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ABSTRACT 

 

 

INVESTIGATION OF THE DYNAMIC PROPERTIES OF FERROELECTRIC 

CRYSTALS CLOSE TO PHASE TRANSITIONS 

 

 

Kiracı, Ali 

 

Ph.D., Department of Physics 

Supervisor : Prof. Dr. Hamit Yurtseven 

 

 

July 2015, 94 pages 

 

 

 In this thesis we investigated the dynamical properties of some ferroelectric crystals 

and ceramics under various temperature and pressure conditions close to the phase 

transitions. In particular, we focused on the Raman frequencies, damping constant 

and the activation energy of soft modes with the pseudospin-phonon coupling in 

some ferroelectric crystals exhibiting phase transitions. We predicted the critical 

behavior of the frequency related to the order parameter (spontaneous polarization) 

in the ferroelectric and/or paraelectric phases of potassium dihydrogen phosphate 

(KDP), barium titanate (BaTiO3), lead titanate (PbTiO3), lead zirconate titanate 

(PZT), strontium zirconate (SrZrO3), cadmium niobate (Cd2Nb2O7) and lithium 

niobate (LiNbO3). For these predictions, our calculations have been performed by 

using the mean field theory (MFT). 
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We analyzed the damping constant as a function of temperature and/or pressure for 

the ferroelectrics studied in this thesis by using the pseudospin-phonon coupled 

model and the energy fluctuation model. We also calculated the temperature 

dependence of the relaxation time of BaTiO3, PZT and LiNbO3 using our results of 

the order parameter and the damping constant described from both models studied 

here. We also used the Landau phenomenological theory to describe the observed 

behavior of the dielectric constant (or susceptibility) in the ferroelectric and 

paraelectric phases of BaTiO3 and in the ferroelectric phase of LiNbO3. 

As a part of this thesis, we calculated the temperature dependence of the frequency of 

Raman modes for NaNO2 through the Grüneisen parameter. By analyzing the 

experimental data from the literature, the observed behavior of those ferroelectric 

crystals is described on the basis of the models studied here. 
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ÖZ 

 

 

FAZ GEÇİŞLERİ YAKININDA FERROELEKTRİK KRİSTALLERİN DİNAMİK 

ÖZELLİKLERİNİN ARAŞTIRILMASI 

 

 

Kiracı Ali 

 

Doktora, Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. Hamit Yurtseven 

 

 

Temmuz 2015, 94 sayfa 

 

 

 Bu tezde bazı ferroelektrik kristal ve seramiklerin faz geçiçleri yakınında çeşitli 

sıcaklık ve basınç koşulları altında dinamik özelliklerini inceledik. Özellikle, faz 

geçişi gösteren bazı ferroelektrik kristallerde sanki spin-fonon çiftlenimiyle yumuşak 

kiplerin Raman frekansları, sönüm katsayıları ve aktivasyon enerjilerine odaklandık. 

Ferroelektrik ve/veya paraelektrik fazlarda düzen parametresi (kendiliğinden 

polarizasyon) ile ilintili frekansların kritik davranışlarını potasyum sülfat (KDP), 

baryum titanat (BaTiO3), kurşun titanat (PbTiO3), kurşun zirkonat titanat (PZT), 

stronsiyum zirkonat (SrZrO3), kadmiyum niyobat (Cd2Nb2O7) ve lityum niyobat 

(LiNbO3) için öngördük. Bu öngörüler için yapılan hesaplamalar ortalama alan 

teorisi (MFT) kullanılarak gerçekleştirimiştir. 

Sanki spin-fonon çiftlenimi modeli ile enerji dalgalanma modelini kullanarak bu 

tezde çalışılan ferroelektriklerin sönüm katsayısını sıcaklığın ve/veya basıncın 
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fonksiyonu olarak analiz ettik. Aynı zamanda, BaTiO3, PZT ve LiNbO3’ ün durulma 

zamanının sıcaklık bağımlılığını, düzen parametresi ve burada çalışılan iki modelden 

bulunan sönüm katsayısı sonuçlarından hesapladık. BaTiO3’ ün ferroelektrik ve 

paraelektrik fazlarında ve LiNbO3’ ün ferroelektrik fazında dielektrik sabitinin (yada 

duygunluğun) gözlenen davranışını tanımlamak için Landau fenomenolojik teoriyi 

kullandık. 

Bu tezin bir parçası olarak, NaNO2 için Grüneisen parametresi aracılığı ile Raman 

kiplerinin sıcaklığa bağımlı frekanslarını hesapladık. Literatürden deneysel very 

analiziyle bu ferroelektrik kristallerin gözlenen davranışı, burada çalışılan modeller 

temeli üzerinde betimlenmiştir. 

 

 

 

 

Anahtar Kelimeler: Düzen Parametresi, Sönüm Katsayısı, Aktivasyon Enerji 

Ferroelektrik Malzemeler, Dielektrik Katsayısı. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Ferroelectric materials are special materials which possess a spontaneous 

polarization    in the absence of the electric field. Their spontaneous polarization can 

be determined through the polarization-electric field (P-E) hysteresis loop. Increasing 

temperature up to the Curie temperature leads to the rapidly decreasing of 

spontaneous polarization. They have some characteristics. By applying a suitable 

electric field, the spontaneous polarization can be reversed (switching process, 

reversible polarization). They have very high dielectric constant (permittivity) and 

around a phase transition temperature called Curie point, the electric permittivity 

exhibits a sharp peak (anomaly) which obeys, frequently, the Curie-Weiss law. 

Another important “fingerprint” of ferroelectrics is the non-linear behavior. This 

non-linear property allows us to make ferroelectric capacitors with adjustable 

capacitance. Ferroelectric domains, regions of uniform orientation of polarization, 

play an important role in the phase transitions through the motion of domain walls. 

Although ferroelectrics have been known and been studied over a century, they are 

still widely investigated because of their diverse potential applications in sensor 

technology and microelectronic devices. Some applications of the ferroelectrics are 

ferroelectric capacitor (medical ultrasound machines), radio-frequency identification 

(RFID), dynamic random-access memory (DRAM), ferroelectric random access 

memory (FeRAM, lower power usage and faster write performance when compared 

with DRAM), high quality infrared cameras, fire sensors, sonar vibration sensor and 

ferroelectric tunnel junction (nanometer-thick ferroelectric). Various experimental 

techniques have been reported in the literature to understand the structural phase 

transitions in ferroelectrics, including dielectric measurements, neutron scattering, 

Raman scattering, infrared reflectivity and absorption, light scattering, nuclear 
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magnetic resonance (NMR), elastic, specific heat, x-ray, ultrasonic and Brillouin 

scattering, differential thermal analysis and electro-optic measurements. There are 

also some theoretical approaches to analyze the observed behavior of ferroelectric 

materials. In particular, mean field theories of Landau, Devonshire and Ginzburg, 

which are based on the symmetry criteria. Also, Cochran’s lattice dynamical theory 

(W. Cochran, Adv. Phys 10, 401, 1961) and Cowley’s microscopic anharmonic 

theory (R.A Cowley, Adv. Phys. 12, 421, 1963) have been reported in the literature 

to explain the soft mode concept as also explained by Landau, Devonshire and 

Ginzburg theories. Another concept is the mode coupling theory in which the two 

damped harmonic oscillators are considered to describe the coupled susceptibility of 

this interacted system by Cowley (R.A Cowley, J. Phys. Soc. Jap. Supp. 28, 239 

,1970). 

In this thesis, in particular we analyzed and predicted the damping constant below 

and above the transition temperature for some ferroelectric materials studied here. 

The origin of these two models was described by Matsushita for ammonium halides 

(See Ref. 102). We have published [1-7] on the dynamical properties some papers 

included in this thesis. Lately, we carried out some other studies for the lead titanate 

zirconate (PZT), Cd2Nb2O7, SrZrO3 and LiNbO3 which have not been published yet 

but discussed in this thesis. All experimental data used and the details of our studies 

are given in Chapter 3, “Results and Discussions”. 

 

1.1 History of Ferroelectrics 

 

The brief history of ferroelectrics was reported by L. E. Cross and R. E. Newnham in 

their study  [8]. The early developments of ferroelectrics are mainly divided into 

three parts as given in their study. In the early 1880’s, Pierre and Jacques Curie 

brothers observed that when quartz subjected to an external electric field, it changed 

its shape. This phenomenon was named as piezoelectricity. In 1920, Valasek 

discovered that the polarization of NaKC4H4O6.4H2O, Rochelle salt, reoriented due 

to the external electric field below a certain transition temperature (Curie 

temperature) [9]. This property was later called ferroelectricity.  In 1935, potassium 
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dihydrogen phosphate (KDP), KH2PO4, was reported to be a ferroelectric material by 

G. Busch and P. Scherrer [10]. “perovskite era” has began with the discovery of 

barium titanate, BaTiO3, in the early 1940’s by Wainer and Solomon [11]. With the 

discovery of BaTiO3, researches on ferroelectrics accelerated in the middle of the 

1940’s. Historical development in ferroelectrics is given briefly  in Table 1.1 [8]. 

 

 

 

 

 

 

 

 

 

1.2 Classification of ferroelectric materials 

 

Ferroelectrics can be classified as two limiting forms. Changing of the dipole 

systems in a crystal from randomly direction to a favored direction is the order-

disorder type, while the opposite movement of the psitive and negative ions is 

displacive type . In the first order transitions, the polarization (order parameter) and 

the enthalpy are discontinuous at the transition temperature while they are continuous 

in the second order transition. 

Perovskites type of ferroelectrics with generic formula of ABO3 is the displacive 

type. Some examples of perovskite type ferroelectrics are BaTiO3, PbTiO3, KNbO3, 

PbZrO3, LiNbO3 and Pb(Zr, Ti)O3 (PZT). Figure 1.1 shows the lattice for perovskite 

type. A perovskite has a cubic crystal structure at the high temperatures. The 

polarization occurs when B atom is displaced from the cubic center along any 

symmetry axes [12,13]. 
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Sodium nitrite, NaNO2, and KH2PO4 (KDP) are typical examples of order-disorder 

type ferroelectrics. Structural unit of KH2PO4 is given in Figure 1.2 [14].  

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Crystal structure of a perovskite type ferroelectric material with genaral 

formula  ABO3 .  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Structural units of KH2PO4 . The arrows indicate the direction of the 

atomic displacements that give rise to the development of a dipole moment parallel 

to the c axis. 
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1.3 Properties of Ferroelectric Materials 

 

 

1.3.1 Hysterisis Loop and polarization switching 

 

Polarization switching (reversal) is observed when a ferroelectric material subjected 

to a periodic external field. This applied field starts to change the polarization due to 

the reorientation of electric dipoles in domains. This phenomenon is one of the main 

characteristic of ferroelectrics. Schematic illustration of polarization is given in 

Figure 1.3 (P-E hysteresis loop) [15]. PR shown in the figure is remanant 

polarization, it is the value of the polarization at E=0. Spontaneous polarization     is 

the saturation polarization (extrapolation of point C in the figure.) 

 

 

 

  

 

 

 

 

 

Figure 1.3 “P-E hysteresis loop” for a typical ferroelectric material [15]. 

 

 

 

1.3.2 Phase transitions 

 

A structural phase transition takes place from the high temperatures (disordered 

pahse) into the low temperatures (ordered pahse) at a specific temperature    (Curie 

temperature). Below this temperature, the spontaneous polarization appears as an 

order parameter and at temperatures higher than    the spontaneous polarization is 
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equal to zero. Ferroelectrics show anomalies in the dielectric, elastic, thermal and 

other thermodynamic properties very close to the Curie temperature TC [16 ]. 

 

1.3.3 Domains 

 

Ferroelectric crystals generally have polarization in many directions. If there is no 

electric field and mehnacial stres, many small regions called domains will form 

inside the crystal with decreasin temperature below   . Ferroelectric domain is the 

region within each of which the polarization aligns in the equal orientation. In 

adjacent domains, the polarization is in different directions [17]. The resultant 

polarization is the summation of the all different oriented dipoles in all domains. The 

movementof the domain wall, caused by an applied electric field, contribute to the 

dynamical properties of ferroelectric material.  

 

1.3.4 Dielectric Constant and Susceptibility 

 

Susceptibility,  , is a quantity characterizing the capability of a material to be 

polarized under the changing external field.      , where   is the dielectric 

constant. In ferroelectric materials, the dielectric constant (susceptibility) is 

temperature dependent. At temperatures above   , most ferroelectrics obey Curie-

Weiss relation given by 

                                   
 

    
                                                                        (1.1) 

where   is the Curie-Weiss constant.    is the constant Curie-Weiss temperature. At 

     , the transition is first oreder while at      , it is second order.    is the 

permittivity of the air (very small value). Ferroelectrics materials, in general, have 

high values of the dielectric constant. 

 

 



7 
 

1.4 Barium titanate (BaTiO3) 

 

BaTiO3 is the most known perovskite type ferroelectric crystal. At temperatures 

higher than the transition temperature (TC= 400 K), it has paraelectric cubic phase 

with point group Oh while it has a tetragonal ferroelectric phase with point group C4v 

at temperatures lower than the transition temperature [18]. With decreasing the 

temperature below TC, the titanium and oxygen atoms move with respect to the 

barium atom, which changes the symmetry of lattice (displacive type phase 

transition). BaTiO3 undergoes successive phase transitions from cubic to tetragonal 

(paraelectric-ferroelectric), tetragonal to orthorhombic (ferro-ferro) and 

orthorhombic to rhombohedral (ferro-ferro) as also indicated in a T-P phase diagram 

[19]. In their study, Sawaguchi [20] reported that, hexagonal barium titanate (h-

BaTiO3) exhibits successive structural phase transitions at 222 K and 74 K showing 

both ferroelectric and ferroelastic property below 74 K. Above this temperature, h-

BaTiO3 is in the paraelectric phase and it shows piezoelectric properties below 222 K 

[21]. A lot of measurements have been carried out for BaTiO3 such as the 

measurements of dielectric [22,23], neutron scattering [24], Raman scattering [25-

28], infrared reflectivity [29], light scattering [21], NMR [30], elastic [31], and 

specific heat [32]. 

 

1.5 Lead titanate (PbTiO3) 

 

Lead titanate is another ferroelectric material with a type of perovskite structure. It 

has a potential applications in sensor technology and microelectronic devices since it 

exhibits ferroelectricity and piezoelectricity. PbTiO3 undergoes a first order 

transition of displacive type at 766 K, which is associated with the soft modes [33]. 

Lead titanate has a tetragonal crystal structure with a space group P4mm [34] in the 

ferroelectric phase (T < TC) while it has a cubic crystal structure with a space group 

Pm3m [35] in the paraelectric phase (T >TC). Studies on the  soft modes of PbTiO3 

have been carried out experimentally [33,36,37] and theoretically on the basis of 

mean-field and self-consistent phonon model calculations [38]. 
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1.6 Potassium Dihydrogen Phosphate (KDP, KH2PO4)  

 

Potassium dihydrogen phosphate is one of the well known hdrogen-bonded FE 

(ferroelectric) material. It undergoes an order-disorder phase transition (TC=123 K) 

[39]. KDP has a tetragonal structure above 123 K (paraelectric phase)           
    

space group and it has an orthorhombic structure below 123 K (ferroelectric phase) 

with          
    space group. A lot of experimental works have been carried out for 

KDP since its feroelectric properties have known almost a century. Some theoretical 

works have been reported to clarify the phase transition mechanism in KDP such as, 

dynamical coupling theory [40] and tunneling model [41] . Also, some other works 

have been performed to investigate the coupled mode systems in KDP [42-46].  

 

1.7 Sodium Nitrite (NaNO2)  

 

The phase transition in sodium nitrite is an order-disorder type which occurs at  

436.2 K [47]. AT temperatures T<TC (ferroelectric phase), it is in the orthorhombic 

structure and it has    
        space group [48]. It is in the “antiferroelectric phase” 

between the temperature range of 438.5 K (Neel temperature) and 437. 1 K (Curie 

temperature). [49]. Above the 438.5 K, it is in the disordered paraelectric phase with 

the space group    
        (orthorhombic structure) [50]. After the discovery of 

the ferroelectric behaviour of NaNO2 [51], a lot of experimental and theoretical 

works have been reported to explain the phase transition mechanism in NaNO2. 

Some examples of experimental works are “x-ray” [52,53], “dielectric” [54,55], 

“thermal expansion” [56,57], “Raman spectra” [58,59],  “infrared absorption” 

[60,61], “ultrasonic and Brillouin scattering” [62,63], “NMR” [64] and “neutron 

scattering” [65,66]. 
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1.8 Lead Zirconate Titanate (PZT, PbZr1-xTixO3)  

 

Lead zirconate titanate is a solid mixture of lead zirconate (PbZrO3) and lead titanate 

(PbTiO3) with different concentrations (x). PZT has a phase boundary between the 

rhombohedral (R3m) and tetragonal (P4mm) phases which is known as morphotropic 

phase boundary (MPB) [67]. Groving a high-quality PZT single crystal is not easy, 

so that the exact crystal symmetry and the nature of phase transition near the MPB 

region over the whole composition in a wide temperature range remains stil unclear 

[68,69]. As given in a recent study [70], a good-quality PZT single crystal was grown 

for the concentrations of x=0.45 and x=0.42. It is observed that (x=0.45) at 657 K, 

PZT undergoes a phase transition from the paraelectric cubic to a ferroelectric 

tetragonal and at 592 K, it exhibits a tetragonal-monoclinic phase transition. 

Structural, electrical and optical studies on PZT single crystals near MPB have been 

reported [71-73]. Also, a series of studies for the elastic properties and mechanical 

losses have been carried out [74-77].    

 

1.9 Strontium zirconate (SrZrO3) 

 

Strontium zirconate, SrZrO3, is a member of the high temperature perovskite type 

ferroelectric material. It has been reported that [78], it has a structural phase 

transition from cubic (Pm3m) to tetragonal (I4/mcm) at the transition temperature of 

1443 K, from tetragonal (I4/mcm) to orthorhombic (Cmcm) at 1103 K and from 

orthorhombic (Cmcm) to orthorhombic (Pbnm) at 973 K, respectively. X- ray 

diffraction [79], neutron scattering [78], heat capacity and thermal expansion [80] 

and ultraviolet Raman spectroscopy [81] are some of those studies reported in the 

literature. 
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1.10 Cadmium pyroniabate (Cd2Nb2O7, CNO)  

 

Cadmium pyroniabate, Cd2Nb2O7, is a member of low temperature pyrochlore-type 

(with genaral formula of A2B2O7) ferroelectric material. It has a complex phase 

transition sequences below the room temperature. Above 205 K, it has a cubic crystal 

structure (Fd3m) [82,83] and CNO transforms to orthorhombic [84] or tetragonal 

[85] at 205 K (improper ferroelastic). CNO undergoes a phase transition at 196 K 

(proper ferroelctric) [84], another phase transition occurs at 85 K (incommensurate) 

[85] which follows the transition taking place at 46 K (commensurate) [82]. 

Investigations of the dielectric properties [86-88], domain structure [86], electrooptic 

[89], specific heat [90] and Raman scattering [91]  are some of those studies reported 

in the literature for CNO. 

 

1.11 Lithium niobate (LiNbO3, LN) 

 

Lithium niobate, LiNbO3, is another member of high temperature perovskite type 

ferroelectric material. The structural phase transition of LN is still unclear despite 

several works reported in the litearture. The transition temperature from paraelectric 

to the ferroelectric phase depends on the composition of lithium and niobate ions. LN 

is widely used for the applications in optoelectronics and nonlinear optics. Some 

reported studies on lithium niobate are, the Raman scattering [92], infrared 

spectroscopy [93], neutron scattering [94], differential thermal analysis ( DTA) [95], 

x-ray diffraction [96] and the permittivity measurements [97].   
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CHAPTER 2 

 

THEORY 

 

 

2.1 Landau phenomenological theory 

 

In 1937, Landau defined a theory of second-order phase transition depending on the 

symmetry criteria in the absence of external electric field. It is observed that the 

periodicity (with temperature) of density of a simple one dimensional lattice changes 

at temperatures below the transition temperature. This periodic charge density can be 

written in terms of polarization [14]. He assumed that the free energy   can be 

expanded in a power series near transition temperature    as follows 

             
 

 
    

 

 
    

 

 
                                              (2. 1) 

where   is the polarization (order parameter). There are two conditions for stability, 

  

  
    (first)  and 

     

          (second). First condition requires the elimination of any 

linear terms while the second condition requires that the coefficient   should be 

positive. The symmetry criterion eliminates any odd term in in Eq. (2.1). Only  

coefficient   has been assumed to be temperature dependent as, 

                                                                                  (2. 2) 

The coefficent     in Eq. (2. 2) is a positive constant. The relation between   and 

phonon frequency   fis reported as [98], 

        
     

                                                                               (2. 3) 

By combining Eqs. (2. 2)  and (2. 3), one gets 
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                                                               (2. 4) 

The forces in ferroelectrics are mainly couloumbic. Thus one can expect Eq. (2. 4) to 

hold for the soft-mode behavior, as discussed below in section 2.2 with the soft mode 

concept in ferroelectrics.  

Landau’s theory can also be used to investigate the first-order phase transition by 

expanding the free energy   up to the sixth order. To sum up, the free energy can be 

considered in general as 

      
 

 
         

  
 

 
    

 

 
                                           (2. 5) 

for      and      , phase transition is second-order type, while for     and 

      phase transition is of a first-order type and when    , transition is 

tricritical.  

 

2.2 Soft mode concept 

 

In 1959, Cochran reported that the anamoly behavior of dielectric constant in the 

neighborhood of    can be associated with an optical phonon mode (soft-mode) in 

which the crystal acquires periodic translational symetttry (diasplacive-type). At   , 

this soft phonon frequency    decreses to zero. It is shown that, this concept can be 

applied also to the order-disorder type of ferroelectrics by de Gennes [100].    has 

been expressed as 

  
                                                                              (2.6) 

 

2.3 Damping constant (Linewidth) 

 

Yamada et al. [101] developed a coupled model to investigate the tempereature 

dependence of the damping constant by only considering one pseudospin and one 

phonon for NH4Br, in 1972. In 1976, Matsushita extended this model by taking into 
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account more than one pseudospin and more than one phonon interactions [102]. He 

reported his Hamiltonian as  

        )()()(
2

1
)()()()()(
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1 2
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
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             ),()()()()(
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
















qqkQkQqqqqkK

qqk

eff
                    (2.7)   

where 

                   
2

)()()( 





qgqJqJ
eff

                                                                 (2.8) 

This Hamiltonian has four terms, the “phonon energy” is described by the first two 

terms,  P is the momentum of the phonon with the wave vector 


k  and mode  , Q  is 

its coordinate in the canonical form and, 
0

  is the characteristic frequency of the 

corresponding phonon. 
eff

J , appearing in the second term, is the interaction energy 

between the two pseudospins. The term with the coefficient  
eff

K
,1

 represents the 

interaction between one pseudospin and two phonons, while the term with the 

coefficient 
eff,

K
2

 corresponds to the interaction between two pseudospins and two 

phonons. Matsushita has derived the damping constant 
SP

Γ  by using his 

Hamiltonian. It is given as, 
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Here, 
1

K  is proportional to the force constant. The “dynamic scattering function” 

),qS(


is a Lorentzian shape function which is related to the full width at half 

maximum (FWHM or damping constant). So, ),qS(


 decribes the anomaly 

behavior of damping constantneat transition temperature 
C

T . Laulicht and Luknar 

[103] have indicated the following  approximations to get simpler form of Eq. (2.9). 

Namely, 

1) At central peak (transition point) ),(
0






 k ),(
0




 qk
 

and  

),(),(


 kk
spsp






.  

2) The parameters ω, 
1

K  and n  can be neglected in the neighborhood of 
C

T . 

3) Replace integration instead of summation 

4) )0~,(]),()(,[ 





qSqkkqS


 

5) 0)),q-k(,q(
0




S  

.6) The “dynamic scattering function” defined as 

2)(1

)0,(
1)(),(

q

q
q

nqS






                                                      (2.10)   

 Using those approximations given above, Laulicht [104] has reached the following 

damping constant expression, given as 

Bqd
n

n
qSA

BZ

sp



 

3]1
1)(

)(
[),(~)(




 




                                         (2.11)        

. Laulicht has also considered the following approximations,  

1)(),(1)( 2 
q

kTn    and 1]1)([)( 


nn  for 0~ ,  

By using the these approximations and the definition of the “dynamic scattering 

function”  (Eq. 2.10), Laulicht [104] has rewritten Eq. (2.11)  as,                                                                                                                                                                                                                                                                                                
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          Bqd),q(
AkT~

q

BZ

sp
 

30 


                                                        (2.12)                                                                                                      

Laulicht and Luknar [103] have reported the following expression by using the 

“dynamic Ising model”  






22 )1(
)0,(

q

q
T

PC
q


                                                               (2.13)     

where 
max

PPP
s

 is the order parameter. It is also reported that [103],  

  22 )1(
qsp

P                                                                 (2.14)  

where,   2

q
 is the “effective correlation time of the polarization” 

In their study, Lahajnar et al.[105] have calculated the inteagration of Eq. (2.12) by 

using the Eq. (2.13) for KDP. They have reported that, the damping constant 
sp

  is 

proportional to the relaxatiom time  
1

T  , given as  

                                                   

Finally, the expression of the damping constant can be expressed as, 

                                                   

where 
0

  and A are constants.     

Schaack and Winterfelt [106] have also derived a statement for 
sp

 . They considered 

that, the damping constant is related to the fluctuation of the frequencies (   ) at 

zero wavevector value. They expressed this relation as,  

V

kT
sp

)0(2 
                                                                          (2.17)     

by using the definition of the dielectric susceptibility )0(  (Eq. 2.13), they have 

reported that  
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)1(

)1(
2

2

2

PTT

PT

C

sp



                                                                (2.18)      

Eq. (2.18) can be written as an expression  

2

1

2

C

2

0
]

)1(T-T

)P-T(1
[

P
A

SP


                                                   (2.19)         

where 
0

  and A  are constants, as given in Eq. (2.16). 

To sum up,  Eqs. (2.16), “pseudospin-phonon (P-P ) coupled model”, and (2.19), 

“energy fluctuation (EF) model”, can be employed to compute temperature and/or 

pressure dependent 
sp

  in the paraelectric-ferroelectric phase transition, as we did for 

some  ferroelectric materials such as BaTiO3, PbTiO3, PZT and KDP.    

 

2.4 Order parameter (“spontaneous polarization”) 

 

Order parameter is the orderness of a sample. It can take any value between 0 and 1. 

At temperatures well below the transition temperature   , in the ferroelectric phase, 

sample is compeletely ordered and the order parameter is equal to 1. As the 

temperature increases the order parameter decreases and at the temperature higher 

than   , in the paraelectric phase,  sample is disordered and the value of order 

parameter becomes zero. So,  the temperature dependent of the order parameter in 

Eqs. (2.16) and (2.19) need to be calculated in order to predict  
sp


   

values from the 

P-P coupled model and EF model studied in this thesis. Brout [107] has reported an 

expression for order parameter as, 

 

 

      (2.20)                                                                                                                                                                                                                                          
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2.5 Grüneisen parameter 

 

Grüneisen parameter ( ) as a dimensonless quantity, can be used to set limitations 

for the thermal properties of solids varying with temperature and pressure. It has both  

macroscopic and microscopic definitions [108]. The macroscopic definition is related 

to the thermodynamic properties, which in principle may be obtained experimentally 

and the microscopic definition is related to the motion in atoms of any solid and and 

vibrational frequency of those atoms. In their study Gillet et al.  [109] have 

calculated the same mode Grüneisen parameter of forsterite (Mg2SiO4)  by using the 

two definitions under the limitations of the anharmonic approximation. 

By the definition (anharmonic approximation), the “mode Grüneisen parameter” 

given as 

   
    

    
                                                                  (2.21)    

The temperature dependent “Grüneisen parameter”    (isobaric) and the pressure 

dependent “Grüneisen parameter”    (isothermal)can be represented as 

    
 

 
 
        

        
                                                                 (2.22)     

and 

    
 

 
 
        

        
                                                                 (2.23)   

From the represantation of    (Eq. 2.22), one can obtain the vibrational frequency 

  , as afunction of temperature, as 

                
     

  
                                                     (2.24)       

The values of       and      , at zero pressure and at a constant temperature, are 

  and   , respectively. The temperature dependent term      in Eq. (2.24) can be 

deduced from the observed data of frequency. 
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2.6 “Activation energy” 

 

Orientation of ion gropus can be considered as pseudospins. Activation energy is 

energy barrier between the pseudospins. The total linewidth (damping constant), 

including the activation enery  , as a function of temperature has been reported by 

Rakov [110] and Bartoli and Litovitz [111] as follows: 

)exp(
Tk

U
C

B

vib


                                                                       (2.25) 

The first term in Eq. (2.25) is due to the vibrational relaxation process while the 

second term corresponds to the reorientational relaxation process. Satiah and Bist 

[112] reported that, the first term can be treated as temperature independent over a 

short range of temperatures close to the transition temperature   . With this 

approxamation one can get the following relation to calculate the activation energy   

at various temperatures close to the phase transition temperature    as 

)(ln
Tk

U

B

                                                                                 (2.26) 
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CHAPTER 3 

 

 

RESULTS AND DISCUSSION 

 

 

 

3.1 “Calculation of the Raman frequency and the damping constant of a 

coupled mode in the ferroelectric and paraelectric phases in KH2PO4 ” 

 

 

We calculated the pressure dependennt of frequencies and the damping 

constat, of   mode below the transition temperature at 80 K and 90 K for KDP (

0122  PatKT
C

) [1]. Firstly, we examined the phase diagram of KDP ( PT
C
 ) 

given by Samara [113] and we exposed a linear relation given by 

 PT
C

5123                                                                        (3.1) 

We compared the transition temperatures of KDP calculated from Eq. (3.1) and an 

empirical formula )(2 PPkT
C

 

 
[113] with constant k  and 

P values of 710 

K
2
/kbar and 17.1 kbar, respectively, between 0 and 4 kbar as given in Table 3.1.  

 

Table 3.1 Comparison of the transition temperatures CT calculated from Eq. (3.1) and 

)1.17(7102 PT
C

 [113] at various pressures [1]. 

 

P  (kbar) 
Eq. (3.1) 

CT (K) 

)(2 PPkTC    

CT (K) 

0 123 110.2 

1 118 106.9 

2 113 103.5 

3 108 100.1 

4 103 96.4 
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Table 3.2 Values of the maximum observed [42] frequencies 0 , fitted parameters
  

of Eq. (3.2) and the activation energies U  for KDP [1]. 

 

 

 

 

 

 

 

Eq. (3.1) was inserted in Eq. (2.20) to compute order parameter   (  in Eq. 2.20) for 

fixed temperatures (Table 3.2) of KDP. We then related the calculated order 

parameter   with the observed (normalized) soft mode frequency  
0




according 

to a linear relation given as, 

Saa 100  
                                                                        (3.2) 

The maximum observed values of the Raman frequencies, 
0

 , the constants 
0

a and 

1
a  for constant 80 K and 90 K temperatures were given in Table 3.2. The calculated 

(Eq. 3.2) and the observed [42] values of 
0




, as a function of pressure, were 

given in Fig. 3.1 (for T= 80 K) and Fig. 3.2 (for T= 90 K).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Pressure dependence of the observed [42] and calculated [1] (Eq. 3.2) of 

0


  
for  KDP at T=80 K.  
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 Figure 3.2 Pressure dependence of the observed [42] and calculated [1] (Eq. 3.2) of 

0


  
for  KDP at T= 90 K.   

 

 

 

Those calculated values of the order parameter   led us to predict the damping 

constant 


 of this Raman mode  through the P-P model  (Eq. 2.16) and the EF model 

(Eq. 2.19). Our prediction for the damping constan 


 of   ,as a function of 

pressure, were shown in Fig. 3.3 (          ) and Fig. 3.4 (          ). 

By inserting Eq. (3.1) in to the Eq. (2.26) where     , we deduced the   values of 

the coupled mode for constant 80 K and 90 K temperatures and zero pressure of 

KDP. These   values were given in Table 3.2. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Pressure dependence of   calculated through P-P model (Eq. 2.16) and 

the E-F model (Eq. 2.19) below the transition temperature of KDP at T=80 K [1]. 
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Figure 3.4 Pressure dependence of   calculated through P-P model (Eq. 2.16) and 

the E-F model (Eq. 2.19) below the transition temperature of KDP at T=90 K [1]. 
 
 

 

  We also calculated the temperature dependent of the Raman frequencies and 

the damping constant of this coupled mode   of KDP at temperatures T >TC. It was 

observed experimentally [42] that 
2


  is directly proportional to the temperature, that 

is consistent with the soft mode concept. This linearity was reorted as [42],  

22 )86(8.46 


 cmKT                                                                (3.3) 

We normalized (
0




) the observed frequencies [42] of this mode by using the 

maximum value 1

0
65.86  cm at P = 6.54 kbar.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Image for  the fitting procedure (Eq. 3.4) of the observed [42] and the 

calculated (Eq. 2.19) damping constant   at constant pressure of KDP at 

temperatures T >TC. [1].  The best fit is shown by a solid line. 
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Figure 3.6 Temperature dependent   calculated [1] from Eqs. (2.16) and (2.19) at 

temperatures T >TC. The observed   that is deduced from the relaxation rate data 

[42] of KDP was also given in this graph. 

 

 

 

These normalized values of frequencies were then inserted in Eqs. (2.16) and (2.19) 

to calculate the   values of KDP where we replaced the order parameter   by 

0



. We also extracted the experimental data of 


 from the observed relaxation 

rate 
1


  through 






 21  . We then fitted the observed and calculated values of  


 according to  

bcalaobs 


)()(                                                                      (3.4) 

as given in Fig. 3.5. In this figure, the values of the )(cal

  were found from the 

“energy fluctaion model” (Eq. 2.19). The fitted parameters of Eq. (3.4) are given in 

Table 3.3. Fig. 3.6 shows the temperature dependence of the both observed and 

calculated values of  


  at constant pressure of KDP at temperatures T >TC. The 

activation energy that is deduced from the Arrhenius plot of Eq. (2.26) is also given 

in Table 3.3 above the transition temperature of KDP.  

 

 

Table 3.3 Values of the fitted parameters of Eq. (3.4) and the activation energies U  

(Eq. 2.26)  at constant pressure of KDP at temperatures T >TC [1].
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 In his study Peercy [42] fitted the intensity data to the complex part of the 

susceptibility at various temperetures below the transition temperature 
C

T
 
to deduce  

the pressure dependent of frequencies 


 . He considered the “tunneling model” and 

the “coupled proton-optic model” to understand the pressure dependence of 


  at T< 

TC. He reported that, while the coupled model describe the observed data well the 

tunneling model does not.  

In this study, we deduced the transition temperature, as a function of pressure, by 

analyzing experimental data [113] of Samara according to Eq. 3.1 that is consistent 

wşth the “Ginzburg-Devonshire” phenomenological theory. We compared the 
C

T
 

values calculated from Eq. (3.1) and )(2 PPkT
C

  , as given in Table 3.1. While 

Eq. (3.1) almost satisfied the expected result the other one did not since the 

paraelectric-ferroelectric phase transition takes place at 122 K [113]. The pressure 

dependence of the observed frequencies (normalized) and the calculated one from the 

mean filed thery (inserting Eq. 3.1 into Eq. 2.20) were given in Figs. 3.1 and 3.2. As 

the pressure increases the coupled mode frequency   increses as expected from the 

soft mode behavior. We then predicted the   values as a function of pressure from 

the P-P model (Eq. 2.16) and the EF model (Eq. 2.19) for constant 80 K (Fig. 3.3) 

and 90 K (Fig. 3.4) temperatures. The damping constant   increases as the pressure 

increases as expected below 
C

T
 
in KDP. Our calculated pressure dependent   

values can be compared with the observed data when they are available in the 

literature. Activation energies   have also deduced in terms of Arrhenius plot 

through Eq. (2.26) for KDAP at temures indicated, as given in Table 3.2. 

Additionally,  we investigated the dynamical properties (   and   ) of KDP  

at temperatures T >TC. We calculated the temperature dependent   values through 

Eqs. (2.16) and (2.19). We then compared the calculated and the observed data of 

damping constant that was deduced from the experimental relaxation rate data [42], 

as given in Fig. 3.6. The EF model (Eq. 2.19) describes better the experimental data 

[42] when compared with the P-P model (Eq. 2.16). Finally, we found the values of  

  for KDP above 
C

T
 
at constant pressure, as also given in Table 3.3. 
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3.2 “Calculation of the damping constant for the soft-optic and acoustic mode in 

hexagonal barium titanate” 

 

 

The temperature dependence of the damping constant was calculated below 

the transition temperature ( KT 222
0
 ) for the hexagonal barium titanate [2]. For 

this calculation, the order parameter which is related to the bilinear coupling between 

acoustic and soft-optic modes, was used at various temperatures below 
0

T  for this 

ferroelectric material. As indicated in a previous study [21], the bilinear coupling 

constant A in relation to the order parameter can have a temperature dependence 

according to Eq. (2.20) in the mean field theory with the critical exponent 
2

1


below CT . By considering that the coupling constant varies with the square of the 

order parameter ( 2P ) [30] the bilinear coupling constant A studied here can be 

related to the order parameter (spontaneous polarization) according to   

2

210
PaPaaA                                                                                   (3.5) 

where 
0

a , 
1

a  and  
2

a are constants. Thus, by fitting P  to the experimental data for A 

[21], the coefficients 10 ,aa  and 2a were detected, as given in Table 3.4. Fig. 3.7 

shows the bilinear coupling constant normalized with respect to the order parameter 

P  for the hexagonal barium titanate. The experimental data for the bilinear coupling 

constant A [21] are also shown in this figure. Using the calculated order parameter 

(Fig. 3.7), the damping constant  of the soft-optic and acoustic mode was then 

calculated by Eqs. (2.16) and (2.19) at various temperatures below 
0

T
 
in barium 

titanate, as plotted in Fig.3.8. 

 

 

Table 3.4 Values of the coefficients obtained by fitting the order parameter P  to the 

bilinear constant A according to Eq. (3.5) ( 0TT  ) for the hexagonal barium titanate 

[2]. 

 

3
BaTiOh   )(0 KT  0a  1a  2a  

  222 0.040 1.966 0.531 
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Figure 3.7 Temperature dependent order parameter both observed [21] and calculated 

[2] (Eq. 2.16) for the hexagonal barium titanate at temperatures T< TC.  

 

 

 

 

From the temperature dependence of the order parameter P  (Eq. 2.20) and of the 

damping constant   (Eqs. 2.16 and 2.19), the relaxation time 1  or   of the soft-

optic and acoustic mode was then calculated below 0T  in BaTiO3. This calculation 

was based on the experimental data [21] for the relaxation time 1 of this mode 

according to the relation 

0

2

01






                                                                                            (3.6) 

where 0 is the soft optic mode frequency and 0 is its damping constant for barium 

titanate. By assuming that the soft mode frequency 0  is accompanied with the order 

parameter (it goes to zero as 0TT  ) which depends on the temperature below 0T , 

the relaxation time 1 (Eq. 3.6) or  was predicted according to  

 2P                                                                                    (3.7) 

Here, 0  in Eq. (3.6) that was used for the analysis of the experimental data [21] for 

the soft optic mode was replaced by   (Eq. 3.7) below 0T  in BaTiO3.  
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So, in order to calculate  by Eq. (3.7) we followed the same procedure as 1  (Eq. 

3.6). As in the case of the order parameter P  in relation to the bilinear coupling 

constant A (Eq. 3.5), it was found that the temperature dependence of the relaxation 

time  (Eq. 3.7) was related to 1 (Eq. 3.6) according to   

2

210

1



bbb                                                                                (3.8) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 The damping constant calculated [2] from Eqs. (2.16) and (2.19) for the 

hexagonal barium titanate at temperatures T< TC ( KT 2220  ).    

 

   

with the coefficients 0b , 1b and 2b which were determined. So, as for the parameter 

 P , we also calculated the relaxation time  based on the experimental data 0

2

0   

for the soft-optic and acoustic mode [21] by using Eq. (3.8). Thus,  (Eq. 3.7) was 

fitted to 1 (Eq. 3.6) by using Eq. (3.8).  
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Figure 3.9 Temperature dependent   values calculated [2] from Eq. (3.7) through 

the damping constant (Eqs. 2.16 and 2.19) for the hexagonal barium titanate 

( KT 2220  ). Experimental data [21] for the relaxation time (Eq. 3.6) are also shown 

here. 

 

 

 

For this fitting, we used our calculated   values from Eqs. 2.16 and 2.19 (Fig. 3.8) 

and then we determined the coefficients 0b , 1b and 2b , as given in Table 3.5. 

Comparison of the calculated (Eq. 3.7) and experimental [21] values of the inverse 

relaxation time was given in Fig. 3.9. Finally, we extracted the U  values using our 

calculated values of the damping constant   (Eqs. 2.16 and 2.19) according to Eq. 

2.26 for the two different temperature ranges ( 0TT  ) of barium titanate. Table 3.6 

gives our extracted values of the activation energy U  in the temperature intervals 

studied. 
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Figure 3.10 Arrhenius plot (Eq. 2.26) by using Eq. (2.16) [2] in the temperature 

interval of 7.204 to K217 (Table 3.6) for the hexagonal barium titanate.  

( KT 2220  ). 

 

 

 

 As examples, we plot ln vs. 
T

1
(Eq. 2.26) using the  values given by Eqs. (2.16) 

and (2.19) in the temperature interval indicated, as shown in Figs. 3.10 and 3.11, 

respectively. For comparison, the CBTk value ( KTTC 2220  )is also given for 

barium titanate in Table 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Arrhenius plot (Eq. 2.26) by using Eq. (2.19) [2] in the temperature 

interval of 7.204 to K217 (Table 3.6) for the hexagonal barium titanate.  

( KT 2220  ).   
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The damping constant  of the soft-optic and acoustic mode was calculated 

from P-P model (Eq. 2.16) and EF model (Eq. 2.19). We first obtained P  values  by 

Eq. (2.20). This power-law formula was also used as 

    A ~ 2

1

0
)( TT                         )(

0
TT                                          (3.9) 

for the temperature dependence of the bilinear coupling constant A previously [21] to 

describe the mean field behaviour of the barium titanate below 
0

T . Bilinear coupling 

constant A decreases as the temperature increases towards 
0

T  (Fig. 3.7), as also 

pointed out previously [21]. This gives that the soft mode-acoustic mode coupling 

grows largely at low temperatures, whereas at 
0

T
 
it vanishes. It has been observed 

that below at about K30 , the coupled mode features disappear completely [21]. As 

shown in Fig. 3.7, the order parameter (bilinear coupling) exhibits mean-field 

behaviour with the critical exponent
2

1
  for the hexagonal barium titanate.     

The temperature dependent   diverges at 
0

T and it decreases with decreasing 

temperature below
0

T , as shown in Fig. 3.8. In our treatment, we took the non-

interacting proton flipping time  as constant with 1 kA  (Eq. 2.15). Similarly , 

1A was taken in Eq. (2.19) with the background bandwidths 0
0



  (Eq. 2.16) and 

0
0
  (Eq. 2.19). Thus, the proton flipping parameters given in the Ising 

pseudospin-phonon coupled model play no role in the mechanism of the phase 

transition since no protons are involved in the BaTiO3 crystal. Instead, the ionic 

interactions drive the system to the ferroelectric phase with decreasing temperature.  

With increasing temperature from the low temperatures, the coupling between 

acoustic and soft-optic modes becomes much weaker so that the amplitude of the 

soft-optic mode attains its maximum value at 
0

T , as stated above. This is 

accompanied with the divergence of the damping constant   (Fig. 3.8). About K10  

below
0

T , the  values calculated from the energy-fluctuation model get larger than 

those calculated from the pseudospin-phonon coupled model (Fig. 3.8). 

Regarding the temperature dependence of the relaxation time (Fig. 3.9), the values 

calculated from Eq. (3.7) where the  values (Eq. 2.16) were used, are in better 
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agreement with the experimental data. For this calculation of  or 1 , we assumed 

that the soft mode frequency 
0


 

and the order parameter P  have the same 

temperature dependence as given by the mean field theory  

                      
0

 ~ P ~ 2

1

0
)( TT                                                                 (3.10) 

down to about K30 below
0

T for the hexagonal barium titanate. 

Finally, we extracted the values of the activation energyU  by using    values (Eqs. 

2.16 and 2.19) according to Eq. (2.26), as tabulated in Table 3.6. As shown in Figs. 

3.10 and 3.11, ln  varies linearly with the inverse temperature, in the temperature 

interval of 7.204 to K7.217 . However, a linear variation of ln with T1 was not 

very satisfactory in the temperature interval of 8.218 to K8.221  when the damping 

constant was calculated from Eqs. (2.16) and (2.19). By taking a linear variation of 

ln with T1 in both the temperature ranges, the activation energies were deduced 

(Table 3.6). The U values extracted in the same temperature interval by using

values (Eqs. 2.16 and 2.19) are not the same, as might be expected. In the 

temperature interval of 7.204 to K7.217 , the U value obtained from the pseudospin-

phonon coupled model (Eq. 2.16) is almost twice as much the value found by using 

the energy-fluctuation model (Eq. 2.19), as given in Table 3.6. Also, the U values 

increase considerably in the temperature interval of 8.218 to K8.221 as the transition 

temperature
0

T is approached, which is probably not acceptable. Furthermore, in 

comparison with the 
0

Tk
B

value (Table 3.6) which is too small, our approach to 

deduce the activation energy U from the damping constant should be valid well 

below
0

T , possibly when KTT 15
0
 for the hexagonal barium titanate. An Ising 

pseudospin-phonon coupled model was applied to analyze the experimental data for 

the soft-optic acoustic mode of barium titanate in the ferroelectric phase (
0

TT  ) in 

this study, as stated above. Since the phase transition at KT 222
0


 
is of the second 

order from hexagonal (phase I) to the orthorhombic (phase II) in barium titanate 

[21,114], the order-disorder transition can be studied within the framework of an 

Ising model. As the temperature decreases below
0

T  , the titanium and oxygen atoms 

begin to move relative to the barium atoms. A soft mode occurs in BaTiO3 due to the 

vibration of Ti ions against oxygen, which are polarizable and can be considered as 
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“soft” ions [115]. A bilinear [116] or quadrupolar [30,117,118] coupling between the 

soft mode and the transverse acoustic mode as allowed by the symmetry below 
0

T , 

which is directly related to the order parameter can be regarded as the driving 

mechanism to explain the order-disorder transition in BaTiO3.  

Regarding the order-disorder transitions in ammonium halides (NH4Br and NH4Cl), 

the temperature dependences of the order parameter and the damping constant for the 

hard (nonsoft) modes in these compounds were predicted qualitatively by Matsushita 

[102], as stated above. For the temperature dependence of the internal mode 

linewidths of KH2PO4 (KDP) type crystals, by treating the pseudospin-phonon 

interactions in an Ising model, it was found that the order-disorder phase transition in 

this system is not related to the ionic relations, but rather to the proton jumps along 

the O-H…..O bonds [103,104]. So, the protonic motion generates unstable 

pseudospin waves [41] which interact with all the phonons in the crystal and shorten 

their lifetime or broadens their spectra [1,103,104]. However, for some other crystals 

the linewidth changes at the phase transition were attributed to the rotational jumps 

of the ions [119]. For example, a drastic decrease of the linewidths for the 

asymmetric stretching and the libration [120] modes of the    
  ion in NaNO2, and 

also for the various internal modes of CsNO3 and RbNO3 [119] should be related to 

the ionic relations. Additionally, it was pointed out previously [104] that in an 

another ferroelectric material of triglysine selenate (TGSe), a hard (nonsoft) mode 

linewidth behaves as expected from the Ising pseudospin-phonon coupled model of 

Matsushita. In the case of BaTiO3 studied here, there occur a drastic decrease in the 

damping constant   (Fig. 3.8) and an increase in the relaxation time (Fig. 3.9) below 

 , as also expected from the Ising pseudospin-phonon coupled system. This is due 

to the fact that the lattice displacements become unstable and that the crystal distorts 

to the ferroelectric phase.  

 

 3.3 “Temperature dependence of the Raman frequency, damping constant and 

the activation energy of a soft-optic mode in ferroelectric barium titanate” 

 

  

The temperature dependent frequency 
0

  was calculated [3] by using a 

power-law formula above the transition temperature 
0

T
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 2

0
 ~ )(

0
TT                                                                                            (3.11) 

within the mean field theory for hexagonal barium titanate, as also used in the 

previous work [114]. Since the Raman frequency of the silent soft 
u

E
2

 mode 

increased with increasing temperature above
0

T , as observed experimentally [114], it 

was assumed that this mode can be associated with the order parameter (spontaneous 

polarization) P  for 
3

BaTiO , as stated above. On this basis, the temperature 

dependence of the order parameter P  was fitted to the observed 
0

  data [114] 

according to the relation 

bPa 
max0

                                                                               (3.12)                                

 Here, the Raman frequency 
0

  was normalized since the order parameter P  varies 

between 0  and 1. In Eq. (3.12) 
max

 represents the maximum observed value of 
0

 , 

a  and b  (Table 3.7) are parameters which characterize the ordering effect above 
0

T  

of barium titanate.  

 

 

 

 

 

 

 

Fig. 3.12 gives the Raman frequency 
0

  calculated (Eq. 3.11) as normalized with 

respect to 
max

  at various temperatures above 
0

T
 
of 

3
BaTiO . The observed data 

[114] are also given in this figure. 

Since the temperature dependent 
0

  was calculated through Eq. (3.11), one can 

compute the damping constant values of this mode above 
0

T  for barium titanate. By 

using the Eqs. (2.16) and (2.19) for the damping constant where the temperature 

dependence of the order parameter P  (Eq. 3.12) was inserted, the 
sp

  values were 

obtained as plotted in Fig. 3.13. The 
sp

  values were predicted here for both the soft 

mode coupled model (Eq. 2.16) and the energy fluctuation model (Eq. 2.19), as 

3
BaTiOh  )(

0
KT  a  b  

)9.3(.Eq  221.5 0.024 1.003 
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stated above. We also plot the measured   values [114] above 
0

T  for 
3

BaTiO  in Fig. 

3.13. 

 

 

 

 

  

   

 

 

 

 

 

Figure 3.12 The order parameter P  fitted to the experimental data [114] for the 

frequency ratio 
max0

 of the soft phonon according to Eq. (3.11) at various 

temperatures above the transition temperature ( KT 222
0
 ) of the hexagonal 

3
BaTiO [3]. 

 

 

 

 

 

 

 

 

 

 

 

As an extension of this work, the U  values was extracted above 
0

T  of barium 

titanate using the 
sp

  values calculated from P-P model (Eq. 2.16) and the EF model 

(Eq. 2.19) according to Eq. (2.26).  
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Figure 3.13 The damping constant 
sp

  calculated [3] from Eqs. (2.16) and (2.19) of 

the hexagonal 
3

BaTiO  at temperatures T> TC ( KT 222
0
 ). The observed   data 

[114] are also given here. 

 

 

Since in the logarithmic scale, Eq. (2.26) gives a linear dependence of the damping 

constant 
sp

  on the temperature, the U  values were deduced in the different 

temperature intervals above 
0

T  to get this linear dependence, as given in Table 3.8. 

In this table, we also give the )(
0

TkTk
BCB

  value for 
3

BaTiO  for comparison. 

 

 

Previously, the experimental hyper-Raman spectrum was analyzed to get the 

temperature dependence of the observed Raman frequency and the damping constant 

by Inoue et al. [114]. Here [3], the frequency was calculated according to Eq. (3.11) 

which also holds in the framework of the soft mode theory by Landau and Cochran. 

A linear dependence of 2  on T  is an indication of the stabilization of the phase 

above 
0

T  for 
3

BaTiOh . Since the frequency of this mode increases sharply above 

0
T , as observed experimentally and also it was calculated here (Fig. 3.12) according 

to Eq. (3.11), this strongly overdamped mode can be attributed to the mechanism of 

an order-disorder transition instead of a displacive behaviour as shown by an 

underdamped soft mode for 
3

BaTiOh , which was discussed in a recent study [30]. 

The anamolous behaviour of 
sp

  just above  
0

T  in 
3

BaTiOh is an supporting 

evidence, as calculated here (Fig. 3.13). An abrupt increase of the damping constant 

on heating above 
0

T  also indicates a kind of ordering accompanied by the soft mode 
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in 
3

BaTiOh . Our calculated values of the damping constant 
sp

  show clearly this 

critical behaviour in comparison with the experimental data as given in Fig. 3.13, 

which is scattered, in particular, above 
0

T  up to the room temperature. An order-

disorder transition has also been considered for the tetragonal-cubic transition in 

3
PbTiO [121] which has been treated previously as the classic displacive transition. 

Experimental studies by X- ray analysis [20], dielectrics [23], elastic [31] and optical 

[122] measurements have shown a second order phase transition at KT 222
0
  for 

3
BaTiOh , as also pointed out previouusly [114]. As observed by hyper-Raman 

scattering [114], a rapid increase in the frequency of the soft mode associated with 

the ordering above 
0

T  can be due to the disorder effects since the soft mode (
u

E
2

) is 

located at the zone center  

(  point) of the Brillouin zone and it is Raman forbidden in this phase. Thus, the 

disorder-induced Raman scattering occurs above 
0

T  in 
3

BaTiOh , as considered 

previously for the ammonium halides [123]. Due to the reorientations of the 

molecules coupled with the soft optic mode, the damping constant 
sp

  increases 

above 
0

T  in 
3

BaTiOh  (Fig. 3.13), as predicted from the pseudospin phonon 

coupled model studied here. The temperature dependent 
sp

  was calculated for the 

soft mode using the P-P model (Eq. 2.16) and the EF model (Eq. 2.19), which were 

both originated from the Ising pseudospin-phonon coupled model [101] and in an 

extended form [102].  

From the Eqs. 2.16 and 2.19, the activation energy U  was deduced using Eq. (2.26), 

which is very close to the 
CB

Tk  value for 
3

BaTiOh  (Table 3.8). We extracted the 

U  values in different temperature ranges, varying from 01.0  to  eV03.0  which also 

covers the 
CB

Tk  value of eV02.0 . In particular, in the temperature range of 329  to 

K399  a negative activation energy of nearly zero, was extracted using Eq. (2.16). In 

this temperature region, the EF model (Eq. 2.19) seems to describe the experimental 

data better than the pseudospin-phonon coupled model. But, some precise 

experimental data are needed above 
0

T  in 
3

BaTiOh  to make a firm conclusion 

about the models studied here.  

  

 



37 
 

3.4 “Damping constant calculated as a function of temperature for the 

tetragonal Raman mode close to the paraelectric-ferroelectric transition in 

BaTiO3” 

 

 

Thetemperature dependent   values were calculated using the P-P model 

(Eq. 2.16) and the EF model (Eq. 2.19) for the “paraelectric-ferroelectric phase 

transition” in BaTiO3 [4]. The damping constant was calculated for the 

tetragonal mode at 308 cm
-1

 using its observed Raman integrated intensities [124] 

since the Raman intensity   is proportional to the order parameter   as 

       for                                                                             (3.13) 

in the ferroelectric phase, whereas for the paraelectric phase  

          for                                                                         (3.14)                                                                   

as the disorder parameter. 

  

 

 

 

Table 3.9 The values of the background bandwith 
0

  (
0

 ) and the amplitude A ( A ) 

for the Raman mode indicated for BaTiO3 according Eqs. 2.16 and 2.19 [4]. 

 

 

 

 

 

 

Thus, Eqs. (2.16) and (2.19) were fitted to the observed Raman integrated 

intensities and the bandwidths of the 308 cm
-1

 mode [124] below (Eq. 3.13) and 

above (Eq. 3.14) Tc(≈ 450 K) for the ferroelectric-paraelectric transition in 

BaTiO3 and  the fitted parameters of 
0

 and A (Eq. 2.16) and 0 and A (Eq. 2.19) 

were determined, as given in Table 3.9. We plot in Fig. 3.14 the bandwidths 

calculated from Eqs. (2.16) and (2.19) with the observed data for epitaxial thin 
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film [124] of 308 cm
-1

 mode for the ferroelectric-paraelectric transition (Tc ~ 450 

K) in BaTiO3. We show in Fig. 3.14 the experimental data for thin films of 60 nm 

and 200 nm [125] of this Raman mode for comparision. We also show in this 

figure the experimental data for the Raman bandwidths of the soft-optic mode 

[114] in the hexagonal BaTiO3 for comparision. 

 

 

 

 

 

 

 

 

 

 

 

 

Marssi et al. [124] have corrected the experimental Raman intensity by the 

Bose-Einstein factor to get the integrated Raman intensity  . They then used the 

Lorentzian fitting to determine the FWHM (damping constant) of the central peak 

at various temperature, as also given in this study .  

The Raman integrated intensity   which is related to the square of the order 

parameter   according to Eqs. (3.13) and (3.14) for the ferroelectric (tetragonal) 

and paraelectric (cubic) phases, respectively, decreases with increasing the 

temperature, as observed experimentally [124]. For the barium titanate epitaxial 

thin film studied here, there is no any abrupt decrease of the Raman intensity for 

the 308 cm
-1

 mode, whereas for the bulk case a sudden decrease in the Raman 

intensity of this mode was observed [28,126]. As also pointed out previously 

[124], the Raman intensity of the 308 cm
-1

 mode for the barium titanate epitaxial 

thin film decreases gradually near 425 K and it is almost independent of the 

temperature above 450 K. With this minimal Raman intensity of this mode, the 

paraelectric phase of BaTiO3 can be identified. 
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This decrease in the Raman intensity of the 308 cm
-1

 mode corresponds to the 

increase in the linewidth of that mode with increasing the temperature in the 

paraelectric phase, as observed experimentally [124] (Fig. 3.14). Thus, we 

expressed the increase in the Raman intensity of the 308 cm
-1

 mode with 

decreasing temperature (ferroelectric phase) by Eq. (3.13) and decrease in the 

Raman intensity with increasing temperature (paraelectric phase) by Eq. (3.14) as 

the order parameter for calculating the temperature dependent Raman linewidth 

according to Eqs. (2.16) and (2.19). As shown in Fig. (3.14), the pseudospin-

phonon coupled model (Eq. 2.16) agrees much better with the observed Raman 

linewidth [124] than the energy fluctuation model (Eq. 2.19). Above the transition 

temperature (  ≈      ) in the paraelectric phase, our predicted   values are 

smaller of about 4 cm
-1 

than the observed ones (Fig. 3.14). In this figure, we show 

the experimental data for thin films of 60 nm and 200 nm [125] of the 308 cm
-1

 

mode, also the observed data for the soft-optic mode [114] in the hexagonal 

BaTiO3 for comparison purposes, as stated above. It looks that the observed data 

for the thin film of 200 nm [125] for the Raman bandwidths of the 308 cm
-1

 mode 

follow the same trend as our calculated values (Eq. 2.16) due to the pseudospin-

phonon coupled model, as well as the observed ones [124]. The experimental data 

for the thin film of 60 nm [125] are much lower (about 5 cm
-1

) than those 

calculated and the observed values when extrapolated down to about 200 K. On 

the other hand, the observed data for the Raman bandwidths of the soft-optic 

mode [114] show rather different critical behavior above the transition 

temperature (        ) in the hexagonal BaTiO3. It increases rapidly above    

up to around 275 K and then it does not vary with the temperature to 400 K (Fig. 

3.14). These observed data [114] do not describe the tetragonal-cubic transition 

(        ) as studied here, instead it is for the transition (        ) in the 

hexagonal BaTiO3, as stated above. But, it can be taken to be a representative 

behavior of the bandwidths of a Raman mode, which increases with increasing 

temperature, as that of the observed data [124] and our calculated values (Eqs. 

2.16 and 2.19) (See  Figure 3.14). 

Since the pseudospin-phonon coupling leads to the pseudo-spin waves [41] 

interacting with all the phonons in the crystal, their lifetime is shortened and the 

Raman linewidth is broadened. (     ,   is the spin-lattice relaxation time). 
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The broadening of the tetragonal mode (308 cm
-1

) occurs rather rapidly with the 

greater slope of       for the P-P coupled model in comparison with the EF 

model (Fig. 3.14). Decrease in the linewidth of this mode in the ferroelectric 

phase is more apparent for the pseudospin-phonon coupled model, as also 

observed experimentally and the bandwidth value is about 4 cm
-1

 smaller at room 

temperature than the energy fluctuation model. The linewidth of the 308 cm
-1

 

mode increases gradually with increasing temperature above 450 K (around 475 

K) according to the energy fluctuation model (Fig. 3.14). This gradual change of  

      makes it difficult to distinguish transition from the ferroelectric to the 

paraelectric phase, as obtained by the energy fluctuation model. The pseudospin-

phonon coupled model provides a better picture to see the phases, which agrees 

with the experimental data (Fig. 3.14). 

  

 

3.5 “Temperature dependence of the polarization and the dielectric constant 

near the paraelectric- ferroelectric transitions in BaTiO3” 

 

 

The expansion of the   dependent of the free energy   was given by 

Landau’s theory, as follows: 

6

6

4

4

2

20 PaPaPaaF                                                                   (3.15) 

In Eq. (3.15) the coefficient    can be taken to be the temperature dependent,  

                                                                                                    (3.16) 

where    is a positive constant, and all the other coefficients (        and    ) are 

assumed to be constant.  

From the minimization          , one gets  

       
      

                                                                             (3.17) 

the roots of Eq. (3.17) are  

    
  

   
 

 

   
   

                                                                         (3.18) 

By taking      and     , a positive P  solution of Eq. (3.18) defines the 

ferroelectric phase (    ) whereas 0P  corresponds to the paraelectric phase 

     in BaTiO3.   

The definition of the susceptibility  given by, 
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  221 PF                                                                                         (3.19) 

which gives 

4

6

2

42

1 30122 PaPaa                                                                        (3.20) 

In the paraelectric phase ( 0P ), the reciprocal dielectric susceptibility 1  or the 

dielectric constant ε becomes 

2

11 2)1( a                                                                                    (3.21) 

In the ferroelectric phase ( 0P ), using Eq. (3.18) in Eq. (3.20) 1 can be 

expressed in terms of the coefficients        and   . By Eq. (3.16), the temperature 

dependence of 1  can be obtained. Since the functional form of    Eq. (3.18) is 

rather long, the temperature dependent values of the P  and χ can be obtained 

approximately by making an ansatz, 

1
2

4

62 
a

aa
                                                                                      (3.22) 

which gives the root square in the    expression (Eq. 3.18) as 

 
4

62

4

2/1

62

2

4
2

3
3

a

aa
aaaa                                                                 (3.23) 

By considering the minus solution in the root square of Eq. (3.18), the spontaneous 

polarization P can be obtained as 

4

2

6

42

23

2

a

a

a

a
P                                                                                 (3.24) 

With this ansatz, we get the spontaneous polarization in the simplified form (Eq. 

3.24) in comparison with Eq. (3.18). 

Similarly, using Eq. (3.24) in Eq. (3.20) through the ansatz (Eq. 3.22) the expression 

for 1 can be written in the simplified form as 

6

2

4

2

11

3

16
12)1(

a

a
a                                                                (3.25) 

in the ferroelectric phase. Using the simplified forms of the spontaneous polarization 

P (Eq. 3.24) and the reciprocal dielectric susceptibility 1  (Eq. 3.25), their 

temperature dependence in the ferroelectric phase can then be obtained according to 

Eq. (3.16), which gives, respectively, 

6

4
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2

2

)(

a

a

a
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P C 





                                                                          (3.26) 
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a
TT C                                                                      (3.27) 

In the paraelectric phase ( 0P ), 1  will be obtained as 

)(21

CTT                                                                                      (3.28) 

according to Eq. (3.21) through Eq. (3.16). 

The temperature dependence of the spontaneous polarization P  was calculated using 

the experimental data [125] for the peak positions (frequency) of the lattice phonon 

(~310 cm
-1

) from the Raman spectroscopic measurements of BaTiO3 by using the 

following power -law formula 

                                                                                 (3.29) 

Since the peak position of the 310 cm
-1

 mode decreased considerably as observed 

experimentally [125], this phonon frequency was related with P  (spontaneous 

polarization) in this crystal. Thus, in our analysis the temperature dependence of the 

Raman peak position of the 310 cm
-1

mode (Eq.3.29) was correlated to the 

spontaneous polarization P (Eq. 3.26) which gives 

  
6
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2
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a

a

a

TT C 





                                                                   (3.30) 

We analyzed the temperature dependence of the observed [125] Raman frequencies 

for the 310 cm
-1

 mode for thin films of 60 nm and 200 nm in BaTiO3. By fitting Eq. 

(3.30) to the observed Raman frequency data [125], the fitted parameters were 

determined, as given in Table 3.10. For this determination of  and 4a , we took 

16 a  regarding both thin films (Table 3.10). We plot square of the frequency ratio 

max as a function of temperature close to the ferroelectric-paraelectric transition 

in BaTiO3 for the thin films of 60 nm and 200 nm in Figs. 3.15 and 3.16, 

respectively. 

 

Table 3.10 Values of the temperature   , the parameters  and 4a  (Eq. 3.26) for the 

ferroelectric-paraelectric transition for the thin films indicated in BaTiO3 [5]. 

 

 

 

 

 

Thin Films 

(nm) 
      )1(10 5 Kx   4a  

60 360 9.759 -0.488 

200 440 9.490 -0.484 
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Figure 3.15 Temperature dependent 2

max
)(  values of the 310 cm

-1
 Raman 

mode(correlated to the spontaneous polarization P ) for the ferroelectric (FE) – 

paraelectric (PE) transition using the thin film of 60 nm according to Eq. (3.30) in 

BaTiO3 [5]. The observed data [125] are also shown here. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Temperature dependent 2

max
)(  values of the 310 cm

-1
 Raman 

mode(correlated to the spontaneous polarization P ) for the ferroelectric (FE) – 

paraelectric (PE) transition using the thin film of 200 nm according to Eq. (3.30) in 

BaTiO3 [5]. The observed data [125] are also shown here. 

 

 

Using the fitting parameters  and 4a ( 16 a ), we calculated the 1  values from 

Eq. (3.27). We also calculated 1  values for the paraelectric phase using Eq. (3.28) 

for both thin films (60 nm and 200 nm), as plotted in Fig.3.17 and Fig.3.18 

respectively. 
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Figure 3.17 Temperature dependent 1  values for the ferroelectric (FE) – 

paraelectric (PE) transition using the thin film of 60 nm according to Eq. (3.27) (FE) 

and Eq. (3.28) (PE) in BaTiO3 [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 Temperature dependent 
1  values for the ferroelectric (FE) – 

paraelectric (PE) transition using the thin film of 200 nm according to Eq. (3.27) 

(FE) and Eq. (3.28) (PE) in BaTiO3 [5]. 

 

 

The Raman frequency of the lattice phonon (~310 cm
-1

) which is associated 

with the order parameter (spontaneous polarization) was analyzed [5] at various 

temperatures according to Eq. (3.30) or Eq. (3.26) using the experimental data [125], 

as plotted in Figs. 3.15 and 3.16. This analysis was carried out for thin films of 60 

nm (Fig. 3.15) and 200 nm (Fig. 3.16), as stated above. It was found that the 

temperature dependence of    or 
2P is linear for both films in the ferroelectric phase 

of BaTiO3. This is in accordance with the mean field theory where           

with β=1/2 as the critical exponent for the order parameter. We were unable to 
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compare our calculated values of 2

max
)(   with the observed PS

2 
data since there 

are no experimental data available in the literature for thin films of 60 and 200 nm in 

BaTiO3. In order to see the behavior of 2

max
)(   for thin films of 60 and 200 nm 

(Figs. 3.15 and 3.16), we compared our calculated values of 2

max
)(   observed 

[127] spontaneous polarization (PS
2
) of single-crystal BaTiO3, as plotted in Fig. 3.19. 

These experimental data [127] were obtained for the temperature range of -80K< T-

TC <0K for constant pressures of 1, 4, 8 and 12 kbar in this crystal. When plotted the 

spontaneous polarization PS as a function of the temperature difference, T-TC, all the 

experimental data points are almost at the same positions, which decrease 

continuously as T-TC decreases. This then gives rise to a linear variation of PS
2 

with 

the T-TC, as plotted in Fig. 3.19. Thus, a linear variation of the observed spontaneous 

polarization PS
2
 [127] with the temperature T-TC within the temperature range of  

-80K< T-TC < -20K (Fig. 3.19) is the same as the calculated 2

max
)(   for thin films 

of 60 and 200 nm within the temperature range of -250K< T-TC < -50K  for BaTiO3. 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 The observed spontaneous polarization PS
2
 of single-crystal BaTiO3 

[127]. PS
2
 was normalized with respect to its maximum value. 

 

The inverse susceptibility 
1  or the dielectric constant (ε=χ+1), which was 

calculated using the parameters of the spontaneous polarization (Eq. 3.26), shows a 

linear variation with the temperature, as plotted in Figs. 3.17 and 3.18 according to 

Eqs. (3.27) and (3.28) in the ferroelectric and paraelectric phases, for both thin films 

(60 and 200 nm) in BaTiO3 respectively. This is also expected from the mean field 

theory according to a power-law formula            with the γ=1 value for both 

phases above and below   . Since there are no experimental data in the literature for 
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the dielectric constant for thin films of 60 and 200 nm in BaTiO3, the closest 

experimental data available were the dielectric constant at various temperatures near 

the ferroelectric-paraelectric transition for barium titanate ceramics with different 

porosities and pore sizes [128]. In the case of small and large pores (5 %) for the 

observed dielectric constant ε, we plot the inverse susceptibility 
1  against T-TC in 

Fig. 3.20 for the ferroelectric (FE) and paraelectric (PE) phases in BaTiO3 ceramics 

which can be compared with our calculated values of 1  in Figs. 3.17 and 3.18 for 

thin films of 60 and 200 nm respectively, in this crystal. For those plots (Figs. 3.17, 

3.18 and 3.20), we see that the inverse susceptibility (
1 ) decreases as the TC is 

approached in both ferroelectric (FE) and paraelectric (PE) phases in this crystalline 

system. Also, for comparison purposes, we analyzed recent experimental data [129] 

of Ba1-xCexTiO3 compounds for x=0 (BaTiO3), as given Fig. 3.21. We also see 

similar behavior of 
1  as our calculated 

1  (Figs. 3.17 and 3.18) and also the 

observed 
1  (Fig. 3.20). 

 

 

 

 

 

 

 

 

Figure 3.20 Inverse susceptibility (
1 ) obtained from the observed dielectric 

constant (ε) [128] as a function of the temperature for barium titanate ceramics with 

different porosities and pore size (5%) [5]. 

 

 

 

As given in our calculated values of 
1  (Figs. 3.17 and 3.18), the temperature range 

(-300K< T-TC < 300K) is much wider than the experimentally obtained temperature 

range (-40K< T-TC < 40K in Fig. 3.20) and (-80K< T-TC < 80K in Fig. 3.21). Our 

results show that the temperature dependent behaviour of the BaTiO3 film is 

qualitatively similar to that observed for single crystal BaTiO3 and barium titanate 

ceramic.   
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Figure 3.21 Variation of the inverse susceptibility (
1 ) obtained from the 

experimental dielectric constant (ε) [129] with the temperature at three frequencies 

(10, 100 and 100 kHz) of Ba1-xCexTiO3 for x=0 (BaTiO3) [5]. 

 

 

  The spontaneous polarization P  was calculated by analyzing the temperature 

dependence of the Raman frequency of the 310 cm
-1

 lattice mode according to Eq. 

(3.29) for BaTiO3. This temperature dependent frequency was also studied 

previously for the translational optic (TO) mode in the cubic paraelectric phase of 

BaTiO3 [19]. The soft mode damping was studied experimentally [115] and it was 

discussed in the framework of the soft-mode theory of Landau and Cochran. By 

relating the temperature dependence of a bilinear coupling constant A between 

acoustic and soft-optic modes to the order parameter Q3 according to the power-law 

formula given by Eq. 3.9, the hexagonal- BaTiO3 was studied above the transition 

temperature (T0=222 K) in the paraelectric phase [21]. Eq. (3.9) was also used to 

analyze the experimental data [21] to calculate the damping constant and the 

relaxation time for the soft-optic and acoustic mode in hexagonal- BaTiO3 in our 

recent study [2].  

For the tetragonal phase of BaTiO3, the quadrupole coupling constant    which can 

be measured in this phase,  has been related to the spontaneous ferroelectric 

polarization for a first order transition according to a power-law expression  

                                                                               (3.31) 

where    is the upper stability limit (  =403.5 K) of the ferroelectric phase and it 

was found that the β value was less than 1/2 . Since the quadrupole coupling constant 

CQ describes the square of the frequency (ω
2
) for the Raman mode (310   cm

-1
), the 
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frequency (squared) is directly proportional to the square of the order parameter 

(spontaneous polarization). So, the variation of the Raman frequency and width of 

this mode with the temperature can be considered as the order parameter 

(spontaneous polarization) in the ferroelectric (FE) phase of BaTiO3 and the 

polarization is along the c- axis, as also studied previously [125]. A linear 

relationship between 2

max
)(  of the internal ammonium mode (υ3) and PS

2
 

(spontaneous polarization) has also been obtained in the ferroelectric phase of 

(NH4)2SO4, as reported in our earlier study [116]. For BaTiO3, we have assumed the 

same temperature dependent frequency given by the mean field theory (Eq. 2.20) and 

the order parameter P (spontaneous polarization) [3], and a linear variation of 
0



was obtained with the P in the ferroelectric phase [2]. As observed experimentally 

[127], before the dielectric constant ε attains its maximum value at the Curie point, a 

permanent polarization P develops in the BaTiO3 crystallites (TC=110 
0
C) [130]. On 

the other hand, it was suggested that for the hexagonal BaTiO3 below T0 (=220 K) 

the temperature dependence of the Raman frequency of the soft mode can be 

expressed as  

ω 
        

                                                              (3.32) 

down to 100 K [21]. On the basis of the hard-soft mode coupling model [103-106], 

the frequency of a coupled mode ω   can be written [104] as 

ω                                                                      (3.33) 

similar to Eq. (3.29) or in general, 

 ω         β                                                             (3.34)     

as applied to several ferroelectric crystals such as triglycine sulphate (TGS) 

[131,132],  triammonium hydrogen disulphate, (NH4)3 H (SO4)2 [133] and lithium 

ammonium sulphate, LiNH4SO4 [134]. In those studies, the experimentally measured 

Raman frequencies were analyzed according to Eq. (3.34). We have also used hard-

soft mode coupling model for various ferroelectric materials such as BaTiO3, 

KH2PO4 (KDP) and (NH4)2SO4 in our recent studies [1,2,3,116].  
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3.6 “Calculation of the damping constant and the order parameter for the 

lattice mode in ferroelectrıc PbTiO3” 

 

 

The order parameter of the ferroelectric-paraelectric transition as an order-

disorder transition of this ferroelectric material, can be predicted from the molecular 

field theory [107] as given by Eq. 2.20. In this study [6], we associated the order 

parameter with the temperature dependent frequency of the soft mode E (1TO), as 

observed experimentally for single crystals [33] and thin films of [36] PbTiO3. On 

that basis, we analyzed the experimental data [33] for the temperature dependence of 

the soft mode frequencies for a single crystal of PbTiO3 using a polynomial function 

                 
                                                                           (3.36) 

where 
0

a , 
1

a and 
2

a are constants (Table 3.11). Those frequencies of the E (1TO) 

mode were then fitted to the values of the order parameter calculated from the 

molecular field theory (Eq. 2.20) at various temperatures below the transition 

temperature (TC=493 
°
C) according to the relation 

           

               
                                                                 (3.37)   

 

where 
0

b , 
1

b and 
2

b are constants. Table 3.12 gives the values of 
0

b , 
1

b and 
2

b for the 

E (1TO) soft mode of PbTiO3. In Fig.3.22 we give the temperature dependent of the 

frequency for the E (1TO) mode of PbTiO3 (TC=493 
°
C). The observed data [33] are 

also plotted in this figure. 

 

 

 

 

 

 

 

 

 

 



50 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to predict the temperature dependence of the damping constant on the basis 

of the pseudospin-phonon coupled model (Eq. 2.16) and the fluctuation model (Eq. 

2.19),we used in these equations the values of the ratio 
max

  for the E (1TO) soft 

mode as the values of the order parameter. This is due to the fact that in the 

ferroelectric phace (T<TC) the order parameter varies from 0 to 1 so that the damping 

constant of this mode was predicted at various temperatures, as plotted in Fig. 3.23 

for both models. Eqs. (2.16) and (2.19) were fitted to the experimental data [33] for 

the damping constant of E (1TO) mode and the fitted parameters were determined 

within the temperature intervals, as given in Table 3.13. 

 

 

 

 

 

Raman 

 Mode 

   

       

   

       

   

       

Temperature  

Interval (
0
C) 

E(1TO) 40.42 4.34 37.77
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The analysis of the damping constant was done by Burns and Scott [33] using 

the damped harmonic oscillations model and the Devonshire formulation. In this 

study, the damping constant was calculated for the E (1TO) mode as a function of 

temperature using P-P model (Eq. 2.16) and the EF model (Eq. 2.19), as given in Fig. 

3.22. Our predictions from both models for the E (1TO) mode (Fig. 2.19) agree with 

the experimental data [33] according to the fitted parameters (Table 3.13). As seen in 

Fig. 3.23, the damping constant increases sharply close to the transition temperature. 

Since we associate the temperature dependence of the Raman frequency for this soft 

mode (Eq. 3.37) on the basis of the P-P model (Eq. 2.16) and the EF model (Eq. 

2.19), the soft behaviour occurs for the E (1TO) mode according to the Eq. 3.11. 

Thus, the Raman frequency of the E (1TO) mode drops to a smaller value (ultimately 

to zero for a soft mode according to Eq. 3.11) from considerably higher values, as 
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also observed for both single crystal [33] and thin films [36]. This indicates that,  the 

“order-disorder” transition in PbTiO3 can be correlated with the E (1TO) mode. 

 

 

3.7 “Calculation of the infrared frequencies as a function of temperature using 

the volume data in the ferroelectric phase of NaNO2” 

 

 

Longitudinal optic (LO) and transverse optic (TO) frequencies of A1, B1 and 

B2 modes of NaNO2 have been studied as aa function of temperature according to the 

“Grüneisen parameter”    given by Eq.(2.24) [7]. The temperature dependent      

term in Eq. 2.24 can be assumed as 

               
                                                             (3.38) 

with the constants     ,    and   . Fig. 3.24 gives the temperrature dependence of the 

observed volume data for bulk  NaNO2 [135]. 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 Temperature dependence of the observed volume [135] for bulk NaNO2. 

[7] The best line is shown by a solid line. 

 

 

The linearity of the bulk volume of NaNO2 with temperature can be given as 

                                                                             (3.39) 

the fitted parameters    and   were tabulated in Table 3.14. by using Eq. (3.39), we 

calculated the    values for those modes in NaNO2 at around 500 K. 

 

 

300 400 500 600

106

108

110

112
  Observed 

  Calculated 

V
(A

3
)

T(K)



53 
 

Table 3.14 Values of the fitting parameters of Eq. (3.39) for the observed volume 

data [135] .  

 

 

 

 

 

Table 3.15 Constant volume   , constant frequecies    values of lattice modes in 

NaNO2. Values of the constant “Grüneisen parameter”    is also given here [60].  

 

Lattice modes V1(Å
3
) υ1(cm

-1
)  p 

A1LO 110.86 275.59 0.2 

A1TO 110.93 171.93 1.8 

B1LO1 111.00 147.47 2.3 

B1TO1 111.00 144.92 1.5 

B1LO2 110.98 238.15 2.5 

B1TO2 110.98 175.44 2.0 

B2LO1 111.11 181.64 1.5 

B2TO1 111.14 148.30 1.1 

B2LO2 111.14 251.72 1.2 

B2TO2 111.12 220.96 1.4 

 

 

we also get    values (at zero pressure) and the “Grüneisen parameter” values    

from the observed data of those Raman lattice modes of NaNO2 studied here [60].  

 

 

Table 3.16 Coefficents of Eq. (3.38), whose values detected from the fitting 

procedure of Eq. (2.24) and observed frequency data [60] in bulk NaNO2. 

 

Lattice modes   (cm
-1

)   (cm
-1

/K)   (cm
-1

/K
2
) 

A1LO 125053 -900.25 1.6237 

A1TO -1408 16.23 -0.0041 

B1LO1 -581 8.25 -0.0023 

B1TO1 -769 10.99 -0.0323 

B1LO2 290 -0.88 0.0027 

B1TO2 -375 5.02 -0.0108 

B2LO1 -869 9.90 -0.0227 

B2TO1 290 -2.50 0.0103 

B2LO2 1231 -8.27 0.0174 

B2TO2 1800 -14.08 0.0314 

 

 

 

 (Å
3
)  (Å3

)  (Å3
) 

Eq. (3.39) 101.76 1.86x10
-2 
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Figure 3.25 Temperature dependence of the calculated Eq. (2.24) and observed [60] 

longitudinal optic and transverse optic frequencies of A1 mode in NaNO2 [7]. 

 

 

 

We then calculated the frequencies of the lattice modes of A1, B1 and B2 through Eq. 

(2.24) by using the values of    ,    and     (Table 3.15) at constant temperature of 

T= 500 K. Finally, the temperature dependence of the calculated Eq. (2.24) and 

observed [60] longitudinal optic (LO) and transverse optic (TO) frequencies of A1, 

B1 and B2 modes of NaNO2 have shown in Figs. (3.25-3.27), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 Temperature dependence of the calculated Eq. (2.24) and observed [60] 

longitudinal optic and transverse optic frequencies of B1 mode in NaNO2 [7]. 

 

 

 

0 200 400 600

150

200

250

 B
1
TO

1 

 B
1
TO

2 

 B
1
LO

1 

 B
1
LO

2 


c

m
-1



T(K)

 Calculated (Eq.2.24)

Observed [60]

0 200 400 600

150

200

250

300

A
1
TO

A
1
LO

Calculated (Eq. 2.24)

 Observed [60]
c

m
-1



T(K)

Calculated (Eq. 2.24)

 Observed [60]



55 
 

 

 

 

 

                               

 

 

 

 

 

 

 

Figure 3.27 Temperature dependence of the calculated Eq. (2.24) and observed [60] 

longitudinal optic and transverse optic frequencies of B2 mode in NaNO2 [7]. 

 

 

In their study, Brehat and Wyncke [60] have fitted the far-infrared reflectivity 

spectra to the dielectric constant through “dielectric dunction model” to extract the 

behavior of lattice mode frequencies (A1, B1 and B2) for NaNO2. Analysis of these 

frequencies have also studied by Ema et. al. [57] by using the thermal expansion data 

through the “quasi-harmonic oscillator model”. 

In this study, we predicted the values of the infrared frequencies of lattice modes in 

NaNO2 by considering the isobaric “Grüneisen parameter” (Eq. 2.24). Initially, we 

fitted the observed volume data [135] of bulk sodium nitrite according to Eq. (3.39), 

as given in Fig. 3.24. Fitting parameters of this aquation was given in Table 3.14. 

Then, we used Eq. (3. 39) to calculate tha values of    at around 500 K fort he lattice 

modes of sodium nitrite. We also used the constant     and     values from the 

literature as given in Table 3.15. By using the values of the constant parameters 

given in Table 3. 15 (  ,    and    ), we investigated the temperature dependent 

frequencies for the  A1, B1 and B2 modes of NaNO2 through Eq. (2.24). those 

calculated values of frequencies were then fitted to the observed data [60] to deduce 

the coefficients of Eq. (3.38) ,as we given in Table 3. 16. Figs. (3.25-3.27) show the 

calculated and observed [60] frequencies of longitudinal optic and transverse optic 

modes of A1, B1 and B2, respectively. As the temperature increases the frequeny 

decreases, as expected. This result is in good agreement with the observed [60] and 

calculated ones [57,60]. As the temperature increases, the volume of the bulk sodium 
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nitrite increases due to the thermal expansion which is inversly proportional with 

force constant results in decreasing frequency. 

 

 

3.8 “Temperature dependence of the Brillouin frquency shift and the linewıdth 

of the LA mode in the ferroelectric phase of PZT-x (PbZr1-xTixO3)” 

 

 

In this study, we analyzed the temperature dependence of the damping 

constant (Eqs. 2. 16 and 2.19) using the experimental data [70] for the bandwidth 

(FWHM) of the LA mode for the concentration of x=0.45 of PbZr1-xTixO3. We used 

the observed [70] Brillouin frequencies of the LA mode as an order parameter   in 

Eqs. (2. 16) and (2.19) at various temperatures in the ferroelectric phase of this 

mixture. We plot in Fig. 3.28 the square of the observed [70] Brillouin frequency 

with respect to the maximum frequency,          
, for PbZr1-xTixO3 single 

crystals (TC=657 K). Since the order parameter varies from 0 to 1, we normalized the 

observed frequency     values with respect to the maximum frequency        . 

Thus, on the basis of the Brillouin frequency being proportional to the order 

parameter      , the damping constant  
SP
 was calculated using both models 

(pseudospin-phonon coupling and energy fluctuation models) according to Eqs. 

(2.16) and (2.19) at temperatures T<TC  for x=0.45 of PbZr1-xTixO3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28 Temperature dependence of the observed Brillouin frequencies of the LA 

mode in the ferroelectric (T<TC) of PbZr1-xTixO3 [70] (TC= 657 K). 
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In order to compare our calculated damping constant (
SP
 ) from both models with 

the observed data, we then fitted Eqs. (2. 16) and (2. 19) to the observed linewidths 

[70] of the LA Brillouin mode (x=0.45) of PbZr1-xTixO3. Table 3.17 gives our fitted 

parameters (
0
 , A ,

0
  and A ). We plot in Fig. 3. 29 our calculated values of the 

damping constant 
SP
 using the P-P model (Eq. 2. 16) and the EF model (Eq. 2. 19) at 

various temperatures for x=0.45 of PbZr1-xTixO3. The observed FWHM data for the 

Brillouin LA mode [70] are also shown in this figure. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29 Temperature dependent 
SP
 values calculated (Eqs. 2.16 and 2.19) using 

the observed Brillouin frequency data [70] for the ferroelectric phase (T<TC) of 

PbZr1-xTixO3 (x=0.45). Observed FWHM [70] are also shown here (TC= 657 K).  

 

 

 

Using the temperature dependent 
SP
 values, we extracted the   values (Eq. 2. 26) for 

the PbZr1-xTixO3 (Table 3.18). For comparison, we give in Table 3.18 the 
CB

Tk  

values of this mixture at the transition temperature(TC=657K). 
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We calculated the temperature dependent 
SP

  values through the P-P model 

(Eq. 2.16) and the EF model (Eq. 2.19) for PbZr1-xTixO3 (x=0.45) as shown in Fig. 

3.29. The observed data of the damping constant were extracted through the fitting 

procedure of the Brillouin spectra to the damped harmonic oscillator response 

function and to a single Debye relaxation model for the central peak of PZT in the 

ferroelectric phase [70]. Our calculated 
SP

  values from both models are in good 

agreement in the ferroelectric phase (T<TC) of PbZr1-xTixO3 for the concentration 

x=0.45. This agreement is much better as TC is approached in this mixture (Fig. 

3.29). This shows that the P-P model and the EF model describe adequately the 

observed behavior of the linewidths of the Brillouin LA mode associated with the 

ferroelectric-paraelectric transition in PbZr1-xTixO3.  

When we calculated the damping constant
SP

 , we used observed Brillouin 

frequencies of the LA mode [70] in the ferroelectric phase (T<TC) as the order 

parameter (spontaneous polarization) in this mixture, as we stated above. Since the 

Brillouin frequency     of this mode decreases rapidly as TC is approached from the 

ferroelectric phase as observed experimentally (Fig. 3.28), this can be considered as a 

soft mode behavior according to 

        
 

                                                                           (3.40)                                                                       

Thus we assumed that the Brillouin frequency of the LA mode is directly related to 

the order parameter of PbZr1-xTixO3. Brillouin frequency of this phonon mode can 

then be used to describe its spontaneous polarization (order parameter) as we used in 

Eqs. (2.16) and (2.19) for the damping constant (linewidth) of PbZr1-xTixO3. The U   

Damping Constant 
Activation 

Energy (eV) 

Temperature 

Range (K) CB
Tk (eV) 

Pseudospin-phonon 

Coupled Model 

 (Eq. 2.16) 

2.467 

644-656 0.056 

Energy fluctuation 

Model (Eq. 2.19) 
1.234 
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values were deduced through Eq. 2.26, as given in Table 3.18. Our U  values are 

about 2.5 eV for the pseudospin-phonon coupled model and 1.2 eV for the energy 

fluctuation model  within the temperature range of nearly 10 K (between 644 and 

656 K) for PbZr1-xTixO3. Our U  values extracted from both models are much larger 

than the value of eVTk
CB

056.0 as calculated at TC (x=0.45). Similar calculation 

for the damping constant and determination of the activation energy from both 

models (P-P model and the EF model), can be conducted for x=0.42 of PbZr1-xTixO3 

by using the Brillouin frequency data for the LA mode [70] according to Eqs. (2.16) 

and (2.19) in this mixture. More generally, for various concentrations x in the T-x 

phase diagram of PbZr1-xTixO3 temperature dependent 
SP

  values might be 

calculated using the Brillouin frequencies of different modes and the activation 

energy U  as a function of x can be extracted.  

 

 

3.9 “Calculation of the damping constant, relaxation time and the activation 

energy for lead titanate zirconate in the paraelectric phase”  

 

 

 

We calculated the damping constant, relaxation time and the activation 

energy as a function of temperature for the concentration of x=0.45 in the lead 

titanate zirconate Pb(Zr1-xTixO3) (PZT) ceramics above the transition tempertaure 

(TC=657 K), in the paraelectric phase by using the frequency data from the literature. 

We assumed that Brillouin shift of the LA mode can be associated with the order 

parameter   for PZT as   
 

    
   . Here the Brillouin frequency shift   is 

normalized since the order parameter   varies from 0 to 1.      is the maximum 

observed value of   and it is 50.24 cm
-1

 in the paraelectric phase of PZT. Fig. 3.30 

shows the squared Brillouin frequency shift as normalized with respect to      at 

various temperatures above TC of the LA mode for PZT-0.45. By    
 

    
 into the 

Eqs. 2.16 and 2.19, 
SP


 
values of this LA mode were calculated above TC of PZT-

0.45. 
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Figure 3.30 Temperature dependence of the observed Brillouin frequencies of the LA 

mode in the paraelectric (T >TC) of PbZr1-xTixO3 [70] (TC= 657 K). 

 

 

 

Table 3.19 Coefficients of  Eqs. 2.16 and 2.19 using the observed data [70] in the 

paraelectric phase (T >TC) of PbZr1-xTixO3 (x=0.45). 

 

 

Temperature 

Range(K) 
)( 1

0

cm
 

)( 1cmA  )( 1

0

 cm
 

)( 1 cmA  

668-755 1.07 97.67 -1.37 9.84 

763-865 0.50 -29.93 0.50 0.64 

 

 

 

 

Damping constant values were predicted for both the P-P model (Eq. 2. 16) and the 

EF model Eq. (2. 19) as we give in Figure 3.31. We also plot the measured damping 

constants [70] of this LA mode above TC for PZT-x in Figure 3.31. Table 3.19 gives 

our fitted parameters (
0
 , A ,

0
  and A ) extracted through Eqs. 2.16 and 2.19 for the 

different temperature ranges indicated here. From the temperature dependence of the 

damping constant (Eqs. 2.16 and 2.19) and of the order parameter  , the inverse 

relaxation time     or   of the LA mode was then calculated above TC in PZT 

ceramics. So,      or   was predicted according to  

   
 

    
                                                                              (3.41) 
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Figure 3.31 Temperature dependent 
SP

  values calculated (Eqs. 2. 16 and 2. 19) 

using the observed Brillouin frequency data [70] for the paraelectric phase (T >TC) of 

PbZr1-xTixO3 (x=0.45). Observed FWHM [70] are also shown here. 

 

 

We then calculated the   values according to Eq. 3.41 by using 
SP

 values from both 

models (P-P model and EF model). By fitting the calculated   values and the 

observed ones (   ), we found a linear relation according to  

                                                                                  (3.42) 

The coefficients   and   were determined for the two different ranges as given in 

Table 3.20. We plot our calculated values of the inverse relaxation time (Eq. 3.41) as 

a function of temperature with the experimental data [70] above the transition 

temperature in Fig. 3.32. 

 

 

Table 3.20 Coefficients of Eq. (3.42) for the inverse relaxation time     using the 

observed data [70] in the paraelectric phase (T >TC)  of PbZr1-xTixO3 (x=0.45). 
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Figure 3.32 Temperature dependence of the relaxation time calculated (Eq. 3.41) 

using the observed Brillouin frequency data [70] for the paraelectric phase (T >TC) of  

PbZr1-xTixO3 (x=0.45). Observed relaxation time [70]  also shown here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we extracted the activation energy values using our calculated damping 

constant   (Eqs. 2. 16 and 2. 19) from the Arrhenius plot according to Eq. 2. 26. Our 

calculated values of activation energies   and the 
CB

Tk  value (for comparison) are 

given in Table 3.21 in the temperature interval studied here. 

 

 

The Brillouin frequency shift of the LA mode for PZT-0.45 increases with 

increasing temperature in the paraelectric phase as observed experimentially [70]. 

So, we associated this observed Brillouin frequency shift (normalized) with the order 

parameter as given in Fig. 3.30. By using those calculated values of order parameter, 

the temperature dependent 
SP

 values were calculated according to the P-P model 
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(Eq. 2.16) and EF model (2.19) for the concentration of x=0.45 in the PZT ceramic 

above the transition temperature (TC=657 K). We showed in Fig. 3.31  our calculated 

values of damping constants from both models and the observed data [70] for this 

LA mode of PZT-0.45. Kim et al. [70] deduced the temperature dependence of the 

damping constant for the LA mode for PZT-0.45 above the transition temperature. 

This was done by fitting the Brillouin spectra to a superposition of the damped 

harmonic oscillator model and the Debye relaxation model. Our results are in good 

agreement with the observed data and the damping constant decreases as the 

temperature increases above the transition temperature as we expected. We also 

determined the fitting parameters of Eqs. 2.16 and 2.19 for this LA mode of PZT-

0.45 as given in Table 3.19. The observed relaxation time in the paraelectrric phase 

of PZT-0.45 was extracted by fitting procedure of the Brillouin spectra to a single 

Debye relaxator [70]. Calculation of the temperature dependence of relaxation time 

was then performed according to Eq. 3.41 using the values of the damping constant 

of both pseudospin-phonon coupled and the energy fluctuation models, and the order 

parameter above the transition temperature of the LA mode of PZT-0.45. We 

extracted the fitting parameters of Eq. 3.42 in the temperature ranges of 670 K< 

T<697 K and 702 K< T<773 K above the transition temperature by using the 

observed data for the relaxation time  [70] and the values of the relaxation time 

calculated through Eq. 3.41 of this LA mode of PZT-0.45 ceramic. These fitting 

parameters of Eq. 3.42 were given in Table 3.20. In Fig. 3.32 we plotted the 

calculated inverse relaxation time for PZT-0.45 in the temperature range indicated. 

We also gave the observed inverse relaxation time in this figure. As the temperature 

increases the inverse relaxation time increses as expected. Finally, we used the 

calculated 
SP

 values from both P-P model and the EF model to extract the activation 

energy values of PZT-0.45 according to Eq. 2.26 in the paraelectric phase of this LA 

mode. Table 3.21 gives the values of the activation energies for the temperature 

range of 668 K< T<702 K for the LA mode of PZT-0.45 which are much greater 

than the CB
Tk value of 0.056 eV. 
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3.10 “Temperature dependence of the Raman frequency, damping constant and 

the activation energy of a soft mode in Cd2Nb2O7” 

 

The temperature dependent spontaneous polarzation values P was calculated 

bu using the mean field theory (Eq. 2. 20) for the Raman soft mode of cadmium 

pyroniobate (Cd2Nb2O7: CNO) below the transition temperature TC=196 K.  

Calculated values of the order parameter was then fitted to the observed frequency 

data   [91] according to the relation 

                                                                               (3.43) 

where    and   are the fitting parameters and their values are given in Table 3.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33 Calculated (Eq. 3.37) and observed [91] values of the soft mode 

frequency at temperatures T< TC for CNO. 

 

 

 

Fig. 3.33 shows the calculated values of tha Raman frequency in the ferroelectric 

phase of CNO. The observed frequency data [91] of this Raman mode are also shown 

in this figure. By using the calculated values of the order parameter from mean field 

theory (Eq. 2.20), we calculated the temperature dependent   values in the 
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ferroelectric phase of CNO for this Raman mode. This calculation was performed by 

using both P-P model (Eq. 2.16) and the EF model (Eq. 2.19). Fig. 3.34 gives the 

calculated values of the damping constant from both models below TC for this 

Raman soft mode of CNO. The observed damping constant data [91] are also plotted 

in this figure. The fitting parameters of Eqs. 2.16 and 2.19 are given in Table 3.23. 

 

 

 

 

 

 

 

 

 

 

Figure 3.34 Comparison of the calculated (Eqs. 2.16 and 2.19) and observed   

[91] values at temperatures T< TC for CNO.  

 

 

 

  

 

 

 

 

 

 

 

Finally, we deduced the   values of this Raman mode of CNO by means of the 

Arrhenius plot,     vs.    . This calculation was done by inserting the calculated 

values of the damping constant from both models studied here into the Eq. 2.26. 

Table 3.24 gives our calculated   values from both P-P model and the EF model for 

this Raman mode of CNO. The 
CB

Tk  value of this structure is also given in this table 

for comparison. 
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The Raman frequency     data were observed to decrease with increasing 

temperature in the ferroelectric phase of CNO [91]. The same behaviour is also valid 

for the spontaneous polarization (order parameter)   in the ferroelectric phase of 

CNO as reported in the literature. So, we related the order parameter   with the 

observed Raman frequency     data by using a linear relation given by Eq. 3. 43 for 

this Raman mode of Cd2Nb2O7 below the transition temperature. We gave the values 

of the fitted parameters a  and b  for the temperature ranges of 102 K<T <147 K and 

151 K<T <179 K in Table 3. 22. Figure 3.33 shows the calculated values of the 

Raman frequency and the observed data [91] for this Raman soft mode of CNO 

below TC. In their study, Taniguchi et al. [91] have used the Cochran’s law to 

investigate the temperature dependent   values according to                 . 

Our calculated values of the Raman frequency   are in good agreement with the 

observed data and also with those calculated from the Cochran’s law.  Since we 

calculated the order parameter from the mean field theory (Eq. 2.20), we were able to 

calculate the temperature dependent   values from both P-P model (Eq. 2.16) and 

the EF model (Eq. 2.19). By fitting procedure of the calculated   values (Eqs. 2.16 

and 2.19) and the observed data [91] of this Raman mode in CNO, we determined the 

fitting parameters of Eqs. 2.16 and 2.19 as we gave in Table 3.23. Taniguchi et al 

[91] have analyzed the temperature dependent   values through the equation 

                  , which is given by Cochran’s theory. Their results describe 

the observed data of the damping constant very well as our calculated values from 

the two models studied here. Fig. 3.34 shows our calculated values of the damping 
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constant from both models and the observed data for this Raman mode of CNO 

below the transition temperature TC. The damping constant increases very abruptly 

close to the phase transition temperature of  TC=196 K as expected (Fig. 3.34). As an 

extension of this work, we evaluated values of the activation energy of the Raman 

mode of CNO, as given in Table 3.24. The values of the activation energies are much 

greater then the 
CB

Tk  value of 17 meV very close to the transition temperature. 

  

 

3.11 “Calculation of the damping constant and the activation energy of the Eg 

soft phonon mode in ferroelectric SrZrO3” 

 

 

The temperature dependence of the damping constant and of the activation energy 

was calculated by using the frequency data [81] of the Eg soft phonon mode below 

the transition temperature TC= 1443 K. We related the normalized frequency (
 

    
) 

with the order parameter    (spontaneous polarization) as 
 

    
  . Fig. 3.35 gives 

the temperature dependence of the squared frequency ratio (  ) below the transition 

temperature for this Eg soft mode in SrZrO3.  

 

 

 

 

 

 

 

 

Figure 3.35 The temperature dependent frequency ratio suared             values 

of the Eg mode of SrZrO3 at etmperatures T< TC. (TC= 1443 K). 

 

 

We then calculated the temperature dependent damping constant values by using the 

normalized observed frequency data (order parameter) for Eg soft mode of SrZrO3. 

Th is calculation was performed by using the P-P model (Eq. 2.16) and the EF model 
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(Eq. 2.19). The fitting parameters (
0

 , A ,
0

  and A ) were then obtained by using 

the calculated values of the damping constant from both models (Eqs. 2.16 and 2.19) 

and the observed damping constant data [81]. We give these fitting parameters in 

Table 3.25 in the ferroelectric phase of SrZrO3 for the Eg mode. Then, with help of 

the fitting parameters (Table 3.25), we plot the temperature dependence of the 

damping constant calculated from both models studied here in Fig. 3.36. The 

observed damping constant data [81] are also given in this figure. 

 

 

 

 

 

 

 

 

Finally, we extracted the values of the activation energy of the Eg soft phonon mode 

from Eq. 2.26 in the ferroelectric phase of SrZrO3. This calculation was performed 

by using the evaluated damping constant values from both models (Eqs. 2.16 and 

2.19) studied here. Table 3.26 gives these calculated values of the activation energy 

of the SrZrO3 crystal for temperature ranges indicated. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.36 The calculated   values using both the P-P model (Eq. 2.16) and the EF 

model (Eq. 2.19) for the Raman mode of SrZrO3 in the ferroelectric phase. Observed 

damping constant [81] is also shown here. Solid curve is a guide to eye. 
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The frequency of the Eg mode in SrZrO3 softens (decreases) as the transition 

temperature is approached as observed experimentally [81]. This behaviour is similar 

to the order parameter (spontaneous polarization) in the ferroelectric materials below 

TC. So, we associated the normalized frequency          with the order parameter 

  for this Eg mode. We used the normalized frequency since the order parameter can 

take only the values between 0 and 1. In Fig. 3.35, we gave the temperature 

dependence of the order parameter (squared)           , of the Eg mode of SrZrO3. 

The temperature dependence of the frequency (squared) for the Eg mode of SrZrO3 

has also been analyzed by Fujimori et al. [81] according to the linear relation 

      

          in the temperature range of 1123 K and 1323 K. Here    

  

and   are 1.29x10
4
 cm

-2
 and 6.36 cm

-2
/K, respectively. Their result are in good 

agreement with the observed data of frequency. They also  considered the universal 

scaling law to investigate the temperature dependence of the damping constant for 

the Eg mode of SrZrO3.  

From the calculation of the order parameter  , we were able to calculate the damping 

constant   as a function of temperature by using the pseudospin-phonon coupled 

model (Eq. 2.16) and the energy fluctuation model (Eq. 2.19) for the Eg mode in 

SrZrO3 in the ferroelectric phase. Since we have the experimental data for the 

damping constant of  this mode, we performed the fitting procedure to find the fitting 

parameters of Eqs. 2.16 and 2.19. This calculation was carried out in the temperature 

ranges of 972 K<T<1072 K and 1122 K<T<1322 K, respectively. In Table 3.25, we 

gave the values of 
0

 , A ,
0

  and A  which were obtained  through the fitting 

Damping Constant 
Activation 

Energy (eV) 

Temperature 

Range (K) CB
Tk (eV) 

Pseudospin-phonon 

Coupled Model 

 (Eq. 2.16) 

0.13 

972-1321 0.12 

Energy fluctuation 

Model (Eq. 2.19) 
0.13 
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procedure in the temperature ranges given above. With help of the fitting parameters 

(Table 3.25), we plotted the temperature dependence of the damping constant 

calculated from both models in Fig. 3.36.  The energy fluctuation model agrees better 

than the pseudospin-phonon coupled model when compared with the observed data 

for the damping constant. As the temperature approaches the transition temperature 

(TC=1443 K), the damping constant increases rapidly which indicates that this Eg soft 

phonon mode of SrZrO3 plays an important role for the ferroelectric phase transition 

from cubic to tetragonal.  

Finally, we extracted values of the activation energy of SrZrO3 crystal using the 

Arrhenius plots (Eq. 2.26) in the temperature range of 972 K<T<1321 K. Table 3.26 

shows those values of activation energy which were extracted  through both models 

studied here. The      value was also given for comparison. 

 

 

3.12 “Temperature dependence of the order parameter, damping constant, 

relaxation time and the activation energy of the A1(TO1) soft phonon mode in 

ferroelectric LiNbO3” 

 

 

We calculated the order parameter   , damping constant  , inverse relaxation 

time     and the activation energy   of the lowest Raman mode, A1(TO1), of lithium 

niobate (LN) by using the frequency ( ) and the dielectric data ( ) below the 

transition temperature TC= 1260 K. We related the squared of the observed frequency 

data (squared,)  
 

    
   [92] with the order parameter squared    as follows: 

 

 
 

    
                                                                    (3.44) 

 

We plot the temperature dependence of the squared frequency (normalized) in Fig. 

3.37 and from the linear fitting procedure we determined the values of   and   of 

Eq. 3.44. These fitted parameters are given in Table 3.27.  
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Figure 3.37 The best linear fit for the square of the observed frequency (normalized) 

data [92] as a function of temperature difference for the lowest Raman mode 

A1(TO1) in the LiNbO3 below the transition temperature (TC= 1260 K). 

 

 

Table 3.27 Values of the fitted parameters (Eq. 3.44) for the lowest Raman mode 

A1(TO1) in the LiNbO3 below the transition temperature (TC= 1260 K). 

 

Temperature 

Range (K) 
                

301-1103 -7.46 0.35 

 

 

Then, we calculated the inverse dielectric susceptibility     by using the dielectric 

constant data   of this soft phonon mode of LN [92] according to the relation 

 

    
 

   
                                                                           (3.45) 

 

The inverse dielectric susceptibility     can also be calculated by Eq. (3.20). In this 

equation    can be taken as the temperature dependent (Eq. 3.16),    and    are 

assumed to be constant. Replacing    in Eq. (3.20) by            in  Eq. 3.44, one 

gets 

 

          
                                  

                          
                                                                                    (3.46) 
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In Fig. 3.38, we plot the calculated values of the inverse dielectric susceptibility     

as a function of the temperature difference,       , for this lowest Raman mode in 

LN in the ferroelectric phase. By using the quadratic fitting equation (Fig. 3.38) and 

the fitting parameters of Eq. 3.44 (Table 3.27), we extracted the values of the   ,    

and   . Table 3.28 gives those fitting parameters for the lowest Raman mode  

 

 

 

 

 

 

 

 

 

Figure 3.38 The best fit (quadratic) for the inverse dielectric susceptibility     (Eq. 

3.46) as a function of the temperature difference for the lowest Raman mode 

A1(TO1) in the LiNbO3 below the transition temperature (TC= 1260 K). 

 

 

 

Table 3.28 Values of the fitted parameters (Eq. 3.46) for the lowest Raman mode 

A1(TO1) in the LiNbO3 below the transition temperature (TC= 1260 K). 

 

Temperature 

Range (K) 
                             

301-1103 4.46 -3.82 17.69 

 

A1(TO1) in the LiNbO3 below the transition temperature (TC= 1260 K). Once we 

calculated the fitted parameters of Eq. 3.46 (Table 3.28), we could calculate the 

values of the squared order parameter    through Eq. 3.18 (Landau theory). The 

ratios in Eq. 3.44 can be given as 

 

  
 

    
          

                                                                    (3.47) 

 

Table 3.29 gives the values of the    and   . The temperature dependence of the    

(both observed and calculated) is given in Fig. 3.39 for this soft phonon mode in LN. 
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Figure 3.39 Temperature dependence of the normalized observed frequencies 

(squared) and the calculated values of    (Eq. 3.18) for the lowest Raman mode 

A1(TO1) in the LiNbO3 below the transition temperature (TC= 1260 K). 

 

 

 

Table 3.29 Values of the fitted parameters (Eq. 3.47) for the lowest Raman mode 

A1(TO1) in the LiNbO3 below the transition temperature (TC= 1260 K). 

 

Temperature 

Range (K) 
      

301-1103 -0.10 1.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.40 Damping constant   calculated as a function of temperature using both 

the pseudospin-phonon coupled model (Eq. 2.16) and the energy fluctuation model 

(Eq. 2.19) for the Raman mode of LiNbO3 in the ferroelectric phase. Observed 

damping constant [92] are also shown here.  
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Table 3.30 Values of the fitted parameters for the damping constant    

(Eqs. 2.16 and 2.19) using the observed data [92] in the ferroelectric phase (T< TC)  

of the LiNbO3. 

 

Temperature 

Range (K) 
)( 1

0

cm
 

)( 1cmA  )( 1

0

 cm
 

)( 1 cmA  

479-857 22.13 291.07 1.50 146.74 

920-1103 86.08 107.03 57.71 78.94 

 

 

Then, we calculated the damping constant from the pseudospin-phonon coupled 

model (Eq. 2.16) and the energy fluctuation model (Eq. 2.19) by using the order 

parameter squared (  ) through Eq. 3.18 for the A1(TO1) mode in the ferroelectric 

phase of LiNbO3. Table 3.30 gives the fitted parameters (
0

 , A ,
0

  and A ) which 

were obtained from the observed damping constant data [92] and those calculated 

from the both models studied here for the temperature range indicated. We plot the 

damping constant calculated from both models (Eqs. 2.16 and 2.19) as a function of 

the temperature in Fig. 3.40. The observed damping constant data are also given in 

this figure.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.41 Temperature dependence of the relaxation time  calculated from Eq. 

(3.7) through the damping constant (Eqs. 2.16 and 2.19) for the LiNbO3. 

Experimental data     [92] for the relaxation time are also shown here. The solid 

line is a guide to eye. 
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Table 3.31 Values of the coefficients obtained by fitting   to the inverse relaxation 

time     according to Eq. (3.48) (
C

TT  ) for the LiNbO3. The  values were 

calculated from Eq. (3.7) through the damping constant (Eqs. 2.16 and 2.19), as 

indicated. 

 

Temperature 

Range (K) 
       

              

479-1103 
Eq. (2.16) 0.99 3108.36 -73967.64 

Eq. (2.19) 1.05 3077.68 -71412.89 

 

 

Then, we calculated the inverse relaxation time     or   as a function of temperature 

for the A1(TO1) mode in the LiNbO3 by Eq. 3.7 for both pseudospin-phonon coupled 

model and the energy fluctuation model. These calculated values of the inverse 

relaxation time   from both models were then fitted to the observed inverse 

relaxation time     [92] by a quadratic equation given as 

              
                                                            (3.48) 

 

We give the fitted parameters of Eq. 3.40 in Table 3.31. The inverse relaxation time  

  calculated from both pseudospin-phonon coupled model and the energy fluctuation 

model as a function of temperature is given in Fig. 3.41 for this lowest Raman mode 

of LN in the ferroelectric phase. The observed data of the inverse relaxation time     

are also given in this figure. Finally, we extracted the activation energy values   

calculated from Eq. 2.26. This calculation was performed by using the damping 

constant data calculated from both models studied here below the transition 

temperature for the A1(TO1) Raman mode in lithium niobate. Table 3.32 gives those 

values of the activation energy   below the transition temperature.  

 

 

Table 3.32 Values of the activation energy ( ) which were calculated using the 

models within the temperature range indicated for the ferroelectric phase (T<TC) of 

LiNbO3. CB
Tk value at TC= 1260 K is also given here. 

 

 

 
Damping Constant 

Activation 

Energy (meV) 

Temperature 

Range (K) CB
Tk (meV) 

Pseudospin-phonon 

Coupled Model 

 (Eq. 2.16) 

104 

479-1103 109 

Energy fluctuation 

Model (Eq. 2.19) 
107 
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The imaginary part of the dielectric permittivity can be related to the 

temperature and the  frequency dependence of the Raman-scattered intensity through 

the Kramer-Kronig relation. Ridah et al. [92] have fitted the observed Raman 

intensity of the A1(TO) phonon modes of LN to the dielectric permittivity which are 

given through the damped harmonic oscillator model (DHO) in order to deduce the 

temperature dependence of the frequency, damping constant and the oscillator 

strength below the transition temperature. They also fitted the Raman intensity to the 

dielectric permittivity which is given through the Debye relaxation model to extract 

the temperature dependence of the relaxation time and the relaxation strength in the 

ferroelectric phase of LN. Here, we used the Landau theory to calculate the 

temperature dependence of the order parameter for the A1(TO1) lowest Raman mode 

in LiNbO3 below the transition temperature TC=1260 K. We assumed that the 

observed frequency (squared) which was normalized, 
 

    
  ,  is proportional to the 

order parameter (squared)    through Eq. 3.44. We obtained from the fitting 

procedure the equation of the              as a function of the temperature      

(Table 3.27), as plotted in Fig. 3.37. This equation was replaced in Eq. 3.20 instead 

of     to get Eq. 3.46. Since we have the dielectric constant data [92] for this Raman 

mode below TC, we calculated the inverse dielectric susceptibility     from Eq. 3.45. 

In Fig. 3.38 we plotted      versus       . We then found a quadratic equation of 

this figure as a function of the  temperature. We extracted the fitted parameters of Eq. 

3.46 ( ,    and   )  by using the quadratic equation of     from Eq. 3.46. These 

fitted parameters were given in Table 3.28. We found    ,      and      

which describes a first order phase transition (Landau theory) for this A1(TO1) mode 

in lithium niobate. We then calculated    values of the lowest Raman mode in 

LiNbO3 by using Eq. 3.18 (Landau theory) in the ferroelectric phase. The 

proportionality between            and    (Eq. 3.44) was given by Eq. 3.47. From 

the fitting procedure we found the    and    values which were given in Table 3.29. 

We plotted both observed and calculated values of the order parameter (squared) as a 

function of       in Fig. 3.39 for this soft Raman mode in LN. As the temperature 

increases, values of the order parameters decrease linearly as expectrd from the mean 

field theory (Eq. 3.9).  

We then calculated the damping constant   of this Raman mode as a function of 

temperature by using the pseudospin-phonon coupled model (Eq. 2.16) and the 
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energy fluctuation model (Eq. 2.19). This calculation was performed by using    

values obtained from the Landau theory (Eq. 3.18). We fitted the observed data for 

the damping constant [92] and those calculated from the both models (Eqs. 2.16 and 

2.19) in the temperature ranges of 479 K<T<857 K and 920 K<T<1103 K, 

respectively. Values of the fitted parameters for the damping constant   (Eqs. 2.16 

and 2.19) were given in Table 3.30 in the temperature ranges indicated for the 

A1(TO1) mode in LN. The temperature dependence of the damping constant   (both 

observed and calculated) was given in Fig. 3.40. Both models seem to describe very 

well the observed behavior of the damping constant   of A1(TO1) mode in LiNbO3.  

These calculated values of the damping constant   from both models and those 

calculated values of the     from Landau theory were then used to calculate the 

inverse relaxation time   through Eq. 3.7. These calculated values of the   were then 

fitted to the observed data for the inverse relaxation time        according to Eq. 3. 

48. Values of the coefficients of Eq. 3. 48 were given in Table 3. 31. We give in Fig. 

3.41 the temperature dependence of the relaxation time     (both observed and 

calculated) for the LiNbO3 in the ferroelectric phase. Values of the observed 

dynamical quantities (frequeny, damping constant and relaxation time) were 

compared to those which we calculated from the Landau theory (frequency), the 

pseudospin-phonon coupled model and the energy fluctuation model (damping 

constant and relaxation time).  Finally, we extracted the activation energy   through 

Eq. 2.26 for the ferroelectric phase of LN. Damping constant   calculated from both 

models was used in Eq. 2.26. These   values were given in Table 3.32. 

 

 

 3.13 Summary 

 

 

 

The temperature and/or pressure dependence of the frequency  , order parameter  , 

damping constant  , relaxation time  , dielectric susceptibility   and the activation 

energy   of some ferroelectric materials such as KDP, BaTiO3, NaNO2, PbTiO3, 

PZT-x, CNO, SrZrO3 and LiNbO3 have been investigated in the ferroelectric and/or 

paraelectric phases in this thesis. We used the mean field theory (soft mode concept), 

the Landau theory, the pseudospin-phonon coupled model and the energy fluctuation 

model during this investigation of those ferroelectric materials mentioned above. In 
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Table 3.33 we summarize the calculated activation energy values of some 

ferroelectric materials studied here below the transition temperatures.  

 

 

 

Table 3.33 Values of the activation energy  , which were calculated within the 

temperature ranges indicated for some ferroelectric materials studied in this here. 

CB
Tk

 
values are also given for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ferroelectric 

Material 

Transition 

Temperature 

(K) 

Temperature 

Range (K) 

Damping 

Constant 

Activation 

Energy 

(eV) 

CB
Tk  

(eV) 

CNO 196 151-179 
Eq. 2.16 0.050 

0.017 
Eq. 2.19 0.050 

BaTiO3 222 204.7-217.7 
Eq. 2.16 0.570 

0.020 
Eq. 2.19 0.320 

PZT-x 

(x=0.45) 
657 644-656 

Eq. 2.16 2.470 
0.060 

Eq. 2.19 1.230 

LiNbO3 1260 479-1103 
Eq. 2.16 0.100 

0.110 
Eq. 2.19 0.100 

SrZrO3 1443 972-1321 
Eq. 2.16 0.130 

0.120 
Eq. 2.19 0.130 
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CHAPTER 4 

 

CONCLUSIONS 

 

 

We calculated the Raman frequency 


 and its damping constant 


 , pressure 

dependent, at 80 K and 90K constant temperatures in the ferroelectric mode of KDP. 

The “soft mode” concept was considered to predict the values of the Raman 

frequency. We used the “pseudospin-phonon coupled model” and the “energy 

fluctuation model” to calculate the damping constant values. Our prediction for the 

damping constant, as a function of pressure, can be compared with the experimental 

data when it is given in the literature. 

We also examined the damping constant, temperature dependent, in the paraelectric 

phase of KDP at constant 6.54 kbar pressure. Comparison of the observed damping 

constant data and those calculated from the two models described here show thwt, 

the  “energy fluctuation model” is more consistent than the “pseudospin-phonon 

coupled model”. 

 

The temperature dependent damping constant was calculated using the “pseudospin-

phonon coupled model” and the “energy-fluctuation model” for the hexagonal 

barium titanate. Our calculated  due to the pseudospin-phonon interactions can be 

compared with the experimental data below
0

T for this material. For calculation of the 

damping constant, the temperature dependence of the order parameter (bilinear 

coupling constant between acoustic and soft-optic modes) was obtained using the 

mean field theory. The order parameter increases and the damping constant decreases 

with decreasing temperature below
0

T , as expected. The relaxation time, temperature 

dependent, was also calculated using the values of the order parameter and of the 

damping constant below 
0

T
 
for the hexagonal barium titanate. 
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The relaxation time increases as the temperature decreases about K30  below 
0

T
 
in 

this ferroelectric material. The energy-fluctuation model gives better agreement with 

the experimental data. The exracted activation energy values are considerably large 

in comparison with the 
0

Tk
B  

near the transition temperature
0

T .  

 

The soft mode Raman frequency and its damping constant was calculated 

above 
0

T  in 
3

BaTiOh . The Raman frequency was calculated using the soft mode 

theory or the mean field theory. Calculation of the damping constant was performed 

using the pseudospin-phonon coupled model and the energy fluctuation model. It 

was obtained that the damping constant calculated from both models gives an 

adequate description of the observed behaviour above 
0

T  in 
3

BaTiOh . Our results 

show that the soft mode behaviour can be explained as the main mechanism of an 

order-disorder transition in 
3

BaTiOh . 

 

The damping constant was calculated as a function of temperature for the 

tetragonal cubic transition at around 450 K in BaTiO3. This calculation was 

performed for the tetragonal mode (308 cm
-1

) using the pseudospin-phonon and 

the energy fluctuation models. The experimental data for the Raman intensity 

were used and the expressions for the damping constant were fitted to the 

bandwidth of this mode in the ferroelectric and paraelectric phases of BaTiO3. 

Our results show that the pseudospin-phonon coupled model agrees well with the 

experimental data for the ferroelectric-paraelectric transition in BaTiO3. This 

indicates that the Raman intensity can be used as an order parameter to calculate 

the damping constant for the two models studied to predict the observed behavior 

of the tetragonal-cubic transition in BaTiO3. Our calculated damping constant was 

also compared with the experimental data from the other sources given in the 

literature. From this comparison, it was found that our calculated values also 

follow the same trend as the observed data for the ferroelectric-paraelectric 

transition in BaTiO3.  
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Raman frequencies of the tetragonal 310 cm
-1

 mode were analyzed at various 

temperatures for ferroelectric-paraelectric transition in BaTiO3. This temperature 

dependence of the Raman frequency was related to the spontaneous polarization in 

the tetragonal (ferroelectric) phase of BaTiO3. Using our mean field model, the 

temperature dependence of the dielectric susceptibility (dielectric constant) was 

calculated from the spontaneous polarization. It was found that the lattice mode 

studied here is associated with the ferroelectric-paraelectric phase transition in 

BaTiO3.  

Our predictions for the spontaneous polarization and the dielectric constant at various 

temperatures can be examined using the experimental data for thin films studied  

when they are available in the literature.   

 

The damping constant for the soft mode of E(1TO) was calculated at various 

temperatures using the pseudospin-phonon coupled model and the energy fluctuation 

model for the ferroelectric- paraelectric transition in PbTiO3. This calculation of the 

damping constant was performed by means of the Raman frequency of this mode 

associated with the order parameter in the ferroelectric PbTiO3 on the basis of both 

models. 

The damping constant predicted from both models for the soft mode studied, 

increases abruptly with increasing temperature as the TC is approached, as also 

observed experimentally in PbTiO3. Our predicted values of the damping constant 

for both models agree with the experimental data in the ferroelectric phase (T<TC) of 

a single crystal of PbTiO3. 

 

We used the isobaric definition of the “mode Grüneisen parameter” to predict 

the frequencies of longitudinal optic (LO) and transverse optic (TO) modes in 

sodium nitrite. The constant values of the “Grüneisen parameter” and the bulk 

volume data of NaNO2 was taken from the literature. Our calculated values of 

frequencies are in good agreement with the observed data. One can used this model 

to calculate the temperature dependence of the frequencies of some other 

ferroelectric materials. 
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Temperature dependence of the damping constant for the LA mode of PZT-

0.45 was calculated by using the pseudospin-phonon coupled model (Eq. 2.16) and 

energy fluctuation model (Eq. 2.19) in the ferroelectric phase. This calculation was 

performed by associating the observed Brillouin frequency shift of this LA mode 

with the order parameter (spontaneous polarization). The damping constant values 

calculated from both models increase very rapidly close to the transition temperature 

as observed experimentially for the LA mode of PZT-0.45 in the ferroelectric phase. 

Our calculated values of the damping constant are in good agreement with the 

observed data in the ferroelectric phase of lead zirconate titanate. We also extracted 

the activation energy value of this LA mode of PZT-0.45 close to the transition 

temperature and we compared with the 
CB

Tk value. 

 

We calculated the damping constant, relaxation time and the activation 

energy of the LA mode of PZT-0.45 above the transition temperature in the 

paraelectric phase (TC=657 K). We performed all these calculations by associating 

the observed Brillouin frequency shift to the order paremeter. We then used both the 

pseudospin-phonon coupled model and the energy fluctuation model to predict the 

damping constant, relaxation time and the activation energy of this LA mode of PZT-

0.45. Our results calculated from both models are in good agreement with the 

observed data of damping constant and the inverse relaxation time for the LA mode 

of PZT-0.45. 

 

The temperature dependences of the Raman frequency, damping constant and 

the activation energy were calculated for the Raman soft mode of Cd2Nb2O7 below 

the transition temperature (ferroelectric phase). Calculation of the Raman frequency 

was performed by using the mean field theory. We then predicted the damping 

constant values of this Raman mode by using both the pseudospin-phonon coupled 

model and the energy fluctuation model with the mean field theory. Our calculated 

values of the frequency and the damping constant are in good agreement with the 

observed data. Finally, we give the activation energy values of this Raman mode of 
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CNO in the temperature intervals studied here and yhey are compared with the 
CB

Tk

value. 

 

The temperature dependence of the damping constant was calculated by using 

the soft mode concept for the Eg mode of SrZrO3 in the ferroelectric phase. This 

calculation was performed by using the pseudospin-phonon coupled model and the 

energy fluctuation model. As the temperature approaches the transition temperature, 

damping constant increases very rapidly as expected. Although both models studied 

here seem to describe the observed behavior, the energy fluctuation model agrees 

better than the pseudospin-phonon coupled model. Finally, we calculated values of 

the activation energy from both models studied here and compared with the      

value of SrZrO3 crystal. 

 

The temperature dependence of the order parameter (squared) was calculated 

by using the Landau theory for the A1(TO1) Raman mode in LiNbO3. Our results 

indicate a first order phase transition for LiNbO3. The damping constant of this mode 

was then calculated using the pseudospin-phonon coupled model and the energy 

fluctuation model. The damping constant calculated from both models agrees well 

with the observed data. The inverse relaxation time of the A1(TO1) Raman mode was 

then calculated and compared with the observed data. This calculation was 

performed by using the damping constant predicted from both models and the values 

of the order parameter (squared) predicted from the Landau theory. We also 

calculated values of the activation energy from both models studied here for a given 

temperature range and they were compared with the      value of LiNbO3 crystal. 
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4.1 Summary 

 

The dynamical properties such as frequency  , order parameter  , damping 

constant  , relaxation time  , dielectric susceptibility  , and the activation energy   

of various ferroelectric materials have been investigated in a wide range of 

temperatures in this thesis. The frequency   was obtained to decrease as the 

transition temperatures approached in the ferroelectric phase while it increases above 

the transition temperatures for those ferroelectric materials studied here. The soft 

mode behavior of the frequency was considered  in both ferroelectric and paraelectric 

phases. 

The damping constant of those ferroelectric materials studied in this thesis, has been 

predicted by using the pseudospin-phonon coupled model and the energy fluctuation 

model below and/or above the transition temperatures. The damping constant 

increases very rapidly as the transition temperature is approached both in the 

ferroelectric and paraelectric phases. Those damping constant calculated from both 

models (at least one of them) agrees well with observed data. 

Values of the activation energy of those ferroelectric materials have been extracted 

as we have given in Table 3.33. These activation energy values were then compared 

with the       values. For example, values of the the activation energy calculated 

from both models are much greater than the       value (5 times) of CNO (TC=196 

K), while the activation energy value and the      value are in the same order for 

SrZrO3 (TC=1443 K) and LiNbO3 (TC=1260 K). Our results show that as the 

transition temperatures increase, the      values increase and it reaches the same 

order of the values of the activation energy calculated through both models (Table 3. 

33).  
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