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ABSTRACT 

 

 

REBALANCING OF ASSEMBLY LINES 

 

 

 

Sancı, Ece 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 

 

July 2015, 82 pages 

 

 

In this study, we consider an assembly line rebalancing problem. We assume that 

there is a disruption on one or more workstations that makes the current solution 

infeasible. After the disruption, we aim to find a rebalance so as to catch the trade-

off between the efficiency measure of cycle time and the stability measure of 

number of tasks assigned to different workstations in the original and new 

solutions. 

We generate all nondominated objective vectors with respect to our efficiency and 

stability measures. We develop two optimization algorithms: classical approach 

and branch and bound algorithm. The results of our experiments show the 

favorable behaviors of both algorithms and superiority of branch and bound 

algorithm. 

 

Keywords: Assembly Lines, Rebalancing, Branch and Bound Algorithm
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ÖZ 

 

 

MONTAJ HATLARININ YENİDEN DENGELENMESİ 

 

 

 

Sancı, Ece 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu 

 

Temmuz 2015, 82 sayfa 

 

 

Bu çalışmada, montaj hattı yeniden dengeleme problemini ele aldık. Bir ya da 

birden fazla iş istasyonunda oluşan bir aksamanın, mevcut dengelemeyi 

uygulanamaz duruma getirdiğini varsaydık. Aksamadan sonra, verimlilik 

ölçütümüz olan çevrim süresi, kararlılık ölçütümüz olan eski ve yeni atamalarda 

farklı istasyonlara atanan iş sayısının ödünleşimini düşünen, yeni bir denge 

bulmayı hedefledik. 

Verimlilik ve kararlılık ölçütlerimize göre tüm bastırılmamış çözümleri yarattık. 

İki optimizasyon algoritması –klasik yaklaşım ve dal-sınır algoritması– 

geliştirdik. Deneysel sonuçlarımız, algoritmaların başarılı davranışlarını ve dal-

sınır algoritmasının üstünlüğünü göstermektedir. 

 

Anahtar Kelimeler: Montaj Hatları, Yeniden Dengeleme, Dal ve Sınır 

Algoritması 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1. INTRODUCTION 

An assembly line is a flow-oriented production system which consists of a 

sequence of workstations performing repetitive tasks. Assembly lines are cost 

efficient means of production which are more typical in the production of high 

volume standardized commodities. An important problem arising in managing 

assembly lines regards the decision of task assignments to workstations in an 

efficient way. This problem is called the assembly line balancing (ALB) problem 

which is a well-studied combinatorial optimization problem. Although there is a 

vast amount of ALB studies in the literature, its research is still attractive. This is 

mainly due to the fact that the structures of assembly lines change dynamically 

with the requirements imposed by the changes in the industries. To illustrate, 

although the first assembly lines were designed to produce a single identical 

product, it is more common to produce customized products belonging to similar 

product families on a single assembly line in today’s industries due to the changes 

in the customer requirements. Thus, there are still important aspects of assembly 

line balancing which researchers may find challenge. 

The basic version of the ALB problem is first proposed by Salveson (1955). The 

balancing problem considered in this study is named simple assembly line 

balancing (SALB) problem which has several underlying assumptions such as: 

 There is one homogeneous product to be assembled on the line. 
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 The line is paced with a fixed cycle time. 

 The task times are deterministic. 

 The only assignment restriction is due to the precedence relationships. 

 The line has a serial layout with one-sided workstations. 

 All workstations are equally equipped. 

 

Considering this problem environment, Salveson (1955) proposed a mathematical 

model which assigns tasks to workstations without exceeding the cycle time and 

satisfying precedence relationships. After Salveson, ALB literature is extended by 

relaxing these assumptions which results in different variants of the ALB 

problems. Although different categorizations of the ALB problem are possible, 

the most fundamental one is based on the objective functions considered, i.e., how 

the efficiency of the balancing problem is defined. There are mainly two types of 

the ALB problem regarding the objective functions: Type I ALB problem aims to 

minimize the number of workstations for a given cycle time whereas Type II ALB 

problem aims to minimize the cycle time for a given number of workstations. 

Type I ALB problem is usually considered before the configuration of an 

assembly line when the quantity of the product to be produced is planned. On the 

other hand, Type II ALB problem usually arises for already configured assembly 

lines with a new problem environment. 

The assembly line rebalancing problem is rather a neglected problem despite its 

practical importance. Most of the assembly lines are not installed from the scratch 

but reconfigured according to the changing circumstances. Thus, it is more 

convenient to rebalance the line by taking the initial configuration into account 

rather than solving a balancing problem all over again each time one of the input 

parameters changes, e.g. change in demand pattern, change in task times, 

technological restrictions or workstation breakdowns. These changes are referred 
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to as disruptions. After any disruption, the stability aspect should be concerned 

along with the efficiency of the assembly line, since costs associated with 

operators training, quality assurance and equipment installation incur once a task 

is removed from one workstation to another. 

In this thesis, we consider a rebalancing problem where the tasks are already 

assigned to workstations. A disruption occurs and affects one or more 

workstations so that the tasks should be reassigned to the other workstations with 

respect to our efficiency and stability measures. Our efficiency measure is the 

cycle time and our stability measure is the number of disrupted tasks. We define a 

task as disrupted if it has to be moved to a different workstation after disruption. 

The problem we consider has a multi-criteria nature since it is possible to increase 

the efficiency of the line, i.e., decrease the cycle time, with a sacrifice in the 

stability measure, i.e., increase in the number of disrupted tasks. Our aim is to 

generate all nondominated objective vectors with respect to these two measures. 

We assume that the utility function of the decision maker is unknown or complex, 

and the decision maker would make a comparison between all nondominated 

objective vectors according to his/her preferences once they are all presented.  

The related literature on assembly line rebalancing problem is very scarce and the 

existing studies propose only approximate solution procedures. The lack of exact 

solution procedures along with the complexity of the problem have motivated us 

to develop solution approaches for the rebalancing problem. We present two exact 

solution procedures: the classical approach which sequentially generates all 

nondominated objective vectors and the branch and bound algorithm which 

simultaneously generates all nondominated objective vectors. The superiority of 

the branch and bound algorithm is shown in the computational study, and the 

classical approach remains as an attractive alternative in particular when a 

decision maker prefers a solution in a defined space. 

The organization of the thesis is as follows: In Chapter 2, we review the related 

literature on the assembly line balancing and rebalancing problems. In Chapter 3, 
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we define the problem and give the associated mixed integer linear program. We 

present the classical approach and the branch and bound algorithm in Chapter 4 

and Chapter 5, respectively. In Chapter 6, we discuss the results of our 

preliminary and main experiments. In Chapter 7, we give our conclusion remarks 

and point out some future study directions. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2. LITERATURE REVIEW 

In this section, we first review simple assembly line balancing (SALB) literature 

and then discuss the previous studies on the assembly line rebalancing problems. 

 

2.1 LITERATURE ON SIMPLE ASSEMBLY LINE BALANCING (SALB)  

The  SALB studies are of two types: Type I (SALB-I) and Type II (SALB-II). The 

Type I problem minimizes the number of workstations subject to the constraint 

that the cycle time is not exceeded. The Type II problem minimizes the cycle time 

subject to the constraint that the number of workstations is not exceeded. 

 

2.1.1 LITERATURE ON SALB-I 

SALB-I is an extensively studied problem with many variants. The problem is 

shown to be NP-hard in the strong sense (see Baybars,1986). Many exact and 

heuristic procedures are developed for its solution. Among the exact algorithms, 

branch and bound algorithms play a dominant place. The most prominent branch 

and bound algorithms developed for the SALB problem are due to Johnson 

(1988), Nourie and Venta (1991), Hoffmann (1992) and Scholl and Klein (1997, 

1999). The algorithm presented in Johnson (1988), named FABLE, uses task-

oriented depth first search strategy while incorporating several lower bounds and 

dominance rules. Nourie and Venta (1991) develop an algorithm called OptPack 
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with a compact tree structure which stores partial solutions. The algorithm called 

EUREKA is developed by Hoffmann (1982). EUREKA uses a heuristic along 

with a branch and bound algorithm that explores either by assigning tasks first to 

the first workstations or first to the last workstations. A branch and bound 

algorithm called SALOME is developed in Scholl and Klein (1997, 1999). 

SALOME uses a bidirectional search with effective lower bounds and dominance 

rules. The computational experiments performed for 269 problem instances show 

that SALOME is superior to FABLE and EUREKA. Indeed, SALOME remained 

the best exact algorithm for SALB-I for years. Sewell and Jacobson (2012) 

present a new algorithm which outperforms SALOME. They refer this algorithm 

as the branch, bound and remember algorithm. Sewell and Jacobson (2012)’s 

algorithm uses cyclic best first search strategy, good lower bounds and a memory 

based dominance rule. Morrison et al. (2014) extend the study of Sewell and 

Jacobson (2012) with a new backtracking procedure and report superior results. 

 

2.1.2 LITERATURE ON SALB-II 

Almost all SALB-II studies in the literature use successive solutions of the SALB-

I problem. Different enumeration techniques for these solution procedures are 

utilized which are mainly based on iterating for a trial cycle time between a lower 

bound and an upper bound on the cycle time. One of these enumeration 

techniques is the lower bound method in which the cycle time is successively 

increased by one starting from the lower bound until a feasible assignment is 

obtained. The direct procedures for the SALB-II problems are due to Scholl 

(1994) and Klein and Scholl (1996). The branch and bound algorithm presented 

by Scholl (1994) employs a task-oriented depth first strategy along with several 

lower bounds and dominance rules. Klein and Scholl (1996) develop an algorithm 

based on SALOME and adapt it for directly solving SALB-II. They use an 

efficient enumeration technique that employs several lower and upper bounding 

schemes along with several dominance rules. They test the performance of their 
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algorithm on 302 problem instances and they compare the results with the solution 

procedures incorporating the solutions of SALB-I which are based on FABLE, 

EUREKA and SALOME. They also compare their results with Scholl (1994). The 

computational study shows the superiority of their procedure. 

For extensive review of the assembly line balancing problem, we refer the reader 

to the survey study of Battaia and Dolgui (2013). 

 

2.2 LITERATURE ON ASSEMBLY LINE REBALANCING 

Unlike to the SALB problem, there are only a few studies on rebalancing of 

assembly lines in the literature. The rebalancing studies on assembly lines can be 

divided into two categories regarding to the nature of the task times. 

 

2.2.1 LITERATURE ON REBALANCING PROBLEMS WITH 

DETERMINISTIC TASK TIMES 

All deterministic studies consider heuristic approaches with different efficiency 

and stability measures. Those studies are due to Grangeon et al. (2011), Yang et 

al. (2013) and Zha and Yu (2014). 

Grangeon et al. (2011) study a real life mixed model rebalancing problem in a 

French automotive firm. The tasks are assigned to workstations each month 

according to the master sequencing which includes the number of vehicles to be 

produced for each model. The task assignments done for a particular month may 

violate some of the constraints for the following months so that the line should be 

rebalanced. Grangeon et al. (2011) propose a heuristic that has three phases: The 

first phase aims to obtain a feasible solution, the second phase aims to decrease 

the number of workstations and the third phase aims to smooth the workload 

while transferring a minimum number of tasks. They apply their heuristic to five 

different industrial instances.  
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Yang et al. (2013) consider a mixed model rebalancing problem. Their problem is 

to reassign the tasks to the workstations for a given cycle time when demand 

structure or technological requirements change. As efficiency measures, they 

consider the number of workstations and workload variation of each workstation 

for different models. As stability measure, they take rebalancing cost that is 

defined as the total processing time of reassigned tasks. To generate the 

approximate set of nondominated objective vectors with respect to the efficiency 

and stability measures, they present a multi-objective genetic algorithm. The 

efficiency of the algorithm is improved by a local search procedure. They test the 

performance of their algorithm on 23 representative mixed model assembly line 

instances where the assembly line has to be rebalanced due to the change in 

demand structure of the models. They report the objective vectors obtained for 

each of the 23 instances along with the CPU times of their algorithm. 

Zha and Yu (2014) propose a hybrid approach for balancing and rebalancing 

single model U-shaped assembly lines. Their solution procedure combines ant 

colony optimization algorithm with filtered beam search in order to minimize the 

total of moving cost of machines and labor costs and minimize the walking time 

of operators. The algorithm can be used both for the balancing and rebalancing 

problem such that moving cost is simply zero for the balancing problem and 

different than zero for the rebalancing problem. Their tests on 25 benchmark 

problems indicate that the algorithm performs quite efficient when compared to 

the existing solution procedures developed for the U-shaped assembly lines.  
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2.2.2 LITERATURE ON REBALANCING PROBLEMS WITH 

STOCHASTIC TASK TIMES 

The rebalancing studies with stochastic task times also consider heuristic 

approaches with different efficiency and stability measures. Those studies are due 

to Gamberini et al. (2006), Gamberini et al. (2009) and Celik et al. (2014). 

Gamberini et al. (2006) consider a rebalancing problem with a single model. They 

consider a problem environment where the assembly line has to be rebalanced for 

a given cycle time after some changes occurred in the input parameters. They 

define their efficiency measure as the unit total expected completion cost and 

stability measure as the tasks reassignment. They assume that the unit total 

expected completion cost is the sum of the total labor cost and the total expected 

incompletion cost using the idea of Kottas and Lau (1973). Moreover, they 

introduce an index called the task similarity factor in order to measure the 

similarity between the initial and the new balances. They propose a multi-

objective heuristic algorithm in order to generate an approximate set of 

nondominated objective vectors. Their solution procedure integrates the well-

known heuristic procedure Kottas and Lau (1973) developed for solving 

stochastic assembly line balancing problems and the technique for order 

preference by similarity to ideal solution (TOPSIS) proposed by Hwang and Yoon 

(1981). In the computational study conducted, they consider the technological 

changes in the product assembled resulting in an altered precedence network. 

They compare the performance of their algorithm with Kottas and Lau (1973) on 

2160 test problems and they report that they obtain improved results for both of 

the objectives in more than half of the problems and a reduction in either of the 

objectives is achieved in the rest of the problems. 

Gamberini et al. (2009) consider the same problem context stated in Gamberini et 

al. (2006). They propose a multiple single-pass heuristic algorithm and a multi-

objective genetic algorithm (MOGA) in order to find a representative Pareto front. 

In the multiple single-pass heuristic, they use four different single-pass heuristics 
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mainly differing in how the attribute related to the completion cost is defined. 

They fine tune the multiple single-pass heuristic experimenting on 240 problems 

and compare their algorithm with the MOGA. For all of the problems, the 

solutions obtained by the MOGA are dominated by those of the multiple single-

pass heuristic. They also compare the performance of the multiple single-pass 

algorithm with Kottas and Lau (1973) and Gamberini et al. (2006) on a single 

case study and report outperforming behavior of the multiple single-pass 

algorithm.  

Celik et al. (2014) propose an ant colony optimization algorithm to solve the 

rebalancing problem for single model U-shaped assembly lines. They consider 

only a single objective function called the total cost of rebalancing which includes 

task transposition costs, workstation opening or closing costs and workstation 

operating cost over a definite planning horizon. They conduct experiments on 

1320 test problems to test the performance of their algorithm under different 

problem settings. 

The most closely related published work to ours is Gamberini et al. (2006)’s 

study. We take the number of workstations as parameters whereas they decide on 

the number of workstations. Both their study and our study aim to generate the set 

of nondominated objective vectors. We generate the set exactly whereas their 

generation process is approximate. 
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CHAPTER 3 

 

 

PROBLEM DEFINITION 

 

 

3. PROBLEM DEFINITION 

We consider 𝑁 tasks that are already assigned to 𝐾′ workstations. A disruption 

occurs and affects a defined set of workstations. After the disruption, the tasks are 

to be assigned to the remaining workstations, i.e., nondisrupted workstations. We 

let 𝐾 denote the set of these nondisrupted workstations that are the workstations in 

the new configuration. 

We assume that there is a single product that is to be assembled. The assembly 

line is serial with one-sided workstations. The parameters after disruptions are 

predefined and are not subject to any change, i.e., the system is deterministic and 

static. All tasks can be assigned to all workstations; however, there is a penalty of 

assignment if any task is assigned to a different workstation than its original. 

We assume that the initial configuration is already known. We use terms ‘initial’, 

‘original’ and ‘old’ configuration, assignment and workstation, interchangeably. 

The configuration after the disruption is a decision and is referred to as new 

configuration, assignment and workstation, as sometimes simply configuration, 

assignment and workstation. 

The processing time of task 𝑖 is defined as 𝑡𝑖 and 𝐼𝑃𝑖 is the immediate 

predecessors set of task 𝑖. The processing of task 𝑖 can start only when all tasks in 

𝐼𝑃𝑖 are complete. 
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We use binary variable 𝑥𝑖𝑘 to explain our workstation assignment decisions where 

𝑥𝑖𝑘 = {
1, if task 𝑖 is assigned to workstation 𝑘 in the new assignment
0, otherwise                                                                                               

       

for 𝑖=1,...,𝑁 and 𝑘=1,...,𝐾 

Note 𝑥𝑖𝑘’s explain the new configuration. 

We let 𝐶𝑇 be the cycle time. 𝐶𝑇 corresponds to the maximum workload of overall 

workstations. The workload of a particular workstation is the sum of the 

processing times of the tasks assigned to that workstation. 

We let 𝑁𝐷 be the number of disrupted tasks. 

We define the rebalancing problem with the following two criteria: 

 Minimize 𝐶𝑇 

 Minimize ∑ ∑ 𝑐𝑖𝑘𝑥𝑖𝑘
𝐾
𝑘=1

𝑁
𝑖=1 = 𝑁𝐷  

where 𝑐𝑖𝑘 = {
1, if task 𝑖 is not assigned to workstation 𝑘 in the old assignment
0, otherwise                                                                                                    

 

for 𝑖=1,...,𝑁 and 𝑘=1,...,𝐾 

Hence, ∑ ∑ 𝑐𝑖𝑘𝑥𝑖𝑘
𝐾
𝑘=1

𝑁
𝑖=1  can be explained as the number of tasks assigned to 

different workstations in the new assignment (assignment that considers the effect 

of disruption) and the old assignment (assignment that was used before the 

disruption). 

 

Our constraint set is as defined below: 

∑ 𝑥𝑖𝑘
𝐾
𝑘=1 = 1                           𝑖 = 1, … , 𝑁                                                                  (1) 

∑ 𝑡𝑖𝑥𝑖𝑘
𝑁
𝑖=1 ≤ 𝐶𝑇                      𝑘 = 1, … , 𝐾                                                                (2) 
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∑ 𝑘 𝑥𝑖𝑘
𝐾
𝑘=1 ≤  ∑ 𝑘 𝑥𝑗𝑘

𝐾
𝑘=1      𝑗 = 1, … , 𝑁 𝑎𝑛𝑑  ∀𝑖 ∈ 𝐼𝑃𝑗                                       (3) 

𝑥𝑖𝑘 = 0 𝑜𝑟 1                            𝑖 = 1, … , 𝑁 𝑎𝑛𝑑 𝑘 = 1, … , 𝐾                                   (4) 

 

Constraint Set (1) ensures that each task is assigned. Constraint Set (2) defines the 

maximum workload, i.e., 𝑀𝑎𝑥𝑘{∑ 𝑡𝑖𝑥𝑖𝑘𝑖 }. The precedence relations are controlled 

by Constraint Set (3). According to Constraint Set (3), the index of the 

workstation that task 𝑗 is assigned is no smaller than those of its immediate 

predecessors. The assignment restrictions are given by Constraint Set (4). 

We hereafter refer to Constraint Sets (1) through (4) as 𝑥 ∈ 𝑋. 

A solution 𝑠 in set 𝑋 is called efficient if there is no other solution 𝑡 in set 𝑋 with 

𝐶𝑇𝑡 ≤ 𝐶𝑇𝑠 and 𝑁𝐷𝑡 ≤ 𝑁𝐷𝑠 with strict inequality holding at least once. The 

resulting objective vector (𝐶𝑇𝑠, 𝑁𝐷𝑠) is said to be nondominated. Assume that 

there is a solution 𝑡 such that (𝐶𝑇𝑡, 𝑁𝐷𝑡) ≤ (𝐶𝑇𝑠, 𝑁𝐷𝑠), i.e., 𝐶𝑇𝑡 ≤ 𝐶𝑇𝑠and 

𝑁𝐷𝑡 < 𝑁𝐷𝑠 or 𝐶𝑇𝑡 < 𝐶𝑇𝑠and 𝑁𝐷𝑡 ≤ 𝑁𝐷𝑠. In such a case we say solution 𝑡 

dominates solution 𝑠 and the objective vector (𝐶𝑇𝑡, 𝑁𝐷𝑡) dominates the objective 

vector (𝐶𝑇𝑠, 𝑁𝐷𝑠). 

Our aim is to generate the set of nondominated objective vectors together with 

their corresponding efficient solutions. Our criteria 𝐶𝑇 and 𝑁𝐷 may be conflicting 

in the sense that reducing 𝐶𝑇 may lead to increases in 𝑁𝐷 and vice versa. 

In the next two chapters, we present our procedures that return the exact set of 

nondominated objective vectors. Chapter 4 presents the classical approach that 

solves the problem sequentially, via integer models. Chapter 5 discusses the 

branch and bound algorithm that generates all nondominated objective vectors 

using a single tree. 

 

 



14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

CHAPTER 4 

 

 

CLASSICAL APPROACH 

 

 

4. CLASSICAL APPROACH 

In this chapter, we first discuss the generation of extreme nondominated objective 

vectors and then present the generation of all nondominated objective vectors. 

 

4.1 THE EXTREME NONDOMINATED OBJECTIVE VECTORS 

Consider the following problem: 

Min 𝐶𝑇 

s.t. 𝑥 ∈ 𝑋 

Let 𝐶𝑇∗ be its optimal 𝐶𝑇 value. 

𝐶𝑇∗ is a valid lower bound on the 𝐶𝑇 values of all efficient solutions. However, 

any optimal solution to the above problem may not be efficient as there may exist 

alternative solutions having smaller 𝑁𝐷 values. 

Among all alternative optimal solutions to the Min 𝐶𝑇 s.t. 𝑥 ∈ 𝑋 problem, the one 

having minimum 𝑁𝐷 value can be found by setting 𝐶𝑇 = 𝐶𝑇∗ and solving the 

below problem: 
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Min 𝑁𝐷 

s.t. 𝑥 ∈ 𝑋 

    𝐶𝑇 = 𝐶𝑇∗ 

Hence, the efficient solution with 𝐶𝑇 value of 𝐶𝑇∗ can be found in two steps: 

1. Solve Min 𝐶𝑇 s.t. 𝑥 ∈ 𝑋. 

Let 𝐶𝑇∗ be the solution. 

2. Solve Min 𝑁𝐷 s.t. 𝑥 ∈ 𝑋  and 𝐶𝑇 = 𝐶𝑇∗. 

Instead of solving two optimization problems, one can modify the objective 

function as 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷 for a sufficiently small value of 𝜀𝑁𝐷. The resulting 

problem is 

Min 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷 

s.t. 𝑥 ∈ 𝑋   

𝜀𝑁𝐷 should be set small enough that the cycle time should not increase even for 

the largest possible value of the 𝑁𝐷 value, which is 𝑁. This follows 

𝐶𝑇∗ + 𝜀𝑁𝐷𝑁 ≤ 𝐶𝑇∗ + 1 + 𝜀𝑁𝐷𝑁𝐷𝑚𝑖𝑛         (1)                                         

where 𝑁𝐷𝑚𝑖𝑛 is the smallest possible value of 𝑁𝐷, i.e., the number of tasks on the 

disrupted workstations. 

Rearranging (1) gives 

𝜀𝑁𝐷(𝑁 − 𝑁𝐷𝑚𝑖𝑛) ≤ 1, 

𝜀𝑁𝐷 ≤
1

𝑁 − 𝑁𝐷𝑚𝑖𝑛
 

In our experiments, we set 𝜀𝑁𝐷 to 
1

𝑁−𝑁𝐷𝑚𝑖𝑛+1
 and solve the following problem: 
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(𝑃1) Min 𝐶𝑇 +
1

𝑁−𝑁𝐷𝑚𝑖𝑛+1
𝑁𝐷 

 s.t. 𝑥 ∈ 𝑋   

Note that the optimal solution to 𝑃1 is an efficient solution with the smallest 𝐶𝑇 

value, and the resulting objective vector (𝐶𝑇, 𝑁𝐷) is nondominated. 

On the other hand, the efficient solution with the smallest 𝑁𝐷 value can be found 

through the following problem: 

 

(𝑃2) Min 𝐶𝑇 

 s.t. 𝑥 ∈ 𝑋   

       𝑁𝐷 = 𝑁𝐷∗ 

Note that 𝑁𝐷∗ is the number of tasks over all disrupted workstations, hence it is 

known beforehand. This follows, an efficient solution with the smallest 𝑁𝐷 value 

can be found using a single optimization problem, 𝑃2. 

We provide an example to illustrate our decisions for 𝑃1 and 𝑃2. We take the data 

set from Rosenberg and Ziegler (1992) which is commonly used in the assembly 

line balancing literature. The sample instance has 25 tasks and the precedence 

network is as given below along with the task times: 
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Figure 4.1 The precedence network of the sample problem instance 

 

Let us assume that there are six workstations in the initial configuration, i.e., 𝐾′=6 

and the tasks are assigned to the workstations so that the cycle time is minimized. 

We assume that a Type II simple assembly line balancing problem is solved in 

order to find the initial optimal assignment, i.e., the initial configuration is optimal 

for the single objective of cycle time minimization. The initial solution of this 

problem is given in the following figure: 

 

 

Figure 4.2 The initial assignment for the sample problem instance 
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The cycle time of the initial configuration is 21. 

Now, assume that a disruption occurs on the workstations 2 and 3 and the 

assembly line needs to be rebalanced.  

Let us solve 𝑃1 and find the efficient solution with the smallest cycle time value. 

Before solving the problem, we should find the value of 𝜀𝑁𝐷. Note that 𝑁𝐷𝑚𝑖𝑛=8 

since there are eight tasks assigned to the workstation 2 and 3 initially. Hence, 

𝜀𝑁𝐷 =
1

𝑁 − 𝑁𝐷𝑚𝑖𝑛 + 1
=

1

25 − 8 + 1
≅ 0.056 

When 𝑃1 is solved with 𝜀𝑁𝐷 value of 0.056, the resulting nondominated objective 

vector is (𝐶𝑇, 𝑁𝐷)=(32,12) and the optimal assignment is as follows: 

 

 

Figure 4.3 The optimal assignment for the efficient solution with the smallest 𝐶𝑇 

 

Note that tasks 5, 6, 7, 8, 9, 11, 12 and 13 are the eight tasks that should be 

assigned to a different workstation other than their original workstations. In 

addition to these eight tasks, tasks 10, 21, 22 and 23 are also disrupted in this 

efficient solution. 

Let us also find an efficient solution with the smallest 𝑁𝐷 value by solving 𝑃2. 

The resulting nondominated objective vector is (𝐶𝑇, 𝑁𝐷)=(37,8) and the optimal 

assignments are as follows: 
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Figure 4.4 The optimal assignment for the efficient solution with the smallest 𝑁𝐷 

 

Note that tasks 5, 6, 7, 8, 9, 11, 12 and 13 are the only tasks that are disrupted in 

this solution. The other tasks remain in their original workstations. 

Through the optimal solutions of 𝑃1 and 𝑃2, two efficient solutions with the 

smallest possible objective function values are found. We call these solutions as 

extreme efficient solutions and the corresponding objective vectors as extreme 

nondominated objective vectors. 

The problem 𝑃2 can be defined in a more efficient way using only the disrupted 

tasks. Recall that the optimal solution 𝑃2 keeps the nondisrupted tasks at their 

original workstations. 

The alternative formulation is as given below: 

The parameters are set only for the tasks of the disrupted workstations. We let 𝐷 

denote the set of disrupted tasks and use the following parameters: 

𝑤𝑘= workload of workstation 𝑘 in the original configuration (sum of the task 

times on workstation 𝑘 in the original configuration) 

𝐸𝑖= the earliest workstation that task 𝑖 can be assigned (the latest workstation that 

resides any nondisrupted predecessor of task 𝑖) 

𝐿𝑖= the latest workstation that task 𝑖 can be assigned (the earliest workstation that 

resides any nondisrupted successor of task 𝑖) 



21 
 

The decision variables are also defined only for the disrupted tasks: 

𝐶𝑇= cycle time 

𝑥𝑖𝑘 = {
1, if task 𝑖 is assigned to workstation 𝑘 in the new assignment  
0, otherwise                                                                                                

 

for 𝑖=1,...,|𝐷| and 𝑘=1,...,𝐾 

 

The objective function is the minimization of the cycle time. 

Min 𝐶𝑇 

The constraints are defined only for the disrupted tasks. 

 ∑ 𝑥𝑖𝑘 = 1                                 𝑖 = 1, … , |𝐷|
𝐿𝑖
𝑘=𝐸𝑖

 

∑ 𝑡𝑖𝑥𝑖𝑘 + 𝑤𝑘 ≤ 𝐶𝑇                  𝑘 = 1, … , 𝐾
|𝐷|
𝑖=1   

 ∑ 𝑘𝑥𝑖𝑘 ≤ ∑ 𝑘𝑥𝑗𝑘              𝑗 = 1, … , |𝐷| 𝑎𝑛𝑑 𝑖 ∈ 𝐼𝑃𝑗
𝐿𝑗

𝑘=𝐸𝑗

𝐿𝑖
𝑘=𝐸𝑖

 

𝑥𝑖𝑘 = 0 𝑜𝑟 1                                    𝑖 = 1, … , |𝐷| 𝑎𝑛𝑑 𝑘 = 1, … , 𝐾                                                    

 

4.2 ALL NONDOMINATED OBJECTIVE VECTORS 

An optimal solution to the following constrained optimization problem is efficient 

(see Haimes et al. (1971) for the bicriteria problem): 

Min 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷 

 s.t. 𝑥 ∈ 𝑋   

      𝑁𝐷 ≤ 𝑛𝑑 

where 𝑛𝑑 is between 𝑁𝐷𝑚𝑖𝑛 and 𝑁.  
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We use 𝜀𝑁𝐷 =
1

𝑛𝑑−𝑁𝐷𝑚𝑖𝑛+1
 in place of 𝜀𝑁𝐷 =

1

𝑁−𝑁𝐷𝑚𝑖𝑛+1
 , as the number of 

disrupted tasks is now bounded by 𝑛𝑑. 

Procedure 1 below generates all nondominated objective vectors by varying the 

𝑛𝑑 value between 𝑁 and 𝑁𝐷𝑚𝑖𝑛. 

Procedure 1. Generating All Nondominated Objective Vectors 

Step 0. Find 𝑁𝐷𝑚𝑖𝑛= the number of tasks on disrupted workstations. 

 𝑟 = 0 

 𝑛𝑑 = 𝑁 

 𝜀𝑁𝐷 =
1

𝑛𝑑−𝑁𝐷𝑚𝑖𝑛+1
 

Step 1. Solve the following problem 

Min 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷 

 s.t. 𝑥 ∈ 𝑋   

      𝑁𝐷 ≤ 𝑛𝑑 

 Let the optimal solution be (𝐶𝑇∗, 𝑁𝐷∗). 

 𝑟 = 𝑟 + 1 

Step 2. If 𝑁𝐷∗ = 𝑁𝐷𝑚𝑖𝑛, then stop. 

 Otherwise, let 𝑛𝑑 = 𝑁𝐷∗ − 1. 

 Update 𝜀𝑁𝐷 for the updated 𝑛𝑑 value, 𝜀𝑁𝐷 =
1

𝑛𝑑−𝑁𝐷𝑚𝑖𝑛+1
. 

 Go to Step 1. 
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Note that each step of the above procedure generates a nondominated objective 

vector together with its efficient solution. The procedure terminates when all 𝑟 

nondominated objective vectors are reached. 

The following example illustrates the execution of Procedure 1. 

 

Example 4.1: We use the instance given in Figure 4.1. 

Step 0. We initialize the values of 𝑁𝐷𝑚𝑖𝑛, 𝑟, 𝑛𝑑 and 𝜀𝑁𝐷. 

𝑁𝐷𝑚𝑖𝑛=8 

𝑟=0 

𝑛𝑑=25 

𝜀𝑁𝐷 =
1

25−8+1
≅0.056 

Step 1. We solve the model 

Min 𝐶𝑇 + 0.056 𝑁𝐷 

 s.t. 𝑥 ∈ 𝑋   

      𝑁𝐷 ≤ 25 

The optimal solution is (𝐶𝑇∗, 𝑁𝐷∗) = (32,12) 

𝑟 = 1 

Step 2. We update the value of 𝑛𝑑 and 𝜀𝑁𝐷. 

𝑛𝑑=12-1=11 

𝜀𝑁𝐷 =
1

11−8+1
=0.25 
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Step 1. We solve the model 

Min 𝐶𝑇 + 0.25𝑁𝐷 

 s.t. 𝑥 ∈ 𝑋   

      𝑁𝐷 ≤11 

The optimal solution is (𝐶𝑇∗, 𝑁𝐷∗) = (33,11) 

𝑟 = 2 

Step 2. We update the value of 𝑛𝑑 and 𝜀𝑁𝐷. 

𝑛𝑑=11-1=10 

𝜀𝑁𝐷 =
1

10−8+1
=0.33 

Step 1. We solve the model 

Min 𝐶𝑇 + 0.33𝑁𝐷 

 s.t. 𝑥 ∈ 𝑋   

      𝑁𝐷 ≤10 

The optimal solution is (𝐶𝑇∗, 𝑁𝐷∗) = (34,9) 

𝑟 = 3 

Step 2. We update the value of 𝑛𝑑 and 𝜀𝑁𝐷. 

𝑛𝑑=9-1=8 

𝜀𝑁𝐷 =
1

8−8+1
=1 
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Step 1. We solve the model 

We solve the model 

Min 𝐶𝑇 + 𝑁𝐷 

 s.t. 𝑥 ∈ 𝑋   

      𝑁𝐷 ≤8 

The optimal solution is (𝐶𝑇∗, 𝑁𝐷∗) = (37,8) 

𝑟 = 4 

Step 2. 𝑁𝐷∗ = 𝑁𝐷𝑚𝑖𝑛, then stop. 

The four nondominated objective vectors can be presented in the objective space 

as in Figure 4.5. 

 

 

Figure 4.5 The efficient set for the sample problem instance 

 

There can be at most 𝑁 − 𝑁𝐷𝑚𝑖𝑛 + 1, hence 𝑁 nondominated objective vectors, 

hence the procedure iterates polynomial number of times. 
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We now discuss the complexity of generating all nondominated objective vectors. 

The problem of generating the efficient solution with the smallest 𝐶𝑇 value, i.e., 

Min 𝐶𝑇 + 𝜀𝑁𝐷𝑁𝐷 s.t. 𝑥 ∈ 𝑋 reduces to the Type II assembly line balancing 

(ALB) problem when 𝜀𝑁𝐷 = 0. Type II ALB problem is strongly NP-hard (see 

Baybars,1986) so is the problem of generating even a single nondominated vector. 

We hereafter refer to Procedure 1 as the classical approach, CA. 
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CHAPTER 5 

 

 

BRANCH AND BOUND ALGORITHM 

 

 

5. BRANCH AND BOUND ALGORITHM 

The complexity of our problem justifies the use of implicit enumeration 

techniques to arrive at the set of exact nondominated objective vectors. We 

present a branch and bound (BAB) algorithm that simultaneously generates all 

nondominated objective vectors.  

We start with an approximate set of nondominated objective vectors. We update 

this initial set whenever a nondominated objective vector is found, i.e., we include 

the nondominated objective vector found to the set and we remove the objective 

vectors from the set if any of them is dominated by this newly added 

nondominated objective vector. We let Incumbent Set, 𝐼𝑆 denote the current set of 

nondominated objective vectors. 𝐼𝑆 gives the exact set of nondominated objective 

vectors and one efficient solution corresponding to each nondominated objective 

vector when the BAB algorithm terminates. 

 

5.1 BRANCHING SCHEME 

We start with a solution with all empty workstations. Starting from the first 

workstation, we form the complete solution each time adding a task to the current 

partial solution. Given a partial assignment with the first 𝑘 workstations, we let 𝑆 

be the set of not yet assigned, i.e. unassigned, tasks. We say a task in 𝑆 is eligible 

for the current workstation if all predecessor tasks are already assigned. 
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The tasks are indexed such that 𝑖<𝑗 implies task 𝑖 is not a successor of task 𝑗. 

While adding a task to the current workstation, we only consider the tasks having 

higher indices than the last assigned task. Our aim is to avoid the duplication of 

the partial solutions. 

For each selected task, we open branches from the task nodes to each higher 

indexed eligible task and branch to a close node that represents closing the current 

workstation. If a close node is selected, we open branches using the result of the 

following theorem: 

Theorem: There exists an efficient solution with no empty workstations. 

Proof: Consider a solution 𝑠 in which workstation 𝑘 is empty and assume task 𝑞 

was assigned to workstation 𝑘 in the original assignment. Let 𝑘𝑞 be the 

workstation index of task 𝑞 in the new solution. Two cases arise: 

 Case 1: 𝑘𝑞 < 𝑘  

Case 2: 𝑘𝑞 > 𝑘  

Case 1: 𝑘𝑞 < 𝑘  

Let 𝑆𝑞𝑘 be the set of successors of task 𝑞 that are assigned to workstations 𝑘𝑞, 

𝑘𝑞+1,..., 𝑘-1 in the new assignment. Two subcases arise: 

Case 1.1: 𝑆𝑞𝑘 = ∅ 

Case 1.2: 𝑆𝑞𝑘 ≠ ∅ and task 𝑠𝑞 ∈ 𝑆𝑞𝑘 be a task with no successor in 

workstations 𝑘𝑞, 𝑘𝑞+1,..., 𝑘-1. 

Case 1.1: 𝑆𝑞𝑘 = ∅ 

Taking task 𝑞 from 𝑘𝑞 and assigning it to workstation 𝑘 decreases 𝑁𝐷 by 1 and 

any single shift never increases 𝐶𝑇. Hence, 𝑠 cannot be efficient. 
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Case 1.2: 𝑆𝑞𝑘 ≠ ∅ 

Taking task 𝑠𝑞 from its current workstation and assigning it to workstation 𝑘 

never increases 𝑁𝐷, as 𝑠𝑞 was already disrupted. Moreover, such a single shift 

never inceases 𝐶𝑇. Hence, the new schedule is no worse and 𝑠 cannot be a unique 

efficient solution. 

Case 2: 𝑘𝑞 > 𝑘  

Let 𝑃𝑞𝑘 be the set of predecessors of task 𝑞 that are assigned to workstations 𝑘+1, 

𝑘+2,..., 𝑘𝑞 in the new assignment.  Two cases arise: 

 Case 2.1: 𝑃𝑞𝑘 = ∅ 

Case 2.2: 𝑃𝑞𝑘 ≠ ∅ and task 𝑝𝑞 ∈ 𝑃𝑞𝑘 be a task with no predecessor in 

workstations 𝑘+1, 𝑘+2,..., 𝑘𝑞. 

Case 2.1: 𝑃𝑞𝑘 = ∅ 

Taking task 𝑞 from 𝑘𝑞 and assigning it to workstation 𝑘 decreases 𝑁𝐷 by 1 and 

any single shift never increases 𝐶𝑇. Hence, 𝑠 cannot be efficient. 

Case 2.2: 𝑃𝑞𝑘 ≠ ∅  

Taking task 𝑝𝑞 from its current workstation and assigning it to workstation 𝑘 

never increases 𝑁𝐷 as 𝑝𝑞 is already disrupted. Moreover, such a single shift never 

increases 𝐶𝑇. Hence, the new schedule is no worse and 𝑠 cannot be a unique 

efficient solution. 

Note that in all cases, a new schedule is no worse than 𝑠 in terms of 𝐶𝑇 and 𝑁𝐷. 

Hence, a solution 𝑠 that resides an empty solution cannot be a unique efficient 

solution.  

Using the result of the above theorem, from a close node, we only open branches 

to task nodes and do not open a branch to another close node. 
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Figure 5.1 illustrates the branch and bound tree of the sample instance from 

Rosenberg and Ziegler (1992). The precedence network and task times are given 

in Figure 4.1. 

Note that task 1 and task 2 have no predecessors and they are the only eligible 

tasks at level 1. Thus, task 1 and task 2 nodes take place at the first level of the 

BAB tree. First five levels of the BAB tree are as illustrated in Figure 5.1. 

 

 

Figure 5.1 A representation of the BAB tree for the sample problem instance 

 

For selected task 1 at level 1, we open two branches: one branch to task 2 which is 

the only eligible task and one branch to the close node. Note that if task 2 is 

selected at level 1, we just open one branch to the close node since a branch to 

task 1 cannot be opened due to the higher index rule and the other tasks are not 

eligible due to the precedence relationships. 

For each node selected, there is a corresponding partial solution 𝑠 and a 

corresponding objective vector (𝐶𝑇𝑠, 𝑁𝐷𝑠). For each task node representing the 

addition of the task to the current workstation 𝑘, (𝐶𝑇𝑠, 𝑁𝐷𝑠) is equal to 

(𝑚𝑎𝑥𝑟≤𝑘{𝑤𝑟
𝑠}, 𝑛1

𝑠 + 𝑛2
𝑠) where 
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 𝑤𝑟
𝑠= the workload of workstation 𝑟  

𝑚𝑎𝑥𝑟≤𝑘{𝑤𝑟
𝑠} = the maximum workload already observed 

𝑛1
𝑠 = the number of tasks that are already disrupted 

 𝑛2
𝑠  = the number of unassigned tasks that were placed in workstation 

1,...,𝑘-1 in the original assignment 

We fathom the node if (𝐶𝑇𝑠, 𝑁𝐷𝑠) is dominated by any objective vector in 𝐼𝑆.  

 

Example 5.1: Let us assume that there are three nondominated objective vectors 

in 𝐼𝑆 currently: (37,8), (34,9) and (33,11). 

Let 𝑠1 be a partial solution such that tasks 1, 2, 3, 4 and 5 are assigned to 

workstation 1, and tasks 6, 7, 8, 9, 11, 12 and 13 are assigned to the second 

nondisrupted workstation which is workstation 4. This workstation is not closed 

yet. Thus, the branching is to be continued to the task nodes for eligible tasks and 

also to the close node.  

 

Figure 5.2 The representation of partial solution 𝑠1 

 

Note that 𝑤1
𝑠1=30 and 𝑤2

𝑠1=33. Thus, 𝑚𝑎𝑥𝑟≤2{𝑤𝑟
𝑠1} is equal to 33. 

Tasks 5, 6, 7, 8, 9, 11, 12 and 13 are already disrupted since they were assigned to 

the disrupted workstations initially and tasks 1, 2, 3 and 4 were already assigned 

to workstation 1 initially. Thus, 𝑛1
𝑠1=8 and 𝑛2

𝑠1=0. All in all, (𝐶𝑇𝑠1 , 𝑁𝐷𝑠1)=(33,8). 
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Now, let us open a new branch from node 13 to node 14, i.e., we assign task 14 to 

workstation 4. Let the new partial solution be 𝑠2. 

 

Figure 5.3 The representation of partial solution 𝑠2 

 

Note that 𝑤1
𝑠2=30 and 𝑤2

𝑠2=36 resulting in 𝑚𝑎𝑥𝑟≤2{𝑤𝑟
𝑠2}=36 when task 14 is 

assigned to workstation 4. In addition, 𝑛1
𝑠2 is set to 𝑛1

𝑠1 + 1 since the original 

workstation of task 14 is workstation 5. Thus, (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2) is equal to (36,9). We 

fathom this node since the nondominated objective vector (34,9) in 𝐼𝑆 dominates 

this partial solution. Hence, we remove this node from further consideration and 

we do not branch it any further. 

We employ a depth first strategy due to its relatively low memory requirements. 

According to this strategy, we explore from the node having the smallest index. 

We continue branching until a node is fathomed or until a complete solution is 

reached. Note that a complete solution is obtained as soon as the assignments to 

the first 𝐾 − 1 workstations are complete since all of the unassigned tasks are to 

be assigned to 𝐾𝑡ℎ workstation. Once further branching is not possible, we 

backtrack to the previous level. We terminate whenever we reach level 0. 

 

5.2 LOWER BOUNDS 

For each close node generated, we let (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠 )=(𝐶𝑇𝑠, 𝑁𝐷𝑠) and we improve 

these bounds through the calculation of several lower bounds. 
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5.2.1 LOWER BOUND ON NUMBER OF DISRUPTED TASKS (𝑳𝑩𝑵𝑫) 

We enhance the performance of 𝑛1
𝑠 + 𝑛2

𝑠  in the close nodes using the cycle time 

values of the objective vectors in 𝐼𝑆. We set an upper bound on the cycle time 

(𝑈𝐵𝐶𝑇
𝑠 ) that would lead to an efficient solution once 𝑠 is branched further. 

 

Example 5.2: Let us again assume that there are three nondominated objective 

vectors in 𝐼𝑆 currently: (37,8), (34,9) and (33,11). 

Let 𝑠 be a partial solution such that tasks 1, 2, 3, 4 and 5 are assigned to 

workstation 1, and tasks 6, 7, 8, 9, 11, 12 and 15 are assigned to the second 

nondisrupted workstation which is workstation 4. The assignment to this 

workstation is also completed so that the last selected node is a close node. 

 

 

Figure 5.4 The representation of partial solution 𝑠 

 

Note that tasks 5, 6, 7, 8, 9, 11 and 12 are already disrupted since their original 

workstations are disrupted workstations. Also, task 13 is an already disrupted task 

even though it has not been assigned yet. Thus, 𝑛1
𝑠=8. Moreover, 𝑛2

𝑠=2 since tasks 

17 and 23 have not been assigned to workstation 4 although they were initially 

assigned to this workstation. Hence, 𝑁𝐷𝑠=10. In 𝐼𝑆, (34,9) and (33,11) are the 

two nondominated objective vectors such that 𝑁𝐷𝑠=10 falls in between. Cycle 

time value should be at most 33 so that 𝑠 would have a chance to be included in 𝐼𝑆 

once it is a complete solution. Thus, 𝑈𝐵𝐶𝑇
𝑠  is set to 33. 
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The upper bound information on the cycle times allows us to define the earliest 

and latest workstations that a task can be assigned. 

We let 𝐸𝑖 and 𝐿𝑖 denote the earliest and latest workstations that a task can be 

assigned. Given that the assignment of tasks to the first 𝑘 workstations is 

completed, 𝐸𝑖 and 𝐿𝑖 are found accordingly:  

𝐸𝑖 =𝑘 + ⌈
𝑡𝑖+∑ 𝑡𝑗𝑗∈𝑆,𝑗∈𝑃𝑖

𝑈𝐵𝐶𝑇
⌉ where 𝑃𝑖 is the set of predecessors of 𝑖. 

𝐿𝑖 = 𝐾 − ⌈
𝑡𝑖+∑ 𝑡𝑗𝑗∈𝑆𝑖

𝑈𝐵𝐶𝑇
⌉ + 1 where 𝑆𝑖 is the set of successors of 𝑖. 

We increase 𝐿𝐵𝑁𝐷 by 1 for each task 𝑖 ∈ 𝑆 if the original workstation of task 𝑖 is 

before 𝐸𝑖 or after 𝐿𝑖. 

 

Example 5.3: Let us again assume that there are three nondominated objective 

vectors in 𝐼𝑆 currently: (37,8), (34,9) and (33,11). 

Let 𝑠1 be a partial solution such that tasks 1, 2, 3 and 4 are assigned to workstation 

1 and this workstation is not closed yet. Thus, the branching is to be continued to 

the task nodes for eligible tasks and also to the close node. 

Note that (𝐶𝑇𝑠1 , 𝑁𝐷𝑠1) is equal to (21,8) since 𝑤1
𝑠1=21 and 𝑛1

𝑠1=8. Thus, there 

does not exist any nondominated objective vector in 𝐼𝑆 which dominates 𝑠1. We 

can continue branching from the current node.  

Let us select the close node as the next node and let the partial solution be 𝑠2. We 

first let (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2)=(21,8). Then, the earliest and latest workstations for each 

unassigned task are found given that 𝑈𝐵𝐶𝑇
𝑠2 =37 which is the corresponding upper 

bound to 𝑁𝐷𝑠2=8. Two of the unassigned tasks are detected to be disrupted since 

their original workstations are not in between the earliest and latest workstations 

to which they should be assigned: 



35 
 

 𝐸𝑊17=5 and 𝐿𝑊17=6 whereas task 17 was assigned to workstation 4 

initially 

 𝐸𝑊23=5 and 𝐿𝑊23=6 whereas task 23 was assigned to workstation 4 

initially 

Thus, 𝑁𝐷𝑠2 is increased by 2. Since the new 𝑁𝐷𝑠2 is 10, the corresponding 𝑈𝐵𝐶𝑇
𝑠2  

value is updated to 33. For the updated upper bound, the earliest and latest 

workstations are also updated and task 22 is also detected to be disrupted. 

 𝐸𝑊22=6 and 𝐿𝑊22=6 whereas task 22 was assigned to workstation 5 

initially 

All in all, 𝑁𝐷𝑠2=11 since three more tasks will be disrupted if 𝑠2 is branched 

further.  

 

5.2.2 LOWER BOUND ON CYCLE TIME (𝑳𝑩𝑪𝑻) 

We propose three lower bounds on the cycle time. 

i. Lower Bound 1 (𝐿𝐵1𝐶𝑇): 

The lower bound is found through task preemption idea. The minimum cycle time 

is found by splitting the tasks equally among the workstations. The optimal 

assignment is then 
∑ 𝑡𝑖

𝑁
𝑖=1

𝐾
 given that 𝑁 tasks are to be assigned to 𝐾 workstations. 

Since any task cannot be split between workstations, 𝐶𝑇 should be greater than or 

equal to the task time of each task 𝑖. This follows that 𝐶𝑇 should be equal to at 

least the maximum of all task times. Hence, a valid lower bound on the cycle time 

is 

𝐿𝐵1𝐶𝑇=𝑚𝑎𝑥 {⌈
∑ 𝑡𝑖

𝑁
𝑖=1

𝐾
⌉ , 𝑚𝑎𝑥𝑖{𝑡𝑖}}       
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This lower bound is presented in Klein and Scholl (1996). 

For a given partial assignment, the lower bound is rearranged as follows: 

𝐿𝐵1𝐶𝑇=𝑚𝑎𝑥 {⌈
∑ 𝑡𝑖𝑖∈𝑆

𝐾−𝑘
⌉ , 𝑚𝑎𝑥𝑖∈𝑆{𝑡𝑖}}     

 

ii. Lower Bound 2 (𝐿𝐵2𝐶𝑇): 

𝐿𝐵2𝐶𝑇 uses the idea of the cardinality of the number of the tasks in any 

workstation. For 𝑁 tasks and 𝐾 workstations, there exists at least one workstation 

with ⌈
𝑁

𝐾
⌉ or more tasks. If we assume workstation 𝑟 resides ⌈

𝑁

𝐾
⌉ or more tasks, 

𝑤𝑟 ≥ ∑ 𝑡[𝑖]

⌈
𝑁

𝐾
⌉

𝑖=1
 where 𝑡[𝑖] ≤ 𝑡[𝑖+1] for 𝑖=1,..., 𝑁-1 

Since 𝐶𝑇 is equal to the maximum workload of all workstations, we can extend 

the above expression as follows: 

𝐶𝑇 ≥ 𝑤𝑟 ≥ ∑ 𝑡[𝑖]

⌈
𝑁

𝐾
⌉

𝑖=1
 where 𝑡[𝑖] ≤ 𝑡[𝑖+1] for 𝑖=1,..., 𝑁-1 

Hence, ∑ 𝑡[𝑖]

⌈
𝑁

𝐾
⌉

𝑖=1
 is a valid lower bound on the cycle time. 

 𝐿𝐵2𝐶𝑇=∑ 𝑡[𝑖]

⌈
𝑁

𝐾
⌉

𝑖=1
 where 𝑡[𝑖] ≤ 𝑡[𝑖+1] for 𝑖=1,..., 𝑁-1 

 

For a given partial assignment, the lower bound is rearranged as follows: 

𝐿𝐵2𝐶𝑇=∑ 𝑡[𝑖]

⌈
|𝑆|

𝐾
⌉

𝑖=1
 where 𝑡[𝑖] ≤ 𝑡[𝑖+1] for 𝑖=1,..., |𝑆|-1 

This lower bound is also presented in Klein and Scholl (1996) with an extended 

version. 
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iii. Lower Bound 3 (𝐿𝐵3𝐶𝑇): 

Recall that 𝐿𝐵1𝐶𝑇 and 𝐿𝐵2𝐶𝑇 ignore the precedence relationship information. 

Recognizing this fact, we introduce a lower bound that splits the tasks into two 

subsets with reference to a particular workstation. The first subset, 𝐹𝑆 resides the 

unassigned tasks whose latest workstation is before or on workstation 𝑤. The 

second subset, 𝑆𝑆, resides the unassigned tasks whose earliest workstation is after 

𝑤. The maximum workloads due to 𝐹𝑆 and 𝑆𝑆 are ⌈
∑ 𝑡𝑖𝑖∈𝐹𝑆

𝑤
⌉ and ⌈

∑ 𝑡𝑖𝑖∈𝑆𝑆

(𝐾−𝑘)−𝑤
⌉, 

respectively. Hence,  

𝐶𝑇 ≥ 𝑚𝑎𝑥 {⌈
∑ 𝑡𝑖𝑖∈𝐹𝑆

𝑤
⌉ , ⌈

∑ 𝑡𝑖𝑖∈𝑆𝑆

(𝐾−𝑘)−𝑤
⌉}  

Accordingly,  

 𝐿𝐵3𝐶𝑇
′ =𝑚𝑎𝑥 {⌈

∑ 𝑡𝑖𝑖∈𝐹𝑆

𝑤
⌉ , ⌈

∑ 𝑡𝑖𝑖∈𝑆𝑆

(𝐾−𝑘)−𝑤
⌉} 

We can improve 𝐿𝐵3𝐶𝑇
′  by considering other unassigned tasks that are not in 𝐹𝑆 

or 𝑆𝑆. 

Let 𝑇𝑆=𝑆/{𝐹𝑆 ∪ 𝑆𝑆}. 

The third set 𝑇𝑆 resides the unassigned tasks that are not covered by 𝐹𝑆 and 𝑆𝑆 

and hence have not contributed to the cycle time. We distribute 𝑇𝑆 between all 

workstations preemptively while minimizing cycle time. 

𝐿𝐵3𝐶𝑇
′ × (𝐾 − 𝑘) − ∑ 𝑡𝑖𝑖∈{𝐹𝑆∪𝑆𝑆}  is the total processing time that can be filled 

without increasing 𝐿𝐵3𝐶𝑇
′ , and ∑ 𝑡𝑖 − (𝐿𝐵3𝐶𝑇

′ × (𝐾 − 𝑘) − ∑ 𝑡𝑖𝑖∈{𝐹𝑆∪𝑆𝑆} )𝑖∈𝑇𝑆  is 

the minimum total amount required to improve 𝐿𝐵3𝐶𝑇
′ . 

We can rearrange the latter as ∑ 𝑡𝑖𝑖∈𝑆 − 𝐿𝐵3𝐶𝑇
′ × (𝐾 − 𝑘). This amount when 

distributed equally will increase the cycle time, smallest. The resulting lower 

bound, 𝐿𝐵3𝐶𝑇, is stated as follows: 
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𝐿𝐵3𝐶𝑇 = 𝐿𝐵3𝐶𝑇
′ + ⌈

𝑚𝑎𝑥{0, ∑ 𝑡𝑖𝑖∈𝑆 − 𝐿𝐵3𝐶𝑇
′ × (𝐾 − 𝑘)}

𝐾 − 𝑘
⌉ 

𝐿𝐵3𝐶𝑇 is improved even further by only considering the workstations to which the 

tasks in 𝑇𝑆 can be assigned. In order to accomplish this, we find 𝐸𝑚𝑖𝑛 =

𝑚𝑖𝑛𝑖∈𝑇𝑆{𝐸𝑖} and 𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖∈𝑇𝑆{𝐿𝑖} and we modify the lower bound 

accordingly. 𝐿𝐵3𝐶𝑇 is  

 

𝐿𝐵3𝐶𝑇
′ + ⌈

𝑚𝑎𝑥{0, ∑ 𝑡𝑖𝑖∈𝑆,𝑖:𝐸𝑖≥𝐸𝑚𝑖𝑛,𝐿𝑖≤𝐿𝑚𝑎𝑥
− 𝐿𝐵3𝐶𝑇

′ × (𝐿𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)  }

𝐿𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
⌉ 

 

For each close node, we first calculate 𝐿𝐵1𝐶𝑇 and then update (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠 ) if 

𝐿𝐵1𝐶𝑇 ≥ 𝐿𝐵𝐶𝑇
𝑠  for the current partial solution 𝑠. If (𝐿𝐵𝐶𝑇

𝑠 , 𝐿𝐵𝑁𝐷
𝑠 ) is not dominated 

by any objective vector in 𝐼𝑆, then we calculate 𝐿𝐵2𝐶𝑇 and we update 

(𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠 ) if 𝐿𝐵2𝐶𝑇 ≥ 𝐿𝐵𝐶𝑇
𝑠 . Note that 𝐿𝐵1𝐶𝑇 and 𝐿𝐵2𝐶𝑇 are rather simpler 

lower bounds and their computations do not require the earliest and latest 

workstation information. On the other hand, both 𝐿𝐵𝑁𝐷 and 𝐿𝐵3𝐶𝑇 take into 

account the precedence relationships and the earliest and latest workstations for 

each unassigned task should be found prior to the calculation of these lower 

bounds. If (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠 ) is not dominated by any objective vector in 𝐼𝑆 after the 

calculation of 𝐿𝐵2𝐶𝑇, we calculate 𝐿𝐵𝑁𝐷 and we update (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠 ) if there 

exists any task 𝑖 ∈ 𝑆 such that the original workstation of task 𝑖 is not in between 

𝐸𝑖 and 𝐿𝑖. If (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠 ) is not dominated by any objective vector in 𝐼𝑆, then we 

calculate 𝐿𝐵3𝐶𝑇 and we update (𝐿𝐵𝐶𝑇
𝑠 , 𝐿𝐵𝑁𝐷

𝑠 ) if 𝐿𝐵3𝐶𝑇 ≥ 𝐿𝐵𝐶𝑇
𝑠 . If (𝐿𝐵𝐶𝑇

𝑠 , 𝐿𝐵𝑁𝐷
𝑠 ) is 

dominated by any objective vector in 𝐼𝑆 after an update due to any lower bound, 

the current node is eliminated and there is no need to calculate other lower 

bounds.  
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5.3 DOMINANCE RULE 

When closing a workstation, we use a dominance rule. Our dominance rule is 

based on comparing two partial solutions according to their objective vectors. 

These partial solutions include either the same set of tasks or one of the task sets 

is the subset of the other. If the set of tasks that have been assigned to the current 

partial solution is the same set or the subset of any previously stored partial 

solution from a common parent node, then these two partial solutions can be 

compared by our dominance rule.  

Figure 5.5 below represents two partial solutions 𝑠1 (left) and 𝑠2 (right) emanating 

from a common parent node 𝐶.  

 

 

 

Figure 5.5 A representation of two partial solutions compared by the dominance 

rule 

 

Note from the figure that 𝑠1 is a previously stored partial solution whose set of 

tasks is completely the same with the current partial solution 𝑠2. Also note that 
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there are 𝑘 workstations open in both of the partial solutions and the assignments 

to only the last two workstations, i.e., workstation 𝑘 − 1 and workstation 𝑘, differ 

for these two partial solutions. Thus, it is enough to compare these two 

workstations while using our dominance rule. To generalize, we compare the last 

𝑟 workstations of two partial solutions while using the dominance rule given that 

the assignments to the first 𝑘 − 𝑟 workstations are the same. 

Formally, we let 

 𝑠1= the partial solution stored that is emanated from a parent node 𝐶 

 𝐴1= the set of tasks in 𝑠1 

𝑠2 = the current partial solution that is emanated from node 𝐶 

 𝐴2= the set of tasks in 𝑠2 

 𝑁𝐷𝑠𝑖 = the number of tasks disrupted for partial solution 𝑠𝑖 

𝐶𝑇𝑠𝑖 = the maximum of the maximum workload and the lower bound on 

the maximum loads of the unassigned tasks in partial solution 𝑠𝑖  

We consider the unassigned tasks in 𝐶𝑇𝑠𝑖 computations as one of the next 

workstations may define the cycle time.  For the lower bound on the maximum 

loads of the unassigned tasks, we simply use the lower bounds discussed in 

Section 5.2.2. 

We compare 𝑠1 and 𝑠2 when 𝐴1 ⊇ 𝐴2. 

We say 𝑠1 dominates 𝑠2 if 𝑁𝐷𝑠1 ≤ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2 implying that a 

nondominated objective vector emanating from node 𝐶 cannot be obtained by 

further branching 𝑠2 once 𝑠1 exists. If 𝑠1 dominates 𝑠2, we fathom the current 

node. 

We illustrate the implementation of the dominance rule via two examples: 
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Example 5.4: Figure 5.6 represents two partial solutions 𝑠1 (left) and 𝑠2 (right) 

both emanating from node 0. If the tasks assigned so far are compared, it is 

observed that 𝐴1=𝐴2. For 𝑠1, 𝑤1
𝑠1=30 and 𝑤2

𝑠1=33, and 𝑛1
𝑠1=8 and 𝑛2

𝑠1=2 resulting 

in (𝐶𝑇𝑠1 , 𝑁𝐷𝑠1)=(33,10). For 𝑠2, 𝑤1
𝑠2=33 and 𝑤2

𝑠2=30, and 𝑛1
𝑠2=8 and 𝑛2

𝑠2=2 

resulting in (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2)=(33,10). Since 𝑁𝐷𝑠1 ≤ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2, 𝑠1 

dominates 𝑠2 and there is no need to further branch 𝑠2. 

 

 

Figure 5.6 A representation for the comparison between two partial solutions with 

𝐴1=𝐴2 
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Example 5.5: Figure 5.7 represents two partial solutions 𝑠1 (left) and 𝑠2 (right) 

both emanating from node 0. If the tasks assigned so far are compared, it is 

observed that 𝐴1 ⊃ 𝐴2, i.e., task 11 has not been assigned yet in 𝑠2. For 𝑠1, 

𝑤1
𝑠1=30 and 𝑤2

𝑠1=33, and 𝑛1
𝑠1=8 and 𝑛2

𝑠1=2 resulting in (𝐶𝑇𝑠1 , 𝑁𝐷𝑠1)=(33,10). For 

𝑠2, 𝑤1
𝑠2=28 and 𝑤2

𝑠2=32, and 𝑛1
𝑠2=8 and 𝑛2

𝑠2=2 resulting in (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2)=(32,10). 

However, 𝐿𝐵1𝐶𝑇
𝑠2  is 33 which improves (𝐶𝑇𝑠2 , 𝑁𝐷𝑠2) to (33,10). Since 𝑁𝐷𝑠1 ≤

𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2, 𝑠1 dominates 𝑠2 and there is no need to further branch 𝑠2. 

 

 

Figure 5.7 A representation for the comparison between two partial solutions with 

𝐴1⊃𝐴2 
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Below we give the formal description of storing, comparing and deleting the 

partial solutions. 

 

i. Storing partial solutions 

To store partial solutions, the number of partial solutions stored so far for the 

common parents should be known. For each number of workstations to be 

compared (𝑟), the number of partial solutions associated with a common parent 

should be kept separately.  

Initialize the number of partial solutions associated with each common parent for 

each 𝑟 to 0. 

 If the current node is a close node and the number of opened workstations 

𝑘 ≥ 2 

Set 𝑟=2. 

o While 𝑟 ≤ 𝑘 

 Set common parent node to the close node which represents 

closing the (𝑘 − 𝑟)𝑡ℎ workstation if 𝑘 − 𝑟 > 0, to node 0 if 

𝑘 − 𝑟 = 0. 

 Increase the number of partial solutions associated with this 

common parent by 1 for 𝑟. 

 Store the set of tasks assigned to the partial solution 𝑠. 

 Find 𝐶𝑇𝑠 and 𝑁𝐷𝑠. 

 𝑟 = 𝑟 + 1. 

o End while 

 End if 
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ii. Comparing partial solutions 

 If the current node is a close node and the number of opened workstations 

𝑘 ≥ 2 

Set 𝑟 = 𝑘. 

o While 𝑟 ≥ 2 

 Set common parent node to the close node which represents 

closing the (𝑘 − 𝑟)𝑡ℎ workstation if 𝑘 − 𝑟 > 0, to node 0 if 

𝑘 − 𝑟 = 0. 

 Let the current partial solution associated with the common 

parent be 𝑠2. 

 Check previously stored partial solutions associated with the 

common parent node.  

Two checks are done: 

Check 1: Same set of assigned tasks 

 If there is such a partial solution with the same set of assigned 

tasks  

(𝐴1 = 𝐴2) 

 Decrease the number of partial solutions associated with 

the common parent by 1 for 𝑟.  

 If 𝑁𝐷𝑠1 ≤ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2, 𝑠1 dominates 𝑠2. 

The current node is fathomed. Stop. 

 If 𝑁𝐷𝑠1 ≥ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≥ 𝐶𝑇𝑠2, 𝑠2 dominates 𝑠1. 

Update 𝑁𝐷𝑠1=𝑁𝐷𝑠2 and 𝐶𝑇𝑠1=𝐶𝑇𝑠2.  

 End if 
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 If there is not such a partial solution with the same set of 

assigned tasks, perform second check. 

Check 2: Supersets of assigned tasks 

 If there is such a partial solution with the super set of assigned 

tasks (𝐴1 ⊃ 𝐴2) 

 If 𝑁𝐷𝑠1 ≤ 𝑁𝐷𝑠2 and 𝐶𝑇𝑠1 ≤ 𝐶𝑇𝑠2, 𝑠1 dominates 𝑠2. 

The current node is fathomed. Decrease the number of 

partial solutions associated with the common parent by 

1 for 𝑟. Stop. 

 End if 

𝑟 = 𝑟 − 1. 

o End while 

 End if 

 

iii. Deleting partial solutions 

Whenever a close node is removed from further consideration, all of the partial 

solutions associated with it are deleted due to the memory requirements. 

 

5.4 THE INITIAL SET OF NONDOMINATED OBJECTIVE VECTORS 

The nondominated objective vectors in 𝐼𝑆 provide upper bounds on the objective 

values and help removing an unpromising partial solution from further 

consideration. Thus, instead of starting with an empty 𝐼𝑆, we start with an 

approximate set of nondominated objective vectors so that the BAB algorithm 

directs to more promising portions of the BAB tree from the beginning. When 
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forming this approximate set, we first generate initial feasible configurations with 

the minimum number of disrupted tasks in Step 0. In the following steps, we try to 

find other objective vectors with improved cycle time values by allowing more 

tasks to get disrupted. 

Step 0: The disrupted tasks on the disrupted machines are assigned to other 

workstations in order to construct an initial feasible configuration. Three different 

procedures are used to obtain these initial assignments.  

1. The disrupted tasks are assigned according to the optimal configuration 

found by the model generating the extreme efficient solution with the 

minimum number of disrupted tasks. 

2. The disrupted tasks are assigned to the workstations with the minimum 

workload while satisfying the precedence relationships. 

3. The disrupted tasks are randomly assigned to the workstations while 

satisfying the precedence relationships. This procedure is applied for 

200 times.  

 

Hence, 202 different initial configurations are created. The following steps are 

applied to each of these initial configurations individually in order to find 

candidate nondominated objective vectors with improved cycle time values. 

In step 1, we change the workstations of tasks on the bottleneck workstation, i.e., 

workstation having the maximum workload, one by one and we add the 

nondominated objective vectors to 𝐼𝑆 if any of them is found and then we assign 

the tasks back to their current workstations. In Step 2, if at least one 

nondominated objective vector is added to 𝐼𝑆, we only change the workstation of 

the task resulting in the best improvement in cycle time. If such an objective 

vector is not found in Step 1, this means that an improvement cannot be achieved 

by changing the workstation of only one task. Thus, in Step 3, we use a “look 
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ahead” approach by changing the workstation of a task on the bottleneck 

workstation even though no improvement is achieved and then we change the 

workstation of another task on the updated bottleneck workstation. We add the 

nondominated objective vectors to 𝐼𝑆 if any of them is found during this step and 

then we assign the tasks back to their current workstations. If at least one 

nondominated objective vector is added to 𝐼𝑆, we change the workstations of the 

two tasks resulting in the best improvement in cycle time. If Step 3 also fails to 

find a nondominated objective vector by improving the cycle time value, we 

change the workstation of a randomly selected task which is currently assigned to 

the bottleneck workstation and then we return to Step 1. 

Below is the pseudo code of our improvement step. 

Initialize the number of non-improving moves as 0. 

While non-improving moves ≤50 

Step 1:  

 For each task on the bottleneck workstation 

o Remove the task from the bottleneck workstation. 

o For each workstation satisfying the precedence relationships 

 Assign the task to this workstation. 

 Update the workload of each workstation. 

 Find 𝐶𝑇 and 𝑁𝐷. 

 If none of the objective vectors in 𝐼𝑆 can dominate the 

current objective vector, add the objective vector to 𝐼𝑆.  

 If the current objective vector dominates any of the 

objective vectors in 𝐼𝑆, remove the dominated objective 

vectors from 𝐼𝑆. 
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 Assign the task back to its original workstation. 

 Update the workload of each workstation. 

o End for 

 End for  

If at least one objective vector is added to 𝐼𝑆 in step 1, update the number of non-

improving moves as 0 and go to Step 2.  

Otherwise, go to step 3. 

Step 2: Select the objective vector with the minimum cycle time among all 

objective vectors added to 𝐼𝑆 in step 1. Update the assignments and workloads of 

each workstation accordingly. Update the bottleneck workstation. Go to Step 1. 

Step 3:  

 For each task on the bottleneck workstation 

o Remove the task from the bottleneck workstation. 

o For each workstation satisfying the precedence relationships 

 Assign the task to the workstation. 

 Update the workload of each workstation and update the 

bottleneck workstation. 

 Remove a task from the bottleneck workstation 

 For each workstation satisfying the precedence 

relationships 

o Assign the task to the workstation. 

o Update the workload of each workstation. 
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o Find 𝐶𝑇 and 𝑁𝐷. 

o If none of the objective vectors in 𝐼𝑆 can 

dominate the current objective vector, add 

the objective vector to 𝐼𝑆.  

o If the current objective vector dominates any 

of the objective vectors in 𝐼𝑆, remove the 

dominated objective vectors from  𝐼𝑆. 

o Assign the task back to its original 

workstation. 

o Update the workload of each workstation. 

 End for 

 Assign the task back to its original workstation. 

 Update the workload of each workstation. 

o End for 

 End for 

If at least one objective vector is added to the list in step 3, update the number of 

non-improving moves as 0 and go to Step 2.  

Otherwise, go to step 4. 

Step 4:  

Update the number of non-improving moves=the number of non-improving 

moves+1. 

Initialize 𝑖𝑡=0. 

 While any task cannot be replaced and 𝑖𝑡 ≤100 
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o Update 𝑖𝑡=𝑖𝑡+1. 

o Select a random task.  

o If the selected task is assigned to the bottleneck workstation 

 If there exists at least one workstation satisfying precedence 

relationships 

 Remove the task from the bottleneck workstation and 

assign it to any workstation satisfying precedence 

relationships. 

 Update the workload of each workstation. 

 End if 

o End if 

 End while  
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CHAPTER 6 

 

 

COMPUTATIONAL EXPERIMENT 

 

 

6. COMPUTATIONAL EXPERIMENT 

We perform a computational study to evaluate the performance of our BAB 

algorithm. We state our performance measures and compare the BAB algorithm 

and the CA using these measures. We make preliminary experiments to assess the 

effects of several parameters on the performance of the BAB algorithm before 

designing the main experiment. We make some preliminary runs also to interpret 

the power of the dominance rule, lower bounds and upper bounds. 

In this section, we first give our data generation scheme and then we discuss the 

results of our computational study. While analyzing the results, we first state the 

performance measures and then we present the results of our preliminary and 

main experiments. 

 

6.1 DATA GENERATION 

We assume that the tasks are already assigned to the workstations before the 

disruption. Thus, the initial assignment of the tasks is one of the major inputs to 

the problem. In order to obtain this initial assignment, we take the well-known 

data sets from the simple assembly line balancing literature and we solve the Type 

II simple assembly line balancing problems. There are numerous data sets which 

are extensively used in computational experiments of the studies in the simple 

assembly line balancing literature. In this study, we conduct our main experiment 

on four of these data sets, from Günther et al. (1983) with 𝑁=35 tasks, from 
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Kilbridge and Wester (1962) with 𝑁=45 tasks, from Hahn (1972) with 𝑁=53 tasks 

and from Tonge (1961) with 𝑁=70 tasks. We take these data sets from the website 

http://www.assembly-line-balancing.de. We choose the data sets with different 𝑁 

values since the preliminary runs indicate that 𝑁 has an effect on the performance 

of the BAB algorithm. These data sets include the task time information and the 

precedence networks; however, we only take the precedence networks and 

generate the task times using discrete uniform distribution. See Appendix for the 

precedence networks. We decide on the parameters of the uniform distribution 

according to the results obtained from the preliminary runs.   

We choose these four data sets from the study of Scholl and Klein (1997). Scholl 

and Klein (1997) define a complexity measure to examine the influence of the 

precedence network on the performance of their algorithm. This complexity 

measure is called order strength (OS) and it is equal to the number of all 

precedence relationships divided by 𝑁(𝑁 − 1)/2. They report the OS values for 

the precedence networks of Günther et al. (1983), Kilbridge and Wester (1962), 

Hahn (1972) and Tonge (1961) as 59.5%, 44.6%, 83.8% and 59.4%, respectively. 

Note that higher OS values indicate more intense precedence networks. 

Preliminary runs reveal that the number of workstations in the old configuration 

(𝐾′), the number of workstations in the new configuration (𝐾) and the number of 

disrupted workstations (𝐾′ − 𝐾) have an impact on the performance of the BAB 

algorithm. In order to capture the effects of these parameters, we use five different 

settings in our main experiment: 

 

 

 

 

 

http://www.assembly-line-balancing.de/
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Table 6.1 Settings with 𝐾 and 𝐾′ 

Setting 𝐾 𝐾′ 

1 8 12 

2 10 12 

3 10 14 

4 5 6 

5 5 7 

 

The disrupted workstations are chosen arbitrarily, for each instance. 

For each data set, we repeat the experiment under these five different settings. 

Hence, we obtain 4*5=20 combinations. Moreover, we generate 10 instances for 

each combination. All in all, our main experiment set has 200 problem instances.  

The BAB algorithm is coded in C++ using Microsoft Visual Studio 2013. The 

mathematical models are solved by IBM ILOG CPLEX 12.6. The BAB algorithm 

and mathematical models are run on a computer with Intel(R)Core(TM)i7-4770S 

CPU @ 3.10 GHz, 16 GB RAM and Windows 7. 

 

6.2 ANALYSIS OF THE RESULTS 

We use four performance measures to evaluate the performance of the BAB 

algorithm: 

1) Average Central Processing Unit (CPU) Time (in seconds) 

2) Maximum Central Processing Unit (CPU) Time (in seconds) 

3) Average number of nodes 

4) Maximum number of nodes 
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We also use average CPU time and maximum CPU time to generate the set of all 

nondominated objective vectors when evaluating the performance of the CA. 

We set a termination limit of one hour for the execution of instances using both 

the BAB algorithm and the CA; however, even if the execution of the BAB 

algorithm or the CA is terminated due to this limit, the results are included in the 

calculation of the performance measures. 

For the preliminary experiments, we choose instances with 𝑁=35 and with 𝑁=53. 

We run our BAB algorithm for these instances under setting 1 (𝐾=8 & 𝐾′=12), 

setting 2 (𝐾=10 & 𝐾′=12) and setting 3 (𝐾=10 & 𝐾′=14).  

 

6.2.1 EFFECT OF PARAMETERS 

We repeat our experiments for task times distributed by U[1,10] indicating low 

variability and by U[1,50] indicating high variability.  

Table 6.2 and Table 6.3 immediately reveal that the instances with high task time 

variability are harder to solve compared to the instances with low task time 

variability. The number of nondominated objective vectors, the number of nodes 

and the CPU times all increase for the case when 𝑡𝑖~U[1,50]. For 𝑁=35 when 

𝐾=8 & 𝐾′=12, the average number of nondominated objective vectors increases 

from 5.2 to 7.5, the average number of nodes increases from 18,759.8 to 44,353.2 

and the average CPU time increases from 0.74 to 0.79 seconds when the 

variability in the task times increases. For 𝑁=53 when 𝐾=8 & 𝐾′=12, the average 

number of nondominated objective vectors increases from 8 to 11.2, the average 

number of nodes increases from 75,490.5 to 145,684.9 and the average CPU time 

increases from 2.05 to 2.92 seconds when the variability in the task times 

increases. Similar observations can be made for the other settings. As our concern 

is to solve harder problem instances, in our main runs we decide to generate task 

times from discrete uniform distribution U[1,50].  
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Table 6.2 The performances of 𝑁=35 and 𝑁=53, 𝑡𝑖~U[1,10] 

  
# of nondominated 
objective vectors 

BAB 

Number of Nodes CPU Time 

 Setting N Average  Maximum Average  Maximum Average  Maximum 

K=8  
K'=12 

35 5.2 8 18,759.8 47,617 0.74 1.58 

53 8 12 75,490.5 213,908 2.05 7.75 

K=10 
K'=12 

35 5.4 8 20,226.7 29,812 0.28 0.51 

53 7.1 10 105,807.4 312,339 1.59 3.65 

K=10 
K'=14 

35 4.6 6 15,432.0 41,874 0.53 1.98 

53 7.9 13 143,004.1 732,862 2.85 11.28 

 

Table 6.3 The performances of 𝑁=35 and 𝑁=53, 𝑡𝑖~U[1,50] 

 

 

We continue our preliminary runs where task times are distributed by U[1,50].  

 

6.2.2 EFFECT OF MECHANISMS 

We also test the power of the dominance rule, lower bounds and upper bounds. 

We again use instances with 𝑁=35 and 𝑁=53 when 𝐾=8 & 𝐾′=12 and 𝐾=10 & 

𝐾′=12 for this purpose.  

 

 

  
# of nondominated 
objective vectors 

BAB 

Number of Nodes CPU Time 

 Setting N Average  Maximum Average  Maximum Average  Maximum 

K=8  
K'=12 

35 7.5 10 44,353.2 129,769 0.79 1.58 

53 11.2 19 145,684.9 277,543 2.92 7.50 

K=10 
K'=12 

35 10.2 12 66,577.8 117,286 0.60 1.45 

53 12.9 15 307,632.4 1,438,863 5.00 26.07 

K=10 
K'=14 

35 9.1 12 55,651.5 120,667 0.80 1.72 

53 13.1 19 205,748.2 516,778 3.94 13.82 
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i. Dominance Rules 

We first investigate the power of the dominance rule. The following tables 

summarize the results of the preliminary runs when the dominance rule is used 

and is not used. 

 

Table 6.4 The performance of the BAB algorithm with and without the dominance 

rule, 𝑁=35 

  

K=8 and K'=12 K=10 and K'=12 

Average Maximum Average Maximum 

with 
dominance 

rule 

CPU  0.79 1.58 0.60 1.45 

Nodes 44,353.2 129,769 66,577.8 117,286 

without 
dominance 

rule 

CPU  1.85 5.99 6.51 23.28 

Nodes 579,747.5 2,790,304 2,577,738.0 10,417,170 

 

Table 6.5 The performance of the BAB algorithm with and without the dominance 

rule, 𝑁=53 

 

K=8 and K'=12 K=10 and K'=12 

Average Maximum Average Maximum 

with 
dominance 

rule 

CPU 2.92 7.50 5.00 26.07 

Nodes 145,684.9 277,543 307,632.4 1,438,863 

without 
dominance 

rule 

CPU 44.97 324.03 53.61 330.60 

Nodes 8,999,801 74,380,905 8,243,175 59,057,043 

 

 

As Table 6.4 and Table 6.5 suggest, the effect of the dominance rule is extremely 

significant on the BAB algorithm. Both the average CPU times and the average 
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number of nodes reduce significantly when dominance rule is applied. For 𝑁=35 

when 𝐾=8 & 𝐾′=12, the average CPU time decreases from 1.85 to 0.79 seconds 

and average number of nodes decreases from 579,747.5 to 44,353.2. When 𝐾=10 

& 𝐾′=12, the average CPU time decreases from 6.51 to 0.60 seconds and average 

number of nodes decreases from 2,577,738 to 66,577.8. The results are even more 

drastic for 𝑁=53. When 𝐾=8 & 𝐾′=12, the average CPU time decreases from 

44.97 to 2.92 seconds and average number of nodes decreases from 8,999,801 to 

145,684.9. When 𝐾=10 & 𝐾′=12, the average CPU time decreases from 53.61 to 

5.00 seconds and average number of nodes decreases from 8,243,175 to 

307,632.4.  

The results for the maximum CPU times and the maximum number of nodes also 

reveal the ability of the dominance rule to avoid extremely large CPU times and 

number of nodes for the worst cases. For example, the maximum number of nodes 

would be 59,057,043 resulting in 330.6 CPU seconds for 𝑁=53 when 𝐾=10 & 

𝐾′=12 if no dominance rule was applied. On the other hand, it is reduced to 

1,438,863 nodes and 26.07 CPU seconds for the same instance when the 

dominance rule is used. 

 

ii. Lower Bounds 

We test the effects of the lower bounds on the number of disrupted tasks and cycle 

time both separately and together. 

In our tests, we do not consider simple lower bounds. We test the power of the 

lower bound on the number of disrupted tasks which uses the earliest/latest 

workstations information (𝐿𝐵𝑁𝐷) and two lower bounds on the cycle time which 

use the cardinality of number of tasks in any workstation information (𝐿𝐵2𝐶𝑇) and 

the earliest/latest workstations information (𝐿𝐵3𝐶𝑇), respectively. 
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The results for the preliminary runs with and without the lower bounds are 

summarized in the following two tables. 

Table 6.6 The performance of the BAB algorithm with and without the lower 

bounds, 𝑁=35 

  

K=8 and K'=12 K=10 and K'=12 

Average Maximum Average Maximum 

with all LBs 
CPU 0.79 1.58 0.60 1.45 

Nodes 44,353.2 129,769 66,577.8 117,286 

without 
𝐿𝐵𝑁𝐷  

CPU 0.81 1.47 0.87 1.50 

Nodes 60,593.8 151,339 88,941.8 184,355 

without 
𝐿𝐵2𝐶𝑇   
𝐿𝐵3𝐶𝑇  

CPU 0.74 1.48 0.64 1.39 

Nodes 44,409.7 130,033 68,181.4 117,437 

without LBs 
CPU 0.57 1.09 0.49 0.78 

Nodes 60,715.4 151,655 91,159.5 185,133 

 

Table 6.7 The performance of the BAB algorithm with and without the lower 

bounds, 𝑁=53 

  

K=8 and K'=12 K=10 and K'=12 

Average Maximum Average Maximum 

with all LBs 
CPU 2.92 7.50 5.00 26.07 

Nodes 145,684.9 277,543 307,632.4 1,438,863 

without 
𝐿𝐵𝑁𝐷  

CPU 38.64 125.39 11.89 33.06 

Nodes 1,128,062.5 2,858,333 570,313.4 1,624,420 

without 
𝐿𝐵2𝐶𝑇   
𝐿𝐵3𝐶𝑇  

CPU 3.32 9.17 7.35 46.29 

Nodes 174,458.8 338,009 394,372.4 2,058,472 

without LBs 
CPU 20.88 53.07 16.84 94.43 

Nodes 1,262,645.3 2,963,328 914,740 3,539,538 

 



59 
 

Table 6.6 and Table 6.7 show that the lower bound on the number of disrupted 

tasks has a significant effect on the CPU time and the number of nodes. For 𝑁=35 

when 𝐾=8 & 𝐾′=12, the average CPU time decreases from 0.81 to 0.79 seconds 

and average number of nodes decreases from 60,593.8 to 44,353.2. When 𝐾=10 & 

𝐾′=12, the average CPU time decreases from 0.87 to 0.60 seconds and average 

number of nodes decreases from 88,941.8 to 66,577.8. The results are again more 

obvious for 𝑁=53. When 𝐾=8 & 𝐾′=12, the average CPU time decreases from 

38.64 to 2.92 seconds and average number of nodes decreases from 1,128,062.5 to 

145,684.9. When 𝐾=10 & 𝐾′=12, the average CPU time decreases from 11.89 to 

5.00 seconds and average number of nodes decreases from 570,313.4 to 

307,632.4.  

The effect of the lower bounds on the cycle time is slightly significant when the 

number of nodes is compared. For 𝑁=35 when 𝐾=8 & 𝐾′=12, the average number 

of nodes is reduced from 44,409.7 to 44,353.2. When 𝐾=10 & 𝐾′=12, the average 

number of nodes is reduced from 68,181.4 to 66,577.8. For 𝑁=53 when 𝐾=8 & 

𝐾′=12, the average number of nodes is reduced from 174,458.8 to 145,684.9. 

When 𝐾=10 & 𝐾′=12, the average number of nodes is reduced from 394,372.4 to 

307,632.4. However, when the average CPU times are compared, the results are 

not in line with the ones obtained for the average number of nodes. For example, 

for 𝑁=35 when 𝐾=8 & 𝐾′=12, the average CPU time increases from 0.74 to 0.79 

seconds when the lower bounds on the cycle time are used. One can be suspicious 

whether the computation of the lower bounds on the cycle time is worth or not; 

however, the results for 𝑁=53 show that the effect of these lower bounds might be 

more significant for problem instances with larger size. To illustrate, for 𝑁=53 

when 𝐾=10 & 𝐾′=12, the average CPU time decreases from 7.35 to 5.00 seconds 

when these lower bounds are used. 

In the computation of 𝐿𝐵𝑁𝐷 and 𝐿𝐵3𝐶𝑇, the earliest/latest workstations should be 

found for each of the unassigned tasks. Thus, even if only one of the lower bounds 

is used, the earliest and latest workstations should be found. We also investigate 
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the situation where none of the lower bounds are used so that the earliest and 

latest workstation information is no longer necessary. From Table 6.6, although 

the number of nodes is significantly greater when the lower bounds are not used, 

the CPU times are smaller when 𝐾=8 & 𝐾′=12 and 𝐾=10 & 𝐾′=12 for 𝑁=35. To 

illustrate, the average number of nodes increases from 66,577.8 to 91,159.5 when 

none of the lower bounds are employed whereas the average CPU time decreases 

from 0.60 to 0.49 seconds when 𝐾=10 & 𝐾′=12. This may be because the 

earliest/latest workstations are not computed and it is not worth to use the lower 

bounds even if the computation time of the lower bounds takes less than a second 

since the total time itself is less than a second. On the other hand, we observe the 

effect of the lower bounds from the results of 𝑁=53 when 𝐾=8 & 𝐾′=12 and 

𝐾=10 & 𝐾′=12. To illustrate, for 𝑁=53 when 𝐾=10 & 𝐾′=12, the average CPU 

time decreases from 16.84 to 5.00 seconds when all lower bounds are used. 

 

iii. Upper Bounds 

We make preliminary experiments to understand the effect of the initial set 

generated, so called the upper bounds. To do so, only one candidate 

nondominated objective vector is generated for the initial set by using a well-

known heuristic called the Largest Candidate Rule that gives priority to the task 

having larger task time. Using this rule, we try to find a feasible solution for the 

theoretically minimum cycle time. If such a solution cannot be found due to the 

fact that the required number of workstations is greater than the actual number of 

workstations in the new configuration, the cycle time is increased by one and the 

rule is applied again. By this way, we end up with a candidate nondominated 

objective vector with a low cycle time; however, the number of disrupted tasks in 

this solution is usually very high resulting in a very poor initial set. 
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Table 6.8 The performance of the BAB algorithm with and without the upper 

bounds, 𝑁=35 

  

K=8 and K'=12 K=10 and K'=12 

Average Maximum Average Maximum 

with UBs 
CPU 0.79 1.58 0.60 1.45 

Nodes 44,353.2 129,769 66,577.8 117,286 

without 
UBs 

CPU 0.33 1.19 0.56 1.05 

Nodes 71,955.8 247,555 100,792.2 192,767 

 

Table 6.9 The performance of the BAB algorithm with and without the upper 

bounds, 𝑁=53 

  

K=8 and K'=12 K=10 and K'=12 

Average Maximum Average Maximum 

with UBs 
CPU 2.92 7.50 5.00 26.07 

Nodes 145,684.9 277,543 307,632.4 1,438,863 

without 
UBs 

CPU  2.86 7.94 5.16 25.58 

Nodes 195,811.4 364,043 367,618.4 1,441,123 

 

 

Table 6.8 and Table 6.9 suggest that the generation of the initial set reduces the 

number of nodes whereas whether it is worth or not, is not clear in terms of CPU 

times. To illustrate, for 𝑁=35 when 𝐾=8 & 𝐾′=12, the average number of nodes 

decreases from 71,955.8 to 44,353.2 whereas the average CPU time increases 

from 0.33 to 0.79 seconds when the initial set is generated. Another example can 

be given for 𝑁=53. When 𝐾=8 & 𝐾′=12, the average number of nodes decreases 

from 195,811.4 to 145,684.9 whereas the average CPU time increases from 2.86 

to 2.92 seconds if the initial set is used. Although it seems it is not worth to 

generate the initial set for both 𝑁=35 and 𝑁=53, we suspect that its effect might 

be perceived for larger instances. Thus, we repeat the experiment for Tonge 

(1961) which has 70 tasks. 
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Table 6.10 The performance of the BAB algorithm with and without the upper 

bounds, 𝑁=70 

  

Setting 1 
K=8 and K'=12 

Setting 2 
K=10 and K'=12 

Average Maximum Average Maximum 

with UBs 
CPU 439.00 1702.59 154.02 1095.41 

Nodes 13,905,229.3 55,262,946 9,857,298.0 36,236,721 

without UBs 
CPU 748.10 3600.00 175.33 1212.63 

Nodes 33,270,872 204,517,755 12,664,664 42,980,361 

 

Table 6.10 reveals that the upper bounds actually have a significant effect on 

reducing the CPU times. The average CPU time decreases from 748.10 to 439.00 

seconds and from 175.33 to 154.02 seconds when 𝐾=8 & 𝐾′=12 and 𝐾=10 & 

𝐾′=12, respectively. Moreover, note that the termination limit would be exceeded 

for one of the instances generated for the setting with 𝐾=8 & 𝐾′=12 if the upper 

bounds were not employed. 

 

6.2.3 MAIN EXPERIMENT 

Based on the results of our preliminary runs, we ensure the power of the 

dominance rule, lower bounds and upper bounds, and continue our main 

experiment. As stated, we take four different data sets from the simple assembly 

line balancing literature and use their precedence networks as they are. We 

generate task times using discrete uniform distribution U[1,50] again based on the 

results of the preliminary experiment. We also use five different settings for 𝐾 and 

𝐾′ combinations.  

We first analyze the number of nondominated objective vectors and report the 

results in Table 6.11 and Table 6.12. Table 6.11 and Table 6.12 give the average 

and maximum number of nondominated objective vectors. 
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Table 6.11 The number of nondominated objective vectors for 𝐾=8 & 𝐾′=12, 

𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 

 

K=8 and K’=12 K=10 and K’=12 K=10 and K’=14 

Average Maximum Average Maximum Average Maximum 

N=35 7.5 10 10.2 12 9.1 12 

N=45 7.2 11 9.5 12 9 12 

N=53 11.2 19 12.9 15 13.1 19 

N=70 10 17 11.3 15 10.7 20 

 

Table 6.12 The number of nondominated objective vectors for 𝐾=5 & 𝐾′=6 and 

𝐾=5 & 𝐾′=7 

 

K=5 and K’=6 K=5 and K’=7 

Average Maximum Average Maximum 

N=35 6.9 11 6.3 9 

N=45 5.5 9 4.6 7 

N=53 9.6 18 9.4 16 

N=70 10.1 13 6.6 14 

 

 

As can be observed from Table 6.11 and Table 6.12, the nondominated objective 

vectors for the instances with 𝑁=35 and 𝑁=45 are considerably less compared to 

the instances with 𝑁=53 and 𝑁=70. Note from Table 6.11 when 𝐾=8 & 𝐾′=12 

that the average number of nondominated objective vectors is 7.5 and 7.2 for 

𝑁=35 and 𝑁=45, respectively whereas there are 11.2 and 10 objective vectors for 

𝑁=53 and 𝑁=70, respectively. Similar results can also be observed for the other 

settings. This is due to the fact that the number of nondominated objective vectors 

is bounded by 𝑁 − 𝑁𝐷𝑚𝑖𝑛 + 1. We expect the number of nondominated objective 

vectors to increase when the number of tasks increases. On the other hand, for 

fixed number of workstations, increasing 𝑁 values would lead to more tasks 

assigned to each workstation, hence to higher 𝑁𝐷𝑚𝑖𝑛 values. Since the number of  
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nondominated objective vectors has a reverse relationship with 𝑁𝐷𝑚𝑖𝑛, the 

number of nondominated objective vectors might also decrease when 𝑁 increases. 

For example, the average number of nondominated objective vectors decreases 

from 7.5 to 7.2 when 𝑁 increases from 35 to 45 when 𝐾=8 & 𝐾′=12. However, 

since 𝑁 grows more rapidly than 𝑁𝐷𝑚𝑖𝑛, the set of nondominated objective 

vectors is expected to get larger for significant increments in  𝑁. 

The effects of the number of workstations in the initial configuration (𝐾′) and the 

number of disrupted workstations (𝐾′ − 𝐾) can be also observed from Table 6.11 

and Table 6.12. It can be noted that, for fixed 𝐾′, smaller values of 𝐾′ − 𝐾 lead to 

increases in the number of nondominated objective vectors. To illustrate, for 

𝑁=35, the average number of nondominated objective vectors is 7.5 when 𝐾=8 & 

𝐾′=12, and it is 10.2 when 𝐾=10 & 𝐾′=12. For 𝑁=45, the average number of 

nondominated objective vectors is 7.2 when 𝐾=8 & 𝐾′=12 and it increases to 9.5 

when 𝐾=10 & 𝐾′=12. For 𝑁=53, the average number of nondominated objective 

vectors is 11.2 when 𝐾=8 & 𝐾′=12 and it increases to 12.9 when 𝐾=10 & 𝐾′=12. 

For 𝑁=70, the average number of nondominated objective vectors is 10 when 

𝐾=8 & 𝐾′=12 and it increases to 11.3 when 𝐾=10 & 𝐾′=12. As mentioned above, 

the number of nondominated objective vectors is bounded by 𝑁 − 𝑁𝐷𝑚𝑖𝑛 + 1 and 

𝑁𝐷𝑚𝑖𝑛 is greater when 𝐾=8 & 𝐾′=12 since there are more disrupted workstations. 

This leads to a smaller set of nondominated objective vectors when more 

workstations are disrupted given that the initial configuration is the same. 

For fixed 𝐾′ − 𝐾, larger values of 𝐾′ lead to increases in the number of 

nondominated objective vectors. It is already noted that when 𝐾=8 & 𝐾′=12, the 

average number of nondominated objective vectors is 7.5 for 𝑁=35. When 𝐾=10 

& 𝐾′=14, the average number of nondominated objective vectors is 9.1. Likewise, 

when 𝐾=10 & 𝐾′=14, the average number of nondominated objective vectors 

increases from 7.2 to 9 for 𝑁=45, from 11.2 to 13.1 for 𝑁=53 and from 10 to 10.7 

for 𝑁=70. This difference is again related with 𝑁𝐷𝑚𝑖𝑛. For 𝐾′=14, there are less 

number of tasks assigned to each workstation when compared to 𝐾′=12. If the 
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same number of workstations are disrupted for 𝐾′=12 and 𝐾′=14, the 𝑁𝐷𝑚𝑖𝑛 

value would be less for 𝐾′=14. Thus, for fixed 𝐾′ − 𝐾, the number of 

nondominated objective vectors are expected to be smaller for smaller 𝐾′ values. 

Same observation can also be made if the results obtained for 𝐾=10 & 𝐾′=12 and 

𝐾=5 & 𝐾′=7 are compared. 

One can also compare the cases with the same 𝐾 values; however, it is not 

possible to draw a conclusion that holds for all combinations. To illustrate, let us 

compare 𝐾=10 & 𝐾′=12 with 𝐾=10 & 𝐾′=14. From Table 6.11, the average 

number of nondominated objective vectors is 10.2 when 𝐾=10 & 𝐾′=12, and it is 

9.1 when 𝐾=10 & 𝐾′=14 for 𝑁=35. On the other hand, the average number of 

nondominated objective vectors is 12.9 when 𝐾=10 & 𝐾′=12, and it is 13.1 when 

𝐾=10 & 𝐾′=14 for 𝑁=53. Since there are less tasks assigned to each workstation 

in the original assignment when 𝐾′=14, the number of nondominated objective 

vectors might be expected to decrease when a fixed number of workstations is 

disrupted. However, as there are more affected workstations, the number of 

nondominated objective vectors might increase as well.  

We now discuss the performance of our BAB algorithm. We report the 

performance results in Table 6.13 and Table 6.14. The tables give the average and 

maximum number of nodes and CPU times of the BAB algorithm. The average 

and maximum CPU times by the CA are also included in the tables.  
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Table 6.13 The performance of the BAB algorithm and the CA when 𝐾=8 & 

𝐾′=12, 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 

  
BAB CA 

Number of Nodes CPU Time CPU Time 

 Setting N Average  Maximum Average  Maximum Average  Maximum 

K=8  
K'=12 

35 44,353.2 129,769 0.79 1.58 20.79 43.67 

45 5,565,824.1 15,284,852 19.36 46.18 139.92 348.51 

53 145,684.9 277,543 2.92 7.50 22.37 45.77 

70 13,905,229.3 55,262,946 439.00 1702.59 802.90 3600.00 

K=10 
K'=12 

35 66,577.8 117,286 0.60 1.45 84.42 135.57 

45 35,271,957.5 62,193,762 658.28 3600.00 316.97 819.61 

53 307,632.4 1,438,863 5.00 26.07 64.14 126.87 

70 9,857,298.0 36,236,721 154.02 1095.41 2626.31 3600.00 

K=10 
K'=14 

35 55,651.5 120,667 0.80 1.72 47.10 80.74 

45 40,777,397.0 97,633,896 1018.07 3600.00 403.55 1585.27 

53 205,748.2 516,778 3.94 13.82 52.11 106.96 

70 7,258,017.8 26,547,649 87.46 337.94 2216.89 3600.00 

 

Table 6.14 The performance of the BAB algorithm and the CA when 𝐾=5 & 𝐾′=6 

and 𝐾=5 & 𝐾′=7 

  
BAB CA 

Number of Nodes CPU Time CPU Time 

Setting  N Average  Maximum Average  Maximum Average  Maximum 

K=5     
K'=6 

35 21,203.9 37,329 0.53 1.31 4.96 7.65 

45 907,845.4 6,900,911 2.65 15.79 8.03 24.59 

53 64,396.2 205,580 0.89 1.98 4.77 7.93 

70 6,599,851.8 27,131,040 24.72 73.07 16.27 33.34 

K=5     
K'=7 

35 15,161.6 26,134 0.69 1.51 4.87 6.92 

45 1,174,489.2 6,335,691 3.55 14.21 9.66 62.61 

53 48,501.2 97,284 0.81 1.47 4.78 8.03 

70 2,123,071.0 8,519,811 10.72 34.94 14.59 28.04 
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As can be observed from Table 6.13 and Table 6.14, the CPU times and the 

number of nodes of the BAB algorithm increase significantly with increases in 𝑁. 

This is due to the increase in the number of nondominated objective vectors and 

effort spent to find each nondominated objective vector. 

Note from Table 6.13 that, for the BAB algorithm, when 𝐾=8 & 𝐾′=12, the 

average CPU times are 0.79, 19.36, 2.92 and 439.00 seconds, and the average 

number of nodes are 44,353.2, 5,565,824.1, 145,684.9 and 13,905,229.3 for 

𝑁=35, 𝑁=45, 𝑁=53 and 𝑁=70, respectively. When 𝐾=10 & 𝐾′=12, the average 

CPU times are 0.60, 658.28, 5.00 and 154.02 seconds, and the average number of 

nodes are 66,577.8, 35,271,957.5, 307,632.4 and 9,857,298.0 for 𝑁=35, 𝑁=45, 

𝑁=53 and 𝑁=70, respectively. When 𝐾=10 & 𝐾′=14, the average CPU times are 

0.80, 1018.07, 3.94 and 87.46 seconds, and the average number of nodes are 

55,651.1, 40,777,397.0, 205,748.2 and 7,258,017.8 for 𝑁=35, 𝑁=45, 𝑁=53 and 

𝑁=70, respectively. The average CPU times and the average number of nodes for 

𝐾=5 & 𝐾′=6 and 𝐾=5 & 𝐾′=7 can be found in Table 6.14. Except for 𝑁=53, the 

results are in line with our expectation. The reason why the average CPU time and 

the average number of nodes are smaller than what was expected for 𝑁=53 is due 

to the intense precedence network of Hahn (1972). Since this instance has 

relatively more precedence relationships, there is less number of tasks considered 

at each level of the BAB because there are less tasks satisfying feasibility 

conditions. Two more exceptions are identified such that even 𝑁 is smaller, the 

average CPU time and the average number of nodes are greater. For 𝐾=10 & 

𝐾′=12, the average CPU times are 658.28 and 154.02 seconds, and the average 

number of nodes are 35,271,957.5 and 9,857,298.0 for 𝑁=45 and 𝑁=70, 

respectively. A similar result is obtained for 𝑁=45 and 𝑁=70 when 𝐾=10 & 

𝐾′=14. These exceptions can again be explained by the structure of the 

precedence network. The precedence relationships for Kilbridge and Wester 

(1962) is relatively sparse and there are more tasks considered at each level of the 

BAB tree. 
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Recall that 𝐾′ and 𝐾′ − 𝐾 have an impact on the number of nondominated 

objective vectors, they also affect the CPU times and the number of nodes. For 

example, for 𝑁=45, the average CPU times are 19.36 and 658.28 seconds, and the 

average number of nodes are 5,565,824.1 and 35,271,957.5 when 𝐾=8 & 𝐾′=12 

and 𝐾=10 & 𝐾′=12, respectively. This is an expected result since the number of 

nondominated objective vectors is greater for 𝐾=10 & 𝐾′=12. A similar 

observation can be made when 𝐾=8 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 are compared. 

For 𝑁=45, the average CPU time and the average number of nodes are 1018.07 

seconds and 40,777,397.0 when 𝐾=10 & 𝐾′=14, respectively. Both the average 

CPU time and the average number of nodes are greater when 𝐾=10 & 𝐾′=14 

compared to 𝐾=8 & 𝐾′=12 since the set of nondominated objective vectors is 

larger when 𝐾=10 & 𝐾′=14. There is only one exception reported in Table 6.13 

for 𝑁=70. The average CPU time and the average number of nodes when 𝐾=8 & 

𝐾′=12 are greater compared to 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 for 𝑁=70; 

however, if two instances of when 𝐾=8 & 𝐾′=12 with maximum CPU times and 

number of nodes are not considered when taking the averages, the results are 

consistent with our expectations.  

The observations from Table 6.13 and Table 6.14 suggest that 𝐾 also has an effect 

on the performance of the BAB algorithm. Let us compare 𝐾=10 & 𝐾′=12 and 

𝐾=5 & 𝐾′=7 where the number of disrupted workstations is the same but the 

number of workstations in the new configuration is half in the latter setting. For 

𝑁=70, the average number of nodes is 9,857,298.0 and the average CPU time is 

154.02 seconds when 𝐾=10 & 𝐾′=12 whereas they decrease to 2,123,071 and 

10.72 seconds, respectively when 𝐾=5 & 𝐾′=7. This observation is true for all 

settings. This is an expected result since the size of the BAB gets smaller for 

smaller 𝐾 values as we stop to branch once the assignment of tasks to the 𝐾 − 1 

workstations is completed.  

Another observation regarding the performance of the BAB algorithm is that the 

results obtained by the BAB algorithm seem consistent since the differences 
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between the average and the maximum values of the CPU times are relatively 

small for almost all combinations reported in Table 6.13 and Table 6.14. The 

termination limit of one hour is only exceeded when 𝐾=10 & 𝐾′=12 and 𝐾=10 & 

𝐾′=14 for 𝑁=45. If these instances are ignored, the average CPU time reduces to 

331.43 seconds and the maximum CPU time reduces to 793.76 seconds when 

𝐾=10 & 𝐾′=12, and the average CPU time reduces to 372.59 seconds and the 

maximum CPU time reduces to 1749.11 seconds when 𝐾=10 & 𝐾′=14. 

We also investigate the effects that are analyzed for the BAB algorithm on the 

CA. The performance of the CA also deteriorates with increases in the 𝑁 value. 

The increase with 𝑁 values is more pronounced compared to the BAB algorithm, 

as in the CA the number of tasks increases the number of binary variables, 

exponentially. Note from Table 6.13 that, when 𝐾=8 & 𝐾′=12, the average CPU 

times are 20.79, 139.92, 22.37 and 802.90 seconds for 𝑁=35, 𝑁=45, 𝑁=53 and 

𝑁=70, respectively. When 𝐾=10 & 𝐾′=12, the average CPU times are 84.42, 

316.97, 64.14 and 2626.31 seconds for 𝑁=35, 𝑁=45, 𝑁=53 and 𝑁=70, 

respectively. When 𝐾=10 & 𝐾′=14, the average CPU times are 47.10, 403.55, 

52.11 and 2216.89 seconds for 𝑁=35, 𝑁=45, 𝑁=53 and 𝑁=70, respectively. The 

average CPU time for 𝑁=53 is again smaller, which can be explained by its 

intense precedence network. Similar observations can be made for the settings 

with 𝐾=5 & 𝐾′=6 and 𝐾=5 & 𝐾′=7. 

The 𝐾′ and 𝐾′ − 𝐾 values also affect the performance of the CA through their 

effect on the number of nondominated objective vectors. Since each of the 

nondominated objective vectors is found by solving an NP-hard problem in the 

CA, the effect of 𝐾′ and 𝐾′ − 𝐾 on the CPU time of the CA is more significant 

than that of the BAB algorithm. For example, for 𝑁=45, the average CPU times 

are 139.92, 316.97 and 403.55 seconds when 𝐾=8 & 𝐾′=12, 𝐾=10 & 𝐾′=12 and 

𝐾=10 & 𝐾′=14, respectively. The average CPU time when 𝐾=8 & 𝐾′=12 is less 

than those of when 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 due to the fact that the set 

of nondominated objective vectors is smaller when 𝐾=8 & 𝐾′=12. The difference 
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between the average CPU times when 𝐾=5 & 𝐾′=6 and 𝐾=5 & 𝐾′=7 reported in 

Table 6.14 and when 𝐾=8 & 𝐾′=12, 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 reported 

in Table 6.13 are again significant. As in the BAB algorithm, 𝐾 has an effect on 

the effort spent to find each nondominated objective vector in the CA. This is due 

to the exponential increase of the number of decision variables for increasing 

values of 𝐾.  

We give the average CPU times for the BAB algorithm and the CA, in Table 6.15 

and Table 6.16, for different settings. 

 

Table 6.15 The average CPU times of the BAB algorithm and the CA when 𝐾=8 

& 𝐾′=12, 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14 

  
K=8, K'=12 K=10, K'=12 K=10, K'=14 

BAB CA BAB CA BAB CA 

N=35 0.79 20.79 0.60 84.42 0.80 47.10 

N=45 19.36 139.92 658.28 316.97 1018.07 403.55 

N=53 2.92 22.37 5.00 64.14 3.94 52.11 

N=70 439.00 802.90 154.02 2626.31 87.46 2216.89 

 

Table 6.16 The average CPU times of the BAB algorithm and the CA when 𝐾=5 

& 𝐾′=6 and 𝐾=5 & 𝐾′=7 

  
K=5, K'=6 K=5, K'=7 

BAB CA BAB CA 

N=35 0.53 4.96 0.69 4.87 

N=45 2.65 8.03 3.55 9.66 

N=53 0.89 4.77 0.81 4.78 

N=70 24.72 16.27 10.72 14.59 
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Note that in almost all combinations, the BAB algorithm produces smaller CPU 

times and the differences between the performances of the BAB algorithm and the 

CA become more significant as 𝑁 increases. From Table 6.15, the average CPU 

time to generate all nondominated objective vectors is 0.79 seconds for the BAB 

algorithm and 20.79 seconds for the CA, 19.36 seconds for the BAB algorithm 

and 139.92 seconds for the CA, 2.92 seconds for the BAB algorithm and 22.37 

seconds for the CA, 439.00 seconds for the BAB algorithm and 802.90 seconds 

for the CA when 𝐾=8 & 𝐾′=12 for 𝑁=35, 𝑁=45, 𝑁=53 and 𝑁=70, respectively. 

Under all of the other settings, the BAB algorithm generates the set of all 

nondominated objective vectors faster with three exceptions. For 𝑁=45, although 

the BAB algorithm is faster than the CA on the average when 𝐾=8 & 𝐾′=12, 𝐾=5 

& 𝐾′=6 and 𝐾=5 & 𝐾′=7, the average CPU times are greater for the BAB 

algorithm when 𝐾=10 & 𝐾′=12 and 𝐾=10 & 𝐾′=14. The average CPU time for 

the BAB algorithm is 658.28 seconds whereas it is 316.97 seconds for the CA 

when 𝐾=10 & 𝐾′=12, and the average CPU time for the BAB algorithm is 

1018.07 seconds whereas it is 403.55 seconds for the CA when 𝐾=10 & 𝐾′=14. 

When we investigate these results, we see that in the BAB algorithm, the 

termination limit is exceeded in one of the ten instances when 𝐾=10 & 𝐾′=12 and 

in two of the ten instances when 𝐾=10 & 𝐾′=14. 

The main experiment shows that in vast majority of the instances, the BAB 

algorithm is superior to the CA. The outweighing performance of the BAB 

algorithm over the CA can be explained by its lower sensitivity to the effects of 

the problem size parameters and the number of nondominated objective vectors. 

The exponential nature of the BAB search is somewhat dispelled by powerful 

lower bounding mechanisms and efficient dominance rules. 
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CHAPTER 7 

 

 

CONCLUSIONS 

 

 

7. CONCLUSIONS 

In this thesis, we consider an assembly line rebalancing problem. We assume that 

there are disruptions on a particular number of workstations that makes the 

original task assignment plan infeasible to implement. Hence, the line has to be 

rebalanced, i.e., the tasks should be reassigned, considering only nondisrupted 

workstations and precedence relations. We consider a bicriteria problem of 

generating all nondominated objective vectors with respect to our efficiency 

measure and stability measure. We consider cycle time, hence maximizing 

production rate, as an efficiency measure. Our stability measure is the number of 

disrupted tasks assigned to different workstations than their original workstations. 

To find the exact set of nondominated objective vectors, we propose two 

algorithms: classical approach (CA) and branch and bound (BAB) algorithm. The 

CA generates all nondominated objective vectors by successive solutions of 

mixed integer linear programs. The BAB algorithm generates the nondominated 

set simultaneously employing efficient branching scheme, bounding and 

dominance mechanisms. 

The results of our computational experiment show that the lower bounding 

schemes and dominance mechanisms have significant effect on the performance 

of the BAB algorithm. Using those mechanisms, the BAB algorithm solves the 

instances with up to 70 tasks in reasonable times and performs superior to the CA.  
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To the best of our knowledge, we present the first optimization algorithm for the 

assembly line rebalancing problem. Future research may benefit from our results 

to fill the gaps in the related literature. Defining new efficiency and stability 

measures and finding efficient solutions that catch a trade-off between the defined 

measures might be an interesting research direction. One reasonable stability 

measure is the weighted number of different assignments between the original and 

new plans or the weighted distance between the original and new workstations. 

An efficiency measure may be related to the workload balancing between the 

workstations like the absolute or squared deviation of the workstation loads 

around a target workload.  

Another worth-studying research direction might be developing optimization and 

approximation algorithms for the variants of the classical assembly line 

rebalancing problem. The variants may include, but not limited to, U-shaped 

assembly lines, mixed model lines, parallel lines and flexible assembly lines. 

In future research, different types of disruptions like addition of a new 

workstation, partial disruption of some workstations might be considered.
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