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ABSTRACT 

APPLICATION OF SPRING ANALOGY MESH DEFORMATION TECHNIQUE 

IN AIRFOIL DESIGN OPTIMIZATION 

 

Yang, Yosheph 

  M.S., Department of Aerospace Engineering 

  Supervisor : Prof. Dr. Serkan Özgen 

July 2015, 111 pages 

In this thesis, an airfoil design optimization with Computational Fluid 

Dynamics (CFD) analysis combined with mesh deformation method is elaborated in 

detail. The mesh deformation technique is conducted based on spring analogy method. 

Several improvements and modifications are addressed during the implementation of 

this method. These enhancements are made so that good quality of the mesh can still 

be maintained and robustness of the solution can be achieved. The capability of mesh 

deformation is verified by considering rotating case of an airfoil for both inviscid and 

viscous meshes. The edge connectivity required in the spring analogy itself is 

computed by several simple algorithms. It is found that the presence of modified spring 

analogy technique leads to better solution in mesh deformation technique.  

Regarding the aerodynamic design optimization, SU2 3.2.9 open source 

software is used as the CFD Solver. During the computation, the initial mesh used in 

the optimization is obtained from Pointwise® mesh generation software. OPTLIB 

Gradient Optimizer of Phoenix Model Center is implemented as the optimization 

solver. The optimization process is conducted for four different flight conditions. In 

each flight condition, minimizing airfoil drag becomes the objective function with 
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different angle of attack constraints imposed. Furthermore, several shape 

parameterizations are utilized. It is found that in each case, optimized airfoil can be 

found based on the designated design variables.  

 

Keywords: Mesh Deformation, Spring Analogy, Airfoil Design Optimization, 

Computational Fluid Dynamics  
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ÖZ 

YAY BENZETİMLİ ÇÖZÜM AĞI DEFORMASYON TEKNİĞİNİN KANAT 

KESİTİ TASARIMI EN İYİLEŞTİLEŞTİRİLMESİNDE UYGULANMASI 

 

Yang, Yosheph 

  Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

  Tez Yöneticisi  : Prof. Dr. Serkan Özgen 

Temmuz 2015, 111 sayfa 

Bu tezde, kanat kesiti en iyileştirilmesinde kullanılan Hesaplamalı Akışkanlar 

Dinamiği (HAD) analizleri ile birleştirilmiş çözüm ağı deformasyon tekniği detaylı bir 

biçimde anlatılmıştır. Kullanılan çözüm ağı deformasyon tekniğinde, yay benzetim 

metodu baz alınmıştır. Tez içerisinde, metodun uygulanışındaki geliştirme ve 

modifikasyonlara da yer verilmiştir. Bu geliştirmeler, deforme olmuş çözüm ağının 

kalitesinden ve çözümün gürbüzlüğünden emin olabilmek için yapılmıştır. Viskoz ve 

viskoz olmayan çözüm ağlarında, kanat kesitinin döndürülme durumu incelenerek 

çözüm ağı deformasyonunun yeteneği doğrulanmıştır. Yay benzetiminde gerekli olan 

çözüm ağı düğüm noktaları bağlantıları çeşitli basit algoritmalar kullanılarak 

hesaplanmıştır. Modifiye edilmiş metodun, klasik metoda göre daha iyi çözümler 

verdiği tespit edilmiştir.  

Aerodinamik tasarım en iyileştirilmesinde, SU2 3.2.9 açık kaynak kodlu 

yazılımı HAD çözücüsü olarak kullanılmıştır. En iyileştirmede kullanılacak ilk çözüm 

ağı Pointwise® çözüm ağı oluşturma yazılımıyla elde edilmiştir. En iyileştirme 

çözücüsü olarak Phoenix Model Center yazılımın "OPTLIB Gradient Optimizer" 

modülü kullanılmıştır. En iyileştirme sürecinde dört farklı uçuş koşulu göz önüne 
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alınmıştır. Her bir uçuş koşulunda, farklı hücum açısı kısıtlamaları kullanılarak, kanat 

kesitinin oluşturduğu sürüklemeyi en aza indirmek amaç fonksiyonu olarak 

belirlenmiştir. Ayrıca, çeşitli şekil parametrelendirmesi de kullanılmıştır. Her bir 

durumda, en iyileştirilmiş kanat kesitinin belirtilen tasarım değişkenleri temel alınarak 

elde edilebileceği tespit edilmiştir. 

 

Anahtar Kelimeler: Çözüm Ağı Deformasyonu, Yay Benzetimi, Kanat Kesiti Tasarımı 

En İyileştirmesi, Hesaplamalı Akışkanlar Dinamiği 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation of the Study 

The status of Computational Fluid Dynamics (CFD) tools at the current level 

brings a great help to many aircraft designers during airfoil selection. By the aid of this 

tool, aerodynamic properties of the airfoil can be calculated easily. Combination of 

this tool with an optimization tool will help the designers to find the optimum design 

easily instead of doing many experimental analysis. In order to enhance the 

optimization in terms of updating mesh, instead of generating a new mesh for each 

iteration, mesh deformation technique is implemented.  

In this thesis, the aforementioned methods are actualized in design optimization 

of an airfoil. The optimization process is performed by considering the objective 

function to be minimizing airfoil sectional drag by specifying airfoil sectional lift as 

the constraint. Additionally, the optimization procedure is conducted for some flight 

conditions in the mission profile. During the optimization process, the deformed mesh 

is attained by using the developed mesh deformation tool, based on the spring analogy 

mesh deformation method.  

1.2 Limitation of the Study 

In this thesis, the study is limited to aerodynamic point of view of the airfoil 

design optimization based on CFD Tools. It is assumed that the results obtained from 

CFD analysis is reliable. The turbulence modelling of the CFD solver is already 

verified[1]. As a result, no further experimental analysis for the airfoil is conducted.  
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In the mesh deformation and CFD analyses performed here, the meshes should 

be unstructured meshes in 2-D Airfoil. Different type of unstructured polygon meshes 

or structured meshes will not be taken into account in this thesis.   

Apart from the above mentioned constraints, the flow regime is limited to 

incompressible flow only. Consequently, the optimization for subsonic or supersonic 

flow is not addressed in this thesis.  

1.3 Layout of the Study  

Chapter 2 encloses the literature study about airfoil design optimization. This 

includes the shape parameterization and optimization scheme utilized in the analysis. 

Additional, some past works concerning variation in mesh deformation technique is 

elaborated in here as well.  

Chapter 3 gives brief information regarding spring analogy mesh deformation 

methods applied in this thesis. These methods are divided into some categories based 

on the procedure and numerical solution used to get the final deformed mesh. 

Moreover, two different solution procedures implemented in the study are explained 

here. The required mesh connectivity and data structure used in the code are also 

studied in this chapter.  

Chapter 4 contains the explanation about how the CFD and optimization 

analyses are conducted in the thesis. In the CFD analyses, information regarding initial 

mesh and flow parameters are provided. For the optimization analyses, implemented 

optimization scheme and implemented shape parameterizations are elaborated.  

In Chapter 5, the results of mesh deformation method for the various spring 

analogy approaches are shown. Furthermore, the 2-D airfoil design optimization with 

given constraints are also presented in this chapter. The results are given in a 

systematic way by considering each case in the optimization.   

Chapter 6 contains the general conclusions of the study. Moreover, the 

recommendation for the future work is also provided in here.   
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CHAPTER 2 

LITERATURE REVIEW 

This chapter is devoted to some brief explanations regarding aerodynamic 

design optimization, and mesh deformation method. Mostly, the information regarding 

recent research is elaborated.  

2.1 Aerodynamic Optimization  

The concept of aerodynamic optimization in the design process is not 

unfamiliar in the current decades. In fact, the two-dimensional aerodynamic design 

was already introduced by Lighthill [2] back in 1945.  The fact that Computational 

Fluid Dynamics (CFD) tools have developed so greatly during these past decades 

becomes one of main reasons that optimization tools have been greatly combined with 

CFD tools. However, optimization tools were not implemented due to several reasons 

[3]: the estimation of drag coefficient just became more accurate in the past decade, 

high number of design spaces and non-linear constraints necessary to find the optimum 

value, and huge demanding computational resources to perform the optimization.  

Like any other optimization concept, the notion of aerodynamic optimization 

also has some design variables and objective functions with some required constraints. 

Shahroki and Jahangirian [4] have described that choosing appropriate design 

variables for shape parameterization plays a significant role in determining the 

optimum shape of the airfoil, especially in transonic flow. Excellent design variables 

should encompass extensive design spaces. The objective functions defined in the 

optimization mainly comprises aerodynamic coefficients which govern the 

performance, like: maximum lift to drag ratio, minimum pitching moment, and many 

others. Some constraints are also imposed on the aerodynamic optimization in order 
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to achieve feasible optimum design. Epstein et al. [5] classified the constraints imposed 

during the optimization process as either geometry constraints, which mainly deals 

with the geometrical properties of the design or aerodynamic constraints, which are 

concerned more about the performance of the aircraft. 

In order to have optimum wing, which is the major issue encountered in the 

optimization problem, one should also consider the airfoil, the basic element of the 

wing that dictates large-scale flow phenomena occurring in the wing [6].  

The airfoil optimization itself in general can be categorized into two different 

categories: inverse design optimization, which tries to find a geometry which has a 

prescribed distribution of pressure coefficient. On the other hand, direct numerical 

optimization aims to find the best feasible design for some given constraints [7].  

2.1.1 Shape Parameterization 

Shape parameterization, which is dominantly introduced in the airfoil 

optimization depends on whether the aim is to improve a current design or to introduce 

a completely new design. For the improvement of the current design, some local 

perturbations along the airfoil surface are sufficient. However, getting a completely 

new design can be achieved by using other design shape parameterizations, which 

allows the significant changes in the geometry.  

There are some attempts made to parameterize the airfoil shape. One of the 

well-known methods to parameterize airfoil shapes is known as PARSEC 

(PARameterized SECtion), which was developed by Sobieczky in 1998 [8]. The idea 

of this method is to parameterize the airfoil into several design parameters. Figure 2.1 

specifies some required parameters to define the airfoil shape, which are: leading edge 

radius (𝑅𝑙𝑒), abscissa of maximum peak for lower airfoil (𝑋𝑙𝑜), abscissa of maximum 

peak for upper airfoil (𝑋𝑢𝑝), ordinate of maximum peak for lower airfoil (𝑌𝑙𝑜), 

ordinate of maximum peak for upper airfoil (𝑌𝑢𝑝), curvature of maximum peak for 

lower airfoil (𝑌𝑋𝑋𝑙𝑜), curvature of maximum peak for upper airfoil (𝑌𝑋𝑋𝑢𝑝), trailing 

edge thickness (𝑇𝑇𝐸), trailing edge offset (𝑇𝑜𝑓𝑓), trailing edge direction angle (𝛼𝑇𝐸), 
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and trailing edge wedge angle (𝛽𝑇𝐸). A mathematical equation with six terms is 

selectively considered to describe both the upper and the lower airfoil surfaces 

separately. These representations of upper and lower airfoil surfaces are shown in 

Equation (2.1). 

 

 

Figure 2.1 Airfoil shape parameterization using PARSEC method [8] 

 

 

𝑦𝑢𝑝𝑝𝑒𝑟 =∑𝑎𝑖𝑥
𝑖−
1
2

6

𝑖=1

 

𝑦𝑙𝑜𝑤𝑒𝑟 =∑𝑏𝑖𝑥
𝑖−
1
2

6

𝑖=1

 

(2.1) 

 

Coefficients of the mathematical equation representing the airfoil curve are 

found by satisfying the input parameters defined earlier in PARSEC method. Later, by 

using these coefficients, the curve for both upper and lower airfoil can be generated.  

Another method that can be considered in the airfoil shape parameterization 

during the optimization is implementation of a bump function. Hicks and Henne 

introduced this notion while trying to apply some wing numerical optimization in 1978 

[9]. The bump functions used by Hicks and Henne are shown in Equation (2.2).  
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𝑦𝑢𝑝𝑝𝑒𝑟 = 𝑦𝑢𝑝𝑝𝑒𝑟𝑏𝑎𝑠𝑖𝑐 +∑𝑎𝑖𝑓𝑖

5

𝑖=1

 

𝑦𝑙𝑜𝑤𝑒𝑟 = 𝑦𝑙𝑜𝑤𝑒𝑟𝑏𝑎𝑠𝑖𝑐 +∑𝑏𝑖𝑓𝑖

5

𝑖=1

 

(2.2) 

 

The values of 𝑎𝑖 and 𝑏𝑖 are considered as the amplitude of the introduced bump 

function. Later, these values are taken as the design variables during the optimization 

process. Figure 2.2 depicts the shapes of the bump functions implemented by Hicks-

Henne for numerical optimization.  

 

Figure 2.2 Hicks-Henne Bump Function [9] 

 

The above defined bump functions also contain sinusoidal bump functions for 

𝑓2 to 𝑓4. One can also generalize these bump functions by considering Equation (2.3), 

plotted in Figure 2.3.  

 
𝑓𝑖(𝑥) = [sin (𝜋𝑥

log0.5
log𝑡1 )]

𝑡2

 (2.3) 
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Figure 2.3 Set of Sinusoidal Bump Functions with Different Location of Maximum 

Bump [10] 

 

The above function is utilized during the optimization procedure done by 

Tashinizi et al. in their work [10]. The variable 𝑡1 defines the location of the maximum 

bump, whereas 𝑡2 describes the width of the bump function.  

Another traditional way to parameterize the airfoil shape is by using NACA 4-

digit airfoil. In their work as well, Tashinizi et al. also considered NACA 4-digit airfoil 

as design parameters for the optimization [10]. They utilized the digit in NACA airfoil 

as design parameters used during the optimization.  

Chen et al. [11] also consider modified Joukowsky transformation combined 

with smooth curvature technique for airfoil shape parameterization during the 

optimization. Detail of the transformation scheme is shown in Figure 2.4. They defined 

𝜌(𝜃) as the shape function of the airfoil, which is shown in Equation (2.4).  

 𝜌(𝜃) = 𝐶0 + 𝐶1𝜃 + 𝐶2𝜃
2 + 𝐶3𝜃

3 +⋯+ 𝐶𝑘𝜃
𝑘 +⋯ (2.4) 

 



 

 8 

 

Figure 2.4 Conformal Transformation [11] 

 

Later by defining smooth curvature technique, the corrected value of 𝑎 can be 

estimated. In their work, the coefficients of the shape function up to order ten are 

considered as the design variables.  

Concerning the wing shape parameterization, Sobieczky [8] introduced two 

different concepts in order to define the wing sections: blending support airfoils data 

and varying generating parameter along the wing span. In the former method, several 

support airfoils are chosen in some desired cross sections. The wing geometry between 

the consecutive cross sections are computed by using interpolation scheme. This 

similar approach is applied by Hicks and Henne [9] in their work in wing numerical 

optimization as shown in Figure 2.5. In the second method, parameters defining the 

airfoils are taken to be varying along the span direction. As a results, several sets of 

parameters are used in this approach.  

Hicks and Henne [9] also stated that wing twist can also be considered as a 

design variable for wing shape parameterization. Later, they also emphasized that wing 

planform changing such as: aspect ratio, taper ratio, and sweep angle can be recognized 

as design variables during the optimization. However, during the implementation of 

these variables, high computational resources might be required as well.  
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Figure 2.5 Hicks-Henne Wing Paramerization using Some Cross Sections [9] 

2.1.2 Optimization Algorithm Scheme  

In general, there are two families of optimization algorithms that are applied 

during aerodynamic optimization: gradient based optimization and genetic algorithm. 

The algorithms implemented mainly depends on the number of design variables and 

the availability of computational resources. Dulikravich [12] made comparison 

between these two algorithms as shown in Figure 2.6. He pointed that gradient based 

method algorithm is suitable for lower number of design variables since less number 

of gradient vectors are computed. The implementation of gradient based algorithm 

with higher number of design variables yields to high computation time caused by the 

calculation of gradient vectors. On the other hand, the genetic algorithm is more 

favorable for high number of variables due to the fact no gradient vector computation 

is required in this scheme.  
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Figure 2.6 Comparison between (a) Gradient Based Algorithm and (b) Genetic 

Algorithm [12] 

 

The aerodynamic optimization scheme in general is combined with a flow 

solver. The most common methods used for the flow solver are: Panel Methods [13], 

Euler Solver [10], or even RANS Solver [14]. This optimization in general is 

accompanied by a sensitivity analysis in order to enhance the process. Peter and 

Dwight [15]  categorized the methods applied in the sensitivity analysis into several 

methods, which are: finite difference method, discrete direct method, discrete adjoint 

method, and continuous adjoint method.  

2.2 Mesh Deformation Method  

Unsteady flow simulation and numerical design optimization are two cases for 

which the mesh needs to be updated during the process. Lin et al. [16] categorized 

three general ways to update the mesh, which are remeshing, mesh deformation, and 

combination of remeshing and mesh deformation. In the remeshing approach, a new 

local or global mesh is generated by the aid of mesh generator according to the new 

geometry domain. On the other hand, the mesh deformation concept changes the nodal 

location while keeping the nodal connectivity intact.  

The mesh deformation methods have been developed greatly since Batina [17] 

who introduced the spring network in the mesh deformation method. There are many 

different new approaches that have been reported in the literature. These approaches 
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can be generally categorized as [18]: partial differential equation (PDE) methods, 

physical analogy methods, algebraic methods, and their combination.  

In his work, Luke et al. [19] mentioned that the solver stability and accuracy 

should be the primary concern during mesh deformation algorithm. During the 

deformation process, the elements can become inverted or highly skewed which can 

advance to solver stability problems. Consequently, choosing the appropriate method 

for the problems should be done by considering the capability of each mesh 

deformation technique.  

2.2.1 Partial Differential Equation Method  

In this method, the mesh motion is solved through proposed differential 

equations using certain boundary conditions. Generally, Laplacian and biharmonic 

equations are chosen as the partial differential equations. This method mostly works 

for a problem which requires small deformation since it does not have a high mesh 

deformation capability [20]. Masud et al. [21] conducted a research using Arbitrary 

Lagrangian-Eulerian method, which is considered as one of the PDE methods. Figure 

2.7 illustrates the result achieved by using this method.    

  

(a) (b) 

Figure 2.7 (a) Initial Airfoil Mesh (b) Rotated Airfoil Mesh using ALE Method 
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2.2.2 Spring Analogy Method 

This method is the most commonly used method in the mesh deformation 

scheme. This is mainly due to the fact that this method can be easily implemented to 

the problem. Since first introduced by Batina [17], several kinds of spring network 

concepts have been introduced. Figure 2.8 depicts the result of initial spring analogy 

method proposed by Batina [17].  

The idea used in this method is basically considering each edge on the mesh to 

behave like a spring which has its own stiffness. Different stiffness definitions have 

been introduced for comparing one spring analogy method to the other one. 

Furthermore, many improvements regarding spring analogy methods have also been 

proposed by other researchers. Details of several spring methods are explained in the 

later chapter.   

 
(a) (b) 

Figure 2.8 Application of Spring Analogy by Batina for Pitching Airfoil (a) Initial 

(b) 15 Degree Rotation [17] 

2.2.3 Algebraic Method 

Zhou and Li [20] described the algebraic methods as methods on which the 

movement of grid nodes are defined as a function of the boundary nodes which has no 

physical meaning, like the one spring analogy has. They indicated that these methods 

are more effective compared to the aforementioned techniques. However, this method 
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is more difficult to be implemented. Several algebraic methods developed so far 

include: Inverse Distance Weighting Interpolation [22], Delaunay Interpolation [23], 

and Radial Basis Function Interpolation [24]. Figure 2.9 gives the result of mesh 

deformation method using radial basis function approach.  

 

 

Figure 2.9 Sample of Algebraic Mesh Deformation Method using Radial Basis 

Function [24] 
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CHAPTER 3 

SPRING ANALOGY MESH DEFORMATION METHOD 

3.1 Basic Idea of Spring Analogy Method  

Based on the implemented variables for the spring force computation, there are 

two major types of spring analogy mesh deformation methods: vertex spring analogy 

method and segment spring analogy method. In the vertex spring analogy method, 

nodal coordinates are considered as the variables. On the other hand, nodal 

displacements are used in the segment spring analogy method.  

3.1.1 Vertex Spring Method  

The idea used in the vertex spring method is by considering each edge as a 

spring which obeys the linear Hooke’s Law. The equilibrium length of the spring is 

considered as zero in this method. The force exerted on node 𝑖 by surrounding nodes 

𝑗 can be calculated as: 

 

�⃗�𝑖 =∑𝛼𝑖𝑗(�⃗�𝑗 − �⃗�𝑖)

𝑣𝑖

𝑗=1

 (3.1) 

where 

 

 

The stiffness coefficient, 𝛼𝑖𝑗 is taken as constant (𝛼𝑖𝑗 = 1).  

𝛼𝑖𝑗 : stiffness of the spring between node 𝑖 and node 𝑗 

𝑣𝑖 : number of neighbors of node  𝑖 

�⃗�𝑖 : position vector of node  𝑖 
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The equilibrium can be achieved by considering the fact that force summation 

in each node should be equal to zero. Typical network spring around an arbitrary node 

𝑖 is shown in Figure 3.1. Based on Equation (3.1), the iterative solution for the new 

position vector of node 𝑖 can be calculated as:  

 
�⃗�𝑖
𝑘+1 =

∑ 𝛼𝑖𝑗�⃗�𝑖
𝑘𝑣𝑖

𝑗=1

∑ 𝛼𝑖𝑗
𝑣𝑖
𝑗=1

 (3.2) 

 

The boundary conditions for this method is Dirichlet type, which means that 

the position of boundary nodes are fixed during the iteration procedure. For the interior 

points, Equation (3.2) needs to be solved iteratively.  

 

Figure 3.1 Physical Description of Spring Analogy Method [25] 

3.1.2 Segment Spring Method  

The segment spring method is developed by Batina [17] for deforming the 

mesh around pitching airfoil. Unlike the former method, this method has the 

equilibrium length equal to the original length. Moreover, the Hooke’s Law for spring 

is applied to the node displacement instead node position. Mathematically, the force 

exerted on node 𝑖 can be written in Equation (3.3). 
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�⃗�𝑖 =∑𝑘𝑖𝑗(�⃗�𝑗 − �⃗�𝑖)

𝑣𝑖

𝑗=1

 (3.3) 

where  

 

 

 

 

 

The stiffness of the spring is proposed to be proportional to the inverse of the 

edge length. Mathematically, it can be written as: 

 
𝑘𝑖𝑗 =

1

√(�⃗�𝑗 − �⃗�𝑖) ∙ (�⃗�𝑗 − �⃗�𝑖)

 
(3.4) 

 

Similar criteria for the equilibrium condition is applied in this method as well. 

The iterative solution for new displacement vector of node 𝑖 can be calculated as: 

 
�⃗�𝑖
𝑘+1 =

∑ 𝑘𝑖𝑗�⃗�𝑗
𝑘𝑣𝑖

𝑗=1

∑ 𝑘𝑖𝑗
𝑣𝑖
𝑗=1

 (3.5) 

 

Dirichlet type boundary condition is also applied as the known displacement 

vectors on the boundary nodes. The final location vector for the node 𝑖 can be 

calculated as:  

 �⃗�𝑖
𝑘+1 = �⃗�𝑖

𝑘 + �⃗�𝑖
𝑘 (3.6) 

 

Compared to the earlier Vertex Spring method, the Segment Spring method 

requires higher computational memory since displacement vector needs to be stored 

as well. However, Blom [25] noticed that the former method may lead to the 

contraction of the mesh near a convex boundary, where a line which connects between 

𝑘𝑖𝑗 : stiffness of the spring between node 𝑖 and node 𝑗 

𝑣𝑖 : number of neighbors of node  𝑖 

�⃗�𝑖 : displacement vector of node  𝑖 
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two points inside the boundary still lies inside the boundary. Consequently, Segment 

Spring Method is more preferable compared to the Vertex Spring Method. 

Unlike using iteration procedure shown in Equation (3.6), Botasso et al. [26] 

introduced the incremental displacement algorithm for updating the displacement 

vector field. In that algorithm, some scaling factor are used to compute the 

displacement increment for each iteration based on the final prescribed boundary 

condition.  

3.2 Improvement Over Basic Spring Analogy Method  

During the implementation of the spring analogy method, element inversion 

(node passes through the edge) might occur for a problem with high displacement 

vector. In order to remedy this issue, some improvements have been proposed so far. 

Several of the improvement methods are described below.  

3.2.1 Angle Consideration in the Linear Spring Formulation  

The linear spring formulation described in Section 3.1 lacks the coordinates 

interaction between 𝑥 and 𝑦, which might not truly represents the spring behavior. 

Burg [27] proposed an angle made between two spring nodes during the formulation 

of the force exerted on node, as shown in Figure 3.2. The forces exerted on the nodes 

are computed based on the local stiffness matrix for each edge. The derivation of this 

stiffness matrix is very similar to the one used in Finite Element Methods for truss 

members [28]. The 2-D local stiffness matrix with angle considerations can be written 

as [27]:  

 

𝐾𝑖𝑗 = 𝑘𝑖𝑗

[
 
 
 
 

cos2 𝜃𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 −cos2 𝜃𝑖𝑗 −cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 sin2 𝜃𝑖𝑗 −cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 −sin2 𝜃𝑖𝑗

−cos2 𝜃𝑖𝑗 −cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 cos2 𝜃𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

−cos𝜃𝑖𝑗 sin 𝜃𝑖𝑗 −sin2 𝜃𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 sin2 𝜃𝑖𝑗 ]
 
 
 
 

 (3.7) 
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Figure 3.2 Schematic of Angular Consideration in the Linear Spring Analogy 

 

The relation between the force exerted on nodes and displacement vectors for 

this updated formulation is shown in Equation (3.8).  

 

{
 
 

 
 
𝐹𝑖𝑗𝑥
𝐹𝑖𝑗𝑦
𝐹𝑗𝑖𝑥
𝐹𝑗𝑖𝑦}

 
 

 
 

= 𝐾𝑖𝑗

{
 

 
∆𝑥𝑖
∆𝑦𝑖
∆𝑥𝑗
∆𝑦𝑗}

 

 
 (3.8) 

 

Consequently, the force in x-direction at node 𝑖 can be computed as:  

 𝐹𝑖𝑗𝑥 = 𝑘𝑖𝑗[(∆𝑥𝑖 − ∆𝑥𝑗) cos
2 𝜃𝑖𝑗 + (∆𝑦𝑖 − ∆𝑦𝑗) cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗] (3.9) 

 

The force in y-direction at node 𝑖 can be computed as:  

 𝐹𝑖𝑗𝑦 = 𝑘𝑖𝑗[(∆𝑥𝑖 − ∆𝑥𝑗) cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 + (∆𝑦𝑖 − ∆𝑦𝑗) sin
2 𝜃𝑖𝑗] (3.10) 

 

  



 

 20 

By summing the forces exerted on node 𝑖 from its surrounding nodes separately 

for each 𝑥 and 𝑦 direction, the following equations are obtained: 

 
∑ 𝐹𝑖𝑗𝑥

𝑣𝑖

𝑗=1

= 0 

(∑𝑘𝑖𝑗 cos2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

)∆𝑥𝑖 − (∑𝑘𝑖𝑗 cos2 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

) 

+(∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

)∆𝑦𝑖 −(∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

) = 0 

(3.11) 

 

 
∑𝐹𝑖𝑗𝑦

𝑣𝑖

𝑗=1

= 0 

(∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

)∆𝑥𝑖 − (∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

) 

+(∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

)∆𝑦𝑖 −(∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

) = 0 

(3.12) 

 

Both equations (3.11) and (3.12) are coupled with the same unknown terms ∆𝑥𝑖 

and ∆𝑦
𝑖
. These unknown terms are computed by solving these two equations 

simultaneously. In matrix form, those two equations are shown in Equation (3.13). 

Solution for this equation can be computed by using any means to solve a 2 x 2 matrix. 

In this study, Cramer’s rule is used to solve this system of equations.  

 

[
 
 
 
 
 

∑𝑘𝑖𝑗 cos
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1 ]
 
 
 
 
 

{
∆𝑥𝑖
∆𝑦𝑖
} 

=

{
 
 

 
 
∑𝑘𝑖𝑗 cos

2 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1 }
 
 

 
 

 

(3.13) 
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Another solution for angle consideration can also be computed by indirect 

solution method similar to the procedure proposed by Burg [27] which is related to the 

solution method for the Finite Element Analysis in truss member solution.  

3.2.2 Torsional Spring Analogy 

Farhat et al. [28, 29] added additional torsional spring on top of the linear spring 

definition. This additional spring helps to prevent the cell inversion for large 

displacement case. The basic idea is to attach each node 𝑖, for each triangular cell Ω𝑖𝑗𝑘 

connected to node 𝑖, shown in Figure 3.3, a torsional spring whose stiffness is given 

by: 

 
𝐶𝑖
𝑖𝑗𝑘
=

1

sin2 𝜃𝑖
𝑖𝑗𝑘

 (3.14) 

 

 

Figure 3.3 Motion and Deformation of a Triangle in the Torsional Spring [29] 

 

The value of sin 𝜃𝑖
𝑖𝑗𝑘

 is computed based on the area computation of triangular 

cell Ω𝑖𝑗𝑘. The formulation is shown in Equation (3.15).  

 
𝐴𝑖𝑗𝑘 =

1

2
𝑙𝑖𝑗𝑙𝑖𝑘 sin 𝜃𝑖

𝑖𝑗𝑘
 

sin 𝜃𝑖
𝑖𝑗𝑘
=
2𝐴𝑖𝑗𝑘

𝑙𝑖𝑗𝑙𝑖𝑘
 

(3.15) 
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In the torsional spring analogy, it is required to have a transformation from the 

angular displacements into nodal displacements. This is required since the torsional 

spring analogy only deals with angular displacement [29]. This transformation is 

achieved by considering both kinematics formulation and equilibrium condition of the 

torsional spring analogy. The final expression of kinematic formulation for the 

torsional spring analogy is shown in Equation (3.16) [29]. Detail of the derivation of 

this matrix is provided in the Appendix A. 

 

∆𝜃𝑖𝑗𝑘 = {

∆𝜃𝑖
𝑖𝑗𝑘

∆𝜃𝑗
𝑖𝑗𝑘

∆𝜃𝑘
𝑖𝑗𝑘

} = [

𝑏𝑖𝑘 − 𝑏𝑖𝑗 𝑎𝑖𝑗 − 𝑎𝑖𝑘 𝑏𝑖𝑗 −𝑎𝑖𝑗 −𝑏𝑖𝑘 𝑎𝑖𝑘
−𝑏𝑗𝑖 𝑎𝑗𝑖 𝑏𝑗𝑖 − 𝑏𝑗𝑘 𝑎𝑗𝑘 − 𝑎𝑗𝑖 𝑏𝑗𝑘 −𝑎𝑗𝑘
𝑏𝑘𝑖 −𝑎𝑘𝑖 −𝑏𝑘𝑗 𝑎𝑘𝑗 𝑏𝑘𝑗 − 𝑏𝑘𝑖 𝑎𝑘𝑖 − 𝑎𝑘𝑗

]

⏟                                            
𝑅𝑖𝑗𝑘 {

 
 

 
 
𝑢𝑖
𝑣𝑖
𝑢𝑗
𝑣𝑗
𝑢𝑘
𝑣𝑘}
 
 

 
 

 (3.16) 

 

Similar to the basic spring analogy, the final nodal coordinates are computed 

based on force equilibrium. In the torsional spring analogy, each node contributes  

moment forces [29]. These moment forces are defined as shown in Equation (3.17).  

 

𝑀𝑖𝑗𝑘 = {

𝑀𝑖 

𝑀𝑗 

𝑀𝑘

} =

[
 
 
 𝐶𝑖
𝑖𝑗𝑘

0 0

0 𝐶𝑗
𝑖𝑗𝑘

0

0 0 𝐶𝑘
𝑖𝑗𝑘
]
 
 
 
{

∆𝜃𝑖
𝑖𝑗𝑘

∆𝜃𝑗
𝑖𝑗𝑘

∆𝜃𝑘
𝑖𝑗𝑘

} (3.17) 

 

These moment forces are later transformed by a transformation matrix for each 

triangular cell Ω𝑖𝑗𝑘, 𝑇𝑖𝑗𝑘, into linear force which is defined in Equation (3.18).  

 

𝐹𝑖𝑗𝑘 =

[
 
 
 
 
 
 
𝐹𝑖𝑥
𝐹𝑖𝑦
𝐹𝑗𝑥
𝐹𝑗𝑦
𝐹𝑘𝑥
𝐹𝑘𝑦]
 
 
 
 
 
 

= 𝑇𝑖𝑗𝑘𝑀𝑖𝑗𝑘 (3.18) 

 

Based on the fact that work done by force should be equal to work done by 

moment, the transformation matrix is later shown in Equation (3.19) [29].  
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 𝐹𝑖𝑗𝑘
𝑇

𝑞𝑖𝑗𝑘 = 𝑀𝑖𝑗𝑘𝑇∆𝜃𝑖𝑗𝑘 

where 𝐹𝑖𝑗𝑘 = 𝑇𝑖𝑗𝑘𝑀𝑖𝑗𝑘 and ∆𝜃𝑖𝑗𝑘 = 𝑅𝑖𝑗𝑘𝑞𝑖𝑗𝑘 

𝑀𝑖𝑗𝑘𝑇𝑇𝑖𝑗𝑘
𝑇
𝑞𝑖𝑗𝑘 = 𝑀𝑖𝑗𝑘𝑇𝑅𝑖𝑗𝑘𝑞𝑖𝑗𝑘 

𝑇𝑖𝑗𝑘 = 𝑅𝑖𝑗𝑘
𝑇
 

(3.19) 

 

Therefore, the expression for linear force due to the torsional spring analogy is 

shown in Equation (3.20).  

 𝐹𝑖𝑗𝑘 = [𝑅𝑖𝑗𝑘
𝑇
𝐶𝑖𝑗𝑘𝑅𝑖𝑗𝑘]⏟      𝑞𝑖𝑗𝑘

𝐾𝑡𝑜𝑟𝑠𝑖𝑜𝑛
𝑖𝑗𝑘

 
(3.20) 

 

The final force equilibrium is achieved by combining the forces arising from 

linear spring and torsional spring for each edge in the mesh. Instead of using the 

solution method proposed by Farhat et al. [29], where contribution from each 

triangular cell to each edge is considered, a different solution method is proposed.  

In the proposed solution, a similar approach like done in Finite Element 

Analysis, each triangular cell is considered as an element which has a 6 x 6 local 

stiffness matrix 𝐾𝑡𝑜𝑟𝑠𝑖𝑜𝑛
𝑖𝑗𝑘

. Details regarding the implementation of this solution method 

are elaborated in Section 3.3.  

 

3.2.3 Semi-Torsional Spring Analogy 

The improvement method shown in the previous section requires a complicated 

formulation to be done. Zeng [31]  introduced the notion of the semi-torsional spring 

method. This method behaves like the linear spring method with angle information 

incorporated into the spring stiffness.  

The stiffness of the spring edge is defined as the superposition of linear spring 

defined earlier and the semi-torsional spring. The linear spring is exactly similar to the 

one defined in Equation (3.4). Mathematically, this can be written as:  
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 𝑘𝑖𝑗
total = 𝑘𝑖𝑗 + 𝑘𝑖𝑗

semi−torsional 

where 

𝑘𝑖𝑗
semi−torsional = 𝜆 ∑

1

sin2 𝜃𝑚
𝑖𝑗

𝑁𝐸𝑖𝑗

𝑚=1

 

(3.21) 

 

For a triangular 2-D cell shown in Figure 3.4, the spring forces on the edge 𝑖 −

𝑗 are calculated as[31]: 

 
[𝐹𝑖𝑗] = (

1

𝑙𝑖𝑗
+ 𝜅 (

1

sin2 𝜃1
+

1

sin2 𝜃2
)) [𝐵∗][𝑞𝑖𝑗] 

 

[𝐹𝑖𝑗] =

[
 
 
 
𝐹𝑖𝑥
𝐹𝑖𝑦
𝐹𝑗𝑥
𝐹𝑗𝑦]
 
 
 

    [𝐵∗]4𝑥4 = 𝛿𝑝𝑞 − 𝛿𝑝,𝑞+2 − 𝛿𝑝+2,𝑞    

[𝑞𝑖𝑗] =

[
 
 
 
∆𝑥𝑖
∆𝑦𝑖
∆𝑥𝑗
∆𝑦𝑗]
 
 
 
 

𝛿𝑝𝑞 is a Kronecker
′s Delta 

(3.22) 

 

[𝐵∗]4𝑥4 = [

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 0

] (3.23) 

 

In this method that proposed by Zeng [31], the matrix [𝐵∗]  defined for the 

computation is similar to the idea of basic spring analogy. For the implementation in 

this study, this method is later improved by adding the edge angle into the 

consideration as well. As a result, the matrix [𝐵∗] defined earlier is changed into the 

matrix shown in the Equation (3.7). 
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Compared to the previous torsional spring method, this method only includes 

2 angles (𝜃1 and θ2). Consequently, the data saving will be less compared to the 

previous method.  

 

Figure 3.4 Angle Definition Used in 2-D Semi Torsional Spring 

3.2.4 Ball-Center Spring Analogy  

The idea of the Ball-Center spring analogy comes from the idea proposed by 

Bottasso et al. for Ball-Vertex spring analogy method [26]. In their approach, some 

additional linear springs are introduced to resist the motion of a mesh node towads its 

region-opposed faces. This Ball-Vertex spring analogy method is introduced by 

connecting node 𝑖 to its projection 𝑝 on the plane of the face 𝐹𝑖, opposite of node 𝑖. For 

more clarity, the location of projection point 𝑝 can be seen on Figure 3.5. 

 

Figure 3.5 Location of Projection Point p on the face 𝐹𝑖 

 

In the Ball-Center Spring Analogy itself, instead of creating a linear spring 

based on node 𝑖 and its projection on the opposite plane, the additional spring will be 
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created from the node 𝑖 and the center of the cell of a triangular cell in 2-D). The detail 

of this proposed method is shown in Figure 3.6 [32]. 

 

Figure 3.6 Schematic of Ball-Center Spring Analogy for 2-D Unstructured Mesh 

 

In 2-D formulation, the center of the cell is assumed to be located at centroid 

of the triangular cell. The location and displacement of center node in a triangular cell 

Ω𝑖𝑗𝑘 is formulated as in Equation (3.24).  

 
�⃗�𝑝 =

�⃗�𝑖 + �⃗�𝑗 + �⃗�𝑘

3
 

�⃗�𝑝 =
�⃗�𝑖 + �⃗�𝑗 + �⃗�𝑘

3
 

(3.24) 

 

The resulting force on node 𝑖 by fictitious node 𝑝 is defined in the same manner 

like spring force defined in the basic segment spring method. Mathematically, the 

spring force resulted from this fictitious spring is computed as in Equation (3.25).  

 �⃗�𝑖𝑝 = 𝑘𝑖𝑝(�⃗�𝑝 − �⃗�𝑖) (3.25) 

 

In a similar manner like done in the angle consideration in the spring analogy, 

the force exerted due to the fictitious spring analogy is shown in Equation (3.26).  
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 𝐹𝑖𝑝𝑥 = 𝑘𝑖𝑝[(∆𝑥𝑖 − ∆𝑥𝑝) cos
2 𝛼𝑖𝑝 + (∆𝑦𝑖 − ∆𝑦𝑝) cos 𝛼𝑖𝑝 sin 𝛼𝑖𝑝] 

𝐹𝑖𝑝𝑦 = 𝑘𝑖𝑝[(∆𝑥𝑖 − ∆𝑥𝑝) cos 𝛼𝑖𝑝 sin 𝛼𝑖𝑝 + (∆𝑦𝑖 − ∆𝑦𝑝) sin
2 𝛼𝑖𝑝] 

(3.26) 

 

The final equilibrium equation is computed by considering the contribution 

from actual spring edge and fictitious edge shown previously. Details of mesh 

configuration used in the ball-center spring analogy is depicted in Figure 3.7. This 

means that one needs to solve all equations (3.9), (3.10), and (3.26) in x-direction and 

y-direction simultaneously for each node. The system of linear equation which governs 

the updated displacements based on this updated method is shown in Equation (3.27).  

 

Figure 3.7 Schematic of Ball-Center an Arbitrary Node 𝑖 

 

[
 
 
 
 
 

∑𝑘𝑖𝑗 cos
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos2 𝛼𝑖𝑝 ∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos𝛼𝑖𝑝 sin 𝛼𝑖𝑝

∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos𝛼𝑖𝑝 sin𝛼𝑖𝑝 ∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

sin2 𝛼𝑖𝑝
]
 
 
 
 
 

[
∆𝑥𝑖
∆𝑦𝑖
] 

=

[
 
 
 
 
 
∑𝑘𝑖𝑗 cos

2 𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos2 𝛼𝑖𝑝 ∆𝑥𝑝 +∑𝑘𝑖𝑗 cos 𝜃𝑖𝑗 sin 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos𝛼𝑖𝑝 sin𝛼𝑖𝑝 ∆𝑦𝑝

∑𝑘𝑖𝑗 cos𝜃𝑖𝑗 sin𝜃𝑖𝑗 ∆𝑥𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

cos𝛼𝑖𝑝 sin 𝛼𝑖𝑝 ∆𝑥𝑝 +∑𝑘𝑖𝑗 sin
2 𝜃𝑖𝑗 ∆𝑦𝑗

𝑣𝑖

𝑗=1

+∑𝑘𝑖𝑝

𝑣𝑐

𝑝=1

sin2 𝛼𝑖𝑝 ∆𝑦𝑝
]
 
 
 
 
 

 

(3.27) 
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The above equation is later solved by the mean of Cramer’s rule, similar to the 

solution method used in the case for angle consideration in spring analogy technique.  

3.2.5 Boundary Improvement  

The idea in this approach is application of the Saint-Venant principle for mesh 

deformation [25]. Consequently, the boundary displacements only have local impact 

and do not spread far into the mesh. Mathematically, this improvement is shown in 

Equation (3.28). 

 
𝑘𝑖𝑗 =

𝜙

[(�⃗�𝑗 − �⃗�𝑖) ∙ (�⃗�𝑗 − �⃗�𝑖)]
𝛹 (3.28) 

 

The idea is to increase the stiffness of the springs around to the boundary by 

using ϕ = 5 or decreasing the value of 𝛹 to 0.05. This may help to prevent the 

spreading displacement far into the mesh [25].  

In this study, two different cases are considered during the implementation of 

the Saint-Venant principle:  

 Adjacent Boundary Improvement  

The improvement for this method is only applied to the edge whose one 

of the node is located on the airfoil surfaces.  

 

Figure 3.8 Adjacent Boundary Improvement in the Spring Analogy Method 

 Surrounding Boundary Improvement  

In this case, the stiffness increasing is applied to some region around the 

airfoil boundary. The region is bounded by the airfoil boundary and the 
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designated box whose dimensions are shown in Figure 3.9. The chosen 

length and width of the designated box also encloses the viscous mesh 

region around the airfoil.  

 

 

Figure 3.9 Surrounding Region Boundary Improvement in the Spring Analogy 

Method 

 

In the case of ball-center spring analogy, the improvement in the spring 

constant is treated differently since the edge is shorter compared to the actual edge. 

Similar formulation like shown in Equation (3.28) is applied as well with different 

values for 𝜙 and 𝛹. The values chosen for 𝜙 and 𝛹 are 10 and 0.01, respectively for 

the fictitious edges.  

3.3 Solution Method 

This section is mainly related to the numerical solution of the final formulation 

of the spring analogy method. The displacement of the movable nodes became the 

values that should be computed. These values can be computed by using two different 

approaches: direct solution and indirect solution. In the coding implementation, the 

solution methods are classified based on Figure 3.10. 
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Figure 3.10 Implemented Numerical Methods in Spring Analogy 

3.3.1 Direct Solution  

In the direct solution approach of this method, each movable node is visited 

and the displacement corresponding to this node is computed. In other words, it solves 

each displacement value of the nodes directly in a vertex-by-vertex fashion using an 

iterative manner as shown in Equation (3.5). Some improvement could also be 

accomplished in this method by introducing some relaxation parameter similar to 

Successive Overrelaxation (SOR) method. The improvement using SOR method for 

the direct solution is shown in Equation (3.29). The convergence of this method is 

determined based on the residual value of the computed nodal displacement for each 

nodes.  
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�⃗�𝑖
𝑘+1 = �⃗�𝑖

𝑘 + 𝜔

(

 
 ∑ 𝑘𝑖𝑗�⃗�𝑗

𝑣𝑖
𝑗=1

∑ 𝑘𝑖𝑗
𝑣𝑖
𝑗=1⏟      

updated term 

− �⃗�𝑖
𝑘

)

 
 

 

where 𝜔 = the relaxation parameter 

(3.29) 

 

In the case where the angle made by spring is considered during the 

computation, a slight modification is required for the computation. Direct solution for 

the angular consideration is performed by solving 2 x 2 matrix from Equation (3.13). 

By solving this equation for each node, one gets the nodal displacements in x and y 

directions. The solution found from the solution of 2 x 2 matrix is substituted into the 

updated term defined in Equation (3.29).  

3.3.2 Indirect Solution  

The indirect method here refers to solving the displacement value for each node 

by means of the local stiffness matrix. This method is very similar to Finite Element 

Method used in Structural Analysis [28]. The local stiffness matrices for each edge are 

combined together into a global stiffness matrix. This method has been applied by 

Burg [27] and Markou et al. [33] for their work in 3-D mesh deformation. The global 

stiffness matrix later is partitioned into several partitioned matrices corresponding to 

either prescribed degree of freedoms or active degree of freedoms.  

In this method, one requires to assemble the global stiffness matrix based on 

the local stiffness matrix. The assemble process are based upon the method proposed 

by Cook [28]: 

 Generation of ID Array Matrix 

This matrix is needed to determine whether a given degree of freedom in 

a node is prescribed or active degree of freedom (unknown 

displacement). Since 2-D mesh deformation is considered, each node has 

only 2 degree of freedoms; x and y displacements of the node. The 
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number of columns that this matrix has is corresponding to the number 

of nodes in the given mesh. On the other hand, the number of rows 

corresponding to the number of degree of freedoms that each node has, 

equals to two. Binary numbers are considered as the input for this ID 

array matrix; input equals to one for the nodes located on the prescribed 

boundary condition and equals to zero for the other condition.  

 

 Generation of Destination Array  

The destination array is generated in order to number the degree of 

freedoms for all nodes that are used in the computation. There are two 

separate arrays used in here: one destination array is corresponding to 

active degree of freedoms and the other one is corresponding to the 

prescribed degree of freedoms.  

 

 Global Stiffness Matrix Assemble  

The global stiffness matrix is assembled based on the information found 

from destination array for both active and prescribed degree of freedoms. 

In each local stiffness matrix, each entry corresponds to a specific degree 

of freedom in the global stiffness matrix. The global stiffness matrix can 

be partitioned in such a way that degree of freedoms corresponding to the 

active degree of freedoms are numbered first in the column. As a result, 

this matrix can be written as:  

 

𝐾 = [
𝐾𝑎𝑎 𝐾𝑎𝑏
𝐾𝑏𝑎 𝐾𝑏𝑏

] 

[
𝐾𝑎𝑎 𝐾𝑎𝑏
𝐾𝑏𝑎 𝐾𝑏𝑏

] [
𝑞𝑎
𝑞𝑏
] = [

0
𝑅𝑏
] 

(3.30) 

The subscript a corresponds to the active degree of freedoms, while the 

subscript b corresponds to the prescribed degree of freedoms. In the 

implementation, instead of dealing with a big stiffness matrix 𝐾, the partitioned 
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matrices 𝐾𝑎𝑎 and 𝐾𝑎𝑏 are used as the help to compute the active degree of 

freedoms. As a result, assemble of partitioned matrices are considered here. 

Assemble of active stiffness matrix, 𝐾𝑎𝑎, is based on the Algorithm 1 shown 

below.  

 

Algorithm 1. Assemble Process of Active Stiffness Matrix 𝐾𝑎𝑎 

Input: all edges with local stiffness matrix  

Output: active stiffness matrix  𝐾𝑎𝑎 

  1: for each iter_n in [1,edge_number]  do 

  2:       set node1 = 1st node of  edge(iter_n) 

  3:       set node2 = 2nd node of edge(iter_n) 

  4:        

  5:       dof_array(1) = dest_array_1(1, node_1) 

  6:       dof_array(2) = dest_array_1(2, node_1)  

  7:       dof_array(3) = dest_array_1(1, node_2)  

  8:       dof_array(4) = dest_array_1(2, node_2)  

  9:        

10:       for each iter_i in [1,4] do 

11:             if dof_array(iter_i) > 0 then   

12:                set index_i = dof_array(iter_i)    

13:                for each iter_j in [1,4] do 

14:                      if dof_array(iter_j) > 0 then   

15:                          set index_j = dof_array(iter_j)    

16:                               Kaa(index_i, index_j) += stiff_matrix (iter_i, iter_j)   

                                                                              of edge(iter_n) 

17:                     end if 

18:                end for   

19:             end if  

20:       end for 

21: end for  

 

In a similar fashion, the assemble process of matrix 𝐾𝑎𝑏 is conducted as well. 

The unknown displacement is later computed based on the solution from the first row 

of Equation (3.28). Mathematically, the displacements corresponding to the active 

degree of freedom are computed as: 

 𝐾𝑎𝑎𝑞𝑎 + 𝐾𝑎𝑏𝑞𝑏 = 0 

𝑞𝑎 = −𝐾𝑎𝑎
−1[𝐾𝑎𝑏𝑞𝑏] 

(3.31) 
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The active stiffness matrix 𝐾𝑎𝑎 is a symmetric matrix since the assemble 

process is based on the symmetric matrix shown in Equation (3.7). Furthermore, the 

active stiffness matrix is a sparse matrix since not all nodes are connected to each 

other. This makes some of entries in the active stiffness matrix are equal to zero. In 

order to solve the unknown displacement, Conjugate-Gradient Method [34] is applied 

on the solution procedure. The Conjugate-Gradient algorithm is explained in Appendix 

B.1.  

The above approach is also applied to the torsional spring analogy formulation. 

In the implementation, instead of dealing with the local stiffness matrix (4 x 4) for 

each edge, a local stiffness matrix (6 x 6) is considered. However, the idea of global 

matrix assemble similar to the one implemented above is considered in here as well.  

For a better clarification, a sample case regarding global stiffness assemble 

process for both angle consideration and torsional spring analogy is elaborated in 

Appendix C.  

3.4 Coding Implementation of Spring Analogy 

After a brief explanation about the spring analogy mesh deformation method 

in the previous sections, this section describes how this method is implemented in the 

code. The flow chart used in the spring analogy mesh deformation technique is shown 

in Figure 3.11 
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Figure 3.11 Flow Chart Implemented in the Code 

3.4.1 Implemented Data Structure  

In order to enhance the computational procedure, the capability of derived data 

type in FORTRAN 95 is implemented. The data type used in the computational 

procedure mainly divided into three different big data types: cells, edge, and nodes. 

The information contained in each data type is summarized in Table 3.1. Each 

component in the data type is accessed by using the “%” operator. It can be seen very 

clearly that one can assess the coordinate of a node in a given triangular cell based on 

the data structure used in here.  
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Table 3.1 Implemented Derived Data Type in Mesh Deformation Code 

Cell Data Edge Data Node Data 

Cell Number 

Cell Nodes 

Cell Neighbors 

Cell Edges 

Cell Center Coord. 

Cell Area 

Edge Number 

Edge Nodes 

Edge Length 

Edge Angle 

Edge Opposite Nodes 

Edge Opposite Angles 

Edge Adjacent Cells 

Edge Spring Value  

Edge Stiffness Matrix 

Node Number 

Node Coordinates 

Node Neighbors 

Node Adjacent Cells 

Node Adjacent Edges 

Node Adjacent Fictitious  Edges 

3.4.2 Mesh Connectivity 

One of the main interest in the spring analogy mesh deformation technique is 

to know the neighbor nodes of a given node. This information can be perceived by 

mesh connectivity. The meshing connectivity is perceived based on the native mesh 

format of .su2 mesh file. Basically, the information contained in the native mesh file 

are comprised of three different groups: 

 Element Connectivity  

This contain the information about each triangular cell used in the mesh 

and all nodes which define the triangular element. 

 Node Coordinates 

This contains the information about the coordinates of all nodes defined 

in the mesh used during the computation 

 Boundary Condition  

This part contains the information about the boundary condition defined 

for boundary region of the solution domain.  

 

In order to simplify the nodal connectivity, CFD element mesh is numbered 

based on the standard numbering convention for its vertices and edges. Figure 3.12 
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illustrates the nodal and edge numbering convention for a triangular element. The 

underscored numbers correspond to the local edge numbering inside a triangular cell.  

 

Figure 3.12 Standard Numbering Convention for a 2-D Triangular Element 

 

This spring analogy mesh deformation method mainly deals with the edge as 

the main component. On the other hand, the mesh information is mainly based on the 

triangular element. To provide the edge information, one should equip the edge 

information data. The foundation of this information is based on the edge numbering 

process. The algorithm for numbering process is shown in Algorithm 2 and Figure 

3.13. The edge_temp is a temporary edge data structure which has the similar contents 

to the edge data structure described in Table 3.1.  

 

 
Figure 3.13 Actual Edges Numbering System 
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Algorithm 2. Edge Numbering based on the Triangular Element Data  

Input: element connectivity (mesh)  

Output: edge numbering  

  1: set temp = 0  

  2: for each cell in mesh do 

  3:       for each node in cell do  

  4:             temp = temp + 1 

  5:             sort the remaining node number from small to big 

  6:             append other nodes into edge_temp (temp) data 

  7:       end for  

  8: end for  

  9: set edge_number = 1 

10: set edge(1) = edge_temp(1) 

11: for each iter_i in [2, temp] do  

12:       for each iter_j in [1,edge_number]  

13:             if edge(iter_j) == edge_temp(iter_i)  cycle for 11:  

14:       end for  

15:       edge_number = edge_number + 1 

16:       edge(edge_number) = edge_temp(iter_i) 

17: end for  

18: set total_edge = edge_number 

 

After numbering the edge, it is required to compute the list of adjacent edges 

for a given node. This computation is done based on Algorithm 3.  

Algorithm 3. Adjacent Edges Computation for a Given Node   

Input: updated element connectivity (mesh) from Algorithm 2  

Output: list of adjacent edges for all nodes in the mesh    

  1: initialize number of adjacent edges for each node to be zero  

  2: for each edge in mesh do 

  3:       increase number of adjacent edges of node in edge by one.  

  4: end for  

  5:                

  6: for each node in mesh do  

  7:       set index_adj_edge = 0  

  8:       for each edge in mesh do  

  9:             if one of the node number in edge equals to node number of node then               

10:                 index_adj_edge += 1 

11:                 set edge as the adjacent edge of node in position of index_adj_edge 

12:             end if  

13:             if index_adj_edge equals to number of adjacent edges then  

14:                 exit loop for 8:  
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15:             end if 

16:       end for 

17: end for       

 

It is also required to know about the neighbor nodes of a given node. This can 

be easily found from the list of adjacent edges of a given node found in Algorithm 3. 

The neighbor nodes is the other node stored in the adjacent edge.  

In the case where the Ball-Center Spring Analogy is concerned, it is required 

to know about the adjacent cells for a given node. This computation is done based on 

Algorithm 4.  

Algorithm 4. Adjacent Cells Computation for a Given Node   

Input: updated element connectivity (mesh) from Algorithm 2  

Output: list of adjacent cells for all nodes in the mesh    

  1: initialize number of adjacent cells for each node to be zero  

  2: for each cell in mesh do 

  3:       increase number of adjacent cells of each node in cell by one.  

  4: end for  

  5:                

  6: for each node in mesh do  

  7:       set index_adj_cell = 0  

  8:       for each cell in mesh do  

  9:             if one of the node number in cell equals to node number of node then               

10:                 index_adj_cell += 1 

11:                 set cell as the adjacent edge of node in position of index_adj_cell 

12:             end if   

13:             if index_adj_cell equals to number of adjacent cell then  

14:                 exit loop for 8:  

15:             end if 

16:       end for  

14: end for       

 

Another data type is also required to compute the fictitious edges in the ball-

center spring analogy. These fictitious edges are stored in another data set, similar to 

the edge data shown in Table 3.1. The main difference in this data type is the node 

used. This fictitious edge connects the actual node to the fictitious center of triangular 

cell. Similar algorithm that was used in the actual edges numbering is also 



 

 40 

implemented in these fictitious edge numbering as shown in Algorithm 5. This 

algorithm is conducted based on Figure 3.14.  

Algorithm 5. Fictitious Edge Numbering 

Input: Element Connectivity with Edge Numbering from Algorithm 2   

Output: Fictitious Edge Numbering  

  1: set num_edge_fict = 3 times number of cells  

  2: for each iter_i in [1, num_edge_fict]: 

  3:       set index_cell = ⌈𝑖𝑡𝑒𝑟_𝑖/3⌉ − 1 

  4:       if (mod (iter_i,3) == 0) then  

  5:           set index_node = mod (iter_i,3)  + 3 

  6:       else  

  7:           set index_node = mod (iter_i,3)   

  8:       end if  

  9:       set index_node and index_cell as edge node for edge_fict (iter_i) 

10: end for     

 

 

Figure 3.14 Fictitious Edge Numbering System Used in the Ball-Center Spring 

Analogy 

 

Ball center spring analogy method also requires the information regarding the 

neighbor fictitious cell center nodes around an arbitrary node as depicted in Figure 3.7. 

This information is stored in the fictitious edge data and can be perceived based on 

Algorithm 6. 
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Algorithm 6. Finding Number of Fictitious Edges Surrounding Node 𝑖   

Input: Fictitious Edge Numbering from Algorithm 4. 

Output: list of adjacent fictitious edge for all nodes in the mesh   

  1: initialize number of adjacent edges for each node to be zero  

  2: for each node in mesh do 

  3:       set num_adj_fict_edge = num_adj_cell  

  4:       for each iter_j in [1, num_adj_fict_edge]: 

  5:             set index_cell = the adjacent cell in order of iter_j of node 

  6:             for each iter_k in [1,3]: 

  7:                   if node number of node = cell node in in order of iter_k of 

index_cell  

  8:                      set index_node = iter_k  

  9:                      exit iteration 6: 

10:                  end if  

11:             end for  

12:             set adjacent fictitious edge as  index_cell*3+index_node  

13:      end for  

14: end for   

 

In order to make the user easily interacts the code, a basic input file is defined. 

The input file contains the information concerning about the mesh deformation 

parameters, and design variables used in the optimization scheme. Sample of the input 

file used in the mesh deformation code is attached in the Appendix D.1. 
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CHAPTER 4 

CFD AND OPTIMIZATION ANALYSES 

4.1 CFD Analyses 

The Computational Fluid Dynamic (CFD) analysis is conducted in order to 

compute the aerodynamic coefficients of the airfoil that are required in the 

optimization scheme. This analysis is performed by using the aid of SU2 (Stanford 

University Unstructured) CFD Solver [1]. In order to get an accurate drag computation, 

instead of using inviscid flow solver, RANS solver combined with Spallart-Almaras 

turbulence modelling is implemented. The equations used in SU2 is shown briefly in 

Appendix E.   

SU2 CFD solver requires two different input in order to be able to perform the 

analysis: configuration file (.cfg file) and native .su2 mesh file. The sample of 

configuration file used in the analysis is shown in Appendix D.2. The initial native 

.su2 mesh is directly attained from Pointwise mesh generation software by defining 

the appropriate boundary condition used in the solver.  

The CFD analysis is conducted in parallel by using parallel computation 

capability of SU2 CFD solver. In each parallel computation, the aim is to find the final 

aerodynamic coefficients of the airfoil by satisfying the required lift coefficient. In 

other words, regardless the initial angle of attack entered by the user, the solver tries 

to find the corresponding final angle of attack in order to generate sufficient lift 

coefficient.    
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4.1.1 Mesh Generation  

As mentioned earlier, the mesh is generated by using Pointwise® Mesh 

Generation Software [35]. Farfield domain is modelled as a circle whose radius is 

taken as 12 times of the chord length. Figure 4.1 depicts the farfield domain used in 

the computation procedure. There are two separate types of meshes consider during 

the computational procedure: inviscid and viscous mesh. The viscous mesh is used for 

RANS simulation. Figure 4.2 and Figure 4.3 show the inviscid mesh and viscous mesh 

used in the analysis performed in this study.   

 

Figure 4.1 Farfield Domain Description Used in the Mesh Generation 

 

  

(a) Outer View (b) Zoom View Near Trailing Edge 

Figure 4.2 Inviscid Mesh around Baseline Airfoil 
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The terms inviscid and viscous meshes here are used to describe the 

corresponding required mesh to perform inviscid or viscous simulation in CFD, 

respectively. The inviscid mesh is used only to check the capability of mesh 

deformation method. This inviscid mesh is not going to be applied in the optimization 

analysis. Only the viscous mesh shown in Figure 4.3 is considered during the RANS 

simulation used in the airfoil design optimization. Numbers of cells and nodes used in 

the inviscid mesh are 6072 and 3234, respectively. On the other hand, the numbers of 

cells and nodes used for the viscous mesh are 12060 and 6228, respectively.  

  

(a) Outer View  (b) Zoom View Near Trailing Edge 

Figure 4.3 Viscous Mesh around the Baseline Airfoil 

4.1.2 Flow Parameters in CFD 

The airfoil design optimization is applied for an airfoil whose flow parameters 

are computed based on the flight conditions defined in the CHANGE FP7 project [36], 

an European Union project which combines several morphing capabilities into one 

wing. Basically, there are 4 different flight regimes considered in this study: take-off, 

loiter, high speed, and landing. The summary of flow properties used in each flight 

regime is tabulated in Table 4.1. 
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Table 4.1 Flow Properties used in the Optimization Analysis 

 Take-Off Loiter High Speed Landing 

Velocity [m/s] 21.164 15.278 30.556 13.244 

Density [kg/m3] 1.225 1.1895 1.1895 1.1895 

Altitude [feet] 0 1000 1000 1000 

Reynolds Number 858441 605075 1210135 524536 

Mach Number 0.0622 0.0451 0.090 0.039 

 

For all above flow properties used, it is assumed that the baseline aircraft has a 

span and chord whose lengths are 4 m and 0.6 m, respectively. Furthermore, the 

aircraft’s mass is taken as 25 kg. Based on this information, the airfoil’s target sectional 

lift is computed based on Equation (4.1). It is found that the target sectional lift for the 

airfoil is 61.3125 N/m. 

 
Target Sectional Lift =

Aircraft Weight

Aircraft Span
 (4.1) 

 

In the optimization procedure, the same sectional lift is applied for all different 

flow parameters. However, the target lift coefficient for each flight parameter is 

determined based on the corresponding velocity. The target lift coefficient is computed 

based on Equation (4.2).  

 
Sectional Lift Coefficient =

Target Sectional Lift

0.5ρV∞2 c
 (4.2) 
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4.2 Optimization Analyses 

The optimization procedure is achieved by utilizing Phoenix ModelCenter 

Optimization Software. The optimization is performed by making some modules 

which wrap each component of optimization procedure. In the optimization case, there 

are 3 different modules considered during the optimization process. Figure 4.4 depicts 

the order and relation between these modules during the optimization procedure. The 

input required in the optimization is entered manually from the Component Tree in the 

ModelCenter as shown in Figure 4.5. 

 Input Module  

This module provides the information about the input parameters used 

for the CFD computation. These parameters comprised of: air density, 

velocity, viscosity, and the required sectional lift for the computation. For 

different flight conditions, different values of flight velocity is manually 

entered in the module. 

 Mesh Deformation Module  

This module mainly wraps the mesh deformation code that is prepared 

earlier. The module contains the information about parameter used during 

the mesh deformation analysis. The parameters used in this module are 

the input parameters used in the code as shown in Appendix D.1. 

 CFD Solver Module  

This module contains the information about the input parameters used in 

the SU2 CFD solver. This module mainly contains about the simulation 

parameters: number of processors, iteration counter.  
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Figure 4.4 Optimization Scheme Implemented in Model Center 

 

 

Figure 4.5 Component Description in Phoenix ModelCenter for Input Module 
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4.2.1 Optimization Scheme Explanation 

The optimization was done by using Gradient Based Optimization Solver from 

Phoenix Model Center Optimization Module [37]. OPTLIB Gradient Optimizer which 

is considered as gradient based optimization is considered as the optimizer.  

OPTLIB implements Sequential Quadratic Programming (SQP) in the 

optimizations scheme. Furthermore, the gradient value is computed based on the finite 

difference concept. The initial step size used in the gradient computation is 

approximated as 0.0001. However, OPTLIB optimizer later can handle the appropriate 

step size used for the gradient computation.  

The main objective in the optimization is to minimize the sectional drag of an 

airfoil and satisfy the sectional lift requirement of the airfoil for different flow 

parameters. Furthermore, an additional angle of attack is also imposed for each case. 

The angle of attack constraints for each flow parameters are explained detail in section 

5.2. 

4.2.2 Shape Parameterization 

As mentioned in the introduction, the shape parameterization implemented 

during the optimization analysis should encompass sufficient design spaces in order to 

guarantee that the optimum design can be found. In this analysis, 3 different shape 

parameterizations are implemented.  

4.2.2.1 Variation of Camber and Thickness 

The idea used in the optimization is to change the camber and thickness of the 

airfoil. The camber and thickness variation are computed based on the initial camber 

and thickness distribution. The initial camber line is computed based on the average 

of the ordinate of the upper and lower airfoil nodes which are located on the same 

abscissa. The fact that the mesh nodes might not be located on the same abscissa, spline 

interpolation concept is applied.  
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The cubic spline interpolation [38] is used to perform the spline interpolation. 

A third order polynomial defined in Equation (4.3) is used as a model equation. This 

equation is valid for an interval [a,b] which contains 𝑛 defined points. The coefficients 

𝑏𝑖, 𝑐𝑖, 𝑑𝑖 are defined in (𝑛 − 1) intervals. As a result, 3𝑛 − 3 equations are required to 

in order to solve these unknown coefficients. These coefficients are computed based 

on the required continuity and compatibility of the spline interpolation.  

 𝑠𝑖(𝑥) = 𝑦𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥 − 𝑥𝑖)

3 (4.3) 

 

At each interior points in the interval [𝑎, 𝑏] should satisfy Equation (4.4). 

Furthermore, the interpolated functions should have continuous both first and second 

order derivative as shown in Equation (4.5) and Equation (4.6), respectively.  

 𝑠𝑖(𝑥𝑖+1) = 𝑦𝑖+1 (4.4) 

 𝑠𝑖
′(𝑥𝑖+1) = 𝑠𝑖+1

′ (𝑥𝑖+1) (4.5) 

 𝑠𝑖
′′(𝑥𝑖+1) = 𝑠𝑖+1

′′ (𝑥𝑖+1) (4.6) 

 

Natural boundary conditions are imposed on the end interval [𝑎, 𝑏] by 

specifying the second order derivative of boundary points to be zero.  

 𝑠𝑖
′′(𝑎) = 0 

𝑠𝑖
′′(𝑏) = 0 

(4.7) 

 

Upon having the same abscissa for nodes on both upper and lower airfoil, the 

camber line is estimated as:  

 
ycamber =

𝑦upper + ylower

2
 (4.8) 
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The initial thickness distribution for the upper and lower is estimated as the 

difference between the initial camber line and airfoil surface coordinates. Equation 

(4.9) shows the estimation for the upper and thickness distribution.  

 ythickupper = yupper − ycamber 

ythicklower = ylower − ycamber 
(4.9) 

 

The camber line variation is estimated by specifying several control points on 

the initial camber line. In the non-dimensional form, the abscissa location of control 

points are as follows: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The new camber line 

is estimated by multiplying the ordinate of the initial camber line with a factor 

specified by the user. For the points located in between the control points, similar 

spline interpolation explained earlier is applied.  

On the other hand, the updated thickness variation is computed by multiplying 

the initial distribution shown in Equation (4.9) by some factors defined by the user. 

Both upper and lower thickness distribution is multiplied by the same factor. As a 

result, there are at most 2 different parameters used during the shape parameterization 

using camber and thickness variation. The range of these design variables are shown 

in Table 4.2.  

Table 4.2 Boundary Imposed on Camber and Thickness Factors  

Design Variables Lower Limit Upper Limit 

Camber Factor 0 3 

Thickness Factor 0.6 3 

 

In the optimization analyses conducted in here, three different combinations of 

the above shape parameterizations are implemented: camber variation only, thickness 

variation only, and the combination of camber and thickness variation. 
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4.2.2.2 PARSEC Shape Parameterization  

Detail explanation regarding parameters used in the PARSEC shape 

parameterization is depicted in Figure 2.1. Based on equations shown in Equation 

(2.1), it is required to compute the coefficients of 𝑎𝑖 and 𝑏𝑖.  

 

[
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0

𝑋𝑢𝑝
1/2

𝑋𝑢𝑝
3/2

𝑋𝑢𝑝
5/2

𝑋𝑢𝑝
7/2

𝑋𝑢𝑝
9/2

𝑋𝑢𝑝
11/2

1

2
𝑋𝑢𝑝
−1/2 3

2
𝑋𝑢𝑝
1/2 5

2
𝑋𝑢𝑝
3/2 7

2
𝑋𝑢𝑝
5/2 9

2
𝑋𝑢𝑝
7/2 11

2
𝑋𝑢𝑝
9/2

−
1

4
𝑋𝑢𝑝
−3/2 3

4
𝑋𝑢𝑝
−1/2 15

4
𝑋𝑢𝑝
1/2 35

4
𝑋𝑢𝑝
3/2 63

4
𝑋𝑢𝑝
5/2 99

4
𝑋𝑢𝑝
7/2

1 1 1 1 1 1
1

2

3

2

5

2

7

2

9

2

11

2 ]
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6}
 
 

 
 

 

=

{
 
 
 

 
 
 √2𝑅𝑙𝑒

𝑌𝑢𝑝
0

𝑌𝑋𝑋𝑢𝑝
𝑇𝑜𝑓𝑓 + 𝑇𝑇𝐸

2

tan (𝛼𝑇𝐸 − 𝛽𝑇𝐸
2
)
}
 
 
 

 
 
 

 

(4.10) 

 

 

[
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0

𝑋𝑙𝑜𝑤
1/2

𝑋𝑙𝑜𝑤
3/2

𝑋𝑙𝑜𝑤
5/2

𝑋𝑙𝑜𝑤
7/2

𝑋𝑙𝑜𝑤
9/2

𝑋𝑙𝑜𝑤
11/2

1

2
𝑋𝑙𝑜𝑤
−1/2 3

2
𝑋𝑙𝑜𝑤
1/2 5

2
𝑋𝑙𝑜𝑤
3/2 7

2
𝑋𝑙𝑜𝑤
5/2 9

2
𝑋𝑙𝑜𝑤
7/2 11

2
𝑋𝑙𝑜𝑤
9/2

−
1

4
𝑋𝑙𝑜𝑤
−3/2 3

4
𝑋𝑙𝑜𝑤
−1/2 15

4
𝑋𝑙𝑜𝑤
1/2 35

4
𝑋𝑙𝑜𝑤
3/2 63

4
𝑋𝑙𝑜𝑤
5/2 99

4
𝑋𝑙𝑜𝑤
7/2

1 1 1 1 1 1
1

2

3

2

5

2

7

2

9

2

11

2 ]
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6}
 
 

 
 

 

=

{
 
 
 

 
 
 −√2𝑅𝑙𝑒

𝑌𝑙𝑜𝑤
0

𝑌𝑋𝑋𝑙𝑜𝑤
𝑇𝑜𝑓𝑓 − 𝑇𝑇𝐸

2

tan (𝛼𝑇𝐸 + 𝛽𝑇𝐸
2
)
}
 
 
 

 
 
 

 

(4.11) 

 



 

 53 

These coefficients are computed based on the airfoil geometry. Both equations 

(4.10) and (4.11) show the system of linear equation which govern the coefficients of 

𝑎𝑖 and 𝑏𝑖, respectively. These equations are later solved by using Gauss-Seidel 

Iteration. Detail of Gauss-Seidel method implemented in this study is shown in the 

Appendix B.2. 

It is verified that the PARSEC design variables are very sensitive. As a result, 

specific range of design variables need to be determined before initializing the 

optimization scheme. The range of these parameters are determined based on the 

optimization results found by considering the effect of camber and thickness. Detail of 

the parameter range used in this optimization is explained in detail in Chapter 5.  

  



 

 54 

  



 

 55 

CHAPTER 5 

RESULTS AND DISCUSSIONS 

This chapter contains the result of mesh deformation by using the 

aforementioned technique defined in earlier chapter. The best scheme among these 

methods is then applied in the airfoil optimization.  

5.1 Mesh Deformation Results 

The mesh deformation capability of the proposed methods is checked by using 

a simple test case. The test case used in here is to perform a rotating airfoil about 

quarter chord line by some degrees. Both inviscid and viscous meshes are considered 

in the verification case. For the inviscid mesh, the airfoil is rotated up to 50°. On the 

other hand, smaller rotation angle around 25° is introduced in the viscous mesh. The 

viscous mesh cannot be rotated by the same amount like in the inviscid mesh due to 

the presence of highly aspect ratio cell around the airfoil boundary. These cells 

somehow become a hindrance for spring analogy technique to perform the deformation 

scheme. Fortunately, the design spaces used in the airfoil optimization are encircled in 

this spring analogy technique.  

5.1.1 Basic Spring Analogy Results  

In the basic spring analogy results, no other improvements are considered 

during the application. The deformed meshes for both cases are shown in Figure 5.1. 

It can be seen clearly that this method fails to deform the mesh required in both cases. 

It is verified that inviscid mesh cannot be deformed with high degree of deformation. 

Some nodes near the trailing edge region (where huge displacement occurs) are 
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crossing over the opposite edges. In the viscous mesh case, the traditional spring 

analogy technique not only fails to prevent the cross-over nodes near the trailing edge 

regions, but also fails to maintain the right angle that cells around airfoil boundary 

have. This is caused by the fact that in the basic formulation, edge angle is not taking 

into account.  

  

(a) 50° rotated inviscid mesh airfoil (b) 25° rotated viscous mesh airfoil 

Figure 5.1 Deformed Meshes Resulted from Basic Spring Analogy 

5.1.2 Angle Inclusion in Spring Analogy Results 

In this case, the presence of angle in the spring is considered. This improvement 

somehow helps to generate the deformed mesh as it can be seen from Figure 5.2. The 

angle consideration helps the spring analogy to get a better deformed mesh on which 

there is no cross-over nodes occurring in trailing edge region and right angle near the 

surface boundary can still be maintained. The above computation is conducted with 

direct computation method. Similar deformed meshes are also achieved by using the 

indirect computation method. However, this computation required a lot of computation 

time compared to the direct method proposed earlier. Summary of the convergence 

analysis for the proposed spring analogy methods are shown in Figure 5.8. 
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(a) 50° rotated inviscid mesh airfoil   (b) 25° rotated viscous mesh airfoil 

Figure 5.2 Deformed Meshes Resulted from Basic Spring Analogy with Angle 

Inclusion  

5.1.3 Torsional Spring Analogy Results 

The resulting mesh from this method can be seen from Figure 5.3. It can be 

seen clearly that concept of torsional spring analogy leads to a better quality in terms 

of no cross-over nodes and maintaining viscous angle near the surface boundary for 

deformed mesh. However, this method can only be solved using the indirect method 

which requires more computing time for a sequential execution. Summary of the 

convergence analysis for the proposed spring analogy methods are shown in Figure 

5.8. 
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(a) 50° rotated inviscid mesh airfoil   (b) 25° rotated viscous mesh airfoil 

Figure 5.3 Deformed Meshes Resulted from Torsional Spring Analogy  

5.1.4 Semi Torsional Spring Analogy Results  

The deformed mesh from semi-torsional spring analogy is shown in Figure 5.4. 

In the computation, the angle formulation in edge is considered. It can be seen clearly 

that the results from this deformation scheme do not have any cross-over nodes and 

still maintain the angle of computation.  

  

(a) 50° rotated inviscid mesh airfoil   (b) 25° rotated viscous mesh airfoil 

Figure 5.4 Deformed Meshes Resulted from Semi Torsional Spring Analogy  
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5.1.5 Ball-Center Spring Analogy  

The ball-center spring analogy also yields to a quite similar results shown in 

the earlier schemes of mesh deformation techniques. This method yields to a better 

deformed mesh compared to the basic spring analogy method.  

  

(a) 50° rotated inviscid mesh airfoil   (b) 25° rotated viscous mesh airfoil 

Figure 5.5 Deformed Meshes Resulted from Ball-Center Spring Analogy 

5.1.6 Boundary Improvement  

As elaborated in the earlier chapter, boundary improvement can be achieved 

by applying Saint-Venant principle during the implementation. In our case, this 

improvement is applied to the angle inclusion spring analogy method. Figure 5.2 

shows the basic angle inclusion in spring analogy without any boundary improvements 

utilized. Two different concepts of Saint-Venant principle is applied in here: adjacent 

boundary improvement and surrounding region boundary improvement. The results 

corresponding to these two improvement are shown in Figure 5.6 and Figure 5.7.  
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(a) 50° rotated inviscid mesh 

airfoil   

(b) 25° rotated viscous mesh 

airfoil 

Figure 5.6 Deformed Meshes Resulted from Angle Inclusion Spring Analogy with 

Adjacent Boundary Improvement 

 

  

(a) 50° rotated inviscid mesh 

airfoil   

(b) 25° rotated viscous mesh 

airfoil 

Figure 5.7 Deformed Meshes Resulted from Angle Inclusion Spring Analogy with 

Surrounding Region Boundary Improvement 
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It can be seen clearly that the deformed mesh by surrounding region boundary 

improvement leads to a better mesh in terms of the angle made by the cells around the 

trailing edge of the airfoil. The angle of cells around the trailing edge is higher in 

adjacent boundary improvement compared to surrounding region boundary 

improvement.  

The proposed method is not only compared in terms of the deformed mesh 

results, but also in terms of the computation costs by means of number of iteration and 

computation time. In each method, the required number of iteration is assumed in such 

a way that the same residue value is achieved. The residual value is computed based 

on the nodal displacement for each node and shown in Equation (5.1).  

 

𝑅𝑒𝑠 =
√∑ (

∆𝑥𝑖
𝑐 ) + (

∆𝑦𝑖
𝑐 )

# of nodes
𝑖=1

# of nodes
 

𝑐 = chord length of the airfoil 

(5.1) 

The residual plot is computed based on the logarithm with base 10 of the ratio 

of current residue value with the first initial residue value. Unlike CFD computation 

where a low residue value (log10 Res = -7) is required, the mesh deformation method 

can have the logarithmic of residual value around -3. However, for the deformation 

case in viscous meshes, the minimum tolerance value for the residue is -3.5.  

The residual plot corresponding to inviscid mesh deformation for each 

proposed method is shown in Figure 5.8. It can be seen clearly among these methods, 

basic spring analogy requires less computational time compared to the other methods 

since no edge angle is considered in the computation. For a better illustration in 

regarding the direct solution utilized in this study, a residual plot up to 500 iteration is 

shown in Figure 5.9.  

On the other hand, the torsional spring requires a quite huge number of iteration 

since it corresponding to solve a huge matrix by iterative manner. In the viscous mesh 

deformation case, similar plots shown in Figure 5.8 is achieved as well. However, the 

required computation time is difference since viscous mesh contains more number of 

nodes and elements compared to the inviscid mesh.  
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Table 5.1 Summary of Computation Time for Proposed Mesh Deformation Schemes 

 Inviscid Mesh Viscous Mesh 

Basic Spring Analogy 5.256 Seconds  19.572 Seconds 

Angle Inclusion 7.211 Seconds 34.940 Seconds 

Semi-Torsional 7.431 Seconds 36.290 Seconds 

Ball-Center 14.052 Seconds 59.292 Seconds 

Torsional Spring  693.85 Seconds 1435.234 Seconds 

 

 

Figure 5.8 Residual Computation for Each Proposed Method in Spring Analogy 

Mesh Deformation Methods 
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Figure 5.9 Residual Computation for Each Proposed Method in Spring Analogy 

Mesh Deformation Methods Up to 500 Iterations 

 

From these analyses, it is concluded that direct computations has a better 

efficiency compared to indirect computation schemes. Furthermore, angle inclusion 

with surrounding boundary improvement, ball-center spring analogy, or semi-torsional 

spring analogy give almost similar results.  
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5.2 Optimization Results 

The optimization is conducted based on the design variables defined in the 

previous chapter. Furthermore, the optimization is conducted in several different 

parameterization: camber only, thickness only, camber and thickness, and PARSEC 

shape optimization.  

For camber only, thickness only, and camber and thickness optimization, a 

similar initial airfoil is used. On the other hand, the initial geometry used in the 

PARSEC optimization is defined based on the initial PARSEC parameters. As a result, 

slightly different initial drag values are achieved in the optimization.  

5.2.1 Take-Off Configuration  

Based on the required sectional lift and Equation (4.2), the required lift 

coefficient for this configuration is 0.3725. In this optimization scheme, the angle of 

attack is constrained to be between -3° to 6°. The iteration history for several shape 

parameterizations in this parameter is shown in Figure 5.10.  

In this take-off phase optimization, the optimum airfoil has a reduction in 

camber when only camber effect is considered. This is expected since the target lift 

coefficient is quite low and initial airfoil has quite relatively high camber and 

thickness. It is found that the optimum airfoil has a reduction in camber by a factor of 

0.8333.  

In the case where thickness is solely considered into account, the optimum 

airfoil has a reduction in thickness. The reduction in thickness helps the airfoil to keep 

the low drag coefficient. It is found that the reduction in thickness is by a factor of 0.6, 

which is the minimum allowable value.  

For the case where both camber and thickness parameters are considered, 

instead of having reduction in camber as the case where the camber parameter is solely 

considered, the airfoil has an increased in camber by a factor of 1.452. The thickness 

is also reduced by a factor of 0.6 in this shape parameterization optimization. In the 
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case for PARSEC optimization, it is found that the optimum airfoil design leads to an 

optimum drag value. The range of PARSEC design variables and values for the 

optimum design are tabulated in Table 5.3.  

  

(a) Camber Only (b) Thickness Only 

  

(c) Camber and Thickness (d) PARSEC  

Figure 5.10 Iteration History for Take-Off Optimization 

 

Summary of the optimization results for this flight condition is shown in Table 

5.2. It can be seen clearly that the optimization by considering both camber and 

thickness leads to a better optimum airfoil. The optimum airfoil shapes and their 

pressure distributions are shown in Figure 5.11 and Figure 5.12, respectively.   

  



 

 66 

Table 5.2 Optimization Results for Take-Off Phase 

Parameterization 

Scheme 

Total Drag [N/m] Angle of Attack [deg] 

Initial Optimum Initial Optimum 

Camber 1.0267 1.0165 1.834  2.137 

Thickness 1.0267 0.5907 1.834 1.768 

Camber and Thickness 1.0267 0.5064 1.834 0.898 

PARSEC 0.7284 0.475 1.982 1.123 

 

Table 5.3 PARSEC Design Variables Range in the Take-Off Optimization 

Parsec Airfoil Parameter 
Lower 

Limit 

Upper 

Limit 

Initial 

Value  

Optimum 

Value 

Leading Edge Radius Upper (𝑅𝑙𝑒𝑢𝑝𝑝𝑒𝑟) [m] 0.008 0.015 0.01 0.008 

Leading Edge Radius Lower (𝑅𝑙𝑒𝑙𝑜𝑤𝑒𝑟) [m] 0.001 0.005 0.003 0.00287 

Peak Location for Lower Surface (𝑋𝑙𝑜) [m] 0.28 0.35 0.33 0.28 

Peak Value for Lower Surface (𝑌𝑙𝑜) [1/m] -0.03 -0.02 -0.024 -0.02 

Curvature for Lower Surface (𝑌𝑋𝑋𝑙𝑜) [1/m] 0.25 0.45 0.35 0.37037 

Peak Location for Upper Surface (𝑋𝑢𝑝) [m] 0.28 0.35 0.33 0.35 

Peak Value for Upper Surface (𝑌𝑢𝑝) [m] 0.048 0.075 0.07 0.05709 

Curvature for Upper Surface (𝑌𝑋𝑋𝑢𝑝)[1/m] -0.75 -0.4 -0.5 -0.4069 

Trailing Edge Direction Angle (𝛼𝑇𝐸)[deg] -8 0 -3 -3.992 

Trailing Edge Wedge Angle (𝛽𝑇𝐸) [deg] 12 20 12 12 
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Figure 5.11 Optimum Airfoil Shapes for Take-Off Configuration 

 

 

Figure 5.12 Pressure Distribution of Optimum Airfoil Shapes for Take-Off 

Configuration 
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5.2.2 Loiter Configuration 

The required lift coefficient for this flight condition is computed as 0.7361. In 

this flight condition the angle of attack is constrained to be between -3° and 6°. The 

iteration history for 4 different shape parameterizations are shown in Figure 5.13.  

  

(a) Camber Only (b) Thickness Only 

  

(c) Camber and Thickness (d) PARSEC 

Figure 5.13 Iteration History for Loiter Optimization  
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The fact that required lift coefficient for this flight condition is comparatively 

higher than take-off configuration, the optimization where only camber is considered 

tries to increase the camber of the airfoil by a factor of 1.747.  

In the case where only thickness variation is merely considered, similar trend 

observed in take-off optimization also occurs in here. It is found that the optimum 

airfoil has a relatively decrease in thickness by a factor of 0.714.  

Under the case where both camber and thickness is considered, it is observed 

that the optimum airfoil has an increase in camber by a factor of 2.485 and decrease in 

thickness by a factor of 0.6.  

Summary of the optimization results for loiter optimization is shown in Table 

5.4. In coherence with the solution from take-off optimization, it is perceived that the 

optimization by considering PARSEC shape parameterization leads to a better 

optimum value. PARSEC design variables used in the loiter optimization are tabulated 

in Table 5.5. 

Table 5.4 Optimization Results for Loiter Phase 

Parameterization 

Scheme 

Total Drag [N/m] Angle of Attack [deg] 

Initial Optimum Initial Optimum 

Camber 1.3391 1.2761 5.417 4.030 

Thickness 1.3391 1.1967 5.417 5.347 

Camber and Thickness 1.3391 0.8376 5.417 2.395 

PARSEC 1.3439 0.7591 5.701 2.941 
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Figure 5.14 Optimum Airfoil Shapes for Loiter Configuration 

 

 

Figure 5.15 Pressure Distribution of Optimum Airfoil Shapes for Loiter 

Configuration 
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Table 5.5 PARSEC Design Variables Range in the Loiter Optimization 

Parsec Airfoil Parameter 
Lower 

Limit 

Upper 

Limit 

Initial 

Value  

Optimum 

Value 

Leading Edge Radius Upper (𝑅𝑙𝑒𝑢𝑝𝑝𝑒𝑟) [m] 0.006 0.02 0.01 0.0069 

Leading Edge Radius Lower (𝑅𝑙𝑒𝑙𝑜𝑤𝑒𝑟) [m] 0.001 0.01 0.003 0.0027 

Peak Location for Lower Surface (𝑋𝑙𝑜) [m]  0.25 0.38 0.33 0.25 

Peak Value for Lower Surface (𝑌𝑙𝑜) [m] -0.05 -0.02 -0.03 -0.02 

Curvature for Lower Surface (𝑌𝑋𝑋𝑙𝑜) [1/m] 0.25 0.6 0.35 0.5924 

Peak Location for Upper Surface (𝑋𝑢𝑝) [m] 0.27 0.43 0.33 0.4178 

Peak Value for Upper Surface (𝑌𝑢𝑝) [m] 0.048 0.088 0.06 0.0807 

Curvature for Upper Surface (𝑌𝑋𝑋𝑢𝑝) [1/m] -0.85 -0.35 -0.6 -0.75 

Trailing Edge Direction Angle (𝛼𝑇𝐸) [deg] -10 0 -4 -5.165 

Trailing Edge Wedge Angle (𝛽𝑇𝐸) [deg] 12 20 15 13.86 

 

5.2.3 High-Speed Configuration 

For this flight condition, it is calculated that the required lift coefficient is 

0.18401. The angle of attack constraint is made to be between -3° and 3°. The angle 

of attack is relatively kept smaller since the required lift coefficient is also smaller. 

The iteration history for this configuration is shown in Figure 5.16.  

In the case where merely camber shape parameterization is considered, the 

optimum airfoil has a decrease in camber factor. The decreasing in camber is made in 

such a way that the optimum airfoil still produces the required lift coefficient and 

satisfies the angle of attack constraint. It is found that the optimum airfoil has a reduced 

in the camber by a factor of 0.4421.  

For the thickness optimization, it is found that the thickness should be 

decreased in order to reduce the drag. In fact, the optimum airfoil has decreased in 

thickness by a factor of 0.6, which is the lower limit for the thickness parameter.  
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In the case where both camber and thickness is considered, the airfoil still has 

similar trends. The optimum airfoil has a reduced in both camber and thickness. The 

camber is reduced by a factor of 0.7059 and the thickness is reduced by a factor of 0.6.  

 

  

(a) Camber Only (b) Thickness Only 

  

(c) Camber and Thickness (d) PARSEC 

Figure 5.16 Iteration History for High-Speed Optimization 

 

The summary concerning about the drag and angle of attack used in the high 

speed optimization is shown in Table 5.6. It is observed that the optimization 

conducted with PARSEC shape parameterization again leads to a better optimum 

results compared to other optimization cases. The optimum airfoil shapes and the 
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distribution of the pressure coefficient are shown in Figure 5.17 and Figure 5.18, 

respectively. 

Table 5.6 Optimization Results for High-Speed Phase 

Parameterization 

Scheme 

Total Drag [N/m] Angle of Attack [deg] 

Initial Optimum Initial Optimum 

Camber 1.2955 1.1130 0.0126 1.033 

Thickness 1.2955 0.5136 0.0126 -0.0252 

Camber and Thickness 1.2955 0.4940 0.0126 0.5239 

PARSEC 0.8268 0.4262 0.317 -0.465 

 

Table 5.7 PARSEC Design Variables Range in the High-Speed Optimization 

Parsec Airfoil Parameter 
Lower 

Limit 

Upper 

Limit 

Initial 

Value  

Optimum 

Value 

Leading Edge Radius Upper (𝑅𝑙𝑒𝑢𝑝𝑝𝑒𝑟)[m] 0.012 0.025 0.02 0.01583 

Leading Edge Radius Upper (𝑅𝑙𝑒𝑙𝑜𝑤𝑒𝑟) [m] 0.005 0.012 0.009 0.00938 

Peak Location for Lower Surface (𝑋𝑙𝑜) [m] 0.23 0.33 0.27 0.24125 

Peak Value for Lower Surface (𝑌𝑙𝑜) [m] -0.05 -0.035 -0.045 -0.035 

Curvature for Lower Surface (𝑌𝑋𝑋𝑙𝑜) [1/m] 0.4 0.3 0.5 0.49828 

Peak Location for Upper Surface (𝑋𝑢𝑝) [m] 0.28 0.38 0.33 0.28465 

Peak Value for Upper Surface (𝑌𝑢𝑝) [m] 0.07 0.06 0.07 0.06717 

Curvature for Upper Surface (𝑌𝑋𝑋𝑢𝑝) [1/m] -0.7 -0.6 -0.5 -0.59982 

Trailing Edge Direction Angle (𝛼𝑇𝐸) [deg] -5 0 -3 -3.5347 

Trailing Edge Wedge Angle (𝛽𝑇𝐸) [deg] 10 20 12 11.7674 
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Figure 5.17 Optimum Airfoil Shapes for High Speed Configuration 

 

 

Figure 5.18 Pressure Distribution of Optimum Airfoil Shapes for High Speed 

Configuration 
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5.2.4 Landing Configuration 

Based on the required sectional lift and Equation (4.2), the required lift 

coefficient for this flight condition is 0.98712. An additional angle of attack constraint 

is imposed on this configuration. The angle of attack for the constraint should be 

between 7 and 10 degrees. This high angle of attack is considered in order to ensure 

that sufficient drag can be achieved. The iteration history for the landing configuration 

is shown in Figure 5.19. 

  

(a) Camber Only (b) Thickness Only 

  

(c) Camber and Thickness (d) PARSEC 

Figure 5.19 Iteration History for Landing Optimization 
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In the camber optimization, the optimization process tries to increase the 

camber factor of the airfoil to meet the high lift coefficient requirement. An increase 

in camber makes an airfoil to produce the required lift with less angle of attack, and 

hence less drag as well. However, one cannot increase the camber up to the maximum 

value since the airfoil is required to have a high angle of attack as well from the 

imposed constraint. The optimum airfoil has the camber increase by a factor of 1.574.  

On the other hand, the thickness optimization tries to decrease the thickness 

distribution in order to decrease drag while still maintaining the required lift 

coefficient. It is found that the optimized airfoil has a decrease in thickness by a factor 

of 0.837.  

In the optimization where both camber and thickness are considered, it is found 

that optimum airfoil has an increasing in camber and decreasing in thickness, similar 

to the trend observed in the earlier optimization. It is found that the optimum airfoil 

has camber increase by a factor of 1.434 and thickness decrease by a factor of 0.749.  

The summary concerning about the drag and angle of attack used in the landing 

optimization is shown in Table 5.8. It is found that the PARSEC optimization leads to 

a better optimum value compared to the other shape parameterization schemes. 

PARSEC design variables used in this landing optimization is shown in Table 5.9. The 

optimum airfoil shapes and its pressure distribution are shown in Figure 5.20 and 

Figure 5.21, respectively.  
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Table 5.8 Optimization Summary for Landing Phase  

Parameterization 

Scheme 

Total Drag [N/m] Angle of Attack [deg] 

Initial Optimum Initial Optimum 

Camber 1.9677 1.7502 8.082 7.00 

Thickness 1.9677 1.8294 8.082 7.95 

Camber and Thickness 1.9677 1.5529 8.082 7.00 

PARSEC 2.1981 1.4652 8.583 7.00 

 

Table 5.9 PARSEC Design Variables Range in the Landing Optimization 

Parsec Airfoil Parameter 
Lower 

Limit 

Upper 

Limit 

Initial 

Value  

Optimum 

Value 

Leading Edge Radius Upper (𝑅𝑙𝑒𝑢𝑝𝑝𝑒𝑟) [m] 0.012 0.025 0.02 0.01583 

Leading Edge Radius Upper (𝑅𝑙𝑒𝑙𝑜𝑤𝑒𝑟) [m] 0.005 0.012 0.009 0.00938 

Peak Location for Lower Surface (𝑋𝑙𝑜) [m] 0.23 0.33 0.27 0.24125 

Peak Value for Lower Surface (𝑌𝑙𝑜) [m] -0.05 -0.035 -0.045 -0.035 

Curvature for Lower Surface (𝑌𝑋𝑋𝑙𝑜) [1/m] 0.4 0.3 0.5 0.49828 

Peak Location for Upper Surface (𝑋𝑢𝑝) [m] 0.28 0.38 0.33 0.28465 

Peak Value for Upper Surface (𝑌𝑢𝑝) [m] 0.07 0.06 0.07 0.06717 

Curvature for Upper Surface (𝑌𝑋𝑋𝑢𝑝) [1/m] -0.7 -0.6 -0.5 -0.59982 

Trailing Edge Direction Angle (𝛼𝑇𝐸) [deg] -5 0 -3 -3.5347 

Trailing Edge Wedge Angle (𝛽𝑇𝐸) [deg] 10 20 12 11.7674 
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Figure 5.20 Optimum Airfoil Shapes for Different Parameterization in Landing 

Configuration 

 

 

Figure 5.21 Cp Distribution for Optimum Airfoil in Landing Configuration with 

Several Shape Parameterizations 
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5.2.5 Miscellaneous Case 

In order to guarantee that the optimization problem is a well-posed problem, a 

different initial geometry is chosen for one flight condition, loiter configuration. 

Instead of using NACA 2412 as the initial geometry, NACA 2415 is chosen as the 

initial geometry. This initial geometry is later used in the camber and thickness 

optimization.  

In order to encompass similar geometry range, the range of thickness in NACA 

2415 is changed as well. The new range used for NACA 2415 case is shown in Table 

5.10. 

Table 5.10 Range of Camber and Thickness Variables for NACA 2415 Case 

Design Variables Lower Limit Upper Limit 

Camber Factor 0 3 

Thickness Factor 0.48 2.4 

 

It is found that the optimum solution found in this case is very similar to the 

one found by using initial case to be NACA 2412. Summary of the parameters for the 

optimum design are tabulated in Table 5.11. The optimum airfoil shapes and its 

pressure distribution are shown in Figure 5.22 and Figure 5.23, respectively.  

Table 5.11 Optimum Parameters for Two Different Cases in Loiter Configuration 

 NACA 2412 NACA 2415 

Optimum Camber Factor 0.6 2.484 

Optimum Thickness Factor 0.48 2.453 

Optimum Drag 0.8376 0.8537 
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Figure 5.22 Optimum Airfoil Shapes for Loiter Optimization in Camber and 

Thickness Parameterization with Two Different Initial Airfoil Shapes 

 

Figure 5.23 Pressure Distribution of Optimum Airfoil Shapes for Loiter Optimization 

in Camber and Thickness Parameterization with Two Different Initial Airfoil Shapes  
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Apart from the well-posed problem check for the optimization problem, one 

should also check the mesh convergence study for CFD computation. In order to 

perform the mesh convergence study, three different mesh sizes around NACA 2412 

are considered. The difference between these meshes are based on the number of nodes 

and cells.  

In order to check the convergence study, these meshes are utilized for CFD 

computation in loiter configuration. In each case, required lift coefficient is taken as 

0.7358. Details of aerodynamic properties for these different cases are tabulated in 

Table 5.12. It can be seen clearly that the difference between Case 2 and Case 3 is not 

very much. As a result, the size of mesh similar to the one in Case 2 is considered in 

the CFD computation.  

 

Table 5.12 Summary of Mesh Convergence Study for NACA 2412 Airfoil in Loiter 

Configuration 

 Case 1 Case 2 Case 3 

Number of Elements 6404 12060 24148 

Number of Nodes 3300 6228 12397 

𝑐𝑙 0.7360 0.7354 0.7359 

𝑐𝑑 0.02 0.0163 0.0169 

Required Angle of Attack [deg] 5.47 5.42 4.91 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis, a brief explanation about mesh deformation combined with CFD 

design optimization is elaborated. Several improvements in the spring analogy mesh 

deformations have been presented in the thesis. The improvements made in the spring 

analogy mesh deformation methods are as follows: angle consideration, semi-

torsional, ball-center, and boundary improvement. For the case of angle 

considerations, two separate solution method have been proposed as well: direct and 

indirect methods. It is found that the proposed improvements in the spring analogy 

method remove the node crossing in the basic spring analogy method and maintain the 

cell angle of initial mesh. Furthermore, the indirect solution method proposed is more 

efficient in time compared to the direct solution method.  

Based on the improved spring analogy method, an airfoil CFD design 

optimization is conducted. The optimization is conducted by aiming to reduce the 

sectional drag of an airfoil for several flight parameters. The conclusions made for 

each flight can be summarized as follows: 

 For take-off configuration, a small thickness distribution accompanied with 

sufficient camber can lead to an optimum airfoil.  

 For loiter configuration, on which velocity is low and no high angle of attack 

is required, a huge increase in camber accompanied by small thickness can lead 

to an optimum airfoil.  



 

 84 

 For high-speed configuration, where the lowest lift coefficient is required, a 

small thickness accompanied by sufficient decrease in camber lead to an 

optimum airfoil.  

 For landing configuration, which high angle of attack is required, a sufficient 

increase in camber accompanied by sufficient decrease in thickness yield to an 

optimum airfoil.  

The summary for the above conclusion can be summarized in Table 6.1. The 

factors defined in here are the corresponding design variables used in the optimization 

analysis where both camber and thickness variation are considered.  

 

Table 6.1 Summary of Camber and Thickness Factor Employed for Different Flight 

Parameters 

Flight Parameter Camber Factor Thickness Factor 

Take-Off 1.452 0.6 

Loiter 2.485 0.6 

Take-Off 0.7059 0.6 

Landing 1.434 0.749 

 

It is also found that another improvement in the optimization by utilizing 

PARSEC shape parameterization give a better optimum design compared to 

optimization by considering only camber and thickness distribution. Furthermore, the 

optimization problem is not very dependent to the starting point of camber and 

thickness distribution when both camber and thickness optimization are considered.  

Furthermore, it is also found that in many case the optimization conducted 

reduce the required angle of attack value. This infact becomes another advantage since 

it is more beneficial to attain the same lift with low angle attack in a flight.  

In summary, my contribution to this thesis are summarized as follows: 

 Basic mesh connectivity principles applied to find the list of neighbor nodes 

surrounding an arbitrary node.  
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 Develop the idea of direct solution methods by considering 2 x 2 matrix for 

angle inclusion in spring analogy. 

 Introducing the notion of ball-center spring analogy in the improvement 

method spring analogy.  

 Applying the concept of boundary improvement via Saint-Venant principle in 

two different study cases.  

 Applying the idea of global stiffness assemble process for indirect solution 

methods for torsional spring analogy approach.  

6.2 Future Work  

Mesh deformation technique can be enhanced by introducing parallel 

implementation in the computation. Apart from that, another improvement especially 

for the viscous mesh deformation scheme can be introduced in such a way that similar 

capability in inviscid analysis can be achieved. Edge connectivity might also be 

improved by using another advanced algorithm technique. Another challenging issue 

might be to perform mesh deformation technique for hybrid unstructured mesh instead 

of triangular unstructured mesh. The last meticulous work that can be considered is to 

implement this mesh deformation technique for 3-D mesh deformation scheme.  

Regarding the optimization analysis, other improved shape parameterizations 

might be introduced in the analysis. Instead of using gradient based optimization, other 

optimization schemes like genetic algorithm or stochastic algorithm or even particle 

swarm optimization might be implemented as well. The optimization might be also 

applied in high Mach number (compressible flow) around the airfoil instead of low 

Mach number (incompressible flow). Last but not the least, another excellent work 

that can be considered is to combine the 3-D mesh deformation scheme with wing 

design optimization.  
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APPENDIX A 

DERIVATION OF KINEMATIC FORMULATION IN TORSIONAL SPRING 

ANALOGY METHOD 

This section elaborates the kinematic formulation used in the torsional spring 

analogy by Farhat et al. [29]. The kinematic formulation is considered only for one of 

nodes in triangular cell Ωijk.  

By assuming the angular displacement ∆𝜃𝑖𝑘 (relative displacement of node 𝑘 

with respect to node 𝑖), shown in Figure 3.3 is small enough, the angular displacement 

can be computed as:  

 
∆𝜃𝑖𝑘 ≅ sin ∆𝜃𝑖𝑘 =

𝑟𝑖𝑘 × 𝑟𝑖𝑘′
‖𝑟𝑖𝑘‖‖𝑟𝑖𝑘′‖

=
𝑟𝑖𝑘 × 𝑟𝑖𝑘′
𝑙𝑖𝑘𝑙𝑖𝑘′

 

𝑟𝑖𝑘 = {
𝑥𝑘 − 𝑥𝑖
𝑦𝑘 − 𝑦𝑖

}  

𝑟𝑖𝑘′ = {
𝑥𝑘′ − 𝑥𝑖
𝑦𝑘′ − 𝑦𝑖

} = {
𝑥𝑘 − 𝑥𝑖
𝑦𝑘 − 𝑦𝑖

} + {
𝑥𝑘′ − 𝑥𝑘
𝑦𝑘′ − 𝑦𝑘

}
⏟      

�⃗⃗�𝑘

= 𝑟𝑖𝑘 + {
𝑢𝑘
𝑣𝑘
} 

(A.1) 

 

Based on the above consideration, both length 𝑙𝑖𝑘 and 𝑙𝑖𝑘′ are assumed to be 

equal to each other.  As a result, the final expression for the angular displacement can 

be simplified as:  

 
∆𝜃𝑖𝑘 =

(𝑥𝑘 − 𝑥𝑖)(𝑦𝑘 − 𝑦𝑖 + 𝑣𝑘) − (𝑦𝑘 − 𝑦𝑖)(𝑥𝑘 − 𝑥𝑖 + 𝑢𝑘)

𝑙𝑖𝑘
2  

∆𝜃𝑖𝑘 =
(𝑥𝑘 − 𝑥𝑖)𝑣𝑘 − (𝑦𝑘 − 𝑦𝑖)𝑢𝑘

𝑙𝑖𝑘
2  

∆𝜃𝑖𝑘 =
(𝑥𝑘 − 𝑥𝑖)

𝑙𝑖𝑘
2

⏟      
𝑎𝑖𝑘

𝑣𝑘 −
(𝑦𝑘 − 𝑦𝑖)

𝑙𝑖𝑘
2

⏟      
𝑏𝑖𝑘

𝑢𝑘 

(A.2) 
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∆𝜃𝑖𝑘 = 𝑎𝑖𝑘𝑣𝑘 − 𝑏𝑖𝑘𝑢𝑘 

Another angular displacement attached to node 𝑖 is coming from node 𝑗. Small 

rotation angle is also considered in the computation process. By doing similar 

procedure done previously, the terms for ∆𝜃𝑖𝑗 is shown in Equation (A.3). Notice that 

there exists a sign different in the equation since positive angular displacement is 

defined as the increase in 𝜃𝑖.  

 ∆𝜃𝑖𝑗 = −𝑎𝑖𝑗𝑣𝑗 + 𝑏𝑖𝑗𝑢𝑗  (A.3) 

 

The last contribution for the angular increment ∆𝜃𝑖 comes from the node itself. 

Unfortunately, it is not plausible to derive this equation by similar procedures 

explained earlier. However, by inspection this angular increment is modeled as shown 

in Equation (A.4).  

 ∆𝜃𝑖𝑖 = 𝛾𝑣𝑖 + 𝛽𝑢𝑖 (A.4) 

 

As a result, the total angular displacement for node 𝑖 is shown in Equation 

(A.5). 

 ∆𝜃𝑖 = ∆𝜃𝑖𝑖 + ∆𝜃𝑖𝑗 + ∆𝜃𝑖𝑘 

∆𝜃𝑖 =  𝛾𝑣𝑖 + 𝛽𝑢𝑖−𝑎𝑖𝑗𝑣𝑗 + 𝑏𝑖𝑗𝑢𝑗 + 𝑎𝑖𝑘𝑣𝑘 − 𝑏𝑖𝑘𝑢𝑘 
(A.5) 

 

In order to complete the above expression, it is required to compute the 

coefficients of 𝛾 and 𝛽. These two coefficients are computed based on the rigid body 

motion condition for the triangular cell Ω𝑖𝑗𝑘. In the rigid body motion, each node in 

the triangular cell travels the same distance, that is 𝑢𝑖 = 𝑢𝑗 = 𝑢𝑘 = 𝑢 and 𝑣𝑖 = 𝑣𝑗 =

𝑣𝑘 = 𝑣. Another constraint that should be considered is in the rigid body motion, the 

total angular displacements should be equal to zero. Based on these assumptions, the 

coefficients of 𝛾 and 𝛽 can be computed as shown in Equation (A.6).  
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 ∆𝜃𝑖 = (𝛾 − 𝑎𝑖𝑗 + 𝑎𝑖𝑘)𝑣 + (𝛽 + 𝑏𝑖𝑗 − 𝑏𝑖𝑘)𝑢 

∆𝜃𝑖 = 0⇒
𝛾 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘
𝛽 = −𝑏𝑖𝑗 + 𝑏𝑖𝑘

 
(A.6)  

 

Consequently, the final expression for the angle ∆𝜃𝑖 is shown in Equation 

(A.7).  

 ∆𝜃𝑖 = (𝑏𝑖𝑘 − 𝑏𝑖𝑗)𝑢𝑖 + (𝑎𝑖𝑗 − 𝑎𝑖𝑘)𝑣𝑖 + 𝑏𝑖𝑗𝑢𝑗 − 𝑎𝑖𝑗𝑣𝑗 − 𝑏𝑖𝑘𝑢𝑘 + 𝑎𝑖𝑘𝑣𝑘 (A.7)  

 

By similar convention, the angle increment for ∆𝜃𝑗 and ∆𝜃𝑘 are computed as:  

 ∆𝜃𝑗 = (𝑏𝑗𝑖 − 𝑏𝑗𝑘)𝑢𝑗 + (𝑎𝑗𝑘 − 𝑎𝑗𝑖)𝑣𝑗 + 𝑏𝑗𝑘𝑢𝑘 − 𝑎𝑗𝑘𝑣𝑘 − 𝑏𝑗𝑖𝑢𝑖 + 𝑎𝑗𝑖𝑣𝑖 

∆𝜃𝑘 = (𝑏𝑘𝑗 − 𝑏𝑘𝑖)𝑢𝑘 + (𝑎𝑘𝑖 − 𝑎𝑘𝑗)𝑣𝑗 + 𝑏𝑘𝑖𝑢𝑖 − 𝑎𝑘𝑖𝑣𝑖 − 𝑏𝑘𝑗𝑢𝑗 + 𝑎𝑘𝑗𝑣𝑗 
(A.8)  

 

By combining equations (A.7) and (A.8) together, the kinematic matrix which 

governs the relation between the angular displacement and the nodal displacement for 

each node is shown in Equation (A.9). 

 

𝜃𝑖𝑗𝑘 = {

∆𝜃𝑖
𝑖𝑗𝑘

∆𝜃𝑗
𝑖𝑗𝑘

∆𝜃𝑘
𝑖𝑗𝑘

} = [

𝑏𝑖𝑘 − 𝑏𝑖𝑗 𝑎𝑖𝑗 − 𝑎𝑖𝑘 𝑏𝑖𝑗 −𝑎𝑖𝑗 −𝑏𝑖𝑘 𝑎𝑖𝑘
−𝑏𝑗𝑖 𝑎𝑗𝑖 𝑏𝑗𝑖 − 𝑏𝑗𝑘 𝑎𝑗𝑘 − 𝑎𝑗𝑖 𝑏𝑗𝑘 −𝑎𝑗𝑘
𝑏𝑘𝑖 −𝑎𝑘𝑖 −𝑏𝑘𝑗 𝑎𝑘𝑗 𝑏𝑘𝑗 − 𝑏𝑘𝑖 𝑎𝑘𝑖 − 𝑎𝑘𝑗

]

{
 
 

 
 
𝑢𝑖
𝑣𝑖
𝑢𝑗
𝑣𝑗
𝑢𝑘
𝑣𝑘}
 
 

 
 

 (A.9)  
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APPENDIX B 

ITERATIVE SOLVER 

B.1 Conjugate Gradient Method  

This conjugate gradient method is used to solver for the solution of a system of 

equation 𝐴𝑥 = 𝑏. However, the matrix 𝐴 should be a symmetric matrix. Algorithm B.1 

explains about how this method is implemented [34].  

Algorithm B.1 Conjugate Gradient Algorithm  

Input: Symmetric matrix A and vector b 

Output: solution vector of equation 𝐴𝑥 = 𝑏 

  1:      compute 𝑟0 = 𝑏 − 𝐴𝑥0 and 𝑝0 = 𝑟0 

  2:      for i = 0, 1, 2, … do  

  3:            𝛼𝑖 = (𝑟𝑖, 𝑟𝑖)/(𝐴𝑝𝑖, 𝑝𝑖) 
  4:            𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑝𝑖 
  5:            𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖𝐴𝑝𝑖 
  6:            𝛽𝑖 = (𝑟𝑖+1, 𝑟𝑖+1)/(𝑟𝑖, 𝑟𝑖) 
  7:            𝑝𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖𝑝𝑖 
  8:            if |𝑥𝑖+1 − 𝑥𝑖| < tol then exit loop for 2: 

  9:      end for  

B.2 Gauss-Seidel Iterative Solver 

Given a system of equation 𝐴𝑥 = 𝑏, the solution 𝑥 is solved iteratively as: 

 

𝑥𝑖
𝑘 =

1

𝑎𝑖𝑖
[−∑(𝑎𝑖𝑗𝑥𝑗

𝑘)

𝑖−1

𝑗=1

− ∑ (𝑎𝑖𝑗𝑥𝑗
𝑘−1)

𝑛

𝑗=𝑖+1

+ 𝑏𝑖] (B.1) 

The solution is said to be converged if the difference between the iterative 

solution is less than some designated tolerance defined by the user.  
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APPENDIX C 

SAMPLE CASE OF GLOBAL STIFFNESS MATRIX ASSEMBLE 

For a simple illustration, global stiffness matrix assemble for two different 

triangular cells shown in Figure C.1.  

 

Figure C.1 Sample Case of Global Stiffness Matrix Assemble Process 

 

The number with underline describes the edge number, number in a box 

describes the cell number, and the number with dot at the right describes the node 

number.  

In this example both node 1 and node 2 are assumed to be prescribed with node 

3, node 4, and node 5 are free to move. Based on this consideration, ID array matrix 

used in the computation can be written in Equation (C.1).  

 
𝐼𝐷 = 𝑢

𝑣

1 2 3 4 5

[
1 1 0 0 0
1 1 0 0 0

]
 (C.1)  

Based on the methods described earlier, the destination array required for 

computing the active stiffness matrix and prescribed stiffness matrix are shown below.  

 
Dest Array 1 = 𝑢

𝑣

1 2 3 4 5

[
0 0 1 3 5
0 0 2 4 6

]
 (C.2) 
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Dest Array 2 = 𝑢

𝑣

1 2 3 4 5

[
7 9 1 3 5
8 10 2 4 6

]
 (C.3) 

Global assemble procedure are conducted by the aids of these destination 

arrays. In the above example, there are 5 local stiffness matrices for edges and 2 local 

stiffness matrix for torsion.  

 

[
 
 
 
 
𝑘111 𝑘112 𝑘113 𝑘114
𝑘121 𝑘122 𝑘123 𝑘124
𝑘131 𝑘132 𝑘133 𝑘134
𝑘141 𝑘142 𝑘143 𝑘144]

 
 
 
 

{

𝑢1
𝑣1
𝑢2
𝑣2

}      

[
 
 
 
 
𝑘211 𝑘212 𝑘213 𝑘214
𝑘221 𝑘222 𝑘223 𝑘224
𝑘231 𝑘232 𝑘233 𝑘234
𝑘241 𝑘242 𝑘243 𝑘244]

 
 
 
 

{

𝑢2
𝑣2
𝑢3
𝑣3

} 

[
 
 
 
 
𝑘311 𝑘312 𝑘313 𝑘314
𝑘321 𝑘322 𝑘323 𝑘324
𝑘331 𝑘332 𝑘333 𝑘334
𝑘341 𝑘342 𝑘343 𝑘344]

 
 
 
 

{

𝑢1
𝑣1
𝑢3
𝑣3

}      

[
 
 
 
 
𝑘411 𝑘412 𝑘413 𝑘414
𝑘421 𝑘422 𝑘423 𝑘424
𝑘431 𝑘432 𝑘433 𝑘434
𝑘441 𝑘442 𝑘443 𝑘444]

 
 
 
 

{

𝑢3
𝑣3
𝑢4
𝑣4

} 

[
 
 
 
 
𝑘511 𝑘512 𝑘513 𝑘514
𝑘521 𝑘522 𝑘523 𝑘524
𝑘531 𝑘532 𝑘533 𝑘534
𝑘541 𝑘542 𝑘543 𝑘544]

 
 
 
 

{

𝑢2
𝑣2
𝑢4
𝑣4

} 

(C.4) 

 

The above local stiffness matrix are combined together in other to perform the 

solution for the angle consideration in spring analogy. Based on the problem, the size 

of the active global stiffness matrix will be 6 x 6 and prescribed global stiffness matrix 

will be 4 x 6. These partitioned matrices are achieved based on Algorithm 1 shown in 

Chapter 3.  

For the case of torsional spring analogy, assemble of the matrices shown in 

Equation (C.5) is required. In fact, the final stiffness matrix is superposition of the 

contribution from both equations (C.4) and (C.5). 
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[
 
 
 
 
 
𝑐111 𝑐112 𝑐113 𝑐114 𝑐115 𝑐116
𝑐121 𝑐122 𝑐123 𝑐124 𝑐125 𝑐126
𝑐131 𝑐132 𝑐133 𝑐134 𝑐135 𝑐136
𝑐141 𝑐142 𝑐143 𝑐144 𝑐145 𝑐146
𝑐151 𝑐152 𝑐153 𝑐154 𝑐155 𝑐156
𝑐161 𝑐162 𝑐163 𝑐164 𝑐165 𝑐166]

 
 
 
 
 

{
 
 

 
 
𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3}
 
 

 
 

 

[
 
 
 
 
 
𝑐211 𝑐212 𝑐213 𝑐214 𝑐215 𝑐216
𝑐221 𝑐222 𝑐223 𝑐224 𝑐225 𝑐226
𝑐231 𝑐232 𝑐233 𝑐234 𝑐235 𝑐236
𝑐241 𝑐242 𝑐243 𝑐244 𝑐245 𝑐246
𝑐251 𝑐252 𝑐253 𝑐254 𝑐255 𝑐256
𝑐261 𝑐262 𝑐263 𝑐264 𝑐265 𝑐266]

 
 
 
 
 

{
 
 

 
 
𝑢2
𝑣2
𝑢4
𝑣4
𝑢3
𝑣3}
 
 

 
 

 

(C.5) 

 

Similar to the approach implemented in the solution for spring analogy method 

with angle consideration, the torsional spring analogy also requires partitioning the 

global stiffness matrix based on whether the nodes are active degree of freedom or 

prescribed boundary condition. Similar technique elaborated in Algorithm 1 in Chapter 

3 is also implemented in here.  
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APPENDIX D 

INPUT FILES  

D.1 Mesh Deformation Input File 

In order to run the mesh deformation code developed in this study, a .dat input 

file is prepared. This input file describes the information required for choosing the 

method and explaining about the design variables used in the optimization.  

#Deformation Parameter Description Accompanying the Mesh Deformation 
Program 

 

#Type of Deformation (1 = ROTATION, 2 = CAMBER, 3 = THICKNESS, 4 = 

CAMBER and THICKNESS, 5 = HICKS-HENNE 6=PARSEC, 7= MOVEMENT ) 

NUM_DEFORM = 1                 %number of deformation applied in the 

program 

DEFORM_TYPE = 1             %description of each type applied in the 

program 

 

#Desribe the Input for the ROTATION 

ROT_CENTER = 0.25  0.0 

ROT_ANGLE  = 50.0             %in degree 

ROT_COND = 1                %Desribe whether the rotated is applied 

to whole airfoil or not (0 = NO, 1 = YES) 

 

#Desribe the position of design variable in camber 

NUM_DES_CAM = 9 

DES_LOC  = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 

FACT_CAM = 1 %increment factor in the camber distribution 

 

#Desribe the factor used for the thickness distribution in upper and 

lower 

THICK_FACTOR = 0.6  %both upper and lower of the airfoil 

 

#Desciribe the Hicks Henne Location 

NUM_HICKS_HENNE_UPPER  = 11 

WIDTH_UPPER = 5 

HICKS_LOC_UPPER  = 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95 

HICKS_FACT_UPPER = 

0.0051,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005 

 

NUM_HICKS_HENNE_LOWER  = 11 
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WIDTH_LOWER = 5 

HICKS_LOC_LOWER  = 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95 

HICKS_FACT_LOWER = 

0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005,0.005 

 

#PARSEC AIRFOIL Shape Parameterization for Leading Edge Radius 

rad_le_upper = 0.02        %the radius of the leading edge lower 

rad_le_lower = 0.009      %the radius of the leading edge lower 

 

#PARSEC AIRFOIL Shape Parameterization for maximum crest on lower 

airfoil 

x_low_max = 0.27 

y_low_max = -0.045 

yxx_low_max = 0.4 

 

#PARSEC AIRFOIL Shape Parameterization for maximum crest on upper 

airfoil 

x_up_max = 0.33 

y_up_max = 0.07 

yxx_up_max = -0.6 

 

#PARSEC AIRFOIL Shape Parameterization for defining the 

te_off = 0 

te_height = 0 

alpha_te = -3               %in degree 

beta_te = 12                %in degree 

 

#Displacement Type of Deformation for the Airfoil 

X_DIST = 2.0 

Y_DIST = 2.0 

 

#Method for Deforming the Mesh (1 = LINEAR, 2 = SEMITORSIONAL, 3 = 

BALLCENTER, 4 = TORSIONAL) 

DEF_MET = 1 

 

#SOLUTION METHOD (1 = DIRECT,2 = INDIRECT) 

SOL_METHOD = 1 

 

#ITERATIVE METHOD FOR DIRECT SOLUTION (1=NORMAL, 2=SOR METHOD) 

ITER_METHOD_DIR = 1 

 

#ITERATIVE METHOD FOR INDIRECT SOLUTION (1= GAUSS, 2= JACOBI, 3 = 

SOR) 

ITER_METHOD_IND = 1 

 

#ANGLE CONSIDERATION IN INDIRECT SOLUTION (0 = NO, 1= YES) 

ANGLE_IND = 1 

 

#IMPROVEMENT FOR THE BOUNDARY CONDITION SAINT VENANT PRINCIPLE(0 = 

N0, 1 = YES) 

BOUND_STAT = 1 

 

#REGION WHERE SAINT VENANT PRINCIPLE SHOULD BE APPLIED (0= NONE, 1= 

AIRFOIL SURFACE, 2 = SOME REGIONS) 
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BOUND_REG = 2 

 

#Relaxation parameter used in the iteration procedure 

OMEGA = 0.8 

 

#Determine the output file name for the deformed mesh (for both .tec 

and .su2 ) 

OUTPUT_MESH = output_mesh 

 

D.2 SU2 Input File  

In order to execute SU2 CFD solver, a configuration file (.cfg) is required. The 

configuration used in this study is shown below.  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% 

%                                                                              % 

% SU2 configuration file                                                       % 

% Case description: Incompressible RANS                                        

%                                                        

% File Version 3.2.9 "eagle"                                                   % 

%                                                                              % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% 

 

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION 

------------% 

% 

% Physical governing equations (EULER, NAVIER_STOKES, 

%                               TNE2_EULER, TNE2_NAVIER_STOKES, 

%                               WAVE_EQUATION, HEAT_EQUATION, 

LINEAR_ELASTICITY, 

%                               POISSON_EQUATION) 

PHYSICAL_PROBLEM= NAVIER_STOKES 

% 

% Specify turbulent model (NONE, SA, SA_NEG, SST) 

KIND_TURB_MODEL= SA 

% 

% Mathematical problem (DIRECT, ADJOINT, LINEARIZED) 

MATH_PROBLEM= DIRECT 

% 

% Regime type (COMPRESSIBLE, INCOMPRESSIBLE, FREESURFACE) 

REGIME_TYPE= INCOMPRESSIBLE 

% 

% Restart solution (NO, YES) 

RESTART_SOL= NO 
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% ------------------------- UNSTEADY SIMULATION -------------------

------------% 

% 

% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-

1ST_ORDER,  

%                      DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL) 

UNSTEADY_SIMULATION= NO 

 

% -------------------- INCOMPRESSIBLE FREE-STREAM DEFINITION ------

------------% 

% 

% Free-stream density (1.2886 Kg/m^3 (air), 998.2 Kg/m^3 (water)) 

FREESTREAM_DENSITY= 1.18955 

% 

% Free-stream velocity (m/s) 

FREESTREAM_VELOCITY= ( 13.2117383361196, 0.923853959188664, 0.0 ) 

% 

% Free-stream viscosity (1.853E-5 Ns/m^2 (air), 0.798E-3 Ns/m^2 

(water)) 

FREESTREAM_VISCOSITY= 1.853E-5 

% 

% ---------------------- REFERENCE VALUE DEFINITION ---------------

------------% 

% 

% Reference origin for moment computation 

REF_ORIGIN_MOMENT_X = 0.25 

REF_ORIGIN_MOMENT_Y = 0.00 

REF_ORIGIN_MOMENT_Z = 0.00 

% 

% Reference length for pitching, rolling, and yawing non-dimensional 

moment 

REF_LENGTH_MOMENT= 1.0 

% 

% Reference area for force coefficients (0 implies automatic 

calculation) 

REF_AREA= 1.0 

 

% -------------------- BOUNDARY CONDITION DEFINITION --------------

------------% 

% 

% Navier-Stokes wall boundary marker(s) (NONE = no marker) 

MARKER_HEATFLUX= ( airfoil, 0.0 ) 

% 

% Farfield boundary marker(s) (NONE = no marker) 

MARKER_FAR= ( farfield ) 

% 

% Marker(s) of the surface to be plotted or designed 

MARKER_PLOTTING= ( airfoil ) 

% 

% Marker(s) of the surface where the functional (Cd, Cl, etc.) will 

be evaluated 

MARKER_MONITORING= ( airfoil ) 
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% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---

------------% 

% 

% Numerical method for spatial gradients (GREEN_GAUSS, 

WEIGHTED_LEAST_SQUARES) 

NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES 

% 

% Courant-Friedrichs-Lewy condition of the finest grid 

CFL_NUMBER= 10.0 

% 

% Adaptive CFL number (NO, YES) 

CFL_ADAPT= NO 

% 

% Parameters of the adaptive CFL number (factor down, factor up, CFL 

min value, 

%                                        CFL max value ) 

CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) 

% 

% Number of total iterations 

EXT_ITER= 2000 

 

% ----------------------- SLOPE LIMITER DEFINITION ----------------

------------% 

% 

% Reference element length for computing the slope and sharp edges 

limiters. 

REF_ELEM_LENGTH= 0.1 

% 

% Coefficient for the limiter 

LIMITER_COEFF= 0.1 

% 

% Coefficient for the sharp edges limiter 

SHARP_EDGES_COEFF= 3.0 

% 

% Reference coefficient (sensitivity) for detecting sharp edges. 

REF_SHARP_EDGES= 3.0 

% 

% Remove sharp edges from the sensitivity evaluation (NO, YES) 

SENS_REMOVE_SHARP= NO 

 

% ------------------------ LINEAR SOLVER DEFINITION ---------------

------------% 

% 

% Linear solver for implicit formulations (BCGSTAB, FGMRES) 

LINEAR_SOLVER= FGMRES 

% 

% Preconditioner of the Krylov linear solver (JACOBI, LINELET, 

LU_SGS) 

LINEAR_SOLVER_PREC= LU_SGS 

% 

% Minimum error of the linear solver for implicit formulations 

LINEAR_SOLVER_ERROR= 1E-4 

% 
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% Max number of iterations of the linear solver for the implicit 

formulation 

LINEAR_SOLVER_ITER= 5 

 

% -------------------------- MULTIGRID PARAMETERS -----------------

------------% 

% 

% Multi-Grid Levels (0 = no multi-grid) 

MGLEVEL= 0 

% 

% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) 

MGCYCLE= V_CYCLE 

% 

% Multi-grid pre-smoothing level 

MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) 

% 

% Multi-grid post-smoothing level 

MG_POST_SMOOTH= ( 0, 0, 0, 0 ) 

% 

% Jacobi implicit smoothing of the correction 

MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) 

% 

% Damping factor for the residual restriction 

MG_DAMP_RESTRICTION= 0.75 

% 

% Damping factor for the correction prolongation 

MG_DAMP_PROLONGATION= 0.75 

 

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------

------------% 

% 

% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, 

HLLC, 

%                              TURKEL_PREC, MSW) 

CONV_NUM_METHOD_FLOW= ROE 

% 

% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 

2ND_ORDER_LIMITER) 

% 

SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER 

% 

% Slope limiter (VENKATAKRISHNAN, MINMOD) 

SLOPE_LIMITER_FLOW= VENKATAKRISHNAN 

% 

% 1st, 2nd and 4th order artificial dissipation coefficients 

AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 ) 

% 

% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, 

EULER_EXPLICIT) 

TIME_DISCRE_FLOW= EULER_IMPLICIT 

 

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------

------------% 

% 
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% Convective numerical method (SCALAR_UPWIND) 

CONV_NUM_METHOD_TURB= SCALAR_UPWIND 

% 

% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 

2ND_ORDER_LIMITER) 

% 

SPATIAL_ORDER_TURB= 1ST_ORDER 

% 

% Slope limiter (VENKATAKRISHNAN, MINMOD) 

SLOPE_LIMITER_TURB= VENKATAKRISHNAN 

% 

% Time discretization (EULER_IMPLICIT) 

TIME_DISCRE_TURB= EULER_IMPLICIT 

 

% --------------------------- CONVERGENCE PARAMETERS --------------

------------% 

% 

% Convergence criteria (CAUCHY, RESIDUAL) 

% 

CONV_CRITERIA= RESIDUAL 

% 

% Residual reduction (order of magnitude with respect to the initial 

value) 

RESIDUAL_REDUCTION= 6 

% 

% Min value of the residual (log10 of the residual) 

RESIDUAL_MINVAL= -10 

% 

% Start convergence criteria at iteration number 

STARTCONV_ITER= 10 

% 

% Number of elements to apply the criteria 

CAUCHY_ELEMS= 100 

% 

% Epsilon to control the series convergence 

CAUCHY_EPS= 1E-6 

% 

% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, 

SENS_GEOMETRY,  

%                SENS_MACH, DELTA_LIFT, DELTA_DRAG) 

CAUCHY_FUNC_FLOW= DRAG 

 

% ------------------------- INPUT/OUTPUT INFORMATION --------------

------------% 

% 

% Mesh input file 

MESH_FILENAME= final_mesh.su2 

% 

% Mesh input file format (SU2, CGNS, NETCDF_ASCII) 

MESH_FORMAT= SU2 

% 

% Mesh output file 

MESH_OUT_FILENAME= mesh_out.su2 

% 
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% Restart flow input file 

SOLUTION_FLOW_FILENAME= solution_flow.dat 

% 

% Restart adjoint input file 

SOLUTION_ADJ_FILENAME= solution_adj.dat 

% 

% Output file format (PARAVIEW, TECPLOT, STL) 

OUTPUT_FORMAT= TECPLOT 

% 

% Output file convergence history (w/o extension)  

CONV_FILENAME= history 

% 

% Output file restart flow 

RESTART_FLOW_FILENAME= restart_flow.dat 

% 

% Output file restart adjoint 

RESTART_ADJ_FILENAME= restart_adj.dat 

% 

% Output file flow (w/o extension) variables 

VOLUME_FLOW_FILENAME= flow 

% 

% Output file adjoint (w/o extension) variables 

VOLUME_ADJ_FILENAME= adjoint 

% 

% Output objective function gradient (using continuous adjoint) 

GRAD_OBJFUNC_FILENAME= of_grad.dat 

% 

% Output file surface flow coefficient (w/o extension) 

SURFACE_FLOW_FILENAME= surface_flow 

% 

% Output file surface adjoint coefficient (w/o extension) 

SURFACE_ADJ_FILENAME= surface_adjoint 

% 

% Writing solution file frequency 

WRT_SOL_FREQ= 100 

% 

% Writing convergence history frequency 

WRT_CON_FREQ= 1 
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APPENDIX E 

RANS EQUATIONS USED IN SU2 CFD MODELLING 

The governing equations used in SU2 CFD modelling based on RANS 

equations combined with turbulence modelling. Many turbulence modelling options 

are available in SU2 CFD. It has been verified that different turbulence modelling 

options in SU2 CFD lead to similar results [1]. The governing equations shown in here 

are taken from one of the papers from SU2 developers [1].  

The complete system of equations Navier Stokes used in tensor are shown in 

Equation (E.1) [1].  

 𝜕�⃗⃗⃗⃗�

𝜕𝑡
+ ∇. �⃗�𝑐𝑜𝑛𝑣 − ∇. �⃗�𝑣𝑖𝑠𝑐 − �⃗⃗� = 0 

�⃗⃗⃗⃗� = {

𝜌

𝜌�⃗⃗�
𝜌𝐸
}, �⃗⃗� = {

𝑢
𝑣
𝑤
}, �⃗�𝑐𝑜𝑛𝑣 = {

𝜌�⃗⃗�

𝜌�⃗⃗��⃗⃗� + 𝐼�̿�

𝜌𝐸�⃗⃗� + 𝑝�⃗⃗�

} 

�⃗�𝑣𝑖𝑠𝑐 = {

0
𝜏̿

𝜏̿. �⃗⃗� + 𝜇total
∗ 𝑐𝑝∇𝑇

} , �⃗⃗� = {

𝑞𝜌

�⃗�𝜌�⃗⃗⃗�
𝑞𝜌𝐸

} 

(E.1) 

 

 

The term 𝐸 expresses the total energy per unit mass. 𝑐𝑝 is the specific heat at 

constant pressure, 𝑇 is the temperature. The term 𝜏̿ expresses the viscous stress tensor 

defined in the RANS equations which is in tensor form can be defined in Equation 

(E.2).  

 
𝜏̿ = 𝜇𝑡𝑜𝑡𝑎𝑙 (∇�⃗⃗� + ∇�⃗⃗�

𝑇 −
2

3
𝐼(̿∇. �⃗⃗�)) (E.2) 
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A perfect gas assumption is utilized with 𝛾, a ratio of specific heats and 𝑅, gas 

constant. Based on this assumption, pressure, temperature, and specific heat are shown 

in Equation (E.3). 

 𝑝 = (𝛾 − 1)𝜌 [𝐸 −
1

2
�⃗⃗�. �⃗⃗�], 𝑇 =

𝑝

𝜌𝑅
, 𝑐𝑝 =

𝛾𝑅

𝛾−1
 (E.3) 

  

The turbulence modelling is based on Boussinesq hypothesis that states the 

total viscosity is summation of laminar viscosity, 𝜇𝑑𝑦𝑛 and turbulence viscosity, 𝜇𝑡𝑢𝑟𝑏. 

The dynamic viscosity is computed as a function of Sutherland’s formula (based on 

temperature only). On the other hand, the turbulent viscosity is computed based on 

turbulence modeling.  

 𝜇𝑡𝑜𝑡 = 𝜇𝑑𝑦𝑛 + 𝜇𝑡𝑢𝑟𝑏 

𝜇𝑡𝑜𝑡
∗ =

𝜇𝑑𝑦𝑛

𝑃𝑟𝑑𝑦𝑛
+
𝜇𝑡𝑢𝑟𝑏
𝑃𝑟𝑡𝑢𝑟𝑏

 
(E.4) 

 

For the Spalart-Allmaras turbulence modelling, the turbulence viscosity is 

computed in Equation (E.5).  

 𝜇𝑡𝑢𝑟𝑏 = 𝜌�̂�𝑓𝜈1, 𝑓𝑣1 =
𝜒3

𝜒3+𝑐�̂�1
3 , 𝜒 =

�̂�

𝜈
, 𝜈 =

𝜇𝑑𝑦𝑛

𝜌
 (E.5) 

 

The term �̂� is attained by solving a transport equation where the convective, 

viscous, and source terms are given as in Equation (E.6).  

 
�⃗�𝑐 = �⃗⃗��̂�, �⃗�𝑣 = −

𝜈+�̂�

𝜎
∇�̂�, 𝑄 = 𝑐𝑏1�̂��̂� − 𝑐𝑤1𝑓𝑤 (

�̂�

𝑑𝑠
)
2

+
𝑐𝑏2

𝜎
|∇�̂�|2 

𝑓𝑤 = 𝑔 [
1 + 𝑐𝑤3

6

𝑔6 + 𝑐𝑤3
6
]

1/6

, 𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟) 

𝑟 =
�̂�

�̂�𝜅2𝑑𝑠2
 

(E.6) 
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The term 𝑑𝑠 specifies the distance to the nearest wall. On the other hand, the 

term �̂� defines the production term which is mathematically shown in Equation (E.7).  

 �̂� = |�⃗⃗⃗�| +
�̂�

𝜅2𝑑𝑠
2 𝑓𝑣2, �⃗⃗⃗� = ∇ × �⃗⃗� 

𝑓𝑣2 = 1 −
𝜒

1 + 𝜒𝑓𝑣1
 

(E.7) 

 

The constants used for this turbulence modelling are summarized in Equation 

(E.8).  

 
𝜎 =

2

3
, 𝑐𝑏1 = 0.1355, 𝑐𝑏2 = 0.622, 𝜅 = 0.41 

𝑐𝑤1 =
𝑐𝑏1
𝜅2
+
1 + 𝑐𝑏2
𝜎

, 𝑐𝑤2 = 0.3, 𝑐𝑤3 = 2, 𝑐𝑣1 = 7.1 

(E.8) 

 

In the computation, a no-slip condition is applied on the airfoil region. 

Furthermore, adiabatic condition is imposed on the airfoil boundary as well. The above 

equations are solved in SU2 by using Finite Volume Method with Upwind Scheme 

Moreover, the flux computation is done based on the Roe flux computation method.  


