
GMDH-TYPE NEURAL NETWORK ALGORITHMS FOR SHORT TERM

FORECASTING

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

OSMAN DAĞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

STATISTICS

 AUGUST 2015

Approval of the thesis:

GMDH-TYPE NEURAL NETWORK ALGORITHMS FOR SHORT TERM

FORECASTING

submitted by OSMAN DAĞ in partial fulfillment of the requirements for the

degree of Master of Science in Statistics Department, Middle East Technical

University by,

Prof. Dr. Gülbin Dural Ünver __________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ayşen Akkaya __________________

Head of Department, Statistics

Assist. Prof. Dr. Ceylan Yozgatlıgil __________________

Supervisor, Statistics Department, METU

Examining Committee Members:

Assoc. Prof. Dr. Erdem Karabulut __________________

Biostatistics Department, Hacettepe University

Assist. Prof. Dr. Ceylan Yozgatlıgil __________________

Statistics Department, METU

Assoc. Prof. Dr. Pınar Özdemir __________________

Biostatistics Department, Hacettepe University

Assoc. Prof. Dr. Serdal Kenan Köse __________________

Biostatistics Department, Ankara University

Assist. Prof. Dr. Ceren Vardar Acar __________________

Statistics Department, METU

 Date: 10/08/2015

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Osman Dağ

Signature :

v

ABSTRACT

GMDH-TYPE NEURAL NETWORK ALGORITHMS FOR SHORT TERM

FORECASTING

Dağ, Osman

M.Sc., Department of Statistics

Supervisor: Assist. Prof. Dr. Ceylan Yozgatlıgil

August 2015, 76 pages

Group Method of Data Handling (GMDH) - type neural network algorithms are

the heuristic self-organization method for modelling the complex systems. GMDH

algorithms are utilized for the variety of purposes, which are identification of

physical laws, extrapolation of physical fields, pattern recognition, clustering,

approximation of multidimensional processes, forecasting without models and so

on. In this study, GMDH - type neural network algorithms were applied to make

forecasts for time series data sets. We mainly focused on development of free

software. For this purpose, we developed an R package GMDH. Moreover, we

integrated different transfer functions, sigmoid, radial basis, polynomial, and

tangent functions, into GMDH algorithm. We proposed an algorithm in which all

transfer functions are used simultaneously or separately if desired. Also, we used

regularized least square estimation for the estimation of weights to overcome

multi-collinearity problem. The methods were illustrated on real life datasets

having different properties to see the prediction and forecasting performance of the

algorithm. We included ARIMA models and exponential smoothing methods for

the comparison purpose. GMDH algorithms show the same or even better

performance than the other methods.

Keywords: Time Series Analysis, Neural Network, Regularized Least Square

Estimation, Transfer Function, Statistical Software

vi

ÖZ

KISA DÖNEM ÖNGÖRÜ İÇİN GMDH TÜRÜNDE SİNİR AĞI

ALGORİTMALARI

Dağ, Osman

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Ceylan Yozgatlıgil

Ağustos 2015, 76 sayfa

Veri işleme grup yöntemi (GMDH) türünde sinir ağı algoritmaları, karmaşık

sistemleri modellemeye yarayan bulgusal, kendi kendini organize eden

yöntemlerdir. GMDH algoritmaları fizik kanunlarını tanımlama, fiziksel alanların

dış kestirimi, örüntü tanıma, kümeleme, çok boyutlu işlemlerin yaklaştırımı,

modelsiz öngörü gibi çeşitli amaçlar için kullanılmaktadır. Bu çalışmada, GMDH

türünde sinir ağı algoritmalarına, zaman serisi veri setleri için öngörü yapmak

amacıyla başvurulmuştur. Çoğunlukla ücretsiz bir yazılım geliştirmeye odaklanıldı

ve bu amaçla GMDH isimli bir R paketi geliştirildi. Ek olarak sigmoid, radyal

temelli, polinomiyal ve tanjant fonksiyonları gibi aktarma fonksiyonları GMDH

algoritmasına entegre edildi. İstenildiğnde eş zamanlı veya ayrı ayrı aktarma

fonksiyonlarının kullanılabildiği bir algoritma önerildi. Çoklu bağlantı problemini

çözmek için ağırlıkların kestiriminde, düzeltilmiş en küçük kareler kestirimi

kullanıldı. Farklı özelliklere sahip gerçek hayat veri setleri üzerinde yöntemler

uygulanarak algoritmanın tahminleme ve öngörü performansı incelenmiştir.

Karşılaştırma amaçlı ARIMA modelleri ve üstel düzgünleştirme yöntemleri de

dahil edildi. GMDH algoritmalarının diğer yöntemlerle aynı hatta daha iyi

performans gösterdiği saptanmıştır.

Anahtar Kelimeler: Zaman Serisi Analizi, Sinir Ağları, Düzeltilmiş En Küçük

Kareler Yöntemi, Aktarma Fonksiyonu, İstatistiksel Yazılım

http://tureng.com/search/radyal%20temelli%20fonksiyon
http://tureng.com/search/radyal%20temelli%20fonksiyon

vii

ACKNOWLEDGEMENTS

I would like to put my deepest gratefulness into words to my advisor, Assist. Prof.

Dr. Ceylan Yozgatlıgil, for her endless support. Her great support made me feel

confident and encouraged. It is difficult for me to express my whole feelings in

words, but I should point out that I am happy and lucky to have had an opportunity

to work with her.

I am also thankful to Assoc. Prof. Dr. Erdem Karabulut, Assoc. Prof. Dr. Pınar

Özdemir, Assoc. Prof. Dr. Serdal Kenan Köse and Assist. Prof. Dr. Ceren Vardar

Acar for their relevant discussions, suggestions and comments.

I would like to thank to all instructors who lectured me and made contribution to

my skills in the past at Middle East Technical University. Within a special

parenthesis, I would like to thank all members of Department of Biostatistics at

Hacettepe University for their all support.

My warm and sincere thanks to my best friends, Ramazan Seyhan, Özgür Saman,

Atilla Eyüpoğlu, Önay Burak Doğan for being always with me.

I would like to express my appreciations to my family, Murat, Döndü, Nazmi,

Nazan, Murathan and Ceren. This thesis is the product of endless support of Dağ

family.

Last but not least, many thanks to my wife, Özlem, for her all support and not

complaining about writing my thesis in the time that I need to spend with her.

Also, many thanks to my newborn baby, Ada, for entering our life and making it

colorful for us.

viii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vi

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES.. x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS ... xii

CHAPTERS

1. INTRODUCTION ... 1

2. LITERATURE REVIEW.. 5

 2.1. The origin of GMDH-Type Neural Network ... 5

 2.2. Application Areas of GMDH Algorithms .. 5

 2.3. The Methodology of GMDH Algorithms .. 6

 2.4. The Studies in Which GMDH-Type Neural Network is Applied For the

Purpose of Forecasting Time Series ... 7

3. METHODOLOGY ... 9

 3.1. Data Preparation ... 9

 3.2. GMDH-Type Neural Network Algorithms .. 11

3.2.1. Architecture of GMDH Algorithm 12

3.2.2. Architecture of RGMDH Algorithm 13

ix

3.3. Transfer Functions ... 15

3.4. Estimation of Weights ... 18

3.4.1. Regularized Least Square Estimation 18

3.4.1.1. Estimation of Weights in GMDH Algorithm 19

3.4.1.2. Estimation of Weights in RGMDH Algorithm 20

3.4.2. Estimation of Regularization Parameter 21

3.5. External Criteria of Accuracy .. 21

3.6. Algorithm of GMDH-Type Neural Network 22

3.7. Methods Included for Comparison Purpose ... 24

3.7.1. ARIMA Models .. 24

3.7.2. Exponential Smoothing ... 26

4. APPLICATION OF THE ALGORITHMS ON REAL LIFE DATASETS 29

4.1. Cancer Death Rate... 29

 4.2. Melanoma Incidence ... 32

4.3. Accidental Deaths ... 34

4.4. Airline Passenger Numbers .. 37

4.5. Discussion ... 39

5. CONCLUSION ... 41

REFERENCES ... 43

APPENDICES

A. Manual of Our Proposed R Package GMDH... 47

B. Our R Function for Forecasting Via GMDH Algorithms 53

C. R Codes For Real Data Applications .. 65

x

LIST OF TABLES

TABLES

Table 3.1 An illustration of time series data structure in GMDH algorithms 11

Table 3.2 The fifteen exponential smoothing methods with additive and

multiplicative errors ... 27

Table 4.1 Comparison of GMDH algorithms with other models on cancer

death rate ... 31

Table 4.2 Comparison of GMDH algorithms with other models on melonama

incidence .. 33

Table 4.3 Comparison of GMDH algorithms with other models on accidental

deaths... 36

Table 4.4 Comparison of GMDH algorithms with other models on airline

passenger numbers ... 38

xi

LIST OF FIGURES

FIGURES

Figure 3.1 Architecture of GMDH Algorithm ... 13

Figure 3.2 Architecture of RGMDH Algorithm .. 15

Figure 3.3 Flowchart of GMDH Algorithms ... 23

Figure 4.1 Yearly cancer death rate (per 100,000 population) in Pennsylvania

between 1930 and 2000 ... 30

Figure 4.2 Yearly cancer death rate (per 100,000 population) in Pennsylvania

between 1930 and 2000 with predictions and forecasts obtained via

RGMDH and ES(M,Ad,N) ... 32

Figure 4.3 Melanoma skin cancer incidence (per 100,000 people) in

Connecticut between 1936 and 1972 ... 33

Figure 4.4 Melanoma skin cancer incidence (per 100,000 people) in

Connecticut between 1950 and 1972 with predictions and forecasts

obtained from GMDH-RGMDH, ARIMA(0,1,0) and ES(M,A,N) 34

Figure 4.5 Monthly totals of accidental deaths (×1,000) in the US from 1973 to

1978 ... 35

Figure 4.6 Monthly totals of accidental deaths (×1,000) in the US from 1974 to

1978 with the predictions and forecasts obtained from RGMDH and

ES(M,N,M) .. 36

Figure 4.7 Monthly totals of international airline passengers (×100,000) from

1949 to 1960 .. 37

Figure 4.8 Monthly totals of international airline passengers (×100,000) from

1949 to 1960 with predictions and forecasts obtained from RGMDH

and ES(M,A,M) .. 39

xii

LIST OF ABBREVIATIONS

AIC Akaike Information Criterion

AICc corrected Akaike Information Criterion

ARIMA Autoregressive Integrated Moving Average

BIC Bayesian Information Criterion

CRAN Comprehensive R Archive Network

FMSE Forecasting Mean Square Error

GMDH Group Method of Data Handling

MAPE Mean Absolute Percentage Error

PMSE Prediction Mean Square Error

PSS Prediction Sum of Squares

1

CHAPTER 1

INTRODUCTION

Time series data are ordered successive observations which are measured in

equally or unequally spaced time. Time series data include dependency among

successive observations. Hence, the order of the data is important. They are

commonly appearing in various areas. In medical studies, we take measurements

on blood sugar, blood pressure, electrocardiogram tracing over time. In economics,

we record gross national income, gross national expenditure over months or/and

years. In energy industry, frequency of electrical signals and power of devices are

measured over time. In agriculture, we record total production of hazelnut and

prices in each year. In meteorology, total amount of rainfall in a region is recorded

hourly or/and weekly or/and monthly or/and yearly. Application fields of time

series, not given here, are limitless.

Modelling time series data is the method which utilizes history of the data and

makes forecasting by the help of the history of the data. Forecasting is the

prediction of the future observations by processing data at hand. It is important to

construct accurate model mechanism for forecasting to obtain reliable results.

Many statistical tools including the independence assumption are not applicable in

time series. Therefore, different tools considering the dependence among the lags

of the data are required.

Autoregressive integrated moving average (ARIMA) models, which consider the

dependency among the successive observations, are introduced in Box and Jenkins

(1970). These models are called stationary providing that all properties are the

same over time. The variation is around the mean is constant over time. Also, there

is no trend in the stationary process. Apart from these properties, ARIMA models

include some assumptions being necessary to be satisfied. For example, the

2

residuals of the process are required to come from normal distribution. However in

real life it is almost impossible to satisfy this assumption. There are some methods

to handle this problem. One of which is a group method of data handling (GMDH)

– type neural network algorithms for the objective of forecasting time series will

be introduced in the next paragraph. For the comparison purpose with respect to

forecasting accuracy, we include the application of the ARIMA models and

exponential smoothing methods in chapter 4.

The main objective of this thesis is to make forecasts via GMDH-type neural

network algorithms. There are some difficulties to apply GMDH-type neural

network, since there is no free available code for the user to reach GMDH

algorithm in the literature. Available commercial software programs do not explain

the steps and how the algorithm is working. Moreover, they are not convenient for

the time series data set. The question arises “What kind of contributions of this

thesis to the statistical literature and science is made?”. The followings are the

answers:

 We applied GMDH-type neural network which is used in very few studies

of statistical literature for the purpose of forecasting time series and

illustrated an application of the algorithm on real life data sets.

 We proposed an algorithm having an option in which all transfer functions

are used simultaneously or separately.

 We developed an R package “GMDH” and we made it publicly available.

We did not only make it publicly available, but also we presented all

algorithm of the system step by step. Since commercial statistical programs

do not explain all steps, just present how to use the program, the estimation

step of algorithm is not shown. Therefore, most of the time, the user exerts

the program, but does not know how it is working inside.

 We integrated regularized least square estimation which is utilized when

there may be a possibility of occurring multi-collinearity problem.

3

 We also state data preparation of a time series shown in section 3.1. Our

proposed package is making it convenient for the algorithm.

The outline of this thesis is organized as follows. In chapter 2, we present the

literature review of GMDH-type neural network and usage of that for the objective

of forecasting time series. In chapter 3, we discuss the GMDH-type neural network

algorithms. Moreover, we present how to manipulate time series data set to make it

convenient GMDH-type neural network. We discuss the transfer functions used in

the algorithms. Estimation of weights in neurons via regularized linear regression

and estimation of regularization parameter via cross validation are presented. In

chapter 4, real life data applications and related results are stated. The details of R

package “GMDH” is instructed with examples in this chapter. In chapter 5, we

close the thesis by discussion, conclusion and further research parts.

4

5

CHAPTER 2

LITERATURE REVIEW

The previous studies on GMDH can be divided into four parts. In the first part, the

origin of GMDH-type neural network is introduced. Second, we present some

areas in which GMDH algorithm is utilized. Third, the studies with the

methodology of GMDH algorithm are given. At last, we state the studies in which

GMDH-type neural network is applied for the purpose of forecasting time series.

We should note that chronological order is followed in each part.

2.1. The Origin of GMDH-Type Neural Network

The background of GMDH-type neural network is based on the end of the 1960s

years and the beginning of 1970s years. First in first, Ivakhnenko (1966)

introduced a polynomial, which is the basic algorithm of GMDH, to construct

higher order polynomial. The polynomial, which is known as Ivakhnenko

polynomial, is described in section 3.2. Also, Ivakhnenko (1970) introduced

heuristic self-organization method which constructed the main working system of

GMDH algorithm. Heuristic self-organization method defines the way that the

algorithm follows by the rules such as external criteria (see section 3.5). GMDH

method, convenient for the complex and unstructured system, has superiority on

the high order regression (Farlow, 1981).

2.2. Application Areas of GMDH Algorithms

A variety of the problems which the GMDH algorithm solves was described in

Ivakhnenko and Ivakhnenko (1995). Some of these problems are the identification

of physical laws, extrapolation of physical fields, pattern recognition, clustering,

6

forecasting without models, approximation of multidimensional processes, and so

on.

Kalavrouziotis et al. (2002) applied GMDH algorithm in environmental studies.

They had cultivated trees and irrigated those trees with processed wastewater.

They considered the non-linear relationship between characteristics of wood

obtained from the trees irrigated with processed wastewater and characteristics of

wood obtained from the trees grown up in a common way. Therefore, they utilized

GMDH algorithm to capture the non-linear relation between input and output

variables. Nariman-zadeh et al. (2002) used GMDH algorithm in material

processing studies. GMDH was exerted to see the relation between considerable

variables and depth penetration when they modeled explosive cutting process of

plates.

GMDH algorithm was used in design of experiments (Astakhov and Galitsky,

2005). When they constructed their experiment, they had some difficulties such as

limited number of variables, pre-setting the model. To solve these difficulties, they

applied GMDH algorithm and they obtained very complex model to explain which

parameters have an effect on tool life in gundrilling. It was shown that the tool life

in gundrilling is the model of various regime and design parameters. In another

study, GMDH was applied to make feature ranking and selection of the medical

data (Abdel-Aal, 2005). Baig et al. (2013) used GMDH-type neural network

algorithm for intelligent intrusion detection. In that study, they classified network

traffic into two classes: normal and anomalous. Najafzadeh et al. (2014) utilized

GMDH algorithm in pipeline systems studies. Depth of scour below pipelines

which were exposed to waves was predicted via GMDH-type neural network.

Sheikholeslami et al. (2014) applied GMDH-type neural network to investigate the

impact of magnetic field on heat transfer of Cu-water nanofluid.

7

2.3. The Methodology of GMDH Algorithms

Muller et al. (1998) studied GMDH algorithms for the objective of modelling the

complex systems. Sometime statistical/mathematical models are not sufficient to

solve the problems, such as pattern recognition, forecasting, identification, etc.

Extracting the information from the measurements has advantages while modelling

complex systems since there is no enough prior information and/or no theory is

defined to model the complex systems. Selecting model automatically is a

powerful way for the users who are interested in the result and do not have

sufficient statistical knowledge and sufficient time. In Muller et al., they also

stated that basically prediction mean square error (PMSE) is applied for the neuron

selection.

Kondo (1998) proposed GMDH-type neural network in which the algorithm works

according to the heuristic self-organization method. Kondo and Ueno (2006a)

proposed GMDH algorithm which has a feedback loop. According to the

algorithm, the output obtained from the last layer is set as a new input variable, if

threshold is not satisfied in the last layer. The system of algorithm is organized by

heuristic self-organization method. In this algorithm, sigmoid function is

integrated in the algorithm as an activation function. This algorithm is applied to

medical image recognition of brain (Kondo and Ueno, 2006b). Kondo and Ueno

(2007) proposed logistic GMDH-type neural network. The difference from

conventional GMDH algorithm was that they take linear function of all inputs at

last layer. They applied GMDH algorithm to identify the X-ray film characteristic

curve. Kondo and Ueno (2012) included three transfer functions in feedback

GMDH algorithm. These transfer functions are sigmoid function, radial basis

function and polynomial function. They used this algorithm in medical image

analysis of liver cancer.

8

2.4. The Studies In Which GMDH-Type Neural Network Is Applied For The

Purpose of Forecasting

Srinivasan (2008) used GMDH-type neural network to forecast energy demand

prediction. This study also included the comparison of GMDH-type algorithm with

traditional time series models on real life data. It was shown that GMDH-type

neural network was superior in forecasting energy demand prediction compared to

traditional time series models. In another study, Xu et al. (2012) applied GMDH

algorithm to forecast the daily power load. When they made forecast on the daily

power load, they also included ARIMA models. According to the results, GMDH

results were superior to the results of ARIMA models.

All in all, the origin of GMDH-type neural network algorithm is stated. A variety

of areas which GMDH algorithm is applied in is presented. Also, we state the

methodological background of GMDH algorithm and the studies using GMDH

algorithm for the objective of forecasting time series. In following chapters, we

discuss the methodology and its applications on real life data. Moreover, we

introduce our proposed R package and its implementation on real life data sets.

9

CHAPTER 3

METHODOLOGY

In this chapter, we discuss GMDH - type neural network algorithms in time series

forecasting. The chapter is divided into seven sections. In section 3.1, we present

the data preparation before GMDH-Type neural network algorithms. In section

3.2, we continue with GMDH - type neural network algorithms in forecasting. We

discuss transfer functions in section 3.3. In section 3.4, estimation of weights via

regularized least square estimation and estimation of regularization parameter

through cross validation are presented. We present the external criteria of accuracy

in section 3.5. In section 3.6, we state the algorithm of GMDH - type neural

network. This chapter is closed by methods included for comparison purpose.

3.1. Data Preparation

Data preparation has important role in GMDH - type neural network algorithms.

Since we could not interfere with the algorithm while it is running, we are pre-

processing the data before starting the algorithm. Scaling the data is essential

before starting GMDH - type neural network algorithms. There are two main

benefits of this. One is to get rid of very big numbers in calculation, the other one

is to be able to use all transfer functions (see section 3.3) which are used in GMDH

- type neural network algorithm for forecasting. For these two main objectives, it is

necessary for whole data to be in interval of (0, 1). This necessity is guaranteed by

following transformation,

𝑤𝑡 =
𝛼𝑡 + 𝛿1

𝛿2
 (3.1)

with

10

𝛿1 = {
|min(𝛼𝑡)| + 1 , if min(𝛼𝑡) ≤ 0

 0 , if min(𝛼𝑡) > 0

and

𝛿2 = max(𝛼𝑡 + 𝛿1) + 1

where 𝛼𝑡 is actual time series dataset at hand. During the estimation and

forecasting process in GMDH neural network algorithm, all calculations are done

using the scaled data set, 𝑤𝑡. After all processes are ended; in other words, all

predictions and forecasts are obtained, we apply the inverse transformation as

follows,

�̂�𝑡 = �̂�𝑡 × 𝛿2 − 𝛿1. (3.2)

The main purpose of this section is the pre-processing the data; that is, we make

data manipulation and illustrate the structure of data. It is difficult to visualize the

structure of data since we have a univariate time series dataset. As it is in

autoregressive time series models, we model the time series data with time lags of

the data in GMDH - type neural network algorithms.

Let’s assume a time series dataset for t time points, and p inputs (see section 3.2).

Since we construct the model for the data with lags, the number of subject is equal

to be 𝑡 − 𝑝 and the number of covariates is to be 𝑝. An illustration of time series

data structure in GMDH algorithms is presented in Table 3.1. In this table, the

variable called 𝑅𝑒𝑠𝑝 is put in the models as a response variable, and the rest of the

variables are taken into models as covariates 𝐶𝑜𝑣𝑖, where 𝑖 = 1, 2, ..., 𝑝. The

notations in Table 3.1 are followed throughout this study.

11

Table 3.1: An illustration of time series data structure in GMDH

algorithms

Subject 𝑅𝑒𝑠𝑝 (𝑧) 𝐶𝑜𝑣1(𝑥1) 𝐶𝑜𝑣2(𝑥2) ⋯ 𝐶𝑜𝑣𝑝(𝑥𝑝)

1 𝑤𝑡 𝑤𝑡−1 𝑤𝑡−2 ⋯ 𝑤𝑡−𝑝

2 𝑤𝑡−1 𝑤𝑡−2 𝑤𝑡−3 ⋯ 𝑤𝑡−𝑝−1

3 𝑤𝑡−2 𝑤𝑡−3 𝑤𝑡−4 ⋯ 𝑤𝑡−𝑝−2

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑡 − 𝑝 𝑤𝑝+1 𝑤𝑝 𝑤𝑝−1 ⋯ 𝑤1

3.2. GMDH-Type Neural Network Algorithms

GMDH-type neural network algorithms are the modeling techniques which learn

the relations among the variables. In the perspective of time series, the algorithm

learns the relationship among the lags. After learning the relations, it automatically

selects the way to follow in algorithm. First, GMDH was introduced by

Ivakhnenko (1966) to construct high order polynomial. The following equation is

known Ivakhnenko polynomial given by

𝑦 = 𝑎 + ∑𝑏𝑖𝑥𝑖

𝑚

𝑖=1

+ ∑∑𝑐𝑖𝑗𝑥𝑖𝑥𝑗

𝑚

𝑗=1

𝑚

𝑖=1

+ ∑∑ ∑ 𝑑𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑚

𝑘=1

𝑚

𝑗=1

𝑚

𝑖=1

+ ⋯ (3.3)

where 𝑚 is the number of variables and 𝑎, 𝑏, 𝑐, 𝑑, … are coeffients of variables in

the polynomial. In general, the terms are used in calculation up to square terms in

GMDH algorithm presented below,

𝑦 = 𝑎 + ∑𝑏𝑖𝑥𝑖

𝑚

𝑖=1

+ ∑∑𝑐𝑖𝑗𝑥𝑖𝑥𝑗

𝑚

𝑗=1

𝑚

𝑖=1

 (3.4)

In the following subsections, GMDH-type neural network algorithms are mainly

focused and the architectures of the algorithms are presented.

12

3.2.1. Architecture of GMDH Algorithm

The conventional GMDH algorithm considers all possible combinations of two

covariates. Therefore, each combination of two input variables enters each

neuron. Using these two inputs, a model is constructed. With the help of this

model, we are able to estimate the desired output. The structure of the model is

specified by Ivakhnenko polynomial. Therefore, the following equation is derived

from the Ivakhnenko polynomial:

𝑦 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥𝑖
2 + 𝛽4𝑥𝑗

2 + 𝛽5𝑥𝑖𝑥𝑗. (3.5)

Here, y is a response variable, 𝑥𝑖 and 𝑥𝑗 are the covariate variables to be regressed.

𝛽𝑙’s are named as the weights where 𝑙 = 0, 1, . . . , 5. The response variable (𝑦) is

modelled by all possible combination of two input variables (𝑥𝑖 and 𝑥𝑗). It means

that two input variables go in a neuron, one result goes out as an output.

GMDH algorithm is a system of layers in which there exist neurons. In each layer,

there exist a number of neurons. The number of neurons in a layer is defined by

the number of input variables. To illustrate, assume that the number of input

variables equals to 𝑝, since we include two input variables, the number of neurons

is to be equal to ℎ =
𝑝 × (𝑝−1)

2
. The architecture of GMDH algorithm is illustrated

in Figure 3.1 when there exist three layers and four inputs. In this architecture, the

number of inputs is equal to four; therefore, the number of nodes in a layer is

determined to be six. In input layer, there exist four input variables. There is no

any process at this layer. This is just a starting layer to the algorithm. All plausible

combination of four input variables enters to each neuron at first layer. The

coefficient of Equation 3.5 is estimated in each neuron. By using estimated

coefficients and input variables in each neuron, the desired output is predicted.

According to external criteria, p neurons are selected and h-p neurons are

eliminated from the network. In Figure 3.1, four neurons are selected while two

neurons are eliminated from the network. The outputs obtained from selected

13

neurons become the inputs for the next layer. This process continues until the last

layer. At the last layer, only one neuron is selected. The obtained output from last

layer is the predicted values for the time series at hand.

Figure 3.1: Architecture of GMDH Algorithm

3.2.2. Architecture of RGMDH Algorithm

GMDH-type neural network constructs the algorithm by investigating the relation

between two inputs and the desired output. Architecture of revised GMDH

(RGMDH) - type neural network does not only consider this relation, but it also

considers individual effect on desired output (Kondo and Ueno, 2006a). There are

two different types of neurons in RGMDH-type neural network. In first type of

neuron, it is same as in GMDH-type neural network that two inputs enter the

neuron, one output goes out. In second type of neuron, r inputs enter the neuron,

one output goes out.

14

First type neuron:

𝑦 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥𝑖
2 + 𝛽4𝑥𝑗

2 + 𝛽5𝑥𝑖𝑥𝑗 (3.6)

where y is a response variable, 𝑥𝑖 and 𝑥𝑗 are the covariate variables defined in

Table 3.1. 𝛽𝑙’s are the weights where 𝑙 = 0, 1, . . . , 5.

Second type neuron:

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑟

𝑖=1

 , 𝑟 ≤ 𝑝 (3.7)

where y is a response variable, 𝑥𝑖 the covariate variables defined in Table 3.1. 𝛽𝑖’s

are the weights, 𝑖 = 1, . . . , 𝑟. Here, 𝑟 is the number of inputs in the corresponding

second type neuron.

In GMDH-type neural network, there exist ℎ =
𝑝 × (𝑝−1)

2
 neurons in one layer. In

addition to this, with the 𝑝 neuron from the second type of neuron, the number of

neurons in one layer becomes 𝜂 =
𝑝 × (𝑝−1)

2
+ 𝑝 in RGMDH-type algorithm. The

architecture of RGMDH algorithm is shown in Figure 3.2 when there exist three

layers and three inputs. In this architecture, since the number of inputs is equal to

three, the number of nodes in a layer is determined to be six. Like GMDH

algorithm, there is no any process at starting layer. All plausible combination of

three inputs enters to each neuron at first layer. Moreover, the individual effect of

inputs starting from lag 1 is added to the rest ones as shown in Figure 3.2. In each

neuron, coefficients of models are calculated by using corresponding models in

equation 3.6 or 3.7. The desired output is predicted by utilizing estimated

coefficients and input variables in each neuron. 𝑝 neurons are selected as living

cells and 𝜂 − 𝑝, death cells are eliminated from the network according the

external criteria. The outputs obtained from selected neurons become the inputs for

15

the next layer. This process goes on until the last layer. Only one neuron is

selected at the last layer according to external criteria. The obtained output at the

last layer is the predicted values for the data set at hand.

Figure 3.2: Architecture of RGMDH Algorithm

3.3. Transfer Functions

Transfer functions (also known as activation functions, utilized throughout

interchangeably) are used to capture the better model which explains the relation

between inputs and desired outputs. Mainly, sigmoid function, radial basis

function (RBF), polynomial function were used to explain the relation between

inputs and output in GMDH-type neural network (Kondo and Ueno, 2012). Also,

we include tangent transfer function to consider the sinusoidal relation between

covariates and response variable. Transfer functions used in study are as follows,

Sigmoid Function:

16

𝑧 =
1

1 + 𝑒−𝑦
 (3.8)

Radial Basis Function:

𝑧 = 𝑒−𝑦2
 (3.9)

Polynomial Function:

𝑧 = 𝑦 (3.10)

Tangent Function:

𝑧 = tan 𝑦 (3.11)

Here, y is presented below for GMDH and RGMDH algorithms.

GMDH algorithm:

𝑦 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥𝑖
2 + 𝛽4𝑥𝑗

2 + 𝛽5𝑥𝑖𝑥𝑗 (3.12)

where y is a response variable, 𝑥𝑖 and 𝑥𝑗 are the covariate variables defined in

Table 3.1. 𝛽𝑙’s are the weights where 𝑙 = 0, 1, . . . , 5.

RGMDH algorithm:

First type neuron:

𝑦 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥𝑖
2 + 𝛽4𝑥𝑗

2 + 𝛽5𝑥𝑖𝑥𝑗 (3.13)

where y is a response variable, 𝑥𝑖 and 𝑥𝑗 are the covariate variables defined in

Table 3.1. 𝛽𝑙’s are the weights where 𝑙 = 0, 1, . . . , 5.

17

Second type neuron:

𝑦 = 𝛽0 + ∑𝛽𝑖𝑥𝑖

𝑟

𝑖=1

 , 1 ≤ 𝑟 ≤ 𝑝 (3.14)

where y is a response variable, 𝑥𝑖’s are the covariate variables defined in Table 3.1.

𝛽𝑖’s are the weights, 𝑖 = 1, . . . , 𝑟. For the purpose of constructing the models

defined in above, we use following transformations before constructing model in

neuron,

For Sigmoid Function:

𝑦 = log𝑒 (
𝑧

1 − 𝑧
) (3.15)

For Radial Basis Function:

𝑦 = √− log𝑒 𝑧 (3.16)

For Polynomial Function:

𝑦 = 𝑧 (3.17)

For Tangent Function:

𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑧 (3.18)

In this study, we use four activation functions. These functions are able to be used

separately. For example, assume that only sigmoid function is wanted to be used,

all calculations in each neuron are done according to sigmoid function. In other

18

words, the model using sigmoid function is constructed in each neuron. The other

transfer functions are never used throughout the whole process.

We propose that all transformations mentioned above are able to be used

simultaneously. Our proposed algorithm is that four models in each neuron are

constructed by using transfer functions mentioned above. Within the group of

these four models, one which has smallest external criteria (see section 3.5) is

selected in each node. In each neuron, one transfer function is selected. After

selection, the selected transfer function is responsible for that neuron.

3.4. Estimation of Weights

In this section, the estimation procedure in neurons is mentioned. In each node, the

weights (coefficients) of inputs are calculated. We integrated regularized linear

regression into estimation of weights in each neuron in order to overcome multi-

collinearity problem. In the following two sub-sections, we present regularized

least square estimation and estimation of regularization parameter via cross-

validation.

3.4.1. Regularized Least Square Estimation

In each estimation step of a node, there exists the coefficients to be estimated.

While we are estimating these coefficients, we use regularized least square

estimation. It is stated that regularized least square estimation is utilized when

there may be a possibility of occurring multi-collinearity problem. It is important

to note that regularized least square estimation is equal to least square estimation

when regularization parameter is zero.

19

3.4.1.1. Estimation of Weights in GMDH Algorithm

In GMDH algorithm, there exist six coefficients to be estimated in each model.

Coefficients are able to be estimated via the equation as follows,

�̂�𝑘 = (𝑋𝑘
′𝑋𝑘 + 𝜆𝐼6×6)

−1𝑋𝑘
′𝑦 (3.19)

where

𝑋𝑘 =

[

1 𝑥𝑘,𝑖,1 𝑥𝑘,𝑗,1 𝑥𝑘,𝑖,1

2 𝑥𝑘,𝑗,1
2 𝑥𝑘,𝑖,1𝑥𝑘,𝑗,1

1 𝑥𝑘,𝑖,2 𝑥𝑘,𝑗,2 𝑥𝑘,𝑖,2
2 𝑥𝑘,𝑗,2

2 𝑥𝑘,𝑖,2𝑥𝑘,𝑗,2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑘,𝑖,𝑡−𝑝 𝑥𝑘,𝑗,𝑡−𝑝 𝑥𝑘,𝑖,𝑡−𝑝

2 𝑥𝑘,𝑗,𝑡−𝑝
2 𝑥𝑘,𝑖,𝑡−𝑝𝑥𝑘,𝑗,𝑡−𝑝]

, 𝑦 = [

𝑦1

𝑦2

⋮
𝑦𝑡−𝑝

]

and

𝐼6×6 =

[

0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

with

�̂�𝑘 = [�̂�𝑘,0 �̂�𝑘,1 �̂�𝑘,2 �̂�𝑘,3 �̂�𝑘,4 �̂�𝑘,5]
′
.

Here, 𝑋𝑘 represents the covariates matrix at neuron 𝑘 (𝑘 = 1,… , ℎ). In the matrix

𝑋𝑘 , 𝑥𝑘,𝑖,1 is the first observation in covariate 𝑖 at neuron 𝑘. 𝑦 is a response variable

including 𝑡 − 𝑝 observations. Here, ℎ is the number of neurons in each layer.

20

3.4.1.2. Estimation of Weights in RGMDH Algorithm

In RGMDH algorithm, there exist two types of neurons. For the first type neuron,

estimation of weights is same with estimation in GMDH algorithm. Estimation of

coefficients in the second type neuron is as follows,

�̂�𝑘 = (𝑋𝑘
′𝑋𝑘 + 𝜆𝐼(𝑝+1)×(𝑝+1))

−1𝑋𝑘
′𝑦 (3.20)

where

𝑋𝑘 =

[

1 𝑥𝑘,1,1 … 𝑥𝑘,𝑟,1

1 𝑥𝑘,1,2 … 𝑥𝑘,𝑟,2

⋮ ⋮ ⋱ ⋮
1 𝑥𝑘,1,𝑡−𝑝 … 𝑥𝑘,𝑟,𝑡−𝑝]

and 𝑦 = [

𝑦1

𝑦2

⋮
𝑦𝑡−𝑝

]

and

𝐼(𝑝+1)×(𝑝+1) = [

0 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

]

with

�̂�𝑘 = [�̂�𝑘,0 �̂�𝑘,1 … �̂�𝑘,𝑟]
′
.

Here, 𝑋𝑘 represents the covariates matrix at neuron 𝑘 (𝑘 = ℎ + 1,… , 𝜂). In the

matrix 𝑋𝑘 , 𝑥𝑘,2,1 is the first observation in second covariate at neuron 𝑘. 𝑦 is a

response variable including (𝑡 − 𝑝) observations. Here, ℎ is the number of

neurons of which coefficients are estimated according to first type neuron. 𝜂 − ℎ is

the number of neuros whose coefficients are estimated through second type neuron

in each layer.

21

3.4.2. Estimation of Regularization Parameter

In this part, we present the estimation of regularization parameter via cross-

validation. For this purpose, we divide the data into two parts as a learning set

(70%) and a testing set (30%). Since the data set is time dependent, order of data is

saved in division process. In other words, first 70% of the data is used for learning

set and the last 30% of the data is utilized for testing set. This whole process is

applied for each model constructed in each neuron. The algorithm of regularization

parameter estimation is as follows,

i) Clarify the possible regularization parameter, λ= 0, 0.01, 0.02, 0.04,

0.08, …, 10.24.

ii) For each possible λ value, coefficients are estimated via the equation

3.19 (or 3.20) by using learning set.

iii) After calculation of weights, calculate the predicted values by utilizing

test set and obtain MSE for each regularization parameter.

iv) Select the regularization parameter which gives minimum MSE value.

3.5. External Criteria of Accuracy

The external criterion is utilized to check the accuracy of the model. In GMDH

algorithm, the external criterion is the decision measure in choosing the best way

to make the most accurate forecasts. In general, mean square error is used as the

external criteria to control the system of GMDH algorithm. After one output is

obtained in each neuron of a layer, external criteria are calculated. According to

the external criteria, some neurons continue to live, some cells, called death cells,

are discarded. For each neuron, prediction mean square error (PMSE) is calculated

between the obtained output (predicted values) and the desired output (observed

values).

22

𝑃𝑀𝑆𝐸 =
1

𝑡 − 𝑝
∑(�̂�𝑖 − 𝑧𝑖)

2

𝑡−𝑝

𝑖=1

 (3.21)

In a layer of GMDH algorithm, all PMSE values are calculated for all neurons.

According to PMSE values, some neurons are superior to the others. Better ones

have the right to continue to the next layer. For this reason, after PMSE values of

all neurons are calculated, p neurons which give smaller PMSE values compared

to others are selected as living cells. The selected outputs continue with next layer

as inputs. This process lasts until all layers are completed. At the last layer, the

neuron which gives the smallest PMSE value is selected and the estimation

procedure is ended. The details of the algorithms are discussed in following sub-

sections.

3.6. Algorithm of GMDH-Type Neural Network

GMDH is the effective technique to make accurate forecasts by learning the

relation between the lags of the data set. The most advantageous side of the

method is that exact model is not needed. In addition to this, there is no restriction

to apply the GMDH algorithm in the perspective of time series forecasting. The

method learns the relation among the lags of time series in training process. Some

neurons which give better performance are selected in network according to PMSE

value. On the other hand, some neurons which have higher PMSE compared the

other ones are eliminated from the system of network. The outputs obtained from

the selected neurons become the inputs at next layer. The process continues until

all layers are finished. The flowchart of the algorithm is able to be depicted in

Figure 3.3.

23

Figure 3.3: Flowchart of GMDH Algorithms

Before the algorithm starts, number of inputs and number of layers need to be

clarified. There is no criterion to define the number of inputs. However, since time

series has dependency among the lags, this is considered when the input number is

chosen. For example, if the dependency between 𝛼𝑡 and 𝛼𝑡−12 is high, the input

number are able to be chosen to be more than 12. This is not only parameter, but

also the number of layers affects the system. In general, the layer number is not

specified in GMDH algorithms. In that case, the system of algorithm is the

decision maker of the number of layers. If the decreasing of error stops, the system

is terminated (Samsudin et al., 2011). However, in this study, we clarify the

number of layers in the algorithm, since it can cause over-fitting problem when the

number of layers is large.

24

The algorithm of GMDH-type neural network algorithms in time series forecasting

is provided in following steps:

i) Decide number of inputs and layers.

ii) Make data manipulation proposed in section 3.1.

iii) Make estimation of weights in neurons depending on choice of transfer

function (see section 3.3).

iv) Obtain predicted values from all neurons and calculate PMSE for each

neuron.

v) If the process is not at the last layer, select 𝑝 outputs which have

smaller PMSE values compared to the rest ones, then, take obtained 𝑝

outputs to next layer as inputs and repeat steps iii) to v) again.

Otherwise, select the output which has the smallest PMSE value among

the outputs at the last layer.

GMDH algorithms continue until all layers are completed. Since there exist 𝑝

inputs, there are ℎ neurons for GMDH algorithm and 𝜂 neurons for RGMDH

algorithm in each layer. Within a group of neurons, 𝑝 neurons which have smaller

PMSE values compared to the rest are selected in each layer except for the last

layer. At the last layer, the neuron which gives the smallest PMSE value is chosen

as an output.

3.7. Methods Included for Comparison Purpose

3.7.1. ARIMA Models

ARIMA model, which is introduced in Box and Jenkins (1970), is the most

dominating one in time series area. The ARIMA model represented by ARIMA(p,

d, q) is written as follows:

𝜙𝑝(B) (1 − 𝐵)𝑑𝛼𝑡 = 𝜃𝑞(B)ℇ𝑡 (3.22)

25

with

𝜙𝑝(B) = (1 – 𝜙1B – 𝜙2𝐵
2 – … – 𝜙𝑝𝐵𝑝)

𝜃𝑞(B) = (1 – 𝜃1B – 𝜃2𝐵
2 – … – 𝜃𝑞𝐵𝑞)

where 𝛼𝑡 is a time series data set; 𝐵 is the backshift operator; (1 − 𝐵)𝑑 is non-

seasonal differencing operator; ℇ𝑡 is a white noise random process with mean 0

and variance 𝜎𝑎
2; 𝜙𝑝(B) is autoregressive operator; 𝜃𝑞(B) is moving average

operator. To illustrate, let ARIMA(1, 0, 1) with 𝜙1 = 0.4, 𝜃1 = 0.3. The model

becomes as follows:

(1 – 0.4B)𝛼𝑡 = (1 – 0.3B) ℇ𝑡

𝛼𝑡 = 0.4𝛼𝑡−1 + ℇ𝑡 – 0.3ℇ𝑡−1.

In real life, it is not always plausible to construct model by using ARIMA model

because of existence of seasonality. The seasonal ARIMA model is depicted as

ARIMA(p,d,q)×(𝑃, 𝐷,𝑄)𝑠 is stated as:

𝜙𝑝(B)Φ𝑃(𝐵𝑠) (1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑍𝑡 = 𝜃𝑞(B)Θ𝑄(𝐵𝑠) 𝑎𝑡 (3.23)

with

𝜙𝑝(B) = (1 – 𝜙1B – 𝜙2𝐵
2 – … – 𝜙𝑝𝐵𝑝)

Φ𝑃(𝐵𝑠) = (1 – Φ1𝐵
𝑠 – Φ2𝐵

2𝑠 – … – Φ𝑃𝐵𝑃𝑠)

𝜃𝑞(B) = (1 – 𝜃1B – 𝜃2𝐵
2 – … – 𝜃𝑞𝐵𝑞)

Θ𝑄(𝐵𝑠) = (1 – Θ1𝐵
𝑠 – Θ2𝐵

2𝑠 – … – Θ𝑄𝐵𝑄𝑠)

where 𝑍𝑡 is a time series, 𝐵 is the backshift operator, (1 − 𝐵)𝑑 and (1 − 𝐵𝑠)𝐷

are non-seasonal and seasonal differencing operators, respectively. 𝑎𝑡 is a white

noise random process with mean 0 and variance 𝜎𝑎
2, 𝜙𝑝(B) is autoregressive

26

operator, Φ𝑃(𝐵𝑠) is seasonal autoregressive operator, 𝜃𝑞(B) is moving average

operator, Θ𝑄(𝐵𝑠) seasonal moving average operator. For example, let ARIMA(1, 0,

1)×(0, 0, 1)12 with 𝜙1 = 0.5, 𝜃1=0.2, Θ1=0.4. The model becomes as follows:

(1 – 0.5B)𝑍𝑡 = (1 – 0.2B)(1 – 0.4𝐵12)𝑎𝑡

𝑍𝑡 = 0.5𝑍𝑡−1 + 𝑎𝑡– 0.2𝑎𝑡−1– 0.4𝑎𝑡−12 + 0.08𝑎𝑡−13

The main issue for the users constructing ARIMA models is to select the proper

order of the ARIMA models. Hyndman and Khandakar (2008) proposed an R

package “forecast” related to automatic time series forecasting. Within this

package, the function “auto.arima” selects the best order for the data set according

to either Akaike information criterion (AIC), corrected Akaike information

criterion (AICc) or Bayesian information criterion (BIC) while constructing

ARIMA model. The details of the methodology can be found in Hyndman and

Khandakar (2008).

3.7.2. Exponential Smoothing

The history of exponential smoothing is based on the 1950s, development of the

methods is relatively recent. Exponential smoothing is the method which smooths

the fluctuation of time series by giving the exponentially decreasing weights for

the observations getting older. Hyndman and Khandakar (2008) studied a total of

fifteen methods with additive and multiplicative errors. These methods are given

in Table 3.2. They also proposed the R package “forecast” in which there exists a

function called “ets”. This function selects the appropriate exponential technique

for the data set according to either AIC, AICc or BIC.

27

Table 3.2: The fifteen exponential smoothing methods with additive and

multiplicative errors

 Seasonal Component

Errors Trend Component
N

(None)

A

(Additive)

M

(Multipl.)

A

(Additive)

N (None) A, N, N A, N, A A, N, M

A (Additive) A, A, N A, A, A A, A, M

Ad (Additive damped) A, Ad, N A, Ad, A A, Ad, M

M (Multipl.) A, M, N A, M, A A, M, M

Md (Multipl. damped) A, Md, N A, Md, A A, Md, M

M

(Multipl.)

N (None) M, N, N M, N, A M, N, M

A (Additive) M, A, N M, A, A M, A, M

Ad (Additive damped) M, Ad, N M, Ad, A M, Ad, M

M (Multipl.) M, M, N M, M, A M, M, M

Md (Multipl. damped) M, Md, N M, Md, A M, Md, M

The components of the triplet (E, T, S) are called: error, trend and seasonality. For

instance, the model (A, M, N) means additive errors, multiplicative trend and no

seasonality. People call some of the methods given in Table 3.2 with the well-

known names. The first cell (A, N, N) is known as the simple exponential

smoothing with additive errors. The cell (A, A, N) is called Holt’s linear method

with additive errors which is good to explain a time series with trend. The method

(M, Ad, N) is known as the damped trend method with multiplicative errors. The

method (A, A, A) is named as the additive Holt-Winters' method with additive

errors errors which is good to explain a time series with trend and seasonality. The

cell (M, A, M) is called the multiplicative Holt-Winters' method with

multiplicative errors. The details of these methods can be found in Hyndman and

Khandakar (2008; see also Ord et al., 1997; Hyndman et al., 2002; Hyndman et al.,

2005b).

28

29

CHAPTER 4

APPLICATION OF THE ALGORITHMS ON REAL LIFE DATASETS

GMDH algorithms are illustrated on four real life data sets in this chapter. These

time series are well-known data sets and permanently used in time series text

books. We mainly focus on answering the following three questions on these

well-known data sets. How do GMDH algorithms perform when trend exists?

How do GMDH algorithms perform for the data set with small sample size? What

is the performance of GMDH algorithms when seasonality is available in the data

set?

The main objective of this section is to show the performance of the GMDH-type

neural network algorithms on real data applications with respect to prediction and

short term forecasting accuracy. For this purpose, the last five observations of each

data set were separated to show forecasting ability in short term.

In this chapter, we present information regarding the data sets. We implemented

GMDH algorithms on real data sets. Also, we applied ARIMA models and

exponential smoothing methods on real data applications for the comparison

purpose. Moreover, we introduce our proposed R package “GMDH” for the

implementation of the GMDH algorithms.

4.1. Cancer Death Rate

Data used in this application are yearly cancer death rate (per 100,000 population)

of Pennsylvania between 1930 and 2000 (Figure 4.1). The data were documented

in Pennsylvania Vital Statistics Annual Report by the Pennsylvania Department of

Health in 2000 (Wei, 2006).

30

Figure 4.1: Yearly cancer death rate (per 100,000 population) in Pennsylvania

between 1930 and 2000

This dataset is also available as a demo dataset in our R package GMDH. After

installing package “GMDH”, it can be loaded in R workspace by

R> library(GMDH)

R> data(cancer)

R> cancer

After the cancer death rate data set is loaded, “fcast” function is utilized for

forecasting via GMDH-type neural network.

R> out = fcast(cancer, method = "GMDH", input = 15, layer = 1, f.number = 5, tf

= "all", plotit = TRUE)

R> out$fitted # displays fitted values

R> out$MSE # returns the MSE value of prediction

31

R> out$forecasts # shows forecasts

In this part, we divided the data into 2 parts for the aim of observing the ability of

methods on prediction (n = 66) and forecasting (n = 5). We include ARIMA

models and ES methods for the comparison purpose. For the determination of the

best order of ARIMA models and the best method of ES techniques, there are two

functions in R package “forecast” (Hyndman et al., 2014). These functions,

auto.arima and ets, which use grid search, select the best model according to the

criteria of either AIC, AICc or BIC. The functions suggested the model ARIMA

(1, 1, 0) with intercept and ES method with multiplicative errors, additive damped

trend and no seasonality (M, Ad, N), respectively. We also added the model

ARIMA (0, 1, 0) with intercept for this data set suggested by Wei (2006). For all

models, prediction mean square error (PMSE) and forecasting mean square error

(FMSE) are stated in Table 4.1.

Table 4.1: Comparison of GMDH algorithms with other

models on cancer death rate

 PMSE FMSE

GMDH 4.985 4.575

RGMDH 4.287 4.102

ARIMA(1, 1, 0) with intercept 5.995 81.874

ARIMA(0, 1, 0) with intercept 6.324 73.756

ES (M, Ad, N) 6.153 17.508

The best forecasting performance belongs to RGMDH algorithm and its prediction

accuracy also yields better results compared GMDH, ARIMA and ES models.

Moreover, GMDH algorithm outperforms ARIMA and ES models in prediction

and forecasting. To avoid visual pollution in Figure 4.2, we include one of the

GMDH algorithms and one of ARIMA models or ES method which have higher

performance with respect to forecasting compared to the rest of them. Figure 4.2

includes predictions and forecasts of RGMDH algorithm and ES (M, Ad, N).

32

Figure 4.2: Yearly cancer death rate (per 100,000 population) in Pennsylvania

between 1941 and 2000 with predictions and forecasts obtained via RGMDH and

ES(M,Ad,N)

4.2. Melanoma Incidence

Data used in this part are melanoma skin cancer incidences (per 100,000 people)

which represent age-adjusted numbers of melanoma skin cancer. The data are

provided from Connecticut Tumor Registry in Connecticut from 1936 to 1972.

The data and its description are available in R package “lattice” (Sarkar, 2014)

under the name of melanoma. The illustration of melanoma skin cancer incidence

data set is given in Figure 4.3. The dataset is a very short time series to model. Our

aim in choosing this dataset is to see the performance of the GMDH algorithms in

a short series.

33

Figure 4.3: Melanoma skin cancer incidence (per 100,000 people) in Connecticut

between 1936 and 1972

Melanoma skin cancer incidence data set is divided into 2 parts for the purpose of

observing the ability of methods on prediction (n = 31) and forecasting (n = 5). In

order to find best order of ARIMA models, auto.arima suggested ARIMA(0, 1, 0)

with intercept by comparing the models according to AIC, AICc and BIC.

Function ets suggested ES method with multiplicative errors, additive trend and no

seasonality (M, A, N), respectively. For all models, PMSE and FMSE are stated in

Table 4.2.

Table 4.2: Comparison of GMDH algorithms with other

models on melanoma incidence

 PMSE FMSE

GMDH 0.034 0.095

RGMDH 0.034 0.095

ARIMA(0, 1, 0) with intercept 0.129 0.403

ES (M, A, N) 0.118 0.044

34

The performance of GMDH and RGMDH are same in both prediction and

forecasting. It is plausible since the architecture of RGMDH is an extension of

GMDH’s. The best prediction performance belongs to GMDH algorithms. ES

yields better results compared GMDH algorithms and ARIMA model with respect

to forecasting. However, ES method does not capture the behavior of the data set

whereas GMDH algorithms do (Figure 4.4). GMDH algorithms are able to be

applied if the length of series is short.

Figure 4.4: Melanoma skin cancer incidence (per 100,000 people) in Connecticut

between 1950 and 1972 with predictions and forecasts obtained from GMDH-

RGMDH, ARIMA(0,1,0) and ES(M,A,N)

4.3. Accidental Deaths

Data utilized in this part are monthly totals of accidental deaths in the US from

1973 to 1978. The data are able to be reached in Brockwell and Davis (1991). The

data and its description are also available in R package “datasets” (R Core Team,

35

2014) under the name of USAccDeaths. The accidental deaths data set is

illustrated in Figure 4.5. There is seasonality in the series like many time series.

Figure 4.5: Monthly totals of accidental deaths (×1,000) in the US from 1973 to

1978

In this part, the data are divided into 2 parts for the performance of prediction (n =

67) and forecasting (n = 5). ARIMA models and ES methods are included for the

comparison purpose. For the purpose of finding the best order of ARIMA models

and the best method of ES techniques, the functions auto.arima and ets are utilized.

These functions suggested the model ARIMA (0, 1, 1) (0, 1, 1) [12] and ES

method with multiplicative errors, no trend and multiplicative seasonal component

(M, N, M), respectively. For all models, PMSE and FMSE are presented in Table

4.3.

36

Table 4.3: Comparison of GMDH algorithms with

other models on accidental deaths

 PMSE FMSE

GMDH 0.130 0.088

RGMDH 0.068 0.239

ARIMA(0, 1, 1) (0, 1, 1) [12] 0.082 0.197

ES (M, N, M) 0.063 0.146

GMDH algorithm outperforms the rest ones in forecasting performance; however,

it does not perform as well as the other methods in prediction. The best prediction

performance belongs to ES technique and its forecasting performance is also fairly

good. RGMDH algorithm’s prediction accuracy also yields better results compared

to GMDH and ARIMA, but its forecasting accuracy is not as good as the rest

models. To prevent visual pollution, for only RGMDH algorithm and ES method,

the predicted values and forecasts are illustrated in Figure 4.6.

Figure 4.6: Monthly totals of accidental deaths (×1,000) in the US from 1974 to

1978 with the predictions and forecasts obtained from RGMDH and ES(M,N,M)

37

4.4. Airline Passenger Numbers

Data used in this part are monthly totals of international airline passengers from

1949 to 1960; therefore, it includes 144 observations. The data and its description

are able to be reached in Box et al. (1976). The data are also available in R

package “datasets” (R Core Team, 2014) under the name of AirPassengers. Airline

passenger numbers data set is illustrated in Figure 4.7. This dataset has an

increasing trend and seasonal behavior.

Figure 4.7: Monthly totals of international airline passengers (×100,000) from

1949 to 1960

We divided the data set into 2 sets in order to show the performance of GMDH

algorithms with respect to prediction (n = 139) and forecasting (n = 5). ARIMA

models and ES methods are included for the comparison purpose. For ARIMA

models, the best order of fitting this data set is ARIMA(0, 1, 1) (0, 1, 0) [12]. The

method which fit airline passenger numbers data set is found to be ES method with

38

multiplicative errors, additive trend and multiplicative seasonal component (M, A,

M). For all models, PMSE and FMSE are presented in Table 4.4.

Table 4.4: Comparison of GMDH algorithms with

other models on airline passenger numbers

 PMSE FMSE

GMDH 0.020 0.015

RGMDH 0.009 0.018

ARIMA(0, 1, 1) (0, 1, 0) [12] 0.012 0.098

ES (M, A, M) 0.011 0.063

GMDH and RGMDH are superior to ARIMA and ES for the forecasting

performance. The best forecasting performance belongs to GMDH algorithm, but

its prediction accuracy is not as good as RGMDH, ARIMA and ES models. In

order to visualize prediction and forecasting performance, RGMDH algorithm and

ES method are illustrated in Figure 4.8. GMDH algorithms are able to be

applicable even if both seasonality and trend are available in the data set.

39

Figure 4.8: Monthly totals of international airline passengers (×100,000) from

1949 to 1960 with predictions and forecasts obtained from RGMDH and

ES(M,A,M)

4.5. Discussion

In the light of whole analysis on the data sets included, GMDH – type neural

network algorithms generally outperform ARIMA and ES models in prediction

and forecasting performance even if the series is short or/and includes trend or/and

seasonality. As an alternative to ARIMA and ES models, GMDH algorithms are

applicable for prediction and forecasting. In this study, we proposed an R package

GMDH for easy implementation of users. Therefore, researchers are able to reach

these algorithms in an easy way.

40

41

CHAPTER 5

CONCLUSION

In this study, we used GMDH - type neural network algorithms, the heuristic self-

organization method for modelling the complex systems, to make forecasts for

time series data sets. We primarily concentrated to develop free software.

Concretely, we developed an R package called GMDH to make forecasting in

short term via GMDH - type neural network algorithms. Also, we integrated

different transfer functions, sigmoid, radial basis, polynomial, and tangent

functions, into GMDH algorithms. Our R package proposed that these functions

are able to be exerted simultaneously or separately depending on the desire.

In estimation of coefficients, since we construct the model for the data with lags,

there exists high possibility of occurring multi-collinearity problem. Therefore, we

utilized regularized least square estimation to handle such a problem. It is

important to note that estimation of regularization parameter is the question of

interest. Cross validation was applied in order to estimate regularization term. Data

were divided into two pieces as a learning set and a testing set. Order of the

observations was important in time series data; therefore, division was done by

taking that into consideration. Coefficients were estimated by using the learning

set and MSE was calculated by utilizing test set. The regularization parameter

which gave the smallest MSE in all possible regularization parameters was

selected. After selection of regularization term, coefficients were estimated by the

help of all observations and regularization parameter. It is important to point that

regularized least square is equal to least square estimation when regularization

parameter is estimated to be zero.

Application of the algorithms on real life datasets illustrated that GMDH – type

neural network algorithms are as good as ARIMA and ES models or better in

prediction and short term forecasting performance. GMDH algorithms are able to

42

be applied even if the length of the series is short. Also, they are able to be used

when trend and/or seasonality exist(s) in the data set. Researchers are able to reach

these algorithms since our proposed R package GMDH is available on

Comprehensive R Archive Network (CRAN) at http://CRAN.R-

project.org/package=GMDH.

One of the questions is “what will be the number of inputs?”. The answer of this

question is not that easy since increase in number of inputs causes decrease in the

number of observations. Therefore, it depends on the length of the series. It means

providing that there exist very long time series, it is better to use high number of

inputs. This of course results in very large computational time. If the sample size is

small, it is not plausible to use large number of inputs. In this case, optimum

feasible input numbers are tried to be exerted, the number of input is able to be

chosen according to MSE.

Future studies are planned in the direction of transfer functions. In this study, we

used four different transfer functions - sigmoid, radial basis, polynomial, and

tangent functions - into GMDH algorithms. We plan to integrate Box-Cox

transformation into GMDH-type neural network algorithms. GMDH algorithms

with four transfer functions and GMDH algorithms with Box-Cox transformation

are going to be performed on real data applications to compare the prediction and

short term forecasting. After well-documented, the related R function of GMDH

algorithms with Box-Cox transformation are going to be released under our

proposed R package GMDH.

43

REFERENCES

Abdel-Aal, R. E. (2005). GMDH-Based Feature Ranking and Selection for

Improved Classification of Medical Data. Journal of Biomedical Informatics, 38,

456-468.

Astakhov, V. P., Galitsky, V. V. (2005). Tool Life Testing in Gundrilling: An

Application of the Group Method of Data Handling (GMDH). International

Journal of Machine Tools & Manufacture, 45, 509-517.

Baig, Z. A., Sait, S. M., Shaheen, A. (2013). GMDH-Based Networks for

Intelligent Intrusion Detection. Engineering Applications of Artificial Intelligence,

26, 1731–1740.

Box, G. E. P., Jenkins, G. M. (1970). Time Series Analysis, Forecasting and

Control. Oakland, CA: Holden-Day.

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976). Time Series Analysis,

Forecasting and Control. Third Edition. Holden-Day. Series G.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and

Methods. Springer, New York.

Farlow, S. J. (1981). The GMDH Algorithm of Ivakhnenko. The American

Statistician, 35:4, 210-215.

Hyndman, R. J., Athanasopoulos, G., Razbash, S., Schmidt, D., Zhou, Z., Khan,

Y., Bergmeir, C., and Wang, E. (2014). forecast: Forecasting functions for time

series and linear models. R package version 5.5. http://CRAN.R-

project.org/package=forecast.

44

Hyndman, R.. J., Khandakar, Y. (2008). Automatic Time Series Forecasting: The

forecast Package for R. Journal of Statistical Software, 27:3, 1-22.

Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D. (2005). Prediction Intervals

for Exponential Smoothing Using Two New Classes of State Space Models.

Journal of Forecasting, 24, 17-37.

Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S. (2002). A State Space

Framework for Automatic Forecasting Using Exponential Smoothing Methods.

International Journal of Forecasting, 18:3, 439-454.

Ivakhnenko, A. G. (1966). Group Method of Data Handling – A Rival of the

Method of Stochastic Approximation. Soviet Automatic Control, 13, 43-71.

Ivakhnenko, A. G. (1970). Heuristic Self-Organization in Problems of Engineering

Cybernetics. Automatica, 6:2, 207-219.

Ivakhnenko, A. G., Ivakhnenko, G. A. (1995). The Review of Problems Solvable

by Algorithms of the Group Method of Data Handling (GMDH). Pattern

Recognition and Image Analysis, 5:4, 527-535.

Kalavrouziotis, I., Stepashko, V., Vissikirsky, V., Drakatos, P. (2002). Group

Method of Data Handling (GMDH) Application for Modelling of Mechanical

Properties of Trees Irrigated with Wastewater. International Journal of

Environment and Pollution, 18:6, 589-601.

Kondo, T. (1998). GMDH Neural Network Algorithm Using the Heuristic Self-

Organization Method and Its Application to the Pattern Identification Problem.

Proc. of the 37th SICE Annual Conference, 1143-1148.

Kondo, T., Ueno, J. (2006a). Revised GMDH-Type Neural Network Algorithm

with a Feedback Loop Identifying Sigmoid Function Neural Network.

http://www.inderscience.com/ijep
http://www.inderscience.com/ijep

45

International Journal of Innovative Computing, Information and Control, 2:5,

985-996.

Kondo, T., Ueno, J. (2006b). Medical Image Recognition of the Brain by Revised

GMDH-Type Neural Network Algorithm with a Feedback Loop. International

Journal of Innovative Computing, Information and Control, 2:5, 1039-1052.

Kondo, T., Ueno, J. (2007). Logistic GMDH-Type Neural Network and Its

Application to Identification of X-ray Film Characteristic Curve. Journal of

Advanced Computational Intelligence and Intelligent Informatics, 11:3, 312-318.

Kondo, T., Ueno, J. (2012). Feedback GMDH-Type Neural Network and Its

Application to Medical Image Analysis of Liver Cancer. International Journal of

Innovative Computing, Information and Control, 8:3(B), 2285-2300.

Muller, J. A., Ivachnenko, A. G., Lemke, F. (1998). GMDH Algorithms for

Complex Systems Modelling. Mathematical and Computer Modelling of

Dynamical Systems: Methods, Tools and Applications in Engineering and Related

Sciences, 4:4, 275–316.

Najafzadeh, M., Barani, G., Hessami Kermani, M. (2014). Estimation of Pipeline

Scour due to Waves by GMDH. Journal of Pipeline Systems Engineering and

Practice, 5:3, 06014002.

Nariman-zadeh, N., Darvizeh, A., Darvizeh, M., Gharababaei, H. (2002).

Modelling of Explosive Cutting Process of Plates Using GMDH-Type Neural

Network and Singular Value Decomposition. Journal of Materials Processing

Technology, 128, 80-87.

Ord, J. K., Koehler, A. B., Snyder, R. D. (1997). Estimation and Prediction for a

Class of Dynamic Nonlinear Statistical Models. Journal of the American

Statistical Association, 92, 1621-1629.

46

R Core Team (2014). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-

project.org/.

Samsudin, R., Saad, P., Shabri, A. (2011). River Flow Time Series Using Least

Squares Support Vector Machines. Hydrology and Earth System Sciences, 15,

1835-1852.

Sarkar, D. (2014). Lattice: Multivariate Data Visualization with R. New York:

Springer. ISBN 978-0-387-75968-5.

Sheikholeslami, M., Sheykholeslami F. B., Khoshhal, S., Mola-Abasia, H., Ganji,

D. D., Rokni, H. B. (2014). Effect of Magnetic Field on Cu–Water Nanofluid

Heat Transfer Using GMDH-Type Neural Network, Neural Computing and

Applications, 25, 171-178.

Srinivasan, D. (2008). Energy Demand Prediction Using GMDH Networks.

Neurocomputing, 72, 625-629.

Wei, W. W.S. (2006). Time Series Analysis: Univariate and Multivariate Methods.

Boston: Addison-Wesley.

Xu, H., Dong, Y., Wu, J., Zhao,W. (2012). Application of GMDH to Short Term

Load Forecasting. Advances in Intelligent Systems, 138, 27–32.

47

APPENDIX A

MANUAL OF OUR PROPOSED R PACKAGE GMDH

Package ‘GMDH’

July 20, 2015

Type Package

Title Predicting and Forecasting Time Series via GMDH-Type Neural

Network Algorithms

Version 1.1

Date 2015-7-20

Depends R (>= 3.1.1)

Imports MASS, graphics, stats, utils

Author Osman Dag, Ceylan Yozgatligil

Maintainer Osman Dag <osman.dag@hacettepe.edu.tr>

Description

Group method of data handling (GMDH) - type neural network

algorithm is the heuristic self- organization method for modelling the

complex systems. In this package, GMDH-type neural network

algorithms are applied to predict and forecast a univariate time series.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-20 18:08:41

R topics documented:

GMDH-package . 2

cancer . 2

fcast . 3

48

GMDH-package Predicting and Forecasting Time Series via

GMDH-Type Neural Net- work Algorithms

Description

Package GMDH includes a function for predicting and forecasting a

univariate time series by using GMDH-type neural network, and a dataset

for implementation.

Details

Package: GMDH

Type: Package

Version: 1.1

Date: 2015-07-20

License: GPL (>=2)

cancer Cancer Data

Description

Yearly cancer death rate (per 100,000 population) of Pennsylvania between

1930 and 2000.

Usage

data(cancer)

Format

A time series with 71 observations on the following variable.

cancer a time series for yearly cancer death rate

References

Wei, W. W.S. (2006). Time Series Analysis: Univariate and Multivariate

Methods (2nd ed.) Boston:Addison-Wesley

49

Examples

data(cancer)

plot(cancer)

out = fcast(cancer, f.number = 2)

out$forecasts

fcast A Function to Predict and Forecast Time Series

via GMDH-Type Neural Network Algorithms

Description

fcast predicts and forecasts time series via GMDH-type neural network

algorithms.

Usage

fcast(data, method = "GMDH", input = 4, layer = 3, f.number = 10, tf

= "all", plotit = TRUE, weigth = 0.7, lambda=c(0,0.01,0.02,0.04,0.08,

0.16, 0.32,0.64,1.28,2.56,5.12, 10.24))

Arguments

data is an univariate time series

method expects a character string to choose the desired method to

forecast time series. To utilize GMDH-type neural

network in forecasting, method is set to "GMDH". One

should set method to "RGMDH" for forecasting via

Revised GMDH-type neural network. Default is set to

"GMDH"

input is the number of inputs. Defaults input = 4

layer is the number of layers. Default is set to layer = 3

f.number is the number of observations to be forecasted. Defaults

f.number = 10

tf expects a character string to choose the desired transfer

function to be used in forecasting. To use polynomial

50

function, tf should be set to "polynomial". Similarly, tf

should be set to "sigmoid", "RBF", "tangent" to utilize

sigmoid function, radial basis function and tangent

function, respectively. To use all functions

simultaneously, default is set to "all"

plotit is logical which controls whether historical data with

forecasts should be plotted. Defaults plotit = TRUE

weigth is the percent of the data set to be utilized as learning set

to estimate regularization parameter via cross validation.

Default is set to weigth = 0.70

lambda is a vector which includes the sequence of feasible

regularization parameters. Defaults lambda=c(0,0.01,0.02,

0.04,0.08,0.16,0.32,0.64, 1.28,2.56,5.12,10.24)

Value

Returns a list containing following elements:

fitted fitted values

MSE MSE of prediction

forecasts forecasts

Note

This is the version 1.1 of this user documentation file.

Author(s)

Osman Dag, Ceylan Yozgatligil

References

Dag, O., Yozgatligil, C. (2015). GMDH: An R Package for Predicting

and Forecasting Time Series via GMDH-Type Neural Network

Algorithms. To be submitted.

Ivakhnenko, A. G. (1966). Group Method of Data Handling - A Rival of

the Method of Stochastic Approximation. Soviet Automatic Control, 13,

43-71.

51

Kondo, T., Ueno, J. (2006). Revised GMDH-Type Neural Network

Algorithm With A Feedback Loop Identifying Sigmoid Function Neural

Network. International Journal of Innovative Comput- ing, Information

and Control, 2:5, 985-996.

Examples

data = rnorm(100, 10, 1)

out = fcast(data)

out

data = rnorm(100, 10, 1)

out = fcast(data, input = 6, layer = 2, f.number = 5)

out$forecasts

out$fitted

out$MSE

52

53

APPENDIX B

OUR R FUNCTION FOR FORECASTING VIA GMDH ALGORITHMS

fcast=function(data, method="GMDH", input=4, layer=3, f.number=5, tf="all",

plotit=TRUE, weigth=0.7, lambda=c(0,0.01,0.02,0.04,0.08,0.16,0.32,0.64,1.28,

2.56,5.12,10.24)){

if (tf=="all"){tf_options=c(101:104)

}else if (tf=="polynomial"){tf_options=c(101)

}else if (tf=="sigmoid"){tf_options=c(102)

}else if (tf=="RBF"){tf_options=c(103)

}else if (tf=="tangent"){tf_options=c(104)

}else {stop("Transfer function you entered is not available")}

transf=function(h,dataaa){

if (h==101) dat=dataaa

if (h==102) dat=log(dataaa/(1-dataaa))

if (h==103) dat=sqrt(-log(dataaa))

if (h==104) dat=atan(dataaa)/pi*180

dat

}

back_transf=function(h,dataaa){

if (h==101) dat=dataaa

if (h==102) dat=1/(1+exp(-dataaa))

if (h==103) dat=exp(-dataaa^2)

54

if (h==104) dat=tan(dataaa*pi/180)

dat

}

cross=function(X, y, lambda=lambda, weigth=weigth){

n=length(y)

n1=round(n*weigth)

n2=n-n1

p=dim(X)[2]

store=NULL

cost=NULL

Ident=diag(p)

Ident[1,1]=0

X1=X[1:n1,]

X2=X[(n1+1):n,]

y1=matrix(y[1:n1],ncol=1)

y2=y[(n1+1):n]

for (j in 1:length(lambda)){

coef=ginv(t(X1)%*%X1+lambda[j]*Ident)%*%t(X1)%*%y1

ypred= t(coef)%*%t(X2)

cost=mean((ypred-y2)^2)

store=rbind(store,c(lambda[j],cost))

cost=NULL

}

lamb=store[which.min(store[,2]),][1]

coef2=ginv(t(X)%*%X+lamb*Ident)%*%t(X)%*%y

as.numeric(coef2)

55

}

if (min(data)<=0){

stt1=abs(min(data))+1

}else{stt1=0}

stt2=max(data+stt1)+1

y=(data+stt1)/stt2

if (method=="GMDH"){

store_Astore<- list()

store_z=list()

ss=length(y)

threshold=c(rep(input,layer-1),1)

nnode=input*(input-1)/2

idn=c(1:input)

yt=y[-input:-1]

x=NULL

for (i in 1:(input-1)){

x=cbind(x,matrix(y[c(-1:-(input-i),-ss:-(ss+1-i))]))

}

x=cbind(x,matrix(y[c(-ss:-(ss-input+1))]))

for (k in 1:layer){

w=t(combn(order(idn), 2))

Astore=NULL

56

z=NULL

for (j in 1:nnode){

qq=cbind(1,x[,w[j,]],x[,w[j,]][,1]*x[,w[j,]][,2],x[,w[j,]]^2)

tfunc=NULL

tfunc_z=NULL

for (g in tf_options){

est_coef=cross(qq,transf(g,yt),lambda=lambda,weigth=weigth)

ee=as.numeric(est_coef)

est_zt=rowSums(t(ee*t(qq)))

tfunc=rbind(tfunc,c(est_coef,mean((back_transf(g,est_zt)-yt)^2),g))

tfunc_z=cbind(tfunc_z,matrix(back_transf(g,est_zt)))

}

z=cbind(z,tfunc_z[,which.min(tfunc[,7])])

Astore=rbind(Astore,tfunc[which.min(tfunc[,7]),])

}

Astore=cbind(Astore,c(1:nnode))

store_Astore[[k]]=Astore[which(Astore[,7]<=sort(Astore[,7])[threshold[k]]),]

store_z[[k]]=z[,which(Astore[,7]<=sort(Astore[,7])[threshold[k]])]

x=store_z[[k]]

if (k==layer){

store_Astore[[k]]=matrix(store_Astore[[k]],nrow=1)

store_z[[k]]=matrix(store_z[[k]],ncol=1)

57

}

}

for (h in 1:f.number){

yt_input=matrix(rev(tail(y,input)),nrow=1)

idn2=c(1:input)

w2=t(combn(order(idn2), 2))

for (k2 in 1:layer){

selected_coef=selected_qq2=NULL

store_qq2=NULL

for (j2 in 1:nnode){

qq2=c(1,yt_input[,w2[j2,]],yt_input[,w2[j2,]][1]*yt_input[,w2[j2,]][2],yt_input[,w

2[j2,]]^2)

store_qq2=rbind(store_qq2,qq2)

}

selected_qq2=store_qq2[store_Astore[[k2]][,9],]

selected_coef=store_Astore[[k2]][,1:6]

if (k2==layer){

selected_qq2=matrix(selected_qq2,nrow=1)

selected_coef=matrix(selected_coef,nrow=1)

}

yt_input=matrix(rowSums(selected_qq2*selected_coef),nrow=1)

58

for (k5 in 1:threshold[k2]){

yt_input[1,k5]=back_transf(store_Astore[[k2]][k5,8],yt_input[1,k5])

}

}

y=c(y,yt_input)

}

fitted=store_z[[layer]][,1]*stt2-stt1

}

if (method=="RGMDH"){

store_Astore<- list()

store_z=list()

store_Astore2<- list()

store_z2=list()

ss=length(y)

threshold=c(rep(input,layer-1),1)

nnode=input*(input-1)/2+input

p=input*(input-1)/2

idn=c(1:input)

yt=y[-input:-1]

x=NULL

for (i in 1:(input-1)){

x=cbind(x,matrix(y[c(-1:-(input-i),-ss:-(ss+1-i))]))

}

x=cbind(x,matrix(y[c(-ss:-(ss-input+1))]))

59

for (k in 1:layer){

w=t(combn(order(idn), 2))

m2 <- matrix(rep(1:input,input),input,input,byrow=T)

m2[upper.tri(m2)] <-0

Astore=NULL

z=NULL

z2=NULL

Astore2=NULL

for (j in 1:nnode){

if (j<=p){

qq=cbind(1,x[,w[j,]],x[,w[j,]][,1]*x[,w[j,]][,2],x[,w[j,]]^2)

}else{

qq=cbind(1,x[,m2[j-p,]])

}

tfunc=NULL

tfunc_z=NULL

tfunc2=NULL

tfunc_z2=NULL

if (j<=p){

for (g in tf_options){

est_coef=cross(qq,transf(g,yt),lambda=lambda,weigth=weigth)

ee=as.numeric(est_coef)

60

est_zt=rowSums(t(ee*t(qq)))

tfunc=rbind(tfunc,c(est_coef,mean((back_transf(g,est_zt)-yt)^2),g))

tfunc_z=cbind(tfunc_z,matrix(back_transf(g,est_zt)))

}

}else{

for (g in tf_options){

est_coef=cross(qq,transf(g,yt),lambda=lambda,weigth=weigth)

coef=c(est_coef,rep(0,input+1-length(est_coef)))

ee=as.numeric(est_coef)

est_zt=rowSums(t(ee*t(qq)))

tfunc2=rbind(tfunc2,c(coef,mean((back_transf(g,est_zt)-yt)^2),g))

tfunc_z2=cbind(tfunc_z2,matrix(back_transf(g,est_zt)))

}

}

if (j<=p){

z=cbind(z,tfunc_z[,which.min(tfunc[,7])])

Astore=rbind(Astore,tfunc[which.min(tfunc[,7]),])

}else{

z2=cbind(z2,tfunc_z2[,which.min(tfunc2[,(input+2)])])

Astore2=rbind(Astore2,tfunc2[which.min(tfunc2[,(input+2)]),])

}

}

Astore=cbind(Astore,c(1:p))

Astore2=cbind(Astore2,c((p+1):(p+input)))

checkk=rbind(Astore[,c(7,9)],Astore2[,c((input+2),(input+4))])

ord=which(checkk[,1]<=sort(checkk[,1])[threshold[k]])

ord1=ord[which(ord<=p)]

61

ord2=ord[which(ord>p)]

store_Astore[[k]]=Astore[ord1,]

store_Astore2[[k]]=Astore2[ord2-p,]

store_z[[k]]=z[,ord1]

store_z2[[k]]=z2[,ord2-p]

x=cbind(store_z[[k]],store_z2[[k]])

if (class(store_Astore[[k]])!="matrix"){

store_Astore[[k]]=matrix(store_Astore[[k]],nrow=1)

store_z[[k]]=matrix(store_z[[k]],ncol=1)

}

if (class(store_Astore2[[k]])!="matrix"){

store_Astore2[[k]]=matrix(store_Astore2[[k]],nrow=1)

store_z2[[k]]=matrix(store_z2[[k]],ncol=1)

}

}

for (h in 1:f.number){

yt_input=matrix(rev(tail(y,input)),nrow=1)

idn2=c(1:input)

w2=t(combn(order(idn2), 2))

for (k2 in 1:layer){

selected_coef=selected_qq2=NULL

store_qq2=NULL

62

selected_coef5=selected_qq5=NULL

store_qq5=NULL

for (j2 in 1:nnode){

if (j2<=p){

qq2=c(1,yt_input[,w2[j2,]],yt_input[,w2[j2,]][1]*yt_input[,w2[j2,]][2],yt_input[,w

2[j2,]]^2)

store_qq2=rbind(store_qq2,qq2)

}else{

qq2=c(1,yt_input[,m2[j2-p,]],rep(0,input-(j2-p)))

store_qq5=rbind(store_qq5,qq2)

}

}

selected_qq2=store_qq2[store_Astore[[k2]][,9],]

selected_coef=store_Astore[[k2]][,1:6]

selected_qq5=store_qq5[store_Astore2[[k2]][,(input+4)]-p,]

selected_coef5=store_Astore2[[k2]][,1:(input+1)]

if (class(selected_qq2)!="matrix"){

selected_qq2=matrix(selected_qq2,nrow=1)

selected_coef=matrix(selected_coef,nrow=1)

}

if (class(selected_qq5)!="matrix"){

selected_qq5=matrix(selected_qq5,nrow=1)

selected_coef5=matrix(selected_coef5,nrow=1)

}

63

uu1=matrix(rowSums(selected_qq2*selected_coef),nrow=1)

uu2=matrix(rowSums(selected_qq5*selected_coef5),nrow=1)

d1=dim(matrix(rowSums(selected_qq2*selected_coef),nrow=1))[2]

d2=dim(matrix(rowSums(selected_qq5*selected_coef5),nrow=1))[2]

if(d1!=0){

for (k5 in 1:d1){

uu1[1,k5]=back_transf(store_Astore[[k2]][k5,8],uu1[1,k5])

}

}

if(d2!=0){

for (k5 in 1:d2){

uu2[1,k5]=back_transf(store_Astore2[[k2]][k5,(input+3)],uu2[1,k5])

}

}

yt_input=cbind(uu1,uu2)

}

y=c(y,yt_input)

}

fitted=cbind(store_z[[layer]],store_z2[[layer]])[,1]*stt2-stt1

}

forecast_values=tail(y*stt2-stt1,f.number)

MSE=(mean((fitted-data[c(-1:-input)])^2))

start2=start(data)[1]

if(plotit==TRUE){

plot(ts(c(data,forecast_values),start=start2),col="black",ylab="Time Series")

abline(v=start2+ss-1,lty=2)

64

}

out=list()

out$fitted=ts(fitted, start=start2+input,end=start2+ss-1)

out$MSE=MSE

out$forecasts=ts(forecast_values, start=start2+ss,end=start2+ss-1+f.number)

invisible(out)

}

65

APPENDIX C

R CODES FOR REAL DATA APPLICATIONS

###To draw cancer data

library(GMDH)

data(cancer)

tiff("a.tiff", res = 900, width = 6200, height = 5400)

par(mar=c(4.1, 4.1, 0, 0.3))

plot(ts(cancer,start=1930,end=2000), asp=0.36,axes = FALSE, col="black",

xlab="", ylab="", lwd = 2, ylim = c(95,260), xlim=c(1930,2000)) ####original

data

axis(1)

axis(2, at = seq(100,260, 20))

title(xlab= "Year",ylab="Death rate",cex.lab =1.2, font.lab= 1)

dev.off()

###To draw cancer data with predictions and forecasts obtained via RGMDH and

ES(M,Ad,N)

n=length(cancer)

input=11

layer=2

f.number=5

n1=n-f.number

data=cancer[1:n1]

poli1=cancer[(n1+1):n]

out=fcast(cancer[1:n1], method="RGMDH", input=input, layer=layer,

f.number=f.number, plot=FALSE, weigth=0.7)

66

hj=out$forecasts

ee2=out$fitted

library(forecast)

fit=auto.arima(data)

ari=forecast(fit,f.number)$mean

ari2=forecast(fit,f.number)$fitted

a=(mean((ari-poli1)^2)) ###forecast MSE of ARIMA

b=(mean((ari2-data)^2)) ###prediction MSE of ARIMA

d=(mean((hj-poli1)^2)) ###forecast MSE of GMDH

e=(mean((ee2-data[c(-1:-input)])^2))

aaa=matrix(c(d,e,a,b),2,2)

colnames(aaa)=c("GMDH","ARIMA")

rownames(aaa)=c("forecast_MSE","prediction_MSE")

aaa

tiff("a.tiff", res = 900, width = 6200, height = 5400)

par(mar=c(4.1, 4.1, 0, 0.3))

plot(ts(cancer[-1:-input], start=1930+input,end=2000), asp=0.36, axes = FALSE,

col="black", xlab="", ylab="", lwd = 1,ylim = c(135,260), xlim=c(1940,2000))

####original data

axis(1, at = seq(1940,2000, 10))

axis(2, at = seq(140,260, 20))

lines(ts(c(ari2,ari)[-1:-input],start=1930+input,end=2000), col = "steelblue1", lwd

= 2, lty = 3) ####ARIMA

67

lines(ts(c(ee2,hj),start=1930+input,end=2000),col="red",lwd = 2,lty=2)

###GMDH

title(xlab= "Year",ylab="Death rate",cex.lab =1.2, font.lab= 1)

arrows(2000-f.number, 100, 2000-f.number, 260, length=0, angle=90,lty=2)

legend(1940, 260, c("Observed","RGMDH","ES"), col =

c("black","red","steelblue1"), inset = .05, cex = 0.8, lwd = c(1,2,2), lty=c(1,2,3))

dev.off()

###To draw melanoma incidence data

library(lattice)

data(melanoma)

a=melanoma[,2]

a=ts(a,start = 1936, end =1972)

tiff("a.tiff", res = 900, width = 6200, height = 5400)

par(mar=c(4.1, 4.1, 0, 0.3), cex.axis=1.0, cex.lab = 1.2, font.lab = 1)

plot(a, xlab="", ylab="", lwd = 2, asp=7, axes = FALSE, ylim = c(0.7,5),

xlim=c(1935,1975))

axis(1, at = seq(1935,1975, 10))

axis(2, at = 1:5)

title(xlab= "Year",ylab="Melanoma incidence")

dev.off()

68

###To draw melanoma incidence data with predictions and forecasts obtained

from GMDH-RGMDH, ARIMA(0,1,0) and ES(M,A,N)

library(lattice)

data(melanoma)

mela=melanoma[,2]

mela=ts(mela,start = 1936, end =1972)

input=14

layer=2

f.number=5

n=length(mela)

n1=n-f.number

data=mela[1:n1]

poli1=mela[(n1+1):n]

out=fcast(data,method="GMDH",input=input,layer=layer,f.number=f.number,plot

=FALSE)

hj=out$forecasts

ee2=out$fitted

library(forecast)

fit=auto.arima(data)

fit2=ets(data)

ari=forecast(fit,f.number)$mean

ari2=forecast(fit,f.number)$fitted

69

ari3=forecast(fit2,f.number)$mean

ari4=forecast(fit2,f.number)$fitted

a=(mean((ari-poli1)^2))###forecast MSE of ARIMA

b=(mean((ari2-data)^2))

d=(mean((hj-poli1)^2))###forecast MSE of GMDH

e=(mean((ee2-data[c(-1:-input)])^2))

f=(mean((ari3-poli1)^2))###forecast MSE of ES

g=(mean((ari4-data)^2))

aaa=matrix(c(d,e,a,b,f,g),2,3)

colnames(aaa)=c("GMDH","ARIMA","ES")

rownames(aaa)=c("forecast_MSE","prediction_MSE")

aaa

round(aaa,3)

tiff("a.tiff", res = 900, width = 6200, height = 5400)

par(mar=c(4.1, 4.1, 0, 0.3))

plot(ts(mela[-1:-input],start=input+1936,end=1972), asp=7, axes = FALSE,

col="black", xlab="", ylab="", lwd = 1,ylim = c(2,5), xlim=c(1945,1975))

####original data

axis(1, at = seq(1945,1975, 5))

axis(2, at = seq(2,5, 1))

lines(ts(c(ari2,ari)[-1:-input], start=input+1936,end=1972),col = "steelblue1", lwd

= 2, lty = 3) ####ARIMA

70

lines(ts(c(ari4,ari3)[-1:-input], start=input+1936,end=1972), col="green", lwd =

2,lty=4) ####ES

lines(ts(c(ee2,hj),start=input+1936,end=1972),col="red",lwd = 2,lty=2)

###GMDH

title(xlab= "Year",ylab="Death rate",cex.lab =1.2, font.lab= 1)

arrows(1972-f.number, 0, 1972-f.number, 5, length=0, angle=90,lty=2)

legend(1945, 5, c("Observed","GMDH - RGMDH","ARIMA","ES"), col =

c("black","red", "steelblue1", "green"), inset = .05, cex = 0.8,lwd = c(1,2,2,2),

lty=c(1,2,3,4))

dev.off()

###To draw accidental deaths data

data2 ##accidental deaths data

tiff("a.tiff", res = 900, width = 6200, height = 5400)

par(mar=c(4.1, 4.1, 0, 0.3), cex.axis=1.0, cex.lab = 1.2, font.lab = 1)

plot(data2,xlab="",ylab="",lwd = 2,asp=1,axes = FALSE, ylim = c(6,12),

xlim=c(1973,1979))

axis(1, at = seq(1973,1979, 1))

axis(2, at = 6:12)

title(xlab= "Year",ylab="Accidental deaths")

dev.off()

###To draw accidental deaths data with the predictions and forecasts obtained

from RGMDH and ES(M,N,M)

71

input=12

layer=4

f.number=5

n=length(data2)

n1=n-f.number

data=data2[1:n1]

poli1=data2[(n1+1):n]

out=fcast(data, method="RGMDH", input=input, layer=layer, f.number=f.number,

plot=FALSE)

hj=out$forecasts

ee2=out$fitted

library(forecast)

d=(mean((hj-poli1)^2))###forecast MSE of GMDH

e=(mean((ee2-data[c(-1:-input)])^2))

xshort=ts(data,start=c(1973, 1), end=c(1978, 7),frequency=12)

poli1=ts(poli1,start=c(1978, 8), end=c(1978, 12),frequency=12)

fit=auto.arima(xshort)

ari=forecast(fit,f.number)$mean

ari2=forecast(fit,f.number)$fitted

fit2=ets(xshort)

ari3=forecast(fit2,f.number)$mean

ari4=forecast(fit2,f.number)$fitted

72

a=(mean((ari-poli1)^2))###forecast MSE of ARIMA

b=(mean((ari2-data)^2))

f=(mean((ari3-poli1)^2))###forecast MSE of ES

g=(mean((ari4-data)^2))

aaa=matrix(c(d,e,a,b,f,g),2,3)

colnames(aaa)=c("GMDH","ARIMA","ES")

rownames(aaa)=c("forecast_MSE","prediction_MSE")

aaa

round(aaa,3)

tiff("a.tiff", res = 900, width = 6200, height = 5400)

par(mar=c(4.1, 4.1, 0, 0.3))

plot(ts(c(data2)[-1:-

input],start=c(1973,input+1),end=c(1978,12),frequency=12),asp=0.7,axes =

FALSE,col="black",xlab="",ylab="",lwd = 1,ylim = c(6,12),

xlim=c(1973.7,1979)) ####original data

axis(1, at = seq(1974,1979, 1))

axis(2, at = 6:12)

lines(ts(c(ari4,ari3)[-1:-input], start=c(1973,input+1), end=c(1978,12),

frequency=12), col="steelblue1", lwd = 2, lty=3) ####ES

lines(ts(c(ee2,hj), start=c(1973,input+1), end=c(1978,12), frequency=12),

col="red",lwd = 2, lty=2) ###GMDH

73

title(xlab= "Year",ylab="Accidental deaths")

arrows(1978+7/12, 0, 1978+7/12, 12, length=0, angle=90,lty=2)

legend(1974, 12, c("Observed","RGMDH","ES"), col =

c("black","red","steelblue1"), inset = .05, cex = 0.8, lwd = c(1,2,2), lty=c(1,2,3))

dev.off()

###To draw airline passenger numbers data

data2=AirPassengers/100

tiff("a.tiff", res = 900, width = 6200, height = 5400)

par(mar=c(4.1, 4.1, 0, 0.3), cex.axis=1.0, cex.lab = 1.2, font.lab = 1)

plot(data2, xlab="", ylab="", lwd = 2, asp=1.6, axes = FALSE, ylim = c(1,7),

xlim=c(1949,1961))

axis(1, at = seq(1949,1961, 1))

axis(2, at = 1:7)

title(xlab= "Year",ylab="Airline passenger numbers")

dev.off()

###To draw airline passenger numbers data with predictions and forecasts

obtained from RGMDH and ES(M,A,M)

data2=AirPassengers/100

input=14

layer=2

74

f.number=5

n=length(data2)

n1=n-f.number

data=data2[1:n1]

poli1=data2[(n1+1):n]

out=fcast(data,method="RGMDH",input=input,layer=layer,f.number=f.number,pl

ot=FALSE)

hj=out$forecasts

ee2=out$fitted

library(forecast)

d=(mean((hj-poli1)^2))###forecast MSE of GMDH

e=(mean((ee2-data[c(-1:-input)])^2))

xshort=ts(data,start=c(1949, 1), end=c(1960, 7),frequency=12)

poli1=ts(poli1,start=c(1960, 8), end=c(1960, 12),frequency=12)

fit=auto.arima(xshort)

ari=forecast(fit,f.number)$mean

ari2=forecast(fit,f.number)$fitted

fit2=ets(xshort)

ari3=forecast(fit2,f.number)$mean

ari4=forecast(fit2,f.number)$fitted

a=(mean((ari-poli1)^2))###forecast MSE of ARIMA

75

b=(mean((ari2-data)^2))

f=(mean((ari3-poli1)^2))###forecast MSE of ES

g=(mean((ari4-data)^2))

aaa=matrix(c(d,e,a,b,f,g),2,3)

colnames(aaa)=c("GMDH","ARIMA","ES")

rownames(aaa)=c("forecast_MSE","prediction_MSE")

aaa

round(aaa,3)

tiff("a.tiff", res = 900, width = 6200, height = 5400)

par(mar=c(4.1, 4.1, 0, 0.3))

plot(ts(c(data2)[-1:-input], start=c(1949,input+1), end=c(1960,12), frequency=12),

asp=1.6, axes = FALSE, col="black", xlab="", ylab="", lwd = 1, ylim = c(1,7),

xlim=c(1950,1961)) ####original data

axis(1, at = seq(1950,1961, 1))

axis(2, at = 1:7)

lines(ts(c(ari4,ari3)[-1:-

input],start=c(1949,input+1),end=c(1960,12),frequency=12), col="steelblue1",lwd

= 2,lty=3) ####ES

lines(ts(c(ee2,hj), start=c(1949,input+1), end=c(1960,12), frequency=12),

col="red", lwd = 2,lty=2) ###GMDH

title(xlab= "Year",ylab="Airline passenger numbers")

#abline(v=1989,lty=2)

76

arrows(1960+7/12, 0, 1960+7/12, 7, length=0, angle=90,lty=2)

legend(1950, 7, c("Observed", "RGMDH", "ES"), col = c("black", "red",

"steelblue1"), inset = .05, cex = 0.8, lwd = c(1,2,2),lty=c(1,2,3))

dev.off()

