

APPLICATION OF SPRING ANALOGY MESH DEFORMATION TECHNIQUE

IN AIRFOIL DESIGN OPTIMIZATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

YOSHEPH YANG

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

AEROSPACE ENGINEERING

JULY 2015

Approval of the thesis:

APPLICATION OF SPRING ANALOGY MESH DEFORMATION

TECHNIQUE IN AIRFOIL DESIGN OPTIMIZATION

submitted by YOSHEPH YANG in partial fulfillment of the requirements for the

degree of Master of Science in Aerospace Engineering Department, Middle East

Technical University by,

Prof. Dr. Gülbin Dural Ünver _____________________

Director, Graduate School of Natural and Applied Sciences

Prof. Dr. Ozan Tekinalp _____________________

Head of Department, Aerospace Engineering

Prof. Dr. Serkan Özgen _____________________

Supervisor, Aerospace Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Zafer Dursunkaya _____________________

Mechanical Engineering Dept., METU

Prof. Dr. Serkan Özgen _____________________

Aerospace Engineering Dept., METU

Assoc. Prof. Dr. Melin Şahin _____________________

Aerospace Engineering Dept., METU

Asst. Prof. Dr. Ercan Gürses _____________________

Aerospace Engineering Dept., METU

Assoc. Prof. Dr. Kürşad Melih Güleren _____________________

Aeronautical Engineering Dept., UTAA

 Date: 30.07.2015

 iv

I hereby declare that all the information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last Name: Yosheph Yang

Signature:

 v

ABSTRACT

APPLICATION OF SPRING ANALOGY MESH DEFORMATION TECHNIQUE

IN AIRFOIL DESIGN OPTIMIZATION

Yang, Yosheph

 M.S., Department of Aerospace Engineering

 Supervisor : Prof. Dr. Serkan Özgen

July 2015, 111 pages

In this thesis, an airfoil design optimization with Computational Fluid

Dynamics (CFD) analysis combined with mesh deformation method is elaborated in

detail. The mesh deformation technique is conducted based on spring analogy method.

Several improvements and modifications are addressed during the implementation of

this method. These enhancements are made so that good quality of the mesh can still

be maintained and robustness of the solution can be achieved. The capability of mesh

deformation is verified by considering rotating case of an airfoil for both inviscid and

viscous meshes. The edge connectivity required in the spring analogy itself is

computed by several simple algorithms. It is found that the presence of modified spring

analogy technique leads to better solution in mesh deformation technique.

Regarding the aerodynamic design optimization, SU2 3.2.9 open source

software is used as the CFD Solver. During the computation, the initial mesh used in

the optimization is obtained from Pointwise® mesh generation software. OPTLIB

Gradient Optimizer of Phoenix Model Center is implemented as the optimization

solver. The optimization process is conducted for four different flight conditions. In

each flight condition, minimizing airfoil drag becomes the objective function with

 vi

different angle of attack constraints imposed. Furthermore, several shape

parameterizations are utilized. It is found that in each case, optimized airfoil can be

found based on the designated design variables.

Keywords: Mesh Deformation, Spring Analogy, Airfoil Design Optimization,

Computational Fluid Dynamics

 vii

ÖZ

YAY BENZETİMLİ ÇÖZÜM AĞI DEFORMASYON TEKNİĞİNİN KANAT

KESİTİ TASARIMI EN İYİLEŞTİLEŞTİRİLMESİNDE UYGULANMASI

Yang, Yosheph

 Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

 Tez Yöneticisi : Prof. Dr. Serkan Özgen

Temmuz 2015, 111 sayfa

Bu tezde, kanat kesiti en iyileştirilmesinde kullanılan Hesaplamalı Akışkanlar

Dinamiği (HAD) analizleri ile birleştirilmiş çözüm ağı deformasyon tekniği detaylı bir

biçimde anlatılmıştır. Kullanılan çözüm ağı deformasyon tekniğinde, yay benzetim

metodu baz alınmıştır. Tez içerisinde, metodun uygulanışındaki geliştirme ve

modifikasyonlara da yer verilmiştir. Bu geliştirmeler, deforme olmuş çözüm ağının

kalitesinden ve çözümün gürbüzlüğünden emin olabilmek için yapılmıştır. Viskoz ve

viskoz olmayan çözüm ağlarında, kanat kesitinin döndürülme durumu incelenerek

çözüm ağı deformasyonunun yeteneği doğrulanmıştır. Yay benzetiminde gerekli olan

çözüm ağı düğüm noktaları bağlantıları çeşitli basit algoritmalar kullanılarak

hesaplanmıştır. Modifiye edilmiş metodun, klasik metoda göre daha iyi çözümler

verdiği tespit edilmiştir.

Aerodinamik tasarım en iyileştirilmesinde, SU2 3.2.9 açık kaynak kodlu

yazılımı HAD çözücüsü olarak kullanılmıştır. En iyileştirmede kullanılacak ilk çözüm

ağı Pointwise® çözüm ağı oluşturma yazılımıyla elde edilmiştir. En iyileştirme

çözücüsü olarak Phoenix Model Center yazılımın "OPTLIB Gradient Optimizer"

modülü kullanılmıştır. En iyileştirme sürecinde dört farklı uçuş koşulu göz önüne

 viii

alınmıştır. Her bir uçuş koşulunda, farklı hücum açısı kısıtlamaları kullanılarak, kanat

kesitinin oluşturduğu sürüklemeyi en aza indirmek amaç fonksiyonu olarak

belirlenmiştir. Ayrıca, çeşitli şekil parametrelendirmesi de kullanılmıştır. Her bir

durumda, en iyileştirilmiş kanat kesitinin belirtilen tasarım değişkenleri temel alınarak

elde edilebileceği tespit edilmiştir.

Anahtar Kelimeler: Çözüm Ağı Deformasyonu, Yay Benzetimi, Kanat Kesiti Tasarımı

En İyileştirmesi, Hesaplamalı Akışkanlar Dinamiği

 ix

To my family and closest friends

who inspired me to finish this thesis

 x

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Prof. Dr. Serkan

Özgen for his guidance, advice, criticism, insight, and encouragement throughout the

research.

I would also like to thank my superiors within the CHANGE Project, Prof. Dr.

Yavuz Yaman, Assoc. Prof. Dr. Melin Şahin, Assist. Prof. Dr. Ercan Gürses for their

supports during the study.

I want to express my gratitude to my colleagues, İlhan Ozan Tunçöz, Nima

Pedramasl, Ramin Rouzbar, Harun Tıraş, Uğur Kalkan, Pınar Arslan, Onur Akın, and

my other friends who were there to give me support during my study.

I would like to thank my parents, my sister, and my brother who never ceased

to give me encouragement and pray for me during my graduate study.

I would also like to show my thanks to my Indonesian friends in Ankara,

especially my housemates. Thank you very much for being there to support me.

I would also like thank to The Scientific and Technological Research Council of

Turkey (TÜBİTAK) “2215 Graduate Scholarship Programme for International Students”

for supporting me financially during my graduate level education.

 xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiv

LIST OF FIGURES ... xv

LIST OF SYMBOLS .. xviii

LIST OF ABBREVIATIONS .. xx

CHAPTERS

1. INTRODUCTION ... 1

1.1 Motivation of the Study ... 1

1.2 Limitation of the Study .. 1

1.3 Layout of the Study ... 2

2. LITERATURE REVIEW... 3

2.1 Aerodynamic Optimization ... 3

2.1.1 Shape Parameterization ... 4

2.1.2 Optimization Algorithm Scheme .. 9

2.2 Mesh Deformation Method ... 10

2.2.1 Partial Differential Equation Method .. 11

2.2.2 Spring Analogy Method .. 12

2.2.3 Algebraic Method ... 12

3. SPRING ANALOGY MESH DEFORMATION METHOD 15

3.1 Basic Idea of Spring Analogy Method .. 15

3.1.1 Vertex Spring Method ... 15

3.1.2 Segment Spring Method .. 16

3.2 Improvement Over Basic Spring Analogy Method ... 18

3.2.1 Angle Consideration in the Linear Spring Formulation 18

 xii

3.2.2 Torsional Spring Analogy ... 21

3.2.3 Semi-Torsional Spring Analogy.. 23

3.2.4 Ball-Center Spring Analogy .. 25

3.2.5 Boundary Improvement... 28

3.3 Solution Method .. 29

3.3.1 Direct Solution .. 30

3.3.2 Indirect Solution .. 31

3.4 Coding Implementation of Spring Analogy .. 34

3.4.1 Implemented Data Structure.. 35

3.4.2 Mesh Connectivity .. 36

4. CFD AND OPTIMIZATION ANALYSES ... 43

4.1 CFD Analyses .. 43

4.1.1 Mesh Generation ... 44

4.1.2 Flow Parameters in CFD ... 45

4.2 Optimization Analyses ... 47

4.2.1 Optimization Scheme Explanation .. 49

4.2.2 Shape Parameterization ... 49

4.2.2.1 Variation of Camber and Thickness ... 49

4.2.2.2 PARSEC Shape Parameterization .. 52

5. RESULTS AND DISCUSSIONS .. 55

5.1 Mesh Deformation Results .. 55

5.1.1 Basic Spring Analogy Results ... 55

5.1.2 Angle Inclusion in Spring Analogy Results .. 56

5.1.3 Torsional Spring Analogy Results .. 57

5.1.4 Semi Torsional Spring Analogy Results ... 58

5.1.5 Ball-Center Spring Analogy .. 59

5.1.6 Boundary Improvement... 59

5.2 Optimization Results ... 64

5.2.1 Take-Off Configuration... 64

5.2.2 Loiter Configuration .. 68

 xiii

5.2.3 High-Speed Configuration .. 71

5.2.4 Landing Configuration .. 75

5.2.5 Miscellaneous Case ... 79

6. CONCLUSIONS AND FUTURE WORK .. 83

6.1 Conclusions ... 83

6.2 Future Work ... 85

REFERENCES ... 87

APPENDICES

A. DERIVATION OF KINEMATIC FORMULATION IN TORSIONAL SPRING

ANALOGY METHOD ... 91

B. ITERATIVE SOLVER .. 95

B.1 Conjugate Gradient Method .. 95

B.2 Gauss-Seidel Iterative Solver .. 95

C. SAMPLE CASE OF GLOBAL STIFFNESS MATRIX ASSEMBLE 97

D. INPUT FILES .. 101

D.1 Mesh Deformation Input File ... 101

D.2 SU2 Input File... 103

E. RANS EQUATIONS USED IN SU2 CFD MODELLING 109

 xiv

LIST OF TABLES

TABLES

Table 3.1 Implemented Derived Data Type in Mesh Deformation Code 36

Table 4.1 Flow Properties used in the Optimization Analysis 46

Table 4.2 Boundary Imposed on Camber and Thickness Factors 51

Table 5.1 Summary of Computation Time for Proposed Mesh Deformation Schemes

 .. 62

Table 5.2 Optimization Results for Take-Off Phase .. 66

Table 5.3 PARSEC Design Variables Range in the Take-Off Optimization 66

Table 5.4 Optimization Results for Loiter Phase ... 69

Table 5.5 PARSEC Design Variables Range in the Loiter Optimization 71

Table 5.6 Optimization Results for High-Speed Phase .. 73

Table 5.7 PARSEC Design Variables Range in the High-Speed Optimization 73

Table 5.8 Optimization Summary for Landing Phase .. 77

Table 5.9 PARSEC Design Variables Range in the Landing Optimization 77

Table 5.10 Range of Camber and Thickness Variables for NACA 2415 Case 79

Table 5.11 Optimum Parameters for Two Different Cases in Loiter Configuration . 79

Table 5.12 Summary of Mesh Convergence Study for NACA 2412 Airfoil in Loiter

Configuration ... 81

Table 6.1 Summary of Camber and Thickness Factor Employed for Different Flight

Parameters .. 84

 xv

LIST OF FIGURES

FIGURES

Figure 2.1 Airfoil shape parameterization using PARSEC method [8] 5

Figure 2.2 Hicks-Henne Bump Function [9] ... 6

Figure 2.3 Set of Sinusoidal Bump Functions with Different Location of Maximum

Bump [10] .. 7

Figure 2.4 Conformal Transformation [11] ... 8

Figure 2.5 Hicks-Henne Wing Paramerization using Some Cross Sections [9] 9

Figure 2.6 Comparison between (a) Gradient Based Algorithm and (b) Genetic

Algorithm [12] ... 10

Figure 2.7 (a) Initial Airfoil Mesh (b) Rotated Airfoil Mesh using ALE Method 11

Figure 2.8 Application of Spring Analogy by Batina for Pitching Airfoil (a) Initial

(b) 15 Degree Rotation [17] ... 12

Figure 2.9 Sample of Algebraic Mesh Deformation Method using Radial Basis

Function [24] .. 13

Figure 3.1 Physical Description of Spring Analogy Method [25] 16

Figure 3.2 Schematic of Angular Consideration in the Linear Spring Analogy 19

Figure 3.3 Motion and Deformation of a Triangle in the Torsional Spring [29] 21

Figure 3.4 Angle Definition Used in 2-D Semi Torsional Spring 25

Figure 3.5 Location of Projection Point p on the face 𝐹𝑖 ... 25

Figure 3.6 Schematic of Ball-Center Spring Analogy for 2-D Unstructured Mesh... 26

Figure 3.7 Schematic of Ball-Center an Arbitrary Node 𝑖 ... 27

Figure 3.8 Adjacent Boundary Improvement in the Spring Analogy Method 28

Figure 3.9 Surrounding Region Boundary Improvement in the Spring Analogy

Method ... 29

Figure 3.10 Implemented Numerical Methods in Spring Analogy 30

Figure 3.11 Flow Chart Implemented in the Code ... 35

Figure 3.12 Standard Numbering Convention for a 2-D Triangular Element 37

 xvi

Figure 3.13 Actual Edges Numbering System ... 37

Figure 3.14 Fictitious Edge Numbering System Used in the Ball-Center Spring

Analogy .. 40

Figure 4.1 Farfield Domain Description Used in the Mesh Generation 44

Figure 4.2 Inviscid Mesh around Baseline Airfoil ... 44

Figure 4.3 Viscous Mesh around the Baseline Airfoil ... 45

Figure 4.4 Optimization Scheme Implemented in Model Center 48

Figure 4.5 Component Description in Phoenix ModelCenter for Input Module 48

Figure 5.1 Deformed Meshes Resulted from Basic Spring Analogy 56

Figure 5.2 Deformed Meshes Resulted from Basic Spring Analogy with Angle

Inclusion ... 57

Figure 5.3 Deformed Meshes Resulted from Torsional Spring Analogy 58

Figure 5.4 Deformed Meshes Resulted from Semi Torsional Spring Analogy 58

Figure 5.5 Deformed Meshes Resulted from Ball-Center Spring Analogy 59

Figure 5.6 Deformed Meshes Resulted from Angle Inclusion Spring Analogy with

Adjacent Boundary Improvement .. 60

Figure 5.7 Deformed Meshes Resulted from Angle Inclusion Spring Analogy with

Surrounding Region Boundary Improvement .. 60

Figure 5.8 Residual Computation for Each Proposed Method in Spring Analogy

Mesh Deformation Methods... 62

Figure 5.9 Residual Computation for Each Proposed Method in Spring Analogy

Mesh Deformation Methods Up to 500 Iterations ... 63

Figure 5.10 Iteration History for Take-Off Optimization .. 65

Figure 5.11 Optimum Airfoil Shapes for Take-Off Configuration 67

Figure 5.12 Pressure Distribution of Optimum Airfoil Shapes for Take-Off

Configuration ... 67

Figure 5.13 Iteration History for Loiter Optimization ... 68

Figure 5.14 Optimum Airfoil Shapes for Loiter Configuration 70

Figure 5.15 Pressure Distribution of Optimum Airfoil Shapes for Loiter

Configuration ... 70

 xvii

Figure 5.16 Iteration History for High-Speed Optimization 72

Figure 5.17 Optimum Airfoil Shapes for High Speed Configuration 74

Figure 5.18 Pressure Distribution of Optimum Airfoil Shapes for High Speed

Configuration ... 74

Figure 5.19 Iteration History for Landing Optimization .. 75

Figure 5.20 Optimum Airfoil Shapes for Different Parameterization in Landing

Configuration ... 78

Figure 5.21 Cp Distribution for Optimum Airfoil in Landing Configuration with

Several Shape Parameterizations ... 78

Figure 5.22 Optimum Airfoil Shapes for Loiter Optimization in Camber and

Thickness Parameterization with Two Different Initial Airfoil Shapes 80

Figure 5.23 Pressure Distribution of Optimum Airfoil Shapes for Loiter Optimization

in Camber and Thickness Parameterization with Two Different Initial Airfoil

Shapes .. 80

Figure C.1 Sample Case of Global Stiffness Matrix Assemble Process 97

 xviii

LIST OF SYMBOLS

𝐴𝑖𝑗𝑘 Area of triangular cell whose node numbers are 𝑖, 𝑗, 𝑘

𝐶𝑖
𝑖𝑗𝑘

 Torsional spring stiffness attached at node 𝑖 in a triangular cell 𝑖𝑗𝑘

�⃗�𝑖 Spring force exerted on node 𝑖

𝐹𝑖𝑗𝑥 Spring force exerted on node 𝑖 by node 𝑗 in the x-direction

𝐹𝑖𝑗𝑦 Spring force exerted on node 𝑖 by node 𝑗 in the y-direction

𝐹𝑖𝑗𝑘 Force vectors generated in a triangular cell 𝑖𝑗𝑘

𝐾 Global stiffness matrix corresponding to all degree of freedoms on the

mesh

𝐾𝑎𝑎 Partitioned of global stiffness matrix corresponding to only active

degree of freedoms

𝐾𝑏𝑏 Partitioned of global stiffness matrix corresponding to only prescribed

degree of freedoms (boundary nodes)

𝐾𝑎𝑏 Partitioned matrix corresponding to active-prescribe degree of

freedoms

𝐾𝑏𝑎 Partitioned matrix corresponding to prescribe-active degree of

freedoms

𝑘𝑖𝑗 Linear spring stiffness for the segment spring analogy

𝑘𝑖𝑝 Spring stiffness used for the fictitious edge

𝑘𝑖𝑗
semi−torsional Semi-torsional spring stiffness for the segment spring analogy

𝑘𝑖𝑗
total Summation of all spring stiffness for the segment spring analogy

𝐾𝑖𝑗 Stiffness matrix defined for each edge 𝑖 − 𝑗

𝐾𝑡𝑜𝑟𝑠𝑖𝑜𝑛
𝑖𝑗𝑘

 Torsional stiffness matrix for each triangular cell 𝑖𝑗𝑘

𝑙𝑖𝑗 Length of edge whose node are 𝑖 and j

𝑀𝑖𝑗𝑘 Moments generated for each nodes in a triangular cell 𝑖𝑗𝑘

𝑁𝐸𝑖𝑗 Number of cells whose one of edge contains both node 𝑖 and 𝑗

 xix

�⃗�𝑖 Displacement vector of node 𝑖

�⃗�𝑝 Displacement vector of fictitious node p located in the center of

triangular cell

𝑅𝑖𝑗𝑘 Matrix represents kinematic relation between angular displacement and

nodal displacement in a triangular cell 𝑖𝑗𝑘.

𝑇𝑖𝑗𝑘 Transformation matrix in a triangular cell 𝑖𝑗𝑘 for torsional spring

analogy

𝑢𝑖 Displacement of node 𝑖 in x-direction

𝑣𝑐 Number of neighbor cells surrounding node 𝑖

𝑣𝑖 Number of neighbor nodes surrounding node 𝑖

𝑣𝑖 Displacement of node 𝑖 in y-direction

�⃗�𝑖 Position vector of node 𝑖

�⃗�𝑝 Position vector of fictitious node p located in the center of triangular

cell

𝛼𝑖𝑗 Spring stiffness for the vertex spring analogy

∆𝜃𝑖
𝑖𝑗𝑘

 Rotational displacement of node 𝑖 in a triangular cell 𝑖𝑗𝑘

∆𝑥𝑖 Displacement of node 𝑖 in the x-direction

∆𝑦𝑖 Displacement of node 𝑖 in the y-direction

𝜃𝑖𝑗 Angle made by each edge 𝑖 − 𝑗

𝜃𝑖
𝑖𝑗𝑘

 Angle made between edge 𝑖 − 𝑗 and edge 𝑖 − 𝑘 in the triangular cell

𝑖𝑗𝑘

𝜆 Spring constant used for semi-torsional spring analogy

Φ Multiplying factor used for stiffness value of the spring

𝛹 Exponential factor used for stiffness value of the spring

𝜔 Relaxation parameter used in the SOR solution method

 xx

LIST OF ABBREVIATIONS

CFD Computational Fluid Dynamics

CHANGE Combined morphing assessment software using flight envelope data

and mission based morphing wing prototype development

NACA National Advisory Committee for Aeronautics

OPTLIB Optimization Library

PARSEC Parameterized Section

PDE Partial Differential Equations

RANS Reynolds Averaged Navier Stokes

SOR Successive Overrelaxation

SQP Sequential Quadratic Programming

SU2 Stanford University Unstructured

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation of the Study

The status of Computational Fluid Dynamics (CFD) tools at the current level

brings a great help to many aircraft designers during airfoil selection. By the aid of this

tool, aerodynamic properties of the airfoil can be calculated easily. Combination of

this tool with an optimization tool will help the designers to find the optimum design

easily instead of doing many experimental analysis. In order to enhance the

optimization in terms of updating mesh, instead of generating a new mesh for each

iteration, mesh deformation technique is implemented.

In this thesis, the aforementioned methods are actualized in design optimization

of an airfoil. The optimization process is performed by considering the objective

function to be minimizing airfoil sectional drag by specifying airfoil sectional lift as

the constraint. Additionally, the optimization procedure is conducted for some flight

conditions in the mission profile. During the optimization process, the deformed mesh

is attained by using the developed mesh deformation tool, based on the spring analogy

mesh deformation method.

1.2 Limitation of the Study

In this thesis, the study is limited to aerodynamic point of view of the airfoil

design optimization based on CFD Tools. It is assumed that the results obtained from

CFD analysis is reliable. The turbulence modelling of the CFD solver is already

verified[1]. As a result, no further experimental analysis for the airfoil is conducted.

 2

In the mesh deformation and CFD analyses performed here, the meshes should

be unstructured meshes in 2-D Airfoil. Different type of unstructured polygon meshes

or structured meshes will not be taken into account in this thesis.

Apart from the above mentioned constraints, the flow regime is limited to

incompressible flow only. Consequently, the optimization for subsonic or supersonic

flow is not addressed in this thesis.

1.3 Layout of the Study

Chapter 2 encloses the literature study about airfoil design optimization. This

includes the shape parameterization and optimization scheme utilized in the analysis.

Additional, some past works concerning variation in mesh deformation technique is

elaborated in here as well.

Chapter 3 gives brief information regarding spring analogy mesh deformation

methods applied in this thesis. These methods are divided into some categories based

on the procedure and numerical solution used to get the final deformed mesh.

Moreover, two different solution procedures implemented in the study are explained

here. The required mesh connectivity and data structure used in the code are also

studied in this chapter.

Chapter 4 contains the explanation about how the CFD and optimization

analyses are conducted in the thesis. In the CFD analyses, information regarding initial

mesh and flow parameters are provided. For the optimization analyses, implemented

optimization scheme and implemented shape parameterizations are elaborated.

In Chapter 5, the results of mesh deformation method for the various spring

analogy approaches are shown. Furthermore, the 2-D airfoil design optimization with

given constraints are also presented in this chapter. The results are given in a

systematic way by considering each case in the optimization.

Chapter 6 contains the general conclusions of the study. Moreover, the

recommendation for the future work is also provided in here.

 3

CHAPTER 2

LITERATURE REVIEW

This chapter is devoted to some brief explanations regarding aerodynamic

design optimization, and mesh deformation method. Mostly, the information regarding

recent research is elaborated.

2.1 Aerodynamic Optimization

The concept of aerodynamic optimization in the design process is not

unfamiliar in the current decades. In fact, the two-dimensional aerodynamic design

was already introduced by Lighthill [2] back in 1945. The fact that Computational

Fluid Dynamics (CFD) tools have developed so greatly during these past decades

becomes one of main reasons that optimization tools have been greatly combined with

CFD tools. However, optimization tools were not implemented due to several reasons

[3]: the estimation of drag coefficient just became more accurate in the past decade,

high number of design spaces and non-linear constraints necessary to find the optimum

value, and huge demanding computational resources to perform the optimization.

Like any other optimization concept, the notion of aerodynamic optimization

also has some design variables and objective functions with some required constraints.

Shahroki and Jahangirian [4] have described that choosing appropriate design

variables for shape parameterization plays a significant role in determining the

optimum shape of the airfoil, especially in transonic flow. Excellent design variables

should encompass extensive design spaces. The objective functions defined in the

optimization mainly comprises aerodynamic coefficients which govern the

performance, like: maximum lift to drag ratio, minimum pitching moment, and many

others. Some constraints are also imposed on the aerodynamic optimization in order

 4

to achieve feasible optimum design. Epstein et al. [5] classified the constraints imposed

during the optimization process as either geometry constraints, which mainly deals

with the geometrical properties of the design or aerodynamic constraints, which are

concerned more about the performance of the aircraft.

In order to have optimum wing, which is the major issue encountered in the

optimization problem, one should also consider the airfoil, the basic element of the

wing that dictates large-scale flow phenomena occurring in the wing [6].

The airfoil optimization itself in general can be categorized into two different

categories: inverse design optimization, which tries to find a geometry which has a

prescribed distribution of pressure coefficient. On the other hand, direct numerical

optimization aims to find the best feasible design for some given constraints [7].

2.1.1 Shape Parameterization

Shape parameterization, which is dominantly introduced in the airfoil

optimization depends on whether the aim is to improve a current design or to introduce

a completely new design. For the improvement of the current design, some local

perturbations along the airfoil surface are sufficient. However, getting a completely

new design can be achieved by using other design shape parameterizations, which

allows the significant changes in the geometry.

There are some attempts made to parameterize the airfoil shape. One of the

well-known methods to parameterize airfoil shapes is known as PARSEC

(PARameterized SECtion), which was developed by Sobieczky in 1998 [8]. The idea

of this method is to parameterize the airfoil into several design parameters. Figure 2.1

specifies some required parameters to define the airfoil shape, which are: leading edge

radius (𝑅𝑙𝑒), abscissa of maximum peak for lower airfoil (𝑋𝑙𝑜), abscissa of maximum

peak for upper airfoil (𝑋𝑢𝑝), ordinate of maximum peak for lower airfoil (𝑌𝑙𝑜),

ordinate of maximum peak for upper airfoil (𝑌𝑢𝑝), curvature of maximum peak for

lower airfoil (𝑌𝑋𝑋𝑙𝑜), curvature of maximum peak for upper airfoil (𝑌𝑋𝑋𝑢𝑝), trailing

edge thickness (𝑇𝑇𝐸), trailing edge offset (𝑇𝑜𝑓𝑓), trailing edge direction angle (𝛼𝑇𝐸),

 5

and trailing edge wedge angle (𝛽𝑇𝐸). A mathematical equation with six terms is

selectively considered to describe both the upper and the lower airfoil surfaces

separately. These representations of upper and lower airfoil surfaces are shown in

Equation (2.1).

Figure 2.1 Airfoil shape parameterization using PARSEC method [8]

𝑦𝑢𝑝𝑝𝑒𝑟 =∑𝑎𝑖𝑥
𝑖−
1
2

6

𝑖=1

𝑦𝑙𝑜𝑤𝑒𝑟 =∑𝑏𝑖𝑥
𝑖−
1
2

6

𝑖=1

(2.1)

Coefficients of the mathematical equation representing the airfoil curve are

found by satisfying the input parameters defined earlier in PARSEC method. Later, by

using these coefficients, the curve for both upper and lower airfoil can be generated.

Another method that can be considered in the airfoil shape parameterization

during the optimization is implementation of a bump function. Hicks and Henne

introduced this notion while trying to apply some wing numerical optimization in 1978

[9]. The bump functions used by Hicks and Henne are shown in Equation (2.2).

 6

𝑦𝑢𝑝𝑝𝑒𝑟 = 𝑦𝑢𝑝𝑝𝑒𝑟𝑏𝑎𝑠𝑖𝑐 +∑𝑎𝑖𝑓𝑖

5

𝑖=1

𝑦𝑙𝑜𝑤𝑒𝑟 = 𝑦𝑙𝑜𝑤𝑒𝑟𝑏𝑎𝑠𝑖𝑐 +∑𝑏𝑖𝑓𝑖

5

𝑖=1

(2.2)

The values of 𝑎𝑖 and 𝑏𝑖 are considered as the amplitude of the introduced bump

function. Later, these values are taken as the design variables during the optimization

process. Figure 2.2 depicts the shapes of the bump functions implemented by Hicks-

Henne for numerical optimization.

Figure 2.2 Hicks-Henne Bump Function [9]

The above defined bump functions also contain sinusoidal bump functions for

𝑓2 to 𝑓4. One can also generalize these bump functions by considering Equation (2.3),

plotted in Figure 2.3.

𝑓𝑖(𝑥) = [sin (𝜋𝑥

log0.5
log𝑡1)]

𝑡2

 (2.3)

 7

Figure 2.3 Set of Sinusoidal Bump Functions with Different Location of Maximum

Bump [10]

The above function is utilized during the optimization procedure done by

Tashinizi et al. in their work [10]. The variable 𝑡1 defines the location of the maximum

bump, whereas 𝑡2 describes the width of the bump function.

Another traditional way to parameterize the airfoil shape is by using NACA 4-

digit airfoil. In their work as well, Tashinizi et al. also considered NACA 4-digit airfoil

as design parameters for the optimization [10]. They utilized the digit in NACA airfoil

as design parameters used during the optimization.

Chen et al. [11] also consider modified Joukowsky transformation combined

with smooth curvature technique for airfoil shape parameterization during the

optimization. Detail of the transformation scheme is shown in Figure 2.4. They defined

𝜌(𝜃) as the shape function of the airfoil, which is shown in Equation (2.4).

 𝜌(𝜃) = 𝐶0 + 𝐶1𝜃 + 𝐶2𝜃
2 + 𝐶3𝜃

3 +⋯+ 𝐶𝑘𝜃
𝑘 +⋯ (2.4)

 8

Figure 2.4 Conformal Transformation [11]

Later by defining smooth curvature technique, the corrected value of 𝑎 can be

estimated. In their work, the coefficients of the shape function up to order ten are

considered as the design variables.

Concerning the wing shape parameterization, Sobieczky [8] introduced two

different concepts in order to define the wing sections: blending support airfoils data

and varying generating parameter along the wing span. In the former method, several

support airfoils are chosen in some desired cross sections. The wing geometry between

the consecutive cross sections are computed by using interpolation scheme. This

similar approach is applied by Hicks and Henne [9] in their work in wing numerical

optimization as shown in Figure 2.5. In the second method, parameters defining the

airfoils are taken to be varying along the span direction. As a results, several sets of

parameters are used in this approach.

Hicks and Henne [9] also stated that wing twist can also be considered as a

design variable for wing shape parameterization. Later, they also emphasized that wing

planform changing such as: aspect ratio, taper ratio, and sweep angle can be recognized

as design variables during the optimization. However, during the implementation of

these variables, high computational resources might be required as well.

 9

Figure 2.5 Hicks-Henne Wing Paramerization using Some Cross Sections [9]

2.1.2 Optimization Algorithm Scheme

In general, there are two families of optimization algorithms that are applied

during aerodynamic optimization: gradient based optimization and genetic algorithm.

The algorithms implemented mainly depends on the number of design variables and

the availability of computational resources. Dulikravich [12] made comparison

between these two algorithms as shown in Figure 2.6. He pointed that gradient based

method algorithm is suitable for lower number of design variables since less number

of gradient vectors are computed. The implementation of gradient based algorithm

with higher number of design variables yields to high computation time caused by the

calculation of gradient vectors. On the other hand, the genetic algorithm is more

favorable for high number of variables due to the fact no gradient vector computation

is required in this scheme.

 10

Figure 2.6 Comparison between (a) Gradient Based Algorithm and (b) Genetic

Algorithm [12]

The aerodynamic optimization scheme in general is combined with a flow

solver. The most common methods used for the flow solver are: Panel Methods [13],

Euler Solver [10], or even RANS Solver [14]. This optimization in general is

accompanied by a sensitivity analysis in order to enhance the process. Peter and

Dwight [15] categorized the methods applied in the sensitivity analysis into several

methods, which are: finite difference method, discrete direct method, discrete adjoint

method, and continuous adjoint method.

2.2 Mesh Deformation Method

Unsteady flow simulation and numerical design optimization are two cases for

which the mesh needs to be updated during the process. Lin et al. [16] categorized

three general ways to update the mesh, which are remeshing, mesh deformation, and

combination of remeshing and mesh deformation. In the remeshing approach, a new

local or global mesh is generated by the aid of mesh generator according to the new

geometry domain. On the other hand, the mesh deformation concept changes the nodal

location while keeping the nodal connectivity intact.

The mesh deformation methods have been developed greatly since Batina [17]

who introduced the spring network in the mesh deformation method. There are many

different new approaches that have been reported in the literature. These approaches

 11

can be generally categorized as [18]: partial differential equation (PDE) methods,

physical analogy methods, algebraic methods, and their combination.

In his work, Luke et al. [19] mentioned that the solver stability and accuracy

should be the primary concern during mesh deformation algorithm. During the

deformation process, the elements can become inverted or highly skewed which can

advance to solver stability problems. Consequently, choosing the appropriate method

for the problems should be done by considering the capability of each mesh

deformation technique.

2.2.1 Partial Differential Equation Method

In this method, the mesh motion is solved through proposed differential

equations using certain boundary conditions. Generally, Laplacian and biharmonic

equations are chosen as the partial differential equations. This method mostly works

for a problem which requires small deformation since it does not have a high mesh

deformation capability [20]. Masud et al. [21] conducted a research using Arbitrary

Lagrangian-Eulerian method, which is considered as one of the PDE methods. Figure

2.7 illustrates the result achieved by using this method.

(a) (b)

Figure 2.7 (a) Initial Airfoil Mesh (b) Rotated Airfoil Mesh using ALE Method

 12

2.2.2 Spring Analogy Method

This method is the most commonly used method in the mesh deformation

scheme. This is mainly due to the fact that this method can be easily implemented to

the problem. Since first introduced by Batina [17], several kinds of spring network

concepts have been introduced. Figure 2.8 depicts the result of initial spring analogy

method proposed by Batina [17].

The idea used in this method is basically considering each edge on the mesh to

behave like a spring which has its own stiffness. Different stiffness definitions have

been introduced for comparing one spring analogy method to the other one.

Furthermore, many improvements regarding spring analogy methods have also been

proposed by other researchers. Details of several spring methods are explained in the

later chapter.

(a) (b)

Figure 2.8 Application of Spring Analogy by Batina for Pitching Airfoil (a) Initial

(b) 15 Degree Rotation [17]

2.2.3 Algebraic Method

Zhou and Li [20] described the algebraic methods as methods on which the

movement of grid nodes are defined as a function of the boundary nodes which has no

physical meaning, like the one spring analogy has. They indicated that these methods

are more effective compared to the aforementioned techniques. However, this method

 13

is more difficult to be implemented. Several algebraic methods developed so far

include: Inverse Distance Weighting Interpolation [22], Delaunay Interpolation [23],

and Radial Basis Function Interpolation [24]. Figure 2.9 gives the result of mesh

deformation method using radial basis function approach.

Figure 2.9 Sample of Algebraic Mesh Deformation Method using Radial Basis

Function [24]

 14

 15

CHAPTER 3

SPRING ANALOGY MESH DEFORMATION METHOD

3.1 Basic Idea of Spring Analogy Method

Based on the implemented variables for the spring force computation, there are

two major types of spring analogy mesh deformation methods: vertex spring analogy

method and segment spring analogy method. In the vertex spring analogy method,

nodal coordinates are considered as the variables. On the other hand, nodal

displacements are used in the segment spring analogy method.

3.1.1 Vertex Spring Method

The idea used in the vertex spring method is by considering each edge as a

spring which obeys the linear Hooke’s Law. The equilibrium length of the spring is

considered as zero in this method. The force exerted on node 𝑖 by surrounding nodes

𝑗 can be calculated as:

�⃗�𝑖 =∑𝛼𝑖𝑗(�⃗�𝑗 − �⃗�𝑖)

𝑣𝑖

𝑗=1

 (3.1)

where

The stiffness coefficient, 𝛼𝑖𝑗 is taken as constant (𝛼𝑖𝑗 = 1).

𝛼𝑖𝑗 : stiffness of the spring between node 𝑖 and node 𝑗

𝑣𝑖 : number of neighbors of node 𝑖

�⃗�𝑖 : position vector of node 𝑖

 16

The equilibrium can be achieved by considering the fact that force summation

in each node should be equal to zero. Typical network spring around an arbitrary node

𝑖 is shown in Figure 3.1. Based on Equation (3.1), the iterative solution for the new

position vector of node 𝑖 can be calculated as:

�⃗�𝑖
𝑘+1 =

∑ 𝛼𝑖𝑗�⃗�𝑖
𝑘𝑣𝑖

𝑗=1

∑ 𝛼𝑖𝑗
𝑣𝑖
𝑗=1

 (3.2)

The boundary conditions for this method is Dirichlet type, which means that

the position of boundary nodes are fixed during the iteration procedure. For the interior

points, Equation (3.2) needs to be solved iteratively.

Figure 3.1 Physical Description of Spring Analogy Method [25]

3.1.2 Segment Spring Method

The segment spring method is developed by Batina [17] for deforming the

mesh around pitching airfoil. Unlike the former method, this method has the

equilibrium length equal to the original length. Moreover, the Hooke’s Law for spring

is applied to the node displacement instead node position. Mathematically, the force

exerted on node 𝑖 can be written in Equation (3.3).

 17

�⃗�𝑖 =∑𝑘𝑖𝑗(�⃗�𝑗 − �⃗�𝑖)

𝑣𝑖

𝑗=1

 (3.3)

where

The stiffness of the spring is proposed to be proportional to the inverse of the

edge length. Mathematically, it can be written as:

𝑘𝑖𝑗 =

1

√(�⃗�𝑗 − �⃗�𝑖) ∙ (�⃗�𝑗 − �⃗�𝑖)

(3.4)

Similar criteria for the equilibrium condition is applied in this method as well.

The iterative solution for new displacement vector of node 𝑖 can be calculated as:

�⃗�𝑖
𝑘+1 =

∑ 𝑘𝑖𝑗�⃗�𝑗
𝑘𝑣𝑖

𝑗=1

∑ 𝑘𝑖𝑗
𝑣𝑖
𝑗=1

 (3.5)

Dirichlet type boundary condition is also applied as the known displacement

vectors on the boundary nodes. The final location vector for the node 𝑖 can be

calculated as:

 �⃗�𝑖
𝑘+1 = �⃗�𝑖

𝑘 + �⃗�𝑖
𝑘 (3.6)

Compared to the earlier Vertex Spring method, the Segment Spring method

requires higher computational memory since displacement vector needs to be stored

as well. However, Blom [25] noticed that the former method may lead to the

contraction of the mesh near a convex boundary, where a line which connects between

𝑘𝑖𝑗 : stiffness of the spring between node 𝑖 and node 𝑗

𝑣𝑖 : number of neighbors of node 𝑖

�⃗�𝑖 : displacement vector of node 𝑖

 18

two points inside the boundary still lies inside the boundary. Consequently, Segment

Spring Method is more preferable compared to the Vertex Spring Method.

Unlike using iteration procedure shown in Equation (3.6), Botasso et al. [26]

introduced the incremental displacement algorithm for updating the displacement

vector field. In that algorithm, some scaling factor are used to compute the

displacement increment for each iteration based on the final prescribed boundary

condition.

3.2 Improvement Over Basic Spring Analogy Method

During the implementation of the spring analogy method, element inversion

(node passes through the edge) might occur for a problem with high displacement

vector. In order to remedy this issue, some improvements have been proposed so far.

Several of the improvement methods are described below.

3.2.1 Angle Consideration in the Linear Spring Formulation

The linear spring formulation described in Section 3.1 lacks the coordinates

interaction between 𝑥 and 𝑦, which might not truly represents the spring behavior.

Burg [27] proposed an angle made between two spring nodes during the formulation

of the force exerted on node, as shown in Figure 3.2. The forces exerted on the nodes

are computed based on the local stiffness matrix for each edge. The derivation of this

stiffness matrix is very similar to the one used in Finite Element Methods for truss

members [28]. The 2-D local stiffness matrix with angle considerations can be written

as [27]:

𝐾𝑖𝑗 = 𝑘𝑖𝑗

[

cos2 𝜃𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 −cos2 𝜃𝑖𝑗 −cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 sin2 𝜃𝑖𝑗 −cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 −sin2 𝜃𝑖𝑗

−cos2 𝜃𝑖𝑗 −cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 cos2 𝜃𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

−cos𝜃𝑖𝑗 sin 𝜃𝑖𝑗 −sin2 𝜃𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 sin2 𝜃𝑖𝑗]

 (3.7)

 19

Figure 3.2 Schematic of Angular Consideration in the Linear Spring Analogy

The relation between the force exerted on nodes and displacement vectors for

this updated formulation is shown in Equation (3.8).

{

𝐹𝑖𝑗𝑥
𝐹𝑖𝑗𝑦
𝐹𝑗𝑖𝑥
𝐹𝑗𝑖𝑦}

= 𝐾𝑖𝑗

{

∆𝑥𝑖
∆𝑦𝑖
∆𝑥𝑗
∆𝑦𝑗}

 (3.8)

Consequently, the force in x-direction at node 𝑖 can be computed as:

 𝐹𝑖𝑗𝑥 = 𝑘𝑖𝑗[(∆𝑥𝑖 − ∆𝑥𝑗) cos
2 𝜃𝑖𝑗 + (∆𝑦𝑖 − ∆𝑦𝑗) cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗] (3.9)

The force in y-direction at node 𝑖 can be computed as:

 𝐹𝑖𝑗𝑦 = 𝑘𝑖𝑗[(∆𝑥𝑖 − ∆𝑥𝑗) cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 + (∆𝑦𝑖 − ∆𝑦𝑗) sin
2 𝜃𝑖𝑗] (3.10)

 20

By summing the forces exerted on node 𝑖 from its surrounding nodes separately

for each 𝑥 and 𝑦 direction, the following equations are obtained:

∑ 𝐹𝑖𝑗𝑥

𝑣𝑖

𝑗=1

= 0

(∑𝑘𝑖𝑗 cos2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

)∆𝑥𝑖 − (∑𝑘𝑖𝑗 cos2 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

)

+(∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

)∆𝑦𝑖 −(∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

) = 0

(3.11)

∑𝐹𝑖𝑗𝑦

𝑣𝑖

𝑗=1

= 0

(∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

)∆𝑥𝑖 − (∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

)

+(∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

)∆𝑦𝑖 −(∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

) = 0

(3.12)

Both equations (3.11) and (3.12) are coupled with the same unknown terms ∆𝑥𝑖

and ∆𝑦
𝑖
. These unknown terms are computed by solving these two equations

simultaneously. In matrix form, those two equations are shown in Equation (3.13).

Solution for this equation can be computed by using any means to solve a 2 x 2 matrix.

In this study, Cramer’s rule is used to solve this system of equations.

[

∑𝑘𝑖𝑗 cos
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1]

{
∆𝑥𝑖
∆𝑦𝑖
}

=

{

∑𝑘𝑖𝑗 cos

2 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1 }

(3.13)

 21

Another solution for angle consideration can also be computed by indirect

solution method similar to the procedure proposed by Burg [27] which is related to the

solution method for the Finite Element Analysis in truss member solution.

3.2.2 Torsional Spring Analogy

Farhat et al. [28, 29] added additional torsional spring on top of the linear spring

definition. This additional spring helps to prevent the cell inversion for large

displacement case. The basic idea is to attach each node 𝑖, for each triangular cell Ω𝑖𝑗𝑘

connected to node 𝑖, shown in Figure 3.3, a torsional spring whose stiffness is given

by:

𝐶𝑖
𝑖𝑗𝑘
=

1

sin2 𝜃𝑖
𝑖𝑗𝑘

 (3.14)

Figure 3.3 Motion and Deformation of a Triangle in the Torsional Spring [29]

The value of sin 𝜃𝑖
𝑖𝑗𝑘

 is computed based on the area computation of triangular

cell Ω𝑖𝑗𝑘. The formulation is shown in Equation (3.15).

𝐴𝑖𝑗𝑘 =

1

2
𝑙𝑖𝑗𝑙𝑖𝑘 sin 𝜃𝑖

𝑖𝑗𝑘

sin 𝜃𝑖
𝑖𝑗𝑘
=
2𝐴𝑖𝑗𝑘

𝑙𝑖𝑗𝑙𝑖𝑘

(3.15)

 22

In the torsional spring analogy, it is required to have a transformation from the

angular displacements into nodal displacements. This is required since the torsional

spring analogy only deals with angular displacement [29]. This transformation is

achieved by considering both kinematics formulation and equilibrium condition of the

torsional spring analogy. The final expression of kinematic formulation for the

torsional spring analogy is shown in Equation (3.16) [29]. Detail of the derivation of

this matrix is provided in the Appendix A.

∆𝜃𝑖𝑗𝑘 = {

∆𝜃𝑖
𝑖𝑗𝑘

∆𝜃𝑗
𝑖𝑗𝑘

∆𝜃𝑘
𝑖𝑗𝑘

} = [

𝑏𝑖𝑘 − 𝑏𝑖𝑗 𝑎𝑖𝑗 − 𝑎𝑖𝑘 𝑏𝑖𝑗 −𝑎𝑖𝑗 −𝑏𝑖𝑘 𝑎𝑖𝑘
−𝑏𝑗𝑖 𝑎𝑗𝑖 𝑏𝑗𝑖 − 𝑏𝑗𝑘 𝑎𝑗𝑘 − 𝑎𝑗𝑖 𝑏𝑗𝑘 −𝑎𝑗𝑘
𝑏𝑘𝑖 −𝑎𝑘𝑖 −𝑏𝑘𝑗 𝑎𝑘𝑗 𝑏𝑘𝑗 − 𝑏𝑘𝑖 𝑎𝑘𝑖 − 𝑎𝑘𝑗

]

⏟
𝑅𝑖𝑗𝑘 {

𝑢𝑖
𝑣𝑖
𝑢𝑗
𝑣𝑗
𝑢𝑘
𝑣𝑘}

 (3.16)

Similar to the basic spring analogy, the final nodal coordinates are computed

based on force equilibrium. In the torsional spring analogy, each node contributes

moment forces [29]. These moment forces are defined as shown in Equation (3.17).

𝑀𝑖𝑗𝑘 = {

𝑀𝑖

𝑀𝑗

𝑀𝑘

} =

[

 𝐶𝑖
𝑖𝑗𝑘

0 0

0 𝐶𝑗
𝑖𝑗𝑘

0

0 0 𝐶𝑘
𝑖𝑗𝑘
]

{

∆𝜃𝑖
𝑖𝑗𝑘

∆𝜃𝑗
𝑖𝑗𝑘

∆𝜃𝑘
𝑖𝑗𝑘

} (3.17)

These moment forces are later transformed by a transformation matrix for each

triangular cell Ω𝑖𝑗𝑘, 𝑇𝑖𝑗𝑘, into linear force which is defined in Equation (3.18).

𝐹𝑖𝑗𝑘 =

[

𝐹𝑖𝑥
𝐹𝑖𝑦
𝐹𝑗𝑥
𝐹𝑗𝑦
𝐹𝑘𝑥
𝐹𝑘𝑦]

= 𝑇𝑖𝑗𝑘𝑀𝑖𝑗𝑘 (3.18)

Based on the fact that work done by force should be equal to work done by

moment, the transformation matrix is later shown in Equation (3.19) [29].

 23

 𝐹𝑖𝑗𝑘
𝑇

𝑞𝑖𝑗𝑘 = 𝑀𝑖𝑗𝑘𝑇∆𝜃𝑖𝑗𝑘

where 𝐹𝑖𝑗𝑘 = 𝑇𝑖𝑗𝑘𝑀𝑖𝑗𝑘 and ∆𝜃𝑖𝑗𝑘 = 𝑅𝑖𝑗𝑘𝑞𝑖𝑗𝑘

𝑀𝑖𝑗𝑘𝑇𝑇𝑖𝑗𝑘
𝑇
𝑞𝑖𝑗𝑘 = 𝑀𝑖𝑗𝑘𝑇𝑅𝑖𝑗𝑘𝑞𝑖𝑗𝑘

𝑇𝑖𝑗𝑘 = 𝑅𝑖𝑗𝑘
𝑇

(3.19)

Therefore, the expression for linear force due to the torsional spring analogy is

shown in Equation (3.20).

 𝐹𝑖𝑗𝑘 = [𝑅𝑖𝑗𝑘
𝑇
𝐶𝑖𝑗𝑘𝑅𝑖𝑗𝑘]⏟ 𝑞𝑖𝑗𝑘

𝐾𝑡𝑜𝑟𝑠𝑖𝑜𝑛
𝑖𝑗𝑘

(3.20)

The final force equilibrium is achieved by combining the forces arising from

linear spring and torsional spring for each edge in the mesh. Instead of using the

solution method proposed by Farhat et al. [29], where contribution from each

triangular cell to each edge is considered, a different solution method is proposed.

In the proposed solution, a similar approach like done in Finite Element

Analysis, each triangular cell is considered as an element which has a 6 x 6 local

stiffness matrix 𝐾𝑡𝑜𝑟𝑠𝑖𝑜𝑛
𝑖𝑗𝑘

. Details regarding the implementation of this solution method

are elaborated in Section 3.3.

3.2.3 Semi-Torsional Spring Analogy

The improvement method shown in the previous section requires a complicated

formulation to be done. Zeng [31] introduced the notion of the semi-torsional spring

method. This method behaves like the linear spring method with angle information

incorporated into the spring stiffness.

The stiffness of the spring edge is defined as the superposition of linear spring

defined earlier and the semi-torsional spring. The linear spring is exactly similar to the

one defined in Equation (3.4). Mathematically, this can be written as:

 24

 𝑘𝑖𝑗
total = 𝑘𝑖𝑗 + 𝑘𝑖𝑗

semi−torsional

where

𝑘𝑖𝑗
semi−torsional = 𝜆 ∑

1

sin2 𝜃𝑚
𝑖𝑗

𝑁𝐸𝑖𝑗

𝑚=1

(3.21)

For a triangular 2-D cell shown in Figure 3.4, the spring forces on the edge 𝑖 −

𝑗 are calculated as[31]:

[𝐹𝑖𝑗] = (

1

𝑙𝑖𝑗
+ 𝜅 (

1

sin2 𝜃1
+

1

sin2 𝜃2
)) [𝐵∗][𝑞𝑖𝑗]

[𝐹𝑖𝑗] =

[

𝐹𝑖𝑥
𝐹𝑖𝑦
𝐹𝑗𝑥
𝐹𝑗𝑦]

 [𝐵∗]4𝑥4 = 𝛿𝑝𝑞 − 𝛿𝑝,𝑞+2 − 𝛿𝑝+2,𝑞

[𝑞𝑖𝑗] =

[

∆𝑥𝑖
∆𝑦𝑖
∆𝑥𝑗
∆𝑦𝑗]

𝛿𝑝𝑞 is a Kronecker
′s Delta

(3.22)

[𝐵∗]4𝑥4 = [

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 0

] (3.23)

In this method that proposed by Zeng [31], the matrix [𝐵∗] defined for the

computation is similar to the idea of basic spring analogy. For the implementation in

this study, this method is later improved by adding the edge angle into the

consideration as well. As a result, the matrix [𝐵∗] defined earlier is changed into the

matrix shown in the Equation (3.7).

 25

Compared to the previous torsional spring method, this method only includes

2 angles (𝜃1 and θ2). Consequently, the data saving will be less compared to the

previous method.

Figure 3.4 Angle Definition Used in 2-D Semi Torsional Spring

3.2.4 Ball-Center Spring Analogy

The idea of the Ball-Center spring analogy comes from the idea proposed by

Bottasso et al. for Ball-Vertex spring analogy method [26]. In their approach, some

additional linear springs are introduced to resist the motion of a mesh node towads its

region-opposed faces. This Ball-Vertex spring analogy method is introduced by

connecting node 𝑖 to its projection 𝑝 on the plane of the face 𝐹𝑖, opposite of node 𝑖. For

more clarity, the location of projection point 𝑝 can be seen on Figure 3.5.

Figure 3.5 Location of Projection Point p on the face 𝐹𝑖

In the Ball-Center Spring Analogy itself, instead of creating a linear spring

based on node 𝑖 and its projection on the opposite plane, the additional spring will be

 26

created from the node 𝑖 and the center of the cell of a triangular cell in 2-D). The detail

of this proposed method is shown in Figure 3.6 [32].

Figure 3.6 Schematic of Ball-Center Spring Analogy for 2-D Unstructured Mesh

In 2-D formulation, the center of the cell is assumed to be located at centroid

of the triangular cell. The location and displacement of center node in a triangular cell

Ω𝑖𝑗𝑘 is formulated as in Equation (3.24).

�⃗�𝑝 =

�⃗�𝑖 + �⃗�𝑗 + �⃗�𝑘

3

�⃗�𝑝 =
�⃗�𝑖 + �⃗�𝑗 + �⃗�𝑘

3

(3.24)

The resulting force on node 𝑖 by fictitious node 𝑝 is defined in the same manner

like spring force defined in the basic segment spring method. Mathematically, the

spring force resulted from this fictitious spring is computed as in Equation (3.25).

 �⃗�𝑖𝑝 = 𝑘𝑖𝑝(�⃗�𝑝 − �⃗�𝑖) (3.25)

In a similar manner like done in the angle consideration in the spring analogy,

the force exerted due to the fictitious spring analogy is shown in Equation (3.26).

 27

 𝐹𝑖𝑝𝑥 = 𝑘𝑖𝑝[(∆𝑥𝑖 − ∆𝑥𝑝) cos
2 𝛼𝑖𝑝 + (∆𝑦𝑖 − ∆𝑦𝑝) cos 𝛼𝑖𝑝 sin 𝛼𝑖𝑝]

𝐹𝑖𝑝𝑦 = 𝑘𝑖𝑝[(∆𝑥𝑖 − ∆𝑥𝑝) cos 𝛼𝑖𝑝 sin 𝛼𝑖𝑝 + (∆𝑦𝑖 − ∆𝑦𝑝) sin
2 𝛼𝑖𝑝]

(3.26)

The final equilibrium equation is computed by considering the contribution

from actual spring edge and fictitious edge shown previously. Details of mesh

configuration used in the ball-center spring analogy is depicted in Figure 3.7. This

means that one needs to solve all equations (3.9), (3.10), and (3.26) in x-direction and

y-direction simultaneously for each node. The system of linear equation which governs

the updated displacements based on this updated method is shown in Equation (3.27).

Figure 3.7 Schematic of Ball-Center an Arbitrary Node 𝑖

[

∑𝑘𝑖𝑗 cos
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos2 𝛼𝑖𝑝 ∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos𝛼𝑖𝑝 sin 𝛼𝑖𝑝

∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos𝛼𝑖𝑝 sin𝛼𝑖𝑝 ∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

sin2 𝛼𝑖𝑝
]

[
∆𝑥𝑖
∆𝑦𝑖
]

=

[

∑𝑘𝑖𝑗 cos

2 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos2 𝛼𝑖𝑝 ∆𝑥𝑝 +∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos𝛼𝑖𝑝 sin𝛼𝑖𝑝 ∆𝑦𝑝

∑𝑘𝑖𝑗 cos𝜃𝑖𝑗 sin𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos𝛼𝑖𝑝 sin 𝛼𝑖𝑝 ∆𝑥𝑝 +∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

sin2 𝛼𝑖𝑝 ∆𝑦𝑝
]

(3.27)

 28

The above equation is later solved by the mean of Cramer’s rule, similar to the

solution method used in the case for angle consideration in spring analogy technique.

3.2.5 Boundary Improvement

The idea in this approach is application of the Saint-Venant principle for mesh

deformation [25]. Consequently, the boundary displacements only have local impact

and do not spread far into the mesh. Mathematically, this improvement is shown in

Equation (3.28).

𝑘𝑖𝑗 =

𝜙

[(�⃗�𝑗 − �⃗�𝑖) ∙ (�⃗�𝑗 − �⃗�𝑖)]
𝛹 (3.28)

The idea is to increase the stiffness of the springs around to the boundary by

using ϕ = 5 or decreasing the value of 𝛹 to 0.05. This may help to prevent the

spreading displacement far into the mesh [25].

In this study, two different cases are considered during the implementation of

the Saint-Venant principle:

 Adjacent Boundary Improvement

The improvement for this method is only applied to the edge whose one

of the node is located on the airfoil surfaces.

Figure 3.8 Adjacent Boundary Improvement in the Spring Analogy Method

 Surrounding Boundary Improvement

In this case, the stiffness increasing is applied to some region around the

airfoil boundary. The region is bounded by the airfoil boundary and the

 29

designated box whose dimensions are shown in Figure 3.9. The chosen

length and width of the designated box also encloses the viscous mesh

region around the airfoil.

Figure 3.9 Surrounding Region Boundary Improvement in the Spring Analogy

Method

In the case of ball-center spring analogy, the improvement in the spring

constant is treated differently since the edge is shorter compared to the actual edge.

Similar formulation like shown in Equation (3.28) is applied as well with different

values for 𝜙 and 𝛹. The values chosen for 𝜙 and 𝛹 are 10 and 0.01, respectively for

the fictitious edges.

3.3 Solution Method

This section is mainly related to the numerical solution of the final formulation

of the spring analogy method. The displacement of the movable nodes became the

values that should be computed. These values can be computed by using two different

approaches: direct solution and indirect solution. In the coding implementation, the

solution methods are classified based on Figure 3.10.

 30

Figure 3.10 Implemented Numerical Methods in Spring Analogy

3.3.1 Direct Solution

In the direct solution approach of this method, each movable node is visited

and the displacement corresponding to this node is computed. In other words, it solves

each displacement value of the nodes directly in a vertex-by-vertex fashion using an

iterative manner as shown in Equation (3.5). Some improvement could also be

accomplished in this method by introducing some relaxation parameter similar to

Successive Overrelaxation (SOR) method. The improvement using SOR method for

the direct solution is shown in Equation (3.29). The convergence of this method is

determined based on the residual value of the computed nodal displacement for each

nodes.

 31

�⃗�𝑖
𝑘+1 = �⃗�𝑖

𝑘 + 𝜔

(

 ∑ 𝑘𝑖𝑗�⃗�𝑗

𝑣𝑖
𝑗=1

∑ 𝑘𝑖𝑗
𝑣𝑖
𝑗=1⏟

updated term

− �⃗�𝑖
𝑘

)

where 𝜔 = the relaxation parameter

(3.29)

In the case where the angle made by spring is considered during the

computation, a slight modification is required for the computation. Direct solution for

the angular consideration is performed by solving 2 x 2 matrix from Equation (3.13).

By solving this equation for each node, one gets the nodal displacements in x and y

directions. The solution found from the solution of 2 x 2 matrix is substituted into the

updated term defined in Equation (3.29).

3.3.2 Indirect Solution

The indirect method here refers to solving the displacement value for each node

by means of the local stiffness matrix. This method is very similar to Finite Element

Method used in Structural Analysis [28]. The local stiffness matrices for each edge are

combined together into a global stiffness matrix. This method has been applied by

Burg [27] and Markou et al. [33] for their work in 3-D mesh deformation. The global

stiffness matrix later is partitioned into several partitioned matrices corresponding to

either prescribed degree of freedoms or active degree of freedoms.

In this method, one requires to assemble the global stiffness matrix based on

the local stiffness matrix. The assemble process are based upon the method proposed

by Cook [28]:

 Generation of ID Array Matrix

This matrix is needed to determine whether a given degree of freedom in

a node is prescribed or active degree of freedom (unknown

displacement). Since 2-D mesh deformation is considered, each node has

only 2 degree of freedoms; x and y displacements of the node. The

 32

number of columns that this matrix has is corresponding to the number

of nodes in the given mesh. On the other hand, the number of rows

corresponding to the number of degree of freedoms that each node has,

equals to two. Binary numbers are considered as the input for this ID

array matrix; input equals to one for the nodes located on the prescribed

boundary condition and equals to zero for the other condition.

 Generation of Destination Array

The destination array is generated in order to number the degree of

freedoms for all nodes that are used in the computation. There are two

separate arrays used in here: one destination array is corresponding to

active degree of freedoms and the other one is corresponding to the

prescribed degree of freedoms.

 Global Stiffness Matrix Assemble

The global stiffness matrix is assembled based on the information found

from destination array for both active and prescribed degree of freedoms.

In each local stiffness matrix, each entry corresponds to a specific degree

of freedom in the global stiffness matrix. The global stiffness matrix can

be partitioned in such a way that degree of freedoms corresponding to the

active degree of freedoms are numbered first in the column. As a result,

this matrix can be written as:

𝐾 = [
𝐾𝑎𝑎 𝐾𝑎𝑏
𝐾𝑏𝑎 𝐾𝑏𝑏

]

[
𝐾𝑎𝑎 𝐾𝑎𝑏
𝐾𝑏𝑎 𝐾𝑏𝑏

] [
𝑞𝑎
𝑞𝑏
] = [

0
𝑅𝑏
]

(3.30)

The subscript a corresponds to the active degree of freedoms, while the

subscript b corresponds to the prescribed degree of freedoms. In the

implementation, instead of dealing with a big stiffness matrix 𝐾, the partitioned

 33

matrices 𝐾𝑎𝑎 and 𝐾𝑎𝑏 are used as the help to compute the active degree of

freedoms. As a result, assemble of partitioned matrices are considered here.

Assemble of active stiffness matrix, 𝐾𝑎𝑎, is based on the Algorithm 1 shown

below.

Algorithm 1. Assemble Process of Active Stiffness Matrix 𝐾𝑎𝑎

Input: all edges with local stiffness matrix

Output: active stiffness matrix 𝐾𝑎𝑎

 1: for each iter_n in [1,edge_number] do

 2: set node1 = 1st node of edge(iter_n)

 3: set node2 = 2nd node of edge(iter_n)

 4:

 5: dof_array(1) = dest_array_1(1, node_1)

 6: dof_array(2) = dest_array_1(2, node_1)

 7: dof_array(3) = dest_array_1(1, node_2)

 8: dof_array(4) = dest_array_1(2, node_2)

 9:

10: for each iter_i in [1,4] do

11: if dof_array(iter_i) > 0 then

12: set index_i = dof_array(iter_i)

13: for each iter_j in [1,4] do

14: if dof_array(iter_j) > 0 then

15: set index_j = dof_array(iter_j)

16: Kaa(index_i, index_j) += stiff_matrix (iter_i, iter_j)

 of edge(iter_n)

17: end if

18: end for

19: end if

20: end for

21: end for

In a similar fashion, the assemble process of matrix 𝐾𝑎𝑏 is conducted as well.

The unknown displacement is later computed based on the solution from the first row

of Equation (3.28). Mathematically, the displacements corresponding to the active

degree of freedom are computed as:

 𝐾𝑎𝑎𝑞𝑎 + 𝐾𝑎𝑏𝑞𝑏 = 0

𝑞𝑎 = −𝐾𝑎𝑎
−1[𝐾𝑎𝑏𝑞𝑏]

(3.31)

 34

The active stiffness matrix 𝐾𝑎𝑎 is a symmetric matrix since the assemble

process is based on the symmetric matrix shown in Equation (3.7). Furthermore, the

active stiffness matrix is a sparse matrix since not all nodes are connected to each

other. This makes some of entries in the active stiffness matrix are equal to zero. In

order to solve the unknown displacement, Conjugate-Gradient Method [34] is applied

on the solution procedure. The Conjugate-Gradient algorithm is explained in Appendix

B.1.

The above approach is also applied to the torsional spring analogy formulation.

In the implementation, instead of dealing with the local stiffness matrix (4 x 4) for

each edge, a local stiffness matrix (6 x 6) is considered. However, the idea of global

matrix assemble similar to the one implemented above is considered in here as well.

For a better clarification, a sample case regarding global stiffness assemble

process for both angle consideration and torsional spring analogy is elaborated in

Appendix C.

3.4 Coding Implementation of Spring Analogy

After a brief explanation about the spring analogy mesh deformation method

in the previous sections, this section describes how this method is implemented in the

code. The flow chart used in the spring analogy mesh deformation technique is shown

in Figure 3.11

 35

Figure 3.11 Flow Chart Implemented in the Code

3.4.1 Implemented Data Structure

In order to enhance the computational procedure, the capability of derived data

type in FORTRAN 95 is implemented. The data type used in the computational

procedure mainly divided into three different big data types: cells, edge, and nodes.

The information contained in each data type is summarized in Table 3.1. Each

component in the data type is accessed by using the “%” operator. It can be seen very

clearly that one can assess the coordinate of a node in a given triangular cell based on

the data structure used in here.

 36

Table 3.1 Implemented Derived Data Type in Mesh Deformation Code

Cell Data Edge Data Node Data

Cell Number

Cell Nodes

Cell Neighbors

Cell Edges

Cell Center Coord.

Cell Area

Edge Number

Edge Nodes

Edge Length

Edge Angle

Edge Opposite Nodes

Edge Opposite Angles

Edge Adjacent Cells

Edge Spring Value

Edge Stiffness Matrix

Node Number

Node Coordinates

Node Neighbors

Node Adjacent Cells

Node Adjacent Edges

Node Adjacent Fictitious Edges

3.4.2 Mesh Connectivity

One of the main interest in the spring analogy mesh deformation technique is

to know the neighbor nodes of a given node. This information can be perceived by

mesh connectivity. The meshing connectivity is perceived based on the native mesh

format of .su2 mesh file. Basically, the information contained in the native mesh file

are comprised of three different groups:

 Element Connectivity

This contain the information about each triangular cell used in the mesh

and all nodes which define the triangular element.

 Node Coordinates

This contains the information about the coordinates of all nodes defined

in the mesh used during the computation

 Boundary Condition

This part contains the information about the boundary condition defined

for boundary region of the solution domain.

In order to simplify the nodal connectivity, CFD element mesh is numbered

based on the standard numbering convention for its vertices and edges. Figure 3.12

 37

illustrates the nodal and edge numbering convention for a triangular element. The

underscored numbers correspond to the local edge numbering inside a triangular cell.

Figure 3.12 Standard Numbering Convention for a 2-D Triangular Element

This spring analogy mesh deformation method mainly deals with the edge as

the main component. On the other hand, the mesh information is mainly based on the

triangular element. To provide the edge information, one should equip the edge

information data. The foundation of this information is based on the edge numbering

process. The algorithm for numbering process is shown in Algorithm 2 and Figure

3.13. The edge_temp is a temporary edge data structure which has the similar contents

to the edge data structure described in Table 3.1.

Figure 3.13 Actual Edges Numbering System

 38

Algorithm 2. Edge Numbering based on the Triangular Element Data

Input: element connectivity (mesh)

Output: edge numbering

 1: set temp = 0

 2: for each cell in mesh do

 3: for each node in cell do

 4: temp = temp + 1

 5: sort the remaining node number from small to big

 6: append other nodes into edge_temp (temp) data

 7: end for

 8: end for

 9: set edge_number = 1

10: set edge(1) = edge_temp(1)

11: for each iter_i in [2, temp] do

12: for each iter_j in [1,edge_number]

13: if edge(iter_j) == edge_temp(iter_i) cycle for 11:

14: end for

15: edge_number = edge_number + 1

16: edge(edge_number) = edge_temp(iter_i)

17: end for

18: set total_edge = edge_number

After numbering the edge, it is required to compute the list of adjacent edges

for a given node. This computation is done based on Algorithm 3.

Algorithm 3. Adjacent Edges Computation for a Given Node

Input: updated element connectivity (mesh) from Algorithm 2

Output: list of adjacent edges for all nodes in the mesh

 1: initialize number of adjacent edges for each node to be zero

 2: for each edge in mesh do

 3: increase number of adjacent edges of node in edge by one.

 4: end for

 5:

 6: for each node in mesh do

 7: set index_adj_edge = 0

 8: for each edge in mesh do

 9: if one of the node number in edge equals to node number of node then

10: index_adj_edge += 1

11: set edge as the adjacent edge of node in position of index_adj_edge

12: end if

13: if index_adj_edge equals to number of adjacent edges then

14: exit loop for 8:

 39

15: end if

16: end for

17: end for

It is also required to know about the neighbor nodes of a given node. This can

be easily found from the list of adjacent edges of a given node found in Algorithm 3.

The neighbor nodes is the other node stored in the adjacent edge.

In the case where the Ball-Center Spring Analogy is concerned, it is required

to know about the adjacent cells for a given node. This computation is done based on

Algorithm 4.

Algorithm 4. Adjacent Cells Computation for a Given Node

Input: updated element connectivity (mesh) from Algorithm 2

Output: list of adjacent cells for all nodes in the mesh

 1: initialize number of adjacent cells for each node to be zero

 2: for each cell in mesh do

 3: increase number of adjacent cells of each node in cell by one.

 4: end for

 5:

 6: for each node in mesh do

 7: set index_adj_cell = 0

 8: for each cell in mesh do

 9: if one of the node number in cell equals to node number of node then

10: index_adj_cell += 1

11: set cell as the adjacent edge of node in position of index_adj_cell

12: end if

13: if index_adj_cell equals to number of adjacent cell then

14: exit loop for 8:

15: end if

16: end for

14: end for

Another data type is also required to compute the fictitious edges in the ball-

center spring analogy. These fictitious edges are stored in another data set, similar to

the edge data shown in Table 3.1. The main difference in this data type is the node

used. This fictitious edge connects the actual node to the fictitious center of triangular

cell. Similar algorithm that was used in the actual edges numbering is also

 40

implemented in these fictitious edge numbering as shown in Algorithm 5. This

algorithm is conducted based on Figure 3.14.

Algorithm 5. Fictitious Edge Numbering

Input: Element Connectivity with Edge Numbering from Algorithm 2

Output: Fictitious Edge Numbering

 1: set num_edge_fict = 3 times number of cells

 2: for each iter_i in [1, num_edge_fict]:

 3: set index_cell = ⌈𝑖𝑡𝑒𝑟_𝑖/3⌉ − 1

 4: if (mod (iter_i,3) == 0) then

 5: set index_node = mod (iter_i,3) + 3

 6: else

 7: set index_node = mod (iter_i,3)

 8: end if

 9: set index_node and index_cell as edge node for edge_fict (iter_i)

10: end for

Figure 3.14 Fictitious Edge Numbering System Used in the Ball-Center Spring

Analogy

Ball center spring analogy method also requires the information regarding the

neighbor fictitious cell center nodes around an arbitrary node as depicted in Figure 3.7.

This information is stored in the fictitious edge data and can be perceived based on

Algorithm 6.

 41

Algorithm 6. Finding Number of Fictitious Edges Surrounding Node 𝑖

Input: Fictitious Edge Numbering from Algorithm 4.

Output: list of adjacent fictitious edge for all nodes in the mesh

 1: initialize number of adjacent edges for each node to be zero

 2: for each node in mesh do

 3: set num_adj_fict_edge = num_adj_cell

 4: for each iter_j in [1, num_adj_fict_edge]:

 5: set index_cell = the adjacent cell in order of iter_j of node

 6: for each iter_k in [1,3]:

 7: if node number of node = cell node in in order of iter_k of

index_cell

 8: set index_node = iter_k

 9: exit iteration 6:

10: end if

11: end for

12: set adjacent fictitious edge as index_cell*3+index_node

13: end for

14: end for

In order to make the user easily interacts the code, a basic input file is defined.

The input file contains the information concerning about the mesh deformation

parameters, and design variables used in the optimization scheme. Sample of the input

file used in the mesh deformation code is attached in the Appendix D.1.

 42

 43

CHAPTER 4

CFD AND OPTIMIZATION ANALYSES

4.1 CFD Analyses

The Computational Fluid Dynamic (CFD) analysis is conducted in order to

compute the aerodynamic coefficients of the airfoil that are required in the

optimization scheme. This analysis is performed by using the aid of SU2 (Stanford

University Unstructured) CFD Solver [1]. In order to get an accurate drag computation,

instead of using inviscid flow solver, RANS solver combined with Spallart-Almaras

turbulence modelling is implemented. The equations used in SU2 is shown briefly in

Appendix E.

SU2 CFD solver requires two different input in order to be able to perform the

analysis: configuration file (.cfg file) and native .su2 mesh file. The sample of

configuration file used in the analysis is shown in Appendix D.2. The initial native

.su2 mesh is directly attained from Pointwise mesh generation software by defining

the appropriate boundary condition used in the solver.

The CFD analysis is conducted in parallel by using parallel computation

capability of SU2 CFD solver. In each parallel computation, the aim is to find the final

aerodynamic coefficients of the airfoil by satisfying the required lift coefficient. In

other words, regardless the initial angle of attack entered by the user, the solver tries

to find the corresponding final angle of attack in order to generate sufficient lift

coefficient.

 44

4.1.1 Mesh Generation

As mentioned earlier, the mesh is generated by using Pointwise® Mesh

Generation Software [35]. Farfield domain is modelled as a circle whose radius is

taken as 12 times of the chord length. Figure 4.1 depicts the farfield domain used in

the computation procedure. There are two separate types of meshes consider during

the computational procedure: inviscid and viscous mesh. The viscous mesh is used for

RANS simulation. Figure 4.2 and Figure 4.3 show the inviscid mesh and viscous mesh

used in the analysis performed in this study.

Figure 4.1 Farfield Domain Description Used in the Mesh Generation

(a) Outer View (b) Zoom View Near Trailing Edge

Figure 4.2 Inviscid Mesh around Baseline Airfoil

 45

The terms inviscid and viscous meshes here are used to describe the

corresponding required mesh to perform inviscid or viscous simulation in CFD,

respectively. The inviscid mesh is used only to check the capability of mesh

deformation method. This inviscid mesh is not going to be applied in the optimization

analysis. Only the viscous mesh shown in Figure 4.3 is considered during the RANS

simulation used in the airfoil design optimization. Numbers of cells and nodes used in

the inviscid mesh are 6072 and 3234, respectively. On the other hand, the numbers of

cells and nodes used for the viscous mesh are 12060 and 6228, respectively.

(a) Outer View (b) Zoom View Near Trailing Edge

Figure 4.3 Viscous Mesh around the Baseline Airfoil

4.1.2 Flow Parameters in CFD

The airfoil design optimization is applied for an airfoil whose flow parameters

are computed based on the flight conditions defined in the CHANGE FP7 project [36],

an European Union project which combines several morphing capabilities into one

wing. Basically, there are 4 different flight regimes considered in this study: take-off,

loiter, high speed, and landing. The summary of flow properties used in each flight

regime is tabulated in Table 4.1.

 46

Table 4.1 Flow Properties used in the Optimization Analysis

 Take-Off Loiter High Speed Landing

Velocity [m/s] 21.164 15.278 30.556 13.244

Density [kg/m3] 1.225 1.1895 1.1895 1.1895

Altitude [feet] 0 1000 1000 1000

Reynolds Number 858441 605075 1210135 524536

Mach Number 0.0622 0.0451 0.090 0.039

For all above flow properties used, it is assumed that the baseline aircraft has a

span and chord whose lengths are 4 m and 0.6 m, respectively. Furthermore, the

aircraft’s mass is taken as 25 kg. Based on this information, the airfoil’s target sectional

lift is computed based on Equation (4.1). It is found that the target sectional lift for the

airfoil is 61.3125 N/m.

Target Sectional Lift =

Aircraft Weight

Aircraft Span
 (4.1)

In the optimization procedure, the same sectional lift is applied for all different

flow parameters. However, the target lift coefficient for each flight parameter is

determined based on the corresponding velocity. The target lift coefficient is computed

based on Equation (4.2).

Sectional Lift Coefficient =

Target Sectional Lift

0.5ρV∞2 c
 (4.2)

 47

4.2 Optimization Analyses

The optimization procedure is achieved by utilizing Phoenix ModelCenter

Optimization Software. The optimization is performed by making some modules

which wrap each component of optimization procedure. In the optimization case, there

are 3 different modules considered during the optimization process. Figure 4.4 depicts

the order and relation between these modules during the optimization procedure. The

input required in the optimization is entered manually from the Component Tree in the

ModelCenter as shown in Figure 4.5.

 Input Module

This module provides the information about the input parameters used

for the CFD computation. These parameters comprised of: air density,

velocity, viscosity, and the required sectional lift for the computation. For

different flight conditions, different values of flight velocity is manually

entered in the module.

 Mesh Deformation Module

This module mainly wraps the mesh deformation code that is prepared

earlier. The module contains the information about parameter used during

the mesh deformation analysis. The parameters used in this module are

the input parameters used in the code as shown in Appendix D.1.

 CFD Solver Module

This module contains the information about the input parameters used in

the SU2 CFD solver. This module mainly contains about the simulation

parameters: number of processors, iteration counter.

 48

Figure 4.4 Optimization Scheme Implemented in Model Center

Figure 4.5 Component Description in Phoenix ModelCenter for Input Module

 49

4.2.1 Optimization Scheme Explanation

The optimization was done by using Gradient Based Optimization Solver from

Phoenix Model Center Optimization Module [37]. OPTLIB Gradient Optimizer which

is considered as gradient based optimization is considered as the optimizer.

OPTLIB implements Sequential Quadratic Programming (SQP) in the

optimizations scheme. Furthermore, the gradient value is computed based on the finite

difference concept. The initial step size used in the gradient computation is

approximated as 0.0001. However, OPTLIB optimizer later can handle the appropriate

step size used for the gradient computation.

The main objective in the optimization is to minimize the sectional drag of an

airfoil and satisfy the sectional lift requirement of the airfoil for different flow

parameters. Furthermore, an additional angle of attack is also imposed for each case.

The angle of attack constraints for each flow parameters are explained detail in section

5.2.

4.2.2 Shape Parameterization

As mentioned in the introduction, the shape parameterization implemented

during the optimization analysis should encompass sufficient design spaces in order to

guarantee that the optimum design can be found. In this analysis, 3 different shape

parameterizations are implemented.

4.2.2.1 Variation of Camber and Thickness

The idea used in the optimization is to change the camber and thickness of the

airfoil. The camber and thickness variation are computed based on the initial camber

and thickness distribution. The initial camber line is computed based on the average

of the ordinate of the upper and lower airfoil nodes which are located on the same

abscissa. The fact that the mesh nodes might not be located on the same abscissa, spline

interpolation concept is applied.

 50

The cubic spline interpolation [38] is used to perform the spline interpolation.

A third order polynomial defined in Equation (4.3) is used as a model equation. This

equation is valid for an interval [a,b] which contains 𝑛 defined points. The coefficients

𝑏𝑖, 𝑐𝑖, 𝑑𝑖 are defined in (𝑛 − 1) intervals. As a result, 3𝑛 − 3 equations are required to

in order to solve these unknown coefficients. These coefficients are computed based

on the required continuity and compatibility of the spline interpolation.

 𝑠𝑖(𝑥) = 𝑦𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥 − 𝑥𝑖)

3 (4.3)

At each interior points in the interval [𝑎, 𝑏] should satisfy Equation (4.4).

Furthermore, the interpolated functions should have continuous both first and second

order derivative as shown in Equation (4.5) and Equation (4.6), respectively.

 𝑠𝑖(𝑥𝑖+1) = 𝑦𝑖+1 (4.4)

 𝑠𝑖
′(𝑥𝑖+1) = 𝑠𝑖+1

′ (𝑥𝑖+1) (4.5)

 𝑠𝑖
′′(𝑥𝑖+1) = 𝑠𝑖+1

′′ (𝑥𝑖+1) (4.6)

Natural boundary conditions are imposed on the end interval [𝑎, 𝑏] by

specifying the second order derivative of boundary points to be zero.

 𝑠𝑖
′′(𝑎) = 0

𝑠𝑖
′′(𝑏) = 0

(4.7)

Upon having the same abscissa for nodes on both upper and lower airfoil, the

camber line is estimated as:

ycamber =

𝑦upper + ylower

2
 (4.8)

 51

The initial thickness distribution for the upper and lower is estimated as the

difference between the initial camber line and airfoil surface coordinates. Equation

(4.9) shows the estimation for the upper and thickness distribution.

 ythickupper = yupper − ycamber

ythicklower = ylower − ycamber
(4.9)

The camber line variation is estimated by specifying several control points on

the initial camber line. In the non-dimensional form, the abscissa location of control

points are as follows: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The new camber line

is estimated by multiplying the ordinate of the initial camber line with a factor

specified by the user. For the points located in between the control points, similar

spline interpolation explained earlier is applied.

On the other hand, the updated thickness variation is computed by multiplying

the initial distribution shown in Equation (4.9) by some factors defined by the user.

Both upper and lower thickness distribution is multiplied by the same factor. As a

result, there are at most 2 different parameters used during the shape parameterization

using camber and thickness variation. The range of these design variables are shown

in Table 4.2.

Table 4.2 Boundary Imposed on Camber and Thickness Factors

Design Variables Lower Limit Upper Limit

Camber Factor 0 3

Thickness Factor 0.6 3

In the optimization analyses conducted in here, three different combinations of

the above shape parameterizations are implemented: camber variation only, thickness

variation only, and the combination of camber and thickness variation.

 52

4.2.2.2 PARSEC Shape Parameterization

Detail explanation regarding parameters used in the PARSEC shape

parameterization is depicted in Figure 2.1. Based on equations shown in Equation

(2.1), it is required to compute the coefficients of 𝑎𝑖 and 𝑏𝑖.

[

1 0 0 0 0 0

𝑋𝑢𝑝
1/2

𝑋𝑢𝑝
3/2

𝑋𝑢𝑝
5/2

𝑋𝑢𝑝
7/2

𝑋𝑢𝑝
9/2

𝑋𝑢𝑝
11/2

1

2
𝑋𝑢𝑝
−1/2 3

2
𝑋𝑢𝑝
1/2 5

2
𝑋𝑢𝑝
3/2 7

2
𝑋𝑢𝑝
5/2 9

2
𝑋𝑢𝑝
7/2 11

2
𝑋𝑢𝑝
9/2

−
1

4
𝑋𝑢𝑝
−3/2 3

4
𝑋𝑢𝑝
−1/2 15

4
𝑋𝑢𝑝
1/2 35

4
𝑋𝑢𝑝
3/2 63

4
𝑋𝑢𝑝
5/2 99

4
𝑋𝑢𝑝
7/2

1 1 1 1 1 1
1

2

3

2

5

2

7

2

9

2

11

2]

{

𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6}

=

{

 √2𝑅𝑙𝑒

𝑌𝑢𝑝
0

𝑌𝑋𝑋𝑢𝑝
𝑇𝑜𝑓𝑓 + 𝑇𝑇𝐸

2

tan (𝛼𝑇𝐸 − 𝛽𝑇𝐸
2
)
}

(4.10)

[

1 0 0 0 0 0

𝑋𝑙𝑜𝑤
1/2

𝑋𝑙𝑜𝑤
3/2

𝑋𝑙𝑜𝑤
5/2

𝑋𝑙𝑜𝑤
7/2

𝑋𝑙𝑜𝑤
9/2

𝑋𝑙𝑜𝑤
11/2

1

2
𝑋𝑙𝑜𝑤
−1/2 3

2
𝑋𝑙𝑜𝑤
1/2 5

2
𝑋𝑙𝑜𝑤
3/2 7

2
𝑋𝑙𝑜𝑤
5/2 9

2
𝑋𝑙𝑜𝑤
7/2 11

2
𝑋𝑙𝑜𝑤
9/2

−
1

4
𝑋𝑙𝑜𝑤
−3/2 3

4
𝑋𝑙𝑜𝑤
−1/2 15

4
𝑋𝑙𝑜𝑤
1/2 35

4
𝑋𝑙𝑜𝑤
3/2 63

4
𝑋𝑙𝑜𝑤
5/2 99

4
𝑋𝑙𝑜𝑤
7/2

1 1 1 1 1 1
1

2

3

2

5

2

7

2

9

2

11

2]

{

𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6}

=

{

 −√2𝑅𝑙𝑒

𝑌𝑙𝑜𝑤
0

𝑌𝑋𝑋𝑙𝑜𝑤
𝑇𝑜𝑓𝑓 − 𝑇𝑇𝐸

2

tan (𝛼𝑇𝐸 + 𝛽𝑇𝐸
2
)
}

(4.11)

 53

These coefficients are computed based on the airfoil geometry. Both equations

(4.10) and (4.11) show the system of linear equation which govern the coefficients of

𝑎𝑖 and 𝑏𝑖, respectively. These equations are later solved by using Gauss-Seidel

Iteration. Detail of Gauss-Seidel method implemented in this study is shown in the

Appendix B.2.

It is verified that the PARSEC design variables are very sensitive. As a result,

specific range of design variables need to be determined before initializing the

optimization scheme. The range of these parameters are determined based on the

optimization results found by considering the effect of camber and thickness. Detail of

the parameter range used in this optimization is explained in detail in Chapter 5.

 54

 55

CHAPTER 5

RESULTS AND DISCUSSIONS

This chapter contains the result of mesh deformation by using the

aforementioned technique defined in earlier chapter. The best scheme among these

methods is then applied in the airfoil optimization.

5.1 Mesh Deformation Results

The mesh deformation capability of the proposed methods is checked by using

a simple test case. The test case used in here is to perform a rotating airfoil about

quarter chord line by some degrees. Both inviscid and viscous meshes are considered

in the verification case. For the inviscid mesh, the airfoil is rotated up to 50°. On the

other hand, smaller rotation angle around 25° is introduced in the viscous mesh. The

viscous mesh cannot be rotated by the same amount like in the inviscid mesh due to

the presence of highly aspect ratio cell around the airfoil boundary. These cells

somehow become a hindrance for spring analogy technique to perform the deformation

scheme. Fortunately, the design spaces used in the airfoil optimization are encircled in

this spring analogy technique.

5.1.1 Basic Spring Analogy Results

In the basic spring analogy results, no other improvements are considered

during the application. The deformed meshes for both cases are shown in Figure 5.1.

It can be seen clearly that this method fails to deform the mesh required in both cases.

It is verified that inviscid mesh cannot be deformed with high degree of deformation.

Some nodes near the trailing edge region (where huge displacement occurs) are

 56

crossing over the opposite edges. In the viscous mesh case, the traditional spring

analogy technique not only fails to prevent the cross-over nodes near the trailing edge

regions, but also fails to maintain the right angle that cells around airfoil boundary

have. This is caused by the fact that in the basic formulation, edge angle is not taking

into account.

(a) 50° rotated inviscid mesh airfoil (b) 25° rotated viscous mesh airfoil

Figure 5.1 Deformed Meshes Resulted from Basic Spring Analogy

5.1.2 Angle Inclusion in Spring Analogy Results

In this case, the presence of angle in the spring is considered. This improvement

somehow helps to generate the deformed mesh as it can be seen from Figure 5.2. The

angle consideration helps the spring analogy to get a better deformed mesh on which

there is no cross-over nodes occurring in trailing edge region and right angle near the

surface boundary can still be maintained. The above computation is conducted with

direct computation method. Similar deformed meshes are also achieved by using the

indirect computation method. However, this computation required a lot of computation

time compared to the direct method proposed earlier. Summary of the convergence

analysis for the proposed spring analogy methods are shown in Figure 5.8.

 57

(a) 50° rotated inviscid mesh airfoil (b) 25° rotated viscous mesh airfoil

Figure 5.2 Deformed Meshes Resulted from Basic Spring Analogy with Angle

Inclusion

5.1.3 Torsional Spring Analogy Results

The resulting mesh from this method can be seen from Figure 5.3. It can be

seen clearly that concept of torsional spring analogy leads to a better quality in terms

of no cross-over nodes and maintaining viscous angle near the surface boundary for

deformed mesh. However, this method can only be solved using the indirect method

which requires more computing time for a sequential execution. Summary of the

convergence analysis for the proposed spring analogy methods are shown in Figure

5.8.

 58

(a) 50° rotated inviscid mesh airfoil (b) 25° rotated viscous mesh airfoil

Figure 5.3 Deformed Meshes Resulted from Torsional Spring Analogy

5.1.4 Semi Torsional Spring Analogy Results

The deformed mesh from semi-torsional spring analogy is shown in Figure 5.4.

In the computation, the angle formulation in edge is considered. It can be seen clearly

that the results from this deformation scheme do not have any cross-over nodes and

still maintain the angle of computation.

(a) 50° rotated inviscid mesh airfoil (b) 25° rotated viscous mesh airfoil

Figure 5.4 Deformed Meshes Resulted from Semi Torsional Spring Analogy

 59

5.1.5 Ball-Center Spring Analogy

The ball-center spring analogy also yields to a quite similar results shown in

the earlier schemes of mesh deformation techniques. This method yields to a better

deformed mesh compared to the basic spring analogy method.

(a) 50° rotated inviscid mesh airfoil (b) 25° rotated viscous mesh airfoil

Figure 5.5 Deformed Meshes Resulted from Ball-Center Spring Analogy

5.1.6 Boundary Improvement

As elaborated in the earlier chapter, boundary improvement can be achieved

by applying Saint-Venant principle during the implementation. In our case, this

improvement is applied to the angle inclusion spring analogy method. Figure 5.2

shows the basic angle inclusion in spring analogy without any boundary improvements

utilized. Two different concepts of Saint-Venant principle is applied in here: adjacent

boundary improvement and surrounding region boundary improvement. The results

corresponding to these two improvement are shown in Figure 5.6 and Figure 5.7.

 60

(a) 50° rotated inviscid mesh

airfoil

(b) 25° rotated viscous mesh

airfoil

Figure 5.6 Deformed Meshes Resulted from Angle Inclusion Spring Analogy with

Adjacent Boundary Improvement

(a) 50° rotated inviscid mesh

airfoil

(b) 25° rotated viscous mesh

airfoil

Figure 5.7 Deformed Meshes Resulted from Angle Inclusion Spring Analogy with

Surrounding Region Boundary Improvement

 61

It can be seen clearly that the deformed mesh by surrounding region boundary

improvement leads to a better mesh in terms of the angle made by the cells around the

trailing edge of the airfoil. The angle of cells around the trailing edge is higher in

adjacent boundary improvement compared to surrounding region boundary

improvement.

The proposed method is not only compared in terms of the deformed mesh

results, but also in terms of the computation costs by means of number of iteration and

computation time. In each method, the required number of iteration is assumed in such

a way that the same residue value is achieved. The residual value is computed based

on the nodal displacement for each node and shown in Equation (5.1).

𝑅𝑒𝑠 =
√∑ (

∆𝑥𝑖
𝑐) + (

∆𝑦𝑖
𝑐)

of nodes
𝑖=1

of nodes

𝑐 = chord length of the airfoil

(5.1)

The residual plot is computed based on the logarithm with base 10 of the ratio

of current residue value with the first initial residue value. Unlike CFD computation

where a low residue value (log10 Res = -7) is required, the mesh deformation method

can have the logarithmic of residual value around -3. However, for the deformation

case in viscous meshes, the minimum tolerance value for the residue is -3.5.

The residual plot corresponding to inviscid mesh deformation for each

proposed method is shown in Figure 5.8. It can be seen clearly among these methods,

basic spring analogy requires less computational time compared to the other methods

since no edge angle is considered in the computation. For a better illustration in

regarding the direct solution utilized in this study, a residual plot up to 500 iteration is

shown in Figure 5.9.

On the other hand, the torsional spring requires a quite huge number of iteration

since it corresponding to solve a huge matrix by iterative manner. In the viscous mesh

deformation case, similar plots shown in Figure 5.8 is achieved as well. However, the

required computation time is difference since viscous mesh contains more number of

nodes and elements compared to the inviscid mesh.

 62

Table 5.1 Summary of Computation Time for Proposed Mesh Deformation Schemes

 Inviscid Mesh Viscous Mesh

Basic Spring Analogy 5.256 Seconds 19.572 Seconds

Angle Inclusion 7.211 Seconds 34.940 Seconds

Semi-Torsional 7.431 Seconds 36.290 Seconds

Ball-Center 14.052 Seconds 59.292 Seconds

Torsional Spring 693.85 Seconds 1435.234 Seconds

Figure 5.8 Residual Computation for Each Proposed Method in Spring Analogy

Mesh Deformation Methods

 63

Figure 5.9 Residual Computation for Each Proposed Method in Spring Analogy

Mesh Deformation Methods Up to 500 Iterations

From these analyses, it is concluded that direct computations has a better

efficiency compared to indirect computation schemes. Furthermore, angle inclusion

with surrounding boundary improvement, ball-center spring analogy, or semi-torsional

spring analogy give almost similar results.

 64

5.2 Optimization Results

The optimization is conducted based on the design variables defined in the

previous chapter. Furthermore, the optimization is conducted in several different

parameterization: camber only, thickness only, camber and thickness, and PARSEC

shape optimization.

For camber only, thickness only, and camber and thickness optimization, a

similar initial airfoil is used. On the other hand, the initial geometry used in the

PARSEC optimization is defined based on the initial PARSEC parameters. As a result,

slightly different initial drag values are achieved in the optimization.

5.2.1 Take-Off Configuration

Based on the required sectional lift and Equation (4.2), the required lift

coefficient for this configuration is 0.3725. In this optimization scheme, the angle of

attack is constrained to be between -3° to 6°. The iteration history for several shape

parameterizations in this parameter is shown in Figure 5.10.

In this take-off phase optimization, the optimum airfoil has a reduction in

camber when only camber effect is considered. This is expected since the target lift

coefficient is quite low and initial airfoil has quite relatively high camber and

thickness. It is found that the optimum airfoil has a reduction in camber by a factor of

0.8333.

In the case where thickness is solely considered into account, the optimum

airfoil has a reduction in thickness. The reduction in thickness helps the airfoil to keep

the low drag coefficient. It is found that the reduction in thickness is by a factor of 0.6,

which is the minimum allowable value.

For the case where both camber and thickness parameters are considered,

instead of having reduction in camber as the case where the camber parameter is solely

considered, the airfoil has an increased in camber by a factor of 1.452. The thickness

is also reduced by a factor of 0.6 in this shape parameterization optimization. In the

 65

case for PARSEC optimization, it is found that the optimum airfoil design leads to an

optimum drag value. The range of PARSEC design variables and values for the

optimum design are tabulated in Table 5.3.

(a) Camber Only (b) Thickness Only

(c) Camber and Thickness (d) PARSEC

Figure 5.10 Iteration History for Take-Off Optimization

Summary of the optimization results for this flight condition is shown in Table

5.2. It can be seen clearly that the optimization by considering both camber and

thickness leads to a better optimum airfoil. The optimum airfoil shapes and their

pressure distributions are shown in Figure 5.11 and Figure 5.12, respectively.

 66

Table 5.2 Optimization Results for Take-Off Phase

Parameterization

Scheme

Total Drag [N/m] Angle of Attack [deg]

Initial Optimum Initial Optimum

Camber 1.0267 1.0165 1.834 2.137

Thickness 1.0267 0.5907 1.834 1.768

Camber and Thickness 1.0267 0.5064 1.834 0.898

PARSEC 0.7284 0.475 1.982 1.123

Table 5.3 PARSEC Design Variables Range in the Take-Off Optimization

Parsec Airfoil Parameter
Lower

Limit

Upper

Limit

Initial

Value

Optimum

Value

Leading Edge Radius Upper (𝑅𝑙𝑒𝑢𝑝𝑝𝑒𝑟) [m] 0.008 0.015 0.01 0.008

Leading Edge Radius Lower (𝑅𝑙𝑒𝑙𝑜𝑤𝑒𝑟) [m] 0.001 0.005 0.003 0.00287

Peak Location for Lower Surface (𝑋𝑙𝑜) [m] 0.28 0.35 0.33 0.28

Peak Value for Lower Surface (𝑌𝑙𝑜) [1/m] -0.03 -0.02 -0.024 -0.02

Curvature for Lower Surface (𝑌𝑋𝑋𝑙𝑜) [1/m] 0.25 0.45 0.35 0.37037

Peak Location for Upper Surface (𝑋𝑢𝑝) [m] 0.28 0.35 0.33 0.35

Peak Value for Upper Surface (𝑌𝑢𝑝) [m] 0.048 0.075 0.07 0.05709

Curvature for Upper Surface (𝑌𝑋𝑋𝑢𝑝)[1/m] -0.75 -0.4 -0.5 -0.4069

Trailing Edge Direction Angle (𝛼𝑇𝐸)[deg] -8 0 -3 -3.992

Trailing Edge Wedge Angle (𝛽𝑇𝐸) [deg] 12 20 12 12

 67

Figure 5.11 Optimum Airfoil Shapes for Take-Off Configuration

Figure 5.12 Pressure Distribution of Optimum Airfoil Shapes for Take-Off

Configuration

 68

5.2.2 Loiter Configuration

The required lift coefficient for this flight condition is computed as 0.7361. In

this flight condition the angle of attack is constrained to be between -3° and 6°. The

iteration history for 4 different shape parameterizations are shown in Figure 5.13.

(a) Camber Only (b) Thickness Only

(c) Camber and Thickness (d) PARSEC

Figure 5.13 Iteration History for Loiter Optimization

 69

The fact that required lift coefficient for this flight condition is comparatively

higher than take-off configuration, the optimization where only camber is considered

tries to increase the camber of the airfoil by a factor of 1.747.

In the case where only thickness variation is merely considered, similar trend

observed in take-off optimization also occurs in here. It is found that the optimum

airfoil has a relatively decrease in thickness by a factor of 0.714.

Under the case where both camber and thickness is considered, it is observed

that the optimum airfoil has an increase in camber by a factor of 2.485 and decrease in

thickness by a factor of 0.6.

Summary of the optimization results for loiter optimization is shown in Table

5.4. In coherence with the solution from take-off optimization, it is perceived that the

optimization by considering PARSEC shape parameterization leads to a better

optimum value. PARSEC design variables used in the loiter optimization are tabulated

in Table 5.5.

Table 5.4 Optimization Results for Loiter Phase

Parameterization

Scheme

Total Drag [N/m] Angle of Attack [deg]

Initial Optimum Initial Optimum

Camber 1.3391 1.2761 5.417 4.030

Thickness 1.3391 1.1967 5.417 5.347

Camber and Thickness 1.3391 0.8376 5.417 2.395

PARSEC 1.3439 0.7591 5.701 2.941

 70

Figure 5.14 Optimum Airfoil Shapes for Loiter Configuration

Figure 5.15 Pressure Distribution of Optimum Airfoil Shapes for Loiter

Configuration

 71

Table 5.5 PARSEC Design Variables Range in the Loiter Optimization

Parsec Airfoil Parameter
Lower

Limit

Upper

Limit

Initial

Value

Optimum

Value

Leading Edge Radius Upper (𝑅𝑙𝑒𝑢𝑝𝑝𝑒𝑟) [m] 0.006 0.02 0.01 0.0069

Leading Edge Radius Lower (𝑅𝑙𝑒𝑙𝑜𝑤𝑒𝑟) [m] 0.001 0.01 0.003 0.0027

Peak Location for Lower Surface (𝑋𝑙𝑜) [m] 0.25 0.38 0.33 0.25

Peak Value for Lower Surface (𝑌𝑙𝑜) [m] -0.05 -0.02 -0.03 -0.02

Curvature for Lower Surface (𝑌𝑋𝑋𝑙𝑜) [1/m] 0.25 0.6 0.35 0.5924

Peak Location for Upper Surface (𝑋𝑢𝑝) [m] 0.27 0.43 0.33 0.4178

Peak Value for Upper Surface (𝑌𝑢𝑝) [m] 0.048 0.088 0.06 0.0807

Curvature for Upper Surface (𝑌𝑋𝑋𝑢𝑝) [1/m] -0.85 -0.35 -0.6 -0.75

Trailing Edge Direction Angle (𝛼𝑇𝐸) [deg] -10 0 -4 -5.165

Trailing Edge Wedge Angle (𝛽𝑇𝐸) [deg] 12 20 15 13.86

5.2.3 High-Speed Configuration

For this flight condition, it is calculated that the required lift coefficient is

0.18401. The angle of attack constraint is made to be between -3° and 3°. The angle

of attack is relatively kept smaller since the required lift coefficient is also smaller.

The iteration history for this configuration is shown in Figure 5.16.

In the case where merely camber shape parameterization is considered, the

optimum airfoil has a decrease in camber factor. The decreasing in camber is made in

such a way that the optimum airfoil still produces the required lift coefficient and

satisfies the angle of attack constraint. It is found that the optimum airfoil has a reduced

in the camber by a factor of 0.4421.

For the thickness optimization, it is found that the thickness should be

decreased in order to reduce the drag. In fact, the optimum airfoil has decreased in

thickness by a factor of 0.6, which is the lower limit for the thickness parameter.

 72

In the case where both camber and thickness is considered, the airfoil still has

similar trends. The optimum airfoil has a reduced in both camber and thickness. The

camber is reduced by a factor of 0.7059 and the thickness is reduced by a factor of 0.6.

(a) Camber Only (b) Thickness Only

(c) Camber and Thickness (d) PARSEC

Figure 5.16 Iteration History for High-Speed Optimization

The summary concerning about the drag and angle of attack used in the high

speed optimization is shown in Table 5.6. It is observed that the optimization

conducted with PARSEC shape parameterization again leads to a better optimum

results compared to other optimization cases. The optimum airfoil shapes and the

 73

distribution of the pressure coefficient are shown in Figure 5.17 and Figure 5.18,

respectively.

Table 5.6 Optimization Results for High-Speed Phase

Parameterization

Scheme

Total Drag [N/m] Angle of Attack [deg]

Initial Optimum Initial Optimum

Camber 1.2955 1.1130 0.0126 1.033

Thickness 1.2955 0.5136 0.0126 -0.0252

Camber and Thickness 1.2955 0.4940 0.0126 0.5239

PARSEC 0.8268 0.4262 0.317 -0.465

Table 5.7 PARSEC Design Variables Range in the High-Speed Optimization

Parsec Airfoil Parameter
Lower

Limit

Upper

Limit

Initial

Value

Optimum

Value

Leading Edge Radius Upper (𝑅𝑙𝑒𝑢𝑝𝑝𝑒𝑟)[m] 0.012 0.025 0.02 0.01583

Leading Edge Radius Upper (𝑅𝑙𝑒𝑙𝑜𝑤𝑒𝑟) [m] 0.005 0.012 0.009 0.00938

Peak Location for Lower Surface (𝑋𝑙𝑜) [m] 0.23 0.33 0.27 0.24125

Peak Value for Lower Surface (𝑌𝑙𝑜) [m] -0.05 -0.035 -0.045 -0.035

Curvature for Lower Surface (𝑌𝑋𝑋𝑙𝑜) [1/m] 0.4 0.3 0.5 0.49828

Peak Location for Upper Surface (𝑋𝑢𝑝) [m] 0.28 0.38 0.33 0.28465

Peak Value for Upper Surface (𝑌𝑢𝑝) [m] 0.07 0.06 0.07 0.06717

Curvature for Upper Surface (𝑌𝑋𝑋𝑢𝑝) [1/m] -0.7 -0.6 -0.5 -0.59982

Trailing Edge Direction Angle (𝛼𝑇𝐸) [deg] -5 0 -3 -3.5347

Trailing Edge Wedge Angle (𝛽𝑇𝐸) [deg] 10 20 12 11.7674

 74

Figure 5.17 Optimum Airfoil Shapes for High Speed Configuration

Figure 5.18 Pressure Distribution of Optimum Airfoil Shapes for High Speed

Configuration

 75

5.2.4 Landing Configuration

Based on the required sectional lift and Equation (4.2), the required lift

coefficient for this flight condition is 0.98712. An additional angle of attack constraint

is imposed on this configuration. The angle of attack for the constraint should be

between 7 and 10 degrees. This high angle of attack is considered in order to ensure

that sufficient drag can be achieved. The iteration history for the landing configuration

is shown in Figure 5.19.

(a) Camber Only (b) Thickness Only

(c) Camber and Thickness (d) PARSEC

Figure 5.19 Iteration History for Landing Optimization

 76

In the camber optimization, the optimization process tries to increase the

camber factor of the airfoil to meet the high lift coefficient requirement. An increase

in camber makes an airfoil to produce the required lift with less angle of attack, and

hence less drag as well. However, one cannot increase the camber up to the maximum

value since the airfoil is required to have a high angle of attack as well from the

imposed constraint. The optimum airfoil has the camber increase by a factor of 1.574.

On the other hand, the thickness optimization tries to decrease the thickness

distribution in order to decrease drag while still maintaining the required lift

coefficient. It is found that the optimized airfoil has a decrease in thickness by a factor

of 0.837.

In the optimization where both camber and thickness are considered, it is found

that optimum airfoil has an increasing in camber and decreasing in thickness, similar

to the trend observed in the earlier optimization. It is found that the optimum airfoil

has camber increase by a factor of 1.434 and thickness decrease by a factor of 0.749.

The summary concerning about the drag and angle of attack used in the landing

optimization is shown in Table 5.8. It is found that the PARSEC optimization leads to

a better optimum value compared to the other shape parameterization schemes.

PARSEC design variables used in this landing optimization is shown in Table 5.9. The

optimum airfoil shapes and its pressure distribution are shown in Figure 5.20 and

Figure 5.21, respectively.

 77

Table 5.8 Optimization Summary for Landing Phase

Parameterization

Scheme

Total Drag [N/m] Angle of Attack [deg]

Initial Optimum Initial Optimum

Camber 1.9677 1.7502 8.082 7.00

Thickness 1.9677 1.8294 8.082 7.95

Camber and Thickness 1.9677 1.5529 8.082 7.00

PARSEC 2.1981 1.4652 8.583 7.00

Table 5.9 PARSEC Design Variables Range in the Landing Optimization

Parsec Airfoil Parameter
Lower

Limit

Upper

Limit

Initial

Value

Optimum

Value

Leading Edge Radius Upper (𝑅𝑙𝑒𝑢𝑝𝑝𝑒𝑟) [m] 0.012 0.025 0.02 0.01583

Leading Edge Radius Upper (𝑅𝑙𝑒𝑙𝑜𝑤𝑒𝑟) [m] 0.005 0.012 0.009 0.00938

Peak Location for Lower Surface (𝑋𝑙𝑜) [m] 0.23 0.33 0.27 0.24125

Peak Value for Lower Surface (𝑌𝑙𝑜) [m] -0.05 -0.035 -0.045 -0.035

Curvature for Lower Surface (𝑌𝑋𝑋𝑙𝑜) [1/m] 0.4 0.3 0.5 0.49828

Peak Location for Upper Surface (𝑋𝑢𝑝) [m] 0.28 0.38 0.33 0.28465

Peak Value for Upper Surface (𝑌𝑢𝑝) [m] 0.07 0.06 0.07 0.06717

Curvature for Upper Surface (𝑌𝑋𝑋𝑢𝑝) [1/m] -0.7 -0.6 -0.5 -0.59982

Trailing Edge Direction Angle (𝛼𝑇𝐸) [deg] -5 0 -3 -3.5347

Trailing Edge Wedge Angle (𝛽𝑇𝐸) [deg] 10 20 12 11.7674

 78

Figure 5.20 Optimum Airfoil Shapes for Different Parameterization in Landing

Configuration

Figure 5.21 Cp Distribution for Optimum Airfoil in Landing Configuration with

Several Shape Parameterizations

 79

5.2.5 Miscellaneous Case

In order to guarantee that the optimization problem is a well-posed problem, a

different initial geometry is chosen for one flight condition, loiter configuration.

Instead of using NACA 2412 as the initial geometry, NACA 2415 is chosen as the

initial geometry. This initial geometry is later used in the camber and thickness

optimization.

In order to encompass similar geometry range, the range of thickness in NACA

2415 is changed as well. The new range used for NACA 2415 case is shown in Table

5.10.

Table 5.10 Range of Camber and Thickness Variables for NACA 2415 Case

Design Variables Lower Limit Upper Limit

Camber Factor 0 3

Thickness Factor 0.48 2.4

It is found that the optimum solution found in this case is very similar to the

one found by using initial case to be NACA 2412. Summary of the parameters for the

optimum design are tabulated in Table 5.11. The optimum airfoil shapes and its

pressure distribution are shown in Figure 5.22 and Figure 5.23, respectively.

Table 5.11 Optimum Parameters for Two Different Cases in Loiter Configuration

 NACA 2412 NACA 2415

Optimum Camber Factor 0.6 2.484

Optimum Thickness Factor 0.48 2.453

Optimum Drag 0.8376 0.8537

 80

Figure 5.22 Optimum Airfoil Shapes for Loiter Optimization in Camber and

Thickness Parameterization with Two Different Initial Airfoil Shapes

Figure 5.23 Pressure Distribution of Optimum Airfoil Shapes for Loiter Optimization

in Camber and Thickness Parameterization with Two Different Initial Airfoil Shapes

 81

Apart from the well-posed problem check for the optimization problem, one

should also check the mesh convergence study for CFD computation. In order to

perform the mesh convergence study, three different mesh sizes around NACA 2412

are considered. The difference between these meshes are based on the number of nodes

and cells.

In order to check the convergence study, these meshes are utilized for CFD

computation in loiter configuration. In each case, required lift coefficient is taken as

0.7358. Details of aerodynamic properties for these different cases are tabulated in

Table 5.12. It can be seen clearly that the difference between Case 2 and Case 3 is not

very much. As a result, the size of mesh similar to the one in Case 2 is considered in

the CFD computation.

Table 5.12 Summary of Mesh Convergence Study for NACA 2412 Airfoil in Loiter

Configuration

 Case 1 Case 2 Case 3

Number of Elements 6404 12060 24148

Number of Nodes 3300 6228 12397

𝑐𝑙 0.7360 0.7354 0.7359

𝑐𝑑 0.02 0.0163 0.0169

Required Angle of Attack [deg] 5.47 5.42 4.91

 82

 83

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, a brief explanation about mesh deformation combined with CFD

design optimization is elaborated. Several improvements in the spring analogy mesh

deformations have been presented in the thesis. The improvements made in the spring

analogy mesh deformation methods are as follows: angle consideration, semi-

torsional, ball-center, and boundary improvement. For the case of angle

considerations, two separate solution method have been proposed as well: direct and

indirect methods. It is found that the proposed improvements in the spring analogy

method remove the node crossing in the basic spring analogy method and maintain the

cell angle of initial mesh. Furthermore, the indirect solution method proposed is more

efficient in time compared to the direct solution method.

Based on the improved spring analogy method, an airfoil CFD design

optimization is conducted. The optimization is conducted by aiming to reduce the

sectional drag of an airfoil for several flight parameters. The conclusions made for

each flight can be summarized as follows:

 For take-off configuration, a small thickness distribution accompanied with

sufficient camber can lead to an optimum airfoil.

 For loiter configuration, on which velocity is low and no high angle of attack

is required, a huge increase in camber accompanied by small thickness can lead

to an optimum airfoil.

 84

 For high-speed configuration, where the lowest lift coefficient is required, a

small thickness accompanied by sufficient decrease in camber lead to an

optimum airfoil.

 For landing configuration, which high angle of attack is required, a sufficient

increase in camber accompanied by sufficient decrease in thickness yield to an

optimum airfoil.

The summary for the above conclusion can be summarized in Table 6.1. The

factors defined in here are the corresponding design variables used in the optimization

analysis where both camber and thickness variation are considered.

Table 6.1 Summary of Camber and Thickness Factor Employed for Different Flight

Parameters

Flight Parameter Camber Factor Thickness Factor

Take-Off 1.452 0.6

Loiter 2.485 0.6

Take-Off 0.7059 0.6

Landing 1.434 0.749

It is also found that another improvement in the optimization by utilizing

PARSEC shape parameterization give a better optimum design compared to

optimization by considering only camber and thickness distribution. Furthermore, the

optimization problem is not very dependent to the starting point of camber and

thickness distribution when both camber and thickness optimization are considered.

Furthermore, it is also found that in many case the optimization conducted

reduce the required angle of attack value. This infact becomes another advantage since

it is more beneficial to attain the same lift with low angle attack in a flight.

In summary, my contribution to this thesis are summarized as follows:

 Basic mesh connectivity principles applied to find the list of neighbor nodes

surrounding an arbitrary node.

 85

 Develop the idea of direct solution methods by considering 2 x 2 matrix for

angle inclusion in spring analogy.

 Introducing the notion of ball-center spring analogy in the improvement

method spring analogy.

 Applying the concept of boundary improvement via Saint-Venant principle in

two different study cases.

 Applying the idea of global stiffness assemble process for indirect solution

methods for torsional spring analogy approach.

6.2 Future Work

Mesh deformation technique can be enhanced by introducing parallel

implementation in the computation. Apart from that, another improvement especially

for the viscous mesh deformation scheme can be introduced in such a way that similar

capability in inviscid analysis can be achieved. Edge connectivity might also be

improved by using another advanced algorithm technique. Another challenging issue

might be to perform mesh deformation technique for hybrid unstructured mesh instead

of triangular unstructured mesh. The last meticulous work that can be considered is to

implement this mesh deformation technique for 3-D mesh deformation scheme.

Regarding the optimization analysis, other improved shape parameterizations

might be introduced in the analysis. Instead of using gradient based optimization, other

optimization schemes like genetic algorithm or stochastic algorithm or even particle

swarm optimization might be implemented as well. The optimization might be also

applied in high Mach number (compressible flow) around the airfoil instead of low

Mach number (incompressible flow). Last but not the least, another excellent work

that can be considered is to combine the 3-D mesh deformation scheme with wing

design optimization.

 86

 87

REFERENCES

[1] F. Palacios, T. D. Economon, A. C. Aranake, S. R. Copeland, A. K. Lonkar, T.

W. Lukaczyk, D. E. Manosalvas, K. R. Naik, a S. Padr, B. Tracey, A. Variyar,

and J. J. Alonso, “Stanford University Unstructured (SU2): Open-source

Analysis and Design Technology for Turbulent Flows,” in 52nd Aerospace

Science Meeting, 2014 AIAA SciTech, 13-17 Jan. 2014, National Harbor,

Maryland, AIAA 2014-0243.

[2] M. J. Lighthill, A New Method of Two-dimensional Aerodynamic Design.

Reports and Memoranda No 2112, 1945.

[3] B. Epstein and S. Peigin, “Accurate CFD driven optimization of lifting surfaces

for wing-body configuration,” Comput. Fluids, Vol. 36, pp. 1399–1414, 2007.

[4] A. Shahrokhi and A. Jahangirian, “Airfoil shape parameterization for optimum

Navier-Stokes design with genetic algorithm,” Aerosp. Sci. Technol., Vol. 11,

pp. 443–450, 2007.

[5] B. Epstein, S. Peigin, and S. Tsach, “A new efficient technology of aerodynamic

design based on CFD driven optimization,” Aerosp. Sci. Technol., Vol. 10, pp.

100–110, 2006.

[6] A. Jahangirian and A. Shahrokhi, “Aerodynamic shape optimization using

efficient evolutionary algorithms and unstructured CFD solver,” Comput.

Fluids, Vol. 46, No. 1, pp. 270–276, 2011.

[7] W. Song and A. J. Keane, “A study of shape parameterisation methods for

airfoil optimisation,” in 10th AIAA/ISSMO Multidiscplinary Analysis and

Optimization Conference, 30 Aug. - 1 Sept. 2004, Albany, New York, AIAA

2004-4482.

[8] H. Sobieczky, “Parametric Airfoils and Wings,” Notes Numer. Fluid Mech.,

Vol. 68, pp. 71–88, 1999.

[9] R. M. Hicks and P. A. Henne, “Wing design by numerical optimization,” J.

Aircr., Vol. 15, No. 7, pp. 407–412, 1977.

[10] E. S. Tashnizi, A. A. Taheri, and M. H. Hekmat, “Investigation of the Adjoint

Method in Aerodynamic Optimization Using Various Shape Parameterization

Techniques,” J. Brazilian Soc. Mech. Sci. Eng., Vol. 32, No. 2, pp. 176–186,

2010.

 88

[11] J. Chen, Q. Wang, X. Pang, S. Li, and X. Guo, “Improvement of airfoil design

using smooth curvature technique,” Renew. Energy, Vol. 51, pp. 426–435,

2013.

[12] G. S. Dulikravich, “Aerodynamic Shape Optimization Methods,” in New

Design Concepts for High Speed Air Transport, H. Sobieczky, Ed. Springer-

Verlag, 1997, pp. 175–187.

[13] R. Mukesh, K. Lingadurai, and U. Selvakumar, “Airfoil shape optimization

using non-traditional optimization technique and its validation,” J. King Saud

Univ. - Eng. Sci., Vol. 26, No. 2, pp. 191–197, 2014.

[14] M. de’ Michieli Vitturi and F. Beux, “A discrete gradient-based approach for

aerodynamic shape optimisation in turbulent viscous flow,” Finite Elem. Anal.

Des., Vol. 43, pp. 68–80, 2006.

[15] J. E. V Peter and R. P. Dwight, “Numerical sensitivity analysis for aerodynamic

optimization: A survey of approaches,” Comput. Fluids, Vol. 39, No. 3, pp.

373–391, 2010.

[16] T. J. Lin, Z. Q. Guan, J. H. Chang, and S. H. Lo, “Vertex-Ball Spring

Smoothing: An efficient method for unstructured dynamic hybrid meshes,”

Comput. Struct., Vol. 136, pp. 24–33, May 2014.

[17] J. T. Batina, “Using Unstructured Dynamic Meshes,” AIAA J., Vol. 28, No. 8,

pp.1381–1388, Aug. 1990.

[18] O. Estruch, O. Lehmkuhl, R. Borrell, C. D. P. Segarra, and a. Oliva, “A parallel

radial basis function interpolation method for unstructured dynamic meshes,”

Comput. Fluids, Vol. 80, No. 1, pp. 44–54, 2013.

[19] E. Luke, E. Collins, and E. Blades, “A fast mesh deformation method using

explicit interpolation,” J. Comput. Phys., Vol. 231, No. 2, pp. 586–601, Jan.

2012.

[20] X. Zhou and S. Li, “A new mesh deformation method based on disk relaxation

algorithm with pre-displacement and post-smoothing,” J. Comput. Phys., Vol.

235, pp. 199–215, Feb. 2013.

[21] A. Masud, M. Bhanabhagvanwala, and R. a. Khurram, “An adaptive mesh

rezoning scheme for moving boundary flows and fluid-structure interaction,”

Comput. Fluids, Vol. 36, No. 1, pp. 77–91, 2005.

 89

[22] J. A. . Witteveen, “Explicit and Robust Inverse Distance Weighting Mesh

Deformation for CFD,” in 48th AIAA Aerospace Sciences Meeting Including the

New Horizons Forum and Aerospace Exposition, 4-7 Jan. 2010, Orlando,

Florida, AIAA 2010-165.

 [23] X. Liu, N. Qin, and H. Xia, “Fast dynamic grid deformation based on Delaunay

graph mapping,” J. Comput. Phys., Vol. 211, No. 2, pp. 405–423, 2006.

[24] A. de Boer, M. S. van der Schoot, and H. Bijl, “Mesh deformation based on

radial basis function interpolation,” Comput. Struct., Vol. 85, No. 11–14, pp.

784–795, 2007.

[25] F. J. Blom, “Considerations on the spring analogy,” Int. J. Numer. Methods

Fluids, Vol. 32, No. 6, pp. 647–668, Mar. 2000.

[26] C. L. Bottasso, D. Detomi, and R. Serra, “The ball-vertex method : a new simple

spring analogy method for unstructured dynamic meshes,” Comput. Methods

Appl. Mech. Eng., Vol. 194, pp. 4244–4264, 2005.

[27] C. Burg, “A Robust Unstructured Grid Movement Strategy Using Three-

Dimensional Torsional Springs,” in 34th AIAA Fluid Dynamics Conference and

Exhibit, 28 Jun. - 1 Jul. 2004, Portland, Oregon, AIAA 2004-2529.

[28] R. D. Cook, D. S. Malkus, and M. Plesha, Concepts and Applications of Finite

Element Analysis, 2nd ed. 1989.

[29] C. Farhat, “Torsional springs for two-dimensional dynamic unstructured fluid

meshes,” Comput. Methods Appl. Mech. Eng., Vol. 25, No. 98, pp. 231–245,

1998.

[30] C. Degand and C. Farhat, “A three-dimensional torsional spring analogy

method for unstructured dynamic meshes,” Comput. Struct., Vol. 80, No. 3–4,

pp. 305–316, Feb. 2002.

[31] D. Zeng and C. R. Ethier, “A semi-torsional spring analogy model for updating

unstructured meshes in 3D moving domains,” Finite Elem. Anal. Des., Vol. 41,

No. 11–12, pp. 1118–1139, Jun. 2005.

[32] Y. Yang and S. Ozgen, “Implementation of Ball-Center Spring Analogy Mesh

Deformation Technique with CFD Design Optimization,” in 22nd AIAA CFD

Conference, 2015 AIAA Aviation, 22-26 Jun. 2015, Dallas, Texas, AIAA 2015-

2612.

 90

[33] G. A. Markou, Z. S. Mouroutis, and D. C. Charmpis, “The ortho-semi-torsional

(OST) spring analogy method for 3D mesh moving boundary problems,”

Comput. Methods Appl. Mech. Eng., Vol. 196, pp. 747–765, 2007.

[34] Y. Saad, Iterative Methods for Sparse Linear Systems. International Thomson

Publishing, 1996.

[35] “Pointwise.” [Online]. Available: http://www.pointwise.com/. [Accessed: 07-

Jun-2015].

[36] “CHANGE Project.” [Online]. Available: http://change.tekever.com/.

[Accessed: 07-Jun-2015].

[37] “Phoenix ModelCenter.” [Online]. Available: http://www.phoenix-

int.com/modelcenter/integrate.php. [Accessed: 09-Jun-2015].

[38] A. Klein and A. Godunov, Introductory Computational Physics, 1st ed.

Cambridge University Press, 2006.

 91

APPENDIX A

DERIVATION OF KINEMATIC FORMULATION IN TORSIONAL SPRING

ANALOGY METHOD

This section elaborates the kinematic formulation used in the torsional spring

analogy by Farhat et al. [29]. The kinematic formulation is considered only for one of

nodes in triangular cell Ωijk.

By assuming the angular displacement ∆𝜃𝑖𝑘 (relative displacement of node 𝑘

with respect to node 𝑖), shown in Figure 3.3 is small enough, the angular displacement

can be computed as:

∆𝜃𝑖𝑘 ≅ sin ∆𝜃𝑖𝑘 =

𝑟𝑖𝑘 × 𝑟𝑖𝑘′
‖𝑟𝑖𝑘‖‖𝑟𝑖𝑘′‖

=
𝑟𝑖𝑘 × 𝑟𝑖𝑘′
𝑙𝑖𝑘𝑙𝑖𝑘′

𝑟𝑖𝑘 = {
𝑥𝑘 − 𝑥𝑖
𝑦𝑘 − 𝑦𝑖

}

𝑟𝑖𝑘′ = {
𝑥𝑘′ − 𝑥𝑖
𝑦𝑘′ − 𝑦𝑖

} = {
𝑥𝑘 − 𝑥𝑖
𝑦𝑘 − 𝑦𝑖

} + {
𝑥𝑘′ − 𝑥𝑘
𝑦𝑘′ − 𝑦𝑘

}
⏟

�⃗⃗�𝑘

= 𝑟𝑖𝑘 + {
𝑢𝑘
𝑣𝑘
}

(A.1)

Based on the above consideration, both length 𝑙𝑖𝑘 and 𝑙𝑖𝑘′ are assumed to be

equal to each other. As a result, the final expression for the angular displacement can

be simplified as:

∆𝜃𝑖𝑘 =

(𝑥𝑘 − 𝑥𝑖)(𝑦𝑘 − 𝑦𝑖 + 𝑣𝑘) − (𝑦𝑘 − 𝑦𝑖)(𝑥𝑘 − 𝑥𝑖 + 𝑢𝑘)

𝑙𝑖𝑘
2

∆𝜃𝑖𝑘 =
(𝑥𝑘 − 𝑥𝑖)𝑣𝑘 − (𝑦𝑘 − 𝑦𝑖)𝑢𝑘

𝑙𝑖𝑘
2

∆𝜃𝑖𝑘 =
(𝑥𝑘 − 𝑥𝑖)

𝑙𝑖𝑘
2

⏟
𝑎𝑖𝑘

𝑣𝑘 −
(𝑦𝑘 − 𝑦𝑖)

𝑙𝑖𝑘
2

⏟
𝑏𝑖𝑘

𝑢𝑘

(A.2)

 92

∆𝜃𝑖𝑘 = 𝑎𝑖𝑘𝑣𝑘 − 𝑏𝑖𝑘𝑢𝑘

Another angular displacement attached to node 𝑖 is coming from node 𝑗. Small

rotation angle is also considered in the computation process. By doing similar

procedure done previously, the terms for ∆𝜃𝑖𝑗 is shown in Equation (A.3). Notice that

there exists a sign different in the equation since positive angular displacement is

defined as the increase in 𝜃𝑖.

 ∆𝜃𝑖𝑗 = −𝑎𝑖𝑗𝑣𝑗 + 𝑏𝑖𝑗𝑢𝑗 (A.3)

The last contribution for the angular increment ∆𝜃𝑖 comes from the node itself.

Unfortunately, it is not plausible to derive this equation by similar procedures

explained earlier. However, by inspection this angular increment is modeled as shown

in Equation (A.4).

 ∆𝜃𝑖𝑖 = 𝛾𝑣𝑖 + 𝛽𝑢𝑖 (A.4)

As a result, the total angular displacement for node 𝑖 is shown in Equation

(A.5).

 ∆𝜃𝑖 = ∆𝜃𝑖𝑖 + ∆𝜃𝑖𝑗 + ∆𝜃𝑖𝑘

∆𝜃𝑖 = 𝛾𝑣𝑖 + 𝛽𝑢𝑖−𝑎𝑖𝑗𝑣𝑗 + 𝑏𝑖𝑗𝑢𝑗 + 𝑎𝑖𝑘𝑣𝑘 − 𝑏𝑖𝑘𝑢𝑘
(A.5)

In order to complete the above expression, it is required to compute the

coefficients of 𝛾 and 𝛽. These two coefficients are computed based on the rigid body

motion condition for the triangular cell Ω𝑖𝑗𝑘. In the rigid body motion, each node in

the triangular cell travels the same distance, that is 𝑢𝑖 = 𝑢𝑗 = 𝑢𝑘 = 𝑢 and 𝑣𝑖 = 𝑣𝑗 =

𝑣𝑘 = 𝑣. Another constraint that should be considered is in the rigid body motion, the

total angular displacements should be equal to zero. Based on these assumptions, the

coefficients of 𝛾 and 𝛽 can be computed as shown in Equation (A.6).

 93

 ∆𝜃𝑖 = (𝛾 − 𝑎𝑖𝑗 + 𝑎𝑖𝑘)𝑣 + (𝛽 + 𝑏𝑖𝑗 − 𝑏𝑖𝑘)𝑢

∆𝜃𝑖 = 0⇒
𝛾 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘
𝛽 = −𝑏𝑖𝑗 + 𝑏𝑖𝑘

(A.6)

Consequently, the final expression for the angle ∆𝜃𝑖 is shown in Equation

(A.7).

 ∆𝜃𝑖 = (𝑏𝑖𝑘 − 𝑏𝑖𝑗)𝑢𝑖 + (𝑎𝑖𝑗 − 𝑎𝑖𝑘)𝑣𝑖 + 𝑏𝑖𝑗𝑢𝑗 − 𝑎𝑖𝑗𝑣𝑗 − 𝑏𝑖𝑘𝑢𝑘 + 𝑎𝑖𝑘𝑣𝑘 (A.7)

By similar convention, the angle increment for ∆𝜃𝑗 and ∆𝜃𝑘 are computed as:

 ∆𝜃𝑗 = (𝑏𝑗𝑖 − 𝑏𝑗𝑘)𝑢𝑗 + (𝑎𝑗𝑘 − 𝑎𝑗𝑖)𝑣𝑗 + 𝑏𝑗𝑘𝑢𝑘 − 𝑎𝑗𝑘𝑣𝑘 − 𝑏𝑗𝑖𝑢𝑖 + 𝑎𝑗𝑖𝑣𝑖

∆𝜃𝑘 = (𝑏𝑘𝑗 − 𝑏𝑘𝑖)𝑢𝑘 + (𝑎𝑘𝑖 − 𝑎𝑘𝑗)𝑣𝑗 + 𝑏𝑘𝑖𝑢𝑖 − 𝑎𝑘𝑖𝑣𝑖 − 𝑏𝑘𝑗𝑢𝑗 + 𝑎𝑘𝑗𝑣𝑗
(A.8)

By combining equations (A.7) and (A.8) together, the kinematic matrix which

governs the relation between the angular displacement and the nodal displacement for

each node is shown in Equation (A.9).

𝜃𝑖𝑗𝑘 = {

∆𝜃𝑖
𝑖𝑗𝑘

∆𝜃𝑗
𝑖𝑗𝑘

∆𝜃𝑘
𝑖𝑗𝑘

} = [

𝑏𝑖𝑘 − 𝑏𝑖𝑗 𝑎𝑖𝑗 − 𝑎𝑖𝑘 𝑏𝑖𝑗 −𝑎𝑖𝑗 −𝑏𝑖𝑘 𝑎𝑖𝑘
−𝑏𝑗𝑖 𝑎𝑗𝑖 𝑏𝑗𝑖 − 𝑏𝑗𝑘 𝑎𝑗𝑘 − 𝑎𝑗𝑖 𝑏𝑗𝑘 −𝑎𝑗𝑘
𝑏𝑘𝑖 −𝑎𝑘𝑖 −𝑏𝑘𝑗 𝑎𝑘𝑗 𝑏𝑘𝑗 − 𝑏𝑘𝑖 𝑎𝑘𝑖 − 𝑎𝑘𝑗

]

{

𝑢𝑖
𝑣𝑖
𝑢𝑗
𝑣𝑗
𝑢𝑘
𝑣𝑘}

 (A.9)

 94

 95

APPENDIX B

ITERATIVE SOLVER

B.1 Conjugate Gradient Method

This conjugate gradient method is used to solver for the solution of a system of

equation 𝐴𝑥 = 𝑏. However, the matrix 𝐴 should be a symmetric matrix. Algorithm B.1

explains about how this method is implemented [34].

Algorithm B.1 Conjugate Gradient Algorithm

Input: Symmetric matrix A and vector b

Output: solution vector of equation 𝐴𝑥 = 𝑏

 1: compute 𝑟0 = 𝑏 − 𝐴𝑥0 and 𝑝0 = 𝑟0

 2: for i = 0, 1, 2, … do

 3: 𝛼𝑖 = (𝑟𝑖, 𝑟𝑖)/(𝐴𝑝𝑖, 𝑝𝑖)
 4: 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑝𝑖
 5: 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖𝐴𝑝𝑖
 6: 𝛽𝑖 = (𝑟𝑖+1, 𝑟𝑖+1)/(𝑟𝑖, 𝑟𝑖)
 7: 𝑝𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖𝑝𝑖
 8: if |𝑥𝑖+1 − 𝑥𝑖| < tol then exit loop for 2:

 9: end for

B.2 Gauss-Seidel Iterative Solver

Given a system of equation 𝐴𝑥 = 𝑏, the solution 𝑥 is solved iteratively as:

𝑥𝑖
𝑘 =

1

𝑎𝑖𝑖
[−∑(𝑎𝑖𝑗𝑥𝑗

𝑘)

𝑖−1

𝑗=1

− ∑ (𝑎𝑖𝑗𝑥𝑗
𝑘−1)

𝑛

𝑗=𝑖+1

+ 𝑏𝑖] (B.1)

The solution is said to be converged if the difference between the iterative

solution is less than some designated tolerance defined by the user.

 96

 97

APPENDIX C

SAMPLE CASE OF GLOBAL STIFFNESS MATRIX ASSEMBLE

For a simple illustration, global stiffness matrix assemble for two different

triangular cells shown in Figure C.1.

Figure C.1 Sample Case of Global Stiffness Matrix Assemble Process

The number with underline describes the edge number, number in a box

describes the cell number, and the number with dot at the right describes the node

number.

In this example both node 1 and node 2 are assumed to be prescribed with node

3, node 4, and node 5 are free to move. Based on this consideration, ID array matrix

used in the computation can be written in Equation (C.1).

𝐼𝐷 = 𝑢

𝑣

1 2 3 4 5

[
1 1 0 0 0
1 1 0 0 0

]
 (C.1)

Based on the methods described earlier, the destination array required for

computing the active stiffness matrix and prescribed stiffness matrix are shown below.

Dest Array 1 = 𝑢

𝑣

1 2 3 4 5

[
0 0 1 3 5
0 0 2 4 6

]
 (C.2)

 98

Dest Array 2 = 𝑢

𝑣

1 2 3 4 5

[
7 9 1 3 5
8 10 2 4 6

]
 (C.3)

Global assemble procedure are conducted by the aids of these destination

arrays. In the above example, there are 5 local stiffness matrices for edges and 2 local

stiffness matrix for torsion.

[

𝑘111 𝑘112 𝑘113 𝑘114
𝑘121 𝑘122 𝑘123 𝑘124
𝑘131 𝑘132 𝑘133 𝑘134
𝑘141 𝑘142 𝑘143 𝑘144]

{

𝑢1
𝑣1
𝑢2
𝑣2

}

[

𝑘211 𝑘212 𝑘213 𝑘214
𝑘221 𝑘222 𝑘223 𝑘224
𝑘231 𝑘232 𝑘233 𝑘234
𝑘241 𝑘242 𝑘243 𝑘244]

{

𝑢2
𝑣2
𝑢3
𝑣3

}

[

𝑘311 𝑘312 𝑘313 𝑘314
𝑘321 𝑘322 𝑘323 𝑘324
𝑘331 𝑘332 𝑘333 𝑘334
𝑘341 𝑘342 𝑘343 𝑘344]

{

𝑢1
𝑣1
𝑢3
𝑣3

}

[

𝑘411 𝑘412 𝑘413 𝑘414
𝑘421 𝑘422 𝑘423 𝑘424
𝑘431 𝑘432 𝑘433 𝑘434
𝑘441 𝑘442 𝑘443 𝑘444]

{

𝑢3
𝑣3
𝑢4
𝑣4

}

[

𝑘511 𝑘512 𝑘513 𝑘514
𝑘521 𝑘522 𝑘523 𝑘524
𝑘531 𝑘532 𝑘533 𝑘534
𝑘541 𝑘542 𝑘543 𝑘544]

{

𝑢2
𝑣2
𝑢4
𝑣4

}

(C.4)

The above local stiffness matrix are combined together in other to perform the

solution for the angle consideration in spring analogy. Based on the problem, the size

of the active global stiffness matrix will be 6 x 6 and prescribed global stiffness matrix

will be 4 x 6. These partitioned matrices are achieved based on Algorithm 1 shown in

Chapter 3.

For the case of torsional spring analogy, assemble of the matrices shown in

Equation (C.5) is required. In fact, the final stiffness matrix is superposition of the

contribution from both equations (C.4) and (C.5).

 99

[

𝑐111 𝑐112 𝑐113 𝑐114 𝑐115 𝑐116
𝑐121 𝑐122 𝑐123 𝑐124 𝑐125 𝑐126
𝑐131 𝑐132 𝑐133 𝑐134 𝑐135 𝑐136
𝑐141 𝑐142 𝑐143 𝑐144 𝑐145 𝑐146
𝑐151 𝑐152 𝑐153 𝑐154 𝑐155 𝑐156
𝑐161 𝑐162 𝑐163 𝑐164 𝑐165 𝑐166]

{

𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3}

[

𝑐211 𝑐212 𝑐213 𝑐214 𝑐215 𝑐216
𝑐221 𝑐222 𝑐223 𝑐224 𝑐225 𝑐226
𝑐231 𝑐232 𝑐233 𝑐234 𝑐235 𝑐236
𝑐241 𝑐242 𝑐243 𝑐244 𝑐245 𝑐246
𝑐251 𝑐252 𝑐253 𝑐254 𝑐255 𝑐256
𝑐261 𝑐262 𝑐263 𝑐264 𝑐265 𝑐266]

{

𝑢2
𝑣2
𝑢4
𝑣4
𝑢3
𝑣3}

(C.5)

Similar to the approach implemented in the solution for spring analogy method

with angle consideration, the torsional spring analogy also requires partitioning the

global stiffness matrix based on whether the nodes are active degree of freedom or

prescribed boundary condition. Similar technique elaborated in Algorithm 1 in Chapter

3 is also implemented in here.

 100

 101

APPENDIX D

INPUT FILES

D.1 Mesh Deformation Input File

In order to run the mesh deformation code developed in this study, a .dat input

file is prepared. This input file describes the information required for choosing the

method and explaining about the design variables used in the optimization.

#Deformation Parameter Description Accompanying the Mesh Deformation
Program

#Type of Deformation (1 = ROTATION, 2 = CAMBER, 3 = THICKNESS, 4 =

CAMBER and THICKNESS, 5 = HICKS-HENNE 6=PARSEC, 7= MOVEMENT)

NUM_DEFORM = 1 %number of deformation applied in the

program

DEFORM_TYPE = 1 %description of each type applied in the

program

#Desribe the Input for the ROTATION

ROT_CENTER = 0.25 0.0

ROT_ANGLE = 50.0 %in degree

ROT_COND = 1 %Desribe whether the rotated is applied

to whole airfoil or not (0 = NO, 1 = YES)

#Desribe the position of design variable in camber

NUM_DES_CAM = 9

DES_LOC = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9

FACT_CAM = 1 %increment factor in the camber distribution

#Desribe the factor used for the thickness distribution in upper and

lower

THICK_FACTOR = 0.6 %both upper and lower of the airfoil

#Desciribe the Hicks Henne Location

NUM_HICKS_HENNE_UPPER = 11

WIDTH_UPPER = 5

HICKS_LOC_UPPER = 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95

HICKS_FACT_UPPER =

0.0051,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005

NUM_HICKS_HENNE_LOWER = 11

 102

WIDTH_LOWER = 5

HICKS_LOC_LOWER = 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95

HICKS_FACT_LOWER =

0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005

#PARSEC AIRFOIL Shape Parameterization for Leading Edge Radius

rad_le_upper = 0.02 %the radius of the leading edge lower

rad_le_lower = 0.009 %the radius of the leading edge lower

#PARSEC AIRFOIL Shape Parameterization for maximum crest on lower

airfoil

x_low_max = 0.27

y_low_max = -0.045

yxx_low_max = 0.4

#PARSEC AIRFOIL Shape Parameterization for maximum crest on upper

airfoil

x_up_max = 0.33

y_up_max = 0.07

yxx_up_max = -0.6

#PARSEC AIRFOIL Shape Parameterization for defining the

te_off = 0

te_height = 0

alpha_te = -3 %in degree

beta_te = 12 %in degree

#Displacement Type of Deformation for the Airfoil

X_DIST = 2.0

Y_DIST = 2.0

#Method for Deforming the Mesh (1 = LINEAR, 2 = SEMITORSIONAL, 3 =

BALLCENTER, 4 = TORSIONAL)

DEF_MET = 1

#SOLUTION METHOD (1 = DIRECT,2 = INDIRECT)

SOL_METHOD = 1

#ITERATIVE METHOD FOR DIRECT SOLUTION (1=NORMAL, 2=SOR METHOD)

ITER_METHOD_DIR = 1

#ITERATIVE METHOD FOR INDIRECT SOLUTION (1= GAUSS, 2= JACOBI, 3 =

SOR)

ITER_METHOD_IND = 1

#ANGLE CONSIDERATION IN INDIRECT SOLUTION (0 = NO, 1= YES)

ANGLE_IND = 1

#IMPROVEMENT FOR THE BOUNDARY CONDITION SAINT VENANT PRINCIPLE(0 =

N0, 1 = YES)

BOUND_STAT = 1

#REGION WHERE SAINT VENANT PRINCIPLE SHOULD BE APPLIED (0= NONE, 1=

AIRFOIL SURFACE, 2 = SOME REGIONS)

 103

BOUND_REG = 2

#Relaxation parameter used in the iteration procedure

OMEGA = 0.8

#Determine the output file name for the deformed mesh (for both .tec

and .su2)

OUTPUT_MESH = output_mesh

D.2 SU2 Input File

In order to execute SU2 CFD solver, a configuration file (.cfg) is required. The

configuration used in this study is shown below.

%%

%%%%%%%%%%%%%%

% %

% SU2 configuration file %

% Case description: Incompressible RANS

%

% File Version 3.2.9 "eagle" %

% %

%%

%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION

------------%

%

% Physical governing equations (EULER, NAVIER_STOKES,

% TNE2_EULER, TNE2_NAVIER_STOKES,

% WAVE_EQUATION, HEAT_EQUATION,

LINEAR_ELASTICITY,

% POISSON_EQUATION)

PHYSICAL_PROBLEM= NAVIER_STOKES

%

% Specify turbulent model (NONE, SA, SA_NEG, SST)

KIND_TURB_MODEL= SA

%

% Mathematical problem (DIRECT, ADJOINT, LINEARIZED)

MATH_PROBLEM= DIRECT

%

% Regime type (COMPRESSIBLE, INCOMPRESSIBLE, FREESURFACE)

REGIME_TYPE= INCOMPRESSIBLE

%

% Restart solution (NO, YES)

RESTART_SOL= NO

 104

% ------------------------- UNSTEADY SIMULATION -------------------

------------%

%

% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-

1ST_ORDER,

% DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL)

UNSTEADY_SIMULATION= NO

% -------------------- INCOMPRESSIBLE FREE-STREAM DEFINITION ------

------------%

%

% Free-stream density (1.2886 Kg/m^3 (air), 998.2 Kg/m^3 (water))

FREESTREAM_DENSITY= 1.18955

%

% Free-stream velocity (m/s)

FREESTREAM_VELOCITY= (13.2117383361196, 0.923853959188664, 0.0)

%

% Free-stream viscosity (1.853E-5 Ns/m^2 (air), 0.798E-3 Ns/m^2

(water))

FREESTREAM_VISCOSITY= 1.853E-5

%

% ---------------------- REFERENCE VALUE DEFINITION ---------------

------------%

%

% Reference origin for moment computation

REF_ORIGIN_MOMENT_X = 0.25

REF_ORIGIN_MOMENT_Y = 0.00

REF_ORIGIN_MOMENT_Z = 0.00

%

% Reference length for pitching, rolling, and yawing non-dimensional

moment

REF_LENGTH_MOMENT= 1.0

%

% Reference area for force coefficients (0 implies automatic

calculation)

REF_AREA= 1.0

% -------------------- BOUNDARY CONDITION DEFINITION --------------

------------%

%

% Navier-Stokes wall boundary marker(s) (NONE = no marker)

MARKER_HEATFLUX= (airfoil, 0.0)

%

% Farfield boundary marker(s) (NONE = no marker)

MARKER_FAR= (farfield)

%

% Marker(s) of the surface to be plotted or designed

MARKER_PLOTTING= (airfoil)

%

% Marker(s) of the surface where the functional (Cd, Cl, etc.) will

be evaluated

MARKER_MONITORING= (airfoil)

 105

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---

------------%

%

% Numerical method for spatial gradients (GREEN_GAUSS,

WEIGHTED_LEAST_SQUARES)

NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES

%

% Courant-Friedrichs-Lewy condition of the finest grid

CFL_NUMBER= 10.0

%

% Adaptive CFL number (NO, YES)

CFL_ADAPT= NO

%

% Parameters of the adaptive CFL number (factor down, factor up, CFL

min value,

% CFL max value)

CFL_ADAPT_PARAM= (1.5, 0.5, 1.0, 100.0)

%

% Number of total iterations

EXT_ITER= 2000

% ----------------------- SLOPE LIMITER DEFINITION ----------------

------------%

%

% Reference element length for computing the slope and sharp edges

limiters.

REF_ELEM_LENGTH= 0.1

%

% Coefficient for the limiter

LIMITER_COEFF= 0.1

%

% Coefficient for the sharp edges limiter

SHARP_EDGES_COEFF= 3.0

%

% Reference coefficient (sensitivity) for detecting sharp edges.

REF_SHARP_EDGES= 3.0

%

% Remove sharp edges from the sensitivity evaluation (NO, YES)

SENS_REMOVE_SHARP= NO

% ------------------------ LINEAR SOLVER DEFINITION ---------------

------------%

%

% Linear solver for implicit formulations (BCGSTAB, FGMRES)

LINEAR_SOLVER= FGMRES

%

% Preconditioner of the Krylov linear solver (JACOBI, LINELET,

LU_SGS)

LINEAR_SOLVER_PREC= LU_SGS

%

% Minimum error of the linear solver for implicit formulations

LINEAR_SOLVER_ERROR= 1E-4

%

 106

% Max number of iterations of the linear solver for the implicit

formulation

LINEAR_SOLVER_ITER= 5

% -------------------------- MULTIGRID PARAMETERS -----------------

------------%

%

% Multi-Grid Levels (0 = no multi-grid)

MGLEVEL= 0

%

% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)

MGCYCLE= V_CYCLE

%

% Multi-grid pre-smoothing level

MG_PRE_SMOOTH= (1, 2, 3, 3)

%

% Multi-grid post-smoothing level

MG_POST_SMOOTH= (0, 0, 0, 0)

%

% Jacobi implicit smoothing of the correction

MG_CORRECTION_SMOOTH= (0, 0, 0, 0)

%

% Damping factor for the residual restriction

MG_DAMP_RESTRICTION= 0.75

%

% Damping factor for the correction prolongation

MG_DAMP_PROLONGATION= 0.75

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------

------------%

%

% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM,

HLLC,

% TURKEL_PREC, MSW)

CONV_NUM_METHOD_FLOW= ROE

%

% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER,

2ND_ORDER_LIMITER)

%

SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER

%

% Slope limiter (VENKATAKRISHNAN, MINMOD)

SLOPE_LIMITER_FLOW= VENKATAKRISHNAN

%

% 1st, 2nd and 4th order artificial dissipation coefficients

AD_COEFF_FLOW= (0.15, 0.5, 0.02)

%

% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT,

EULER_EXPLICIT)

TIME_DISCRE_FLOW= EULER_IMPLICIT

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------

------------%

%

 107

% Convective numerical method (SCALAR_UPWIND)

CONV_NUM_METHOD_TURB= SCALAR_UPWIND

%

% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER,

2ND_ORDER_LIMITER)

%

SPATIAL_ORDER_TURB= 1ST_ORDER

%

% Slope limiter (VENKATAKRISHNAN, MINMOD)

SLOPE_LIMITER_TURB= VENKATAKRISHNAN

%

% Time discretization (EULER_IMPLICIT)

TIME_DISCRE_TURB= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------

------------%

%

% Convergence criteria (CAUCHY, RESIDUAL)

%

CONV_CRITERIA= RESIDUAL

%

% Residual reduction (order of magnitude with respect to the initial

value)

RESIDUAL_REDUCTION= 6

%

% Min value of the residual (log10 of the residual)

RESIDUAL_MINVAL= -10

%

% Start convergence criteria at iteration number

STARTCONV_ITER= 10

%

% Number of elements to apply the criteria

CAUCHY_ELEMS= 100

%

% Epsilon to control the series convergence

CAUCHY_EPS= 1E-6

%

% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS,

SENS_GEOMETRY,

% SENS_MACH, DELTA_LIFT, DELTA_DRAG)

CAUCHY_FUNC_FLOW= DRAG

% ------------------------- INPUT/OUTPUT INFORMATION --------------

------------%

%

% Mesh input file

MESH_FILENAME= final_mesh.su2

%

% Mesh input file format (SU2, CGNS, NETCDF_ASCII)

MESH_FORMAT= SU2

%

% Mesh output file

MESH_OUT_FILENAME= mesh_out.su2

%

 108

% Restart flow input file

SOLUTION_FLOW_FILENAME= solution_flow.dat

%

% Restart adjoint input file

SOLUTION_ADJ_FILENAME= solution_adj.dat

%

% Output file format (PARAVIEW, TECPLOT, STL)

OUTPUT_FORMAT= TECPLOT

%

% Output file convergence history (w/o extension)

CONV_FILENAME= history

%

% Output file restart flow

RESTART_FLOW_FILENAME= restart_flow.dat

%

% Output file restart adjoint

RESTART_ADJ_FILENAME= restart_adj.dat

%

% Output file flow (w/o extension) variables

VOLUME_FLOW_FILENAME= flow

%

% Output file adjoint (w/o extension) variables

VOLUME_ADJ_FILENAME= adjoint

%

% Output objective function gradient (using continuous adjoint)

GRAD_OBJFUNC_FILENAME= of_grad.dat

%

% Output file surface flow coefficient (w/o extension)

SURFACE_FLOW_FILENAME= surface_flow

%

% Output file surface adjoint coefficient (w/o extension)

SURFACE_ADJ_FILENAME= surface_adjoint

%

% Writing solution file frequency

WRT_SOL_FREQ= 100

%

% Writing convergence history frequency

WRT_CON_FREQ= 1

 109

APPENDIX E

RANS EQUATIONS USED IN SU2 CFD MODELLING

The governing equations used in SU2 CFD modelling based on RANS

equations combined with turbulence modelling. Many turbulence modelling options

are available in SU2 CFD. It has been verified that different turbulence modelling

options in SU2 CFD lead to similar results [1]. The governing equations shown in here

are taken from one of the papers from SU2 developers [1].

The complete system of equations Navier Stokes used in tensor are shown in

Equation (E.1) [1].

 𝜕�⃗⃗⃗⃗�

𝜕𝑡
+ ∇. �⃗�𝑐𝑜𝑛𝑣 − ∇. �⃗�𝑣𝑖𝑠𝑐 − �⃗⃗� = 0

�⃗⃗⃗⃗� = {

𝜌

𝜌�⃗⃗�
𝜌𝐸
}, �⃗⃗� = {

𝑢
𝑣
𝑤
}, �⃗�𝑐𝑜𝑛𝑣 = {

𝜌�⃗⃗�

𝜌�⃗⃗��⃗⃗� + 𝐼�̿�

𝜌𝐸�⃗⃗� + 𝑝�⃗⃗�

}

�⃗�𝑣𝑖𝑠𝑐 = {

0
𝜏̿

𝜏̿. �⃗⃗� + 𝜇total
∗ 𝑐𝑝∇𝑇

} , �⃗⃗� = {

𝑞𝜌

�⃗�𝜌�⃗⃗⃗�
𝑞𝜌𝐸

}

(E.1)

The term 𝐸 expresses the total energy per unit mass. 𝑐𝑝 is the specific heat at

constant pressure, 𝑇 is the temperature. The term 𝜏̿ expresses the viscous stress tensor

defined in the RANS equations which is in tensor form can be defined in Equation

(E.2).

𝜏̿ = 𝜇𝑡𝑜𝑡𝑎𝑙 (∇�⃗⃗� + ∇�⃗⃗�

𝑇 −
2

3
𝐼(̿∇. �⃗⃗�)) (E.2)

 110

A perfect gas assumption is utilized with 𝛾, a ratio of specific heats and 𝑅, gas

constant. Based on this assumption, pressure, temperature, and specific heat are shown

in Equation (E.3).

 𝑝 = (𝛾 − 1)𝜌 [𝐸 −
1

2
�⃗⃗�. �⃗⃗�], 𝑇 =

𝑝

𝜌𝑅
, 𝑐𝑝 =

𝛾𝑅

𝛾−1
 (E.3)

The turbulence modelling is based on Boussinesq hypothesis that states the

total viscosity is summation of laminar viscosity, 𝜇𝑑𝑦𝑛 and turbulence viscosity, 𝜇𝑡𝑢𝑟𝑏.

The dynamic viscosity is computed as a function of Sutherland’s formula (based on

temperature only). On the other hand, the turbulent viscosity is computed based on

turbulence modeling.

 𝜇𝑡𝑜𝑡 = 𝜇𝑑𝑦𝑛 + 𝜇𝑡𝑢𝑟𝑏

𝜇𝑡𝑜𝑡
∗ =

𝜇𝑑𝑦𝑛

𝑃𝑟𝑑𝑦𝑛
+
𝜇𝑡𝑢𝑟𝑏
𝑃𝑟𝑡𝑢𝑟𝑏

(E.4)

For the Spalart-Allmaras turbulence modelling, the turbulence viscosity is

computed in Equation (E.5).

 𝜇𝑡𝑢𝑟𝑏 = 𝜌�̂�𝑓𝜈1, 𝑓𝑣1 =
𝜒3

𝜒3+𝑐�̂�1
3 , 𝜒 =

�̂�

𝜈
, 𝜈 =

𝜇𝑑𝑦𝑛

𝜌
 (E.5)

The term �̂� is attained by solving a transport equation where the convective,

viscous, and source terms are given as in Equation (E.6).

�⃗�𝑐 = �⃗⃗��̂�, �⃗�𝑣 = −

𝜈+�̂�

𝜎
∇�̂�, 𝑄 = 𝑐𝑏1�̂��̂� − 𝑐𝑤1𝑓𝑤 (

�̂�

𝑑𝑠
)
2

+
𝑐𝑏2

𝜎
|∇�̂�|2

𝑓𝑤 = 𝑔 [
1 + 𝑐𝑤3

6

𝑔6 + 𝑐𝑤3
6
]

1/6

, 𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟)

𝑟 =
�̂�

�̂�𝜅2𝑑𝑠2

(E.6)

 111

The term 𝑑𝑠 specifies the distance to the nearest wall. On the other hand, the

term �̂� defines the production term which is mathematically shown in Equation (E.7).

 �̂� = |�⃗⃗⃗�| +
�̂�

𝜅2𝑑𝑠
2 𝑓𝑣2, �⃗⃗⃗� = ∇ × �⃗⃗�

𝑓𝑣2 = 1 −
𝜒

1 + 𝜒𝑓𝑣1

(E.7)

The constants used for this turbulence modelling are summarized in Equation

(E.8).

𝜎 =

2

3
, 𝑐𝑏1 = 0.1355, 𝑐𝑏2 = 0.622, 𝜅 = 0.41

𝑐𝑤1 =
𝑐𝑏1
𝜅2
+
1 + 𝑐𝑏2
𝜎

, 𝑐𝑤2 = 0.3, 𝑐𝑤3 = 2, 𝑐𝑣1 = 7.1

(E.8)

In the computation, a no-slip condition is applied on the airfoil region.

Furthermore, adiabatic condition is imposed on the airfoil boundary as well. The above

equations are solved in SU2 by using Finite Volume Method with Upwind Scheme

Moreover, the flux computation is done based on the Roe flux computation method.

