

ON THE BALANCED K-CHINESE POSTMEN PROBLEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

YASEMİN LİMON

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

JULY 2015

Approval of the thesis:

ON THE BALANCED K-CHINESE POSTMEN PROBLEMS

submitted by YASEMİN LİMON in partial fulfillment of the requirements for the

degree of Master of Science in Industrial Engineering Department, Middle East

Technical University by,

Prof. Dr. Gülbin Dural Ünver _______________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Murat Köksalan _______________

Head of Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu _______________

Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Sinan Gürel _______________

Industrial Engineering Dept., METU

Prof. Dr. Meral Azizoğlu _______________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Melih Çelik _______________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Özgen Karaer _______________

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Ferda Can Çetinkaya _______________

Industrial Engineering Dept., Çankaya University

Date: July 23, 2015

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last Name: YASEMİN LİMON

Signature :

v

ABSTRACT

ON THE BALANCED K-CHINESE POSTMEN PROBLEMS

Limon, Yasemin

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Meral Azizoğlu

July 2015, 73 pages

In this thesis, we consider a k-Chinese Postmen Problem with the objective of

minimizing total squared workloads. Our aim is to balance the workloads of the

postmen, while maintaining low total workload.

We develop an efficient subtour elimination constraint and incorporate it to our

integer program. We develop exact and approximate solution procedures that run in

exponential and polynomial time respectively.

The results of our computational experiment reveal the satisfactory behaviors of our

algorithms in terms of solution speed and solution quality.

Keywords: k-Chinese Postmen Problem, Subtour Elimination Constraints, Solution

Algorithms

vi

ÖZ

K-ÇİNLİ POSTACI DENGELEME PROBLEMİ ÜZERİNE

Limon, Yasemin

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu

Temmuz 2015, 73 sayfa

Bu tezde, toplam kareli işyükünü enazlayan k-Çinli Postacı Problemini ele aldık.

Toplam iş yükünü düşük tutarken, postacılar arasındaki iş yükünü dengelemeyi

hedefledik.

Etkin bir alt tur eleme yöntemi geliştirip, modelimize dahil ettik. Kesin ve yaklaşık

çözümler veren, sırasıyla, üstsel ve polinom zamanda çalışan çözüm yöntemleri

geliştirdik.

İşlemsel deneylerimizin sonuçları, algoritmalarımızın çözüm süresi ve çözüm kalitesi

açısından başarılı olduğunu göstermektedir.

Anahtar Kelimeler: k-Çinli Postacı Problemi, Alt Tur Eleme Kısıtları, Çözüm

Yöntemleri

vii

To my family...

viii

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest gratitude to my supervisor, Dr. Meral

Azizoğlu. Her invaluable guidance and enthusiasm have motivated me throughout

this study, and have inspired me to pursue an academic career. It has been a fortunate

to work with her.

I would like to thank the examining committee members, Dr. Melih Çelik, Dr. Ferda

Can Çetinkaya, Dr. Sinan Gürel and Dr. Özgen Karaer for their suggestions and

contributions to my thesis.

I would like to thank Dr. Cem İyigün for encouraging me about my career goals as of

the assistantship in Industrial Engineering Department. As a teaching assistant of

their courses, I would like to thank Dr. Sakine Batun, Dr. İsmail Serdar Bakal, and

Dr. Ömer Kırca for their contributions to my teaching experience.

I would also like to thank my assistant friends for their support and friendship.

Working with Deniz Esin Emer, Utku Can Kunter, Ece Sancı and Sıdıka Tunç has

been a pleasure to me. I feel myself lucky to share the office with Çiğdem Renkli and

Begün Efeoğlu. I also want to thank Derya Dinler who kindly supported me.

During the high-school, undergraduate and graduate studies, Canberk Kahyaoğlu has

been always with me, and I cannot express my gratitude to him with any words. This

journey could not have been possible without his support and encouragement. Many

thanks to İmge Yılmaz for being the best roommate ever, she has always cheered me

up with her boundless energy. I am grateful to my friend, Andaç Kürün for his

assistance and friendship. He has supported me with the excellent trainings about

programming whenever I need and become a brother more than a friend.

Lastly, I would like to express my gratitude to my parents Nilüfer and Saffet, and my

brother Ertürk for their unconditional love and endless support. I dedicate this thesis

to my family.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

CHAPTERS

1 INTRODUCTION ... 1

2 LITERATURE REVIEW... 7

3 PROBLEM DEFINITION AND THE COMPLEXITY .. 13

4 SUBTOUR ELIMINATION CONSTRAINTS ... 19

4.1. REPORTED SUBTOUR ELIMINATION CONSTRAINTS 19

4.2. PROPOSED SUBTOUR ELIMINATION CONSTRAINTS 21

4.3. DETECTING SUBTOURS ... 24

4.4. AGGREGATED SUBTOURS .. 25

5 SOLUTION ALGORITHMS .. 27

5.1. ALGORITHM I ... 27

5.2. ALGORITHM II ... 30

5.3. ALGORITHM III .. 32

6 HEURISTIC PROCEDURE .. 37

6.1. PHASE I: CONSTRUCTION ... 37

6.2. PHASE II: IMPROVEMENT ... 38

6.3. AN EXAMPLE ... 44

7 COMPUTATIONAL STUDY ... 49

x

7.1. DATA GENERATION ... 49

7.2. PRELIMINARY EXPERIMENT FOR EXACT ALGORITHMS 50

7.3. MAIN EXPERIMENT FOR EXACT ALGORITHMS 53

7.4. PRELIMINARY EXPERIMENT FOR HEURISTIC PROCEDURE 61

7.5. MAIN EXPERIMENT FOR HEURISTIC PROCEDURE 64

7.6. TRIALS FOR DIFFERENT OBJECTIVES ... 66

8 CONCLUSION .. 69

REFERENCES ... 71

xi

LIST OF FIGURES

Figure 1.1. Königsberg bridge problem 2

Figure 3.1. An example directed graph 𝐺 17

Figure 4.1. An example directed graph 𝐺 22

Figure 4.2. A solution with a subtour to the example problem 22

Figure 5.1. An example directed graph for solution algorithms 29

Figure 5.2. The subtours generated from the solution on the graph 29

Figure 5.3. The first subtour as the original subtour 33

Figure 5.4. The second subtour as the original subtour 34

Figure 5.5. The third subtour as the original subtour 34

Figure 6.1. An example directed graph for the heuristic procedure 44

Figure 6.2. Three circuits found by the construction phase 44

Figure 6.3. The remaining arcs of the long tour 45

Figure 6.4. The remaining arcs of the short tour 46

Figure 7.1. The initial network with 7 arcs 58

Figure 7.2. The new network with the addition of the arc (5, 2) 58

Figure 7.3. The new network with the addition of the arcs (6, 2) and (3, 6) 59

xii

LIST OF TABLES

Table 6.1. Supply and demand information of the nodes in the long tour 46

Table 6.2. Supply and demand information of the nodes in the short tour 47

Table 7.1. The sizes of networks 49

Table 7.2. The effect of 𝛼 on Algorithm I 51

Table 7.3. The effect of aggregated subtours on Algorithm II, 𝛼 = 0.01% 52

Table 7.4. The effect of aggregated subtours on Algorithm III, 𝛼 = 0.01% 52

Table 7.5. Solution times of the algorithms (CPU seconds) 54

Table 7.6. Average number of iterations and subtours 55

Table 7.7. Frequency of best solution times 56

Table 7.8. The effect of nonimproving moves (NIM), K = 2 62

Table 7.9. The effect of arc selection strategy on the deviations 63

Table 7.10. The performance of the heuristic procedure 65

Table 7.11. Solution times of the MAD, MSD and our problem 68

1

CHAPTER 1

INTRODUCTION

Routing problems have been widely studied in the literature due to their wide range

of applications in the distribution management and logistics areas. The problems are

defined on directed, undirected or mixed graphs. Directed graphs are formed of arcs,

whereas undirected ones include edges without direction. Mixed graph is a

combination of arcs and edges.

Routing problems can be divided into two main categories as node routing and arc

routing. Node routing problems aim to optimize the routes to serve a set of customer

nodes. Its most noteworthy applications are due to vehicle routing and traveling

salesman problems that have attracted the attention of several researchers for many

decades.

Arc routing problems (ARP) aim to find the routes at minimum cost to serve a set of

arcs. If all arcs/edges in a set must be visited, the associated problem is the Chinese

Postman Problem (CPP). If a defined subset of arcs/edges is required to be traversed,

the problem becomes the Rural Postman Problem (RPP).

Both the CPP and the RPP have variants with different objectives and assumptions.

For example, the Windy Postman Problem has different cost of visiting an edge in

two directions. Considering possible precedence relations of visiting arcs, the

Hierarchical CPP and RPP are proposed. The Maximum Benefit CPP gains benefit

2

each time an arc/edge is visited. The CPP with time window constraints has time

limitation to service an arc/edge. Similar to the Maximum Benefit CPP, the

Profitable RPP and the Prize-collecting RPP are introduced with the objective of

maximizing the benefit gained from the service. Another prominent type of ARP is

the Capacitated Arc Routing Problem in which there are capacitated vehicles to

service a specified edge set. The variants of these problems have been arising in

response to the need in the applications. Moreover, attributing to the practical

importance for and theoretical challenge behind the ARPs, current research is

growing enormously.

The ARPs have their origin in Königsberg bridge problem given in Figure 1.1.

Figure 1.1. Königsberg bridge problem

Königsberg in Prussia (Kaliningrad in Russia now) has seven bridges on Pregel

River. The Swiss mathematician Leonhard Euler (1736) solves the problem of

determining a closed walk visiting each bridge exactly once, and presents necessary

and sufficient conditions for such a walk to exist. For this reason, if a connected

graph has a closed walk visiting each node at least once and each arc exactly once,

that graph is named as Eulerian.

More specifically, the history of the Chinese Postman Problems goes back to the

Chinese Cultural Revolution. A Chinese mathematician Meigu Guan (1962) defines

3

the problem as follows: “A mailman has to cover his assigned segment before

returning to the post office. The problem is to find the shortest walking distance for

the mailman.”

The first proposed version of the CPP considers a single postman and aims to

minimize total cost. The objective of minimizing total cost is of consequence for the

applications such as mail delivery, garbage collection, street cleaning, and snow

removal. This objective is a summation type which is easier to solve than the other

kinds of objectives, and there are polynomial time algorithms for some versions of

the single CPP.

More practical versions of the CPP have been introduced recently with the

perspective that the single CPP is not realistic for many real life applications. There

are usually more than one postman for a mail delivery, and similarly more than one

vehicle are necessary for garbage collection. To incorporate multiple postmen to the

CPP, the k-CPP is firstly presented with the aim of minimizing total cost. However,

the cost minimization objective might not be adequate to represent the real life

considering the time limitation for the applications. For example, total cost objective

may produce different workloads for each snow removal vehicles. One of the snow

removal vehicles may have to visit many streets; whereas, the other vehicles may

have much less work. This allocation results in completing the most loaded work

late; moreover, this completion may not be feasible according to working hours and

weather conditions. For such cases, the k-CPPs with different objectives are proposed

with the aim of workload balancing:

 The Min-Max k-Chinese Postman Problem (MM k-CPP)

 The Minimum Absolute Deviation k-Chinese Postman Problem (MAD k-

CPP)

 The Minimum Square Deviation k-Chinese Postman Problem (MSD k-CPP)

 The Minimum Overtime k-Chinese Postman Problem (MOT k-CPP)

4

The goal of the MM k-CPP is to minimize the length of the longest tour. Since it is

interested in only one tour, workload balancing among other tours is not directly

examined. The other three versions are proposed to form a better workload allocation

among all tours. The MAD k-CPP minimizes the sum of all deviations from an

allowed service time for each postman. The solution of the MAD k-CPP recommends

close distribution of the workloads around the allowed time. To achieve such a

distribution, more workloads than necessary may be assigned to some postmen. The

MSD k-CPP minimizes the sum of squared deviations from an allowed time. The

goal of the squared objective function is to penalize higher deviations, and the

resulting solution has more evenly distribution compared to the MAD k-CPP.

Assigning unnecessary work just for approaching to the allowed time is also possible

for this type of objective. That is to say, the MAD k-CPP and the MSD k-CPP may

directly contradict with minimizing total cost for some cases. The last version is the

MOT k-CPP whose aim is to minimize total overtime. It is similar to the MM k-CPP

because the workloads smaller than the allowed time are not penalized. The

disadvantage of the MOT k-CPP is the need of determining allowed time accurately

because the higher allowed times result in solutions that assign unnecessarily high

workloads to some postmen.

In order to handle the disadvantages of previously defined objectives on the

workload balancing in the k-CPP, we study the directed k-CPP with a different

objective function. Our objective is to minimize the sum of squared workloads over

all postmen. This objective does not use any allowed service time, and it aims to

minimize the deviations between the workloads of all postmen while keeping total

workload at a reasonable level by focusing more on higher deviations. The

nonlinearity of the objective function brings additional challenge to the k-CPP, and

increases its complexity.

Our main motivation is to develop an efficient mathematical model along with

efficient approaches for its solution. We particularly develop an efficient subtour

elimination constraint set that is applicable to all types of the k-CPPs. Our subtour

5

elimination constraint set does not require any additional decision variable or a big M

value.

As in all routing problems, the subtour elimination constraints need to be defined

over all subsets of the node set, hence they are exponential in cardinality. Our

solution approaches are based on efficient incorporation of a subset of subtour

elimination constraints.

Our procedures are of two types: exact algorithms and a heuristic procedure. The

exact algorithms run in exponential time and may not return a solution at the end of a

specified time. The heuristic procedure on the other hand delivers a feasible solution

at its specified termination limit.

The remainder of the thesis is organized as follows. The review of the related

literature is given in Chapter 2. Chapter 3 defines our problem and Chapter 4

explains the subtour elimination constraints. The solution algorithms are explained in

Chapter 5, and the heuristic procedure is given in Chapter 6. The results of our

computational runs are reported in Chapter 7. Lastly, Chapter 8 concludes our study

with our main findings and suggestions for future work.

6

7

CHAPTER 2

LITERATURE REVIEW

The history of the Chinese Postman Problems (CPPs) goes back to the Chinese

Cultural Revolution. The problem is first defined by a Chinese mathematician Meigu

Guan (1962).

The first studies related to the single CPP generally examine the problem on different

graph types with the objective of minimizing total cost. Euler (1736) presents the

basics of the undirected CPP with the conclusion that a connected undirected graph is

Eulerian if and only if all vertices have even degree. For the directed graphs, if the

number of arcs entering and leaving a node is equal, the graph is Eulerian (Ford and

Fulkerson, 1962). Contrary to the undirected CPP, connectedness is not adequate for

the existence of a solution of the directed CPP. For the directed case, there must be a

path between every pair of nodes, and this property is referred as strongly

connectedness (Edmonds and Johnson, 1973). One of the fundamental articles on the

CPP is the study of Edmonds and Johnson (1973). They discuss the CPP on directed,

undirected and mixed graphs using the matching theory and present algorithms to

find Euler tours.

Minieka (1979), Pearn and Liu (1995) and Pearn and Chou (1999) present solution

techniques for the CPP on the mixed graphs. Corberan et al. (2002) apply a

metaheuristic, GRASP, to the mixed CPP. Lin and Zhao (1988) examine the

8

directed CPP and their proposed approach uses transportation problem. For the

mixed CPP, Kappauf and Koehler (1979) and Ralphs (1993) give an Integer Linear

Programming (ILP) formulation and analyze the polyhedron of its linear

programming relaxation. Norbert and Picard (1996) present an ILP model together

with valid cuts.

Malandraki and Daskin (1993) introduce maximum benefit routing problems for the

TSP and CPP. A benefit is gained by a traversing an arc or visiting node for the

Maximum Benefit CPP and the Maximum Benefit TSP, respectively. They present

ILP models for both problem types. Cabral et al. (2002) study the Hierarchical CPP

as an RPP, and solve the problem optimally with a branch-and-cut procedure.

More recently, the focus has changed from the network types to the different variants

of the single CPP. The study of Korteweg and Volgenant (2006) solve the

Hierarchical CPP with linear ordered classes by using a lexicographic objective.

Aminu and Eglese (2006) give two formulations for the CPP with time windows.

One exploits the transformation to a vehicle routing problem, and the other uses a

constraint programming approach.

Compared to the literature of the single CPP, there are a limited number of the k-CPP

studies. The k-CPP models basically focus on the MM k-CPP.

The MM k-CPP is shown to be strongly NP-hard by Frederickson et al. (1978). They

prove the NP-hardness of the problem through a reduction from the k-partition

problem. Frederickson et al. (1978) propose two lower bounds. The first bound uses

shortest path lengths from the depot to the vertices whereas the second divides the

length of the single postman route by the number of vehicles. They also develop a

heuristic procedure and show that in the worst case the heuristic solution deviates

from the optimal solution by a factor of (2 −
1

𝑘
). Ahr and Reinelt (2002) develop

several heuristic procedures for the same problem. Their heuristics consider a

construction step by using an Augment-Merge idea, Clustering, and two different

improvement steps. The results of their computational study reveal the superiority of

9

their heuristics over those of Frederickson et al. (1978). Ahr (2004) develops

improved versions of Frederickson et al. (1978) lower bounds and develop several

heuristic procedures.

Ahr (2004) gives an ILP formulation of the problem including subtour elimination

constraints. He defines aggregated variables and develops parity constraints over the

aggregated variables. He uses parity constraints as valid cuts in his branch and cut

algorithm with gap 1% in a CPU limit of 1 hour, and compares the effect of

branching strategies on the performance of the branch and cut algorithm.

Ahr and Reinelt (2006) and Willemse and Joubert (2012) propose tabu search

algorithms to find high quality approximate solutions in reasonable solution times.

Ahr and Reinelt (2006) propose three different neighborhood structures with linear,

quadratic, and cubic running time complexities. The results of their computational

study reveal that the higher complexity structures lead to better quality solution

however at an expense of higher solution times, and they find the best compromise is

found at quadratic neighborhoods. They also show the superior performance of their

tabu search algorithm over the existing algorithms.

Willemse and Joubert (2012) show that the problem of designing patrol routes for

security estates can be modeled as the MM k-CPP. They assess the quality of their

procedure using the lower bounds by Ahr and Reinelt (2002). They propose a tabu

search algorithm that is shown to be superior to the existing solutions and the one

proposed by Ahr and Reinelt (2006).

Different objectives for the k-CPP are presented in the study of Osterhues and

Mariak (2005). They provide the k-CPP variants using three objective functions

which are minimizing the sum of all deviations from an allowed service time (MAD

k-CPP), minimizing the sum of squared deviations (MSD k-CPP), and minimizing

the sum of overtime for each postman (MOT k-CPP). Similar to the MM k-CPP,

these variants aim to balance postmen loads. They assign different costs to servicing

an edge and traversing an edge without servicing. Afterwards they allocate service

10

edges to the postmen by using an RPP heuristic. They propose a branch and bound

procedure, and find optimal and near-optimal solutions for instances with less than

25 edges.

Shafai and Haghani (2015) present a mathematical model for the maximum benefit

k-CPP which considers some generalizations. The proposed model allows using

different depots and destinations for each postman. Instead of visiting an arc at least

once, multiple visits are aimed to increase security for patrolling and snow plowing

operations. As the time spent by a vehicle is limited, excessive use of a specific arc is

prevented in the model. Lastly, this model eliminates subtours by including

constraints with a big M value and additional binary variables. For the computational

study, they generate different scenarios and use a network with 12 nodes and 36 arcs.

When the number of vehicles is two, they get satisfactory solution times which are

less for the case of fixed depot and destination location than free locations.

Multiple vehicles are introduced in the Windy RPP. Benavent et al. (2009) study the

Min-Max k Vehicles Windy RPP (k-WRPP). They present an ILP model and some

valid inequalities. They develop a branch and cut algorithm based on the polyhedral

description of the problem. They find promising results for the small and medium

sized problem instances with up to 50 nodes and 110 arcs. Benavent et al. (2010)

give a metaheuristic approach to solve the ILP model given in Benavent et al. (2009).

This approach combines a Multi-Start algorithm, a Variable Neighborhood Descent

and Iterated Local Search.

Benavent et al. (2011) present new valid inequalities for the polyhedron of the Min-

Max k-WRPP. Using these new inequalities for separation algorithms and upper

bound given by the metaheuristic in Benavent et al. (2010), they improve the branch

and cut algorithm proposed by Benavent et al. (2009). Their computational study

shows the contribution of the findings to the previous branch and cut procedure.

11

Benavent et al. (2014) develop a branch-price-and-cut algorithm to solve the Min-

Max k-WRPP. They use exact and heuristic column generation techniques

incorporated in their branch and bound algorithm and get satisfactory results.

We, in this study, develop solution algorithms for the total squared workload

problem. Our aim is to balance the workloads of the postmen while keeping the total

load at a reasonable level. Our solution approaches are applicable to various types of

k-CPP with balancing concerns.

12

13

CHAPTER 3

PROBLEM DEFINITION AND THE COMPLEXITY

Consider a directed graph 𝐺 = (𝑁, 𝐴) where 𝐴 is the set of arcs and 𝑁 is the set of

nodes. Arc (𝑖, 𝑗) connects nodes i and j and is characterized by parameter 𝑐𝑖𝑗 which

might represent the cost of connecting arc (𝑖, 𝑗), the distance between node i and

node j, or the time of traversing arc (𝑖, 𝑗). There are K postmen each of which has to

cover at least one arc and each arc should be covered by at least one postman.

We assume that 𝐺 is strongly connected, i.e. there is a path between every pair of

nodes i and j. We refer to node 1 as the depot.

Each postman starts his/her route from the depot and completes the route at the

depot. The route that each postman covers is a sequence of circuits. For example

12131 is a route that might be followed by one postman and defined by two

circuits. We call a circuit a subtour if it does not reside the depot.

The main decision of our problem is defined as follows:

𝑥𝑖𝑗𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎𝑟𝑐 (𝑖, 𝑗) 𝑖𝑠 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 𝑏𝑦 𝑝𝑜𝑠𝑡𝑚𝑎𝑛 𝑘

∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, … , 𝐾

14

The constraints are as defined below:

i. Each arc has to be visited at least once.

 ∑ 𝑥𝑖𝑗𝑘 ≥ 1 ∀(𝑖, 𝑗) ∈ 𝐴

𝐾

𝑘=1

 (1)

ii. The flow should be conserved at each node, i.e. the number of arcs

entering to each node should be equal to the number of leaving arcs.

 ∑ 𝑥𝑖𝑗𝑘

𝑖∈𝑁

= ∑ 𝑥𝑗𝑖𝑘 ∀𝑗 ∈ 𝑁, 𝑘 = 1, … , 𝐾

𝑖∈𝑁

 (2)

iii. Each postman should cover at least one arc.

 ∑ 𝑥1𝑗𝑘 ≥ 1 𝑘 = 1, … , 𝐾 (3)

𝑗∈𝑁

The constraint is redundant if there are no less than K departing arcs from

the depot or no less than K arriving arcs to the depot.

iv. Each tour of a postman should depart from the depot and arrive to the

depot, i.e. there should not be any subtour which is a circuit that does not

reside depot.

 ∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆| ≤ ∑ 𝑥𝑖𝑗𝑘 − 1 ∀ 𝑆 ⊆ 𝑆𝑆, 𝑘 = 1, … , 𝐾 (4)
𝑖∈𝑆,
𝑗∉𝑆

where SS is the set of all subsets of N.

v. The constraint set that supports (0) is as follows:

 𝑤𝑘 = ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝐴

 𝑘

= 1, … , 𝐾 (5)

vi. The nonnegativity and integrality of 𝑥𝑖𝑗𝑘 is stated below.

 𝑥𝑖𝑗𝑘 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, … , 𝐾 (6)

Constraint set (4) will be discussed in Chapter 4.

15

Our objective function is to minimize the sum of the squared workloads and is

expressed as

𝑀𝑖𝑛 ∑ (∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝐴

)

2
𝐾

𝑘=1

≡ 𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 (7)

Minimizing ∑ 𝑤𝑘
2𝐾

𝑘=1 aims to reduce the deviations between the workloads of the

postmen. Through the following example, we show that minimizing total load, i.e.

∑ 𝑤𝑘
𝐾
𝑘=1 , is not equivalent to minimizing total squared load.

Consider the following two solutions, 𝑆1 and 𝑆2

𝑆1: 𝑤1(𝑆1) = 1 𝑤2(𝑆1) = 9

𝑆2: 𝑤1(𝑆2) = 6 𝑤2(𝑆2) = 6

𝑆2 is more balanced and favored by our objective function as

(𝑤1(𝑆1))
2

+ (𝑤2(𝑆1))
2

= 1 + 81 = 82

(𝑤1(𝑆2))
2

+ (𝑤2(𝑆2))
2

= 36 + 36 = 72

The total loads of the solutions are as follows:

𝑤1(𝑆1) + 𝑤2(𝑆1) = 1 + 9 = 10

𝑤1(𝑆2) + 𝑤2(𝑆2) = 6 + 6 = 12

Note that 𝑆1 is favored for total load minimization, whereas 𝑆2 is favored for total

squared load minimization.

Moreover our objective favors smaller total load when compared to the total squared

deviation objective. Consider the following two solutions, 𝑆2 and 𝑆3.

16

𝑆2: 𝑤1(𝑆2) = 6 𝑤2(𝑆2) = 6

𝑆3: 𝑤1(𝑆3) = 3 𝑤2(𝑆3) = 6

Assume the deviation is minimized around a service time 6 units.

(𝑤1(𝑆2) − 6)2 + (𝑤2(𝑆2) − 6)2 = 0 + 0 = 0

(𝑤1(𝑆3) − 6)2 + (𝑤2(𝑆3) − 6)2 = (3 − 6)2 + 0 = 9

The squared workloads:

(𝑤1(𝑆2))2 + (𝑤2(𝑆2))2 = 36 + 36 = 72

(𝑤1(𝑆3))2 + (𝑤2(𝑆3))2 = 9 + 36 = 45

Note that 𝑆2 is favored for total squared deviation, whereas 𝑆3 is favored for total

squared workloads. 𝑆2 has higher total workload than 𝑆3.

Our problem is minimizing (7) subject to the constraint sets (1) through (6). We

hereafter refer to the problem as (𝑃), and the constraint sets (1), (2), (3), (5) and (6)

as 𝑥 ∈ 𝑋. We restate (𝑃) in a compact form as follows:

 (𝑃)

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to

 𝑥 ∈ 𝑋
 Subtour elimination constraints

Consider the following graph 𝐺 when there are two postmen.

17

1 2

3

5

6

4

Figure 3.1. An example directed graph 𝑮

The open form of the k-CPP model for this graph is as follows:

 𝑀𝑖𝑛 ∑(𝑤𝑘)2

2

𝑘=1

subject to

𝑤𝑘 = 𝑐12𝑥12𝑘 + 𝑐23𝑥23𝑘 + 𝑐31𝑥31𝑘 + 𝑐24𝑥24𝑘 + 𝑐46𝑥46𝑘 + 𝑐45𝑥45𝑘 + 𝑐54𝑥54𝑘

+ 𝑐65𝑥65𝑘 + 𝑐41𝑥41𝑘 𝑘 = 1,2

∑ 𝑥12𝑘

2

𝑘=1

≥ 1, ∑ 𝑥23𝑘

2

𝑘=1

≥ 1, ∑ 𝑥31𝑘

2

𝑘=1

≥ 1, ∑ 𝑥24𝑘

2

𝑘=1

≥ 1

∑ 𝑥46𝑘

2

𝑘=1

≥ 1, ∑ 𝑥45𝑘

2

𝑘=1

≥ 1, ∑ 𝑥54𝑘

2

𝑘=1

≥ 1, ∑ 𝑥65𝑘

2

𝑘=1

≥ 1, ∑ 𝑥41𝑘

2

𝑘=1

≥ 1

𝑥12𝑘 = 𝑥24𝑘 + 𝑥23𝑘 𝑘 = 1,2

𝑥12𝑘 = 𝑥31𝑘 𝑘 = 1,2

𝑥23𝑘 = 𝑥31𝑘 𝑘 = 1,2

𝑥24𝑘 + 𝑥54𝑘 = 𝑥45𝑘 + 𝑥46𝑘 𝑘 = 1,2

𝑥45𝑘 + 𝑥65𝑘 = 𝑥54𝑘 𝑘 = 1,2

𝑥46𝑘 = 𝑥65𝑘 𝑘 = 1,2

𝑥45𝑘 + 𝑥54𝑘 + 𝑥46𝑘 + 𝑥65𝑘 − 4 ≤ 𝑥24𝑘 − 1 𝑘 = 1,2

𝑥𝑖𝑗𝑘 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1,2

18

Note that (𝑃) is a Pure Integer Model. Its complexity stems from the integrality

requirements on the decision variables and subtour elimination constraints that are

defined for each subtour alternative and postman. As there is exponential number of

subtour alternatives, there is exponential number of subtour elimination constraints.

The following theorem states the complexity of (𝑃).

Theorem. (𝑃) is strongly NP-Hard.

Proof. The k-CPP with total cost minimization is shown to be strongly NP-complete.

(See Gutin et al. (2013)). This follows that the decision version of (𝑃) is strongly

NP-complete as it resides the same constraint set with the total minimization

problem. Therefore, (𝑃) is strongly NP-hard problem.

19

CHAPTER 4

SUBTOUR ELIMINATION CONSTRAINTS

In this chapter, we first review the subtour elimination constraints that are defined for

the CPP and RPP in the literature. Then, we discuss our subtour elimination

constraint, and present the algorithm that is used for detecting the subtours. Finally,

we introduce an aggregated subtour constraint.

4.1. REPORTED SUBTOUR ELIMINATION CONSTRAINTS

In the literature, several subtour elimination constraints are proposed for different

versions of the CPP and RPP. Those subtour elimination constraints either require a

set of binary variables or a big M value on the collection of the flow variables.

Golden and Wong (1981) define two types of subtour elimination constraints for the

Capacitated Arc Routing Problem. The first type is applicable to the binary

assignments for the flow problem, hence different from our problem environment.

The second one is as stated below:

∑ 𝑓𝑖𝑟𝑘 − ∑ 𝑓𝑟𝑖𝑘

𝑛

𝑟=1

= ∑ 𝑙𝑖𝑗𝑘 𝑖 = 2, … , 𝑛

𝑛

𝑗=1

𝑛

𝑟=1

; 𝑘 = 1, … , 𝐾

𝑓𝑖𝑗𝑘 ≤ |𝑁|2𝑥𝑖𝑗𝑘 ∀(𝑖, 𝑗) ∈ 𝐴; 𝑘 = 1, … , 𝐾 , 𝑓𝑖𝑗𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴; 𝑘 = 1, … , 𝐾

20

where n is the number of nodes, K is the number of vehicles, 𝑥𝑖𝑗𝑘 and 𝑙𝑖𝑗𝑘 are binary

variables indicating that arc (𝑖, 𝑗) is visited by postman k, 𝑓𝑖𝑗𝑘 is a flow variable

which can take positive values if 𝑥𝑖𝑗𝑘 = 1.

The relation between 𝑥𝑖𝑗𝑘 and 𝑙𝑖𝑗𝑘 is explained with the below constraints:

𝑥𝑖𝑗𝑘 ≥ 𝑙𝑖𝑗𝑘 ∀(𝑖, 𝑗) ∈ 𝐴; 𝑘 = 1, … , 𝐾 , ∑ 𝑙𝑖𝑗𝑘 + 𝑙𝑗𝑖𝑘 = ⌈
𝑞𝑖𝑗

𝑊
⌉ ∀(𝑖, 𝑗) ∈ 𝐴

𝐾

𝑘=1

∑ ∑ 𝑙𝑖𝑗𝑘𝑞𝑖𝑗 ≤ 𝑊 𝑘 = 1, … , 𝐾

𝑛

𝑗=1

𝑛

𝑖=1

where 𝑞𝑖𝑗 is the demand of arc (𝑖, 𝑗) and 𝑊 is the vehicle capacity.

Dror and Leung (1998) present a subtour elimination constraint set that does not use

any binary variable for the Capacitated Rural Postmen Problem, however a big M

value that is defined as an upper bound on the sum of the optimal values of the set of

flow variables. Their set is as stated below:

𝑀 ∑ 𝑥𝑖𝑗𝑘 ≥ ∑ 𝑥𝑗𝑙𝑘 ∀𝑆 ⊆ 𝑅, 1 ∉ 𝑁[𝑆]

(𝑗,𝑙)∈𝑆𝑖 ∉ 𝑁[𝑆],𝑗∈ 𝑁[𝑆]

, 𝑘 = 1, … , 𝐾

where 𝑅 is the required arc set, 𝑁[𝑆] is the set of nodes incident to the arc set 𝑆 ⊆ 𝑅,

K is the upper bound on the number of vehicles.

Dror and Leung (1998) also show a simpler version of subtour elimination constraint

for the uncapacitated case:

𝑅[𝑆] ∑ ∑ 𝑥𝑖𝑗𝑘 ≥ ∑ 𝑦𝑖𝑗𝑘 ∀𝑆 ⊆ 𝑁\{1}; 𝑆 ≠ ∅; 𝑆 ∩ 𝑁[𝑅] ≠ ∅; 𝑘 = 1, … , 𝐾
(𝑖,𝑗)∈𝑅[𝑆]𝑗∉𝑆𝑖∈𝑆

where 𝑁[𝑅] is the set of nodes incident to arcs in arc set 𝑅, 𝑅[𝑆] is the set of required

arcs incident to or from a node in 𝑆, and 𝑦𝑖𝑗𝑘 is a binary variable.

21

Shafahi and Haghani (2015) define the following subtour elimination constraint sets

∑ 𝑥𝑗𝑖𝑘 + ∑ 𝑥𝑖𝑗𝑘 ≤ 2𝑀𝑏𝑖𝑘 ∀𝑖 ∈ 𝑁, 𝑘 = 1, … , 𝐾

𝑗∈𝑁𝑗∈𝑁

∑ 𝑦𝑖𝑗𝑘 − ∑ 𝑦𝑗𝑖𝑘 = −1𝑏𝑖𝑘

𝑗∈𝑁𝑗∈𝑁

 ∀𝑖 ∈ (𝑁 − 𝑂𝑘), 𝑘 = 1, … , 𝐾

𝑦𝑖𝑗𝑘 ≤ 𝑀𝑥𝑖𝑗𝑘 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, … , 𝐾

where 𝑥𝑖𝑗𝑘 represents flow, 𝑏𝑖𝑘 and 𝑦𝑖𝑗𝑘 are dummy decision variables to eliminate

subtours, and 𝑂𝑘 is the origin of vehicle k. 𝑏𝑖𝑘 is binary to indicate whether node i

visited by vehicle k, and 𝑦𝑖𝑗𝑘 is a continuous variable representing the artificial flow

from node i to node j.

Note that these constraints do not only require additional binary variables but also a

big M value. Recognizing the difficulties in using the subtour elimination constraints

in the literature, we develop a new subtour elimination constraint that requires

neither any binary variable nor a big M value.

4.2. PROPOSED SUBTOUR ELIMINATION CONSTRAINTS

Subtour of postman k is defined as a circuit formed by postman k that is not

connected to any other circuit formed by postman k, and that does not reside the

depot node, i.e. node 1.

Consider the following graph again.

22

1 2

3

5

6

4

Figure 4.1. An example directed graph 𝐺

Let K=2 and consider the following postman assignments.

 Postman 1 Postman 2

1 2 4

1 2

3

5

6

4

𝑥121 = 𝑥241 = 𝑥411 = 1 𝑥122 = 𝑥232 = 𝑥312 = 1,

 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑥𝑖𝑗1 = 0 𝑥542 = 2, 𝑥452 = 𝑥462 = 𝑥652 = 1

 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑥𝑖𝑗2 = 0

Figure 4.2. A solution with a subtour to the example problem

Note that circuit 1231 is not connected to the circuit 454654 that

is covered by the same postman. They are not connected, therefore

454654 is a subtour. Postman 1 has a single circuit 1241, hence

the resulting circuit is a tour.

23

The solution satisfies all constraints of the k-CPP except that, postman 2 has

subtours. To prevent such a case, we introduce a new subtour elimination constraint

set that takes its spirit from the Traveling Salesman Problem (TSP) subtour

elimination constraints.

One of the subtour elimination constraints used by the TSP is as stated below:

∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

≤ |𝑆| − 1 ∀ 𝑆 ⊆ 𝑁, 2 ≤ |𝑆| ≤ 𝑛 − 2, 𝑘 = 1, … , 𝐾

This relation prevents any circuit, however the k-CPP allows connected circuits. That

is a circuit is allowed provided that it has any outflow, thereby inflow. Accordingly

for postman 2, 4654 should be avoided as it has no outflow. However,

454 is allowed as there is an outflow via the arc (4, 6) and inflow via the arc

(6, 5).

In the k-CPP, the circuit 𝑆, i.e. ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑆 = |𝑆|, is allowed, if there are outflows

from (inflows to) 𝑆. The outflows from 𝑆 would be forced by ∑ 𝑥𝑖𝑗𝑘 ≥ 1𝑖∈𝑆,
𝑗∉𝑆

. It

follows that we require ∑ 𝑥𝑖𝑗𝑘 ≥ 1𝑖∈𝑆,
𝑗∉𝑆

 only when ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑆 = |𝑆|. Mathematically,

we express this condition as:

∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆| ≤ ∑ 𝑥𝑖𝑗𝑘 − 1 ∀ 𝑆 ⊆ 𝑆𝑆, 𝑘 = 1, … , 𝐾
𝑖∈𝑆,
𝑗∉𝑆

 (4)

where SS is the set of all subsets of N.

Note that if there is a circuit, i.e. ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑆 = |𝑆| then there is an outflow from that

circuit, i.e. ∑ 𝑥𝑖𝑗𝑘 ≥ 1𝑖∈𝑆,
𝑗∉𝑆

. If there is no circuit, ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑆 < |𝑆|, ∑ 𝑥𝑖𝑗𝑘𝑖∈𝑆,
𝑗∉𝑆

 can

take any nonnegative value.

This follows that (4) is a valid subtour elimination constraint.

24

4.3. DETECTING SUBTOURS

Consider an optimal solution to the following problem.

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to

 𝑥 ∈ 𝑋

 Partial set of subtour elimination constraints

The subtours that appear in the optimal solution can be detected by the subtour

detection algorithms. One of those algorithms that is widely used in the literature is

due to Hierholzer’s (1873). In our study, we use Hierholzer’s algorithm to detect the

subtours of any graph. For the sake of completeness, we state the steps of the

algorithm.

Procedure to Detect Subtours

Initialize 𝑖 = 1, 𝑠 = 0, 𝑆 = ∅, 𝐶0 = ∅

Step 0. Starting with node 1, construct a circuit such that the end of an arc is the

beginning of the following arc. The construction step always results in a closed trail.

If 𝐶1 contains all arcs on 𝐺, stop. Otherwise, mark the arcs used in 𝐶1.

𝑖 = 𝑖 + 1

Step 1. Choose a node included in the unmarked arcs and construct a new circuit.

Step 2. If there is a common node between the constructed circuit and 𝐶𝑖−1, insert the

constructed circuit into 𝐶𝑖−1 by appending to that node. The resulting circuit is 𝐶𝑖.

25

Step 2.1. If 𝑆 ≠ ∅ and there is a common node between 𝑆 and 𝐶𝑖, insert as many as

subtours as possible to the 𝐶𝑖 by appending it to that node. The resulting circuit is 𝐶𝑖.

Remove the inserted subtours from the set 𝑆.

Step 2.2. If there is no common node between 𝑆 and 𝐶𝑖, it means the previous

subtours remain the same.

Step 3. If there is no common node between the constructed circuit and 𝐶𝑖−1, it

means there is a subtour.

Step 3.1. If 𝑆 = ∅, add it to the set 𝑆.

Step 3.2. If 𝑆 ≠ ∅, look for a common node in the previous subtours and the newly

found subtour. If there exists such a node, insert it into the previous subtours and

update the set 𝑆. If there is not, add the new tour to the set 𝑆.

Step 4. If 𝐶𝑖 ∪ 𝑆 contains all arcs on 𝐺, stop, the Eulerian circuit and possible

subtours are found.

Step 5. If 𝐶𝑖 ∪ 𝑆 does not contain all arcs on 𝐺, mark the arcs used in 𝐶𝑖 ∪ 𝑆.

𝑖 = 𝑖 + 1

Go to Step 1.

4.4. AGGREGATED SUBTOURS

We call a subtour as aggregated if it resides a number of subtours in an added form.

Assume R is the set of subtours that appear in any solution. In place of adding each

subtour constraint separately, one may prefer the following aggregated constraint en

route to obtaining a quicker solution however with no guarantee of individual

subtour elimination.

26

An optimal solution to the 𝑀𝑖𝑛 ∑ 𝑤𝑘
2𝐾

𝑘=1 subject to 𝑥 ∈ 𝑋 problem, say LB, is a

lower bound on (𝑃). If the resulting solution resides no subtour, it is optimal for (𝑃).

If it resides, say R subtours, then an optimal solution to the following problem, say

𝐿𝐵1, is another lower bound.

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to

𝑥 ∈ 𝑋

 ∑ ∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆|

𝑆∈𝑅

≤ ∑ ∑ 𝑥𝑖𝑗𝑘 − 1 𝑘 = 1, … , 𝐾
𝑖∈𝑆,
𝑗∉𝑆

𝑆∈𝑅

Note that 𝐿𝐵1 ≥ 𝐿𝐵. A more powerful lower bound, 𝐿𝐵2, is available through the

optimal solution of the below problem.

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to

 𝑥 ∈ 𝑋

 ∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆| ≤ ∑ 𝑥𝑖𝑗𝑘 − 1 ∀ 𝑆 ⊆ 𝑅, 𝑘 = 1, … , 𝐾
𝑖∈𝑆,
𝑗∉𝑆

Recall that compared to 𝐿𝐵1, 𝐿𝐵2 provides a better estimate on the optimal objective

function value, i.e. 𝐿𝐵2 ≥ 𝐿𝐵1, however it is obtained at an expense of higher

computational effort.

27

CHAPTER 5

SOLUTION ALGORITHMS

We propose three solution algorithms each of which is based on the optimal solutions

of the integer models that consider a subset of subtour elimination constraints. Below

is the detailed description of our algorithms.

5.1. ALGORITHM I

The algorithm first solves the integer model by relaxing all subtour elimination

constraints. If the resulting solution resides no subtours for each postman then it is

optimal. If there exists at least one subtour for any postman then the optimal solution

of the relaxed model gives a lower bound. In such a case, the algorithm adds subtour

elimination constraints for all produced subtours and resolves the integer model with

added subtours for all postmen. If the resulting solution has no subtours then we stop,

otherwise we add the new subtours while keeping all previously produced subtours.

We continue in this manner until a solution with no subtour is reached. Addition of

each subtour set improves the lower bound and the lower bound at the termination is

the optimal objective function value.

We now give the stepwise description of the algorithm.

28

Algorithm I

Step 0. Solve (𝑃0)

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to 𝑥 ∈ 𝑋

 𝑡 = 0

Step 1. Let 𝑆𝑡 be the set of subtours generated by the optimal solution of (𝑃𝑡)

 If 𝑆𝑡 = ∅ then the resulting solution is optimal

 𝑡 = 𝑡 + 1

Step 2. Solve (𝑃𝑡)

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to 𝑥 ∈ 𝑋

 All subtours in ⋃ 𝑆𝑗

𝑡−1

𝑗=0

 Go to Step 1.

The following example illustrates Algorithm 1. Assume that the k-CPP model

without subtour elimination constraints produces three subtours for three postmen on

the directed graph 𝐺 given in Figure 5.1.

29

Figure 5.1. An example directed graph for solution algorithms

The subtours are given as follows.

8
6

7

910

11

13

14

12 15

16

17

18

Figure 5.2. The subtours generated from the solution on the graph in Figure 5.1

Algorithm I adds three subtour elimination constraints for each postman to prevent

the generated subtours:

30

∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆| ≤ ∑ 𝑥𝑖𝑗𝑘 − 1 ∀ 𝑆 ⊆ 𝑆𝑆, 𝑘 = 1, . . . , 𝐾
𝑖∈𝑆,
𝑗∉𝑆

𝑥67𝑘 + 𝑥78𝑘 + 𝑥86𝑘 − 3 ≤ 𝑥48𝑘 + 𝑥58𝑘 + 𝑥79𝑘 + 𝑥89𝑘 − 1 𝑘 = 1, . . . , 𝐾

𝑥9,10𝑘 + 𝑥10,11𝑘 + 𝑥11,12𝑘 + 𝑥12,13𝑘 + 𝑥13,11𝑘 + 𝑥12,14𝑘 + 𝑥14,9𝑘 − 8 ≤ 𝑥79𝑘 +

𝑥89𝑘 + 𝑥12,16𝑘 + 𝑥13,19𝑘 + 𝑥13,15𝑘 − 1 𝑘 = 1, . . . , 𝐾

𝑥15,16𝑘 + 𝑥16,17𝑘 + 𝑥17,18𝑘 + 𝑥18,15𝑘 − 4

≤ 𝑥12,16𝑘 + 𝑥13,15𝑘 + 𝑥18,1𝑘 − 1 𝑘 = 1, . . . , 𝐾

5.2. ALGORITHM II

The algorithm also uses the idea of adding subtours to the integer model, however in

a limited extent. It starts as in Algorithm I by ignoring all subtour elimination

constraints, and treats the subtours in two ways:

1. Selects one of the subtours generated and adds the selected subtour to each

postman.

2. Aggregates all other subtours, and adds the aggregated subtour constraint to

each postman.

Hence, it adds two types of subtour elimination constraints for each postman, one

original constraint and one aggregated constraint.

Each of the subtours generated by the model is added as an original constraint while

the rest is treated as aggregated. In doing so, we obtain R solutions if R subtours are

generated. We select the solution having the largest objective function value, thereby

lower bound value, with the hope of reaching the optimal solution quicker. If the

selected solution resides no subtours, we stop as the optimal solution is reached. If

there is at least one subtour then we continue to add one original tour and one

31

aggregated tour and make the further selections according to the maximum lower

bound rule.

Below is the stepwise description of Algorithm II.

Algorithm II

Step 0. Solve (𝑃0)

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to 𝑥 ∈ 𝑋

 𝑡 = 0

 𝐹 = ∅

Step 1. Let 𝑆𝑡 be the set of subtours generated by the optimal solution of 𝑃𝑡.

 If 𝑆𝑡 = ∅ then the resulting solution is optimal, stop.

 𝑡 = 𝑡 + 1

 Define 𝑃𝑡,𝑟 for each 𝑟 ∈ 𝑆𝑡

 Solve (𝑃𝑡,𝑟)

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to 𝑥 ∈ 𝑋

 Subtours r

 Aggregated subtour �̅�

Step 2. Let 𝑧𝑡𝑟 be the optimal objective function value.

 Select subtour f such that

 𝑧𝑡𝑓 = max𝑟{ 𝑧𝑡𝑟}

 𝐹 = 𝐹 ∪ {𝑓}

 Let 𝑆𝑡𝑓 be the set of subtours by the optimal solution of 𝑃𝑡,𝑓

 If 𝑆𝑡𝑓 = ∅ then the resulting solution is optimal, stop.

32

 For each 𝑟 ∈ 𝑆𝑡𝑓 define

 (𝑃𝑡,𝑟)

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to 𝑥 ∈ 𝑋

 Subtours r and set F

 Aggregated subtour 𝑆𝑡𝑓/{𝑟}

 Go to Step 2.

5.3. ALGORITHM III

The algorithm proceeds as in Algorithm II except that the subtour is selected

randomly. In such a case, one spends relatively low computation time, however at an

expense of evaluating more problems with different sets of subtour elimination

constraints. Below is the stepwise description of Algorithm III.

Algorithm III

Step 0. Solve (𝑃0)

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to 𝑥 ∈ 𝑋

 𝑡 = 0

 𝐹 = ∅

Step 1. Let 𝑆𝑡 be the set of subtours generated by 𝑃𝑡.

 If 𝑆𝑡 = ∅ then stop.

 Select a subtour in 𝑆𝑡 randomly. Let f be the selected subtour.

 𝑡 = 𝑡 + 1

33

 𝐹 = 𝐹 ∪ {𝑓}

 Solve (𝑃𝑡)

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 subject to 𝑥 ∈ 𝑋

 Subtour r ∈ F

 Aggregated subtour 𝑆𝑡𝑓/{𝑟}

 Go to Step 1.

We now illustrate the execution of Algorithm II and Algorithm III. The subtours

given in Algorithm I can be selected and added by following the procedure of

Algorithm II or Algorithm III.

If the first subtour given in Figure 5.3 is added as an original subtour, the

corresponding constraints added to the model are stated as follows:

8
6

7

Figure 5.3. The first subtour as the original subtour

𝑥67𝑘 + 𝑥78𝑘 + 𝑥86𝑘 − 3 ≤ 𝑥48𝑘 + 𝑥58𝑘 + 𝑥79𝑘 + 𝑥89𝑘 − 1 𝑘 = 1, … , 𝐾

𝑥9,10𝑘 + 𝑥10,11𝑘 + 𝑥11,12𝑘 + 𝑥12,13𝑘 + 𝑥13,11𝑘 + 𝑥12,14𝑘 + 𝑥14,9𝑘 + 𝑥15,16𝑘 +

𝑥16,17𝑘 + 𝑥17,18𝑘 + 𝑥18,15𝑘 − 12 ≤ 𝑥79𝑘 + 𝑥89𝑘 + 𝑥12,16𝑘 + 𝑥13,19𝑘 + 𝑥13,15𝑘 +

𝑥18,1𝑘 − 2 𝑘 = 1, … , 𝐾

34

If the second subtour given in Figure 5.4 is added, the following constraints are

included in the model:

910

11

13

14

12

Figure 5.4. The second subtour as the original subtour

𝑥9,10𝑘 + 𝑥10,11𝑘 + 𝑥11,12𝑘 + 𝑥12,13𝑘 + 𝑥13,11𝑘 + 𝑥12,14𝑘 + 𝑥14,9𝑘 − 8 ≤ 𝑥79𝑘 +

𝑥89𝑘 + 𝑥12,16𝑘 + 𝑥13,19𝑘 + 𝑥13,15𝑘 − 1 𝑘 = 1, … , 𝐾

𝑥15,16𝑘 + 𝑥16,17𝑘 + 𝑥17,18𝑘 + 𝑥18,15𝑘 + 𝑥67𝑘 + 𝑥78𝑘 + 𝑥86𝑘 − 7 ≤ 𝑥12,16𝑘 +

𝑥13,15𝑘 + 𝑥18,1𝑘 + 𝑥48𝑘 + 𝑥58𝑘 + 𝑥79𝑘 + 𝑥89𝑘 − 2 𝑘 = 1, … , 𝐾

If the third subtour given in Figure 5.5 is added, the following constraints are

included in the model:

15

16

17

18

Figure 5.5. The third subtour as the original subtour

35

𝑥15,16𝑘 + 𝑥16,17𝑘 + 𝑥17,18𝑘 + 𝑥18,15𝑘 − 4

≤ 𝑥12,16𝑘 + 𝑥13,15𝑘 + 𝑥18,1𝑘 − 1 𝑘 = 1, … , 𝐾

𝑥67𝑘 + 𝑥78𝑘 + 𝑥86𝑘 + 𝑥9,10𝑘 + 𝑥10,11𝑘 + 𝑥11,12𝑘 + 𝑥12,13𝑘 + 𝑥13,11𝑘 + 𝑥12,14𝑘 +

𝑥14,9𝑘 − 11 ≤ 𝑥48𝑘 + 𝑥58𝑘 + 𝑥79𝑘 + 𝑥89𝑘 + 𝑥12,16𝑘 + 𝑥13,19𝑘 + 𝑥13,15𝑘 −

2 𝑘 = 1, … , 𝐾

36

37

CHAPTER 6

HEURISTIC PROCEDURE

In this section, we propose a heuristic procedure that runs in polynomial time. Our

aim is to obtain a high quality solution where the optimization algorithms fail to

return an optimal solution.

Our heuristic procedure proceeds in two phases. Phase I is the construction phase

where the initial solution is constructed. Phase II improves the initial solution of

Phase I by interchanges between the arc assignments.

6.1. PHASE I: CONSTRUCTION

In the construction step, we solve the single CPP with the objective of minimizing

total cost and take its solution to form a feasible solution for the k-CPP.

Our construction heuristic enumerates all circuits that reside the depot, and allocates

the circuits to the postmen in a balanced way, each the most loaded circuit to the

least loaded postman.

Below is the stepwise description of the construction heuristic.

38

Step 1. Solve the following single CPP.

𝑀𝑖𝑛 ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

subject to

 𝑥𝑖𝑗 ≥ 1 ∀ (𝑖, 𝑗)

 ∑ 𝑥𝑖𝑗 = ∑ 𝑥𝑗𝑖

𝑖

 ∀ 𝑗

𝑖

 𝑥𝑖𝑗 ≥ 0 ∀ (𝑖, 𝑗)

The single CPP with total cost minimization does not require any subtour elimination

constraint.

Step 2. Using the solution of the single CPP, determine all tours beginning with and

ending at node 1. Let 𝑅 be the number of such circuits.

Step 3. Order the circuits in nondecreasing total costs, i.e. obtain a Longest

Processing Time (LPT) order.

Step 4. Starting with the first circuit, assign each circuit of the order to the least

loaded postman. If there are 𝑅 < 𝑘 circuits, repeat the last circuit of the order,

(𝑘 − 𝑅) times.

The heuristic guarantees a feasible solution with an arc assignment to each postman.

6.2. PHASE II: IMPROVEMENT

In the improvement step, we reduce the objective function value by defining

interchanges between the assignments of two postmen. In doing so, we select the

postmen having the longest and shortest tours, and allow insertion of an arc from a

long tour to a short tour. If any improvement cannot be realized for a defined number

of iterations, then we proceed to the second longest and/or second shortest tours.

39

We terminate whenever our time limit of 1800 seconds is reached. For K=2, we put

the number of nonimproving solutions as a termination limit.

We use two models in our improvement phase. The first model is called balancing

model. The model aims to construct a feasible solution for a single postman. The

model is as stated below.

𝑀𝑖𝑛 ∑ 𝑠𝑝𝑖𝑗𝑡𝑖𝑗

(𝑖,𝑗)

subject to

∑ 𝑡𝑖𝑗 = 𝑑𝑖 ∀𝑖

𝑗

∑ 𝑡𝑖𝑗 = 𝑠𝑗 ∀𝑗

𝑖

 𝑡𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗)

where 𝑠𝑝𝑖𝑗 : the cost of the shortest path between node i and node j

 𝑡𝑖𝑗 : the number of connections formed between node i and node j.

 𝑑𝑖 : the demand of node i.

 𝑠𝑗 : the supply of node j.

The second model is called subtour elimination model. The model aims to prevent

the subtours of a postman. The model is as follows:

𝑀𝑖𝑛 ∑ (𝑠𝑝𝑖𝑗𝑧𝑖𝑗 + 𝑠𝑝𝑗𝑖𝑧𝑗𝑖)

𝑖 ∈𝑇,𝑗∈𝑆

subject to

 ∑ 𝑧𝑖𝑗 = 1

𝑖 ∈𝑇,𝑗∈𝑆

 ∑ 𝑧𝑗𝑖 = 1

𝑖 ∈𝑇,𝑗∈𝑆

 𝑧𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗)

40

where T : the set of nodes in a circuit that resides depot.

 S : the set of nodes that does not reside depot.

 𝑠𝑝𝑖𝑗 and 𝑠𝑝𝑗𝑖: the cost of the shortest path between node i and node j, and

node j and node i, respectively.

 𝑧𝑖𝑗 and 𝑧𝑗𝑖 : the variable indicating which nodes are connected on the circuit

and the subtour.

Below is the stepwise description of the improvement step.

Step 1: Find the most costly tour (long tour) and the least costly tour (short tour).

Step 2: If an arc is traversed by only postman i, the arc is called a required arc of that

postman. For the long tour and short tour, determine the required and non-required

arcs. Additionally, identify the arcs used on all other tours. Our aim is to identify the

arcs included on both long tour and short tour, but not contained on any other tours.

The presence of such arcs requires additional operation in Step 4a.

Step 3: If the long tour does not contain any required arcs, change it to the short tour,

and select the second most costly tour as the long tour. If the second most costly tour

also includes only non-required arcs, take the third most costly tour as the long tour.

This step is repeated until a tour with at least one required arc is reached.

Step 4: Remove each required arc on the long tour and insert it into the short tour.

Report the final long tour, short tour and update their total squared costs. The process

is as follows:

Step 4a: For the long tour, remove the selected required arc and other non-required

arcs. (If an arc is non-required for both long tour and short tour, but it is not used on

any other tours, remove it from the long tour.) Using remaining arcs, calculate the

demand and supply amounts for each node to form a balanced network.

For the short tour, remove all non-required arcs. If an arc is non-required for both

long tour and short tour, but it is not used on any other tours, keep it on the short

41

tour. Combining the arc with the selected required arc of the long tour and the

required arcs of the short tour, calculate the necessary demand and supply amounts

for each node to form a balanced network.

For both tours, if depot has no demand and no supply, indicate it as a transshipment

node with unit demand and unit supply. Construct a feasible tour including the depot.

Step 4b: Balance the nodes on the long tour and the short tour solving the balancing

model.

While finding the shortest path between node i and node j, the cost of the removed

arc from the long tour is assigned an artificially large number so as to obtain a

different path between those nodes, if there exists any. Otherwise, the removed arc is

used again and the objective function value is calculated with its artificial cost. For

comparison, its actual cost is used at the end of all removal and insertion trials.

Step 4c: Using the remaining arcs in Step 4a and the necessary arcs on the shortest

paths according to the results of the model in Step 4b, determine the final traversal. If

the model gives the solution with at least one subtour, prevent them starting with the

first subtour. Use all arcs on the circuit including depot and the subtour. Solve the

subtour elimination model.

While finding the shortest path, the removed arc is avoided by assigning a large cost

for the long tour similar to Step 4b.

The shortest paths between the connection points found with the model determine the

necessary arcs to combine the circuit and the subtour.

If there are more than one subtour at the beginning of this step, try to insert other

subtours on the final circuit obtained with above operations. If there are no common

arcs, repeat this step.

42

Step 4d: Save the results of the removal and insertion step of each arc. Final long

tour, final short tour, and their total squared costs after removal and insertion are

necessary for the comparison.

Step 5: Select the arc which results in a maximum reduction in total squared cost,

and continue with the corresponding long and short tour. Repeat Step 4 maximum

number of iterations. If the final long tour and short tour are the same as the tours of

any previous iteration, select the next least costly tours which are not found before

with the removal and insertion of a required arc on the long tour at the end of Step 4.

If no improvement of the best solution is achieved during maxNonimprovingMove,

different tours other than the shortest and the longest ones can be selected in Step 1.

For K > 2, the selection procedure is updated as follows:

 Set #MoveWithoutImprovement to 0 at the beginning of the algorithm.

Step a. While #MoveWithoutImprovement < maxNonimprovingMove, continue

with the longest and shortest tour in Step 1.

Step b. If #MoveWithoutImprovement = maxNonimprovingMove, take the second

shortest tour as the short tour. Set #MoveWithoutImprovement to 0. While

#MoveWithoutImprovement < maxNonimprovingMove, continue with the longest

and second shortest tour until the shortest or the longest tour changes in Step 1.

Step c. If #MoveWithoutImprovement < maxNonimprovingMove, and the shortest

or the longest tour changes, set #MoveWithoutImprovement to 0, and go to Step

a.

Step d. If #MoveWithoutImprovement = maxNonimprovingMove and both tours

are same as the previous ones, take the second longest tour as the long tour. Set

#MoveWithoutImprovement to 0. While #MoveWithoutImprovement <

43

maxNonimprovingMove, continue with the second longest tour and the shortest

tour until the shortest or the longest tour changes in Step 1.

Step e. If #MoveWithoutImprovement < maxNonimprovingMove, and the shortest

or the longest tour changes, set #MoveWithoutImprovement to 0, and go to Step

a.

Step f. If #MoveWithoutImprovement = maxNonimprovingMove and both tours

are the same, take the second longest tour as the long tour and the second shortest

tour as the short tour. Set #MoveWithoutImprovement to 0. While

#MoveWithoutImprovement < maxNonimprovingMove, continue with the second

longest tour and the second shortest tour until the shortest or the longest tour

changes in Step 1.

Step g. If #MoveWithoutImprovement < maxNonimprovingMove, and the shortest

or the longest tour changes, set #MoveWithoutImprovement to 0, and go to Step

a.

Step h. If #MoveWithoutImprovement = maxNonimprovingMove and both tours

are same as the previous ones, the algorithm terminates.

For K = 2, the algorithm terminates when #MoveWithoutImprovement is equal to

maxNonimprovingMove. maxNonimprovingMove is selected as 50 for K = 2, and 10

for the higher K values. This selection will be explained in Chapter 7.

44

6.3. AN EXAMPLE

Consider the following graph.

1

2 3

4

5 6

7

8

Figure 6.1. An example directed graph for the heuristic procedure

Using the single CPP solution and LPT rule, assume the following three circuits are

found:

1

7

8

4

1

2 3

4

6

1

3

4

5 6

7

Figure 6.2. Three circuits found by the construction phase

45

Step 1: Consider a simple 3-postmen case. For this case, each circuit is assigned to

one postman. The traversals of each postman are as follows:

Postman 1: 18471

Postman 2: 123461

Postman 3: 1567563471

Take the tour of postman 1 as the shortest tour, and the tour of postman 3 as the

longest tour.

Step 2: The arcs (1, 8) and (8, 4) are required arcs for postman 1.

The arcs (1, 5), (5, 6), (6, 7), (7, 5) and (6, 3) are required arcs for postman 3.

Note that (4, 7) and (7, 1) are traversed by both postman 1 and postman 3, but

not traversed by postman 2.

Step 3: Since long tour has required arcs, the selection of tours in Step 1 is valid.

Step 4a: Remove each required arc on the long tour, and insert it into the short tour.

For example, remove the arc (5, 6), and all non-required arcs from the long tour. The

remaining arcs of postman 3 are shown as below:

1

3

4

5 6

7

Figure 6.3. The remaining arcs of the long tour

46

To form a connected network, balance the nodes on the long tour using the remaining

arcs in Step 4a.

Table 6.1. Supply and demand information of the nodes in the long tour

Node Demand Supply

1 1 -

2 - -

3 - 1

4 - -

5 - 2

6 2 -

7 - -

8 - -

Remove all non-required arcs from the short tour and add the arc (5, 6). Also, (4, 7)

and (7, 1) should be also regarded as a required arc because it is removed from the

long tour, and it should be visited by at least one postman. The arcs which have to be

included in the short tour are as follows:

1

5 6

7

8

4

Figure 6.4. The remaining arcs of the short tour

47

Find the necessary supply and demand amounts for the nodes on the short tour.

Table 6.2. Supply and demand information of the nodes in the short tour

Node Demand Supply

1 - -

2 - -

3 - -

4 - -

5 1 -

6 - 1

7 - -

8 - -

Step 4b: Solve the balance model given in Step 4b for the short tour without any cost

modification. By assigning a large cost to the arc (5, 6), solve the same model for the

long tour.

Step 4c: The predetermined arcs for each tour and the arcs on the shortest paths

found in Step 4b form the connected network for the postmen. If the final traversal

has subtours, they should be eliminated with the subtour elimination model given in

Step 4c.

48

49

CHAPTER 7

COMPUTATIONAL STUDY

In this chapter, we first discuss our data generation process. Then we give the results

of our preliminary experiment. Finally, the results of our extensive computational

study are discussed.

7.1. DATA GENERATION

We use eight precedence networks taken from the literature. The sizes of the

networks that we use are as tabulated below:

Table 7.1. The sizes of networks

|N| |A|

16 36

31 56

36 75

50 109

64 137

50 168

100 186

100 216

50

|N| indicates the number of nodes and |A| is for the number of arcs of the network.

They are referred as n and m, respectively throughout the discussion in the report.

We take the original networks from Archetti et al. (2014). To form the connected

structure, we use the command of “graphconncomp” in MATLAB. The command

finds the strongly connected parts on a graph and we add arcs between strongly

connected parts to form a strongly connected graph containing all arcs.

For each network, we try four values for the number of postmen, K. We set K = 2, 3,

4, 5. Hence, we have 32 combinations and for each combination we generate 10

problem instances. As a total, we use 320 problem instances.

We generate the arc costs from discrete uniform distribution between 1 and 100.

For the exact algorithms, we use a gap value of 0.01% and put a termination limit of

1 hour, and for heuristic algorithms our termination limit is 1/2 hour.

We code the algorithm in C# and the models are solved with ILOG CPLEX 12.6. We

run the algorithms on a computer with Intel(R) Core(TM) i7-4790 CPU@ 3.60 GHz,

8 GB RAM, Windows 7 and 64-bit operating system.

7.2. PRELIMINARY EXPERIMENT FOR EXACT ALGORITHMS

The aim of preliminary experiment is to set the gap value to be used in our

mathematical models and the effect of incorporating the aggregated tours.

To see the effect of the gap, i.e. 𝛼 values, we try three values: 1%, 0.1%, and 0.01%.

With more precise, i.e. small 𝛼 values, the quality of the solutions are better,

however at an expense of higher computational effort. Table 7.2 reports the effect of

CPU times on the performance of Algorithm I.

51

Table 7.2. The effect of 𝛼 on Algorithm I

n m K α value

0.01% 0.1% 1%

Avg

CPU

Max

CPU

Avg

CPU

Max

CPU

Avg

CPU

Max

CPU

36 75 3 2.40 3.88 1.51 2.28 1.49 2.96

5 13.79 27.41 6.66 15.02 3.70 10.55

64 137 3 2.36 4.38 2.40 9.08 1.41 2.87

5 22.14 34.34 15.65 46.83 9.04 22.64

Note from the Table 7.2 that, the CPU times are the smallest when 𝛼 = 1%. When 𝛼

= 0.1% and 𝛼 = 0.01% are compared, no significant effect of 𝛼 is observed on the

CPU times. Note that when K = 3, n = 64 and m = 137, both 𝛼 values perform

similarly in terms of the average solution times. Although there are instances in

which the solution times of 𝛼 = 0.1% are less than the ones with 𝛼 = 0.01%, the

difference is not as significant. En route to obtaining higher quality solutions in

reasonable times, we select 𝛼 = 0.01% value in our main experiment. This implies

that the model solution deviates from the exact solution by at most 0.01%, i.e. the

gap is negligible, hence we call the results as exact.

We next investigate the effects of the aggregated subtour constraints on the

performance of Algorithm II and Algorithm III. Incorporating the aggregated

subtours reduces the number of iterations, however, at an expense of increased

solution times. To see this effect, we run the algorithms with and without aggregated

subtours. We report the associated results in Tables 7.3 and 7.4, for Algorithms II

and III, respectively.

The results reveal that the aggregated tours improve the performance significantly for

the majority of the selected problem combinations.

52

Table 7.3. The effect of aggregated subtours on Algorithm II, 𝛼 = 0.01%

n m K Without Aggregated With Aggregated

Avg CPU Max CPU Avg CPU Max CPU

64 119 4 351.47 1137.95 149.59 1155.73

36 66 5 463.08 2118.18 181.88 880.59

36 81 5 46.06 97.83 41.09 83.10

Table 7.4. The effect of aggregated subtours on Algorithm III, 𝛼 = 0.01%

n m K Without Aggregated With Aggregated

Avg CPU Max CPU Avg CPU Max CPU

64 119 4 143.36 1173.24 84.21 630.01

36 66 5 254.78 1056.10 181.85 863.14

36 81 5 19.62 51.18 19.06 40.06

Note from Table 7.3 that, when m = 66 and there are 5 postmen, the average CPU

times of Algorithm I are reduced from 463.08 to 181.88 seconds, with aggregated

tour. The associated maximum CPU times are reduced from 2118.18 to 880.59

seconds.

Table 7.4 reveals that, the aggregated tours also help to improve the performance of

Algorithm III. For example when m = 119, incorporating aggregated tours decreases

the average CPU from 143.36 to 84.21, and the maximum CPU times from 1173.24

to 630.01 seconds.

The results of both algorithms for all instances are similar, i.e. using aggregated tours

decreases both the average CPU times and the maximum CPU times. The only

exception is that the maximum CPU time increases from 1137.95 to 1155.73 seconds

with the aggregated tour in Algorithm I for m = 119, this exception can be attributed

to the random effect.

At the end of preliminary experiments, we have decided to use 𝛼 = 0.01% in our

mathematical models and aggregated tours in Algorithms II and III.

53

7.3. MAIN EXPERIMENT FOR EXACT ALGORITHMS

In the main experiment, we evaluate the effects of some parameters on the difficulty

of the solutions. We also compare the behaviors of our optimization and heuristic

algorithms.

Table 7.5 and Table 7.6 report the CPU times and the average number of iterations

for each optimization algorithm. Table 7.6 also includes the average number of

subtours included in the models solved by the algorithms.

54

Table 7.5. Solution times of the algorithms (CPU seconds)

n m K Algorithm I Algorithm II Algorithm III

Avg Max Avg Max Avg Max

16 36 2 1.46 2.06 1.46 2.06 1.46 2.06

3 1.62 2.17 2.72 3.27 3.82 4.37

4 2.12 3.59 2.12 3.59 2.12 3.59

5 372.11 3600(1) 373.20 3600(1) 373.39 3600(1)

31 56 2 1.93 2.38 1.93 2.38 1.93 2.38

3 2.70 6.15 2.70 6.15 2.70 6.15

4 5.32 14.01 6.00 17.28 5.25 14.26

5 19.93 30.22 35.18 78.62 30.89 84.30

36 75 2 1.27 1.50 1.27 1.50 1.27 1.50

3 2.59 4.46 2.59 4.46 2.59 4.46

4 4.19 9.17 5.07 12.78 4.15 7.80

5 13.13 28.00 150.34 1333.73 12.59 19.73

50 109 2 1.31 1.67 1.31 1.67 1.31 1.67

3 2.55 5.83 2.55 5.83 2.55 5.83

4 7.66 14.79 19.39 78.73 9.39 25.19

5 28.79 120.11 191.44 1602.71 23.84 53.62

64 137 2 1.68 2.65 1.68 2.65 1.68 2.65

3 2.37 4.38 2.37 4.38 2.37 4.38

4 5.23 11.82 16.99 63.48 7.87 15.51

5 22.14 35.71 44.64 74.54 35.14 72.12

50 168 2 2.24 5.60 2.69 8.44 2.42 6.05

3 13.81 27.80 314.97 1577.42 72.65 293.36

4 2764.41 3600(7) - - 2920.90 3600(8)

5 - - - - - -

100 186 2 1.76 2.31 1.76 2.31 1.76 2.31

3 2.98 6.26 2.98 6.26 2.98 6.26

4 12.85 27.18 12.85 27.18 12.85 27.18

5 58.19 215.94 79.99 380.92 59.27 212.63

100 216 2 2.17 3.12 2.44 4.84 1.88 3.12

3 9.55 16.35 17.25 42.49 8.53 22.62

4 251.30 847.30 1140.70 3600(2) 113.55 453.71

5 2472.78 3600(6) - - - -

55

Table 7.6. Average number of iterations and subtours

n m K Algorithm I Algorithm II Algorithm III

Subtour Iteration Subtour Iteration Subtour Iteration

16 36 2 0.20 1.20 0.20 1.20 0.20 1.20

3 0.90 1.90 0.90 1.90 0.90 1.90

4 2.40 3.40 2.40 3.40 2.40 3.40

5 12.78 13.78 11.67 12.67 11.67 12.67

31 56 2 1.00 2.00 1.00 2.00 1.00 2.00

3 3.30 4.30 2.40 3.40 2.40 3.40

4 18.40 19.40 12.80 13.80 13.20 14.20

5 62.00 63.00 45.50 46.50 48.00 49.00

36 75 2 0.00 1.00 0.00 1.00 0.00 1.00

3 3.60 4.60 3.60 4.60 3.60 4.60

4 14.40 15.40 11.60 12.60 13.20 14.20

5 38.89 39.89 24.00 25.00 25.00 26.00

50 109 2 0.20 1.20 0.20 1.20 0.20 1.20

3 3.90 4.90 3.90 4.90 3.90 4.90

4 20.00 21.00 18.40 19.40 18.40 19.40

5 50.00 51.00 26.50 27.50 31.00 32.00

64 137 2 2.40 3.40 2.40 3.40 2.40 3.40

3 2.70 3.70 2.70 3.70 2.70 3.70

4 19.20 20.20 20.00 21.00 19.20 20.20

5 48.89 49.89 31.00 32.00 48.50 49.50

50 168 2 5.60 6.60 3.80 4.80 3.40 4.40

3 68.10 69.10 108.90 109.90 130.50 131.50

4 513.33 514.33 - - 196.00 197.00

5 - - - - - -

100 186 2 0.00 1.00 0.00 1.00 0.00 1.00

3 1.50 2.50 1.50 2.50 1.50 2.50

4 2.40 3.40 2.40 3.40 2.40 3.40

5 7.78 8.78 5.50 6.50 4.50 5.50

100 216 2 5.60 6.60 4.44 5.44 3.20 4.20

3 31.50 32.50 21.30 22.30 17.40 18.40

4 146.00 147.00 57.50 58.50 82.80 83.80

5 220.00 221.00 - - - -

56

Table 7.7. Frequency of best solution times

n m K Algorithm I Ties Algorithm II Ties

Algorithm III

Ties

With Without With Without With Without

16 36 2 10 - 10 - 10 -

3 10 - 10 - 10 -

4 10 - 10 - 10 -

5 8 1 7 - 7 -

31 56 2 10 - 10 - 10 -

3 10 - 10 - 10 -

4 9 2 7 - 8 1

5 5 4 2 1 5 4

36 75 2 10 - 10 - 10 -

3 10 - 10 - 10 -

4 9 2 7 - 8 1

5 5 2 6 3 5 2

50 109 2 10 - 10 - 10 -

3 10 - 10 - 10 -

4 8 3 6 1 6 1

5 7 4 4 1 5 2

64 137 2 10 - 10 - 10 -

3 10 - 10 - 10 -

4 9 6 3 - 4 1

5 7 7 2 2 1 1

50 168 2 9 1 8 - 9 1

3 6 6 1 1 3 3

4 2 2 - - 2 2

5 - - - - - -

100 186 2 10 - 10 - 10 -

3 10 - 10 - 10 -

4 10 - 10 - 10 -

5 8 - 8 10 2

100 216 2 7 - 7 - 10 3

3 3 1 4 2 7 5

4 3 3 2 2 5 5

5 4 4 - - - -

57

We observe from the tables that the number of postmen, K, plays a dominant role on

the performance of the algorithms. As K increases the effort spent to solve the model

increases considerably. This result holds for all problem sizes and the effect becomes

more significant as the number of arcs, m, increases. Note from Table 7.5 that when

m = 56 as K increases from 2 to 5, the average CPU times for Algorithms I, II and III

increase from 1.93 to 19.93 and from 1.93 to 35.18, and from 1.93 to 30.89 seconds

respectively. When m = 168, the effect of K is more apparent for all algorithms. For

Algorithms I and III, there are a few instances that can be solved within the CPU

limit of 1 hour when K = 4, whereas none of them can be solved with Algorithm II.

When K = 5, all algorithms fail to find the optimal solution within 1 hour.

Since our decision variables are defined on the arcs, the number of arcs is also

effective on the algorithm performance. In each iteration, the IP models are solved

with additional subtour elimination constraints. The more integer variables, the

harder to solve the associated IP models. When n = 50, m = 109 and K = 2, all

algorithms perform identical steps and the CPU time is 1.31 seconds. On the other

hand, when n = 50, m = 168 and K = 2, the CPU times are 2.24, 2.69 and 2.42

seconds for Algorithms I, II and III, respectively. The increase of solution times is

significant when K = 4. When n = 50, m = 109 and K = 4, the solution times are 7.66,

19.39, and 9.39 seconds for Algorithms I, II and III, respectively. If we increase m to

168, most of the instances cannot be solved within the time limit. In addition to the

high number of decision variables, this effect can also be explained with the network

structure. In other words, if the number of arcs coming to and leaving from the nodes

increase, more subtours are generated. To illustrate, Figures 7.2 and 7.3 show the

networks created by adding arcs to the network in Figure 7.1.

58

1

2 3

4

56

Figure 7.1. The initial network with 7 arcs

There are 7 arcs in the network in Figure 7.1. The only possible subtour is

3453.

1

2 3

4

56

Figure 7.2. The new network with the addition of the arc (5, 2) to the network in

Figure 7.1

If the arc (5, 2) is added to the network 1, two possible subtours are 3453 and

23452 on the network 2.

59

1

2 3

4

56

Figure 7.3. The new network with the addition of the arcs (6, 2) and (3, 6) to the

network in Figure 7.2.

If the arcs (6, 2) and (3, 6) are added to network 2, the possible subtours are

2363, 234562, 3453 and 23452.

The above example illustrates the generation of subtours with additional arcs. The

number of subtours generated in each iteration may change the progress of the

algorithm. Table 7.5 and Table 7.6 show that adding a large number of subtours in

any iteration makes all the k-CPP models difficult to solve. A notable example is that

when m = 216, K = 3, all algorithms run in reasonable times (9.55, 17.25 and 8.53

seconds for Algorithms I, II and III, respectively.) Through K = 5, the solution times

increase drastically even Algorithms II and III cannot return optimal solutions in 1

hour. Algorithm I solves 4 out of 10 instances and the average CPU time is 2472.78

seconds by adding 220 subtours on average. Note that adding more subtours in one

iteration makes the problem much more difficult. We have explained the reason

behind the difficulty with m = 168 considering its network structure. Along with its

network structure and the possibility of generating many subtours, the difficulty of

the problem stems from the large number of subtours in each iteration. When m =

168 and K = 4, the average number of subtours is 513.13 and the average number of

iterations is 514.33, and these numbers are the maximum ones of their categories

seen on Table 7.6.

Based on the discussion on the number of subtours, there is also a connection

between the effect of increasing K on the solution times and the number of subtours

generated in each iteration. Table 7.6 shows that the average number of subtours

60

generally increases as K increases. For example, all instances have a smaller number

of subtours when there are 2 postmen, and the associated solution times are relatively

short compared to the cases with more postmen. Note that for the same example of

m = 168, the average number of subtour is 5.6 for Algorithm I, 3.8 for Algorithm II,

and 3.4 for Algorithm III. As K increases, more subtours are generated in each

iteration and the problem is more difficult while adding these subtours. For example,

on average when K = 4, 513.33 subtours are added to (𝑃) for Algorithm I, whereas

196 subtours are necessary for Algorithm III. For this case, all subtour and

aggregated tour alternatives require much more time compared to Algorithms I and

III, and so Algorithm II fails to solve the model starting from K = 4.

The number of arcs may not directly affect the solution times. The instances of m =

186 and m = 216 exemplify a contradictory case. Although those instances have

more arcs, they are easier to solve compared to the instances with m = 168. The

reduced times are due to the ratio of the number of arcs to the number of nodes. For

n = 50 and m = 168, the networks are more complex because of a large number of

arcs coming to and leaving from a node compared to n = 100, m = 186, and n = 100,

m = 216. This effect supports the results in Figure 7.1, 7.2 and 7.3, that means the

instances of m = 186 and m = 216 are easier to solve due to a few number of subtours

generated.

The tables reveal the superiority of Algorithm I in terms of both average and

maximum CPU times. Table 7.5 shows that the minimum CPU times of 5 out of 10

combinations are due to Algorithm I for all K values. This is due to the fact that

considering all subtours simultaneously reduces the number of iterations, which in

turn reduces the solution times. Though evaluating all tours might be increasing the

solution time of one problem as a total, and it leads fewer iterations. For example,

when m = 56 and K = 5, Algorithm I makes 63 iterations; whereas, 46.5 and 49

iterations are necessary for Algorithms II and III, respectively. Only one

contradictory case appears when m = 168 and K = 3, that is Algorithm I iterates 68.1

times which is the lowest number of iterations among three algorithms.

61

Algorithm II considers two subtours at a time: one for original subtour, one for

aggregated tour, and evaluates each subtour as an original subtour. Hence the

algorithm makes precise evaluation of all subtours, thereby leading to less number of

iterations when compared to Algorithm III. The higher CPU times of Algorithm II

are due to fact that in each iteration, subtour selection is done via integer program,

whereas random selection is used for Algorithm III. Algorithm II iterates less

however at an expense of higher solution times. Note from Table 7.5 and Table 7.6

that Algorithm II selects 31 subtour in 32 iterations; and Algorithm III adds 48.5

subtours in 49.5 iterations for m = 137 and K = 5. Despite making more iterations,

the average CPU time of Algorithm III is 35.14 seconds that is less than 44.64

seconds for Algorithm II.

Table 7.7 reports on the frequency that each algorithm produces the fastest solution.

The table gives the frequencies including and excluding ties. Note that in many

combinations all algorithms produce the same solution, i.e. rising a tie all together. In

14 out of 32 problems all algorithms give the same CPU times. Those instances

correspond to the ones that give at most two subtours in each iteration. In general,

when there are 2 or 3 postmen, the model generates at most 2 subtours in each

iteration, therefore it results in the same solutions for all algorithms.

We observe from Table 7.7 that no algorithm dominates, i.e. there exist instances for

which each specific algorithm produces the fastest solution. For example, Algorithm

III is the best for n = 100, m = 216 except for K = 5, Algorithm II is preferred for n =

36, m = 75 and K = 5, and Algorithm I is the best for n = 64, m = 137 for all K’s.

7.4. PRELIMINARY EXPERIMENT FOR HEURISTIC PROCEDURE

Recall that we solve the models of the optimization algorithms with 0.01% gap. We

now refer to those solutions as 0.01% solutions. We measure the performance of the

heuristic algorithm by the number of times the solutions are no worse than those of

the 0.01% solutions. For the instances that our heuristic algorithm produces worse

62

solutions than 0.01% solutions, we give the deviations relative to the 0.01% solution.

We take the solution having the best 0.01% solution among the three optimization

approaches, hence we compare the heuristic results with the best available solution.

The deviations are calculated as

𝐷𝐸𝑉 =
𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 0.01% 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

0.01% 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
∗ 100

The stopping condition of our heuristic procedure is one of the design parameters of

our heuristic algorithm. We set the termination limit to half an hour. For K = 2, we

set another termination limit and stop when a prespecified number of nonimproving

moves is reached. We set the number of nonimproving moves to 20, 30 and 50 and

report the results in Table 7.8.

Table 7.8. The effect of nonimproving moves (NIM), K =2

n m NIM=20 NIM=30 NIM=50

 Avg Max Avg Max Avg Max

16 36 DEV 0.00 0.02 0.00 0.02 0.00 0.02

CPU 5.95 9.3 12.9 15.24 21.56 24.69

31 56 DEV 0.00 0.02 0.00 0.00 0.00 0.00

 CPU 31.78 40.23 75.29 95.99 110.82 169.71

As can be observed from Table 7.8, when m = 56, the best performance is observed

for higher number of nonimproving moves. If 50 nonimproving moves are set as the

termination limit, the heuristic procedure can find the same solution with the exact

solution, and then all deviations are zero. The deviations are close to zero, when 20

or 30 nonimproving moves are used. When m = 36, all settings of nonimproving

moves find the same solution, hence their deviations from the 0.01% solutions are

the same. Since the increase in the solution times is acceptable as the number of

nonimproving moves increase, higher nonimproving moves can be used to increase

the possibility of better solutions.

63

We perform a similar experiment for higher values of K and observe that the number

of nonimproving limit would be outweighed by our CPU limit of 1800 seconds. The

reason is that we redefine long tour and short tour if no improvement occurs during

the limit of nonimproving moves. Afterwards, if either the long tour or short tour

changes, we keep iterating by initializing the number of nonimproving moves as 0.

We perform another experiment to see the effect of the arc selection strategy on the

performance of the heuristic algorithm. We compare two arc selection strategies:

random arc and best arc. Random arc selection corresponds to the case where an arc

is randomly selected from the long tour and added to the short tour. Best arc

selection corresponds to the case where all arcs are considered and the one leading to

the maximum improvement is selected. We report the results in Table 7.9.

Table 7.9. The effect of arc selection strategy on the deviations

n m K Random Arc Best Arc

 Avg Max Avg Max

36 75 3 0.00 0.01 0 0

4 1.13 4.45 0 0

100 216 3 0.80 2.66 37.92 43.85

 4 3.70 8.68 76.89 95.36

The best arc selection strategy makes precise computations and each selection

requires considerable time. On the other hand, the random arc selection strategy

makes rough computations, however can make many arc changes in a specified time

period.

Note from Table 7.9 that, when m is small we prefer the best arc selection strategy,

as each selection can be done quicker, hence many exchanges can be realized. When

m = 75, the heuristic procedure with best arc strategy gives better solutions than the

0.01% solution. When m = 216 and K = 4, the average and maximum deviations are

76.89% and 95.36%, respectively for best arc selection strategy, and the respective

64

average and maximum deviations are 3.70% and 8.68% for random arc selection

strategy.

7.5. MAIN EXPERIMENT FOR HEURISTIC PROCEDURE

Based on the results of our computational experiments we use the best arc selection

strategy for smaller sized instances (for the instances with m ≤ 150) and use the

random arc selection strategy for larger sized instances with m > 150.

We set the maximum number of nonimproving moves to 50 for K = 2. For higher

values of K, the maximum number of nonimproving moves is 10, but it is used as an

indicator for redefining short and long tours rather than a stopping condition.

Our termination limit for the heuristic procedure is 1/2 hour. The maximum number

of iterations is another stopping condition and it is determined as 300.

The results of our heuristic procedure for all problem sizes are given in Table 7.10.

The deviations from the 0.01% solutions are calculated for the solutions that are

worse than 0.01% solutions, and the number of no worse (better or same) solutions is

also reported.

65

Table 7.10. The performance of the heuristic procedure

n m K # better Deviation CPU

 or same Avg Max Avg Max

16 36 2 6 0.00 0.02 21.56 24.69

3 3 0.01 0.04 64.74 70.47

4 4 0.01 0.03 48.02 49.92

 5 1 0.07 0.30 39.47 45.37

31 56 2 10 0 0 110.82 169.71

3 9 0.00 0.00 290.57 301.30

4 8 0.00 0.00 229.02 248.63

 5 6 0.00 0.02 199.51 218.56

36 75 2 9 0.00 0.00 185.00 232.85

3 10 0 0 626.90 666.06

4 10 0 0 492.94 519.78

 5 6 0.00 0.02 418.40 466.30

50 109 2 10 0 0 1495.13 1800.00

3 10 0 0 1800.00 1800.00

4 9 0.00 0.00 1800.00 1800.00

 5 2 0.64 2.81 1800.00 1800.00

64 137 2 10 0 0 1800.00 1800.00

3 10 0 0 1800.00 1800.00

4 10 0 0 1800.00 1800.00

 5 8 0.02 0.17 1800.00 1800.00

50 168 2 3 0.17 0.84 60.91 111.21

3 - 0.38 1.07 183.18 222.86

4 6 1.88 3.45 239.14 284.42

 5 - - - - -

100 186 2 4 0.02 0.11 431.93 942.48

3 1 0.07 0.30 1800.00 1800.00

4 - 0.38 1.65 1800.00 1800.00

 5 - 0.75 1.99 1800.00 1800.00

100 216 2 3 0.29 1.44 498.521 805.46

3 2 0.80 2.66 1800.00 1800.00

4 - 3.70 8.68 1800.00 1800.00

 5 - 6.13 10.44 1800.00 1800.00

66

The results reported in Table 7.10 indicate that the performance of our heuristic is

very satisfactory, in terms of solution quality. When m ≤ 200, all deviations are less

than 2%. We observe that the performances deteriorate as n or m increases.

Accordingly, the worst deviations are observed when n = 100 and m = 216. Even for

those instances, all deviations, with one exception, are below 10%.

From Table 7.5 and Table 7.10, we see that the mathematical models are solved

extremely faster than the heuristic for the instances that could be solved within the

time limit. Note that the time limit of 1800 seconds is usually spent by the heuristic

algorithm for K > 2 and the instances with more than 109 arcs. The only exception is

for m = 168 because the random arc strategy results in quick completion of the

algorithm for that size of instances.

The deviations of the heuristic procedure from the exact solutions indicate that our

heuristic can be used for the instances that cannot be solved with the mathematical

model. Note that when m = 168 and K = 5, no instance could be solved with our

exact approaches, and heuristic returns a solution, probably a satisfactory one, in

1800 seconds.

7.6. TRIALS FOR DIFFERENT OBJECTIVES

Our models and procedures can be modified to handle all types of the k-CPP. Our

objective function of minimizing total squared load does not unnecessarily increase

the total load of any postman. However the other balancing objectives are defined

around an allowed service time and might increase the loads of some postmen by

bringing the loads closer to the allowed time. Two such objectives are defined below:

1. Total absolute deviation is defined as ∑ |𝑤𝑘 − 𝑆𝑇|𝐾
𝑘=1 where ST is allowed

service time. Note that ST is the target load of each postman. The

corresponding problem is the minimum absolute deviation (MAD) problem.

2. Total squared deviation is defined as ∑ (𝑤𝑘 − 𝑆𝑇)2𝐾
𝑘=1 . The corresponding

problem is the minimum squared deviation (MSD) problem.

67

The minimum absolute deviation problem can be modeled as a mixed integer linear

model as follows:

MAD

𝑀𝑖𝑛 ∑ 𝑧𝑘
+ + 𝑧𝑘

−

𝐾

𝑘=1

 subject to

𝑤𝑘
2 − 𝑆𝑇 = 𝑧𝑘

+ + 𝑧𝑘
−

 𝑥 ∈ 𝑋

 Subtour elimination constraints

 𝑧𝑘
+ ≥ 0

 𝑧𝑘
− ≥ 0

On the other hand, the minimum squared deviation problem is modeled via a pure

integer nonlinear model as follows:

MSD

𝑀𝑖𝑛 ∑(𝑤𝑘 − 𝑆𝑇)2

𝐾

𝑘=1

 subject to

 𝑥 ∈ 𝑋

 Subtour elimination constraints

Recall that our algorithms introduce subtour elimination constraints successively,

where the introduced subtours are the solutions of the mathematical models, hence

they can be adapted to the MAD and MSD problems.

68

We adapt Algorithm I to the MAD and MSD problems and report the results in Table

7.11. Table 7.11 tabulates the average and maximum CPU times for the MAD, MSD

and our problem.

Table 7.11. Solution times of the MAD, MSD and our problem (CPU seconds)

n m K MAD MSD Our Problem

Avg

CPU

Max

CPU

Avg

CPU

Max

CPU

Avg

CPU

Max

CPU

36 75 3 0.697 2.3 1.714 4.62 2.4 3.88

 5 2.298 3.87 20.338 41.52 13.79 27.41

64 137 3 2.114 7.44 2.784 5.1 2.36 4.38

 5 4.721 10.09 761.543 3599.86 22.14 34.34

Table 7.11 shows that the easiest problem is the MAD problem. This is due to the

ease of solving linear programs, in particular when compared to the nonlinear ones.

Note that average solution times of the MAD problem are the smallest when K = 3

and K = 5 for both instances.

Compared to the MSD problem, our problem is easier to solve. The MSD problem

minimizes around the service time, whereas our problem minimizes around zero.

Note that when K = 5 for both instances, average solution times of the MSD problem

are much higher than the solution times of our problem.

69

CHAPTER 8

CONCLUSION

In this thesis, we consider a Chinese Postman Problem with K postmen, i.e. k-CPP.

We assume that each postman starts and ends its tour at the depot and each postman

should serve to at least one arc. Our problem is to define the tour of each postman so

as to keep their workloads as close as possible. En route to balancing the workloads

we try to minimize the sum of the squared workloads over all postmen.

We first propose an integer programming formulation of the problem. We develop an

efficient way of explaining the subtour elimination constraints. Our subtour

elimination constraints require neither an extra decision variable nor a big M value.

We propose exact algorithms and one heuristic solution approach that run in

exponential and polynomial times, respectively. The exact approaches use efficient

incorporation of the subtour elimination constraints. The heuristic procedure starts

with an optimal solution of the single postman total cost minimization problem and

improves this solution by changing arc assignments.

The results of our extensive computational study reveal that the exact procedures

return solutions for large sized instances with up to about 200 arcs in one hour when

a gap value of 0.01% is used for the integer models. Moreover we see that no exact

procedure dominates the other.

70

We observe that our heuristic procedure that runs in polynomial time delivers high

quality solutions at the termination limit of half an hour. In small sized problems, the

heuristic delivers solutions that are even better than 0.01% solutions.

To the best of our knowledge, our study is the first attempt to solve the k-Chinese

Postmen Problem of minimizing total squared workloads. We hope our study helps

to open new research avenues in the arc routing problems area. Our subtour

elimination constraints are directly applicable to other k postmen problems, like k-

Rural Postmen Problem, k-Windy Postmen Problem and Capacitated k-Chinese

Postmen Problem. One may extend our approaches to rural and windy postman

problems and to their capacitated versions.

Moreover, defining and tackling with different objectives that well represent our

balancing concerns may be an interesting future research topic. In the thesis, we have

conducted a limited study to show the applicability of our procedure to the minimum

absolute deviation and minimum squared deviation problems.

Future research may also investigate some special cases of the total squared loads

problem, like unit costs and balanced networks.

71

REFERENCES

Ahr, D., 2004, Contributions to Multiple Postmen Problems, PhD Thesis, University

of Heidelberg.

Ahr, D. and G. Reinelt, 2002, New Heuristics and Lower Bounds for the Min-Max k-

Chinese Postman Problem, Algorithms–ESA 2002, R. Möhring and R. Raman

(Editors), Lecture Notes in Computer Science, 2461, 64-74, Springer.

Ahr, D. and G. Reinelt, 2006, A Tabu Search Algorithm for the Min-Max k-Chinese

Postman Problem, Computers and Operations Research, 33, 3403–3422.

Aminu, U.F. and R.W. Eglese, 2006, A Constraint Programming Approach to the

Chinese Postman Problem with Time Windows, Computers and Operations

Research, 33, 3423–3431.

Archetti, C., G. Guastaroba, and M.G. Speranza, 2014, An ILP-Refined Tabu Search

for the Directed Profitable Rural Postman Problem, Discrete Applied

Mathematics, 163, 3-16.

Benavent, E., Á. Corberán, I. Plana, and J.M. Sanchis, 2009, Min-Max k-Vehicles

Windy Rural Postman Problem, Networks, 54, 216–226.

Benavent, E., Á. Corberán, and J.M. Sanchis, 2010, An Heuristic Algorithm for the

Min-Max k-Vehicles Windy Rural Postman Problem, Computers and Management

Science, 7, 269–287.

Benavent, E., Á. Corberán, I. Plana, and J.M. Sanchis, 2011, New Facets and an

Enhanced Branch-and-Cut for the Min-Max k Vehicles Windy Rural Postman

Problem, Networks, 58, 255–272.

Benavent, E., Á. Corberán, G. Desaulniers, F. Lessard, I. Plana, and J.M. Sanchis,

2014, A Branch‐Price‐and‐Cut Algorithm for the Min‐Max k‐Vehicle Windy Rural

Postman Problem, Networks, 63, 34-45.

Cabral, E., M. Gendreau, G. Ghiani, and G. Laporte, 2004, Solving the Hierarchical

Chinese Postman Problem as a Rural Postman Problem, European Journal of

Operational Research, 155, 44–50.

72

Corberán, A., R. Martí, and J.M. Sanchis, 2002, A GRASP Procedure for the Mixed

Chinese Postman Problem, European Journal of Operational Research, 142, 70-80.

Dror, M. and J. Leung, 1998, Combinatorial Optimization in a Cattle Yard: Feed

Distribution, Vehicle Scheduling, Lot Sizing, and Dynamic Pen Assignment,

Industrial Applications of Combinatorial Optimization, 142-171, Springer US.

Edmonds, J. and E.L. Johnson, 1973, Matching, Euler Tours and the Chinese

Postman, Mathematical Programming, 5, 88–124.

Euler, L., 1736, Solutio Problematis ad Geometrian Situs Pertinentis, Commentarii

academiae scientarum Petropolitanae, 8, 128-140.

Frederickson, G., M. Hecht and C. Kim, 1978, Approximation Algorithms for Some

Routing Problems, SIAM Journal of Computing, 7, 178–193.

Ford, L.R. and D.R. Fulkerson, 1962, Flows in Networks. Princeton U. Press,

Princeton, N.J.

Golden, B.L. and R.T. Wong, 1981, Capacitated Arc Routing Problems, Networks,

11, 305–315.

Guan, M.K., 1962, Graphic Programming Using Odd or Even Points, Chinese

Mathematics, 1, 273–277.

Gutin, G., G. Muciaccia, and A. Yeo, 2013, Parameterized Complexity of k-Chinese

Postman Problem, Theoretical Computer Science, 513, 124-128.

Hierholzer, C., 1873, Ueber die Möglichkeit, einen Linienzug ohne Wiederholung

und ohne Unterbrechung zu umfahren, Mathematische Annalen, 6, 30–32.

Kappauf, H.C., and G.J. Koehler, 1979, The Mixed Postman Problem, Discrete

Applied Mathematics, 1, 89-103.

Korteweg, P. and T. Volgenant, 2006, On the Hierarchical Chinese Postman Problem

with Linear Ordered Classes, European Journal of Operational Research, 169, 41–

52.

Lin, Y. and Y. Zhao, 1988, A New Algorithm for the Directed Chinese Postman

Problem, Computers and Operations Research, 15, 577-584.

Malandraki, C. and M. Daskin, 1993, The Maximum Benefit Chinese Postman

Problem and the Maximum Benefit Traveling Salesman Problem, European Journal

of Operational Research, 218–234.

https://en.wikipedia.org/wiki/Carl_Hierholzer
https://en.wikipedia.org/wiki/Mathematische_Annalen

73

Minieka, E., 1979, The Chinese Postman Problem for Mixed Networks. Management

Science, 25, 643-648.

Nobert, Y. and J.C. Picard, 1996, An Optimal Algorithm for the Mixed Chinese

Postman Problem, Networks, 27, 95-108.

Osterhues, A. and F. Mariak., 2005, On Variants of the k-Chinese Postman Problem,

Operations Research and Wirtschaftsinformatik, University Dortmund, 30.

Pearn, W.L. and J.B. Chou, 1999, Improved Solutions for the Chinese Postman

Problem on Mixed Networks, Computers and Operations Research, 26, 819–827.

Pearn, W.L. and C.M. Liu, 1995, Algorithms for the Chinese Postman Problem on

Mixed Networks, Computers & Operations Research, 22, 479-489.

Ralphs, T.K., 1993, On the Mixed Chinese Postman Problem, Operations Research

Letters, 14, 123-127.

Shafahi, A. and A. Haghani, 2015, Generalized Maximum Benefit Multiple Chinese

Postman Problem. Transportation Research Part C: Emerging Technologies, 55,

261-272.

Willemse, E.J. and J.W. Joubert, 2012, Applying Min–Max k Postmen Problems to

the Routing of Security Guards, Journal of Operational Research Society, 63, 245–

260.

