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ABSTRACT

AN ANALYSIS OF MOMENTUM AND MEAN REVERSION EFFECTS ON
EQUITY INDICES

Özbilge, Armağan

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Yeliz Yolcu Okur

Co-Supervisor : Kamil Korhan Nazlıben

June 2015, 69 pages

Momentum and mean-reversion effects have become very popular in finance literature
for the last two decades since their presence can generate abnormal profit patterns
by applying either relative strength or contrarian trading strategy accordingly. Even
though there are some common factor explanations for return reversals, they might not
provide the full picture for return persistence. In our theoretical framework, we analyse
some of the well-known discrete time momentum studies including the initial one and
try to explain why a novel approach is needed.

Henceforth, in this work, we focus on a continuous time model that aims to capture
both momentum and contrarian effects in stock returns. Our model nests the standard
stochastic framework proposed by Koijen, Rodriguez and Sbuelz [24]. In our empir-
ical analysis, we examine the term structure of return continuation (momentum) and
mean reversion in Turkish stock market (BIST-100) using historical observation from
2004 to 2014. Further, the results of BIST-index are compared to both previous studies
on it and other benchmark results in the literature in which US CRSP-index returns are
investigated. Accordingly, we observe that, unlike US, Turkish stock market contains
mean reversion, but not momentum effect, as Bildik and Gülay [5] states by analysing
dozens of possible portfolio strategies. Thus, rather than constructing specified portfo-
lios (decile, industry, size, etc.), presence of momentum and mean reversion effects in
a stock market might be anticipated accurately by only analysing equity index of that
market.
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ÖZ

MOMENTUM VE ORTALAMAYA DÖNÜŞ ETKİLERİNE BORSA ENDEKSLERİ
ÜZERİNDEN BİR İNCELEME

Özbilge, Armağan

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Yeliz Yolcu Okur

Ortak Tez Yöneticisi : Kamil Korhan Nazlıben

Haziran 2015, 69 sayfa

Momentum ve ortalamaya dönüş etkilerinin varlığı, göreceli güç veya karşıt alım satım
stratejilerinin, duruma göre, uygulanmasıyla anormal getiri patikaları meydana ge-
tirdiği için, bu iki etki, son yirmi yılda finans literatüründe oldukça popüler hale gelmiştir.
Getirilerdeki ters yönlü harekete bazı ortak faktör açıklamaları getirilse de bunlar, ge-
tirilerdeki devamlılığı açıklarken tüm tabloyu yansıtmayabiliyor. Teorik çerçevemiz
içinde, ilki dahil, bazı bilinen ayrık zaman momentum çalışmalarını analiz ederek ne-
den alışılmışın dışında bir yaklaşımın gerektiğini açıklamaya çalışıyoruz.

Bundan dolayı, bu çalışmada, hem momentum hem de ortalamaya dönüş etkilerini
yakalamayı hedefleyen bir sürekli zaman modeli üzerine yoğunlaşıyoruz. Modelimiz,
Koijen, Rodriguez and Sbuelz [24] tarafından önerilen standart stokastik çerçevenin
üzerine kurulmaktadır. Yürüttüğmüz ampirik analizde, 2004-2014 yılları arası, getiri
devamlılığının (momentum) ve ortalamaya dönüşün Türkiye borsasındaki (BİST-100)
dönem yapısını inceledik. Ayrıca, BİST-100 endeksinden elde edilen sonuçlar, hem
kendi literatürüyle, hem de Amerikan CRSP-endeks getirileri üzerine yapılan geçmiş
literatür çalışmalarıyla kıyaslanıyor. Buna göre, Bildik and Gülay [5]’ın da düzinelerce
portföyü analiz ettikten sonra belirttiği gibi, Türkiye borsası, Amerikan borsasının ak-
sine, ortalamaya dönüş etkisi içermekte, ancak momentum etkisi içermemektedir. Bu
yüzden, belki de bir borsadaki momentum ve ortalamaya dönüş etkileri, o borsadaki
hisse senetlerinin büyüklüğüne, endüstrisine, vb. özelliklerine göre belirli portföyler
oluşturmadan, o piyasanın borsa endeksini analiz ederek doğru bir şekilde öngörülebilir.
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CHAPTER 1

INTRODUCTION

Stock momentum has been examined extensively in the asset pricing literature. Simply,
existence of stock momentum implies that stock returns exhibit a persistent character-
istics in which velocity and direction of the return series are significantly preserved. In
other words, stocks that performed well (poorly) in the past are expected to preserve
their good (bad) performances in the future. On the other hand, mean-reversion be-
haviour of stock returns states that, stock returns fluctuate around their long run mean.
For example, once a financial shock occurs, return of a stock eventually turns back to
its long term fundamental level which could be either its average past performance or
a specified portfolio mean like industry, size, equity index, etc.

The existence of return continuation and mean-reversion can generate abnormal profit
patterns by applying either relative strength or contrarian trading strategy1 accordingly.
Indeed, these two effects may vary across the portfolios, countries, and investment
horizons. For example, it is documented that, US market realizes return continuation
on short term [23], 3 to 12 months, and mean-reversion on long term [7], 3 to 5 years,
investment horizons whereas Turkish stock market preserves only short term mean-
reversion [5]. Because of this discrepancy, associating their impact with a common
factor is a challenge, in particular for the cases where return patterns exhibit momen-
tum.

Analysing persistence and reversal of asset returns are theoretically crucial for recog-
nizing market inefficiency. Because, a rational investor can establish an investment
plan in which she aims to outperform the market by identifying these effects in return
characteristics. Though Fama-French manages to explain long term return reversals
under classical risk-return scheme [20](higher return can only be obtained in exchange
for extra risk), momentum still violates the weak-form efficiency [16] by allowing a
systematic trading system to beat the market without bearing additional risk.

However, it might be too costly to find out which of these two states dominate the
market on which investment horizon. Conducting dozens of portfolio scenarios with
corresponding significance tests is a non-trivial issue and it can even produce nothing
significant2. In fact, in practice, momentum and relative strength indices are used as
a part of the technical analysis [34, 29] for assessing the attainability of buy and sell

1 Buying past winners and selling past losers or vice versa.
2 See, for example, Japanese capital market[21]
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signals for each stock, particularly in short run. But, computations are not sophisticated
and not informative on their own. Beside, they are usually in consensus with simple
arithmetic moving averages. So, momentum, in this sense, is very similar but not
congruent to its theoretical meaning.

In this work, we focus on a continuous time model, proposed by Koijen, Rodrı́guez
and Sbuelz [24], that aims to capture both momentum and contrarian effects in stock
returns. In our empirical analysis, we estimate model parameters for Turkish stock
market (BIST-100) equity index between years 2004-2014. Our theoretical framework
also includes the detailed analysis of some of the well-known momentum studies in
discrete time literature to both see the initial quantification of this phenomena and pro-
vide comparison. Therefore, rather than trying to explain its source by some common
factors, our continuous time model takes momentum as a factor (because it is shown
to exist [23, 25]) of return. Even though, this method is much easier than examin-
ing various portfolios, it might not be as informative as classical scheme since it only
considers the time series predictability.

Stochastic parameter estimations are executed by the help of Euler-Maruyama(E-M)
discretization and maximum likelihood function. All computations are performed on
MATLAB and codes are readily available on appendices. We try to provide explana-
tions, examples and connections at each stage to justify and even clarify what has been
done and why. For example, E-M scheme is chosen for discretization, since it is shown
to provide fair approximations with tolerable errors for lower order SDEs.

The usage of BIST-100 index data is not a coincidence. This is the first study that
aims to examine momentum and mean-reversion effects in BIST-100. There is not any
index level study about these issues for Turkish stock market either. So, providing
evidences from an emerging market might develop some explanations for previous
findings. Further, there is a stock level past study [5] for BIST in discrete time, which
is also case for the US capital market. Therefore, relation between domestic studies
can be verified by comparing these two distinct markets.

According to our empirical analysis, we observe negligibly small momentum and dom-
inant mean reversion effects in BIST-100 index. Bildik and Gülay [5] reports same
result for individual stocks by examining dozens of portfolios and even manages to ex-
ploit this opportunity by applying contrarian trading strategy in Turkish stock market.
Same issue is also valid for US market, but in opposite direction. Koijen, Rodrı́guez
and Sbuelz [24] finds stronger evidence for momentum in Equally Weighted(EW) in-
dex in which relative strength strategy is shown to be profitable. This consistency
might indicate a possible relationship between index and corresponding stock level re-
turn patterns by means of momentum and mean-reversion. Of course, this claim needs
so many additional examinations to be proven.

This study consists of five chapters. The first chapter introduces comprehensive knowl-
edge about momentum and mean-reversion effects and a brief literature review. In the
second chapter, mathematical intuition behind momentum and some of the seminal dis-
crete time approaches are discussed. Thereafter, reasons behind passing to continuous
time setting are explained and the structure of our model is investigated. The Chapter
three demonstrates how the model is calibrated to stochastic parameter estimation by
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means of Euler approximation and likelihood function. The fourth chapter implements
the methods cited in chapter three to simulated and actual(BIST-100) data to figure
out the role of variables inside our model and discusses the evidences of Turkish stock
index. Finally, the last chapter concludes this master thesis with comments and further
study suggestions.

1.1 A Brief Literature Review

Beside of some exceptional equity indices and international portfolio analysis, most of
the past studies rely on individual stocks and/or specified portfolios, particularly in dis-
crete time. De Bondt and Thaler [7] shows that US stock prices contain mean reversion
effect over 3 to 5 years investment horizon according to their past 3 to 5 years perfor-
mance. Lo and MacKinlay [26, 27] states that there are some patterns that stock prices
follow and introduce their celebrated profit decomposition to express source of abnor-
mal returns. Jegadeesh and Titman [23] concentrates on 3 to 12 months(relatively short
term) investment horizon with the past 3 to 12 months return performances of financial
securities and notice that, stocks that generate abnormal returns in the past continue to
do so. They attribute this ”momentum effect” to firm-specific factors. Moskowitz and
Grinblatt [28] points out industry portfolios as a source of return continuation whereas
Lewellen [25] claims excess cross covariation between stocks and not idiosyncratic
factors to explain it, since his study analyses well-diversified portfolios not only by
industry; but also by size and book-to-market value. Chen and Hong [12] asserts that
Lewellen’s findings are debated. They also show that assumption quantification might
be tricky and biased. We will also go in deep on this issues by next chapter.

For Turkish stock market, Bildik and Gülay observes short term mean-reversion ef-
fect on BIST-100 by applying decile portfolios of Jegadeesh and Titman. They also
examine the weak form efficiency of Turkish stock market and emphasize the unique
characteristics of it. Accordingly, BIST is a capital market with record high inflation,
high volatility, and low correlated returns which associate its return pattern behaviour
with market specific factors.

While papers mentioned above generally focus on portfolio construction to exploit
momentum and/or mean-reversion effects, there are some other significant studies aim
to explain them. One of the most popular approaches is to explain these effects by
imperfect investor behaviours by addressing either over- or under-reaction(See, for
example, Barberis, Shleifer, and Vishny[4], Hong and Stein [22] and Chui, Titman,
and Wei [14]).

Fama and French [19, 20] suggests three factor model which manages to catch big
part of the mean-reversion effect, but fails to explain momentum. Carhart [10] adds
momentum effect to three factor model and Fama and French [21] shows presence of
momentum in international stock markets by using that four factor model. However,
they again stress individual stocks and conduct numerous analysis to provide coeffi-
cients of factors and even fail to explain extreme cases. As a final discrete time study
Chan, Hameed, and Tong [11] reports existence of momentum in international equity
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markets by applying relative strength strategy to equity indices. The last two works are
critical as they provide evidences for the presence of mean-reversion and momentum
effects in international markets at index level as well as individual stock level.

Unlike discrete time models, there is not much study to capture momentum in con-
tinuous time setting. Wachter [33] investigates mean reversion anomaly in continuous
time setting along with optimal portfolio selections. Rodrı́guez and Sbuelz [30] follows
similar pattern for stock momentum. Both studies establish a stochastic framework to
capture mean-reversion/momentum effect. Their aim is to identify optimal portfolio
choices of an investor who considers mean-reversion/momentum effect.

Finally, Koijen, Rodrı́guez, and Sbuelz [24] suggests a novel continuous time model to
feature both momentum and mean-reversion behaviour of equity index returns. They
broadly introduce their stochastic framework and perform similar parameter estima-
tions with us. They also examine optimal asset allocation for a portfolio, consists of
an equity index and a riskless bond, by means of dynamic programming. Results are
both compared with the case in which mean-reversion is the only state and some of the
benchmark journals(Wachter [33] and Rodrı́guez and Sbuelz [30]).
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CHAPTER 2

SOME OF THE MOMENTUM MODELS IN THE LITERATURE

This chapter consists analyses of early studies that were proposed to capture stock
momentum. Dividing literature into two parts: 1) Discrete Time Models and 2) Con-
tinuous Time Models will be appropriate to clarify the intuition behind our study.

2.1 Discrete Time Models

There are numerous studies examining momentum in discrete time. While some of
them examine it by specified portfolios like size, book-to-market value, industry, etc.[23,
28, 25], others advocate behavioural approaches[4, 14]. In addition to these, Fama and
French[20, 21] argues the multi factor explanations to capture persistence and rever-
sal in returns. Under the scope of this thesis, we will analyse the some studies from
the first group which also includes the initial study on momentum. Because, like our
model, the works we will identify also emphasize the presence and profitability of
momentum.

2.1.1 Model Analysis of Jegadeesh and Titman [23]

De Bondt and Thaler [7] shows that stock prices contain mean reversion effect over
3 to 5 years investment horizon according to their past 3 to 5 years performances.
Then, Jegadeesh and Titman [23] concentrates on 3 to 12 months (relatively short
term) investment horizon with the past 3 to 12 months return performances of financial
securities. Although, their base to explain momentum (idiosyncratic-risk) is debated,
their study is the first one which claims the existence of stock returns momentum with
evidences.

They started with ranking security returns in ascending order. Then, first ten securities
named as losers portfolio while last ten named as winners. This procedure applied to
stocks for their 3, 6, 9, and 12 months past performance. Portfolios are formed for the
next 3, 6, 9, and 12 months for all past performances. In order to avoid bid-ask spread
and increase the power of the test, parallel portfolios are processed just after a week of
their formation.
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Because Jegadeesh and Titman run the first serious study about stock momentum, their
practice mostly emphasizes the return auto-covariances to back up their empirical find-
ings. The theoretical scheme of them starts by a simple one factor model:

ri,t = µi + βixt + εi,t, (2.1)
E[xt] = 0,

E[εi,t] = 0,

Cov[εi,t, xt] = 0, ∀ i

Cov[εi,t, εj,t−1] = 0, ∀ i 6= j

where, ri,t is the observed return of security i at time t, µi is unconditional expected re-
turn of security i. Yet, xt is unconditional and unexpected return on a factor-mimicking
portfolio with the sensitivity βi, and εi,t is the firm specific error of security i. Under
these assumptions, in accordance with their empirical analysis JT manages to quantify
the momentum effect as follows:

E[ri,t − rm,t|ri,t−1 − rm,t−1 > 0] > 0,

and

E[ri,t − rm,t|ri,t−1 − rm,t−1 < 0] < 0,

where rm,t is equally weighted market return at time t. The above expectations are vital
to understand the mathematical intuition behind momentum. Therefore, by combining
these two expectations one can obtain the following expression

E[(ri,t − rm,t)(ri,t−1 − rm,t−1)] > 0. (2.2)

In order to exploit the return continuation opportunity, JT provides such weights that
equation (2.2) becomes the expected excess return of stock iwith respect to the market.

wi,t =
1

N
(ri,t−1 − rm,t−1). (2.3)

Notice that for an Equally Weighted index examination this weights setting leads to
a zero cost portfolio since

∑
i

(Xi − E[X]) = 0. Therefore, profit equation could be

written in the form

πt =
∑
i

wi,tri,t =
1

N

∑
i

(ri,t−1 − rm,t−1)ri,t,

and if we rather multiply weights expression with excess returns (could be either pos-
itive or negative in realization) (ri,t − rm,t) we obtain the equation (2.2), which is
claimed to be positive indeed. Therefore, to convert covariance to something more
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meaningful:

E
[
(ri,t − rm,t)(ri,t−1 − rm,t−1)

]
= E

[
(µi + βixt + εi,t − µm − βmxt − εm,t)

(µi + βixt−1 + εi,t−1 − µm − βmxt−1

−εm,t−1)
]
,

= E[µ2
i − µiµm − µmµi + µ2

m]

+E
[
xtxt−1(β2

i − βiβm − βmβi + β2
m)
]

+E[εi,tεi,t−1 − εi,tεm,t−1 − εm,tεi,t−1

+εm,tεm,t−1],

= E
[
(µi − µm)2

]
+ E

[
xtxt−1(βi − βm)2

]
+E
[
(εi,t − εm,t)(εi,t−1 − εm,t−1)

]
,

⇒ E[(ri,t − rm,t)(ri,t−1 − rm,t−1)] = σ2
µ + σ2

βCov(xt, xt−1) +

Cov(εi,t, εi,t−1). (2.4)

Under this setting, σ2
µ is cross-sectional variance of expected returns, and σ2

β is vari-
ance of factor sensitivities. The last term stands for average serial covariance.

This last expression decomposes three potential sources of excess momentum profits.
The first term of it can be explained like a stock with high unconditional mean at one
period is expected to carry its abnormal performance to next period. The second term
indicates that, for instance, when factor mimicking portfolio generates positive returns
with positive autocorrelation, choosing the stocks with high σβ would be profitable.
The last expression might be called as the idiosyncratic component of the stocks.

Jegadeesh and Titman also specify when momentum indicates market inefficiency.
Since, the fist two terms of equation (2.4) generate profits in exchange of extra risk,
they wouldn’t be a signal of an inefficient market. On the other hand, idiosyncratic
component would, since it could be diversified. In other words, only the idiosyncratic
component is a part of avoidable unsystematic risk factors and if momentum profits are
due to this term, their presence violates the traditional risk and return scheme (higher
return can only be achieved in exchange of greater risk) and so indicates market inef-
ficiency.

They also suggested a model to capture lead-lag effect. Their model somehow exam-
ines the behavioural concepts which are later employed to explain momentum in the
literature1.

ri,t = µi + β1,ixt + β2,ixt−1 + εi,t, (2.5)

where β1,i and β2,i are sensitivities to lagged factor portfolio returns. When β2,i > 0,
return of stock i reacts to a news and if β2,i < 0 as well, overreaction exists it is
corrected in the following period. For this model, εi,t has zero autocorrelation and

1 See, for example, [4, 14].
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factors are also serially uncorrelated. First, notice that

Cov(rm,t, rm,t−1) = E
[
(µm + β1,mxt + β2,mxt−1εm,t − µm)

(µm + β1,mxt−1 + β2,mxt−2εm,t−1 − µm)
]
,

= β1,mβ2,mE[x2
t−1],

⇒ Cov(rm,t, rm,t−1) = β1,mβ2,mσ
2
x, (2.6)

now, set

δ ≡ 1

N

N∑
i=1

(β1,i − β1,m)(β2,i − β2,m)

Therefore,

E[(ri,t − rm,t)(ri,t−1 − rm,t−1)] = E[µ2
i − µiµm − µmµi + µ2

m]

+E
[
x2
t−1(β1,iβ2,i − β1,mβ2,i − β1,iβ2,m

+β1,mβ2,m)
]
,

= E
[
x2
t−1(β1,i − β1,m)(β2,i − β2,m)

]
+E
[
(µi − µm)2

]
,

⇒ E
[
(ri,t − rm,t)(ri,t−1 − rm,t−1)

]
= σ2

µ + δσ2
x. (2.7)

Thus, when δ < 0 lead-lag relation has a negative affect on momentum profits and
vice versa. Further, if β2 > 0 (β2 < 0) returns are positively (negatively) correlated.
JT conclude this model with their analysis. According to JT, retuns are negatively
correlated and δ < 0. So, they attributed momentum profits to idiosyncratic compo-
nent. However, for the upcoming years, many well diversified portfolios are shown to
contain momentum as well.

To sum up, though JT lacks while explaining the source of return continuation, their
study is very important as they introduce the momentum concept in the literature. The
persistence characteristic of return series is examined by many other researchers and
it is shown to exist in various portfolios. Indeed, even latter works face with similar
shortcomings while explaining the source of return continuation.

2.1.2 Model Analysis of Lewellen[25]

Jegadeesh and Titman[23] use decile portfolios and initializes the momentum con-
cept. Moskowitz and Grinblatt[28] find similar return patterns by constructing industry
portfolios. Lewellen[25] extends these results to size, book-to-market(B/M) value and
double sorted size-B/M portfolios. Presence of return continuation into such well di-
versified portfolios shows the inadequacy of previous explanation(firm specific factor)
and robustness of momentum. Unlike JT, Lewellen considers the cross serial correla-
tion between stocks to explain momentum.

Lewellen also follows similar zero cost portfolio construction with JT. This time, he
aims to provide explanatory models to identify the origin of momentum under dis-
tinctly sorted zeros cost portfolios. It is possible to write the equation (2.3) in a more
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specific way

wi,t =
1

N
(rki,t−1 − rkm,t−1), (2.8)

where rki,t−1 stands for the k month return of the stock which ends by month t − 1.
Similarly, rkm,t−1 indicates the equally weighted index return. It is, again, obvious that:

N∑
i=1

wi,t =
1

N

N∑
i=1

(rki,t−1 − rkm,t−1) = 0. (2.9)

since
∑
i

(Xi − E[X]) = 0. Then, by setting µ ≡ E[rt] and auto-covariance matrix

Ω ≡ E[(rt−1 − µ)(rt − µ)′], one period return will be:

πt =
∑
i

wi,tri,t =
1

N

∑
i

(ri,t − rm,t)ri,t. (2.10)

From here, expected return becomes:

E[πt] =
1

N
E
[∑

i

ri,t−1ri,t

]
− 1

N
E
[
rm,t−1

∑
i

ri,t

]
, (2.11)

=
1

N

∑
i

(ρi + µ2
i )− (ρm + µ2

m). (2.12)

In order to be able to obtain equation (2.12), first part of the (2.11) is calculated like
that:

(ri,t−1 − µi)(ri,t − µi) = ri,t−1ri,t + µ2
i − µiri,t−1 − µiri,t,

E[ri,t−1ri,t] = µ2
i + Cov(ri,t−1, ri,t),

1

N

∑
i

E[ri,t−1ri,t] =
1

N

∑
i

(µ2
i + Cov(ri,t−1, ri,t)). (2.13)

which yields the first part of the equation (2.12) by setting Cov(ri,t−1, ri,t) = ρi. Like-
wise, second part of the equation (2.11) becomes:

E
[
rm,t−1

1

N

∑
i

ri,t

]
= ρm + µ2

m, (2.14)

as 1
N

N∑
i

ri,t = rm,t. Equations (2.13) and (2.14) together bring the expression (2.12).

One can also write momentum profits under Lo and MacKinlay [27] decomposition:

E[πt] =
1

N
tr(Ω)− 1

N2
1
′Ω1 + σ2

µ,

=
N − 1

N2
tr(Ω)− 1

N2
[1′Ω1− tr(Ω)] + σ2

µ, (2.15)
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where tr(.) is trace operator and 1 is vector of ones. Then, by separating diagonal and
off-diagonal of the auto-covariance matrix Ω, equation (2.15) leads to three sources of
momentum. First term stands for positive auto-correlation of returns, high future return
of a stock triggered by its own good past performance. Second term makes positive
contribution to momentum profit only if stocks are negatively cross-correlated. In
other words, today’s high return for a stock predicts low future returns for other stocks.
Third component claims that, momentum profit simply arises from investing stocks
with higher unconditional mean than average.

Equations (2.12) and (2.15) shows the momentum profits under the zero-cost portfolio
setting. These equations are very informative as they are constructed in the absence of
an asset pricing model(just by considering the investment plan on EW index). Now,
for any given model we can write profit equations under this decompositions to see
which assumption attributes profits to which of those three sources.

Now consider a random walk model with log prices pt:

pt = qt + εt, (2.16)
qt = µ+ qt−1 + ηt. (2.17)

which claims that, prices basically consist of a random walk, qt (present value of
dividends discounted at constant rate), and stationary component εt with zero mean.
ηt v wn(0,Σ) is a white noise. Log returns can be calculated as follows

pt = µ+ qt−1 + ηt + εt,

pt − pt−1 = µ+ qt−1 + ηt + εt − qt−1 − εt−1,

rt = µ+ ηt + ∆εt. (2.18)

He constructs his under and overreaction models by just changing the the stationary
component εt accordingly. For underreaction he sets:

εt = −ρηt − ρ2ηt−1 − ρ3ηt−2 − ... (2.19)

where 0 < ρ < 1 and η is dividend news. In this setting:

εt−1 = −ρηt−1 − ρ2ηt−2 − ρ3ηt−3 − ...
ρεt−1 = −ρ2ηt−1 − ρ3ηt−2 − ρ4ηt−3 − ...

εt = ρεt−1 − ρηt. (2.20)

Now plug equation (2.20) into log returns rt (2.18):

rt = µ+ ηt + ρεt−1 − ρηt − εt−1,

rt = µ+ ηt(1− ρ) + εt−1(ρ− 1). (2.21)

So, for auto-covariance by using above equation (2.21)

E[(rt − µ)(rt−1 − µ)] = E[rtrt−1]− µ2

= (1− ρ)2E[(ηt − εt−1)︸ ︷︷ ︸
(∗)

(ηt−1 − εt−2)︸ ︷︷ ︸
(∗∗)

], (2.22)
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(∗) = ηtρ
0 + ηt−1ρ

1 + ηt−2ρ
2 + ...

=
∞∑
j=0

ρjηt−j. (2.23)

(∗∗) = ηt−1ρ
0 + ηt−2ρ

1 + ηt−3ρ
2 + ...

=
∞∑
k=0

ρkηt−1−k. (2.24)

To simplify, put expressions (2.23) and (2.24) by indices change j = 1+k that enables
us to take expectation of equation (2.22) and get auto-covariance:

(1− ρ)2

∞∑
k=0

∞∑
j=0

ρkρjE[ηt−jηt−1−k] = (1− ρ)2

∞∑
j=0

ρjρj+1 E[ηt−jηt−j]︸ ︷︷ ︸
Σ

,

= (1− ρ)2ρ
∞∑
j=0

(ρ2)jΣ,

= (1− ρ)2ρ
1

1− ρ2
Σ,

= ρ
1− ρ
1 + ρ

Σ > 0. (2.25)

This expression is obtained by using geometric series. Moreover, Σ is dividend covari-
ance matrix. Model auto-covariance shows that under-reaction results with positive
auto-correlation under this setting. Then, Lo and MacKinlay decomposition of mo-
mentum profits becomes(by equation (2.15))

E[πt] = ρ
1− ρ
1 + ρ

[
1

N
tr(Σ)− 1

N2
1
′Σ1

]
+ σ2

µ. (2.26)

Because σ2
µ ≥ 0, this profit equation is positive which means under-reaction might be

a source of momentum.

On the other hand, for overreaction, Lewellen just sets cov(ηt) = σ2
ηI (I is an identity

matrix) and changes εt such that:

εt = Bηt +Bρηt−1 +Bρ2ηt−2 + . . . (2.27)

where 0 < ρ < 1 and B is an N ×N zero diagonal with positive off-diagonals matrix
which necessarily claims that, each asset reacts correctly to news about itself, while it
overreacts the news about other firms. So, by equation (2.27)

εt−1 = Bηt−1 +Bρηt−2 +Bρ2ηt−3 + . . .

⇒ εt = ρεt−1 +Bηt
⇒ ∆εt = εt−1(ρ− 1) +Bηt (2.28)
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And by log-return equation (2.18):

rt = µ+ ηt + ∆εt
= µ+ ηt + εt−1(ρ− 1) +Bηt
= µ+ ηt(I +B) + εt−1(ρ− 1)

Then, return variance:

E[(rt − µ)2] = E[(ηt(I +B) + εt−1(ρ− 1))2],

= (I +B)(I +B)′E[η2
t ] + (ρ− 1)2E(ε2

t−1) + 2(I +B)(ρ− 1)Cov[ηtεt−1],

= σ2
ηI[I +B′ +B +BB′] + (1− ρ)2BB′

∞∑
j=0

(ρ2)jE[η2
t−j],

since εt−1 doesn’t depend on ηt and εt = B
∑∞

j=0 ρ
jηt−j by equation (2.27). Thus,

E[(rt − µ)2] = σ2
ηI

[
I +B′ +B +BB′ + (1− ρ)2BB′

1

1− ρ2

]
,

= σ2
ηI

[
I +B′ +B +BB′ +BB′(1− ρ)

1

1 + ρ

]
,

= σ2
ηI

[
I +B′ +B +BB′(1− ρ+ 1 + ρ)

1

1 + ρ

]
,

⇒ V[rt] = σ2
ηI

[
I +B′ +B +BB′

2

1 + ρ

]
, (2.29)

whose off-diagonals are greater than 0 stating excess covariance. Return auto-covariance
can be calculated similarly:

E[(rt − µ)(rt−1 − µ)] = E
{[

(I +B)ηt + (ρ− 1)εt−1

]
×
[
(I +B)ηt−1 + (ρ− 1)εt−2

]}
,

= (I +B)(I +B)′E[ηtηt−1] + (I +B)(ρ− 1)E[εt−2ηt]

+(I +B)(ρ− 1)E[εt−1ηt−1] + (ρ− 1)2E[εt−1εt−2],

= 0 + (I +B)(ρ− 1)E[Bη2
t−1 +Bρηt−2ηt−1 + . . .]

+(ρ− 1)2

∞∑
j=0

∞∑
k=0

BB′ρjρkE[ηt−1−jηt−2−k] now, for j = k + 1,

= σ2
ηI[(B +BB′)(ρ− 1)] + (ρ− 1)2BB′

∞∑
j=0

ρjρj+1σ2
ηI,

= σ2
η(ρ− 1)

[
B +BB′ + (ρ− 1)BB′ρ

1

1− ρ2

]
,

= σ2
η(ρ− 1)

[
B +

BB′ρ+BB′ − ρBB′

ρ+ 1

]
,

⇒ Cov(rt, rt−1) = σ2
η(ρ− 1)

[
B +

1

1 + ρ
BB′

]
< 0. (2.30)
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Because ρ < 1, auto-correlation of returns is negative. Then, by defining B = b[11′ −
I] for 0 < b < 1(actually he defines a small and simple stock covariation sensitivity)
momentum profits are realized like that:

E[πt] =
1

N
×tr

(
σ2
η(ρ−1)

[
B+

1

1 + ρ
BB′

])
− 1

N
×1′

[
σ2
η(ρ−1)

[
B+

1

1 + ρ
BB′

]]
1+σ2

µ.

We know that, B has zero diagonals and positive off-diagonals which are all b:

E[πt] = − 1

N
σ2
η(ρ− 1)× 1

′
[
b(11′ − I) +

1

1 + ρ
b(11′ − I)[b(11′ − I)]

]
1 + σ2

µ,

= − 1

N
N(N − 1)bσ2

η(ρ− 1)− 1

N

1

(1 + ρ)
N(N − 1)b2σ2

η(ρ− 1) + σ2
µ,

= σ2
η(ρ− 1)b

(N − 1)

N

[
b

1 + ρ
− 1

]
+ σ2

µ > 0. (2.31)

Notice that, this profit expression is also constructed from the equation (2.15) and it is
positive as long as 0 < b < 1 holds. In other words, if overreaction effect exceeds one
(b > 1) momentum profits will be negative. Therefore, overreaction might be another
source of momentum profits if it is not too large.

We examine two possible origins of momentum so far(under, over-reaction). Lewellen
also points out that, aggregate risk premium variations across the time might cause
excess covariance and so, momentum. Unlike, under-,over-reaction assumptions, stock
prices oscillate around random walk in the absence of any behavioural irrationality. For
instance, capital asset pricing model (CAPM) is one of the most famous representatives
of this intuition. So, error term defined as:

εt = xtβ,

where xt is a scalar with positive autocorrelation and zero mean, while β is an N x
1 vector with positive elements. By following return equation (2.18), rt = µ + ηt +
β∆xt where xt is an AR(1) process, xt = ρxt−1 + νt. Dividend yield and ∆xt have
covariance:

δ ≡ Cov(ηt,∆xt) = Cov(ηt, xt−1(ρ− 1) + νt),

= Cov(ηt, νt), (2.32)

since ηt is uncorrelated with the past. Covariance between temporary price movements
and dividends, δ > 0 is another assumption. Return covariance:

E[(rt − µ)2] = E[(η + β∆xt)
2],

= E[η2
t ] + ββ′E[(∆xt)

2] + 2β E[ηt∆xt]︸ ︷︷ ︸
δ

,

⇒ Cov(rt) = Σ + σ2
∆xββ

′ + βδ′ + δβ′.

Notice that, covariance of returns are greater than dividend covariance which means
time-varying risk premium increases the variances and covariances. The first-order
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autocovariance is:

E[(rt − µ)(rt−1 − µ)] = E
[
(ηt + β∆xt)(ηt−1 + β∆xt−1)

]
,

= 0 + βE[ηt∆xt−1] + βE[∆xtηt−1] + ββ′E[∆xt∆xt−1],

= E[(xt−1(ρ− 1) + νt)ηt−1]β + ββ′ρ∆x,

= E[νt−1ηt−1](ρ− 1) + ρ∆xββ
′,

⇒ Cov(rt, rt−1) = ρ∆xββ
′ + (ρ− 1)βδ′ < 0, (2.33)

as the auto-covariance of ∆xt, ρ∆x < 0 and ρ < 1. Thus, momentum profits

E[πt] = ρ∆xσ
2
β + (ρ− 1)σβ,δ + σ2

µ, (2.34)

where σ2
β denotes cross-sectional variance of β and σβ,δ denotes cross-sectional co-

variance between β and δ. Since β stands for sensitivity of stock prices to risk pre-
mium changes, to be able to obtain positive momentum profits, relation between cash
flow(dividend) covariances, and risk premium sensitivity of the stock prices has nega-
tive direction.

As mentioned, Lewellen also shows that momentum effect exists in industry, size, and
book-to-market portfolios. Fama and French in [20] uses their three factor model to
capture asset pricing anomalies. However, although they managed to explain big part
of the mean-reversion effect, they lacked while capturing momentum. So, it might be
claimed that, though industry, size, and book-to-market value factors are not able to
explain (or at least they lack) momentum profits, they somehow contain that effect(see
also Moskowitz and Grinblatt [28]).

Unlike under-reaction models suggested by Barberis et al. [4] and Hong and Stein [22],
Lewellen [25] attributes momentum to over-reaction and excess covariance with these
models since he detects negative autocorrelation of return patterns in his empirical re-
search. On the other hand, Chen and Hong [12] publishes a discussion of Lewellen’s
paper and advocates different models in order to both explain momentum and incon-
sistency of him.

2.1.3 Model Analysis of Chen and Hong[12]

Lewellen[25] shows that returns are negatively auto- and cross-correlated and claims
that, this would be only consistent with over-reaction and excess covariance based
models. However, Chen and Hong[12] provides a different approach in which under-
reaction can lead momentum in presence of negative auto and cross-correlation.

They consider a simple one-factor model in which momentum has a single source,
under-reaction. Then, stock returns(log) are expressed as follows

ri,t = µi + βixt + εi,t, (2.35)

where
xt = ρxt−1 + νt.
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This time xt is demeaned market factor with variance σ2
x and serial auto-correlation

ρ. It is also not a part of the return shock εt. Like previous setting, νt is uncorrelated
shock to factor xt and εt is positively correlated idiosyncratic shock with mean zero,
variance σ2

ε , and the first order auto-covariance E[εtεt−1] = κσ2
ε which is greater than

zero. All other relations are disregarded. Furthermore, all stocks in the market are
assumed to have same mean µi = µ and same factor sensitivity βi = β = 1. Each
weight wi,t for stock i at time t is again defined as equation (2.8) which yields zero
cost portfolios. So, profits are immediately realized by equation (2.10). We can also
express weights in a more informative form:

ri,t−1 − rm,t−1 = µxt−1 + εi,t−1 − µ− xt−1 −
1

N

N∑
j=1

εj,t−1,

⇒ 1

N
(ri,t−1 − rm,t−1) =

1

N

[
εi,t−1 −

1

N

N∑
j=1

εj,t−1

]
,

=
1

N

[
εi,t−1 − εi,t−1

1

N
− 1

N

N∑
j 6=i

εj,t−1

]
,

⇒ wi,t =
N − 1

N2
εi,t−1 −

1

N2

N∑
j 6=i

εj,t−1. (2.36)

Hence, by using these weights profit equation becomes

πt =
N∑
i=1

wi,tri,t =
N∑
i=1

[
N − 1

N2
εi,t−1 −

1

N2

N∑
j 6=i

εj,t−1

]
ri,t. (2.37)

Expected momentum profits can be found by taking the expectation of both sides.

E[πt] =
N∑
i=1

[
N − 1

N2
E[εi,t−1ri,t]−

1

N2

N∑
j 6=i

������E[εj,t−1ri,t]

]
,

=
N∑
i=1

[
N − 1

N2

(
E[εi,t−1]µ+ E[εi,t−1xt] + E[εi,t−1εi,t]︸ ︷︷ ︸

κσ2
ε

)]
,

=
N − 1

N2

N∑
i=1

κσ2
ε ,

= κσ2
ε

N − 1

N
> 0. (2.38)

Notice that, last expression only depends on idiosyncratic return shocks, which are
positively serially correlated. It is indeed guaranteed by model construction (constant
unconditional means and betas).

Before expressing this profit equation under Lo and MacKinlay[27] decomposition, let
us start from its generalized version.

E[πt] ≡ σ2
µ +O − C. (2.39)
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Accordingly, there are three possible sources of momentum profits (like in equation
2.15). First term stands for cross sectional variance of the unconditional means. So,
our trading strategy might choose stocks with high unconditional mean in exchange
for high risk without any irrational investor behaviour. In this one factor model, it is
defined

σ2
µ =

1

N

N∑
i=1

(µi − µm)2, (2.40)

which is used while passing from one profit equation (2.12) to Lo and Mackinlay
decomposition (2.15). Second term of equation (2.39 is average auto-covariance of
the returns. If, today’s good performance for a given stock foresees a good future
performance for the same stock, this term makes positive contribution to momentum
profits. Its role can be perceived as the time series predictability impact. For our model
it becomes

O =
N − 1

N2

N∑
i=1

E[ri,tri,t−1 − µ2
i ], (2.41)

and the last term with minus coefficient is average cross-serial covariance. So, it has
positive effect on momentum profits as long as today’s bad performance for a given
stock predicts a good future performance for another stock. So, abnormal returns could
be generated by taking the advantage of negative correlation between return series.
Under this one-factor model it is defined as follows

C = E[rm,trm,t−1]− µ2
m −

1

N2

N∑
i=1

E[ri,tri,t−1 − µ2
i ]. (2.42)

Therefore, applying equation (2.40) to this one factor model, σ2
µ = 0 occurs because

of constant mean assumption. For, O apply equation (2.41):

E[ri,tri,t−1 − µ2
i ] = E[(µi + βxt + εi,t)(µi + βxt−1 + εi,t−1)− µ2

i ].

Note that, µi = µ is constant and β = 1 is assumed. Then,

E[ri,tri,t−1 − µ2
i ] = E[µ2 + µxt−1 + µεi,t−1 + µεxt + xtxt−1 + xtεi,t−1 + εi,tµ

+εi,txt−1 + εi,tεi,t−1 − µ2],

= µE[xt−1 + xt] + E[xtxt−1] + E[εi,tεi,t−1].

Recalling that xt is a demeaned process with autocorrelation ρ and taking summation
of both sides while multiplying with N−1

N2 :

O =
N − 1

N2

N∑
i=1

(σ2
xρ+ κσ2

ε),

=
N − 1

N
(ρσ2

x + κσ2
ε). (2.43)
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To find C, let us start from the first term of the equation (2.42):

E[rm,trm,t−1] = E
[

1

N

N∑
i=1

ri,t
1

N

N∑
j=1

rj,t−1

]
,

=
1

N2

N∑
i=1

N∑
j=1

E[(µ+ xt + εi,t)(µ+ xt−1 + εj,t−1)],

=
1

N2

N∑
i=1

N∑
j=1

{
(µ2 + ρσ2

x) + E[εi,tεj,t−1]
}
,

= µ2 + ρσ2
x +

1

N2

[ N∑
i=1

εi,tεi,t−1

N∑
j=1

εj,t−1

]
,

= µ2 + ρσ2
x +

1

N2

N∑
i=1

κσ2
ε ,

= µ2 + ρσ2
x +

1

N
κσ2

ε . (2.44)

Hence, plugging this expression into the equation (2.42) brings C.

C = µ2 + ρσ2
x +

1

N
κσ2

ε − µ2
m −

1

N2

N∑
i=1

E[ri,tri,t−1 − µ2
i ]

= ρσ2
x +

1

N
κσ2

ε −
1

N
ρσ2

x −
1

N
κσ2

ε

= ρσ2
x

(
N − 1

N

)
(2.45)

Therefore, by combining equations (2.40),(2.43), and (2.45) results with momentum
profit equation (2.38).

E[πt] = 0 +

(
N − 1

N

)
(ρσ2

x + κσ2
ε)− ρσ2

x

(
N − 1

N

)
.

=
N − 1

N
κσ2

ε . (2.46)

However, this result indicates two important interpretations mentioned by Chen and
Hong[12]. First, though momentum profits seemingly doesn’t depend on factor auto-
correlation, in this model ρ, Lo and MacKinlay decomposition does. Therefore, it can
be said that, this decomposition may lack while explaining the source of momentum
profits. Another crucial observation, equations (2.43), and (2.45) can both be posi-
tive if the autocorrelation of the factor is necessarily positive or vice versa. Thereby,
even under-reaction story for explaining momentum might be consistent with negative
autocorrelation. Hong and Chen also supports this claim by empirical findings.

One can also interpret from the models analysed through subsections (2.1.1) - (2.1.3)
that, neither of the arguments manage to provide full picture. Since models are con-
structed around some pre-assumptions, they might end up with different results for
same data sets or vice versa.
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There are also many other models including Fama and French three factor model[19].
However, under the scope of this study, we examine the similarity between two main
momentum based models(Jegadeesh and Titman, and Lewellen) which are proposed
in different years(Lewellen is roughly 9-10 years latter) and point out what happens
when their assumptions are changed a little(Chen and Hong). Our analysis shows
that, momentum really exists on data, and there is also descriptive decompositions to
anticipate its source. On the other hand, none of them is enough to explain its source
and it can be claimed that, these discrete time models, by construction, are in such a
loop that they can’t say more. By the way, one can attribute momentum under-reaction
or over-reaction with positive or negative autocorrelation; but remember that, moving
between these assumptions could be done just by changing the noise term.

Therefore, rather than trying to explain its source by some factors, our continuous time
model takes momentum as a factor(because it exists) of return. Whenever a return
series contain momentum and mean-reversion effects, their significance are determined
by an estimated coefficient directly coming from the data. Even though, this method
is much easier than examining various portfolios, it might not be as informative as
classical scheme since it only considers the time series predictability.

2.2 A Fundamental Continuous Time Model

Unlike discrete time models, there is not much study to capture momentum in continu-
ous time setting2. One reason for this can be stated like that, in equation (2.1) weights
for the stocks are predetermined, in other words, momentum arises like a strategy in
which an investor chooses stocks that generated abnormal returns in the past. However,
to asses a continuous time model, one needs to define a momentum coefficient and/or
seek for optimality conditions.

Our framework only encompasses the coefficient estimation part. This scheme has
a significant advantage with compared the discrete time models, detecting momen-
tum for a single time series. Rather than searching for the cross-serial correlations
between stock, we try to investigate momentum and also mean reversion effect from
a single return pattern. We followed the structure established by Koijen, Rodrı́guez,
and Sbuelz [24]. So, it will be more logical to analyse this model setting and passing
through our assumptions and parameter estimation methods.

2.2.1 Model Analysis of Koijen, Rodrı́guez, and Sbuelz[24]

This model combines the short term return persistence and long term return rever-
sion in a intuitive way. Its structure actually, particularly in mean reversion, linked to
Campbell and Viceira[9], and Wachter[33].

Since, momentum in financial markets means predictive power of short term perfor-
2 For mean reversion anomaly see Campbell and Viceira[9], and Wachter[33]. And for continuous time

momentum see Rodrı́guez and Sbuelz[30]
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mance for the future, a state variable that summarizes the past performance would be
able capture this impact accurately. Mean reversion variable is chosen as dividend
yield by following the past studies mentioned above.

Equity index value at time t is defined by St in which dividends are reinvested. St
would be constructed as a weighted average of its past performance and dividend yield.

dSt
St

= (φMt + (1− φ)µt)dt+ σ′SdZt, 0 ≤ φ < 1, (2.47)

where Zt is a two-dimensional vector of independent Brownian Motions(like [Z1
t Z

2
t ]′)

and σ′S is two dimensional volatility vector. According to equation (2.47) expected
returns depend on two state variables µt and Mt.

Mt is called as performance variable and defined as weighted sum of past returns:

Mt =

∫ t

0

e−w(t−u)dSu
Su

, (2.48)

where w > 0 and returns are weighted by e−w(t−u). Since, their estimation is close to
1, for the sake of simplicity w = 1 is assumed. Also, note that, St contains reinvested
dividends which means Mt is calculated over cumulative returns.

Performance variable, by construction, follows the stock return dynamics. If Mt is
totally differentiated, by applying Itó product rule3

Mt = e−t
∫ t

0

eu
dSu
Su

,

⇒ dMt = − e−t
∫ t

0

eu
dSu
Su

du︸ ︷︷ ︸
Mt

dt+ e−tet
dSt
St
,

=
dSt
St
−Mtdt, (2.49)

relationship betweenMt and St might be seen more clearly. Now, substituting equation
(2.47) into (2.49):

dMt = (φMt + (1− φ)µt)dt+ σ′SdZt −Mtdt,

= (1− φ)(µt −Mt)dt+ σ′SdZt. (2.50)

This decomposition is informative as it shows the performance variable oscillates
around a stochastic mean µt which is called as mean-reversion variable. This makes
sense as equity index price is assumed to exhibit a mean reverting behaviour in long
term which causes short term shocks to fluctuate around a long term fundamental level.
µt is assumed to be stationary and follows Ornstein-Uhlenbeck process:

dµt = α(µ0 − µ1)dt+ σ′µdZt, α > 0, (2.51)

3 Notice that quadratic variation between e−t and
∫ t

0
eu dSu

Su
is 0.
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where µ0 is long term mean and α is the convergence rate of µt to constant µ0,
and finally σµ is two-dimensional volatility vector. It is not too hard to solve this
SDE(stochastic differential equation): Let,

Lt = µt − µ0 (2.52)
⇒ dLt = dµt,

⇒ dµt = −αLtdt+ σ′µdZt,

Now, set:

eαtLt = Kt,

⇒ Ko = L0 = L,

⇒ dKt = αeαtLtdt+ eαtdLt,

= �����αeαtLtdt+ eαt(�����−αLtdt+ σ′µdZt),

⇒ Kt −K0 =

∫ t

0

eαuσ′µdZu,

⇒ eαtLt = L+

∫ t

0

eαuσ′µdZu,

⇒ Lt = e−αtL+

∫ t

0

e−α(t−u)σ′µdZu,

So, by equation (2.52) and assuming L = µ− µ0
4

µt = e−αt(µ− µ0) + σ′µ

∫ t

0

e−α(t−u)dZu. (2.53)

Meanwhile, by equation (2.47), conditional expected returns are realized as follows

Et
[dSt
St

]
= (φMt + (1− φ)µt)dt,

= (µt + φ(Mt − µt))dt. (2.54)

This expression says that, if past performance have predictive power over future, φ > 0
holds and according to value of Mt−µt, upcoming returns are expected to be higher(if
Mt − µt > 0) or lower(if Mt − µt < 0) than long term mean. Conversely, if φ = 0
holds, then, past performance would have no predictive power on the return series and
it will fluctuate around stochastic mean µt. These interpretations represent momentum
and mean reversion effects on returns.

In order to calibrate their model, Koijen, Rodrı́guez, and Sbuelz use proxies for both
mean-reversion variable µt and performance variable Mt. For, µt log dividend yields 5

are used with some adjustments as they are usually not easy to handle data series.

µt = µ0 + µ1(Dt − µD) = µ0 + µ1Xt, (2.55)
4 Since µ0 is constant long term mean, µ is used as the initial value of dividend yield series µt.
5 For predictive power of dividend yields on mean reversals in US financial market see Fama and French [17,

18], Cochrane [15], Chen [13]. For emerging markets including Turkey see Aras and Yılmaz [2].
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where Dt stands for log dividend yield, and E[Dt] = µD. Meanwhile, Xt = Dt − µD
becomes demeaned dividend yield. Mt is discretized, by following Euler’s scheme,
over each observed time intervals between [0, t] as a weighted summation. Monthly
returns are used to approximate the integral 2.48.

Mt ≈
t∑
i=1

e−i

(
St−i+1 − St−i

St−i

)
. (2.56)

Therefore, general outlook of the model becomes:

dSt
St

= ((µ0 + µ1Xt)(1− φ) + φMt)dt+ σ′SdZt, (2.57)

dMt = (1− φ)(µ0 + µ1Xt −Mt)dt+ σ′SdZt, (2.58)
dXt = −αXtdt+ σ′XdZt, (2.59)

with σX = σµ/µ1.

Notice that, equation(2.59) comes from (2.51):

µt = µ0 + µ1Xt,

⇒ µt =
µt − µ0

µ1

Xt and,

⇒ dµt = µ1dXt.
dµt
µ1

= α
µ0 − µt
µ1︸ ︷︷ ︸
−Xt

dt+ σ′µ/µ1dZt,

⇒ dXt = −αXtdt+ σ′XdZt.

They handle data by following Campbell at al.[8], where dividend yield is taken as
natural logarithm of sum of the dividend payments over past year divided by current
price index.

As mentioned before the randomness of the equations (2.58)-(2.59) is driven by two
independent Brownian motions. The Cholesky decomposition of volatility matrix is:

Σ̃ =

(
σ′S
σ′X

)
=

(
σS(1) 0
σX(1) σX(2)

)
. (2.60)

In line with Sangvinatsos and Wachter [31], and Binsbergen, Bandt, and Koijen [6],
Z1
t is the return shock which is orthogonal to dividend yield shock Z2

t .

Koijen, Rodrı́guez, and Sbuelz then, discretized the constructed model as a Vector
Auto-regressive(VAR) model and used maximum likelihood function(MLE) to esti-
mate parameters of equations (2.58)-(2.59) with φ > 0 and φ = 0 case for NYSE,
NASDAQ, and AMEX markets. They also examine Value Weighted(VW) and Equally
Weighted(EW) indices in their analysis. Our framework also nests on this method-
ology. On the next chapter, model will be handled with dicretizations and MLE out-
look.6

6 Equity index momentum also has previous studies. See, for instance, [11].
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CHAPTER 3

MODEL CALIBRATION

In this chapter, methods used to execute parameter estimation processes will be dis-
cussed. We mainly examine two celebrated numeric discretization schemes for two
well-known stochastic differential equations: Black-Scholes stock prices and Ornstein-
Uhlenbeck process. Because they also have analytic solution, it is possible to make
comparison between these methods by means of mean square error. In the light of
our results, we also convert Koijen, Rodrı́, and Sbuelz model into a vector autoregres-
sive form. Moreover, both univariate and multivariate forms of maximum likelihood
function is discussed and applied to a couple of converted SDEs inside our model.

3.1 Discretization of Stochastic Differential Equations

Two mainly important SDE discretization schemes will be discussed in this section.
One of them is Euler’s method and other is Milstein’s method.

3.1.1 Euler-Maruyama Discretization Scheme

Consider a stochastic process X(t, ω), on the interval [0, T ], has the form:

X(t, ω) = X(0, ω) +

∫ t

0

f(s,X(s, ω))ds+

∫ t

0

g(s,X(s, ω))dW (s, ω), (3.1)

for 0 ≤ t ≤ T,where W (s, ω) is a one-dimensional Brownian motion. X(t, ω) also
has the differential form:

dX(t, ω) = f(t,X(t, ω))dt+ g(t,X(t, ω))dW (t, ω) (3.2)

Rather than going through exact solution or when it does not exist, one can approxi-
mate this stochastic differential form by:{

Xk+1(ω) = Xk(ω) + f(tk, Xk(ω))∆t+ g(tk, Xk(ω))∆Wk(ω),
X0(ω) = X(0, ω),

(3.3)

for k = 0, 1, 2, ..., N − 1 where ω stands for sample path and,
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∆t = T/N , tk = k∆t,
Xk(ω) ≈ X(tk, ω),

∆Wt(ω) = (W (tk+1, ω)−W (tk, ω)) ∼ N(0,∆t).

For further information and Euler’s method error see E. Allen [1].

Since they are two of the most celebrated stochastic processes with closed-form solu-
tion, and our model also uses one of them(Ornstein-Uhlenbeck), B-S stock prices OU
process are really good candidates for this topic. We will first discretize them and then
simulate paths for both closed-form solution and Euler-Maruyama approximations.

Example 3.1. Application of Euler-Maruyama method to Black-Scholes setting of
stock prices:

Black-Scholes stock prices driven by geometric Brownian motion:

dSt
St

= µ dt+ σ dWt, µ, σ ∈ R

where St is a stock price at time 0 ≤ t ≤ T with drift term µ and volatility σ. Let us
define a partition over the interval [0, t], T = {tk : 0 = t0 < t1 < . . . < tn−1 < tn =
t}. By applying E-M

Stk+1
− Stk = Stk [µ∆t+ σ zk

√
∆t],

Stk+1
= Stk [1 + µ∆t+ σ zk

√
∆t], (3.4)

where k = 0, . . . , n − 1, zk ∼ N(0, 1). Since zk
√

∆t ∼ N(0,
√

∆t), this equations
satisfies the conditions of 3.3. St has an exact solution by applying Itó lemma to
f(x) = log(x):

f ′(x) =
1

x
and f ′′(x) = − 1

x2
,

⇒ f(St) = log(S0) +

∫ t

0

1

Su
dSu −

1

2

∫ t

0

1

S2
u

d < S, S > u,

log(St) = log(S0) +

∫ t

0

1

Su
Su[µdu+ σdWu]−

1

2

∫ t

0

1

S2
u

S2
uσ

2du,

log(St) = log(S0) +

∫ t

0

(µ− 1

2
σ2)du+ σ

∫ t

0

dWu,

⇒ St = S0 · exp{(µ− 1

2
σ2)t+ σWt}. (3.5)

For, T = 1, N = 28, µ = 0.1, σ = 0.5, S0 = 1 and discretized Brownian motion
Wt = z

√
t, z ∼ N(0, 1) a MATLAB simulation is performed [32]. It seems like

a quite good approximation from figure (3.1). Mean square error between SDE and
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solution is 1.7658 × 10−5 and squared error graph (3.2) is also shown1. Mean square
errors are calculated as:

E[(Ŝ − S)2] =
1

N

N∑
i=1

(SEMi − Si)2

Example 3.2. Now, consider an Ornstein-Uhlenbeck process:

dXt = −γ Xt dt+ σ dWt, γ, σ ∈ R
where Xt is a mean reverting process. Therefore, E-M approximation of it:

Xtk+1
−Xtk = −γ Xtk ∆t+ σ zk

√
∆t,

Xtk+1
= Xtk(1− γ∆t) + σ zk

√
∆t, (3.6)

where zk is defined similar to equation (3.4). This process also has exact solution
which is already solved in subsection (2.2.1)(see the equation (2.53)):

Xt = e−γtx0 + σ

∫ t

0

e−γ(t−s)dWs, X0 = x0. (3.7)

Simulating2 processes (3.6) and (3.7) for T = 1, N = 28, γ = 0.1, σ = 0.5, X0 = 1
brings figure (3.3). It works far better with compared to B-S stock price example and
its squared errors seem to be negligible but growing as time passes. OU estimation
also has considerably smaller mean square error: 1.6095× 10−10 < 1.7658× 10−5.

3.1.2 Milstein Discretization Scheme

Euler scheme is simple and applicable. By the way, higher order approximations like
Milstein is possible. Consider, once again, SDE (3.2):

Xk+1(ω) = Xk(ω) + f(tk, Xk(ω))∆t+ g(tk, Xk(ω))∆Wk(ω)

+
1

2
g(tk, Xk(ω))

∂g(tk, Xk(ω))

∂x
[(∆Wk(ω))2 −∆t],

X0(ω) = X(0, ω). (3.8)

It can also be written in the form:

Xk+1(ω) = Xk(ω) + f(tk, Xk(ω))∆t+ g(tk, Xk(ω))zk
√

∆t

+
1

2
g(tk, Xk(ω))gx(tk, Xk(ω))∆t(z2

k − 1),

X0(ω) = X(0, ω), (3.9)

for k = 0, 1, 2, ..., N − 1 is higher order approximation of it. Like in previous subsec-
tion, ω stands for sample path and:

1 Even we have mean square error, squared errors are considered to detect if a sharp estimation errors and error
path.

2 Stochastic integral is discretized as a sum for simulation.
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Figure 3.1: Comparision of E-M Approximation and Analytic Solution of B-S Stock
Prices where T = 1, N = 28, µ = 0.1, σ = 0.5, S0 = 1.

Figure 3.2: E-M Approximations Errors of B-S Stock Prices.

26



Figure 3.3: Comparision of E-M Approximation and Analytic Solution of OU Process
where T = 1, N = 28, γ = 0.1, σ = 0.5, X0 = 1.

Figure 3.4: E-M Approximations Errors for OU Process.
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∆t = T/N , tk = k∆t,
Xk(ω) ≈ X(tk, ω),

∆Wt(ω) = (W (tk+1, ω)−W (tk, ω)) ∼ N(0,∆t).

Euler-Maruyama and Milstein are alike except and additional term. Because EM is
of order O((∆t)1/2), this method converges to exact solution considerably faster with
order O(∆t)3.

Example 3.3. Application of Milstein method to Black-Scholes setting of stock prices
and Ornstein-Uhlenbeck processes:

For sake of simplicity recall 3.4. Now, just additional term is to be determined:

f(tk, Xk(ω)) = Stk µ and,
g(tk, Xk(ω)) = Stk σ,

⇒ gx(tk, Xk(ω)) = σ.

Therefore, equation (3.9) is noticed as:

Stk+1
= Stk{1 + µ∆t+ σzk

√
∆t}+ Stk

1

2
σ2∆t(z2

k − 1). (3.10)

Random number generator used to generate same random normal variates zk. So,
results will be comparable with figures (3.1) and (3.2). Parameters are also set same
T = 1, N = 28, µ = 0.1, σ = 0.5, S0 = 1,.

Simulating equation (3.10) and exact solution leads to figures (??) and (??) which
are slightly better than EM results. It has mean square error 2.7534 × 10−08 <
1.7658× 10−5. For better understanding, simulations applied for different N and table
3.1 obtained. Milstein is converging in a faster manner as expected. However, each

Table 3.1: List of MSEs of E-M and Milstein

N EM MSE Milstein MSE
28 1.7658× 10−5 2.7534× 10−8

29 6.3991× 10−6 4.0630× 10−9

210 2.6481× 10−6 5.9169× 10−10

211 1.2312× 10−6 1.0630× 10−10

212 2.4894× 10−7 2.8171× 10−11

213 1.7596× 10−7 1.7735× 10−11

of the cases mean square error is truly small. For a parameter estimation from a single
simple function, Milstein scheme would be preferable; but E.Allen [1] also shows that,
predictions of these methods are quite close. Therefore, Milstein model’s convergence
might not create a necessary discrepancy for lower order models.

3 For further information see E. Allen[1].
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Figure 3.5: Comparision of Milstein Approximation and Analytic Solution of B-S
Stock Prices where T = 1, N = 28, µ = 0.1, σ = 0.5, S0 = 1.

Figure 3.6: Milstein Approximations Errors for B-S Stock Prices.
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On the other hand, for OU process, results are very appealing. Additional term calcu-
lations:

f(tk, Xk(ω)) = −γ Xtk and,
g(tk, Xk(ω)) = σ,

⇒ gx(tk, Xk(ω)) = 0. (3.11)

Equation (3.11) demonstrates that, for an OU process, Milstein and Euler-Maruyama
approximations coincide. This explains why we get stronger approximation for OU
process with compared to B-S prices while applying E-M discretization.

These observations are very useful for converting SDEs to a vector auto-regressive
structure, as our model contains a OU process and lower order SDEs. Hence, Euler’s
scheme is preferred for our framework.

3.1.3 Converting Koijen, Rodrı́gez, and Sbuelz [24] Setting to a VAR Model

Before initializing parameter estimations, the model needs to be adjusted to form a
maximum likelihood function. Recall the equations (2.57)–(2.59):

dSt
St

= ((µ0 + µ1Xt)(1− φ) + φMt)dt+ σ′SdZt,

dMt = (1− φ)(µ0 + µ1Xt −Mt)dt+ σ′SdZt,

dXt = −αXtdt+ σ′XdZt,

where σX = σµ/µ1. Because of the reasons listed in previous subsections, Euler’s
method is chosen. It enables us to construct multivariate maximum likelihood easier
indeed. Therefore,

Stk+1
− Stk

Stk
≈ [(µ0 + µ1 xtk)(1− φ) + φmtk ]∆t

+σS(1)

√
∆t ηk + σS(2)

√
∆t υk, (3.12)

Mtk+1
≈ mtk + (1− φ)(µ0 + µ1 xtk −mtk)∆t

+σS(1)

√
∆t ηk + σS(2)

√
∆t υk, (3.13)

Xtk+1
≈ xtk − αxtk ∆t+ σX(1)

√
∆t ηk + σX(2)

√
∆t υk, (3.14)

where (Stk+1
− Stk)/Stk ≡ Rtk , Xtk ≡ xtk , Mtk ≡ mtk , ∆t = T/N = 1 (time

intervals and data frequency coincide) and ηk, υk ∼ N(0, 1) and also ηk ⊥ υk stands
for independent Brownian motions Z(1)

t and Z(2)
t . From Cholesky decomposition of

volatilities (2.60), σ(2)
S = 0. Do we really needMt in this form? It is already discretized
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over its solution in equation (2.56). So, it becomes:

Mt ≈Mtn =
n−1∑
k=0

e−(tn−tk)

(
Stk+1

− Stk
Stk

)
=

n−1∑
k=0

e−(n−k)rtk+1
,

= rt1e
−n + rt2e

−(n−1) + . . .+ rtn−1e
−(n−(n−2)) + rtne

−1,

=
t∑
i=1

e−irt+1−i. (3.15)

This means, estimating the parameters of Rt will enable us to get Mt. Moreover, Xk

has exact solution as well. However, EM and Milstein schemes coincides in its setting
which yields a pretty good approximation. Beside, this formation will enable us to take
expectation and variance in a neat Cholesky decomposition (2.60).

Thus, equations (3.12)–(3.14) turns out to be a decomposition which will be very useful
later on:{

Rtk+1
= [(µ0 + µ1 xtk)(1− φ) + φmtk ]∆t+ σS(1)

√
∆t ηk,

Xk+1 = xtk − αxtk∆t+ σX(1)

√
∆t ηk + σX(2)

√
∆t υk.

(3.16)

3.2 Maximum Likelihood Estimation for SDEs

This section will be composed of a general approach that explains how MLE is used
to carry out parameter estimation in SDEs [1] and its direct application for our system
of equations.

3.2.1 General Approach

Once, a stochastic differential equation or set of stochastic differential equations ei-
ther discretized by Euler-Maruyama or Milstein method, it is possible estimate their
parameters using likelihood function for observed values. For univariate case consider
the equation (3.2) in a way that:

dX(t) = f(t,X(t); θ)dt+ g(t,X(t); θ)dWt, (3.17)

for θ ∈ Rm is a vector of unknown parameters. X(t) is assumed to be observed over
values:

x0, x1, x2, ..., xN ,

on equivalent time intervals i∆t, i = 0, 1, 2, ..., N where ∆t = T/N like mentioned in
previous section. We will try to estimate θ using these N + 1 values of X .

Suppose, p(tk, xk|tk−1, xk−1; θ) be the transition probability density of tk, xk for given
the value xk−1 at time tk−1 for vector θ with initial state p0(x0|θ). Likelihood function
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of theta is:

L(θ) = p0(x0|θ) · p(t1, x1|t0, x0; θ) · p(t2, x2|t1, x1; θ) · · · p(tN , xN |tN−1, xN−1; θ),

= p0(x0|θ)
N∏
k=1

p(tk, xk|tk−1, xk−1; θ). (3.18)

Then, the value of θ that maximizes this function, say θ∗, could be found by:

L(θ∗) = max
θ∈Rm

p0(x0|θ)
N∏
k=1

p(tk, xk|tk−1, xk−1; θ). (3.19)

Because any probability p(.) ≥ 0 holds, maximizing the equation (3.18) will be equiv-
alent to maximize (in order to simplify calculations) :

lnL(θ) = ln p0(x0|θ) + ln

(
N∏
k=1

p(tk, xk|tk−1, xk−1; θ)

)
,

= ln p0(x0|θ) +
N∑
k=1

ln p(tk, xk|tk−1, xk−1; θ),

or minimize (which is usually used in computers for convenience):

− lnL(θ) = − ln p0(x0|θ)−
N∑
k=1

ln p(tk, xk|tk−1, xk−1; θ).

Knowing densities might not always be the case; but now consider the equation (3.17)
with X(tk−1) ≡ xk−1 at time t ≡ tk−1. Likewise the equation (3.3), applying Euler-
Maruyama will transform this equation into the form:

X(tk) ≈ xk−1 + f(tk−1, xk−1; θ)∆t+ g(tk−1, xk−1; θ)ηk
√

∆t, (3.20)

where ηk ∼ N(0, 1). Now, it is possible to take conditional expectation of this expres-
sion. For notational convenience denote E[X(tk)|x(tk−1)] ≡ Et[X(tk)]:

Et[X(tk)] = xk−1 + f(tk−1, xk−1; θ)∆t+ g(tk−1, xk−1; θ)
√

∆tEt[ηk],
= xk−1 + f(tk−1, xk−1; θ)∆t,

= µk.

Conditional variance can also be calculated:

Vt[X(tk)] = Et[
(
X(tk)− Et[X(tk)]

)2
],

= Et[
(
xk−1 + f(tk−1, xk−1; θ)∆t+ g(tk−1, xk−1; θ)ηk

√
∆t

−(xk−1 + f(tk−1, xk−1; θ)∆t)
)2

],

= Et[
(
g(tk−1, xk−1; θ)ηk

√
∆t
)2

],

= g2(tk−1, xk−1; θ)∆tEt[η2
k],

= g2(tk−1, xk−1; θ)∆t,

= σ2
k.
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Suddenly, corresponding probability density is:

p(tk, xk|tk−1, xk−1; θ) ≈ 1

σk
√

2π
exp

(
−(xk − µk)2

2σ2
k

)
,

which is to be maximized over vector θ ∈ Rm. This optimisation problem shouldn’t
be perceived as negligible. It might not be easy to calculate global maxima point of
this transition density by changing θ, especially when there are too many observations
of X are included to calculations and/or when θ is a very large vector. Nevertheless, it
could be possible to calculate equation (3.19) by using partial derivative:

∂

∂θ
L(θ) = 0. (3.21)

One should be careful if equation (3.21) produces more than one solution. When it is
the case, θ∗ must be verified over each possible estimates of θ say θ̂ [3].

This will be very useful for upcoming sections, as it enables us to construct a bench-
mark θ values for relatively simple functions. So, both while determining θ0 values for
optimizers and having idea about the quality of final θ∗ values produced by software,
one can, at least, get a little help from the equation (3.21).

3.2.2 Construction of MLE for Koijen, Rodrı́gez, and Sbuelz [24] Model

In order to execute a numerical example for our model, likelihood function of dis-
cretized equation system (3.16) must be constructed.4

Et[Rk+1] = Et
[
[(µ0 + µ1 xk)(1− φ) + φmk]∆t+ σS(1)

√
∆t ηk

]
,

= [(µ0 + µ1 xk)(1− φ) + φmk]∆t+ σS(1)

√
∆tEt[ηk],

= [(µ0 + µ1 xk)(1− φ) + φmk]∆t,

= µR. (3.22)

So, variance:

Vt[Rk+1] = Et
[(

[(µ0 + µ1 xk)(1− φ) + φmk]∆t+ σS(1)

√
∆t ηk

−
(
[(µ0 + µ1 xk)(1− φ) + φmk]∆t

))2
]
,

= Et
[(
σS(1)

√
∆t ηk

)2
]
,

= σ2
S(1)∆tEt[η2

k],

= σ2
S(1)∆t. (3.23)

4 For notational convenience R(tk) ≡ Rk+1 and X(tk) ≡ Xk+1 are used.
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The conditional expectation of X becomes:

Et[Xk+1] = Et[xk − αxk∆t+ σX(1)

√
∆t ηk + σX(2)

√
∆t υk],

= xk − αxk∆t+ σX(1)

√
∆tEt[ηk] + σX(2)

√
∆tEt[υk],

= xk(1− α∆t),

= µX . (3.24)

and variance:

Vt[Xk+1] = Et
[(
xk − αxk∆t+ σX(1)

√
∆t ηk + σX(2)

√
∆t υk

−(xk(1− α∆t)
)2
]
,

= Et
[(
σX(1)

√
∆t ηk + σX(2)

√
∆t υk

)2
]
,

= σ2
X(1)∆tEt[η2

k] + σ2
X(2)∆tEt[υ2

k] + 2σX(1)σX(2)∆tEt[ηk · υk],
= σ2

X(1)∆t+ σ2
X(2)∆t,

=
(
σ2
X(1) + σ2

X(2)

)
∆t. (3.25)

Notice that, Cov[ηk, υk] = Et[ηk · υk] = 0 comes from the fact that, ηk ⊥ υk(since
these randomness driven by independent Brownian motions in continuous time form).
Further, following this model actually requires multivariate case of the transition prob-
ability density(in this case multivariate normal) which can be written in the form for a
set of normal random variables Y1, ..., Yk [3]:

f(y1, ..., yk) =
1√

(2π)k|Σ|
exp

{
− 1

2
(y − µ)′Σ−1(y − µ)

}
,

with y′ = (y1, ..., yk), µ′ = (µ1, ..., µk), and Σ = Cov[Yi, Yj], where µi = E[Yi] and Σ
is a positive, semi-definite variance-covariance matrix.

Following similar approach for our bivariate case, to calculate variance-covariance
matrix, covariance of Rk+1 and Xk+1 is needed:

Cov[Rk+1, Xk+1] = E
[(
Rk+1 − E[Rk+1]

)(
Xk+1 − E[Xk+1]

)]
,

= E
[
(σS(1) ηk

√
∆t) · (σX(1)

√
∆t ηk + σX(2)

√
∆t υk)

]
,

= σS(1)σX(1) ∆tE[η2
k] + σS(1)σX(2) ∆tE[ηk · υk],

= σS(1)σX(1)∆t. (3.26)

KRS used monthly returns which makes ∆t = 1. So, variance-covariance matrix of
the model becomes (by equations (3.23) and (3.25)):

Σ =

(
Var[Rk+1] Cov[Rk+1, Xk+1]

Cov[Rk+1, Xk+1] Var[Xk+1]

)
=

(
σ2
S(1) σS(1)σX(1)

σS(1)σX(1) σ2
X(1) + σ2

X(2)

)
. (3.27)
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This matrix should be familiar. Σ wasn’t chosen arbitrarily, recall Σ̃ from equation
(2.60):

Σ̃ =

(
σS(1) 0
σX(1) σX(2)

)
,

⇒ Σ̃Σ̃′ =

(
σS(1) 0
σX(1) σX(2)

)
·
(
σS(1) σX(1)

0 σX(2)

)
,

=

(
σ2
S(1) σS(1)σX(1)

σS(1)σX(1) σ2
X(1) + σ2

X(2)

)
= Σ.

So, it is showed that, how Cholesky decomposition of the system constructed. From
here, finding bivariate likelihood function of the model is easy for parameter vector
θ = (σX(1), σX(2), α, σS(1), µ0, µ1, φ)′. First set mean part using equations (3.22) and
(3.24):

y = (rk+1, xk+1)′,

(y − µ) = (rk+1 − µR, xk+1 − µX)′ = A, (3.28)

where transition density is:

p(k + 1, rk+1, xk+1|k, rk, xk; θ) ≈
1√

(2π)2|Σ|
exp

{
− 1

2

(
rk+1 − µR
xk+1 − µX

)T
· · ·

· · ·Σ−1

(
rk+1 − µR
xk+1 − µX

)}
,

≈ 1√
(2π)2|Σ|

exp

{
− 1

2
ATΣ−1A

}
. (3.29)

Then likelihood function becomes5

L(θ) = p0(r0, x0|θ) · p(r1, x1|r0, x0; θ) · · · p(rN , xN |rN−1, xN−1; θ),

= p0(r0, x0|θ)
N∏
k=1

p(rk, xk|rk−1, xk−1; θ)

= p0(r0, x0|θ)
N∏
k=1

1√
(2π)2|Σ|

exp

{
− 1

2
ATΣ−1A

}

⇒ lnL(θ) = ln
(
p0(r0, x0|θ)

)
+

N∑
k=1

{
ln

(
1√

(2π)2|Σ|

)

−1

2

(
rk − µR
xk − µX

)T
Σ−1

(
rk − µR
xk − µX

)}

= ln
(
p0(r0, x0|θ)

)
− N

2
ln
(
(2π)2|Σ|

)
− 1

2

N∑
k=1

{
· · ·

5 Assume there are N + 1 observations for variables. There isn’t any difference between going from k + 1 to
N − 1 and from k to N .
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· · ·
(
rk − [(µ0 + µ1 xk−1)(1− φ) + φmk−1]

xk − xk−1(1− α)

)T
Σ−1 · · ·

· · ·
(
rk − [(µ0 + µ1 xk−1)(1− φ) + φmk−1]

xk − xk−1(1− α)

)}
(3.30)

This is the function to be maximized (− lnL(θ) used for optimization in software as
mentioned before.). Realize that, how huge is this function with seven6 unknown pa-
rameters. It is not possible to derive these unknowns from partial derivative. However,
we can establish some benchmark values for some of the parameters. X is an OU
process with only three unknown parameters α, σX(1), σX(2). It also doesn’t have any
interaction with R and M . Even if one might find a very different result for those three
coefficients in multivariate case, it is worthwhile to estimate parameters of X by using
MLE at least for determining θ0 values for the software functions.

The mean and variance of X is already known by equations (3.24)–(3.25). Therefore
probability density of X , say pX becomes for θX = (σX(1), σX(2), α)′:

pX(xk|xk−1; θX) ≈ 1√
(σ2

X(1) + σ2
X(2))
√

2π
exp

(
−(xk − µX)2

2(σ2
X(1) + σ2

X(2))

)
,

≈ 1√
(σ2

X(1) + σ2
X(2))
√

2π
exp

(
−(xk − xk−1(1− α))2

2(σ2
X(1) + σ2

X(2))

)
.

Now, construct likelihood function for X:

LX(θX) = pX0 (x0|θX)
N∏
k=1

pX(xk|xk−1; θX),

= pX0 (x0|θX)
N∏
k=1

1√
(σ2

X(1) + σ2
X(2))
√

2π
exp

(
−
(
xk − xk−1(1− α)

)2

2(σ2
X(1) + σ2

X(2))

)
,

⇒ lnLX(θX) = ln
(
pX0 (x0|θX)

)
− N

2
ln
(
(σ2

X(1) + σ2
X(2))2π

)
−

N∑
k=1

(
xk − xk−1(1− α)

)2

2(σ2
X(1) + σ2

X(2))
. (3.31)

Now, this is not a bad function to differentiate. Starting for α:

∂

∂α
lnLX(θX) = − 2

2(σ2
X(1) + σ2

X(2))

N∑
k=1

(
xk − xk−1(1− α)

)
xk−1 = 0,

⇒
N∑
k=1

x2
k−1α = −

N∑
k=1

xk−1(xk − xk−1),

6 σX(1), σX(2), α, σS(1), µ0, µ1, φ. Standard deviations are in the matrix Σ.
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⇒ α̂ = −
N∑
k=1

xk−1(xk − xk−1) ·

(
N∑
k=1

x2
k−1

)−1

. (3.32)

Then, for standard deviations:

∂

∂σX(1)

lnLX(θX) = − N

4π(σ2
X(1) + σ2

X(2))
2σX(1)2π

+
N∑
k=1

(
xk − xk−1(1− α)

)2

4
(
σ2
X(1) + σ2

X(2)

)2 2σX(1)2 = 0,

⇒
NσX(1)

σ2
X(1) + σ2

X(2)

=
σX(1)(

σ2
X(1) + σ2

X(2)

)2

N∑
k=1

(
xk − xk−1(1− α)

)2
,

⇒ σ̂2
X(1) + σ̂2

X(2) =
N∑
k=1

(
xk − xk−1(1− α̂)

)2
. (3.33)

Notice that,
∂

∂σX(1)

lnLX(θX) =
∂

∂σX(2)

lnLX(θX).

Though there is not a unique solution for σX(1) and σX(2), it exists for (σ2
X(1) + σ2

X(2)).
On the next chapter, first robustness of these solutions will be tested, i.e. MLE of X
will be tried to solved both by partial derivative and optimisation algorithms. After
consistent results appeared, these solutions would be used as benchmark for vector-
autoregressive(multivariate) negative log likelihood function (3.30).

So far, theoretical framework for the model has been constructed in cooperation with
methodology. Thus, numerical implication could be executed by following this chap-
ter.
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CHAPTER 4

NUMERICAL IMPLEMENTATIONS

This chapter consists of three applications. The first one is actually a descriptive exam-
ple from E.Allen [1], which has numerical results on hand, to make sure that method-
ology mentioned in the previous chapter works well.

After the techniques are verified, constructed model will be worked with simulated data
to see what happens when the performance variable φ is taken back from the series.

Finally, last part of this section will be the execution of the model to BIST-100 with
data analysis.

4.1 A Descriptive Example

This is example is taken from the book of E.Allen [1] (pp. 120) in which a square root
stochastic process used for parameter estimations by means of Euler discretization and
maximum likelihood. Since, E.Allen only gives the data set, model and results, that he
finds, it would be a good exercise to estimate parameters for same data set with given
approaches and see if findings exactly match with the book’s results.

It is a data series of whooping crane population in Aransas-Wood Buffalo between the
years 1939-1985 with stochastic structure:

dXt = θ1Xtdt+
√
θ2XtdWt, X0 = 18, (4.1)

where θ = [θ1, θ2]′ is the unknown parameter vector to be estimated and unlike our
model, t is defined in terms of years(not months). Then, approximate Xt by:

Xk+1 = xk + θ1xk∆t+
√
θ2xk
√

∆t ηk, (4.2)

with xk ≡ Xk, and ηk ∼ N(0, 1). Expectation and variance are calculated as follows
to construct likelihood function:

E[Xk+1] = xk + θ1xk +
√
θ2xk
√

∆tE[ηk],

= xk + θ1xk, (4.3)
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because yearly data used ∆t can be taken as 1.

V[Xk+1] = E
[(
xk + θ1xk +

√
θ2xkηk − (xk + θ1xk)

)2]
,

= θ2xkE
[
(ηk)

2
]
,

= θ2xk.

Transition density function of Xk becomes:

p(xk+1|xk; θ) ≈
1√

(2π)
√
θ2xk

exp

{
−
(
xk+1 − xk(θ1 + 1)

)2

2θ2xk

}
,

with likelihood function:

L(θ) = p0(x0|θ)
N−1∏
k=0

p(xk+1|xk; θ),

= p0(x0|θ)
N−1∏
k=0

1√
(2π)θ2xk

exp

{
−
(
xk+1 − xk(θ1 + 1)

)2

2θ2xk

}
,

⇒ lnL(θ1, θ2) = ln p0(x0|θ)−
N−1∑
k=0

{
1

2
ln(2πθ2xk) +

(
xk+1 − xk(θ1 + 1)

)2

2θ2xk

}
.

This equation is maximized over two decision variables θ1 and θ2 by using both soft-
ware optimizer1 and partial derivatives. Before going through the results, provide
derivative estimates:

∂

∂θ1

lnL(θ) =
1

2θ2

2
N−1∑
k=0

xk+1 − xk(θ1 + 1)

xk
xk = 0,

⇒
N−1∑
k=0

(
xk+1 − xk

)
= θ1

N−1∑
k=0

xk,

∴ θ̂1 =
N−1∑
k=0

(
xk+1 − xk

)(N−1∑
k=0

xk

)−1

, (4.4)

and for θ2:

∂

∂θ2

lnL(θ) = −
N−1∑
k=0

{
1

2

1

2πθ2xk
2πxk −

(
xk+1 − xk(θ1 + 1)

)2

2θ2
2xk

}
= 0,

⇒ N

2θ2

=
1

2θ2
2

N−1∑
k=0

{(
xk+1 − xk(θ1 + 1)

)2

xk

}
,

∴ θ̂2 =
N−1∑
k=0

{(
xk+1 − xk(θ1 + 1)

)2

xk

}
. (4.5)

1 Actually minus version is minimized in MATLAB part. Codes could be found in appendix.
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In the book, estimations of θ1 and θ2 are stated as 0.0361 and 0.0609, respectively.
Three optimizers used to avoid local maximum(minimum) issues. Whenever they all
give same or very similar results, one can be sure that the values are at least around
of the global maximum(minimum) point. Following table lists the results from both
optimizers and partial derivatives:

Table 4.1: Stochastic Parameter Estimation Results of E.Allen[1] (Example 4.15)

Optimizer θ̂1 θ̂2 − lnL(θ)

fminunc 0.0361 0.6094 136.7816
fminsearch 0.0361 0.6093 136.7816

patternsearch 0.0361 0.6093 136.7816
∂
∂θ
L(θ) 0.0361 0.6093 136.7816

Estimations are consistent and they manage to capture the benchmark values. Once,
parameters obtained it is possible to compare actual data with simulation results. Fig-
ure (4.1) shows the motion of the actual data and 4.2 shows two of the simulated paths
with mean. Mean is taken by simulating one thousand paths and taking the arithmetic
average for each time t. It seems like model shows plausible fit to the data.

This section is called descriptive, as it provides a good outlook of what is done in
the previous chapter and why. Even though, we are working on a far different model
with compared to this example, it is valuable for showing that we can implement the
methods accurately. Partial derivative method is also said to be satisfactory. It is clear
that, this technique can not be used in the case of seven parameters2. However, it might
provide benchmarks or some intuitive results for some of the variables.

By the next section, all study will again focus on our stochastic framework. Similar
simulations will be performed to be able to understand and appreciate the role of φ
coefficient and thereafter, actual Borsa İstanbul (100) index data is going to be consid-
ered. While doing these, the interpretations of this section would be very useful for
simulating data and providing initial values for unknown vector θ. In addition, once
results are obtained, comparisons and comments would be cited without any hesitation
about implementations.

4.2 Simulating Data for KRS Model to Understand the Role of φ

Koijen, Rodrı́gez, and Sbuelz [24] finds attractive results for their parameter estima-
tions, under the setting (2.57)–(2.59). Two of them has vital importance for this study.

First, as it is already claimed as performance variable, φ has larger impact on equally
weighted index(with compared to value weighted index) which means higher pre-
dictability by means of past performance. Because, almost all discrete time stock
momentum literature has built on equally weighted index and its dominance in stock

2 Since our model has seven unknown parameters.
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Figure 4.1: Actual X series from the data

Figure 4.2: Simulated X series by parameters θ with its mean
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momentum3, this finding imposes confidence for the existence and qualitative power
of φ.

Second, Koijen, Rodrı́gez, and Sbuelz showed that, autocorrelation of the returns Rt

couldn’t be captured in the absence of φ and it is captured when the performance
variable is included to the model. Recall the chapter 2, the analysis of the models
mainly stressed the importance of autocorrelation. Huge part of the previous study,
even including behavioural models and specified portfolios(like size, industry, etc.),
have made their main interpretations on the sample autocorrelation and/or have taken
it as a main assumption while constructing their model.

Since, trustworthy of the methods are verified in previous section, our continuous time
model could be simulated by using the parameters that are already found by Koijen,
Rodrı́gez [24]. Simulations is going to be carried out for both equally- and value-
weighted indices in the case of φ > 0, i.e when performance variable exists. After
that, given parameters will be estimated over the simulated data sets. Same estimation
will also be done, by assuming φ = 0, over same paths. It will provide another robust-
ness check for the techniques used in this work indeed. However, the aim is actually
different, observing the change of the other variables when the predictive power of the
past actually exists and it is ignored. The reason why analysis is considered for all two
indices is to realize if the magnitude of φ also has a noteworthy effect on other param-
eters when it is assumed to be zero while it isn’t. These observation will be very useful
for the upcoming section, while commenting on the findings obtained from BIST100.

Euler-Maruyama approximation is used for simulations, recall the equations (3.12)–
(3.14) in the form:

Rk+1 = [µk(1− φ) + φmk] + σS(1) ηk + σS(2) υk,

Mk+1 = mk + (1− φ)(µk −mk) + σS(1) ηk + σS(2) υk,

µk+1 = µ0 + µ1 xk+1,

Xk+1 = xk − αxk + σX(1) ηk + σX(2) υk,

where ∆t = 1 inserted and again series placed right and side of the equations denoted
with small scripts. By simply reverting the order of these processes one can obtain
paths from Xt to Rt. It is obvious that, dividend yield series doesn’t contain any of the
other processes so, it naturally becomes initial simulation. Whenever Xt is obtained,
µt could easily be found, it would be used to construct Mt and these two would be
enough to get Rt.

As cited above, two different simulations are performed for two different, positive
values of performance variable. Practically, these values stand for value- and equally-
weighted indices. Parameter vector θ = [φ, µ0, µ1, σS(1), α, σX(1), σX(1)]

′ for each of
the indexes is written in the table (4.2). Intuitively, taking back the performance vari-
able from equally weighted index is expected to cause a larger deformation on other
variables.

After the generation of these paths, each of the parameters estimated for both of the
3 See for example, Jegadeesh and Titman[23], and Lewellen [25]
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Table 4.2: Estimation Results of Koijen, Rodriguez and Sbuelz (2009)[24]

Simulation Parameters
VW EW

φ 0.15 0.39
µ0 (%) 0.92 1.15
µ1 0.016 0.012
σS(1) (%) 5.24 6.28

α 0.011 0.0094
σX(1) (%) -5.77 -8.43
σX(2) (%) 1.35 1.52

indexes by following the subsection (3.2.2).

Table 4.3: Estimation Results of Simulated Data

Estimation Results of Simulated Data
Momentum and Mean-Reversion Mean-Reversion only

VW EW VW EW

φ 0.1509 0.39 ∅ ∅
µ0 (%) 0.86 1.07 0.86 1.07
µ1 0.0192 0.0162 0.0147 0.0037
σS(1) (%) 5.31 6.37 5.43 7.09

α 0.0146 0.0131 0.0146 0.0131
σX(1) (%) -5.89 -8.58 -5.82 -7.92
σX(2) (%) 1.32 1.48 1.58 3.62

α̂ 0.0146 0.0131 0.0146 0.0131
σ̂2
X(1) + σ̂2

X(1) (%) 0.36 0.76 0.36 0.76

− lnL(θ) −4.4271×103 −4.1274×103 −4.2253×103 −3.1274×103

(4.3) where symbols denoted with hat shows the derivative check of estimations ac-
cording to univariate likelihood function of Xt. Like mentioned before, these values
might not be equal to estimates driven by multivariate likelihood function. It is already
not possible to provide precise benchmarks for σX(1) and σX(2) because of the reasons
mentioned in (3.2.2).

Before coming to the effects of performance variable, estimation power of MLE is
considered. First of all, for each of the cases φ predictions seem quite fine. On the
other hand, there are gaps between the real and estimated values of some variables
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which might be considered negligibly small. The source of these gaps could be under-
stood better by comparing real α and α̂. Because vector-autoregressive model based
prediction of this parameter is exactly match with α̂, this error is most probably caused
by MLE. For instance, σ2

X(1) + σ2
X(2) of value weighted index in the table 4.3 equals

to 0.00364345 consistent with σ̂2
X(1) + σ̂2

X(1) value 0.0036. So, in this sense, accu-
racy could be preserved with the values σX(1) = 0.0589 and σX(2) = 0.0132 as well.
This also explains why multiple optimization functions used for these implementa-
tions. Nevertheless, our model is able to tolerate those kind of errors because of its
focus on state variables(Mt and µt). Further, a good analysis requires multiple de-
scriptive tests to support findings which might also compensate small biases.

The impact of the performance variable is quite observable from table (4.3). Take σS(1),
for example, when actually existed φ value erased from the system, variation of return
necessarily increases for each of the indices. This increase is even more prominent in
equally weighted index which signals that, magnitude of change would be proportional
to significance of momentum effect. Another interesting observation might be cited
about µ0 and µ1. First, as one can easily notice, there is exactly no change on µ0 which
could be expected because of its role in the equation system(intercept point). On the
other hand, µ1 experiences a necessary decrease when performance variable is ignored
which is closely related to calibration process of µt. Because µ1 is the coefficient
of demeaned dividend yields Xt, when φ = 0, mean reversion effect automatically
becomes only state of the return equation. This sudden domination is, in fact, synthetic
and decreased coefficient of dividend yield is a reaction like increase in return variation
to compensate ignorance of the return continuation. In other words, even though,
mean reversion seems to have more remarkable role on returns in the absence of φ,
its indicator’s(Xt) value is decayed by µ1. It is noteworthy that, proportion of this
change is again closely related to momentum level.

Meanwhile, α is another unaffected variable. The hatted values inherently can’t change;
but it is seemingly the case for other variables that drive the Xt process(in multivariate
estimation case) as well. It is not only valid for α; but also for σX(1) and σX(1). Even
though, their individual values change, σ2

X(1) + σ2
X(2) is around 3.64×10−3 for value

weighted index in the case of φ = 0. So, most probably these dividend yield variations
are adjusted according to change in σS(1), such that value of their sum of squares pre-
served. Since, mean reversion process doesn’t contain any of the other time series by
construction, these situations should be explainable.

Finally, the objective function, which is minus log likelihood function for software
issues in this case, shows tendency to move away from its minimum point. These loss
of optimality is valid for each of the indices and it’s much larger for equally weighted
index in which momentum is more significant.

Though, parameter based analysis is informative, there is also another side of the
medallion. What is the real risk exposure of ignoring an actually existed past per-
formance? In fact, disregarding the momentum effect leads misunderstanding of the
data behaviour.
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Figure 4.3: Autocorrelation Function of EW Index Returns (φ = 0.39)

Figure 4.4: Autocorrelation Function of EW Index Returns (φ = 0)
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To see this, consider autocorrelation function of EW Index4 when φ > 0 and φ = 0
in (4.3)–(4.4). Notice the vital difference between these autocorrelation functions. If
momentum is not taken into account, returns are assumed to be uncorrelated which is
not true. Figure (4.3) exhibits positive autocorrelation in returns until lag four whereas,
figure (4.4) denies the return continuation completely.

Hence, simulations and estimations in this section showed that imposing φ to our sys-
tem of equations generates memory to returns. Erasing the coefficient of performance
variable takes the past predictability of returns away by making them uncorrelated. By
the next section processes will be executed to a actual data and behaviour of BIST-100
is going to be analysed.

4.3 Empirical Analysis of BIST-100

The intuition behind momentum and mean reversion effects, how they are imposed
into our model, and role of parameters have been discussed so far. For the empiri-
cal analysis BIST-100(XU100) data considered. Before going through the application
results, description of constructed series will be explained.

Raw data is taken as monthly closing price and dividend payments of BIST-100 for
Jan. 2004–Dec. 2014 from Bloomberg Data Center. Then, data calibrations are done
in line with Koijen, Rodrı́gez, and Sbuelz as mentioned.

Accordingly, Rt was simply calculated as ordinary returns by following the left hand
side of the equation (3.12). By using returns,Mt was calculated as (2.56) with a simple
loop on MATLAB. For Xt, like mentioned in equation (2.55), D′t was taken as index
value of month t divided by corresponding year’s total dividend payments. Rather
than natural logarithm, Box-Cox transformation is used to normalize data and get Dt.
Normality of these data series is verified by Q-Q plots, and variety of tests which could
be found in appendices.

Figure 4.5 shows the series Rt and Mt. BIST-100 return seems to fluctuate around a
value slightly higher than zero. It has mean 0.0149 (1.49%) which is a considerably
high monthly return and standard deviation 0.0858 (8.58%). So, high return seems to
occur in exchange of high risk. The patterns of return and momentum series are very
similar probably because of the dominant recent past impact on Mt (by construction,
see equation (2.56)). Momentum series is also smoother than return series with mean
0.0086 (0.86%) and standard deviation 0.0339 (3.39%). Recall the equation (3.16), we
are interested with the lead lag relation between these series which makes their current
pattern correlation irrelevant.

On the other hand, figure (4.6) shows the impact of applying Box-Cox transformation
to demeaned dividend yield series. Even though their difference is visible, if one takes
a closer look, she may notice the pattern similarity of these series. Box-Cox transfor-
mation causes a sharp increase in variation (check the y axes limits), but data behaviour

4 Autocorrelations are taken for EW Index to be able to see the impact of ignoring φ better, since its value is
greater for this index. See appendices for autocorrelation functions of VW Index.
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Figure 4.5: Plots of BIST-100, series Rt and Mt with µR=1.49%, σR=8.58% and
µM=0.86%, σM=3.39%

Figure 4.6: Plots of BIST-100, Demeaned Dividend Yields Comparison (Before and
After Box-Cox Transformation)
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is significantly preserved for even very small shocks. It is a reasonable price to satisfy
normality assumption.

After generating Rt, Mt, and Xt, constructing maximum likelihood estimations is
rather easy by following the previous section. Again, two different predictions are
performed: for φ > 0 and φ = 0. However, this time Value Weighted Index isn’t taken
into account since it doesn’t exist for BIST-100. So, each of the cases only includes
Equally Weighted Index data. Table (4.4) shows the estimation results.

Table 4.4: Estimation Results of BIST-100 over the period Jan. 2004–Dec. 2014

Estimation Results of BIST100
Momentum and Mean-Reversion Mean-Reversion only

VW VW

φ 0.0006 ∅
µ0 (%) 1.23 1.23
µ1 0.0227 0.0227
σS(1) (%) 8.4 8.4

α 0.1199 0.1199
σX(1) (%) -23.34 -23.34
σX(2) (%) 16.22 16.22

α̂ 0.1199 0.1199
σ̂2
X(1) + σ̂2

X(1) (%) 8.08 8.08

− lnL(θ) -192.4638 -192.4637

Results are very interesting; but not surprising indeed. The performance variable coef-
ficient φ is negligible. It’s insignificant by magnitude and its ignorance also does not
change anything at all. This finding actually coincides with what Bildik and Gülay [5]
claimed, short-term mean reversion effect. In fact, their study encompasses the years
between 1991-2000; but their conclusion for this dominance is country-specific factors
which might be the case and reason for endurance of this effect. So, both this study
and paper of Koijen, Rodrı́gez, and Sbuelz [24] report consistent results with past lit-
erature for φ value. Beside the previous works, autocorrelation function of BIST-100
returns would be informative as well. Figure (4.7) is in line with expectations, just
like mentioned in the previous section. Except an outlier in lag ten, returns of BIST-
100 is uncorrelated, which means past performance doesn’t have predictive power over
future. Thus, collection of these findings imposes confidence about existence and de-
scriptive power of φ.

Moreover, rather than constructing specified portfolios (decile, industry, size, etc.),
presence of momentum and mean reversion effects in a stock market might be antici-
pated accurately by only analysing equity index of that market. So, one of the future
studies might be cited as to provide this φ coefficient for some of the most popular
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Figure 4.7: Autocorrelation Function of BIST-100 Index

indices in accordance with their literature and show more powerful evidences for exis-
tence and accuracy of it.

Another remarkable finding is the huge variation terms of BIST-100 with compared
to US indices(Koijen, Rodrı́gez, and Sbuelz[24]). Bildik and Gülay also refers this
high volatility and even attributed short-term mean reversion effect to it. However,
source(s) of the differences on term structure of return reversals in these two distinct
markets could be stated as another future work.
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CHAPTER 5

CONCLUSION AND OUTLOOK

A vast number of studies provide evidences for existence of momentum and contrarian
effects in international markets as well as US financial market. Since presence of
momentum indicate return predictability, this effect challenges the efficient market
hypothesis. Most of the previous studies examine investment strategies to recognize
whether a capital market, an industry, or a set of national equity indices exhibit mean-
reversion and return continuation, which might require an extensive research and data
handling efforts. Also, considering momentum as a factor of return, rather than trying
to explain it with common factors might provide a different outlook in this area.

This thesis adopts a recently developed continuous time model suggested by Koijen,
Rodrı́gez, and Sbuelz[24] to the BIST-100 equity index between years 2004-2014.
Our findings show that momentum effect is negligibly small(φ = 0.0006) while mean-
reversion is considerably prominent(µt drives the changes in Rt) in BIST-100 index.
There is no such evidence contradicts our assertion in the literature. In contrast, Bildik
and Gülay[5] manages to generate abnormal returns by contrarian trading strategy(long
past losers and short past winners) in Turkish stock market. This observation is in line
with what Koijen, Rodrı́gez, and Sbuelz finds using CRSP based US data: existence
of momentum in both VW(Value Weighted) and EW(Equally Weighted) indices, but
more prominent in EW index where relative strength strategy(long past winners and
short past losers) achieves abnormal returns. Hence, equity indices might be infor-
mative about return series behaviour of the stocks listed on that index, by means of
momentum and mean-reversion. For example, a sufficiently large φ value for an index
could signal the profitability of relative strength strategy at stock level.

Before going through our continuous time model, Chapter (2) draws the quantification
of momentum as well as some of the fundamental discrete time models that are pro-
posed on different dates. We observe substantial similarities between these models not
only by construction but also by superiorities and weaknesses. They are flexible, for
instance, a positively correlated return model can be easily converted into a negatively
correlated one by adjusting the noise terms. However, they might not always provide
the full picture since these models mostly result with a common profit decomposition.

Performing parameter estimation also requires knowledge of some methods which are
considered in Chapter (3). Accordingly, the model is transformed from stochastic dif-
ferential form to vector autoregressive(VAR) structure by means of Euler-Maruyama
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discretization as it is shown that this scheme provides fair approximations for SDEs
that are alike our model. Similarly, in Chapter (4), we exemplify stochastic parameter
estimation with simulated data for the model and notice that positive φ values simply
imply positive autocorrelation. Furthermore, if momentum exists and it is ignored,
return shock(σS(1)) reacts with an instant increase with respect to magnitude of φ.

This thesis can be extended for both theoretical and practical purposes. One possible
future study can be cited as investor implications of the model on various equity indices
to examine validity of the relation between return patterns of stocks and corresponding
equity indices. Another issue is that, our model only relies on time series predictability,
which might not always be the source of momentum(for example, negative cross serial
correlation might be a source [25]). So, relaxing this assumption and making model
applicable to individual stocks might be another possible future work. Finally, past
predictability of the model could be supplied by fractional Brownian motions which
might increase the complexity as well.
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APPENDIX A

DESCRIPTIVE STATISTICS AND DATA CALIBRATION

• Table of descriptive statistics of the series Rt, Mt, and Xt
1: where Jarque-Bera

Table A.1: Table of Descriptive Statistics and Normality Tests

Series Mean Std. Dev. Skewness Kurtosis JB-Test AD-Test KS-Test
Rt 0.0149 0.0858 -0.1019 3.1336 0 0 0
Mt 0.0086 0.0339 -0.3598 2.9074 0 1 0
Xt 0.0000 0.6130 0.0889 2.3038 0 0 0

and Anderson-Darling normality tests have null hypothesis that, sample data
coming from normal distribution and One Sample Kolmogorov Simirnov has
same hypothesis for standard normal distribution. The result ”1” means rejecting
null hypothesis with % 5 significance level for each of the tests. Because One
Sample Kolmogorov Simirnov tests standard normality, z = x−µ

σ
transformation

applied to the data before performing the test.

Only Mt failed to pass AD-Test, probably because of its skewness which is high
in absolute value with compared to Rt and Xt. Nevertheless, its normality ver-
ified by two other tests and rest of the data sets managed to pass all three tests.
Also, histograms and Q-Q plots of these vectors are informative:

(a) Histogram of Rt (b) Q-Q Plot of Rt

1 JB-Test: Jarque-Bera Test, AD-Test: Anderson-Darling Test, KS-Test: One Sample Kolmogorov Simirnov
Test
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(a) Histogram of Mt (b) Q-Q Plot of Mt

(a) Histogram of Xt (b) Q-Q Plot of Xt

Therefore, it is seemingly safe to use Brownian Motions to define these variables.

• To see why Box-Cox transformation applied while generating Xt, consider the
histograms and Q-Q plots of D′t and its transformed version Dt

2

(a) Histogram of D′
t (b) Q-Q Plot of D′

t

D′t also fails to pass any of the normality tests!

2 Note that Xt is demeaned version of Dt, they are not same data sets.
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(a) Histogram of Dt (b) Q-Q Plot of Dt

As mentioned before, dividend yield series are usually really hard to handle data
sets. Fortunately, this transformation method managed calibrate data success-
fully.
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APPENDIX B

OTHER FIGURES AND TABLES

This chapter is organized for the tables and figures that are not shown inside of the
thesis because of their similarity to shown tables.

• Autocorrelation functions of Value Weighted Index constructed by simulations
in the section 4.2 has autocorrelation functions for different φ values (B.1–B.2).

It is already shown that φ (presence of momentum) imposes return predictabil-
ity into our model by means of positive autocorrelation. Because for the case
φ = 0.39 return series has positive autocorrelation vanishes by lag 4 (see the
figure 4.3), we expect it to be smaller for this case and figure (B.1) satisfies this
expectation. The more prominent momentum is the more predictable returns
arise. Finally, even if the autocorrelation is only valid for the first lag (in this
case), ignoring the return persistence again causes us to misunderstand the data
behaviour.
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Figure B.1: Autocorrelation Function of VW Index Returns (φ = 0.15)

Figure B.2: Autocorrelation Function of VW Index Returns (φ = 0)
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APPENDIX C

MATLAB CODES

• To execute simulations in 3.1 and 3.3, following codes are used(Black-Scholes
stock prices):

% dS = mu*S*dt + sigma*S*dW, S_0 = 1
rng(13,’v5normal’);
T = 1; mu = 0.1; sigma = 0.5; S0 = 1;
errorsM = zeros(6,2); Vrnd = randn(1,2ˆ13);
for i = 8:13

N = 2ˆi; dt = T/N;
DW = zeros(1,N); S = zeros(1,N+1); S(1) = S0;
Xm = [S0,zeros(1,N)]; Y = [S0,zeros(1,N)];
for j = 1:N

dW = sqrt(dt)*Vrnd(j);
DW(j) = dW;
% calculate coefficients
a = mu*S(j); b = sigma*S(j);
ap = mu*Y(j); bp = sigma*Y(j);
%Euler-Maruyama
S(j+1) = S(j) + a*dt + b*dW;
%Milstein
Y(j+1) = Y(j) + ap*dt + bp*dW + ...
Y(j)*0.5*sigmaˆ2*dt*((dW/sqrt(dt))ˆ2-1);
Xm(j+1) = S0*exp((mu-sigmaˆ2/2)...
*j*dt+sigma*sum(DW));

end
% for mean square errors
errors = (Xm-Y).ˆ2; errors2 = (Xm-S).ˆ2;
errorsM(i-7,1:2) = ...
[mean(errors), mean(errors2)];

end
plot(0:dt:T,Y,’b’), hold on
plot(0:dt:T,Xm,’r--’),
legend(’S from SDE’,’S from solution’),
title(’B-S Stock Prices from SDE vs Solution’),
hold off;
display(Xm(end)); display(S(end)); display(Y(end));
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• For OU prices:

% dX = -gamma*X*dt + sigma*dW, X_0 = 1
rng(10,’v5normal’);
T = 1; N = 2ˆ8; dt = T/N; gamma = 0.1; sigma = 0.5; X0 = 1;
X = [X0,zeros(1,N)]; Xsde = zeros(1,N+1); Xsde(1) = X0;
DW = zeros(1,N); stochInt = zeros(1,N);
for j = 1:N

dW = sqrt(dt)*randn;
W = cumsum(DW);
a = -gamma*Xsde(j); b = sigma; % calculate coefficients
Xsde(j+1) = Xsde(j) + a*dt + b*dW;
stochInt(j) = exp(gamma*j*dt)*dW;
X(j+1) = X0*exp(-gamma*j*dt) + ...
sigma*exp(-gamma*j*dt)*sum(stochInt);
% integral discretized as a sum

end
plot(0:dt:T,Xsde,’b’), hold on
plot(0:dt:T,X,’r--’), legend(’Xsde’,’X’),
title(’SDE vs Soln for OU Process’), hold off;

• For parameter estimations and calculations in 4.1 following codes are used:

data = xlsread(’ornek’); % take data from an excel sheet
X = data(:,2); N = length(data); dt = 1;
objfun = @(theta) mlfornek(theta, X, N, dt);
theta0 = [-1; 2];
[theta, fv] = fminsearch(objfun, theta0),
[theta2, fv2] = fminunc(objfun, theta0),
[theta3, fv3] = patternsearch(objfun, theta0)

where mlfornek is the likelihood function of the form:

function f = mlfornek(theta, X, N, dt)
theta1 = theta(1);
theta2 = theta(2);
f = 0;
for j = 2:N % constructed -log Likelihood Function

f = f + .5*log(2*pi*dt*theta2*X(j-1)) + ...
(X(j)-X(j-1)-theta1*X(j-1)*dt)ˆ2/(2*dt*theta2*X(j-1));

end
end

Partial derivative results and path simulations are performed by the following
script:

% Use partial derivative to estimate data
% Simulate paths by obtained parameters
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rng(13,’v5normal’)
data = xlsread(’ornek’); % take data from an excel sheet
X = data(:,2); N = length(data); dt = 1;
% sum partitions
t1 = zeros(1,N-1); t2 = zeros(1,N-1); t3 = zeros(1,N-1);

for j = 2:N % find optimal theta1 and theta2 by ML derivative
t1(j-1) = X(j)-X(j-1);
t2(j-1) = X(j-1)*dt;
t3(j-1) = ((X(j)-X(j-1)-theta1hat*X(j-1)*dt)ˆ2)/X(j-1);

end
theta1hat = 1/sum(t2)*sum(t1)
theta2hat = sum(t3)*(1/(N-1))
% Make simulation and compare with the actual data
Xe = zeros(N,1000); Xe(1,:) = 18;
for i = 1:N-1

Xe(i+1,:) = Xe(i,:) + theta1hat*Xe(i,:) +...
sqrt(theta2hat*Xe(i))*randn(1,1000);

end
m = mean(Xe,2);
figure(1), plot(X), xlim([0 47]), ylim([0 95]),
xlabel(’t’), ylabel(’X’), title(’Actual X’)
figure(2), plot(Xe(:,157)), xlim([0 47]), ylim([0 95]),
hold on, plot(Xe(:,80),’r’), plot(m,’k--’),
xlabel(’t’), ylabel(’Xe’), title(’Simulated X’)
legend(’sim path 1’,’sim path 2’,’mean’)

• For simulations and parameter estimations performed in the section 4.2:

% Simulate paths according to KRS model for both Indexes
% Lock or unlock related rows of values for simulations
% Estimate parameters by means of MLE
clear all, close all,
rng(13,’v5normal’); N = 1000;
% EW Index Returns where phi > 0
alpha = 0.0094; sigmaX1 = -0.0843; sigmaX2 = 0.0152;
phi = 0.39; mu0 = 0.0115; mu1 = 0.012; sigmaS1 = 0.0628;
% phi = 0
% VW Index Returns where phi > 0
% alpha = 0.011; sigmaX1 = -0.0577; sigmaX2 = 0.0135;
% phi = 0.15; mu0 = 0.0092; mu1 = 0.016; sigmaS1 = 0.0524;
% phi = 0
Z1 = randn(N,1); Z2 = randn(N,1);
X0 = 0; M0 = 0; R0 = 0;
mu = zeros(N,1); X = [X0; zeros(N-1,1)];
M = [M0; zeros(N-1,1)]; R = [R0; zeros(N-1,1)];
% Simulate X, mu, M, and R
for i = 1:N-1
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X(i+1) = (1-alpha)*X(i) + sigmaX1*Z1(i) + sigmaX2*Z2(i);
mu(i) = mu0 + mu1*X(i);
M(i+1) = M(i) + (1-phi)*(mu(i)-M(i)) + sigmaS1*Z1(i);
R(i+1) = (1-phi)*mu(i) + phi*M(i) + sigmaS1*Z1(i);

end
% check if you can obtain parameters
objfun = @(theta) mlf3(theta, R, M, X, N, 1);
% for phi = 0 case:
% objfun = @(theta) mlf3_NoPhi(theta, R, M, X, N, 1);
theta0 = [-0.1104, 0.0283, -0.0672, 0.0747, ...
0.0105, 0.1004, 0.0165]’;
% for phi = 0 case:
% theta0 = [-0.1104, 0.0283, -0.0672, ...
0.0747, 0.0105, 0.1004]’;
[theta2, fv2] = fminunc(objfun,theta0),
[theta3, fv3] = patternsearch(objfun,theta0),
[theta4, fv4] = fminsearch(objfun,theta0)

% Optimal values of univariate likelihood function of X
t1 = zeros(N-1,1); t2 = zeros(N-1,1); t11 = zeros(N-1,1);
for j = 2:N % find optimal theta1 by MLE derivative

t1(j-1) = X(j-1)*(X(j)-X(j-1));
t2(j-1) = X(j-1)ˆ2;

end
alphahat = -sum(t1)*(sum(t2))ˆ(-1)
for j = 2:N % find optimal theta1 by MLE derivative

t11(j-1) = (X(j) - X(j-1) + alphahat*X(j-1)*1)ˆ2;
end
sqrOfSigma1PlusSigma2hat = 1/N * sum(t11)

% find autocorrelation of Returns
autocorr(R)

mlf3 and mlf3 NoPhi are likelihood functions:

function f = mlf3(theta, RVW, MVW, d_VW, N, dt)
sigmaX1 = theta(1);
sigmaX2 = theta(2);
alpha = theta(3);
sigmaS1 = theta(4);
mu0 = theta(5);
mu1 = theta(6);
phi = theta(7); % phi = 0 for mlf3\_ NoPhi
% Define var-covar matrix
K = [sigmaS1ˆ2, sigmaS1*sigmaX1; ...

sigmaS1*sigmaX1, (sigmaX1ˆ2 + sigmaX2ˆ2)];
[L, U] = lu(K); % for faster calculations
f0 = N*0.5*log((2*pi)ˆ2*det(K));
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f1 = 0;
for j = 2:N

A = [RVW(j) - ((1-phi)*(mu0+mu1*d_VW(j-1))+...
phi*MVW(j-1))*dt; d_VW(j)-d_VW(j-1)*(1-alpha*dt)];
f1 = f1 + 0.5*A’*(U\(L\A));

end
f = f0+f1;
end

• Construction of performance variable Mt:

% Calculating Performance Variable
data = xlsread(’BIST_2004_2014_Analysis’);% take data
I = data(:,1); T = length(I); I_M = zeros(1,T);
for t = T:-1:1

for i = 1:t
I_M(t-i+1) = exp(-i)*I(t-i+1);

end
I_M(t) = sum(I_M(1:t));

end
% display(I_M);

• Construction of Xt:

% X_t calculations for BIST100
data = xlsread(’BIST_2004_2014’);
D = data(:,2); I = data(:,1);
N = length(D); Ds = zeros(N/12,1); Dy = zeros(N,1);
for i = 1:N/12

Ds(i) = sum(D(12*(i-1)+1:12*i));
end
for j = 1:N/12

for i = (j-1)*12+1:j*12
Dy(i) = Ds(j)/I(i);

end
end
L_Dy = log(Dy); DL_Dy = L_Dy - mean(L_Dy);
[DyBC, lambda] = boxcox(Dy);
% see the difference
figure(1), histfit(Dy), title(’Histogram of D_tˆ{\prime}’);
figure(2), qqplot(Dy), title(’Q-Q Plot of D_tˆ{\prime}’);
figure(3), histfit(DyBC), title(’Histogram of D_t’);
figure(4), qqplot(DyBC), title(’Q-Q Plot of D_t’);

• Descriptive statistics of all data sets:
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% descriptive statistics
data = xlsread(’BIST_2004_2014_Analysis’);
X = data(:,3); M = data(:,2); R = data(:,1);
% for R
figure(1), histfit(R), title(’Histogram of R_t’);
figure(2), qqplot(R), title(’Q-Q Plot of R_t’);
mR = mean(R); stdR = std(R);
skwR = skewness(R); krtR = kurtosis(R);
jbtest(R); kstest((R-mean(R))./std(R)); adtest(R);
% for M
figure(3), histfit(M), title(’Histogram of M_t’);
figure(4), qqplot(M), title(’Q-Q Plot of M_t’);
mM = mean(M); stdM = std(M);
skwM = skewness(M); krtM = kurtosis(M);
jbtest(M); kstest((M-mean(M))./std(M)); adtest(M);
% for X
figure(5), histfit(X), title(’Histogram of X_t’);
figure(6), qqplot(X), title(’Q-Q Plot of X_t’);
mX = mean(X); stdX = std(X);
skwX = skewness(X); krtX = kurtosis(X);
jbtest(X); kstest((M-mean(M))./std(M)); adtest(X);
% for kstest z = (x-mu)/sigma used!

• Parameter estimations of BIST-100:

% MLE of BIST-100
data = xlsread(’BIST_2004_2014_Analysis’);
X = data(:,3); M = data(:,2); R = data(:,1); N=length(R);
% start optimisation for phi > 0
objfun = @(theta) mlf3(theta, R, M, X, N, 1);
opts3 = psoptimset(’MaxIter’,10000, ...
’MaxFunEvals’,15000,’TolMesh’,.0000001);
opts2 = optimset(’MaxIter’,10000,’MaxFunEvals’,15000);
theta0 = [-0.167, 0.023, 0.1199, ...
0.0747, 0.0105, 0.1004, 1]’;
[theta, fv] = patternsearch(objfun,theta0, ...
[],[],[],[],[],[],opts3),
[theta2, fv2] = fminunc(objfun,theta0),
[theta4, fv4] = fminsearch(objfun,theta0,opts2),

% start optimisation for phi = 0
% objfun = @(theta) mlf3_NoPhi(theta, R, M, X, N, 1);
% opts3 = psoptimset(’MaxIter’,10000, ...
’MaxFunEvals’,10000,’TolMesh’,.0000001);
% opts2 = optimset(’MaxIter’,10000,’MaxFunEvals’,25000);
% theta0 = [-0.167, 0.023, 0.1199, ...
0.0747, 0.0105, 0.1004 ]’;
% [theta, fv] = patternsearch(objfun,theta0, ...
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[],[],[],[],[],[],opts3),
% [theta2, fv2] = fminunc(objfun,theta0),
% [theta3, fv3] = fminsearch(objfun,theta0,opts2),

% Optimal values of univariate likelihood function of X
t1 = zeros(N-1,1); t2 = zeros(N-1,1); t11 = zeros(N-1,1);
for j = 2:N % find optimal theta1 by MLE derivative

t1(j-1) = X(j-1)*(X(j)-X(j-1));
t2(j-1) = X(j-1)ˆ2;

end
alphahat = -sum(t1)*(sum(t2))ˆ(-1)
for j = 2:N % find optimal theta1 by MLE derivative

t11(j-1) = (X(j) - X(j-1) + alphahat*X(j-1)*1)ˆ2;
end
sqrOfSigma1PlusSigma2hat = 1/N * sum(t11)

% find autocorrelation of Returns
autocorr(R)
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