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ABSTRACT

APPLICATION OF SPRING ANALOGY MESH DEFORMATION TECHNIQUE
IN AIRFOIL DESIGN OPTIMIZATION

Yang, Yosheph
M.S., Department of Aerospace Engineering

Supervisor : Prof. Dr. Serkan Ozgen

July 2015, 111 pages

In this thesis, an airfoil design optimization with Computational Fluid
Dynamics (CFD) analysis combined with mesh deformation method is elaborated in
detail. The mesh deformation technique is conducted based on spring analogy method.
Several improvements and modifications are addressed during the implementation of
this method. These enhancements are made so that good quality of the mesh can still
be maintained and robustness of the solution can be achieved. The capability of mesh
deformation is verified by considering rotating case of an airfoil for both inviscid and
viscous meshes. The edge connectivity required in the spring analogy itself is
computed by several simple algorithms. It is found that the presence of modified spring
analogy technique leads to better solution in mesh deformation technique.

Regarding the aerodynamic design optimization, SU2 3.2.9 open source
software is used as the CFD Solver. During the computation, the initial mesh used in
the optimization is obtained from Pointwise® mesh generation software. OPTLIB
Gradient Optimizer of Phoenix Model Center is implemented as the optimization
solver. The optimization process is conducted for four different flight conditions. In
each flight condition, minimizing airfoil drag becomes the objective function with



different angle of attack constraints imposed. Furthermore, several shape
parameterizations are utilized. It is found that in each case, optimized airfoil can be

found based on the designated design variables.

Keywords: Mesh Deformation, Spring Analogy, Airfoil Design Optimization,

Computational Fluid Dynamics

Vi



0z

YAY BENZETIMLI COZUM AGI DEFORMASYON TEKNIGININ KANAT
KESITI TASARIMI EN IYILESTILESTIRILMESINDE UYGULANMASI

Yang, Yosheph
Yiksek Lisans, Havacilik ve Uzay Miihendisligi Bolimii

Tez Yoneticisi : Prof. Dr. Serkan Ozgen

Temmuz 2015, 111 sayfa

Bu tezde, kanat kesiti en iyilestirilmesinde kullanilan Hesaplamali1 Akiskanlar
Dinamigi (HAD) analizleri ile birlestirilmis ¢6ziim ag1 deformasyon teknigi detayli bir
bicimde anlatilmigtir. Kullanilan ¢6ziim ag1 deformasyon tekniginde, yay benzetim
metodu baz alinmistir. Tez igerisinde, metodun uygulanisindaki gelistirme ve
modifikasyonlara da yer verilmistir. Bu gelistirmeler, deforme olmus ¢éziim aginin
kalitesinden ve ¢oziimiin giirbiizliigiinden emin olabilmek i¢in yapilmistir. Viskoz ve
viskoz olmayan ¢6ziim aglarinda, kanat kesitinin dondiiriilme durumu incelenerek
¢Ozlim ag1 deformasyonunun yetenegi dogrulanmistir. Yay benzetiminde gerekli olan
¢ozlim ag1 diglim noktalar1 baglantilart c¢esitli basit algoritmalar kullanilarak
hesaplanmistir. Modifiye edilmis metodun, klasik metoda gore daha iyi ¢oziimler
verdigi tespit edilmistir.

Aerodinamik tasarim en iyilestirilmesinde, SU2 3.2.9 acik kaynak kodlu
yazilim1 HAD ¢dziiciisii olarak kullanilmistir. En iyilestirmede kullanilacak ilk ¢oziim
ag1 Pointwise® ¢o6ziim ag1 olusturma yazilimiyla elde edilmistir. En iyilestirme
cozucusu olarak Phoenix Model Center yazilimmn "OPTLIB Gradient Optimizer"

modiilii kullanilmistir. En iyilestirme siirecinde dort farkli ugus kosulu gz 6nline

vii



alimmustir. Her bir ugus kosulunda, farkli hiicum agis1 kisitlamalart kullanilarak, kanat
kesitinin olusturdugu stiriiklemeyi en aza indirmek amag¢ fonksiyonu olarak
belirlenmistir. Ayrica, ¢esitli sekil parametrelendirmesi de kullanilmistir. Her bir
durumda, en iyilestirilmis kanat kesitinin belirtilen tasarim degiskenleri temel alinarak

elde edilebilecegi tespit edilmistir.

Anahtar Kelimeler: C6ztim Ag1 Deformasyonu, Yay Benzetimi, Kanat Kesiti Tasarimi

En lyilestirmesi, Hesaplamali Akiskanlar Dinamigi
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Study

The status of Computational Fluid Dynamics (CFD) tools at the current level
brings a great help to many aircraft designers during airfoil selection. By the aid of this
tool, aerodynamic properties of the airfoil can be calculated easily. Combination of
this tool with an optimization tool will help the designers to find the optimum design
easily instead of doing many experimental analysis. In order to enhance the
optimization in terms of updating mesh, instead of generating a new mesh for each
iteration, mesh deformation technique is implemented.

In this thesis, the aforementioned methods are actualized in design optimization
of an airfoil. The optimization process is performed by considering the objective
function to be minimizing airfoil sectional drag by specifying airfoil sectional lift as
the constraint. Additionally, the optimization procedure is conducted for some flight
conditions in the mission profile. During the optimization process, the deformed mesh
is attained by using the developed mesh deformation tool, based on the spring analogy

mesh deformation method.

1.2 Limitation of the Study

In this thesis, the study is limited to aerodynamic point of view of the airfolil
design optimization based on CFD Tools. It is assumed that the results obtained from
CFD analysis is reliable. The turbulence modelling of the CFD solver is already

verified[1]. As a result, no further experimental analysis for the airfoil is conducted.



In the mesh deformation and CFD analyses performed here, the meshes should
be unstructured meshes in 2-D Airfoil. Different type of unstructured polygon meshes
or structured meshes will not be taken into account in this thesis.

Apart from the above mentioned constraints, the flow regime is limited to
incompressible flow only. Consequently, the optimization for subsonic or supersonic

flow is not addressed in this thesis.

1.3 Layout of the Study

Chapter 2 encloses the literature study about airfoil design optimization. This
includes the shape parameterization and optimization scheme utilized in the analysis.
Additional, some past works concerning variation in mesh deformation technique is
elaborated in here as well.

Chapter 3 gives brief information regarding spring analogy mesh deformation
methods applied in this thesis. These methods are divided into some categories based
on the procedure and numerical solution used to get the final deformed mesh.
Moreover, two different solution procedures implemented in the study are explained
here. The required mesh connectivity and data structure used in the code are also
studied in this chapter.

Chapter 4 contains the explanation about how the CFD and optimization
analyses are conducted in the thesis. In the CFD analyses, information regarding initial
mesh and flow parameters are provided. For the optimization analyses, implemented
optimization scheme and implemented shape parameterizations are elaborated.

In Chapter 5, the results of mesh deformation method for the various spring
analogy approaches are shown. Furthermore, the 2-D airfoil design optimization with
given constraints are also presented in this chapter. The results are given in a
systematic way by considering each case in the optimization.

Chapter 6 contains the general conclusions of the study. Moreover, the

recommendation for the future work is also provided in here.



CHAPTER 2

LITERATURE REVIEW

This chapter is devoted to some brief explanations regarding aerodynamic
design optimization, and mesh deformation method. Mostly, the information regarding

recent research is elaborated.

2.1 Aerodynamic Optimization

The concept of aerodynamic optimization in the design process is not
unfamiliar in the current decades. In fact, the two-dimensional aerodynamic design
was already introduced by Lighthill [2] back in 1945. The fact that Computational
Fluid Dynamics (CFD) tools have developed so greatly during these past decades
becomes one of main reasons that optimization tools have been greatly combined with
CFD tools. However, optimization tools were not implemented due to several reasons
[3]: the estimation of drag coefficient just became more accurate in the past decade,
high number of design spaces and non-linear constraints necessary to find the optimum
value, and huge demanding computational resources to perform the optimization.

Like any other optimization concept, the notion of aerodynamic optimization
also has some design variables and objective functions with some required constraints.
Shahroki and Jahangirian [4] have described that choosing appropriate design
variables for shape parameterization plays a significant role in determining the
optimum shape of the airfoil, especially in transonic flow. Excellent design variables
should encompass extensive design spaces. The objective functions defined in the
optimization mainly comprises aerodynamic coefficients which govern the
performance, like: maximum lift to drag ratio, minimum pitching moment, and many

others. Some constraints are also imposed on the aerodynamic optimization in order



to achieve feasible optimum design. Epstein et al. [5] classified the constraints imposed
during the optimization process as either geometry constraints, which mainly deals
with the geometrical properties of the design or aerodynamic constraints, which are
concerned more about the performance of the aircraft.

In order to have optimum wing, which is the major issue encountered in the
optimization problem, one should also consider the airfoil, the basic element of the
wing that dictates large-scale flow phenomena occurring in the wing [6].

The airfoil optimization itself in general can be categorized into two different
categories: inverse design optimization, which tries to find a geometry which has a
prescribed distribution of pressure coefficient. On the other hand, direct numerical

optimization aims to find the best feasible design for some given constraints [7].

2.1.1 Shape Parameterization

Shape parameterization, which is dominantly introduced in the airfoil
optimization depends on whether the aim is to improve a current design or to introduce
a completely new design. For the improvement of the current design, some local
perturbations along the airfoil surface are sufficient. However, getting a completely
new design can be achieved by using other design shape parameterizations, which
allows the significant changes in the geometry.

There are some attempts made to parameterize the airfoil shape. One of the
well-known methods to parameterize airfoil shapes is known as PARSEC
(PARameterized SECtion), which was developed by Sobieczky in 1998 [8]. The idea
of this method is to parameterize the airfoil into several design parameters. Figure 2.1
specifies some required parameters to define the airfoil shape, which are: leading edge
radius (R;.), abscissa of maximum peak for lower airfoil (X;,), abscissa of maximum
peak for upper airfoil (Xup), ordinate of maximum peak for lower airfoil (Y},),
ordinate of maximum peak for upper airfoil (Yup), curvature of maximum peak for

lower airfoil (YXX,,), curvature of maximum peak for upper airfoil (YXXup), trailing

edge thickness (Trg), trailing edge offset (Toff), trailing edge direction angle (a;g),



and trailing edge wedge angle (Brg). A mathematical equation with six terms is
selectively considered to describe both the upper and the lower airfoil surfaces
separately. These representations of upper and lower airfoil surfaces are shown in
Equation (2.1).

A YXXup
-
arE Tre
R =
e Xup ﬁ IE F ;T' oft
Xlu X
ke Ylu X=1
Y XX

Figure 2.1 Airfoil shape parameterization using PARSEC method [8]
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(2.1)

Coefficients of the mathematical equation representing the airfoil curve are
found by satisfying the input parameters defined earlier in PARSEC method. Later, by
using these coefficients, the curve for both upper and lower airfoil can be generated.

Another method that can be considered in the airfoil shape parameterization
during the optimization is implementation of a bump function. Hicks and Henne
introduced this notion while trying to apply some wing numerical optimization in 1978

[9]. The bump functions used by Hicks and Henne are shown in Equation (2.2).
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5
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The values of a; and b; are considered as the amplitude of the introduced bump
function. Later, these values are taken as the design variables during the optimization
process. Figure 2.2 depicts the shapes of the bump functions implemented by Hicks-

Henne for numerical optimization.
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Figure 2.2 Hicks-Henne Bump Function [9]

The above defined bump functions also contain sinusoidal bump functions for
f to f,. One can also generalize these bump functions by considering Equation (2.3),
plotted in Figure 2.3.

log0.5 t2
fikx) = lsin (nxm)l (2.3)



Figure 2.3 Set of Sinusoidal Bump Functions with Different Location of Maximum
Bump [10]

The above function is utilized during the optimization procedure done by
Tashinizi et al. in their work [10]. The variable t; defines the location of the maximum
bump, whereas t, describes the width of the bump function.

Another traditional way to parameterize the airfoil shape is by using NACA 4-
digit airfoil. In their work as well, Tashinizi et al. also considered NACA 4-digit airfoil
as design parameters for the optimization [10]. They utilized the digit in NACA airfoil
as design parameters used during the optimization.

Chen et al. [11] also consider modified Joukowsky transformation combined
with smooth curvature technique for airfoil shape parameterization during the
optimization. Detail of the transformation scheme is shown in Figure 2.4. They defined

p(0) as the shape function of the airfoil, which is shown in Equation (2.4).

p(6) = Cy + C10 + C,0% + C303 + - + C 0% + - (2.4)
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Figure 2.4 Conformal Transformation [11]

Later by defining smooth curvature technique, the corrected value of a can be
estimated. In their work, the coefficients of the shape function up to order ten are
considered as the design variables.

Concerning the wing shape parameterization, Sobieczky [8] introduced two
different concepts in order to define the wing sections: blending support airfoils data
and varying generating parameter along the wing span. In the former method, several
support airfoils are chosen in some desired cross sections. The wing geometry between
the consecutive cross sections are computed by using interpolation scheme. This
similar approach is applied by Hicks and Henne [9] in their work in wing numerical
optimization as shown in Figure 2.5. In the second method, parameters defining the
airfoils are taken to be varying along the span direction. As a results, several sets of
parameters are used in this approach.

Hicks and Henne [9] also stated that wing twist can also be considered as a
design variable for wing shape parameterization. Later, they also emphasized that wing
planform changing such as: aspect ratio, taper ratio, and sweep angle can be recognized
as design variables during the optimization. However, during the implementation of

these variables, high computational resources might be required as well.
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2.1.2 Optimization Algorithm Scheme

In general, there are two families of optimization algorithms that are applied
during aerodynamic optimization: gradient based optimization and genetic algorithm.
The algorithms implemented mainly depends on the number of design variables and
the availability of computational resources. Dulikravich [12] made comparison
between these two algorithms as shown in Figure 2.6. He pointed that gradient based
method algorithm is suitable for lower number of design variables since less number
of gradient vectors are computed. The implementation of gradient based algorithm
with higher number of design variables yields to high computation time caused by the
calculation of gradient vectors. On the other hand, the genetic algorithm is more
favorable for high number of variables due to the fact no gradient vector computation

is required in this scheme.
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Figure 2.6 Comparison between (a) Gradient Based Algorithm and (b) Genetic
Algorithm [12]

The aerodynamic optimization scheme in general is combined with a flow
solver. The most common methods used for the flow solver are: Panel Methods [13],
Euler Solver [10], or even RANS Solver [14]. This optimization in general is
accompanied by a sensitivity analysis in order to enhance the process. Peter and
Dwight [15] categorized the methods applied in the sensitivity analysis into several
methods, which are: finite difference method, discrete direct method, discrete adjoint
method, and continuous adjoint method.

2.2 Mesh Deformation Method

Unsteady flow simulation and numerical design optimization are two cases for
which the mesh needs to be updated during the process. Lin et al. [16] categorized
three general ways to update the mesh, which are remeshing, mesh deformation, and
combination of remeshing and mesh deformation. In the remeshing approach, a new
local or global mesh is generated by the aid of mesh generator according to the new
geometry domain. On the other hand, the mesh deformation concept changes the nodal
location while keeping the nodal connectivity intact.

The mesh deformation methods have been developed greatly since Batina [17]
who introduced the spring network in the mesh deformation method. There are many

different new approaches that have been reported in the literature. These approaches
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can be generally categorized as [18]: partial differential equation (PDE) methods,
physical analogy methods, algebraic methods, and their combination.

In his work, Luke et al. [19] mentioned that the solver stability and accuracy
should be the primary concern during mesh deformation algorithm. During the
deformation process, the elements can become inverted or highly skewed which can
advance to solver stability problems. Consequently, choosing the appropriate method
for the problems should be done by considering the capability of each mesh

deformation technique.

2.2.1 Partial Differential Equation Method

In this method, the mesh motion is solved through proposed differential
equations using certain boundary conditions. Generally, Laplacian and biharmonic
equations are chosen as the partial differential equations. This method mostly works
for a problem which requires small deformation since it does not have a high mesh
deformation capability [20]. Masud et al. [21] conducted a research using Arbitrary
Lagrangian-Eulerian method, which is considered as one of the PDE methods. Figure

2.7 illustrates the result achieved by using this method.
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Figure 2.7 (a) Initial Airfoil Mesh (b) Rotated Airfoil Mesh using ALE Method
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2.2.2 Spring Analogy Method

This method is the most commonly used method in the mesh deformation
scheme. This is mainly due to the fact that this method can be easily implemented to
the problem. Since first introduced by Batina [17], several kinds of spring network
concepts have been introduced. Figure 2.8 depicts the result of initial spring analogy
method proposed by Batina [17].

The idea used in this method is basically considering each edge on the mesh to
behave like a spring which has its own stiffness. Different stiffness definitions have
been introduced for comparing one spring analogy method to the other one.
Furthermore, many improvements regarding spring analogy methods have also been
proposed by other researchers. Details of several spring methods are explained in the

later chapter.

A

54
é\-‘d

Figure 2.8 Application of Spring Analogy by Batina for Pitching Airfoil (a) Initial
(b) 15 Degree Rotation [17]

2.2.3 Algebraic Method

Zhou and Li [20] described the algebraic methods as methods on which the
movement of grid nodes are defined as a function of the boundary nodes which has no
physical meaning, like the one spring analogy has. They indicated that these methods

are more effective compared to the aforementioned techniques. However, this method

12



is more difficult to be implemented. Several algebraic methods developed so far
include: Inverse Distance Weighting Interpolation [22], Delaunay Interpolation [23],
and Radial Basis Function Interpolation [24]. Figure 2.9 gives the result of mesh

deformation method using radial basis function approach.
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Figure 2.9 Sample of Algebraic Mesh Deformation Method using Radial Basis
Function [24]
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CHAPTER 3

SPRING ANALOGY MESH DEFORMATION METHOD

3.1 Basic Idea of Spring Analogy Method

Based on the implemented variables for the spring force computation, there are
two major types of spring analogy mesh deformation methods: vertex spring analogy
method and segment spring analogy method. In the vertex spring analogy method,
nodal coordinates are considered as the variables. On the other hand, nodal

displacements are used in the segment spring analogy method.

3.1.1 Vertex Spring Method

The idea used in the vertex spring method is by considering each edge as a
spring which obeys the linear Hooke’s Law. The equilibrium length of the spring is
considered as zero in this method. The force exerted on node i by surrounding nodes
j can be calculated as:

Vi

j=1
where
a;; . stiffness of the spring between node i and node j
v; : number of neighbors of node i
X : position vector of node i

The stiffness coefficient, a;; is taken as constant (a;; = 1).
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The equilibrium can be achieved by considering the fact that force summation
in each node should be equal to zero. Typical network spring around an arbitrary node
i is shown in Figure 3.1. Based on Equation (3.1), the iterative solution for the new

position vector of node i can be calculated as:

-

Vi k
Sk+1 _ Zj:l aijxi

Sy=1 U (3.2)
l YL

The boundary conditions for this method is Dirichlet type, which means that
the position of boundary nodes are fixed during the iteration procedure. For the interior

points, Equation (3.2) needs to be solved iteratively.

Figure 3.1 Physical Description of Spring Analogy Method [25]

3.1.2 Segment Spring Method

The segment spring method is developed by Batina [17] for deforming the
mesh around pitching airfoil. Unlike the former method, this method has the
equilibrium length equal to the original length. Moreover, the Hooke’s Law for spring
is applied to the node displacement instead node position. Mathematically, the force

exerted on node i can be written in Equation (3.3).
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Vi
Fy = Z kii(d; —d:) (3.3)
j=1
where
ki - stiffness of the spring between node i and node j
v; : number of neighbors of node i
q; : displacement vector of node i

The stiffness of the spring is proposed to be proportional to the inverse of the

edge length. Mathematically, it can be written as:

1

kij =
(G -3 G- )

(3.4)

Similar criteria for the equilibrium condition is applied in this method as well.

The iterative solution for new displacement vector of node i can be calculated as:

Vi >k
Yo kijd;
—_

Yoy ki

Skl _

q; (3.5)

Dirichlet type boundary condition is also applied as the known displacement
vectors on the boundary nodes. The final location vector for the node i can be

calculated as:

R+ = gk 4 gk (3.6)

Compared to the earlier Vertex Spring method, the Segment Spring method
requires higher computational memory since displacement vector needs to be stored
as well. However, Blom [25] noticed that the former method may lead to the

contraction of the mesh near a convex boundary, where a line which connects between

17



two points inside the boundary still lies inside the boundary. Consequently, Segment
Spring Method is more preferable compared to the Vertex Spring Method.

Unlike using iteration procedure shown in Equation (3.6), Botasso et al. [26]
introduced the incremental displacement algorithm for updating the displacement
vector field. In that algorithm, some scaling factor are used to compute the
displacement increment for each iteration based on the final prescribed boundary

condition.

3.2 Improvement Over Basic Spring Analogy Method

During the implementation of the spring analogy method, element inversion
(node passes through the edge) might occur for a problem with high displacement
vector. In order to remedy this issue, some improvements have been proposed so far.

Several of the improvement methods are described below.

3.2.1 Angle Consideration in the Linear Spring Formulation

The linear spring formulation described in Section 3.1 lacks the coordinates
interaction between x and y, which might not truly represents the spring behavior.
Burg [27] proposed an angle made between two spring nodes during the formulation
of the force exerted on node, as shown in Figure 3.2. The forces exerted on the nodes
are computed based on the local stiffness matrix for each edge. The derivation of this
stiffness matrix is very similar to the one used in Finite Element Methods for truss
members [28]. The 2-D local stiffness matrix with angle considerations can be written
as [27]:

2 : 2 ;
[ cos*® 0;; cos 0;j sin 6;; —cos® 6;; — €os §;; sin 9”]
K =g | 6;; sin 6; sin? 6;; — cos 6;; sin 6;; —sin? 6;; | 3.7)
Y Y [ — cos? 0;; —cos §; sin 6;; cos? 0;; cos 8;; sin 6;; J '
— cos 6; sin 0;; — sin? §;; cos 6; sin 6;; sin? 6;;
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Figure 3.2 Schematic of Angular Consideration in the Linear Spring Analogy

The relation between the force exerted on nodes and displacement vectors for
this updated formulation is shown in Equation (3.8).

l]x\ Axl-
Fij, L {AYil

Consequently, the force in x-direction at node i can be computed as:

F;;. = kij[(Ax; — Ax;) cos? 0;; + (Ay; — Ayj) cos 0;;sin6;;]  (3.9)

Jx —

The force in y-direction at node i can be computed as:

Fijy = kl][(Axl — AX]) CoSs HU sin HU + (Ayl - ij) Sin2 01}] (310)
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By summing the forces exerted on node i from its surrounding nodes separately
for each x and y direction, the following equations are obtained:

Vi

j=1

v; vi
Z kij cos? Hij Ax; — Z kij cos? 9ij ij (3.11)
Jj=1 j=1
Vi v;
+ <Z kij cos 6;; sin 9i1‘> Ay; — <Z kij cos 6;; sin 6;; Ay]-> =0
j=1

j=1

Vi
Z Fijy = 0
j=1

Vi vi
< kij cos 6;5 sin 9ij> Ax; —< k;j cos 6;; sin 6;; ij) (3.12)
1

Jj=

Vi Vi
+ Z k” Sinz BU Ayl - k” Sil’l2 911 Ay] =0
j=1 j=1

Both equations (3.11) and (3.12) are coupled with the same unknown terms Ax;

j=1

and Ay,. These unknown terms are computed by solving these two equations
simultaneously. In matrix form, those two equations are shown in Equation (3.13).
Solution for this equation can be computed by using any means to solve a 2 X 2 matrix.

In this study, Cramer’s rule is used to solve this system of equations.

Vi

Vi
2 .
ZkijCOS 9,:]' Zkijcosgijsmeij
=1 =
Vi

j=1 {Ax,}
Vi Ay;
zkijcoseijSingij Zkijsinzeij
j=1 j=1
(3.13)
Z k” COS2 9” Ax] + Z kl] Ccos 011 sin 6” Ay]
j=1 j=1

v; v;

kij Ccos 9” sin 9” AX] + Z kU Sil’l2 6” Ay]
=1 =1
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Another solution for angle consideration can also be computed by indirect
solution method similar to the procedure proposed by Burg [27] which is related to the

solution method for the Finite Element Analysis in truss member solution.

3.2.2 Torsional Spring Analogy

Farhat et al. [28, 29] added additional torsional spring on top of the linear spring
definition. This additional spring helps to prevent the cell inversion for large

displacement case. The basic idea is to attach each node i, for each triangular cell Q;
connected to node i, shown in Figure 3.3, a torsional spring whose stiffness is given

by:

(3.14)

Y,V

Figure 3.3 Motion and Deformation of a Triangle in the Torsional Spring [29]

The value of sin Bi”k is computed based on the area computation of triangular

cell Q. The formulation is shown in Equation (3.15).

1 . aijk
Aijk = Elijlik Sin Hl-l]
3.15
ik 2Aijk (3.15)
smHi = —
lijlik
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In the torsional spring analogy, it is required to have a transformation from the
angular displacements into nodal displacements. This is required since the torsional
spring analogy only deals with angular displacement [29]. This transformation is
achieved by considering both kinematics formulation and equilibrium condition of the
torsional spring analogy. The final expression of kinematic formulation for the
torsional spring analogy is shown in Equation (3.16) [29]. Detail of the derivation of

this matrix is provided in the Appendix A.

u
AQUk (v%\
i by —bi;  aij — ai bij —a; —biy ik w
AQUk = Ag/,”" =| —by aj; bji — b aj — ay; bj ~ Gk vj' (3-16)
Aelijk by —Qgi —by; QA bij — by Qi — ay; Luk |
RIF v

Similar to the basic spring analogy, the final nodal coordinates are computed
based on force equilibrium. In the torsional spring analogy, each node contributes

moment forces [29]. These moment forces are defined as shown in Equation (3.17).

ijk i
[C; 0 0 |(ne%

M, | i o |
Mk = {Mj} = 0 C'J_Uk 0 | Agjl.’k (3.17)
M ii ijk
oo o cU*[\ae]

These moment forces are later transformed by a transformation matrix for each

triangular cell Q;jy, TY¥ into linear force which is defined in Equation (3.18).
Fix_
F,,
F.

Fik = F”‘

= Tk pmU* (3.18)

Iy

Based on the fact that work done by force should be equal to work done by

moment, the transformation matrix is later shown in Equation (3.19) [29].
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FijkT qijk _ MijkT AQUk
Where Fijk — TijkMijk and Agijk — Rijkqijk
(3.19)

MijkTTijkTqijk _ MijkTRijkqijk

Tik RijkT

Therefore, the expression for linear force due to the torsional spring analogy is
shown in Equation (3.20).

Fik — [RijkTCiijijk] qijk
~———

ijk
torsion

(3.20)

The final force equilibrium is achieved by combining the forces arising from
linear spring and torsional spring for each edge in the mesh. Instead of using the
solution method proposed by Farhat et al. [29], where contribution from each
triangular cell to each edge is considered, a different solution method is proposed.

In the proposed solution, a similar approach like done in Finite Element

Analysis, each triangular cell is considered as an element which has a 6 x 6 local

stiffness matrix K7 Details regarding the implementation of this solution method

torsion’

are elaborated in Section 3.3.

3.2.3 Semi-Torsional Spring Analogy

The improvement method shown in the previous section requires a complicated
formulation to be done. Zeng [31] introduced the notion of the semi-torsional spring
method. This method behaves like the linear spring method with angle information
incorporated into the spring stiffness.

The stiffness of the spring edge is defined as the superposition of linear spring
defined earlier and the semi-torsional spring. The linear spring is exactly similar to the

one defined in Equation (3.4). Mathematically, this can be written as:
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total _ semi—torsional
k2 = ke + k)

where
NEij (321)
1

kis]gaml—torsmnal =1 Z — gij
me1 Sin m

For a triangular 2-D cell shown in Figure 3.4, the spring forces on the edge i —

j are calculated as[31]:

1 1 1
[Fiy] = <l_ T (sin2 601 * sin? 92)) (81|

i

[Fix]
[Fij] = |§W| [B*]4x4 = 6pq - 6p q+2 — 6p+2q
| Fix | ' ' (3.22)
|F;, |
[Axl]
_ Ay
2] = leJ-J
Opqisa Kronecker’s Delta
1 0 -1 0
x 10 1 0 -1
[Blaa =12, o 1 o (3.23)
0 -1 0 0

In this method that proposed by Zeng [31], the matrix [B*] defined for the
computation is similar to the idea of basic spring analogy. For the implementation in
this study, this method is later improved by adding the edge angle into the
consideration as well. As a result, the matrix [B*] defined earlier is changed into the

matrix shown in the Equation (3.7).
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Compared to the previous torsional spring method, this method only includes
2 angles (6, and 6,). Consequently, the data saving will be less compared to the

previous method.

6,

Figure 3.4 Angle Definition Used in 2-D Semi Torsional Spring

3.2.4 Ball-Center Spring Analogy

The idea of the Ball-Center spring analogy comes from the idea proposed by
Bottasso et al. for Ball-Vertex spring analogy method [26]. In their approach, some
additional linear springs are introduced to resist the motion of a mesh node towads its
region-opposed faces. This Ball-Vertex spring analogy method is introduced by
connecting node i to its projection p on the plane of the face F;, opposite of node i. For

more clarity, the location of projection point p can be seen on Figure 3.5.

k

Figure 3.5 Location of Projection Point p on the face F;

In the Ball-Center Spring Analogy itself, instead of creating a linear spring

based on node i and its projection on the opposite plane, the additional spring will be

25



created from the node i and the center of the cell of a triangular cell in 2-D). The detail

of this proposed method is shown in Figure 3.6 [32].
k

i J
Figure 3.6 Schematic of Ball-Center Spring Analogy for 2-D Unstructured Mesh

In 2-D formulation, the center of the cell is assumed to be located at centroid
of the triangular cell. The location and displacement of center node in a triangular cell
Q;jx is formulated as in Equation (3.24).

L Xt X+
x——

» =
- —>3 - (3'24)
. qitq;tq

The resulting force on node i by fictitious node p is defined in the same manner
like spring force defined in the basic segment spring method. Mathematically, the

spring force resulted from this fictitious spring is computed as in Equation (3.25).

Fop = kip(dp — 4:) (3.25)

In a similar manner like done in the angle consideration in the spring analogy,

the force exerted due to the fictitious spring analogy is shown in Equation (3.26).
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Fipx = kip [(Axi — Axp) cos? a, + (Ayi — Ayp) oS a;, sin @y,

(3.26)
Fipy = kip [(Axi - Axp) cos ay, sin a;, + (Ayi - Ayp) sin® al-p]

The final equilibrium equation is computed by considering the contribution
from actual spring edge and fictitious edge shown previously. Details of mesh
configuration used in the ball-center spring analogy is depicted in Figure 3.7. This
means that one needs to solve all equations (3.9), (3.10), and (3.26) in x-direction and
y-direction simultaneously for each node. The system of linear equation which governs
the updated displacements based on this updated method is shown in Equation (3.27).

Figure 3.7 Schematic of Ball-Center an Arbitrary Node i

Vi Ve Vi Ve
2 2 : ;
Z kijcos®6;; + Z kip cos® ay, Z k;jcos0;;sin6;; + Z kyp cos a;, sin ay,
j=1 p=1 j=1 p=1 Ax;
Vi Ve Vi Ve Ayl
. . 2 2
Z k;jcos 0;sin0;; + Z ki cos ap, sina, Z k;jsin® 0;; + Z kip sin® a;,
j=1 p=1 j=1 p=1 ( )
" " " n 3.27
2 2 5 5
Z k;jcos® 8;; Ax; + Z kip cos® ay, Ax, + Z k;j cos 0;;sin 6;; Ay; + Z kip cos ay, sinay, Ay,
_|j=1 p=1 j=1 p=1
Vi Ve Vi Ve
; ; 02 )
Z k;jcos 6;sin6;; Ax; + Z ki cos ap, sin ay, Axy, + Z k;jsin® 0;; Ay; + Z kip sin® a;, Ay,
Jj=1 p=1 j=1 p=1
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The above equation is later solved by the mean of Cramer’s rule, similar to the

solution method used in the case for angle consideration in spring analogy technique.

3.2.5 Boundary Improvement

The idea in this approach is application of the Saint-Venant principle for mesh
deformation [25]. Consequently, the boundary displacements only have local impact
and do not spread far into the mesh. Mathematically, this improvement is shown in
Equation (3.28).

o (0]
D@ - &)

k (3.28)

The idea is to increase the stiffness of the springs around to the boundary by
using ¢ = 5 or decreasing the value of ¥ to 0.05. This may help to prevent the
spreading displacement far into the mesh [25].

In this study, two different cases are considered during the implementation of

the Saint-Venant principle:

e  Adjacent Boundary Improvement
The improvement for this method is only applied to the edge whose one

of the node is located on the airfoil surfaces.

Saint-Venant Principle applied on the
edge which adjacent to boundary

e
<l e

Figure 3.8 Adjacent Boundary Improvement in the Spring Analogy Method

e  Surrounding Boundary Improvement
In this case, the stiffness increasing is applied to some region around the

airfoil boundary. The region is bounded by the airfoil boundary and the
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designated box whose dimensions are shown in Figure 3.9. The chosen
length and width of the designated box also encloses the viscous mesh

region around the airfoil.

Saint-\enant Principle is applied in the region
between the airfoil and the designated box

1.2¢c
Figure 3.9 Surrounding Region Boundary Improvement in the Spring Analogy
Method

In the case of ball-center spring analogy, the improvement in the spring
constant is treated differently since the edge is shorter compared to the actual edge.
Similar formulation like shown in Equation (3.28) is applied as well with different
values for ¢ and ¥. The values chosen for ¢p and ¥ are 10 and 0.01, respectively for

the fictitious edges.

3.3 Solution Method

This section is mainly related to the numerical solution of the final formulation
of the spring analogy method. The displacement of the movable nodes became the
values that should be computed. These values can be computed by using two different
approaches: direct solution and indirect solution. In the coding implementation, the

solution methods are classified based on Figure 3.10.
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Spring Analogy

Mesh Deformation Scheme

>~

| Direct Method Indirect Method
Basic Spring Analogy Angle Consideration
Angle Consideration Semi-Torsional Spring
Semi-Torsional Spring Torsional Spring
Ball-Center

Figure 3.10 Implemented Numerical Methods in Spring Analogy

3.3.1 Direct Solution

In the direct solution approach of this method, each movable node is visited
and the displacement corresponding to this node is computed. In other words, it solves
each displacement value of the nodes directly in a vertex-by-vertex fashion using an
iterative manner as shown in Equation (3.5). Some improvement could also be
accomplished in this method by introducing some relaxation parameter similar to
Successive Overrelaxation (SOR) method. The improvement using SOR method for
the direct solution is shown in Equation (3.29). The convergence of this method is
determined based on the residual value of the computed nodal displacement for each

nodes.
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Xt kg \

sk+1 _ 2k j=1"Ul >k

i =q to| D5 — q;

qi 4 2?;1]% ql/ (3.29)

~———————
updated term

where w = the relaxation parameter

In the case where the angle made by spring is considered during the
computation, a slight modification is required for the computation. Direct solution for
the angular consideration is performed by solving 2 x 2 matrix from Equation (3.13).
By solving this equation for each node, one gets the nodal displacements in x and y
directions. The solution found from the solution of 2 x 2 matrix is substituted into the

updated term defined in Equation (3.29).

3.3.2 Indirect Solution

The indirect method here refers to solving the displacement value for each node
by means of the local stiffness matrix. This method is very similar to Finite Element
Method used in Structural Analysis [28]. The local stiffness matrices for each edge are
combined together into a global stiffness matrix. This method has been applied by
Burg [27] and Markou et al. [33] for their work in 3-D mesh deformation. The global
stiffness matrix later is partitioned into several partitioned matrices corresponding to
either prescribed degree of freedoms or active degree of freedoms.

In this method, one requires to assemble the global stiffness matrix based on
the local stiffness matrix. The assemble process are based upon the method proposed
by Cook [28]:

e  Generation of ID Array Matrix
This matrix is needed to determine whether a given degree of freedom in
a node is prescribed or active degree of freedom (unknown
displacement). Since 2-D mesh deformation is considered, each node has
only 2 degree of freedoms; x and y displacements of the node. The
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number of columns that this matrix has is corresponding to the number
of nodes in the given mesh. On the other hand, the number of rows
corresponding to the number of degree of freedoms that each node has,
equals to two. Binary numbers are considered as the input for this ID
array matrix; input equals to one for the nodes located on the prescribed

boundary condition and equals to zero for the other condition.

e  Generation of Destination Array
The destination array is generated in order to number the degree of
freedoms for all nodes that are used in the computation. There are two
separate arrays used in here: one destination array is corresponding to
active degree of freedoms and the other one is corresponding to the

prescribed degree of freedoms.

e  Global Stiffness Matrix Assemble
The global stiffness matrix is assembled based on the information found
from destination array for both active and prescribed degree of freedoms.
In each local stiffness matrix, each entry corresponds to a specific degree
of freedom in the global stiffness matrix. The global stiffness matrix can
be partitioned in such a way that degree of freedoms corresponding to the
active degree of freedoms are numbered first in the column. As a result,

this matrix can be written as:

K = [Kaa Kab]

Kba  Kpp
Kaa Kab] qa] — [ 0 ]
Kpa  Kppllap Ry

The subscript a corresponds to the active degree of freedoms, while the

(3.30)

subscript b corresponds to the prescribed degree of freedoms. In the

implementation, instead of dealing with a big stiffness matrix K, the partitioned
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matrices K,, and K, are used as the help to compute the active degree of

freedoms. As a result, assemble of partitioned matrices are considered here.

Assemble of active stiffness matrix, K,,, is based on the Algorithm 1 shown

below.

Algorithm 1. Assemble Process of Active Stiffness Matrix K,

Input: all edges with local stiffness matrix
Output: active stiffness matrix K,
1: for each iter_nin [1,edge_number] do

2. setnodel = 1% node of edge(iter_n)
3:  set node2 = 2" node of edge(iter_n)
4.
5. dof array(1) = dest_array 1(1, node 1)
6:  dof _array(2) = dest_array_1(2, node_1)
7:  dof array(3) = dest_array _1(1, node 2)
8:  dof _array(4) = dest_array_1(2, node_2)
9:
10: for each iter_iin [1,4] do
11: if dof_array(iter_i) > 0 then
12: set index_i = dof_array(iter_i)
13: for each iter_j in [1,4] do
14: if dof_array(iter_j) > 0 then
15: set index_j = dof_array(iter_j)
16: Kaa(index_i, index_j) += stiff_matrix (iter_li, iter_j)
of edge(iter_n)
17: end if
18: end for
19: end if
20:  end for
21: end for

In a similar fashion, the assemble process of matrix K, is conducted as well.

The unknown displacement is later computed based on the solution from the first row

of Equation (3.28). Mathematically, the displacements corresponding to the active

degree of freedom are computed as:

KaaQa + Kapqp =0 (331)

qa = _Ka_a1 [KabQIJ]
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The active stiffness matrix K,, is a symmetric matrix since the assemble
process is based on the symmetric matrix shown in Equation (3.7). Furthermore, the
active stiffness matrix is a sparse matrix since not all nodes are connected to each
other. This makes some of entries in the active stiffness matrix are equal to zero. In
order to solve the unknown displacement, Conjugate-Gradient Method [34] is applied
on the solution procedure. The Conjugate-Gradient algorithm is explained in Appendix
B.1.

The above approach is also applied to the torsional spring analogy formulation.
In the implementation, instead of dealing with the local stiffness matrix (4 x 4) for
each edge, a local stiffness matrix (6 x 6) is considered. However, the idea of global
matrix assemble similar to the one implemented above is considered in here as well.

For a better clarification, a sample case regarding global stiffness assemble
process for both angle consideration and torsional spring analogy is elaborated in
Appendix C.

3.4 Coding Implementation of Spring Analogy

After a brief explanation about the spring analogy mesh deformation method
in the previous sections, this section describes how this method is implemented in the
code. The flow chart used in the spring analogy mesh deformation technique is shown
in Figure 3.11
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Figure 3.11 Flow Chart Implemented in the Code

3.4.1 Implemented Data Structure

In order to enhance the computational procedure, the capability of derived data
type in FORTRAN 95 is implemented. The data type used in the computational
procedure mainly divided into three different big data types: cells, edge, and nodes.
The information contained in each data type is summarized in Table 3.1. Each
component in the data type is accessed by using the “%” operator. It can be seen very
clearly that one can assess the coordinate of a node in a given triangular cell based on

the data structure used in here.
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Table 3.1 Implemented Derived Data Type in Mesh Deformation Code

Cell Data Edge Data Node Data
Cell Number Edge Number Node Number
Cell Nodes Edge Nodes Node Coordinates
Cell Neighbors Edge Length Node Neighbors
Cell Edges Edge Angle Node Adjacent Cells
Cell Center Coord. | Edge Opposite Nodes Node Adjacent Edges
Cell Area Edge Opposite Angles | Node Adjacent Fictitious Edges
Edge Adjacent Cells
Edge Spring Value
Edge Stiffness Matrix

3.4.2 Mesh Connectivity

One of the main interest in the spring analogy mesh deformation technique is
to know the neighbor nodes of a given node. This information can be perceived by
mesh connectivity. The meshing connectivity is perceived based on the native mesh
format of .su2 mesh file. Basically, the information contained in the native mesh file

are comprised of three different groups:

o Element Connectivity
This contain the information about each triangular cell used in the mesh

and all nodes which define the triangular element.

° Node Coordinates
This contains the information about the coordinates of all nodes defined

in the mesh used during the computation

o Boundary Condition
This part contains the information about the boundary condition defined

for boundary region of the solution domain.

In order to simplify the nodal connectivity, CFD element mesh is numbered

based on the standard numbering convention for its vertices and edges. Figure 3.12
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illustrates the nodal and edge numbering convention for a triangular element. The

underscored numbers correspond to the local edge numbering inside a triangular cell.

3

1 2

Figure 3.12 Standard Numbering Convention for a 2-D Triangular Element

This spring analogy mesh deformation method mainly deals with the edge as
the main component. On the other hand, the mesh information is mainly based on the
triangular element. To provide the edge information, one should equip the edge
information data. The foundation of this information is based on the edge numbering
process. The algorithm for numbering process is shown in Algorithm 2 and Figure
3.13. The edge_temp is a temporary edge data structure which has the similar contents

to the edge data structure described in Table 3.1.

edge_temp(k+1)

e Store each edge from the cell

¢ Remove the duplicated edges

[... edge_temp(k) edge_temp(k+1)...]

edge_temp(k)
Figure 3.13 Actual Edges Numbering System

37



Algorithm 2. Edge Numbering based on the Triangular Element Data

Input: element connectivity (mesh)
Output: edge numbering
1l:settemp =0
2: for each cell in mesh do

for each node in cell do
temp=temp + 1
sort the remaining node number from small to big
append other nodes into edge_temp (temp) data

end for

: end for

: set edge_number =1

: set edge(1) = edge_temp(1)

11: for each iter_i in [2, temp] do

12:  foreach iter_jin[1,edge_number]

13: if edge(iter_j) == edge_temp(iter_i) cycle for 11:

14:  end for

15:  edge_number = edge_number + 1

16:  edge(edge_number) = edge_temp(iter_i)

17: end for

18: set total_edge = edge_number

-
oo NoaR®

After numbering the edge, it is required to compute the list of adjacent edges

for a given node. This computation is done based on Algorithm 3.

Algorithm 3. Adjacent Edges Computation for a Given Node

Input: updated element connectivity (mesh) from Algorithm 2
Output: list of adjacent edges for all nodes in the mesh
1: initialize number of adjacent edges for each node to be zero
2: for each edge in mesh do
increase number of adjacent edges of node in edge by one.
- end for

3

4

5:

6: for each node in mesh do

7 set index_adj_edge =0

8 for each edge in mesh do
9 if one of the node number in edge equals to node number of node then
10: index_adj_edge +=1
11: set edge as the adjacent edge of node in position of index_adj_edge
12 end if

13 if index_adj_edge equals to number of adjacent edges then

14 exit loop for 8:
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15: end if
16: end for
17: end for

It is also required to know about the neighbor nodes of a given node. This can
be easily found from the list of adjacent edges of a given node found in Algorithm 3.
The neighbor nodes is the other node stored in the adjacent edge.

In the case where the Ball-Center Spring Analogy is concerned, it is required
to know about the adjacent cells for a given node. This computation is done based on
Algorithm 4.

Algorithm 4. Adjacent Cells Computation for a Given Node

Input: updated element connectivity (mesh) from Algorithm 2
Output: list of adjacent cells for all nodes in the mesh
1: initialize number of adjacent cells for each node to be zero
2: for each cell in mesh do

3: increase number of adjacent cells of each node in cell by one.
4: end for
5:
6: for each node in mesh do
7:  setindex_adj cell=0
8 for each cell in mesh do
9: if one of the node number in cell equals to node number of node then
10: index_adj_cell +=1
11: set cell as the adjacent edge of node in position of index_adj_cell
12: end if
13: if index_adj_cell equals to number of adjacent cell then
14: exit loop for 8:
15: end if
16: end for
14: end for

Another data type is also required to compute the fictitious edges in the ball-
center spring analogy. These fictitious edges are stored in another data set, similar to
the edge data shown in Table 3.1. The main difference in this data type is the node
used. This fictitious edge connects the actual node to the fictitious center of triangular

cell. Similar algorithm that was used in the actual edges numbering is also
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implemented in these fictitious edge numbering as shown in Algorithm 5. This

algorithm is conducted based on Figure 3.14.

Algorithm 5. Fictitious Edge Numbering

Input: Element Connectivity with Edge Numbering from Algorithm 2
Output: Fictitious Edge Numbering

1: set num_edge_fict = 3 times number of cells

2: for each iter_i in [1, num_edge_fict]:

3:  setindex_cell = [iter_i/3] —1

4 if (mod (iter_i,3) == 0) then

5 set index_node = mod (iter_i,3) +3

6 else

7 set index_node = mod (iter_i,3)

8 end if

9 set index_node and index_cell as edge node for edge_fict (iter_i)
10: end for

Cell Number x 3 + Local Node Number

Figure 3.14 Fictitious Edge Numbering System Used in the Ball-Center Spring
Analogy

Ball center spring analogy method also requires the information regarding the
neighbor fictitious cell center nodes around an arbitrary node as depicted in Figure 3.7.
This information is stored in the fictitious edge data and can be perceived based on
Algorithm 6.
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Algorithm 6. Finding Number of Fictitious Edges Surrounding Node i

Input: Fictitious Edge Numbering from Algorithm 4.
Output: list of adjacent fictitious edge for all nodes in the mesh
1: initialize number of adjacent edges for each node to be zero
2: for each node in mesh do
3: set num_adj_fict_edge = num_adj_cell
4 for each iter_j in [1, num_adj_fict_edge]:
5: set index_cell = the adjacent cell in order of iter_j of node
6 for each iter_k in [1,3]:
7 if node number of node = cell node in in order of iter_k of

index_cell

8: set index_node = iter_k

9: exit iteration 6:
10: end if
11: end for
12: set adjacent fictitious edge as index_cell*3+index_node
13:  end for
14: end for

In order to make the user easily interacts the code, a basic input file is defined.
The input file contains the information concerning about the mesh deformation
parameters, and design variables used in the optimization scheme. Sample of the input

file used in the mesh deformation code is attached in the Appendix D.1.

41



42



CHAPTER 4

CFD AND OPTIMIZATION ANALYSES

4.1 CFD Analyses

The Computational Fluid Dynamic (CFD) analysis is conducted in order to
compute the aerodynamic coefficients of the airfoil that are required in the
optimization scheme. This analysis is performed by using the aid of SU2 (Stanford
University Unstructured) CFD Solver [1]. In order to get an accurate drag computation,
instead of using inviscid flow solver, RANS solver combined with Spallart-Almaras
turbulence modelling is implemented. The equations used in SU2 is shown briefly in
Appendix E.

SU2 CFD solver requires two different input in order to be able to perform the
analysis: configuration file (.cfg file) and native .su2 mesh file. The sample of
configuration file used in the analysis is shown in Appendix D.2. The initial native
.su2 mesh is directly attained from Pointwise mesh generation software by defining
the appropriate boundary condition used in the solver.

The CFD analysis is conducted in parallel by using parallel computation
capability of SU2 CFD solver. In each parallel computation, the aim is to find the final
aerodynamic coefficients of the airfoil by satisfying the required lift coefficient. In
other words, regardless the initial angle of attack entered by the user, the solver tries
to find the corresponding final angle of attack in order to generate sufficient lift

coefficient.
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4.1.1 Mesh Generation

As mentioned earlier, the mesh is generated by using Pointwise® Mesh
Generation Software [35]. Farfield domain is modelled as a circle whose radius is
taken as 12 times of the chord length. Figure 4.1 depicts the farfield domain used in
the computation procedure. There are two separate types of meshes consider during
the computational procedure: inviscid and viscous mesh. The viscous mesh is used for
RANS simulation. Figure 4.2 and Figure 4.3 show the inviscid mesh and viscous mesh

used in the analysis performed in this study.
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(a) Outer View (b) Zoom View Near Trailing Edge
Figure 4.2 Inviscid Mesh around Baseline Airfoil
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The terms inviscid and viscous meshes here are used to describe the
corresponding required mesh to perform inviscid or viscous simulation in CFD,
respectively. The inviscid mesh is used only to check the capability of mesh
deformation method. This inviscid mesh is not going to be applied in the optimization
analysis. Only the viscous mesh shown in Figure 4.3 is considered during the RANS
simulation used in the airfoil design optimization. Numbers of cells and nodes used in
the inviscid mesh are 6072 and 3234, respectively. On the other hand, the numbers of

cells and nodes used for the viscous mesh are 12060 and 6228, respectively.

VAVAYS

N

9%
A
4
s“VA

AN AT
%‘4’4‘5& <]

i
KR
%
.
5

]

0
I\
(Y
i
[y

e

!

-0.2

AVAVAgAéln STRAN
— ;%»‘v;vg QLOERTD

Ve Sy
> A7/
RIS

-0.4

(a) Outer View (b) Zoom View Near Trailing Edge

Figure 4.3 Viscous Mesh around the Baseline Airfoil

4.1.2 Flow Parameters in CFD

The airfoil design optimization is applied for an airfoil whose flow parameters
are computed based on the flight conditions defined in the CHANGE FP7 project [36],
an European Union project which combines several morphing capabilities into one
wing. Basically, there are 4 different flight regimes considered in this study: take-off,
loiter, high speed, and landing. The summary of flow properties used in each flight

regime is tabulated in Table 4.1.
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Table 4.1 Flow Properties used in the Optimization Analysis

Take-Off Loiter High Speed Landing
Velocity [m/s] 21.164 15.278 30.556 13.244
Density [kg/m?] 1.225 1.1895 1.1895 1.1895
Altitude [feet] 0 1000 1000 1000
Reynolds Number 858441 605075 1210135 524536
Mach Number 0.0622 0.0451 0.090 0.039

For all above flow properties used, it is assumed that the baseline aircraft has a
span and chord whose lengths are 4 m and 0.6 m, respectively. Furthermore, the
aircraft’s mass is taken as 25 kg. Based on this information, the airfoil’s target sectional
lift is computed based on Equation (4.1). It is found that the target sectional lift for the
airfoil is 61.3125 N/m.

Aircraft Weight

Target Sectional Lift =
arget sectionat Ll Aircraft Span

(4.1)

In the optimization procedure, the same sectional lift is applied for all different
flow parameters. However, the target lift coefficient for each flight parameter is
determined based on the corresponding velocity. The target lift coefficient is computed
based on Equation (4.2).

Target Sectional Lift

Sectional Lift Coefficient = 0.5pV2c

(4.2)

46



4.2 Optimization Analyses

The optimization procedure is achieved by utilizing Phoenix ModelCenter
Optimization Software. The optimization is performed by making some modules
which wrap each component of optimization procedure. In the optimization case, there
are 3 different modules considered during the optimization process. Figure 4.4 depicts
the order and relation between these modules during the optimization procedure. The
input required in the optimization is entered manually from the Component Tree in the

ModelCenter as shown in Figure 4.5.

o Input Module
This module provides the information about the input parameters used
for the CFD computation. These parameters comprised of: air density,
velocity, viscosity, and the required sectional lift for the computation. For
different flight conditions, different values of flight velocity is manually

entered in the module.

o Mesh Deformation Module
This module mainly wraps the mesh deformation code that is prepared
earlier. The module contains the information about parameter used during
the mesh deformation analysis. The parameters used in this module are

the input parameters used in the code as shown in Appendix D.1.

e  CFD Solver Module
This module contains the information about the input parameters used in
the SU2 CFD solver. This module mainly contains about the simulation

parameters: number of processors, iteration counter.

47



Figure 4.4 Optimization Scheme Implemented in Model Center
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Figure 4.5 Component Description in Phoenix ModelCenter for Input Module
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4.2.1 Optimization Scheme Explanation

The optimization was done by using Gradient Based Optimization Solver from
Phoenix Model Center Optimization Module [37]. OPTLIB Gradient Optimizer which
is considered as gradient based optimization is considered as the optimizer.

OPTLIB implements Sequential Quadratic Programming (SQP) in the
optimizations scheme. Furthermore, the gradient value is computed based on the finite
difference concept. The initial step size used in the gradient computation is
approximated as 0.0001. However, OPTLIB optimizer later can handle the appropriate
step size used for the gradient computation.

The main objective in the optimization is to minimize the sectional drag of an
airfoil and satisfy the sectional lift requirement of the airfoil for different flow
parameters. Furthermore, an additional angle of attack is also imposed for each case.
The angle of attack constraints for each flow parameters are explained detail in section
5.2.

4.2.2 Shape Parameterization

As mentioned in the introduction, the shape parameterization implemented
during the optimization analysis should encompass sufficient design spaces in order to
guarantee that the optimum design can be found. In this analysis, 3 different shape

parameterizations are implemented.

4.2.2.1 Variation of Camber and Thickness

The idea used in the optimization is to change the camber and thickness of the
airfoil. The camber and thickness variation are computed based on the initial camber
and thickness distribution. The initial camber line is computed based on the average
of the ordinate of the upper and lower airfoil nodes which are located on the same
abscissa. The fact that the mesh nodes might not be located on the same abscissa, spline

interpolation concept is applied.
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The cubic spline interpolation [38] is used to perform the spline interpolation.
A third order polynomial defined in Equation (4.3) is used as a model equation. This
equation is valid for an interval [a,b] which contains n defined points. The coefficients
b;, c;, d; are defined in (n — 1) intervals. As a result, 3n — 3 equations are required to
in order to solve these unknown coefficients. These coefficients are computed based

on the required continuity and compatibility of the spline interpolation.

si(x) = y; + bi(x — x) + ¢;(x — x)* + d;(x — x;)° (4.3)

At each interior points in the interval [a, b] should satisfy Equation (4.4).
Furthermore, the interpolated functions should have continuous both first and second
order derivative as shown in Equation (4.5) and Equation (4.6), respectively.

Si(Xi41) = Vi1 (4.4)
Si(Xi41) = S{p1(xi41) (4.5)
;' (Xir1) = {41 (Xit1) (4.6)

Natural boundary conditions are imposed on the end interval [a,b] by

specifying the second order derivative of boundary points to be zero.
si'(a) =0
‘ 4.7)
s;/(b) =0

Upon having the same abscissa for nodes on both upper and lower airfoil, the

camber line is estimated as:

Y +y
Ycamber = ~PPe 2 - (48)
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The initial thickness distribution for the upper and lower is estimated as the
difference between the initial camber line and airfoil surface coordinates. Equation

(4.9) shows the estimation for the upper and thickness distribution.

Ythickypper — Yupper — Ycamber
(4.9

Ythickjgwer — Ylower — Ycamber

The camber line variation is estimated by specifying several control points on
the initial camber line. In the non-dimensional form, the abscissa location of control
points are as follows: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The new camber line
is estimated by multiplying the ordinate of the initial camber line with a factor
specified by the user. For the points located in between the control points, similar
spline interpolation explained earlier is applied.

On the other hand, the updated thickness variation is computed by multiplying
the initial distribution shown in Equation (4.9) by some factors defined by the user.
Both upper and lower thickness distribution is multiplied by the same factor. As a
result, there are at most 2 different parameters used during the shape parameterization
using camber and thickness variation. The range of these design variables are shown
in Table 4.2.

Table 4.2 Boundary Imposed on Camber and Thickness Factors

Design Variables Lower Limit Upper Limit
Camber Factor 0 3
Thickness Factor 0.6 3

In the optimization analyses conducted in here, three different combinations of
the above shape parameterizations are implemented: camber variation only, thickness

variation only, and the combination of camber and thickness variation.
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4.2.2.2 PARSEC Shape Parameterization

Detail explanation regarding parameters used in the PARSEC shape

parameterization is depicted in Figure 2.1. Based on equations shown in Equation

(2.1), it is required to compute the coefficients of a; and b;.
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These coefficients are computed based on the airfoil geometry. Both equations
(4.10) and (4.11) show the system of linear equation which govern the coefficients of
a; and b;, respectively. These equations are later solved by using Gauss-Seidel
Iteration. Detail of Gauss-Seidel method implemented in this study is shown in the
Appendix B.2.

It is verified that the PARSEC design variables are very sensitive. As a result,
specific range of design variables need to be determined before initializing the
optimization scheme. The range of these parameters are determined based on the
optimization results found by considering the effect of camber and thickness. Detail of

the parameter range used in this optimization is explained in detail in Chapter 5.
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CHAPTER 5

RESULTS AND DISCUSSIONS

This chapter contains the result of mesh deformation by using the
aforementioned technique defined in earlier chapter. The best scheme among these

methods is then applied in the airfoil optimization.

5.1 Mesh Deformation Results

The mesh deformation capability of the proposed methods is checked by using
a simple test case. The test case used in here is to perform a rotating airfoil about
quarter chord line by some degrees. Both inviscid and viscous meshes are considered
in the verification case. For the inviscid mesh, the airfoil is rotated up to 50°. On the
other hand, smaller rotation angle around 25° is introduced in the viscous mesh. The
viscous mesh cannot be rotated by the same amount like in the inviscid mesh due to
the presence of highly aspect ratio cell around the airfoil boundary. These cells
somehow become a hindrance for spring analogy technique to perform the deformation
scheme. Fortunately, the design spaces used in the airfoil optimization are encircled in

this spring analogy technique.

5.1.1 Basic Spring Analogy Results

In the basic spring analogy results, no other improvements are considered
during the application. The deformed meshes for both cases are shown in Figure 5.1.
It can be seen clearly that this method fails to deform the mesh required in both cases.
It is verified that inviscid mesh cannot be deformed with high degree of deformation.

Some nodes near the trailing edge region (where huge displacement occurs) are
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crossing over the opposite edges. In the viscous mesh case, the traditional spring
analogy technique not only fails to prevent the cross-over nodes near the trailing edge
regions, but also fails to maintain the right angle that cells around airfoil boundary

have. This is caused by the fact that in the basic formulation, edge angle is not taking

into account.

(@) 50° rotated inviscid mesh airfoil (b) 25° rotated viscous mesh airfoil

Figure 5.1 Deformed Meshes Resulted from Basic Spring Analogy

5.1.2 Angle Inclusion in Spring Analogy Results

In this case, the presence of angle in the spring is considered. This improvement
somehow helps to generate the deformed mesh as it can be seen from Figure 5.2. The
angle consideration helps the spring analogy to get a better deformed mesh on which
there is no cross-over nodes occurring in trailing edge region and right angle near the
surface boundary can still be maintained. The above computation is conducted with
direct computation method. Similar deformed meshes are also achieved by using the
indirect computation method. However, this computation required a lot of computation
time compared to the direct method proposed earlier. Summary of the convergence

analysis for the proposed spring analogy methods are shown in Figure 5.8.
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(@) 50° rotated inviscid mesh airfoil (b) 25° rotated viscous mesh airfoil

Figure 5.2 Deformed Meshes Resulted from Basic Spring Analogy with Angle

Inclusion

5.1.3 Torsional Spring Analogy Results

The resulting mesh from this method can be seen from Figure 5.3. It can be
seen clearly that concept of torsional spring analogy leads to a better quality in terms
of no cross-over nodes and maintaining viscous angle near the surface boundary for
deformed mesh. However, this method can only be solved using the indirect method
which requires more computing time for a sequential execution. Summary of the
convergence analysis for the proposed spring analogy methods are shown in Figure
5.8.
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(a) 50° rotated inviscid mesh airfoil (b) 25° rotated viscous mesh airfoil

Figure 5.3 Deformed Meshes Resulted from Torsional Spring Analogy

5.1.4 Semi Torsional Spring Analogy Results

The deformed mesh from semi-torsional spring analogy is shown in Figure 5.4.

In the computation, the angle formulation in edge is considered. It can be seen clearly

that the results from this deformation scheme do not have any cross-over nodes and

still maintain the angle of computation.
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Figure 5.4 Deformed Meshes Resulted from Semi Torsional Spring Analogy

58



5.1.5 Ball-Center Spring Analogy

The ball-center spring analogy also yields to a quite similar results shown in
the earlier schemes of mesh deformation techniques. This method yields to a better

deformed mesh compared to the basic spring analogy method.
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5.1.6 Boundary Improvement

As elaborated in the earlier chapter, boundary improvement can be achieved
by applying Saint-Venant principle during the implementation. In our case, this
improvement is applied to the angle inclusion spring analogy method. Figure 5.2
shows the basic angle inclusion in spring analogy without any boundary improvements
utilized. Two different concepts of Saint-Venant principle is applied in here: adjacent
boundary improvement and surrounding region boundary improvement. The results

corresponding to these two improvement are shown in Figure 5.6 and Figure 5.7.
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It can be seen clearly that the deformed mesh by surrounding region boundary
improvement leads to a better mesh in terms of the angle made by the cells around the
trailing edge of the airfoil. The angle of cells around the trailing edge is higher in
adjacent boundary improvement compared to surrounding region boundary
improvement.

The proposed method is not only compared in terms of the deformed mesh
results, but also in terms of the computation costs by means of number of iteration and
computation time. In each method, the required number of iteration is assumed in such
a way that the same residue value is achieved. The residual value is computed based

on the nodal displacement for each node and shown in Equation (5.1).

Po :\/ ?=01fnodes (%) + (%)

# of nodes

(5.1)

¢ = chord length of the airfoil

The residual plot is computed based on the logarithm with base 10 of the ratio
of current residue value with the first initial residue value. Unlike CFD computation
where a low residue value (log;, Res = -7) is required, the mesh deformation method
can have the logarithmic of residual value around -3. However, for the deformation
case in viscous meshes, the minimum tolerance value for the residue is -3.5.

The residual plot corresponding to inviscid mesh deformation for each
proposed method is shown in Figure 5.8. It can be seen clearly among these methods,
basic spring analogy requires less computational time compared to the other methods
since no edge angle is considered in the computation. For a better illustration in
regarding the direct solution utilized in this study, a residual plot up to 500 iteration is
shown in Figure 5.9.

On the other hand, the torsional spring requires a quite huge number of iteration
since it corresponding to solve a huge matrix by iterative manner. In the viscous mesh
deformation case, similar plots shown in Figure 5.8 is achieved as well. However, the
required computation time is difference since viscous mesh contains more number of

nodes and elements compared to the inviscid mesh.
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Table 5.1 Summary of Computation Time for Proposed Mesh Deformation Schemes

Inviscid Mesh Viscous Mesh
Basic Spring Analogy 5.256 Seconds 19.572 Seconds
Angle Inclusion 7.211 Seconds 34.940 Seconds
Semi-Torsional 7.431 Seconds 36.290 Seconds
Ball-Center 14.052 Seconds 59.292 Seconds
Torsional Spring 693.85 Seconds 1435.234 Seconds
or
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Figure 5.8 Residual Computation for Each Proposed Method in Spring Analogy
Mesh Deformation Methods
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Figure 5.9 Residual Computation for Each Proposed Method in Spring Analogy
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From these analyses, it is concluded that direct computations has a better
efficiency compared to indirect computation schemes. Furthermore, angle inclusion
with surrounding boundary improvement, ball-center spring analogy, or semi-torsional

spring analogy give almost similar results.
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5.2 Optimization Results

The optimization is conducted based on the design variables defined in the
previous chapter. Furthermore, the optimization is conducted in several different
parameterization: camber only, thickness only, camber and thickness, and PARSEC
shape optimization.

For camber only, thickness only, and camber and thickness optimization, a
similar initial airfoil is used. On the other hand, the initial geometry used in the
PARSEC optimization is defined based on the initial PARSEC parameters. As a result,

slightly different initial drag values are achieved in the optimization.

5.2.1 Take-Off Configuration

Based on the required sectional lift and Equation (4.2), the required lift
coefficient for this configuration is 0.3725. In this optimization scheme, the angle of
attack is constrained to be between -3° to 6°. The iteration history for several shape
parameterizations in this parameter is shown in Figure 5.10.

In this take-off phase optimization, the optimum airfoil has a reduction in
camber when only camber effect is considered. This is expected since the target lift
coefficient is quite low and initial airfoil has quite relatively high camber and
thickness. It is found that the optimum airfoil has a reduction in camber by a factor of
0.8333.

In the case where thickness is solely considered into account, the optimum
airfoil has a reduction in thickness. The reduction in thickness helps the airfoil to keep
the low drag coefficient. It is found that the reduction in thickness is by a factor of 0.6,
which is the minimum allowable value.

For the case where both camber and thickness parameters are considered,
instead of having reduction in camber as the case where the camber parameter is solely
considered, the airfoil has an increased in camber by a factor of 1.452. The thickness

is also reduced by a factor of 0.6 in this shape parameterization optimization. In the
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case for PARSEC optimization, it is found that the optimum airfoil design leads to an

optimum drag value. The range of PARSEC design variables and values for the

optimum design are tabulated in Table 5.3.
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Figure 5.10 Iteration History for Take-Off Optimization

Summary of the optimization results for this flight condition is shown in Table

5.2. It can be seen clearly that the optimization by considering both camber and

thickness leads to a better optimum airfoil. The optimum airfoil shapes and their

pressure distributions are shown in Figure 5.11 and Figure 5.12, respectively.
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Table 5.2 Optimization Results for Take-Off Phase

Parameterization Total Drag [N/m] Angle of Attack [deg]
Scheme Initial Optimum Initial Optimum
Camber 1.0267 1.0165 1.834 2.137
Thickness 1.0267 0.5907 1.834 1.768
Camber and Thickness 1.0267 0.5064 1.834 0.898
PARSEC 0.7284 0.475 1.982 1.123

Table 5.3 PARSEC Design Variables Range in the Take-Off Optimization

Parsec Airfoil Parameter Il__?\rlr:(iatr Lﬂﬂﬂ?{ {?;tlzﬂ Og};ﬁim
Leading Edge Radius Upper (Rleupper) [m] 0.008 0.015 0.01 0.008
Leading Edge Radius Lower (R, ..) [M] 0.001 0.005 0.003 0.00287
Peak Location for Lower Surface (X;,) [m] 0.28 0.35 0.33 0.28
Peak Value for Lower Surface (Y;,) [1/m] -0.03 -0.02 -0.024 -0.02
Curvature for Lower Surface (YXX,,) [1/m] 0.25 0.45 0.35 0.37037
Peak Location for Upper Surface (X,,;,) [m] 0.28 0.35 0.33 0.35
Peak Value for Upper Surface (Y,,,) [m] 0.048 0.075 0.07 0.05709
Curvature for Upper Surface (YXX,,,)[1/m] -0.75 04 -0.5 -0.4069
Trailing Edge Direction Angle (arg)[deg] -8 0 -3 -3.992
Trailing Edge Wedge Angle (B7%) [deg] 12 20 12 12
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5.2.2 Loiter Configuration

The required lift coefficient for this flight condition is computed as 0.7361. In

this flight condition the angle of attack is constrained to be between -3° and 6°. The

iteration history for 4 different shape parameterizations are shown in Figure 5.13.
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The fact that required lift coefficient for this flight condition is comparatively
higher than take-off configuration, the optimization where only camber is considered
tries to increase the camber of the airfoil by a factor of 1.747.

In the case where only thickness variation is merely considered, similar trend
observed in take-off optimization also occurs in here. It is found that the optimum
airfoil has a relatively decrease in thickness by a factor of 0.714.

Under the case where both camber and thickness is considered, it is observed
that the optimum airfoil has an increase in camber by a factor of 2.485 and decrease in
thickness by a factor of 0.6.

Summary of the optimization results for loiter optimization is shown in Table
5.4. In coherence with the solution from take-off optimization, it is perceived that the
optimization by considering PARSEC shape parameterization leads to a better
optimum value. PARSEC design variables used in the loiter optimization are tabulated
in Table 5.5.

Table 5.4 Optimization Results for Loiter Phase

Parameterization Total Drag [N/m] Angle of Attack [deg]
Scheme Initial Optimum Initial Optimum
Camber 1.3391 1.2761 5.417 4.030
Thickness 1.3391 1.1967 5.417 5.347
Camber and Thickness 1.3391 0.8376 5.417 2.395
PARSEC 1.3439 0.7591 5.701 2.941
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Table 5.5 PARSEC Design Variables Range in the Loiter Optimization

Parsec Airfoil Parameter Il__?\rlnvietr Eﬁ?ﬁ{ {?;E’: O‘\);;Tllim

Leading Edge Radius Upper (Rleupper) [m] 0.006 0.02 0.01 0.0069
Leading Edge Radius Lower (R, . ) [M] 0.001 0.01 0.003 0.0027
Peak Location for Lower Surface (X;,) [m] 0.25 0.38 0.33 0.25

Peak Value for Lower Surface (V;,) [m] -0.05 -0.02 -0.03 -0.02

Curvature for Lower Surface (YXX;,) [1/m] 0.25 0.6 0.35 0.5924
Peak Location for Upper Surface (X,,;,) [m] 0.27 0.43 0.33 0.4178
Peak Value for Upper Surface (Y, ) [m] 0.048 0.088 0.06 0.0807
Curvature for Upper Surface (YXX,,) [1/m] -0.85 -0.35 -0.6 -0.75
Trailing Edge Direction Angle (arg) [ded] -10 0 -4 -5.165
Trailing Edge Wedge Angle (87¢) [deg] 12 20 15 13.86

5.2.3 High-Speed Configuration

For this flight condition, it is calculated that the required lift coefficient is
0.18401. The angle of attack constraint is made to be between -3° and 3°. The angle
of attack is relatively kept smaller since the required lift coefficient is also smaller.
The iteration history for this configuration is shown in Figure 5.16.

In the case where merely camber shape parameterization is considered, the
optimum airfoil has a decrease in camber factor. The decreasing in camber is made in
such a way that the optimum airfoil still produces the required lift coefficient and
satisfies the angle of attack constraint. It is found that the optimum airfoil has a reduced
in the camber by a factor of 0.4421.

For the thickness optimization, it is found that the thickness should be
decreased in order to reduce the drag. In fact, the optimum airfoil has decreased in

thickness by a factor of 0.6, which is the lower limit for the thickness parameter.
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In the case where both camber and thickness is considered, the airfoil still has

similar trends. The optimum airfoil has a reduced in both camber and thickness. The

camber is reduced by a factor of 0.7059 and the thickness is reduced by a factor of 0.6.
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Figure 5.16 Iteration History for High-Speed Optimization

The summary concerning about the drag and angle of attack used in the high

speed optimization is shown in Table 5.6. It is observed that the optimization

conducted with PARSEC shape parameterization again leads to a better optimum

results compared to other optimization cases. The optimum airfoil shapes and the
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distribution of the pressure coefficient are shown in Figure 5.17 and Figure 5.18,

respectively.

Table 5.6 Optimization Results for High-Speed Phase

Parameterization Total Drag [N/m] Angle of Attack [deg]
Scheme Initial Optimum Initial Optimum
Camber 1.2955 1.1130 0.0126 1.033
Thickness 1.2955 0.5136 0.0126 -0.0252
Camber and Thickness 1.2955 0.4940 0.0126 0.5239
PARSEC 0.8268 0.4262 0.317 -0.465

Table 5.7 PARSEC Design Variables Range in the High-Speed Optimization

Parsec Airfoil Parameter Il__?\rlnvftr Ef)rﬁ?tr {?;tlij: OF\’;;T]L;m
Leading Edge Radius Upper (Rleupper)[m] 0.012 0.025 0.02 0.01583
Leading Edge Radius Upper (Rlelower) [m] 0.005 0.012 0.009 0.00938
Peak Location for Lower Surface (X;,) [m] 0.23 0.33 0.27 0.24125
Peak Value for Lower Surface (Y;,) [m] -0.05 -0.035 -0.045 -0.035
Curvature for Lower Surface (YXX;,) [1/m] 0.4 0.3 0.5 0.49828
Peak Location for Upper Surface (X,,,) [m] 0.28 0.38 0.33 0.28465
Peak Value for Upper Surface (Y,,,) [m] 0.07 0.06 0.07 0.06717
Curvature for Upper Surface (YXX,,) [1/m] -0.7 -0.6 -0.5 -0.59982
Trailing Edge Direction Angle (arg) [ded] -5 0 -3 -3.5347
Trailing Edge Wedge Angle (Brz) [deg] 10 20 12 11.7674
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5.2.4 Landing Configuration

Based on the required sectional lift and Equation (4.2), the required lift
coefficient for this flight condition is 0.98712. An additional angle of attack constraint
Is imposed on this configuration. The angle of attack for the constraint should be
between 7 and 10 degrees. This high angle of attack is considered in order to ensure
that sufficient drag can be achieved. The iteration history for the landing configuration

is shown in Figure 5.19.
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In the camber optimization, the optimization process tries to increase the
camber factor of the airfoil to meet the high lift coefficient requirement. An increase
in camber makes an airfoil to produce the required lift with less angle of attack, and
hence less drag as well. However, one cannot increase the camber up to the maximum
value since the airfoil is required to have a high angle of attack as well from the
imposed constraint. The optimum airfoil has the camber increase by a factor of 1.574.

On the other hand, the thickness optimization tries to decrease the thickness
distribution in order to decrease drag while still maintaining the required lift
coefficient. It is found that the optimized airfoil has a decrease in thickness by a factor
of 0.837.

In the optimization where both camber and thickness are considered, it is found
that optimum airfoil has an increasing in camber and decreasing in thickness, similar
to the trend observed in the earlier optimization. It is found that the optimum airfoil
has camber increase by a factor of 1.434 and thickness decrease by a factor of 0.749.

The summary concerning about the drag and angle of attack used in the landing
optimization is shown in Table 5.8. It is found that the PARSEC optimization leads to
a better optimum value compared to the other shape parameterization schemes.
PARSEC design variables used in this landing optimization is shown in Table 5.9. The
optimum airfoil shapes and its pressure distribution are shown in Figure 5.20 and

Figure 5.21, respectively.

76



Table 5.8 Optimization Summary for Landing Phase

Parameterization Total Drag [N/m] Angle of Attack [deg]
Scheme Initial Optimum Initial Optimum
Camber 1.9677 1.7502 8.082 7.00
Thickness 1.9677 1.8294 8.082 7.95
Camber and Thickness 1.9677 1.5529 8.082 7.00
PARSEC 2.1981 1.4652 8.583 7.00

Table 5.9 PARSEC Design Variables Range in the Landing Optimization

Parsec Airfoil Parameter LL?:”Ir\V?tr lﬂ?ﬁ}?{ {?;tlzﬂ OF\);;T;m
Leading Edge Radius Upper (Rleupw) [m 0.012 0.025 0.02 0.01583
Leading Edge Radius Upper (R,,,..) [M] 0.005 0.012 0.009 | 0.00938
Peak Location for Lower Surface (X;,) [m] 0.23 0.33 0.27 0.24125
Peak Value for Lower Surface (Y;,) [m] -0.05 -0.035 -0.045 -0.035
Curvature for Lower Surface (YXX;,) [1/m] 0.4 0.3 0.5 0.49828
Peak Location for Upper Surface (X,,,) [m] 0.28 0.38 0.33 0.28465
Peak Value for Upper Surface (Y,,,) [m] 0.07 0.06 0.07 0.06717
Curvature for Upper Surface (YXX,,,) [1/m] -0.7 -0.6 -0.5 -0.59982
Trailing Edge Direction Angle (a;g) [deg] -5 0 -3 -3.5347
Trailing Edge Wedge Angle (B7¢) [deg] 10 20 12 11.7674
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5.2.5 Miscellaneous Case

In order to guarantee that the optimization problem is a well-posed problem, a
different initial geometry is chosen for one flight condition, loiter configuration.
Instead of using NACA 2412 as the initial geometry, NACA 2415 is chosen as the
initial geometry. This initial geometry is later used in the camber and thickness
optimization.

In order to encompass similar geometry range, the range of thickness in NACA
2415 is changed as well. The new range used for NACA 2415 case is shown in Table
5.10.

Table 5.10 Range of Camber and Thickness Variables for NACA 2415 Case

Design Variables Lower Limit Upper Limit
Camber Factor 0 3
Thickness Factor 0.48 2.4

It is found that the optimum solution found in this case is very similar to the
one found by using initial case to be NACA 2412. Summary of the parameters for the
optimum design are tabulated in Table 5.11. The optimum airfoil shapes and its

pressure distribution are shown in Figure 5.22 and Figure 5.23, respectively.

Table 5.11 Optimum Parameters for Two Different Cases in Loiter Configuration

NACA 2412 NACA 2415
Optimum Camber Factor 0.6 2.484
Optimum Thickness Factor 0.48 2.453
Optimum Drag 0.8376 0.8537
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Apart from the well-posed problem check for the optimization problem, one
should also check the mesh convergence study for CFD computation. In order to
perform the mesh convergence study, three different mesh sizes around NACA 2412
are considered. The difference between these meshes are based on the number of nodes
and cells.

In order to check the convergence study, these meshes are utilized for CFD
computation in loiter configuration. In each case, required lift coefficient is taken as
0.7358. Details of aerodynamic properties for these different cases are tabulated in
Table 5.12. It can be seen clearly that the difference between Case 2 and Case 3 is not
very much. As a result, the size of mesh similar to the one in Case 2 is considered in

the CFD computation.

Table 5.12 Summary of Mesh Convergence Study for NACA 2412 Airfoil in Loiter

Configuration

Case 1 Case 2 Case 3
Number of Elements 6404 12060 24148
Number of Nodes 3300 6228 12397
o} 0.7360 0.7354 0.7359
Cq 0.02 0.0163 0.0169
Required Angle of Attack [deg] 5.47 5.42 491
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, a brief explanation about mesh deformation combined with CFD
design optimization is elaborated. Several improvements in the spring analogy mesh
deformations have been presented in the thesis. The improvements made in the spring
analogy mesh deformation methods are as follows: angle consideration, semi-
torsional, ball-center, and boundary improvement. For the case of angle
considerations, two separate solution method have been proposed as well: direct and
indirect methods. It is found that the proposed improvements in the spring analogy
method remove the node crossing in the basic spring analogy method and maintain the
cell angle of initial mesh. Furthermore, the indirect solution method proposed is more
efficient in time compared to the direct solution method.

Based on the improved spring analogy method, an airfoil CFD design
optimization is conducted. The optimization is conducted by aiming to reduce the
sectional drag of an airfoil for several flight parameters. The conclusions made for

each flight can be summarized as follows:

e For take-off configuration, a small thickness distribution accompanied with
sufficient camber can lead to an optimum airfoil.

e For loiter configuration, on which velocity is low and no high angle of attack
is required, a huge increase in camber accompanied by small thickness can lead

to an optimum airfoil.
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e For high-speed configuration, where the lowest lift coefficient is required, a

small thickness accompanied by sufficient decrease in camber lead to an

optimum airfoil.

e For landing configuration, which high angle of attack is required, a sufficient

increase in camber accompanied by sufficient decrease in thickness yield to an

optimum airfoil.

The summary for the above conclusion can be summarized in Table 6.1. The
factors defined in here are the corresponding design variables used in the optimization

analysis where both camber and thickness variation are considered.

Table 6.1 Summary of Camber and Thickness Factor Employed for Different Flight

Parameters
Flight Parameter Camber Factor Thickness Factor
Take-Off 1.452 0.6
Loiter 2.485 0.6
Take-Off 0.7059 0.6
Landing 1.434 0.749

It is also found that another improvement in the optimization by utilizing
PARSEC shape parameterization give a better optimum design compared to
optimization by considering only camber and thickness distribution. Furthermore, the
optimization problem is not very dependent to the starting point of camber and
thickness distribution when both camber and thickness optimization are considered.

Furthermore, it is also found that in many case the optimization conducted

reduce the required angle of attack value. This infact becomes another advantage since

it is more beneficial to attain the same lift with low angle attack in a flight.

In summary, my contribution to this thesis are summarized as follows:

e Basic mesh connectivity principles applied to find the list of neighbor nodes

surrounding an arbitrary node.
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e Develop the idea of direct solution methods by considering 2 x 2 matrix for
angle inclusion in spring analogy.

e Introducing the notion of ball-center spring analogy in the improvement
method spring analogy.

e Applying the concept of boundary improvement via Saint-Venant principle in
two different study cases.

e Applying the idea of global stiffness assemble process for indirect solution

methods for torsional spring analogy approach.

6.2 Future Work

Mesh deformation technique can be enhanced by introducing parallel
implementation in the computation. Apart from that, another improvement especially
for the viscous mesh deformation scheme can be introduced in such a way that similar
capability in inviscid analysis can be achieved. Edge connectivity might also be
improved by using another advanced algorithm technique. Another challenging issue
might be to perform mesh deformation technique for hybrid unstructured mesh instead
of triangular unstructured mesh. The last meticulous work that can be considered is to
implement this mesh deformation technique for 3-D mesh deformation scheme.

Regarding the optimization analysis, other improved shape parameterizations
might be introduced in the analysis. Instead of using gradient based optimization, other
optimization schemes like genetic algorithm or stochastic algorithm or even particle
swarm optimization might be implemented as well. The optimization might be also
applied in high Mach number (compressible flow) around the airfoil instead of low
Mach number (incompressible flow). Last but not the least, another excellent work
that can be considered is to combine the 3-D mesh deformation scheme with wing

design optimization.
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APPENDIX A

DERIVATION OF KINEMATIC FORMULATION IN TORSIONAL SPRING
ANALOGY METHOD

This section elaborates the kinematic formulation used in the torsional spring
analogy by Farhat et al. [29]. The kinematic formulation is considered only for one of
nodes in triangular cell Q.

By assuming the angular displacement A8;; (relative displacement of node k
with respect to node i), shown in Figure 3.3 is small enough, the angular displacement
can be computed as:

Afy, = sin Ay, = iik X fik! _ Tige X Tige
1717l LigeLins
5 Xk — Xi
Tik = {3’k — }’i} (A.1)
o = {ye 3} = B~y e — ) =7+ i)
Yir —Yi Ve — Vi Vir — Vk Uk
dx

Based on the above consideration, both length [;;, and [;;,, are assumed to be
equal to each other. As a result, the final expression for the angular displacement can
be simplified as:

O = x) Wk —yi + i) — ke — yi) (e — x; + uy)

AGyy, =

6
(e — x)V — (Vi — Yidug
AHik = 2 A 2
Lik (A2)
(e — x1) Wk —yi)
ABy = 12 l Uk — 12 l Uk
ik ik
Aik bik
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Aby = ay vy — biuy
Another angular displacement attached to node i is coming from node j. Small
rotation angle is also considered in the computation process. By doing similar
procedure done previously, the terms for A6;; is shown in Equation (A.3). Notice that

there exists a sign different in the equation since positive angular displacement is

defined as the increase in 6;.

The last contribution for the angular increment A8; comes from the node itself.
Unfortunately, it is not plausible to derive this equation by similar procedures
explained earlier. However, by inspection this angular increment is modeled as shown
in Equation (A.4).

AO;; = yv; + Pu; (A4)

As a result, the total angular displacement for node i is shown in Equation
(A.5).

Agi = Agii + AHU + AHik
(A5)
ABi = Yv; + ﬁui—aijvj + buuj + Aix Vi — bikuk

In order to complete the above expression, it is required to compute the
coefficients of y and . These two coefficients are computed based on the rigid body
motion condition for the triangular cell Q; ;. In the rigid body motion, each node in
the triangular cell travels the same distance, that is u; = u; = u, = u and v; = v; =
v, = v. Another constraint that should be considered is in the rigid body motion, the
total angular displacements should be equal to zero. Based on these assumptions, the

coefficients of y and S can be computed as shown in Equation (A.6).
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ABi = (]/ — aij + aik)v + (ﬁ + bl] - bik)u
Y =aij — Qi (A.6)

80:=0=p = —p; + by

Consequently, the final expression for the angle A8; is shown in Equation
(A.7).

ABi = (bik - bl-j)ui + (aij - aik)vi + bl]u] - al-jvj - bikuk + Aik Vi (A?)

By similar convention, the angle increment for A8; and A6, are computed as:

AGJ = (b]l - b]k)u] + (ajk - aﬁ)vj + bjkuk - ajkvk - bjiui + ajivi (A 8)
AQk = (bk] — bki)uk + (aki - akj)vj + bkiui — AgiVi — bkjuj + akjvj

By combining equations (A.7) and (A.8) together, the kinematic matrix which
governs the relation between the angular displacement and the nodal displacement for

each node is shown in Equation (A.9).

ijk
A6; by — bij  aij — ap byj —aQ;j —by Qik

ij ijk
0Uk =186 r = —bj @i bji—bj @ - bi ~ A

Ag}ifk by —ay; —by; Ay byj — by  ax — ay;
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APPENDIX B

ITERATIVE SOLVER

B.1 Conjugate Gradient Method

This conjugate gradient method is used to solver for the solution of a system of
equation Ax = b. However, the matrix A should be a symmetric matrix. Algorithm B.1

explains about how this method is implemented [34].

Algorithm B.1 Conjugate Gradient Algorithm

Input: Symmetric matrix A and vector b
Output: solution vector of equation Ax = b
1. computer, =b—Axpand p, =1y

2 fori=0,1,2,...do

3 a; = (r,1)/(Api, b))

4: Xit1 = X + ap;

=) Tiv1 = 1y — QAP;

6: Bi = (riy1, 1ig) /(i)

7 Di+1 = Ti+1 + Bibi

8 if |x;.; — x;| < tol then exit loop for 2:
9: end for

B.2 Gauss-Seidel Iterative Solver

Given a system of equation Ax = b, the solution x is solved iteratively as:

n

i-1
1
xi = P —Z(ai,-x}‘) - Z (aijxf ™) + b; (B.1)
i =1

j=it1

The solution is said to be converged if the difference between the iterative

solution is less than some designated tolerance defined by the user.

95



96



APPENDIX C

SAMPLE CASE OF GLOBAL STIFFNESS MATRIX ASSEMBLE

For a simple illustration, global stiffness matrix assemble for two different

triangular cells shown in Figure C.1.

3. 4

1. 1 2.

Figure C.1 Sample Case of Global Stiffness Matrix Assemble Process

The number with underline describes the edge number, number in a box
describes the cell number, and the number with dot at the right describes the node
number.

In this example both node 1 and node 2 are assumed to be prescribed with node
3, node 4, and node 5 are free to move. Based on this consideration, 1D array matrix

used in the computation can be written in Equation (C.1).

1
1D=u[1
vlil

_ =N
S ow
S O
o oul

| (C.1)

Based on the methods described earlier, the destination array required for

computing the active stiffness matrix and prescribed stiffness matrix are shown below.

Dest Array 1 = u[ (CZ)

v

O O
o OoON
N =W
FNIIUNS
o u o
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3

©oN
S ow

1 5
DestArray 2 = y [7 5] (C3)
8 6

1
v 0 2

[EnN

Global assemble procedure are conducted by the aids of these destination

arrays. In the above example, there are 5 local stiffness matrices for edges and 2 local

stiffness matrix for torsion.

k111 k112 k113 k114 Uq k211 k212 k213 k214 U,

Riye Kigy Fipy Kipyl)wn Kap1 Kapy Koy Kapyi) vz

[k131 k132 k133 k134j Uz [k231 k232 k233 k234} Us

k141 k142 k143 k144 V2 k241 k242 k243 k244 Va
[k311 k312 k313 k314] 251 [k411 k412 k413 k414] Us
Ik321 K3y, Kaps k324| V1 |k421 Ky Kayg k424| V3 (C.4)
|K331 Kszp Kazy Kagu||Us [k431 Kazp Kagg k434J Usg .
lk341 k342 k343 k344 Vs k441 k442 k443 k444 va

[k511 k512 k513 k514] U,
|k521 Ksyy Ksys k524| V2
|k531 k532 k533 k534|
lkS41 k542 k543 k544

The above local stiffness matrix are combined together in other to perform the
solution for the angle consideration in spring analogy. Based on the problem, the size
of the active global stiffness matrix will be 6 x 6 and prescribed global stiffness matrix
will be 4 x 6. These partitioned matrices are achieved based on Algorithm 1 shown in
Chapter 3.

For the case of torsional spring analogy, assemble of the matrices shown in
Equation (C.5) is required. In fact, the final stiffness matrix is superposition of the

contribution from both equations (C.4) and (C.5).
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(€111
C1p1
€139
C141
€159
_C161

(€211
€271
€231
€249
€259
_C261

€112
€132
C133
Clyz
C153
C162

€212
€2
€232
€24
€25,
C262

€113
C133
C133
Cl43
C153
C163

€213
€223
€233
C243
C253
C263

C114
Clpq
C13q4
Claq
Cisy
Cleq

€214
€224
€234
€244
€254
C264

€115
€135
C135
C1ys
C155
C165

€215
€235
€235
C245
C255
C265

C116]
C136
C136
Clue
C156
C166-

C216]
€226
C236
C246
C256

C266-

A

(C.5)

Similar to the approach implemented in the solution for spring analogy method

with angle consideration, the torsional spring analogy also requires partitioning the

global stiffness matrix based on whether the nodes are active degree of freedom or

prescribed boundary condition. Similar technique elaborated in Algorithm 1 in Chapter

3 is also implemented in here.
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APPENDIX D

INPUT FILES

D.1 Mesh Deformation Input File

In order to run the mesh deformation code developed in this study, a .dat input
file is prepared. This input file describes the information required for choosing the

method and explaining about the design variables used in the optimization.

#Deformation Parameter Description Accompanying the Mesh Deformation
Program

#Type of Deformation (1 = ROTATION, 2 = CAMBER, 3 = THICKNESS, 4 =
CAMBER and THICKNESS, 5 HICKS-HENNE 6=PARSEC, 7= MOVEMENT )

NUM DEFORM = 1 Snumber of deformation applied in the
program
DEFORM TYPE = 1 %description of each type applied in the
program

#Desribe the Input for the ROTATION

ROT CENTER = 0.25 0.0

ROT ANGLE = 50.0 %in degree

ROT COND = 1 %$Desribe whether the rotated is applied
to whole airfoil or not (0 = NO, 1 = YES)

#Desribe the position of design variable in camber

NUM DES CAM = 9

DES LOC =0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9

FACT CAM = 1 %increment factor in the camber distribution

#Desribe the factor used for the thickness distribution in upper and
lower

THICK FACTOR = 0.6 %both upper and lower of the airfoil

#Desciribe the Hicks Henne Location

NUM_HICKS HENNE UPPER = 11
WIDTH UPPER = 5
HICKS LOC UPPER = 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95

HICKS FACT UPPER =
0.0051,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005

NUM_HICKS HENNE LOWER = 11
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WIDTH LOWER = 5

HICKS LOC LOWER = 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95
HICKS FACT LOWER =
0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005

#PARSEC AIRFOIL Shape Parameterization for Leading Edge Radius
rad le upper = 0.02 %the radius of the leading edge lower
rad le lower = 0.009 %the radius of the leading edge lower

#PARSEC AIRFOIL Shape Parameterization for maximum crest on lower
airfoil

x low max = 0.27
y low max = -0.045
yxx low max = 0.4

#PARSEC AIRFOIL Shape Parameterization for maximum crest on upper
airfoil

x up max = 0.33
y up max = 0.07
yxx up max = -0.6

#PARSEC AIRFOIL Shape Parameterization for defining the
te off = 0

te height = 0

alpha te = -3 %in degree

beta te = 12 %in degree

#Displacement Type of Deformation for the Airfoil
X _DIST = 2.0
Y DIST = 2.0

#Method for Deforming the Mesh (1 = LINEAR, 2 = SEMITORSIONAL, 3 =
BALLCENTER, 4 = TORSIONAL)
DEF MET = 1

#SOLUTION METHOD (1 = DIRECT,2 = INDIRECT)
SOL_METHOD = 1

#ITERATIVE METHOD FOR DIRECT SOLUTION (1=NORMAL, 2=SOR METHOD)
ITER METHOD DIR = 1

#ITERATIVE METHOD FOR INDIRECT SOLUTION (1= GAUSS, 2= JACOBI, 3 =
SOR)
ITER METHOD IND = 1

#ANGLE CONSIDERATION IN INDIRECT SOLUTION (0 = NO, 1= YES)
ANGLE IND = 1

#IMPROVEMENT FOR THE BOUNDARY CONDITION SAINT VENANT PRINCIPLE (0 =
NO, 1 = YES)
BOUND STAT = 1

#REGION WHERE SAINT VENANT PRINCIPLE SHOULD BE APPLIED (0= NONE, 1=
AIRFOIL SURFACE, 2 = SOME REGIONS)
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BOUND REG = 2

#Relaxation parameter used in the iteration procedure
OMEGA = 0.8

#Determine the output file name for the deformed mesh (for both .tec
and .su2 )
OUTPUT MESH = output mesh

D.2 SU2 Input File

In order to execute SU2 CFD solver, a configuration file (.cfg) is required. The
configuration used in this study is shown below.

o o
o o
% SU2 configuration file %
% Case description: Incompressible RANS
%

% File Version 3.2.9 "eagle" %
o o
o o
9900000000000000000000000000000000000000000000000000000000000000000
OO0OOOOOOOOOOOOOODOOODOOODOOOOODOOODOOODOOODOODOOODOOODOODOOOOOODOOODOOODOOOOOOOO©

899009000000 090

T —m——————————— DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION

% Physical governing equations (EULER, NAVIER STOKES,

% TNEZ_EULER, TNEZ_NAVIER_STOKES,
% WAVE EQUATION, HEAT EQUATION,
LINEAR ELASTICITY,

% POISSON_ EQUATION)
PHYSICAL_PROBLEM: NAVIER_STOKES

o)

o\

Q

% Specify turbulent model (NONE, SA, SA NEG, SST)
KIND_TURB_MODEL= SA

o

o

Mathematical problem (DIRECT, ADJOINT, LINEARIZED)
MATH PROBLEM= DIRECT

oe

% Regime type (COMPRESSIBLE, INCOMPRESSIBLE, FREESURFACE)
REGIME TYPE= INCOMPRESSIBLE

o\

% Restart solution (NO, YES)
RESTART SOL= NO
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% Unsteady simulation (NO, TIME STEPPING, DUAL TIME STEPPING-
1ST_ORDER,

% DUAL TIME STEPPING-2ND ORDER, TIME SPECTRAL)
UNSTEADY SIMULATION= NO

% Free-stream density (1.2886 Kg/m"3 (air), 998.2 Kg/m"3 (water))
FREESTREAM DENSITY= 1.18955

% Free-stream velocity (m/s)
FREESTREAM VELOCITY= ( 13.2117383361196, 0.923853959188664, 0.0 )

Free-stream viscosity (1.853E-5 Ns/m*2 (air), 0.798E-3 Ns/m"2

% Reference origin for moment computation
REF_ORIGIN MOMENT X = 0.25
REF_ORIGIN MOMENT Y = 0.00
REF_ORIGIN MOMENT Z = 0.00

o

% Reference length for pitching, rolling, and yawing non-dimensional
moment
REF LENGTH MOMENT= 1.0

o

% Reference area for force coefficients (0 implies automatic
calculation)
REF AREA= 1.0

% Navier-Stokes wall boundary marker (s) (NONE = no marker)
MARKER HEATFLUX= ( airfoil, 0.0 )

o\

oe

Farfield boundary marker(s) (NONE = no marker)
MARKER FAR= ( farfield )

o\

o

Marker (s) of the surface to be plotted or designed
MARKER PLOTTING= ( airfoil )

Q

o\

% Marker (s) of the surface where the functional (Cd, Cl, etc.) will
be evaluated
MARKER_MONITORING: ( airfoil )
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S mmmmmmm COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---

% Numerical method for spatial gradients (GREEN_GAUSS,
WEIGHTED LEAST SQUARES)
NUM METHOD GRAD= WEIGHTED LEAST SQUARES

o\

% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 10.0

o

o\

Adaptive CFL number (NO, YES)
CFL_ADAPT= NO

o\

% Parameters of the adaptive CFL number (factor down, factor up, CFL
min value,

% CFL max value )

CFL_ADAPT PARAM= ( 1.5, 0.5, 1.0, 100.0 )

o

% Number of total iterations
EXT ITER= 2000

% Reference element length for computing the slope and sharp edges
limiters.
REF ELEM LENGTH= 0.1

o

o©

Coefficient for the limiter
IMITER_COEFF= 0.1

oo

o

Coefficient for the sharp edges limiter
SHARP_EDGES COEFF= 3.0

o

oe

Reference coefficient (sensitivity) for detecting sharp edges.
REF_SHARP EDGES= 3.0

o\

o)

% Remove sharp edges from the sensitivity evaluation (NO, YES)
SENS_REMOVE SHARP= NO

% Linear solver for implicit formulations (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES

% Preconditioner of the Krylov linear solver (JACOBI, LINELET,
LU SGS)
LINEAR SOLVER PREC= LU SGS

% Minimum error of the linear solver for implicit formulations
LINEAR SOLVER ERROR= 1E-4
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% Max number of iterations of the linear solver for the implicit
formulation
LINEAR SOLVER ITER= 5

% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 0

o

% Multi-grid cycle (V_CYCLE, W CYCLE, FULLMG CYCLE)
MGCYCLE= V_CYCLE

o\

o\

Multi-grid pre-smoothing level
MG _PRE_SMOOTH= ( 1, 2, 3, 3 )

o\

% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )

[

o\

% Jacobi implicit smoothing of the correction
MG CORRECTION SMOOTH= ( 0, 0, 0, 0 )

o\

o

Damping factor for the residual restriction
MG DAMP RESTRICTION= 0.75

o

Q

% Damping factor for the correction prolongation
MG DAMP PROLONGATION= 0.75

§ mmmmmmmm oo FLOW NUMERICAL METHOD DEFINITION -------—---

% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM,

% TURKEL_ PREC, MSW)
CONV_NUM METHOD FLOW= ROE

Spatial numerical order integration (1ST_ORDER, 2ND_ORDER,
ND_ORDER_LIMITER)

N o° o°

oe

wn

PATIAL ORDER FLOW= 2ND ORDER LIMITER

o

o

Slope limiter (VENKATAKRISHNAN, MINMOD)
LOPE LIMITER FLOW= VENKATAKRISHNAN

o N

oe

1st, 2nd and 4th order artificial dissipation coefficients
AD COEFF FLOW= ( 0.15, 0.5, 0.02 )

o\

o

Time discretization (RUNGE-KUTTA EXPLICIT, EULER IMPLICIT,
EULER EXPLICIT)
TIME DISCRE FLOW= EULER IMPLICIT

T —mmm TURBULENT NUMERICAL METHOD DEFINITION ------
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% Convective numerical method (SCALAR UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND

% Spatial numerical order integration (1ST ORDER, 2ND ORDER,
2ND ORDER_LIMITER)
SPATIAL ORDER TURB= 1ST ORDER

o\

o

Slope limiter (VENKATAKRISHNAN, MINMOD)
LOPE LIMITER TURB= VENKATAKRISHNAN

e

o\

Time discretization (EULER IMPLICIT)
TIME DISCRE TURB= EULER IMPLICIT

R e T CONVERGENCE PARAMETERS —-—--——-——-——-—

% Convergence criteria (CAUCHY, RESIDUAL)

CONV_CRITERIA= RESIDUAL

o\

Q

% Residual reduction (order of magnitude with respect to the initial
value)
RESIDUAL REDUCTION= 6

o©°

% Min value of the residual (loglO of the residual)
RESIDUAL MINVAL= -10

% Start convergence criteria at iteration number
STARTCONV_ITER= 10

% Number of elements to apply the criteria
CAUCHY ELEMS= 100

oe

Epsilon to control the series convergence
CAUCHY EPS= 1E-6

o\

% Function to apply the criteria (LIFT, DRAG, NEARFIELD PRESS,
SENS_ GEOMETRY,

e SENS_MACH, DELTA LIFT, DELTA DRAG)

CAUCHY FUNC_FLOW= DRAG

o\
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% Mesh input file
MESH FILENAME= final mesh.su2

o)

o\

oe

Mesh input file format (SU2, CGNS, NETCDF ASCII)
MESH FORMAT= SU2

o\°

% Mesh output file
MESH OUT FILENAME= mesh_out.su2

°
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% Restart flow input file
SOLUTION FLOW FILENAME= solution flow.dat

o\

% Restart adjoint input file
SOLUTION ADJ FILENAME= solution adj.dat

% Output file format (PARAVIEW, TECPLOT, STL)
OUTPUT FORMAT= TECPLOT

o\

o

% Output file convergence history (w/o extension)
CONV_FILENAME= history

o\

% Output file restart flow
RESTART FLOW FILENAME= restart flow.dat

o

o\

Output file restart adjoint
RESTART ADJ FILENAME= restart adj.dat

o\

o

Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow

o\

% Output file adjoint (w/o extension) variables
VOLUME ADJ FILENAME= adjoint

o

% Output objective function gradient (using continuous adjoint)
GRAD OBJFUNC FILENAME= of grad.dat

o

% Output file surface flow coefficient (w/o extension)
SURFACE FLOW FILENAME= surface flow

o

% Output file surface adjoint coefficient (w/o extension)
SURFACE ADJ FILENAME= surface adjoint

I°3

o\

Q

% Writing solution file frequency
WRT SOL_FREQ= 100

o\

o)

% Writing convergence history frequency
WRT CON FREQ= 1
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APPENDIX E

RANS EQUATIONS USED IN SU2 CFD MODELLING

The governing equations used in SU2 CFD modelling based on RANS
equations combined with turbulence modelling. Many turbulence modelling options
are available in SU2 CFD. It has been verified that different turbulence modelling
options in SU2 CFD lead to similar results [1]. The governing equations shown in here
are taken from one of the papers from SU2 developers [1].

The complete system of equations Navier Stokes used in tensor are shown in
Equation (E.1) [1].

ow S >
W'i'v-Fconv_v-Fwsc Q=0
P u PV
W =1qpV ,V={‘l7}, Feony = p1717+1_p (E.1)
PE w pEV + pV
0 qp
Foisc _ 5 f Q= q)pl_/)
.V + .utotalchT QpE

The term E expresses the total energy per unit mass. c, is the specific heat at
constant pressure, T is the temperature. The term T expresses the viscous stress tensor

defined in the RANS equations which is in tensor form can be defined in Equation
(E.2).

= — —)T 2 = —
T = leorar | VV + VVT — §1(v. V) (E.2)
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A perfect gas assumption is utilized with y, a ratio of specific heats and R, gas
constant. Based on this assumption, pressure, temperature, and specific heat are shown
in Equation (E.3).

p=@-Dp|E-3V.V|T=Lc =25 (E.3)

The turbulence modelling is based on Boussinesq hypothesis that states the
total viscosity is summation of laminar viscosity, 14, and turbulence viscosity, iy p.
The dynamic viscosity is computed as a function of Sutherland’s formula (based on
temperature only). On the other hand, the turbulent viscosity is computed based on

turbulence modeling.

MHtot = Hayn T Heurp

« _ Hayn N Hturp (E4)
Heot P rdyn p Tturb

For the Spalart-Allmaras turbulence modelling, the turbulence viscosity is
computed in Equation (E.5).

A 8 D 2
Uturb = PV o1, for = X_av X = 5’ V=22 (E-S)

x3+cy p

The term 7 is attained by solving a transport equation where the convective,

viscous, and source terms are given as in Equation (E.6).

- =, = +V _ A A A 7\2 A
Fe = V0,7 = =229, Q = ¢80 — cyufiy (dl) + 22 |yp|?
1+c8 1V°
" glg_6 +cw§3l 18 =T 4 Gy =) E8)
9
T ==
Sk2d?
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The term d specifies the distance to the nearest wall. On the other hand, the

term S defines the production term which is mathematically shown in Equation (E.7).

~ N kv N -
S=|w|+x2—d§fv2,w=VXV

; (E.7)

=1-—
oo 1+ xf1

The constants used for this turbulence modelling are summarized in Equation
(E.8).

2
o = §, Cp1 = 01355, Cpr = 0622,K =041

(E.8)
Cw1 = F-l_ T,sz =03,cw3=2,6,=71

In the computation, a no-slip condition is applied on the airfoil region.
Furthermore, adiabatic condition is imposed on the airfoil boundary as well. The above
equations are solved in SU2 by using Finite Volume Method with Upwind Scheme

Moreover, the flux computation is done based on the Roe flux computation method.
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