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ABSTRACT

ENANTIOSELECTIVE AZA-HENRY REACTION OF ~-BOC PROTECTED
IMINES AND NITROALKANES WITH BIFUNCTIONAL SQUARAMIDE
ORGANOCATALYSTS

Susam, Dilsad
M.Sc., Department of Chemistry
Supervisor: Prof. Dr. Cihangir Tanyeli

June 2015, 121 pages

The first part of this thesis comprises the application of a Cinchona alkaloid derived,
bifunctional squaramide organocatalyst in the aza-Henry reaction of #-Boc protected
imines and nitroalkanes. The target chiral f-nitroamines are chosen because; they are
quite feasible for the corresponding a-amino acids and 1,2-diamines, which are basic
structural motif in many natural products and key materials of the many
pharmaceuticals. In this part, 12 different chiral f-nitroamine derivatives were
synthesized with quinine based novel bifunctional organocatalyst, which has been
developed in our group, up to 91% ee under the optimized condition with 10 mol%

catalyst loading.

In the second part of the thesis, preliminary studies of enantioselective Henry, aldol,
decarboxylative aldol and Friedel-Crafts type substitution domino reactions were
conducted with bifunctional organocatalysts. Among these studies, the best result
was achieved with Friedel-Crafts type substitution domino reaction as 92% ee in 10

minutes.

Keywords: asymmetric synthesis, organocatalysis, enantioselectivity, aza-Henry,

aldol, decarboxylative aldol, Friedel-Crafts, domino
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BIFONKSIYONEL SKUARAMIT ORGANOKATALIZORLER ILE -BOC
KORUNUMLU IMINLERIN NITROALKANLARLA ENANTIYOSECICI
AZA-HENRY TEPKIMESI

Susam, Dilsad
Yiiksek Lisans, Kimya Boliimii

Tez Yoneticisi: Prof. Dr. Cihangir Tanyeli

Temmuz 2015, 121 sayfa

Bu tezin ilk kismi, Cinchona alkaloid tiirevinden sentezlenen bifonksiyonel
skuaramit organokatalizoriinlin, nitroalkanlar ile #Boc korunumlu iminlerin
tepkimesindeki uygulamasini igermektedir. Hedeflenen kiral f-nitroamin yapilari o-
amino asitlere, pek ¢ok dogal iiriiniin yapisinda ve Onemli ilag hammaddesinde
kullanilan 1,2-diaminlere kolayca ¢evrilebilmesiyle bilinen 6nemli ara iiriinlerdir. Bu
kisimda 12 farkli kiral S-nitroamin tiirevi, grubumuzda sentezlenen kinin temelli
Ozglin bifonsiyonel organokatalizér yardimiyla, %10 mol miktarinda optimize

edilmis kosul ile %91 enantiyosegiciliklere kadar sentezlenmistir.

Tezin ikinci kisminda Henry, aldol, dekarboksilatif aldol ve Friedel-Crafts tipi
stibstitiisyon domino tepkimelerinin bifonksiyonel organokatalizoér yardimiyla onciil
calismalar1 yapilmustir. Iclerindeki en iyi sonu¢ Friedel-Crafts tipi siibstitiisyon

domino tepkimesi ile %92 enantiyosegicilikle 10 dakikada elde edilmistir.

Anahtar Kelimeler: asimetrik sentez, organokataliz, enantiyosecicilik, aza-Henry,

aldol, dekarboksilatif aldol, Friedel-Crafts, domino

Vi
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CHAPTER 1

INTRODUCTION

1.1.  Why is the Asymmetric Synthesis Important?

Most of the living systems, the vital components in particular, contain at least one
chiral center. This uniqueness causes the enantiomers of these molecules to diverse
in the expected results, as in the thalidomide drug disaster case in West Germany in
the late 1950s. Thalidomide was synthesized by Chemie Griinenthal, a German
company, and used as sedative to stop morning sickness of pregnant women. In the
beginning, it was thought that this drug helps women; however, there had been a
drastic increase in the birth defects in the worldwide rapidly. After this drug usage
nearly more than 10,000 case were reported.’ Subsequent studies showed that (R)-
(+)-enantiomer provides the sedative effect; whereas, the (S)-(-)-enantiomer causes

the birth defects (Figure 1).

0 0
(R) ()
N 0 N— 0
H J—NH W J—NH
0 0 o 0

(R)-Thalidomide (S)-Thalidomide

Figure 1. Molecular structures of thalidomide

This situation forced the drug industry to pay more attention to the chirality concept
and improve their products. As the awareness increases, the approval of chiral drugs

by Food and Drug Administration (FDA) has also been increased (Figure 2).’

Especially, after 2000, drug companies focus on to choose single enantiomer of the

active manners.
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Figure 2. Drug approval charts after 2000

1.2. How Do We Synthesize the Chiral Molecules?

There are many ways to synthesize chiral molecules. They can be divided into three

main subtitles as chiral pool, kinetic resolution and asymmetric catalysis.

1.2.1. Chiral Pool

In this approach, the desired molecules are developed from the naturally occurring
chiral products. Basically carbohydrates, amino acids, terpenes etc. are used as
starting materials. Although this approach provides the highest enantiomerically pure
compounds, the minority of the natural compounds made the scientist to study on

another approaches.”



1.2.2. Kinetic Resolution

In the kinetic resolution case, the chiral products are obtained from their racemic
mixtures and in this method, enzymes or chiral chemicals are used. One enantiomer
reacts much faster compared to the other, affording the products in high

. . 5
enantiomerically excess form.

1.2.3. Asymmetric Catalysis

Among the asymmetric synthesis methods, the largest library belongs to the
asymmetric catalysis. The general idea is to use small molecules, called ‘catalysts’,
in order to accelerate the reaction rate and decrease the activation energy of the
reaction without changing the desired product’s structure. Diversity of these reagents
can be improved or enhanced in many ways. The main idea for this approach is to
synthesize the chiral molecules from prochiral ones with the help of chiral catalyst or
reagents. Usually, small, man-made organic molecules are preferred to use, and this
approach, also provides an economical way to get highly enantioenriched

6
compounds.

In the literature, many catalytic studies and many catalysts have been reported. These
catalysis concepts are divided into three main subjects as; biocatalysis, transition
metal catalysis and organocatalysis. We became familiar with the new concept called

“organocatalysis” in the last decade.’

“Organocatalysis is the acceleration of chemical reactions with a substoichiometric
amount of an organic compound which does not contain a metal atom”.® These
compounds mainly contain carbon, hydrogen, nitrogen, oxygen and sulfur atoms and

called “organocatalysts”.

Although the catalytic use of small organic molecules is known for a century, the
applications can be considered as a new research area. After the mid-1990’s there has

been a sharp increase in the organocatalytic research.’



1.3.  Organocatalysis in Asymmetric Synthesis

1.3.1. Classifications of Organocatalysts

The first classification of the organocatalysts belongs to Berkessel and it can be
considered by their interactions between substrates as covalent interaction or non-
covalent interaction. In the covalent bond interaction, a new chemical (covalent)
bond occurs between the catalyst and substrate; whereas in the non-covalent case, the
weak binding takes place such as hydrogen bonding or ionic interactions.” The
iminium, enamine, SOMO or Lewis base type catalysts considered as covalent
catalysis (Figure 3)."° On the other hand, Brensted acid, phase transfer, hydrogen

bonding, Brensted base catalysts are grouped into the non-covalent catalysts."'

R
R_e_R? R Rz Ris R? R R2 1 2
\N/ \N/ \N N cat R\l/R
)j\ /g )k E Y - T@
Y=NR, PR, S, C Eo

iminium enamine SOMO

Amine Catalysis Lewis Base Catalysis

Figure 3. Covalent catalysis

Seayed and List announced another classification in 2005."” According to their
mechanistic cycle proposal, organocatalysts act as either Lewis acid, Lewis base,

Bronsted acid or Bronsted base.

In 2008, MacMillan published an article in Nature’, about the development of
organocatalysts. He classified the organocatalysts by their activation and induction
modes. The most commonly used ones can be considered as; enamine catalyst,
hydrogen-bonding catalyst and iminium catalyst. The active manner of the catalyst
takes the lead role in the intermediate of the reaction to perform highly enantiomeric
species in these types of catalysts. The main idea is increasing the HOMO level or

decreasing the LUMO level (Figure 4).
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Figure 4. Commonly used generic activation modes of organocatalysts’'>'*

1.3.2. Natural Products in Organocatalysts: Cinchona Alkaloids

Cinchona alkaloids, the natural products isolated from Cinchona trees, and used as
catalysts since 1800s. In 1812, Pierre-Joseph Pelletier and Joseph Bienaimé
Caventou isolated the first Cinchona alkaloid: “quinine”.'” However, the catalytic
usage of these alkaloids was discovered after 1912."% Although the first trials were
not very satisfying, in the last three decades there has been an increase in the reports

of catalytic studies with different Cinchona examples (Figure 5).



Quinine Quinidine Cinchonine Cinchonidine

Figure 5. Examples of Cinchona alkaloids

The first remarkable study with these alkaloids was reported by Pracejus, by using
O-acetyl-quinine 3 as catalyst. He performed a reaction between phenylmethylketene
(1) and methanol (Scheme 1). With a few amount of catalyst, the result was quite
significant. Although reaction was carried out a very low temperatures, the chemical

yield was also good as 93% and the enantiomeric excess was found 74%."

H CHj
H3C catalyst 3 (1 mol%) ., 0
—0 > Ph ~CH
Ph methanol (1.1 eq.) 3
toluene, -111 °C o
1 2
74% ee O-acetyl-quinine
93% vyield

Scheme 1. The first remarkable study with Cinchona alkaloids

1.3.3. Bifunctional Organocatalysis

One of the biggest breakthroughs in the organocatalytic studies came in the 2003.
Takemoto and his co-workers submitted a new type of catalyst, called “bifunctional
organocatalyst”, includes both acidic and basic moieties, all in one unit.** These
types of catalysts provide an easy way in the activation of both substrates
simultaneously. They derived an organocatalyst from Schreiner thiourea catalyst;

provide a high hydrogen-bond interaction with the substrates (Figure 6).>'
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Figure 6. Schreiner thiourea

Takemoto and his co-workers performed the Michael Addition of diethylmalonate
(5) to trans-f-nitrostyrene (4) using thiourea type bifunctional organocatalyst 7

(Scheme 2).

CF;
F3C

EtO,C . _CO,Et
. NO, . s NH
©/\/ " EtOgC/\COZEt catalyst 7 (10 mol%) NO, #
4 5 Toluene,rt, 24 h 6 NH
/
93% ee O“'N\

86% yield

Scheme 2. The first bifunctional organocatalyst and its application in the Michael

addition

In their catalyst, (R,R)-1,2-cyclohexyldiamine unit was used for the chiral scaffold,
the basic part of the catalyst is used for the activation of nucleophile by raising
HOMO level, and the acidic part, thiourea moiety, is used for the activation of the

electrophile by decreasing the LUMO levels.”

1.3.4. Squaramides in Organocatalysis

Thiourea type catalysts make it possible to interact substrates with H-bonding and
there are many of them to widen the library. However, this brings us to find other H-
bonding source. Rawal ez al. brought a new acidic moiety in to the literature.”* They
claimed that the squaric acid moiety, depicted in Figure 7, provides a higher spacer
than thiourea. The angle of the hydrogens in the squaric acid makes the H-bonding

more effective in the transition states.
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Figure 7. The distance between N-attached hydrogens in N,N'-dimethylthiourea and
N,N'-dimethylsquaramide

1.4. Aza-Henry Reactions

Aza-Henry reaction is a modified Henry reaction that occurs between nitroalkanes
and imines to form f-nitroamine products. It is also known as nitro-Mannich
reaction, which is the nucleophilic addition of nitronates to the electrophilic imine
species to produce new C-C bond. Louis Henry published the first report of this
reaction in 1896.” In his study, methanolamine 8 was treated with nitromethane and

nitroethane to give di- 10 and tripiperidines 9 (Scheme 3).
O )
@ MeNO, N
B — e N
N.of (ref 23) NO-
8 O

conditions 9
not reported
oF
EtNO, N\
—_— W'y
(ref 23) NO,
O
10

Scheme 3. The first example of nitro-Mannich reaction



After some studies were reported in this area, Henry made a revision about his study.
He changed the product structure; nitromethane underwent a reaction with two moles
of methanolamine derivatives 8 and 12 and leaving one free a-H as shown in Scheme

424

R NR,
lil OH MeNO, RzN\ Ji
R/ ~ H N02
8 (R=-(CHy)s") 11 (R=-(CHyp)s-)
12 (R=Me) 13 (R=Me)

Scheme 4. Revised structure of the first example of nitro-Mannich reaction

Until 1950, all the reports mentioned in situ formation of imines; however, in the
1950 Hurd and Strong reported that they used preformed imine in their reaction.”
Benzylidineaniline (14) underwent a reaction with nitroalkanes 15 successfully by

refluxing in ethyl alcohol to give f-nitroamine products 16 and 17 (Scheme 5).

_Ph L
| /\ EtOH
J RTNO, —— [ AR
Ph Refux
14 15 NO2

16 R=H (54%)
17 R=Me (35%)
No rxn with PrNO,

Scheme 5. The first nitro-Mannich reaction with preformed imine

The first study on asymmetric catalytic reaction was published by Shibasaki ef al. in
1999.%° They used heterobimetallic complex as a catalyst 20. They discovered from
their previous study that P=O bonds can coordinate with the central metal atom of
the catalyst. Therefore, N-phosphonylimine type structures 18 were used as
electrophiles. Nitromethane was slowly added as nucleophile over 27h. 91% ee was

afforded with 79% chemical yield (Scheme 6).
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Scheme 6. The first catalytic example of aza-Henry reaction

In 2004, Takemoto and his co-workers reported the first enantioselective nitro-
Mannich reaction by using a bifunctional organocatalyst 7. Various N-protected

imines were reacted with nitromethane by catalyst 7 (Scheme 7).*’

-PG PG
N HN o NH
catalyst 7 (10 mol%) NO, =
+  MeNO, > NH
DCM, rt O

14 PG=Ph 16 PG=Ph “'N
18 PG=P(O)Ph, 19 PG=P(O)Ph, \
21 PG=Ts 22 PG=Ts 7

up to 76% ee
up to 91% vyield

Scheme 7. The first organocatalytic aza-Henry reaction

Moderating S-nitroaldol products with high enantioselectivities is not an easy with
t-Boc protected imines and nitromethane by using bifunctional organocatalysts due
to low conversions. Most of the literature examples show that many scientists prefer
to work with nitroethane or other nitroalkane derivatives due to their high acidity.
(pKa of nitromethane,” nitroethane® and 1-nitropropane® is 10.2, 8.6, 8.92,
respectively, in water at 25°C.) Unfortunately, only some of the catalysts work well
with nitromethane, and these reactions performed with high catalyst loading scope
usually. Sgarzani et al. tested several protecting groups on imine with nitromethane
using Cinchona alkaloids as catalyst. The most efficient result was obtained with 20
mol% quinine in mesitylene as 61% ee in 18 hours with 90% conversion.”’ They also
screened the effect of modification on the catalyst by using #Boc and Cbz

protections. Among the modified catalysts, 3,5-bis(trifluoromethyl)benzene

10



isothiocyanate substituted one 27 gave the best result with -Boc protected imine in

88% ee. The optimized form of that study is shown in Scheme 8.

_PG _PG
|N 27 ( %) N
catalyst 20 mol%
Ar) + CH3NO, > Ar)*\/NOz
Toluene, -24 °C
23 PG=t-Boc 24 PG=Boc
25 PG=Cbz 26 PG=Cbz
up to 94% ee

up to 95% yield

Scheme 8. Organocatalytic aza-Henry study with quinine derived catalyst

Rampalakos and Wulff also studied on #~-Boc imines with nitromethane with their
novel bis-thiourea organocatalyst 29 in 2008. Their organocatalyst was based on
BINAM as chiral scaffold and the best condition of their reaction was shown in
Scheme 9.*> The maximum enantioselectivity was obtained with 3-chloro substituted
imine as 91%. Although they used Et;N as additive, yields are quite low. The best
chemical yield was obtained with the 1-naphthyl substituted as 65%.

CFs
N Boc N Boc OO S /@\
J catalyst 29 (20 mol%) NO H J\H CFs
Ar T RORNO, — cquv.EtN ’ N__N CF
. uiv. Et3 3
R N
2z 15 Toluene, -35 °C | O HH
24 R=H % S
28 R=CH, 2 &k,

Scheme 9. Reaction of ~-Boc imines and nitroalkanes with bis-thiourea catalyst

In 2012, Zhang et al. worked on the same study with quinine based modular
bifunctional chiral thiourea 32. After the optimization, derivatization of the imines
was conducted with nitromethane and nitroethane, respectively.” Their enantiomeric
excess values and yields are excellent in both cases without regarding electronic

properties of the substituents (Scheme 10).
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N 4 HN
| catalyst 32 (10 mol%)
r—  + RoHANo, < . )\(NOZ
4AMS
30 15 CH,Cly, -20 °C
90- 99% ee

77-90% yield

Scheme 10. Modular bifunctional thiourea with quinine organocatalyst in aza-Henry

reaction

The first example of the squaramide type bifunctional catalyst 33 in the aza-Henry
reaction was published by Du and co-workers in 2013.>* Although the main subject
was about benzothiazole imines, ~-Boc and tosyl protected imines were also tested
under their optimized condition. However, the enantioselectivities were very low

compared with their imine bearing benzothiazole (Scheme 11).

R R
) HN 7 o%}
catalyst 33 (5 mol%) * NO,
+ CH3N02 > F.C
CH,Cly, 1t 3 \Q/
§;1>, R=Ts 22R=Ts 15% ee
R=Boc 24 R=Boc 31% ee CFs 33

Scheme 11. Squaramide type quinine based organocatalyst in aza-Henry reaction

1.5. Miscellaneous Reactions with Organocatalysts

1.5.1. Henry Reactions

Henry reaction simply occurs between an aldehyde or a ketone and a nitroalkane to
yield f-nitroalcohol products.”> The resultant S-nitroalcohol motif would have
generally possess a stereogenic center by the use of prochiral aldehyde or ketone. In

the asymmetric version of Henry reaction, it is quite hard to control the

12



stereoselectivity in the final products due to fast background reaction. Therefore,
there is a limitation in the organocatalytic study of Henry reactions.”

One of the successful studies was done by Hiemstra ef al. using cinchona derived
organocatalyst 36.”” The reaction were performed with 10 mol% catalyst in THF to
afford f-nitroalcohol products 35 in very high chemical yields and

enantioselectivities (Scheme 12).

P |l
kQ
NN
N_~
) catalyst 36 (10 mol%) M |
RJJ\H + MeNO, W R/'\/NOQ X H
34 35 S

3

N
A
up to 92% ee
up to 99% yield
FsC CF
36

Scheme 12. Organocatalytic Henry reaction by Hiemstra

1.5.2. Aldol Reactions

Asymmetric aldol type reactions are also one of the remarkable C-C bond formation
reactions for affording highly enantioenriched f-hydroxy carbonyl products.’® In
literature, tremendous amount of organocatalytic reactions exist. Herein, the study of
Cheng and co-workers™ is depicted in Scheme 13, since the organocatalysts chosen
resembles our own organocatalyst library backbone. They used primary and tertiary
amine based organocatalytic system instead of bifunctional organocatalyst. The best

result was obtained with the catalyst 38 in 94% ee and 83% chemical yield.

NH,
o o catalyst 38 (10 mol% OH O O
JJ\ . )J\ y ( ) /\)J\ N
R H 10 mol% m-NOjbenzoic acid R
TfOH, THF, -20 °C 37
34 38
94% ee
83% yield

Scheme 13. Organocatalytic aldol reaction by Cheng
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1.5.2.1. Decarboxylative Aldol Reactions

Decarboxylative aldol reactions are useful way to synthesize pS-hydroxy-o-
aminoacid®® and p-hydroxy-thioester’' derivatives. There is only one example
performed by Song ef al. in literature, with malonic acid half thioesters (MAHTs) 39
and different aldehydes 34 in presence of sulfonamide sulfonamide-based

organocatalyst 41 as shown in Scheme 14.

0 o 0 OH O N—S~
catalyst 41 (30 mol%) /\HL O H e}
R JJ\H + HO usph » R SPh O

H/Me MTBE/THF 9:1 H/Me

34 39 (0.2 M), 20 °C 40 M O

up to 97% ee
up to 96% yield

Scheme 14. Organocatalytic decarboxylative aldol reaction by Song

1.5.3. Friedel-Crafts / Substitution Domino Type Reactions

This type of reactions are used to perform dihydrobenzofuran (DHB) and
dihydronaphthofuran skeletons, which are very important pharmaceutical
precursors.” Nevertheless, the asymmetric study of these skeletons are not very
common. In 2013, Aleman and co-workers succeeded to synthesize almost
enantiomerically pure frans-dihydroarylfuran derivatives 44 starting with (2)-
bromonitroalkenes 43 and f—naphthols 42 by squaramide type organocatalyst 45
(Scheme 15).%

CF;
R, NOz2| 4
R1 OH Br tayst 45 (10 mol%) R o /JjNH
catalyst mol% X
R2 NaOAc, CHCI3, 0 °C % R2 NH
42 43 44 <:§N )

up to 98% ee
up to 94% vyield 45

Scheme 15. Organocatalytic Friedel-Crafts / substitution domino reaction by Aleman
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1.6. Aim of the Work

In this thesis, the main objective was to test our research group’s bifunctional

organocatalysts in different types of reactions

The first part we aimed to optimize aza—Henry reaction of the -Boc protected imines
and nitroalkanes to obtain chiral f-nitroamines using 2-aminoDMAP and quinine
based squaramide type bifunctional organocatalysts (Scheme 16). These target -
nitroamines were chosen because; they are quite feasible for the corresponding 1,2-

diamines, a-aminoacids, etc.

Boc Boc
N bifunctional HN "~
) organocatalyst )\(
+ RCH 2N02 > % NO2
Ar solvent Ar R
23 15 24, 25

Scheme 16. Representative route of the reaction

In our research group, we developed a wide range of bifunctional organocatalyst
library, including two main chiral scaffold as 2-aminoDMAP and quinine type

Cinchona alkaloid. (Figure 8).

F3;C

o

CF 7 o
3
oA B
N OMe
H
NH

NH Q Y NH_0
O P ¢
“NH
~ IN HN 0
%
e; NS o
\,Tl N |
_ 48 R=tert-butyl 51 R=tert-butyl44
46 X=0
47 X=S 49 R=1-adamantyl 52 R=1-adamanty!
50 R=2-adamantyl 53 R=2-adamantyl

Figure 8. Bifunctional organocatalysts developed in our research group
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In the second part of the thesis, we planned to test the efficacy of those bifunctional
organocatalysts in different types of reactions such as Henry (Scheme 17), aldol
(Scheme 18), decarboxylative aldol (Scheme 19) and Friedel-Crafts / substitution

type domino (Scheme 19) reactions to see their utility.

bifunctional

0] MoNG organocatalyst OH o
+ e s . N
R A H 2 solvent RT>2
34 35

Scheme 17. Organocatalytic Henry reaction

diamines with acid
or

(e} (e} bifunctional OH O
+ organocatalyst ?
R J\H )I\ solvent ~ R /\)J\
34 37

Scheme 18. Organocatalytic aldol reaction

(0] (0] ) )
0 J bifunctional 1) OH
J]\ EtO ‘\HL OH organocatalyst J\(L
R H Ph.__NH solvent ~ EtO *R
bl Ph._NH
(0]
34 54 I g

Scheme 19. Organocatalytic decarboxylative aldol reaction

R NO,
OH Br bifunctional "0
organocatalyst A
- R, - €
solvent F
42 43 44

Scheme 20. Organocatalytic Friedel-crafts / substitution domino reaction
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CHAPTER 2

RESULTS AND DISCUSSION

2.1.  Synthesis of ~-Butyl Squaramide Anchored Bifunctional Organocatalysts

In our research group, we have developed many bifunctional organocatalysts. These
catalysts can be categorized as two major sets of chiral scaffolds. The first set
includes 2-aminoDMAP* basic unit derived from (R,R)-1,2-cyclohexyldiamine as
chiral scaffold, whereas the second set involves the quinine amine* as chiral base.
By anchoring different acidic moieties, such as urea, thiourea and squaramide motifs,

we can synthesize different types of bifunctional organocatalysts.

General route for the synthesis of #-butyl squaramide type organocatalyst is used in
this thesis depicted in Scheme 21 and 22. After synthesizing 2-aminoDMAP 56 and
monosquarate’’ 57 separately, they were coupled in DCM:MeOH mixture at room
temperature to obtain desired organocatalyst 48. By using the same procedure,

quinine amine 58 and monosquarate 57 result in organocatalyst 51 (Scheme 22).*

{ X
NH, 0 N
L o o
NH
NH
. j;i DCM:MeOH (1:1) U
~ N EtO NJT t, 48 h NH

! H
\N\ SN

| 56 57 \’Tl ~ |
48

Scheme 21. Synthetic route for #-butyl squaramide / 2-aminoDMAP
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Scheme 22. Synthetic route for #-butyl squaramide / quinine

2.2.  Evaluation of the Bifunctional Organocatalysts in Aza-Henry Reaction

2.2.1. Aza-Henry Reaction of -Boc Protected Imines with Nitroalkanes

Aza-Henry reaction has been initiated with the organocatalysts, involving 2-
aminoDMAP based urea 46, thiourea 47 and three different squaramides 48-50 as
acidic moieties, developed in Tanyeli’s research group. Benzaldehyde derived #-Boc
protected imine 23 was reacted with nitroethane to test the efficiencies of
organocatalysts 46-50 in 5 mol% and 2 mol%. The results are given in Table 1. The

structures of organocatalysts used in testing reactions are depicted in Figure 9.

46 47 48 49 50

Figure 9. 2-AminoDMAP based bifunctional organocatalysts

Among the results, 2 mol% of organocatalyst 48 gave the best result in terms of
enantioselectivity of major diastereomeric product (Table 1, entry 8); therefore, it
was chosen to be tested for further trials as 1 mol% and 10 mol% catalyst loading.

Although 10 mol% catalyst loading (entry 11) afforded high diastereomeric ratio as
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92:8 %, we could not get acceptable level of enantioselectivities in both major and
minor products. In the case of 1 mol% catalyst loading of 48 (entry 12) slight
decrease was observed in terms of diastereoselectivity as 88:12 % compared to 10

mol% catalyst loading. No good ee values were observed.

Table 1. Catalyst screening
NBoc NHBoc

l Organocatalyst” ~o-NO2
. _— >
EINO; Toluene, rt
23a 28a
Cat.
. Time Major Minor dr
Entr Catalyst Loadin
' y AR O ee%% ce%% %)
1 46 5 1.5 17 30 72:28
2 47 5 1.5 9 Rac 93:07
3 48 5 1.5 Rac Rac 80:20
4 49 5 1.5 5 30 93.07
5 50 5 1.5 Rac 47 80:20
6 46 2 2.5 16 13 71:29
7 47 2 2.5 Rac 3 92:08
8 48 2 2.5 19 30 78:22
9 49 2 2.5 10 33 87:13
10 50 2 2.5 13 36 69:31
11 48 10 1.0 6 36 92:8
12 48 1 35 10 20 88:12

All of the experiments are conducted in 0.1 M with full conversion.

We continued with further optimization studies with solvent screening (Table 2).
Among the screened solvents DCM proved to be the best one with 31% ee in 45

minutes (entry 3).

The next optimization step was temperature screening performed with 2 mol% ¢-
butyl / 2-aminoDMAP 48 in dichloromethane (Table 3). Since the reaction rate was
high and it would cause low stereoselectivity, we decided to lower the temperature.
Unfortunately decreasing temperature induced fluctuations in enantiomeric excess

values.
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Table 2. Solvent Screening

Entry

N N U A WD~

8

ll\lBoc
+  EtNO,

23a

Solvent

Toluene
CH;CN
DCM
Chloroform
THF
1,4-Dioxane
Xylene

Hexane

Catalyst 48 (2 mol%)
R —
Solvent, rt

Time
(h/m)

2h

lh
45 min

lh
30 min
45 min
30 min

45 min

Major
ee%

19
20
31
15
10
13
6
17

All of the experiments are conducted in 0.1 M with full conversion.

O,NH
“NH

N

"N

48

Minor
ee%

30
11
30
18

24
16

X

dr
(%)

78:22
96:4
79:21
88:12
96:4
96:4
96:4
89:11

We could not observe consistent results at different temperatures as given in Table 3.

Therefore we tracked the reaction with GC-MS and realized that there was a slight

decrease in the product amount as well as increase in the starting material at different

time intervals during the course of the reaction. (Appendix- C, Figure C. 1. & Figure

C. 2., 1 h & 5 h, respectively) We concluded that fluctuated results could be

attributed to retro-Mannich type reaction.

Table 3. Temperature Screening

Entry

AN BN AW N~

7

All of the experiments are conducted in 0.1 M with full conversion in DCM.

Temperature Time
(°C) (h)
0 2.5
-15 4
-30 5
-40 7
-50 8
-60 16
-75 9

Major
ee%

4
30
40
23
40
23
20

20

Minor

ee%
11
27
26

17
10

dr
(%)

97:3

98:2

93:7
71:29
96:4

88:12
86:14



Table 4. Temperature Screening with other derivatives
O

0 X

N

H
NBoc NHBoc NH

! NO
Catalyst 48 (2 mol%) N 2 “INH
+ RCHNO, ——————>

MeO

DCM MeO R PN
23b 15 24b R=H A
28b R=Me |
48
Entr R Temperature Time Conversion* ee dr
y (°C) (h) (%) (%) (%)
1 Me 30 24 100 59%/11° 97:3
2 Me -40 24 100 63%/73" 97:3
3 H -40 24 70 55 -
4 H -50 69 45 64 -
5 H -60 75 28* 66 -

All of the experiments are conducted in 0.2 M. *“Major diastereomer, ®minor diastereomer *Calculated with GC-

MS.

We continued to temperature screening with p-anisaldehyde derived imine and
nitroalkanes (Table 4). A drastic increase in enantioselectivity was observed with
nitroethane at -30 °C and -40 °C as 59 and 63%, respectively, for the major isomer
(entries 1 and 2). With nitromethane, a consistent increase was observed in terms of
enantioselectivity, as 55, 64 and 66% at -40, -50 and -60 °C, respectively (entries 3, 4
and 5). In contrast to benzaldeyde derived imine case, the reaction durations
increased, presumably due to the electron-donating group on the para position and
also the low acidity of nitromethane. Since the best result was obtained at -60 °C, we
decided to proceed further optimization studies with that temperature and with

nitromethane. In order to increase the reaction rate, catalyst loading was increased

(Table 5).

Although the best result was obtained with 15 mol% of catalyst as 76% ee, further
optimizations were performed with 10 mol% catalyst loading by using 3 different
imine derivatives (Table 6). Among the derivatives, the unsubstituted imine gave the

best result in 48 hours as 73% ee in 92% conversion (Table 6, entry 1).
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Table 5. Catalyst loading and concentration screening

rlijoc l;lHBoc O,NH
Catalyst 48 NO, oy
T - Meno, — NH
MeO % DCM, -60 °C MeO NN
23b 24b NN
! 48
Cat. . . .
Entr Loadin Concentration Time Conversion ee
y ) (M) (h) (%) (%)
(%)
1 2 0.2 75 28 66
2 2 0.1 168 21 31
3 2 0.3 192 75 60
4 5 0.2 50 50 66
5 10 0.2 75 55 70
6 15 0.2 71 75 76
Conversions are calculated with GC-MS.
Table 6. Derivatization study with catalyst 48
o)
oé_ i
N
H
NBoc NHBoc NH
N ! Catalyst 48 (10 mol%) X - NO, g
|// +  MeNO, DCM. 60°C |// NH
R R Z>N
23a-c 24a-c ~N N )
| 48
Time Conversion ee
Entry R (h) (%) (%)
NHBoc
“__NO
1 @N 2 48 92 73
24a
l;lHBoc
2 O/VNOZ 75 55 70
MeO 24b
I;IHBoc
75 57

3 (ji\/ NO2 120
A\ 24c¢

All of the experiments are conducted with 0.2M. Conversions are calculated with GC-MS.
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The model aza-Henry reaction was also performed with the quinine based

bifunctional organocatalysts 51-53 (Figure 10).

:2'7 OMe _27 OMe ‘Zj
OMe
N N
N
Xy YNH 0 N NH 0O
HN (0]
53

|
X"YNH 0 N
Figure 10. Quinine based bifunctional organocatalysts

| N__~
-

W
SIS

51

With these organocatalysts 51-53, reaction durations were too long by comparing
with 2-aminoDMAP organocatalysts 46-50 (Table 7). However, drastic increase was
observed in enantioselectivities, in particular with the #-butyl / quinine organocatalyst

51 (Table 7, entry 1). Moreover, no retro-Mannich reaction was observed.

Table 7. Catalyst screening with the quinine based squaramides

NBoc NHBoc
| . E
Organocatalyst”™ (10 mol%) ~_NO2
+ MeNO, - ©/\/
DCM, rt
23a 24a
Time Conversion ee
Entry Catalyst (h) %) (%)
1 51 21 h 95 83
2 52 27h 98 75
3 53 48 h 95 70

All of the experiments are conducted with 0.2 M. Conversions are calculated with GC-MS.

After choosing the organocatalyst 51 as the best one, further solvent screening

studies were done (Table 8). Of the screened solvents, DCM was found to be the

23



best, once again both in terms of reaction duration and enantioselectivity (Table 8,
entry 1). Enantioselectivities in other solvents were quite similar to that of DCM, yet
they were not suitable for this reaction since reaction duration was longer. In hexane,
the reaction did not occur due to low solubility of both the catalyst and nitromethane

(Table 8, entry 3).

Table 8. Solvent screening with catalyst 51

ll\lBoc l;lHBoc
Catalyst 51 (10 mol%) ~_NO2 7 NH O
" MeNO, Solvent, rt g ©/\/ N~ m
23a 24a HN>T ©
51
Entry Salvent e Conversion ol
1 DCM 21 95 83
2 Toluene 71 59 80
3 Hexane No Reaction
4 Chloroform 71 71 80
5 THF 71 40 77

All of the experiments are conducted with 0.2 M. Conversions are calculated with GC-MS.

As the next step, temperature and concentration parameters were tested (Table 9).
The reaction rates were slower than those at room temperature as expected.
However, no significant change was observed in enantioselectivities at 0 °C or -40
°C (entries 2 and 3). In addition, at -60 °C, the reaction did not occur. So far, all the
reactions were performed with 0.2 M concentration. We also tested 0.1 M and 0.3 M
concentrations (entries 5 and 6). Dilution caused a slight increase in
enantioselectivity; therefore, we decided to continue with 0.1 M concentration (Table

9, entry 5).
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Table 9. Additional temperature and concentration screenings with catalyst 51

Entry

AN O B~ WL

7

ll\lBoc
Catalyst 51
+ MeNO, —————>
DCM
23a
Cat.. Temperature
Loading °C)
(%)
10 r.t.
10 0
10 -40
10 -60
10 r.t.
10 r.t.
5 r.t.

Conversions are calculated with GC-MS.

NHBoc
~_-NO,

24a

Concentration

M)

0.2
0.2
0.2
0.2
0.1
0.3
0.1

OMe ‘Zj
N

N NH O
0
HN>:‘ (0]
51
Time Conversion
(h) (%)
21 95
71 92
120 97
No Reaction
24 96
71 40
36 92

c€e
(%)
83
80
80

85
77
80

Consequently, the parameters, 10 mol% of organocatalyst 51, 0.1 M concentration in

DCM at room temperature were determined to be the best condition for aza-Henry

reaction.

In the last part of this study, the optimized parameters were applied to different #-Boc

protected imine derivatives with both nitromethane and nitroethane. The results are

summarized in Table 10. It was clearly observed that the electron donating groups on

the phenyl ring cause elongation of reaction durations, whereas the electron

withdrawing groups cause a decrease in reaction duration. However, the direct effect

of these groups on the enantioselectivity could not be observed. All the results were

quite similar in terms of enantioselectivity, except for 3-chloro substituted imine,

which was found to be 64% ee.

25



Table 10. Derivatization with catalyst 51

ll\lBoc NHBoc N o
%) NO NH
@) . RZCHNO, Catalyst 51 (10 mol/ (j)\( 2 NI P Jzi
;o DCM, rt
R’ 24 ach HN e}
Zak 28 a-c 51 >T
31a
2 Time Conversion ee dr¢
Entry Products R (h) (%) (%) (%)
l;lHBoc
1 @/’vmz H 24 96 85 -
24a
l;lHBoc
2 @NNOZ H 71 91 75 -
MeO 24b
I;lHBoc
3 EXVN% H 44 100 91 -
Pz 24c
I;lHBoc
4 c N0 H 21 91 64 -
24d
I;IHBOC
5 @/’VNOZ H 16 100 91 ;
Br 24e
l;lHBoc
6 ~NO2 H 28 100 91 -
24f
I;lHBoc
7 MeO SN0z H 25 98 85 -
249
I;IHBoc
8 NO: H 22 93 82 ;
Br 24h
NHBoc
9 . Me 22 85 90°/80°  72/28
28a
NHBoc
10 Y Me 70 76 44°/36°  75/25
MeO /ZSbNOZ
NHBoc
11 (5% Me 26 100 55966"  62/38
7 28 -
NHBoc
12 m? Et 20 96 899/86"  78/22
2

w
et
[

All of the experiments are conducted with 0.1 M. Conversions are calculated with GC-MS. “4nti, bsyn product.
‘Determined with both GC-MS and HPLC (anti/syn).
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In order to understand the selectivity of the aza-Henry reaction of nitromethane to #-
Boc protected imines 23 catalyzed by bifunctional quinine derived squaramide
organocatalyst 51 we proposed a transition-state model. Based on the proposed
activation modes of nucleophile and electrophile, a plausible transition state model
was designed to show the origin of the enantioselectivity. In the transition state, the
deprotonation of nitroalkane is achieved by interaction via H bond while, the
squaramide moiety activated the #-Boc imine through double hydrogen bonding.

Nitromethane anion attacked the activated imine from the Si-face.

Figure 11. Proposed transition state model
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2.2.2. Aza-Henry Reaction of Tosyl Protected Imines with Nitroalkanes

We have also tested the efficiencies of organocatalysts developed in our group by
using tosyl-protected imines with nitroalkanes in aza-Henry reaction (Table 11). The
2-aminoDMAP based ones were tested with 5 mol% catalyst loading. #-Butyl
squaramide 48 and 1-adamantyl squaramide 49 showed promising results (Table 11,
entry 2 and 3, respectively). We decreased the catalyst amount to 2 mol%, and #-
butyl squaramide 48 gave best result as 52% ee (Table 11, entry 5). Quinine type
organocatalysts 50-53 were also screened with 2 mol% catalyst loading; however,

none of them gave better result than organocatalyst 48.

Table 11. Catalyst screening and catalyst loading of tosyl imines

Il\lTs l;lHTs
Organocatalyst” : NO»
+ MeNO, —yDCM, t
21 22
Cat. Time Isolated ce
Entry Catalyst Loading Yield
(%) (h) (%) (%)
1 46 5 21 56 11
2 48 5 21 96 47
3 49 5 21 95 49
4 50 5 21 90 19
5 48 2 24 93 52
6 49 2 7 65 25
7 51 2 31 78 25
8 52 2 75 63 31
9 53 2 72 83 17
10 48 1 24 92 30

All of the experiments are conducted with 0.2 M.

Using 2 mol% organocatalyst 48, solvent screening was performed (Table 12). In
addition to DCM, 6 other solvents were tested in this reaction. Among these solvents
acetonitrile was found to be the best as 58% ee in 27 hours with 87% isolated yield

(Table 12, entry 3).
28



The concentration parameter of the reaction was also tested by using acetonitrile.
Nevertheless, the result did not change; 0.2 M was better than the others. We also
lowered the temperature to 0 °C, the enantioselectivity also decreased. Among these
trials of tosyl imine reaction with nitromethane, the best condition was found as 2
mol% of organocatalyst 48, 0.2 M concentration in acetonitrile at room temperature

(Table 12, entry 3).

Table 12. Additional screenings of tosyl imines

NTs NHTs NH
I R NO
Catalyst 48 (2 mol%) 2 o
+ MeNO, ———————> NH
2 Solvent, rt /C
“~ "N
I

21 22 SN
| 48
. . Isolat
Entry Solvent Tem?o(g;lture Conczl\l/gatmn T(lllll‘)le s;{:j;]:;d ( ((:,/(e))

0)
1 DCM r.t. 0.2 24 93 52
2 Toluene r.t. 0.2 7 90 19
3 CH;CN r.t. 0.2 27 87 58
4 Chloroform r.t. 0.2 31 67 35
5 Xylene r.t. 0.2 64 81 35
6 1,4-Dioxane r.t. 0.2 9 90 19
7 Hexane r.t. 0.2 24 85 43
8 CH;CN r.t. 0.1 72 88 35
9 CH;CN r.t. 0.3 62 95 42
10 CH;CN 0 0.2 45 90 50

2.3.  Evaluation of the Bifunctional Organocatalysts in Henry Reaction

Conducting of Henry reaction with an organocatalyst is very hard, because the
background reaction occurs very fast and could cause uncontrollable

stereoselectivity. However, we still wanted to see our organocatalysts’ utility in the
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reaction of aldehydes with nitromethane. For this purpose, p-nitrobenzaldehyde
(34b) and nitromethane underwent the reaction in the presence of 2-aminoDMAP
organocatalysts 46-50 (Table 13). Starting with 5 mol% catalyst loading afforded
quite fast reaction and resulted in racemic product. Even lowering the catalyst
loading to 2 mol%, the results did not change. The best one still belonged to urea / 2-
aminoDMAP catalyst 46 with 6% ee.

Table 13. Catalyst screening and catalyst loading of Henry reaction

0 OH
ﬁ H Organocatalyst’ ~_-NO,
+ MeNO, DCM. 1t Q/\/
O2N 34b O2N 35b
Cat. Time Isolated ce
Entry Catalyst Loading (h) Yield (%)
(%) (%)
1 46 5 3 75 6
2 47 5 3 80 Rac
3 48 5 3 90 3
4 49 5 3 80 Rac
5 50 5 3 85 Rac
6 46 2 2 40 Rac
7 47 2 2 40 Rac
8 48 2 2 84 Rac
9 49 2 2 78 Rac
10 50 2 2 80 Rac

All of the experiments are conducted with 0.2 M.

We did trials further with urea catalyst 46 in different solvents and at low
temperatures. However, none of the trials led to a good result, we got maximum 7%
ee in hexane and 9% ee in toluene at the room temperature (Table 14, entry 2 and 6,

respectively).
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Table 14. Additional solvent and temperature screenings of Henry reaction

F3C
CF,
(6]
NH
o} OH 3,:
AN H Catalyst 46 (5 mol%) ~_-NO2 O,
| + MeNO, —_— J©/\/ ':,NH
ON P Solvent ON
34b 35b - N
\N ™
| 46
Isolated
Temperature Time . ee
Entr Solvent Yield
Y 0) (h) %) (%)
1 DCM rt 3 75 6
2 Toluene rt 2 50 9
3 CH;CN rt 3 65 Rac
4 Chloroform rt 4 73 Rac
5 Xylene rt 3 20 Rac
6 Hexane rt 1 95 7
7 DCM -40 3 50 Rac
8 Toluene -40 4 53 Rac
9 Hexane -40 3 75 Rac

All of the experiments are conducted with 0.2M.

2.4. Evaluation of the 2-aminoDMAP Backbone in Aldol Reaction

In this part of the study, we focused on testing efficacy of primary amine motif of 2-
aminoDMAP 56 with Bronsted acid in the aldol reactions. p-Nitrobenzaldehyde
(34b) and acetone were chosen as substrates and the reactions were performed on the
basis of literature example.” Wide rande of Brensted acids with different molar
ratios were screened in the presence or absence of p-nitrobenzoic acid at room
temperature. The results are summarized in Table 15. The best result was obtained as

43% ee with TFA and AcOH with low isolated yields (entries 5 and 8, respectively).
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Table 15. Screenings of Aldol reaction with acetone

NH,
1 O Catalyst 56 (10 mol%), acid 4 QNH
@H ! )]\ 10 mol% p-nitrobenzoic acid /@J\)J\ Z "N
ON neat, rt O,N NN !
34b 37b ' o6

Entry Acid Molar Ratio." 2“.“l Time Is;])il;t(;ed ee
(organocat:acid)  Acid (h/d) (%) (%)

1 TfOH 1:1 4 5 days 23 25
2 TfOH 1:2 - 46 h nd Rac
3 TfOH 1:3 - 46 h nd Rac
4 PTSA 1:1 - 15 days 12 Rac
5 TFA 1:1 - 71 h 38 43
6 TFA 1:1 + 70 h 12 38
7 TFA 1:2 + 94 h 6 21
8 AcOH 1:1 + 94 h 30 43
9 PhCOOH 1:1 + 94 h nd 35
10 4-NO,PhCOOH 1:1 + 94 h 11 29
11 Picric 1:1 + 94 h 28 23
12 TFA 1:1.5 - 48 h 8 25
13° TFA 1:1.5 - 48 h 4 26
14 - - - 67 h 12¢ 11

“With respect to 10 mol% organocatalyst. "Isolated salt of TEA and 2-aminoDMAP. “Calculated with crude NMR.

Table 16. Screenings of Aldol reaction with cyclohexanone (59)

Catalyst + acid (10 mol%)

0 o)
O)LH . é
0N
34b 59

neat, rt
. Molar Ratio”
Entry Catalyst Acid (organocat:acid).
1 56 - -
2 56 TFA 1:1
3° 56 TFA 1:1.5

>

O3

Time
(h/d)

73 h
46 h
46 h

OH O

N : %

60b

Syn ee
(%)

6
7
26

“With respect to 10 mol% organocatalyst. "Isolated salt of TFA and 2-aminoDMAP.
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NH,
SN
Z N
\N 2 !
| 56
Anti ee dr
(%) (%)
6 57:43
25 64:36
24 60:40



In the further trials, cyclohexanone 59 was replaced with acetone. Unfortunately, no

good results could be obtained (Table 16).

The final trial of aldol reaction was performed with binary organocatalyst system (2-
aminoDMAP 56 and L or D-proline) in the reaction of p-nitrobenzaldehyde 34b and
acetone (Table 17). Under these circumstances, the reaction rates drastically
increased. The resultant aldol products gave the same enantioselectivity as 41% ee in
different enantiomeric forms, it could be concluded that the source of

enantioselectivity was presumably depending upon proline.

Table 17. Screenings of Aldol reaction with binary catalyst system

NH, O}(
(0] Catalyst 56 (10 mol%) O
)O]\ L or D-proline (10 mol%) L- Prollne
H AcOH (10 eq.) Q or
O,N OoN SN U

2 | N O
34b 37b 56 N g
D-Proline
Isolated
. Molar Ratio” Time .

Entry Catalyst Acid (organocat:acid). (h/d) ‘({(l,/eol)d (%)
1 56+L-proline AcOH 1:10 35h 52 -41

2 56+D-proline AcOH 1:10 33h 50 41

“With respect to 10 mol% organocatalyst.

2.5. Evaluation of the Bifunctional Organocatalysts in Decarboxylative Aldol

Reaction

Decarboxylative studies are quite new in the asymmetric synthesis and there are only
a few examples with bifunctional organocatalyst.***' In 2013, Rouden and co-
workers showed the excellent diastereoselective (only anti product) synthesis of anti-
pS-hydroxy-a-amino acids from a-amidohemimalonates with various aldehydes by

using different organic bases (Scheme 23).
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54 O  55b

Scheme 23. Mechanistic pathway of decarboxylative aldol reaction

Herein, we performed the same reaction with our organocatalysts to get both
enantioselectively and diastereoselectively enriched products. The catalyst screening
was done with 10 mol% organocatalyst 47, 48 and cinchona derivatives thiourea 27
urea 61 ones, known in literature, the structures of 27 and 61 are depicted in Figure
11. The most promising result was obtained with organocatalyst 48 as 55% ee (entry
1). Other enantiomer’s ee% has not yet been determined, because we have not found

an applicable HPLC condition.

27 CF3 61 CF3

Figure 12. Cinchona derivative of thiourea 27 and urea 61 organocatalysts

Table 18. Screenings of Decarboxylative Aldol reaction with bifunctional

organocatalysts
Q Q 9 O OH
x H ., EtO MOH organocatalyst EIO7 N
ON | = Ph \H/NH solvent, rt Ph \H/NH NO
2 2
34b O 54 O s55b

Cat.' Time ee”
Entry Catalyst Solvent Loading ) %)
(%) °

1 48 DCM 10 7 55

2 47 DCM 10 7 35

3 48 CH;CN 10 5 36

4 61 DCM 10 6 31

5 62 DCM 10 8 40

All the experiments were conducted with 0.13 M. “Anti product.
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2.6.  Evaluation of the Bifunctional Organocatalysts in Friedel-

Crafts/Substitution Domino Reaction

Domino reactions are another trending topic in organocatalytic studies in the recent
years.””° Friedel-Crafts/substitution is the most common and widely used C-C bond
forming reaction in synthetic organic chemistry. In this part of the thesis, it was
chosen as the key step in domino reaction to afford disubstituted
dihydronaphthofuran derivatives possessing two chiral centers in enantiomerically
enriched form. For this purpose, (Z£)-(2-bromo-2-nitrovinyl)benzene (43) and f—
naphthol (42) were used to perform model organocatalytic Friedel-Crafts/substitution
domino type reaction. Initial studies involved the screening studies of 2-
aminoDMAP based organocatalyst 48, 49, 50 and quinine based organocatalyst 51,
52, 53. The results are summarized in Table 19. First experiment was carried out
with 10 mol% organocatalyst 51 in chloroform at room temperature and monitored
by TLC and directly afforded with one diastereomer due to the stereospecific Sn2
type reaction. Although HPLC measurement of this product showed promising result
as 70% ee, the reaction rate was too slow and the chemical yield was almost 50%
after 48 hours (entry 1). This is presumably due to the HBr evolved during the course
of the reaction that would block the active site of the catalyst, thus leads a decrease
in the reaction rate.** In order to prevent the inhibition factor, inorganic bases were
used. Fortunately, we observed the positive effect in terms of reaction duration as
full conversion for 24 h (entry 5). Of the screened organocatalysts, #-butyl / quinine
51 proved to be the best one. Further base screening was done with Cs;CO3 and
drastic decrease was observed in terms of reaction duration for 1 hour in 69% ee
(entry 8). When the reaction was performed in DCM with Cs,COs, the reaction
completed with full conversion in 10 minutes with quite enantioselectivity as 92%

ee (entry 9).
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Table 19. Screenings of Friedel-Crafts / Substitution Domino Reaction with

bifunctional organocatalysts

bifunctional Ph NO,
OH Br organocatalyst —
(10 mol%)
+ Ph \)\ N02 0
solvent, rt 44
42 43
Entry” Catalyst Solvent Ba Time %
y ys olve se (h/m) ee%
1° 51 CHCl; - 48 h 70
2 48 CHCl; NaOAc 26 h 5
3 49 CHCIl, NaOAc 26.5h 7
4 50 CHCl; NaOAc 26 h Rac
5 51 CHCIl, NaOAc 24 h 65
6 52 CHCL, NaOAc 24 h 50
7 53 CHCIl, NaOAc 22 h 49
8 51 CHC13 CS2C03 1h 69
9 51 DCM Cs,CO; 10 mins 92

“All the experiments were conducted with 0.5 M with full conversion. Bases were used 1 equivalent

(except entry 1). "50% conversion was obtained.
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CHAPTER 3

EXPERIMENTAL

3.1 Materials and Methods

'H NMR and "“C NMR spectra were recorded in CDCl; on Bruker Spectrospin
Avance DPX-400 spectrometer. The chemical shifts were reported in ppm relative to
CDCl; (8 7.26 and 77.0 for 'H and °C NMR, respectively) as the internal standard,
and the data are specified as s (singlet), bs (broad singlet), d (doublet), dd (doublet of
doublet), ddd (doublet of doublet of doublet), bd (broad doublet), t (triplet), td (triplet
of doublet, tt (triplet of triplet), m (multiplet) and coupling constants (J) in Hertz
(Hz).

HPLC chromatograms were recorded on Dionex & Thermo-Finnigan HPLC system.
Daicel ADH, 1A, ODH, ASH, OJH chiral columns were used with different solvent
systems. The mass spectra were recorded on Thermo Scientific DSQ II Single
Quadrupole GC/MS. HRMS data were detected on a Agilent 6224 TOF LC/ MS at
UNAM, Bilkent University.

Infrared measurements were done on Thermo Nicolet IS10 ATR / FT-IR
spectrophotometer. Optical rotations were measured with Rudolph Scientific
Autopol III polarimeter and reported as follows [a]5 (c is in gram per 100 mL
solvent). Melting points were obtained on a Thomas Hoover capillary melting point
apparatus and are uncorrected.

Using Merck Silica Gel 60, flash column chromatographies were performed.
Reactions were monitored by thin layer chromotography using precoated silica gel
plates (Merck Silica Gel PF-254), visualized by UV-light and polymolybden
phosphoric acid in ethanol and potassium permanganate stain as appropriate. All
extracts were dried over anhydrous magnesium sulphate and solutions were
concentrated under vacuum by using rotary evaporator.
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Only characterization data of novel compounds are given in experimental section and
related literature is cited.

Compounds names were written with ChemBioDraw 14.0.
3.2 Synthesis of 9-amino (9-deoxy)epihydroquinine 58

The following literature procedure is performed*®: Quinine (3.24 g,

QMe 7\127 10.0 mmol) and triphenylphosphine (3.15 g, 12.0 mmol) were
N NH, dissolved in 50 mL of dry THF and the solution was cooled to 0 °C.
N Diisopropyl azodicarboxylate (2.43 g, 12.0 mmol) was added all at
once. Then solution of diphenyl phosphoryl azide (3.30 g, 12.0 mmol) in 20 mL of
dry THF was added dropwise at 0 °C. The mixture was allowed to warm to room
temperature. After being stirred for 12h, the solution was heated to 50 °C for 2 h.
Then triphenylphosphine (3.41 g, 13.0 mmol) was added and heating was maintained
until the gas evolution has ceased (2 h). The solution was cooled to room
temperature, and 1 mL of water was added and the solution was stirred for 3 h.
Solvents were removed in vacuo and the residue was dissolved in CH,Cl, and 10%

hydrochloric acid (1:1, 100 mL). The aqueous phase was washed with CH,CI, (4 x

50 mL). Then the aqueous phase was made alkaline with excess aqueous ammonia
and was washed with CH,Cl, (4 x 50 mL). The combined organic phases was dried

over Na,SO, and concentrated. The residue was purified by column chromatography
on silica gel (EtOAc/MeOH/ag. NH,OH = 50/50/1 as eluent) affording the title

compound as yellowish viscous oil in 75% isolated yield.
Spectroscopic data are in accordance with the literature. *°
33 Synthesis of ~-Butyl Mono-Squaramide 57

o o Squaric acid (4.3 mmol, 500 mg) was refluxed under argon
EO NH atmosphere during 3h by using absolute ethanol (7 mL). Then the
solvent was evaporated under vacuum, and this procedure is
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repeated for three times for 30 minutes reflux. The last evaporation affords diethyl
squarate as very light yellow oil. In order to make the mono-squaramide, the diethyl
squarate is added to tert-butylamine (1 eq) solution in 4 mL. DCM and stirred for 24
hours at room temperature. The product was purified with silica gel and

EtOAc:Hexane (1:3) as eluent, obtained with 90% yield as white solid.
Spectroscopic data are in accordance with the literature.*’
3.4  Synthesis of ~Butyl Squaramide / Quinine Catalyst 51

ou =27 Mono-squaramide ester (0.2 mmol) was added to a solution of
e

ﬁj}/{N quinine 58 (0.2 mmol) in DCM:MeOH (1:1) mixture. The reaction
X
N_

Nho was stirred 48 hours at room temperature and directly loaded on to

HN
& Product was obtained with 92% yield as slightly white solid.
Mp= 260 °C (decomposed).
Optical rotation was determined as [a]4= -180.2° (c=0.1, CH,CL,).

O silica gel column, which is eluted with gradient EtOAc:MeOH.

"H NMR (400 MHz, CDCLy): & 8.69 (d, J=4.5 Hz, 1H), 8.03 (d, J=9.2 Hz, 1H), 7.79
(bs, 1H), 7.54 (d, J=4.6 Hz, 1H), 7.41 (dd, J=9.1, 2.6 Hz, 1H), 6.08 (bs, 1H), 5.74
(ddd, J=17.4, 10.1, 7.3 Hz, 1H), 4.95 (dd, J=16.3, 9.7 Hz, 1H), 3.96 (s, 3H), 3.44
(bs, 2H), 3.21-3.10 (m, 1H), 2.72 (bd, J=11.4 Hz, 2H), 2.26 (bs, 1H), 1.71-1.51 (m,
3H), 1.48-1.42 (m, 1H), 1.19 (s, 9H), 0.8 (bs, 1H). 2 protons are not located.

BC NMR (100 MHz, CDCly): & 182.3, 181.5, 168.3, 168.1, 158.8, 147.8, 144.9,
144.0, 140.6, 131.8, 128.0, 122.5, 119.7, 115.3, 101.6, 60.4, 56.2, 55.9, 53.3, 41.0,
39.1, 30.6, 29.8, 27.5, 27.4, 25.8.

IR(neat): 3362, 3226, 2979, 1793, 1653, 1624, 1585, 1526, 1474, 1367, 1223 cm™,

HRMS: Exact mass calculated for [CogH34N4O3+H]": 475.2709; found as 475.2712.
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3.5 Synthesis of 2-AminoDMAP 56

NH, CuBr (0.2 mmol, 200.8 mg) and K3PO4 (2.0 mmol, 2.9 g) were added to
OjNH an oven-dried Schlenk tube and this tube was evacuated and backfilled
with argon thrice. (R,R)-cyclohexadiamine (1.2 mmol, 960 mg) and 2-

°N bromoDMAP (1 mmol, 1.4 g) were added and same procedure was

appllied. Dry 1,4-dioxane (7.8 mL) was added under argon atmosphere and the
reaction mixture was stirred at 110 °C for 24 hours. The resulting green-blue
suspension mixture was left at room temperature for cooling. Then 2 mL of water
and 2 mL of concentrated ammonia solution was added. The resulting dark blue
solution was extracted with dichloromethane (3 x 25 mL). Then organic phase was
washed with brine and dried over MgSQOy. The product was purified by flash column
chromatography on silica gel using gradient saturated DCM (using with ammonia

solution) and MeOH. Desired product 66 was obtained as light brown solid with 40%
yield.

Spectroscopic data are in accordance with the literature.*
3.6  Synthesis of ~Butyl squaramide / 2-aminoDMAP catalyst 48

Mono-squaramide ester 57 (0.2 mmol) was added to a solution of 2-

O
oA &
N N aminoDMAP 56 (0.2 mmol) in DCM:MeOH (1:1) mixture. The

O:NH reaction was stirred 48 hours at room temperature and directly
7N loaded on to silica gel column, which is eluted with gradient
\N A

| saturated DCM:MeOH. Product was afforded with 90% yield as
slightly light brown solid.

Spectroscopic data are in accordance with the literature.*®

40



3.7 Synthesis of -Boc Protected Imines

e} NHBoc NBoc
PhSO,Na |
| N H H,NCO,t-Bu X SO,Ph  Cs,CO; or K,COg (3 eq) ( S
H,0/MeOH/HCOH, ,3d > DCM, A Pz
= s : A
7z R R

The following slightly modified literature procedure is performed”' *:

The aldehyde (15 mmol) was suspended in 2:1:0.7 HO/MeOH/HCOH (40 mL) and
stirred until the mixture became homogeneous. (Gentle heating was necessary to
achieve complete dissolution in most cases). Sodium benzenesulfinic acid (20 mmol)
and tert-butyl carbamate (10 mmol) were added sequentially. The reaction mixture
was stirred for 3 days, the solids collected by filtration and triturated with H,O and
then diethylether to leave the sulfonylcarbamate.

A suspension of flame dried Cs,CO; or K,COs3 (6.0 mmol) in a solution of the
sulfonylcarbamate (2.0 mmol) in dry, alcohol-free CH,Cl, (40 mL) was heated at
reflux. Small aliquots were removed periodically, filtered, and analyzed by '"H NMR
spectroscopy (using CDCIl; treated with K,;CO; to remove trace HCl which
hydrolyzes the N-Boc imine) to confirm completion of the reaction (1-4 h). The
reaction mixture was cooled to room temperature, diluted with hexane (40 mL),
stirred for 10 min, and filtered. The filtrate was concentrated in vacuo at < 20 °C to

leave the N-Boc imine.

3.8  General Procedure for Aza-Henry Reaction: Nitromethane Addition to #-

Boc Protected Imines

Racemic synthesis,

Imine (0.1 mmol), nitromethane (0.35 mmol) and Et;N (0.01 mmol) were dissolved
in DCM (1 mL) and stirred at room temperature. The reaction was monitored with
GC-MS upon the consumption of limiting reactant, directly loaded into column

chromatography. EtOAc:Hexane mixtures was used as eluent to purify the products.
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Asymmetric synthesis;

Imine (0.1 mmol), #-butyl/quinine 51 (0.01 mmol) was dissolved in DCM (0.8 mL)
for half an hour. Then nitromethane (0.35 mmol) was added to solution and stirred at
room temperature. The reaction was monitored with GC-MS upon the consumption
of limiting reactant, directly loaded into column chromatography. EtOAc:Hexane

mixtures was used as eluent to purify the products.

The following GC-MS method was performed on Thermo TR-5MS 30m x 0.25 mm
ID x 0.25 um film, 5% Phenyl Polysilphenylene-siloxane column (260F142P) to
track the reactions: Flow = 1.0 mL/min, oven = 0.1 min at 50 °C, to 200 °C at 20
°C/min, 0.1 min at 200 °C; to 260 °C at 10 °C/min, 3.0 min at 260 °C, inlet=220 °C,
MS-Transfer Line=250 °C.

3.8.1 Synthesis of fert-butyl (S)-(2-nitro-1-phenylethyl) carbamate (24a)

General procedure starting from nitromethane and tert-butyl (phenylmethylene)

carbamate afforded to desired chiral product with 96% conversion and 85% ee in 24
h as a white solid.
Optical rotation was determined as [a]3° = +18.48° (¢c=0.25, CH,Cl,).

" ?Lo L "H NMR (400 MHz, CDCl3): § 7.38-7.35 (m, 2H), 7.32-7.27 (m, 3H),
- _No, 5.37(bs,2H), 4.83 (bs, 1H), 4.73-4.65 (m, 1H), 1.43 (s, 9H).
m 3C NMR (100 MHz, CDCL): §154.9, 136.9, 129.3, 128.8, 126.5,
80.8, 79.0, 52.9, 28.4.

HPLC: Chiralpak ADH column, 95:5 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 210

nm, temp=25 °C, tmajor= 29.3 min, tmino— 31.6 min.

GC-MS: Retention time: 10.57 min.
[M/Z]"=57.08, 91.04, 117.05, 119.05, 132.06, 164.03, 177.03, 224.01.

IR(neat): 3376, 2977, 1685, 1545, 1517, 1255, 1165, 1025, 796, 699 cm’!
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3.8.2 Synthesis of zert-butyl (S)-(1-(4-methoxyphenyl)-2-nitroethyl) carbamate
(24b)

General procedure starting from nitromethane and N-Boc-4-
methoxybenzylideneamine afforded to desired chiral product with 91% conversion
and 75% ee in 71 h as a white solid.

Optical rotation was determined as [a]3° = +19.36° (¢c=0.25, CH,Cl,).

N ?Lo % 'H NMR (400 MHz, CDCly): § 7.24 (d, 2H), 6.91 (d, 2H), 5.36-
No, 5.30 (m, 1H), 5.24 (d, J=7.3 Hz, 1H), 4.85 (bs, 1H), 4.68 (dd, J=
MeOON 12.5, 5.8 Hz, 1H), 3.82 (s, 3H), 1.45 (s, 9H).
3C NMR (100 MHz, CDCL): §159.7, 154.7, 128.9, 127.6, 114.5, 136.9, 129.2,
128.7, 126.3, 80.5, 55.3, 52.5, 28.3.

HPLC: Chiralpak OJH, 92:8 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 210 nm,
terrllj)zzs OCQ tmajorz 43-7 mln, tminorz 48.9 l’l’lln.

GC-MS: Retention time: 10.99 min.
[M/Z]"= 57.09,77.03, 104.03, 106.05, 120.05, 149.99, 162.92, 164.05.

IR(neat): 3362, 2983, 1689, 1551, 1513, 1247, 1164, 1020, 830, 541 em’”
3.8.3 Synthesis of fert-butyl (S)-(2-nitro-1-(o-tolyl)ethyl) carbamate (24c)

General procedure starting from nitromethane and ter-Butyl N-[(2-
methylphenyl)methylene] carbamate afforded to desired chiral product with full
conversion and 91% ee in 44 h as a white solid.

Optical rotation was determined as [a]3°= +28.08° (c=0.25, CH,Cl,).

2 K "H NMR (400 MHz, CDCls): & 7.22 (bs, 4H), 5.65 (d, J=5.49 Hz,
(0]
1H), 5.22 (bs, 1H), 4.79 (bs, 1H), 4.75 (bs, 1H), 4.66 (bs, 1H), 2.44 (s,

HN
Cﬁ 3H), 1.42 (s, 9H).
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BC NMR (100 MHz, CDCly): & 154.8, 135.9, 135.4, 131.3, 128.6, 126.9, 125.1,
78.1,49.5,29.3, 19.2.

HPLC: Chiralpak ODH, 90:10 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 210 nm,

temp=25 °C, tminor= 17.0 min, tmajo= 31.1 min.

GC-MS: Retention time: 11.02 min.
[M/Z]+= 57.09, 59.07, 91.05, 117.06, 119.07, 132.07, 164.04, 177.05, 224.03.

IR(neat): 3363, 2980, 1688, 1541, 1526, 1251 cm™"

3.8.4 Synthesis of tert-butyl (S)-(1-(3-chlorophenyl)-2-nitroethyl) carbamate
(24d)

General procedure starting from nitromethane and ter-Butyl N-[(3-
chlorophenyl)methylene] carbamate afforded to desired chiral product with 91%
conversion and 64% ee in 21h as a white solid.

Optical rotation was determined as [a]3°=+16.16° (c=0.25, CH,Cl,).

9 L "H NMR (400 MHz, CDCls): & 7.33-7.27 (m, 4H), 5.48 (bs, 1H),

HN"™ O

c N0, 5:36(bs, 1H),4.81 (bs, 1H), 4.73-4.62 (m, 1H), 1.43 (s, 9H).
@/» 3C NMR (100 MHz, CDCLy): 8154.9, 139.1, 135.1, 130.4, 128.9,

126.6, 124.5, 80.9, 78.6, 52.3, 28.2.

HPLC: Chiralpak ADH, 90:10 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 210 nm,
temp=25 °C, tmajor= 10.5 min, tmino= 13.9 min.

GC-MS: Retention time: 11.95 min.
[M/Z]+= 57.09, 59.06, 77.03, 103.04, 138.00, 196.95.

IR(neat): 3362, 2978, 2929, 1687, 1556, 1367, 1248, 1158, 696 cm’!
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3.8.5 Synthesis of tert-butyl (S)-(1-(4-bromophenyl)-2-nitroethyl) carbamate
(24e)

General procedure starting from nitromethane and fert-Butyl N-[(4-
bromo)methylene] carbamate afforded to desired chiral product with full conversion
and 91% ee in 16 h as a white solid.

Optical rotation was determined as [a]3°=+18.23° (c=0.25, CH,Cl,).

" jio L 'H NMR (400 MHz, CDCL): & 7.51 (d, J=8.5, 2H), 7.19 (d,
“_no, J=8.5,2H), 5.33 (bs, 2H), 4.82 (bs, 1H), 4.74-4.65 (m, 1H), 1.43
Br/©m (s, 9H).
BC NMR (100 MHz, CDCl3): §154.8, 137.5, 132.4, 131.6, 128.2, 127.8, 122.8, 81.2,
78.7,52.3, 28 4.

HPLC: Chiralpak ADH, 95:5 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 210 nm,
terrllj)zzs OCQ tmajorz 30-4 mln, tminorz 41 .3 l’l’lln.

GC-MS: Retention time: 13.00 min.
[M/Z]"= 57.08, 59.06, 77.05, 102.40, 183.93, 197.96, 240.90, 243.93.

IR(neat): 3337, 2977, 2928, 2855, 1697, 1556, 1487, 1367, 1157, 1010 cm’’

3.8.6 Synthesis of fert-butyl (S)-(2-nitro-1-(p-tolyl)ethyl) carbamate (24f)

General procedure starting from nitromethane and N-[(4-methylphenyl)methylene]
carbamate afforded to desired chiral product with full conversion and 91% ee in 28h

as a white solid.

Optical rotation was determined as [a]3°=+21.92° (c=0.25, CH,Cl,).

" ?Lo L "H NMR (400 MHz, CDCl3): § 7.18 (s, 4H), 5.33 (bs, 2H), 4.82
“_no, (bs, 1H),4.72-4.62 (m, 1H), 2.33 (s, 3H), 1.43 (s, OH).
/@/» 3C NMR (100 MHz, CDCls): §154.9, 138.7, 134.0, 129.9, 126.4,
80.7,79.1, 52.8, 28.4, 21.2.
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HPLC: Chiralpak ADH, 75:25 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 210 nm,

temp=>5 °C, tmajor= 15.5 min, tmine= 18.1 min.

GC-MS: Retention time: 11.35 min.
[M/Z]+= 57.09, 59.06, 91.04, 118.05, 120.06, 164.00, 177.04, 178.05.

IR(neat): 3365, 2979, 2929, 1685, 1554, 1515, 1367, 1251, 1164, 817 cm’’

3.8.7 Synthesis of tert-butyl (S)-(1-(3-methoxyphenyl)-2-nitroethyl) carbamate
(24g)

General procedure starting from nitromethane and N-[(3-methoxyphenyl)methylene]
carbamate afforded to desired chiral product with 98% conversion and 85% ee in 25

h as a white solid.

2 L "H NMR (400 MHz, CDCLy): & 7.28 (t, J=7.8 Hz, 1H), 6.89-6.82
HN™ O
: (m, 3H), 5.36 (bs, 2H), 4.81 (bs, 1H), 4.72-4.63 (m, 1H), 3.79 (s,

MeO NO,

@/» 3H), 1.43 (s, 9H).
3C NMR (100 MHz, CDCly): § 160.2, 154.9, 138.7, 130.4, 118.5, 113.9, 112.5,
80.8, 78.9, 55.4, 52.9, 28.4.

HPLC: Chiralpak TA, 90:10 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 210 nm,
temp=25 °C, tmajor= 17.6 min, tmino= 25.2 min.

GC-MS: Retention time: 12.26 min.
[M/Z]+= 57.08, 59.05, 77.04, 105.05, 119.05, 134.04, 150.07, 193.01, 194.04.

IR(neat): 3318, 2972, 2850, 2372, 1749, 1716, 1489, 1474, 1396, 1068, 1073 cm’!

3.8.8 Synthesis of tert-butyl (S)-(1-(2-bromophenyl)-2-nitroethyl) carbamate
(24h)

General procedure starting from nitromethane and N-[(2-bromophenyl)methylene]
carbamate afforded to desired chiral product with 93% conversion and 82% ee in 22

h as a white solid.
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2 L "H NMR (400 MHz, CDCly): 8 7.59 (d, J=7.9 Hz, 2H), 7.34 (d,
HN™ O
: J=4.4, 2H), 7.23-7.17 (m, 1H), 5.72 (bs, 1H), 4.90-4.75 (m, 2H), 1.42

S NO,
(r (s, 9H).

Br

C NMR (100 MHz, CDCly): 8154.6, 135.5, 133.8, 130.3, 128.3, 128.1, 122.9, 80.9,
77.6,52.7,28.4.

HPLC: Chiralpak ADH, 85:15 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 210 nm,

temp=25 °C, tmajor= 9.1 min, tmine—= 13.0 min.

GC-MS: Retention time: 12.18 min.
[M/Z]+= 57.08, 59.05, 77.05, 103.06, 118.05, 147.99, 181.94, 183.94, 185.94,
208.99, 277.90.

IR(neat): 3353, 2981, 2933, 1700, 1558, 1488, 1369, 1325, 1162, 1126, 1068 em’”
3.8.9 Synthesis of fert-butyl ((1R,2S)-2-nitro-1-phenylpropyl) carbamate (28a)

General procedure starting from nitroethane and tert-butyl (phenylmethylene)
carbamate afforded to desired chiral product mixture of syn/anti-isomers with ratio

72:28 (anti/syn) with 85% conversion in 22 h as a white solid.

N ﬁok "H NMR (400 MHz, CDCl;): § 7.38-7.32 (m, 3H, overlapping signals
of anti and syn), 7.25-7.21 (m, 2H, overlapping signals of anti and

ﬁoz syn), 5.32 (bd, J= 8.7 Hz, 1H, anti), 5.19 (dd, J=8.9, 5.6 Hz, 1H,
overlapping signals of anti and syn), 5.10 (bs, 1H, syn), 4.92 (bs, 1H, overlapping
signals of anti and syn), 1.53 (d, J= 6.8 Hz, 3H, overlapping signals of anti and syn),

1.46 (s, 9H, syn), 1.43 (s, 9H, anti).
3C NMR (100 MHz, CDCls): (anti product) 8155.1, 136.6, 129.1, 128.7, 127.0,

85.9, 80.6, 57.6, 23.8, 15.3. (syn product) 8155.1, 136.6, 129.1, 128.5, 126.6, 86.8,
80.6, 57.5,25.4, 17.1.
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HPLC: Chiralpak ADH, 95:5 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 210 nm,
tempzzs OC, tmajor,syn= 19.3 min, tminor,syn= 22.2 min, tminor,anti= 25.5 min, tmajor,am‘i=

32.4 min.

GC-MS: Retention time: 10.46 min (major diastereomer) / 10.64 min (minor

diastereomer)

[M/Z]"= 57.08, 59.06, 78.04, 104.03, 106.04, 117.06, 150.02, 177.00, 206.05.

IR(neat): 3370, 3009, 2977, 2914, 2360, 1681, 1548, 1520, 1170, 701 cm’’

3.8.10 Synthesis of tert-butyl ((1R,25)-1-(4-methoxyphenyl)-2-nitropropyl)
carbamate (28b)

General procedure starting from nitroethane and N-Boc-4-methoxybenzylideneamine
afforded to desired chiral product mixture of syn/anti-isomers with ratio 75:25

(anti/syn) with 76% conversion in 70 h as a white solid.

" iok "H NMR (400 MHz, CDCl;): § 7.16 (d, J=8.7 Hz, 2H, syn), 7.15

/©)\;/ (overlapping signals, 2H, anti), 6.87 (d, J/=8.7 Hz, 2H, syn), 7.86
MeO NO, (overlapping signals, 2H, anti), 5.58 (d, J= 9.3 Hz, 1H, syn),
5.35 (bs, 1H, anti), 5.10 (dd, J= 8.7, 6.1 Hz, 1H, anti), 5.01 (bs, 1H, syn), 4.90 (bs,
1H, overlapping signals of anti and syn), 3.78 (s, 3H, syn), 3.77 (s, 3H, anti), 1.51 (d,

J=6.7 Hz, 3H, anti), 1.49 (bs, 3H, syn), 1.42 (s, 9H, anti), 1.40 (s, 9H, syn).

3C NMR (100 MHz, CDCls): (anti product) 5159.8, 155.2, 128.2, 127.8, 114.4,
86.1, 80.5, 57.1, 55.7, 29.8, 15.6. (syn product) 8159.7, 155.0, 129.6, 127.1, 114.5,
86.9, 80.5, 56.9, 55.4, 28.4, 17.0.

HPLC: Chiralpak IA, 85:15 (n-hexane/i-PrOH), flow rate 0.5 mL/min, 210 nm,
temp=25 OC, tminor,ann’: 18.2 l’l’lil’l, tmajor,anli= 19.6 min, tminor,syn, = 20.8 min, tmajor,syn=

24.9 min.
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GC-MS: Retention time: 12.53 min (major diastereomer) / 12.66 min (minor
diastereomer)

[M/Z]"=57.10, 59.07, 77.07, 109.07, 136.10, 148.11, 180.06, 207.13.

IR(neat): 3340, 2979, 2933, 2237, 1683, 1550, 1516, 1252, 1174, 1028, 837 cm’’

3.8.11 Synthesis of fert-butyl ((1R,2S)-2-nitro-1-(o-tolyl)propyl) carbamate (28¢)

General procedure starting from nitroethane and N-[(2-methylphenyl)methylene]
carbamate afforded to desired chiral product mixture of syn/anti-isomers with ratio

62:38 (anti/ syn) with full conversion in 26 h as a colorless solid.

HNiok "H NMR (400 MHz, CDCls): & 7.22-7.17 (bs, overlapping signals of
anti and syn, 4H) 5.59-55.3 (m, 1H, syn), 5.35 (bs, 1H, anti), 5.38 (bs,
é/kﬁgz 1H, syn), 4.90-4.80 (bs, overlapping signals of anti and syn), 2.46 (s,
3H, anti), 2.45 (s, 3H, syn), 1.61 (d, J= 6.7 Hz, 3H, overlapping signals of anti and
syn), 1.42 (s, 9H, anti), 1.99 (s, 9H, syn).
BC NMR (100 MHz, CDCly): (anti product) 8155.1, 136.3, 135.7, 131.2, 128.4,
126.8, 125.4, 85.2, 80.5, 53.6, 28.3, 19.7, 16.9. (syn product) 6155.1, 136.3, 135.8,
131.4,128.5,127.0, 125.1, 86.8, 80.5, 53.5, 29.8, 19.5, 15.5.

HPLC: Chiralpak ADH, 80:20 (n-hexane/i-PrOH), flow rate 0.5 mL/min, 210 nm,
tempzzs OC: tminor,syn= 13.5 l’l’lil’l, tmajor,syn= 14.5 min, tminor,anti= 15.6 min, tmajor,am‘i=

23.7 min.

GC-MS: Retention time: 10.95 min (major diastereomer) / 11.13 min (minor
diastereomer)

[M/Z]"=57.11, 59.09, 91.05, 120.11, 164.08.

IR(neat): 3335, 2977, 2929, 2362, 1700, 1554, 1365, 1165 cm’’

49



3.8.12 Synthesis of fert-butyl (2-nitro-1-phenylbutyl)carbamate (31a)

General procedure starting from 1-nitropropane and tert-butyl (phenylmethylene)
carbamate afforded to desired chiral product mixture of syn/anti-isomers with ratio

72:28 (anti/syn) with 96% conversion in 20 h as a white solid.

?L J< "H NMR (400 MHz, CDCls): & 7.38-7.30 (m, 3H, overlapping signals

&%}VO\ of anti and syn), 7.25-7.22 (m, 2H, overlapping signals of anti and
NO, syn), 5.71 (bd, J=7.2 Hz, 1H, syn) 5.15 (bs, 1H, overlapping signals
of anti and syn), 4.74 (bs, 1H, anti), 2.09-2.01 (m, 1H, overlapping signals of anti
and syn) 1.91-1.86 (m, 1H, anti), 1.84-1.73 (m, 1H, syn), 1.46 (s, 9H, syn), 1.42 (s,
9H, anti), 0.98 (t, J= 7.0 Hz, 3H, anti), 0.97 (t, J= 7.3 Hz, 3H, syn)

3C NMR (100 MHz, CDCls): (anti product) 5154.9, 137.7, 128.9, 128.7, 126.9,
93.0, 80.4, 56.8, 29.7, 24.9, 10.5. (syn product) 5155.1, 137.7, 129.0, 128.4, 126.3,
93.8, 80.4, 55.9, 28.3, 24.9, 10.3.

HPLC: Chiralpak ASH, 95:5 (n-hexane/i-PrOH), flow rate 0.5 mL/min, 214 nm,
tempzzs OC: tmajor,syn= 19.0 min, tmajor,anti: 23.7 min, tminor,anti= 26.5 min, tminor,syn=
28.7 min.

GC-MS: Retention time: 10.89 min (major diastereomer) / 11.02 min (minor

diastereomer)

[M/Z]"= 57.10, 59.08, 104.07, 106.08, 150.05, 192.11.

IR(neat): 3370, 2977, 2925, 2361, 1682, 1549, 1520, 1359, 1169, 701 cm’!

3.9  Synthesis of Tosyl Protected Imines

> N

dry toluene, reflux |
D
= 21
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p-toluenesulfonamide (29.2 mmol, 5.0 g) and benzaldehyde (35.04 mmol, 3.72 g)
were dissolved in dry toluene (20.0 mL) under argon atmosphere. 1-2 crystals of
PTSA was added and refluxed for 3 hours. After 3 hours, 'H NMR analysis of
aliquot taken from reaction mixture indicated the complete conversion to product.
Solvent was removed under vacuum and product was washed with diethyl ether to

remove impurities. Pure product was obtained with 95% yield as a white solid.™

"H NMR (400 MHz, CDCls): §9.03 (s, 1H), 7.94-7.85 (m, 4H), 7.61 (t, J= 7.5 Hz,
1H), 7.48 (t, J = 7.68 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 2.43 (s, 3H).

BC NMR (100 MHz, CDCls): §170.3, 144.7, 135.2, 135.1, 132.8, 131.4, 129.9,
129.2,128.2, 21.7.

3.10 General Procedure for Aza-Henry Reaction: Nitromethane Addition to

Tosyl Protected Imines

Racemic synthesis,

Tosyl imine (0.1 mmol), nitromethane (0.35 mmol) and Et;N (0.01 mmol) were
dissolved in DCM (1 mL) and stirred at room temperature. The reaction was
monitored with TLC upon the consumption of limiting reactant, directly loaded into
column chromatography. EtOAc:Hexane mixtures was used as eluent to purify the

products.

Asymmetric synthesis;

Tosyl imine (0.1 mmol) and #z-butyl/2-aminoDMAP 48 (0.002 mmol) was dissolved
in acetonitrile (0.3 mL) for half an hour. Then nitromethane (0.35 mmol) was added
to solution and stirred at the room temperature. The reaction was monitored with
TLC upon the consumption of limiting reactant, directly loaded into column

chromatography. EtOAc:Hexane mixtures was used as eluent to purify the products.
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3.10.1 Synthesis of (S5)-4-methyl-/V-(2-nitro-1-phenylethyl)benzenesulfonamide
(22a)

General procedure starting from nitromethane and (E)-N-benzylidene-4-

methylbenzenesulfonamide afforded to desired chiral product with 87% conversion

and 58% ee in 27 h as a white solid.

o ﬁ@/ "H NMR (400 MHz, CDCls): § 7.63 (d, J= 8.3 Hz, 2H), 7.26-

HN/S 7.20 (m, 5H), 7.10-7.06 (m, 2H) 5.67 (d, J= 8.0 Hz, 1H), 5.00

(j/vN% (dd, J=14.2, 6.8 Hz, 1H) 4.84-4.78 (m, 1H), 4.68-4.62 (m, 1H),
P

2.39 (s, 3H).
13C NMR (100 MHz, CDCls): §144.1, 136.6, 135.4, 129.9, 129.3, 127.3, 126.6, 79.1,
55.6,21.5.

HPLC: Chiralpak ODH column, 80:20 (n-hexane/i-PrOH), flow rate 1.0 mL/min,
220 nm, temp=25 °C, tminor= 19.2 min, tmajor= 22.1 min.

3.11 General Procedure for Henry Reaction: Nitromethane Addition to

Aldehydes

Racemic synthesis;

p-Nitrobenzaldehyde (34b) (0.1 mmol), nitromethane (0.35 mmol) and EtzN (0.01
mmol) were dissolved in DCM (1 mL) and stirred at room temperature. The reaction
was monitored with TLC upon the consumption of limiting reactant, directly loaded
into column chromatography. EtOAc:Hexane mixtures was used as eluent to purify

the products.

Asymmetric synthesis;
p-Nitrobenzaldehyde (34b) (0.1 mmol) and wurea/2-aminoDMAP 46 (0.005 mmol)
was dissolved in toluene (0.3 mL) for half an hour. Then nitromethane (0.35 mmol)

was added to solution and stirred at room temperature. The reaction was monitored

52



with TLC upon the consumption of limiting reactant, directly loaded into column

chromatography. EtOAc:Hexane mixtures was used as eluent to purify the products.

3.11.1 Synthesis of (S)-2-nitro-1-(4-nitrophenyl)ethan-1-ol (35b)

General procedure starting from nitromethane and p-nitrobenzaldehyde (34b)

afforded to desired chiral product with full conversion and 7% ee in 1 h as a yellow
solid.

oH 'H NMR (400 MHz, CDCLy): & 8.19 (d, J=8.8, 2H), 7.56 (d,
. NO
ON ® J=8.6, 2H), 5.57-5.52 (m, 1H), 4.58-4.48 (m, 2H), 3.20 (bs,
ON 1H).

3C NMR (100 MHz, CDCls): 5148.2, 145.1, 127.1, 124.3, 80.7, 70.1.

HPLC: Chiralpak TA column, 80:20 (n-hexane/i-PrOH), flow rate 1.0 mL/min, 254

nm, temp=25 °C, tmajor= 13.5 min, tmino= 17.5 min.

3.12 General Procedure for Aldol Reaction: Acetone/Cyclohexanone Addition

to Aldehydes

Racemic synthesis,

p-Nitrobenzaldehyde (34b) (0.2 mmol), acetone/cyclohexanone (4 mmol) and
pyrrolidine (0.06 mmol) were dissolved in water (0.3 mL) and stirred at room
temperature for 10 minutes. The reaction was monitored with TLC upon the
consumption of limiting reactant, directly loaded into column chromatography.

EtOAc:Hexane mixtures was used as eluent to purify the products.>

Asymmetric synthesis;
2-AminoDMAP 55 (0.01 mol) was dissolved in trace amount of DCM then Brensted
acid was added and stirred at room temperature for half an hour. p-

Nitrobenzaldehyde (34b) (0.1 mmol) and acetone/cyclohexanone (60) (0.35 mmol)
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was added to the solution. The reaction was monitored with TLC upon the
consumption of limiting reactant, directly loaded into column chromatography.

EtOAc:Hexane mixtures was used as eluent to purify the products.

3.12.1 Synthesis of (S)-4-hydroxy-4-(4-nitrophenyl)butan-2-one (37b)

General procedure starting from acetone and p-nitrobenzaldehyde (34b) by using
TFA as Bronsted acid afforded to desired chiral product with 38% isolated yield and
43% ee in 71 h as a yellow solid.

OH O 'H NMR (400 MHz, CDCls):  8.20 (d, J=8.8 Hz, 2H), 7.53 (d,
w J=8.6 Hz, 2H), 5.26 (dd, J=7.7, 4.4 Hz, 1H), 3.63 (bs, 1H),
ON 2.87-2.82 (m, 2H), 2.22 (s, 3H).
13C NMR (100 MHz, CDCly): 208.6, 150.1, 147.4, 126.5, 123.9, 69.0, 51.6, 30.8.

HPLC: Chiralpak ASH column, 75:25 (n-hexane/i-PrOH), flow rate 0.5 mL/min,
210 nm, temp=25 °C, tminor= 23.2 min, tmajor= 29.8 min.

3.12.2 Synthesis of 2-(hydroxy(4-nitrophenyl)methyl)cyclohexan-1-one (60b)

General procedure starting from cyclohexanone (59) and p-nitrobenzaldehyde (34b)
afforded to desired chiral product with chiral product mixture of syn/anti-isomers

with ratio 60:40 (syn/anti) in 46 h as a yellow solid.

OH O 'H NMR (400 MHz, CDCL): 3 8.21 (d, J= 8.8 Hz, 2H), 7.51 (d,
Q/\é J= 8.7 Hz, 2H), 4.90 (dd, J= 8.4, 1.5 Hz, 1H), 4.07 (d, J= 2.8
ON Hz, 1H), 2.62-2.55 (m, 1H), 2.53-2.47 (m, 1H), 2.36 (td, J=
13.4, 6.2 Hz, 1H), 2.15-2.08 (m, 1H), 1.88-1.80 (m, 1H), 1.72-1.36 (m, 1H).
3C NMR (100 MHz, CDCLy): 214.7, 148.4, 147.6, 127.8, 123.6, 74.0, 57.1, 42.7,
30.8,27.6, 24.7.
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o o 'HNMR (400 MHz, CDCls): § 8.24 (d, J= 8.8 Hz, 2H), 7.49 (d,

@J\é J=8.7 Hz, 2H), 5.48 (bs, 1H), 3.15 (bs, 1H) 2.67-2.60 (m, 1H),

ON 2.52-2.46 (m, 1H), 2.40 (td, J= 13.4, 6.1 Hz, 1H), 2.15-2.08 (m,
1H), 1.89-1.83 (m, 1H), 1.75-1.50 (m, 4H).

3C NMR (100 MHz, CDCly): 214.8, 149.3, 147.6, 126.7, 123.6, 70.2, 56.9, 42.7,
27.9,26.0, 24.9.

HPLC: Chiralpak ADH column, 90:10 (n-hexane/i-PrOH), flow rate 1.0 mL/min,
210 nm, temp=25 °C, teynminor= 17.4 min, tenmajor= 20.5 min, taniminor= 22.7 min,

tanti,major= 30.2 min.

3.13 Synthesis of a-Amidohemimalonates
o o 0O O 0O O

EtO MOEt PhCOCI EtO MOEt KOH EtO MOH
NH, HCI Et;N, DCM Ph \n/NH EtOH /H,0 Ph \H/NH
o) 0 54

The following slightly modified literature procedures are combined:** >

500 mg diethylmalonate hydrochloride (2.36 mmol, 1 eq.) and 1 mL Et;N (7.087
mmol, 3 eq.) was added to 35 mL DCM and stirred for 15 minutes. 0.275 mL
benzoyl chloride (2.36 mmol, 1 eq.) was added at 0 °C dropwise and the reaction was
stirred for 15 h at room temperature. After 15 h, the reaction mixture was diluted
with DCM, washed with HCI (1 N) and extracted with DCM. The combined organic
layers were dried (MgSQO4) and concentrated under reduced pressure. Purification of
the crude product was performed by recrystallization from EtOAc/Heptane (1:10)
afforded as white needles in 90% yield.

Benzoyl protected aminomalonate (1eq) was dissolved in 1:10 H,O:EtOH mixture. A
solution of KOH (1.2 eq) in 1:10 H,O:EtOH again and added dropwise to the
reaction at 0 °C. The reaction is stirred at room temperature for 24 hours. HCI (1 N)
was added dropwise until pH=I1, then the mixture was saturated with NaCl and

extracted twice with EtOAc. The combined organic layers were dried with MgSO,
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and concentrated under reduced pressure. Crude product was washed saturated
NaHCOj; and extracted with ether. After acidifying the water phase with 1 N HCl
until pH=1, extraction was performed with ether to obtain the resultant product as

yellowish solid in 45% yield.

'H NMR (400 MHz, CDCls): §9.94 (bs, 1H), 7.84-7.80 (m, 2H), 7.52 (tt, J= 7.4 Hz,
1.9 Hz, 1H), 7.45-7.40 (m, 2H), 5.37 (d, J= 6.7 Hz, 1H), 4.30-4.25 (m, 2H), 1.29 (t,
J=17.14 Hz, 3H).

13C NMR (100 MHz, CDCL): §168.5, 168.1, 166.5, 132.6, 132.5, 128.8, 127.5, 63.2,
57.0, 14.0.

3.14 General Procedure for Decarboxylative Aldol Reaction: Aldehyde

Addition to a-Amidohemimalonates

Racemic synthesis,

Et;N (1 eq) was added to a solution of malonic acid half ester 54 (1 eq) in dry THF
(0.3 mL for 0.2 mmol). aldehyde (1.2 eq) was added to the solution and the reaction
mixture was stirred at room temperature for 15 h. Reaction was directly loaded into
column chromatography. 30:70 EtOAc:Cyclohexane mixture was used as eluent to

purify the products.

Asymmetric synthesis;

0.16 mmol of aldehyde, 0.13 mmol of malonic acid half ester 54 and 0.01 mmol of #
butyl /2-aminoDMAP 48 was dissolved in DCM (1.0 mL) and stirred at the room
temperature. The reaction was monitored with TLC upon the consumption of
limiting reactant, directly loaded into column chromatography. 30:70

EtOAc:Cyclohexane mixture was used as eluent to purify the products.
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3.14.1 Synthesis of ethyl 2-benzamido-3-hydroxy-3-(4-nitrophenyl)propanoate
(55b)

General procedure starting from 0.13 mmol of malonic acid half ester 54 and p-
nitrobenzaldehyde (34b) afforded to desired chiral product with 40% isolated yield

and 55% ee in 7 days as a white solid.

)O OH "H NMR (400 MHz, CDCL;): & 8.19 (d, J= 8.8 Hz, 2H) 7.70-

E;ﬁ ;H* 7.66 (m, 2H), 7.61 (d, J= 8.5 Hz, 2H), 7.52 (tt, J=7.4, 1.22
NO

If ? Hgz, 1H), 7.44-7.40 (m, 3H), 6.87 (d, J= 8.8 Hz, 1H), 5.50 (d,

J=3.0 Hz, 1H), 5.15 (dd, J=8.7, 3.1 Hz, 1H), 4.32-4.21 (m, 2H), 1.29 (t, /= 7.2 Hz,
3H).

BC NMR (100 MHz, CDCL): §169.1, 169.0, 147.8, 147.0, 132.7, 132.0, 129.0,
127.3,127.1, 123.6, 75.0, 62.8, 60.1, 14.2.

HPLC: Chiralpak ASH column, 80:20 (n-hexane/i-PrOH), flow rate 1.0 mL/min,
210 nm, temp=25 °C, tminor= 11.6 min, tmsjo,= 18.1 min.

3.15 Synthesis of (Z)-(2-bromo-2-nitrovinyl)benzene (43)

Br

Ph o~ Br,, Pyridine Ph M/L
N >
02 Cyclohexane NO

The following literature procedure is performed:>’

To a rt stirred solution of S-nitrostyrene 21 (5.0 mmol) in pyridine (6.5 mmol) and
cyclohexane (20 mL) was added neat Br, (6.0 mmol) dropwise over 5 min. The
cloudy yellow reaction was then heated to reflux and stirred for 4-12 h (monitored by
TLC). The reaction mixture was then transferred to a single-neck round-bottom flask
with the aid of ethyl acetate. The solvent was removed, and the resulting residue was
taken up in ethyl acetate (50 mL). The organic layer was washed with aqueous
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Na,S,0; (1.0 M, 2 x 20 mL), H,O (20 mL), and brine (20 mL) and then dried over
Na,SO,. The solvent was removed in vacuo to give a crude solid that was purified by

flash chromatography (CH,Cl,/petroleum ether gradient).

Spectroscopic data are in accordance with the literature.”’

3.16 General Procedure for Friedel-Crafts/Substitution Domino Reaction:

(Z)-(2-bromo-2-nitrovinyl)benzene (43) and f—naphthol (42)

Racemic synthesis,

0.18 mmol f—naphthol (42), 0.1 mmol (Z)-(2-bromo-2-nitrovinyl)benzene (43), and
0.01 mmol of Et;N were dissolved and stirred at the room temperature. The reaction
was monitored with TLC upon the consumption of limiting reactant, directly loaded
into column chromatography. EtOAc:Hexane mixtures was used as eluent to purify

the products.

Asymmetric synthesis;

0.1 mmol (Z)-(2-bromo-2-nitrovinyl)benzene (43), 0.18 mmol f—naphthol (42) and
0.01 mmol of t-butyl/quinine 51 were dissolved in 0.2 mL DCM and stirred at the
room temperature. The reaction was monitored with TLC upon the consumption of
limiting reactant, directly loaded into column chromatography. EtOAc:Hexane

mixtures was used as eluent to purify the products.

3.16.1 Synthesis of 2-nitro-1-phenyl-1,2-dihydronaphtho(2,1-b]furan (44a)
General procedure starting from (Z)-(2-bromo-2-nitrovinyl)benzene (43) and fS-

naphthol (42) afforded to desired chiral product with full conversion and 92% ee in

10 minutes as a white solid.
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Ph NO; 'H NMR (400 MHz, CDCly): & 7.94-7.87 (m, 2H), 7.46 (d, J=8.9

0 Hz, 1H), 7.38-7.33 (m, 6H), 7.22-7.28 (m, 2H), 6.12 (d, J=1.7 Hz,

T s esm

BC NMR (100 MHz, CDCLs): §156.4, 138.1, 131.6, 129.5, 129.2, 128.6, 127.8,
127.7,123.1,118.4, 112.7, 112.0, 55.5.

HPLC: Chiralpak ODH column, 90:10 (n-hexane/i-PrOH), flow rate 1.0 mL/min,
220 nm, temp=25 °C, tminor= 8.2 mMin, tmajor= 9.4 min.
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CHAPTER 4

CONCLUSION

In this study, novel bifunctional organocatalysts, developed in Tanyeli’s research
group were tested in five different types of reactions. In the first part, aza-Henry
reaction of -Boc protected imines were tested both with 2-aminoDMAP and quinine
based bifunctional organocatalysts with nitroalkanes. The best result was obtained
with 10 mol% of organocatalyst 51, 0.1M concentration in DCM at room
temperature. Under this condition, derivatization studies were done with different
imines and nitroalkanes. The enantioselectivities were found up to 91% ee with full
conversions for o-methyl 24¢, p-bromo 24e and p-methyl 24f substituted imine
derivatives with nitromethane. In the same reaction, tosyl protected imine 21 was
also tested; however, ee value did not exceed 52% with #-butyl / 2-aminoDMAP

organocatalyst 48.

In the second part of the thesis, pioneering studies have done in Henry, aldol,
decarboxylative aldol and Friedel-Crafts/Substitution Domino reactions.
Unfortunately, in Henry reaction none of the trials showed enantioenriched result. In
the aldol reaction study, maximum of 41% ee was achieved with 2-aminoDMAP 56
and proline binary organocatalyst system. Although there are not a lot of studies
where decarboxylative aldol study is experimented, the first results indicates that it
can be improved with additional screenings. Among the aforementioned reactions,
Friedel-Crafts/Substitution Domino reaction gave the most promising result, in terms
of enantioselectivity and reaction rate as 92% ee in 10 minutes with full conversion,
respectively. Optimization study will continue and the derivatization of the starting

materials will be accomplished in the optimized condition in the near future.
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APPENDIX A

NMR DATA
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Figure A. 1. "H NMR spectrum of compound 51
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Figure A. 2. °C NMR spectrum of compound 51
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Figure A. 3. "H NMR spectrum of compound 24a
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Figure A. 4. °C NMR spectrum of compound 24a
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Figure A. 5. 'H NMR spectrum of compound 24b
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Figure A. 6. °C NMR spectrum of compound 24b
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Figure A. 7. H NMR spectrum of compound 24¢
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Figure A. 8. °C NMR spectrum of compound 24c¢
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Figure A. 9. 'H NMR spectrum of compound 24d
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Figure A. 10. °C NMR spectrum of compound 24d
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Figure A. 11. '"H NMR spectrum of compound 24e
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Figure A. 12. °C NMR spectrum of compound 24e
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Figure A. 13. "H NMR spectrum of compound 24f
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Figure A. 14. °C NMR spectrum of compound 24f
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Figure A. 15. "H NMR spectrum of compound 24g
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Figure A. 16. °C NMR spectrum of compound 24g
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Figure A. 17. H NMR spectrum of compound 24h
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Figure A. 18. °C NMR spectrum of compound 24h

71



CT-DLS-71 THR 8B R B 33 H I Y RANIANZG RARS
CT-DLS.71 fHE S NNNNNNNN  hnnnninG < g
e SN S
B8 RRIASS S
PRV R P VR <
\ Nl NHBoc
NO,
ih
e o
R 5 = 8
S s S =
T T T T T T T T T
55 54 53 52 51 50 49 48 47
1 (ppm)
[
I
'/
/ SIS
[
M ]
!
| I
1l LN
i BErg g3
ERN S35= R
T T T T T T T T T T T T T T T T
1.5 8.0 7.5 7.0 6.5 6.0 55 5.0 3.5 3.0 25 2.0 15 1.0

45 4.0
1 (ppm)

Figure A. 19. '"H NMR spectrum of diastereomeric mixture 28a
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Figure A. 20. °C NMR spectrum of diastereomeric mixture 28a
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Figure A. 21. '"H NMR spectrum of diastereomeric mixture 28b
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Figure A. 22. °C NMR spectrum of diastereomeric mixture 28b
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Figure A. 24. °C NMR spectrum of diastereomeric mixture 28c¢
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Figure A. 25. '"H NMR spectrum of diastereomeric mixture 31a
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Figure A. 27. '"H NMR spectrum of compound 21
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Figure A. 28. °C NMR spectrum of compound 21
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Figure A. 29. "H NMR spectrum of compound 22a
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Figure A. 30. °C NMR spectrum of compound 22a
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Figure A. 31. '"H NMR spectrum of compound 35b
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Figure A. 32. °C NMR spectrum of compound 35b
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Figure A. 33. 'H NMR spectrum of compound 37b
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Figure A. 34. °C NMR spectrum of compound 37b
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Figure A. 35. 'H NMR spectrum of anti-60b
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Figure A. 36. °C NMR spectrum of anti-60b
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Figure A. 37. H NMR spectrum of compound 60b
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Figure A. 38. °C NMR spectrum of compound 60b
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Figure A. 39. H NMR spectrum of compound 54
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Figure A. 40. °C NMR spectrum of compound 54
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Figure A. 43. '"H NMR spectrum of compound 44a
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Figure A. 44. °C NMR spectrum of compound 44a
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APPENDIX B

HPLC DATA
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Figure B. 1. HPLC chromatogram of rac-24a
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Figure B. 2. HPLC chromatogram of enantiomerically enriched 24a
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Figure B. 3. HPLC chromatogram of rac-24b
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Figure B. 4. HPLC chromatogram of enantiomerically enriched 24b
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Figure B. 6. HPLC chromatogram of enantiomerically enriched 24¢
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Figure B. 5. HPLC chromatogram of rac-24¢
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Figure B. 8. HPLC chromatogram of enantiomerically enriched 24d
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Figure B. 10. HPLC chromatogram of enantiomerically enriched 24e
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Figure B. 11. HPLC chromatogram of rac-24f
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Figure B. 12. HPLC chromatogram of enantiomerically enriched 24f
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Figure B. 14. HPLC chromatogram of enantiomerically enriched 24g
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Figure B. 13. HPLC chromatogram of rac-24g
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Figure B. 15. HPLC chromatogram of rac-24h
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Figure B. 16. HPLC chromatogram of enantiomerically enriched 24h
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Figure B. 18. HPLC chromatogram of enantiomerically enriched 28a
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Figure B. 19. HPLC chromatogram of diastereomeric mixture of rac-28b
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Figure B. 20. HPLC chromatogram of enantiomerically enriched 28b
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Figure B. 22. HPLC chromatogram of enantiomerically enriched 28c
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Figure B. 24. HPLC chromatogram of enantiomerically enriched 31a
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Figure B. 25. HPLC chromatogram of rac-22a
= Uv2000-220nm
Atea Percent
Retention Time

1800 1800

1600 1600

1400 1400

1200 1200

1000 1000

800 800

600 500

40 [ 400

g
b} o
2 2
o
§
200 g - 200
. ;
g §
&

: A_"AL,Q I L

10 1 12 13 14 1 1 i 1% 19 0 il n B M % % n % u 0

Mnutes

Figure B. 26. HPLC chromatogram of enantiomerically enriched 22a
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Figure B. 27. HPLC chromatogram of rac-35b
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Figure B. 28. HPLC chromatogram of enantiomerically enriched 35b
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Figure B. 29. HPLC chromatogram of rac-37b
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Figure B. 30. HPLC chromatogram of enantiomerically enriched 37b
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Figure B. 32. HPLC chromatogram of enantiomerically enriched 55b
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APPENDIX C

GC-MS DATA
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Number of detected peaks: 2
Apex RT |[StartRT |EndRT |Area %Area [Height |%Height
6.72 6.45 7.01| 1.04E+09 96.43| 3.34E+08 95.45
9.83 9.76 9.94| 38492904 3.57[ 15905215 4.55
Figure C. 1. GC-MS chromatogram of 1 h reaction
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Apex RT [StartRT |[EndRT |Area %Area |Height |%Height
6.71 6.46 7.01| 6.86E+08 97.46| 2.31E+08 96.49
9.83 9.79 9.87| 17860700 2.54| 8408721 3.51

Figure C. 2. GC-MS chromatogram of 5 h reaction
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Figure C. 3. GC-MS chromatogram of compound 24a
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Figure C. 4. GC-MS chromatogram of compound 24b
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Figure C. 5. GC-MS chromatogram of compound 24c¢
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Figure C. 6. GC-MS chromatogram of compound 24d
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Figure C. 7. GC-MS chromatogram of compound 24e
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Figure C. 8. GC-MS chromatogram of compound 24f
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Figure C. 9. GC-MS chromatogram of compound 24g
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Figure C. 10. GC-MS chromatogram of compound 24h
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Figure C. 11. GC-MS chromatogram of compound 28a
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Figure C. 12. GC-MS chromatogram of compound 28b
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Figure C. 13. GC-MS chromatogram of compound 28¢
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Figure C. 14. GC-MS chromatogram of compound 31a
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