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ABSTRACT 

 

GMDH-TYPE NEURAL NETWORK ALGORITHMS FOR SHORT TERM 

FORECASTING 

 

Dağ, Osman 

M.Sc., Department of Statistics 

Supervisor: Assist. Prof. Dr. Ceylan Yozgatlıgil 

August 2015, 76 pages 

 

 

Group Method of Data Handling (GMDH) - type neural network algorithms are 

the heuristic self-organization method for modelling the complex systems. GMDH 

algorithms are utilized for the variety of purposes, which are identification of 

physical laws, extrapolation of physical fields, pattern recognition, clustering, 

approximation of multidimensional processes, forecasting without models and so 

on. In this study, GMDH - type neural network algorithms were applied to make 

forecasts for time series data sets. We mainly focused on development of free 

software. For this purpose, we developed an R package GMDH. Moreover, we 

integrated different transfer functions, sigmoid, radial basis, polynomial, and 

tangent functions, into GMDH algorithm. We proposed an algorithm in which all 

transfer functions are used simultaneously or separately if desired. Also, we used 

regularized least square estimation for the estimation of weights to overcome 

multi-collinearity problem. The methods were illustrated on real life datasets 

having different properties to see the prediction and forecasting performance of the 

algorithm. We included ARIMA models and exponential smoothing methods for 

the comparison purpose. GMDH algorithms show the same or even better 

performance than the other methods. 

 

Keywords: Time Series Analysis, Neural Network, Regularized Least Square 

Estimation, Transfer Function, Statistical Software 
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ÖZ 

 

KISA DÖNEM ÖNGÖRÜ İÇİN GMDH TÜRÜNDE SİNİR AĞI 

ALGORİTMALARI 

 

Dağ, Osman 

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Ceylan Yozgatlıgil 

Ağustos 2015, 76 sayfa 

 

 

Veri işleme grup yöntemi (GMDH) türünde sinir ağı algoritmaları, karmaşık 

sistemleri modellemeye yarayan bulgusal, kendi kendini organize eden 

yöntemlerdir. GMDH algoritmaları fizik kanunlarını tanımlama, fiziksel alanların 

dış kestirimi, örüntü tanıma, kümeleme, çok boyutlu işlemlerin yaklaştırımı, 

modelsiz öngörü gibi çeşitli amaçlar için kullanılmaktadır. Bu çalışmada, GMDH 

türünde sinir ağı algoritmalarına, zaman serisi veri setleri için öngörü yapmak 

amacıyla başvurulmuştur. Çoğunlukla ücretsiz bir yazılım geliştirmeye odaklanıldı 

ve bu amaçla GMDH isimli bir R paketi geliştirildi. Ek olarak sigmoid, radyal 

temelli, polinomiyal ve tanjant fonksiyonları gibi aktarma fonksiyonları GMDH 

algoritmasına entegre edildi. İstenildiğnde eş zamanlı veya ayrı ayrı aktarma 

fonksiyonlarının kullanılabildiği bir algoritma önerildi. Çoklu bağlantı problemini 

çözmek için ağırlıkların kestiriminde, düzeltilmiş en küçük kareler kestirimi 

kullanıldı. Farklı özelliklere sahip gerçek hayat veri setleri üzerinde yöntemler 

uygulanarak algoritmanın tahminleme ve öngörü performansı incelenmiştir. 

Karşılaştırma amaçlı ARIMA modelleri ve üstel düzgünleştirme yöntemleri de 

dahil edildi. GMDH algoritmalarının diğer yöntemlerle aynı hatta daha iyi 

performans gösterdiği saptanmıştır. 

 

Anahtar Kelimeler: Zaman Serisi Analizi, Sinir Ağları, Düzeltilmiş En Küçük 

Kareler Yöntemi, Aktarma Fonksiyonu, İstatistiksel Yazılım 

 

http://tureng.com/search/radyal%20temelli%20fonksiyon
http://tureng.com/search/radyal%20temelli%20fonksiyon
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CHAPTER 1 

 

INTRODUCTION 

 

 

Time series data are ordered successive observations which are measured in 

equally or unequally spaced time. Time series data include dependency among 

successive observations. Hence, the order of the data is important. They are 

commonly appearing in various areas. In medical studies, we take measurements 

on blood sugar, blood pressure, electrocardiogram tracing over time. In economics, 

we record gross national income, gross national expenditure over months or/and 

years. In energy industry, frequency of electrical signals and power of devices are 

measured over time. In agriculture, we record total production of hazelnut and 

prices in each year. In meteorology, total amount of rainfall in a region is recorded 

hourly or/and weekly or/and monthly or/and yearly.  Application fields of time 

series, not given here, are limitless.   

 

Modelling time series data is the method which utilizes history of the data and 

makes forecasting by the help of the history of the data. Forecasting is the 

prediction of the future observations by processing data at hand. It is important to 

construct accurate model mechanism for forecasting to obtain reliable results. 

Many statistical tools including the independence assumption are not applicable in 

time series. Therefore, different tools considering the dependence among the lags 

of the data are required.  

 

Autoregressive integrated moving average (ARIMA) models, which consider the 

dependency among the successive observations, are introduced in Box and Jenkins 

(1970). These models are called stationary providing that all properties are the 

same over time. The variation is around the mean is constant over time. Also, there 

is no trend in the stationary process. Apart from these properties, ARIMA models 

include some assumptions being necessary to be satisfied. For example, the 
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residuals of the process are required to come from normal distribution. However in 

real life it is almost impossible to satisfy this assumption. There are some methods 

to handle this problem. One of which is a group method of data handling (GMDH) 

– type neural network algorithms for the objective of forecasting time series will 

be introduced in the next paragraph. For the comparison purpose with respect to 

forecasting accuracy, we include the application of the ARIMA models and 

exponential smoothing methods in chapter 4.  

 

The main objective of this thesis is to make forecasts via GMDH-type neural 

network algorithms. There are some difficulties to apply GMDH-type neural 

network, since there is no free available code for the user to reach GMDH 

algorithm in the literature. Available commercial software programs do not explain 

the steps and how the algorithm is working. Moreover, they are not convenient for 

the time series data set. The question arises “What kind of contributions of this 

thesis to the statistical literature and science is made?”.  The followings are the 

answers: 

 

 We applied GMDH-type neural network which is used in very few studies 

of statistical literature for the purpose of forecasting time series and 

illustrated an application of the algorithm on real life data sets. 

 We proposed an algorithm having an option in which all transfer functions 

are used simultaneously or separately.  

 We developed an R package “GMDH” and we made it publicly available. 

We did not only make it publicly available, but also we presented all 

algorithm of the system step by step. Since commercial statistical programs 

do not explain all steps, just present how to use the program, the estimation 

step of algorithm is not shown. Therefore, most of the time, the user exerts 

the program, but does not know how it is working inside.  

 We integrated regularized least square estimation which is utilized when 

there may be a possibility of occurring multi-collinearity problem. 
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 We also state data preparation of a time series shown in section 3.1. Our 

proposed package is making it convenient for the algorithm. 

 

The outline of this thesis is organized as follows. In chapter 2, we present the 

literature review of GMDH-type neural network and usage of that for the objective 

of forecasting time series. In chapter 3, we discuss the GMDH-type neural network 

algorithms. Moreover, we present how to manipulate time series data set to make it 

convenient GMDH-type neural network. We discuss the transfer functions used in 

the algorithms. Estimation of weights in neurons via regularized linear regression 

and estimation of regularization parameter via cross validation are presented. In 

chapter 4, real life data applications and related results are stated. The details of R 

package “GMDH” is instructed with examples in this chapter. In chapter 5, we 

close the thesis by discussion, conclusion and further research parts. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

The previous studies on GMDH can be divided into four parts. In the first part, the 

origin of GMDH-type neural network is introduced. Second, we present some 

areas in which GMDH algorithm is utilized. Third, the studies with the 

methodology of GMDH algorithm are given.  At last, we state the studies in which 

GMDH-type neural network is applied for the purpose of forecasting time series. 

We should note that chronological order is followed in each part. 

 

2.1. The Origin of GMDH-Type Neural Network 

 

The background of GMDH-type neural network is based on the end of the 1960s 

years and the beginning of 1970s years. First in first, Ivakhnenko (1966) 

introduced a polynomial, which is the basic algorithm of GMDH, to construct 

higher order polynomial. The polynomial, which is known as Ivakhnenko 

polynomial, is described in section 3.2. Also, Ivakhnenko (1970) introduced 

heuristic self-organization method which constructed the main working system of 

GMDH algorithm. Heuristic self-organization method defines the way that the 

algorithm follows by the rules such as external criteria (see section 3.5). GMDH 

method, convenient for the complex and unstructured system, has superiority on 

the high order regression (Farlow, 1981). 

 

2.2. Application Areas of GMDH Algorithms 

 

A variety of the problems which the GMDH algorithm solves was described in 

Ivakhnenko and Ivakhnenko (1995). Some of these problems are the identification 

of physical laws, extrapolation of physical fields, pattern recognition, clustering, 
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forecasting without models, approximation of multidimensional processes, and so 

on.  

 

Kalavrouziotis et al. (2002) applied GMDH algorithm in environmental studies. 

They had cultivated trees and irrigated those trees with processed wastewater. 

They considered the non-linear relationship between characteristics of wood 

obtained from the trees irrigated with processed wastewater and characteristics of 

wood obtained from the trees grown up in a common way. Therefore, they utilized 

GMDH algorithm to capture the non-linear relation between input and output 

variables. Nariman-zadeh et al. (2002) used GMDH algorithm in material 

processing studies. GMDH was exerted to see the relation between considerable 

variables and depth penetration when they modeled explosive cutting process of 

plates.  

 

GMDH algorithm was used in design of experiments (Astakhov and Galitsky, 

2005). When they constructed their experiment, they had some difficulties such as 

limited number of variables, pre-setting the model. To solve these difficulties, they 

applied GMDH algorithm and they obtained very complex model to explain which 

parameters have an effect on tool life in gundrilling. It was shown that the tool life 

in gundrilling is the model of various regime and design parameters. In another 

study, GMDH was applied to make feature ranking and selection of the medical 

data (Abdel-Aal, 2005). Baig et al. (2013) used GMDH-type neural network 

algorithm for intelligent intrusion detection. In that study, they classified network 

traffic into two classes: normal and anomalous. Najafzadeh et al. (2014) utilized 

GMDH algorithm in pipeline systems studies. Depth of scour below pipelines 

which were exposed to waves was predicted via GMDH-type neural network. 

Sheikholeslami et al. (2014) applied GMDH-type neural network to investigate the 

impact of magnetic field on heat transfer of Cu-water nanofluid. 
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2.3. The Methodology of GMDH Algorithms 

 

Muller et al. (1998) studied GMDH algorithms for the objective of modelling the 

complex systems. Sometime statistical/mathematical models are not sufficient to 

solve the problems, such as pattern recognition, forecasting, identification, etc. 

Extracting the information from the measurements has advantages while modelling 

complex systems since there is no enough prior information and/or no theory is 

defined to model the complex systems. Selecting model automatically is a 

powerful way for the users who are interested in the result and do not have 

sufficient statistical knowledge and sufficient time. In Muller et al., they also 

stated that basically prediction mean square error (PMSE) is applied for the neuron 

selection. 

 

Kondo (1998) proposed GMDH-type neural network in which the algorithm works 

according to the heuristic self-organization method. Kondo and Ueno (2006a) 

proposed GMDH algorithm which has a feedback loop. According to the 

algorithm, the output obtained from the last layer is set as a new input variable, if 

threshold is not satisfied in the last layer. The system of algorithm is organized by 

heuristic self-organization method. In this algorithm, sigmoid function is 

integrated in the algorithm as an activation function. This algorithm is applied to 

medical image recognition of brain (Kondo and Ueno, 2006b). Kondo and Ueno 

(2007) proposed logistic GMDH-type neural network. The difference from 

conventional GMDH algorithm was that they take linear function of all inputs at 

last layer. They applied GMDH algorithm to identify the X-ray film characteristic 

curve. Kondo and Ueno (2012) included three transfer functions in feedback 

GMDH algorithm. These transfer functions are sigmoid function, radial basis 

function and polynomial function. They used this algorithm in medical image 

analysis of liver cancer. 
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2.4. The Studies In Which GMDH-Type Neural Network Is Applied For The 

Purpose of Forecasting 

 

Srinivasan (2008) used GMDH-type neural network to forecast energy demand 

prediction. This study also included the comparison of GMDH-type algorithm with 

traditional time series models on real life data. It was shown that GMDH-type 

neural network was superior in forecasting energy demand prediction compared to 

traditional time series models. In another study, Xu et al. (2012) applied GMDH 

algorithm to forecast the daily power load. When they made forecast on the daily 

power load, they also included ARIMA models.  According to the results, GMDH 

results were superior to the results of ARIMA models.   

 

All in all, the origin of GMDH-type neural network algorithm is stated. A variety 

of areas which GMDH algorithm is applied in is presented. Also, we state the 

methodological background of GMDH algorithm and the studies using GMDH 

algorithm for the objective of forecasting time series. In following chapters, we 

discuss the methodology and its applications on real life data. Moreover, we 

introduce our proposed R package and its implementation on real life data sets. 
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CHAPTER 3 

 

METHODOLOGY 

 

 

In this chapter, we discuss GMDH - type neural network algorithms in time series 

forecasting. The chapter is divided into seven sections. In section 3.1, we present 

the data preparation before GMDH-Type neural network algorithms. In section 

3.2, we continue with GMDH - type neural network algorithms in forecasting. We 

discuss transfer functions in section 3.3. In section 3.4, estimation of weights via 

regularized least square estimation and estimation of regularization parameter 

through cross validation are presented. We present the external criteria of accuracy 

in section 3.5. In section 3.6, we state the algorithm of GMDH - type neural 

network. This chapter is closed by methods included for comparison purpose. 

 

3.1. Data Preparation 

 

Data preparation has important role in GMDH - type neural network algorithms. 

Since we could not interfere with the algorithm while it is running, we are pre-

processing the data before starting the algorithm. Scaling the data is essential 

before starting GMDH - type neural network algorithms. There are two main 

benefits of this. One is to get rid of very big numbers in calculation, the other one 

is to be able to use all transfer functions (see section 3.3) which are used in GMDH 

- type neural network algorithm for forecasting. For these two main objectives, it is 

necessary for whole data to be in interval of (0, 1). This necessity is guaranteed by 

following transformation, 

 

𝑤𝑡  =  
𝛼𝑡  +  𝛿1 

𝛿2
                                                                     (3.1) 

 

with 
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𝛿1  =  {  
|min(𝛼𝑡)| + 1      ,         if     min(𝛼𝑡) ≤ 0 

               0              ,         if     min(𝛼𝑡) > 0
 

 

and  

 

𝛿2  =  max(𝛼𝑡  +  𝛿1)  +  1 

 

where 𝛼𝑡 is actual time series dataset at hand. During the estimation and 

forecasting process in GMDH neural network algorithm, all calculations are done 

using the scaled data set, 𝑤𝑡.  After all processes are ended; in other words, all 

predictions and forecasts are obtained, we apply the inverse transformation as 

follows, 

 

�̂�𝑡 = �̂�𝑡 × 𝛿2 − 𝛿1.                                                               (3.2) 

 

The main purpose of this section is the pre-processing the data; that is, we make 

data manipulation and illustrate the structure of data. It is difficult to visualize the 

structure of data since we have a univariate time series dataset. As it is in 

autoregressive time series models, we model the time series data with time lags of 

the data in GMDH - type neural network algorithms.      

 

Let’s assume a time series dataset for t time points, and p inputs (see section 3.2). 

Since we construct the model for the data with lags, the number of subject is equal 

to be 𝑡 − 𝑝 and the number of covariates is to be 𝑝. An illustration of time series 

data structure in GMDH algorithms is presented in Table 3.1. In this table, the 

variable called 𝑅𝑒𝑠𝑝 is put in the models as a response variable, and the rest of the 

variables are taken into models as covariates 𝐶𝑜𝑣𝑖, where 𝑖 = 1, 2, ..., 𝑝.  The 

notations in Table 3.1 are followed throughout this study. 
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Table 3.1: An illustration of time series data structure in GMDH 

algorithms 

Subject 𝑅𝑒𝑠𝑝 (𝑧)  𝐶𝑜𝑣1(𝑥1) 𝐶𝑜𝑣2(𝑥2) ⋯ 𝐶𝑜𝑣𝑝(𝑥𝑝) 

1 𝑤𝑡 𝑤𝑡−1 𝑤𝑡−2 ⋯ 𝑤𝑡−𝑝 

2 𝑤𝑡−1 𝑤𝑡−2 𝑤𝑡−3 ⋯ 𝑤𝑡−𝑝−1 

3 𝑤𝑡−2 𝑤𝑡−3 𝑤𝑡−4 ⋯ 𝑤𝑡−𝑝−2 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
𝑡 − 𝑝 𝑤𝑝+1 𝑤𝑝 𝑤𝑝−1 ⋯ 𝑤1 

 

3.2. GMDH-Type Neural Network Algorithms 

 

GMDH-type neural network algorithms are the modeling techniques which learn 

the relations among the variables. In the perspective of time series, the algorithm 

learns the relationship among the lags. After learning the relations, it automatically 

selects the way to follow in algorithm. First, GMDH was introduced by 

Ivakhnenko (1966) to construct high order polynomial. The following equation is 

known Ivakhnenko polynomial given by 

 

𝑦 = 𝑎 + ∑𝑏𝑖𝑥𝑖

𝑚

𝑖=1

+ ∑∑𝑐𝑖𝑗𝑥𝑖𝑥𝑗

𝑚

𝑗=1

𝑚

𝑖=1

+ ∑∑ ∑ 𝑑𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑚

𝑘=1

𝑚

𝑗=1

𝑚

𝑖=1

+ ⋯                     (3.3) 

 

where 𝑚 is the number of variables and 𝑎, 𝑏, 𝑐, 𝑑, … are coeffients of variables in 

the polynomial. In general, the terms are used in calculation up to square terms in 

GMDH algorithm presented below, 

 

𝑦 = 𝑎 + ∑𝑏𝑖𝑥𝑖

𝑚

𝑖=1

+ ∑∑𝑐𝑖𝑗𝑥𝑖𝑥𝑗

𝑚

𝑗=1

𝑚

𝑖=1

                                                  (3.4) 

 

In the following subsections, GMDH-type neural network algorithms are mainly 

focused and the architectures of the algorithms are presented. 
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3.2.1. Architecture of GMDH Algorithm 

 

The conventional GMDH algorithm considers all possible combinations of two 

covariates.  Therefore, each combination of two input variables enters each 

neuron. Using these two inputs, a model is constructed. With the help of this 

model, we are able to estimate the desired output. The structure of the model is 

specified by Ivakhnenko polynomial. Therefore, the following equation is derived 

from the Ivakhnenko polynomial:  

 

𝑦 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥𝑖
2 + 𝛽4𝑥𝑗

2 + 𝛽5𝑥𝑖𝑥𝑗.                                     (3.5) 

 

Here, y is a response variable, 𝑥𝑖 and 𝑥𝑗 are the covariate variables to be regressed. 

𝛽𝑙’s are named as the weights where 𝑙 = 0, 1, . . . , 5.  The response variable (𝑦) is 

modelled by all possible combination of two input variables (𝑥𝑖 and 𝑥𝑗). It means 

that two input variables go in a neuron, one result goes out as an output.  

 

GMDH algorithm is a system of layers in which there exist neurons. In each layer, 

there exist a number of neurons. The number of neurons in a layer is defined by 

the number of input variables. To illustrate, assume that the number of input 

variables equals to 𝑝, since we include two input variables, the number of neurons 

is to be equal to  ℎ =  
𝑝 × (𝑝−1) 

2
. The architecture of GMDH algorithm is illustrated 

in Figure 3.1 when there exist three layers and four inputs. In this architecture, the 

number of inputs is equal to four; therefore, the number of nodes in a layer is 

determined to be six. In input layer, there exist four input variables. There is no 

any process at this layer. This is just a starting layer to the algorithm. All plausible 

combination of four input variables enters to each neuron at first layer. The 

coefficient of Equation 3.5 is estimated in each neuron. By using estimated 

coefficients and input variables in each neuron, the desired output is predicted. 

According to external criteria, p neurons are selected and h-p neurons are 

eliminated from the network. In Figure 3.1, four neurons are selected while two 

neurons are eliminated from the network. The outputs obtained from selected 
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neurons become the inputs for the next layer. This process continues until the last 

layer. At the last layer, only one neuron is selected. The obtained output from last 

layer is the predicted values for the time series at hand. 

 

 

Figure 3.1: Architecture of GMDH Algorithm 

 

3.2.2. Architecture of RGMDH Algorithm 

 

GMDH-type neural network constructs the algorithm by investigating the relation 

between two inputs and the desired output. Architecture of revised GMDH 

(RGMDH) - type neural network does not only consider this relation, but it also 

considers individual effect on desired output (Kondo and Ueno, 2006a). There are 

two different types of neurons in RGMDH-type neural network. In first type of 

neuron, it is same as in GMDH-type neural network that two inputs enter the 

neuron, one output goes out. In second type of neuron, r inputs enter the neuron, 

one output goes out. 
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First type neuron: 

 

𝑦 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥𝑖
2 + 𝛽4𝑥𝑗

2 + 𝛽5𝑥𝑖𝑥𝑗                                     (3.6) 

 

where y is a response variable, 𝑥𝑖 and 𝑥𝑗 are the covariate variables defined in 

Table 3.1. 𝛽𝑙’s are the weights where 𝑙 = 0, 1, . . . , 5.   

 

Second type neuron: 

 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑟

𝑖=1

      , 𝑟 ≤ 𝑝                                                   (3.7) 

 

where y is a response variable, 𝑥𝑖 the covariate variables defined in Table 3.1. 𝛽𝑖’s 

are the weights,  𝑖 = 1, . . . , 𝑟. Here, 𝑟 is the number of inputs in the corresponding 

second type neuron. 

 

In GMDH-type neural network, there exist ℎ =  
𝑝 × (𝑝−1) 

2
  neurons in one layer. In 

addition to this, with the 𝑝 neuron from the second type of neuron, the number of 

neurons in one layer becomes 𝜂 =  
𝑝 × (𝑝−1) 

2
+ 𝑝 in RGMDH-type algorithm. The 

architecture of RGMDH algorithm is shown in Figure 3.2 when there exist three 

layers and three inputs. In this architecture, since the number of inputs is equal to 

three, the number of nodes in a layer is determined to be six. Like GMDH 

algorithm, there is no any process at starting layer. All plausible combination of 

three inputs enters to each neuron at first layer. Moreover, the individual effect of 

inputs starting from lag 1 is added to the rest ones as shown in Figure 3.2. In each 

neuron, coefficients of models are calculated by using corresponding models in 

equation 3.6 or 3.7. The desired output is predicted by utilizing estimated 

coefficients and input variables in each neuron. 𝑝 neurons are selected as living 

cells and 𝜂 − 𝑝, death cells  are eliminated from the network according the 

external criteria. The outputs obtained from selected neurons become the inputs for 
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the next layer. This process goes on until the last layer. Only one neuron is 

selected at the last layer according to external criteria. The obtained output at the 

last layer is the predicted values for the data set at hand. 

 

 

Figure 3.2: Architecture of RGMDH Algorithm 

 

3.3. Transfer Functions 

 

Transfer functions (also known as activation functions, utilized throughout 

interchangeably) are used to capture the better model which explains the relation 

between inputs and desired outputs. Mainly, sigmoid function, radial basis 

function (RBF), polynomial function were used to explain the relation between 

inputs and output in GMDH-type neural network (Kondo and Ueno, 2012). Also, 

we include tangent transfer function to consider the sinusoidal relation between 

covariates and response variable. Transfer functions used in study are as follows, 

 

Sigmoid Function: 
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𝑧 =
1

1 + 𝑒−𝑦
                                                                        (3.8) 

 

Radial Basis Function: 

 

𝑧 = 𝑒−𝑦2
                                                                          (3.9) 

 

Polynomial Function: 

 

𝑧 = 𝑦                                                                            (3.10) 

 

Tangent Function: 

 

𝑧 = tan 𝑦                                                                       (3.11) 

 

Here, y is presented below for GMDH and RGMDH algorithms. 

 

GMDH algorithm: 

 

𝑦 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥𝑖
2 + 𝛽4𝑥𝑗

2 + 𝛽5𝑥𝑖𝑥𝑗                                 (3.12) 

 

where y is a response variable, 𝑥𝑖 and 𝑥𝑗 are the covariate variables defined in 

Table 3.1. 𝛽𝑙’s are the weights where 𝑙 = 0, 1, . . . , 5.   

 

RGMDH algorithm: 

 

First type neuron: 

 

𝑦 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑗 + 𝛽3𝑥𝑖
2 + 𝛽4𝑥𝑗

2 + 𝛽5𝑥𝑖𝑥𝑗                                     (3.13) 

where y is a response variable, 𝑥𝑖 and 𝑥𝑗 are the covariate variables defined in 

Table 3.1. 𝛽𝑙’s are the weights where 𝑙 = 0, 1, . . . , 5.   
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Second type neuron: 

 

𝑦 = 𝛽0 + ∑𝛽𝑖𝑥𝑖

𝑟

𝑖=1

      , 1 ≤ 𝑟 ≤ 𝑝                                              (3.14) 

 

where y is a response variable, 𝑥𝑖’s are the covariate variables defined in Table 3.1. 

𝛽𝑖’s are the weights,  𝑖 = 1, . . . , 𝑟. For the purpose of constructing the models 

defined in above, we use following transformations before constructing model in 

neuron, 

 

For Sigmoid Function:   

 

𝑦 = log𝑒 (
𝑧

1 − 𝑧
)                                                                (3.15) 

 

For Radial Basis Function:   

 

𝑦 = √− log𝑒 𝑧                                                                   (3.16) 

 

For Polynomial Function: 

 

𝑦 = 𝑧                                                                              (3.17) 

 

For Tangent Function: 

 

𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑧                                                                    (3.18) 

 

In this study, we use four activation functions. These functions are able to be used 

separately. For example, assume that only sigmoid function is wanted to be used, 

all calculations in each neuron are done according to sigmoid function. In other 
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words, the model using sigmoid function is constructed in each neuron. The other 

transfer functions are never used throughout the whole process.  

 

We propose that all transformations mentioned above are able to be used 

simultaneously. Our proposed algorithm is that four models in each neuron are 

constructed by using transfer functions mentioned above.  Within the group of 

these four models, one which has smallest external criteria (see section 3.5) is 

selected in each node. In each neuron, one transfer function is selected. After 

selection, the selected transfer function is responsible for that neuron.  

 

3.4. Estimation of Weights 

 

In this section, the estimation procedure in neurons is mentioned. In each node, the 

weights (coefficients) of inputs are calculated. We integrated regularized linear 

regression into estimation of weights in each neuron in order to overcome multi-

collinearity problem. In the following two sub-sections, we present regularized 

least square estimation and estimation of regularization parameter via cross-

validation. 

 

3.4.1. Regularized Least Square Estimation 

 

In each estimation step of a node, there exists the coefficients to be estimated. 

While we are estimating these coefficients, we use regularized least square 

estimation. It is stated that regularized least square estimation is utilized when 

there may be a possibility of occurring multi-collinearity problem. It is important 

to note that regularized least square estimation is equal to least square estimation 

when regularization parameter is zero. 
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3.4.1.1. Estimation of Weights in GMDH Algorithm 

 

In GMDH algorithm, there exist six coefficients to be estimated in each model. 

Coefficients are able to be estimated via the equation as follows, 

 

�̂�𝑘 = (𝑋𝑘
′𝑋𝑘 + 𝜆𝐼6×6)

−1𝑋𝑘
′𝑦                                                   (3.19) 

 

where 

  

𝑋𝑘 =  

[
 
 
 
 
1 𝑥𝑘,𝑖,1 𝑥𝑘,𝑗,1 𝑥𝑘,𝑖,1

2 𝑥𝑘,𝑗,1
2 𝑥𝑘,𝑖,1𝑥𝑘,𝑗,1

1 𝑥𝑘,𝑖,2 𝑥𝑘,𝑗,2 𝑥𝑘,𝑖,2
2 𝑥𝑘,𝑗,2

2 𝑥𝑘,𝑖,2𝑥𝑘,𝑗,2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑘,𝑖,𝑡−𝑝 𝑥𝑘,𝑗,𝑡−𝑝 𝑥𝑘,𝑖,𝑡−𝑝

2 𝑥𝑘,𝑗,𝑡−𝑝
2 𝑥𝑘,𝑖,𝑡−𝑝𝑥𝑘,𝑗,𝑡−𝑝]

 
 
 
 

, 𝑦 =  [

𝑦1

𝑦2

⋮
𝑦𝑡−𝑝

] 

 

and 

 

𝐼6×6 = 

[
 
 
 
 
 
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

 

with 

 

�̂�𝑘 = [�̂�𝑘,0 �̂�𝑘,1 �̂�𝑘,2 �̂�𝑘,3 �̂�𝑘,4 �̂�𝑘,5]
′
. 

 

Here, 𝑋𝑘  represents the covariates matrix at neuron 𝑘 (𝑘 = 1,… , ℎ). In the matrix 

𝑋𝑘 , 𝑥𝑘,𝑖,1 is the first observation in covariate 𝑖 at neuron 𝑘. 𝑦 is a response variable 

including 𝑡 − 𝑝 observations. Here,  ℎ is the number of neurons in each layer.  
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3.4.1.2. Estimation of Weights in RGMDH Algorithm 

 

In RGMDH algorithm, there exist two types of neurons. For the first type neuron, 

estimation of weights is same with estimation in GMDH algorithm. Estimation of 

coefficients in the second type neuron is as follows,  

 

�̂�𝑘 = (𝑋𝑘
′𝑋𝑘 + 𝜆𝐼(𝑝+1)×(𝑝+1))

−1𝑋𝑘
′𝑦                                                  (3.20) 

 

where 

  

𝑋𝑘 =  

[
 
 
 
1 𝑥𝑘,1,1 … 𝑥𝑘,𝑟,1

1 𝑥𝑘,1,2 … 𝑥𝑘,𝑟,2

⋮ ⋮ ⋱ ⋮
1 𝑥𝑘,1,𝑡−𝑝 … 𝑥𝑘,𝑟,𝑡−𝑝]

 
 
 
and 𝑦 =  [

𝑦1

𝑦2

⋮
𝑦𝑡−𝑝

] 

 

and 

 

𝐼(𝑝+1)×(𝑝+1) =  [

0 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

] 

 

with 

 

�̂�𝑘 =  [�̂�𝑘,0 �̂�𝑘,1 … �̂�𝑘,𝑟]
′
. 

 

Here, 𝑋𝑘  represents the covariates matrix at neuron 𝑘 (𝑘 = ℎ + 1,… , 𝜂). In the 

matrix 𝑋𝑘 , 𝑥𝑘,2,1 is the first observation in second covariate at neuron 𝑘. 𝑦 is a 

response variable including (𝑡 − 𝑝) observations. Here,  ℎ is the number of 

neurons of which coefficients are estimated according to first type neuron. 𝜂 − ℎ is 

the number of neuros whose coefficients are estimated through second type neuron 

in each layer. 
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3.4.2. Estimation of Regularization Parameter 

 

In this part, we present the estimation of regularization parameter via cross-

validation. For this purpose, we divide the data into two parts as a learning set 

(70%) and a testing set (30%). Since the data set is time dependent, order of data is 

saved in division process. In other words, first 70% of the data is used for learning 

set and the last 30% of the data is utilized for testing set. This whole process is 

applied for each model constructed in each neuron. The algorithm of regularization 

parameter estimation is as follows, 

 

i) Clarify the possible regularization parameter, λ= 0, 0.01, 0.02, 0.04, 

0.08, …, 10.24. 

ii) For each possible λ value, coefficients are estimated via the equation 

3.19 (or 3.20) by using learning set. 

iii) After calculation of weights, calculate the predicted values by utilizing 

test set and obtain MSE for each regularization parameter. 

iv) Select the regularization parameter which gives minimum MSE value. 

 

3.5. External Criteria of Accuracy 

 

The external criterion is utilized to check the accuracy of the model. In GMDH 

algorithm, the external criterion is the decision measure in choosing the best way 

to make the most accurate forecasts. In general, mean square error is used as the 

external criteria to control the system of GMDH algorithm. After one output is 

obtained in each neuron of a layer, external criteria are calculated. According to 

the external criteria, some neurons continue to live, some cells, called death cells, 

are discarded. For each neuron, prediction mean square error (PMSE) is calculated 

between the obtained output (predicted values) and the desired output (observed 

values). 
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𝑃𝑀𝑆𝐸 =
1

𝑡 − 𝑝
∑(�̂�𝑖 − 𝑧𝑖)

2

𝑡−𝑝

𝑖=1

                                           (3.21) 

 

In a layer of GMDH algorithm, all PMSE values are calculated for all neurons. 

According to PMSE values, some neurons are superior to the others. Better ones 

have the right to continue to the next layer. For this reason, after PMSE values of 

all neurons are calculated, p neurons which give smaller PMSE values compared 

to others are selected as living cells.  The selected outputs continue with next layer 

as inputs. This process lasts until all layers are completed. At the last layer, the 

neuron which gives the smallest PMSE value is selected and the estimation 

procedure is ended. The details of the algorithms are discussed in following sub-

sections. 

 

3.6. Algorithm of GMDH-Type Neural Network 

 

GMDH is the effective technique to make accurate forecasts by learning the 

relation between the lags of the data set. The most advantageous side of the 

method is that exact model is not needed. In addition to this, there is no restriction 

to apply the GMDH algorithm in the perspective of time series forecasting. The 

method learns the relation among the lags of time series in training process. Some 

neurons which give better performance are selected in network according to PMSE 

value. On the other hand, some neurons which have higher PMSE compared the 

other ones are eliminated from the system of network. The outputs obtained from 

the selected neurons become the inputs at next layer. The process continues until 

all layers are finished. The flowchart of the algorithm is able to be depicted in 

Figure 3.3.  
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Figure 3.3: Flowchart of GMDH Algorithms 

 

Before the algorithm starts, number of inputs and number of layers need to be 

clarified. There is no criterion to define the number of inputs. However, since time 

series has dependency among the lags, this is considered when the input number is 

chosen. For example, if the dependency between 𝛼𝑡 and 𝛼𝑡−12 is high, the input 

number are able to be chosen to be more than 12. This is not only parameter, but 

also the number of layers affects the system. In general, the layer number is not 

specified in GMDH algorithms. In that case, the system of algorithm is the 

decision maker of the number of layers. If the decreasing of error stops, the system 

is terminated (Samsudin et al., 2011). However, in this study, we clarify the 

number of layers in the algorithm, since it can cause over-fitting problem when the 

number of layers is large.  
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The algorithm of GMDH-type neural network algorithms in time series forecasting 

is provided in following steps: 

 

i) Decide number of inputs and layers. 

ii) Make data manipulation proposed in section 3.1. 

iii) Make estimation of weights in neurons depending on choice of transfer 

function (see section 3.3).  

iv) Obtain predicted values from all neurons and calculate PMSE for each 

neuron. 

v) If the process is not at the last layer, select 𝑝 outputs which have 

smaller PMSE values compared to the rest ones, then, take obtained 𝑝 

outputs to next layer as inputs and repeat steps iii) to v) again. 

Otherwise, select the output which has the smallest PMSE value among 

the outputs at the last layer. 

 

GMDH algorithms continue until all layers are completed. Since there exist 𝑝 

inputs, there are ℎ neurons for GMDH algorithm and 𝜂 neurons for RGMDH 

algorithm in each layer. Within a group of neurons, 𝑝 neurons which have smaller 

PMSE values compared to the rest are selected in each layer except for the last 

layer. At the last layer, the neuron which gives the smallest PMSE value is chosen 

as an output. 

 

3.7. Methods Included for Comparison Purpose 

 

3.7.1. ARIMA Models 

 

ARIMA model, which is introduced in Box and Jenkins (1970), is the most 

dominating one in time series area. The ARIMA model represented by ARIMA(p, 

d, q) is written as follows: 

 

𝜙𝑝(B) (1 − 𝐵)𝑑𝛼𝑡 = 𝜃𝑞(B)ℇ𝑡                                                (3.22) 
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with 

                                  

𝜙𝑝(B) = (1 – 𝜙1B – 𝜙2𝐵
2 – … – 𝜙𝑝𝐵𝑝) 

𝜃𝑞(B) = (1 – 𝜃1B – 𝜃2𝐵
2 – … – 𝜃𝑞𝐵𝑞) 

 

where 𝛼𝑡 is a time series data set; 𝐵 is the backshift operator; (1 −   𝐵)𝑑 is non-

seasonal differencing operator; ℇ𝑡 is a white noise random process with mean 0 

and variance 𝜎𝑎
2;  𝜙𝑝(B) is autoregressive operator;  𝜃𝑞(B) is moving average 

operator. To illustrate, let ARIMA(1, 0, 1) with 𝜙1 = 0.4, 𝜃1 = 0.3. The model 

becomes as follows: 

 

(1 – 0.4B)𝛼𝑡 = (1 – 0.3B) ℇ𝑡 

𝛼𝑡 = 0.4𝛼𝑡−1 + ℇ𝑡 – 0.3ℇ𝑡−1. 

 

In real life, it is not always plausible to construct model by using ARIMA model 

because of existence of seasonality. The seasonal ARIMA model is depicted as 

ARIMA(p,d,q)×(𝑃, 𝐷,𝑄)𝑠 is stated as: 

 

𝜙𝑝(B)Φ𝑃(𝐵𝑠) (1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑍𝑡 = 𝜃𝑞(B)Θ𝑄(𝐵𝑠) 𝑎𝑡                       (3.23) 

 

with                                   

  

𝜙𝑝(B) = (1 – 𝜙1B – 𝜙2𝐵
2 – … – 𝜙𝑝𝐵𝑝) 

Φ𝑃(𝐵𝑠) = (1 – Φ1𝐵
𝑠 – Φ2𝐵

2𝑠 – … – Φ𝑃𝐵𝑃𝑠) 

𝜃𝑞(B) = (1 – 𝜃1B – 𝜃2𝐵
2 – … – 𝜃𝑞𝐵𝑞) 

Θ𝑄(𝐵𝑠) = (1 – Θ1𝐵
𝑠 – Θ2𝐵

2𝑠  – … – Θ𝑄𝐵𝑄𝑠) 

 

where 𝑍𝑡 is a time series, 𝐵 is the backshift operator, (1 −   𝐵)𝑑 and (1 −  𝐵𝑠)𝐷 

are non-seasonal and seasonal differencing operators, respectively. 𝑎𝑡 is a white 

noise random process with mean 0 and variance 𝜎𝑎
2,  𝜙𝑝(B) is autoregressive 
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operator, Φ𝑃(𝐵𝑠) is seasonal autoregressive operator,  𝜃𝑞(B) is moving average 

operator, Θ𝑄(𝐵𝑠) seasonal moving average operator. For example, let ARIMA(1, 0, 

1)×(0, 0, 1)12 with 𝜙1 = 0.5, 𝜃1=0.2, Θ1=0.4. The model becomes as follows: 

 

(1 – 0.5B)𝑍𝑡 = (1 – 0.2B)(1 – 0.4𝐵12)𝑎𝑡 

𝑍𝑡 = 0.5𝑍𝑡−1 + 𝑎𝑡– 0.2𝑎𝑡−1– 0.4𝑎𝑡−12 + 0.08𝑎𝑡−13 

 

The main issue for the users constructing ARIMA models is to select the proper 

order of the ARIMA models. Hyndman and Khandakar (2008) proposed an R 

package “forecast” related to automatic time series forecasting. Within this 

package, the function “auto.arima” selects the best order for the data set according 

to either Akaike information criterion (AIC), corrected Akaike information 

criterion (AICc) or Bayesian information criterion (BIC) while constructing 

ARIMA model. The details of the methodology can be found in Hyndman and 

Khandakar (2008). 

 

3.7.2. Exponential Smoothing 

  

The history of exponential smoothing is based on the 1950s, development of the 

methods is relatively recent. Exponential smoothing is the method which smooths 

the fluctuation of time series by giving the exponentially decreasing weights for 

the observations getting older. Hyndman and Khandakar (2008) studied a total of 

fifteen methods with additive and multiplicative errors. These methods are given 

in Table 3.2. They also proposed the R package “forecast” in which there exists a 

function called “ets”. This function selects the appropriate exponential technique 

for the data set according to either AIC, AICc or BIC. 
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Table 3.2: The fifteen exponential smoothing methods with additive and 

multiplicative errors   

  Seasonal Component 

Errors Trend Component 
N 

(None) 

A 

(Additive) 

M 

(Multipl.) 

A 

(Additive) 

N (None) A, N, N A, N, A A, N, M 

A (Additive) A, A, N A, A, A A, A, M 

Ad (Additive damped) A, Ad, N A, Ad, A A, Ad, M 

M (Multipl.) A, M, N A, M, A A, M, M 

Md (Multipl. damped) A, Md, N A, Md, A A, Md, M 

M 

(Multipl.) 

N (None) M, N, N M, N, A M, N, M 

A (Additive) M, A, N M, A, A M, A, M 

Ad (Additive damped) M, Ad, N M, Ad, A M, Ad, M 

M (Multipl.) M, M, N M, M, A M, M, M 

Md (Multipl. damped) M, Md, N M, Md, A M, Md, M 

 

The components of the triplet (E, T, S) are called: error, trend and seasonality. For 

instance, the model (A, M, N) means additive errors, multiplicative trend and no 

seasonality. People call some of the methods given in Table 3.2 with the well-

known names. The first cell (A, N, N) is known as the simple exponential 

smoothing with additive errors. The cell (A, A, N) is called Holt’s linear method 

with additive errors which is good to explain a time series with trend. The method 

(M, Ad, N) is known as the damped trend method with multiplicative errors. The 

method (A, A, A) is named as the additive Holt-Winters' method with additive 

errors errors which is good to explain a time series with trend and seasonality. The 

cell (M, A, M) is called the multiplicative Holt-Winters' method with 

multiplicative errors. The details of these methods can be found in Hyndman and 

Khandakar (2008; see also Ord et al., 1997; Hyndman et al., 2002; Hyndman et al., 

2005b).  
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CHAPTER 4 

 

APPLICATION OF THE ALGORITHMS ON REAL LIFE DATASETS 

 

 

GMDH algorithms are illustrated on four real life data sets in this chapter. These 

time series are well-known data sets and permanently used in time series text 

books.  We mainly focus on answering the following three questions on these 

well-known data sets. How do GMDH algorithms perform when trend exists?  

How do GMDH algorithms perform for the data set with small sample size? What 

is the performance of GMDH algorithms when seasonality is available in the data 

set? 

 

The main objective of this section is to show the performance of the GMDH-type 

neural network algorithms on real data applications with respect to prediction and 

short term forecasting accuracy. For this purpose, the last five observations of each 

data set were separated to show forecasting ability in short term. 

 

In this chapter, we present information regarding the data sets. We implemented 

GMDH algorithms on real data sets. Also, we applied ARIMA models and 

exponential smoothing methods on real data applications for the comparison 

purpose. Moreover, we introduce our proposed R package “GMDH” for the 

implementation of the GMDH algorithms.  

 

4.1. Cancer Death Rate 

 

Data used in this application are yearly cancer death rate (per 100,000 population) 

of Pennsylvania between 1930 and 2000 (Figure 4.1). The data were documented 

in Pennsylvania Vital Statistics Annual Report by the Pennsylvania Department of 

Health in 2000 (Wei, 2006).  
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Figure 4.1: Yearly cancer death rate (per 100,000 population) in Pennsylvania 

between 1930 and 2000 

 

This dataset is also available as a demo dataset in our R package GMDH. After 

installing package “GMDH”, it can be loaded in R workspace by  

 

R> library(GMDH) 

R> data(cancer) 

R> cancer 

 

After the cancer death rate data set is loaded, “fcast” function is utilized for 

forecasting via GMDH-type neural network.  

 

R> out = fcast(cancer, method = "GMDH", input = 15, layer = 1, f.number = 5, tf 

= "all", plotit = TRUE) 

R> out$fitted # displays fitted values 

R> out$MSE # returns the MSE value of prediction  
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R> out$forecasts # shows forecasts 

 

In this part, we divided the data into 2 parts for the aim of observing the ability of 

methods on prediction (n = 66) and forecasting (n = 5). We include ARIMA 

models and ES methods for the comparison purpose. For the determination of the 

best order of ARIMA models and the best method of ES techniques, there are two 

functions in R package “forecast” (Hyndman et al., 2014). These functions, 

auto.arima and ets, which use grid search, select the best model according to  the 

criteria of either AIC, AICc or BIC. The functions suggested the model ARIMA 

(1, 1, 0) with intercept and ES method with multiplicative errors, additive damped 

trend and no seasonality (M, Ad, N), respectively. We also added the model 

ARIMA (0, 1, 0) with intercept for this data set suggested by Wei (2006). For all 

models, prediction mean square error (PMSE) and forecasting mean square error 

(FMSE) are stated in Table 4.1.  

 

Table 4.1: Comparison of GMDH algorithms with other 

models on cancer death rate 

 PMSE  FMSE 

GMDH 4.985  4.575 

RGMDH 4.287  4.102 

ARIMA(1, 1, 0) with intercept 5.995  81.874 

ARIMA(0, 1, 0) with intercept 6.324  73.756 

ES (M, Ad, N) 6.153  17.508 

 

The best forecasting performance belongs to RGMDH algorithm and its prediction 

accuracy also yields better results compared GMDH, ARIMA and ES models. 

Moreover, GMDH algorithm outperforms ARIMA and ES models in prediction 

and forecasting. To avoid visual pollution in Figure 4.2, we include one of the 

GMDH algorithms and one of ARIMA models or ES method which have higher 

performance with respect to forecasting compared to the rest of them. Figure 4.2 

includes predictions and forecasts of RGMDH algorithm and ES (M, Ad, N). 
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Figure 4.2: Yearly cancer death rate (per 100,000 population) in Pennsylvania 

between 1941 and 2000 with predictions and forecasts obtained via RGMDH and 

ES(M,Ad,N) 

 

4.2. Melanoma Incidence 

 

Data used in this part are melanoma skin cancer incidences (per 100,000 people) 

which represent age-adjusted numbers of melanoma skin cancer. The data are 

provided from Connecticut Tumor Registry in Connecticut from 1936 to 1972. 

The data and its description are available in R package “lattice” (Sarkar, 2014) 

under the name of melanoma. The illustration of melanoma skin cancer incidence 

data set is given in Figure 4.3. The dataset is a very short time series to model. Our 

aim in choosing this dataset is to see the performance of the GMDH algorithms in 

a short series. 
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Figure 4.3: Melanoma skin cancer incidence (per 100,000 people) in Connecticut 

between 1936 and 1972 

 

Melanoma skin cancer incidence data set is divided into 2 parts for the purpose of 

observing the ability of methods on prediction (n = 31) and forecasting (n = 5). In 

order to find best order of ARIMA models, auto.arima suggested ARIMA(0, 1, 0) 

with intercept by comparing the models according to AIC, AICc and BIC. 

Function ets suggested ES method with multiplicative errors, additive trend and no 

seasonality (M, A, N), respectively. For all models, PMSE and FMSE are stated in 

Table 4.2.  

  

Table 4.2: Comparison of GMDH algorithms with other 

models on melanoma incidence 

 PMSE  FMSE 

GMDH 0.034  0.095 

RGMDH 0.034  0.095 

ARIMA(0, 1, 0) with intercept 0.129  0.403 

ES (M, A, N) 0.118  0.044 
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The performance of GMDH and RGMDH are same in both prediction and 

forecasting. It is plausible since the architecture of RGMDH is an extension of 

GMDH’s. The best prediction performance belongs to GMDH algorithms.  ES 

yields better results compared GMDH algorithms and ARIMA model with respect 

to forecasting. However, ES method does not capture the behavior of the data set 

whereas GMDH algorithms do (Figure 4.4). GMDH algorithms are able to be 

applied if the length of series is short. 

 

 

Figure 4.4: Melanoma skin cancer incidence (per 100,000 people) in Connecticut 

between 1950 and 1972 with predictions and forecasts obtained from GMDH-

RGMDH, ARIMA(0,1,0) and ES(M,A,N) 

 

4.3. Accidental Deaths  

 

Data utilized in this part are monthly totals of accidental deaths in the US from 

1973 to 1978.  The data are able to be reached in Brockwell and Davis (1991). The 

data and its description are also available in R package “datasets” (R Core Team, 
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2014) under the name of USAccDeaths. The accidental deaths data set is 

illustrated in Figure 4.5. There is seasonality in the series like many time series. 

 

 

Figure 4.5: Monthly totals of accidental deaths (×1,000) in the US from 1973 to 

1978 

 

In this part, the data are divided into 2 parts for the performance of prediction (n = 

67) and forecasting (n = 5). ARIMA models and ES methods are included for the 

comparison purpose. For the purpose of finding the best order of ARIMA models 

and the best method of ES techniques, the functions auto.arima and ets are utilized. 

These functions suggested the model ARIMA (0, 1, 1) (0, 1, 1) [12] and ES 

method with multiplicative errors, no trend and multiplicative seasonal component 

(M, N, M), respectively. For all models, PMSE and FMSE are presented in Table 

4.3. 
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Table 4.3: Comparison of GMDH algorithms with 

other models on accidental deaths 

 PMSE  FMSE 

GMDH 0.130  0.088 

RGMDH 0.068  0.239 

ARIMA(0, 1, 1) (0, 1, 1) [12] 0.082  0.197 

ES (M, N, M) 0.063  0.146 

 

GMDH algorithm outperforms the rest ones in forecasting performance; however, 

it does not perform as well as the other methods in prediction. The best prediction 

performance belongs to ES technique and its forecasting performance is also fairly 

good. RGMDH algorithm’s prediction accuracy also yields better results compared 

to GMDH and ARIMA, but its forecasting accuracy is not as good as the rest 

models. To prevent visual pollution, for only RGMDH algorithm and ES method, 

the predicted values and forecasts are illustrated in Figure 4.6. 

 

 

Figure 4.6: Monthly totals of accidental deaths (×1,000) in the US from 1974 to 

1978 with the predictions and forecasts obtained from RGMDH and ES(M,N,M) 
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4.4. Airline Passenger Numbers 

Data used in this part are monthly totals of international airline passengers from 

1949 to 1960; therefore, it includes 144 observations. The data and its description 

are able to be reached in Box et al. (1976). The data are also available in R 

package “datasets” (R Core Team, 2014) under the name of AirPassengers. Airline 

passenger numbers data set is illustrated in Figure 4.7. This dataset has an 

increasing trend and seasonal behavior. 

 

 

Figure 4.7: Monthly totals of international airline passengers (×100,000) from 

1949 to 1960 

 

We divided the data set into 2 sets in order to show the performance of GMDH 

algorithms with respect to prediction (n = 139) and forecasting (n = 5). ARIMA 

models and ES methods are included for the comparison purpose. For ARIMA 

models, the best order of fitting this data set is ARIMA(0, 1, 1) (0, 1, 0) [12]. The 

method which fit airline passenger numbers data set is found to be ES method with 
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multiplicative errors, additive trend and multiplicative seasonal component (M, A, 

M). For all models, PMSE and FMSE are presented in Table 4.4.  

 

Table 4.4: Comparison of GMDH algorithms with 

other models on airline passenger numbers 

 PMSE  FMSE 

GMDH 0.020  0.015 

RGMDH 0.009  0.018 

ARIMA(0, 1, 1) (0, 1, 0) [12] 0.012  0.098 

ES (M, A, M) 0.011  0.063 

 

GMDH and RGMDH are superior to ARIMA and ES for the forecasting 

performance. The best forecasting performance belongs to GMDH algorithm, but 

its prediction accuracy is not as good as RGMDH, ARIMA and ES models. In 

order to visualize prediction and forecasting performance, RGMDH algorithm and 

ES method are illustrated in Figure 4.8. GMDH algorithms are able to be 

applicable even if both seasonality and trend are available in the data set.  

 

 

 



 

39 
 

 

Figure 4.8: Monthly totals of international airline passengers (×100,000) from 

1949 to 1960 with predictions and forecasts obtained from RGMDH and 

ES(M,A,M) 

 

4.5. Discussion 

 

In the light of whole analysis on the data sets included, GMDH – type neural 

network algorithms generally outperform ARIMA and ES models in prediction 

and forecasting performance even if the series is short or/and includes trend or/and 

seasonality. As an alternative to ARIMA and ES models, GMDH algorithms are 

applicable for prediction and forecasting. In this study, we proposed an R package 

GMDH for easy implementation of users. Therefore, researchers are able to reach 

these algorithms in an easy way. 
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CHAPTER 5 

 

CONCLUSION 

 

 

In this study, we used GMDH - type neural network algorithms, the heuristic self-

organization method for modelling the complex systems, to make forecasts for 

time series data sets. We primarily concentrated to develop free software. 

Concretely, we developed an R package called GMDH to make forecasting in 

short term via GMDH - type neural network algorithms. Also, we integrated 

different transfer functions, sigmoid, radial basis, polynomial, and tangent 

functions, into GMDH algorithms. Our R package proposed that these functions 

are able to be exerted simultaneously or separately depending on the desire.   

 

In estimation of coefficients, since we construct the model for the data with lags, 

there exists high possibility of occurring multi-collinearity problem. Therefore, we 

utilized regularized least square estimation to handle such a problem. It is 

important to note that estimation of regularization parameter is the question of 

interest. Cross validation was applied in order to estimate regularization term. Data 

were divided into two pieces as a learning set and a testing set. Order of the 

observations was important in time series data; therefore, division was done by 

taking that into consideration. Coefficients were estimated by using the learning 

set and MSE was calculated by utilizing test set.   The regularization parameter 

which gave the smallest MSE in all possible regularization parameters was 

selected. After selection of regularization term, coefficients were estimated by the 

help of all observations and regularization parameter. It is important to point that 

regularized least square is equal to least square estimation when regularization 

parameter is estimated to be zero. 

 

Application of the algorithms on real life datasets illustrated that GMDH – type 

neural network algorithms are as good as ARIMA and ES models or better in 

prediction and short term forecasting performance.  GMDH algorithms are able to 
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be applied even if the length of the series is short. Also, they are able to be used 

when trend and/or seasonality exist(s) in the data set. Researchers are able to reach 

these algorithms since our proposed R package GMDH is available on 

Comprehensive R Archive Network (CRAN) at http://CRAN.R-

project.org/package=GMDH. 

 

One of the questions is “what will be the number of inputs?”. The answer of this 

question is not that easy since increase in number of inputs causes decrease in the 

number of observations. Therefore, it depends on the length of the series. It means 

providing that there exist very long time series, it is better to use high number of 

inputs. This of course results in very large computational time. If the sample size is 

small, it is not plausible to use large number of inputs. In this case, optimum 

feasible input numbers are tried to be exerted, the number of input is able to be 

chosen according to MSE.  

 

Future studies are planned in the direction of transfer functions. In this study, we 

used four different transfer functions - sigmoid, radial basis, polynomial, and 

tangent functions - into GMDH algorithms. We plan to integrate Box-Cox 

transformation into GMDH-type neural network algorithms. GMDH algorithms 

with four transfer functions and GMDH algorithms with Box-Cox transformation 

are going to be performed on real data applications to compare the prediction and 

short term forecasting. After well-documented, the related R function of GMDH 

algorithms with Box-Cox transformation are going to be released under our 

proposed R package GMDH. 

 

 

 

 

 

 

 

 



 

43 
 

REFERENCES 

 

 

Abdel-Aal, R. E. (2005). GMDH-Based Feature Ranking and Selection for 

Improved Classification of Medical Data. Journal of Biomedical Informatics, 38, 

456-468. 

 

Astakhov, V. P., Galitsky, V. V. (2005). Tool Life Testing in Gundrilling: An 

Application of the Group Method of Data Handling (GMDH). International 

Journal of Machine Tools & Manufacture, 45, 509-517. 

 

Baig, Z. A., Sait, S. M., Shaheen, A. (2013). GMDH-Based Networks for 

Intelligent Intrusion Detection. Engineering Applications of Artificial Intelligence, 

26, 1731–1740. 

 

Box, G. E. P., Jenkins, G. M. (1970). Time Series Analysis, Forecasting and 

Control. Oakland, CA: Holden-Day.  

 

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976). Time Series Analysis, 

Forecasting and Control. Third Edition. Holden-Day. Series G. 

 

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and 

Methods. Springer, New York. 

 

Farlow, S. J. (1981). The GMDH Algorithm of Ivakhnenko. The American 

Statistician, 35:4, 210-215. 

 

Hyndman, R. J., Athanasopoulos, G., Razbash, S., Schmidt, D., Zhou, Z., Khan, 

Y., Bergmeir, C., and Wang, E. (2014). forecast: Forecasting functions for time 

series and linear models. R package version 5.5. http://CRAN.R-

project.org/package=forecast. 

 



 

44 
 

Hyndman, R..  J., Khandakar, Y. (2008). Automatic Time Series Forecasting: The 

forecast Package for R. Journal of Statistical Software, 27:3, 1-22. 

 

Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D. (2005). Prediction Intervals 

for Exponential Smoothing Using Two New Classes of State Space Models. 

Journal of Forecasting, 24, 17-37. 

 

Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S. (2002). A State Space 

Framework for Automatic Forecasting Using Exponential Smoothing Methods. 

International Journal of Forecasting, 18:3, 439-454. 

 

Ivakhnenko, A. G. (1966). Group Method of Data Handling – A Rival of the 

Method of Stochastic Approximation. Soviet Automatic Control, 13, 43-71. 

 

Ivakhnenko, A. G. (1970). Heuristic Self-Organization in Problems of Engineering 

Cybernetics. Automatica, 6:2, 207-219. 

 

Ivakhnenko, A. G., Ivakhnenko, G. A. (1995). The Review of Problems Solvable 

by Algorithms of the Group Method of Data Handling (GMDH). Pattern 

Recognition and Image Analysis, 5:4, 527-535. 

 

Kalavrouziotis, I., Stepashko, V., Vissikirsky, V., Drakatos, P. (2002). Group 

Method of Data Handling (GMDH) Application for Modelling of Mechanical 

Properties of Trees Irrigated with Wastewater. International Journal of 

Environment and Pollution, 18:6, 589-601. 

 

Kondo, T. (1998). GMDH Neural Network Algorithm Using the Heuristic Self-

Organization Method and Its Application to the Pattern Identification Problem. 

Proc. of the 37th SICE Annual Conference, 1143-1148. 

 

Kondo, T., Ueno, J. (2006a). Revised GMDH-Type Neural Network Algorithm 

with a Feedback Loop Identifying Sigmoid Function Neural Network. 

http://www.inderscience.com/ijep
http://www.inderscience.com/ijep


 

45 
 

International Journal of Innovative Computing, Information and Control, 2:5, 

985-996. 

 

Kondo, T., Ueno, J. (2006b). Medical Image Recognition of the Brain by Revised 

GMDH-Type Neural Network Algorithm with a Feedback Loop. International 

Journal of Innovative Computing, Information and Control, 2:5, 1039-1052. 

 

Kondo, T., Ueno, J. (2007). Logistic GMDH-Type Neural Network and Its 

Application to Identification of X-ray Film Characteristic Curve. Journal of 

Advanced Computational Intelligence and Intelligent Informatics, 11:3, 312-318. 

 

Kondo, T., Ueno, J. (2012). Feedback GMDH-Type Neural Network and Its 

Application to Medical Image Analysis of Liver Cancer. International Journal of 

Innovative Computing, Information and Control, 8:3(B), 2285-2300. 

 

Muller, J. A., Ivachnenko, A. G., Lemke, F. (1998). GMDH Algorithms for 

Complex Systems Modelling. Mathematical and Computer Modelling of 

Dynamical Systems: Methods, Tools and Applications in Engineering and Related 

Sciences, 4:4, 275–316. 

 

Najafzadeh, M., Barani, G., Hessami Kermani, M. (2014). Estimation of Pipeline 

Scour due to Waves by GMDH. Journal of Pipeline Systems Engineering and 

Practice, 5:3, 06014002. 

 

Nariman-zadeh, N., Darvizeh, A., Darvizeh, M., Gharababaei, H. (2002). 

Modelling of Explosive Cutting Process of Plates Using GMDH-Type Neural 

Network and Singular Value Decomposition. Journal of Materials Processing 

Technology, 128, 80-87. 

 

Ord, J. K., Koehler, A. B., Snyder, R. D. (1997). Estimation and Prediction for a 

Class of Dynamic Nonlinear Statistical Models. Journal of the American 

Statistical Association, 92, 1621-1629. 



 

46 
 

 

R Core Team (2014). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-

project.org/. 

 

Samsudin, R., Saad, P., Shabri, A. (2011). River Flow Time Series Using Least 

Squares Support Vector Machines. Hydrology and Earth System Sciences, 15, 

1835-1852. 

 

Sarkar, D. (2014). Lattice: Multivariate Data Visualization with R. New York: 

Springer.  ISBN 978-0-387-75968-5. 

 

Sheikholeslami, M., Sheykholeslami F. B., Khoshhal, S., Mola-Abasia, H., Ganji, 

D. D., Rokni, H. B. (2014).  Effect of Magnetic Field on Cu–Water Nanofluid 

Heat Transfer Using GMDH-Type Neural Network, Neural Computing and 

Applications, 25, 171-178. 

 

Srinivasan, D. (2008). Energy Demand Prediction Using GMDH Networks. 

Neurocomputing, 72, 625-629. 

 

Wei, W. W.S. (2006). Time Series Analysis: Univariate and Multivariate Methods. 

Boston: Addison-Wesley. 

 

Xu, H., Dong, Y., Wu, J., Zhao,W. (2012). Application of GMDH to Short Term 

Load Forecasting. Advances in Intelligent Systems, 138, 27–32. 

 

 

 

 

 

 

 



 

47 
 

APPENDIX A 

 

MANUAL OF OUR PROPOSED R PACKAGE GMDH 

 

Package ‘GMDH’ 

July 20, 2015 

 

Type  Package 

Title  Predicting and Forecasting Time Series via GMDH-Type Neural 

Network Algorithms 

Version  1.1 

Date  2015-7-20 

Depends  R (>= 3.1.1) 

Imports  MASS, graphics, stats, utils 

Author  Osman Dag, Ceylan Yozgatligil 

Maintainer Osman Dag <osman.dag@hacettepe.edu.tr> 

Description 

Group method of data handling (GMDH) - type neural network 

algorithm is the heuristic self- organization method for modelling the 

complex systems. In this package, GMDH-type neural network 

algorithms are applied to predict and forecast a univariate time series. 

License  GPL (>= 2)  

NeedsCompilation no 

Repository   CRAN 

Date/Publication 2015-07-20 18:08:41 

R topics documented: 

GMDH-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

cancer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

fcast  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

 

 

 



 

48 
 

 

 

GMDH-package Predicting and Forecasting Time Series via 

GMDH-Type Neural Net- work Algorithms 

 

Description 

Package GMDH includes a function for predicting and forecasting a 

univariate time series by using GMDH-type neural network, and a dataset 

for implementation. 

Details 

Package: GMDH 

Type: Package 

Version: 1.1 

Date: 2015-07-20 

License: GPL (>=2) 

 
 

 

 

cancer                             Cancer Data 

Description 

Yearly cancer death rate (per 100,000 population) of Pennsylvania between 

1930 and 2000. 

Usage 

data(cancer) 

Format 

A time series with 71 observations on the following variable. 

cancer a time series for yearly cancer death rate 

References 

Wei, W. W.S. (2006). Time Series Analysis: Univariate and Multivariate 

Methods (2nd ed.) Boston:Addison-Wesley 
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Examples 

data(cancer) 

plot(cancer) 

out  = fcast(cancer, f.number = 2) 

out$forecasts 

 

 

fcast A Function to Predict and Forecast Time Series 

via GMDH-Type Neural Network Algorithms 

 

Description 

fcast predicts and forecasts time series via GMDH-type neural network 

algorithms. 

Usage 

fcast(data, method = "GMDH",  input = 4, layer = 3,  f.number = 10,  tf 

= "all", plotit = TRUE, weigth = 0.7, lambda=c(0,0.01,0.02,0.04,0.08, 

0.16, 0.32,0.64,1.28,2.56,5.12, 10.24)) 

Arguments 

data  is an univariate time series 

method expects a character string to choose the desired method to 

forecast time series. To utilize GMDH-type neural 

network in forecasting, method is set to "GMDH". One 

should set method to "RGMDH" for forecasting via 

Revised GMDH-type neural network. Default is set to 

"GMDH" 

input        is the number of inputs. Defaults input = 4 

layer                 is the number of layers. Default is set to layer = 3 

f.number       is the number of observations to be forecasted. Defaults 

f.number = 10 

tf expects a character string to choose the desired transfer 

function to be used in forecasting. To use polynomial 
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function, tf should be set to "polynomial". Similarly, tf 

should be set to "sigmoid", "RBF", "tangent" to utilize 

sigmoid function, radial basis function and tangent 

function, respectively. To use all functions 

simultaneously, default is set to "all" 

plotit        is logical which controls whether historical data with 

forecasts should be plotted. Defaults plotit = TRUE 

weigth is the percent of the data set to be utilized as learning set 

to estimate regularization parameter via cross validation. 

Default is set to weigth = 0.70 

lambda is a vector which includes the sequence of feasible 

regularization parameters. Defaults lambda=c(0,0.01,0.02, 

0.04,0.08,0.16,0.32,0.64, 1.28,2.56,5.12,10.24) 

 

Value 

Returns a list containing following elements: 

fitted              fitted values 

MSE   MSE of prediction 

forecasts forecasts 

Note 

This is the version 1.1 of this user documentation file. 

Author(s) 

Osman Dag, Ceylan Yozgatligil 

References 

Dag, O., Yozgatligil, C. (2015). GMDH: An R Package for Predicting 

and Forecasting Time Series via GMDH-Type Neural Network 

Algorithms. To be submitted. 
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Examples 

data = rnorm(100, 10,  1) 

out  = fcast(data) 

out 

 

data = rnorm(100, 10,  1) 

out  = fcast(data,  input = 6, layer = 2,  f.number = 5) 

out$forecasts  

out$fitted  

out$MSE 
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APPENDIX B 

 

OUR R FUNCTION FOR FORECASTING VIA GMDH ALGORITHMS 

 

fcast=function(data, method="GMDH", input=4, layer=3, f.number=5, tf="all", 

plotit=TRUE, weigth=0.7, lambda=c(0,0.01,0.02,0.04,0.08,0.16,0.32,0.64,1.28, 

2.56,5.12,10.24)){ 

 

if (tf=="all"){tf_options=c(101:104) 

}else if (tf=="polynomial"){tf_options=c(101) 

}else if (tf=="sigmoid"){tf_options=c(102) 

}else if (tf=="RBF"){tf_options=c(103) 

}else if (tf=="tangent"){tf_options=c(104) 

 

}else {stop("Transfer function you entered is not available")} 

 

transf=function(h,dataaa){ 

 

if (h==101) dat=dataaa 

if (h==102) dat=log(dataaa/(1-dataaa)) 

if (h==103) dat=sqrt(-log(dataaa)) 

if (h==104) dat=atan(dataaa)/pi*180 

dat 

} 

 

 

back_transf=function(h,dataaa){ 

if (h==101) dat=dataaa 

if (h==102) dat=1/(1+exp(-dataaa)) 

if (h==103) dat=exp(-dataaa^2) 
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if (h==104) dat=tan(dataaa*pi/180) 

dat 

} 

 

 

cross=function(X, y, lambda=lambda, weigth=weigth){ 

n=length(y) 

n1=round(n*weigth) 

n2=n-n1 

p=dim(X)[2] 

store=NULL 

cost=NULL 

Ident=diag(p) 

Ident[1,1]=0 

 

X1=X[1:n1,] 

X2=X[(n1+1):n,] 

y1=matrix(y[1:n1],ncol=1) 

y2=y[(n1+1):n] 

for (j in 1:length(lambda)){ 

coef=ginv(t(X1)%*%X1+lambda[j]*Ident)%*%t(X1)%*%y1 

ypred= t(coef)%*%t(X2) 

cost=mean((ypred-y2)^2) 

store=rbind(store,c(lambda[j],cost)) 

cost=NULL 

} 

lamb=store[which.min(store[,2]),][1] 

 

coef2=ginv(t(X)%*%X+lamb*Ident)%*%t(X)%*%y 

as.numeric(coef2) 
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} 

 

 

if (min(data)<=0){ 

stt1=abs(min(data))+1   

}else{stt1=0} 

 

stt2=max(data+stt1)+1   

y=(data+stt1)/stt2  

if (method=="GMDH"){ 

 

store_Astore<- list() 

store_z=list() 

ss=length(y) 

 

threshold=c(rep(input,layer-1),1) 

nnode=input*(input-1)/2 

idn=c(1:input) 

 

yt=y[-input:-1] 

x=NULL 

for (i in 1:(input-1)){ 

x=cbind(x,matrix(y[c(-1:-(input-i),-ss:-(ss+1-i))])) 

} 

x=cbind(x,matrix(y[c(-ss:-(ss-input+1))])) 

 

for (k in 1:layer){ 

w=t(combn(order(idn), 2)) 

 

Astore=NULL 
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z=NULL 

for (j in 1:nnode){ 

 

qq=cbind(1,x[,w[j,]],x[,w[j,]][,1]*x[,w[j,]][,2],x[,w[j,]]^2) 

 

 

tfunc=NULL 

tfunc_z=NULL 

for (g in tf_options){ 

 

est_coef=cross(qq,transf(g,yt),lambda=lambda,weigth=weigth) 

ee=as.numeric(est_coef) 

 

est_zt=rowSums(t(ee*t(qq))) 

tfunc=rbind(tfunc,c(est_coef,mean((back_transf(g,est_zt)-yt)^2),g)) 

tfunc_z=cbind(tfunc_z,matrix(back_transf(g,est_zt))) 

} 

 

z=cbind(z,tfunc_z[,which.min(tfunc[,7])]) 

Astore=rbind(Astore,tfunc[which.min(tfunc[,7]),]) 

} 

 

Astore=cbind(Astore,c(1:nnode)) 

store_Astore[[k]]=Astore[which(Astore[,7]<=sort(Astore[,7])[threshold[k]]),] 

store_z[[k]]=z[,which(Astore[,7]<=sort(Astore[,7])[threshold[k]])] 

 

x=store_z[[k]] 

if (k==layer){ 

store_Astore[[k]]=matrix(store_Astore[[k]],nrow=1) 

store_z[[k]]=matrix(store_z[[k]],ncol=1) 
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} 

} 

 

for (h in 1:f.number){ 

 

yt_input=matrix(rev(tail(y,input)),nrow=1) 

idn2=c(1:input) 

w2=t(combn(order(idn2), 2)) 

 

for (k2 in 1:layer){ 

 

selected_coef=selected_qq2=NULL 

store_qq2=NULL 

for (j2 in 1:nnode){ 

 

qq2=c(1,yt_input[,w2[j2,]],yt_input[,w2[j2,]][1]*yt_input[,w2[j2,]][2],yt_input[,w

2[j2,]]^2) 

store_qq2=rbind(store_qq2,qq2) 

} 

 

selected_qq2=store_qq2[store_Astore[[k2]][,9],] 

selected_coef=store_Astore[[k2]][,1:6] 

 

if (k2==layer){ 

selected_qq2=matrix(selected_qq2,nrow=1) 

selected_coef=matrix(selected_coef,nrow=1) 

} 

 

yt_input=matrix(rowSums(selected_qq2*selected_coef),nrow=1) 
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for (k5 in 1:threshold[k2]){ 

yt_input[1,k5]=back_transf(store_Astore[[k2]][k5,8],yt_input[1,k5]) 

} 

} 

y=c(y,yt_input) 

} 

 

fitted=store_z[[layer]][,1]*stt2-stt1 

}  

 

if (method=="RGMDH"){ 

 

store_Astore<- list() 

store_z=list() 

store_Astore2<- list() 

store_z2=list() 

ss=length(y) 

 

threshold=c(rep(input,layer-1),1) 

nnode=input*(input-1)/2+input 

p=input*(input-1)/2 

idn=c(1:input) 

 

yt=y[-input:-1] 

x=NULL 

for (i in 1:(input-1)){ 

x=cbind(x,matrix(y[c(-1:-(input-i),-ss:-(ss+1-i))])) 

} 

x=cbind(x,matrix(y[c(-ss:-(ss-input+1))])) 
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for (k in 1:layer){ 

 

w=t(combn(order(idn), 2)) 

m2 <- matrix(rep(1:input,input),input,input,byrow=T) 

m2[upper.tri(m2)] <-0 

 

Astore=NULL 

z=NULL 

z2=NULL 

Astore2=NULL 

 

for (j in 1:nnode){ 

 

if (j<=p){ 

qq=cbind(1,x[,w[j,]],x[,w[j,]][,1]*x[,w[j,]][,2],x[,w[j,]]^2) 

}else{ 

qq=cbind(1,x[,m2[j-p,]]) 

} 

 

tfunc=NULL 

tfunc_z=NULL 

tfunc2=NULL 

tfunc_z2=NULL 

 

if (j<=p){ 

 

for (g in tf_options){ 

est_coef=cross(qq,transf(g,yt),lambda=lambda,weigth=weigth) 

ee=as.numeric(est_coef) 
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est_zt=rowSums(t(ee*t(qq))) 

tfunc=rbind(tfunc,c(est_coef,mean((back_transf(g,est_zt)-yt)^2),g)) 

tfunc_z=cbind(tfunc_z,matrix(back_transf(g,est_zt))) 

} 

}else{ 

 

for (g in tf_options){ 

est_coef=cross(qq,transf(g,yt),lambda=lambda,weigth=weigth) 

coef=c(est_coef,rep(0,input+1-length(est_coef))) 

ee=as.numeric(est_coef) 

est_zt=rowSums(t(ee*t(qq))) 

tfunc2=rbind(tfunc2,c(coef,mean((back_transf(g,est_zt)-yt)^2),g)) 

tfunc_z2=cbind(tfunc_z2,matrix(back_transf(g,est_zt))) 

} 

} 

 

if (j<=p){ 

z=cbind(z,tfunc_z[,which.min(tfunc[,7])]) 

Astore=rbind(Astore,tfunc[which.min(tfunc[,7]),]) 

}else{ 

z2=cbind(z2,tfunc_z2[,which.min(tfunc2[,(input+2)])]) 

Astore2=rbind(Astore2,tfunc2[which.min(tfunc2[,(input+2)]),]) 

} 

} 

 

Astore=cbind(Astore,c(1:p)) 

Astore2=cbind(Astore2,c((p+1):(p+input))) 

checkk=rbind(Astore[,c(7,9)],Astore2[,c((input+2),(input+4))]) 

ord=which(checkk[,1]<=sort(checkk[,1])[threshold[k]]) 

ord1=ord[which(ord<=p)] 
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ord2=ord[which(ord>p)] 

 

store_Astore[[k]]=Astore[ord1,] 

store_Astore2[[k]]=Astore2[ord2-p,] 

store_z[[k]]=z[,ord1] 

store_z2[[k]]=z2[,ord2-p] 

 

x=cbind(store_z[[k]],store_z2[[k]]) 

 

if (class(store_Astore[[k]])!="matrix"){ 

store_Astore[[k]]=matrix(store_Astore[[k]],nrow=1) 

store_z[[k]]=matrix(store_z[[k]],ncol=1) 

} 

 

if (class(store_Astore2[[k]])!="matrix"){ 

store_Astore2[[k]]=matrix(store_Astore2[[k]],nrow=1) 

store_z2[[k]]=matrix(store_z2[[k]],ncol=1) 

} 

} 

 

for (h in 1:f.number){ 

 

yt_input=matrix(rev(tail(y,input)),nrow=1) 

idn2=c(1:input) 

w2=t(combn(order(idn2), 2)) 

 

for (k2 in 1:layer){ 

 

selected_coef=selected_qq2=NULL 

store_qq2=NULL 
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selected_coef5=selected_qq5=NULL 

store_qq5=NULL 

 

 

for (j2 in 1:nnode){ 

 

if (j2<=p){ 

qq2=c(1,yt_input[,w2[j2,]],yt_input[,w2[j2,]][1]*yt_input[,w2[j2,]][2],yt_input[,w

2[j2,]]^2) 

store_qq2=rbind(store_qq2,qq2) 

}else{ 

qq2=c(1,yt_input[,m2[j2-p,]],rep(0,input-(j2-p))) 

store_qq5=rbind(store_qq5,qq2) 

} 

} 

 

selected_qq2=store_qq2[store_Astore[[k2]][,9],] 

selected_coef=store_Astore[[k2]][,1:6] 

selected_qq5=store_qq5[store_Astore2[[k2]][,(input+4)]-p,] 

selected_coef5=store_Astore2[[k2]][,1:(input+1)] 

 

if (class(selected_qq2)!="matrix"){ 

selected_qq2=matrix(selected_qq2,nrow=1) 

selected_coef=matrix(selected_coef,nrow=1) 

} 

 

if (class(selected_qq5)!="matrix"){ 

selected_qq5=matrix(selected_qq5,nrow=1) 

selected_coef5=matrix(selected_coef5,nrow=1) 

} 
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uu1=matrix(rowSums(selected_qq2*selected_coef),nrow=1) 

uu2=matrix(rowSums(selected_qq5*selected_coef5),nrow=1) 

d1=dim(matrix(rowSums(selected_qq2*selected_coef),nrow=1))[2] 

d2=dim(matrix(rowSums(selected_qq5*selected_coef5),nrow=1))[2] 

 

if(d1!=0){ 

for (k5 in 1:d1){ 

uu1[1,k5]=back_transf(store_Astore[[k2]][k5,8],uu1[1,k5]) 

} 

} 

 

if(d2!=0){ 

for (k5 in 1:d2){ 

uu2[1,k5]=back_transf(store_Astore2[[k2]][k5,(input+3)],uu2[1,k5]) 

} 

} 

 

yt_input=cbind(uu1,uu2) 

} 

y=c(y,yt_input) 

} 

fitted=cbind(store_z[[layer]],store_z2[[layer]])[,1]*stt2-stt1 

}   

forecast_values=tail(y*stt2-stt1,f.number) 

MSE=(mean((fitted-data[c(-1:-input)])^2)) 

start2=start(data)[1] 

if(plotit==TRUE){ 

plot(ts(c(data,forecast_values),start=start2),col="black",ylab="Time Series")   

abline(v=start2+ss-1,lty=2) 
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} 

 

out=list() 

out$fitted=ts(fitted, start=start2+input,end=start2+ss-1) 

out$MSE=MSE 

out$forecasts=ts(forecast_values, start=start2+ss,end=start2+ss-1+f.number) 

invisible(out) 

} 
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APPENDIX C 

 

R CODES FOR REAL DATA APPLICATIONS 

 

###To draw cancer data  

library(GMDH) 

data(cancer) 

tiff("a.tiff", res = 900, width = 6200, height = 5400) 

par(mar=c(4.1, 4.1, 0, 0.3)) 

plot(ts(cancer,start=1930,end=2000), asp=0.36,axes = FALSE, col="black", 

xlab="", ylab="", lwd = 2, ylim = c(95,260), xlim=c(1930,2000)) ####original 

data 

axis(1) 

axis(2, at = seq(100,260, 20)) 

title(xlab= "Year",ylab="Death rate",cex.lab =1.2,   font.lab= 1) 

dev.off() 

 

 

###To draw cancer data with predictions and forecasts obtained via RGMDH and 

ES(M,Ad,N) 

n=length(cancer) 

input=11 

layer=2 

f.number=5 

n1=n-f.number 

data=cancer[1:n1] 

poli1=cancer[(n1+1):n] 

out=fcast(cancer[1:n1], method="RGMDH", input=input, layer=layer, 

f.number=f.number, plot=FALSE, weigth=0.7) 

 



 
 

66 

 
 

hj=out$forecasts 

ee2=out$fitted 

 

library(forecast) 

fit=auto.arima(data) 

ari=forecast(fit,f.number)$mean 

ari2=forecast(fit,f.number)$fitted 

 

a=(mean((ari-poli1)^2)) ###forecast MSE of ARIMA 

b=(mean((ari2-data)^2)) ###prediction MSE of ARIMA 

 

d=(mean((hj-poli1)^2)) ###forecast MSE of GMDH 

e=(mean((ee2-data[c(-1:-input)])^2)) 

 

aaa=matrix(c(d,e,a,b),2,2) 

colnames(aaa)=c("GMDH","ARIMA") 

rownames(aaa)=c("forecast_MSE","prediction_MSE") 

aaa 

 

tiff("a.tiff", res = 900, width = 6200, height = 5400) 

 

par(mar=c(4.1, 4.1, 0, 0.3)) 

plot(ts(cancer[-1:-input], start=1930+input,end=2000), asp=0.36, axes = FALSE, 

col="black", xlab="", ylab="", lwd = 1,ylim = c(135,260), xlim=c(1940,2000)) 

####original data 

axis(1, at = seq(1940,2000, 10)) 

axis(2, at = seq(140,260, 20)) 

lines(ts(c(ari2,ari)[-1:-input],start=1930+input,end=2000), col = "steelblue1", lwd 

= 2, lty = 3 )  ####ARIMA 



 
 

67 

 
 

lines(ts(c(ee2,hj),start=1930+input,end=2000),col="red",lwd = 2,lty=2)   

###GMDH 

 

title(xlab= "Year",ylab="Death rate",cex.lab =1.2,   font.lab= 1) 

arrows(2000-f.number, 100, 2000-f.number, 260, length=0, angle=90,lty=2) 

 

legend(1940, 260, c("Observed","RGMDH","ES"), col = 

c("black","red","steelblue1"), inset = .05, cex = 0.8, lwd = c(1,2,2), lty=c(1,2,3)) 

dev.off() 

 

 

###To draw melanoma incidence data  

 

library(lattice) 

data(melanoma) 

a=melanoma[,2] 

a=ts(a,start = 1936, end =1972) 

 

tiff("a.tiff", res = 900, width = 6200, height = 5400) 

 

par(mar=c(4.1, 4.1, 0, 0.3), cex.axis=1.0, cex.lab = 1.2, font.lab = 1) 

plot(a, xlab="", ylab="", lwd = 2, asp=7, axes = FALSE, ylim = c(0.7,5), 

xlim=c(1935,1975)) 

axis(1, at = seq(1935,1975, 10)) 

axis(2, at = 1:5) 

title(xlab= "Year",ylab="Melanoma incidence") 

 

dev.off() 
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###To draw melanoma incidence data  with predictions and forecasts obtained 

from GMDH-RGMDH, ARIMA(0,1,0) and ES(M,A,N) 

 

library(lattice) 

data(melanoma) 

 

mela=melanoma[,2] 

mela=ts(mela,start = 1936, end =1972) 

 

input=14 

layer=2 

f.number=5 

 

n=length(mela) 

n1=n-f.number 

data=mela[1:n1] 

poli1=mela[(n1+1):n] 

 

out=fcast(data,method="GMDH",input=input,layer=layer,f.number=f.number,plot

=FALSE) 

 

hj=out$forecasts 

ee2=out$fitted 

 

library(forecast) 

fit=auto.arima(data) 

fit2=ets(data) 

 

ari=forecast(fit,f.number)$mean 

ari2=forecast(fit,f.number)$fitted 
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ari3=forecast(fit2,f.number)$mean 

ari4=forecast(fit2,f.number)$fitted 

 

a=(mean((ari-poli1)^2))###forecast MSE of ARIMA 

b=(mean((ari2-data)^2)) 

 

d=(mean((hj-poli1)^2))###forecast MSE of GMDH 

e=(mean((ee2-data[c(-1:-input)])^2)) 

 

f=(mean((ari3-poli1)^2))###forecast MSE of ES 

g=(mean((ari4-data)^2)) 

 

aaa=matrix(c(d,e,a,b,f,g),2,3) 

colnames(aaa)=c("GMDH","ARIMA","ES") 

rownames(aaa)=c("forecast_MSE","prediction_MSE") 

aaa 

 

round(aaa,3) 

 

tiff("a.tiff", res = 900, width = 6200, height = 5400) 

 

par(mar=c(4.1, 4.1, 0, 0.3)) 

plot(ts(mela[-1:-input],start=input+1936,end=1972), asp=7, axes = FALSE, 

col="black", xlab="", ylab="", lwd = 1,ylim = c(2,5), xlim=c(1945,1975)) 

####original data 

axis(1, at = seq(1945,1975, 5)) 

axis(2, at = seq(2,5, 1)) 

 

lines(ts(c(ari2,ari)[-1:-input], start=input+1936,end=1972),col = "steelblue1", lwd 

= 2, lty = 3)  ####ARIMA 
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lines(ts(c(ari4,ari3)[-1:-input], start=input+1936,end=1972), col="green", lwd = 

2,lty=4)  ####ES 

 

lines(ts(c(ee2,hj),start=input+1936,end=1972),col="red",lwd = 2,lty=2)   

###GMDH 

title(xlab= "Year",ylab="Death rate",cex.lab =1.2,   font.lab= 1) 

arrows(1972-f.number, 0, 1972-f.number, 5, length=0, angle=90,lty=2) 

legend(1945, 5, c("Observed","GMDH - RGMDH","ARIMA","ES"), col = 

c("black","red", "steelblue1", "green"), inset = .05, cex = 0.8,lwd = c(1,2,2,2), 

lty=c(1,2,3,4)) 

 

dev.off() 

 

 

###To draw accidental deaths data 

 

data2 ##accidental deaths data   

tiff("a.tiff", res = 900, width = 6200, height = 5400) 

par(mar=c(4.1, 4.1, 0, 0.3), cex.axis=1.0, cex.lab = 1.2, font.lab = 1) 

plot(data2,xlab="",ylab="",lwd = 2,asp=1,axes = FALSE, ylim = c(6,12), 

xlim=c(1973,1979)) 

axis(1, at = seq(1973,1979, 1)) 

axis(2, at = 6:12) 

title(xlab= "Year",ylab="Accidental deaths") 

 

dev.off() 

 

 

###To draw accidental deaths data with the predictions and forecasts obtained 

from RGMDH and ES(M,N,M) 
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input=12 

layer=4 

f.number=5 

 

n=length(data2) 

n1=n-f.number 

data=data2[1:n1] 

poli1=data2[(n1+1):n] 

 

out=fcast(data, method="RGMDH", input=input, layer=layer, f.number=f.number, 

plot=FALSE) 

 

hj=out$forecasts 

ee2=out$fitted 

 

library(forecast) 

 

d=(mean((hj-poli1)^2))###forecast MSE of GMDH 

e=(mean((ee2-data[c(-1:-input)])^2)) 

 

xshort=ts(data,start=c(1973, 1), end=c(1978, 7),frequency=12) 

poli1=ts(poli1,start=c(1978, 8), end=c(1978, 12),frequency=12) 

 

fit=auto.arima(xshort) 

ari=forecast(fit,f.number)$mean 

ari2=forecast(fit,f.number)$fitted 

fit2=ets(xshort) 

ari3=forecast(fit2,f.number)$mean 

ari4=forecast(fit2,f.number)$fitted 
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a=(mean((ari-poli1)^2))###forecast MSE of ARIMA 

b=(mean((ari2-data)^2)) 

 

f=(mean((ari3-poli1)^2))###forecast MSE of ES 

g=(mean((ari4-data)^2)) 

 

aaa=matrix(c(d,e,a,b,f,g),2,3) 

colnames(aaa)=c("GMDH","ARIMA","ES") 

rownames(aaa)=c("forecast_MSE","prediction_MSE") 

aaa 

round(aaa,3) 

 

tiff("a.tiff", res = 900, width = 6200, height = 5400) 

 

par(mar=c(4.1, 4.1, 0, 0.3)) 

 

plot(ts(c(data2)[-1:-

input],start=c(1973,input+1),end=c(1978,12),frequency=12),asp=0.7,axes = 

FALSE,col="black",xlab="",ylab="",lwd = 1,ylim = c(6,12), 

xlim=c(1973.7,1979)) ####original data 

axis(1, at = seq(1974,1979, 1)) 

axis(2, at = 6:12) 

 

lines(ts(c(ari4,ari3)[-1:-input], start=c(1973,input+1), end=c(1978,12), 

frequency=12), col="steelblue1", lwd = 2, lty=3)  ####ES 

lines(ts(c(ee2,hj), start=c(1973,input+1), end=c(1978,12), frequency=12), 

col="red",lwd = 2, lty=2)   ###GMDH 
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title(xlab= "Year",ylab="Accidental deaths") 

arrows(1978+7/12, 0, 1978+7/12, 12, length=0, angle=90,lty=2) 

legend(1974, 12, c("Observed","RGMDH","ES"), col = 

c("black","red","steelblue1"), inset = .05, cex = 0.8, lwd = c(1,2,2), lty=c(1,2,3)) 

 

dev.off() 

 

 

###To draw airline passenger numbers data  

 

data2=AirPassengers/100 

 

tiff("a.tiff", res = 900, width = 6200, height = 5400) 

 

par(mar=c(4.1, 4.1, 0, 0.3), cex.axis=1.0, cex.lab = 1.2, font.lab = 1) 

plot(data2, xlab="", ylab="", lwd = 2, asp=1.6, axes = FALSE, ylim = c(1,7), 

xlim=c(1949,1961)) 

axis(1, at = seq(1949,1961, 1)) 

axis(2, at = 1:7) 

title(xlab= "Year",ylab="Airline passenger numbers") 

 

dev.off() 

 

 

###To draw airline passenger numbers data with predictions and forecasts 

obtained from RGMDH and ES(M,A,M) 

 

data2=AirPassengers/100 

input=14 

layer=2 



 
 

74 

 
 

f.number=5 

 

n=length(data2) 

n1=n-f.number 

 

data=data2[1:n1] 

poli1=data2[(n1+1):n] 

 

out=fcast(data,method="RGMDH",input=input,layer=layer,f.number=f.number,pl

ot=FALSE) 

 

hj=out$forecasts 

ee2=out$fitted 

library(forecast) 

 

d=(mean((hj-poli1)^2))###forecast MSE of GMDH 

e=(mean((ee2-data[c(-1:-input)])^2)) 

 

xshort=ts(data,start=c(1949, 1), end=c(1960, 7),frequency=12) 

poli1=ts(poli1,start=c(1960, 8), end=c(1960, 12),frequency=12) 

 

fit=auto.arima(xshort) 

ari=forecast(fit,f.number)$mean 

ari2=forecast(fit,f.number)$fitted 

 

fit2=ets(xshort) 

ari3=forecast(fit2,f.number)$mean 

ari4=forecast(fit2,f.number)$fitted 

 

a=(mean((ari-poli1)^2))###forecast MSE of ARIMA 
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b=(mean((ari2-data)^2)) 

f=(mean((ari3-poli1)^2))###forecast MSE of ES 

g=(mean((ari4-data)^2)) 

 

aaa=matrix(c(d,e,a,b,f,g),2,3) 

colnames(aaa)=c("GMDH","ARIMA","ES") 

rownames(aaa)=c("forecast_MSE","prediction_MSE") 

aaa 

 

round(aaa,3) 

 

tiff("a.tiff", res = 900, width = 6200, height = 5400) 

 

par(mar=c(4.1, 4.1, 0, 0.3)) 

 

plot(ts(c(data2)[-1:-input], start=c(1949,input+1), end=c(1960,12), frequency=12), 

asp=1.6, axes = FALSE, col="black", xlab="", ylab="", lwd = 1, ylim = c(1,7), 

xlim=c(1950,1961)) ####original data 

axis(1, at = seq(1950,1961, 1)) 

axis(2, at = 1:7) 

 

lines(ts(c(ari4,ari3)[-1:-

input],start=c(1949,input+1),end=c(1960,12),frequency=12), col="steelblue1",lwd 

= 2,lty=3)  ####ES 

lines(ts(c(ee2,hj), start=c(1949,input+1), end=c(1960,12), frequency=12), 

col="red", lwd = 2,lty=2)   ###GMDH 

 

title(xlab= "Year",ylab="Airline passenger numbers") 

 

#abline(v=1989,lty=2) 
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arrows(1960+7/12, 0, 1960+7/12, 7, length=0, angle=90,lty=2) 

 

legend(1950, 7, c("Observed", "RGMDH", "ES"), col = c("black", "red", 

"steelblue1"), inset = .05, cex = 0.8, lwd = c(1,2,2),lty=c(1,2,3)) 

 

dev.off() 

 

 

 


