
1

2

OBJECT-ORIENTED IMPLEMENTATION OF OPTION PRICING VIA MATLAB:
MONTE CARLO APPROACH

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGE TEKİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

FINANCIAL MATHEMATICS

JULY 2015

Approval of the thesis:

OBJECT-ORIENTED IMPLEMENTATION OF OPTION PRICING VIA
MATLAB: MONTE CARLO APPROACH

submitted by ÖZGE TEKİN in partial fulfillment of the requirements for the de-
gree of Master of Science in Department of Financial Mathematics, Middle East
Technical University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Ali Devin Sezer
Head of Department, Financial Mathematics

Assoc. Prof. Dr. Ömür Uğur
Supervisor, Scientific Computing

Assoc. Prof. Dr. Yeliz Yolcu Okur
Co-supervisor, Financial Mathematics

Examining Committee Members:

Assoc. Prof. Dr. Ömür Uğur
Scientific Computing, METU

Prof. Dr. Gerhard Wilhelm Weber
Scientific Computing, METU

Assoc. Prof. Dr. Ümit Aksoy
Department of Mathematics, Atılım University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ÖZGE TEKİN

Signature :

v

vi

ABSTRACT

OBJECT-ORIENTED IMPLEMENTATION OF OPTION PRICING VIA MATLAB:
MONTE CARLO APPROACH

Tekin, Özge

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ömür Uğur

Co-Supervisor : Assoc. Prof. Dr. Yeliz Yolcu Okur

July 2015, 69 pages

There are many applications in finance and investment that require the use of methods,
which involve time-consuming and laborious iterative calculations. Although closed-
form solutions are available for some specific instruments, the valuation methods used
in financial engineering in many other situations require analytical methods, which
compute approximate solutions on computing environments.

Option pricing is one of the most important and active topics in financial engineer-
ing, and there are many fundamental methods for numerous different type options in
literature as well as in the derivative market. Close investigation of options shows, be-
sides the underlying parameters, significant relation and similarities, even inheritance,
such as options on options. On the other hand, investigation of the valuation methods
reveals the use of similar fundamental algorithms, such as Monte Carlo technique or
solving the corresponding partial differential equation.

Therefore, a software environment for pricing financial derivatives should be as flexible
as possible to modify and extend the options as well as methods for pricing them.
Object-oriented principles and modeling techniques, which contains analysis, design
and implementation, have to be utilized for such a goal. After having analyzed options
and pricing methods, the classes and subclasses to design a hierarchy that forms the
structure of those options and methods are to be organized. As the relation between
classes is so tight that each individual unit, objects, must be qualified to sending or

vii

receiving information to other objects while being responsible for their own work.
Many modern object-oriented programming languages are transferable from one to
another. Hence, MATLAB R© is preferred in this study as it provides numerous built-in
functions and is a very suitable platform to develop OOP based softwares.

Keywords : Object-Oriented Programming, Monte Carlo Methods, Option Pricing

viii

ÖZ

OPSİYON FİYATLANDIRMASININ NESNE YÖNELİMLİ MATLAB
UYGULAMASI: MONTE CARLO YÖNTEMİ

Tekin, Özge

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Doç. Dr. Yeliz Yolcu Okur

Temmuz 2015, 69 sayfa

Finans ve yatırım alanlarında zaman alan ve zorlu yinelemeli hesaplar içeren yöntem-
lerin kullanımını gerektiren birçok uygulama vardır. Finans mühendisliğinde belirli
türev ürünler için kapalı-form çözümler olmasına rağmen, birçok durumda hesaplama
yöntemleri yaklaşık çözümleri bilgisayar ortamında hesaplayan analitik yöntemler ge-
rekmektedir.

Opsiyon fiyatlama, finans mühendisliğindeki en önemli ve aktif konulardan birisidir
ve literatürde çeşitli opsiyonları fiyatlandırmak için birçok temel yöntem bulunmak-
tadır. Opsiyonlar ve bağlı oldukları parametreler yakından incelendiğinde, opsiyonlar
üzerine yazılan opsiyonlar gibi, oldukça önemli bağıntı ve benzerlikler, hatta kalıtım
ilişkisi gözlemlenir. Bununla birlikte, fiyatlama yöntemleri incelendiğinde Monte Carlo
tekniği ve karşılık gelen kısmi diferansiyel denklem çözümü gibi benzer temel algorit-
maların kullanıldığı görülmüştür.

Bu sebeple, finansal türev araçları fiyatlandırmak için oluşturulan yazılım ortamı, op-
siyonları ve fiyatlama tekniklerini yeniden düzenlemek ve genişletmek için mümkün
olduğunca esnek olmalıdır. Analiz, tasarım ve uygulama basamaklarını içeren nesne
yönelimli ilkeler ve modelleme teknikleri bu amaç için kullanılmaktadır. Opsiyon ve
fiyatlama tekniklerini analiz ettikten sonra bu opsiyonların yapısını oluşturan hiyerar-
şiyi tasarlamak için sınıflar ve alt sınıflar organize edilmiştir. Sınıflar arasındaki ilişki
oldukça sıkıdır ve her bağımsız birim yani nesne kendi işleyişinden sorumluyken diğer

ix

nesnelerle bilgi alışverişini gerçekleştirir. Birçok nesne yönelimli programlama dili
birbirine dönüştürülebilir. Sağladığı hazır fonksiyonlar ve nesne yönelimli program-
lama için uygun olması sebebiyle bu çalışmada MATLAB R© programlama dili tercih
edilmiştir.

Anahtar Kelimeler : Nesne Yönelimli Programlama, Monte Carlo Yöntemi, Opsiyon
Fiyatlama

x

To my parents
and

my love Ulaş

xi

xii

ACKNOWLEDGMENTS

First of all, I would like to express my very great appreciation to my thesis supervisor
Assoc. Prof. Dr. Ömür Uğur and co-supervisor Assoc. Prof. Dr Yeliz Yolcu Okur for
their patient guidance, encouragement and invaluable advices not only throughout the
development and preparation of this thesis but also my graduate education so far.

I would like to thank the members of my thesis committee, Prof. Dr. Gerhard Wilhelm
Weber and Assoc. Prof. Dr. Ümit Aksoy for their valuable comments and insight.

I deeply thank all members of the Institute of Applied Mathematics (IAM) for provid-
ing a helpful and sincere environment. Additionally, my special thank goes to mem-
bers of room S206, Cansu Evcin, Sinem Kozpınar, Neşe Öztop, Ayşe Sarıaydın, Ahmet
Sınak, Meral Şimşek and Büşra Temoçin for their kindness, friendship and support.

Finally, none of my studies would have been possible without the support of my
beloved ones. I would like to express my gratefulness to my parents for their con-
tinuous support, encouragement, endless love and understanding in all aspects of my
life. Also, I would like to thank my significant other, Ulaş, for his full support, encour-
agement, patience and love. I have been extremely lucky to have them.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF FIGURES . xix

LIST OF TABLES . xxi

LIST OF ABBREVIATIONS . xxiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Aim of the Thesis . 1

1.2 Literature Review . 1

1.3 Structure of the Thesis . 3

2 PRELIMINARIES . 5

2.1 Options . 5

2.1.1 Plain-Vanilla Options 6

2.1.2 Barrier Options 7

2.2 Option Strategies . 9

2.3 Stochastic Differential Equations with Jumps 10

xv

2.3.1 Stochastic Differential Equations and Itô Process . 11

2.3.2 Black Scholes Framework 13

2.3.3 Pure Jump Processes 17

2.3.3.1 Poisson Process 17

2.3.3.2 Compound Poisson Process 18

2.3.3.3 Compensated Poisson and Compensated
Compound Poisson Processes 19

2.3.4 Jump Diffusion Models 21

2.4 Monte Carlo Approach . 23

2.4.1 Crude Monte Carlo Approach 23

2.4.2 Implementation of Monte Carlo Approach to Euro-
pean Option Pricing 24

2.4.2.1 Numerical Solution 25

3 OBJECT-ORIENTED PROGRAMMING 27

3.1 What is the OOP? . 27

3.1.1 Class and Object 28

3.2 Concepts of the OOP . 29

3.2.1 Abstraction . 29

3.2.2 Encapsulation . 29

3.2.3 Inheritance . 30

3.2.4 Polymorphism 31

3.3 The Unified Modeling Language (UML) 32

4 DESIGN AND IMPLEMENTATION OF OOMCOP 37

4.1 OOP in MATLAB R© . 37

xvi

4.2 Structure of the Program . 39

4.2.1 Payoff Class . 40

4.2.2 PureJumpProcess Class 46

4.2.3 Asset Class . 48

4.2.4 Derivative and Option Classes 50

4.2.5 Pricer Class . 53

4.2.6 Relation Between Classes 54

4.3 Graphical User Interface (GUI) 54

5 CONCLUSION AND FUTURE WORK 57

REFERENCES . 59

APPENDICES

A UML Diagram of the Software . 63

B Test Scripts . 65

C Possible Extension to the Software 69

xvii

xviii

LIST OF FIGURES

Figure 2.1 Payoff diagrams for call and put options 7

Figure 2.2 Simulation results of asset paths for down-and-out call option . . . 9

Figure 2.3 Payoff diagrams of straddle, strangle and butterfly spread 10

Figure 2.4 Paths of Wiener process . 12

Figure 2.5 Paths of Poisson process with intensity λ = 1 18

Figure 2.6 Paths of compound Poisson process with intensity λ = 1, Yi ∼ N(1, 2) 19

Figure 2.7 Paths of compensated Poisson process with intensity λ = 1 20

Figure 2.8 Paths of compensated compound Poisson process with intensity λ =
1, Yi ∼ N(1, 2) . 21

Figure 2.9 Paths of Merton jump diffusion process 23

Figure 2.10 Simulation results of GBM . 26

Figure 3.1 Languages, paradigms and concepts [52] 27

Figure 3.2 Financial derivatives class and its subclasses 29

Figure 3.3 Encapsulation concept in MATLAB R© 30

Figure 3.4 Single, multilevel and multiple inheritance 31

Figure 3.5 UML diagrams overview . 33

Figure 3.6 An example of UML class diagram 33

Figure 3.7 Generalization relation . 34

Figure 3.8 Association relation . 34

Figure 3.9 Aggregation relation . 34

Figure 3.10 Composition relation . 35

Figure 3.11 Dependency relation . 35

Figure 3.12 Package representation . 35

xix

Figure 4.1 MATLAB R© SDE class hierarchy 38

Figure 4.2 UML diagram of sde class with its properties and methods 39

Figure 4.3 Plots of the objects generated from Payoff class 41

Figure 4.4 Evaluated payoff values for myPay object 42

Figure 4.5 Plot of Call Payoff, Put Payoff objects generated from Vanilla Payoff
class . 43

Figure 4.6 Output of the test script for option strategies 44

Figure 4.7 Payoff diagram for the iron condor object 45

Figure 4.8 UML diagram of Payoff class & generalization relation between its
subclasses . 46

Figure 4.9 Output of the test script of Poisson class and its subclasses 47

Figure 4.10 UML diagram of PureJumpProcess class with its subclasses 48

Figure 4.11 UML diagram JumpDiffusion and MertonJD clases 49

Figure 4.12 Paths of Geometric Brownian Motion 50

Figure 4.13 UML diagram of Asset class and subclasses of Asset class 51

Figure 4.14 UML diagram of Derivative and Option class with generalization
relation . 52

Figure 4.15 UML diagram of Pricer class with its subclasses 54

Figure 4.16 Association relations between main classes 55

Figure 4.17 GUI for OOMCOP . 55

Figure A.1 UML diagram of the OOMCOP 63

Figure C.1 UML diagram of the possible extension to the software 69

xx

LIST OF TABLES

Table 2.1 Derivative products according to underlying types [18] 6

Table 2.2 Option strategies according to the market expectation 9

Table 3.1 Classification of programming paradigms 28

Table 3.2 Programming languages according to their supported paradigm . . . 28

Table 3.3 Visibility types of UML class diagram 34

Table 3.4 Multiplicity types . 34

Table 4.1 MATLAB R© SDE class and subclasses with their operations 38

Table 4.2 Supported simulation methods for the types of asset prices 50

Table 4.3 Supported pricing methods based on the payoffs and asset model types 53

xxi

xxii

LIST OF ABBREVIATIONS

C Price of European call
P Price of European put
K Strike (exercise) price
S Price of underlying asset
T Time to expiration (maturity time)
B Barrier
Cdo Price of European down-and-out call
Pdo Price of European down-and-out put
Cdi Price of European down-and-in call
Pdi Price of European down-and-in put
Cuo Price of European up-and-out call
Puo Price of European up-and-out put
Cui Price of European up-and-in call
Pui Price of European up-and-in put
r Risk-free interest rate
W Wiener process (Brownian motion)
a.s. almost surely
i.i.d Independent and identically distributed
Ω Sample space
F σ-algebra
P Probability measure
Q Risk-neutral probability measure
E(X) Expectation of the process X
R Real numbers
N Natural numbers
N(x) The cumulative normal distribution function
OOP Object-oriented programming
UML Unified modeling language
GUI Graphical user interface
GUIDE Graphical user interface development environment
OOMCOP Object-oriented Monte Carlo option pricer

xxiii

xxiv

CHAPTER 1

INTRODUCTION

1.1 Aim of the Thesis

The aim of the thesis is to design and implement an object-oriented software to price
different kinds of options by using Monte Carlo approach. Option valuation is a so-
phisticated area of financial mathematics and it involves financial, mathematical and
computational theories. In literature, a wide number of methods are applied to the nu-
merous types of options. In this thesis, Monte Carlo approach is preferred since it is a
flexible and well defined method. Moreover, it can be easily implemented especially
for some complex options lacking any closed-form solutions.

Object-oriented programing paradigm is chosen in an attempt to provide the reusabil-
ity of the code and to make the software environment more flexible and robust. The
software is divided into five main parts and these parts are designed and organized
within themselves. These main parts are also interacting between each other.

The implementation of the Object-Oriented Monte Carlo Option Pricer (OOMCOP) is
performed by MATLAB R© programming language and a graphical user interface (GUI)
is designed by MATLAB R©/ GUIDE to make the software user friendly.

1.2 Literature Review

Option pricing is one of the most attractive topics in financial mathematics with its
broad and still expanding theory. The literature on option pricing dates back to the
Ph.D. thesis of Louis Bachelier, The Theory of Speculation (1900), based on the anal-
ogy between a Brownian motion without drift (also known as arithmetic Brownian
motion) and stock prices [34]. He suggested the following model for stock prices:

dXt = µXdt+ σdW, for X(0) = a, (1.1)

where a, µ and σ are constant parameters. Because Bachelier’s model allowed negative
stock prices, the model was not suitable for the real stock movements [38]. In 1965,
the geometric Brownian motion (GBM) was introduced by Paul A. Samuelson, who is
also the inventor of the terms, “American” and “European” options [44].

1

The celebrated Black-Scholes model [2] is one of the most important cornerstones of
the option pricing theory. The core idea behind the formula is that the option price at
any time can be mimicked by a dynamically replicating portfolio. In their original work
Fisher Black and Myron Scholes applied it to the option whose underlying follows a
geometric Brownian motion. The Black-Scholes formula is also valid under different
assumptions as shown in Klebaner [29].

Barrier options are path-dependent exotic options that become activated or extinguished
if their underlying hits the certain barrier level [31]. The first close form solution for
the price of down-and-out call option is formulated by Robert C. Merton in 1973 [36].
The analytical formula for barrier option was extended for eight different types of bar-
rier by Mark Rubinstein and Eric Reiner [43].

The Monte Carlo approach has known as a flexible and easy to implement computa-
tional tool in finance. The Monte Carlo approach for option pricing was first introduced
by Phelim Boyle in 1977 [6]. The approach was applied to path dependent Asian op-
tion by Mark Broadie and Paul Glasserman in 1996 [8].

Procedural or object-oriented software environments in order to price options by Monte
Carlo approach can be constructed by using programming languages, such as Java,
C++, Python, Excel, and MATLAB R©. Elke and Ralf Korn gave the general algorithm
to apply Monte Carlo approach. They considered the simulation of continuous and
discontinuous paths [30]. Ömür Uğur gave the algorithm and MATLAB R© codes for
option pricing by Monte Carlo simulations [51]. Various applications of Monte Carlo
approach by MATLAB R© for plain-vanilla options, barrier and Asian options and some
option strategies were shown by Paolo Brandimarte in his book [7].

In literature, object-oriented paradigm was applied for several types of option pric-
ing methods. Joerg Kienitz and Daniel Wetterau wrote algorithms to price several
type of options by using various pricing techniques. They also constructed an object-
oriented pricer engine for options and examined fast Fourier option pricing method in
detail [28]. Daniel J. Duffy built classes for Binomial, Black-Scholes, Monte-Carlo
and for some numerical methods to price options by using C++ [14]. Holger Kam-
meyer and Joerg Kienitz showed the design of a software for Carr-Madan fast Fourier
transform pricing and Monte Carlo pricing. The calibration of the Heston-Hull-White
model parameters according to the market data was also performed by utilizing C++
programming language [27]. Umberto Cherubini and Giovanni Della Lunga was ap-
plied object-oriented paradigm with Java programming language to price and option by
using analytical, binomial and Monte Carlo simulation approaches [10]. Monte Carlo
approach to price European, American and some exotic options by object-oriented
paradigm was investigated by Nick Webber and he used VBA environment for this
purpose [53]. Daniel Duffy and Joerg Kienitz was applied Monte Carlo method to
price one-factor and multi-factor equity options by using C++ programming language
in their book [15].

2

1.3 Structure of the Thesis

The thesis is organized as follows:

• In this chapter, the aim of thesis and the works in literature related to the study
are given.

• In Chapter 2, the required definitions and theoretical framework concerning op-
tion pricing are presented to analyze the software with regard to object-oriented
paradigm.

• In Chapter 3, the terminology and basic concepts of object-oriented program-
ming and unified modeling language (UML) are given. The terminology is
highly crucial for the better understanding of the design of the software.

• Chapter 4 presents the detailed design of the software with UML diagrams of
main classes and their subclasses. In addition, some basic examples are given to
clarify the concepts and implementation.

• Finally, the conclusion and outlook are presented in Chapter 5.

3

4

CHAPTER 2

PRELIMINARIES

In this chapter, the essential financial mathematical background for object-oriented
analysis is given. This analysis is crucial to understand the every units of the soft-
ware deeply. Because the design of the classes is based on these core units. This
section contains three parts; financial derivatives, stochastic differential equations with
and without jumps and Monte Carlo approach. In the first part, options, which are
one of the most commonly used financial derivatives, are examined according to their
types, namely, plain-vanilla and barrier. Next, some main option strategies with their
payoffs are given. In the stochastic differential equations (SDEs) part, the SDEs are
examined and the Black-Scholes framework is given. The main pure jump processes
are introduced to form a basis for jump-diffusion processes. The general form of the
jump-diffusion process and Merton jump diffusion model are given. In the final part,
the basics for Monte Carlo approach are given and the implementation of this approach
onto the European option pricing is explained in detail.

2.1 Options

Derivatives are the financial instruments that are used with the purpose of managing
financial risks. Since they are derived from an underlying asset they are named as
derivatives. Future contracts, forwards, options and swaps are the most commonly used
types of derivative instruments. The examples of the derivative products according to
their deliverability status and the underlying type are given in Table 2.1 [18]. Within
the scope of this thesis, equity options are examined in detailed.

According to Cox and Rubinstein’s definition, an option is a contract giving its owner
the right to buy (in the case of a call) or sell (in the case of a put) a fixed number
of shares of a specified common stock at a fixed price at any time on or before a
given date [13]. The options are classified as European or American style of options
according to their exercise time specifications. European options can only be exer-
cised at maturity date while American options can be exercised at any time during the
lifetime of the option. As expected from the definition, with their flexible exercise
time the American options are more expensive than the corresponding European op-
tions. Both European and American options are also classified according to the type
as plain-vanilla or exotic options. Exotic options have special properties in addition to

5

Table 2.1: Derivative products according to underlying types [18]

Deliverability Underlying Type Derivative Type

Deliverable

Interest Rate
Forward rate agreement (FRA)
Interest rate swap
Interest rate option

Foreign exchange

Outright forward
Foreign exchange swap
Currency swap
Currency option

Equity & stock index
Equity forward
Equity swap
Equity option

Commodity
Commodity forward
Commodity swap
Commodity option

Non-deliverable

Weather Weather future
Weather option

Credit
Credit default swaps (CDS)
Credit-linked notes
CDS option

plain-vanilla options and they include various kinds of options, namely, barrier, look-
back, Asian, chooser, binary, etc.. In this thesis, European type plain vanilla and barrier
options are investigated.

2.1.1 Plain-Vanilla Options

The standard call and put options are named as plain-vanilla options. The payoff func-
tions are given in Definition 2.1.

Definition 2.1. [37] A European plain-vanilla call with the strike price K is an option
with the payoff at time T of

V = (ST −K)+ = max(0, ST −K) =

{
ST −K, if ST > K,
0, if ST ≤ K.

(2.1)

A European plain-vanilla put with the strike price K is an option with the payoff at
time T of

V = (K − ST)+ = max(0, K − ST) =

{
K − ST , if ST < K,
0, if ST ≥ K,

(2.2)

where ST represents the value of the underlying asset at maturity time T .

The payoff graphs of call and put options for K = 20 and the stock price range is
between [0, 50] is given in Figure 2.1.

6

(a) Payoff of the call option (b) Payoff of the put option

Figure 2.1: Payoff diagrams for call and put options

2.1.2 Barrier Options

Barrier options are one of the most commonly used options in the market. They are
more specialized versions of the plain-vanilla options with their additional barrier con-
straints. It is in the class of path dependent options and these options are cheaper than
the plain-vanilla options. Because the payoff not only depends on the final value of the
underlying asset and strike price but also depends on the path of the underlying asset.
The close-form solutions are available for European type standard barrier options and
payoff functions are given in Definition 2.2 [43].

Definition 2.2. [20] Let S0 be the price of an underlying asset at time 0 and T be the
maturity time of the option. B > 0 is called a barrier.

1. If B < S0 we can define the down-options:

(a) i. A down-and-out call with strike price K and out-barrier B is an option
with payoff at time T of

V =

{
(ST −K)+, if St > B for 0 ≤ t ≤ T,
0, otherwise. (2.3)

Denote the price of such a down-and-out call at t = 0 by CK,B
do (S0, T).

ii. A down-and-out put with strike priceK and out-barrierB is an option with
payoff at time T of

V =

{
(K − ST)+, if St > B for 0 ≤ t ≤ T,
0, otherwise. (2.4)

Denote the price of such a down-and-out put at t = 0 by PK,B
do (S0, T).

(b) i. A down-and-in call with strike price K and in-barrier B is an option with
payoff at time T of

V =

{
(ST −K)+, if for some t ∈ [0, T] such that St ≤ B,
0, otherwise. (2.5)

7

Denote the price of such a down-and-in call at t = 0 by CK,B
di (S0, T).

ii. A down-and-in put with strike price K and in-barrier B is an option with
payoff at time T of

V =

{
(K − ST)+, if for some t ∈ [0, T] such that St ≤ B,
0, otherwise. (2.6)

Denote the price of such a down-and-in put at t = 0 by PK,B
di (S0, T).

2. In the case that B > S0 we can define the up-options:

(a) i. An up-and-out call with strike price K and out-barrier B is an option with
payoff at time T of

V =

{
(ST −K)+, if St < B for 0 ≤ t ≤ T,
0, otherwise. (2.7)

Denote the price of such a up-and-out call at t = 0 by CK,B
uo (S0, T).

ii. An up-and-out put with strike price K and out-barrier B is an option with
payoff at time T of

V =

{
(K − ST)+, if St < B for 0 ≤ t ≤ T,
0, otherwise. (2.8)

Denote the price of such a up-and-out put at t = 0 by PK,B
uo (S0, T).

(b) i. An up-and-in call with strike price K and in-barrier B is an option with
payoff at time T of

V =

{
(ST −K)+, if for some t ∈ [0, T] such that St ≥ B,
0, otherwise. (2.9)

Denote the price of such a up-and-in call at t = 0 by CK,B
ui (S0, T).

ii. An up-and-in put with strike price K and in-barrier B is an option with
payoff at time T of

V =

{
(K − ST)+, if for some t ∈ [0, T] such that St ≥ B,
0, otherwise.

(2.10)
Denote the price of such a up-and-in put at t = 0 by PK,B

ui (S0, T).

In Figure 2.2, some possible asset price paths that are assumed to follow a geometric
Brownian motion (GBM) with parameters S0 = 100, µ = 0.1, σ = 0.2, T = 1 and
B = 92 are shown. This figure is demonstrated to give an example of down-and-out
call options. The asset price path displayed by purple color becomes worthless because
it crosses the barrier and other paths can be considered and priced as standard European
call options.

8

Figure 2.2: Simulation results of asset paths for down-and-out call option

2.2 Option Strategies

Depending on the risk preferences of investors and market forecasts, options can be
combined with stocks or other options [9]. A basic classification can be done by sep-
arating the strategies as bullish, bearish and neutral. Most commonly used strategies
with their explanations are given in Table 2.2 [12].

Table 2.2: Option strategies according to the market expectation

Bullish

Bull call spread Buy 1 call, sell 1 call at higher strike
Bull put spread Sell 1 put, buy 1 put at lower strike with same expiry

Covered call Buy stock, sell calls on a share-for-share basis
Protective Put Own 100 shares of stock, buy 1 put

Bearish Bear put spread Sell 1 put, buy 1 put at higher strike
Bear call spread Sell 1 call, buy 1 call at higher strike

Neutral

Collar Own stock, protect by purchasing 1 put and selling 1
call with a higher strike

Straddle Buy 1 call, sell 1 put at same strike
Strangle Buy 1 call with higher strike, buy 1 put with lower

strike
Call butterfly spread Sell 2 calls, buy 1 call at next lower strike, buy 1 call

at next higher strike (the strikes are equidistant)

In the scope of this thesis, the straddles, strangles and butterfly spreads are consid-
ered. Definitions and payoff equations of these strategies are given in Definition 2.3,

9

Definition 2.4, Definition 2.5, respectively [9].
Definition 2.3. A straddle is an option strategy which is a combination of the long
position in a call and a put that have a same strike price and maturity with the payoff:

V = (ST −K)+ + (K − ST)+, (2.11)

where K is the strike price, ST is the stock price at maturity.
Definition 2.4. A strangle is an option strategy which is a combination of the long
position in a call and a put that have a lower strike price and same maturity with the
payoff

V = (ST −K1)
+ + (K2 − ST)+, (2.12)

where K1 is the higher strike price, K2 is the lower strike price, ST is the stock price
at maturity.
Definition 2.5. A butterfly spread, also called as sandwich spread, is an option strategy
which is a combination of the long position in a call with the higher strike, long position
in a call with the lower strike and short position in two call with the middle strike price
with the payoff

V = (ST −K1)
+ − 2[(ST −K2)

+] + (ST −K3)
+, (2.13)

where K1 is the higher strike price, K2 is the middle strike price, K3 is the lower strike
price, ST is the stock price at maturity.

In Figure 2.3, the payoff diagrams of the straddle, strangle and butterfly spread are
given for K1 = 30, K2 = 20, K3 = 40 and the stock price range is between [0, 60].

Figure 2.3: Payoff diagrams of straddle, strangle and butterfly spread

Rather than just buying a call or a put as given in Figure 2.1, these option strategies
provide protection for different directions of movements of the underlying asset.

2.3 Stochastic Differential Equations with Jumps

In this section SDEs are examined and the Black-Scholes framework is given. The
main pure jump processes are introduced to a substructure for jump-diffusion pro-
cesses. The general form of the jump-diffusion process and Merton jump diffusion
model are given. The solutions of the particular models and some required theorems
are also presented.

10

2.3.1 Stochastic Differential Equations and Itô Process

Stochastic differential equations are the generalized form of ordinary differential equa-
tions. Stochastic differential equations differ from ordinary differential equations by
the additional Wiener process, which is used to capture the randomness. Stochas-
tic differential equations are used in numerous fields, including biology, chemistry,
epidemiology, mechanics, microelectronics, economics and finance [25]. In this sub-
section, the basic units of stochastic differential equations and necessary theorems for
solutions are given.

Definition 2.6. [37] A stochastic process X is a collection of random variables

(Xt, t ∈ T) = (Xt(ω), t ∈ T, ω ∈ Ω),

defined on some space Ω.

Definition 2.7. [1] {Wt}t≥0 is a continuous stochastic process which is called Wiener
process or Brownian motion under the following statements:

1. Its initial value is zero, i.e. W (0) = 0.

2. If r < s < t < u,Wu−Wt andWs−Wr are independent variables, this property
is called as independent increments.

3. The process has stationary increments; if s ≤ t the stochastic random variables
Wt −Ws and Wt−s −W0 have the same probability law.

4. P a.s. the map u 7−→ Wu(w) is continuous.

In Figure 2.4, a number of paths of a Wiener process satisfying the statements given in
Definition 2.7 are illustrated.

Definition 2.8. [45] General form of an SDE is represented as follows:

dXt = a(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0, (2.14)

or in integral form

Xt =

∫ t

0

a(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (2.15)

where a(t, St) and σ(t, St) represent the drift and diffusion terms of this process, re-
spectively.

Eq. 2.14 shows the general form of the Itô stochastic differential equations. The pro-
cess takes special names according to the specification of drift and diffusion terms,
such as Geometric Brownian Motion, Ornstein-Uhlenbeck, Vasicek, etc..

The following theorems are crucial for the existence and uniqueness of solutions of
specific stochastic differential equations.

11

Figure 2.4: Paths of Wiener process

Theorem 2.1 (Conditions for Existence and Uniqueness of Solution to SDEs). For
0 < t <∞, let t ∈ [0, T] and consider the Itô stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt. (2.16)

Sufficient condition for existence and uniqueness of solution to this SDE are linear
growth

|a(t, x)|+ |b(t, x)| ≤ C(1 + |x|), for all x ∈ R and t ∈ [0, T], (2.17)

for some finite constant C > 0, and Lipschitz continuity

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ D|x− y|, for all x, y ∈ R and t ∈ [0, T],
(2.18)

where 0 < D <∞ is the Lipschitz constant.

Theorem 2.2. Let (Xt)0≤t≤T be an Itô process,

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdWs,

and f be a twice continuously differentiable function. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X,Xs〉,

where, by definition

〈X,X t〉 =

∫ t

0

H2
sds

12

and ∫ t

0

f ′(Xs)dXs =

∫ t

0

f ′(Xs)Ksds+

∫ t

0

f ′(Xs)HSdWs.

The geometric Brownian motion provides the existence and uniqueness conditions
given in Theorem 2.1. The solution of this process is obtained by applying Itô for-
mula and the solution is given in the Lemma 2.3.

Lemma 2.3. The geometric Brownian motion (GBM) is defined with the specification
of drift and diffusion terms in the general form of the stochastic differential equation
as a(t,Xt) = µSt and σ(t,Xt) = σSt, respectively. The solution of the GBM,

dSt = µStdt+ σStdWt, (2.19)

where µ and σ are non-negative constants, is given by

St = S0exp
{(

µ− 1

2
σ2

)
t+ σWt

}
. (2.20)

The proof can be found in [51].

2.3.2 Black Scholes Framework

The celebrated Black-Scholes formula is one of the most important cornerstones in
financial mathematics. The following conditions are assumed by Black and Scholes to
derive the formula [2]:

• The short-term interest rate is known and constant through time,

• The stock price follows a geometric Brownian motion with constant µ and σ,

• The stocks pay no dividends,

• The options are European and can only be exercised at expiration,

• There are no transactions costs or taxes,

• There are no riskless arbitrage opportunities,

• All securities are perfectly divisible and short selling is allowed.

The Black-Scholes theory based on the Efficient Market Hypothesis which states that
there is no-arbitrage opportunities in efficient markets. In other words, it is impossible
to beat the market. According to Eugene F. Fama’s definition “A market in which
prices always fully reflect available information is called efficient” [16]. The arbitrage
is defined as follows.

13

Definition 2.9. [1] An arbitrage opportunity is the possibility to make a risk-free profit
without risk and net initial capital. An arbitrage portfolio θ satisfies the following
conditions:

V0(θ) ≤ 0 and V1(θ) > 0 or (2.21)

V0(θ) < 0 and V1(θ) ≥ 0. (2.22)

The Black-Scholes portfolio considers a market consisting of a riskless bond Bt and a
stock St with the following equations:

dBt = rBtdt, (2.23)

dSt = St(µdt+ σdWt), (2.24)

where µ and σ are constant and r is the risk-free interest rate. The Black-Scholes
analytical formulas for the prices of European call and put option for non-dividend
paying stocks are as follows:

C = S0N(d1)−Ke−rTN(d2), (2.25)

P = Ke−rTN(−d2)− S0N(−d1), (2.26)

where N(·) states the cumulative standard normal distribution function

N(x) =
1√
2π

∫ x

−∞
e−

1
2
y2dy (2.27)

and

d1 =
ln(S0/K) +

(
r + σ2

2

)
T

σ
√

(T)
, (2.28)

d2 =
ln(S0/K) +

(
r − σ2

2

)
T

σ
√

(T)
, (2.29)

remark that
d2 = d1 − σ

√
T , (2.30)

where S0, K, r, σ and T represent the initial price of the stock, the strike price, interest
rate, the volatility of the stock and time of maturity, respectively.

The formula can be derived by using different approaches. Straightforward integra-
tion, Feynman-Kac theorem, Capital Asset Pricing Model (CAPM) approaches are
some severals ways to derive the formula. In the original paper of Black-Scholes,
transforming the Black-Scholes PDE into heat equation approach is used. The details
about derivation of the formula can be found in [2, 42, 47, 51].

The relation between call and put option prices is indicated by put-call parity given in
the following proposition.

14

Proposition 2.4. [1] Consider a European call and a European put, both with strike
price K and time to maturity T . Then, the following relation holds.

P = Ke−r(T−t) + C − S. (2.31)

This means that, the put option can be replicated by a portfolio which includes a long
position in a zero coupon bond with face value K, a long position in a European call
option and a short position in a share of the underlying stock.

The in-out parity, which states a relation between the in and out barrier options, is
given in the following:

Proposition 2.5. The summation of the payoff functions of up-and-out call and up-
and-in call gives the payoff function of plain vanilla call option as folows:

VC = VCuo + VCui . (2.32)

Hence, the price of up-and-out call at time 0 satisfies the following equation,

Cuo = C − Cui. (2.33)

Similar relation holds for down options:

Cdo = C − Cdi. (2.34)

The closed form solutions obtained by the Black-Scholes formula can be extended for
barrier options [26].

1. For down options, B < S0:

(a) i. A down-and-out call with strike K and barrier B :

Cdo = S0N(x1)−Ke−rTN(x1 − σ
√
T)− S0(B/S0)

2λN(y1)

+Ke−rT (B/S0)
2λ−2N(y1 − σ

√
T),

(2.35)

where

x1 =
ln(S0/B)

σ
√
T

+ λσ
√
T , (2.36)

y1 =
ln(B/S0)

σ
√
T

+ λσ
√
T , (2.37)

λ =
r + σ2/2

σ2
. (2.38)

15

ii. A down-and-in call with strike K and barrier B :

Cdi = S0(B/S0)
2λN(y)−Ke−rT (B/S0)

2λ−2N(y − σ
√
T), (2.39)

where

λ =
r + σ2/2

σ2
, (2.40)

y =
ln[B2/(S0K)]

σ
√
T

+ λσ
√
T . (2.41)

(b) i. A down-and-out put with strike K and barrier B:

Pdo = Ke−rtN(−d2)− S0N(−d1) + S0N(−x1)
−Ke−rtN(−x1 + σ

√
T)− S0(B/S0)

2λ[N(y)−N(y1)]

+Ke−rT (B/S0)
2λ−2[N(y − σ

√
T)−N(y1 − σ

√
T)].

(2.42)

ii. A down-and-in put with strike K and barrier B:

Pdi = −S0N(−x1) +Ke−rtN(−x1 + σ
√
T)

+S0(B/S0)
2λ[N(y)−N(y1)]

−Ke−rT (B/S0)
2λ−2[N(y − σ

√
T)−N(y1 − σ

√
T)].

(2.43)

By using in-out parity it can be written as:

Pdi = P − Pdo. (2.44)

2. For the up-options, B > S0:

(a) i. An up-and-out call with strike K and barrier B:

Cui = S0N(d1)−Ke−rTN(d2)− S0N(x1)

+Ke−rTN(x1 − σ
√
T) + S0(B/S0)

2λ[N(−y)−N(−y1)]
−Ke−rT (B/S0)

2λ−2[N(−y +
√
T)−N(−y1) +

√
T].

(2.45)

ii. An up-and-in call with strike K and barrier B:

Cui = S0N(x1)−Ke−rTN(x1 − σ
√
T)

−S0(B/S0)
2λ[N(−y)−N(−y1)]

+Ke−rT (B/S0)
2λ−2[N(−y +

√
T)−N(−y1) +

√
T].

(2.46)

By using in-out parity it can be stated as:

Cui = C − Cuo. (2.47)

16

(b) i. An up-and-out put with strike K and barrier B:

Puo = −S0N(−x1) +Ke−rTN(x1 + σ
√
T)

+S0(B/S0)
2λN(−y1)

−KerT (B/S0)
2λ−2N(−y1 + σ

√
T).

(2.48)

ii. An up-and-in put with strike K and barrier B:

Pui = Ke−rTN(−d2)− S0N(−d1) + S0N(−x1)−
Ke−rTN(x1 + σ

√
T)− S0(B/S0)

2λN(−y1)
+KerT (B/S0)

2λ−2N(−y1 + σ
√
T).

(2.49)

By using in-out parity it can be represented as follows:

Pui = P − Puo. (2.50)

2.3.3 Pure Jump Processes

A pure jump process begins at zero, has finitely many jumps in each finite time inter-
val, and the process is constant between jump times [47]. Poisson, compound Poisson,
compensated Poisson, compensated compound Poisson, Variance-Gamma (VG), Nor-
mal Inverse Gaussian (NIG) processes are in the class of pure jump processes. In this
thesis, only the Poisson family is considered.

2.3.3.1 Poisson Process

Poisson process is one of the core concepts in finance and actuarial sciences. Pois-
son process is a pure jump process which is also called counting process and point
process [22]. The interarrival times or waiting times for this counting process are
distributed by exponential distribution with a constant λ for homogeneous case. It is
used as an elementary unit for other pure jump processes, namely, compound Poisson,
compensated Poisson and compensated compound Poisson processes.

Definition 2.10. [47] A continuous random variable τ has the exponential distribution
with parameter λ > 0 if it has a probability distribution function of the form

f(t) =

{
λe−λt, t ≥ 0,
0, otherwise. (2.51)

The cumulative distribution function of τ is

F (t) = 1− e−λt t ≥ 0. (2.52)

The expected value of τ is

Eτ =
1

λ
. (2.53)

17

Definition 2.11. [5] A Poison processN(t), t ≥ 0 is a counting process which satisfies
the following properties:

1. N(0) = 0,

2. The process has stationary and independent increments,

3. P(N(t) = n) = e−λt λt
n

n!
, n = 0, 1, 2,

The mean of a Poisson process is

E(Nt = k) =
∞∑
k=0

ke−λt
(λt)k

k!
= λt. (2.54)

Figure 2.5: Paths of Poisson process with intensity λ = 1

In Figure 2.5 a number of paths of a Poisson process satisfying the statements given in
Definition 2.11 are given.

2.3.3.2 Compound Poisson Process

In financial models, random jump units are necessary in order to capture the random-
ness in the market. Therefore, different than Poisson process with one unit jump size,
the compound Poisson process is highly important for modeling in finance.

18

Definition 2.12. [49] A compound Poisson process Q(t) is a stochastic process with
the following representation:

Q(t) =
Nt∑
i=1

Yi, (2.55)

where Nt is a Poisson process with intensity λ and Yi’s are i.i.d. with the same distri-
bution and independent from Nt. The mean of the compound Poisson process is

E(Qt) =
∞∑
k=0

E
[k∑
i=1

Yi
∣∣N(t) = k

]
P{N(t) = k} =

∞∑
k=0

βk
(λt)k

k!
e−λt = βλt. (2.56)

Three paths of compound Poisson process are given in the Figure 2.6 as an example.

Figure 2.6: Paths of compound Poisson process with intensity λ = 1, Yi ∼ N(1, 2)

2.3.3.3 Compensated Poisson and Compensated Compound Poisson Processes

The compensated versions of Poisson and compound Poisson processes are commonly
used in modeling as they provide the martingale property. They are simply obtained by
subtracting the mean of the process. In this part, the martingale is initially defined and
the definitions of compensated Poisson and compensated compound Poisson processes
will follow.

Definition 2.13. [1] A stochastic process X is called an (Ft) martingale if the follow-
ing conditions are satisfied:

19

1. X is adapted to the filtration {Ft}t≥0,

2. E[| X(t) |] <∞, for all t,

3. E[X(t) | Fs] = X(s), for all s ≤ t.

Definition 2.14. [47] Compensated Poisson process is defined as follows:

M(t) = N(t)− λt,

where N(t) is a Poisson process with intensity λ and M(t) is a martingale.

Figure 2.7: Paths of compensated Poisson process with intensity λ = 1

In Figure 2.7, a number of paths of a compensated Poisson process satisfying the state-
ments in Definition 2.14 are given.

Definition 2.15. [47] Compensated compound Poisson process G(t) is a martingale
with the following definition:

G(t) = Q(t)− βλt,

where Q(t) is a compound Poisson process with the mean βλt.

In Figure 2.8, a number of compensated compound Poisson processes satisfying the
statements in Definition 2.15 are given.

20

Figure 2.8: Paths of compensated compound Poisson process with intensity λ =
1, Yi ∼ N(1, 2)

2.3.4 Jump Diffusion Models

Empirical observations of asset returns show excess kurtosis, also known as fat or
heavy tails [4]. Jump diffusion processes are able to capture the heavy tail characteris-
tics of asset returns with encapsuling the jump component to the diffusion model.These
processes have been used to capture discontinuous behavior in asset returns caused by
extreme events such as financial crisis [32]. Jump diffusion models are the subclasses
of Lévy models. They have finite number of jumps. These models can also be consid-
ered as the general forms of stochastic differential equations.

Definition 2.16. [22] Jump-diffusion stochastic differential equations can be written
in differential form with initial condition as

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t)dN(t), X(0) = x0, (2.57)

or in the integral form as

X(t) = x0 +

∫ t

0

f(X(t), t)ds+

∫ t

0

g(X(t), t)dW (s)

+

∫ t

0

h(X(t), t)dN(s),

(2.58)

where N(t) is a Poisson process and W (t) is a Brownian motion.

Theorem 2.6. [49] Let X be defined as summation of a drift term, a Brownian

21

stochastic integral and a compound Poisson process:

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs +
Nt∑
i=1

∆Xi,

where at and σt are continuous, non anticipating processes with

E
[∫ T

0

σ2
t dt

]
<∞.

For anyC1,2 function f : [0, T]×R→ R, the process Yt = f(t,Xt) can be represented
as

f(t,Xt)− f(0, X0) =

∫ t

0

[
∂f

∂s
(s,Xs) +

∂f

∂s
(s,Xs)as

]
ds+

1

2

∫ t

0

σ2
s

∂2f

∂x2
(s,Xs)ds

+

∫ t

0

∂f

∂x
(s,Xs)σsdWs +

∑
{i≥1,Ti≤t}

[f(XT−
i

+ ∆Xi)− f(XT−
i

)].

(2.59)

In the differential notation, it can be represented as

dYt =
∂f

∂t
(t,Xt)dt+ at

∂f

∂x
(t,Xt)dt+

σ2
t

2

∂2f

∂x2
(t,Xt)dt

+
∂f

∂x
(t,Xt)σtdWt + [f(Xt− + ∆Xt)− f(Xt−)].

(2.60)

Most frequently used jump diffusion models in literature are Merton jump model and
Kou’s jump model. These models differ from each other by assumption of the distri-
bution of the jump sizes. The distribution of jump sizes are assumed to be log-normal
in Merton’s model and Kou’s model uses double exponentially distributed jump sizes.
In this thesis Merton jump model given in Lemma 2.7 is studied.

Lemma 2.7. [30] Merton jump diffusion model represents the underlying differential
equation in the form of

dS(t) = S(t−)[(µ− λκ)dt+ σdW (t) + (Y (t)− 1)dN(t)], (2.61)

where µ and σ represent the drift and diffusion terms, respectively; λ is the intensity
parameter of the Possion process,N(t) and Y shows the independent and log-normally
distributed jump variables with E[Y (t)− 1] = κ.

The solution of Eq. 2.61 is obtained by applying Itô formula for jump diffusion pro-
cesses given in Theorem 2.6 and it is explicitly given by

S(t) = S0e
(µ−λκ− 1

2
σ2)t+σW (t)

N(t)∏
i=1

Y (ti). (2.62)

The simulation of paths of a Merton jump diffusion process with µ = 0.1, σ = 0.2,
λ = 3, and the jump size distribution as LN(0.5, 0.2) are given in Figure 2.9.

22

Figure 2.9: Paths of Merton jump diffusion process

2.4 Monte Carlo Approach

In literature, there are numerous ways to price options, namely, martingale [23, 24],
PDE [2], and simulation-based [6, 8] approaches. In this thesis, Monte Carlo simula-
tion, which is one of the mostly used simulation-based approach, is preferred due to its
flexibility and tractability. In this section, the Crude Monte Carlo method is examined
generally and then its implementation for pricing European type options is given in the
second part of the section.

2.4.1 Crude Monte Carlo Approach

The Monte Carlo method is based on the idea of computing an expectation by using
the strong law of large numbers which states that the average of a large number of i.i.d.
random variables converges to their expected value almost surely. Its mathematical
representation is given in the following theorem.

Theorem 2.8. [30, 51] Let (Xn){n∈N} be a sequence of integrable, real-valued, i.i.d.
random variables which are defined on a probability space (Ω,F ,P). Suppose that the
mean exists:

µ = E(X1).

Then, we have for P-almost all ω ∈ Ω

1

n

n∑
i=1

Xi(w)
n→∞−−−→ µ.

23

An algorithm to compute this expectation is given in Algorithm 1, where we assume
that X is a real-valued random variable with a finite expectation E(X) [30].

Algorithm 1 The Crude Monte Carlo method

Approximate E[X] by the arithmetic mean, 1
N

∑N
i=1Xi(ω) for some N ∈ N.

Here, the Xi(ω) are the results of N independent experiments that have the
same probability distribution as X .

The central limit theorem is used to explain error estimation in Monte Carlo frame-
work, and it is given in the following.

Theorem 2.9. [30, 51] Let (Xn){n∈N} be a sequence of integrable, real-valued, i.i.d.
random variables which are defined on a probability space (Ω,F ,P) with finite mean µ
and finite variance σ2 > 0. Then, the normalized and centralized sum of these random
variables converges in distribution towards the standard normal distribution:

N∑
i=1

Xi −Nµ

√
Nσ

D−→ N (0, 1) as N →∞.

2.4.2 Implementation of Monte Carlo Approach to European Option Pricing

The no-arbitrage theory allows to find option prices by calculating the expectation of
discounted payoffs with respect to the risk-neutral measure by setting µ = r in the
corresponding stochastic differential equation [15, 51].

In order to find the approximate value of the option, a large number of paths of the
underlying assets are first simulated and the terminal payoff of the option on each path
is calculated. Expectation of the terminal payoff is then obtained by averaging the
payoff values. Next, it is discounted at risk-free rate to find the approximate value of
the option. The mathematical representation of this process is given as

V̂ = e−rT Ê(V) ≈ V (S0, 0) = e−rTEQ[V (ST , T)], (2.63)

where V̂ is the approximate value of the option, e−rT is the discount factor, V (S0, 0)
is the value of the option at t = 0 and Q represents the risk-neutral measure.

The law of large numbers guarantees that the approximate value converges to the cor-
rect value as number of simulated paths increases, which can be shown as

P(V̂ → V) = 1 as N →∞. (2.64)

For a finite and sufficiently largeN , the range of V̂ with its confidence interval is given
as follows:

V̂ ± z 1−α
2

1√
N

√√√√ 1

N − 1

N∑
i=1

(Vi − V̂i)2, (2.65)

24

where z 1−α
2

states the standard normally distributed random variable for the (1− α)th
level of confidence and N is the number of replication.

2.4.2.1 Numerical Solution

Finding an explicit solution for some stochastic differential equations is not possible.
In order to approximate the solution of stochastic differential equations, numerical
methods are used. Numerical solutions are also used to get some possible sample
paths, which form the basis for Monte Carlo approach. This sample paths are also
called as scenarios [37].

There are a number of approaches to find numerical approximations for stochastic
differential equations. The most commonly preferred ones are Euler-Maruyama, Mil-
stein, and possibly, Runge-Kutta methods. In the scope of this thesis, Euler-Maruyama
discretization is investigated.

In this approach, the approximate solution of the general form of the SDE given in
Eq. 2.14 turns out to be

Xtj+1
= Xtj + a(tj, Xtj)∆tj + σ(tj, Xtj)∆Wtj . (2.66)

The approximate solution of general jump-diffusion process given in Eq. 2.57 is ob-
tained by taking the increments dWt, dt and dJt terms as follows:

Xtj+1
= Xtj + f(tj, Xtj)∆tj + f(tj, Xtj)∆Wtj + h(tj, Xtj)∆Jtj . (2.67)

The increments of ∆tj , ∆Wtj and ∆Jtj over the interval [0, T] are defined by

∆tj = tj+1 − tj, (2.68)

∆Wtj = Wtj+1
−Wtj and (2.69)

∆Jtj = Jtj − Jtj− . (2.70)

When there is no jump ∆Jtj = 0 [30].

The algorithm of Euler-Maruyama scheme for the general form of SDEs as in Eq. 2.14
is given in Algorithm 2. The algorithm of Euler-Maruyama scheme for general form
of the jump diffusion processes given in Eq. 2.57 is defined in Algorithm 3 [30].

To illustrate, for geometric Brownian motion model, it is possible to simulate paths by
using closed-form solution, as well as by Euler-Maruyama discretization. The closed-
form solution of GBM given in Eq. 2.20 is discretized for simulation as follows:

Stk = Stk−1
exp

((
r − σ2

2

)
∆k + σ

√
∆kZ

)
, Z ∼ N(0, 1). (2.71)

The simulation result of a path of GBM by using closed-form solution and Euler-
Maruyama discretization is given in Figure 2.10 part (a) and the discretization error is
presented in part (b).

25

Algorithm 2 The Euler-Maruyama Scheme for jump-diffusion processes
Let ∆t := T/N for a given N.

1. Set Y0 = X0 = x0.

2. For j = 0 to N − 1 do

a) Simulate a standard normally distributed random number Zj .

d) Set ∆Wj =
√

∆tZj and

Y(j+1) = Yj + a(j, Yj)∆t+ σ(j, Yj)∆Wj.

Algorithm 3 The Euler-Maruyama Scheme
Let ∆t := T/N for a given N.

1. Set Y0 = X0 = x0.

2. For j = 0 to N − 1 do

a) Simulate a standard normally distributed random number Zj .
b) Simulate a random variable Nj ∼ Poisson(λ∆t).
c) Simulate a random variable ΛJ from the given distribution for jump sizes.

d) Set ∆Wj =
√

∆tZj and

Y(j+1) = Yj + f(j, Yj)∆t+ g(j, Yj)∆Wj + h(j, Yj)NjΛJ .

(a) Closed-form and Euler-Maruyama simulations (b) Discretization error

Figure 2.10: Simulation results of GBM

26

CHAPTER 3

OBJECT-ORIENTED PROGRAMMING

The required background information in order to understand the constructed software
in this study is explained in this chapter. First, the object-oriented programming (OOP)
paradigm is introduced with its main terminology and concepts. The terminology and
concepts of OOP are highly related with each other. To represent these main units and
relations, the unified modeling language (UML) is used as a standard language. The
details of this language is illustrated by some basic examples.

3.1 What is the OOP?

A programming paradigm can generally be regarded as an approach, style or way of
programming. Each programming language performs one or more than one paradigm
and each paradigm includes a set of concepts [52]. This close relation is explained in
Figure 3.1.

Figure 3.1: Languages, paradigms and concepts [52]

The spectrum of programming paradigms are quite extensive. A number of major
programming paradigms are classified with the kinds of abstraction that they employ

27

and they are shown in Table 3.1 [19]:

Table 3.1: Classification of programming paradigms

Procedure-oriented Algorithms
Object-oriented Classes and objects
Logic-oriented Goals,often expressed in a predicate calculus
Rule-oriented If-then rules
Constraint-oriented Invariant relationships

The most commonly preferred paradigms are procedural and object-oriented program-
ming paradigms. Procedural programming is constructed as a list of instructions which
issue a command to the computer step by step. In procedural programming, the data
and the functions are created separately and there is no connection between them. On
the other hand, OOP is constructed around objects which hold the data and functions
together. OOP divides the overall process into basic units. Each of these units are
responsible for its own duty and also these units can interact between each other.

There is no superiority of any programming paradigm over others, each has specialized
concepts for different kinds of problems. For example, object-oriented programming
is suitable while working with a huge number of related data abstraction organized in
a hierarchy [52].

Some of the programming languages are given in Table 3.2 according to their pro-
vided programming paradigm types. Some programming languages follow only one
paradigm whereas the others provide an environment for more than one paradigm and
these programming languages are called as hybrid or multiparadigm languages.

Table 3.2: Programming languages according to their supported paradigm

Procedural Pure OO Hybrid
Fortran Simula C++
Pascal Smalltalk MATLAB
C Eiffel Java
Modula Ruby Objective-C

3.1.1 Class and Object

In OOP, a class is defined as a set of objects which share common behaviors and op-
erations [19]. In order to categorize objects according to their types, hierarchies by
using generalization and specialization ideas and classes are used [41]. Each object is
an instance of a class [19]. The structure and behavior of similar objects are defined in
their common class. The terms instance and object can be used interchangeable [19].
Objects are the instances of classes that include both information (property or some-
times called data) and its operations (methods). For example, financial derivatives

28

can be considered as a parent class for forwards, futures, options and swaps. Since it
shares the common behaviors and operation of their subclasses. This hierarchy rela-
tion is illustrated in Figure 3.2. Moreover, the subclasses share the common behaviors
and operations of the objects which are created from these subclasses. For instance,
from option class many option objects can be created with different maturities, exercise
prices or payoff types.

Financial
Derivatives

OptionsFuturesForwards Swaps

Figure 3.2: Financial derivatives class and its subclasses

3.2 Concepts of the OOP

An object-oriented program is expected to satisfy the characteristic features of OOP
paradigm, namely, abstraction, encapsulation, inheritance and polymorphism. These
concepts have important meanings and specialized functionalities. Also, they are
tightly interrelated between each other. These main concepts are explained in detail
with examples in the following subsections.

3.2.1 Abstraction

The abstraction concept is used to cope with the complex systems. Abstraction allows
to see the big picture by selecting the crucial characteristics and ignoring the redundant
details. It also provides organization among classes. Abstract classes are written to
form a basis for other classes which share the common characteristics. These classes
cannot produce an object and their methods are also abstract so that their child classes
override the methods which are inherited from an abstract class.

For example, the financial derivative class and its subclasses are illustrated in Fig-
ure 3.2. Financial derivatives class is an abstract class as seen in the figure. It is used
only for defining the subclasses and there is no instance associated with it. It gives a
general idea about its subclasses and it reduces the complexity by defining a hierarchy.

3.2.2 Encapsulation

Encapsulation is the concept that properties (data) and methods (operations) of objects
are packaged, in other words, capsulated. It is also called as information or data hiding.
By this property, the working details of the class is hided from the outside classes so

29

that outside classes have no permission to access or modify the data or methods of the
class. Only the class itself has that permission. This feature provides the coder with
a convenient working platform in which any modification can be made privately on
the properties and methods of the class. Therefore, the integrity of the code cannot
be damaged by the outside classes. If the permission is given to the outside classes,
it can only be done by using the so-called set/get methods. Encapsulation reduces the
complexity and increases the robustness by limiting the access from outside world [11,
17, 48].

Some programming languages, generally pure object oriented languages like Smalltalk,
automatically make the properties and methods private, but for other programming
languages, the decision-maker about privateness is the coder [40]. Also, the coder
determines which properties and methods are to be set as private or public. The im-
plementation of the encapsulation concept in MATLAB R© programming language is
illustrated by defining private and public properties as seen in Figure 3.3.

newClass.m

classdef newClass
% Detailed explanation about newClass

properties (Access = private)
property1;
property2;

end

properties (Access = public)
property3;
property4;

end

methods
some methods

end

end

Figure 3.3: Encapsulation concept in MATLAB R©

3.2.3 Inheritance

Inheritance notion simply means that subclasses automatically inherit properties and
methods from their superclasses. Superclasses are also known as based classes or
parent classes since they are used as a basis for inheritance. Subclasses, which are
also named as derived, extended or child classes, are the more specific cases of parent
classes with their additional properties and methods. The relation between subclass
and superclass is also known as is-a relation. It is a one-way relation to indicate that
each subclass contains all data and operations of its superclass, but not conversely.

30

In OOP, subclasses can also have their own subclasses and this feature is known as
multilevel inheritance.

Inheritance provides many advantages. First of all, it reduces the development time
since the designer does not have to re-create the common properties and methods for
similar classes. In addition, the use of inheritance reduces the risk of errors because
the designer can utilize the previously developed and already tested properties and
methods to create new classes. As a result of these benefits of inheritance, the code
becomes reusable, which is one of the most essential benefits of OOP.

Many object oriented design contains multiple inheritance. Multiple inheritance can
be defined as the usability of more than one class as a parent class. Although single in-
heritance is a more straightforward approach, some systems need to combine attributes
and operations from different classes [17, 33].

Schematics representing the single, multilevel and multiple inheritance concepts are
given in Figure 3.4.

A

B

A

B

C

A B

CC

Figure 3.4: Single, multilevel and multiple inheritance

3.2.4 Polymorphism

The roots of the word polymorphism, poly (many) and morph (shape), come from the
Greek and the word means that “having or passing through many forms”. In OOP, more
than one method can share the same name although they belong to different objects and
have different internal structures [39]. The program differentiates between the objects
and applies the related procedure according to the class of the object. Hence, code
sharing and reusing are achieved with the help of the polymorphism [48].

Polymorphism concept includes both overloading and overriding concepts. Overload-
ing (ad hoc polymorphism) allows methods to have the same names. However, the
methods having the same name may use different parameters. Overriding (inclusion
polymorphism) notion means that the name and parameters of the inherited method of
the subclass are the same, but the internal structure of the method is different [41, 50].

As a simple example of polymorphism, “+” operator can be considered. In MAT-

31

LAB R©, it is used to sum the integers as follows:

>> 3+5

ans =
8

Also, it can be defined to sum the payoff functions. For example, Payoff1 and Payoff2
object are created as follows:

>> Payoff1 = Payoff(@(x) xˆ2, ’long’,1)

Payoff1 =
Payoff with properties:
payoff: {[@(x)xˆ2] ’long’ [1]}

>> Payoff2 = Payoff(@(x) xˆ3, ’long’,1)

Payoff2 =
Payoff with properties:
payoff: {[@(x)xˆ3] ’long’ [1]}

Then, Payoff1 and Payoff2 objects are summed by + operator.

>> Payoff3 = Payoff1 + Payoff2

Payoff3 =
Payoff with properties:
payoff: {2x3 cell}

The main terminologies and concepts of the OOP make it a powerful paradigm and
they certainly provide some important advantages. OOP provides code reusability
and it is a huge advantage in terms of saving time. In addition, it is suitable for code
expansion, since in OOP, the overall structure can be divided into small parts. Thereby,
adding or subtracting new classes do not ruin the existing classes. Also, due to this
feature, debugging is easy. Classes can be tested independently and the objects which
are already tested can be reused. Last but not least, by using OOP, robust softwares are
formed. This feature of the OOP makes the software suitable for teamworks.

3.3 The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is an international standard language for doc-
umenting object-oriented systems. The UML was published by the Object Manage-
ment Group in 1997 [3]. The current version is UML 2.5. The UML diagrams can

32

be categorized as structure diagrams and behavior diagrams. The general overview of
UML diagrams are given in Figure 3.5 [17].

UML Diagram

Structure Diagram

Class Diagram

Object Diagram

Package Diagram

Composite Struc-
ture Diagram

Component Diagram

Deployment
Diagram

Profile Diagram

Behavior Diagram

Use Case Diagram

Activity Diagram

State Machine
Diagram

Interaction Diagram

Sequence Diagram

Communication
Diagram

Timing Diagram

Interaction
Overview Diagram

Figure 3.5: UML diagrams overview

In the scope of thesis, the class and object diagrams are used in order to explain the
structure of the software. Hence, only the details of class and object diagrams are
examined.

In UML, each class is represented by a box. This box composed of three sections. The
name of the class, properties and methods are written to the upper, middle and bottom
sections, respectively. An illustration for a class is shown in Figure 3.6

ClassName
property1
property2

method1
method2

Figure 3.6: An example of UML class diagram

The signs in front of the names of the properties and methods indicate their visibility
status as seen in Table 3.3.

In UML, the relationships between classes are expressed by the different notations.
Generalization/specialization (is-a) relation is indicated by an arrow and the head of

33

Table 3.3: Visibility types of UML class diagram

Symbol Visibility Type
+ public
- private
protected

the arrow shows the parent class as illustrated in Figure 3.7, in which the child class
inherits from its parent class as indicated by an arrow.

Parent ClassChild Class

Figure 3.7: Generalization relation

Association relation is used to demonstrate the connection between classes and it is
shown by a line between classes. Multiplicity information is written at the both ends
of the line. An example is given in Figure 3.8 and it shows that each option can be
associated with one or more than one asset. The commonly used multiplicity symbols
are given in Table 3.4.

Option Asset
1 1..*

Figure 3.8: Association relation

Table 3.4: Multiplicity types

1 no more than one
0..1 zero or one
* any number
1..* one or more
0..* zero or more

In addition to the generalization and association relationships, the aggregation and
composition relations are commonly used in UML diagrams. Aggregation is used to
show has-a relationship, which is also called whole-part relationship between classes.
In whole-part relationship, one class represents the whole and consists of other classes.
Aggregation relation is shown by an arrow with a diamond shape head. In Figure 3.9,
this relationship between two classes is illustrated.

Whole Part

Figure 3.9: Aggregation relation

Another whole-part relationship is the composition. It is used to indicate strong form
of the association relation. In Figure 3.10, it is given that the whole part composed of

34

existentially dependent part(s). The existentially dependent parts cannot exist without
the whole part in composition relation.

Whole
Existentially

Dependent Part

Figure 3.10: Composition relation

Dependency relationship is used to show that one class requires other class for its
implementation or operation. It is indicated by a direct dashed line as given in Fig-
ure 3.11.

Class A Class B

Figure 3.11: Dependency relation

Packages are used to organize a system by grouping its classes. An example for pack-
age representation of European options is given in Figure 3.12.

European

Derivative

Option

Asset

Payoff

Pricer

1 1..*

11

Figure 3.12: Package representation

35

36

CHAPTER 4

DESIGN AND IMPLEMENTATION OF OOMCOP

In this chapter, the design and implementation of an object-oriented software to price
various type of options by using Monte Carlo approach are presented. First, one of
the the built-in classes available in the Financial ToolboxTM of MATLAB R©, SDE class,
is explained with its subclasses, since it is used in the Object-Oriented Monte Carlo
Option Pricer (OOMCOP) as one of the main classes. The structure of the software
with its main classes and subclasses is given. The properties and methods of these
classes are illustrated by using unified modeling language (UML) diagrams in order
to show the structure of the design. The relations between classes are investigated to
understand the structure of the program. Finally, the design and implementation of a
graphical user interface (GUI) by using MATLAB R© / GUIDE are explained.

4.1 OOP in MATLAB R©

MATLAB R©, whose name comes from Matrix Laboratory, is one of the mostly used
programming languages in academia and industry with its over one million user around
the world [35].

MATLAB R© provides an environment for both procedural and object-oriented program-
ming paradigms. In addition, it has lots of built-in functions and classes so that there
is no need to recreate those functions and classes. This feature of MATLAB R© saves
time and gives an opportunity to the programmer to only focus on the algorithms that
are necessary. For instance, the built-in functions for random number generators can
directly be used instead of writing these algorithms from scratch.

MATLAB R©’s Financial ToolboxTM includes data preprocessing, financial time series,
financial data analytics, portfolio optimization and asset allocation, credit risk, price
and analyze financial instruments and stochastic differential equation (SDE) models
functionalities. Especially, the built-in stochastic differential equation models in the
toolbox provide SDE specification and simulation for different SDE models [35].

MATLAB R©’s built-in SDE class which comes with the Financial ToolboxTM is the start-
ing point of this thesis and it is used in the software as a parent class with its properties
and methods. The hierarchy of the built-in SDE class and the subclasses is given in

37

Figure 4.1.

SDE

SDEDDO

SDEMRDSDELD Heston

BM CEV

GBM

HWV CIR

Figure 4.1: MATLAB R© SDE class hierarchy

Table 4.1 gives the SDE class and subclasses with their operations. Left column in-
cludes the name of the class and the right column indicated the objects the correspond-
ing class creates.

Table 4.1: MATLAB R© SDE class and subclasses with their operations

sde sde model object by using user-specified(defined)functions
sddedo sdeddo model object with Drift and Diffusion objects
sdeld sde model from linear drift-rate models
sdemrd sde model from mean-reverting drift-rate models
bm Brownian motion object
cev constant elasticity of variance (CEV) objects
cir Cox-Ingersoll-Ross (CIR) mean-reverting square root diffusion objects
gbm geometric Brownian motion(GBM) objects
heston Heston model objects
hwv HWV model objects
drift drift-rate model components (objects)
diffusion diffusion-rate model components

The SDE class and its subclasses are used after defining the drift and diffusion compo-
nents. For instance, consider creating an SDE object which has the following equation:

dX(t) = X(t)[0.3dt+ 0.1dW (t)]. (4.1)

In MATLAB R©, the drift and diffusion functions are initially created by using the fol-
lowing commands:

F = @(t,X) 0.1 * X; %drift function
G = @(t,X) 0.3 * X; %diffusion function

38

A = sde(F,G) %sde object

A =

Class SDE: Stochastic Differential Equation

Dimensions: State = 1, Brownian = 1

StartTime: 0
StartState: 1
Correlation: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Having created the SDE object, the simulation methods can now be applied easily. By
default, simByEuler (simulation by Euler) method is assigned as a Simulation property
for every SDE object. The simBySolution (simulation by Solution) method can only
be used for GBM and HWV (Hull-White-Vasicek) objects and it should be specified
by calling the simBySolution method with required parameters.

sde
+drift
+diffusion
+version
+inputCorrelation
+StartTime
+StartState
+Simulation
+nBrownians
+sde
+Correlation
+disp
+getCurrentVersion
+ValidateRateFunctions
+getBrownianDimension
+getStateDimension

Figure 4.2: UML diagram of sde class with its properties and methods

4.2 Structure of the Program

The UML diagram of the OOMCOP is given in Figure A.1. The software is structured
in five main parts, namely, Payoff, PureJumpProcess, Asset, Derivative and Pricer.
Also, MATLAB R©’s SDE class is used as a main class with their subclasses. The details
of the newly developed classes are given in the following subsections.

39

4.2.1 Payoff Class

Payoff class is one of the main abstract classes of the structure. The required data for
Payoff class is payoff function(s) and it is stored as a payoff property. Payoff function
of Payoff class can be determined as any user-specified functions. The position and the
multiplier should also be indicated within the payoff function. Position states whether
the options are bought or sold. As for, multiplier indicates how many option is bought
or sold. In order to create an object from Payoff class, the constructor method is
initially applied. Then, other methods can be used by the created payoff object.

In order to create a payoff object, payoff function, position and multiplier should be
specified. An example to create a payoff object is given below.

>> CallPayoff = Payoff(@(x) max(0, x - K), ’long’, 1)

CallPayoff =
Payoff with properties:
payoff: {[@(x)max(0,x-K)] ’long’ [1]}

The payoff method, which is the constructor method for Payoff class, is used by set-
ting the payoff function, position and multiplier as @(x)max(0,x-K), ’long’, 1,
respectively. The above mentioned payoff function is written for call option payoff
where x and K represent the stock prices and the strike price, respectively.

Beside Payoff (constructor) method, Payoff class has important methods as plus, minus
and times. The “+” operator is redefined for plus method to sum two payoff objects.
The minus method uses “−” operator and it reverses the position and multiplier. The
times method, which is refined by “∗” operator, multiplies the multiplier by given
integer.

In order to show the examples of plus, minus and times methods beside the CallPayoff
object, PutPayoff object is created as follows:

>> PutPayoff = Payoff(@(x) max(0, K-x), ’long’, 1)

PutPayoff =
Payoff with properties:
payoff: {[@(x)max(0,K-x)] ’long’ [1]}

The plus, minus and times methods can be applied to CallPayoff and PutPayoff objects
as noted below:

>> CallPutPayoff = CallPayoff + PutPayoff

CallPutPayoff =
Payoff with properties:

40

payoff: {2x3 cell}

>> CallPutPayoff2 = CallPayoff - PutPayoff

CallPutPayoff2 =
Payoff with properties:
payoff: {2x3 cell}

>> CallPayoff3 = 3 * CallPayoff

CallPayoff3 =
Payoff with properties:
payoff: {[@(x)max(0,x-K)] ’long’ [3]}

The plots of created payoff objects are given in Figure 4.3 and the test scrip is given in
Listing 1.

Figure 4.3: Plots of the objects generated from Payoff class

The evaluate method is used to calculate the values of payoff function at given points.
Apart from the above examples, the payoff function can be defined as any function.
For example, the payoff function can be defined for different alpha values as follows:

myF = @(x) thisNewPayoffFunction(x, alpha);

where the thisNewPayoffFunction is defined as

41

thisNewPayoffFunction.m

function values = thisNewPayoffFunction(x, alpha)

values = exp(-alpha.*(abs(x)).ˆ2);

end

After creating the payoff object by using myF function, the values of the payoff can be
calculated by using evaluate method. The corresponding script file is given in Listing 2
and the output of the script for the values, x = [−5 : 0.1 : 5], is given in Figure 4.4.

Figure 4.4: Evaluated payoff values for myPay object

The VanillaPayoff class is a specialized version of Payoff class. It has the additional
type and strike properties additionally. The European style vanilla options are catego-
rized according to their payoff type as call or put. Strike is required to define the payoff
function. After constructing the VanillaPayoff object, other methods can be applied.

Call and put payoff objects can be generated directly from Payoff class as stated in
the above examples. Also, more practically they can be generated from VanillaPayoff
class as follows:

>> myPay = VanillaPayoff(3, ’call’)

myPay =

42

VanillaPayoff with properties:
type: ’call’
strike: 3
payoff: {[@(x)max(0, x-obj.strike)] ’long’ [1]}

>> myPayPut = VanillaPayoff(3, ’put’)

myPayPut =

VanillaPayoff with properties:
type: ’put’
strike: 3
payoff: {[@(x)max(0, obj.strike-x)] ’long’ [1]}

The payoff functions of this objects are illustrated in Figure 4.5 and the test script to
create this output is given in Listing 3.

Figure 4.5: Plot of Call Payoff, Put Payoff objects generated from Vanilla Payoff class

A more specialized version of Vanilla Payoff class is the Barrier Payoff class. It has
the characteristics of Vanilla Payoff and, in addition, it has name and barrier prop-
erties. Barrier property is used to determine the barrier as its name implies; name
property is used to specify the type of the barrier option. The type property is inherited
from VanillaPayoff class, but it only determines whether it is a call or a put. Further-
more, specific type of the payoff has to be determined: barrier payoff can have eight
different type, namely, down-and-out call, down-and-out put, down-and-in call, down-

43

and-in put, up-and-down call, up-and-down put, up-and-in call, up-and-in put. These
eight kinds of barrier payoff can be determined by the collocation of type and name
properties. Construction of barrier payoff object is given below.

>> BarrierEx = BarrierPayoff(50,’call’,60,’down-and-out’);

BarrierEx =
BarrierPayoff with properties:
name: ’down-and-out’
barrier: 60
type: ’call’
strike: 50
payoff: {[@(x)max(0,x-obj.strike)] ’long’ [1]}

Type : call
Strike: 50

Strategy is another subclass of Payoff class with its additional property, StrategyName,
and its constructor method. The StraddlePayoff, StranglePayoff and ButterflyPayoff
classes are subclasses of Strategy class. Although the Strategy class is not an abstract
class, it can be thought of as an abstract class for its subclasses in terms of hierarchi-
cal structure. The construction of StraddlePayoff, StranglePayoff and ButterflyPayoff
objects are given in Listing 4 and the output of the test script is given in Figure 4.6.

Figure 4.6: Output of the test script for option strategies

The subclasses of the Strategy class are created to provide ready-to-use classes for the

44

user. This subclasses can further be expanded by adding particular option strategies.
Besides, the strategies can be created directly from Payoff class without creating new
subclasses. Since the Payoff class allows to use any user defined function as a payoff
function.

For example, the iron condor strategy, can be constructed with four strike prices K1 <
K2 < K3 < K4 and the following positions [46]:

• Buying a put at K1

• Selling a put at K2

• Selling a call at K3

• Selling a call at K4

This strategy can be formed by using the four payoff object which are created from
Payoff class as given in Listing 5. The payoff diagram of the iron object with the strike
prices, K1 = 55, K2 = 60, K3 = 70, K4 = 75 for the the values, x = [45 : 85] is
illustrated in the following figure.

Figure 4.7: Payoff diagram for the iron condor object

It can be seen from the graph that the iron condor strategy limits both the gain and
loss. The strategy provides maximum gain for a significant range which is between
x = [60, 70] for the given example.

The UML diagram of the Payoff class with its subclasses is given in Figure 4.8.

45

Payoff
+payoff

+Payoff
+setParsedValues
+getPayoffFunction
+addToPayoff
+setPayoffFunction
+evaluate
+evaluatePayoff
+plus
+minus
+times
+mtimes

VanillaPayoff
+type
+strike
+VanillaPayoff
+getVanillaPayoff
+constructVanillaPayoff
+calculatePayoff
+getStrike
+getType
+disp

Strategy
+StrategyName

+Strategy

BarrierPayoff
+name
+barrier
+BarrierPayoff
+calculatePayoff
+constructBarrierPayoff
+getStrike
+getType
+disp

StraddlePayoff
+strike1
+StraddlePayoff
+getStraddlePayoff

StranglePayoff
+strike1
+strike2
+StranglePayoff
+getStranglePayoff

ButterflyPayoff
+strike1
+strike2
+strike3
+ButterflyPayoff
+getButterflyPayoff

Figure 4.8: UML diagram of Payoff class & generalization relation between its sub-
classes

4.2.2 PureJumpProcess Class

The PureJumpProcess class is created on the purpose of making the software suitable
for the assets which follows jump diffusion processes. The PureJumpProcess class is
formed as an abstract class. Poisson class is the subclass of PureJumpProcess class and
it serves as a main class for this part of the software. It has only lambda (λ) property.
From the Definition 2.11, the knowledge about λ is enough in order to construct a
Poisson process. The methods of this class are the generatePoissonRandn, simulate
and plot. The generatePoissonRandn is used to create random numbers from Poisson
distribution with λ intensity. The simulate and plot methods are created to simulate and
plot Poisson object with λ property. The CompensatedP, which refers to compensated

46

Poisson, and CompoundPoisson classes are the subclasses of Poisson class. These
subclasses inherit properties and methods of Poisson class automatically.

The CompensatedP class has one property which comes from its superclass Poisson
and it is not in need of additional property according to Definition 2.14. Beside its
constructor method, CompensatedP, it has methods named as simulate and plot as its
superclass. However, inside operations of simulate and plot methods of CompensatedP
class are different from the methods of its superclass. This situation is one of the
polymorphism applications of this software.

The additional property of the CompoundPoisson class is its distribution property. In
order to define a compound Poisson object, beside lambda property, distribution of
random variables, say Yi, are also required. The methods of the CompoundPoisson
class, which are the constructor method, CompoundPoisson, simulate and plot meth-
ods, are similar to the CompensatedP class. The structure of CompensatedCP is also
very similar to CompoundPoisson class.

The code in order to create and plot Poisson, compound Poisson, compensated Poisson
and compensated compound Poisson objects is given in Listing 6 and its output is
shown in Figure 4.9.

Figure 4.9: Output of the test script of Poisson class and its subclasses

The UML diagram of the PureJumpProcess part of the software is given in Figure 4.10.

47

PureJumpProcess

Poisson
+lambda
+generatePoissonRandn
+simulate
+plot

CompoundPoisson
+distribution
+CompoundPoisson
+simulate
+plot

CompensatedP

+CompensatedP
+simulate
+plot

CompensatedCP

+CompensatedCP
+simulate
+plot

Figure 4.10: UML diagram of PureJumpProcess class with its subclasses

4.2.3 Asset Class

Another important main class for the structure is the Asset class with assetName
and currentPrice properties. The SDE Asset, GBM Asset, JD Asset, MertonJD Asset
classes are inherited the properties assetName and currentPrice from Asset class. Be-
sides, SDE Asset and GBM Asset classes are inherited properties and methods from
MATLAB R©’s built-in class SDE.

Hence, the SDE class only covers pure diffusion and diffusion with drift processes,
JumpDiffusion and MertonJD (Merton jump diffusion) classes are created with the
help of the built-in SDE class and newly developed PureJumpProcess class as depicted
in Figure 4.11.

The SDE Asset and GBM Asset classes are the examples of multiple inheritance con-
cept. This classes inherits from the Asset class as well as the SDE class. In the same
manner, JD Asset and MertonJD Asset classes take over the properties and methods
from both the Asset class and the JumpDiffusion and MertonJD classes, respectively.
The SDE Asset, GBM Asset, JD Asset, MertonJD Asset classes have no additional
properties except for their inherited properties. These four subclasses possess the sim-
ulatePaths and disp methods, in addition to their constructor methods. For instance,
after creating a GBM Asset object by using display method (disp), the following in-
formation about the object, is obtained.

48

sde
+drift
+diffusion
+version
+inputCorrelation
+StartTime
+StartState
+Simulation
+nBrownians
+sde
+Correlation
+disp
+getCurrentVersion
+ValidateRateFunctions
+getBrownianDimension
+getStateDimension

JumpDiffusion
JumpRate

+JumpDiffusion
+simulate
+plot
+disp

MertonJD
JumpRate

+MertonJD
+simulate
+plot
+disp

CompoundPoisson
+distribution
+CompoundPoisson
+simulate
+plot

CompensatedCP

+CompensatedCP
+simulate
+plot

JumpDiffusion
+JumpRate

+JumpDiffusion
+simulate
+plot
+disp

MertonJD
+JumpRate

+MertonJD
+simulate
+plot
+disp

Figure 4.11: UML diagram JumpDiffusion and MertonJD clases

F = @(t,X) 0.1 * X; %drift object
G = @(t,X) 0.3 * X; %diffusion object
myAsset = GBM_Asset(F,G); %Asset object
myAsset = myAsset.setAssetName(’GBM’);
myAsset.disp();

Class GBM_Asset:
--
GBM :Asset Name Current Price: 1
--
StartTime: 0
StartState: 1
Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
--

The simulatePaths method is an example of the overriding (inclusion polymorphism)
concept. That is, although the name and parameters of the method are the same, the
internal structure of the method works in a different way. For the assets, which fol-
lows SDE or GBM process, MATLAB R©’s built-in functions, simByEuler (simulation
by Euler method) or simBySolution (simulation by solution), are used in order to sim-
ulate the asset paths. A plot of several simulated asset price paths, which follow GBM
process, using simByEuler method is illustrated in Figure 4.12 and the test is given in
Listing 7.

In the scope of this software, the types of the asset prices and the supported simulation
methods are given in the Table 4.2. Simulation by Euler method is provided for all
types of asset models whereas the simulation by solution method can only be used for
geometric Brownian motion and Merton jump diffusion models. The UML diagram
of the Asset class and its subclasses is given in Figure 4.13.

49

Figure 4.12: Paths of Geometric Brownian Motion

Table 4.2: Supported simulation methods for the types of asset prices

Type of the asset price Simulation by Euler Simulation by Solution
SDE X
GBM X X
JD X
MertonJD X X

4.2.4 Derivative and Option Classes

Derivative class is an abstract class and Option class is the subclass of Derivative class
in this structure. The Derivative class has only one property which is the underlying,
since every derivative instrument has at least one underlying asset in real life. The
underlying asset can be stock, commodity, index, currency, etc.. In the scope of this
thesis, only stocks as an underlying asset are considered.

In this structure, one subclass of the Derivative class is examined. In addition to Option
subclass, Future, Forward and Swap subclasses can be included.

The definition of an option is as follows [21]:

“An option financial derivative that represents a contract sold by one

50

Asset
+assetName
+currentPrice
+Asset
+setAssetName
+getAssetName
+setCurrentPrice
+getCurrentPrice
+disp

SDEAsset

+SDEAsset
+simulatePaths
+disp

GBMAsset

+GBMAsset
+simulatePaths
+disp

JDAsset

+JDAsset
+simulatePaths
+disp

MertonJDAsset

+MertonJDAsset
+simulatePaths
+disp

sde
+drift
+diffusion
+version
+inputCorrelation
+StartTime
+StartState
+Simulation
+nBrownians
+sde
+Correlation
+disp
+getCurrentVersion
+ValidateRateFunctions
+getBrownianDimension
+getStateDimension

SDEAsset

+SDEAsset
+simulatePaths
+disp

GBMAsset

+GBMAsset
+simulatePaths
+disp

JumpDiffusion
+JumpRate

+JumpDiffusion
+simulate
+plot
+disp

MertonJD
+JumpRate

+MertonJD
+simulate
+plot
+disp

JDAsset

+JDAsset
+simulatePaths
+disp

MertonJDAsset

+MertonJDAsset
+simulatePaths
+disp

Figure 4.13: UML diagram of Asset class and subclasses of Asset class

party (option writer) to another party (option holder). The contract offers
the buyer the right, but not the obligation, to buy (call) or sell (put) a
security or another financial asset at an agreed-on price (the strike price)
during a certain period or on a specific date (exercise date).”

Since our interest is pricing options, the information about the option writer and holder
is unimportant. However, the type of the option contract, whether it is a call or a put, the
strike price and exercise date (maturity) are crucial for pricing. Hence, the properties
of the Option class are specified according to the required data, namely, strike, maturity
and payoff. Also, the underlying property is inherited from the Derivative class.

Before creating the option object, the asset object must be created in order to define
the underlying property. The test script to create an option object is given in Listing 8
as an example. The information about created option object is given below.

51

Derivative
+underlying

Option
+strike
+maturity
+payoff

+Option
+simulateUnderlying
+generatePayoff

Figure 4.14: UML diagram of Derivative and Option class with generalization relation

myOption =

Option with properties:
strike: 125
maturity: 0.0959
payoff: [1x1 BarrierPayoff]
underlying: [1x1 GBM_Asset]

The detailed information about the payoff of the myOption object is

>> myOption.payoff

BarrierPayoff with properties:

name: ’down-and-out’
barrier: 120
type: ’call’
strike: 125
payoff: {1x3 cell}

In the same manner, the information about the underlying asset of the myOption object
can be obtained.

>> myOption.underlying

Class GBM_Asset:
--
GBM-Example :Asset Name Current Price: 125.94
--
StartTime: 0
StartState: 125.94
Drift: drift rate function F(t,X(t))

52

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
--

4.2.5 Pricer Class

The Pricer class can be considered as the final stage of the software. This class is
created to price European type plain vanilla and barrier options by analytic solution
of the Black-Scholes equation (closed-form), as well as by Monte Carlo method. The
supported solution methods according to the payoffs and underlying asset types to
calculate the option price are given in Table 4.3.

Table 4.3: Supported pricing methods based on the payoffs and asset model types

Payoff Underlying Asset Closed-Form Monte Carlo

Plain Vanilla

SDE X X
GBM X X
JD X X
MertonJD X X

Barrier

SDE X
GBM X X
JD X
MertonJD X

After an option object is created with the help of the payoff and asset objects, it is used
in defining the pricer object.

The Pricer class is an abstract class and it has only one property which is the price.
MonteCarlo class is created to price options by Monte Carlo approaches. MonteCar-
loCrude subclass is created on the purpose of pricing options with crude Monte Carlo
approach. On the other hand, the ClosedForm subclass is created with the purpose of
benchmarking the price.

In order to price the created option object, Monte Carlo object is created by using
option object as a MCdata property of Monte Carlo object. The test script to show how
to create a Monte Carlo and closed-form solution objects is given in Listing 9. The
output of the script is as follows:

closedForm with properties:

CFdata: [1x1 Option]
price: 14.0153

MonteCarloCrude with properties:

MCdata: [1x1 Option]

53

approxsigma: 19.3660
CI: [2x1 double]
NRepl: 10000
price: 14.8368

As seen in the output, for a barrier option whose underlying asset follows a GBM
with the parameters given in the test script in Listing 9, the closed-form solution and
Monte Carlo results for 10000 trials are close to each other. The data, used for both
closed-form and Monte Carlo objects, is the same option object.

Pricer
+price

ClosedForm
+CFdata
+getPrice

MonteCarlo
+NRepl

MonteCarloCrude
+MCdata
+approxsigma
+CI
+MonteCarloCrude
+generateSamplePayoff
-solve
+estimate

Figure 4.15: UML diagram of Pricer class with its subclasses

4.2.6 Relation Between Classes

The inheritance relations of the main parts of the software is given in the previous
sections. In this structure beside the inheritance relation, the association relation be-
tween the main parts of the software plays an important role. To define the underlying
property of the Derivative class, the object generated from the Asset class is used. In
the same way, the object created from the Payoff class is utilized as a payoff property
for Option class. Pricer class is associated with Option class. Because the Pricer class
cannot be used without creating the object from an Option class. A simple illustration
to show the association relations is given in Figure 4.16.

4.3 Graphical User Interface (GUI)

A user interface (UI) is a graphical tool consisting of a number of windows with some
interactive elements so that the user can perform interactive tasks. As a result, the user

54

Derivative

Option

Asset

Payoff

Pricer

1 1..*

11

Figure 4.16: Association relations between main classes

does not have to spent time on writing a new code to complete the tasks. For that
purpose, a graphical user interface (GUI) is designed and implemented as a by-product
of the current thesis. A general view of the Object-Oriented Monte Carlo Option Pricer
(OOMCOP) GUI is given in Figure 4.17.

The created GUI consists of three main parts for gathering inputs, providing outputs
and displaying the results with a figure. The input region is divided into three parts. In
select option part, the user should select the option type and payoff type by using scroll-
down buttons. Then, the inputs for the selected option type should be specified and the
necessary simulation inputs to run the Monte Carlo simulation should be written into
the suitable text boxes. After all the inputs are entered, the Monte Carlo price and the
Black-Scholes price outputs can be seen by pushing the Price button. The Visualize
button is used to demonstrate the simulated asset paths in the main plot area of the
OOMCOP GUI.

Figure 4.17: GUI for OOMCOP

55

56

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this study, a software is developed to price European plain-vanilla and barrier op-
tions by Monte Carlo approach. In this way the program provides a convenient envi-
ronment to study on various kinds of underlying assets, option strategies and option
themselves.

Object-oriented software development is investigated in three parts: analysis, design
and implementation. In object-oriented analysis phase, the process of pricing the Eu-
ropean type of plain-vanilla and barrier option by Monte Carlo approach is examined
and the process is divided into main parts to reduce the complexity. First, the deriva-
tive and the pricer parts are considered as separate classes. The underlying process of
the derivative part is designed as another main part, namely, Asset class. MATLAB R©’s
built-in SDE class is considered as the parent class for the subclasses of Asset class.
Because MATLAB R©’s SDE class only covers the drift and the diffusion processes, to
include the jump diffusion processes for underlying assets the PureJumpProcess class
is created as one of the main classes. In the same way, Payoff class is separated from
Option class and it is considered as another main class of the software.

Afterwards, object-oriented design of the main classes and hierarchy relations are con-
structed by determining the common properties and methods of the classes. The design
of these main parts and relation between them is given with the UML diagrams in Fig-
ure A.1.

Finally, the implementation is put into practice by MATLAB R© programing language
due to its simplicity and a variety of built-in functions and classes. Also, MATLAB R©

is a hybrid object-oriented programming language. In addition to its procedural pro-
gramming features it is suitable for developing object-oriented programming concepts.
During the study, it is observed that combining procedural and object-oriented pro-
gramming can reduce the complexity and provides the reuse of the code. By the help
of the created graphical user interface (GUI), it is aimed that the program might well
be used by practitioners quite easily.

It can be concluded that the software is flexible and expandable. Because it is divided
into small main parts, addition and subtraction of new classes under main classes is
convenient and do not ruin the integrity of the existing code.

As a further study, option types, underlying asset types and pricing methods can be

57

developed. Some expansions that are planned to be done are as follows. Compound
and Basket options can be added as a subclass of the Derivative class. Other exotic
option payoffs, namely, Asian, lookback, Bermuda, chooser, exchange, shout can be
included. Also, PureJumpProcess class can be extended by Variance-Gamma (VG)
and Normal Inverse Gaussian (NIG) processes. In addition, Asset price models can
be diversified by double exponential jump diffusion (Kou), Bates, Bates-Hull-White
models. In Pricer part, Monte Carlo class can be enhanced by variance reduction tech-
niques as antithetic and control variates to increase the efficiency of simulations. Also,
new pricing methods, namely, lattice, finite difference, finite element and fast Fourier
transform methods can be included. Finally, the current version and the expansions can
be considered as European package, in addition to that American package to price op-
tion can be developed. The UML diagram of the planned future version of the software
is given in Figure C.1. In the light of these expansions and improvements the current
GUI can also be upgraded. Thanks to OOP, these modifications will not disarrange
the substantial structure and the capabilities of the OOMCOP software can further be
improved.

58

REFERENCES

[1] T. Björk, Arbitrage theory in continuous time, Oxford university press, 2004.

[2] F. Black and M. Scholes, The pricing of options and corporate liabilities, The
journal of political economy, pp. 637–654, 1973.

[3] G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language user
guide, Reading, UK: Addison Wesley, 1999.

[4] S. Borak, A. Misiorek, and R. Weron, Models for heavy-tailed asset returns, in
Statistical tools for finance and insurance, pp. 21–55, Springer, 2011.

[5] O. J. Boxma and U. Yechiali, Poisson processes, ordinary and compound.

[6] P. P. Boyle, Options: A Monte Carlo approach, Journal of financial economics,
4(3), pp. 323–338, 1977.

[7] P. Brandimarte, Numerical methods in finance and economics: a MATLAB-based
introduction, John Wiley & Sons, 2013.

[8] M. Broadie and P. Glasserman, Estimating security price derivatives using simu-
lation, Management science, 42(2), pp. 269–285, 1996.

[9] D. Chance and R. Brooks, Introduction to derivatives and risk management, Cen-
gage Learning, 2015.

[10] U. Cherubini and G. Della Lunga, Structured Finance: The Object Oriented Ap-
proach, volume 419, John Wiley & Sons, 2007.

[11] R. Clair, Learning Objective-C 2.0: A hands-on guide to Objective-C for Mac
and iOS developers, Addison-Wesley, 2012.

[12] T. O. I. Council, Option strategies quick guide, http://www.
optionseducation.org/documents/literature/files/
options-strategies-quick-guide.pdf, accessed: 2015-07-01.

[13] J. C. Cox and M. Rubinstein, Options markets, Prentice Hall, 1985.

[14] D. J. Duffy, Introduction to C++ for financial engineers: an object-oriented ap-
proach, John Wiley & Sons, 2013.

[15] D. J. Duffy and J. Kienitz, Monte Carlo Frameworks: Building Customisable
High-Performance C++ Applications, volume 406, John Wiley & Sons, 2009.

[16] E. F. Fama, Efficient capital markets: A review of theory and empirical work*,
The journal of Finance, 25(2), pp. 383–417, 1970.

59

http://www.optionseducation.org/documents/literature/files/options-strategies-quick-guide.pdf
http://www.optionseducation.org/documents/literature/files/options-strategies-quick-guide.pdf
http://www.optionseducation.org/documents/literature/files/options-strategies-quick-guide.pdf

[17] J. Farrell, An object-oriented approach to programming logic and design, Cen-
gage Learning, 2012.

[18] B. for International Settlements, Otc derivatives statistics at end-june
2014, http://http://www.bis.org/publ/otc_hy1411.pdf, ac-
cessed: 2015-07-01.

[19] B. Grady, Object-oriented analysis and design with applications, 1994.

[20] U. Gruber, Pricing barrier and Asian options with an emphasis on Monte-Carlo
methods, M. Sc. paper, Oregon State University, Corvallis, Oregon, USA, 1997.

[21] J. Guinan, Investopedia’s guide to wall speak, 2009.

[22] F. B. Hanson, Applied stochastic processes and control for jump-diffusions: mod-
eling, analysis, and computation, volume 13, Siam, 2007.

[23] J. M. Harrison and D. M. Kreps, Martingales and arbitrage in multiperiod secu-
rities markets, Journal of Economic theory, 20(3), pp. 381–408, 1979.

[24] J. M. Harrison and S. R. Pliska, Martingales and stochastic integrals in the theory
of continuous trading, Stochastic processes and their applications, 11(3), pp. 215–
260, 1981.

[25] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic
differential equations, SIAM review, 43(3), pp. 525–546, 2001.

[26] J. C. Hull, Options, futures, and other derivatives, Pearson Education India, 2006.

[27] H. Kammeyer and J. Kienitz, The Heston-Hull-White model part III: Design and
implementation, Wilmott, 2012(59), pp. 44–49, 2012.

[28] J. Kienitz and D. Wetterau, Financial modelling: Theory, implementation and
practice with MATLAB source, John Wiley & Sons, 2012.

[29] F. C. Klebaner et al., Introduction to stochastic calculus with applications, vol-
ume 57, World Scientific, 2005.

[30] R. Korn, E. Korn, and G. Kroisandt, Monte Carlo methods and models in finance
and insurance, CRC press, 2010.

[31] S. Kou, On pricing of discrete barrier options, Statistica Sinica, 13(4), pp. 955–
964, 2003.

[32] S. Kou, Jump-diffusion models for asset pricing in financial engineering, Hand-
books in operations research and management science, 15, pp. 73–116, 2007.

[33] P. Lavin, Object-Oriented PHP: Concepts, techniques, and code, No Starch
Press, 2006.

[34] B. Louis, Theory of speculation, Paul H. Cootner, The Random Character of
Stock Market Prices (Cambridge, Mass.: MIT Press, 1964), pp. 17–78, 1900.

60

http://http://www.bis.org/publ/otc_hy1411.pdf

[35] MATLAB, version 8.3.0.532 (R2014a), The MathWorks Inc., Natick, Mas-
sachusetts, 2014.

[36] R. C. Merton, Theory of rational option pricing, The Bell Journal of Economics
and Management Science, pp. 141–183, 1973.

[37] T. Mikosch, Elementary stochastic calculus with finance in view, volume 6,
World scientific, 1998.

[38] S. Mitra, A review of volatility and option pricing, International Journal of Fi-
nancial Markets and Derivatives, 2(3), pp. 149–179, 2011.

[39] L. Mollamustafaoğlu, Object-Oriented Programming with Examples in Borland
Pascal, Boğaziçi University Publications, 1995.

[40] M. O’docherty, Object-Oriented Analysis & Design, John Wiley & Sons, 2005.

[41] S. Ramnath and B. Dathan, Object-Oriented Analysis and Design, Springer Sci-
ence & Business Media, 2010.

[42] F. D. Rouah, Four derivations of the Black-Scholes formula.

[43] M. Rubinstein and E. Reiner, Breaking down the barriers, Risk, 4(8), pp. 28–35,
1991.

[44] P. A. Samuelson, Proof that properly anticipated prices fluctuate randomly, In-
dustrial management review, 6(2), pp. 41–49, 1965.

[45] R. Seydel, Tools for computational finance, volume 4, Springer, 2002.

[46] R. W. Shonkwiler, Finance with Monte Carlo, Springer, 2013.

[47] S. E. Shreve, Stochastic Calculus for Finance II: Continuous-time models, vol-
ume 11, Springer Science & Business Media, 2004.

[48] D. N. Smith, Concepts of Object-Oriented Programming, McGraw-Hill, Inc.,
1991.

[49] P. Tankov and R. Cont, Financial modelling with jump processes, volume 2, CRC
press, 2004.

[50] B. Timothy, An Introduction to Object-Oriented Programming, Pearson Educa-
tion, 2002.

[51] Ö. Uğur, An Introduction to Computational Finance, volume 1, Imperial College
Press, 2009.

[52] P. Van Roy et al., Programming paradigms for dummies: What every programmer
should know, New computational paradigms for computer music, 104, 2009.

[53] N. Webber, Implementing models of financial derivatives: Object oriented appli-
cations with VBA, John Wiley & Sons, 2011.

61

62

APPENDIX A

UML Diagram of the Software

Figure A.1: UML diagram of the OOMCOP

63

64

APPENDIX B

Test Scripts

These MATLAB R© scripts are used to create objects, which are given in Chapter 4.

Listing B.1: An example for plus, minus, times method of Payoff class

clear all; close all; clear classes;
x = 0:50; K = 25;

CallPayoff = Payoff(@(x) max(0, x - K), ’long’, 1) % Payoff object
PutPayoff = Payoff(@(x) max(0, K - x), ’long’, 1) % Payoff object
CallPutPayoff = CallPayoff + PutPayoff
CallPutPayoff2 = CallPayoff - PutPayoff
CallPayoff3 = 3 * CallPayoff

subplot(2,2,1)
plot(x, CallPayoff.evaluatePayoff(x), ’b-o’); hold on;
plot(x, PutPayoff.evaluatePayoff(x), ’r-o’);hold on; grid on;
subplot(2,2,2)
plot(x, CallPutPayoff.evaluatePayoff(x), ’b-*’); grid on;
subplot(2,2,3)
plot(x, CallPutPayoff2.evaluatePayoff(x), ’b-*’); grid on;
subplot(2,2,4)
plot(x, CallPayoff3.evaluatePayoff(x), ’b-*’);grid on;

Listing B.2: Test script for Payoff class

clear all; close all; clear classes;
x = [-5:0.1:5]’;

for alpha = 0:0.1:1
myF = @(x) thisNewPayoffFunction(x, alpha);
myPay = Payoff(myF); % Payoff object
plot(x, myPay.evaluate(x), ’b-’); hold on; grid on;

end

65

Listing B.3: Test script for VanillaPayoff class

clear all; close all; clear classes;

x = [0:10]’;
myPay = VanillaPayoff(3,’call’); % VanillaPayoff object
myPayPut = VanillaPayoff(3,’put’); % VanillaPayoff object
plot(x, myPay.evaluate(x), ’b-o’), hold on;
plot(x, myPayPut.evaluate(x), ’r-o’), grid on;
xlabel(’x values’); ylabel(’payoff’);legend(’Call Payoff’,’Put Payoff’)

Listing B.4: Test script for Option Strategies

clear all; close all; clear classes;
x = [0:60]’; strike = 20; strike2 = 10; strike3 = 30; strike4 = 15;

butterfly = ButterflyPayoff(strike2,strike,strike3);
subplot(3,1,1)
plot(x,butterfly.evaluate(x),’b-*’)
title(’Neutral Strategy:LONG CALL BUTTERFLY’,’FontSize’,12);
xlabel(’stock price’); ylabel(’payoff’); grid on;

straddle = StraddlePayoff(strike); %StraddlePayoff object
subplot(3,1,2)
plot(x,straddle.evaluate(x),’b-*’)
title(’Volatility Strategy:LONG STRADDLE’,’FontSize’,12);
xlabel(’stock price’); ylabel(’payoff’); grid on;

strangle = StranglePayoff(strike, strike2); %StranglePayoff object
subplot(3,1,3)
plot(x,strangle.evaluate(x),’b-*’)
title(’Volatility Strategy:LONG STRANGLE’,’FontSize’,12);
xlabel(’stock price’); ylabel(’payoff’); grid on;

Listing B.5: Test script for Iron Condor object

x = [45:85]’; strike = 55; strike2 = 60; strike3 = 70; strike4 = 75;

Put1 = Payoff(@(x) max(0, strike-x), ’long’,1) % Payoff object
Put2 = Payoff(@(x) max(0, strike2-x), ’short’,1) % Payoff object
Call1 = Payoff(@(x) max(0, x-strike3), ’short’,1) % Payoff object
Call2 = Payoff(@(x) max(0, x-strike4), ’long’,1) % Payoff object
iron = Put1 + Put2 + Call1 + Call2;

plot(x,iron.evaluate(x),’b-*’);title(’IRON CONDOR’,’FontSize’,12);
xlabel(’stock price’); ylabel(’payoff’); grid on;

66

Listing B.6: Test script for Poisson class

a = Poisson(1) %Poisson object
subplot(2,2,1)
a.plot(3,5)

b = CompoundPoisson(1,’Normal’,1,2) %Compound Poisson object
subplot(2,2,2)
b.plot(3,5)

c = CompensatedP(1) %Compensated Poisson object
subplot(2,2,3)
c.plot(3,5)

d = CompensatedCP(1,’Normal’,1,2) %Compensated compound Poisson object
subplot(2,2,4)
d.plot(3,5)

Listing B.7: Test script for GBM Asset class

F = @(t,X) 0.1 * X; %drift object
G = @(t,X) 0.3 * X; %diffusion object
myAsset = GBM_Asset(F,G); %Asset object
myAsset = myAsset.setAssetName(’GBM’);
myAsset.disp();

Listing B.8: Test script for Option class

clear classes; clear all; close all; clc;
%inputs
drift = 0.0446; diffusion = 0.83; CurrentPrice = 125.94;
DeltaTime = 0.01; NTrials = 10000; Maturity = 0.0959;
nPeriods = ceil(Maturity/DeltaTime); Strike = 125; Barrier = 120;
%%
F = @(t,X) drift;
G = @(t,X) diffusion;
myAsset = GBM_Asset(F,G); % Asset object
myAsset = myAsset.setAssetName(’GBM-Example’);
myAsset = myAsset.setCurrentPrice(CurrentPrice);

67

myOption = Option(myAsset,Maturity,Strike); %Option object
myOption.payoff = BarrierPayoff(Strike,’call’,Barrier,’down-and-out’);

Listing B.9: Test script for Pricer class

clear classes; clear all; close all; clc;
%inputs
drift = 0.0446; diffusion = 0.83; CurrentPrice = 125.94;
DeltaTime = 0.01; NTrials = 10000; Maturity = 0.0959;
nPeriods = ceil(Maturity/DeltaTime); Strike = 125; Barrier = 120;
%%
F = @(t,X) drift;
G = @(t,X) diffusion;
myAsset = GBM_Asset(F,G); % Asset object
myAsset = myAsset.setAssetName(’GBM-Example’);
myAsset = myAsset.setCurrentPrice(CurrentPrice);

myOption = Option(myAsset,Maturity,Strike); %Option object
myOption.payoff = BarrierPayoff(Strike,’call’,Barrier,’down-and-out’);

cf = closedForm(myOption2); %closedForm object
cf.getPrice()
monte = MonteCarloCrude(NTrials,myOption2); %MonteCarloCrude object
monte.solve(nPeriods,’DeltaTime’,DeltaTime,’ntrials’,NTrials)

68

APPENDIX C

Possible Extension to the Software

Figure C.1: UML diagram of the possible extension to the software

69

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	Aim of the Thesis
	Literature Review
	Structure of the Thesis

	PRELIMINARIES
	Options
	Plain-Vanilla Options
	Barrier Options

	Option Strategies
	Stochastic Differential Equations with Jumps
	Stochastic Differential Equations and Itô Process
	Black Scholes Framework
	Pure Jump Processes
	Poisson Process
	Compound Poisson Process
	Compensated Poisson and Compensated Compound Poisson Processes

	Jump Diffusion Models

	Monte Carlo Approach
	Crude Monte Carlo Approach
	Implementation of Monte Carlo Approach to European Option Pricing
	Numerical Solution

	OBJECT-ORIENTED PROGRAMMING
	What is the OOP?
	Class and Object

	Concepts of the OOP
	Abstraction
	Encapsulation
	Inheritance
	Polymorphism

	The Unified Modeling Language (UML)

	DESIGN AND IMPLEMENTATION OF OOMCOP
	OOP in Matlab®
	Structure of the Program
	Payoff Class
	PureJumpProcess Class
	Asset Class
	Derivative and Option Classes
	Pricer Class
	Relation Between Classes

	Graphical User Interface (GUI)

	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDICES
	UML Diagram of the Software
	Test Scripts
	Possible Extension to the Software

