2(1− c)αµ2 −

∫ ∞

0

yexp
(
ηcyer(T−t)

)
G(dy) = 0.

Denote the left-hand side as the functionJ(c). That is,

J(c) := µ1 + 2(1− c)αµ2 −

∫ ∞

0

yexp
(
ηcyer(T−t)

)
G(dy).

We notice that

J ′(c) = −2αµ2 −

∫ ∞

0

y2ηer(T−t)exp
(
ηcyer(T−t)

)
G(dy) < 0
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and

J ′′(c) = −

∫ ∞

0

y3η2e2r(T−t)exp
(
ηcyer(T−t)

)
G(dy) < 0.

So,J(c) is a decreasing and concave function. Also,J(0) = 2αµ2 > 0 andJ(1) =
µ1 −

∫∞
0

yexp
{
ηyer(T−t)

}
G(dy) < 0. Therefore, there existŝc ∈ (0, 1) such that

J(c) = 0 andĉ is the optimal reinsurance strategy. SubstitutingK̂ andĉ into the HJB
Equation in Eqn. (4.36), we get that

n′(T − t) = −ηer(T−t)
[
K[µ− r] + rx+ a− (1− ĉ)λ1µ1 − α(1− ĉ)2λ1µ2

]

+
1

2
η2e2r(T−t)

[
K̂2σ2 + b2 + 2K̂σbρ

]
+ λ1

∫ ∞

0

exp
(
ηĉyer(T−t)

)
G(dy)

+ λ2

∫ ∞

−∞
exp

(
−ηK̂zer(T−t)

)
H(dz) (4.37)

with the initial conditionn(0) = 0. If distributions of claim sizeY and jump sizeZ
is known, one can find a closed form expression forn(·). Hence, we can say that the
value function satisfies the HJB Eqn. in Eqn. (4.28).
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CHAPTER 5

CONCLUSION AND OUTLOOK

The aim of the thesis was to review optimal control problems through their applications
in finance and insurance. We mainly focused on obtaining closed form solutions to
the optimization problems. Optimal control methods is one of the methods used to
handle portfolio optimization problems. An optimal control problem typically consists
of a state processX, a control processu and a cost functionalJ(u). The objective
in optimal control problems is to obtain a control processu that optimizes the cost
functional J(u) over all admissible controls. In this thesis, we used the Dynamic
Programming (DP) approach to solve optimal control problems. DP principle reduces
the optimal control problem to the problem of solving the Hamilton-Jacobi-Bellman
(HJB) Equation.

First of all, we studied important mathematical results needed to solve optimization
problems. Major results in diffusion models and jump modelswere outlined. In addi-
tion, we provided the general class of optimal control problem and defined the objec-
tive function. The control problem is a minimization problem if the objective function
is a cost functional. On the other hand, the control problem is a maximization problem
if the objective function consists of utility functions. Further, the DP principle was
described. The HJB equation and the Verification Theorem were also derived. We
closely followed [6] and [29].

Optimal control problems have applications in finance, insurance, engineering, etc. In
controlled diffusion processes, we discussed an application of stochastic optimal con-
trol in engineering followed by applications in finance. In the engineering application,
called the Linear Quadratic Regulator, we find the optimal control process that keeps
an initially excited system close to its equilibrium position. In the first financial ap-
plications, we studied the investment-consumption problem of an investor who has an
initial endowment and is allowed to consume and invest in a financial market with a
risk-free asset and a risky asset in two cases. In the second application, we consid-
ered a problem where the aim is to maximize expected utility of terminal wealth of an
investor over finite time horizon.

Beyond controlled diffusion processes, we considered threeapplications of optimal
control for jump processes. The first application is in finance and the other two are in
insurance. The first application is an investment-consumption problem similar to the
application treated in the controlled diffusion case. The difference in the two applica-
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tions is that, in the latter problem, the dynamics of the risky asset is represented with
a jump-diffusion process. This representation was done to account for the rare cases
where there are large movements and sudden breaks in the risky asset price. The ob-
jective was to find a closed-form solution for the optimal investment and consumption
strategy that will maximize the utility of the investor overan infinite time horizon. In
the second application, a closed-form solution for the investment strategy that maxi-
mizes the expected exponential utility of terminal wealth of an insurer was obtained.
The wealth process of this insurer is affected by the risk process which involves the
cash inflow of premium income and cash outflow of insurance claims plus the initial
capital. The risk process is modelled by a jump-diffusion process. In the third appli-
cation, the insurer is allowed to invest in a financial marketand purchase proportional
reinsurance to reduce and share risk. The optimal investment and reinsurance strategy
that maximizes the expected exponential utility of terminal wealth of an insurer was
found.

This thesis can be extended for theoretical and practical purposes. In all the appli-
cations treated herein, closed form solutions were obtained. In general, however, the
range of optimal control problems for which analytical solutions can be obtained is
small. Hence, numerical methods are recommended to approximate optimal control
processes. Kushner & Dupuis [17] provide numerical methodsthat could be used to
model a wide range of stochastic control problems for diffusion and jump-diffusion
processes. In the optimal control insurance applications that we studied, we obtained
closed form solutions for cases where the jump size distribution is unknown. Analyti-
cal and computational methods could be used to solve or approximate the optimal value
function of the insurer for specific jump size distributions. Baltas, Frangos & Yanna-
copoulos [4] consider the optimal investment and reinsurance in the presence of insider
information in a Black-Scholes financial market. The problems could also be extended
to where the surplus process of an insurer is modeled by a controlled regime-switching
diffusion. Optimal control of stochastic hybrid systems can be used to formulate more
practical problems. In such problems, the dynamics of the state process takes jumps
and regime switches into consideration. The state process could be assumed to switch
jump-diffusion paths between jumps. See Azevedo, Pinheiro& Weber [3] for an ap-
plication in this setting. Temoçin & Weber in [33] provide an alternative way that uses
a numerical discretization scheme to solve optimal controlof stochastic hybrid system
with jumps.
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