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ABSTRACT

RECENT DEVELOPMENTS IN PORTFOLIO OPTIMIZATION
VIA DYNAMIC PROGRAMMING

Omole, Oluwakayode John
M.S., Department of Financial Mathematics
Supervisor : Assoc. Prof. Dr. Yeliz Yolcu Okur
Co-Supervisor : Prof. Dr. Gerhard Wilhelm Weber

August 2015 61 pages

Optimal control is one of the benchmark methods used to legmattfolio optimization
problems. The main goal in optimal control is to obtain a oaligrocess that optimizes
the objective functional. In this thesis, we investigatéirapl control problems for
diffusion and jump-diffusion processes. Consequently, resgnt and prove concepts
such as the Dynamic Programming principle, Hamilton-JaBatiman Equation and
Verification Theorem. As an application of our results, welgtoptimization problems
in finance and insurance. In this thesis, we use the Dynanoigr®mming approach
to solve optimal control problems. In the applications, wevpde a detailed study of
optimal strategies that maximize the expected utility @estors and insurers in finite,
random and infinite time horizons. In all applications cdesed, explicit solutions are
obtained for the optimal value function and optimal conpxacesses.

Keywords Hamilton-Jacobi-Bellman Equation, Dynamic Programminigétple,
Stochastic Optimal Control, Financial Mathematics, AdleBciences
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Oz

DINAM IK PROGRAMLAMA YOLUYLA PORTFOLYO
OPTIMIZASYONUNDAK | GUNCEL GELISMELER

Omole, Oluwakayode John
Y Ulksek Lisans, Finansal Matematik
Tez Yoneticisi : Dog. Dr. Yeliz Yolcu Okur
Ortak Tez Yoneticisi : Prof. Dr. Gerhard Wilhelm Weber

Agustos 2014, 61 sayfa

Portfoy optimizasyonu problemlerinirdogiimlerinde, optimal kontrol temebntemlerden
biridir. Optimal kontrolde esas amac, hedeflenen fonksiyoptimize eden kontrol
strecini elde etmektir. Bu tezde, diéyon ve sigramak-dizyon sirecleri i¢in optimal
kontrol problemleri incelenmistir. Bu nedenle, dinamikgramlama ilkesi, Hamilton-
Jacobi-Bellman Denklemi ve Verification Teoremleri gibi kawlar sunulmustur.
Sonugclarimizin uygulamasi olarak, dinamik programlaatdasimi ile finans ve akerya
bilimlerinde var olan optimizasyon problemleri incelestm Uygulamalar kisminda,
sonlu, rassal ve sonsuz zaman dilimler altinda; yatiremeilve sigorta sirketlerinin
beklenen fayda fonksiyonunu maksimize eden optimal §teatézerine detayli bir
calisma yapilmistirincelenen @tim uygulamlarda, optimal der fonksiyonu ve opti-
mal kontrol gireci icin analitik sonuclar elde edilmistir.

Anahtar Kelimeler Hamilton-Jacobi-Bellman Denklemi, Dinamik Programlaiikasi,
Stokastik Optimal Kontrol, Finansal Matematik, Allrya Bilimleri
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CHAPTER 1

INTRODUCTION

The work of Markowitz (see [22]| [23]) led to the emergencéheaf theory of Portfolio
Optimization. Markowitz sought for the highest portfolieturn for a given level of
risk where the risk is measured by the standard deviatiomance of the portfolio’s
rate of return. Markowitz’'s approach to portfolio optimiwa was termed the Mean-
Variance approach. The mean-variance approach has evalteel literature. Sharpe
[31], building on the work of Markowitz, developed the sieghdex model in which
portfolio returns depend only on market index and the cavere between return of
assets is ignored. This result yielded the Capital Assetrfgridodel (CAPM).

Optimal control methods is one of the benchmark methods tesddndle portfolio
optimization problems. Optimal control problems can beveié as dynamic problems
that involve choosing the best path in a system with manyilfeagaths. In gen-
eral terms, we describe optimal control problems and wdoguatechnical details in
chapter§ B and 4. An optimal control problem consists of & §teocessX, a control
processu and a cost functional (u). The state process which is influenced by the
control takes values iR™ and the control processtakes values in control sét C R™

forn > 1. The choice of/ depends on the problem to be solved. In this thesis, control
systems described by Stochastic Differential EquatioRd¥)Sare considered.

The cost functional/(u), which is to be optimized, appropriates the expected cost
value to every admissible control [19]. It is of the form

U f(s, X5 ug)ds + g(T, X257)

wheret is the initial time,T" (finite or infinite) is the terminal timey; is the initial state,
X7 is the terminal state anfl and g are given functions known as the running cost
and terminal cost, respectively. Furthermoréy) is called a functional because the
control process is a function of time. The main problem (or the main goal) itiogl
control is to obtain a control processhat optimizes the cost functiond(«) over all
admissible controls. There are several forms of the optaoatrol problem described
above, and some applications will be explored chapiers 8lasdme illustrations of
optimal control problems from different applications indé:

e Attempt the softlanding of a spacecraft on the lunar spacgusast amount of
fuel,



e Power arailroad car by rocket engines on both sides and pitttemarrive at the
origin at zero velocity in the shortest amount of time,

e Optimize reinsurance and dividend policy in the presencasif so that the
insurance company maximizes the expected total divideyouytan a given
time interval.

Optimal control problems can be solved via Pontryagin’s iasm Principle or Dy-
namic Programming (DP) principle [19]. The maximum prineignd the DP principle
were developed simultaneously but independently. Thisishecuses on the use of
DP principle to solve optimization problems. The Markoviaoperty of the prob-
lem makes the use of DP principle suitable. Dynamic Prograngwas initiated by
Richard Bellman in the 1950s ihl[5]. Richard Bellman said, ‘incel@f determining
the optimal sequence of decisions from the fixed state ofyhees, we wish to de-
termine the optimal decision to be made at any state of thersysOnly if we know
the latter, do we understand the intrinsic structure of tat®n’ [5]. The principle
claims, in other words, that for any period, if the value af 8tate variable at the pe-
riod is a point on an optimal path, then the remaining densimade after this period
must incorporate an optimal policy whose initial conditisnthe value of the state
variable at this period. DP principle reduces the optimaiticm problem to the prob-
lem of solving the Hamilton-Jacobi-Bellman (HJB) Equation. &ithe HIB equation
can be solved, then the optimal value function and optimatrobprocess are found.
Moreover, the Verification Theorem that guarantees thigekias that cover stochas-
tic optimal control in details include Fleming & Sonér [1Xyrlov [2], Fleming &
Rishel, [11] and Yong & Zhou[35].

In [24], Merton established the framework for dynamic palitf choice under uncer-
tainty and applied DP principle to solve the problems. Inphper, Merton sought
to maximize the expected utility of running consumption &maninal wealth. In this
seminal paper, a closed-form solution to the stochasti¢trabproblem faced when
the utility function of the investor was assumed to be a pdwection was derived.
Merton’s approach has been extended in many studies. Fompdeaportfolio se-
lection with trading constraints, limited borrowing and lmankruptcy was studied by
Zariphopoulou[[36]. Davis & Normari [10] considered the Merproblem and ob-
tained explicit solutions for the case where there is priopaal transaction cost, i.e.,
the transaction costs are proportional to the amount teé@daFleming & Hernandez
[13] extended Merton’s problem to the case where volatifitgssumed to be stochas-
tic.

Stochastic control for insurers has been of great intemgstdent years. One of the fun-
damental applications in insurance theory is to use sttiche@ntrol theory to mini-
mize the infinite time ruin probability (or maximize the siwal probability). The
survival probability is the probability that, for a givenitial surplus, the surplus will
not become negative [21]. Control variables are chosen astment, reinsurance or
dividend payments. Since insurance companies activelycyate in investment ac-
tivities, it is only natural to find trading strategies thatlwmaximize their utilities. In
[7], Browne studied the surplus process of the insurance aogfhat is described by
a Brownian motion with drift. In this pioneering work, the opal investment strategy
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to maximize the expected exponential utility of terminalalle was found. Moore
& Yong [25] incorporated reinsurance policy into Mertoniagsical optimal invest-
ment and consumption framework. The optimal consumptiorestment and insur-
ance strategies that maximize the insurer’s expectedutiged utility of consumption
and bequest over a fixed or random horizon were found. HippwnHIL5] used the
Cramer-Lundberg model to describe the risk process wherutipdus of an insurer is
invested in risky assets. They were able to find explicit tohs for the case where
the claim size follows an exponential distribution. Yang &ang [34] were also able
to find closed form solutions for the optimal investment tetgg of an insurer whose
utility function is taken to be exponential. The risk proge$the insurer was modelled
by a jump-diffusion process. The models can also be gemerhtdo where reinsurance
is present. Lin & Yang[[20] considered the problem of obtagnthe optimal invest-
ment and reinsurance strategy that will maximize the expoaleutility of terminal
wealth of an insurer. The insurer in the problem was alloveeshtest in a risk-free
asset and a risky asset whose dynamics allows for jumps teddst a jump-diffusion
process. Also, the surplus process of the insurer was nasblbi} a jump-diffusion
process. They were able to obtain closed-form solutions.&C@n [8] obtained the
optimal reinsurance and investment policy of an insurerrtihe surplus process of
the insurer follows a Brownian motion with drift. Inspired bye AIG bailout case,
Zou & Cadenillas[[3[7] obtained explicit solutions to optinmalestment and risk con-
trol strategies that maximize the expected utility of teratiwealth of an insurer for
various utility functions. Stochastic control in insuraris studied in details in a recent
book by Schmidli in[[30].

In this thesis, we introduce stochastic optimal contrabtiyh their applications in fi-
nance with and without presence of jumps and particularbt deth cases in which
closed-form solutions are obtained. In general, the firnoiarket consists of a
risk-free asset and a risky asset. We also review resultzseimglify applications of
stochastic control in insurance. In the insurance apphinatthat will be considered,
we maximize the expected utility of the insurer and theifgnences are modelled by
exponential utility function because it is the only utilitynction under which the prin-
ciple of ‘zero utility’ gives a fair premium that is dependemn the level of reserve
of an insurance company. The thesis is organized as foll@maptef 2 introduces
some mathematical tools that will be needed to model findassets and solve opti-
mization problems. In Chaptgl 3, we set up the mathematiaaldwork of stochastic
optimal control problems and outline the dynamic prograngrprinciple. After, the
HJB Equation with its proof is provided. Finally, in Chaptém& discuss an applica-
tion of stochastic optimal control in engineering followeyl applications in finance.
The financial applications focus on Merton’s portoflio camgdion problem for two
cases. In the first case, the investor exhibits Constant ReRisk Aversion (CRRA)
in a fixed time horizon. In the second case, the investorfepeaces is a power utility
function in a random time horizon. Lastly, we deal with Mertoportfolio applica-
tion for the case where the utility function is CRRA. Chajter 4kloamore closely
at optimal control problems for jump-diffusion processes éhree applications are
discussed. The first application is in finance and the finalapplications are in in-
surance. In the first application, the dynamics of the asset s represented with a
jump-diffusion model. The aim in this application is to finadlased-form expression
for the optimal investment and consumption strategy thdtmaximize the utility of
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the investor over an infinite time horizon. In the second igpgibn, the wealth process
of the insurer is affected by the presence of a stochasticftas which is given by:

Surplus= Initial Capital+ Premium Income- Cumulated Insurance Claims

The objective for this application is to find the optimal istr@ent strategy that will
maximize the expected exponential utility of terminal viealf an insurer. In the third
application, the insurer is allowed to invest in a financialrket and purchase propor-
tional reinsurance to reduce and share risk. The aim in tbklgm is to obtain the
optimal investment and reinsurance strategy which maxamihe expected exponen-
tial utility of terminal wealth of an insurer where the instis risk is modelled by a
jump-diffusion process.



CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some mathematical tools reemmodel financial mar-
kets and solve optimization problems. We shall work in theticmous time setup in
this thesis. The time intervdl can be bounde®@ = [0,7,0 < T < oo, or unbounded
T = [0,00]. In this chapter, we refer to Lamberton & Lapeyirel[18], Gara & Xie
[14] and Cont & Tankov([9] for further detalils.

2.1 Diffusion Models

Definition 2.1. (Stochastic ProcegsA continuous stochastic process in a sp&tce
endowed with ar-algebr& is a family (X;),>, of random variables from a probability
space(§2, F,P) into (E, ).

The measurable spac¢é’, &) is referred to as the state space. For each (2, the
mappingX (w) : t — X;(w) is called the path of the process for the eventn some
cases, we also study vector-valued continuous stochastiegses.

Definition 2.2. (Filtration) A filtration on (€2, F,P) is an increasing familyF;);> of
o-algebras ofF such thatF, C F; forall s < t.
F; represents the information available up till tihdt increases as time elapses.

Definition 2.3. (Natural Filtration) Let (X;);>o be a stochastic process. The natural
filtration (7;*),.  of X is defined as

t>0

FXi=0(X,:5<t), t>0.

Here,F;X can be interpreted as the whole information concerning thegss that can
be observed from its paths between time 0 and

Definition 2.4. (Adapted Proce9sA process X;);>o is adapted td.F;):> if for all ¢,
X, is F;- measurable.

In other words, an adapted process is a process whose valle cketermined by the
information available at time



Definition 2.5. (Stopping tim¢ A random variable- taking values irR™ U {oo} is a
stopping time with respect to the filtrati@if, )~ if for any ¢ > 0,

{T S t} € ./_"t.
Definition 2.6. (Standard Brownian Motior) A continuous stochastic proce8$’ ):>o
is called a standard Brownian motion if it satisfies:
a. Wy,=0,Pa.s.

b. For all0 < s < t, the incrementV, — W, is a random variable normally dis-
tributed with expectation 0 and variance- s.

c. Forallo < s <'t, the incrementV;, — W, is independent of (W, u < s).

Remark2.1 The distribution ofiV; is given byﬁ exp (—%) dx.

Brownian motion is used to model random behaviour that egobxeer time. Such
random behaviour represents the fluctuations of an assetés p

Definition 2.7. (Martingale) Consider the filtered spa¢g, F, (F;):>0, P). An adapted
family (X;);>o of integrable random variables, i.& [|M;|] < oo for all ¢ > 0 is a su-
permartingale if

E [ X:|Fs] < X, a.s, Vs < t;

(Xt)e>0 is called a submartingale if

E [X;|Fs] > X, a.sVs <t.
Finally, X is said to be martingale if

E [ X;|Fs] = X, a.sVs < t.

Definition 2.8. (to procesyLet (W), be anf;-Brownian motion on a filtered prob-
ability spacg 2, F, (F;):>0, P). A stochastic procegsY;)o<:<r is called an Id process
if it has the form

t t
Xt:Xo—l—/ Usds+/ V.dW,, (2.1)
0 0

where X is Fo-measurable(U;)o<:<r and(V;)o<i<r areﬂ-adaptedf(;t |Uslds < oo
Pas.,[, |Vi’ds < co P as.
For convenience, Eqri.(2.1) can be written in its diffe@rftrm as
dXt — Utdt + ‘/;th
Theorem 2.1. (Itd Formula) Let X; be an 16 processiX; = U,dt + V,dW;. Suppose

f(-) € C*(R) is a twice continuously differentiable function. Then,

Y, = f(X,) = f(X0)+/O f’(XS)USder/O f’(XS)VSdWSjL%/O f(X)d (X, X),,
6



where(X, X), = [5 VZ2ds.
Furthermore supposﬁ( -) € C*is a function in(¢, z) which is once differentiable

with respect ta and twice differentiable with respect 19 then the 16 formula gives
us

F(E.X0) = F(0.X0) + /0 F(s, X)ds + /0 F(s, Xo)Uds + / P (s, X,)VadWW,

/ F(s, X,)d (X, X),.

Proof. The detailed proof of the theorem can be seen in Karatzas &8HL6] [

Definition 2.9. (Martingale Representation TheorejtConsider the filtered probabil-
ity space(Q, F, (F;)e>0, P). Assume thatF}"),> is the natural filtration generated
by the Brownian motioiV;. Let M, be a square integrable martingale relative to this
filtration. Then, there exists af-adapted processsuch that

t
M; = My +/ ¢des~
0
In other words, any martingale adapted with respect to a Biawmotion can be
expressed as a stochastic integral with respect to the Baownotion.

Definition 2.10. (Stochastic Differential EquationsConsider the filtered probability
space(§), F, (F:)i>0, P). Suppose we have the equation

t t
Xt:x+/ b(s,Xs)der/ o (s, Xs)dW, (2.2)
0 0

wherez is a Fy-measurable random variable; Rt x R - R, 0 : R™ x R — R and
(Wi)i>0 Is anF;-Brownian motion. Such equations are called Stochasticefitial
Equations (SDESs).

Remark2.2 The stochastic process(;),., that solves Eqn.[{212) i%;-adapted and
is called adiffusion processnd satisfies:

a. Forallt >0, [, b(s, X,)ds and [, o(s, X,)dW, exist.
That iS,fot |b(s, X)|ds < oo andfot lo(s, X)[*ds < coPa.s.

b. Eqgn. [2.2). Thatis,

t t
vt > 0Pas, X, -z + / b(s, X, )ds + / o (s, X)dIW,.
0 0
Theorem 2.2. (Existence and Uniqueness of a solutiohgtd(-) ando(-) be continu-

ous functions. Suppose there exists a congtant(0 such that the following conditions
are satisfied for allz, y andt:

|b(t, x) — b(t,y)| + |o(t,z) — o(t,y)| < Clx —yl, (Lipschitz conditioh
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b(t, )| + |o(t, )] < C(1+ |z|), (Linear growth conditioh
E [|z°] < oo.

Then there exists a unique solution to the SDE in ERr#).
Furthermore, the solutio(X; )<< satisfies

E [SURy<,<7|Xs|?] < o0.
Proof. The proof of the theorem can be seen in Lamberton & Lapéyre [18 [

The SDEs can be extended to the multidimensional case. Téteese and uniqueness
theorem of the multidimensional case is similar to the taeoabove. We refer readers
Lamberton & Lapeyre [18] for more details.

Definition 2.11. (Markov Property Let f be a bounded Borel function. Thg;-
adapted process\;):> is said to satisfy the Markov property if for @land0 < s < ¢,

E[f(X0)|F] = E[f (X)X

The Markov property states that the future states of a psdceg,~, that satisfies the
property depends only on the present stat@nd not on the previous history of the
process that preceded it.

The diffusion proces§X;):~o which is the solution of the SDE in Eqri._(2.2) satisfies
the Markov property. Therefore, we can denote the solutjoX}* : s > ¢). That s,

X, is the solution of the SDE in Eqrl._(2.2) starting franand timet. The Markovian
property of the diffusion process makes the use of the dympanoigramming approach
to solve optimal control problems appropriate.

Note: X0* = X0 P a.s.vs > t.

Definition 2.12. (nfinitesimal generato) Let X = (X;),., with X; € R" be a dif-
fusion process. Then the infinitesimal generadasf (X}),., is defined on functions
f:R™— Rby -

(Lf) (x) = limyg

, © € R"™ (if the limit exists)

E[f(X)] = f(x)
t

Theorem 2.3.Let(X;),., be an n-dimensionaldtdiffusion processiX; = b(X;)dt+
o(X,)dW; whereb, o are continuous functions and’; is an n-dimensional Brownian
motion. Moreover, supposec CZ(R"). Then(Lf) (z) exists and

(£ @) = S5 ) + 5 S (or")s(o) 5= (o)

irj
Proof. The proof can be found in @ksendal [26]. ]
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As previously noted, diffusion processes have continuatispand are useful in mod-
eling price movements. Black Scholes model is one of the vmethin examples of dif-

fusion models. Diffusion models are very practical in coet@lmarkets where claims
can be perfectly hedged. In diffusion models, large sudd&® pnovements do not
happen.

In real markets, asset prices undergo abrupt jumps in son@dpghave strong price
movements in a short time and often display discontinuohsvieurs. Hence, not all
empirical studies are solved by diffusion models. Modelhwimps take these into
consideration and seem to be more superior than diffusiatefao Furthermore, they
take into account the risks that cannot be hedged and tregrate the risk into the ex-
posure of the portfolio. Finally, models with jumps reprodumore realistic properties
of presence of jumps in observed prices.

2.2 Jump-Diffusion and Lévy Processes

Financial models with jumps can be categorized into two. €Gategory consists of
jump-diffusion models and the other consists of models liaae infinite number of
jumps in each interval (&vy process). Every jump-diffusion model has two main parts
A diffusion part that has a Brownian component and a jump phithvis a compound
Poisson process with finite activity. The class of infinité\atly models do not always
contain a Brownian component as the dynamics of the procesntsly move by
jumps. These models are said to give more realistic desmmigf observed price
movements. Now, we introduce jump-diffusion processessanak of the well-known
examples. We finalize with thedtDoeblin Formula.

2.2.1 Jump-Diffusion Processes

A jump diffusion is a process of the form:

t t
X, =Xy + / byds +/ o, dWs + Jy. (2.3)
0 0

As previously mentioned, jump diffusion processes havepaits; the diffusion part
and the jump part. The jump part is represented/byHere,.J = (J;) is an adapted,
right continuous pure jump procesg, is the value ofJ after the jump and/;_ is
the value of/ immediately before the jump. The jump procéds) has finitely many
jumps in every time interval and is constant between jumgse dompound Poisson
process which will be examined in details below, is a jumppss with finite activity,
i.e., it has finite number of jumps at any interval(si) covers for compound Poisson
process here. Now, we define Poisson and compound PoisStespEs.

Definition 2.13. (Poisson ProcegsConsider the sequence; ) ;o of independent
exponential random variables with parameteand 7,, = 2?21 7;. The process

(N : t > 0) given by
Ne=) L)
neN

9



is called a Poisson process with intensity
Properties:

e The Poisson procegsV; : t > 0) counts the number of jumps which occur be-
tween time 0 and.

The jumps occur af’; with size of 1 only and the interval between jumps are
exponentially distributed.

The Poisson procesgsy; : ¢t > 0) takes values iftN U {0} with the relation

()\t)ne—)\t

,(n=0,1,2,...).

A Poisson process is &by process.
The characteristic function of a Poisson process is given by
E [e""] = exp (At(e™ — 1)) .

Definition 2.14. (Compound Poisson procesa compound Poisson process is a stochas-
tic procesg R, : t > 0) with intensity A > 0 and jump size distributioy defined as

Ny
Rt:ZK7

where(N; : t > 0) is the Poisson process with intenskyand(Y;) ey is a sequence of
I.i.d. random variables with distributiof.

Properties:

¢ In the compound Poisson process, the interval between jamgexponential
but the jump sizes have arbitrary distribution.
e A compound Poisson process is @My process.

e The characteristic function of the compound Poisson pobas the form

E [e"] = exp ()\t /R (e — 1)G(dr)> :

For a calculation of the characteristic function, see Cona&Kkbv [9].

Theorem 2.4. (I1td-Doeblin Formula)Let (X;) be a jump process given by EqR.3).
Supposef(-) € C*(R) is a twice continuously differentiable function. Then,

f(X)) = f(Xo) + /f bds+/f ) AWy + = /f Yo2ds
+ Y [f(X) = f(X)] (2.4)

0<s<t

10



Proof. The proof can be found in Shreve [32]. O

The theorem follows from the fact that if there is a jumpXnfrom X, to X, it
generally leads to a jump ii(X) from f(X,_) to f(X). Itis not always possible to
write Eqn. [Z.4) in differential form but for the scope ofdtihesis, it can be written as
we shall be dealing with cases where the jump part is a contpBorsson process:

FIX)) = fF(Xo) + /f bds+/f o dW, + — /f Jo2ds
# [ 00 - el

where(N;) is a Poisson process as defined in Definition]2.13

2.2.2 Levy Processes

So far, we have given useful details about jump-diffusioocpsses that are needed in
application. Now, important results about Levy processdie detailed. For further
details on properties of Levy processes, see @ksendalQXri; [28], Cont & Tankov

[9] and Applebaum(]1].

Definition 2.15. (Lévy ProcesgslLet (2, F, (F:):>0, P) be a filtered probability space.
The adlag (i.e. left continuous with right sided limits) stochagtrocess L, : ¢t > 0)

is called a levy process if it has the following properties:

i. Stationary incrementdor anys < t, L, — L, is equal in distribution td.,_..

ii. Independent incrementfor any0 < t; < t, < ... < t,, the random variables
Lo, Ly — Lo,...,.L;, — L;, 1 are independent.

iii. Stochastic continuityve > 0, limy o P (|Lyp, — Lo| > €) = 0.

iv. Lo = 0 almost surely.

The jump ofL, at timet > 0 is given by
ALt - Lt - Lt_.

Define

e B as the family of all Borel subsets C R such that the closure @f does not
contain 0.

e ForU € B, the jump measurd/([t1,t],U) is the number of jumps of size
AL; € U that occur between times andt, (¢, < t).

11



Definition 2.16. (Lévy measurgThe Lévy measure ofL; : ¢t > 0) is defined by

v(U) = E[M([0, 1], U)].
That is, the levy measure(U) of the processL,) is the expected number, per unit
time, of jJumps whose sizes arelih

The differential form of the jump proces¥ ([0, 1], U) is written asM (dt,dz). The
compensated jump measure(df ) is given by

M(dt,dz) = M(dt,dz) — v(dz).

Theorem 2.5. (Lévy-Khintchine Formula)Let (L;) be a Levy process. Then its char-
acteristic function is given by theelry-Khintchine formula:

, o?u? ;
E [e“”ﬂ = exp {t (z’u,u - + / (ewz —-1- iuzl\z|<1) v(dz)) } ;
R

where;, € R ando? > 0 are constants and is the jump measure dh satisfying

/R min(1, 22)o(dz) < oo,

Theorem 2.6. (Ito-L évy Decomposition).et (L;) be a Levy process and its Lévy
measure. Then, there exigtandb € R such that

t t
Ly = art + bW, + / / zM(ds,dz) + / / zM (ds, dz).
0 Jlz|<1 0 J)z|>1

If the Lévy process is square integrable, i{{] < oo, then_ ., [z[*v(dz) < occ.
Herewith, the representation becomes -

t t
Ly = ait + bW, + / / ZM(ds,dz) +/ / zM(ds,dz)
0 Jlz|<1 0 Jlz|>1
t B t _
= ayt + bW, + / / zM(ds,dz) + / / z(M(ds,dz) + v(dz)dt)
0 Jlz|<1 0 Jlz|>1

t
= ayt + bW, + / / =M (ds, dz) +t/ zv(dz)
0 JR |z|>1

t
:at—i-bWt—l—/ /z]\7[(ds,dz),
0 Jr

where

a=ayt+ t/ zv(dz).
21>1
The Decomposition Theorem points out that eveeyy. process is a linear combina-

tion of Brownian motion with drift and a possibly infinite surhiodependent com-
pound Poisson process.

12



Remark2.3. Lévy process demonstrates strong Markov property, i.e.ptbeess
(Li+s — Lt)s>0 has the same probability law as procéss)o<s<:.

Remark2.4. Consider the SDE of the form

dX; = b(t, X )dt + o(t, X,)dW, +/ h(t, X,_,2)M(dt,dz); Xo =z,  (2.5)

n

where the deterministic functioris: R x R” — R”, ¢ : R x R* — R"™™ and
h: R x R* x R* — R satisfy the Lipschitz continuity condition with respectito
and the linear growth condition i uniformly in ¢. Thereby, guaranteeing that there
exists a uniqueadiag adapted solutiofX;) such thatt[| X;|?] < oo, Vt to Eqgn. [Z.5).
Such processes are called-Léevy processes

Remark2.5. Jump diffusion processes can be looked at in another wayhwhiout-
lined below:

If b(t,1) = b(l), o(t,1) = o(t) andh(t,z, z) = h(zx, z), then the corresponding SDE is
of the form

dX, = b(X,)dt + (X, )dW, + / h(X,_, z) M(dt, dz). (2.6)

n

Solutions of the SDH{(216) are calléévy-diffusionsAgain, the above model is punc-
tuated by jumps at random intervals. The jumps could reptesseses like crashes or
large movements in asset price.

Theorem 2.7. (Infinitesimal generator)Let (X;) be a Levy-diffusion process as de-
fined in Eqn.(2.8) and supposg € CZ(R™). Then,(Lf) (x) exists and

(£ @) = 35w + 5 3 or" (o) 5o

ij=1

+ [ Y {f @+ (@, 2)) = flz) = V(@) - h® (2, 2)} op(da).

R k=1
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CHAPTER 3

OPTIMAL CONTROL FOR DIFFUSION PROCESSES:
APPLICATIONS IN ENGINEERING AND FINANCE

In stochastic control problems in finance, the aim is to fiaditng strategies that mo-
tivate minimal costs and maximal expected utility. Typigalhere is a state process
whose dynamics is altered with a control process. In thipthathe state processes
are described by Stochastic Differential Equations (SDiadled diffusion models.
Among all possible decisions, we choose the optimal onelieae the best expected
result depending on the objective. The decisions, alsedaalbntrol processes, are
made based on the available information. We try to obtainofiténal control pro-
cess that maximizes the value of the state process. The rabxatue is called the
optimal value function. The Dynamic Programming (DP) piphe for the stochas-
tic control problem leads to the Hamilton-Jacobi-BellmadBj Equation. Since the
value function is unknown, we make a guess and then showttbatisfies the equa-
tion. Furthermore, the verification theorem is used to shuat the guess is indeed
the value function. In the applications, we focus on prolsl@vhere explicit solutions
can be found. Stochastic control problems have applicatioreconomics, finance,
insurance, engineering, to name a few.

The content of this chapter is as follows. In the first secttbe mathematical frame-
work for optimal control problems is set up. In the second,pae state the general
control problem, outline the dynamic programming prineighd then present the HIB
Equation. The proofs of the HIB Equation and the Verificalibeorem are also out-
lined. Finally in the third section, an application of staskic optimal control in en-
gineering is given. The application, called The Linear Qa#d Regulator, involves
finding an optimal process that keeps an initially excitestey close to its equilibrium
position. Afterwards, we focus on applications in financethle first financial applica-
tion, the optimal investment and consumption problem idistlifor an investor who
has an initial endowment and is allowed to consume and inmestinancial market
with a risk-free asset and a risky asset. In the second apiolic we consider Merton’s
portflio allocation problem where the aim is to maximize estpd utility of terminal
wealth of an investor over finite time horizon.
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3.1 The Formal Problem

In this section, the general class of optimal control protdes studied. Consider the
following controlled system of SDEs:

{dXt = b(t, Xy, wg)dt + o (t, Xy, u)dWy; (3.1)
Xt =Xx, .

whereb : RxR"xU — R”, 0 : RxR"x U — R™* are two continuous functions,
respectively, satisfying the conditions

1. ||b(t,x,u) - b(t7y7u>|| + ||U(t,$,u) - U<t7yvu)|| < C HI - y” )
2. bt 2, u) + b(t, y,w)|| < CL A+ [lz]| + [yl

whereC' < +o0 is a constant. We note thét|| is a generic notation for Euclidean
norms in the corresponding Euclidean spaces.

Here, X = (X;) with X; € R" is ann-dimensional state process controlled by a
processy = (U;) with u; € U C R*, and(17;) is ad-dimensional Brownian motion.
The process$u,) is F{ - adapted since the decision at timéepends on past observed
values of state process. So we shall be dealing with control procesdefined by

U = U(t, Xt)
The functionu; is called a feedback control because the control dependseostate
process at time, for all ¢ € R.

Definition 3.1. (Admissible Processg#\ control process: is admissible ifu(t, ) €
U forall t € R and allx € R™ and if for any given initial pointz, z), Eqn. [3.1) has a
unique solution. The set of all admissible control processelenoted by.

Objective Function:
Lletf: RxR"xRF — R, g : R® — R be given functions. We can then define
the value function as the function

J: A— R,
defined by

J(t,x,u) {/ f(s, X5 ug)ds + g(T, X20F)

for all (¢,z) € [0,T] x R" andu € A, where(X ") denotes the solution of Eqri._(B.1)
starting fromz at timet: X, = x. We note thaif represents the running cost while
represents the terminal cost.

Thus, the objective is to maximize the value functibaver feedback control processes
u € A. We introduce the value function:

V(t,x) :==sup,c4J(t, z, u).

If V(t,x) = J(t,z,u), we call (u(t,z)) an optimal control procesand V (¢, z) is
called theoptimal value functiorfor the problem.
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3.2 Hamilton-Jacobian-Bellman Equation

3.2.1 The Control Problem

The control problem is to maximize the value function

J(t, z,u) {/ f(s, X5 ug)ds + g(T, X5%)

given the dynamics

dXt = b(t, Xta ut)dt + O-(t, Xt, Ut)th,
Xt = X.

We note that the SDE above is as described in Hgnl (3.1).

3.2.2 Dynamic Programming Principle

We shall now describe the Dynamic Programming principlecivitiosely follows|[6].
The principle is based on the intuition that the control peabcan be divided into
two parts. The first part involves the notion that the opticwitrolz on the interval
[t, T] can be obtained by looking for the optimal control @nt+ A, T'| and the second
involves maximizing over all control processes|oft + h|.
Fix (t,z) € [0,7] x R™ and considef € R such that + 2 < 7. On time interval
[t, T], we first use the optimal contraland then use the admissible control process
defined by

(s, y) = { u(s,y),if (s,y) € [t,t +h) x R",

’ u(s,y),if (s,y) € (t+h,T] x R"™.

As for the optimal control;, we know that/ (¢, x,u) = V (¢, z).
For the control process,

J(t,27) = E / P XL )ds + (T, X57)

T
:IE/ fls, X0 u )}HE{ f(s,Xﬁ’x,ﬂs)ng(T,X%m)]

t+h

—E / f(s, X0 ug)d } +E[V (t+h X[7)].
SinceV(t,z) = J (t,x,u) > J(t,z,u) on[0,T],
h
Vit,z) > E {/ f(s, XE% ug)ds +V (t+ h Xffh)} . (3.2)

Equality in Egn.[(3.R) holds if and only if the arbitrarily agen control processis an
optimal controlu. This leads us to the following important theorem.
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Theorem 3.1. (Hamilton-Jacobi-Bellman Equation)Assume that there exists an op-
timal control process: and that the optimal value function is regular in the sense
thatV € C'2, then:

i) V satisfies the HIB Equation
Vi(t,@) +SUp,eq (f(t 1) + (L'V) (t,2) = 0, ¥(t,z) € [0,T] x R", (3.3)
with
V(T,z) =g(x), Vo € R", (3.4)

where(L£"V) (t,z) = b(z,u)V, + str(o(z,u)o” (z,u))V,, is the infinitesimal
generator as defined in Definitign 2]12.

i) For each(¢,z) € [0,7] x R™ the supremum in the HIB Equation above is at-
tained byu = u(t, z).

Remark3.1 We sometimes write the partial differential equation of E3) in the
form
Vi(t,x) + H(t,z, Vo (t,x), Vor(t, ) = 0,Y(t, ) € [0,T] x R™.

The functionH is called theHamiltonianof the associated control problem.
For(t,z,r,s) € [t,x) € [0,T] x R" x R" x S,,, wheresS,, is ann x n square matrix.

H(t,z,r,s) = SUR,c4[b(z,u) - 7+ %tr(a(aj, w)ol (z,u) - s+ f(t, x,u)).

Remark3.2 Egn. [3.3) is called thélamilton-Jacobi-Bellman Equatioor Dynamic
Programming Equation

Proof. Assume that/ is smooth enough. So, applylformula toV' (¢ + h, X;7)
betweent andt + h:

t+h
V(t+h X;5)=V(tx)+ / Vi(s, XE®)ds + Vi(s, X0¥)dX 5"
t

t+h
+ / Ve (s, X0P)d (X, X)),
t

DN | —

t+h t+h
V(t+h X;5) =V(t,x)+ / Vi(s, XP%)ds + / Vi(s, X1*)bds
t t

t+h 1 t+h
+ / Ve(s, X! odW, + 5 / Vee(s, X0)d (X, X),,
t t

t+h
1
V(t+h, X0) =Vt o) + / Vilis, X07) + Va(s, X0V + 5 Via 5, X0%)ds
t

t+h
+ / Ve(s, X\ odW,
t

18



t+h
V(t+h XE0) = V(tx) + / [Vi(s, X7) + (L) (s, X0)] ds
t

t+h
+ / Ve (s, X0")odW.
t

Now, we take expectation and substitute into the Elgn] (8.8t
t+h
V(t+h X5 >E [/ f(s, X5% ug)ds + V(t + h, X}ffh)]
t

t+h t+h
+E {/ [Vi(s, X07) + (L"V) (s, X17)] ds + / Va(s, X;’I)adWs} :
t t

Assuming enough integrability, the expected value of thegral with Brownian mo-
tion is zero.
So,

t+h
0>E {/ f(s, X" ug)ds + Vi(s, XE")ds + (L*V) (S,X;’x)d8:| .
¢

Let us divide the inequality through byand take the limit agé goes to zero and by
the Mean Value theorem, we understand

0> Vi(t,z)+ (L*V) (t,x) + f(t,z,u).

Since the control processis arbitrary, the inequality holds for all € U. So, we have
the following:

Vi(t, 2) + sup,ep ((£*V) (8, 2) + f(t, 2, 1)) =0,

since the equality holds if and only if the arbitrarily choseontrol process is the
optimal control process.
Consequenthy/ (T, x) = g(z) for all x € R™. O

Remark3.3. The theorem states that if an optimal contiiobxists, then the optimal
value functionV satisfies the HIB equation in Eqi._(3.3) atdointt, f (¢, z,u) +
(L*V) (t,z), (u € U) attains its maximum Thus, the theorem has the form of a
necessary condition. Luckily, the HIB equation is also &icgeht condition for our
optimal control problem. The next result, commonly refdrte as the verification
theorem, states the condition.

Theorem 3.2. (Verification Theorem)Let P be a function inC*2 ([0, T] x R") that
solves the HJB Equation

Py(t,x) +sup,cq (f(t,z,u) + (LYP) (t,2)) =0, V(t,xz) € [0,T] x R*  (3.5)

with terminal condition
P(T,z) = g(x), Vo € R".

Suppose there exists an admissible control progessA such that for eaclit, x), u
attains the supremum in the HJB equation. In other words,

SUR,ca {f(tv x,u) + (Eup> (t’ x)} = f(tv I7u) + (ﬁﬂp> (tv J}),
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such that the SDE which is as defined in E@hI)

dXs =b(s,u(s, X5))ds + o (s, u(s, Xs)) dWs;
Xt =X,

admits a unique solutio@’z. Then,P =V, the optimal value function andis the
optimal feedback control.

Proof. SupposeP andu are as given. Fixt, z) € [0, 7] x R™ and choose an arbitrary
control process € A.
Apply 1td formula toP(T, X%*)
T T
P(T, X}%) = P(t,x) +/ Pt(s,Xﬁ’g”)ds—l—/ P.(s, X\")d X"
t t

1 /T
+§/ Po.(s, X0™)d (X, X),,
¢

P(T, Xfp’s) = P(t,x) + /tT (Pt(s, XU+ (L"P) (s, X;“)) ds

T
+/ P.(s, X\™)odW,. (3.6)
t

We know thatP solves the HIB Equation in Eqii.(B.5) . So,
P(t,z) + f(t,z,u) + (L“P) (t,z) <0, Vu € A.

Thus,
Py(t, X2%) + f(s, X07) + (LYP) (s, X{7) <0

Py(t, X07) + (L"P) (s, XJ7) < —f (s, X07)

From the boundary condition, we conclude ti&t", z) = g(z).
Hence,

T T
P(T, X}%) = g(X}°) < P(t,x) — / f(s, X2%)ds + / Py(s, X" )adWi,.
t t

So, T T
P(t,z) > / f(s, X7%)ds + g(X2°) — / P.(s, X\™)odW.
¢ t

Now we take the expectation of both sides and notice thatgbeatation of the integral
with Brownian motion is zero. This implies that

P(t,z) > E UtT f(s, X5%)ds + g (X;;S)} = J(t,x,u).

Sinceu € A has been arbitrary,

P(t,z) > sup,c,J(t,z,u) = V(t,z).
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It is left to show thatP(t,z) < V (¢, x).
We have, by assumption, that

Py(t,x) + f(t,z,0) + (L"P) (t,z) =0,

Thus, ~
Py(t,z) + (L'P) (t,z) = —f(t,z, 7).

Applying 1td formula toP (T, )2}5) yields

T T
P(T, X}%) = P(t,x) + / Pi(s, XP")ds + / P.(s, X!")d X"
t t

T
/ Pyo(s, Xt%)d <X, X> ,
t

s

+

DO | —

T
PALRE) = Pl + [ P, S0 + (€7P) (5, K07
t

T
+/ D,p(s, X! odW,.
¢
So,
AN AN AN T A
PUTR4) = oK = plt0) = S5, X + [ Pulo, Ry,
¢

Let us take expectation of both sides and notice that thectegeralue of the integral
with Brownian motion is zero. Hence,

P(t,z) [/ f(s th)ds+g(th)} = J(t,z,u) < V().

Therefore,P(t,z) > V (t,z) > J(t,z,u) = P(t, x).
That is,P = V andu is an optimal feedback control process.
0

Remark3.4. We have proved the HIB Equation and the Verification Theomenaf
maximization problem. The results are the same for a miratron problem. In that
case, the objective function is represented by

J(t, z,u) [/ f(s, X5 ug)ds + g(T, X25) |,
the value function is given by
V(t,x) =infueaJ(t, x,u)
and the associated HJB Equation is
Vi(t,z) +infueaf(t,z,u) + (LYV) (t,2) =0, V(t,x) € [0,T] x R",
V(T,z) =g(x), Vo € R".
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Remark3.5. We can extend the optimal control problem to cases wheredte gari-
able is constrained within a domain. Consider the SDE as itbestin (3.1):

dXt = b(t, Xt, ut)dt + O'(t, Xt, Ut)th,
Xt = X.

We define the stopping time by= inf {¢ > 0|(¢, X:) € 0D} A T, where we have the
time interval[0, 7], the domainD C [0,7] x R™ anda A b := min(a,b). Also, the
control process is admissible, i.e,, € A. The value function to be optimized is the
form

J(t, z,u) [/stt $)ds + g(r, X57)

The problem is solved using the HIB equation and Verificalioeorem.

Remark3.6. (Infinite Horizon): The infinite horizon problems follow similar argu-
ments as the finite horizon problems. In such problems, the Liorizon iSI" = oo.
To guarantee that the value function is finite, the runningt ¢® exponentially dis-
counted. The value function to be optimized is of the form

J(x,u) =E {/00 e_ﬁsf(Xf,uS)ds ,
0

V(z) = J(x,u) represents the optimal value function ainthe optimal control pro-
cess. The associated HJIB equation is of the form

BV (x) — sUp,eq (f(z,u) + (L*V) (x)) = 0, Vo € R™.

The proof is the same as that for the finite horizon case.

3.3 Applications

In this section, we first deal with a well known applicationogttimal control in engi-

neering: The Linear Quadratic Regulator. In the control [@oh the objective is to
find the optimal control process that will keep an initiallycged system close to its
equilibrium position. Then, we study Merton’s Optimal Conmgation and Portfolio

problem for two cases. In the first case, the objective is toimize the expected util-
ity of consumption and terminal wealth of an investor oveitdéitime horizon. In the

second case, the objective is to maximize the expectetydtitim consumption over
random time horizon. We end the section with the optimizagimoblem of an investor
with initial endowment who is allowed to invest in a finanamédrket that consists of
a risk-free asset and a risky asset. The aim is to maximizeateg utility of terminal

wealth of an investor over finite time horizon.

3.3.1 The Linear Quadratic Regulator

First, we study the following optimal control problem in @mgering. The system
dynamics are linear and the cost is quadratic. The objeistbieeminimize the quadratic
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cost:
J(t,z,u) = /0 1 {z"(O)Q)x(t) + u" (t)R(t)u(t) } dt + z" (t1)Sz(t1),  (3.7)

given the dynamics
dX; = {A(t)x(t) + B(t)u(t)} dt + P(t)dW;,

where X, € R™ andu(t) € R*, the control is unconstrained. Her€), R, S, A, B
and P are known matrices$ andQ(t) satisfyS = ST = 0 andQ = QT >~ 0, that is,

S andQ(t) are symmetric positive semidefinit&(t) = RT(t) = 0, i.e., symmetric
positive definite and, hence, invertible for ak [0, ¢4].

Our aim in the problem is to keep close to0, mainly at the final time,, while using
minimum control.

Before giving the solution of the problem, here is a motivatiGonsider a system that
is initially excited and is not in equilibrium with initiatatez(¢) = = # 0. We regard
the initial state state # 0 as undesirable so that the objective of the control problem
is to find a controlu(t) that will return the system back to its equilibrium position
z(t) = 0 in the shortest possible time. Minimizing the quadratictdasctional in
Eqn. [3.7) gives the quantitative measure of the objectiNetice that the quadratic
nature of the terms in Eqrl._(3.7) guarantees that the quadxt functional remains
non-negative for alt. In Eqn. [3.7),Q and R penalize the state and higher values are
more heavily penalized since the objective is to minimize ¢bst of value whiles
penalizes the control effort.

We now proceed to the solution of our optimal control prohlé&ssume there exists an
optimal controli and an optimal value functiovi. By Theoreni 311, the corresponding
HJB equation is given by

Vi(t, z) +inf,cpe (27 Q(t)z + u" R(t)u + Vi(t, 2)(A(t)z + B(t)u))
+ % > Viult,2)[PPT);; =0 (3.8)

i’j

with boundary condition
V(ty,z) =2 Sx. (3.9

For arbitrary(¢, x), we will find the minimizing controli. SinceR(t) > 0, the infimum
of v¥ Ru is a minimum and we set the gradient of Edn.(3.8) to be zere. quantity
inside the braces in the HIB equation is maximized lsatisfying

2ul R(t) + Vo (t,2)B(t) = 0,

which gives the optimal strategy
i = —%R_l(t)BT(t)Vx(t,x). (3.10)

To apply the verification theorem, we need to know the valnetionV that solves the
HJB equation in Eqn[(3.8). We make a guess about the steucflif. It is reasonable
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thatVis a quadratic function because of the boundary conditidaguf. [3.9). Hence,
we make the guess
V(t,x) =" M(t)x + N(t),

wherel (t) is a symmetric matrix function of time for alland NV (¢) is a scalar func-
tion. So,

Vi(t,x) = 2" M'(t) + N'(t),
Vi(t,x) = 22" M(t) = 2M (t)x,
Via(t, ) = 2M ().

If we substitute the above results into the candidate opsitnategy in Eqn.[(3.10), we
get
il = —%R‘l(t)BT(t) 22T M (t)
= R Y ()BT (t)M (t)x.
Substitute this into the HIB Equation of Eqin.{3.8)
o M'(t) + N'(t) + 27 Q(t)x + 2" M(t)Bt) R () R(t) R~ (t) BT (t) M ()
+ 20T M(t)A(t)w — 22" M) R ()BT ()M (t)x + Y _ M(t);4[PP"];; = 0.

So,
oTM'(t) + N'(t) + 27 Q(t)x + 2" M(t)B(t)R™*(t)R(t)R™(t) BT (t) M (t)x

+ 2T AT )M (t)x + 2T M () A(t)x — 227 M(t)R™(t) BT (t) M (t)x
+tr [PTM(t)P] = 0.

This implies that
e {M'(t) + Q(t) — M(t)B(t)R™'(t) BT (t)M(t) + AT ()M (t) + M(t)A(t)}
+ N'(t) + tr [PTM(t)P] = 0.
For the equation to hold for allandz, we have the equations
M'(t)+Q(t) — M(t)Bt)R™ ' (t)BT ()M (t) + AT ()M (t) + M(t)A(t) = 0

and
tr [PTM(t)P] + N'(t) = 0.

Thus, we have the following pairs of systems of Ordinary &#intial Equations (ODES)

{M'(t) = M@)BA)R™ ()BT (1) M(t) — AT(t)M(t) — M(1)A(t) — Q(1);
M(t;) = S,
(3.11)
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{N’(t) = —tr(PTM(t)P); (3.12)

N(t) = 0.

Egn [3.11) is known as the Ricatti equation and it can be satwederically forM (t)
and Eqn.[(3.12) is integrated to obtaif(¢). It can then be concluded by the Verifica-
tion Theorem that the optimal value function is given by
t1
V(t,r) =" M(t)x + / tr[PT M (s)P]ds,

t
and the optimal control is given by

i =—RY(t)BY ()M (t)x.

3.3.2 Merton’s Optimal Consumption and Portfolio Problem

In this section, we formulate the optimization problem ofrarestor who has an initial

endowment and is allowed to consume and invest in a finan@gtehwith a risk-free

asset and a risky asset. The problem is considered for tvas césthe first case, the
objective is to maximize the expected utility of consumptand terminal wealth of

an investor over finite time horizon. In second case, theabbgis to maximize the

expected utility from consumption over random time horizon

Consider a market with two assets: a risk-free asset and ypasdet. The risk-free
asset follows the price process

dS) = rSpdt,
wherer is the risk-free interest rate. The price process of theyrédset is given by
the Black Scholes model so that it solves the SDE

dSt = St [Mdt + Uth] s

wherey, ando are the rate of return and the volatility of the risky assspeetively and
W, represents the Brownian Motion on a filtered probability 8&L F, (F):>0, P).

We denote the proportion of wealth invested in risky assétred ¢ by w;, the propor-
tion of wealth invested in the risk-free asset at titfy (1 — w,) and the consumption
rate at timet by ¢;. Let X; represent the investor’s total wealth at timé&iven that at
timet, the initial wealth of an investor ig, we assume that the trading strategy is self-
financing, that there is continuous trading and that unéchghort selling is allowed.
The wealth process of the investor therefore evolves acuptd

thtdSt 4 []- - wt]XtdS?
Sy S
dX;" = w X [pdt + ocdW,] + [1 — w ] Xyrdt — ¢ydt.

dX = — cdt,

Hence, we have the initial value problem

{d)(tw7C = Xt [wt(,u — ’l“)}dt + [TXt - Ct]dt + thXtth; (3 13)

XO = T.
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The wealth process is influenced by the admissible strategy(w, c) € A(z) with
[ Mhwel? + e]dt < .

The aim of the investor is to determine his/her optimal itwent and consumption up
to a final timeT":

J(t,x,u) =E {/0 f(t,c)dt + g(Xr)| . (3.14)

subject to Eqn.[{3A3); > 0, X; > 0,z > 0, wheref(t,c¢;) = e P'U(¢;); U(c) is a
strictly concave utility function. LeV (¢, z) = sup, 4/ (¢, z,u). Thatis,V (¢, z) is the
optimal value function.

Case 1. Optimal consumption and optimal terminal wealth ove finite time hori-
zon

We consider the problem for the case whereby the investabixitonstant relative

risk aversion. So, we let
C’Y

W@=;ﬁ7%&7<L

Then, the utility is an increasing concave function of reses used in consumption.
Here,g(z) = % So, the investor wants to maximize

T vy X’Y
E [/ e*mc—dt—O— —T} ,
0 8 v

X = Xy[wi(p — 7))t + [rX; — ¢]dt + wo X, dW.

given the dynamics

It follows from Theoreni 31 that the corresponding HJB Euprais:

i 1
Vi+SUPs o wer (eﬁtc— +wz(p— 1)V + (re — )V, + 502w2x2%x) =0 (3.15)
_* fy

with terminal condition
”
V(T,z) = 2. (3.16)
Y
The first-order conditions for a regular interior maximure:ar
De Pt -V, =0
This implies that the optimal consumption is given by

&= [#V,] 7T, (3.17)

) z(p — 1)V, + o?z*wV,, = 0.
This implies that the optimal investment is given by

Ve p—r
gty

W =

(3.18)

Ve O
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To apply the verification theorem, the optimal value funefidis needed. We therefore
make a guess about the structuré/of

{vaw)zﬂ%?

m(T) =1
Hence,
v — m’(t)x”)
Y
V, =m(t)z"

Viw = (v — D)m(t)z" 2.

Now, we insert the above partial derivatives into Eqhs. {Bahd [(3.1B) to get

étox) = [eP'm(t)ar ] 1 _ [eﬁtm(t)}ﬁ T, (3.19)
. —m(t)z7 ! L= =
t,x) = . =— . 3.20
it @) z(y — )m(t)xr—2" o2 (v —1)o? (3.20)
We wish to show that the value function(t, =) = m=? solves the HIB Equation of

Eqn. [3.I5). To do this, we substitute its partial derivasiand Eqns[(3.19) arld (3120)
into the HIB Equatiori (3.15):

(B | MmO T a = rPm) | ) (e

gl gl (v = 1o?
L PPy = YmHar2
(v = 1)?0*
Thus,
Bt o'
m/(t)xY e Tim(t)7Ta? a7 (u—1r)*m(t) Bt 1
+ — +rm(t)xr” —er=Tm(t) Tz
g gl (v = 1)o? " "
L =P
2(y —1)o?
le.,
/ ol % %xv _ Y —r)2
w) | T )
gl gl (y=1o
P

This gives us the equation of the form

ﬁ@ﬂ@+Am@+Bm@%Q:Q
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t

whered = — = andB = (%) e,

o?(y—1)
For the equation to hold for all and z, m(¢) must be a solution of the ODE with
terminal condition:

~

{m () +:fllm(t) + Bm(t)71 = 0; (3.21)

If we taken(t) := m(t)T7, thenm(t) = n(t)'~" andn’(t) = m0mB° 7 We notice
that Eqn. [(3.211) becomes

(1= y)n' (O)ym(t) =" + An(t)' ™ + Bn(t)7 =0,
implying that

wT) =1 (3.22)

Solving the Linear Differential Equation of Eqi._(3122), wletain the explicit solution

{n’(t) +4n0 4 B

nlt) = 7500 4 D [T ]
"}/ —

1—
e LT rouemr | e mp]
v(A — B) .

Conclusion:

We have shown that if we define the value functior/ds, =) = @ wherem(t)

is as explicitly obtained as above, and if we define the ogtimastmentw as in
Eqgn. [3.19) and optimal consumptiéras in Eqn. [(3.20), thel (¢, ») satisfies the
HJB Equation andy and¢ give the maximum value in the equation. Therefore, by the
Verification Theorem, the optimal consumption and investnstrategy ¢, ¢) of the
investor is given by

1

et,z) = [eM'm(t)] " x,

b(t,x) A S

w Xr) = — = .

’ (v—=1o?  (1—7)o?

Remark3.7. Itis noticeable that for an investor with a Constant RelativekRiversion
utility, the optimal consumption is proportional to the Whaof the investor at each

stage and that the optimal investment is independent of dadtivat each stage.

Case 2: Optimal consumption over random time horizon

We consider the problem for the case where= 0 in Eqn. [3.I#). In this prob-
lem, the investor closes his/her position when the wealticgss is zero. That is, the
position is closed at a random time horizan

7 :=inf{t > 0|X; = 0}.
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The objective function is given by the value function

V(:U> = SuRw,c)GA(m)E |i/0 6_BtU(Ct):| )
whereU (¢;) = ¢, f > 0, subject to

{dth’c = Xt [wt(,u — T)]dt + [TXt - Ct]dt + wtoXtth;
XQ = xT.

The corresponding HIB equation is given by:
1
Vi4+SUP> g wer (eﬁtc”’ +wa(p— 1)V + (re — o)V, + 502w2x2vm> —=0; (3.23)

V(T,z) =0. (3.24)

The first-order conditions for a regular interior maximure:ar
(1) ve Pt =V, = 0.
This implies that the optimal consumption is given by

Bty 171
é:{evﬂ , (3.25)
Y

@) z( — 1)V, + 0222wV, = 0.
This implies that the optimal investment is given by

Ve puor (3.26)

W= .
2Vyw 02

To apply the Verification Theorem, the optimal value funetio is needed. We guess
that

Therefore,

Vi = e Pim/ (t) 27 — Be Ptm(t)x7,
V, = ve Pm(t)a7 1,
Vie = v(y — 1)e Pm(t)z7 2.

Now, we substitute the above partial derivatives into EB23) and[(3.26) to get

1
Bt m o —Bt y=175-1 .
c(t,x) = eTre Tmit) =m(t) Tz (3.27)
gl
_~e Bt y—1 _ _

. ye Ptm(t)x p—r w—r
b)) — . L e — 3.28
i(t,z) xy(y — Ve Ptm(t)zr—2 o2 (v —1)o? (3.28)
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Now we shall substitute the partial derivatives of Eqh273and [(3.2B) into the HIB
Equation in Eqn.[(3.23) to show th&lt(t, z) = e #*m(t)x" solves the HIB Equation:

(1 = 1) Pm(t)a
(1 =)o
+raye Ptm(t) a7t — xm(t)fﬁve_ﬁtm(t)x“’_l
2’0’ (p = r)*y(y = Ve P'm(t)a” >

+ 21— ~)20" =0.

e P! (1)x7 — Be Prm(t)a” + e e m(t) T + ‘

This implies that

et [t0) - () [+ 2= o)+ (- i =0

giving us

z [m(t) + Am(t) + Bm(t)l%v} =0,

where

2
A:—B+M+r7and821—7.
o*(1—=7)

For the equation to hold for allandx, m(t) must be a solution of the ODE:
m/(t) + Am(t) + Bm(t)>~1 = 0; (3.29)
m(T) = 0.

The explicit solution of the Bernoulli Equation in Eqi._(3)2®hove is obtained as in
Case 1.
Conclusion

We have now proved that if the value function is definedihy, z) = e ?'m(t)2”,
where m(t) is the solution of the Bernoulli Equation in Eqn.2@ and if we define
the optimal investmeni as in Eqn. [3.27) and optimal consumptiéras in Eqn.
(3.28), thenV/ (¢, x) satisfies the HIB Equation anidand¢ give the maximum value
in the equation. Therefore, by the Verification Theorem,dpegmal consumption and
investment strategy(, ¢) of the investor is given by

é(t,x) = m(t)ﬁa:,

w—r

w(t,z) = e

3.3.3 Merton’s Portfolio Allocation Problem

In the previous section, we obtained the optimal consumpatia investment strategies
for an investor with an initial endowment who is allowed tsasame and invest in a
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financial market. Now, we consider a portfolio allocationlgem under a similar setup
but without consumption. Again, the financial market cotssig a risk-free asset and
a risky asset. The risk-free asset follows the price process

dS° = rSVat.

The price process of the risky asset is given by the Black &shalodel so that it
solves the SDE

dSt = St(,udt -+ O'th).
The proportion of total wealth invested in the risky assetrgttime is denoted by),.
The remaining proportion of wealtfi — wy,) is invested in the risk-free asset. The
wealth process( (¢) of the investor corresponding to the strategly), is the solution
of the SDE with initial condition

w ds dsy .
dX} = w X (1) G5 + [1 — wi] X, G
X() =T > O,

dXP = XiJw(p —r) + rldt + ow, X, dWy;
Xo=x>0.

The control process is said to be admissibl& iﬁfOT |w§|dt} < oo. Here, we recall

that.4(x) denotes the set of all admissible portfolios.

The objective of the investor is to choose an allocation efwealth in such a way
that will maximize the expected utility of his/her termingéalth. That is, the value
function is defined by:

V(t, ) = sup,c 4 E [U(X7)].

We choose the power utility of CRRA tydé(z) = % forv < 1, v # 0. We note that
~ is called the relative risk aversion coefficient.
The corresponding HJB Equation is

0'2'[,02232 T _ .
{Vt + SUR, e A(x) [(mw(u —r)+rz)V, + TV = 0; (3.30)

V(T,2) =%

=Z.
Taking the second order derivative with respectitove get thatr?2%V,, < 0, since
V' (z) is a strictly concave utility function. Hence, from the fimtder condition for a
regular interior maximum which is:

o(p— 1)V + woax?Vy, = 0,
we get that thev attains a maximum at

Ve p—r
g

W =

(3.31)

Vi o

31



We shall guess that the value function is of the form

Vit ) = ()
t,r) =p(t)—.
Y
Therefore,
x’y
‘/;f - p/(t)_7
Ve =p(t)z" !,

Viw = (v = Dp(t)2" 2.

Substitute the partial derivatives into Eqfi._(3.31) to obthe candidate optimal in-
vestment
Ve p—r —pt)2”" p—r  p—vr

YTV o T a - Dpe 2 o2 (1)t

Now, substitute the value function into the HIB Equat[o®@3to show that it solves
the following equation:

o®(p — )7y (y — 1)p(t)
2(1 — )20t

2 (t) a7 (p—r)*yp(t)
¥ (1 —7)o?

+ ra¥yp(t) + =0,

thus, ,
ﬁw@) = 0.

Hence p(t) must satisfy the ODE with terminal value:

P (t) + ryp(t) +

P (t)+ Ap(t) = 0;
p(T) = 1.

whereA = ~ [r + 2((55;’));} .
Thus,

p(t) =0

Conclusion:
We have shown by the Verification Theorem that the value fandgiven by

Y

v

V(t,z) = AT

satisfies the HIB Equation and so it is the optimal value fancand the optimal
proportion of wealth to invest in risky asset is given by

w—=r
(1 =v)o*

W =
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Remark3.8 The verification theorem is an important step in the use of bple to
solve optimal control problems. The DP principle with thelgation of 1 formula
Is used to derive the HIB Equation for an optimal control pob Afterwards, the
verification theorem is used to guarantee that the valudifumthat satisfies the HIB
equation is indeed the optimal value function. It is assumeke verification theorem
that the value function is smooth enough. However, this tsaiveays the case and it is
sometimes hard to check for the smoothness of the valueitumdnh such cases that
the value function is not smooth enough, the theoryisfosity solutionss used. The
theory of viscosity solutions can be applied to linear ana-iwear PDESs regardless of
the order. In[[35], Zariphopoulou initiated the study ofaasity solutions in finance.
A detailed treatment of viscosity solutions in finance iselbg Pham in[[29].
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CHAPTER 4

OPTIMAL CONTROL FOR JUMP-DIFFUSION PROCESSES:
APPLICATIONS IN FINANCE AND INSURANCE

Empirical studies in finance and insurance have found eeiari discontinuities,
called jumps, in financial and insurance variables. In thigpter, we present three
applications of optimal control for jump processes. In th& fapplication, the investor
is faced with a portfolio-consumption problem. The investan consume and invest
in a financial market that consists of a risk-free and a risdged Risky asset prices
are known to make sudden large movements in cases of raresesterh as wars and
economical crisis. Therefore, the dynamics of the pricéefisky asset is represented
with a Lévy-diffusion model and a closed-form expression for thiégnogl investment
and consumption strategy that will maximize the utility loétinvestor over an infinite
time horizon is obtained. In the second application, we arecerned with the op-
timization problem of finding the optimal investment steptehat will maximize the
expected utility of terminal wealth of an insurer. The wikaltocess of the insurer is
affected by the risk process (presence of a stochastic aaghviihich is given by:

Surplus= Initial Capital+ Premium Income- Cumulated Insurance Claims

The amount of cumulated insurance claims, which is paid byrtburer to the insured,
is represented by a compound Poisson process. The premaaménis the amount
paid by the insured to the insurer for the insurance poliognt¢, the risk process is
modelled by a jump-diffusion process. The third and finalli@pfion is devoted to
obtain the optimal investment and reinsurance strategyntf@ximizes the expected
utility of terminal wealth of an insurer. To reduce risk, timsurer is allowed to in-
vest in a financial market and purchase proportional rearste. Similar to the second
application, a jump-diffusion process is used to model tisaiier’s risk process. In
the last two applications, the utility preferences of theurers are assumed to be ex-
ponential. It is common to use exponential utility in inqura because it is the only
utility function under which the principle of ‘zero utilitgives a fair premium that is
dependent on the level of reserve of an insurance company.

The Control Problem:
The general control problem is to maximize the value fumctio

J(t,x,u) {/ f(s, X5 ug)ds + g(X5")
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given the dynamics

dXt = b(Xt, Ut)dt + O'(Xt, Ut)th + / h(Xt_, Up—, Z)M(dt, dZ),
R
X = L,

where theb, o, h are deterministic functions satisfying the Lipschitz ¢onity and
linear growth conditions. Hence, guaranteeing that thest®a unique &dlag adapted
solution(X;) to the equation. More details can be found about existenasigtieness
in Chaptef 2.

The objective in optimal control is to obtain a control prege € A that maximizes
the value function/ over all admissible controls. We introduce the value fuorcti

V(t,x) :==sup,c4J(t, z,u).

If V(¢t,z) = J(t,z,u), we callu(t,z) anoptimal control procesandV (¢, x) is called
theoptimal value functiorior the problem.

4.1 Merton’s Optimal Portfolio and Consumption Problem under Jump-Diffusion
Process

In this problem, we study the portfolio-consumption setattof an investor facing
risks that are modelled by Brownian motion aneMy-diffusion processes. The wealth
process accounts for events that lead to large price movsraed sudden breaks in
the prices of the risky asset. The random changes in the aisggt are modelled by
Brownian motion and a compound Poisson process which hasacanfgmp sizes at
random intervals. Let(2, F, (F;),.,,P) be afiltered probability space. Furthermore,
(W,) is a Brownian motion defined on the filtered probability space is adapted to
the filtration(F; : ¢ > 0). In the financial market, there is one risk-free asset and one
risky asset. The risk-free asset follows the price process

S = rSdt,

wherer > 0 is the risk-free interest rate. The price process of the/radset satisfies
the following SDE with jumps

ds, = S, (udtJrath + / zM(dt,dz)) ,
—1

wherey > 0 ando € R represent the rate of return and volatility of the risky &sse
respectively. It is assumed thft] |z|dv(z) < co andp > r.
Let (¢;) which is an adapted adlag (right continuous with left limits) process be the
consumption rate at time> 0, (w;) be the proportion of the total wealth invested in
risky asset at time > 0. Hence,(1 — wy) is the proportion of total wealth invested in
risk-free asset at timefor ¢t > 0. It is assumed that there is no transaction cost. The
investor has initial wealthk > 0. The wealth process of the investor evolves according

tO
4(_ 1_ Ai_

o 5 s — c,dt,
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or,

o

dXt = U}tXt_ |:/Jdt + Uth + /

-1

ZM(dt, dz)} + (1 — wy) Xy rdt — cudt.

So,

{dXt — WX, [(u —r)dt + odW, + [ =M (dt, dz)} brXe—e)ds

X():ZE.

The objective of the investor is to choose the optimal investt proportion and con-
sumption rate in a way that will maximize his utility

J(t,z,u) =E [/OOO e Pt U(ct)dt} :

whereg > 0, U(-) is a differentiable, bounded and strictly concave utilitydtion.
The investor exhibits constant relative risk aversion. tTieathe utility function is
given by%, 0 < v < 1. The investment criterion is to choose the admissible ocbntr

process, i.e., the optimal investment-consumption gyate = (w,, ¢;) € A such that
V(t,x) = Sugtht)GAJ(t, T, u).

Note that the contral, = (wy, ¢;) is admissible ifw;, ¢; are F;,-adapted andadliag and
the total wealthX, is non-negative for alt > 0. We writeu; € A, whereA is the set
of all admissible strategies.

The following theorem gives the corresponding HJB equatiorthe value function
V(t,x).

Theorem 4.1. (Hamilton-Jacobi-Bellman Equation)Assumé/ (¢, z) is continuously
differentiable int € [0,7] and twice continuously differentiable in € R. Then
V (t, z) satisfies the HIB equation

.
¢ SUpe (V) (1) = (4.2
where the infinitesimal generator bfis given by;
1
(LV) (t,x) =Vi+ [(n — r)wx + xr — ]V, + 502102352‘/@-95

+ /_olo {V(t,z + zwz) = V(t,z) — Vyzwz} v(dz).

Proof. The proof follows from the Theorem 3.1
0

To apply the Verification Theorem that guarantees that theisa to the HIB Equation
in Egn. [4.2), we shall make a guess about the optimal valetifan V. Let us define
V as:

V(t,z) = Ne P2
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This implies

‘/;‘/ = _ﬁNeiﬁt'r’n
Ve =7 Ne a7
Ve =(y— 1)Ne_ﬂtx7_2.

Considering the partial derivatives, we get that
vy y
e Pt 4 (LV) (t,x) = e Pt _ BNe Pig?
Y Y
1
+ [(pp — r)ywz + zr — ] yNe P71 4 §J2w2x2’y(7 — 1)Ne Pigr=2

+ / (Ne Pz + zwz)” — Ne 727 — yNe P27 zwz) v(dz).
-1

This implies that

Bt c’ u —Bt c’ Bt _~—1
e P'— 4+ (L"V) (t,x) = e "'— —eyNe Pla?
Y v

+Ne e {_5 (= ryw +r] + %“2‘”27(7 A /_o: {1+ z0)" =1 —qwz}o(d2)

Now, we shall differentiate‘ﬁt% + (L£"V) (t, z) with respect ta- andw to find the
critical points where the maximum is attained. It can be kbdc¢hat the expression is
concave with respect toandw.

First, we differentiate with respect tcand equate to zero to obtain the maximum:

e Pyt — Ne Plpr=1y =0,
At — Ne P71y = 0.

This implies the optimal consumption is given by
é=(Ny)7 .
Second, we differentiate with respecticand equate to zero to obtain the maximum:

Ne Pa? |y(p—r) — o?wy(1 — ) + /_010 {v(1 4 2w)"" 'z — vz} v(dz)| = 0.

This implies that the optimal investment in risky assesatisfiesl(w) = 0, where
L(w) is given by:

Lw) === tult =) = [ {1= (14 20 o(da)

We notice that
LO)=p—7r>0
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and -
L) =p—r—0c*(1—7)— / {1- (1422} v(d2).
-1
Soifpu—r<o?(l—7)+ [{l—(1+2)""2}v(dz), then there exists) = w €
(0, 1.

Substitute® andw into the HIB Equation in order to show that the value functiolves
the HIB Equation

0= il — ()N 4 Ne®a7 (=6 + 4(n — ) + 1]
+ %U2IZ)2’7(’7 —-1)+ /O: {(1+20)" =1 —~wz}o(dz)|,
thus,
(N7 = (N9) 5 = B+ (s = r)io ] + 50?3 = 1)

+/T{u+¢wﬂ—1—vw%vM@=0,

hence
(NP =9) = 6=l = )i+ 7] + 5oPi*(y — 1)
+ /T{(l—l—zz@)”—l—ywz}v(dz).
So,
1/ 1 ) (NP
N = ;Km[ﬂ—v[(u—r)wmryw7(7—1)

+ /_O: {1+ 2) — 1 — yibz} u(dz>])7_1}

Below, we summarize our result.

Theorem 4.2. Consider the wealth process in Eq@LJ) and the utility function de-
fined by%,() < v < 1, with the objective to maximize the utility over infinite time
horizon, the optimal value function of the investor is gitagn

V(t,z) = Ne P27,

whereN is as given in Eqn(4.1). Furthermore, the optimal consumption is given by
¢=(Ny)7ia

andw satisfyingL(w) = 0 is the optimal investment in the risky asset.
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4.2 Optimal Investment for Insurers with Jump-Diffusion Ri sk Processes

In this application, we focus on the control problem of firglthe optimal investment
strategy that maximizes the expected utility of terminadltleof an insurer which was
studied by Yang & Zhang in [34]. A closed form expression itaited for the optimal
strategy of an insurer that is allowed to invest when théwfilinction is exponential.

Let (€2, F,P) be a probability space with filtratiof?F; : t > 0). We have two standard
Brownian motiong W, : ¢ > 0) and(W? : t > 0) adapted td4.F; : ¢ > 0) on the prob-
ability space.

The wealth process of the insurer is affected by the presgih@etochastic cash flow
modelled by:

Surplus= Initial Capital-+ Premium Income- Cumulated Insurance Claims
The stochastic cash flow denoted @ : ¢ > 0) is modelled as:
dP; = adt + bdW? — dR;, (4.4)

wherea andb > 0 are constantsR; = Zfiﬁl Y; as defined in Definition 2.14 is a
compound Poisson process which denotes cumulated inguctaims with intensity
A > 0 and jump size distributiods. Here, (N, : ¢ > 0) is a Poisson process with
parameter\ which denotes the total number of claims up to time t &hd the size
of theith claim and assumed to be independent of the claim numbeegso We
shall assume thatV! : ¢ > 0) and(W}? : ¢t > 0) are two correlated Brownian motions
with correlation coefficienp such thatp? # 1. In our case, the stochastic floi#?,)
guarantees that the risk to the insurer cannot be totalhgiesited. We also assume
that continuous trading is allowed, neither transactiost cor tax is involved, and all
assets are infinitely divisible.
The market consists of two assets: a risky asset and a askasset. The risk-free
asset follows the price process

dSy) = rSpdt, (4.5)

wherer(-) is the risk-free interest rate. The price process of the/résset satisfies the
SDE
dSt = ,LLStdt —|— UStthl, (46)

whereu(-) ando(+) are the rate of return and volatility of the risky asset, essipely.
We assume that > r.

Let K; be the amount in the risky asset at timand X, — K, be the amount invested
in the risk-free asset at timeso thatX; represents the company’s total wealth. The
wealth process of the insurer, denotedt§ satisfies

0
dXFE = th?st +{X; — K;} ‘fgig + dP, 4.7
t t

or, if we insert, Eqns[(414) [_(4.5) arld (4.6) into EJn.(4.7)
dX[ = K, [pdt + odW}] + [X; — Ki] rdt + adt + bW} — dR,.
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So,
dXE = [(p = r) K, + r X, + a] dt + o K,dW} + W2 —dRy; Xo =z € R, (4.8)

wherex > 0 is the initial wealth. The wealth process is influenced byitivestment
strategyK = (K, : t > 0) with fOT |Ki|?dt < oo, T < oo. The investment strategy
K, € A(x) is admissible. Hered is the set of all admissible strategies.

The objective of the investor is to maximize the expectelityitf terminal wealth

V(t,x) == supgc4E [U(X:,{{)\XtK = x} ,

whereV/(-) is the value function(/(-) is a differentiable, bounded and strictly concave
utility function and(X/ : ¢ > 0) is the wealth process under the investment paicy
SinceU(-) is concave, there exists a unique optimal strat&gysuch that the value
function attains its maximum.

Suppose that the preferences of the insurer are exponerttit is, the utility function

is given by

U(x):m—ge’"x, a>0,n7>0.
n

The utility function has constant absolute risk aversiorapeetem, i.e.,n = %@()@

The following theorem gives the associated HIB equatiothfvalue functiolV (¢, z).

Theorem 4.3.(Hamilton-Jacobi-Bellman Equation)et (X/ : ¢ > 0) satisfy the dy-
namics of the wealth process in Eqif4.8) and G be the jump-size distribution of
the compound Poisson proceRs. Assumé// (¢, x) is continuously differentiable in
t € [0,7] and twice continuously differentiable inc R. ThenV/ (¢, z) satisfies the
HJB equation

SUPceq (LXV(E,2)) + )\/ V(t,x —y) = V(t,z)]G(dy) =0 (4.9)
0
with terminal condition

V(T,z) = Uz) =m — %e"“, (4.10)

where

1
(LXV) (t,2) =Vi+ [(p— 1)K +rz+a] V, + 3 [02K? + b + 2pbo K| V.

Proof. The proof follows from the Theorenis 2.4 dnd]3.1.
[

The Verification Theorem is important to show that under scoraitions, a solution
to the HJIB equation above gives us the optimal investmeatesty. Below, we give
the theorem and derive the proof.
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Theorem 4.4. (Verification Theorem)Suppose that there exists a smooth function
P(t,z) € C*([0,T],R) that satisfies the HIB Equation of Eq@.9) with terminal
condition of Eqn.(4.10) subject to the boundary conditions, then the value function
V(t,x) = P(t,x).

Furthermore, suppose that there exist&a € A such thatK™ attains a supremum in
the HIB equation for al(t,z) € [0,7] x R, then K* defines the optimal investment
strategy.

Proof. Let K € A. By It formula, it follows that fort € [s, 77,
T T
P(T, XE) = P(t, x)—l—/ Py(s, Xf)ds+/ [(p—7r)Ks+rXE +a] P(s, XE)ds
T ' T 1 tT
+ / oK, P.(s, XX)dW!+ / bdW 2+ 3 / [0 K2 +b° + 2pbo K| Pyo(s, XF)ds
t
/ | TP XS — ) = P X)) N, ),
thus,
T T
P(T, XX) = P(t, :r;)—l—/ Py(s, Xf)ds+/ [(p—7r)Ks+rXE +a] P(s, XEF)ds
t t

T T T
1
+ / oK, P.(s, XX)dW}+ / de3+§ / [0 K2 +b* + 2pbo K,_| Pyy(s, XF)ds
t t

+ /t ' /0 TP XK ) - P(t, X5)] (1 (ds, dy) = XG(dy)dt
+A/tT /OOO [P(t, XE —y)— P(t,XE)] G(dy)dt.
Taking expectation of both sides gives
E[P(T,X})] = P(t,z)
+E {(ﬁKP) (t, XX )ds + A /tT /OOO [P(t,XE —y)— P(t,XE)] G(dy)dt} :
This implies that
E [P(T, X;)] < P(t,z)+
E UtT SUPceq (L5P) (t, XE )ds + /tT A /OOO [P(t,XE —y)— P(t, XE)] G(dy)dt] :

Therefore,
E [P(T,X7)] < P(t,x);

SO,

P(t,z) > supe JE[P(T, X7)] = supe JE[U(XF)] = V (¢, 2). (4.11)
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We shall now thai (¢, x) < V (¢, z)
Suppose that K* € A such thatK™* attains a supremum in the HIB Equation of Eqn.
@.9). That s,

1
P+[(p—r)K*+re+a| P, + 5 (0> K™ 4+ b° + 2pbo K*| P,

+ /\/000 [P(t,x —y) — P(t,z)] G(dy) = 0. (4.12)

By applying 16 formula,
P(T, X5 :P(t,x)+/ Pi(s, XX )ds+/ [(p—7r)K:+rXE +a] Puds
T ' T 1 T ' )
+ / oK* PdW! + / bW ? + / [UQK:,+b2+2pbaK*,} Pyods
t

// P(t, X" —y) = P(t, X7)] M(ds, dy),

thus,
P(T, XX = P(t, x)+/T (LXP) (s,Xﬁ*)dSJr/TaKj_deWSl+/deW3
/ / P(t, X5 —y) - P(t, X)) (M(ds,dy)—AG(dy)dt)
+A/T/OOO [P(t, X5 —y) — P(t, XE)] G(dy)dt.

Taking expected values of both sides gives

E [P(T,X{")] = P(t,z)+

EM (cFP) (t, XE) ds+/ / (t, X5 —y)— P(t,XE)] G(dy)at| .
(4.13)

From Eqn. [41R), Eqn{4.13) beconiés$P (7', X£)| = P(t, z),
Hence,

P(t,x) = E [P(T, XE)] < supec 4B [P(T, X5")] = supe B [UXE)] = V(t,2).

Therefore,
P(t,z) <V(t,x) (4.14)

Combining Eqns.[(4.11) and (4]14), we get
P(t,z) > V(t,z) = sulE [U(X} )] > P(t, ).

That is, )
P(t,z) =V(t,x) =& [U(XT )} )
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Closed form solution for optimal policy

So far, we have described the problem, given the associaiBceHuation and proved
the verification theorem. Now, we solve for the optimal veluection and the optimal
investment strategy. First, we give the result in the thedbelow and outline the so-
lution process in the proof.

Theorem 4.5. Consider the wealth process in Eq@L.8) and the utility function de-
fined by

«
Ulx) =m— —e ",
n
with objective to maximize the expected utility of terminahhlte the optimal invest-
ment policy is given by

and the optimal value function is given by

o

2
V(t,x) =m — %exp(—nﬂe’"(T_t) - % <M — r) (T —t)+n(T — t)) ;

wheren (T — t) satisfies the ODE

— 1
W/(T —t) = —pe’ @D [a — b (M)] + 5()2(1 — )22 (T
o
+ /\/ [nyeT(T_t) — 1} G(dy),
0

with the initial value
n(0) = 0.

Proof. Step 1: Obtain the candidate optimal investment stratégy and substitute

into HIB [4.9).
Let us assume that the HIB Equation of Eqn.1(4.9) has a céssitution satisfying

V., > 0andV,, < 0. Then we differentiate the HIB Equation with respecktdo
obtain the candidate optimal™ via

(M - r)‘/x + UQK* + pba‘/;xa

namely,

K* — M _pb (4.15)

o?Vyx o
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We substitute Eqn[(4.15) into the HIB Equation of Eqn.] (tb@)btain

(p=r)Voy,  (p=r)pb
2 xrx
o g

2 (M_P_b)2+bz+2pbg(w_ﬂ_b

o2V, o o2V, o

Vt—l—[ —I—m—i—a]vx

+

1
2

QD —

+ )\/000 V(t,z —y)—V(t,x)]

ie.,

(. —1)pb Lip—r 2V:c2 Ly 2
‘/t—l—[rx%—a - V., 5 - Vm—l—2b(1 P) Vs

+ )\/OOO V(t,x —y) —V(t,x)|G(dy) = 0. (4.16)

Step 2: Guess the value function that solves Eqn.](4.9) and takedtt@pderivatives
of the value function.
We guess a solution to Egi._(#.9) of the form

2
V(t,z) =m — %exp (—nxe”(T—t) — % (“ ; T) (T —t)+n(T — t)) . (4.17)

wheren(-) is a function such that (¢, =) solves Eqn.[{4.14) and the terminal condition
in Eqn. [4.10) implies that(0) = 0. From Eqn.[(4.17), we obtain

1 . 2
Vit.r) = =2 [n:vreT(Tt) 4 (“U ) — (T~ 1)

exp{_mer(m) _ % (’“‘ ; T)Q (T —t) +n(T — t)} :
hence,
Vi(t,z) = —% [nx're’"(Tt) + % <M ; T>2 — /(T —t)| x [—g(V(t,x) - m)}
Therefore,
Vi(t,2) = [V(t,2) —m) [W:Cre”(Tt) .1 (“ = ) —W(T-1],  (@418)
and
Vy(t,z) = ae" T Dexp (—nxer(T_t) — % (“ ; r>2 (T —t) +n(T — t)) ,
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thus,

Therefore,
Vo(t,x) = [—ne" ™ D] [V (t,z) — m], (4.19)

o

1/ 2
Vo (t, 2) = —ane® T Vexp (—nxe”(Tt) ~3 (,u T) (T —t)+n(T - t)) ,

Ve (t, ) = [—&neQr(T’t) [—g(V(t,x) - m)” :

Therefore, we get
Vio(t,w) = [0 TV [V (E ) — m]. (4.20)

Step 3: Simplify the expressiorf;* [V (t,z — y) — V (¢, 2)] G(dy) that is found in the
HJB Eqn. [4.156).

/0 T Vitx —y) — Vi(t,2)] Cldy) =

/OOO [(m - %exp{—n(x — )T % (“ - ’“)2 (T —t) +n(T — t)})
—/OOO [(m - %exp{—mer“‘” - % (“ - 70)2 (T —t) + n(T — t)})

This becomes

G(dy)

G(dy).

/0 T Vi(tr—y) — V(t,2)) Gldy) =

/Ooo —% [(exp{—n(m —y)e" T % (,u ; T) (T —t)+n(T — t)}) (nyeT(T’t) — 1)] G(dy).

Hence,




Step 4: Substitute the candidate optimal investment strategylamgartial derivatives
of the value function into HIB Eqrl._(4.16).

Substituting Eqn.[(4.19) and Eqi._(4.20) into Edn._(¥.1%),get that the supremum
is achieved af{* and so the optimal investment strategy is given by:

o = rllne TNV (@) —m] pb
K= a2[n2e2r(T-D][V (t,z) — m)] o

Thus,
K= BT @t _ pb
no? o

We substitute Eqns[(4.118)[- (4]121) into Edn._(4.16) to get

Vi(t,2)—m]- [nxre’"(T‘t) ‘s (“ = ) (T —1)

+ {m: +a— @] [=ner T [V (t, @) — m]
_1 w—r 772627“T t) [V( ,ZE) m]?
2 ( o ) [?e>r@=O] [V (t, z) — m]
+%bQ(1_p)2[22rT t][V(,ZL’) m]

FAV (o) —m] | [nye "= —1]G(dy) = 0,

hence,

- (“;T>2 — /(T 1) - [a— @} fre ™) — 2 (M;Tf

| < .
+ 501 = p)? [?e 0] 4 / [nye™ "= —1]G(dy) = 0
0

and, thus,

— 1
n’(T . t) — _ner(Tft) |:a . pb <,u - T>} + 5[)2(1 o p)2772€2r(T t)

+ )\/ [nye’"(T’t) - 1} G(dy), (4.22)
0
with the initial value
n(0) = 0.

If the distribution of the jumpy is known, one can find a closed form expression of
n(-). Hence, we can say that the value function satisfies the HIBiBdegn. [4.9).
Notice that by substituting the optimal investment intowrealth process, the resulting
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optimal wealth process can be rewritten as a linear SDE glusj process as outlined
below:

. _ —r(T—t) b
dXK = [(u —) [(M 7;7)52 - %] +r Xy —i—a] dt
_ —r(T—t) b
to [(“ 7;7);2 - %} AW} + bW? — dR,,

hence,

. o 2 —r(T—t) o b
XK = {(“ e le-n +rXt*+a] di+

no o
pr ’
e=rT=0 | +b2(1 — p?)dW, — dRy,
np
where o
(p=r)er0
W, = w o

2
() v

Is another standard Brownian motion. It is known that thedim®@DE admits a unique
strong solution. Therefore, since the value function iénontinuously differen-
tiable, the conditions of the verification theorem is sagikfi O

4.3 Optimal Investment and Reinsurance for Insurers with Jump-Diffusion Risk
Processes

This application is devoted to the study of the optimal itwesnt and reinsurance
strategy that maximizes the expected utility of terminabltreof an insurer. This ap-
plication follows the problem put forward by Lin & Yang ih [ROAs in the previous
application, the risk process of the insurer is modelled byrapound Poisson process.
To reduce risk, the insurer is allowed to invest in a finaneiatket with one risk-free
and one risky asset and purchase proportional reinsur@ncksed form solution is
obtained for the optimal strategy when the utility preferof the insurer is exponen-
tial.

Let (2, F, (Fi),~, . P) be a filtered probability space an&f! and W are standard
Brownian motions adapted to the filtrati¢#; ),.,. We are concerned with modelling
the surplus process given by -

Surplus= Initial Capital+ Income— Outflow.

The surplus process of the insurer is also affected by theepe of a stochastic cash
flow and so the surplus of the insurer at tirme denoted by M/, : ¢t > 0) modelled as:

dM, = adt + bdW, — dR,
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where M, > 0 denotes the initial capital; > 0 denotes the premium rate per unit

time; R, = Zﬁle as defined in Definition 2.14 is a compound Poisson process
which denotes cumulated claims with intensiy > 0 and jump size distributioKr
with G(0) = 0. Here, (N} :t > 0) is a Poisson process with parameterwhich
denotes the total number of claims up to timandY is the size ofith claim and is
independent of the claim number process with density fonaiwith first and second
momentE[Y] = pu; andE[Y?] = pu,, respectively. To share risk, the insurer uses
reinsurance so that the reinsurer can cover some parts @laim. The amount of
claim to be paid by the primary insurer or cedent is the ratarievel ¢ of insurance
acquired by the insurer. In this problem, the part of thencl&i the cedent has to pay
is given bycY'. Hence, the reinsurer pays the remainfng- ¢)Y of the claim. Here,

¢ € (0,1) corresponds to the proportional reinsurance. The inswes the variance
premium principle so the insurance pays a premium of

(1 —e)Aipg + a1 — ¢)* Ay po,
where
a < (1 +ap), a>0.
After reinsurance, the surplus process becomes

dM; = [a— (1 = o)A — a(l — €)Xy pa] t + bdW,' — cdR, (4.23)
The market consists of two assets: a risk-free asset tHatviothe process
dsp = rS%dt, (4.24)
yvherer > 0 is the risk-free interest rate and a risky asset that satitie SDE with
jumps
dS; = S; <udt + odW2 + /R 2N (dt, dz)) : (4.25)

Here, > 0, 0 > 0 are constants that represent the rate of return and volatili
the risky asset respectively ag"élfR ZN(dt,dz) = Zj.vfl Z; is a compound Poisson
process with parametey, > 0. Also, Z; are i.i.d. random variables with distribution
H. We shall assume thétV,' : ¢ > 0) and(1W? : ¢t > 0) are two correlated Brownian
motions with correlation coefficient € [—1,1]. We also assume that > r and
that continuous trading is allowed, no transaction costiad all assets are infinitely
divisible.
Let K; be the amount invested in risky asset at titrend X; — K; be the amount
invested in the risk-free asset at time Here, X, is the insurer’s total wealth. The
wealth process of the insurer evolves according to

ds, dsS?

S, S¢

If we insert Eqns.[(4.23) [ [(4.24) arld (4125) into Eqn._(#, 2@ obtain:
R

+ [a — (1 =) — a1 — ct)2A1u2] dt — c;dR; + bW},
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le.,
dX} = [(,u —r)Ki+rXi+a—(1—c)Mp —a(l — ct)zx\lug} dt
4 oK, dW2 + bW} — cdR, + K, / SN(dt,dz). (4.27)

R
The initial wealth of the insurer is given by, = x > 0. The wealth process is influ-
enced by the control policy; = (K3, ¢;) with ¢; € [0, 1] andfOT | Ki|?dt < oo, for any
T < oo. Here,(K,;), (¢;) are adapted to the filtratiof¥; ), ,. The control policy(u,),
whereu; € A is admissible. Hered is the set of all admissible strategies.

Let oy (r) = Ele™] = [, e" ¢G(y) be the moment generating function6f Sup-
pose that there existglauch thatpy (r) 1 6. Then, [~ dG(y) = 1 andd is increasing,
convex and continuous df, 6).
Suppose the utility preference of the insurer is exponkrittaat is, the utility function
is defined by:

U(r):m—%e"m, a>0,n1n>0

wheren represents the coefficient of absolute risk aversionj.e.,— Uss (2)

Ug(z) *

Objective: The objective of the insurer is to find an optimal investmembsurance
strategy that will maximize the expected utility of termimaealth

V(t,x) := sup,c 4B [U(X7)| Xy = 2],
whereV (-) is the value function( X" : t > 0) is the wealth process influenced by the
control policyu. SinceU(-) is an increasing concave function, there exists a unique
optimal control policy: = (K, c) such that the value function attains a maximum.

We use the Dynamic Programming principle to solve the prolp@sed above. The
following theorem gives the corresponding HIB equatioméovalue functiort/ (¢, x).

Theorem 4.6. (Hamilton-Jacobi-Bellman Equation)Let (X} : t > 0) satisfy the dy-
namics of the wealth process in Eq@L.Z7)and G, H are jump-size distributions of
the compound Poisson proceBs and the Poisson process;, respectively. Assume
V(t,z) and its partial derivatived/, V, andV,, are continuous o0, 7] x R, then
V (t, z) satisfies the HIB Equation

0=supc{Vi+ [Klp—r]+rz+a—(1—c) A —a(l —c)*Aps] Vs,
1 [ee]
+ = [K?0% + b° + 2kobp| Viu + M / V(t,x —cy) — V(t,z)] G(dy)
0

2
)\2/ V(t,z+ Kz) = V(t, )] H(dz)} (4.28)
for (t,z) € [0,7) x R with the boundary condition
V(T,x)=U(x) =m — % eme, (4.29)
n
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Proof. The proof follows from the Theorerhs 2.4 dnd|3.1. O

The Verification Theorem below allows us to derive an optipwicy for the problem
from a smooth solution to the HIB equation in Eqn._(#.28).

Theorem 4.7. (Verification Theorem)Assume that the HIB Equation in Eq@.28)
with terminal condition in Eqn.(.29) has a solutionP(¢, x) which is continuously
differentiable ont € [0, 7] and twice continuously differentiable an€ R. Then,
subject to boundary conditions, the value functioWig, =) = P(t,z). Now suppose

that there exists admissible control polity= (K, ¢) € A such that for eachit, z),

P(t,z) attains the supremum in the HJB Equation then= (K, ¢) is the optimal
control policy andP = V' is the optimal value function.

Proof. The proof is similar to that of Theorelm 4.4. O
Closed form solution for optimal control policy

Thus far, we have described the problem of the insurer, dgivercorresponding HIJB
equation to the value functiori(¢, ) and the verification theorem. Now, we solve for
the optimal value function and the optimal reinsurancestment strategy. First, we
give the result in the theorem below and outline the solypimtess in the proof.

Theorem 4.8. Consider the wealth process of Eqiid.27) and the utility function

defined by
U(z) =m — ge_m,

with the objective to maximize expected utility of terminahhive the optimal invest-
ment strategy satisfies
p—r—notKe Tt 4 )\, / —nzeT(T_t)eXp(—nKzeT(T_t)) H(dz) =0,

—00

the optimal reinsurance strategysatisfies

frn 4 2(1 — c)apy — / ) yexp (neye™™ V) G(dy) = 0
and the optimal value function of tr(:e insurer is given by
V(t,z) =m — % exp (—nze" D 4 n(T —t))
wheren (T — t) satisfies the following ODE:
(T —t)=—ne" T [Klp—r]+re+a—(1— &) — ol — &)? Ay o]

]_ i N R ')
+ 57]2627(T_t) [K202 + b+ 2Kabp] + M\ / eXp(néyeT(T_t)) G(dy)
0

+ )\2/ eXp<—nkzeT(T_t)> H(dz)

—0o0
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with the initial conditionn(0) = 0.

Proof. Step 1: Guess the value function that satisfies the HIB equationim &g28)
and take the partial derivatives of the value function.

We make a guess about the optimal value functioof the form
V(t,z) =m — 2 exp {—nze" T 4 n(T - 1)}, (4.30)
n

wheren(-) is a function such that (¢, z) solves the HIB Equation in Eqri. (4128) and
its initial value isn(0) = 0 from Eqgn. [4.29).
We proceed to obtain the partial derivatives

Vi(t,x) = —% [na:re’"(T_t) —n/(T — 1)) eXp{—nzper(T—t) +n(T —1)}

- rT—t) _ i — )] [= 2 _
[y 00—l (7= )] [~ (V) = )
le.,
Vi(t,z) = [V(t, ) — m] [nere™ ™D —n/(T — t)] (4.31)
and
Vi(t,x) = aeT(T_t)eXp{—n:ver(T_t) +n(T —t)}
— qer@n |1 _
ae [ Oé(V(t,az) m)} :
Therefore,
V;U(tv ZB) = _nGT(T—t) [V<t7 ZE) - m] ) (432)
Ve (t, ) = —omeQT(T_t)eXp(—nxer(T_t) +n(T —t))
= —ane T [—g(V(t, x) — m)] :
Therefore,

Vi (t, @) = 2T [V (t, ) —m]. (4.33)
Step 2: Simplify the expressiong, [V (¢,z — cy) — V (¢, )] G(dy) and

[ [V(t,x + Kz) = V(t,2)] H(dz) that are found in the HIB Eqri_(4128).
| Wit =) = Vi) G -
/OOO {m — %exp{—n(as — cy)er(T_t) +n(T — t)}} G(dy)

_ /OOO [m — %exp(—nxeT(Tt) +n(T — t))] G(dy),
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thus,
/0 T Vi(tx—cy) — V(t,2)] Gldy) =

/ —%exp{—nxer(T_t) +n(T —t)} exp (ncyeT(T_t)_l) G(dy).
0

Hence,

| Wta )= Ve Glay) = 1V (t) — ] [ explneser ™0} Glay)
’ ’ (4.34)

/00 V(t,z+ Kz) —V(t,x)] H(dz) =

oo

/OO {m E %exp{—n(x R 4 (T - t)}} e

h [ - Semp(ne s nir )| ),

thus,
/_OO V(t,x + Kz) =V (t,z)| H(dz) =

/ —%exp{—nxe’"(Tt) +n(T —t)} eXp{—nKzeT(T’t)’l} H(dz).

Herewith,
/OO V(t,o+ Kz) = V(t,z)] H(dz) = [V (t,z) — m)] /OO exp{-—nKze"TD} H(dz).
- - (4.35)

Step 3: Substitute the partial derivatives of the value functiotiklJB Eqn. [4.28)
to check if it solves the equation and to obtain the optimastiment and reinsurance
strategy.

Substituting Eqns[{4.31) t6 (4135) into the HIB Equatio2&), we obtain
0 =sup,cq (—ne" TV (t,2) —m] [Klp—r]+rz+a— (1 — ) — a(l —c)*Aips)
+ [V (t,2) —m] [nere" ™ —n/(T — 1))

1
+ 577262’"(T’t) [V (t,z) —m] [K?0% + b* + 2kobp]
+ M [V (t,z) —m] / exp{ncyeT(T_t)} G(dy)
0

o [V(t2) — m] / " ep{nKe 0 i <dz)) |

—00
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le.,
0 =sup,c4 (—ne’"(T_t) [K[p—r]4+rz+a—(1—c)hpm —a(l — )’ Aps] —n' (T — 1)

1 [e.9]
+ §n262r(T—t) [K202 2 4 Qkabp} + )\1/ exp{ncyer(T_t)} G(dy)
0

+ X / h exp{—nKze' T} H(dz)) . (4.36)

[e.o]

Now, we shall differentiate the left-hand side of Edn. (4 8&h respect tak” andc to
find the critical points where the maximum is attained.
First, we differentiate with respect 6 and equate to zero:

. (/,L o 7n)er‘(Tft) + 772627‘(T7t) [KO’Q + O'bp]

+ )\2/ —nzer(T’t)eXp{—nKzeT(T’t)} H(dz) = 0.

(e 9]

Thus,

p—r—notKe Tt 4 )\, / —nzeT(T_t)eXp{—nKzeT(T_t)} H(dz) =0.

—00

This implies that the optimal investment in risky askesatisfiesL(K) = 0, where

LK) = p—r—no?Ke Tt 4+ ), / —nzeT(T*t)eXp{—nKzeT(T*t)} H(dz).

—00

We notice that

L'(K) = —no?e" T — /\gner(T_t)/ ngexp(—nKze’"(T_t)) H(dz) < 0.

o0

So, L(K) is a decreasing function. Also lign, .. L(K) > 0 and limg_,L(K) < 0

Therefore, there exists” such thatl,(K) = 0.
Second, we differentiate with respecttand equate to zero:

—ne" TN\ —2ne" T (1—c)ady pp+ Mme Y /0 N exp{neye’ "V} Gdy) = 0.
Thus,
w1+ 2(1 = c)auy — /000 yexp (ncyeT(T_t)) G(dy) = 0.
Denote the left-hand side as the functiéfr). That is,
J(c) =1 +2(1 — c)apy — /000 yexp (ncyeT(T’t)) G(dy).
We notice that

J'(¢) = —2apuy — / y277€’”(T’t)eXp(ncyer(T’t)) G(dy) <0
0
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and -
J"(c) = —/ e T exp (ncyer(T_t)) G(dy) < 0.
0
So, J(c) is a decreasing and concave function. Al$¢)) = 2au, > 0 andJ(1) =

m — [ yexp{nye" ™} G(dy) < 0. Therefore, there exists € (0,1) such that

J(c) = 0 andé is the optimal reinsurance strategy. Substitutiigndé into the HIB
Equation in Eqn.[(4.36), we get that

n'(T —t) = —pe" T [Klp—r]+rz+a—(1—)Mp —a(l —¢)*Apus]

1 R R )
+ 577262’”@”‘/) |:K20'2 + b+ 2Kabp} + M\ / exp(néye”(T’t)) G(dy)
0

-I—)\g/ exp(—nf(zer(T_t)> H(dz) (4.37)

—00

with the initial conditionn(0) = 0. If distributions of claim siz&” and jump sizeZ
is known, one can find a closed form expressionfo). Hence, we can say that the
value function satisfies the HIB Eqgn. in Edn. (4.28). ]

55



56



CHAPTER 5

CONCLUSION AND OUTLOOK

The aim of the thesis was to review optimal control problemngugh their applications
in finance and insurance. We mainly focused on obtainingedderm solutions to
the optimization problems. Optimal control methods is ohéhe methods used to
handle portfolio optimization problems. An optimal corfpooblem typically consists
of a state procesX, a control process and a cost functional(u). The objective
in optimal control problems is to obtain a control procesthat optimizes the cost
functional J(u) over all admissible controls. In this thesis, we used the dDyic
Programming (DP) approach to solve optimal control prolsleBP principle reduces
the optimal control problem to the problem of solving the H#m-Jacobi-Bellman
(HJB) Equation.

First of all, we studied important mathematical resultsdegeto solve optimization
problems. Major results in diffusion models and jump modedse outlined. In addi-

tion, we provided the general class of optimal control pealblnd defined the objec-
tive function. The control problem is a minimization protlé the objective function

is a cost functional. On the other hand, the control probkeemaximization problem
if the objective function consists of utility functions. oer, the DP principle was
described. The HJB equation and the Verification Theorenewéso derived. We

closely followed [[6] and([29].

Optimal control problems have applications in finance, iasae, engineering, etc. In
controlled diffusion processes, we discussed an appicat stochastic optimal con-
trol in engineering followed by applications in finance. e tengineering application,
called the Linear Quadratic Regulator, we find the optimakm@dmprocess that keeps
an initially excited system close to its equilibrium pasiti In the first financial ap-
plications, we studied the investment-consumption proldé¢ an investor who has an
initial endowment and is allowed to consume and invest in anfiral market with a
risk-free asset and a risky asset in two cases. In the segpigtation, we consid-
ered a problem where the aim is to maximize expected utifitgroninal wealth of an
investor over finite time horizon.

Beyond controlled diffusion processes, we considered thpgdications of optimal
control for jump processes. The first application is in firmaod the other two are in
insurance. The first application is an investment-consiomgiroblem similar to the
application treated in the controlled diffusion case. Thieence in the two applica-
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tions is that, in the latter problem, the dynamics of theyriakset is represented with
a jump-diffusion process. This representation was donedount for the rare cases
where there are large movements and sudden breaks in tlyeagskt price. The ob-
jective was to find a closed-form solution for the optimal@stment and consumption
strategy that will maximize the utility of the investor owam infinite time horizon. In
the second application, a closed-form solution for the stvent strategy that maxi-
mizes the expected exponential utility of terminal wealtlao insurer was obtained.
The wealth process of this insurer is affected by the rislc@ss which involves the
cash inflow of premium income and cash outflow of insurancendalus the initial
capital. The risk process is modelled by a jump-diffusioogesss. In the third appli-
cation, the insurer is allowed to invest in a financial magwd purchase proportional
reinsurance to reduce and share risk. The optimal investamehreinsurance strategy
that maximizes the expected exponential utility of terrhimaalth of an insurer was
found.

This thesis can be extended for theoretical and practicgdgses. In all the appli-
cations treated herein, closed form solutions were obdailre general, however, the
range of optimal control problems for which analytical smos can be obtained is
small. Hence, numerical methods are recommended to appatxioptimal control
processes. Kushner & Dupuls [17] provide numerical methbdscould be used to
model a wide range of stochastic control problems for diffasand jump-diffusion
processes. In the optimal control insurance applicatibaswe studied, we obtained
closed form solutions for cases where the jump size digtabus unknown. Analyti-
cal and computational methods could be used to solve or gippate the optimal value
function of the insurer for specific jump size distributiofgaltas, Frangos & Yanna-
copoulosl[4] consider the optimal investment and reinszteamthe presence of insider
information in a Black-Scholes financial market. The proldemuld also be extended
to where the surplus process of an insurer is modeled by addletregime-switching
diffusion. Optimal control of stochastic hybrid systems t& used to formulate more
practical problems. In such problems, the dynamics of thtegirocess takes jumps
and regime switches into consideration. The state proaegd be assumed to switch
jump-diffusion paths between jumps. See Azevedo, Pint&ivéeber [3] for an ap-
plication in this setting. Temocin & Weber in [33] provide alternative way that uses
a numerical discretization scheme to solve optimal comtfstochastic hybrid system
with jumps.
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