

REBALANCING OF ASSEMBLY LINES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ECE SANCI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

JULY 2015

Approval of the thesis:

REBALANCING OF ASSEMBLY LINES

submitted by ECE SANCI in partial fulfillment of the requirements for the degree

of Master of Science in Industrial Engineering Department, Middle East

Technical University by,

Prof. Dr. Gülbin Dural Ünver

Dean, Graduate School of Natural and Applied Sciences _______________

Prof. Dr. Murat Köksalan

Head of Department, Industrial Engineering _______________

Prof. Dr. Meral Azizoğlu

Supervisor, Industrial Engineering Dept., METU _______________

Examining Committee Members:

Assist. Prof. Dr. Sakine Batun

Industrial Engineering Dept., METU _______________

Prof. Dr. Meral Azizoğlu

Industrial Engineering Dept., METU _______________

Assist. Prof. Dr. Banu Lokman

Industrial Engineering Dept., METU _______________

Assist. Prof. Dr. Mustafa Kemal Tural

Industrial Engineering Dept., METU _______________

Assist. Prof. Dr. Mustafa Alp Ertem

Industrial Engineering Dept., Cankaya University _______________

Date: July 24, 2015

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last Name: ECE SANCI

 Signature:

v

ABSTRACT

REBALANCING OF ASSEMBLY LINES

Sancı, Ece

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Meral Azizoğlu

July 2015, 82 pages

In this study, we consider an assembly line rebalancing problem. We assume that

there is a disruption on one or more workstations that makes the current solution

infeasible. After the disruption, we aim to find a rebalance so as to catch the trade-

off between the efficiency measure of cycle time and the stability measure of

number of tasks assigned to different workstations in the original and new

solutions.

We generate all nondominated objective vectors with respect to our efficiency and

stability measures. We develop two optimization algorithms: classical approach

and branch and bound algorithm. The results of our experiments show the

favorable behaviors of both algorithms and superiority of branch and bound

algorithm.

Keywords: Assembly Lines, Rebalancing, Branch and Bound Algorithm

vi

ÖZ

MONTAJ HATLARININ YENİDEN DENGELENMESİ

Sancı, Ece

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu

Temmuz 2015, 82 sayfa

Bu çalışmada, montaj hattı yeniden dengeleme problemini ele aldık. Bir ya da

birden fazla iş istasyonunda oluşan bir aksamanın, mevcut dengelemeyi

uygulanamaz duruma getirdiğini varsaydık. Aksamadan sonra, verimlilik

ölçütümüz olan çevrim süresi, kararlılık ölçütümüz olan eski ve yeni atamalarda

farklı istasyonlara atanan iş sayısının ödünleşimini düşünen, yeni bir denge

bulmayı hedefledik.

Verimlilik ve kararlılık ölçütlerimize göre tüm bastırılmamış çözümleri yarattık.

İki optimizasyon algoritması –klasik yaklaşım ve dal-sınır algoritması–

geliştirdik. Deneysel sonuçlarımız, algoritmaların başarılı davranışlarını ve dal-

sınır algoritmasının üstünlüğünü göstermektedir.

Anahtar Kelimeler: Montaj Hatları, Yeniden Dengeleme, Dal ve Sınır

Algoritması

vii

To our beloved Deniz

viii

ACKNOWLEDGMENTS

I wish to express my deepest gratitude to my supervisor Dr. Meral Azizoğlu for

the great contribution she made to this study with her brilliant ideas and broad

knowledge. I would like to thank to her also for being such a caring, supportive

and motivating supervisor from the first day we started to study together.

I would also like to thank to my family who always encourages me to pursue the

life I dream. They were always there to support me whenever I felt like this dream

was too challenging. Their love was the only resource I needed, and it was good

to know it was not a scarce resource at all.

I would like to present my thanks to many other people who contributed to this

study directly or indirectly starting from my dear friends Hannan Türeci, Ezgi

Doğan, Ahmet Kuzucuoğlu and Nusret Köse with whom I started to this journey

together. I would like to thank to Tolga Kalaycıoğlu for the support and

confidence he provided. I would like to express my thanks to all of my friends

from our lovely department Semih Ali Aksoy, Taha Yasin Çelik, Kağan Karataylı,

Nermin Haşimova, Cansu Yılmaz, Melike İşbilir, Emre Eryiğit, Deniz Sun, Can

Öz, Ekrem Duman, Fidem Koç, Başak Kaymaz. Also, I would like to thank to

Ufuk Işık and Nur Çöllü for bringing my life a new point of view. I would like to

thank to Anıl Yıldız, Berk Yıldız and Samet Söylemez for cheering me up when I

needed most during the difficult times.

I would like to thank to my dear assistant friends, especially to Utku Can Kunter,

for being the best roommate, and to Yasemin Limon, Gökhan Ceyhan and Gökçe

Özkan, for being the most supportive colleagues.

ix

I would like to express my gratitude once more to Dr. Meral Azizoğlu along with

Dr. İsmail Serdar Bakal, Dr. Sakine Batun and Dr. Melih Çelik for being such

thoughtful and helpful guides. It was my pleasure to assist them.

I would like to thank to Andaç Kürün for his help with coding and to Ali Cem

Randa and Vugar Abdullayev for their help with my doctoral application

processes.

Last but not least, I would like to thank to the examining committee members for

their valuable contributions to this study.

x

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ...vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS ... x

LIST OF TABLES .. xii

LIST OF FIGURES ..xiv

CHAPTERS

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 5

2.1 LITERATURE ON SIMPLE ASSEMBLY LINE BALANCING (SALB) .. 5

2.1.1 LITERATURE ON SALB-I .. 5

2.1.2 LITERATURE ON SALB-II... 6

2.2 LITERATURE ON ASSEMBLY LINE REBALANCING 7

2.2.1 LITERATURE ON REBALANCING PROBLEMS WITH

DETERMINISTIC TASK TIMES ... 7

2.2.2 LITERATURE ON REBALANCING PROBLEMS WITH

STOCHASTIC TASK TIMES ... 9

3. PROBLEM DEFINITION .. 11

4. CLASSICAL APPROACH .. 15

4.1 THE EXTREME NONDOMINATED OBJECTIVE VECTORS 15

4.2 ALL NONDOMINATED OBJECTIVE VECTORS 21

5. BRANCH AND BOUND ALGORITHM .. 27

5.1 BRANCHING SCHEME ... 27

5.2 LOWER BOUNDS .. 32

5.2.1 LOWER BOUND ON NUMBER OF DISRUPTED TASKS (𝐿𝐵𝑁𝐷) . 33

xi

5.2.2 LOWER BOUND ON CYCLE TIME (𝐿𝐵𝐶𝑇) 35

5.3 DOMINANCE RULE .. 39

5.4 THE INITIAL SET OF NONDOMINATED OBJECTIVE VECTORS 45

6. COMPUTATIONAL EXPERIMENT ... 51

6.1 DATA GENERATION .. 51

6.2 ANALYSIS OF THE RESULTS ... 53

6.2.1 EFFECT OF PARAMETERS ... 54

6.2.2 EFFECT OF MECHANISMS ... 55

6.2.3 MAIN EXPERIMENT .. 62

7. CONCLUSIONS .. 73

REFERENCES .. 75

APPENDIX .. 79

xii

LIST OF TABLES

TABLES

Table 6.1 Settings with 𝐾 and 𝐾′ 53

Table 6.2 The performances of 𝑁=35 and 𝑁=53, 𝑡𝑖~U[1,10] 55

Table 6.3 The performances of 𝑁=35 and 𝑁=53, 𝑡𝑖~U[1,50] 55

Table 6.4 The performance of the BAB algorithm with and without the

dominance rule, 𝑁=35 56

Table 6.5 The performance of the BAB algorithm with and without the

dominance rule, 𝑁=53 56

Table 6.6 The performance of the BAB algorithm with and without the lower

bounds, 𝑁=35 58

Table 6.7 The performance of the BAB algorithm with and without the lower

bounds, 𝑁=53 58

Table 6.8 The performance of the BAB algorithm with and without the upper

bounds, 𝑁=35 61

Table 6.9 The performance of the BAB algorithm with and without the upper

bounds, 𝑁=53 61

Table 6.10 The performance of the BAB algorithm with and without the upper

bounds, 𝑁=70 62

Table 6.11 The number of nondominated objective vectors when 𝐾=8 &

𝐾′=12, 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 63

Table 6.12 The number of nondominated objective vectors when 𝐾=5 & 𝐾′=6

and 𝐾=5 & 𝐾′=7 63

Table 6.13 The performance of the BAB algorithm and the CA when 𝐾=8 &

𝐾′=12, 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 66

Table 6.14 The performance of the BAB algorithm and the CA when 𝐾=5 &

𝐾′=6 and 𝐾=5 & 𝐾′=7 66

xiii

Table 6.15 The average CPU times of the BAB algorithm and the CA when

𝐾=8 & 𝐾′=12, 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 70

Table 6.16 The average CPU times of the BAB algorithm and the CA when

𝐾=5 & 𝐾′=6 and 𝐾=5 & 𝐾′=7 70

xiv

LIST OF FIGURES

FIGURES

Figure 4.1 The precedence network of the sample problem instance 18

Figure 4.2 The initial assignment for the sample problem instance 18

Figure 4.3 The optimal assignment for the efficient solution with the

smallest 𝐶𝑇 19

Figure 4.4 The optimal assignment for the efficient solution with the

smallest 𝑁𝐷 20

Figure 4.5 The efficient set for the sample problem instance 25

Figure 5.1 A representation of the BAB tree for the sample problem

instance 30

Figure 5.2 The representation of partial solution 𝑠1 31

Figure 5.3 The representation of partial solution 𝑠2 32

Figure 5.4 The representation of partial solution 𝑠 33

Figure 5.5 A representation of two partial solutions compared by the

dominance rule 39

Figure 5.6 A representation for the comparison between two partial

solutions with 𝐴1=𝐴2 41

Figure 5.7 A representation for the comparison between two partial

solutions with 𝐴1 ⊃ 𝐴2 42

Figure A.1 Precedence network of Günther et al. (1983) 79

Figure A.2 Precedence network of Kilbridge and Wester (1962) 80

Figure A.3 Precedence network of Hahn (1972) 81

Figure A.4 Precedence network of Tonge (1961) 82

1

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

An assembly line is a flow-oriented production system which consists of a

sequence of workstations performing repetitive tasks. Assembly lines are cost

efficient means of production which are more typical in the production of high

volume standardized commodities. An important problem arising in managing

assembly lines regards the decision of task assignments to workstations in an

efficient way. This problem is called the assembly line balancing (ALB) problem

which is a well-studied combinatorial optimization problem. Although there is a

vast amount of ALB studies in the literature, its research is still attractive. This is

mainly due to the fact that the structures of assembly lines change dynamically

with the requirements imposed by the changes in the industries. To illustrate,

although the first assembly lines were designed to produce a single identical

product, it is more common to produce customized products belonging to similar

product families on a single assembly line in today’s industries due to the changes

in the customer requirements. Thus, there are still important aspects of assembly

line balancing which researchers may find challenge.

The basic version of the ALB problem is first proposed by Salveson (1955). The

balancing problem considered in this study is named simple assembly line

balancing (SALB) problem which has several underlying assumptions such as:

 There is one homogeneous product to be assembled on the line.

2

 The line is paced with a fixed cycle time.

 The task times are deterministic.

 The only assignment restriction is due to the precedence relationships.

 The line has a serial layout with one-sided workstations.

 All workstations are equally equipped.

Considering this problem environment, Salveson (1955) proposed a mathematical

model which assigns tasks to workstations without exceeding the cycle time and

satisfying precedence relationships. After Salveson, ALB literature is extended by

relaxing these assumptions which results in different variants of the ALB

problems. Although different categorizations of the ALB problem are possible,

the most fundamental one is based on the objective functions considered, i.e., how

the efficiency of the balancing problem is defined. There are mainly two types of

the ALB problem regarding the objective functions: Type I ALB problem aims to

minimize the number of workstations for a given cycle time whereas Type II ALB

problem aims to minimize the cycle time for a given number of workstations.

Type I ALB problem is usually considered before the configuration of an

assembly line when the quantity of the product to be produced is planned. On the

other hand, Type II ALB problem usually arises for already configured assembly

lines with a new problem environment.

The assembly line rebalancing problem is rather a neglected problem despite its

practical importance. Most of the assembly lines are not installed from the scratch

but reconfigured according to the changing circumstances. Thus, it is more

convenient to rebalance the line by taking the initial configuration into account

rather than solving a balancing problem all over again each time one of the input

parameters changes, e.g. change in demand pattern, change in task times,

technological restrictions or workstation breakdowns. These changes are referred

3

to as disruptions. After any disruption, the stability aspect should be concerned

along with the efficiency of the assembly line, since costs associated with

operators training, quality assurance and equipment installation incur once a task

is removed from one workstation to another.

In this thesis, we consider a rebalancing problem where the tasks are already

assigned to workstations. A disruption occurs and affects one or more

workstations so that the tasks should be reassigned to the other workstations with

respect to our efficiency and stability measures. Our efficiency measure is the

cycle time and our stability measure is the number of disrupted tasks. We define a

task as disrupted if it has to be moved to a different workstation after disruption.

The problem we consider has a multi-criteria nature since it is possible to increase

the efficiency of the line, i.e., decrease the cycle time, with a sacrifice in the

stability measure, i.e., increase in the number of disrupted tasks. Our aim is to

generate all nondominated objective vectors with respect to these two measures.

We assume that the utility function of the decision maker is unknown or complex,

and the decision maker would make a comparison between all nondominated

objective vectors according to his/her preferences once they are all presented.

The related literature on assembly line rebalancing problem is very scarce and the

existing studies propose only approximate solution procedures. The lack of exact

solution procedures along with the complexity of the problem have motivated us

to develop solution approaches for the rebalancing problem. We present two exact

solution procedures: the classical approach which sequentially generates all

nondominated objective vectors and the branch and bound algorithm which

simultaneously generates all nondominated objective vectors. The superiority of

the branch and bound algorithm is shown in the computational study, and the

classical approach remains as an attractive alternative in particular when a

decision maker prefers a solution in a defined space.

The organization of the thesis is as follows: In Chapter 2, we review the related

literature on the assembly line balancing and rebalancing problems. In Chapter 3,

4

we define the problem and give the associated mixed integer linear program. We

present the classical approach and the branch and bound algorithm in Chapter 4

and Chapter 5, respectively. In Chapter 6, we discuss the results of our

preliminary and main experiments. In Chapter 7, we give our conclusion remarks

and point out some future study directions.

5

CHAPTER 2

LITERATURE REVIEW

2. LITERATURE REVIEW

In this section, we first review simple assembly line balancing (SALB) literature

and then discuss the previous studies on the assembly line rebalancing problems.

2.1 LITERATURE ON SIMPLE ASSEMBLY LINE BALANCING (SALB)

The SALB studies are of two types: Type I (SALB-I) and Type II (SALB-II). The

Type I problem minimizes the number of workstations subject to the constraint

that the cycle time is not exceeded. The Type II problem minimizes the cycle time

subject to the constraint that the number of workstations is not exceeded.

2.1.1 LITERATURE ON SALB-I

SALB-I is an extensively studied problem with many variants. The problem is

shown to be NP-hard in the strong sense (see Baybars,1986). Many exact and

heuristic procedures are developed for its solution. Among the exact algorithms,

branch and bound algorithms play a dominant place. The most prominent branch

and bound algorithms developed for the SALB problem are due to Johnson

(1988), Nourie and Venta (1991), Hoffmann (1992) and Scholl and Klein (1997,

1999). The algorithm presented in Johnson (1988), named FABLE, uses task-

oriented depth first search strategy while incorporating several lower bounds and

dominance rules. Nourie and Venta (1991) develop an algorithm called OptPack

6

with a compact tree structure which stores partial solutions. The algorithm called

EUREKA is developed by Hoffmann (1982). EUREKA uses a heuristic along

with a branch and bound algorithm that explores either by assigning tasks first to

the first workstations or first to the last workstations. A branch and bound

algorithm called SALOME is developed in Scholl and Klein (1997, 1999).

SALOME uses a bidirectional search with effective lower bounds and dominance

rules. The computational experiments performed for 269 problem instances show

that SALOME is superior to FABLE and EUREKA. Indeed, SALOME remained

the best exact algorithm for SALB-I for years. Sewell and Jacobson (2012)

present a new algorithm which outperforms SALOME. They refer this algorithm

as the branch, bound and remember algorithm. Sewell and Jacobson (2012)’s

algorithm uses cyclic best first search strategy, good lower bounds and a memory

based dominance rule. Morrison et al. (2014) extend the study of Sewell and

Jacobson (2012) with a new backtracking procedure and report superior results.

2.1.2 LITERATURE ON SALB-II

Almost all SALB-II studies in the literature use successive solutions of the SALB-

I problem. Different enumeration techniques for these solution procedures are

utilized which are mainly based on iterating for a trial cycle time between a lower

bound and an upper bound on the cycle time. One of these enumeration

techniques is the lower bound method in which the cycle time is successively

increased by one starting from the lower bound until a feasible assignment is

obtained. The direct procedures for the SALB-II problems are due to Scholl

(1994) and Klein and Scholl (1996). The branch and bound algorithm presented

by Scholl (1994) employs a task-oriented depth first strategy along with several

lower bounds and dominance rules. Klein and Scholl (1996) develop an algorithm

based on SALOME and adapt it for directly solving SALB-II. They use an

efficient enumeration technique that employs several lower and upper bounding

schemes along with several dominance rules. They test the performance of their

7

algorithm on 302 problem instances and they compare the results with the solution

procedures incorporating the solutions of SALB-I which are based on FABLE,

EUREKA and SALOME. They also compare their results with Scholl (1994). The

computational study shows the superiority of their procedure.

For extensive review of the assembly line balancing problem, we refer the reader

to the survey study of Battaia and Dolgui (2013).

2.2 LITERATURE ON ASSEMBLY LINE REBALANCING

Unlike to the SALB problem, there are only a few studies on rebalancing of

assembly lines in the literature. The rebalancing studies on assembly lines can be

divided into two categories regarding to the nature of the task times.

2.2.1 LITERATURE ON REBALANCING PROBLEMS WITH

DETERMINISTIC TASK TIMES

All deterministic studies consider heuristic approaches with different efficiency

and stability measures. Those studies are due to Grangeon et al. (2011), Yang et

al. (2013) and Zha and Yu (2014).

Grangeon et al. (2011) study a real life mixed model rebalancing problem in a

French automotive firm. The tasks are assigned to workstations each month

according to the master sequencing which includes the number of vehicles to be

produced for each model. The task assignments done for a particular month may

violate some of the constraints for the following months so that the line should be

rebalanced. Grangeon et al. (2011) propose a heuristic that has three phases: The

first phase aims to obtain a feasible solution, the second phase aims to decrease

the number of workstations and the third phase aims to smooth the workload

while transferring a minimum number of tasks. They apply their heuristic to five

different industrial instances.

8

Yang et al. (2013) consider a mixed model rebalancing problem. Their problem is

to reassign the tasks to the workstations for a given cycle time when demand

structure or technological requirements change. As efficiency measures, they

consider the number of workstations and workload variation of each workstation

for different models. As stability measure, they take rebalancing cost that is

defined as the total processing time of reassigned tasks. To generate the

approximate set of nondominated objective vectors with respect to the efficiency

and stability measures, they present a multi-objective genetic algorithm. The

efficiency of the algorithm is improved by a local search procedure. They test the

performance of their algorithm on 23 representative mixed model assembly line

instances where the assembly line has to be rebalanced due to the change in

demand structure of the models. They report the objective vectors obtained for

each of the 23 instances along with the CPU times of their algorithm.

Zha and Yu (2014) propose a hybrid approach for balancing and rebalancing

single model U-shaped assembly lines. Their solution procedure combines ant

colony optimization algorithm with filtered beam search in order to minimize the

total of moving cost of machines and labor costs and minimize the walking time

of operators. The algorithm can be used both for the balancing and rebalancing

problem such that moving cost is simply zero for the balancing problem and

different than zero for the rebalancing problem. Their tests on 25 benchmark

problems indicate that the algorithm performs quite efficient when compared to

the existing solution procedures developed for the U-shaped assembly lines.

9

2.2.2 LITERATURE ON REBALANCING PROBLEMS WITH

STOCHASTIC TASK TIMES

The rebalancing studies with stochastic task times also consider heuristic

approaches with different efficiency and stability measures. Those studies are due

to Gamberini et al. (2006), Gamberini et al. (2009) and Celik et al. (2014).

Gamberini et al. (2006) consider a rebalancing problem with a single model. They

consider a problem environment where the assembly line has to be rebalanced for

a given cycle time after some changes occurred in the input parameters. They

define their efficiency measure as the unit total expected completion cost and

stability measure as the tasks reassignment. They assume that the unit total

expected completion cost is the sum of the total labor cost and the total expected

incompletion cost using the idea of Kottas and Lau (1973). Moreover, they

introduce an index called the task similarity factor in order to measure the

similarity between the initial and the new balances. They propose a multi-

objective heuristic algorithm in order to generate an approximate set of

nondominated objective vectors. Their solution procedure integrates the well-

known heuristic procedure Kottas and Lau (1973) developed for solving

stochastic assembly line balancing problems and the technique for order

preference by similarity to ideal solution (TOPSIS) proposed by Hwang and Yoon

(1981). In the computational study conducted, they consider the technological

changes in the product assembled resulting in an altered precedence network.

They compare the performance of their algorithm with Kottas and Lau (1973) on

2160 test problems and they report that they obtain improved results for both of

the objectives in more than half of the problems and a reduction in either of the

objectives is achieved in the rest of the problems.

Gamberini et al. (2009) consider the same problem context stated in Gamberini et

al. (2006). They propose a multiple single-pass heuristic algorithm and a multi-

objective genetic algorithm (MOGA) in order to find a representative Pareto front.

In the multiple single-pass heuristic, they use four different single-pass heuristics

10

mainly differing in how the attribute related to the completion cost is defined.

They fine tune the multiple single-pass heuristic experimenting on 240 problems

and compare their algorithm with the MOGA. For all of the problems, the

solutions obtained by the MOGA are dominated by those of the multiple single-

pass heuristic. They also compare the performance of the multiple single-pass

algorithm with Kottas and Lau (1973) and Gamberini et al. (2006) on a single

case study and report outperforming behavior of the multiple single-pass

algorithm.

Celik et al. (2014) propose an ant colony optimization algorithm to solve the

rebalancing problem for single model U-shaped assembly lines. They consider

only a single objective function called the total cost of rebalancing which includes

task transposition costs, workstation opening or closing costs and workstation

operating cost over a definite planning horizon. They conduct experiments on

1320 test problems to test the performance of their algorithm under different

problem settings.

The most closely related published work to ours is Gamberini et al. (2006)’s

study. We take the number of workstations as parameters whereas they decide on

the number of workstations. Both their study and our study aim to generate the set

of nondominated objective vectors. We generate the set exactly whereas their

generation process is approximate.

11

CHAPTER 3

PROBLEM DEFINITION

3. PROBLEM DEFINITION

We consider 𝑁 tasks that are already assigned to 𝐾′ workstations. A disruption

occurs and affects a defined set of workstations. After the disruption, the tasks are

to be assigned to the remaining workstations, i.e., nondisrupted workstations. We

let 𝐾 denote the set of these nondisrupted workstations that are the workstations in

the new configuration.

We assume that there is a single product that is to be assembled. The assembly

line is serial with one-sided workstations. The parameters after disruptions are

predefined and are not subject to any change, i.e., the system is deterministic and

static. All tasks can be assigned to all workstations; however, there is a penalty of

assignment if any task is assigned to a different workstation than its original.

We assume that the initial configuration is already known. We use terms ‘initial’,

‘original’ and ‘old’ configuration, assignment and workstation, interchangeably.

The configuration after the disruption is a decision and is referred to as new

configuration, assignment and workstation, as sometimes simply configuration,

assignment and workstation.

The processing time of task 𝑖 is defined as 𝑡𝑖 and 𝐼𝑃𝑖 is the immediate

predecessors set of task 𝑖. The processing of task 𝑖 can start only when all tasks in

𝐼𝑃𝑖 are complete.

12

We use binary variable 𝑥𝑖𝑘 to explain our workstation assignment decisions where

𝑥𝑖𝑘 = {
1, if task 𝑖 is assigned to workstation 𝑘 in the new assignment
0, otherwise

for 𝑖=1,...,𝑁 and 𝑘=1,...,𝐾

Note 𝑥𝑖𝑘’s explain the new configuration.

We let 𝐶𝑇 be the cycle time. 𝐶𝑇 corresponds to the maximum workload of overall

workstations. The workload of a particular workstation is the sum of the

processing times of the tasks assigned to that workstation.

We let 𝑁𝐷 be the number of disrupted tasks.

We define the rebalancing problem with the following two criteria:

 Minimize 𝐶𝑇

 Minimize ∑ ∑ 𝑐𝑖𝑘𝑥𝑖𝑘
𝐾
𝑘=1

𝑁
𝑖=1 = 𝑁𝐷

where 𝑐𝑖𝑘 = {
1, if task 𝑖 is not assigned to workstation 𝑘 in the old assignment
0, otherwise

for 𝑖=1,...,𝑁 and 𝑘=1,...,𝐾

Hence, ∑ ∑ 𝑐𝑖𝑘𝑥𝑖𝑘
𝐾
𝑘=1

𝑁
𝑖=1 can be explained as the number of tasks assigned to

different workstations in the new assignment (assignment that considers the effect

of disruption) and the old assignment (assignment that was used before the

disruption).

Our constraint set is as defined below:

∑ 𝑥𝑖𝑘
𝐾
𝑘=1 = 1 𝑖 = 1, … , 𝑁 (1)

∑ 𝑡𝑖𝑥𝑖𝑘
𝑁
𝑖=1 ≤ 𝐶𝑇 𝑘 = 1, … , 𝐾 (2)

13

∑ 𝑘 𝑥𝑖𝑘
𝐾
𝑘=1 ≤ ∑ 𝑘 𝑥𝑗𝑘

𝐾
𝑘=1 𝑗 = 1, … , 𝑁 𝑎𝑛𝑑 ∀𝑖 ∈ 𝐼𝑃𝑗 (3)

𝑥𝑖𝑘 = 0 𝑜𝑟 1 𝑖 = 1, … , 𝑁 𝑎𝑛𝑑 𝑘 = 1, … , 𝐾 (4)

Constraint Set (1) ensures that each task is assigned. Constraint Set (2) defines the

maximum workload, i.e., 𝑀𝑎𝑥𝑘{∑ 𝑡𝑖𝑥𝑖𝑘𝑖 }. The precedence relations are controlled

by Constraint Set (3). According to Constraint Set (3), the index of the

workstation that task 𝑗 is assigned is no smaller than those of its immediate

predecessors. The assignment restrictions are given by Constraint Set (4).

We hereafter refer to Constraint Sets (1) through (4) as 𝑥 ∈ 𝑋.

A solution 𝑠 in set 𝑋 is called efficient if there is no other solution 𝑡 in set 𝑋 with

𝐶𝑇𝑡 ≤ 𝐶𝑇𝑠 and 𝑁𝐷𝑡 ≤ 𝑁𝐷𝑠 with strict inequality holding at least once. The

resulting objective vector (𝐶𝑇𝑠, 𝑁𝐷𝑠) is said to be nondominated. Assume that

there is a solution 𝑡 such that (𝐶𝑇𝑡, 𝑁𝐷𝑡) ≤ (𝐶𝑇𝑠, 𝑁𝐷𝑠), i.e., 𝐶𝑇𝑡 ≤ 𝐶𝑇𝑠and

𝑁𝐷𝑡 < 𝑁𝐷𝑠 or 𝐶𝑇𝑡 < 𝐶𝑇𝑠and 𝑁𝐷𝑡 ≤ 𝑁𝐷𝑠. In such a case we say solution 𝑡

dominates solution 𝑠 and the objective vector (𝐶𝑇𝑡, 𝑁𝐷𝑡) dominates the objective

vector (𝐶𝑇𝑠, 𝑁𝐷𝑠).

Our aim is to generate the set of nondominated objective vectors together with

their corresponding efficient solutions. Our criteria 𝐶𝑇 and 𝑁𝐷 may be conflicting

in the sense that reducing 𝐶𝑇 may lead to increases in 𝑁𝐷 and vice versa.

In the next two chapters, we present our procedures that return the exact set of

nondominated objective vectors. Chapter 4 presents the classical approach that

solves the problem sequentially, via integer models. Chapter 5 discusses the

branch and bound algorithm that generates all nondominated objective vectors

using a single tree.

14

15

CHAPTER 4

CLASSICAL APPROACH

4. CLASSICAL APPROACH

In this chapter, we first discuss the generation of extreme nondominated objective

vectors and then present the generation of all nondominated objective vectors.

4.1 THE EXTREME NONDOMINATED OBJECTIVE VECTORS

Consider the following problem:

Min 𝐶𝑇

s.t. 𝑥 ∈ 𝑋

Let 𝐶𝑇∗ be its optimal 𝐶𝑇 value.

𝐶𝑇∗ is a valid lower bound on the 𝐶𝑇 values of all efficient solutions. However,

any optimal solution to the above problem may not be efficient as there may exist

alternative solutions having smaller 𝑁𝐷 values.

Among all alternative optimal solutions to the Min 𝐶𝑇 s.t. 𝑥 ∈ 𝑋 problem, the one

having minimum 𝑁𝐷 value can be found by setting 𝐶𝑇 = 𝐶𝑇∗ and solving the

below problem:

16

Min 𝑁𝐷

s.t. 𝑥 ∈ 𝑋

 𝐶𝑇 = 𝐶𝑇∗

Hence, the efficient solution with 𝐶𝑇 value of 𝐶𝑇∗ can be found in two steps:

1. Solve Min 𝐶𝑇 s.t. 𝑥 ∈ 𝑋.

Let 𝐶𝑇∗ be the solution.

2. Solve Min 𝑁𝐷 s.t. 𝑥 ∈ 𝑋 and 𝐶𝑇 = 𝐶𝑇∗.

Instead of solving two optimization problems, one can modify the objective

function as 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷 for a sufficiently small value of 𝜀𝑁𝐷. The resulting

problem is

Min 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷

s.t. 𝑥 ∈ 𝑋

𝜀𝑁𝐷 should be set small enough that the cycle time should not increase even for

the largest possible value of the 𝑁𝐷 value, which is 𝑁. This follows

𝐶𝑇∗ + 𝜀𝑁𝐷𝑁 ≤ 𝐶𝑇∗ + 1 + 𝜀𝑁𝐷𝑁𝐷𝑚𝑖𝑛 (1)

where 𝑁𝐷𝑚𝑖𝑛 is the smallest possible value of 𝑁𝐷, i.e., the number of tasks on the

disrupted workstations.

Rearranging (1) gives

𝜀𝑁𝐷(𝑁 − 𝑁𝐷𝑚𝑖𝑛) ≤ 1,

𝜀𝑁𝐷 ≤
1

𝑁 − 𝑁𝐷𝑚𝑖𝑛

In our experiments, we set 𝜀𝑁𝐷 to
1

𝑁−𝑁𝐷𝑚𝑖𝑛+1
 and solve the following problem:

17

(𝑃1) Min 𝐶𝑇 +
1

𝑁−𝑁𝐷𝑚𝑖𝑛+1
𝑁𝐷

 s.t. 𝑥 ∈ 𝑋

Note that the optimal solution to 𝑃1 is an efficient solution with the smallest 𝐶𝑇

value, and the resulting objective vector (𝐶𝑇, 𝑁𝐷) is nondominated.

On the other hand, the efficient solution with the smallest 𝑁𝐷 value can be found

through the following problem:

(𝑃2) Min 𝐶𝑇

 s.t. 𝑥 ∈ 𝑋

 𝑁𝐷 = 𝑁𝐷∗

Note that 𝑁𝐷∗ is the number of tasks over all disrupted workstations, hence it is

known beforehand. This follows, an efficient solution with the smallest 𝑁𝐷 value

can be found using a single optimization problem, 𝑃2.

We provide an example to illustrate our decisions for 𝑃1 and 𝑃2. We take the data

set from Rosenberg and Ziegler (1992) which is commonly used in the assembly

line balancing literature. The sample instance has 25 tasks and the precedence

network is as given below along with the task times:

18

Figure 4.1 The precedence network of the sample problem instance

Let us assume that there are six workstations in the initial configuration, i.e., 𝐾′=6

and the tasks are assigned to the workstations so that the cycle time is minimized.

We assume that a Type II simple assembly line balancing problem is solved in

order to find the initial optimal assignment, i.e., the initial configuration is optimal

for the single objective of cycle time minimization. The initial solution of this

problem is given in the following figure:

Figure 4.2 The initial assignment for the sample problem instance

19

The cycle time of the initial configuration is 21.

Now, assume that a disruption occurs on the workstations 2 and 3 and the

assembly line needs to be rebalanced.

Let us solve 𝑃1 and find the efficient solution with the smallest cycle time value.

Before solving the problem, we should find the value of 𝜀𝑁𝐷. Note that 𝑁𝐷𝑚𝑖𝑛=8

since there are eight tasks assigned to the workstation 2 and 3 initially. Hence,

𝜀𝑁𝐷 =
1

𝑁 − 𝑁𝐷𝑚𝑖𝑛 + 1
=

1

25 − 8 + 1
≅ 0.056

When 𝑃1 is solved with 𝜀𝑁𝐷 value of 0.056, the resulting nondominated objective

vector is (𝐶𝑇, 𝑁𝐷)=(32,12) and the optimal assignment is as follows:

Figure 4.3 The optimal assignment for the efficient solution with the smallest 𝐶𝑇

Note that tasks 5, 6, 7, 8, 9, 11, 12 and 13 are the eight tasks that should be

assigned to a different workstation other than their original workstations. In

addition to these eight tasks, tasks 10, 21, 22 and 23 are also disrupted in this

efficient solution.

Let us also find an efficient solution with the smallest 𝑁𝐷 value by solving 𝑃2.

The resulting nondominated objective vector is (𝐶𝑇, 𝑁𝐷)=(37,8) and the optimal

assignments are as follows:

20

Figure 4.4 The optimal assignment for the efficient solution with the smallest 𝑁𝐷

Note that tasks 5, 6, 7, 8, 9, 11, 12 and 13 are the only tasks that are disrupted in

this solution. The other tasks remain in their original workstations.

Through the optimal solutions of 𝑃1 and 𝑃2, two efficient solutions with the

smallest possible objective function values are found. We call these solutions as

extreme efficient solutions and the corresponding objective vectors as extreme

nondominated objective vectors.

The problem 𝑃2 can be defined in a more efficient way using only the disrupted

tasks. Recall that the optimal solution 𝑃2 keeps the nondisrupted tasks at their

original workstations.

The alternative formulation is as given below:

The parameters are set only for the tasks of the disrupted workstations. We let 𝐷

denote the set of disrupted tasks and use the following parameters:

𝑤𝑘= workload of workstation 𝑘 in the original configuration (sum of the task

times on workstation 𝑘 in the original configuration)

𝐸𝑖= the earliest workstation that task 𝑖 can be assigned (the latest workstation that

resides any nondisrupted predecessor of task 𝑖)

𝐿𝑖= the latest workstation that task 𝑖 can be assigned (the earliest workstation that

resides any nondisrupted successor of task 𝑖)

21

The decision variables are also defined only for the disrupted tasks:

𝐶𝑇= cycle time

𝑥𝑖𝑘 = {
1, if task 𝑖 is assigned to workstation 𝑘 in the new assignment
0, otherwise

for 𝑖=1,...,|𝐷| and 𝑘=1,...,𝐾

The objective function is the minimization of the cycle time.

Min 𝐶𝑇

The constraints are defined only for the disrupted tasks.

 ∑ 𝑥𝑖𝑘 = 1 𝑖 = 1, … , |𝐷|
𝐿𝑖
𝑘=𝐸𝑖

∑ 𝑡𝑖𝑥𝑖𝑘 + 𝑤𝑘 ≤ 𝐶𝑇 𝑘 = 1, … , 𝐾
|𝐷|
𝑖=1

 ∑ 𝑘𝑥𝑖𝑘 ≤ ∑ 𝑘𝑥𝑗𝑘 𝑗 = 1, … , |𝐷| 𝑎𝑛𝑑 𝑖 ∈ 𝐼𝑃𝑗
𝐿𝑗

𝑘=𝐸𝑗

𝐿𝑖
𝑘=𝐸𝑖

𝑥𝑖𝑘 = 0 𝑜𝑟 1 𝑖 = 1, … , |𝐷| 𝑎𝑛𝑑 𝑘 = 1, … , 𝐾

4.2 ALL NONDOMINATED OBJECTIVE VECTORS

An optimal solution to the following constrained optimization problem is efficient

(see Haimes et al. (1971) for the bicriteria problem):

Min 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷

 s.t. 𝑥 ∈ 𝑋

 𝑁𝐷 ≤ 𝑛𝑑

where 𝑛𝑑 is between 𝑁𝐷𝑚𝑖𝑛 and 𝑁.

22

We use 𝜀𝑁𝐷 =
1

𝑛𝑑−𝑁𝐷𝑚𝑖𝑛+1
 in place of 𝜀𝑁𝐷 =

1

𝑁−𝑁𝐷𝑚𝑖𝑛+1
 , as the number of

disrupted tasks is now bounded by 𝑛𝑑.

Procedure 1 below generates all nondominated objective vectors by varying the

𝑛𝑑 value between 𝑁 and 𝑁𝐷𝑚𝑖𝑛.

Procedure 1. Generating All Nondominated Objective Vectors

Step 0. Find 𝑁𝐷𝑚𝑖𝑛= the number of tasks on disrupted workstations.

 𝑟 = 0

 𝑛𝑑 = 𝑁

 𝜀𝑁𝐷 =
1

𝑛𝑑−𝑁𝐷𝑚𝑖𝑛+1

Step 1. Solve the following problem

Min 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷

 s.t. 𝑥 ∈ 𝑋

 𝑁𝐷 ≤ 𝑛𝑑

 Let the optimal solution be (𝐶𝑇∗, 𝑁𝐷∗).

 𝑟 = 𝑟 + 1

Step 2. If 𝑁𝐷∗ = 𝑁𝐷𝑚𝑖𝑛, then stop.

 Otherwise, let 𝑛𝑑 = 𝑁𝐷∗ − 1.

 Update 𝜀𝑁𝐷 for the updated 𝑛𝑑 value, 𝜀𝑁𝐷 =
1

𝑛𝑑−𝑁𝐷𝑚𝑖𝑛+1
.

 Go to Step 1.

23

Note that each step of the above procedure generates a nondominated objective

vector together with its efficient solution. The procedure terminates when all 𝑟

nondominated objective vectors are reached.

The following example illustrates the execution of Procedure 1.

Example 4.1: We use the instance given in Figure 4.1.

Step 0. We initialize the values of 𝑁𝐷𝑚𝑖𝑛, 𝑟, 𝑛𝑑 and 𝜀𝑁𝐷.

𝑁𝐷𝑚𝑖𝑛=8

𝑟=0

𝑛𝑑=25

𝜀𝑁𝐷 =
1

25−8+1
≅0.056

Step 1. We solve the model

Min 𝐶𝑇 + 0.056 𝑁𝐷

 s.t. 𝑥 ∈ 𝑋

 𝑁𝐷 ≤ 25

The optimal solution is (𝐶𝑇∗, 𝑁𝐷∗) = (32,12)

𝑟 = 1

Step 2. We update the value of 𝑛𝑑 and 𝜀𝑁𝐷.

𝑛𝑑=12-1=11

𝜀𝑁𝐷 =
1

11−8+1
=0.25

24

Step 1. We solve the model

Min 𝐶𝑇 + 0.25𝑁𝐷

 s.t. 𝑥 ∈ 𝑋

 𝑁𝐷 ≤11

The optimal solution is (𝐶𝑇∗, 𝑁𝐷∗) = (33,11)

𝑟 = 2

Step 2. We update the value of 𝑛𝑑 and 𝜀𝑁𝐷.

𝑛𝑑=11-1=10

𝜀𝑁𝐷 =
1

10−8+1
=0.33

Step 1. We solve the model

Min 𝐶𝑇 + 0.33𝑁𝐷

 s.t. 𝑥 ∈ 𝑋

 𝑁𝐷 ≤10

The optimal solution is (𝐶𝑇∗, 𝑁𝐷∗) = (34,9)

𝑟 = 3

Step 2. We update the value of 𝑛𝑑 and 𝜀𝑁𝐷.

𝑛𝑑=9-1=8

𝜀𝑁𝐷 =
1

8−8+1
=1

25

Step 1. We solve the model

We solve the model

Min 𝐶𝑇 + 𝑁𝐷

 s.t. 𝑥 ∈ 𝑋

 𝑁𝐷 ≤8

The optimal solution is (𝐶𝑇∗, 𝑁𝐷∗) = (37,8)

𝑟 = 4

Step 2. 𝑁𝐷∗ = 𝑁𝐷𝑚𝑖𝑛, then stop.

The four nondominated objective vectors can be presented in the objective space

as in Figure 4.5.

Figure 4.5 The efficient set for the sample problem instance

There can be at most 𝑁 − 𝑁𝐷𝑚𝑖𝑛 + 1, hence 𝑁 nondominated objective vectors,

hence the procedure iterates polynomial number of times.

26

We now discuss the complexity of generating all nondominated objective vectors.

The problem of generating the efficient solution with the smallest 𝐶𝑇 value, i.e.,

Min 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷 s.t. 𝑥 ∈ 𝑋 reduces to the Type II assembly line balancing

(ALB) problem when 𝜀𝑁𝐷 = 0. Type II ALB problem is strongly NP-hard (see

Baybars,1986) so is the problem of generating even a single nondominated vector.

We hereafter refer to Procedure 1 as the classical approach, CA.

27

CHAPTER 5

BRANCH AND BOUND ALGORITHM

5. BRANCH AND BOUND ALGORITHM

The complexity of our problem justifies the use of implicit enumeration

techniques to arrive at the set of exact nondominated objective vectors. We

present a branch and bound (BAB) algorithm that simultaneously generates all

nondominated objective vectors.

We start with an approximate set of nondominated objective vectors. We update

this initial set whenever a nondominated objective vector is found, i.e., we include

the nondominated objective vector found to the set and we remove the objective

vectors from the set if any of them is dominated by this newly added

nondominated objective vector. We let Incumbent Set, 𝐼𝑆 denote the current set of

nondominated objective vectors. 𝐼𝑆 gives the exact set of nondominated objective

vectors and one efficient solution corresponding to each nondominated objective

vector when the BAB algorithm terminates.

5.1 BRANCHING SCHEME

We start with a solution with all empty workstations. Starting from the first

workstation, we form the complete solution each time adding a task to the current

partial solution. Given a partial assignment with the first 𝑘 workstations, we let 𝑆

be the set of not yet assigned, i.e. unassigned, tasks. We say a task in 𝑆 is eligible

for the current workstation if all predecessor tasks are already assigned.

28

The tasks are indexed such that 𝑖<𝑗 implies task 𝑖 is not a successor of task 𝑗.

While adding a task to the current workstation, we only consider the tasks having

higher indices than the last assigned task. Our aim is to avoid the duplication of

the partial solutions.

For each selected task, we open branches from the task nodes to each higher

indexed eligible task and branch to a close node that represents closing the current

workstation. If a close node is selected, we open branches using the result of the

following theorem:

Theorem: There exists an efficient solution with no empty workstations.

Proof: Consider a solution 𝑠 in which workstation 𝑘 is empty and assume task 𝑞

was assigned to workstation 𝑘 in the original assignment. Let 𝑘𝑞 be the

workstation index of task 𝑞 in the new solution. Two cases arise:

 Case 1: 𝑘𝑞 < 𝑘

Case 2: 𝑘𝑞 > 𝑘

Case 1: 𝑘𝑞 < 𝑘

Let 𝑆𝑞𝑘 be the set of successors of task 𝑞 that are assigned to workstations 𝑘𝑞,

𝑘𝑞+1,..., 𝑘-1 in the new assignment. Two subcases arise:

Case 1.1: 𝑆𝑞𝑘 = ∅

Case 1.2: 𝑆𝑞𝑘 ≠ ∅ and task 𝑠𝑞 ∈ 𝑆𝑞𝑘 be a task with no successor in

workstations 𝑘𝑞, 𝑘𝑞+1,..., 𝑘-1.

Case 1.1: 𝑆𝑞𝑘 = ∅

Taking task 𝑞 from 𝑘𝑞 and assigning it to workstation 𝑘 decreases 𝑁𝐷 by 1 and

any single shift never increases 𝐶𝑇. Hence, 𝑠 cannot be efficient.

29

Case 1.2: 𝑆𝑞𝑘 ≠ ∅

Taking task 𝑠𝑞 from its current workstation and assigning it to workstation 𝑘

never increases 𝑁𝐷, as 𝑠𝑞 was already disrupted. Moreover, such a single shift

never inceases 𝐶𝑇. Hence, the new schedule is no worse and 𝑠 cannot be a unique

efficient solution.

Case 2: 𝑘𝑞 > 𝑘

Let 𝑃𝑞𝑘 be the set of predecessors of task 𝑞 that are assigned to workstations 𝑘+1,

𝑘+2,..., 𝑘𝑞 in the new assignment. Two cases arise:

 Case 2.1: 𝑃𝑞𝑘 = ∅

Case 2.2: 𝑃𝑞𝑘 ≠ ∅ and task 𝑝𝑞 ∈ 𝑃𝑞𝑘 be a task with no predecessor in

workstations 𝑘+1, 𝑘+2,..., 𝑘𝑞.

Case 2.1: 𝑃𝑞𝑘 = ∅

Taking task 𝑞 from 𝑘𝑞 and assigning it to workstation 𝑘 decreases 𝑁𝐷 by 1 and

any single shift never increases 𝐶𝑇. Hence, 𝑠 cannot be efficient.

Case 2.2: 𝑃𝑞𝑘 ≠ ∅

Taking task 𝑝𝑞 from its current workstation and assigning it to workstation 𝑘

never increases 𝑁𝐷 as 𝑝𝑞 is already disrupted. Moreover, such a single shift never

increases 𝐶𝑇. Hence, the new schedule is no worse and 𝑠 cannot be a unique

efficient solution.

Note that in all cases, a new schedule is no worse than 𝑠 in terms of 𝐶𝑇 and 𝑁𝐷.

Hence, a solution 𝑠 that resides an empty solution cannot be a unique efficient

solution.

Using the result of the above theorem, from a close node, we only open branches

to task nodes and do not open a branch to another close node.

30

Figure 5.1 illustrates the branch and bound tree of the sample instance from

Rosenberg and Ziegler (1992). The precedence network and task times are given

in Figure 4.1.

Note that task 1 and task 2 have no predecessors and they are the only eligible

tasks at level 1. Thus, task 1 and task 2 nodes take place at the first level of the

BAB tree. First five levels of the BAB tree are as illustrated in Figure 5.1.

Figure 5.1 A representation of the BAB tree for the sample problem instance

For selected task 1 at level 1, we open two branches: one branch to task 2 which is

the only eligible task and one branch to the close node. Note that if task 2 is

selected at level 1, we just open one branch to the close node since a branch to

task 1 cannot be opened due to the higher index rule and the other tasks are not

eligible due to the precedence relationships.

For each node selected, there is a corresponding partial solution 𝑠 and a

corresponding objective vector (𝐶𝑇𝑠, 𝑁𝐷𝑠). For each task node representing the

addition of the task to the current workstation 𝑘, (𝐶𝑇𝑠, 𝑁𝐷𝑠) is equal to

(𝑚𝑎𝑥𝑟≤𝑘{𝑤𝑟
𝑠}, 𝑛1

𝑠 + 𝑛2
𝑠) where

31

 𝑤𝑟
𝑠= the workload of workstation 𝑟

𝑚𝑎𝑥𝑟≤𝑘{𝑤𝑟
𝑠} = the maximum workload already observed

𝑛1
𝑠 = the number of tasks that are already disrupted

 𝑛2
𝑠 = the number of unassigned tasks that were placed in workstation

1,...,𝑘-1 in the original assignment

We fathom the node if (𝐶𝑇𝑠, 𝑁𝐷𝑠) is dominated by any objective vector in 𝐼𝑆.

Example 5.1: Let us assume that there are three nondominated objective vectors

in 𝐼𝑆 currently: (37,8), (34,9) and (33,11).

Let 𝑠1 be a partial solution such that tasks 1, 2, 3, 4 and 5 are assigned to

workstation 1, and tasks 6, 7, 8, 9, 11, 12 and 13 are assigned to the second

nondisrupted workstation which is workstation 4. This workstation is not closed

yet. Thus, the branching is to be continued to the task nodes for eligible tasks and

also to the close node.

Figure 5.2 The representation of partial solution 𝑠1

Note that 𝑤1
𝑠1=30 and 𝑤2

𝑠1=33. Thus, 𝑚𝑎𝑥𝑟≤2{𝑤𝑟
𝑠1} is equal to 33.

Tasks 5, 6, 7, 8, 9, 11, 12 and 13 are already disrupted since they were assigned to

the disrupted workstations initially and tasks 1, 2, 3 and 4 were already assigned

to workstation 1 initially. Thus, 𝑛1
𝑠1=8 and 𝑛2

𝑠1=0. All in all, (𝐶𝑇𝑠1 , 𝑁𝐷𝑠1)=(33,8).

32

Now, let us open a new branch from node 13 to node 14, i.e., we assign task 14 to

workstation 4. Let the new partial solution be 𝑠2.

Figure 5.3 The representation of partial solution 𝑠2

Note that 𝑤1
𝑠2=30 and 𝑤2

𝑠2=36 resulting in 𝑚𝑎𝑥𝑟≤2{𝑤𝑟
𝑠2}=36 when task 14 is

assigned to workstation 4. In addition, 𝑛1
𝑠2 is set to 𝑛1

𝑠1 + 1 since the original

workstation of task 14 is workstation 5. Thus, (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2) is equal to (36,9). We

fathom this node since the nondominated objective vector (34,9) in 𝐼𝑆 dominates

this partial solution. Hence, we remove this node from further consideration and

we do not branch it any further.

We employ a depth first strategy due to its relatively low memory requirements.

According to this strategy, we explore from the node having the smallest index.

We continue branching until a node is fathomed or until a complete solution is

reached. Note that a complete solution is obtained as soon as the assignments to

the first 𝐾 − 1 workstations are complete since all of the unassigned tasks are to

be assigned to 𝐾𝑡ℎ workstation. Once further branching is not possible, we

backtrack to the previous level. We terminate whenever we reach level 0.

5.2 LOWER BOUNDS

For each close node generated, we let (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠)=(𝐶𝑇𝑠, 𝑁𝐷𝑠) and we improve

these bounds through the calculation of several lower bounds.

33

5.2.1 LOWER BOUND ON NUMBER OF DISRUPTED TASKS (𝑳𝑩𝑵𝑫)

We enhance the performance of 𝑛1
𝑠 + 𝑛2

𝑠 in the close nodes using the cycle time

values of the objective vectors in 𝐼𝑆. We set an upper bound on the cycle time

(𝑈𝐵𝐶𝑇
𝑠) that would lead to an efficient solution once 𝑠 is branched further.

Example 5.2: Let us again assume that there are three nondominated objective

vectors in 𝐼𝑆 currently: (37,8), (34,9) and (33,11).

Let 𝑠 be a partial solution such that tasks 1, 2, 3, 4 and 5 are assigned to

workstation 1, and tasks 6, 7, 8, 9, 11, 12 and 15 are assigned to the second

nondisrupted workstation which is workstation 4. The assignment to this

workstation is also completed so that the last selected node is a close node.

Figure 5.4 The representation of partial solution 𝑠

Note that tasks 5, 6, 7, 8, 9, 11 and 12 are already disrupted since their original

workstations are disrupted workstations. Also, task 13 is an already disrupted task

even though it has not been assigned yet. Thus, 𝑛1
𝑠=8. Moreover, 𝑛2

𝑠=2 since tasks

17 and 23 have not been assigned to workstation 4 although they were initially

assigned to this workstation. Hence, 𝑁𝐷𝑠=10. In 𝐼𝑆, (34,9) and (33,11) are the

two nondominated objective vectors such that 𝑁𝐷𝑠=10 falls in between. Cycle

time value should be at most 33 so that 𝑠 would have a chance to be included in 𝐼𝑆

once it is a complete solution. Thus, 𝑈𝐵𝐶𝑇
𝑠 is set to 33.

34

The upper bound information on the cycle times allows us to define the earliest

and latest workstations that a task can be assigned.

We let 𝐸𝑖 and 𝐿𝑖 denote the earliest and latest workstations that a task can be

assigned. Given that the assignment of tasks to the first 𝑘 workstations is

completed, 𝐸𝑖 and 𝐿𝑖 are found accordingly:

𝐸𝑖 =𝑘 + ⌈
𝑡𝑖+∑ 𝑡𝑗𝑗∈𝑆,𝑗∈𝑃𝑖

𝑈𝐵𝐶𝑇
⌉ where 𝑃𝑖 is the set of predecessors of 𝑖.

𝐿𝑖 = 𝐾 − ⌈
𝑡𝑖+∑ 𝑡𝑗𝑗∈𝑆𝑖

𝑈𝐵𝐶𝑇
⌉ + 1 where 𝑆𝑖 is the set of successors of 𝑖.

We increase 𝐿𝐵𝑁𝐷 by 1 for each task 𝑖 ∈ 𝑆 if the original workstation of task 𝑖 is

before 𝐸𝑖 or after 𝐿𝑖.

Example 5.3: Let us again assume that there are three nondominated objective

vectors in 𝐼𝑆 currently: (37,8), (34,9) and (33,11).

Let 𝑠1 be a partial solution such that tasks 1, 2, 3 and 4 are assigned to workstation

1 and this workstation is not closed yet. Thus, the branching is to be continued to

the task nodes for eligible tasks and also to the close node.

Note that (𝐶𝑇𝑠1 , 𝑁𝐷𝑠1) is equal to (21,8) since 𝑤1
𝑠1=21 and 𝑛1

𝑠1=8. Thus, there

does not exist any nondominated objective vector in 𝐼𝑆 which dominates 𝑠1. We

can continue branching from the current node.

Let us select the close node as the next node and let the partial solution be 𝑠2. We

first let (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2)=(21,8). Then, the earliest and latest workstations for each

unassigned task are found given that 𝑈𝐵𝐶𝑇
𝑠2 =37 which is the corresponding upper

bound to 𝑁𝐷𝑠2=8. Two of the unassigned tasks are detected to be disrupted since

their original workstations are not in between the earliest and latest workstations

to which they should be assigned:

35

 𝐸𝑊17=5 and 𝐿𝑊17=6 whereas task 17 was assigned to workstation 4

initially

 𝐸𝑊23=5 and 𝐿𝑊23=6 whereas task 23 was assigned to workstation 4

initially

Thus, 𝑁𝐷𝑠2 is increased by 2. Since the new 𝑁𝐷𝑠2 is 10, the corresponding 𝑈𝐵𝐶𝑇
𝑠2

value is updated to 33. For the updated upper bound, the earliest and latest

workstations are also updated and task 22 is also detected to be disrupted.

 𝐸𝑊22=6 and 𝐿𝑊22=6 whereas task 22 was assigned to workstation 5

initially

All in all, 𝑁𝐷𝑠2=11 since three more tasks will be disrupted if 𝑠2 is branched

further.

5.2.2 LOWER BOUND ON CYCLE TIME (𝑳𝑩𝑪𝑻)

We propose three lower bounds on the cycle time.

i. Lower Bound 1 (𝐿𝐵1𝐶𝑇):

The lower bound is found through task preemption idea. The minimum cycle time

is found by splitting the tasks equally among the workstations. The optimal

assignment is then
∑ 𝑡𝑖

𝑁
𝑖=1

𝐾
 given that 𝑁 tasks are to be assigned to 𝐾 workstations.

Since any task cannot be split between workstations, 𝐶𝑇 should be greater than or

equal to the task time of each task 𝑖. This follows that 𝐶𝑇 should be equal to at

least the maximum of all task times. Hence, a valid lower bound on the cycle time

is

𝐿𝐵1𝐶𝑇=𝑚𝑎𝑥 {⌈
∑ 𝑡𝑖

𝑁
𝑖=1

𝐾
⌉ , 𝑚𝑎𝑥𝑖{𝑡𝑖}}

36

This lower bound is presented in Klein and Scholl (1996).

For a given partial assignment, the lower bound is rearranged as follows:

𝐿𝐵1𝐶𝑇=𝑚𝑎𝑥 {⌈
∑ 𝑡𝑖𝑖∈𝑆

𝐾−𝑘
⌉ , 𝑚𝑎𝑥𝑖∈𝑆{𝑡𝑖}}

ii. Lower Bound 2 (𝐿𝐵2𝐶𝑇):

𝐿𝐵2𝐶𝑇 uses the idea of the cardinality of the number of the tasks in any

workstation. For 𝑁 tasks and 𝐾 workstations, there exists at least one workstation

with ⌈
𝑁

𝐾
⌉ or more tasks. If we assume workstation 𝑟 resides ⌈

𝑁

𝐾
⌉ or more tasks,

𝑤𝑟 ≥ ∑ 𝑡[𝑖]

⌈
𝑁

𝐾
⌉

𝑖=1
 where 𝑡[𝑖] ≤ 𝑡[𝑖+1] for 𝑖=1,..., 𝑁-1

Since 𝐶𝑇 is equal to the maximum workload of all workstations, we can extend

the above expression as follows:

𝐶𝑇 ≥ 𝑤𝑟 ≥ ∑ 𝑡[𝑖]

⌈
𝑁

𝐾
⌉

𝑖=1
 where 𝑡[𝑖] ≤ 𝑡[𝑖+1] for 𝑖=1,..., 𝑁-1

Hence, ∑ 𝑡[𝑖]

⌈
𝑁

𝐾
⌉

𝑖=1
 is a valid lower bound on the cycle time.

 𝐿𝐵2𝐶𝑇=∑ 𝑡[𝑖]

⌈
𝑁

𝐾
⌉

𝑖=1
 where 𝑡[𝑖] ≤ 𝑡[𝑖+1] for 𝑖=1,..., 𝑁-1

For a given partial assignment, the lower bound is rearranged as follows:

𝐿𝐵2𝐶𝑇=∑ 𝑡[𝑖]

⌈
|𝑆|

𝐾
⌉

𝑖=1
 where 𝑡[𝑖] ≤ 𝑡[𝑖+1] for 𝑖=1,..., |𝑆|-1

This lower bound is also presented in Klein and Scholl (1996) with an extended

version.

37

iii. Lower Bound 3 (𝐿𝐵3𝐶𝑇):

Recall that 𝐿𝐵1𝐶𝑇 and 𝐿𝐵2𝐶𝑇 ignore the precedence relationship information.

Recognizing this fact, we introduce a lower bound that splits the tasks into two

subsets with reference to a particular workstation. The first subset, 𝐹𝑆 resides the

unassigned tasks whose latest workstation is before or on workstation 𝑤. The

second subset, 𝑆𝑆, resides the unassigned tasks whose earliest workstation is after

𝑤. The maximum workloads due to 𝐹𝑆 and 𝑆𝑆 are ⌈
∑ 𝑡𝑖𝑖∈𝐹𝑆

𝑤
⌉ and ⌈

∑ 𝑡𝑖𝑖∈𝑆𝑆

(𝐾−𝑘)−𝑤
⌉,

respectively. Hence,

𝐶𝑇 ≥ 𝑚𝑎𝑥 {⌈
∑ 𝑡𝑖𝑖∈𝐹𝑆

𝑤
⌉ , ⌈

∑ 𝑡𝑖𝑖∈𝑆𝑆

(𝐾−𝑘)−𝑤
⌉}

Accordingly,

 𝐿𝐵3𝐶𝑇
′ =𝑚𝑎𝑥 {⌈

∑ 𝑡𝑖𝑖∈𝐹𝑆

𝑤
⌉ , ⌈

∑ 𝑡𝑖𝑖∈𝑆𝑆

(𝐾−𝑘)−𝑤
⌉}

We can improve 𝐿𝐵3𝐶𝑇
′ by considering other unassigned tasks that are not in 𝐹𝑆

or 𝑆𝑆.

Let 𝑇𝑆=𝑆/{𝐹𝑆 ∪ 𝑆𝑆}.

The third set 𝑇𝑆 resides the unassigned tasks that are not covered by 𝐹𝑆 and 𝑆𝑆

and hence have not contributed to the cycle time. We distribute 𝑇𝑆 between all

workstations preemptively while minimizing cycle time.

𝐿𝐵3𝐶𝑇
′ × (𝐾 − 𝑘) − ∑ 𝑡𝑖𝑖∈{𝐹𝑆∪𝑆𝑆} is the total processing time that can be filled

without increasing 𝐿𝐵3𝐶𝑇
′ , and ∑ 𝑡𝑖 − (𝐿𝐵3𝐶𝑇

′ × (𝐾 − 𝑘) − ∑ 𝑡𝑖𝑖∈{𝐹𝑆∪𝑆𝑆})𝑖∈𝑇𝑆 is

the minimum total amount required to improve 𝐿𝐵3𝐶𝑇
′ .

We can rearrange the latter as ∑ 𝑡𝑖𝑖∈𝑆 − 𝐿𝐵3𝐶𝑇
′ × (𝐾 − 𝑘). This amount when

distributed equally will increase the cycle time, smallest. The resulting lower

bound, 𝐿𝐵3𝐶𝑇, is stated as follows:

38

𝐿𝐵3𝐶𝑇 = 𝐿𝐵3𝐶𝑇
′ + ⌈

𝑚𝑎𝑥{0, ∑ 𝑡𝑖𝑖∈𝑆 − 𝐿𝐵3𝐶𝑇
′ × (𝐾 − 𝑘)}

𝐾 − 𝑘
⌉

𝐿𝐵3𝐶𝑇 is improved even further by only considering the workstations to which the

tasks in 𝑇𝑆 can be assigned. In order to accomplish this, we find 𝐸𝑚𝑖𝑛 =

𝑚𝑖𝑛𝑖∈𝑇𝑆{𝐸𝑖} and 𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖∈𝑇𝑆{𝐿𝑖} and we modify the lower bound

accordingly. 𝐿𝐵3𝐶𝑇 is

𝐿𝐵3𝐶𝑇
′ + ⌈

𝑚𝑎𝑥{0, ∑ 𝑡𝑖𝑖∈𝑆,𝑖:𝐸𝑖≥𝐸𝑚𝑖𝑛,𝐿𝑖≤𝐿𝑚𝑎𝑥
− 𝐿𝐵3𝐶𝑇

′ × (𝐿𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) }

𝐿𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
⌉

For each close node, we first calculate 𝐿𝐵1𝐶𝑇 and then update (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠) if

𝐿𝐵1𝐶𝑇 ≥ 𝐿𝐵𝐶𝑇
𝑠 for the current partial solution 𝑠. If (𝐿𝐵𝐶𝑇

𝑠 , 𝐿𝐵𝑁𝐷
𝑠) is not dominated

by any objective vector in 𝐼𝑆, then we calculate 𝐿𝐵2𝐶𝑇 and we update

(𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠) if 𝐿𝐵2𝐶𝑇 ≥ 𝐿𝐵𝐶𝑇
𝑠 . Note that 𝐿𝐵1𝐶𝑇 and 𝐿𝐵2𝐶𝑇 are rather simpler

lower bounds and their computations do not require the earliest and latest

workstation information. On the other hand, both 𝐿𝐵𝑁𝐷 and 𝐿𝐵3𝐶𝑇 take into

account the precedence relationships and the earliest and latest workstations for

each unassigned task should be found prior to the calculation of these lower

bounds. If (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠) is not dominated by any objective vector in 𝐼𝑆 after the

calculation of 𝐿𝐵2𝐶𝑇, we calculate 𝐿𝐵𝑁𝐷 and we update (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠) if there

exists any task 𝑖 ∈ 𝑆 such that the original workstation of task 𝑖 is not in between

𝐸𝑖 and 𝐿𝑖. If (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠) is not dominated by any objective vector in 𝐼𝑆, then we

calculate 𝐿𝐵3𝐶𝑇 and we update (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠) if 𝐿𝐵3𝐶𝑇 ≥ 𝐿𝐵𝐶𝑇
𝑠 . If (𝐿𝐵𝐶𝑇

𝑠 , 𝐿𝐵𝑁𝐷
𝑠) is

dominated by any objective vector in 𝐼𝑆 after an update due to any lower bound,

the current node is eliminated and there is no need to calculate other lower

bounds.

39

5.3 DOMINANCE RULE

When closing a workstation, we use a dominance rule. Our dominance rule is

based on comparing two partial solutions according to their objective vectors.

These partial solutions include either the same set of tasks or one of the task sets

is the subset of the other. If the set of tasks that have been assigned to the current

partial solution is the same set or the subset of any previously stored partial

solution from a common parent node, then these two partial solutions can be

compared by our dominance rule.

Figure 5.5 below represents two partial solutions 𝑠1 (left) and 𝑠2 (right) emanating

from a common parent node 𝐶.

Figure 5.5 A representation of two partial solutions compared by the dominance

rule

Note from the figure that 𝑠1 is a previously stored partial solution whose set of

tasks is completely the same with the current partial solution 𝑠2. Also note that

40

there are 𝑘 workstations open in both of the partial solutions and the assignments

to only the last two workstations, i.e., workstation 𝑘 − 1 and workstation 𝑘, differ

for these two partial solutions. Thus, it is enough to compare these two

workstations while using our dominance rule. To generalize, we compare the last

𝑟 workstations of two partial solutions while using the dominance rule given that

the assignments to the first 𝑘 − 𝑟 workstations are the same.

Formally, we let

 𝑠1= the partial solution stored that is emanated from a parent node 𝐶

 𝐴1= the set of tasks in 𝑠1

𝑠2 = the current partial solution that is emanated from node 𝐶

 𝐴2= the set of tasks in 𝑠2

 𝑁𝐷𝑠𝑖 = the number of tasks disrupted for partial solution 𝑠𝑖

𝐶𝑇𝑠𝑖 = the maximum of the maximum workload and the lower bound on

the maximum loads of the unassigned tasks in partial solution 𝑠𝑖

We consider the unassigned tasks in 𝐶𝑇𝑠𝑖 computations as one of the next

workstations may define the cycle time. For the lower bound on the maximum

loads of the unassigned tasks, we simply use the lower bounds discussed in

Section 5.2.2.

We compare 𝑠1 and 𝑠2 when 𝐴1 ⊇ 𝐴2.

We say 𝑠1 dominates 𝑠2 if 𝑁𝐷𝑠1 ≤ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2 implying that a

nondominated objective vector emanating from node 𝐶 cannot be obtained by

further branching 𝑠2 once 𝑠1 exists. If 𝑠1 dominates 𝑠2, we fathom the current

node.

We illustrate the implementation of the dominance rule via two examples:

41

Example 5.4: Figure 5.6 represents two partial solutions 𝑠1 (left) and 𝑠2 (right)

both emanating from node 0. If the tasks assigned so far are compared, it is

observed that 𝐴1=𝐴2. For 𝑠1, 𝑤1
𝑠1=30 and 𝑤2

𝑠1=33, and 𝑛1
𝑠1=8 and 𝑛2

𝑠1=2 resulting

in (𝐶𝑇𝑠1 , 𝑁𝐷𝑠1)=(33,10). For 𝑠2, 𝑤1
𝑠2=33 and 𝑤2

𝑠2=30, and 𝑛1
𝑠2=8 and 𝑛2

𝑠2=2

resulting in (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2)=(33,10). Since 𝑁𝐷𝑠1 ≤ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2, 𝑠1

dominates 𝑠2 and there is no need to further branch 𝑠2.

Figure 5.6 A representation for the comparison between two partial solutions with

𝐴1=𝐴2

42

Example 5.5: Figure 5.7 represents two partial solutions 𝑠1 (left) and 𝑠2 (right)

both emanating from node 0. If the tasks assigned so far are compared, it is

observed that 𝐴1 ⊃ 𝐴2, i.e., task 11 has not been assigned yet in 𝑠2. For 𝑠1,

𝑤1
𝑠1=30 and 𝑤2

𝑠1=33, and 𝑛1
𝑠1=8 and 𝑛2

𝑠1=2 resulting in (𝐶𝑇𝑠1 , 𝑁𝐷𝑠1)=(33,10). For

𝑠2, 𝑤1
𝑠2=28 and 𝑤2

𝑠2=32, and 𝑛1
𝑠2=8 and 𝑛2

𝑠2=2 resulting in (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2)=(32,10).

However, 𝐿𝐵1𝐶𝑇
𝑠2 is 33 which improves (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2) to (33,10). Since 𝑁𝐷𝑠1 ≤

𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2, 𝑠1 dominates 𝑠2 and there is no need to further branch 𝑠2.

Figure 5.7 A representation for the comparison between two partial solutions with

𝐴1⊃𝐴2

43

Below we give the formal description of storing, comparing and deleting the

partial solutions.

i. Storing partial solutions

To store partial solutions, the number of partial solutions stored so far for the

common parents should be known. For each number of workstations to be

compared (𝑟), the number of partial solutions associated with a common parent

should be kept separately.

Initialize the number of partial solutions associated with each common parent for

each 𝑟 to 0.

 If the current node is a close node and the number of opened workstations

𝑘 ≥ 2

Set 𝑟=2.

o While 𝑟 ≤ 𝑘

 Set common parent node to the close node which represents

closing the (𝑘 − 𝑟)𝑡ℎ workstation if 𝑘 − 𝑟 > 0, to node 0 if

𝑘 − 𝑟 = 0.

 Increase the number of partial solutions associated with this

common parent by 1 for 𝑟.

 Store the set of tasks assigned to the partial solution 𝑠.

 Find 𝐶𝑇𝑠 and 𝑁𝐷𝑠.

 𝑟 = 𝑟 + 1.

o End while

 End if

44

ii. Comparing partial solutions

 If the current node is a close node and the number of opened workstations

𝑘 ≥ 2

Set 𝑟 = 𝑘.

o While 𝑟 ≥ 2

 Set common parent node to the close node which represents

closing the (𝑘 − 𝑟)𝑡ℎ workstation if 𝑘 − 𝑟 > 0, to node 0 if

𝑘 − 𝑟 = 0.

 Let the current partial solution associated with the common

parent be 𝑠2.

 Check previously stored partial solutions associated with the

common parent node.

Two checks are done:

Check 1: Same set of assigned tasks

 If there is such a partial solution with the same set of assigned

tasks

(𝐴1 = 𝐴2)

 Decrease the number of partial solutions associated with

the common parent by 1 for 𝑟.

 If 𝑁𝐷𝑠1 ≤ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2, 𝑠1 dominates 𝑠2.

The current node is fathomed. Stop.

 If 𝑁𝐷𝑠1 ≥ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≥ 𝐶𝑇𝑠2, 𝑠2 dominates 𝑠1.

Update 𝑁𝐷𝑠1=𝑁𝐷𝑠2 and 𝐶𝑇𝑠1=𝐶𝑇𝑠2.

 End if

45

 If there is not such a partial solution with the same set of

assigned tasks, perform second check.

Check 2: Supersets of assigned tasks

 If there is such a partial solution with the super set of assigned

tasks (𝐴1 ⊃ 𝐴2)

 If 𝑁𝐷𝑠1 ≤ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2, 𝑠1 dominates 𝑠2.

The current node is fathomed. Decrease the number of

partial solutions associated with the common parent by

1 for 𝑟. Stop.

 End if

𝑟 = 𝑟 − 1.

o End while

 End if

iii. Deleting partial solutions

Whenever a close node is removed from further consideration, all of the partial

solutions associated with it are deleted due to the memory requirements.

5.4 THE INITIAL SET OF NONDOMINATED OBJECTIVE VECTORS

The nondominated objective vectors in 𝐼𝑆 provide upper bounds on the objective

values and help removing an unpromising partial solution from further

consideration. Thus, instead of starting with an empty 𝐼𝑆, we start with an

approximate set of nondominated objective vectors so that the BAB algorithm

directs to more promising portions of the BAB tree from the beginning. When

46

forming this approximate set, we first generate initial feasible configurations with

the minimum number of disrupted tasks in Step 0. In the following steps, we try to

find other objective vectors with improved cycle time values by allowing more

tasks to get disrupted.

Step 0: The disrupted tasks on the disrupted machines are assigned to other

workstations in order to construct an initial feasible configuration. Three different

procedures are used to obtain these initial assignments.

1. The disrupted tasks are assigned according to the optimal configuration

found by the model generating the extreme efficient solution with the

minimum number of disrupted tasks.

2. The disrupted tasks are assigned to the workstations with the minimum

workload while satisfying the precedence relationships.

3. The disrupted tasks are randomly assigned to the workstations while

satisfying the precedence relationships. This procedure is applied for

200 times.

Hence, 202 different initial configurations are created. The following steps are

applied to each of these initial configurations individually in order to find

candidate nondominated objective vectors with improved cycle time values.

In step 1, we change the workstations of tasks on the bottleneck workstation, i.e.,

workstation having the maximum workload, one by one and we add the

nondominated objective vectors to 𝐼𝑆 if any of them is found and then we assign

the tasks back to their current workstations. In Step 2, if at least one

nondominated objective vector is added to 𝐼𝑆, we only change the workstation of

the task resulting in the best improvement in cycle time. If such an objective

vector is not found in Step 1, this means that an improvement cannot be achieved

by changing the workstation of only one task. Thus, in Step 3, we use a “look

47

ahead” approach by changing the workstation of a task on the bottleneck

workstation even though no improvement is achieved and then we change the

workstation of another task on the updated bottleneck workstation. We add the

nondominated objective vectors to 𝐼𝑆 if any of them is found during this step and

then we assign the tasks back to their current workstations. If at least one

nondominated objective vector is added to 𝐼𝑆, we change the workstations of the

two tasks resulting in the best improvement in cycle time. If Step 3 also fails to

find a nondominated objective vector by improving the cycle time value, we

change the workstation of a randomly selected task which is currently assigned to

the bottleneck workstation and then we return to Step 1.

Below is the pseudo code of our improvement step.

Initialize the number of non-improving moves as 0.

While non-improving moves ≤50

Step 1:

 For each task on the bottleneck workstation

o Remove the task from the bottleneck workstation.

o For each workstation satisfying the precedence relationships

 Assign the task to this workstation.

 Update the workload of each workstation.

 Find 𝐶𝑇 and 𝑁𝐷.

 If none of the objective vectors in 𝐼𝑆 can dominate the

current objective vector, add the objective vector to 𝐼𝑆.

 If the current objective vector dominates any of the

objective vectors in 𝐼𝑆, remove the dominated objective

vectors from 𝐼𝑆.

48

 Assign the task back to its original workstation.

 Update the workload of each workstation.

o End for

 End for

If at least one objective vector is added to 𝐼𝑆 in step 1, update the number of non-

improving moves as 0 and go to Step 2.

Otherwise, go to step 3.

Step 2: Select the objective vector with the minimum cycle time among all

objective vectors added to 𝐼𝑆 in step 1. Update the assignments and workloads of

each workstation accordingly. Update the bottleneck workstation. Go to Step 1.

Step 3:

 For each task on the bottleneck workstation

o Remove the task from the bottleneck workstation.

o For each workstation satisfying the precedence relationships

 Assign the task to the workstation.

 Update the workload of each workstation and update the

bottleneck workstation.

 Remove a task from the bottleneck workstation

 For each workstation satisfying the precedence

relationships

o Assign the task to the workstation.

o Update the workload of each workstation.

49

o Find 𝐶𝑇 and 𝑁𝐷.

o If none of the objective vectors in 𝐼𝑆 can

dominate the current objective vector, add

the objective vector to 𝐼𝑆.

o If the current objective vector dominates any

of the objective vectors in 𝐼𝑆, remove the

dominated objective vectors from 𝐼𝑆.

o Assign the task back to its original

workstation.

o Update the workload of each workstation.

 End for

 Assign the task back to its original workstation.

 Update the workload of each workstation.

o End for

 End for

If at least one objective vector is added to the list in step 3, update the number of

non-improving moves as 0 and go to Step 2.

Otherwise, go to step 4.

Step 4:

Update the number of non-improving moves=the number of non-improving

moves+1.

Initialize 𝑖𝑡=0.

 While any task cannot be replaced and 𝑖𝑡 ≤100

50

o Update 𝑖𝑡=𝑖𝑡+1.

o Select a random task.

o If the selected task is assigned to the bottleneck workstation

 If there exists at least one workstation satisfying precedence

relationships

 Remove the task from the bottleneck workstation and

assign it to any workstation satisfying precedence

relationships.

 Update the workload of each workstation.

 End if

o End if

 End while

51

CHAPTER 6

COMPUTATIONAL EXPERIMENT

6. COMPUTATIONAL EXPERIMENT

We perform a computational study to evaluate the performance of our BAB

algorithm. We state our performance measures and compare the BAB algorithm

and the CA using these measures. We make preliminary experiments to assess the

effects of several parameters on the performance of the BAB algorithm before

designing the main experiment. We make some preliminary runs also to interpret

the power of the dominance rule, lower bounds and upper bounds.

In this section, we first give our data generation scheme and then we discuss the

results of our computational study. While analyzing the results, we first state the

performance measures and then we present the results of our preliminary and

main experiments.

6.1 DATA GENERATION

We assume that the tasks are already assigned to the workstations before the

disruption. Thus, the initial assignment of the tasks is one of the major inputs to

the problem. In order to obtain this initial assignment, we take the well-known

data sets from the simple assembly line balancing literature and we solve the Type

II simple assembly line balancing problems. There are numerous data sets which

are extensively used in computational experiments of the studies in the simple

assembly line balancing literature. In this study, we conduct our main experiment

on four of these data sets, from Günther et al. (1983) with 𝑁=35 tasks, from

52

Kilbridge and Wester (1962) with 𝑁=45 tasks, from Hahn (1972) with 𝑁=53 tasks

and from Tonge (1961) with 𝑁=70 tasks. We take these data sets from the website

http://www.assembly-line-balancing.de. We choose the data sets with different 𝑁

values since the preliminary runs indicate that 𝑁 has an effect on the performance

of the BAB algorithm. These data sets include the task time information and the

precedence networks; however, we only take the precedence networks and

generate the task times using discrete uniform distribution. See Appendix for the

precedence networks. We decide on the parameters of the uniform distribution

according to the results obtained from the preliminary runs.

We choose these four data sets from the study of Scholl and Klein (1997). Scholl

and Klein (1997) define a complexity measure to examine the influence of the

precedence network on the performance of their algorithm. This complexity

measure is called order strength (OS) and it is equal to the number of all

precedence relationships divided by 𝑁(𝑁 − 1)/2. They report the OS values for

the precedence networks of Günther et al. (1983), Kilbridge and Wester (1962),

Hahn (1972) and Tonge (1961) as 59.5%, 44.6%, 83.8% and 59.4%, respectively.

Note that higher OS values indicate more intense precedence networks.

Preliminary runs reveal that the number of workstations in the old configuration

(𝐾′), the number of workstations in the new configuration (𝐾) and the number of

disrupted workstations (𝐾′ − 𝐾) have an impact on the performance of the BAB

algorithm. In order to capture the effects of these parameters, we use five different

settings in our main experiment:

http://www.assembly-line-balancing.de/

53

Table 6.1 Settings with 𝐾 and 𝐾′

Setting 𝐾 𝐾′

1 8 12

2 10 12

3 10 14

4 5 6

5 5 7

The disrupted workstations are chosen arbitrarily, for each instance.

For each data set, we repeat the experiment under these five different settings.

Hence, we obtain 4*5=20 combinations. Moreover, we generate 10 instances for

each combination. All in all, our main experiment set has 200 problem instances.

The BAB algorithm is coded in C++ using Microsoft Visual Studio 2013. The

mathematical models are solved by IBM ILOG CPLEX 12.6. The BAB algorithm

and mathematical models are run on a computer with Intel(R)Core(TM)i7-4770S

CPU @ 3.10 GHz, 16 GB RAM and Windows 7.

6.2 ANALYSIS OF THE RESULTS

We use four performance measures to evaluate the performance of the BAB

algorithm:

1) Average Central Processing Unit (CPU) Time (in seconds)

2) Maximum Central Processing Unit (CPU) Time (in seconds)

3) Average number of nodes

4) Maximum number of nodes

54

We also use average CPU time and maximum CPU time to generate the set of all

nondominated objective vectors when evaluating the performance of the CA.

We set a termination limit of one hour for the execution of instances using both

the BAB algorithm and the CA; however, even if the execution of the BAB

algorithm or the CA is terminated due to this limit, the results are included in the

calculation of the performance measures.

For the preliminary experiments, we choose instances with 𝑁=35 and with 𝑁=53.

We run our BAB algorithm for these instances under setting 1 (𝐾=8 & 𝐾′=12),

setting 2 (𝐾=10 & 𝐾′=12) and setting 3 (𝐾=10 & 𝐾′=14).

6.2.1 EFFECT OF PARAMETERS

We repeat our experiments for task times distributed by U[1,10] indicating low

variability and by U[1,50] indicating high variability.

Table 6.2 and Table 6.3 immediately reveal that the instances with high task time

variability are harder to solve compared to the instances with low task time

variability. The number of nondominated objective vectors, the number of nodes

and the CPU times all increase for the case when 𝑡𝑖~U[1,50]. For 𝑁=35 when

𝐾=8 & 𝐾′=12, the average number of nondominated objective vectors increases

from 5.2 to 7.5, the average number of nodes increases from 18,759.8 to 44,353.2

and the average CPU time increases from 0.74 to 0.79 seconds when the

variability in the task times increases. For 𝑁=53 when 𝐾=8 & 𝐾′=12, the average

number of nondominated objective vectors increases from 8 to 11.2, the average

number of nodes increases from 75,490.5 to 145,684.9 and the average CPU time

increases from 2.05 to 2.92 seconds when the variability in the task times

increases. Similar observations can be made for the other settings. As our concern

is to solve harder problem instances, in our main runs we decide to generate task

times from discrete uniform distribution U[1,50].

55

Table 6.2 The performances of 𝑁=35 and 𝑁=53, 𝑡𝑖~U[1,10]

of nondominated
objective vectors

BAB

Number of Nodes CPU Time

 Setting N Average Maximum Average Maximum Average Maximum

K=8
K'=12

35 5.2 8 18,759.8 47,617 0.74 1.58

53 8 12 75,490.5 213,908 2.05 7.75

K=10
K'=12

35 5.4 8 20,226.7 29,812 0.28 0.51

53 7.1 10 105,807.4 312,339 1.59 3.65

K=10
K'=14

35 4.6 6 15,432.0 41,874 0.53 1.98

53 7.9 13 143,004.1 732,862 2.85 11.28

Table 6.3 The performances of 𝑁=35 and 𝑁=53, 𝑡𝑖~U[1,50]

We continue our preliminary runs where task times are distributed by U[1,50].

6.2.2 EFFECT OF MECHANISMS

We also test the power of the dominance rule, lower bounds and upper bounds.

We again use instances with 𝑁=35 and 𝑁=53 when 𝐾=8 & 𝐾′=12 and 𝐾=10 &

𝐾′=12 for this purpose.

of nondominated
objective vectors

BAB

Number of Nodes CPU Time

 Setting N Average Maximum Average Maximum Average Maximum

K=8
K'=12

35 7.5 10 44,353.2 129,769 0.79 1.58

53 11.2 19 145,684.9 277,543 2.92 7.50

K=10
K'=12

35 10.2 12 66,577.8 117,286 0.60 1.45

53 12.9 15 307,632.4 1,438,863 5.00 26.07

K=10
K'=14

35 9.1 12 55,651.5 120,667 0.80 1.72

53 13.1 19 205,748.2 516,778 3.94 13.82

56

i. Dominance Rules

We first investigate the power of the dominance rule. The following tables

summarize the results of the preliminary runs when the dominance rule is used

and is not used.

Table 6.4 The performance of the BAB algorithm with and without the dominance

rule, 𝑁=35

K=8 and K'=12 K=10 and K'=12

Average Maximum Average Maximum

with
dominance

rule

CPU 0.79 1.58 0.60 1.45

Nodes 44,353.2 129,769 66,577.8 117,286

without
dominance

rule

CPU 1.85 5.99 6.51 23.28

Nodes 579,747.5 2,790,304 2,577,738.0 10,417,170

Table 6.5 The performance of the BAB algorithm with and without the dominance

rule, 𝑁=53

K=8 and K'=12 K=10 and K'=12

Average Maximum Average Maximum

with
dominance

rule

CPU 2.92 7.50 5.00 26.07

Nodes 145,684.9 277,543 307,632.4 1,438,863

without
dominance

rule

CPU 44.97 324.03 53.61 330.60

Nodes 8,999,801 74,380,905 8,243,175 59,057,043

As Table 6.4 and Table 6.5 suggest, the effect of the dominance rule is extremely

significant on the BAB algorithm. Both the average CPU times and the average

57

number of nodes reduce significantly when dominance rule is applied. For 𝑁=35

when 𝐾=8 & 𝐾′=12, the average CPU time decreases from 1.85 to 0.79 seconds

and average number of nodes decreases from 579,747.5 to 44,353.2. When 𝐾=10

& 𝐾′=12, the average CPU time decreases from 6.51 to 0.60 seconds and average

number of nodes decreases from 2,577,738 to 66,577.8. The results are even more

drastic for 𝑁=53. When 𝐾=8 & 𝐾′=12, the average CPU time decreases from

44.97 to 2.92 seconds and average number of nodes decreases from 8,999,801 to

145,684.9. When 𝐾=10 & 𝐾′=12, the average CPU time decreases from 53.61 to

5.00 seconds and average number of nodes decreases from 8,243,175 to

307,632.4.

The results for the maximum CPU times and the maximum number of nodes also

reveal the ability of the dominance rule to avoid extremely large CPU times and

number of nodes for the worst cases. For example, the maximum number of nodes

would be 59,057,043 resulting in 330.6 CPU seconds for 𝑁=53 when 𝐾=10 &

𝐾′=12 if no dominance rule was applied. On the other hand, it is reduced to

1,438,863 nodes and 26.07 CPU seconds for the same instance when the

dominance rule is used.

ii. Lower Bounds

We test the effects of the lower bounds on the number of disrupted tasks and cycle

time both separately and together.

In our tests, we do not consider simple lower bounds. We test the power of the

lower bound on the number of disrupted tasks which uses the earliest/latest

workstations information (𝐿𝐵𝑁𝐷) and two lower bounds on the cycle time which

use the cardinality of number of tasks in any workstation information (𝐿𝐵2𝐶𝑇) and

the earliest/latest workstations information (𝐿𝐵3𝐶𝑇), respectively.

58

The results for the preliminary runs with and without the lower bounds are

summarized in the following two tables.

Table 6.6 The performance of the BAB algorithm with and without the lower

bounds, 𝑁=35

K=8 and K'=12 K=10 and K'=12

Average Maximum Average Maximum

with all LBs
CPU 0.79 1.58 0.60 1.45

Nodes 44,353.2 129,769 66,577.8 117,286

without
𝐿𝐵𝑁𝐷

CPU 0.81 1.47 0.87 1.50

Nodes 60,593.8 151,339 88,941.8 184,355

without
𝐿𝐵2𝐶𝑇
𝐿𝐵3𝐶𝑇

CPU 0.74 1.48 0.64 1.39

Nodes 44,409.7 130,033 68,181.4 117,437

without LBs
CPU 0.57 1.09 0.49 0.78

Nodes 60,715.4 151,655 91,159.5 185,133

Table 6.7 The performance of the BAB algorithm with and without the lower

bounds, 𝑁=53

K=8 and K'=12 K=10 and K'=12

Average Maximum Average Maximum

with all LBs
CPU 2.92 7.50 5.00 26.07

Nodes 145,684.9 277,543 307,632.4 1,438,863

without
𝐿𝐵𝑁𝐷

CPU 38.64 125.39 11.89 33.06

Nodes 1,128,062.5 2,858,333 570,313.4 1,624,420

without
𝐿𝐵2𝐶𝑇
𝐿𝐵3𝐶𝑇

CPU 3.32 9.17 7.35 46.29

Nodes 174,458.8 338,009 394,372.4 2,058,472

without LBs
CPU 20.88 53.07 16.84 94.43

Nodes 1,262,645.3 2,963,328 914,740 3,539,538

59

Table 6.6 and Table 6.7 show that the lower bound on the number of disrupted

tasks has a significant effect on the CPU time and the number of nodes. For 𝑁=35

when 𝐾=8 & 𝐾′=12, the average CPU time decreases from 0.81 to 0.79 seconds

and average number of nodes decreases from 60,593.8 to 44,353.2. When 𝐾=10 &

𝐾′=12, the average CPU time decreases from 0.87 to 0.60 seconds and average

number of nodes decreases from 88,941.8 to 66,577.8. The results are again more

obvious for 𝑁=53. When 𝐾=8 & 𝐾′=12, the average CPU time decreases from

38.64 to 2.92 seconds and average number of nodes decreases from 1,128,062.5 to

145,684.9. When 𝐾=10 & 𝐾′=12, the average CPU time decreases from 11.89 to

5.00 seconds and average number of nodes decreases from 570,313.4 to

307,632.4.

The effect of the lower bounds on the cycle time is slightly significant when the

number of nodes is compared. For 𝑁=35 when 𝐾=8 & 𝐾′=12, the average number

of nodes is reduced from 44,409.7 to 44,353.2. When 𝐾=10 & 𝐾′=12, the average

number of nodes is reduced from 68,181.4 to 66,577.8. For 𝑁=53 when 𝐾=8 &

𝐾′=12, the average number of nodes is reduced from 174,458.8 to 145,684.9.

When 𝐾=10 & 𝐾′=12, the average number of nodes is reduced from 394,372.4 to

307,632.4. However, when the average CPU times are compared, the results are

not in line with the ones obtained for the average number of nodes. For example,

for 𝑁=35 when 𝐾=8 & 𝐾′=12, the average CPU time increases from 0.74 to 0.79

seconds when the lower bounds on the cycle time are used. One can be suspicious

whether the computation of the lower bounds on the cycle time is worth or not;

however, the results for 𝑁=53 show that the effect of these lower bounds might be

more significant for problem instances with larger size. To illustrate, for 𝑁=53

when 𝐾=10 & 𝐾′=12, the average CPU time decreases from 7.35 to 5.00 seconds

when these lower bounds are used.

In the computation of 𝐿𝐵𝑁𝐷 and 𝐿𝐵3𝐶𝑇, the earliest/latest workstations should be

found for each of the unassigned tasks. Thus, even if only one of the lower bounds

is used, the earliest and latest workstations should be found. We also investigate

60

the situation where none of the lower bounds are used so that the earliest and

latest workstation information is no longer necessary. From Table 6.6, although

the number of nodes is significantly greater when the lower bounds are not used,

the CPU times are smaller when 𝐾=8 & 𝐾′=12 and 𝐾=10 & 𝐾′=12 for 𝑁=35. To

illustrate, the average number of nodes increases from 66,577.8 to 91,159.5 when

none of the lower bounds are employed whereas the average CPU time decreases

from 0.60 to 0.49 seconds when 𝐾=10 & 𝐾′=12. This may be because the

earliest/latest workstations are not computed and it is not worth to use the lower

bounds even if the computation time of the lower bounds takes less than a second

since the total time itself is less than a second. On the other hand, we observe the

effect of the lower bounds from the results of 𝑁=53 when 𝐾=8 & 𝐾′=12 and

𝐾=10 & 𝐾′=12. To illustrate, for 𝑁=53 when 𝐾=10 & 𝐾′=12, the average CPU

time decreases from 16.84 to 5.00 seconds when all lower bounds are used.

iii. Upper Bounds

We make preliminary experiments to understand the effect of the initial set

generated, so called the upper bounds. To do so, only one candidate

nondominated objective vector is generated for the initial set by using a well-

known heuristic called the Largest Candidate Rule that gives priority to the task

having larger task time. Using this rule, we try to find a feasible solution for the

theoretically minimum cycle time. If such a solution cannot be found due to the

fact that the required number of workstations is greater than the actual number of

workstations in the new configuration, the cycle time is increased by one and the

rule is applied again. By this way, we end up with a candidate nondominated

objective vector with a low cycle time; however, the number of disrupted tasks in

this solution is usually very high resulting in a very poor initial set.

61

Table 6.8 The performance of the BAB algorithm with and without the upper

bounds, 𝑁=35

K=8 and K'=12 K=10 and K'=12

Average Maximum Average Maximum

with UBs
CPU 0.79 1.58 0.60 1.45

Nodes 44,353.2 129,769 66,577.8 117,286

without
UBs

CPU 0.33 1.19 0.56 1.05

Nodes 71,955.8 247,555 100,792.2 192,767

Table 6.9 The performance of the BAB algorithm with and without the upper

bounds, 𝑁=53

K=8 and K'=12 K=10 and K'=12

Average Maximum Average Maximum

with UBs
CPU 2.92 7.50 5.00 26.07

Nodes 145,684.9 277,543 307,632.4 1,438,863

without
UBs

CPU 2.86 7.94 5.16 25.58

Nodes 195,811.4 364,043 367,618.4 1,441,123

Table 6.8 and Table 6.9 suggest that the generation of the initial set reduces the

number of nodes whereas whether it is worth or not, is not clear in terms of CPU

times. To illustrate, for 𝑁=35 when 𝐾=8 & 𝐾′=12, the average number of nodes

decreases from 71,955.8 to 44,353.2 whereas the average CPU time increases

from 0.33 to 0.79 seconds when the initial set is generated. Another example can

be given for 𝑁=53. When 𝐾=8 & 𝐾′=12, the average number of nodes decreases

from 195,811.4 to 145,684.9 whereas the average CPU time increases from 2.86

to 2.92 seconds if the initial set is used. Although it seems it is not worth to

generate the initial set for both 𝑁=35 and 𝑁=53, we suspect that its effect might

be perceived for larger instances. Thus, we repeat the experiment for Tonge

(1961) which has 70 tasks.

62

Table 6.10 The performance of the BAB algorithm with and without the upper

bounds, 𝑁=70

Setting 1
K=8 and K'=12

Setting 2
K=10 and K'=12

Average Maximum Average Maximum

with UBs
CPU 439.00 1702.59 154.02 1095.41

Nodes 13,905,229.3 55,262,946 9,857,298.0 36,236,721

without UBs
CPU 748.10 3600.00 175.33 1212.63

Nodes 33,270,872 204,517,755 12,664,664 42,980,361

Table 6.10 reveals that the upper bounds actually have a significant effect on

reducing the CPU times. The average CPU time decreases from 748.10 to 439.00

seconds and from 175.33 to 154.02 seconds when 𝐾=8 & 𝐾′=12 and 𝐾=10 &

𝐾′=12, respectively. Moreover, note that the termination limit would be exceeded

for one of the instances generated for the setting with 𝐾=8 & 𝐾′=12 if the upper

bounds were not employed.

6.2.3 MAIN EXPERIMENT

Based on the results of our preliminary runs, we ensure the power of the

dominance rule, lower bounds and upper bounds, and continue our main

experiment. As stated, we take four different data sets from the simple assembly

line balancing literature and use their precedence networks as they are. We

generate task times using discrete uniform distribution U[1,50] again based on the

results of the preliminary experiment. We also use five different settings for 𝐾 and

𝐾′ combinations.

We first analyze the number of nondominated objective vectors and report the

results in Table 6.11 and Table 6.12. Table 6.11 and Table 6.12 give the average

and maximum number of nondominated objective vectors.

63

Table 6.11 The number of nondominated objective vectors for 𝐾=8 & 𝐾′=12,

𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14

K=8 and K’=12 K=10 and K’=12 K=10 and K’=14

Average Maximum Average Maximum Average Maximum

N=35 7.5 10 10.2 12 9.1 12

N=45 7.2 11 9.5 12 9 12

N=53 11.2 19 12.9 15 13.1 19

N=70 10 17 11.3 15 10.7 20

Table 6.12 The number of nondominated objective vectors for 𝐾=5 & 𝐾′=6 and

𝐾=5 & 𝐾′=7

K=5 and K’=6 K=5 and K’=7

Average Maximum Average Maximum

N=35 6.9 11 6.3 9

N=45 5.5 9 4.6 7

N=53 9.6 18 9.4 16

N=70 10.1 13 6.6 14

As can be observed from Table 6.11 and Table 6.12, the nondominated objective

vectors for the instances with 𝑁=35 and 𝑁=45 are considerably less compared to

the instances with 𝑁=53 and 𝑁=70. Note from Table 6.11 when 𝐾=8 & 𝐾′=12

that the average number of nondominated objective vectors is 7.5 and 7.2 for

𝑁=35 and 𝑁=45, respectively whereas there are 11.2 and 10 objective vectors for

𝑁=53 and 𝑁=70, respectively. Similar results can also be observed for the other

settings. This is due to the fact that the number of nondominated objective vectors

is bounded by 𝑁 − 𝑁𝐷𝑚𝑖𝑛 + 1. We expect the number of nondominated objective

vectors to increase when the number of tasks increases. On the other hand, for

fixed number of workstations, increasing 𝑁 values would lead to more tasks

assigned to each workstation, hence to higher 𝑁𝐷𝑚𝑖𝑛 values. Since the number of

64

nondominated objective vectors has a reverse relationship with 𝑁𝐷𝑚𝑖𝑛, the

number of nondominated objective vectors might also decrease when 𝑁 increases.

For example, the average number of nondominated objective vectors decreases

from 7.5 to 7.2 when 𝑁 increases from 35 to 45 when 𝐾=8 & 𝐾′=12. However,

since 𝑁 grows more rapidly than 𝑁𝐷𝑚𝑖𝑛, the set of nondominated objective

vectors is expected to get larger for significant increments in 𝑁.

The effects of the number of workstations in the initial configuration (𝐾′) and the

number of disrupted workstations (𝐾′ − 𝐾) can be also observed from Table 6.11

and Table 6.12. It can be noted that, for fixed 𝐾′, smaller values of 𝐾′ − 𝐾 lead to

increases in the number of nondominated objective vectors. To illustrate, for

𝑁=35, the average number of nondominated objective vectors is 7.5 when 𝐾=8 &

𝐾′=12, and it is 10.2 when 𝐾=10 & 𝐾′=12. For 𝑁=45, the average number of

nondominated objective vectors is 7.2 when 𝐾=8 & 𝐾′=12 and it increases to 9.5

when 𝐾=10 & 𝐾′=12. For 𝑁=53, the average number of nondominated objective

vectors is 11.2 when 𝐾=8 & 𝐾′=12 and it increases to 12.9 when 𝐾=10 & 𝐾′=12.

For 𝑁=70, the average number of nondominated objective vectors is 10 when

𝐾=8 & 𝐾′=12 and it increases to 11.3 when 𝐾=10 & 𝐾′=12. As mentioned above,

the number of nondominated objective vectors is bounded by 𝑁 − 𝑁𝐷𝑚𝑖𝑛 + 1 and

𝑁𝐷𝑚𝑖𝑛 is greater when 𝐾=8 & 𝐾′=12 since there are more disrupted workstations.

This leads to a smaller set of nondominated objective vectors when more

workstations are disrupted given that the initial configuration is the same.

For fixed 𝐾′ − 𝐾, larger values of 𝐾′ lead to increases in the number of

nondominated objective vectors. It is already noted that when 𝐾=8 & 𝐾′=12, the

average number of nondominated objective vectors is 7.5 for 𝑁=35. When 𝐾=10

& 𝐾′=14, the average number of nondominated objective vectors is 9.1. Likewise,

when 𝐾=10 & 𝐾′=14, the average number of nondominated objective vectors

increases from 7.2 to 9 for 𝑁=45, from 11.2 to 13.1 for 𝑁=53 and from 10 to 10.7

for 𝑁=70. This difference is again related with 𝑁𝐷𝑚𝑖𝑛. For 𝐾′=14, there are less

number of tasks assigned to each workstation when compared to 𝐾′=12. If the

65

same number of workstations are disrupted for 𝐾′=12 and 𝐾′=14, the 𝑁𝐷𝑚𝑖𝑛

value would be less for 𝐾′=14. Thus, for fixed 𝐾′ − 𝐾, the number of

nondominated objective vectors are expected to be smaller for smaller 𝐾′ values.

Same observation can also be made if the results obtained for 𝐾=10 & 𝐾′=12 and

𝐾=5 & 𝐾′=7 are compared.

One can also compare the cases with the same 𝐾 values; however, it is not

possible to draw a conclusion that holds for all combinations. To illustrate, let us

compare 𝐾=10 & 𝐾′=12 with 𝐾=10 & 𝐾′=14. From Table 6.11, the average

number of nondominated objective vectors is 10.2 when 𝐾=10 & 𝐾′=12, and it is

9.1 when 𝐾=10 & 𝐾′=14 for 𝑁=35. On the other hand, the average number of

nondominated objective vectors is 12.9 when 𝐾=10 & 𝐾′=12, and it is 13.1 when

𝐾=10 & 𝐾′=14 for 𝑁=53. Since there are less tasks assigned to each workstation

in the original assignment when 𝐾′=14, the number of nondominated objective

vectors might be expected to decrease when a fixed number of workstations is

disrupted. However, as there are more affected workstations, the number of

nondominated objective vectors might increase as well.

We now discuss the performance of our BAB algorithm. We report the

performance results in Table 6.13 and Table 6.14. The tables give the average and

maximum number of nodes and CPU times of the BAB algorithm. The average

and maximum CPU times by the CA are also included in the tables.

66

Table 6.13 The performance of the BAB algorithm and the CA when 𝐾=8 &

𝐾′=12, 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14

BAB CA

Number of Nodes CPU Time CPU Time

 Setting N Average Maximum Average Maximum Average Maximum

K=8
K'=12

35 44,353.2 129,769 0.79 1.58 20.79 43.67

45 5,565,824.1 15,284,852 19.36 46.18 139.92 348.51

53 145,684.9 277,543 2.92 7.50 22.37 45.77

70 13,905,229.3 55,262,946 439.00 1702.59 802.90 3600.00

K=10
K'=12

35 66,577.8 117,286 0.60 1.45 84.42 135.57

45 35,271,957.5 62,193,762 658.28 3600.00 316.97 819.61

53 307,632.4 1,438,863 5.00 26.07 64.14 126.87

70 9,857,298.0 36,236,721 154.02 1095.41 2626.31 3600.00

K=10
K'=14

35 55,651.5 120,667 0.80 1.72 47.10 80.74

45 40,777,397.0 97,633,896 1018.07 3600.00 403.55 1585.27

53 205,748.2 516,778 3.94 13.82 52.11 106.96

70 7,258,017.8 26,547,649 87.46 337.94 2216.89 3600.00

Table 6.14 The performance of the BAB algorithm and the CA when 𝐾=5 & 𝐾′=6

and 𝐾=5 & 𝐾′=7

BAB CA

Number of Nodes CPU Time CPU Time

Setting N Average Maximum Average Maximum Average Maximum

K=5
K'=6

35 21,203.9 37,329 0.53 1.31 4.96 7.65

45 907,845.4 6,900,911 2.65 15.79 8.03 24.59

53 64,396.2 205,580 0.89 1.98 4.77 7.93

70 6,599,851.8 27,131,040 24.72 73.07 16.27 33.34

K=5
K'=7

35 15,161.6 26,134 0.69 1.51 4.87 6.92

45 1,174,489.2 6,335,691 3.55 14.21 9.66 62.61

53 48,501.2 97,284 0.81 1.47 4.78 8.03

70 2,123,071.0 8,519,811 10.72 34.94 14.59 28.04

67

As can be observed from Table 6.13 and Table 6.14, the CPU times and the

number of nodes of the BAB algorithm increase significantly with increases in 𝑁.

This is due to the increase in the number of nondominated objective vectors and

effort spent to find each nondominated objective vector.

Note from Table 6.13 that, for the BAB algorithm, when 𝐾=8 & 𝐾′=12, the

average CPU times are 0.79, 19.36, 2.92 and 439.00 seconds, and the average

number of nodes are 44,353.2, 5,565,824.1, 145,684.9 and 13,905,229.3 for

𝑁=35, 𝑁=45, 𝑁=53 and 𝑁=70, respectively. When 𝐾=10 & 𝐾′=12, the average

CPU times are 0.60, 658.28, 5.00 and 154.02 seconds, and the average number of

nodes are 66,577.8, 35,271,957.5, 307,632.4 and 9,857,298.0 for 𝑁=35, 𝑁=45,

𝑁=53 and 𝑁=70, respectively. When 𝐾=10 & 𝐾′=14, the average CPU times are

0.80, 1018.07, 3.94 and 87.46 seconds, and the average number of nodes are

55,651.1, 40,777,397.0, 205,748.2 and 7,258,017.8 for 𝑁=35, 𝑁=45, 𝑁=53 and

𝑁=70, respectively. The average CPU times and the average number of nodes for

𝐾=5 & 𝐾′=6 and 𝐾=5 & 𝐾′=7 can be found in Table 6.14. Except for 𝑁=53, the

results are in line with our expectation. The reason why the average CPU time and

the average number of nodes are smaller than what was expected for 𝑁=53 is due

to the intense precedence network of Hahn (1972). Since this instance has

relatively more precedence relationships, there is less number of tasks considered

at each level of the BAB because there are less tasks satisfying feasibility

conditions. Two more exceptions are identified such that even 𝑁 is smaller, the

average CPU time and the average number of nodes are greater. For 𝐾=10 &

𝐾′=12, the average CPU times are 658.28 and 154.02 seconds, and the average

number of nodes are 35,271,957.5 and 9,857,298.0 for 𝑁=45 and 𝑁=70,

respectively. A similar result is obtained for 𝑁=45 and 𝑁=70 when 𝐾=10 &

𝐾′=14. These exceptions can again be explained by the structure of the

precedence network. The precedence relationships for Kilbridge and Wester

(1962) is relatively sparse and there are more tasks considered at each level of the

BAB tree.

68

Recall that 𝐾′ and 𝐾′ − 𝐾 have an impact on the number of nondominated

objective vectors, they also affect the CPU times and the number of nodes. For

example, for 𝑁=45, the average CPU times are 19.36 and 658.28 seconds, and the

average number of nodes are 5,565,824.1 and 35,271,957.5 when 𝐾=8 & 𝐾′=12

and 𝐾=10 & 𝐾′=12, respectively. This is an expected result since the number of

nondominated objective vectors is greater for 𝐾=10 & 𝐾′=12. A similar

observation can be made when 𝐾=8 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 are compared.

For 𝑁=45, the average CPU time and the average number of nodes are 1018.07

seconds and 40,777,397.0 when 𝐾=10 & 𝐾′=14, respectively. Both the average

CPU time and the average number of nodes are greater when 𝐾=10 & 𝐾′=14

compared to 𝐾=8 & 𝐾′=12 since the set of nondominated objective vectors is

larger when 𝐾=10 & 𝐾′=14. There is only one exception reported in Table 6.13

for 𝑁=70. The average CPU time and the average number of nodes when 𝐾=8 &

𝐾′=12 are greater compared to 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 for 𝑁=70;

however, if two instances of when 𝐾=8 & 𝐾′=12 with maximum CPU times and

number of nodes are not considered when taking the averages, the results are

consistent with our expectations.

The observations from Table 6.13 and Table 6.14 suggest that 𝐾 also has an effect

on the performance of the BAB algorithm. Let us compare 𝐾=10 & 𝐾′=12 and

𝐾=5 & 𝐾′=7 where the number of disrupted workstations is the same but the

number of workstations in the new configuration is half in the latter setting. For

𝑁=70, the average number of nodes is 9,857,298.0 and the average CPU time is

154.02 seconds when 𝐾=10 & 𝐾′=12 whereas they decrease to 2,123,071 and

10.72 seconds, respectively when 𝐾=5 & 𝐾′=7. This observation is true for all

settings. This is an expected result since the size of the BAB gets smaller for

smaller 𝐾 values as we stop to branch once the assignment of tasks to the 𝐾 − 1

workstations is completed.

Another observation regarding the performance of the BAB algorithm is that the

results obtained by the BAB algorithm seem consistent since the differences

69

between the average and the maximum values of the CPU times are relatively

small for almost all combinations reported in Table 6.13 and Table 6.14. The

termination limit of one hour is only exceeded when 𝐾=10 & 𝐾′=12 and 𝐾=10 &

𝐾′=14 for 𝑁=45. If these instances are ignored, the average CPU time reduces to

331.43 seconds and the maximum CPU time reduces to 793.76 seconds when

𝐾=10 & 𝐾′=12, and the average CPU time reduces to 372.59 seconds and the

maximum CPU time reduces to 1749.11 seconds when 𝐾=10 & 𝐾′=14.

We also investigate the effects that are analyzed for the BAB algorithm on the

CA. The performance of the CA also deteriorates with increases in the 𝑁 value.

The increase with 𝑁 values is more pronounced compared to the BAB algorithm,

as in the CA the number of tasks increases the number of binary variables,

exponentially. Note from Table 6.13 that, when 𝐾=8 & 𝐾′=12, the average CPU

times are 20.79, 139.92, 22.37 and 802.90 seconds for 𝑁=35, 𝑁=45, 𝑁=53 and

𝑁=70, respectively. When 𝐾=10 & 𝐾′=12, the average CPU times are 84.42,

316.97, 64.14 and 2626.31 seconds for 𝑁=35, 𝑁=45, 𝑁=53 and 𝑁=70,

respectively. When 𝐾=10 & 𝐾′=14, the average CPU times are 47.10, 403.55,

52.11 and 2216.89 seconds for 𝑁=35, 𝑁=45, 𝑁=53 and 𝑁=70, respectively. The

average CPU time for 𝑁=53 is again smaller, which can be explained by its

intense precedence network. Similar observations can be made for the settings

with 𝐾=5 & 𝐾′=6 and 𝐾=5 & 𝐾′=7.

The 𝐾′ and 𝐾′ − 𝐾 values also affect the performance of the CA through their

effect on the number of nondominated objective vectors. Since each of the

nondominated objective vectors is found by solving an NP-hard problem in the

CA, the effect of 𝐾′ and 𝐾′ − 𝐾 on the CPU time of the CA is more significant

than that of the BAB algorithm. For example, for 𝑁=45, the average CPU times

are 139.92, 316.97 and 403.55 seconds when 𝐾=8 & 𝐾′=12, 𝐾=10 & 𝐾′=12 and

𝐾=10 & 𝐾′=14, respectively. The average CPU time when 𝐾=8 & 𝐾′=12 is less

than those of when 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 due to the fact that the set

of nondominated objective vectors is smaller when 𝐾=8 & 𝐾′=12. The difference

70

between the average CPU times when 𝐾=5 & 𝐾′=6 and 𝐾=5 & 𝐾′=7 reported in

Table 6.14 and when 𝐾=8 & 𝐾′=12, 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 reported

in Table 6.13 are again significant. As in the BAB algorithm, 𝐾 has an effect on

the effort spent to find each nondominated objective vector in the CA. This is due

to the exponential increase of the number of decision variables for increasing

values of 𝐾.

We give the average CPU times for the BAB algorithm and the CA, in Table 6.15

and Table 6.16, for different settings.

Table 6.15 The average CPU times of the BAB algorithm and the CA when 𝐾=8

& 𝐾′=12, 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14

K=8, K'=12 K=10, K'=12 K=10, K'=14

BAB CA BAB CA BAB CA

N=35 0.79 20.79 0.60 84.42 0.80 47.10

N=45 19.36 139.92 658.28 316.97 1018.07 403.55

N=53 2.92 22.37 5.00 64.14 3.94 52.11

N=70 439.00 802.90 154.02 2626.31 87.46 2216.89

Table 6.16 The average CPU times of the BAB algorithm and the CA when 𝐾=5

& 𝐾′=6 and 𝐾=5 & 𝐾′=7

K=5, K'=6 K=5, K'=7

BAB CA BAB CA

N=35 0.53 4.96 0.69 4.87

N=45 2.65 8.03 3.55 9.66

N=53 0.89 4.77 0.81 4.78

N=70 24.72 16.27 10.72 14.59

71

Note that in almost all combinations, the BAB algorithm produces smaller CPU

times and the differences between the performances of the BAB algorithm and the

CA become more significant as 𝑁 increases. From Table 6.15, the average CPU

time to generate all nondominated objective vectors is 0.79 seconds for the BAB

algorithm and 20.79 seconds for the CA, 19.36 seconds for the BAB algorithm

and 139.92 seconds for the CA, 2.92 seconds for the BAB algorithm and 22.37

seconds for the CA, 439.00 seconds for the BAB algorithm and 802.90 seconds

for the CA when 𝐾=8 & 𝐾′=12 for 𝑁=35, 𝑁=45, 𝑁=53 and 𝑁=70, respectively.

Under all of the other settings, the BAB algorithm generates the set of all

nondominated objective vectors faster with three exceptions. For 𝑁=45, although

the BAB algorithm is faster than the CA on the average when 𝐾=8 & 𝐾′=12, 𝐾=5

& 𝐾′=6 and 𝐾=5 & 𝐾′=7, the average CPU times are greater for the BAB

algorithm when 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14. The average CPU time for

the BAB algorithm is 658.28 seconds whereas it is 316.97 seconds for the CA

when 𝐾=10 & 𝐾′=12, and the average CPU time for the BAB algorithm is

1018.07 seconds whereas it is 403.55 seconds for the CA when 𝐾=10 & 𝐾′=14.

When we investigate these results, we see that in the BAB algorithm, the

termination limit is exceeded in one of the ten instances when 𝐾=10 & 𝐾′=12 and

in two of the ten instances when 𝐾=10 & 𝐾′=14.

The main experiment shows that in vast majority of the instances, the BAB

algorithm is superior to the CA. The outweighing performance of the BAB

algorithm over the CA can be explained by its lower sensitivity to the effects of

the problem size parameters and the number of nondominated objective vectors.

The exponential nature of the BAB search is somewhat dispelled by powerful

lower bounding mechanisms and efficient dominance rules.

72

73

CHAPTER 7

CONCLUSIONS

7. CONCLUSIONS

In this thesis, we consider an assembly line rebalancing problem. We assume that

there are disruptions on a particular number of workstations that makes the

original task assignment plan infeasible to implement. Hence, the line has to be

rebalanced, i.e., the tasks should be reassigned, considering only nondisrupted

workstations and precedence relations. We consider a bicriteria problem of

generating all nondominated objective vectors with respect to our efficiency

measure and stability measure. We consider cycle time, hence maximizing

production rate, as an efficiency measure. Our stability measure is the number of

disrupted tasks assigned to different workstations than their original workstations.

To find the exact set of nondominated objective vectors, we propose two

algorithms: classical approach (CA) and branch and bound (BAB) algorithm. The

CA generates all nondominated objective vectors by successive solutions of

mixed integer linear programs. The BAB algorithm generates the nondominated

set simultaneously employing efficient branching scheme, bounding and

dominance mechanisms.

The results of our computational experiment show that the lower bounding

schemes and dominance mechanisms have significant effect on the performance

of the BAB algorithm. Using those mechanisms, the BAB algorithm solves the

instances with up to 70 tasks in reasonable times and performs superior to the CA.

74

To the best of our knowledge, we present the first optimization algorithm for the

assembly line rebalancing problem. Future research may benefit from our results

to fill the gaps in the related literature. Defining new efficiency and stability

measures and finding efficient solutions that catch a trade-off between the defined

measures might be an interesting research direction. One reasonable stability

measure is the weighted number of different assignments between the original and

new plans or the weighted distance between the original and new workstations.

An efficiency measure may be related to the workload balancing between the

workstations like the absolute or squared deviation of the workstation loads

around a target workload.

Another worth-studying research direction might be developing optimization and

approximation algorithms for the variants of the classical assembly line

rebalancing problem. The variants may include, but not limited to, U-shaped

assembly lines, mixed model lines, parallel lines and flexible assembly lines.

In future research, different types of disruptions like addition of a new

workstation, partial disruption of some workstations might be considered.

75

REFERENCES

Battaia O. and A. Dolgui, 2013, A taxonomy of line balancing problems and their

solution approaches, International Journal of Production Economics, 142, 259-

277.

Baybars, I., 1986, A survey of exact algorithms for the simple assembly line

balancing, Management Science, 32, 909-932.

Celik, E., Y. Kara and Y. Atasagun, 2014, A new approach for rebalancing of U-

lines with stochastic task times using ant colony optimization algorithm,

International Journal of Production Research, DOI: 10.1080/00207543.2014.917768

Gamberini, R., A. Grassi and B. Rimini, 2006, A new multi-objective heuristic

algorithm for solving the stochastic assembly line re-balancing problem,

International Journal of Production Economics, 102, 226-243.

Gamberini, R., E. Gebennini, A. Grassi and A. Regattieri, 2009, A multiple

single-pass heuristic algorithm solving the stochastic assembly line rebalancing

problem, International Journal of Production Research, 47, 2141-2164.

Grangeon, N., P. Leclaire and S. Norre, 2011, Heuristic for the re-balancing of a

vehicle assembly line, International Journal of Production Research, 22, 6609-

6628.

Günther, R. E., G. D. Johnson and R. S. Peterson, 1983, Currently practiced

formulations for the assembly line balance problem, Journal of Operations

Management, 3, 209-221.

Hahn, R., 1972, Produktionsplanung bei Linienfertigung, de Gruyter, Berlin.

76

Haimes, Y. Y., L. S. Ladson and D. A. Wismer, 1971, Bicriterion formulation of

problems of integrated system identification and system optimization, IEEE

Transactions on Systems Man and Cybernetics, SMC 1, 296-&.

Hoffmann, T. R., 1992, EUREKA: A hybrid system for assembly line balancing,

Management Science, 38, 39-47.

Hwang, C. L. and K. Yoon, 1981, Multiple attribute decision making, Methods

and Applications, Springer, New York.

Johnson, R. V., 1988, Optimally balancing large assembly lines with “FABLE”,

Management Science, 34, 240-253.

Kilbridge, M. D. and L. Wester, 1962, A review of analytical systems of line

balancing, Operations Research, 10, 626-638.

Klein, R. and A. Scholl, 1996, Maximizing the production rate in simple assembly

line balancing – A branch and bound procedure, European Journal of Operational

Research, 91, 367-385.

Kottas, J. F. and H. S. Lau, 1973, A cost oriented approach to stochastic line

balancing, AIIE Transactions, 8, 234-240.

Morrison D. R., E. C. Sewell and S. H. Jacobson, 2014, An application of the

branch, bound, and remember algorithm to a new simple assembly line balancing

dataset, European Journal of Operational Research, 236, 403-409.

Nourie, F. J. and E. R. Venta, 1991, Finding optimal line balances with OptPack,

Operations Research Letters, 10, 165-171.

Rosenberg, O. and H. Ziegler, 1992, A comparison of heuristic algorithms for

cost-oriented assembly line balancing, Zeitschrift für Operations Research, 36,

477-495.

Salveson, M., 1955, The assembly line balancing problem, Journal of Industrial

Engineering, 6, 18-25.

77

Scholl, A., 1994, Ein B&B-Verfahren zur abstimmung von fiessbaendern bei

gegebener stationsanzahl, Operations Research Proceedings 1993, Springer-

Verlag, Berlin, 175-181.

Scholl, A. and R. Klein, 1997, SALOME: A bidirectional branch-and-bound

procedure for assembly line balancing, INFORMS Journal on Computing, 9, 319-

334.

Scholl, A. and R. Klein, 1999, Balancing assembly lines effectively – A

computational comparison, European Journal of Operational Research, 114, 50-

58.

Scholl, A., 2007, Data sets for SALBP, http://www.assembly-line-balancing.de.

Sewell, E. C. and S. H. Jacobson, 2012, A branch, bound, and remember

algorithm for the simple assembly line balancing problem, INFORMS Journal on

Computing, 24, 433-442.

Tonge, F. M., 1961, A heuristic program for assembly line balancing, Prentice

Hall, Englewood Cliffs, NJ.

Yang, C., J. Gao and L. Sun, 2013, A multi-objective genetic algorithm for

mixed-model assembly line rebalancing, Computers and Industrial Engineering,

65, 109-116.

Zha, J. and J. J. Yu, 2014, A hybrid ant colony algorithm for U-line balancing and

rebalancing in just-in-time production environment, Journal of Manufacturing

Systems, 33, 93-102.

http://www.assembly-line-balancing.de/

78

79

APPENDIX

PRECEDENCE NETWORKS

F
ig

u
re A

.1
 P

reced
en

ce n
etw

o
rk

 o
f G

ü
n
th

er et al. (1
9
8
3
)

80

F
ig

u
re

 A
.2

 P
re

ce
d

en
ce

 n
et

w
o
rk

 o
f

K
il

b
ri

d
g
e

an
d
 W

es
te

r
(1

9
6
2
)

81

F
ig

u
re A

.3
 P

reced
en

ce n
etw

o
rk

 o
f H

ah
n
 (1

9
7
2
)

82

F
ig

u
re

 A
.4

 P
re

ce
d

en
ce

 n
et

w
o
rk

 o
f

T
o
n

g
e

(1
9

6
1

)

