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ABSTRACT 
 

 

 

CITY LOGISTICS SYSTEM DESIGN UNDER COST UNCERTAINTY 
 

 

 

Kunter, Utku Can 

M.S., Department of Industrial Engineering 

Supervisor : Assoc. Prof. Dr. Cem İyigün 

Co-Supervisor : Prof. Dr. Haldun Süral 

 

 

 

July 2015, 202 pages 
 

 

 

 

City Logistics (CL) is a quickly developing area of research aiming to develop the 

methods for designing efficient and effective freight distribution networks. We make 

an extensive review on CL as well as studies related to CL in order to describe the 

position of CL in the literature. Based on this review, the location and allocation 

decisions in a CL system under transportation cost uncertainty is analyzed from a 

strategic point of view. We use Value of Information analysis to compare different 

formulations of the problem and measure the difference between the facility location 

problems in the conventional setting and in CL setting in terms of value of information. 

Next, we propose two solution methods to handle instances of realistic size. First one 

is a variation of the L-Shaped method, using scenario-group cuts; and second one is 

an evolutionary algorithm which makes use of an embedded hybrid heuristic to 

evaluate chromosomes in reasonable time. The methods proposed have significant 

advantage over standard solvers, especially when solving large instances. 
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ÖZ 
 

 

 

MALİYET BELİRSİZLİĞİ ALTINDA KENT LOJİSTİĞİ SİSTEMİ TASARIMI 
 

 

 

Kunter, Utku Can 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi  : Doç. Dr. Cem İyigün 

Ortak Tez Yöneticisi : Prof. Dr. Haldun Süral 

 

 

 

Temmuz 2015, 202 sayfa 
 

 

 

Kent Lojistiği (KL) hızla gelişen bir araştırma alanıdır ve etkin yük taşıma ağlarını 

oluşturmak için gereken metotların geliştirilmesini amaçlar. KL konusunun 

literatürdeki yerini belirlemek amacıyla KL ile ilgili çalışmalar üzerine geniş bir 

literatür taraması yapılmıştır. Bu taramadan yola çıkarak, KL sistemindeki yer seçimi 

ve atama kararları ulaştırma maliyeti belirsizliği altında stratejik bakış açısıyla 

incelenmiştir. Bilginin değeri analiziyle bu problemin farklı formülasyonları 

karşılaştırılarak, KL sistemlerinin bilginin değeri açısından klasik yer seçimi 

problemlerinden farkı gösterilmiştir. Ayrıca, uygulamada karşılaşılacak büyüklükteki 

problemlerin çözülebilmesi için iki çözüm metodu önerilmiştir. Bunlardan ilki, L-

Şekilli metodun senaryo-grubu kesileri kullanılan bir varyasyonu, ikincisi ise 

kromozomların makul zamanda değerlendirilmesi için melez bir sezgisel yöntem 

kullanan bir evrimsel algoritmadır. Önerilen yöntemlerin, özellikle büyük boyutlu 

problemlerin çözülmesinde standart çözücülere göre önemli yararlar sağladığı 

görülmüştür.  

 

 

 

Anahtar Kelimeler: Kent Lojistiği, Olasılıksal Programlama, Benders Ayrıştırma, 

Evrimsel Algoritma 
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CHAPTER 1 

 

INTRODUCTION 

 

1. INTRODUCTION 

Large amounts of freight is transported daily from city outskirts into urban centers. 

Making these operations efficiently and effectively is crucial especially when one 

considers the vast amount of resources used in the process and the resulting 

environmental impact. City Logistics (CL) is a quickly developing area of research 

aiming to develop the methods and tools to design efficient and effective freight 

distribution networks for urban areas.  

To achieve efficiency in freight distribution, one of the widely accepted approaches is 

to setup cross-docking facilities where the incoming shipments are combined in order 

to make the deliveries possible with a smaller fleet. These cross-docking facilities are 

called City Distribution Centers (CDC) or Urban Distribution Centers (UDC). In 1-

echelon CL network design, the process of combining delivery loads in order to 

achieve higher capacity utilization of distribution vehicles are typical consolidation 

activities. In addition, for such operations to be effective, all supply and demand points 

in the system must be considered as a whole. The measures aiming to provide effective 

communication and collaboration of all the stakeholders are called coordination. 

Consolidation and coordination are the two main tools employed in the city logistics 

literature.  

The related studies in the literature mostly deal with the CL decisions from a 

deterministic point of view. The deterministic view of the freight distribution system 

is a step towards obtaining a more complete model of the freight distribution network, 

since it reduces the problem complexity and allows the solution of larger instances. 

However, the deterministic approach is not sufficient to represent the real life systems. 

In order for the models to provide solutions that are applicable in real life, they must 

include the uncertainty and risk factors inherent in the nature of the real life systems.  
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Problems with uncertainty and risk factors are studied extensively in the stochastic 

programming and robust optimization literature. There are many articles that suggest 

approaches and methods related to our problem. There are, for example, articles 

dealing with the stochastic/robust facility location problem (Snyder, 2006); however, 

to the best of our knowledge, there is stochastic or robust optimization study 

considering a freight distribution network system in a CL setting. This study aims to 

provide a stochastic freight distribution network design formulation from a strategic 

CL perspective, along with the solution methods and analysis of the results.  

We use a single echelon setting for the network design problem. We believe the 1- 

echelon setting would be suitable for our purpose, since the focus of our work is on 

the strategic and tactical decisions. We analyze the decisions to be made in a 1- echelon 

CL system in three groups: investment decisions, recourse decisions, and routing 

decisions. Investment decisions are usually strategic decisions such as determining the 

locations of facilities. Recourse decisions are made on a tactical level, effective in 

short/medium-term, such as allocating customers to CDCs. Finally the routing 

decisions take place on an operational level and are subject to change on a daily basis.  

We do not try to build a single optimization model that would make these three sets of 

decisions all together, as the complexity of such a model prohibits us from obtaining 

optimal solutions for even small size problem instances. Rather, we divide the problem 

into location-allocation and vehicle routing decisions. Then, we optimize the critical 

strategic/tactical decisions while leaving the lower level decisions to be made and 

updated during operations, according to the changes in uncertain parameters. 

Higher level decisions are further divided into two: location decisions are made under 

uncertainty and allocation decisions are made after the parameters under uncertainty 

can be observed. In the literature, two-stage stochastic programming models allow for 

such a division of decisions in a dynamic decision making framework. After making 

a Value of Information (VoI) analysis comparing different approaches that incorporate 

uncertainty, we found that a two-stage stochastic model provides a significant cost 

reduction for all instances we considered. The improvement over the much simpler 

Expected Value Model is large enough to compensate for the computational 

complexity of making allocation decisions for each scenario. More importantly, 

transferring allocation decisions to a recourse problem is meaningful for a CL system 
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because customer allocations can be changed periodically according to the system 

conditions, in contrast to the number and locations of CDCs. 

Using a two-stage stochastic approach to deal with uncertainty, it is meaningful for us 

to select a kind of uncertainty that can be handled by the recourse problem. Among 

several causes of uncertainty found in the literature, we choose to deal with the travel 

time/transportation cost uncertainty, which is expected to have a large impact on our 

decisions in an urban environment. Other causes of uncertainty such as demand 

amount, service cost, or unit cost etc. are expected to be largely fixed to the values 

agreed on contracts. Service/unit cost largely depends on the demand amount and 

constitute a relatively small part of the system’s operating costs. On the other hand, 

transportation cost is a large part of these costs and is deeply affected from the changes 

on the transportation network. These changes may be occurring daily or infrequently, 

may be predictable or unpredictable, may be planned or unplanned. Anticipating those 

changes leads to more realistic plans. For these reasons, incorporating the 

transportation cost uncertainty in our models seems to be the best choice. 

Since standard solvers usually fail to generate even a feasible solution in reasonable 

time for the large instances of the problem, we evaluate several alternative exact 

solution methods. Among these methods, L-Shaped method with scenario-group cuts 

produces the best results. Unfortunately, it fails to converge within the time limit, even 

though it finds optimal solutions as its best integer solutions. As an alternative method, 

we develop an evolutionary algorithm that makes use of a hybrid evaluation heuristic. 

This heuristic reaches the best solution in shorter time than the other two methods and 

this solution is optimum in most cases where we know an optimal solution. The 

solutions obtained by the algorithm also usually agree with the L-Shaped method’s 

solutions for the large instances. 

After the location-allocation part, we proceed by handling the routing decisions. Due 

to the fixed allocation decisions made for each scenario, we only have to consider the 

vehicle routing problem (VRP) for each CDC, thus the solution space is much smaller 

than it would be in the Multi-Depot VRP. It is possible for the decision maker to solve 

these small VRP instances, whenever a change in the higher level decisions are made, 

or a change in the parameters has been observed. Incorporating the routing decisions 

into the main problem is also desirable. The routing stage would provide much more 
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accurate information on the cost of making different allocation decisions. To do so, we 

develop an algorithm to handle the routing stage with a CL perspective and we discuss 

how the algorithm can be implemented within the methods we proposed. 

This study offers two main contributions to the related literature. First, we describe the 

City Logistics literature in terms of its relations and overlaps with other fields in the 

relevant operations research (OR) and industrial engineering (IE) literature. Second, 

we develop two efficient solution methods that are able to find solutions for instances 

of realistic size. In addition to these, we report the value of information in a CL setting 

under transportation cost uncertainty. 

Remaining part of the thesis is organized as follows: In the next section, we first 

provide an overview of the recent developments in the related research areas, and then 

present an extensive review of the literature on the strategic decisions. Section 3 

considers several formulations of the City Logistics Network Design Problem under 

Uncertainty and provides their comparison in a Value of Information framework. In 

section 4, we present the exact solution methods based on Benders Decomposition. In 

section 5, we present the evolutionary algorithm. Section 6 provides the computational 

results for each solution method and their assessments. In section 7, we discuss how 

the routing decisions can be incorporated into the proposed solution methods. Section 

8 includes concluding remarks and possible extensions of our study. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2. LITERATURE REVIEW 

Achieving a complete view of the CL systems is difficult without an understanding of 

the current developments in the related research areas. We reviewed the studies that 

explicitly address CL as well as the studies that are quite relevant to the decisions of a 

CL system. In order to find methods and approaches that can be employed in CL 

setting, we also reviewed studies on stochastic/robust optimization.  

To present our findings in a structured way, we group these studies into a few 

categories. However, most studies usually fall into multiple categories, which make it 

difficult to obtain a general view of trends in the literature. Using the findings of this 

extensive review, we first provide a recent overview of the related literature. 

 

2.1 Overview 

To be able to identify the trends in the literature, we searched how many articles have 

been published on each individual subject, such as facility location, fleet management 

and vehicle routing.  

All analyses are made using the Web of Science database. We searched for the specific 

terms in the titles of articles, such as “city logistics”, “transportation”, “robust” etc., 

specified the research areas and recorded the number of publications on each year. We 

also specified some important publications that were selected according to their 

number of citations. 
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2.1.1 City Logistics 

CL is a relatively new subject. The term “City Logistics” became popular in the late 

1990s and 2000s. While there are still few articles that specifically focus on CL, 

research on this subject increased significantly in recent years. This is mainly due to 

the CL projects applied in European cities. These projects reveal the necessity for the 

construction of a CL theory. While the decisions of CL systems are in many ways 

similar to the widely studied network design problems, there are still some differences 

that require an exclusive CL focus in new studies.  

First, CL focuses on the consolidation of freight and coordination of customers and 

suppliers. This leads to different parameters of the system to have significant effect on 

the solution performance. For instance, in the classical stochastic location literature, 

mostly demand uncertainty is considered, but within a CL point of view, demand 

uncertainty loses its significance as the factor with the largest impact. Second, CL 

takes place in urban environments, which has characteristics that must be reflected on 

the solution methods and test instances. For example, it is not possible to locate 

facilities on a continuous plane, because the probability of a location to be free is very 

low. Rather, locations must be selected from a predetermined set of available spaces. 

Also, CL requires the locations to be on the city boundaries, rather than within the city, 

which has quite different implications than the traditional way of locating facilities. 

Lastly, the coordination aspect of CL systems make it possible to relax some 

assumptions of the classical location studies. For instance, when the state of the 

transportation network changes, we can update the decisions assigning customers to 

CDCs. Since the system is managed in a centralized way, making such changes is 

possible and may bring great benefit in terms of transportation cost. 

Figure 2.1 summarizes the number of studies that are published each year from 2005 

until 2013. There was no entry matching with the search criteria for the years before 

2005. The blue line shows studies having “City Logistics” term on their title and the 

orange line shows studies that consider uncertainty. Since there are several alternative 

terms for expressing uncertainty, we searched for all the terms by joining them with 

“OR” operators (uncertainty OR uncertain OR robust OR stochastic). The research 

area is specified as “Operations Research Management Science”. 
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Figure 2.1: Number of Studies on City Logistics in Recent Years (OR&MS) 

Crainic et al. (2009) suggest a variety of formulations and solution methods for the 

deterministic city logistics problem. Due to the high complexity of the formulations, 

there are no solution methods proposed yet that can consider all decisions at the same 

time. 

When the studies on city logistics under uncertainty are observed, it can be seen that 

there are only two papers published in the last nine years. These two articles, Sheu 

(2006) and Taniguchi et al. (2010), are cited 23 times in total. 

Although we are mainly interested in the city logistics problems within the ORMS 

context, we also searched for relevant studies in the CL literature. For example, 

specifying the research area as “Transportation”, we found earlier studies that are 

mainly concerned about the need for CL systems and about the difficulties of setting 

up such systems. These articles usually evaluate the solution alternatives from a 

strategic point of view and do not generally go into the details of how such a system 

can be constructed. Figure 2.2 shows the number of studies from 2001 to 2013. 
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Figure 2.2: Number of Studies on City Logistics in Recent Years (All) 

 

2.1.2 Stochastic/Robust Optimization 

We also investigated the use of stochastic and robust optimization in the literature for 

years after 2001. Stochastic programming literature is considerably larger and more 

quickly expanding than that of robust optimization, which only recently started to gain 

popularity due to the higher complexity of robust optimization problems. 

While these two approaches towards uncertainty do not generally overlap, it seems 

that the “robust” and “stochastic” terms are sometimes used interchangeably in the 

literature. Note that, stochastic programming requires probability distribution of the 

parameters to be known, so that scenarios can be constructed for different realizations 

of the parameters. In stochastic programming problems, the objective function usually 

becomes a weighted average of cost realizations in different scenarios, as the weights 

being the probabilities of these scenarios. On the other hand, robust optimization does 

not require probability distributions. It is sufficient to know the upper and lower 

bounds of the parameters. This way, robust optimization problems mostly try to 

optimize against the worst-case realization of the parameters under uncertainty. 

In Figure 2.3, we provide the number of studies using the terms “Stochastic 

Programming” and “Robust Optimization”. The research area is specified as 

“Operations Research Management Science”.  
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Figure 2.3: Number of Studies on Stochastic Prg. and Robust Opt. in Recent Years 

In this area, there are three important review papers. Fouskakis and Draper (2002) is 

the last comprehensive one on stochastic programming. Since there has been a lot of 

studies on this subject, the recent reviews choose to focus on only one application area, 

such as stochastic facility location, stochastic vehicle routing etc.  

The other two articles, Bertsimas et al. (2011) and Gabrel et al. (2014a) review the 

robust optimization literature. Due to the smaller number of papers where robustness 

is considered, these reviews include a variety of applications in many different areas. 

 

2.1.3 Relevant OR Literature 

There are a set of decisions to be made in a CL system design. The following is the list 

of these decisions: 

 Number of city distribution centers (CDC) (strategic level) 

 Locations of each CDC (strategic level)  

 Number of vehicles to be assigned to each CDC (tactical level) 

 Assignment of customers to CDCs (tactical level) 

 Vehicle routes to serve the customers (operational level) 

Clearly, such a CL system design problem would require many different sub-problems 

to be solved simultaneously. In our case, these decisions are also subject to uncertainty. 

Therefore, the complexity of a formulation incorporating all these decisions would be 
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very high. That’s why there has been no optimization study yet to address all these 

decisions at once. Rather, most of the relevant studies consider only a single decision 

level. Now, we make similar analyses on these studies with respect to the decision 

level they consider: 

 Strategic level: Stochastic Facility Location Problem 

 Tactical level: Stochastic Fleet Sizing/Management Problem 

 Operational level: Stochastic Vehicle Routing Problem 

 

Stochastic Facility Location Problem 

There is a large literature on facility location. However, facility location under 

uncertainty is not studied that much. Figure 2.4 summarizes the number of facility 

location articles in recent years. While the literature on the deterministic problems is 

still growing, we can say that facility location under uncertainty does not draw as much 

attention. The research area is specified as “Operations Research Management 

Science” in this search. 

 

Figure 2.4: Number of Studies on Facility Location in Recent Years 

We believe three of these studies are especially important: Louveaux and Peeters 

(1992) make an important contribution to the stochastic facility location literature with 

their dual-based procedure. Wang et al. (2002) consider demand uncertainty in a 
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stochastic facility location setting. This is one of the earlier studies that focuses on 

uncertainty, and proposes three efficient solution methods. Snyder (2006) provides an 

extensive review of facility location studies that consider uncertainty. These three 

studies own 44% of the citations (193 out of 444) in the literature of facility location 

under uncertainty in the specified years. 

 

Fleet Management Problem 

There are few studies that consider only the fleet management decision. Nevertheless, 

Figure 2.5 summarizes the number of studies in the literature on this problem. While 

searching for the relevant articles, the keywords we used were “fleet sizing”, “fleet 

management” and “fleet planning” connected by “OR” operators, since any of these 

could be used in the titles of the relevant articles. The research area is specified as 

“Operations Research Management Science”. 

 

Figure 2.5: Number of Studies on Fleet Management in Recent Years 

One of the articles in the relevant literature stands out: List et al. (2003) consider fleet 

sizing problem under demand uncertainty. They considered the tradeoff between the 

cost of expanding the vehicle fleet and the additional transportation cost with a smaller 

fleet. They use a two-stage stochastic model and have taken 60% of the citations (51 

out of 84) in the relevant literature. 
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Vehicle Routing Problem 

Literature on the vehicle routing problem is much larger than the problems we have 

analyzed up to now. Since the nature of the VRP is closer to the operational level 

decisions, there have been many extensions to the basic VRP throughout the years. 

Starting decades ago with the simpler Traveling Salesman Problem, the literature 

expanded into the multi-vehicle problems and recently into the multi-depot multi-

vehicle problems. Of course, the complexity of the models increases as they are 

considering many decisions simultaneously. This requires more effective approaches 

and new solution methods to be developed. There are also some extensions originating 

from urban applications, such as hard/soft time windows and eco-friendly vehicles for 

delivery. 

Figure 2.6 summarizes the literature on the VRP and the VRP under uncertainty. For 

the uncertainty aspect of our search, we looked for the keywords “uncertainty”, 

“uncertain”, “robust”, “stochastic”, and “reliability”. We added reliability to the set of 

keywords; because, unlike the previous problem types, reliability plays a greater role 

in the VRP under uncertainty, especially in studies considering the VRP networks in a 

graph-theoretical framework. The research area is specified as “Operations Research 

Management Science”. 

 

Figure 2.6: Number of Studies on Vehicle Routing in Recent Years 
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As we mentioned earlier, the VRP under uncertainty has been studied more extensively 

than the other problems. Naturally, there are a few articles to be specified as important 

contributions. We selected six of them as particularly relevant. For the relevant 

literature before 2000, we refer the reader to two review papers, Bertsimas and 

SimchiLevi (1996) and Gendreau et al. (1996). The former deals with robust 

algorithms, while the latter is on the stochastic VRP. 

Others are as follows: Kenyon et al. (2003) consider random travel times, Bent and 

Van Hentenryck (2004) make scenario-based plans considering stochastic customers, 

Fukasawa et al. (2006) suggest a robust branch-and-cut-and-price algorithm for the 

capacitated VRP. Ando and Taniguchi (2006) look into travel time reliability in the 

VRP with time windows. 

These four articles have got 33% of the citations (276 out of 836) of the literature on 

the VRP under uncertainty in the years after 2000.  

Taş et al. (2014) is a very recent work that considers the VRP with soft time windows 

under travel time uncertainty. Their assumptions are close to real life systems and the 

method they present is efficient. However, the high complexity of their model prevents 

them from solving medium sized instances optimally. 

There are also some other studies that consider multiple levels of city logistics 

decisions. Below, we provide an overview of articles that combine decisions in 

multiple levels. 

 

Facility Location – Fleet Management 

There is one study that considers the facility location and fleet management decisions 

under uncertainty. Fazel-Zarandi et al. (2013) consider travel time uncertainty subject 

to probability distributions, so that scenarios can be constructed to represent the 

uncertainty situation in the system. They use logic-based Benders’ decomposition as 

their solution method. An important novelty in this study is the use of three-level 

decomposition in this kind of problem.  

 



14 
 

Fleet Management – Vehicle Routing 

Generally, studies on vehicle routing problems try to find the optimal routes to be used 

by a fixed number of vehicles to serve a set of customers. However, in a smaller 

number of articles, the number of vehicles is not fixed. Such problems are a 

generalization of the classical VRP in the sense that a new tradeoff is introduced 

concerning the cost and benefit of additional vehicles. None of these articles consider 

uncertainty. Nevertheless, we would like to mention three selected articles as possible 

references on this field. 

Gheysens et al. (1984) compare the performance of different heuristics, propose a new 

heuristic and provide computational results on the fleet size and mix VRP. Brandao 

(2009) uses tabu search algorithm to determine the fleet size and vehicle routes 

simultaneously.  Liu et al. (2009) use a genetic algorithm for the fleet size and mix 

problem.  

 

Facility Location – Vehicle Routing 

Facility location and vehicle routing decisions are studied together more frequently 

due to their practical relationship. The literature on location-routing problems has been 

expanding for decades. There are also other problems that are structurally similar to 

location-routing, such as inventory-routing and production-routing. For example, the 

selection of a facility location in location-routing problems is modeled in a similar way 

to the selection of periods with positive inventory in inventory-routing problems, and 

to the selection of periods with production in production-routing problems. This 

structural similarity allows the modification of algorithms developed for one problem 

to be used for another. 

All these problems deal with a first level decision of locating facilities, stockpiling or 

scheduling production and a second level decision of routing. The two-level decision 

making in these problems has led to the use of two-stage stochastic models, where the 

first stage decisions are made under uncertainty and second stage decisions are made 

after the parameters under uncertainty have been observed.  
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We selected three important articles considering the location-routing problem under 

uncertainty. Laporte et al. (1989) and Berman et al. (1995) develop methods to deal 

with both decisions simultaneously. Albareda-Sambola et al. (2007) suggest a heuristic 

algorithm to find the lower bound to the stochastic location-routing problem. Note that 

this article is still represents state-of-the-art in this area, as even finding a lower bound 

for the stochastic location-routing problem is hard. 

As for the inventory-routing problem, we selected four articles. While Berman and 

Larson (2001) and Kleywegt et al. (2002) employ stochastic programming as their 

solution approach, Solyalı et al. (2012) employ robust optimization approach. Coelho 

et al. (2014) provide an extensive review of the inventory-routing studies in the last 

three decades. 

Among the studies considering production-routing problem, we selected two major 

ones. Adulyasak et al. (2015a) use Benders’ decomposition to solve the production-

routing problem under demand uncertainty in a stochastic setting. Adulyasak et al. 

(2015b) provide a review of production-routing algorithms. 

Now, we present a more detailed literature review on the freight distribution network 

design problem under uncertainty and topics related to the problem. Here we intend to 

determine the relevant modeling and solution methods in the literature to provide a 

basis for our study on network design under uncertainty.  

Since the main characteristic of our work will be uncertainty, we first review the 

literature on optimization under uncertainty. Then, we will focus on the causes of 

uncertainty that have an impact on freight distribution network design. Lastly, we will 

look at the approaches compatible with our problem.  

 

2.2 Defining Uncertainty in the City Logistics Context 

Rosenhead (1972) divides decision making into three categories in terms of nature of 

information: certainty, risk and uncertainty. In certainty situations, deterministic 

models can be effectively used. In risk situations, parameters regarding available 

information are not exactly known, but they are governed by probability distributions 

which can be used to assign probabilities to different levels of a parameter. Lastly, in 
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uncertainty situations, probability distributions are not available either. In this chapter, 

we will deal with risk and uncertainty situations. While it may not be possible to obtain 

probability distributions of disruptions in a large freight distribution system, we may 

come up with scenarios and assign probabilities to them. For the sake of simplicity, 

we will refer to risk and uncertainty concepts together as uncertainty. 

Taniguchi et al. (2010) provide a review of natural and manmade hazards that have an 

impact on city logistics (see Figure 2.7). They classify the hazards in two axes: 

frequency and complexity/uncertainty. They also classify the studies made in this area 

with respect to the approaches used, such as robustness, stochastic programming, 

simulation, and multi-objective optimization. The causes of uncertainty mentioned in 

this article are mostly related to the design decisions on operational level. Since we 

will be mainly considering design decisions on strategic and tactical levels, only the 

approaches developed for these levels have been taken into account in this article. 

Particularly, we will be interested in robust optimization and stochastic programming 

approaches due to their ability to deal with uncertainty. 

 

Figure 2.7: Taniguchi's Classification of Reasons for Uncertainty 

We investigate the decision making in freight distribution network design in three 

levels, operational, tactical and strategic. Each level of decision making is affected by 

uncertainty in a different way. For example, on operational level, an urban 

transportation vehicle driver may choose to use an alternative road after learning there 

has been an accident on the road previously planned. On tactical level, allocation of 

customers to CDCs may be updated according to the changes on the road network 

connecting the supply and demand nodes of the system. On strategic level, CDC 
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locations may be changed or additional CDCs may be opened according to the changes 

in demand from different regions of the city. Decision making on all levels are highly 

dependent on the information obtained from the real life system, and the information 

is usually just an estimate which is subject to change with time.  

Since we want to determine the uncertainty factor most effective and the solution 

approach most suitable in a CL setting, we start by presenting an overview of the 

causes of uncertainty and modeling approaches used in the relevant literature. Then 

we present the reviewed studies categorized accordingly.  

 

2.3 Causes of Uncertainty 

In the literature, the main causes of uncertainty and risk in a freight distribution 

network design problem are specified as follows: 

 Demand amount 

 Travel time / Transportation cost 

 Service time 

 Throughput cost 

 Unit cost 

 Rare events (Manmade and natural disasters) such as link failures and facility 

disruptions 

Demand amount is the uncertainty factor most frequently considered in the literature. 

This may be due to the fact that capacity constraints have traditionally been included 

in the widely studied problems, especially in the facility location literature. Thus, in 

order to ensure feasibility over capacity constraints or to reduce the cost of changes to 

accommodate the uncertain demand, researchers used robust/stochastic programming 

to deal with demand uncertainty. In the literature for facility location under 

uncertainty, vast majority of the studies deal with demand uncertainty. 

When the fleet management and vehicle routing problems are considered, however, 

we see that demand uncertainty is not the single dominant cause of uncertainty in the 

literature. Half of the few studies dealing with fleet management under uncertainty 

consider transportation cost uncertainty. If we look at VRP studies, we see that there 



18 
 

is roughly one study considering travel time/service time uncertainty for every three 

studies considering demand amount uncertainty. 

Until recent years, most studies focused on the strategic decisions of the logistics 

problems and aimed at making long-term investment decisions such as facility location 

and capacity planning in an aggregated way. As may be expected, demand uncertainty 

has been the most critical factor for such decisions by a large margin. However, as 

more advanced methods are being developed for more complex problems, tactical 

decisions are coming into consideration along with strategic ones. Uncertainty factors 

other than demand amount have been increasingly considered through time, as they 

are critical for the tactical decisions. So, one may expect that the current state of the 

literature will change and uncertainty factors other than demand amount will gain 

popularity. 

 

2.4 Approaches for Modeling Uncertainty 

Although several other approaches can be found in the stochastic programming and 

the robust optimization literature, we consider only the ones applicable in our case for 

incorporating the causes of uncertainty: 

 Stochastic programming 

o Mean-outcome models 

 Robust optimization 

o Minimax regret / Worst case optimization 

o p-robustness 

o bw-robustness 

The main difference between stochastic programming and robust optimization can be 

specified as follows. Stochastic programming takes into account all the anticipated 

uncertainty realizations weighted with their corresponding probabilities, however 

robust optimization tries to find the solutions that would not fail to produce a targeted 

objective value no matter how the uncertainty is realized. Both approaches have their 

advantages and disadvantages.  
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Since stochastic programming optimizes an objective function that involves the 

expected outcome of the decisions, the probability attributed to scenarios or the 

probability functions that fit to the uncertain parameters have a large impact on the 

behavior of the model. For example, stochastic programming models may select 

solutions that would obtain good performance with 99% probability, but very bad 

performance with 1% probability. However, the performance that would occur with 

1% probability could be unacceptable to the decision maker. Therefore, the main 

criticism against stochastic programming approach is that it fails to take into account 

the worst case scenarios and leaves the system vulnerable to such occurrences.  

On the other hand, in the robust optimization approach, where mostly the worst case 

scenarios are considered, the performance of the solution may be unsatisfactory under 

the steady conditions. Since the decisions are made according to the worst case, 

performance under normal conditions are often much worse than optimum. Therefore, 

robust optimization is criticized for over-conservatism, i.e. over-emphasizing the risk 

in the worst case scenarios. p-Robustness and bw-robustness are methods that try to 

deal with this problem up to a certain extent, but they also perform unsatisfactorily 

when the worst case performance is significantly different than the average occurrence.  

 

2.5 Review Articles 

Gabrel et al. (2014a) provide a review on robust optimization and robustness. The 

robustness problems are studied in two groups: static robust optimization where all 

decisions must be made under uncertainty and multi-stage decision making where 

some recourse actions are possible after uncertain parameters are observed.  

Gabrel et al. (2014a) state that, although a large portion of the static robust 

optimization literature focuses on applying worst case optimization over a convex 

uncertainty set, such approaches do not produce satisfactory results under normal 

conditions. For example, determining the optimal solution according to a worst-case 

scenario with probability 0.01% may result in operating the system with a solution far 

from optimal 99.99% of the time. When the performance at the worst-case is not so 

critical, this approach does not produce applicable results. This characteristic of worst 

case optimization creates the need for new approaches that take into account the 
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performance of decisions under normal conditions as well as worst case scenarios. 

Examples of such approaches are p-robustness which obtains solutions to guarantee 

that the objective function value will always be within c% difference of the overall 

optimal solution and bw-robustness which provides solutions that guarantee an 

objective value w and maximizes the probability of achieving an objective value b. 

Studies using these approaches will be presented later on. 

The multi-stage decision making problems are generally studied as two-stage 

stochastic models. In the first stage, selected decisions are made under uncertainty. 

These are usually investment decisions with long term effects. In the second stage, 

recourse decisions can be made after the uncertainty has been resolved. The recourse 

decisions such as vehicle routing, generally have shorter term effects. Studies using 

these approaches mostly consider the facility location decisions in the first-stage and 

vehicle routing decisions in the second stage. We will present several studies using 

this approach later on. 

Snyder (2006) makes a review of articles dealing with the facility location problem in 

the presence of uncertainty. Articles are divided into two categories: stochastic 

location and robust location problems. For the stochastic location problems, mean-

outcome, mean variance and probabilistic models are discussed. Stochastic models 

assign probabilities to the elements of their scenario set. Mean-outcome models try to 

optimize the expected value of the objective function. Mean-variance models consider 

both the mean-outcome and mean-variance of the objective value, so that the risk 

aversion of the decision maker can be reflected on the model. Probabilistic models try 

to maximize the probability that the solution will achieve good performance, where 

the definition of good performance is selected by the decision maker. 

For the robust location problems, minimax cost / minimax regret models are dominant, 

accompanied with sensitivity analysis and p-robustness. Minimax cost and minimax 

regret models are the worst case optimization approaches already discussed above. P-

robustness is an approach aiming to produce solutions that will always achieve 

objective value at most within c% difference of the overall optimal.  

Bertsimas et al. (2011) offer an extensive review of robust optimization problems, 

regardless of application domain. They focus on computational attractiveness and 

modeling power aspects rather than making the conceptual classification of the related 
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articles. Bertsimas et al. (2011) also distinguish between single-stage and multi-stage 

decision making problems and give a list of application areas of these solution methods 

such as portfolio optimization and supply chain management.  

 

2.6 Stochastic Programming Approaches 

2.6.1 Demand Uncertainty 

In this section, we review the articles dealing with demand uncertainty with the help 

of stochastic programming. Contrary to the definition by Rosenhead (1972), the word 

uncertainty refers both to the risk and uncertainty in the stochastic programming 

literature. If it is not possible to represent the distribution of parameters with 

probability distributions, scenarios are constructed and they are assigned probabilities. 

Chan et al. (2001) minimize the expected cost of a stochastic location routing problem 

with demand uncertainty. Probability of demand that occurs at the nodes is estimated 

using a queueing process. They solve the problem with the help of stochastic 

decomposition and space-filling curves.  

Daskin et al. (2002) study the facility location problem with demand uncertainty. They 

obtain a nonlinear program to minimize the expected cost of inventory in distribution 

centers. The model is solved using Lagrangian relaxation.  

Crainic et al. (2012a) propose a detailed two-tiered capacitated location problem 

minimizing the expected cost of operating the system under demand uncertainty. They 

follow a two-stage stochastic programming approach with recourse actions. The first 

stage is for having the nominal plan and the second stage modifies some parts of the 

plan to adapt to the realization of demand. They consider demand around a point 

estimation. While they propose a modeling framework, they do not propose a solution 

method.  

Listes and Dekker (2005) apply the stochastic programming approach on the facility 

location problem in a reverse logistics network. They maximize the expected profit of 

the system under uncertainty in demand amounts and locations.  

Tsiakis et al. (2001) develop a mixed integer programming model that determines the 

number, location and capacity of distribution centers which minimizes the annual 
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expected cost of the entire network. The model operates under demand uncertainty but 

differs from the above studies with its capability of handling multi-echelon networks.  

Gülpınar et al. (2013) consider the stochastic facility location problem with single 

commodity and multiple capacitated facilities under demand uncertainty. They 

minimize the expected cost of the system and claim that their model obtains better 

results than the models not considering robustness both in terms of worst case and 

average total cost. 

Adulyasak et al. (2015a) deal with the production routing problem under demand 

uncertainty. They propose a two-stage stochastic production routing problem 

formulation and use Benders Decomposition as a solution method to solve the 

formulation. They make several computational enhancements on the classical Benders 

Decomposition algorithm. They propose using Sample Average Approximation for 

handling the possible large number of scenarios. 

 

2.6.2 Throughput Cost / Unit Cost Uncertainty 

Throughput cost is the variable cost of processing a unit in CDCs. Unit cost is the 

variable cost of producing and/or shipping one unit of product. These cost parameters 

are also subject to uncertainty and change through time. 

Ricciardi et al. (2002) minimize the expected transportation cost on a network where 

the throughput costs in distribution centers are random. They solve a nonlinear 

problem using heuristics. Baldi et al. (2012) study the same problem and apply 

asymptotic approximation method. They also analyze the effect of using different 

probability distributions on the solution.  

Yu and Li (2000) minimize the expected cost of operations considering a scenario set 

under uncertainty of unit costs. They transform the robust model into a linear program 

by adding new variables and demonstrate the computational efficiency of their model 

on two examples. In the first example, they formulate the production, inventory and 

transportation plan of a wine company. In the second example, they provide a model 

scheduling aircraft routes of an airline company.  

 



23 
 

2.6.3 Travel Time / Service Time Uncertainty  

In a city logistics network, shipments are often subject to time constraints. In other 

words, transportation vehicles are often required to reach their destinations within 

specified time windows. Therefore, travel time from CDCs to demand points and 

service time within CDCs are important factors of uncertainty in freight distribution 

networks. Nevertheless, few studies incorporate these factors into freight distribution 

network formulations. 

Ando and Taniguchi (2006) fit normal distribution to travel time, according to data 

obtained from real freight operations. They model a probabilistic vehicle routing and 

scheduling problem with time windows and solve it using genetic algorithms. They 

also provide a case study that includes a pick-up delivery truck and 11 customers. The 

problem is formulated as a vehicle routing problem with time-windows. 

Binart et al. (2015) propose a two-stage formulation for the multi-depot vehicle routing 

problem with time windows under stochastic travel and service times. They suggest 

dividing customers into two groups: the first group consists of mandatory customers 

and the second group consists of optional customers. They set up the “skeleton” of the 

network regarding only the mandatory customers and serve optional customers if 

profitable. The suggestion of grouping customers as mandatory and optional is the 

defining characteristic of this study. Binart et al. (2015) model the stochastic travel 

and service times with discrete triangular distributions and minimize the total travel 

time while visiting as many optional customers as possible. 

 

2.6.4 Other Cases 

Santoso et al. (2005) propose using the sample average approximation and accelerated 

Benders decomposition for handling supply chain network design under uncertainty. 

The problem of interest includes a set of supply facilities, processing facilities, and 

customers, and a set of arcs connecting them. Santoso et al. (2005) minimize the total 

annual cost of operating the system. They claim that their method can deal with the 

problems of a realistic scale and potentially infinite number of scenarios. The problem 

is formulated in a two-stage setting. The stochastic model is capable of dealing with 
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all kinds of uncertainty as long as the joint distribution of scenarios involving uncertain 

parameters are known. 

 

2.7 Robust Optimization Approaches 

2.7.1 Minimax Cost / Regret 

Problems based on regret are often more difficult than the stochastic problems due to 

their minimax structure (Snyder, 2006). Still, minimax regret is a widely studied 

problem in the literature. Their solution methods yield good results when the worst 

case scenario occurs; however, their results may not achieve satisfactory performance 

under normal conditions. Since the objective function does not reflect the solution 

performance under normal conditions, the importance of the performance in worst case 

is over-emphasized. As a result, the performance under normal conditions is sacrificed 

for slightly better results in the worst case (over-conservatism). 

 

Demand Uncertainty 

Averbakh and Berman (2000) study 1-median problem on a transportation network 

where node weights (possibly demand) are uncertain. They use weight scenarios to 

investigate relative regrets at each case.  

Ukkusuri et al. (2007) deal with the network design under demand uncertainty and 

solve their robust model using genetic algorithms. In this paper, the focus is on a traffic 

network design problem, rather than specifically considering the freight distribution 

aspect.  

Alumur et al. (2012) consider facility setup costs and customer demands to be 

uncertain and cannot be expressed in a probability distribution. They minimize the 

maximum regret under all scenarios to determine hub locations in a two-stage strategic 

setting. In the first stage, hub locations and allocations are determined and in the 

second stage, routing decisions are made. 
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Atamtürk and Zhang (2007) construct a two-stage robust optimization model for the 

multicommodity network design problem under demand uncertainty. They apply the 

method to the lot-sizing and location transportation problems.  

Gabrel et al. (2014b) employ a two-stage robust optimization setting for the location 

transportation problems under demand uncertainty. They use cutting plane algorithm 

to solve the problem and propose a tight bound for solving large instances. 

Gounaris et al. (2013) study the capacitated vehicle routing problem under demand 

uncertainty. They try to find the minimum cost solution that will be feasible under all 

demand realizations by using minimax cost approach. 

Remli (2011) studies a two-stage robust location transportation problem focusing on 

the worst case scenario. In this study, demand is considered uncertain and the proposed 

model is solved through linear relaxation of the mixed integer formulation of the 

problem.  

 

Transportation Cost / Travel Time Uncertainty 

Yin and Lou (2009) assume demands belong to an uncertainty set, but they don’t 

follow a probability distribution. They use minimax approach to deal with 

transportation costs.  

Han et al. (2013) study the vehicle routing problem under travel time uncertainty. They 

suggest using range estimates rather than point estimates for the travel times and plan 

according to the worst case scenarios in these ranges. This way, Han et al. (2013) claim 

that more meaningful estimations can be made about the uncertain parameters, leading 

to the solutions to be more applicable.  

 

Demand and Transportation Cost Uncertainty 

Mudchanatongsuk et al. (2008) consider both transportation cost and demand 

uncertainty. They represent uncertainty with independent closed convex sets defined 

as deviations from a nominal value. They try to minimize the cost for the worst-case 

and propose a column generation method for the solution of their problem.  
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Other Factors 

Inuiguchi and Sakawa (1995), Mausser and Laguna (1999), and Averbakh (2000) 

study the minimax regret approach for the linear programming problems with 

uncertainty on the objective function coefficients. Inuiguchi and Sakawa (1995) use 

decision theory to determine the final solution so that a reference solution set is used 

to apply minimax criterion on the candidate solutions. Mausser and Laguna (1999) use 

mixed integer programming formulation to deal with the minimax relative regret 

problem where the objective function coefficients are known to take values in an 

interval. Averbakh (2000) considers the combinatorial optimization problems and 

illustrates the proposed approach on minimax multifacility location problems under 

uncertainty of objective function coefficients.  

 

2.7.2 p-Robustness 

As mentioned earlier, minimax approach only considers the worst case scenarios, thus 

producing solutions that will perform badly under normal conditions. To remedy this 

problem, which is called over-conservatism in the literature, p-robustness measure is 

developed. p-Robustness guarantees that the solution found by the model will obtain 

satisfactory results under all scenarios. The objective function will take values between 

(1-c%) and (1+c%) of the actual optimal objective value in all cases. This way, the 

solutions performing well under normal conditions are not sacrificed for the worst 

case, but a solution is found taking into account all scenarios at the same time. 

Liu et al. (2010) suggest p-robustness, where p is the upper bound of relative regrets 

in disruption scenarios. They solve deterministic optimization models for a given set 

of scenarios and constrain the relative regret of each scenario to be smaller than a 

percentage of the optimal objective value.  

Snyder and Daskin (2006) suggest p-robustness for the facility location models under 

transportation cost uncertainty. They use Lagrangian relaxation as a solution approach.  

Peng et al. (2011) use genetic algorithms to minimize the nominal cost of operations 

while considering p-robustness under facility disruptions. They refer to Bundschuh et 
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al. (2006) while stressing the difference between reliability and robustness. Bundschuh 

et al. (2006) define robustness as the ability of a system to perform its intended 

function relatively well under disruptions and reliability as the probability of a system 

to perform its function within a given time horizon and environment. In the light of 

these definitions, Peng et al. (2011) incorporate both reliability and robustness in their 

model that minimizes costs under possible facility disruptions.  

Gutierrez et al. (1996) propose adaptations of the Benders decomposition for finding 

robust network designs. They search for p-robust solutions to the uncapacitated 

network design problem and suggest the Multi-Masters Benders algorithm, 

considering all scenarios to simultaneously generate a number of robust designs.  

 

2.7.3 bw-Robustness 

Another robustness measure is bw-robustness which is suggested by Roy (2010). In 

this measure, determining two values, w and b, is proposed. w is the least acceptable 

objective value and b is an objective value that is strictly preferred to w. In a bw-

robustness model, the objective is to guarantee the objective value w for all scenarios 

and to maximize the probability of achieving objective value b. Again, bw-robustness 

measure overcomes the over-conservatism problem and offers the ability to control 

two parameters b and w according to the preferences of the decision maker. 

 

2.7.4 Other Cases 

Koulakezian et al. (2012) consider the general traffic assignment problem under 

uncertainty. They consider weather conditions and traffic accidents as major reasons 

for a decrease in traffic supply and add that traffic demand is uncertain. As a result, 

traffic congestion may occur and travel times may increase. They define network 

criticality as a graph metric measuring the robustness of a network and try to minimize 

total travel time using this concept.  

Wang et al. (2006) suggest a reliability perspective for the robust transportation 

network design problem. They provide a detailed optimization model, considering the 

reliability of a network. They compare the telecommunication networks with the 
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logistics networks and try to apply the telecommunication network reliability concept 

to logistics systems. They incorporate the spatial distributions of the nodes in a system 

using density functions. 

Crainic et al. (2012b) suggest an approach for dealing with multi-scenario problems. 

They group similar or dissimilar scenarios using k-means clustering. They also 

introduce the concept of scenario covers, where each scenario appears in two groups. 

They conclude that by solving multi-scenario subproblems where scenario covers are 

used, the number of iterations can be reduced and solution quality can be increased.  

 

2.8 Conclusions on the Literature Review and Framing Our Work 

2.8.1 Factors of Uncertainty 

Considering the strategic point of view in freight distribution network design under 

uncertainty, we have the following observations and preferences that will be 

incorporated into our work. 

The demand uncertainty aspect of the problem is usually handled by the aggregate 

demand forecasts. These are long-term estimations that are expected to be sufficiently 

accurate for short to medium term. Customers of the system are responsible for 

reporting their demand correctly to the CL administration, but any changes may be 

accommodated by the system with some additional cost/fee incurred to the customer. 

Since we do not consider the relations between customers and CL administration in 

this study, we can ignore the daily fluctuations in demand. All in all, we will not be 

considering demand uncertainty.  

On the other hand, planning for the changes in transportation cost falls into the 

responsibility of the CL administration. Moreover, transportation cost uncertainty is a 

main issue in an urban area with frequent traffic congestion. In a stochastic/robust 

optimization model dealing with transportation cost uncertainty, it would be possible 

to meaningfully divide our decisions into two stages. In the first stage the facility 

location decisions are made under uncertainty and in the second stage, allocation of 

customers can be made after uncertainty on transportation cost has been realized; as 

would be the case in a real life CL system. Without making any changes to the 

formulation of location-allocation models, we can model the transportation cost 
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parameter on travel time, since transportation cost is expected to be proportional to 

travel time. Also, there are several studies in the literature that model travel time in a 

city. 

Uncertainty on service time is not very different from uncertainty on travel time as the 

time spent on travel and on service can be aggregated into a single parameter. This 

parameter is to be constrained by the time-window effective on the city-wide freight 

transportation. Since we will not be focusing on the operational level decisions, routing 

and time windows are not represented in our models. Thus, service time uncertainty 

will not be considered. 

Uncertainty of throughput cost and unit cost will not be considered in our study. These 

cost items are not affected by the decisions on facility locations, customer allocations 

or vehicle routes. 

Link failures and facility disruptions could be considered in the context of disasters 

(earthquakes, floods etc.), but these are rare events which are outside of the focus of 

our work. Such a system will be certainly affected in case of a natural disaster and cost 

of maintaining service will be much higher. However, planning against such rare 

events at the expense of performance under normal conditions would not be 

reasonable. Still, small changes in road capacities due to accidents, congestion, etc., 

which can be considered as link failures, may be represented as causes of the travel 

time/transportation cost uncertainty. 

 

2.8.2 Solution Approach 

In the light of these discussions, we choose to employ the stochastic programming 

approach. We believe that the over-conservatism problem in robust optimization is 

difficult to handle, while planning against the worst case could be possible also in 

stochastic programming by assigning larger probability values to the worst case 

scenarios. This way, the weight of worst case situations would be larger in the 

objective function, so that the proposed solutions perform satisfactorily in all 

scenarios. The amount of increase in the probabilities of worst cases may be 

determined according to the preferences of the decision makers. 
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More importantly, robust optimization does not represent a real life system as well as 

stochastic programming. In the real life CL system, the goal is to find solutions that 

provide the best long-term performance; bad performance in only one scenario should 

not prevent the selection of a good solution on average. Robust optimization focuses 

on the goodness of our results in the worst-cases at the expense of achieving a good 

long-term solution performance; however, stochastic programming focuses on the 

average performance over the long-term. For these reasons, we believe that stochastic 

programming is more suitable approach for CL systems.  

 

2.8.3  Benders Decomposition Method 

Regarding the studies reviewed above, a two-stage formulation appears to be suitable 

for the location-allocation part of our problem. In two-stage stochastic formulations 

decisions are divided into two groups: first stage decisions and second stage decisions. 

Factors under uncertainty are observed between the first stage and the second stage.  

It seems natural to approach the location-allocation problem in this manner: facility 

location decisions (which are investment decisions) are to be made under uncertainty 

and customer allocation decisions (which can be changed in time) are to be made after 

the actual parameter values are observed. The second stage decisions are also called 

recourse decisions. In most studies, first stage decisions are represented with binary 

variables and recourse decisions are represented with continuous variables. This is the 

case in our problem. 

The computational complexity inherent in the nature of this problem forces us to use 

decomposition methods. Among these methods, Benders decomposition has been 

extensively applied to two-stage stochastic models. This method is very suitable for 

two-stage stochastic models, because it decomposes binary and continuous variables, 

an approach that naturally matches the variable types in a two-stage stochastic setting.  

Unfortunately, the Benders Decomposition approach does not give satisfactory results 

by itself. There have been many computational enhancements proposed for improving 

Benders Decomposition, especially in a stochastic setting. These enhancements 

include L-shaped method, addition of multiple cuts at each iteration, є-optimal 

solution, cross-decomposition, local-branching, lower bound lifting inequalities, 
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scenario group cuts and pareto-optimal cuts. We work on some of these enhancements 

that we find applicable for our problem. 

 

2.9 Comparison of Journals 

Lastly, we provide the journals where the articles selected in our analyses were 

published. We believe these journals are the ones that did the most important 

contribution to the City Logistics literature. The following table lists the most-cited 

journals in decreasing order of the number of references we used (excluding journals 

with fewer citations than 2): 

Table 2.1: Comparison of Journals 

Journal Number of Citations 

European Journal of Operational Research 17 

Transportation Science 9 

Operations Research 8 

Annals of Operations Research 6 

Computers & Operations Research 6 

Transportation Research Part B 5 

Mathematical Programming 4 

Operations Research Letters 4 

Transportation Research Part E 4 

IIE Transactions 3 

Journal of the Operational Research Society 3 

Management Science 3 

INFORMS Journal on Computing 2 
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CHAPTER 3 

 

PROBLEM FORMULATION 

 

3. PROBLEM FORMULATION 

The problem we are interested in this thesis is the City Logistics Network Design 

Problem under Transportation Cost Uncertainty. The following major decisions are to 

be made in such a network: number and locations of CDCs, allocation of customers to 

the CDCs, and determining fleet size and routing of vehicles.  

To the best of our knowledge, there is no study in the literature that considers all these 

decisions together under uncertainty and manages to find optimal solutions for 

instances with a realistic size. Our preliminary experiments showed that finding an 

optimal solution to a realistic size instance would not be possible in reasonable time, 

even with simplifying assumptions.  

Therefore, we divide the problem according to the decision levels we specified. We 

consider the strategic level decisions on the number and locations of CDCs and the 

tactical level decisions on allocation of customers to CDCs. Since these decisions are 

more critical due to their long-term effect, attempting to optimize these decisions is 

promising the largest benefit for the system. Also, these decisions need to be made 

earlier in a real-life system and they directly define the solution space for the lower-

level decisions. Figure 3.1 illustrates this point in a two-stage stochastic framework; 

decisions related to CDCs are only made once, while the other decisions are 

specifically made for each scenario. 
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Figure 3.1: Decision-Making Process in City Logistics 

 

The logical precedence between these decisions makes it possible to decompose them 

in a meaningful way and without losing too much information by refusing to optimize 

the whole system. Once the higher-level decisions are made, it is possible and may be 

realistic to make the remaining decisions later when the actual parameter values can 

be observed. When the decisions are divided into two in this way, one major tradeoff 

arises at each stage: 

 1st stage: 

o CDC operating costs vs.  

o Costs from the 2nd stage model 

 2nd stage: 

o Vehicle operating costs vs. 

o Routing costs of delivery to customers vs. 

o Penalty costs due to the violation of time windows 

These two stages are connected through the allocation decisions (assignment of 

customers to CDCs). Since even the 1st stage decisions take too much time for 

instances of realistic size, we do not attempt a solution method that iterates between 

the two stages to reach an optimal solution for the whole system. Rather, we 
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acknowledge that these stages follow a natural sequence. The first stage decisions are 

preemptive over the whole solution space. Based on these observations, we prefer a 

sequential solution procedure.  

Each of the lower level decisions will be effective in only a single scenario and on a 

local level within the system. For this reason, we believe that dividing the decisions in 

this way provides a suitable way of reducing solution complexity without sacrificing 

solution quality significantly. 

Of course, there are more than one way of formulating the location-allocation model 

under uncertainty, depending on the nature of the system and preferences of the 

decision maker. The simplest one is the classical location-allocation problem which 

does not take into account the uncertainty factors. A second way of modeling is the 

use of scenarios and a stochastic programming approach. When the uncertainty on 

parameters is represented with the help of scenarios, the objective function becomes 

the weighted average of costs incurred by the decision through all scenarios; therefore, 

this formulation is called the expected value model.  

We also consider a generalization of the expected value model, called the two-stage 

stochastic model. In a two-stage setting, first stage decisions (facility location) are 

made once and are not subject to change through time. However, second stage 

decisions (assignment of customers to CDCs) are made after the factors under 

uncertainty have been observed.  

Now, we explain the different ways of formulating the strategic level decisions of city 

logistics network design. 

 

3.1 Deterministic Location-Allocation Problem 

In this network model, we use two decision variables:  

 𝑧𝑖 determines whether the candidate CDC location i is selected or not 

 𝑥𝑖𝑗 determines the amount of demand served from CDC i to customer j 

Parameters used in the model are the following: 

 𝐹𝑖, the fixed cost of opening CDC i 
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 𝐶𝑖, the service capacity of CDC i 

 𝑇𝑖𝑗, the travel time/transportation cost between location i and location j 

 𝐷𝑗 , the demand amount from customer j 

We use the abbreviation DLAP to denote the Deterministic Location-Allocation 

Problem. 

DLAP Model: 

minimize 

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ 𝑇𝑖𝑗 ∗ 𝑥𝑖𝑗𝑗𝑖     (1) 

subject to 

∑ 𝑥𝑖𝑗𝑖 = 𝐷𝑗     ∀ 𝑗     (2) 

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖     ∀ 𝑖    (3) 

𝑥𝑖𝑗 ≥ 0   ∀ 𝑖, 𝑗      (4) 

𝑧𝑖 ∈ {0,1}   ∀ 𝑖     (5) 

The objective function (1) minimizes the total cost which is the sum of two cost items: 

fixed costs arising from opening and operating CDCs and transportation costs arising 

from the distance between customers and their assigned CDCs. Constraints (2) satisfy 

the demand of each customer. Constraints (3) enforce the limits on service capacities 

of each CDC. Constraints (4) and (5) are domain limitations.  

Note that from now on, we will refer to 𝑇𝑖𝑗 as the distance and the cost of transportation 

between locations i and j, assuming we spend one unit money per unit distance. We 

will make the meaning of 𝑇𝑖𝑗 clear whenever necessary. 

When the model is applied on a problem instance we generated, the results can be 

illustrated as in Figure 3.2. The legend to the bottom left of the figure shows the 

numbers of selected candidate facilities: 
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Figure 3.2: Deterministic Solution of a Typical Instance 

Figure 3.2, the circled points on the city boundary are the candidate CDC locations. 

Blue circles indicate that the CDC is closed and red circles indicate that the CDC is 

open. Other points represent the customer locations. Largest part of the customers’ 

demand is supplied by the CDCs whose color matches their colors. We make use of 

similar figures many times, to illustrate the changes in optimal solution when a 

different approach is taken. 

We can modify the model to put an upper limit to the longest distance to be traveled 

between a customer and a CDC to reflect the service time performance. For this 

purpose, we define an additional continuous decision variable and a parameter. 

 𝐿𝐷 represents the longest distance to be travelled from a CDC to a customer 

 𝑅𝐻𝑆 represents the upper limit on the allowed distance in the system 

And add the constraints: 

𝐿𝐷 ≥ 𝑇𝑖𝑗 ∗ 𝑥𝑖𝑗  ∀ 𝑖, 𝑗    (6) 

𝐿𝐷 ≤ 𝑅𝐻𝑆     (7) 

The first constraint set (6) forces LD to be equal to the largest of the distances between 

a customer and its assigned CDC. The second constraint set (7) forces LD to be smaller 

than a specified RHS value. The selection of the RHS value should be made carefully. 
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Since all candidate CDC locations are on the city boundary, small values would make 

the model infeasible.  

An alternative to constraining the longest distance is penalizing its cost in the objective 

function. We introduce another cost item to represent penalty due to the largest 

distance between a customer and its assigned CDC.  

We define: 

 𝑝𝑡, the penalty due to unit distance in the longest travel distance between a 

customer and a CDC in the system 

It is clear that estimating pt would not be trivial. It may be used to express a strong 

preference on LD, or to make an analysis on the tradeoff between LD and total 

transportation cost. We use the abbreviation DLAP-P to denote the Deterministic 

Location-Allocation Problem with Longest Distance Penalty. 

DLAP-P Model: 

minimize 

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ 𝑇𝑖𝑗 ∗ 𝑥𝑖𝑗𝑗𝑖 + 𝑝𝑡 ∗ 𝐿𝐷  (8) 

 

subject to 

∑ 𝑥𝑖𝑗𝑖 = 𝐷𝑗     ∀ 𝑗     (2) 

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖     ∀ 𝑖    (3) 

𝐿𝐷 ≥ 𝑇𝑖𝑗 ∗ 𝑥𝑖𝑗     ∀ 𝑖, 𝑗     (6) 

𝑥𝑖𝑗 ≥ 0    ∀ 𝑖, 𝑗     (4) 

𝑧𝑖 ∈ {0,1}   ∀ 𝑖     (5) 

Note that we only modified the objective function. This time, the objective function 

(8) minimizes the total cost of function (1) together with the penalty incurring from 

the longest travel time in the system. In this case, as pt increase, its impact on the LD 

will increase the objective function value. As pt decreases, the system will converge 

to the first model (1)-(5). 
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3.2 Modeling Uncertainty 

In this section, we explain how the transportation cost parameter is taken into account 

in our approach and consequently we develop the scenarios to solve the problem under 

uncertainty. While there are many studies on modeling travel time, transportation cost 

has never been modeled on its own to the best of our knowledge. Therefore, we focus 

on the factors affecting travel time. 

The real-life causes of travel-time uncertainty are the following: 

 Rush-hours 

 Occasional traffic congestion 

 Accidents 

 Maintenance/construction 

These causes may be divided into two groups: time-dependent traffic congestion and 

disruptions to traffic. Time-dependency can also be divided into two: fluctuations of 

congestion within a day and fluctuations through several days.  

Rush hours, for example, are a kind of daily time-dependency. During the morning 

hours when commuters are going to work, there is significantly higher traffic 

congestion. Similarly, during the evening hours when commuters are coming back 

from work, traffic congestion is observed. Effect of time dependency can be observed 

also in other hours to a smaller extent.  

Second, we observe significant difference in traffic congestion through the week. For 

instance, weekly delivery of freight is made mostly on Mondays and Fridays, while 

less congestion is expected to occur during the week-days between them. Naturally, 

people rarely encounter traffic congestion on weekends, except on long weekends and 

holidays.  



40 
 

Figure 3.3: Division of City Space 

 

Disruption conditions include all other causes of traffic congestion. Accidents, 

construction projects, weather, social events etc. all have an impact on the travel time. 

There is, however, an important difference between disruption type and time-

dependent causes. While time-dependent causes have city-wide effects, disruptions 

often affect a smaller area within the city. We will call this “local congestion” from 

now on. 

For constructing meaningful scenarios, all these causes of traffic congestion must be 

taken into account properly. 

To separately represent city-wide congestion and local congestion, we divide the cities 

into four regions: northwest, northeast, southeast, and southwest (see Figure 3.3). 

These can be considered as neighborhoods within a city. Vehicles traveling within a 

neighborhood use regular or narrow roads, while vehicles traveling between 

neighborhoods use highways or wider roads.  

Deterministic travel time between two points in a city is proportional to the Euclidean 

distance between these points. But modeling the stochasticity of travel time is a 

different issue. In the literature, there are several alternatives for modeling travel times. 

Branston (1976) makes a review of the most frequently used travel time models. 

In this study, we use the Bureau of Public Roads (BPR) function. This function is 

widely known and frequently used in the transportation literature. It does not require 
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any distribution parameters to be estimated by the user. As we do not have real-life 

data from which such estimations can be made, there is a risk that the result of using 

statistical methods would be inaccurate. On the other hand, BPR function requires only 

the estimate of the proportion of used road capacity, which is much easier to estimate 

correctly.  

Below, we give the Bureau of Public Roads function: 

𝑆𝑎(𝑣𝑎) = 𝑡𝑎 ∗ (1 + 0.15 ∗ (
𝑣𝑎

𝑐𝑎
)

4

) 

where  

 𝑆𝑎(𝑣𝑎) is the average travel time on link 

 𝑡𝑎 is the free flow travel time on link 

 𝑣𝑎 is the volume of traffic on link per unit time 

 𝑐𝑎 is the capacity of link per unit time 

In this function, the only parameter to be estimated is the ratio of current traffic flow 

to the road capacity. We illustrate the function’s behaviour with respect to this ratio 

with the following plots in Figure 3.4: 

(a) BPR Function      (b) Selected Regions on the BPR Funct. 

Figure 3.4: BPR Function and the Selected Regions 

Observe that the travel time does not increase a lot until the traffic flow exceeds link 

capacity. This first part, between no usage and full capacity usage, provides a good 

estimation of traffic on weekends. However, on regular weekdays, the traffic flow is 

surely larger. Considering the roads will rarely be empty and flow sometimes exceed 
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capacity, we choose the region between 50-150% capacity usage to represent the 

traffic on regular weekdays. Lastly, we select a region for the heavy traffic case. For 

most major cities, it would not be surprising to see that the flow/capacity ratio take 

very high values, especially during rush-hours on busy days. We select the region 

between 150-250% capacity usage to represent the heavy-traffic. 

Since we are dealing with a freight distribution network design problem, we are mostly 

interested in the heavy-congestion days. Therefore, we generate a higher number of 

scenarios from the corresponding regions of the BPR function. The following list 

reflects the composition of the scenarios we generate:  

 Low congestion days (20%) 

 Average days (40%) 

o No local traffic (20%) 

o With local traffic (20%) 

 SE region congested (5%) 

 NE region congested (5%) 

 NW region congested (5%) 

 SW region congested (5%) 

 Congested days (40%) 

o No local traffic (20%) 

o With local traffic (20%) 

 SE region congested (5%) 

 NE region congested (5%) 

 NW region congested (5%) 

 SW region congested (5%) 

 

These scenario sets represent the changes in travel time due to time-dependency. The 

term “time-dependency” is used extensively in the literature, especially in the recent 

years, to describe the fluctuations of the travel times in a city. The effect of city traffic 

and the limitations of time windows made it necessary for the models to take into 

account the real-life conditions on the urban road network. The time-dependency 

concept essentially uses the same logic we did when introducing the rush hour 
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congestion and expands it to include all hours of the day. The graph on Figure 3.5 

taken from Van Woensel et al. (2008) illustrates the time-dependency of travel times.  

 

Figure 3.5: Different Urban Traffic Speed Patterns throughout the Day 

In this graph, you see four different representations of average travel speed on the city 

roads. The first one shows real life observations. The second one shows the time-

independent representation of travel speed. In this representation, travel speed is 

averaged through all hours of the day and it is reduced to a single travel speed to be 

used in the model for all hours. The third type is about three time zones. It is very 

similar to our rush-hour representation, since it decreases the travel speed significantly 

during the rush-hours. The last one is the queueing approach, which tries to achieve a 

representation as close to the real life observations as possible. Since using a queueing 

approach would cause further difficulties in our models, we chose to consider a three 

time zone representation when constructing scenarios. 

Time-dependency can be useful in a CL setting, but only if the delivery windows are 

implemented on a city scale (if time windows are the same for all customers). In such 

a case, if the delivery windows are set earlier, the travel time values in the model would 

change significantly and the decisions would not be optimal anymore. We do not 

explicitly consider time-dependency. The scenarios may still be interpreted in a time-

dependency context.  
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3.3 Single-Stage Stochastic Location-Allocation Problem 

Now, we use these scenarios in a stochastic programming model. The single stage 

stochastic model optimizes the weighted average of costs that is incurred under 

different scenarios, where weights represent the probabilities of scenarios. We add a 

new parameter 𝑝𝑠 to our basic location-allocation model and we change the objective 

function (1) only slightly. 

 𝑝𝑠: probability of scenario s  

We use the abbreviation SLAP to denote the Single-Stage Stochastic Location-

Allocation Problem. 

SLAP Model: 

minimize 

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑗 ∗ 𝑝𝑠𝑖    (9) 

subject to 

∑ 𝑥𝑖𝑗𝑖 = 𝐷𝑗     ∀ 𝑗     (2) 

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖     ∀ 𝑖    (3) 

𝑥𝑖𝑗 ≥ 0  ∀ 𝑖, 𝑗      (4) 

𝑧𝑖 ∈ {0,1}   ∀ 𝑖     (5) 

The objective function (9) minimizes the total of fixed CDC opening costs and the 

weighted average of transportation costs across scenarios. 𝑇𝑖𝑗𝑠 is the modified version 

of 𝑇𝑖𝑗 and indicates the cost of transportation between CDC i and customer j in scenario 

s. 

To penalize the longest distance in the system, we further modify the objective 

function as seen in (10). We use the abbreviation SLAP-P to denote Single-Stage 

Stochastic Location-Allocation Problem with Longest Distance Penalty. 
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SLAP-P Model: 

minimize 

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑗 ∗ 𝑝𝑠𝑖 + 𝑝𝑡 ∗ 𝐿𝐷 (10) 

subject to 

∑ 𝑥𝑖𝑗𝑖 = 𝐷𝑗     ∀ 𝑗     (2) 

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖     ∀ 𝑖    (3) 

𝐿𝐷 ≥ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗     ∀ 𝑖, 𝑗, 𝑠    (6) 

𝑥𝑖𝑗 ≥ 0     ∀ 𝑖, 𝑗     (4) 

𝑧𝑖 ∈ {0,1}      ∀ 𝑖     (5) 

The objective function (9) and (10) can actually be simplified easily by replacing the 

second cost term with: 

∑ ∑ 𝐸𝑠[𝑇𝑖𝑗𝑠] ∗ 𝑥𝑖𝑗𝑗𝑖      (11) 

where 𝐸𝑠[𝑇𝑖𝑗𝑠] represents the expected distance calculated over all scenarios. This is 

because the decisions on locations and allocations are made only once, for all 

scenarios. As the objective function does not distinguish between scenarios, the second 

term is equivalent to the sum-product of expected distances and assignment decisions.  

In Table 3.1, we illustrate the decisions in a Single-Stage Stochastic Models, also 

known as Expected Value Models. For a location-allocation problem with 10 

scenarios, both decisions are made only once, effective for all scenarios. In other 

words, both the location and allocation decisions are the same across scenarios. This 

will not be the case in other formulations of the problem, such as Two-Stage Stochastic 

Models and Wait-and-See Models, both of which will be explained in the coming 

sections. 
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Table 3.1: Decisions of the Expected Value Model 

Scenarios Location  Allocation 

1 Z X 

2 Z X 

3 Z X 

4 Z X 

5 Z X 

6 Z X 

7 Z X 

8 Z X 

9 Z X 

10 Z X 

 

When the constraints are not affected by the changes in transportation cost, the 

stochastic character of the model disappears. In such a case, we just need the expected 

values of transportation cost and no scenarios. Therefore, the model becomes an 

“expected value problem” where the parameters under uncertainty are simply replaced 

with the expected values of those parameters.  

On the other hand, when the constraints are affected by the differences in 

transportation cost, the scenarios should still be used. For instance, the longest distance 

is calculated considering travel times in each scenario. Thus, using only the expected 

values of transportation cost would not give the worst-case occurrence of 

transportation cost. Therefore, scenarios should be kept in use when the longest 

distance is constrained or penalized. 
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Figure 3.6 shows the selected CDC locations and customer assignments when the 

“expected value problem” is considered. As can be seen, there are unusual assignments 

near the middle of the city, which are circled in green. These assignments are due the 

way we represented the rush hour traffic congestion in the scenarios in order to hedge 

against uncertainty. 

Figure 3.6: Expected Value Solution of a Typical Instance 

When the longest distance is penalized, the results change significantly:  

Figure 3.7: Expected Value Solution of a Typical Instance when LD is Penalized 
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As can be seen in Figures 3.6 and 3.7, penalizing LD has significant effect on the 

optimal solution. This effect can be seen especially in the selection of CDCs. 

 

3.4 Two-Stage Stochastic Location-Allocation Problem 

We can also formulate the location-allocation problem in a two-stage stochastic 

approach. When such a setting is used, decisions in the first stage are made under 

uncertainty and decisions in the second stage are made after uncertain parameters are 

observed. In other words, the first stage decisions are made only once, to be effective 

for all scenarios. However, the second stage decisions are made specifically for each 

scenario to be effective only for that particular scenario.  

To formulate the location-allocation problem in a two-stage stochastic model, we add 

the index s to the allocation decision variable 𝑥𝑖𝑗. Since location decisions are to be 

made only once, their representation does not change.  

 𝑥𝑖𝑗𝑠 determines the amount of demand served from CDC i to customer j in 

scenario s (continuous variable) 

We use the abbreviation TLAP to denote the Two-Stage Stochastic Location-

Allocation Problem. 

TLAP Model: 

minimize 

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑠𝑗 ∗ 𝑝𝑠𝑖     (12) 

subject to 

∑ 𝑥𝑖𝑗𝑠𝑖 = 𝐷𝑗     ∀ 𝑗, 𝑠      (13) 

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑠𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖     ∀ 𝑖, 𝑠     (14) 

𝑥𝑖𝑗𝑠 ≥ 0  ∀ 𝑖, 𝑗, 𝑠      (15) 

𝑧𝑖 ∈ {0,1}   ∀ 𝑖      (5) 

The objective function (12) minimizes the total of fixed CDC opening costs and the 

weighted average of transportation costs across scenarios. 𝑥𝑖𝑗𝑠 is the modified version 
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of 𝑥𝑖𝑗 and indicates whether the arc between CDC i and customer j in scenario s used 

for transportation. Constraints (13)-(15) are modified versions of constraints (2)-(4). 

We use the abbreviation TLAP-P to denote the Two-Stage Stochastic Location-

Allocation Problem with Longest Distance Penalty. 

TLAP-P Model: 

minimize 

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑠𝑗 ∗ 𝑝𝑠𝑖 + 𝑝𝑡 ∗ 𝐿𝐷  (16) 

subject to 

∑ 𝑥𝑖𝑗𝑠𝑖 = 𝐷𝑗     ∀ 𝑗, 𝑠      (13) 

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑠𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖     ∀ 𝑖, 𝑠     (14) 

𝐿𝐷 ≥ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠    ∀ 𝑖, 𝑗, 𝑠     (17) 

𝑥𝑖𝑗𝑠 ≥ 0  ∀ 𝑖, 𝑗, 𝑠      (15) 

𝑧𝑖 ∈ {0,1}   ∀ 𝑖      (5) 

The objective function (16) minimizes the total fixed and variable cost items along 

with the longest distance penalty. Constraints (13)-(15) are modified from (2)-(4) and 

constraints (17) is modified from (6). 

Table 3.2 illustrates the decisions of the Two-Stage Stochastic Model. Parallel to Table 

3.1, we observe the location and allocation decisions across 10 scenarios. Unlike the 

result of the Expected Value Model where a single decision set was effective for all 

scenarios, the Two-Stage Stochastic Model produces different allocation decisions for 

each scenario, while keeping location decisions the same.  
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Table 3.2: Decisions of the Two-Stage Stochastic Model 

Scenarios Location  Allocation 

1 Z X1 

2 Z X2 

3 Z X3 

4 Z X4 

5 Z X5 

6 Z X6 

7 Z X7 

8 Z X8 

9 Z X9 

10 Z X10 

 

Note that there is only a small distinction between the two formulations; however, the 

logic behind is different. In the single stage stochastic model, we optimize allocation 

decisions against the expected value of transportation cost, while in the two-stage 

stochastic model, we can find the optimum allocation decisions for each scenario. 

Thus, the Two-Stage Stochastic model implies that it is possible to set the second stage 

decisions according to realized conditions. When there is no recourse capability, single 

stage stochastic models make more sense, because they work on the assumption that 

the decisions are made only once. However, in a typical CL system, updating customer 

assignment is certainly possible. In fact, we would expect such a capability to bring 

significant benefit in terms of transportation cost. 

Making different allocation decisions at each scenario reveals another measure about 

the performance and applicability of our decisions. In a real-life application, both 

minimizing transportation cost and minimizing changes in allocation decisions would 

be desirable, so it is necessary to strike a balance between those conflicting objectives 

according to the preferences of the decision maker. 

In Figure 3.8, we illustrate the change in customer assignments through scenarios. 

Here, the x-axis represents different customers (from 1 to 100) and the y-axis 

represents different scenarios (from 1 to 20). The bars are colored to show the number 

of scenarios in which a customer is assigned to a CDC, different colors representing 
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different CDCs. For instance, customer 90 is assigned to CDC 9 in four scenarios, to 

CDC 10 in seven scenarios and to CDC 11 in nine scenarios. This graph does not show 

the assignments made in each scenario. Instead, we are interested in the number of 

changes in allocation decisions for each customer. 

Figure 3.8: Customers with Changing Assignments 

We count the changes in the following way. We create a new binary variable that keeps 

track of whether two allocation variables corresponding to a particular CDC-customer 

pair are different in two consecutive scenarios. If there is at least one change, this 

11 

4 

2

0 

9 

10 



52 
 

indicator variable stores the information by taking the value one. The sum of these 

indicator variables equal the number of customers with changing assignments. We 

only consider the allocation changes across scenarios. We do not consider it a 

coordination necessity if the customers are serviced by multiple CDCs in a particular 

scenario. 

If changes in the allocation decisions are costly or they are generating some issues that 

are not considered in the models but could be important in practice, then it is possible 

to modify the model to restrict or penalize the number of customers with changing 

CDC assignments. For this purpose, we define indicator variables to distinguish how 

many times a customer is assigned to a particular CDC through scenarios: 

 δj identifies the customers assigned to different CDCs 

And we add the following set of constraints: 

∑ ∑ 𝑥𝑖1𝑗𝑠 ∗ 𝑖1 ≤ ∑ ∑ 𝑥𝑖2𝑗𝑠+1 ∗ 𝑖2 + 𝑀 ∗ 𝛿𝑗𝑠+1𝑖2𝑠𝑖1
   ∀ 𝑗, 𝑠 ∈ {1 … |𝑆| − 1} (18) 

∑ ∑ 𝑥𝑖1𝑗𝑠 ∗ 𝑖1 ≥ ∑ ∑ 𝑥𝑖2𝑗𝑠+1 ∗ 𝑖2 − 𝑀 ∗ 𝛿𝑗𝑠+1𝑖2𝑠𝑖1
   ∀ 𝑗, 𝑠 ∈ {1 … |𝑆| − 1} (19) 

These constraints force the indicator variable to take value 1 if a customer j is assigned 

to different CDCs 𝑖1 and 𝑖2 in different scenarios 𝑠1 and 𝑠2. 

If a constraint will be added to limit the number of customers assigned to different 

CDCs, we add the following: 

∑ δj𝑗 ≤ 𝑅𝐻𝑆       (20) 

If the number of customers with changing assignments is to be penalized, we change 

the objective function as follows: 

minimize 

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠 ∗ 𝑝𝑠𝑠𝑗𝑖 + ∑ δj𝑗 ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦  (21) 

Both approaches are valid and one of them can be preferred according to the 

characteristics of the system of interest. If there is an estimated cost equivalent of the 

coordination requirement, penalization makes sense. If not, the relationship between 

coordination requirement and objective function value can be identified by obtaining 

the non-dominated solution set of the problem. 
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3.5 Measuring the Value of Using Different Formulations 

There are several ways of measuring the value of information when there is uncertainty 

in one of the parameters. 

Expected Value of Perfect Information (EVPI) is the price that the decision maker is 

willing to pay so that decisions can be made with perfect information. To calculate 

EVPI, we need to consider two solution approaches and their results. 

The first approach requires solving a set of problems called the Wait-and-See 

problems. In this approach, each Wait-and-See problem corresponds to a particular 

scenario in which the parameters under uncertainty are replaced with the values given 

in that particular scenario. In each scenario, both location and allocation decisions are 

made optimally. Then, the Wait-and-See solution (WS) becomes the expected cost of 

these solutions (See Table 3.3): 

𝑊𝑆 = 𝐸𝑠[∑ 𝑧𝑖𝑠 ∗ 𝐹𝑖 +𝑖 ∑ 𝑥𝑖𝑗𝑠 ∗ 𝐷𝑖𝑗𝑠] = ∑ 𝑝𝑠 ∗𝑠 ∑ (𝑧𝑖𝑠 ∗ 𝐹𝑖 + 𝑥𝑖𝑗𝑠 ∗ 𝑇𝑖𝑗𝑠)𝑖,𝑗𝑖,𝑗   

(22) 

Table 3.3: Decisions of the Wait-and-See Model 

Scenarios Location  Allocation 

1 Z1 X1 

2 Z2 X2 

3 Z3 X3 

4 Z4 X4 

5 Z5 X5 

6 Z6 X6 

7 Z7 X7 

8 Z8 X8 

9 Z9 X9 

10 Z10 X10 

 

Table 3.3 illustrates the approach. Zs and Xs refer respectively to the optimal location and 

allocation decisions in the scenario s. 
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A different approach is using two-stage stochastic models. In such a setting, first stage 

decisions are made for all scenarios, but second stage decisions are made specifically 

for each scenario. Thus, while first stage decisions are fixed, second stage decisions 

are made optimally for each scenario. Such problems are called Recourse Problems or 

Here-and-Now Problems. The objective function value obtained in Recourse Problems 

is the sum of two cost items: RP is the cost of first stage decisions and the expected 

cost of second stage decisions: 

𝑅𝑃 = 𝐸𝑠[∑ 𝑧𝑖 ∗ 𝐹𝑖 + ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠] = ∑ 𝑧𝑖 ∗ 𝐹𝑖 + ∑ [𝑝𝑠 ∗𝑠 ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑖,𝑗 ]𝑖𝑖,𝑗𝑖   

        (23) 

The second measure, Value of Stochastic Solution (VSS) coined by Birge (1982), 

indicates the benefit of making updates on the second stage decisions. To calculate 

VSS we need to consider a third kind of problem: the Expected Value Problem (EV), 

where the parameters under uncertainty are simply replaced by their expected values 

over all scenarios. Expected cost of using the Expected Value Problem (EEV) is then: 

𝐸𝐸𝑉 = 𝐸𝑠[∑ 𝑧𝑖 ∗ 𝐹𝑖 + ∑ 𝐸𝑠(𝑇𝑖𝑗𝑠) ∗ 𝑥𝑖𝑗] = ∑ 𝑧𝑖 ∗ 𝐹𝑖 + ∑ 𝑥𝑖𝑗 ∗ ∑ 𝑝𝑠 ∗ 𝑇𝑖𝑗𝑠𝑠𝑖,𝑗𝑖𝑖,𝑗𝑖   

        (24) 

Since we are dealing with a minimization problem, the following relation can be easily 

observed (Madansky, 1960): 

𝐸𝐸𝑉 ≥ 𝑅𝑃 ≥ 𝑊𝑆      (25) 

Then, for minimization problems, EVPI is found as: 

𝐸𝑉𝑃𝐼% =
𝑅𝑃−𝑊𝑆

𝑊𝑆
∗ 100     (26) 

Also, for minimization problems, VSS is found as: 

𝑉𝑆𝑆% =
𝐸𝐸𝑉−𝑅𝑃

𝑅𝑃
∗ 100     (27) 

EVPI is a useful measure when the parameters under uncertainty will not keep 

changing once they are observed. For example, when planning for disaster relief, 

decisions are made for a single rare event. The parameter values we are interested in 

are the ones that are observed once the event occurs. Such models are actually planning 

for a single scenario, but they cannot perfectly predict it. If EVPI is high, more 
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resources should be spent on better predicting that scenario. For a discussion of Value 

of Information in Humanitarian Logistics, see Noyan (2012) and Doyen et al. (2012). 

On the other hand, when city logistics systems are considered, plans are made for the 

long-term while the transportation costs keep changing every day. Therefore, our 

decisions must be valid for a number of different scenarios, rather than a single one. 

In such a case, VSS becomes more useful. This is because VSS measures the cost we 

avoid if we can change our second stage decisions according to the realization of 

uncertainty. If VSS is high, more investments can be made for the capability of 

adapting second stage decisions to the environment. If it is near zero, expected value 

of parameters can be successfully used to make near optimal decisions. For further 

discussion on expected value solutions, see Maggioni and Wallace (2012). 

Now we present our calculations on VSS as a percentage of the RP value. Since we 

have to come up with fixed location decisions, we cannot obtain meaningful WS 

results. Thus, RP is the best result available to us. Also, as mentioned earlier, the 

single-stage stochastic model reduces to the Expected Value Problem, when we do not 

consider any constraint or penalty on the longest distance to be traveled. We can 

calculate EEV using the solutions of this model. VSS is simply the difference between 

those values.   

 

Generated Instances 

We generated a set of instances each of them including 100 customers and 100 

scenarios. These instances are constructed in two main groups according to their 

shapes: circular and square. Customers in circular instances are generated with normal 

distribution and these distributions are used for observing the change in VSS with 

respect to change of standard deviation. We make use of the fact that as the standard 

deviation increases, normal distribution within a restricted circular area approaches 

uniform distribution. 

We use the following standard deviation values for circular shaped instances: 2, 4, 6 

and 8. Figure 3.9 represents each instance respectively. Here the blue stars correspond 

to the customer locations and red stars indicate candidate CDC sites. In all instances 
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100 customers are distributed normally around the city center. Candidate CDC sites 

are uniformly distributed in all directions on the city boundary.  

(a) Circular Pattern with σ=2  (b) Circular Pattern with σ=4 

 

(c) Circular Pattern with σ=6  (d) Circular Pattern with σ=8 

Figure 3.9: Circular Patterns 

Square shaped instances are generated in three patterns (See Figure 3.10): random, 

clustered and mixed (in line with the Solomon Instances: R, C and RC). Each group 

has two subgroups with different spatial distributions. Cities in all instances are 30x30 

km in size.  
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 Random Pattern 

o Uniformly distributed customers (R_u_100) 

Both customers and CDCs are uniformly distributed along both axes. 

At each side of the city (north, south, etc.) there are 5 CDCs, which are 

distributed uniformly along that side. 

o Normally distributed customers (R_n_100) 

Customers are normally distributed around a single center (x,y) which 

is created inside a central square with the corners on (5,5), (5,25), 

(25,5), and (25,25). Center point is chosen by a normal distribution with 

parameters NX(15,5) and NY(15,5), so that the instances represent a 

wider variety of customer patterns. Around the center point, normally 

distributed customers are created with parameters NX(x,7) and NY(y,7). 

Customers that are created outside the city boundaries are not 

represented in the instances. At each side of the city (north, south etc.) 

there are 5 CDCs, which are distributed uniformly along that side. 

 Clustered Pattern 

o Uniformly distributed customers on normally distributed cluster 

centers (*) (C_u_100) 

Customers are uniformly distributed around 10 centers that are created 

inside a central square with the corners on (2,2), (2,28), (28,2), and 

(28,28). Center points are distributed normally within the square with 

parameters NX(15,7) and NY(15,7). Around each center point, 10 

uniformly distributed customers are created within the 4x4 km box 

around the center. At each side of the city (north, south, etc.) there are 

5 CDCs, which are distributed uniformly along that side. 

o Normally distributed customers on normally distributed cluster centers 

(C_n_100) 

Customers are normally distributed around 10 centers that are created 

inside a central square with the corners on (2,2), (2,28), (28,2), and 

(28,28). Center points are distributed normally within the square with 

parameters NX(15,7) and NY(15,7). Around each center point, normally 

distributed customers are created with parameters NX(x,2) and NY(y,2). 

Customers that are created outside the city boundaries are replaced with 
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new customers. At each side of the city (north, south etc.) there are 5 

CDCs, which are distributed uniformly along that side. 

 Mixed Pattern 

o Uniformly distributed customers along with * (RC_u_100) 

In these hybrid instances, half of the customers are created with 

uniform distribution and the other half are created through the process 

explained in *. At each side of the city (north, south, etc.) there are 5 

CDCs, which are distributed uniformly along that side. 

o Normally distributed customers along with * (RC_n_100) 

In these hybrid instances, half of the customers are created with normal 

distribution around a single center (x,y) that is created inside a central 

square with the corners on (5,5), (5,25), (25,5), and (25,25). The center 

point is chosen by a normal distribution with parameters NX(15,5) and 

NY(15,5), so that the instances represent a wider variety of customer 

patterns. Around the center point, normally distributed customers are 

created with parameters NX(x,7) and NY(y,7). The other half are created 

through the process explained in *. At each side of the city (north, south, 

etc.) there are 5 CDCs, which are distributed uniformly along that side. 
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(a) Square Pattern with Unif. Distr. (b) Square Pattern with Normal Distr. 

 (c) Square Pattern with Unif. Clust. (d) Square Pattern with Normal Clust. 

 

(e) Square Pattern with Mixed Unif. D.  (f) Square Pattern with Mixed Normal D. 

Figure 3.10: Square Patterns 

From each recipe, we created 20 instances. In order for VIO results to exclusively 

show the effect of the transportation cost uncertainty, we use the same (unit) demand 

and capacity values in all instances.  Capacity of each CDC is 24 times the unit 

demand. Longest distance and changes in allocation are not penalized. Now, we 

present the VSS and EVPI values obtained from the analyses made on these instances. 
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VSS 

Now we present the statistics on VSS and EVPI values found in our computations for 

each of the instance groups that contain 20 instances. In Tables 3.4-3.7, we present the 

average, minimum, maximum and range (minimum-maximum) values for VSS and 

EVPI of instances.  

  

Table 3.4: VSS Results for Circular Patterns 

VSS-Circular Average(%) Min(%) Max(%) Range(%) 

σ=2 18.8 17.8 19.5 1.8 

σ=4 12.6 11.7 13.6 1.9 

σ=6 9.5 8.3 11.0 2.7 

σ=8 9.2 8.7 9.5 0.8 

 

Observe that VSS level with σ=2 is more than twice the VSS level with σ=8 in Table 

3.4. Based on VSS values calculated for the circular instances, we can see that the 

distribution of customer locations significantly changes the level benefit of using a 

two-stage stochastic approach instead of an expected value approach. In other words, 

when the standard deviation is lower, it is more important for the CL system to be able 

to change the allocation decisions when encountered with different scenarios.  

The explanation for this observation is not solely based on the difference between 

normal and uniform distribution. Because a more important difference than the 

distribution is the customer density in the city center. We make the comparison 

between instances lowest and highest standard deviation with the help of Figure 3.11: 
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(a) Circular Pattern with σ=2  (b) Circular Pattern with σ=8 

Figure 3.11: Comparison of City Center Customer Density in Circular Patterns 

Figure 3.11 represents the instances with the lowest (σ=2) and highest (σ=8) standard 

deviation. The red circles roughly indicate the region we consider the city center. The 

significance of customer density in the city center is due to CDCs locations being on 

the city boundaries. Since CDCs are located far from the city center, there is a higher 

possibility for customers in the city center to have a different closest CDC in different 

scenarios.  

For instance, if we consider a customer near the city boundary, we would expect it to 

have a fixed assignment to the closest CDC. On the other hand, if a customer in the 

city center is considered, since it is farther away from all CDCs, its assignment would 

probably change depending on the scenarios. As a result, when there are more 

customers in the city center, there is higher value that can be obtained from allowing 

CDC assignments to change over time, which is reflected by the higher VSS.  

Table 3.5: VSS Results for Square Patterns 

VSS-Square Average(%) Min(%) Max(%) Range(%) 

R_u_100 8.9 7.0 10.8 3.9 

R_n_100 13.1 11.0 15.8 4.8 

C_u_100 10.6 5.8 17.3 11.5 

C_n_100 13.1 10.3 16.9 6.6 

RC_u_100 10.1 6.2 13.1 6.9 

RC_n_100 11.1 7.3 13.7 6.5 
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Now, we analyze the instances with square patterns. While EVPI values do not differ 

greatly between instances, VSS values show large variation. We can consider the 

instances R_u_100, C_u_100 and C_n_100 to be the extremes of the pool of instances, 

since the former provides the most uniform spatial distribution of the customers and 

the latter does the opposite. Therefore, it is not surprising to observe the large 

difference between their VSS values as their average values are the highest and lowest. 

It is also expected that the mixed instances’ values lie between the two extremes. The 

instances called R_n_100 produce high VSS values since the distribution of customers 

is far from being uniform through the city, rather the number of customers is much 

higher near the city center than in the city outskirts. Therefore, a small change in 

transportation cost may change the optimal allocation decision for more customers. 

The R_u_100 instances show the lowest range. However, the results from clustered 

instances differ greatly according to the locations of cluster centers. We observe the 

largest range in C_u_100 and not in C_n_100 because the customers are located more 

closely to the cluster centers in the former, while they are allowed to deviate more 

from the cluster centers (an effect of normal distribution) in the latter. Therefore, in 

C_u_100 the VSS values depend largely on the selection of cluster centers, but the 

effect of cluster centers is smaller in C_n_100.  VSS ranges for mixed instances are 

again between the extremes. 

An interesting remark is that when we compare the circular instance with highest 

standard deviation (which can be considered closest to uniform) and the square 

instance with random uniform distribution, we observe similar VSS results, which may 

indicate that the effect of city’s shape is negligible compared to the effect of customer 

distribution. 

 

EVPI 

When we look at the EVPI results given in Tables 3.6-3.7, the most important 

observation is that the average EVPI values are always significantly smaller than the 

average VSS values. Table 3.6 summarizes EVPI results for the circular instances. 
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Table 3.6: EVPI Results for Circular Patterns 

EVPI-Circular Average(%) Min(%) Max(%) Range(%) 

σ=2 3.4 3.0 3.7 0.7 

σ=4 3.1 2.7 3.5 0.9 

σ=6 2.8 2.5 3.0 0.5 

σ=8 2.9 2.3 3.2 0.8 

 

Similar to the VSS results, we again observe a decrease in EVPI results as the standard 

deviation increases for the instances with circular patterns. This decrease, however, is 

not as large as it was in the VSS case, but it is still significant. The reason for the 

decrease is the same as before; the transportation costs of customers in the city center 

are less stable. Thus, when the customer density in the city center is higher, we expect 

the collective change in the transportation cost matrix to have more impact on the 

selection of candidate CDCs. 

Table 3.7: EVPI Results for Square Patterns 

EVPI-Square Average(%) Min(%) Max(%) Range(%) 

R_u_100 2.9 1.5 4.6 3.1 

R_n_100 2.4 1.1 3.5 2.3 

C_u_100 2.2 0.9 3.4 2.5 

C_n_100 2.6 1.5 4.0 2.5 

RC_u_100 2.3 1.2 3.2 2.0 

RC_n_100 2.5 1.1 4.0 2.9 

 

Similar comments can be made about the EVPI values for square instances. Again, the 

instances called R_u_100 and C_u_100 seem to be the extreme cases, while others’ 

EVPI values are in-between. 

When the VSS and EVPI values are compared, we can easily see that the difference 

between RP and EEV approaches are much more significant than the difference 

between WS and RP approaches. This means that most of the benefit from having 

perfect information can be obtained just by updating allocation decisions for each 

scenario. We must also note that periodically changing customer allocations according 
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to system conditions would be possible in a real-life system, whereas it is surely 

impossible to change the locations of CDCs in the short term; thus, the best realistic 

solution is obtained by the two-stage stochastic solution. Based on these observations, 

we will use the two-stage approach solving the CL network design problem under cost 

uncertainty.  

 

3.6 Significance of Value of Information in City Logistics  

It is clear that the ability to make allocation decisions specifically for each scenario 

brings great benefit in a City Logistics system. However, we also wanted to analyze 

the impact of locating CDCs on the city boundaries, which is a defining feature of City 

Logistics systems. Therefore, we compared the VSS and EVPI values obtained from 

instances with CDCs on the city boundaries and with CDCs located inside the city. 

Only changing the candidate CDC locations are changed. New locations are selected 

using uniform distribution on both x and y axes. The Tables 3.8-3.9 show the average 

values over 20 instances from each group: 

Table 3.8: Comparison of VSS in CL vs. Classical Location Setting 

VSS-Square City Logistics(%) Classical LP(%) 

R_u_100 8.9 5.7 

R_n_100 13.1 8.3 

C_u_100 10.6 6.9 

C_n_100 13.1 4.4 

RC_u_100 10.1 5.4 

RC_n_100 11.1 6.8 

 

The values in the “City Logistics” column are the same as the ones explained in the 

previous section. The values in the “Classical LP” column, however, are obtained after 

we modified the instances by locating the candidate CDCs uniformly inside the city.  

There is a clear difference between VSS values in the CL setting and the classical 

facility location setting for every instance group. The reason for this observation can 

be explained in the following way: When the CDCs are located on the city boundaries, 

their distance to the customers near the city center do not vary greatly; thus, small 
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changes in transportation cost may change the optimal allocation decision for a 

customer. Therefore, the two-stage stochastic approach produces significantly better 

results, providing optimal allocations for such customers, while the expected value 

approach cannot. On the other hand, when some of the CDCs are located close to the 

city center, the customers near the city center are automatically allocated to those 

CDCs. Thus, there are fewer customers that would benefit from allocation changes, 

and the benefit of using the two-stage stochastic approach is reduced. 

Table 3.9: Comparison of EVPI in CL vs. Classical Location Setting 

EVPI-Square City Logistics(%) Classical LP(%) 

R_u_100 2.9 2.6 

R_n_100 2.4 1.6 

C_u_100 2.2 1.2 

C_n_100 2.6 0.5 

RC_u_100 2.3 2.3 

RC_n_100 2.5 0.7 

 

We can see significant differences also for the EVPI values for most instance groups. 

The benefit of having perfect information on the transportation cost parameter is 

reduced when CDCs are located inside the city, because in such a case, not selecting 

the best CDC for a particular scenario does not significantly increase the transportation 

cost. 

Another argument could be made on the relative distance of customers and facilities. 

In the classical location literature, the customers are closer to facilities in all instances, 

since facilities are located within the region. As we have seen in Figure 3.11, higher 

standard deviation values for customer location distribution create smaller distances 

between customers and CDCs and vice versa. Thus, the instances with high standard 

deviation are closer in behavior to the classical instances. We observe that such 

instances produce smaller VSS, which is parallel to our conclusion that VSS is larger 

in the CL context. 
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From these observations, we conclude that using two-stage stochastic formulation 

provides larger benefit in a City Logistics location problem than in a classical facility 

location problem.  

 

3.7 The Tradeoff Between Transportation Cost and Coordination Cost 

As explained in the previous subsections, the ability to change customer assignments 

according to changing conditions brings large benefits. While changing assignments 

would be possible in a real-life system, it would come with a coordination cost due to 

the expenses of maintaining the organization despite the changes. If the assignment 

decisions are to be changed periodically, the corresponding stakeholders of the system 

need to update their shipments arrangements accordingly.  

It is difficult to estimate the magnitude of coordination costs in a real-life system and 

it would not be meaningful to compare the coordination costs to transportation costs 

as different decision makers would have different priorities. However, we can compare 

the necessity of coordination in terms of the number of customers with changing 

assignments. We may assume the number of customers with changing assignments to 

be proportional to the coordination cost in a real-life system. Table 3.10 summarizes 

our findings on the coordination necessity. We report the average proportion of 

customers with changing assignments within the whole customer population, along 

with minimum, maximum and range values. 

Table 3.10: Number of Customers with Assignment Change 

Customers with Assignment Change Average(%) Min(%) Max(%) Range(%) 

R_u_100 82.9 79 89 10 

R_n_100 94.7 88 99 11 

C_u_100 92.0 80 100 20 

C_n_100 92.3 84 99 15 

RC_u_100 87.9 77 96 19 

RC_n_100 90.5 85 97 12 

 

Here we see that the coordination requirement is significantly affected by the spatial 

distribution and pattern of customers. We expect this requirement to be lower when a 



67 
 

larger proportion of the customers are located close to the city boundaries, since only 

large changes in travel times would change  the allocation decisions for these 

customers. Among our instance groups, the ones called R_u_100, RC_u_100 and 

RC_u_100 are the ones that consistently place more customers far from the city center. 

Thus it is expected that these instances result in a higher average number of stable 

assignments. Conversely, the instances called R_n_100 put most of the customers near 

city center. The instances called C_u_100 and C_n_100 vary according to the selection 

of cluster centers; therefore, their values are between the two extremes. 

Table 3.11: Customers with Assignment Change without Congested Days 

Customers with Assignment Change Average(%) 

Average w/o 

Congested Days(%) 

R_u_100 82.9 63.7 

R_n_100 94.7 87.1 

C_u_100 92.0 84.0 

C_n_100 92.3 84.9 

RC_u_100 87.9 77.5 

RC_n_100 90.5 82.7 

 

When we exclude the congested days from our scenarios (See Table 3.11), we 

expectedly find a significantly larger number of stable assignments. Since the travel 

times are not changed as much as in the previous case, we obtain roughly two times 

the number of stable assignments.  

Table 3.12: Customers with Assignment Change under Classical Location Setting 

Customers with Assignment Change City Logistics(%) Classical LP(%) 

R_u_100 82.9 81.9 

R_n_100 94.7 84.7 

C_u_100 92.0 77.2 

C_n_100 92.3 74.0 

RC_u_100 87.9 85.8 

RC_n_100 90.5 81.7 
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If the CDCs were located within city, the results are again different (See Table 3.12). 

This time clustered instances have significantly lower coordination requirements, 

because clusters are simply assigned to CDCs with all their members; larger changes 

in travel times are needed for changing assignments, thus changes occur less often. We 

also observe an increase in the number of stable assignments when an instance includes 

more customers close to the city center. Due to the same reason, the closely packed 

customers are assigned as a whole. On the other hand, uniformly distributed instances 

are not significantly affected from the change. 

In conclusion, the results and observations in this chapter made it clear that a City 

Logistics system must be adaptable to the ever-changing city environment. Cities are 

dynamic organizations that evolve over time according to the needs and actions of their 

inhabitants. The quality, capacity and coverage of the road network are among the 

most important characteristics of a city that participate in the evolution process. These 

characteristics are the subject of our interest in our analyses on the travel time 

uncertainty. Our findings show that an effective City Logistics system can only be 

implemented if the tactical and operational level decisions are updated in reaction to 

the changes on the traffic conditions. 
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CHAPTER 4 

 

EXACT SOLUTION METHODS AND PRELIMINARY COMPUTATIONAL 

RESULTS 

 

4. EXACT SOLUTION METHODS 

In the previous section, we have seen that significant gains can be achieved when we 

allow the allocation decisions to change over time. Since such an approach would be 

realistic, we apply the two-stage stochastic formulation to the city logistics system 

design problem. 

Recall that the location-allocation problem is NP-hard (Snyder, 2006) and a small 

increase in the number of customers results in a large increase in solution time. Since 

we consider uncertainty through scenarios and need to make assignment decisions 

specifically for each scenario, the computational complexity of the problem is higher 

than its deterministic counterpart. For example, the instances considered in Chapter 3 

include 20 binary and 100 continuous variables when the expected value formulation 

is used and 20 binary and 10000 continuous variables when the two-stage stochastic 

formulation is used (with 100 scenarios). To be able to deal with instances of realistic 

size, we need to employ suitable solution methods. The largest instances that can be 

solved under 2 hours include around 100 customers, which is clearly not a sufficiently 

large customer base for a CL system. 

Benders (1962) introduced Benders Decomposition for mixed integer problems. In 

order to avoid the large number of variables, Benders suggests decomposing the 

variables into two sets: continuous variables and complicating (binary/integer) 

variables. The method requires construction of a Master Problem (MP) including the 

complicating variables and a Sub-Problem (SP) including the continuous variables. At 

each iteration, SP creates the cuts that constrain the solution space for MP and MP 

makes guesses on the optimal levels of complicating variables and sends them to SP. 
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The algorithm converges in finite number of iterations and MP reaches a solution that 

is equal/very close to the upper bound found by SP.  

In this chapter, we construct and implement several Benders Decomposition algorithm 

variants for computational enhancements.  

The following is the optimization model of the city logistic system design problem 

under cost uncertainty: 

Variables 

 𝑧𝑖 determines if the candidate CDC location i is selected or not (binary 

variable) 

 𝑥𝑖𝑗𝑠 determines the amount of demand served from CDC i to customer j in 

scenario s (continuous variable) 

Parameters 

 𝐷𝑗 , demand from customer j 

 𝐶𝑖, capacity of CDC i 

 𝑇𝑖𝑗𝑠, travel time between CDC i and customer j in scenario s 

 𝐹𝑖, fixed cost of opening and operating CDC i 

 𝑃𝑠, probability of scenario s 

Model – SLP2S 

min 

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠 ∗ 𝑃𝑠𝑠𝑗𝑖     (1.1) 

subject to 

∑ 𝑥𝑖𝑗𝑠𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖     ∀ 𝑖𝑠    (1.2) 

∑ 𝑥𝑖𝑗𝑠𝑖 = 𝐷𝑗     ∀ 𝑗𝑠     (1.3) 

𝑧𝑖 ∈ {0,1}    ∀ 𝑖     (1.4) 

𝑥𝑖𝑗𝑠 ≥ 0    ∀ 𝑖𝑗𝑠     (1.5) 
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The objective function minimizes the sum of fixed cost of opening and operating 

CDCs and variable cost of making deliveries to customers. Constraints (1.2) ensure 

that the CDCs in service are open, constraints (1.3) guarantee the demand of each 

customer to be satisfied and constraints (1.4)-(1.5) describe the domain of variables. 

 

4.1 Benders Decomposition 

Although Benders Decomposition is an effective approach when dealing with large-

scale mixed integer programming (MIP) problems and it has been used for decades on 

many kinds of optimization problems, it also presents some difficulties. Benders 

Decomposition algorithms often require very high solution times for convergence, due 

to the fact that the algorithm may need to run for thousands of iterations (You and 

Grossman, 2013). When the algorithm requires many iterations for convergence, both 

Master Problem (MP) and Sub-problem (SP) need to be solved many times, plus the 

solution time increases as the complexity of these problems increase.  

We first observe the advantages and drawbacks of the Benders Decomposition 

algorithm before proceeding with enhancements on it. The following figure illustrates 

how we decompose the variables of our problem: 

 

Figure 4.1: Repr. of the Model SLP2S and the Benders Decomposition Setting 
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Figure 4.2: Benders Decomposition Algorithm (BD) 

 

Below we give the necessary definitions to be used in this chapter. 
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BD Subproblem 

 𝑢𝑖𝑠, positive dual variable corresponding to (1.2)  

 𝑣𝑗𝑠, free dual variable corresponding to (1.3) 

 𝑧𝑖
′, constant that keeps the location decisions made in MP 

 𝑧𝑆𝑃, objective function value of subproblem 

max 

𝑧𝑆𝑃 = ∑ ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠 ∗ 𝑧𝑖
′

𝑠𝑖 + ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠𝑠𝑗    (2.1) 

subject to 

−𝑢𝑖𝑠 + 𝑣𝑗𝑠 = 𝑇𝑖𝑗𝑠 ∗ 𝑃𝑠    ∀ 𝑖𝑗𝑠    (2.2) 

𝑢𝑖𝑠 ≥ 0    ∀ 𝑖𝑠       (2.3) 

𝑣𝑗𝑠  𝑈𝑅𝑆    ∀ 𝑗𝑠      (2.4) 

𝑧𝑆𝑃 𝑈𝑅𝑆          (2.5) 

 

BD Modified Subproblem 

max 

0       (2.6) 

subject to 

∑ ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠 ∗ 𝑧𝑖
′

𝑠𝑖 + ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠𝑠𝑗 = 1  (2.7) 

−𝑢𝑖𝑠 + 𝑣𝑗𝑠 ≤ 0    ∀ 𝑖𝑗𝑠    (2.8) 

𝑢𝑖𝑠 ≥ 0    ∀ 𝑖𝑠      (2.9) 

𝑣𝑗𝑠  𝑈𝑅𝑆    ∀ 𝑗𝑠     (2.10) 
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BD Cut Generation 

 oc, set of optimality cuts 

 fc, set of feasibility cuts 

 𝑐1𝑜𝑐 and 𝑐1𝑓𝑐 , constant value in a particular cut 

 𝑐2𝑜𝑐,𝑖 and 𝑐2𝑓𝑐,𝑖 , variable coefficient in a particular cut 

 𝑢𝑖𝑠
′  , constant that keeps the corresponding decisions made in SP or MSP 

 𝑣𝑗𝑠
′  , constant that keeps the corresponding decisions made in SP or MSP 

Optimality cuts and feasibility cuts are generated in the same way. For optimality cuts: 

𝑐1𝑜𝑐 = ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠
′

𝑠𝑗       (2.11) 

𝑐2𝑜𝑐,𝑖 = ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠
′

𝑠        (2.12) 

For feasibility cuts: 

𝑐1𝑓𝑐 = ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠
′

𝑠𝑗       (2.13) 

𝑐2𝑓𝑐,𝑖 = ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠
′

𝑠        (2.14) 

 

BD Master Problem 

 𝑧𝑖, binary variable that indicates whether the CDC location i is selected or not 

 𝑧𝑀𝑃, objective function value of master problem 

min 

𝑧𝑀𝑃       (2.15) 

subject to 

𝑧𝑀𝑃 ≥ ∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + 𝑐1𝑜𝑐 + ∑ 𝑐2𝑜𝑐,𝑖 ∗ 𝑧𝑖𝑖    ∀ 𝑜𝑐 (2.16) 

𝑐1𝑓𝑐 + ∑ 𝑐2𝑓𝑐,𝑖 ∗ 𝑧𝑖𝑖 ≤ 0     ∀ 𝑓𝑐   (2.17) 

𝑧𝑖 ∈ {0,1}      ∀ 𝑖     (2.18) 

𝑧𝑀𝑃 𝑈𝑅𝑆      (2.19) 

 



75 
 

Algorithm 4.1 Benders Decomposition Algorithm 

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖, Time limit 

Output: Gap, best solution generated 

  1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹 

  2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do 

  3:      𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 

  4:      solve (2.1) - (2.5) 

  5:      if 𝑧𝑆𝑃 < 𝐼𝑁𝐹 then  

  6:            if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + 𝑧𝑆𝑃 < 𝑈𝐵 then  

  7:                  𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + 𝑧𝑆𝑃 

  8:                  𝐵𝑒𝑠𝑡 ← 𝑍 

  9:            end if 

10:            generate cut from (2.11) - (2.12) 

11:      else 

12:            solve (2.6) - (2.10) 

13:            generate cut from (2.13) - (2.14) 

14:      end if 

15:      solve (2.15) - (2.19) 

16:      𝐿𝐵 ← 𝑧𝑀𝑃 

17: end while 

 

To observe convergence of the algorithm, we experiment with three groups of 

instances: small (10 customers), medium (100 customers) and large (1000 customers). 

All instances include 20 candidate CDC locations and 100 scenarios. 
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We examine the convergence behavior of the algorithm using some numerical 

examples. The following figures are the convergence plots of such instances. The runs 

were limited to 4 hours. We observed that only two feasibility cuts are added in the 

second and third iterations of the algorithm. Addition of these cuts could be avoided if 

a simple constraint ensuring the feasibility by forcing total capacity to be more than 

total demand. However, we did not add such a cut, since the strength of feasibility cuts 

are stronger than this constraint.  

(a) Convergence of BD with small inst. (b) Convergence of BD with medium inst. 

(c) Convergence of BD with large inst.  

Figure 4.3: Convergence of BD 

As can be seen in Figure 4.3, the algorithm requires about 180 iterations even for the 

small instance and CPU time requirement is 92 seconds. For the middle size instance, 

we see that the LB does not increase quickly and the algorithm does not converge in 4 

hours. Same is true for the large instance where the LB increases only a little through 

all the iterations. We also observe an important detail in the plot of the large instance, 

since only around 120 iterations could be completed in 4 hours, while over 1800 
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iterations could be completed for the middle instance. Size of SP must be the reason 

for this observation, since we keep the number of binary variables constant for all 

instances, and size of MP does not change. To ensure that the size of SP is not affected 

this much from the changes in the instance size, we apply the L-Shaped method. 

 

4.2 L-Shaped Method 

Slyke and Wets (1969) proposed the L-shaped method to further decompose SP into 

smaller problems, each corresponding to a scenario of the problem. To show how this 

is possible, we present the L-Shaped method representation in Figures 4.4-4.5: 

 

Figure 4.4: Repr. of the Model SLP2S and the Lshaped Decomposition Setting 
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Figure 4.5: L-Shaped Algorithm (LS) 

 

Note that the SP is decomposed into many smaller problems. The following changes 

are made on the algorithm to decompose SP with respect to scenarios: 

 

LS Algorithm Subproblem (s) 

 𝑧𝑆𝑃𝑠
, objective function value of subproblem s 

max 

𝑧𝑆𝑃𝑠
= ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠 ∗ 𝑧𝑖

′
𝑖 + ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠𝑗  (3.1) 

subject to 

−𝑢𝑖𝑠 + 𝑣𝑗𝑠 = 𝑇𝑖𝑗𝑠 ∗ 𝑃𝑠    ∀ 𝑖𝑗   (3.2) 

𝑢𝑖𝑠 ≥ 0    ∀ 𝑖     (3.3) 

𝑣𝑗𝑠  𝑈𝑅𝑆    ∀ 𝑗     (3.4) 

𝑧𝑆𝑃𝑠
 𝑈𝑅𝑆       (3.5) 
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LS Algorithm Modified Subproblem (s) 

max 

0      (3.6) 

subject to 

∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠 ∗ 𝑧𝑖
′

𝑖 + ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠𝑗 = 1  (3.7) 

−𝑢𝑖𝑠 + 𝑣𝑗𝑠 ≤ 0    ∀ 𝑖𝑗    (3.8) 

𝑢𝑖𝑠 ≥ 0    ∀ 𝑖     (3.9) 

𝑣𝑗𝑠  𝑈𝑅𝑆    ∀ 𝑗     (3.10) 

 

LS Cut Generation 

Same as BD Cut Generation. 

 

LS Master Problem 

Same as BD Master Problem. 
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Algorithm 4.2 L-Shaped Algorithm 

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖,  Time limit 

Output: Gap, best solution generated 

  1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹 

  2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do 

  3:      for 𝑠 = 1 𝑡𝑜 |𝑆| do 

  4:            𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 

  5:            solve (3.1) - (3.5) 

  6:      end for 

  7:      if ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝐼𝑁𝐹 then  

  8:            if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝑈𝐵 then  

  9:                  𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠  

10:                  𝐵𝑒𝑠𝑡 ← 𝑍 

11:            end if 

12:            generate cut from (2.11) - (2.12) 

13:      else 

14:            for 𝑠 = 1 𝑡𝑜 |𝑆| do 

15:                  solve (3.6) - (3.10) 

16:            end for 

17:            generate cut from (2.13) - (2.14) 

18:      end if 

19:      solve (2.15) - (2.19) 

20:      𝐿𝐵 ← 𝑧𝑀𝑃 

21: end while 
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Using this method, we significantly reduce the size of SP and obtain |S| small SPs. 

When the instance size increases, sizes of these small SPs increase much slower than 

with the SP of Benders Decomposition. The following are the convergence plots of 

the L-Shaped method for the same three instances. To be able to compare the Benders 

algorithm with the L-Shaped method, we plot their results together: 

(a) Convergence of LS with small inst. (b) Convergence of LS with medium inst. 

 (c) Convergence of LS with large inst.  

Figure 4.6: Convergence of LS 

 

As expected, the number of iterations did not change when we used L-Shaped method. 

However, the solution time is much higher this time; because the SP was already small 

and defining 100 SPs, which are sequentially solved at each iteration, was not efficient. 

Thus, the solution time increased from 92 seconds to 1432 seconds. It seems that the 

Benders algorithm gives better results, for small instances. 
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For the medium instance, we observe that the L-Shaped method does not do well since 

the instance is not large enough to complete iterations more quickly with |S| smaller 

SPs. Since the convergence does not occur until time limit, we can only observe the 

number of iterations, and how much the LB could be increased. Again both bounds of 

the two methods follow the same trajectories as expected. 

However, a significant improvement could be observed when L-Shaped method is 

used for the large instances. Since SP of the large instance is very large, replacing it 

with small SPs provide great benefit. The number of iterations that we could observe 

increased from 126 to 877 in this way, with the same time limit.  

 

4.2.1 Multi-Cut 

The reason for slow convergence of these algorithms is mainly due to the weakness of 

the cuts generated by SPs. At each iteration we add one cut to MP, an optimality cut 

or a feasibility cut, depending on SP being bounded/unbounded. A possible solution 

to this problem could be adding multiple cuts at each iteration. Although these cuts 

would be weak individually, their combined effect would hopefully achieve a faster 

convergence. 
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Figure 4.7: L-Shaped Multi-Cut Algorithm (MC) 

Birge and Louveaux (1988) and Birge and Louveaux (2011) propose the generation 

multiple cuts, based on the L-Shaped method. Normally, we aggregate the dual prices 

found by the |S| many SPs in the L-Shaped method, and create a single cut at each 

iteration. The proposal is creating cuts out of each SP separately instead of aggregating 

the cut data. Oliveira et al. (2014) and You and Grossman (2013) also use this method 

when solving a two-stage stochastic model of a stochastic supply chain problem.  

The following changes are made on the algorithm to allow for the creation of multiple 

cuts (See Figure 4.7): 

 

MC Subproblem (s) 

Same as LS Subproblem(s). 

 

MC Modified Subproblem (s) 

Same as LS Modified Subproblem(s). 
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MC Cut Generation 

For optimality cuts: 

𝑐1𝑜𝑐,𝑠 = ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠
′

𝑗        (4.1) 

𝑐2𝑜𝑐,𝑖,𝑠 = −𝐶𝑖 ∗ 𝑢𝑖𝑠
′        (4.2) 

For feasibility cuts: 

𝑐1𝑓𝑐 = ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠
′

𝑠𝑗       (4.3) 

𝑐2𝑓𝑐,𝑖 = ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠
′

𝑠        (4.4) 

 

MC Master Problem 

 𝑧1𝑠, free variables that enable specific cuts for each scenario 

min 

𝑧𝑀𝑃 = ∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ 𝑧1𝑠𝑠     (4.5) 

subject to 

𝑧1𝑠 ≥ 𝑐1𝑜𝑐,𝑠 + ∑ 𝑐2𝑜𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖     ∀ 𝑜𝑐, 𝑠  (4.6) 

𝑐1𝑓𝑐,𝑠 + ∑ 𝑐2𝑓𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖 ≤ 0    ∀ 𝑓𝑐, 𝑠   (4.7) 

𝑧𝑖 ∈ {0,1}    ∀ 𝑖     (4.8) 

  𝑧1𝑠 𝑈𝑅𝑆    ∀ 𝑠      (4.9) 

  𝑧𝑀𝑃 𝑈𝑅𝑆         (4.10) 
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Algorithm 4.3 Multi-Cut Algorithm 

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖, Time limit 

Output: Gap, best solution generated 

  1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹 

  2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do 

  3:      for 𝑠 = 1 𝑡𝑜 |𝑆| do 

  4:            𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 

  5:            solve (3.1) - (3.5) 

  6:      end for 

  7:      if ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝐼𝑁𝐹 then  

  8:            if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝑈𝐵 then  

  9:                  𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠  

10:                  𝐵𝑒𝑠𝑡 ← 𝑍 

11:            end if 

12:            generate cut from (4.1) - (4.2) 

13:      else 

14:            for 𝑠 = 1 𝑡𝑜 |𝑆| do 

15:                  solve (3.6) - (3.10) 

16:            end for 

17:            generate cut from (4.3) - (4.4) 

18:      end if 

19:      solve (4.5) - (4.10) 

20:      𝐿𝐵 ← 𝑧𝑀𝑃 

21: end while 

 

By adding multiple cuts, we expect MP to be much more tightly constrained, and 

convergence to occur in a smaller number of iterations. Figure 4.8 illustrates the 

convergence plots of the Multi-cut algorithm for the same three instances. To be able 

to compare the Multi-cut algorithm with the L-Shaped method, we plot their results 

together: 
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  (a) Convergence of MC with small ins. (b) Convergence of MC with medium ins. 

(c) Convergence of MC with large ins. 

Figure 4.8: Convergence of MC 

For the small instance, the number of iterations was reduced significantly compared to 

the L-Shaped method. This is the result of constraining MP much stronger by adding 

|S| cuts at each iteration. Thanks to this reduction, the CPU time is also reduced to 416 

seconds (although still higher than the solution time of the Benders algorithm). For 

small instances, it seems the Benders algorithm gives better results. 

For medium and large instances, adding many cuts at each iteration results in MP 

becoming very hard to solve after a number of iterations. Since these instances are 

expected to require many iterations for convergence, we can predict that the size of 

MP will increase with time, thus iterations will take more and more time. Although we 

can observe a smaller number of iterations for this reason, the final LB found by the 

Multi-Cut algorithm is higher than the one found by the L-Shaped algorithm. 
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4.2.2 Scenario-Group-Cut 

A possible solution for creating too many cuts may be finding a balance between the 

number of cuts (complexity of MP) and aggregate strength of cuts. Adulyasak et al. 

(2015a) propose such a method. Instead of generating cuts for each scenario, they 

suggest creating groups of scenarios and generating cuts for each scenario group. This 

way, the number of cuts can be significantly reduced, thus making it possible to 

observe more iterations with large instances. Naturally, the speed of convergence will 

be reduced, but this is expected to be compensated by the higher number of iterations. 

With more iterations, we can generate cuts based on a wider variety of levels for 

complicating variables and creating cuts on different regions of the solution space.  

This method is especially suitable in our problem, since we already generated the 

scenarios in groups. We also expect that the real life travel time data can be easily 

grouped in a similar way to how we constructed our scenarios. There would be three 

main groups of high, medium and low traffic congestion levels. In addition, disruptions 

to traffic flow would have deteriorating effect on the local level, especially for some 

of the high and medium congestion days. The resulting five groups could be further 

divided into two, by taking into account the similarities or dissimilarities between days.  

In this subsection, we perform an experiment with the Scenario Group Cut (SGC) 

Algorithm, so that its effect on the solution performance can be observed.  

We can readily define scenario groups due to the way scenarios are constructed, as 

explained in Chapter 3. The following are the natural groups that can be used: 

 Average days 

o Group 1 (No local traffic) 

o Group 2 (With local traffic) 

 Congested days 

o Group 3 (No local traffic) 

o Group 4 (With local traffic) 

 Relaxed days 

o Group 5 

There are two ways for constructing scenario groups. One way is to create 

representative scenario groups by sampling from the original groups we constructed. 
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To do the sampling, we simply take one scenario from each original group. This 

approach actually maximizes dissimilarity within groups. Since in each group, we have 

a representative sample of all the scenarios, the scenario groups resemble each other. 

The second way is to create natural scenario groups, simply taking the original groups 

as a whole. With this approach, we maximize similarity within each scenario group. 

Therefore, we obtain dissimilar groups, in contrast to the first grouping approach. 

It is clear that the scenario grouping approach that generates stronger cuts would lead 

to better solution performance. To be able to compare them, we conducted some 

preliminary experiments. The experiments showed that the second approach is 

significantly more successful than the first one.  

There is a simple reason for this result. When the scenario groups are similar, as is the 

case with the first approach, the cuts generated from these groups are also similar. 

Therefore, the combination of the cuts generated in one iteration is weaker. Since cuts 

are similar, their effects overlap and the result is close to the single cut case. 

On the other hand, when the scenario groups are dissimilar, the cuts they generate are 

also dissimilar. Therefore, the effect of cuts do not overlap and the combined strength 

of all cuts is higher. 

We use the natural scenario groups. For this purpose, we construct 10 scenarios for 

every instance, as this number is compatible with the number of scenarios in the 

original groups. Preliminary experiments show that decreasing or increasing the 

number of groups deteriorates solution performance. 

Below we explain the modifications on the algorithm in order to generate scenario 

group cuts: 

 

SGC Subproblem (s) 

Same as LS Subproblem(s). 
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SGC Modified Subproblem (s) 

Same as LS Modified Subproblem(s). 

 

SGC Cut Generation 

Same as MC Cut Generation. 

 

SGC Master Problem 

 𝐺𝑠𝑔, set of scenarios included in scenario group sg 

min 

𝑧𝑀𝑃 = ∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ 𝑧1𝑠𝑔𝑠𝑔      (5.1) 

subject to 

𝑧1𝑠𝑔 ≥ ∑ 𝑐1𝑜𝑐,𝑠𝑠∈𝐺𝑠𝑔
+ ∑ ∑ 𝑐2𝑓𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖𝑠∈𝐺𝑠𝑔

    ∀ 𝑜𝑐, 𝑠𝑔 (5.2) 

∑ 𝑐1𝑓𝑐,𝑠𝑠∈𝐺𝑠𝑔
+ ∑ ∑ 𝑐2𝑓𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖𝑠∈𝐺𝑠𝑔

 ≤ 0    ∀ 𝑓𝑐, 𝑠𝑔 (5.3) 

𝑧𝑖 ∈ {0,1}    ∀ 𝑖      (5.4) 

  𝑧1𝑠𝑔 𝑈𝑅𝑆    ∀ 𝑠      (5.5) 
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Algorithm 4.4 Scenario-Group Cut Algorithm 

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖, Time limit 

Output: Gap, best solution generated 

  1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹 

  2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do 

  3:      for 𝑠 = 1 𝑡𝑜 |𝑆| do 

  4:            𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 

  5:            solve (3.1) - (3.5) 

  6:      end for 

  7:      if ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝐼𝑁𝐹 then  

  8:            if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝑈𝐵 then  

  9:                  𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠  

10:                  𝐵𝑒𝑠𝑡 ← 𝑍 

11:            end if 

12:            generate cut from (4.1) - (4.2) 

13:      else 

14:            for 𝑠 = 1 𝑡𝑜 |𝑆| do 

15:                  solve (3.6) - (3.10) 

16:            end for 

17:            generate cut from (4.3) - (4.4) 

18:      end if 

19:      solve (5.1) - (5.5) 

20:      𝐿𝐵 ← 𝑧𝑀𝑃 

21: end while 

 

With this method, we reduce the number of cuts, at the expense of faster convergence. 

Figure 4.9 shows the convergence plots of the Scenario Group Cut algorithm for the 

same instances. To be able to observe the performance of the algorithm, we plot the 

results together with the Benders Algorithm and Multi-Cut Algorithm: 
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 (a) Convergence of SGC with small ins.     (b) Convergence of SGC with medium ins. 

(c) Convergence of MC with large ins. 

Figure 4.9: Convergence of SGC 

The results are in parallel with our expectations. In the small instance, we can easily 

observe that the new algorithm has slower convergence than Multi-Cut Algorithm, but 

faster convergence than L-Shaped Algorithm, which creates a single cut at each 

iteration. The solution time of 1100 seconds is also between these algorithms.  

For the medium and large instances, the situation is similar. But especially for the large 

instance, we observe a significant improvement both in terms of the number of 

iterations and final LB value. When a good balance can be found between the number 

of cuts (and the resulting increase in MP size) and the strength of added constraint set, 

we achieve better bounds in the same amount of time. 
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4.2.3 Variable Number of Cuts 

Another way to hybridize the algorithms is to start by following the multi-cut 

procedure for some number of iterations and then continue by adding single/scenario-

group cuts. This method avoids adding too many cuts to MP, while retaining the 

strength of the multi-cut algorithm for some iterations.  

Below, we make the comparison on the same instances. For simplicity, we provide the 

convergence plot of the Variable Cut (VC) algorithm along with the plots of L-Shaped 

and Multi-Cut algorithms in Figure 4.10. In these experiments, we generate multiple 

cuts for the first 30 iterations and continue with single cuts afterwards. 

 (a) Convergence of VC with small ins.     (b) Convergence of VC with medium ins. 

  

(c) Convergence of VC with large ins. 

Figure 4.10: Convergence of VC 

For the small instance, plots look like what we expected. LB of the Variable Cut 

algorithm increases as quickly as LB of the Multi-Cut algorithm for the first 30 

iterations. Then, only a single cut is added at each iteration and the plots proceed 
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almost parallel to LB of the L-Shaped algorithm. Time until convergence is 846 

seconds for the Variable Cut algorithm. 

For the medium and large instances, we see that the variable cut idea did not work. 

Since the number of iterations for achieving a meaningful increase in LB is very high, 

generating multiple cuts for 30 iterations does not make much difference from the 

ordinary L-Shaped algorithm. Still it produces slightly better results than the L-Shaped 

algorithm and worse results than Multi-Cut algorithm. 

If we create multiple cuts periodically, every 10 iterations, instead of for the first 30 

iterations (VC-2), the resulting convergence plot for the small instances greatly 

resembles to the one of L-Shaped algorithm (See Figure 4.11): 

Figure 4.11: Convergence of VC-2 with small ins. 

Note that there are small jumps every 10 iterations, but this is not sufficient to make a 

significant difference on the speed of convergence. For larger instances the results are 

similar. 

 

4.2.4 Adding Initial Cuts 

A similar approach can be used to generate many cuts at the beginning of the algorithm 

but proceed by adding single/scenario-group cuts afterwards. We know that MP does 

not select optimal locations (at least for the first iterations) and the cuts are generated 

based on bad location decisions. Therefore, we may generate cuts based on arbitrarily 

selected locations, too. 
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To select the locations, we solve each scenario separately in a Wait-and-See setting 

and generate cuts based on these results. In this way, we avoid solving MP for |S| many 

times, while generating better cuts than the ones produced by the algorithm on its own. 

In Figure 4.12, we give the convergence plots of the algorithm that adds initial cuts 

(IC). 

 (a) Convergence of IC with small ins. (b) Convergence of IC with medium ins. 

(c) Convergence of IC with large ins.  

Figure 4.12: Convergence of IC 

 For the small instance, the effect of adding initial cuts is clear from the figure. The 

lower bound started the iterations from a significantly larger value. However, the 

collective strength of the cuts we add through the iterations seems to be lower, since 

the slope of the LB curve is lower than the LShaped method. Adding multiple cuts 

produces better results. 

For the medium and large instances, we observe that the effect of adding initial cuts is 

much smaller. With the large instance, adding the initial cuts takes so much time that 

there is little time left for making the actual iterations.  
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4.2.5 Partial Decomposition 

Despite having implemented the Multi-Cut and Scenario-Group Cut algorithms, we 

still cannot achieve fast convergence. One of the reasons for slow convergence of our 

Benders Decomposition variants is that MP does not maintain any information on the 

effect of its selection of complicating variables. It only takes into account the lower 

bound values generated by the SP for some combinations of the complicating 

variables. Therefore, MP has the tendency to select a combination that is not yet 

covered by the cuts, whether this selection improves the objective function of the real 

problem or not.  

To maintain some of the information from the real problem in MP, Crainic et al. (2014) 

suggest the partial decomposition (PD) method. In this method, the main idea of fully 

separating the continuous and complicating variables into SP and MP is abandoned. 

Instead the authors propose keeping some of the continuous variables in MP, so that 

the problem is forced by the corresponding constraints to produce feasible objective 

function values while also to improve the objective function value more quickly.  

Since the continuous variables of our problem is suitable for decomposition with 

respect to scenarios (as in the L-Shaped method), we can easily select some of the 

scenarios to represent the continuous part of the problem and insert them into MP. 

Naturally, dealing with large instances, it would be a good idea to only insert a small 

number of constraints into MP, in order to avoid increasing the size of it too much. 

Also, since we use this procedure to help MP make a more informed selection on the 

complicating variables, we select the scenarios in a way that they collectively carry as 

much information as possible. Therefore, the dissimilarity of scenarios is desirable. 

We take one scenario from each scenario-group explained in the Section 6.2, to 

construct a representative group of scenarios.  

We add scenario-group cuts at each iteration. Since MP is already large, we try not to 

further increase its size through adding a lot of cuts. When we use scenario-group cuts, 

we maintain a good amount of information generated from subproblems without 

suffering the drawbacks of the multi-cut approach. 
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PD Subproblem (s) 

Same as LS Subproblem(s). Some subproblems are not used. 

 

PD Modified Subproblem (s) 

Same as LS Modified Subproblem(s). Some modified subproblems are not used. 

 

PD Cut Generation 

Same as MC Cut Generation. 

 

PD Master Problem 

 𝐺𝑠𝑔, set of scenarios included in a certain scenario group 

 𝑈𝐺, union of all scenario groups  

min 

𝑧𝑀𝑃 = ∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ 𝑧1𝑠𝑔𝑠𝑔 + ∑ ∑ ∑ 𝑥𝑖𝑗𝑠 ∗ 𝑇𝑖𝑗𝑠 ∗ 𝑃𝑖𝑗𝑠𝑗𝑖𝑠∉UG  (6.1) 

subject to 

𝑧1𝑠𝑔 ≥ ∑ 𝑐1𝑜𝑐,𝑠𝑠∈𝐺𝑠𝑔
+ ∑ ∑ 𝑐2𝑜𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖𝑠∈𝐺𝑠𝑔

    ∀ 𝑜𝑐, 𝑠𝑔 (6.2) 

∑ 𝑐1𝑓𝑐,𝑠𝑠∈𝐺𝑠𝑔
+ ∑ ∑ 𝑐2𝑓𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖𝑠∈𝐺𝑠𝑔

 ≤ 0    ∀ 𝑓𝑐, 𝑠𝑔 (6.3) 

∑ 𝑥𝑖𝑗𝑠𝑗 ≤ 𝑧𝑖 ∗ 𝐶𝑖   ∀ 𝑖, 𝑠 ∉ UG     (6.4) 

∑ 𝑥𝑖𝑗𝑠𝑖 ≤ 𝐷𝑗     ∀ 𝑗, 𝑠 ∉ UG     (6.5) 

𝑥𝑖𝑗𝑠 ∈ {0,1}    ∀ 𝑖𝑗𝑠       (6.6) 

𝑧𝑖 ∈ {0,1}    ∀ 𝑖      (6.7) 

  𝑧1𝑠𝑔 𝑈𝑅𝑆    ∀ 𝑠      (6.8) 
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Algorithm 4.5 Partial Decomposition Algorithm 

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖, Time limit 

Output: Gap, best solution generated 

  1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹 

  2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do 

  3:      for 𝑠 = 1 𝑡𝑜 |𝑆| do 

  4:            𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 

  5:            solve (3.1) - (3.5) 

  6:      end for 

  7:      if ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝐼𝑁𝐹 then  

  8:            if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝑈𝐵 then  

  9:                  𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠  

10:                  𝐵𝑒𝑠𝑡 ← 𝑍 

11:            end if 

12:            generate cut from (4.1) - (4.2) 

13:      else 

14:            for 𝑠 = 1 𝑡𝑜 |𝑆| do 

15:                  solve (3.6) - (3.10) 

16:            end for 

17:            generate cut from (4.3) - (4.4) 

18:      end if 

19:      solve (6.1) - (6.8) 

20:      𝐿𝐵 ← 𝑧𝑀𝑃 

21: end while 

 

The convergence plot of the Partial Decomposition algorithm along with the L-Shaped 

and Multi-Cut algorithms are given in Figure 4.13.  
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  (a) Convergence of PD with small ins. (b) Convergence of PD with medium ins. 

 (c) Convergence of PD with large ins. 

Figure 4.13: Convergence of PD 

There are clear differences between the algorithms’ performances. The most striking 

difference is that both for small and medium instances, UB very quickly reaches 

optimum (we already know the optimal solution). In addition, LB also increases 

sharply and reaches optimum more rapidly than any other algorithm we implemented 

for the small instance. However, this is not the case for the medium instance. In fact, 

only 80 iterations could be completed in a time limit of 4 hours. This is due to the 

increased size of MP, which takes a lot more time to be solved, due to the additional 

continuous variables. An important observation is that the partial decomposition idea 

does not work for our problem, if we attempt to deal with large instances. 
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4.2.6 Eliminating Dominated Cuts 

A way to avoid increasing the size of MP due to the addition of multiple cuts may be 

to eliminate the cuts that are dominated by others. We implemented such an 

elimination procedure into our algorithm, In order to see how many cuts can be 

eliminated and what effect the procedure would have on the results. To explain cut 

dominance, we give the following generic example, given in Magnanti and Wong 

(1981): 

When the problem can be formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑌,𝑧∈𝑅 {𝑧: 𝑧 ≥ 𝑓(𝑢) + 𝑦𝑔(𝑢) ∀ 𝑢 ∈ 𝑈}  

where R is the set of real numbers, and we have two cuts: 

𝑧 ≥ 𝑓(𝑢1)  +  𝑦𝑔(𝑢1)   (a) 

𝑧 ≥ 𝑓(𝑢)  +  𝑦𝑔(𝑢)    (b) 

We say that (a) dominates (b) if the following condition is satisfied with strict 

inequality for at least one point 𝑦 ∈ 𝑌: 

𝑓(𝑢1) +  𝑦𝑔(𝑢1) ≥ 𝑓(𝑢) +  𝑦𝑔(𝑢)     ∀ 𝑦 ∈ 𝑌   

If no cut dominates (a), we call this a Pareto-optimal cut. 

To determine if a cut dominates another, we have to know whether the inequality is 

valid for all elements of the set Y, which has tens of thousands of elements in our case. 

At this point, we need to take into account the tradeoff between the computational 

burden of determining dominance relations and the benefit of reducing the number of 

constraints. Based on our preliminary experiments, we choose twenty location 

decision combinations on which to decide the validity of the inequality. We risk losing 

some non-dominated cuts since we do not consider all the combinations. 
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When we implemented the cut elimination (CE) procedure, we obtained the following 

results. We plot the results together with the L-Shaped and Multi-Cut algorithms for 

convenience in Figure 4.14: 

 (a) Convergence of IC with small ins. (b) Convergence of IC with medium ins. 

(c) Convergence of CE with large ins. 

Figure 4.14: Convergence of CE 

For both the small and large instances, we observe that the cut-elimination procedure 

did not improve or deteriorate the algorithm performance. The statistics show that 414 

cuts were eliminated out of 4600 cuts generated for the small instance, and 2025 cuts 

were eliminated out of 27100 cuts generated for the large instance. On the other hand, 

the number of iterations for the small instance increased from 43 to 46 and from 266 

to 271 respectively. Solution time slightly increased for the small instance, and did not 

change for the larger instance. Overall, we can conclude that the elimination procedure 

does not produce significant improvement on these problem instances. 
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4.3 Other Methods for Accelerating Benders Decomposition 

Other than the ones we considered, there are many modifications proposed in the 

literature attempting to accelerate the Benders Decomposition algorithm. Some of 

these methods achieve great improvement over the original algorithm. However, these 

modifications are usually problem-specific and fail to make significant difference for 

other problems. In this section, we list these modifications and discuss the reasons why 

we did not consider them in our study. 

 

Pareto-optimal Cuts 

A frequently used method in the Benders Decomposition literature is the addition of 

Pareto-Optimal Cuts to MP. This method was proposed by Magnanti and Wong (1981) 

and has been used due to its ease of implementation. The method exploits the idea that 

several different cuts can be generated based on a single location decision, if the 

resulting SP is degenerate. Then, the problem becomes finding the tightest (non-

dominated) cut for addition to MP. This can be done using another SP for detecting 

the tightest possible cut with the help of a core point in the feasible region of the 

complicating variables. Usually, application of this method obtains slightly better 

results than the original algorithm. 

Wentges (1996), Adulyasak et al. (2015a), Sherali and Lunday (2013) and Papadakos 

(2008) use this method and provide insights on how the algorithm can be further 

developed. However, generating pareto-optimal cuts do not guarantee an overall 

improvement on the solution performance. As pointed out by Oliveira et al. (2014), 

there are several implementation issues. For instance, a core point must be selected 

according to the current convex hull of the complicating variables and an additional 

SP is required for the algorithm to find a pareto-optimal cut. These two requirements 

are major problems for the algorithmic efficiency, because finding a core point may 

be difficult and may require an additional separation problem to be solved at each 

iteration, plus solving the SP dedicated to pareto-optimal cuts may be difficult in itself. 

Thus, the solution time for each iteration increases due to the extensions and adding 

slightly better cuts does not provide significant benefit. 
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Є-optimal solution 

Geoffrion and Graves (1974) suggest not solving MP to optimality, but solving it until 

a specified gap is obtained (when UB-LB<Є). This method does not prevent the proof 

of optimality, because the decisions of MP are only required for the generation of cuts. 

This approach accelerates the completion of iterations when the master problem is hard 

to solve. Fischetti et al. (2010) also uses this method. 

For our case, this enhancement does not make much difference. This is because our 

Master Problem is small. It includes only 20 binary variables. The complexity of MP 

increases only when a large number of cuts are added to the problem or when the 

original problem is decomposed partially, leaving some continuous variables in MP. 

Our experiments showed that even in those cases, the effect of this enhancement is 

insignificant. For this reason, we do not implement it in our algorithms. 

 

Local branching 

Fischetti and Lodi (2003) propose the local branching method. In this method, the 

feasible region of a large optimization problem is divided into smaller regions and the 

optimal solutions in each region are found separately by using significantly smaller 

models, thus in a shorter time. Then, these results are used with a branching strategy 

to solve the original problem. Rei et al. (2009) uses this method. 

The main advantage of this enhancement is to obtain faster solution of MP especially 

when there is a meaningful way of dividing the feasible region. We do not consider its 

implementation, because we can divide the feasible region only arbitrarily. Also, the 

time-consuming part of our algorithm is solving SPs rather than solving MP. 

 

Cross-decomposition 

Lastly, we have the cross-decomposition method proposed by Roy (1986) and used by 

Uster and Agrahari (2011). This method aims to accelerate the Benders Decomposition 

algorithm by achieving a faster solution of MP. Since MP usually includes only binary 

variables, there are several decomposition methods that may provide a quicker solution 
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than the classical Branch and Bound; for instance, Lagrangean Relaxation is a good 

example to such methods.  

Advantages of this enhancement and reasons for us not implementing it are the same 

as local branching. 

Other methods we did not consider are as follows: maximum feasible subsystem cut 

generation strategy (Saharidis and Ierapetritou, 2010a), covering cut bundle generation 

(Saharidis et al., 2010b), valid inequalities in initialization (Saharidis et al., 2011), 

maximum density cut generation (Saharidis and Ierapetritou, 2013), minimal 

infeasible subsystems (Fischetti et al., 2008).  

 

4.4 Branch and Cut Based on Benders Decomposition 

The cut generation procedure used in Benders Decomposition is also frequently used 

in combination with the Branch and Bound method. One of the first studies to use this 

framework is McDaniel and Devine (1977). A contemporary example can be seen in 

Fortz and Poss (2009). The main idea is to make use of the Benders cuts in order to 

more efficiently search the classical Branch and Bound tree. Benders cuts reduce the 

size of the feasible region at each node, resulting in larger lower bounds, which 

increases the number of fathomed branches. Being able to fathom more branches, 

algorithm is expected to search a larger portion of the tree compared to the classical 

Branch and Bound algorithm. 

We observed that most of the studies considering the Branch and Benders Cut (B&BC) 

procedure consider problems requiring more feasibility cuts than optimality cuts for 

convergence. Such behavior increases the benefit of using B&BC, since a lot of nodes 

can be fathomed due to infeasibility, which allows for a significantly faster search. 

Although a large majority of our cuts are of optimality type, we still consider this 

solution method as a possibility.  

There are many alternative strategies that can be implemented in a B&BC framework. 

For instance, using depth-first, breadth-first, and best-first strategies produce quite 

different outcomes. The number of cuts to be added at each iteration is also an 

important choice. These alternatives will be explored in this section. 
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Before explaining the distinctions between different B&BC settings, we give the 

general B&BC algorithm. Figure 4.15 illustrates the main steps of the algorithm. 

 

Figure 4.15: Branch and Cut with Benders Decomposition Algorithm (B&C-BD) 

 

4.4.1 No Decomposition 

Not making any decomposition in the original problem results in a similar method to 

the classical Branch and Bound. With this approach, the whole problem, including 

decision variables from both stages, is solved at each node of the tree. For our case, 

the only advantage of this approach over the Branch and Bound method may be the 

use of optimality cuts with the hope of fathoming more nodes which would accelerate 

the search.  

Our preliminary experiments showed that this acceleration is not large enough to 

rationalize using this method. Especially in medium and large instances, solving the 

whole problem at each node takes too much time. Even when the binary constraints 

are relaxed, the sheer number of continuous variables require a long solution time at 

each node. We abandoned this method, since we have obtained more promising results 

with the L-Shaped method. 
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4.4.2 Full Decomposition 

In this setting, we fully decompose the first and second stage decision variables. We 

solve MP and SPs at each node. Similarly to the L-Shaped method, we combine the 

results of MP and SPs to make the necessary computations. For instance, as the 

objective function value of MP does not fully include the transportation cost associated 

with the given location decisions (it only includes the cost as much as forced by the 

optimality cuts, which may not be strong enough), we obtain the transportation cost 

term from the SPs. The objective function value obtained in this way becomes lower 

bound for the node. If the location decisions made in MP are integral, then the solution 

of the current node is a candidate solution and its objective function value becomes 

the upper bound if it is the best solution found so far. 

We know from the preliminary experiments that a few feasibility cuts are required 

when full decomposition is employed. To simplify the tree, we generate these 

feasibility cuts with an initial cut generation procedure. We apply the L-Shaped 

method for only 10 iterations and generate the necessary cuts. We still maintain the 

modified SPs within the B&BC algorithm. After this initial procedure no additional 

feasibility cuts are needed. The algorithm only generates optimality cuts in the B&BC 

algorithm. 

Parallel to the L-Shaped method, we have three main alternative approaches for cut 

generation: single-cut, multiple-cuts and scenario-group cuts. We do not consider the 

other enhancements to the L-Shaped method, since the preliminary experiments 

showed that they are inferior to the selected approaches. 

The advantages and disadvantages of using these approaches are similar to the ones 

explained earlier in section 6.2. However, there is an important difference between 

B&BC and L-Shaped method. Master problems of B&BC include continuous location 

decisions. This leads to much lower computational complexity for the master problems 

which neutralizes the main drawback of adding multiple cuts. When MP was a binary 

integer problem in L-Shaped method, adding cuts increased the complexity of MP so 

much that the L-Shaped algorithm would slow down after too many cuts were added. 

This is not expected to be the case with B&BC, since this time MP is a continuous 

problem.  
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Based on these results we expect that adding multiple cuts will perform significantly 

better than the others and preliminary experiments showed this is the case. Figure 4.16 

shows the convergence behavior of the algorithm for this particular implementation. 

We plot the results of B&BC along with L-Shaped and MultiCut algorithms. Note that 

the iteration number for B&BC is equal to the number of nodes search in the tree. 

 (a) Conv. of B&C-BD with small ins. (b) Conv. of B&C-BD with medium ins. 

(c) Conv. of B&C-BD with large ins. 

Figure 4.16: Convergence of B&C-BD 

The most important difference in the results obtained by the B&BC algorithm is the 

large gaps left after the time limit is reached. This is due to the unexplored nodes in 

the branch and bound tree. Since the algorithm cannot search the tree fast enough to 

fathom these nodes, there are always unexplored nodes in the tree with very small 

lower bound values. Thus, the gap we obtain at the time limit is not as small as the 

ones obtained by the previous algorithms.  

The algorithm spends a lot of time for solving SPs. To accelerate the search, we 

considered solving SPs at only integer nodes. Solving SPs allow us to observe the real 
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LB values at each node and we are able to fathom some nodes by comparing them with 

the UB. If we sacrifice quick fathoming, it is possible to avoid solving SPs at non-

integer nodes, since the objective function value found by MP is a valid LB, however, 

it is not tight. We experimented on this idea and the results are illustrated in Figure 

4.15. 

 (a) Conv. of B&C-BD-2 with small ins.      (b) Conv. of B&C-BD-2 with medium ins. 

 (c) Conv. of B&C-BD-2 with large ins. 

Figure 4.17: Convergence of B&C-BD-2 

With this approach we are able to search a much larger part of the tree and we find 

better UBs most of the time. However, we still cannot decrease the gap at the time 

limit. In fact, the gap is larger this time, because LBs are equal to the objective function 

values of MP. In other words, we do not find the actual LBs for the nodes of the tree, 

but we use the bounds that correspond to the L-Shaped methods LBs for each node. 
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4.4.3 Partial Decomposition 

Partial decomposition is the hybrid implementation between no decomposition and full 

decomposition. We consider partial decomposition due to its success in finding good 

solutions faster than the full decomposition method. The allocation decisions left in 

MP have more significant power than optimality cuts in directing MP to good 

solutions. On the other hand, it has the same drawback as no decomposition method. 

With large instances, the extra assignment decisions increase the complexity of MP 

significantly. Therefore, MP takes longer to be solved and the algorithm slows down. 

With the lower speed, only a smaller part of the tree can be searched. 

We provide the preliminary results for partial decomposition (B&C-PD), in Figure 

4.16. This time we only consider the results obtained by solving SPs in fewer nodes.  

 (a) Conv. of B&C-PD with small ins. (b) Conv. of B&C-PD with medium ins. 

(c) Conv. of B&C-PD with large ins. 

Figure 4.18: Convergence of B&C-PD 

The results are very similar to the previous algorithm. We observe two differences. 

First, very good UBs are found in the early stages of the algorithm. These UBs are 
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often equal to the best known integer solutions in our experiments. Also, for the small 

instance, the algorithm converges in a moderate time. Second difference is the 

significant decrease in the number of nodes that can be searched within time limit. For 

the medium and large instances, this number decreased because MP takes significantly 

longer due to the continuous variables it includes.  

 

4.5 Comparison of Exact Solution Methods 

In this subsection, we test and compare performances of the algorithms implemented. 

We mainly consider two performance measures, some other details are also given for 

assessing the differences between the algorithms: 

 Percent gap between the best integer solution found and lower bound at the 

time of completion 

 CPU time in seconds 

We make the comparison on two levels. On the first level, we experiment with all 

methods on 3 instances (R_u_L_10, R_u_L_100 and R_u_L_1000). We use this level 

of computational results to screen out the methods that are obviously dominated by 

others in terms of solution quality. On the second level, we experiment with selected 

methods on 36 instances. Obviously the larger number of instances provide a more 

reliable base for comparing the selected methods.  

 

4.5.1 First Level Comparison 

Tables 4.1-4.3 summarize our findings for the small, medium and large instances 

respectively. We report the best integer/UB, lower bound, number of iterations 

(number of nodes checked), CPU time and Gap results. Gap is always calculated as 

the percent difference between the last UB and LBs found by the method. 

𝐺𝑎𝑝 % =
𝑈𝐵−𝐿𝐵

𝐿𝐵
*100 
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Table 4.1: Comparison of Exact Solution Methods with Small Instance 

Results for 

R_u_L_10_1 

Best 

Integer 

Lower 

Bound 

Iter. 

(Nodes 

Checked) 

CPU Time 

(sec) 
GAP% 

Two-Stage St. 250160.1 250160.1 N/A 2.6 0.0 

Benders Dec. Alg. 250160.1 250160.1 170 75.3 0.0 

L-Shaped Alg. 250160.1 250160.1 175 1203 0.0 

Multi-Cut Alg. 250160.1 250160.1 42 402.1 0.0 

Sc. Gr. Cut Alg. 250160.1 250160.0 120 618.5 0.0 

Variable Cut Alg. 250160.1 250160.1 58 640.4 0.0 

Initial Cut Alg. 250160.1 250160.1 100+137 103.7 0.0 

Partial Dec. 250160.1 250160.1 38 375.2 0.0 

B&C-BD-2 250160.1 250160.1 46(1313) 1494.9 0.0 

B&C-PD 250160.1 250160.1 38(993) 1295.4 0.0 

 

For the small instance, we can see that all algorithms are able to find the optimal 

solution within time limit. As explained in the corresponding sections, Benders 

Algorithm appear to converge in considerably shorter time than others, since SP is 

small, and further decomposition does more harm than good. We see that the multi-

cut algorithm sharply reduces the CPU time and number of iterations, and the scenario-

group cut algorithm performs between the two, as expected. Variable cut algorithm 

performs badly despite the small number of iterations, but partial decomposition is 

able to further reduce the number of iterations. 
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Table 4.2: Comparison of Exact Solution Methods with Medium Instance 

Results for 

R_u_L_100_1 

Best 

Integer 

Lower 

Bound 

Iter. 

(Nodes 

Checked) 

CPU Time 

(sec) 
GAP% 

Two-Stage St. 251602.1 251602.1 N/A 9706.6 0.0 

Benders Dec. Alg. 251602.1 251378.1 1818 * 0.1 

L-Shaped Alg. 251602.1 251409.4 977 * 0.1 

Multi-Cut Alg. 251602.1 251220.2 225 * 0.2 

Sc. Gr. Cut Alg. 251610.9 251305.6 599 * 0.1 

Variable Cut Alg. 251610.9 251217.9 498 * 0.2 

Initial Cut Alg. 251622.1 251462.4 100+2501 * 0.1 

Partial Dec. 251622.3 251222.2 111 * 0.2 

B&C-BD-2 251602.1 228391.8 817(4904) * 10.2 

B&C-PD 251610.9 228394.3 653(3125) * 10.2 

* Time Limit Exceeded 

For the medium instance, none of the Benders algorithm variants reach convergence 

within the time limit. Although they produce small gaps, they do not perform in any 

way better than CPLEX. Although the algorithms do not converge within time limit, 

an important observation is that most of their UB values are equal to the optimal 

objective function value. This shows that all the algorithms find the optimal location 

decisions at some point and they update their UB to the optimal value with the 

corresponding dual prices. Actually, this often happens quite early through the 

iterations, for example at the 4th iteration of the partial decomposition procedure. 
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Table 4.3: Comparison of Exact Solution Methods with Large Instance 

Results for 

R_u_L_1000_1 

Best 

Integer 

Lower 

Bound 

Iter. 

(Nodes 

Checked) 

CPU 

Time 

(sec) 

GAP% 

Two-Stage St. 1010631.3 239004.7 N/A * 322.8 

Benders Dec. Alg. 265938.4 260631.3 199 * 2.0 

L-Shaped Alg. 265603.0 260631.3 877 * 1.9 

Multi-Cut Alg. 265595.0 260861.2 292 * 1.8 

Sc. Gr. Cut Alg. 265595.0 261182.8 612 * 1.7 

Variable Cut Alg. 265605.7 260679.6 661 * 1.9 

Initial Cut Alg. 276335.5 260631.3 100+6 * 6.0 

Partial Dec. 265593.4 261407.5 6 * 1.6 

B&C-BD-2 266185.4 235856.5 620(2116) * 12.9 

B&C-PD 265593.4 235869.9 491(1188) * 12.6 

* Time Limit Exceeded 

The real power of the algorithms can be seen when the large instance is considered. 

While CPLEX cannot find any meaningful results within the time limit (it also failed 

to produce a good integer solution in 48 hours), algorithms are able to conduct many 

iterations, gradually finding better bounds. This time, the differences between 

algorithms appear to be more important.  

Since the problem size is large, dealing with a large SP reduces the performance of 

Benders Decomposition algorithm considerably. L-Shaped algorithm does not suffer 

from such a large SP, but it lacks the cuts to produce good bounds, despite completing 

877 iterations. On the other hand, multi-cut and scenario-group cut algorithms obtain 

the best solutions among all due to the addition of multiple cuts at each iteration. Multi-

cut algorithm reaches the best UB luckily at the 265th iteration and scenario-group cut 

algorithm later at 341st iteration due to the lower number of cuts added each time.  

Since the actual number of iterations needed for convergence is very high, we do not 

expect the variable-cut algorithm to be a lot different than the l-shaped algorithm; in 
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fact, it gives slightly worse results, since the addition of multiple cuts at the beginning 

increases MP size and wastes time during the rest of the algorithm. 

In the light of these observations, we select MC, SGC, PD and B&C-PD for making 

further experiments on the second level. The first three are able to consistently produce 

low gap values and their UBs are always optimal or equal to the best solution known. 

B&C-PD will be included in the experiments because it is also good at finding good 

UBs, despite producing very bad gap values.  

 

4.5.2 Second Level Comparison 

In addition to the methods selected in the previous section, we provide the results of 

TLAP as well.  

Tables 4.4-4.6 summarize our findings for the small, medium and large instances 

respectively. Best solutions for each instance are given in bold.  
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On Table 4.4, the most successful method is TLAP. Since the instances in this groups 

are small, the low computational complexity of the model does not necessitate a 

decomposition approach. MC, SGC, PD and B&C-PD are all able to find the optimal, 

but they require much longer solution time to converge. The average solution time is 

only 3.9 seconds for TLAP, while for other methods, this figure is 804.8, 2030.7, 395.6 

and 1794.2 respectively. In terms of solution time, PD is the most efficient exact 

solution method with small instances. This result is due to the lower number of 

iterations needed until convergence. On average, only 36 iterations are enough for PD 

to converge. For MC and SGC, 49 and 171 are the average number of iterations, 

respectively. B&C-PD takes longer time until convergence, since it explores hundreds 

of nodes on the branch-and-bound tree and needs to solve MP at each node. 

Table 4.5 shows a different picture. This time, none of the decomposition methods 

converge within the time limit of four hours for any of the instances. Still the UB 

values are often equal to the optimal objective function values. The average gap 

obtained by MC, SGC, PD and B&C-PD are 5.5%, 4.3%, 4.9% and 15.5% 

respectively. The number of instances where the methods’ UBs are equal to optimal 

are 9, 9, 6 and 10, respectively.  

For large instances, TLAP is not able to find any optimal solution. Decomposition 

methods also fail to converge within time limit. Average gap obtained by MC, SGC, 

PD and B&C-PD are 9.4%, 8.8%, 7.6% and 17.9%. The number of instances where 

the methods’ UBs are equal to the best known values are 7, 10, 6 and 8, respectively. 

Overall, we observe that MC, SGC and PD produce comparable gap values, while 

B&C-PD is unsuccessful with respect to this performance measure. SGC and PD are 

the most successful methods with medium and large instances, respectively. For 

medium and large instances, where solution time is always limited to the time limit, 

we cannot make a comparison with respect to this performance measure. For small 

instances, PD is by far the fastest solution method. 

Among the exact solution methods we considered in this study, we believe SGC and 

PD are the two most successful ones. In Chapter 6, we give the results from further 

experiments with these methods. 
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CHAPTER 5 

 

APPROXIMATE SOLUTION METHODS AND PRELIMINARY 

COMPUTATIONAL RESULTS 

 

5. APPROXIMATE SOLUTION METHODS 

Methods based on Benders Decomposition are more successful with large problem 

instances than the standard solvers, as expected. Although they do not converge within 

the time limit, they are able to produce good upper bounds, which are often found in 

early steps and stay as the best solution until the end. Most of the time it is hard to find 

any other solutions to which these solutions can be compared for large instances. This 

makes it difficult for a benchmarking study to be performed. 

We usually observe that the methods based on Benders Decomposition find optimal 

solutions, but they may not converge within time limit in order to certify optimality 

for medium instances.  

In this chapter, we introduce an evolutionary algorithm to deal with the benchmarking 

issues, assessment of results of computational experiments, and finding a good upper 

bound in a reasonable time. 

We briefly summarize the relevant studies in the literature. Kung-Jeng et al. (2011) 

propose a genetic algorithm for the location-allocation problem in a two-echelon 

supply chain with stochastic demand. Altınel et al. (2009) develop a location-

allocation heuristic for the capacitated multi-facility Weber problem with probabilistic 

customer locations. Stanimirovic and Kratica (2007) present two heuristics based on 

genetic algorithms and fast interchange heuristic in order to solve the discrete ordered 

median problem. Bischoff and Dachert (2009) compare several heuristic algorithms 

for the solution of generalized location-allocation problems. Their primary focus is on 

the local search algorithms for the allocation decisions. Lastly, Rajagopalan et al. 

(2007) develop four metaheuristic algorithms for a probabilistic location model. We 
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analyzed the operators of the algorithms in these studies, and the conventional ones in 

the literature, before developing our algorithm.  

In this section, we first explain the details of the algorithm. Then, we conduct a 

factorial design analysis to find the best parameter values. The major steps of an 

evolutionary algorithm can be illustrated as given in Figure 5.1: 

 

Figure 5.1: Evolutionary Algorithm 

Now, we go into the detail of the algorithm steps one by one. 

 

5.1 Representation Scheme 

We use a simple binary representation scheme, only storing the first-stage decisions in 

the chromosomes. This is a valid approach, because there is only a single optimum set 

of second-stage decisions for each set of first-stage decisions. Thus, no information is 

lost by storing only the first-stage decisions.  

Also, we do not need to include the second-stage decisions in the chromosomes, 

because it would not be meaningful to apply algorithmic operators (crossover and 

mutation) to them. For example, we cannot perform a crossover operation between the 

second-stage decisions of two solutions if their first-stage decisions are different.  
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A typical chromosome looks like the one given in Example 5.1: 

Example 5.1. 

 

Each CDC candidate is assigned a binary variable determining whether it is open or 

not. 

 

5.2 Decoding and Fitness Evaluation 

In our case, decoding is a very important part of the algorithm, since the whole set of 

second-stage decisions are to be modeled in this part. There are several alternative 

methods that can be used to obtain these decisions: making optimal decisions, using 

(nested) metaheuristics, using heuristics. 

Making optimal decisions for the second-stage is possible through solving a simple 

mathematical model for each chromosome. Note that we fix the first-stage decision 

variables to the values on the chromosome. Since the second-stage decision variables 

are all continuous, this process is expected to be relatively short. However, the process 

may take too much time in application. For instance, our preliminary experiments 

showed that for large instances, evaluation of each chromosome in this way takes more 

than 90 seconds. Considering that the algorithm needs to evaluate possibly thousands 

of distinct chromosomes, we believe that making optimal decisions would not serve 

our purpose. 

Instead of dealing with longer computational times, it is possible to use metaheuristics 

embedded within an algorithm focusing on the first-stage decisions. Second-stage 

decisions can be made using another evolutionary or tabu search algorithm. If we 

consider the large instances, let us say each of which include 1000 customers and 100 

scenarios, the estimated time required for convergence would still be too large.  

For such an evolutionary algorithm, using crossover and mutation operators to change 

customer allocations, it would not be efficient in finding good solutions compared to 

a simple heuristic. Due to the random nature of evolutionary algorithms, these 

operators are preserving the solution variety, as the algorithm relies on evaluating a 

CDC Candidate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0
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large number of alternatives in finding a good solution. Such a process may waste the 

precious solution time by disregarding the allocation decisions that can be easily made. 

To direct the search, we can make local search within the algorithm, using an 

improvement heuristic. We believe that such an improvement heuristic can be 

successful without an evolutionary algorithm and find the solutions of similar quality 

in much shorter time.  

If implemented efficiently, it also provides as good results as a tabu search algorithm. 

The main advantage of tabu search algorithms over simple heuristics is their permitting 

moves that worsen the solution performance. In this way, tabu search algorithms 

escape local optima. In our case, in which the customer demand is usually much 

smaller than the CDC capacities, local optima are very close to the global optimum. 

We can expect a simple swapping move to find good results. With these points in mind, 

we develop a heuristic for making second-stage decisions.  

 

5.2.1 Hybrid Algorithm 

We first consider developing a greedy algorithm for making the second-stage 

decisions. At each iteration, the algorithm simply searches the transportation costs 

between non-assigned customers and open CDCs and then finds customer-CDC pair 

that incurs the smallest cost and assigns the customer to that CDC, provided the CDC 

still has enough capacity.  

Unfortunately, it did not work very well. We have seen that the solutions produced are 

not very close to the optimum. On average, we observe a large gap for the solution 

performance of greedy algorithm from the optimal solution. 

The reason for the failure of greedy algorithm is that the customers close to the city 

center in our problem setting. All these customers who are far away from all CDCs are 

always assigned in the later iterations of the algorithm. Since some CDCs are already 

working at full capacity in these stages, such customers cannot be assigned to their 

closest CDCs. Instead, they are assigned to the closest CDCs with some available 

capacity.  
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To prevent such an outcome, we need to improve the solution found by the greedy 

algorithm. When CDCs are at full capacity, an improving move can be in the form of 

a swap. Thus, an improvement heuristic such as 2-opt or 3-opt may suit very well to 

the purpose. 

Applying 2-opt or 3-opt to the whole set of customers is very time-consuming for large 

instances. As expected, preliminary experiments showed that the time requirement of 

2-opt (3-opt) is close to (much larger) than the time needed for optimizing the second 

stage decisions.  

An obvious remedy to this problem is to reduce the number of customers considered 

in the improvement heuristic. Unfortunately, it is not possible without reducing the 

solution performance. However we can benefit from problem specific knowledge to 

keep solution performance as high as possible, while reducing the time requirement. 

Locations of CDC candidates being on the city boundaries is a very important feature 

of our problem. A typical instance can be seen in Figure 5.2. As mentioned earlier, 

customers close to the city boundaries can easily be assigned to their closest CDCs by 

the greedy algorithm, but this is not the case for customers close to the city center. 

Clearly, it does not make sense for us to consider these customers in the improvement 

stage. Instead, we determine a range value, and assignments incurring transportation 

cost below that value are not considered in the improvement stage. Reducing this value 

is expected to improve solution performance, while increasing it deteriorates solution 

performance. 
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Figure 5.2: Range Values of the Hybrid Algorithm 

We made experiments combining the greedy algorithm to construct a feasible solution 

and the swapping algorithm to improve this solution. The results are summarized in 

the following table. 20 experiments are made with different sets of location decisions 

for each combination of parameters. Note that average gap to optimal values only take 

into account the transportation cost terms of the objective function. 
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Table 5.1: Comparison of Evaluation Methods 

Method Range Value 
Average # of 

Nodes Included 

Average Gap 

to Optimal 

(Tr. Cost) (%) 

Average 

Time (sec) 

Greedy+2opt 

25 204.3 1.4 19.4 

35 120.7 2.1 7.9 

40 81.0 2.6 6.1 

50 24.3 3.2 5.2 

70 2.1 3.4 4.6 

100 0.3 3.5 4.6 

Greedy+3opt 

25 204.3 - +90.0 

35 120.7 - +90.0 

40 81.0 - +90.0 

50 24.3 3.2 60.1 

70 2.1 3.4 7.2 

100 0.3 3.5 5.0 

LP solution N/A N/A 0.0 90.0 

 

Range values are determined so that the effect of small and large values can be 

observed. Also, values smaller than 25 are not considered, since the time requirement 

gets close to 90 seconds even for the first combination. Thus, the method loses its 

advantage over LP solution. 

It can be easily seen from the table that the average gap to optimal does not change 

when 3-opt algorithm is used instead of 2-opt. This is because the demand from 

individual customers are very small in comparison to the CDC capacity. Therefore, we 

may expect the 2-way swaps to cover most or all of the improving moves. 3-way swaps 

only make sense when 3 customers that are assigned to 3 different CDCs must be 

swapped for improvement. However, due to the same reason mentioned above, such a 

swap is also possible with 2 consecutive 2-way swaps. When we compare the average 

times they take, we can say that the first combination, i.e. greedy algorithm and 2-opt, 

is much better.  
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Also when we compare the heuristic solutions and optimal solutions for a large number 

of chromosomes (See Figure 5.3). While some heuristic solutions are close to the 

optimum, others are very far from it. We are mostly interested in the ranking of 

chromosomes, because the algorithm is expected to converge to the best solution, no 

matter how well it has been evaluated. If the ranking of chromosomes is wrong, the 

algorithm continues the search in the wrong direction. 

Figure 5.3: Performance of the Hybrid Algorithm with Constant Ranges 

At this point an important observation was made. The range values determined above 

are constant for all scenarios. However, we construct our scenarios in groups to 

represent low congestion, high congestion and local congestion cases. This creates 

differences between the average transportation costs of different scenarios. Therefore, 

a constant distance limit affects each scenario differently. While hundreds of 

customers are considered for 2-opt in one scenario, only a few customers may be 

considered in another. This way, allocation may be made badly in one scenario, while 

it may be made near-optimally in another. Since we are interested in the average cost 

through scenarios, we need to make equally good decisions in all scenarios. 

The solution we found to this problem is using variable range values. This time, they 

are determined specifically for each scenario, depending on the average and standard 

deviation of transportation cost. Table 5.2 summarizes the results. We do not consider 

3-opt in this setting, since the previous results showed no significant difference 

between using 2-opt or 3-opt, despite the higher time requirement of 3-opt. 
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Table 5.2: Comparison of Evaluation Methods 

Method 
Range Value 

(Std. Dev.) 

Average # of 

Nodes 

Included 

Average 

Gap to 

Optimal 

(Tr. Cost) 

Average 

Time (sec) 

Greedy+2opt 

0.0 423.5 0.2 36.3 

0.5 205.3 0.8 18.3 

1.0 112.5 2.0 9.7 

1.5 82.0 2.7 6.7 

2.0 55.4 2.9 5.7 

2.5 33.2 3.0 5.2 

3.0 18.9 3.1 4.9 

LP solution N/A N/A 0.0 90.0 

  

The improvement obtained from using variable distance limits can be most clearly 

seen in a comparison between first row of Table 5.1 and second row of Table 5.2. 

While the average time it takes for the algorithms to complete are nearly the same on 

these rows, the average gap to optimal is significantly lower with range values are 

variable.  

We make the same comparison with these range values, we obtain Figure 5.4. This 

time we observe a significant improvement in the stability of the performance of 

heuristic solutions. Fitness ranking of chromosomes is quite similar to the actual 

ranking. This leads us to believe that determining the range values in this way makes 

the heuristic performance reliable. 
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Figure 5.4: Performance of the Hybrid Algorithm with Changeable Ranges 

We implement the hybrid algorithm in the evaluation step of the evolutionary 

algorithm. We use variable distance limits. The last decision regarding this step is 

determining how many standard deviations should be used for selecting the distance 

limits. σ=0 takes too much time, so it will not be considered. σ=0.5 again takes long, 

but it provides a significant benefit in the solution performance. σ=1.5, σ=2, σ=2.5 and 

σ=3 are close to each other with respect to solution performance, thus σ=3 can be 

considered due to its time requirement being shorter. 

The average gap of 3% is still a little problematic, especially for small and large size 

instances. Although, the main algorithm is able to find the chromosome containing 

optimal decisions, it may converge towards a different solution with seemingly better 

performance due to the suboptimal allocation decisions. We could think of two 

different solutions to this problem.  

As the main algorithm gets closer to satisfying the stopping condition, the distance 

limit may be reduced. This way, a finer evaluation of chromosome is possible without 

resorting to time-consuming methods like solving LPs. When this solution is 

implemented, we found that σ=0.5 performs sufficiently well. The timing we choose 

to switch to σ=0.5 will be explained later in the subsection 7.8.  

After the main algorithm converges, we considered all the chromosomes evaluated so 

far, sorted them according to their fitness values (which are found with the hybrid 

heuristic) and selected the best chromosomes for exact evaluation. If the best fitness 
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found so far is scaled to 1, we select the chromosomes until fitness value 1.05. If the 

optimal set of location decisions have already been found, the corresponding 

chromosome will most likely fall into the set selected for exact evaluation. Exact 

evaluation is made with the help of an LP model that takes fixed location decisions as 

input and produces optimum allocation decisions.  

Algorithm 5.1 describes the steps of the hybrid algorithm. It takes the chromosome, 

CDC capacities, customer demands, transportation costs and range value as inputs and 

calculates the total cost of assignment decisions.  

 

Algorithm 5.1 Hybrid Algorithm (HA) 

Input: Chromosome, CDC cap.s, Cust. demands, Transp. costs, Range value 

Output: Cost of assignment 

  1: Initialize assignment variables 

  2: for 𝑠 = 1 𝑡𝑜 |𝑆| do 

  3:      Initialize CDC capacities 

  4:      Initialize customer demands 

  5:      while ∑ 𝐷𝑒𝑚𝑗𝑗 > 0 do 

  6:            let 𝑇𝑖𝑗𝑠 be the minimum cost between an unassigned customer and a                   

                 CDC with sufficient capacity 

  7:            𝐴𝑠𝑠𝑖𝑔𝑛𝑖𝑗𝑠 ← 1 

  8:            𝐶𝑎𝑝𝑖 ← 𝐶𝑎𝑝𝑖 − 𝐷𝑒𝑚𝑗 

  9:            𝐷𝑒𝑚𝑗 ← 0 

10:      end while 

11:      Initialize customer demands 

12:      𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 ← 𝐴𝑠𝑠𝑖𝑔𝑛 ∗ 𝑇 

13:      for each customer pair with 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 > 𝜇(𝑇) + 𝑙𝑖𝑚𝑖𝑡 ∗ 𝜎(𝑇)  do 

14:            if 𝐷𝑒𝑚𝑗1
+ 𝐶𝑎𝑝𝑖1

> 𝐷𝑒𝑚𝑗2
 𝒂𝒏𝒅 𝐷𝑒𝑚𝑗2

+ 𝐶𝑎𝑝𝑖2
> 𝐷𝑒𝑚𝑗1

 do 

15:                  𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
← 𝑇𝑖1𝑗1𝑠 + 𝑇𝑖2𝑗2𝑠 − 𝑇𝑖1𝑗2𝑠 − 𝑇𝑖2𝑗1𝑠 

16:            else 

17:                  𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
← −1 

18:            end if 
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19:      end for 

20:      let 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
 be the largest improvement 

21:      while 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
> 0 do 

22:            𝐴𝑠𝑠𝑖𝑔𝑛𝑖1𝑗1𝑠 ← 0 

23:            𝐴𝑠𝑠𝑖𝑔𝑛𝑖2𝑗2𝑠 ← 0 

24:            𝐴𝑠𝑠𝑖𝑔𝑛𝑖1𝑗2𝑠 ← 1 

25:            𝐴𝑠𝑠𝑖𝑔𝑛𝑖2𝑗1𝑠 ← 1 

26:            𝐶𝑎𝑝𝑖1
← 𝐶𝑎𝑝𝑖1

+ 𝐷𝑒𝑚𝑗1
− 𝐷𝑒𝑚𝑗2

 

27:            𝐶𝑎𝑝𝑖2
← 𝐶𝑎𝑝𝑖2

+ 𝐷𝑒𝑚𝑗2
− 𝐷𝑒𝑚𝑗1

 

28:            𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 ← 𝐴𝑠𝑠𝑖𝑔𝑛 ∗ 𝑇 

29:            for each customer pair with 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 > 𝜇(𝑇) + 𝑙𝑖𝑚𝑖𝑡 ∗ 𝜎(𝑇) do 

30:                  if 𝐷𝑒𝑚𝑗1
+ 𝐶𝑎𝑝𝑖1

> 𝐷𝑒𝑚𝑗2
 and 𝐷𝑒𝑚𝑗2

+ 𝐶𝑎𝑝𝑖2
> 𝐷𝑒𝑚𝑗1

 do 

31:                        𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
← 𝑇𝑖1𝑗1𝑠 + 𝑇𝑖2𝑗2𝑠 − 𝑇𝑖1𝑗2𝑠 − 𝑇𝑖2𝑗1𝑠 

32:                  else 

33:                        𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
← −1 

34:                  end if 

35:            end for 

36:            let 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
 be the largest improvement 

37:      end while 

38: end for 

39: 𝐶𝑜𝑠𝑡 ← ∑(𝐴𝑠𝑠𝑖𝑔𝑛 ∗ 𝑇) 

 

5.2.2 Fitness Database 

No matter which method we select, fitness evaluation of chromosomes is 

computationally expensive. Even when σ=3, it takes around 5 seconds for each 

chromosome. Due to the large number of chromosomes that requires evaluation, most 

of the solution time is spent on evaluating chromosomes. 

We make use of a matrix called fitness database to prevent the evaluation of the same 

chromosomes in different generations. This matrix stores the chromosomes in its rows 

and the corresponding fitness values at the end of each row. Before evaluating each 
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chromosome, we first check this database. If the chromosome is already evaluated, we 

simply take the fitness value from the database; if not, we evaluate it using the hybrid 

algorithm. 

When the standard deviation value is changed, for instance from σ=3 to σ=0.5, all 

entries in the database are cleared, since the old fitness values are most probably not 

equal with the finer evaluation that can be done with the smaller distance limits. 

 

5.3 Initial Population 

We use two methods to generate the initial population. If the evolutionary algorithm 

is to be run after a Benders Decomposition based algorithm, it is possible to include 

the good solutions found by that method in the initial population of evolutionary 

algorithm. Knowing that these are all good solutions, we can expect EA to converge 

quickly. If the number of initial solutions obtained in this way is fewer than the 

population size, the remaining solutions can be generated randomly or by modifying 

the original solutions. 

Preliminary experiments showed that the effect of using this approach is not 

satisfactory. While the convergence is quicker as expected, the good solutions found 

in the initial population rapidly direct the search to their neighborhood, and the 

algorithm often converges without finding a better solution than the best solution in 

the initial population. Changing the algorithm parameters such as crossover rate, 

mutation rate or tournament selection coefficient does not change this behavior.  

On the other hand, when the initial population is constructed with randomly generated 

chromosomes, we observe slightly slower convergence. However, the algorithm is 

often able to find better results than the ones found in the previous setting. This change 

may be attributed to the diversity provided by the initial population. For a significantly 

diverse initial population, the algorithm is able to search a larger portion of the solution 

space. Due to these reasons, we choose to construct the initial population with 

randomly generated chromosomes. Since the chromosomes are simple constructs and 

all set of open CDCs are valid as long as they have sufficient capacity, we do not use 

a dedicated heuristic for selecting good locations.  
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Chromosomes are randomly generated in the following way. We start with a 

chromosome where all entries are zero. When we call the repair function, which will 

be explained later in subsection 7.6. The repair function selects random closed CDCs 

and opens them. This process is repeated until the total capacity is sufficient for total 

demand. 

Algorithm 5.2 describes the steps of the process. The algorithm operates a single loop 

for generating “population size” many chromosomes. RO is the abbreviation of Repair 

Operator. 

 

Algorithm 5.2 Initial Population Generator (IPG) 

Input: 𝑃𝑆𝑖𝑧𝑒 

Output: Initial population 

  1: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do 

  2:      𝑃𝑜𝑝𝑖 ← 𝑅𝑂(𝑧𝑒𝑟𝑜 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒) 

  3: end for 

 

5.4 Parent Selection 

We use the roulette wheel selection method to select the parents that will be included 

in the mating pool. We rank the chromosomes according to their fitness and assign 

them numbers that will determine selection probability. The best chromosome takes 0, 

the second one 1, the third one 1+p, the fourth one 1+p+p2 etc. When a random number 

generated between 0 and the number assigned to the last chromosome, we select the 

chromosome with the largest number smaller than the random number. The selection 

is made with replacement, so that the chromosomes are allowed to be represented more 

than once in the mating pool. We repeat this process until the mating pool is full. 

The p value has significant effect on the algorithm behavior. We will call p the “Elitism 

Rate”. When the elitism rate is higher, we apply elitism less strongly during the 

selection process. When p is small, the good solutions have a large selection 

probability, while bad solutions are rarely selected. This leads to faster convergence 

and less genetic variety, since the bad solutions cannot produce offspring and their 

genes are left out of the population. On the other hand, when p is large, the probability 
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of selecting good or bad chromosomes are not very different. This leads to slower 

convergence and more genetic variety.  

We work with p values around 0.95 and 0.97 to conserve genetic variety. Genetic 

variety is much more valuable than saving time with faster convergence, since the 

algorithm performance is largely affected by genetic variety. 

Algorithm 5.3 describes the steps of parent selection process. The algorithm takes 

population size, number of matings, selection rate, population and fitness values of 

population members to create the mating pool. 

 

Algorithm 5.3 Parent Selector (PS) 

Input: 𝑃𝑆𝑖𝑧𝑒, 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝑆𝑅𝑎𝑡𝑒, 𝑃𝑜𝑝, 𝑍𝑃𝑜𝑝 

Output: 𝑀𝑃𝑜𝑜𝑙 

  1: 𝑃𝑜𝑝 ← sort 𝑃𝑜𝑝 in descending order of 𝑍𝑃𝑜𝑝 

  2: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do 

  3:      𝑆𝑃𝑜𝑝𝑖
← 𝑆𝑅𝑎𝑡𝑒𝑖−1 

  4: end for 

  5: for 𝑖 = 1 𝑡𝑜 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do 

  6:      generate 𝑟𝑛𝑑, a standard random variable 

  7:      for 𝑗 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do 

  8:            if 𝑆𝑃𝑜𝑝𝑗+1
> 𝑟𝑛𝑑 ∗ 𝑆𝑃𝑜𝑝𝑃𝑆𝑖𝑧𝑒

 do 

  9:                  𝑀𝑃𝑜𝑜𝑙𝑖 ← 𝑃𝑜𝑝𝑗 

10:                  break 

11:            end if 

12:      end for 

13: end for 

 

5.5 Crossover 

One-point and two-point crossover operators are the most frequently used operators in 

the facility location literature. However, we believe these operators are very 

inefficient, at least in our case, since they often produce infeasible solutions. Even 
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when they manage to produce feasible solutions, the number of open facilities may be 

more than needed, leading to a bad solution performance. Often repair or local search 

operators are used in order to modify the resulting offspring into reasonable solutions. 

This process is often time-consuming and can be prevented with an effective crossover 

operator. 

We use a simple operator. The parent chromosomes, taken as arrays, are multiplied 

with a constant smaller than or equal to 0.5. The result of their summation includes 

entries equal to 0, 1, or a fractional value. From this resulting array, both child 

chromosomes are constructed randomly. If the summation includes 1’s, the 

corresponding CDCs are opened in both child chromosomes. Other CDCs with 

nonzero genes are opened randomly until the total capacity is sufficient to serve all 

customers. If the summation does not include any 1’s, the CDCs with nonzero genes 

are opened randomly until the same condition is satisfied.  

Selection of the constant may be left to the decision maker. If it is taken 0.5, the CDCs 

that are open in both parents will always be open in both children. If it is taken smaller 

than 0.5, this is not the case. In our case, we prefer the constant to be smaller than 0.5, 

to conserve or even increase the population diversity. 

We believe we serve two conflicting objectives at the same time with this operator. 

First, we are able to transfer the genetic information from parents to their offspring; 

second, we conserve genetic variety by the random selection of candidate CDCs. The 

computational results also show that the operator is successful. 

Example 5.2 illustrates the crossover process. Crossover constant is selected as 0.4. 

The selected parents are multiplied with the constant. We call their summation the 

mold, since two chromosomes are shaped by it. Then, the two chromosomes are 

generated in the way explained above. 
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Example 5.2. 

 

 

 

 

 

 

 

We prefer a large crossover rate to quickly search the solution space. Nevertheless, we 

will investigate the effect of alternative rates in the factorial design, which will be 

explained in the subsection 7.10. 

Algorithm 5.4 describes the steps of the crossover operator. It takes number of matings, 

crossover rate and mating pool as inputs and creates the offspring. 

 

Parent 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

Parent 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0

Mold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 0.8 0.0 0.0 0.0 0.0 0.4 0.8 0.0 0.4 0.0 0.4 0.4 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0

Offspring 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0

Offspring 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0
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Algorithm 5.4 Crossover Operator (CO) 

Input: 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝐶𝑅𝑎𝑡𝑒, 𝑀𝑃𝑜𝑜𝑙 

Output: Offspring before mutation 

  1: 𝑖 ← 0 

  2: while 𝑖 < 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 − 1 do 

  3:      generate 𝑟𝑛𝑑, a standard random variable 

  4:      if 𝑟𝑛𝑑 < 𝐶𝑅𝑎𝑡𝑒 do 

  5:            𝑃𝑎𝑟𝑒𝑛𝑡1 ← 𝑀𝑃𝑜𝑜𝑙𝑖+1 ∗ 0.4 

  6:            𝑃𝑎𝑟𝑒𝑛𝑡2 ← 𝑀𝑃𝑜𝑜𝑙𝑖+2 ∗ 0.4 

  7:            𝑂𝑓𝑓𝑠𝑖+1 ← 𝑅𝑂(𝑃𝑎𝑟𝑒𝑛𝑡1 + 𝑃𝑎𝑟𝑒𝑛𝑡2) 

  8:            𝑂𝑓𝑓𝑠𝑖+2 ← 𝑅𝑂(𝑃𝑎𝑟𝑒𝑛𝑡1 + 𝑃𝑎𝑟𝑒𝑛𝑡2) 

  9:      else 

10:            𝑂𝑓𝑓𝑠𝑖+1 ← 𝑀𝑃𝑜𝑜𝑙𝑖+1 

11:            𝑂𝑓𝑓𝑠𝑖+2 ← 𝑀𝑃𝑜𝑜𝑙𝑖+2 

12:      end if 

13:      𝑖 ← 𝑖 + 2 

14: end while 

 

5.6 Mutation 

Mutation is also carried out with a simple operator. One of the open CDCs is closed 

randomly and then the resulting chromosome is repaired. We always close only 1 open 

CDC in this way.  

The following is an example of the mutation process. At first, the original chromosome 

indicates that the set of open CDCs is {1,6,7,11,12}. We randomly select CDC-7 to be 

closed. Then CDC-16 is opened again randomly. The repair process is complete since 

the capacity requirement is satisfied. 

Example 5.3. 

 

 

 

Original Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

Mutant Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Repaired Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0
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We again prefer a large mutation rate, so that the genetic variety of the population is 

maintained. A chromosome is subject to mutation with probability between 0.3 and 

0.5 in our preliminary experiments. These probabilities translate roughly into the 

mutation probabilities 0.06 and 0.10 for open CDCs; 0.02 and 0.03 for closed CDCs. 

Algorithm 5.5 describes the steps of the mutation process. It takes the number of 

matings, mutation rate and set of child chromosomes as inputs and updates the 

offspring. 

 

Algorithm 5.5 Mutation Operator (MO) 

Input: 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝑀𝑅𝑎𝑡𝑒, 𝑂𝑓𝑓𝑠 

Output: Offspring after mutation 

  1: for 𝑖 = 1 𝑡𝑜 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do 

  2:      generate 𝑟𝑛𝑑, a standard random variable 

  3:      if 𝑟𝑛𝑑 < 𝑀𝑅𝑎𝑡𝑒 do 

  4:            𝑂𝑓𝑓𝑠𝑖 ← close a random CDC that is open in 𝑂𝑓𝑓𝑠𝑖 

  5:            𝑂𝑓𝑓𝑠𝑖 ← 𝑅𝑂(𝑂𝑓𝑓𝑠𝑖) 

  6:      end if 

  7: end while 

 

5.6.1 Repair 

Since the chromosomes represent only the location decisions, repair process only deals 

with the feasibility conditions related to those decisions. Feasibility of allocation 

decisions is handled by the decoding/fitness evaluation heuristic. Therefore, the repair 

process focuses on maintaining sufficient CDC capacity for serving all customer 

demand.  

Repair algorithm ensures feasibility through opening additional CDCs randomly until 

the capacity condition is satisfied. This is a simple operation that we also carry out in 

the crossover and mutation operators. For instance, in the crossover operator, once the 

mold is constructed, all we do is to open random CDCs with nonzero representation. 
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Similarly to the mutation operator, we open a random CDC. To create a cleaner code, 

we make the CDC opening operations of other algorithms by calling the repair 

operator. This way, the only operations left to the crossover algorithm are creating the 

mold and calling the repair function. Similarly, the mutation algorithm only closes an 

open CDC and calls the repair function. 

Algorithm 5.6 describes the steps of the repair algorithm. It takes a chromosome as 

input and repairs it. 

 

Algorithm 5.6 Repair Operator (RO) 

Input: Chromosome 

Output: Repaired chromosome 

  1: while 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 < 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 do 

  2:      𝐶ℎ𝑟 ← open a random CDC that is closed in 𝐶ℎ𝑟 

  3:      update total capacity 

  4: end while 

 

5.7 Replacement 

Once we obtain all the child chromosomes, we are ready for starting a new generation. 

There are two extremes in selecting the members of the new generation: total elitism 

and random selection. Total elitism leads to fast convergence while risking getting 

stuck in local optima. Random selection risks no convergence at all. There are several 

replacement methods used in the literature attempting to find a compromise between 

these two extremes.  

Fitness scaling and fitness windowing do not work well for our problem, because the 

difference between fitness values of good solutions are very small in some intervals 

and very large in others. This leads to large fluctuations of selection probability, which 

works against genetic variety by eliminating slightly worse solutions. 

To prevent fluctuating selection probabilities, we rank the chromosomes according to 

their fitness values and assign selection probabilities according to their ranks, instead 

of their fitness values.  
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The best chromosome takes 0, the second one 1, the third one 1+p, the fourth one 

1+p+p2 etc. When a random number is generated between 0 and the number assigned 

to the last chromosome, we select the chromosome with the largest number smaller 

than the random one. Selection is made without replacement. We repeat this process 

until the new population is full.  

Algorithm 5.7 describes the steps of the replacement algorithm. It takes population 

size, number of matings, replacement rate, population, fitness values of population 

members, offspring and fitness values of offspring members. It creates the new 

population using these inputs. 

 

Algorithm 5.7 Replacement Algorithm (RA) 

Input: 𝑃𝑆𝑖𝑧𝑒, 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝑅𝑅𝑎𝑡𝑒, 𝑃𝑜𝑝, 𝑍𝑃𝑜𝑝, 𝑂𝑓𝑓𝑠, 𝑍𝑂𝑓𝑓𝑠 

Output: New population 

  1: 𝐶𝑎𝑛𝑑 ← concatenate 𝑃𝑜𝑝 with 𝑂𝑓𝑓𝑠 

  2: 𝑍𝐶𝑎𝑛𝑑 ← concatenate 𝑍𝑃𝑜𝑝 with 𝑍𝑂𝑓𝑓𝑠 

  3: 𝐶𝑎𝑛𝑑 ← sort 𝐶𝑎𝑛𝑑 in descending order of 𝑍𝐶𝑎𝑛𝑑 

  4: for 𝑖 = 1 𝑡𝑜 𝑃𝑠𝑖𝑧𝑒 + 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do 

  5:      𝑆𝐶𝑎𝑛𝑑𝑖
← 𝑅𝑅𝑎𝑡𝑒𝑖−1 

  6: end for 

  7: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do 

  8:      generate 𝑟𝑛𝑑, a standard random variable 

  9:      for 𝑗 = 1 𝑡𝑜 𝑃𝑠𝑖𝑧𝑒 + 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do 

10:            if 𝑆𝐶𝑎𝑛𝑑𝑗+1
> 𝑟𝑛𝑑 ∗ 𝑆𝐶𝑎𝑛𝑑𝑃𝑠𝑖𝑧𝑒+𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠∗2

 do 

11:                  𝑃𝑜𝑝𝑖 ← 𝐶𝑎𝑛𝑑𝑗 

12:                  𝑍𝑃𝑜𝑝𝑖
← 𝑍𝐶𝑎𝑛𝑑𝑗

 

13:                  break 

14:            end if 

15:      end for 

16: end for 

 



138 
 

5.8 Stopping Condition 

The fitness values, in other words the total costs, of solutions represented with each 

chromosome take continuous values. Therefore, a natural approach to monitor the 

convergence of the algorithm is observing the gap between the average fitness of the 

population and the fitness of the best individual.  

At the end of each generation, we calculate the percent gap between the population’s 

average fitness and best fitness. We assume the population converges when this gap is 

very small; the threshold value we use is 10-5%. Since we observed that there appears 

to be several solutions with very close fitness to optimum, we select such a small 

convergence gap. This way, we wait until the algorithm completes its search within 

the region close to the optimal.  

While checking the stopping condition, we also check if the convergence gap has been 

reduced below a second threshold value, which determines if the range value will be 

changed. As explained in the subsection 7.2, we may prefer to make a finer evaluation 

of the chromosomes in the later stages of the algorithm. To do so, we determine this 

threshold, typically taken 1%. Once the algorithm has achieved this level of 

convergence, we can see that the precision of the evaluation heuristic becomes 

insufficient with σ=3. Therefore, we update the range value o to σ=0.5 and make a 

more precise evaluation. Before the gap falls below 1%, making such a precise 

evaluation does not bring significant benefit. Moreover, it increases computational 

time substantially.  

Updating the distance limit is actually very important with smaller instances. Since 

there are fewer customers in those instances, making a few suboptimal assignments 

has a larger impact on the solution performance, while the difference would be 

negligible for a large instance. Therefore, the solution generated by the heuristic may 

be very close to optimum for one chromosome, but far from optimum for another. For 

large instances, we expect the difference between heuristic and optimal solutions 

becomes more stable.  

Updating the distance limit is not a must in this framework. The tradeoffs between the 

increased time requirement and more precise evaluation may be assessed in 

accordance with the instance of interest. In any case, the heuristic solutions cannot be 
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precise enough for us to select the best solution with confidence. For this reason, we 

make exact evaluation at the last stage of the algorithm. 

Figure 5.5: Convergence of the Evolutionary Algorithm 

Number of generations required for convergence varies between 15 and 50 depending 

on the design parameters. With the parameters selected based on the factorial design, 

which will be explained in section 4.10, the algorithm takes between 15 to 25 

generations to complete. 

Algorithm 5.8 describes the steps followed for evaluating whether the stopping 

condition is satisfied. It takes population, threshold for updating range value and target 

gap as inputs. It determines the value of a binary number stop to indicate whether the 

algorithm converged. 
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Algorithm 5.8 Stopping Condition (SC) 

Input: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝐶𝐺𝑎𝑝 

Output: Stopping condition 

  1: 𝑃𝑜𝑝𝐴𝑣𝑔 ← µ(𝑍𝑃𝑜𝑝) 

  2: 𝑃𝑜𝑝𝐵𝑒𝑠𝑡 ← 𝑚𝑖𝑛(𝑍𝑃𝑜𝑝) 

  3: 𝐺𝑎𝑝 ←
𝑃𝑜𝑝𝐴𝑣𝑔−𝑃𝑜𝑝𝐵𝑒𝑠𝑡

𝑃𝑜𝑝𝐵𝑒𝑠𝑡
 

  4: if 𝐺𝑎𝑝 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do 

  5:      clear database 

  6:      update range value 

  7:      𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0 

  8: end if 

  9: if 𝐺𝑎𝑝 < 𝐶𝐺𝑎𝑝 do 

10:      𝑠𝑡𝑜𝑝 ← 1 

11: end if 

 

5.9 Exact Evaluation 

As explained in the subsection 7.2, determining the distance limits according to the 

standard deviation greatly improves the performance of heuristic evaluation. 

Nevertheless, the evaluation algorithm still leaves average gaps from the optimum as 

large as 0.79% when σ=0.5 and 3.05% when σ=3. Since these values are averages, we 

can expect the gap to be larger for some chromosomes, possibly resulting in a wrong 

ranking order.  

To be sure of selecting the best chromosome found by the algorithm, we make exact 

evaluation at the last stage, after the stopping condition is satisfied. From the fitness 

database, we select the best chromosomes to be evaluated optimally. The worst 

chromosome to be selected must have a fitness value r times the best fitness value 

found so far. We expect the true best chromosome to be included in this group with 

high confidence. Also, the value r can be changed in accordance with the heuristic 

algorithm parameters. For example, if σ=3 is used, r=1.05 may be necessary, while if 

σ=0.5 is used, r=1.02 may be sufficient. Note that a larger r value leads to more 

chromosomes to be evaluated in this stage, which takes longer. 
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The evaluation is made with the help of a mathematical model solver. We call an LP 

model after fixing the location decisions and solve the assignment model with the 

solver to obtain the allocation decisions. After the selected chromosomes are evaluated 

optimally, we select the best solution among them and terminate the algorithm. 

Algorithm 5.9 describes the steps of the optimal evaluation process. It takes the final 

population produced in the evolutionary algorithm and returns the best solution 

according to the fitness values obtained through the LP model.  

 

Algorithm 5.9 Optimum Evaluation (OE) 

Input: Last population 

Output: Best solution generated 

  1: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do 

  2:      𝑍𝑃𝑜𝑝𝑖
← optimum cost from the LP model (location decisions are fixed) 

  3: end for 

  4: sort 𝑃𝑜𝑝 in descending order of 𝑍𝑃𝑜𝑝 

  5: 𝐵𝑒𝑠𝑡 ← 𝑃𝑜𝑝1 

 

Algorithm 5.10 describes the main steps of the evolutionary algorithm. It takes 

population size, number of matings, selection rate, replacement rate, crossover rate, 

mutation rate, range value, threshold value and target gap as inputs. It returns the best 

solution generated until convergence. 
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Algorithm 5.10 Main Algorithm 

Input: 𝑃𝑆𝑖𝑧𝑒, 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝑆𝑅𝑎𝑡𝑒, 𝑅𝑅𝑎𝑡𝑒, 𝐶𝑅𝑎𝑡𝑒, 𝑀𝑅𝑎𝑡𝑒, 𝐿𝑖𝑚𝑖𝑡, 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

             𝐶𝐺𝑎𝑝 

Output: Best solution generated 

  1: 𝑔𝑒𝑛 ← 0, 𝑠𝑡𝑜𝑝 ← 0 

  2: 𝑃𝑜𝑝 ← 𝐼𝑃𝐺() 

  3: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do 

  4:      𝑍𝑃𝑜𝑝𝑖
← 𝐻𝐴(𝑃𝑜𝑝𝑖) 

  5:      register 𝑃𝑜𝑝_𝑖  and 𝑍𝑃𝑜𝑝𝑖
 to database 

  6: end for 

  7: while 𝑠𝑡𝑜𝑝 = 0 do 

  8:      𝑔𝑒𝑛 ← 𝑔𝑒𝑛 + 1 

  9:      𝑀𝑃𝑜𝑜𝑙 ← 𝑃𝑆(𝑃𝑜𝑝) 

10:      𝑂𝑓𝑓𝑠 ← 𝐶𝑂(𝑀𝑃𝑜𝑜𝑙) 

11:      𝑂𝑓𝑓𝑠 ← 𝑀𝑂(𝑂𝑓𝑓𝑠) 

12:      for 𝑖 = 1 𝑡𝑜 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do 

13:            if 𝑂𝑓𝑓𝑠𝑖 is in database do 

14:                  𝑍𝑂𝑓𝑓𝑠𝑖
← 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒(𝑂𝑓𝑓𝑠𝑖) 

15:            else 

16:                  𝑍𝑂𝑓𝑓𝑠𝑖
← 𝐻𝐴(𝑂𝑓𝑓𝑠𝑖)  

17:                  register 𝑂𝑓𝑓𝑠𝑖 and 𝑍𝑂𝑓𝑓𝑠𝑖
 to database 

18:            end if 

19:      end for 

20:      𝑃𝑜𝑝, 𝑍𝑃𝑜𝑝 ← 𝑅𝐴(𝑃𝑜𝑝, 𝑍𝑃𝑜𝑝, 𝑂𝑓𝑓𝑠, 𝑍𝑂𝑓𝑓𝑠) 

21:      𝑠𝑡𝑜𝑝 ← 𝑆𝐶(𝑃𝑜𝑝) 

22: end while 

23: 𝐵𝑒𝑠𝑡 ← 𝑂𝐸(𝑃𝑜𝑝) 

 

5.10 Experimental Design 

We make a factorial design analysis to determine the values of important algorithm 

parameters. In our analyses, we consider the selected algorithm parameters as factors. 
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We experiment with several levels to observe the effect of the factors on the algorithm 

performance. Table 5.3 presents the list of factors that we considered in our 

experimental design. 

Table 5.3: Factors and Levels Considered in the Experiments 

Factor Level 1 Level 2 

Population Size 50 100 

Number of Matings 25 50 

Replacement Rate 0.95 0.97 

Crossover Rate 0.5 0.9 

Mutation Rate 0.3 0.5 

 

Population size is clearly one of the most important parameters of a EA, since it affects 

the behavior of the algorithm on several levels. Selecting the population size small 

may lead to a rapid convergence and lower solution times, but selecting it larger could 

make it more difficult for the population converge but possibly increase solution 

quality. Finding a good balance between computational requirements and solution 

quality is crucial for an effective implementation of EA. After a few preliminary 

experiments, we selected the levels 50 and 100 for the population size, because a larger 

population would not be justified by any advantages and a smaller population does not 

produce the sufficient diversity needed for detecting near-optimal solutions.  

Number of matings is selected in accordance with the population size levels. When the 

number of matings is 25 and 50, the algorithm produces 50 and 100 child 

chromosomes at each generation, respectively. These numbers are sufficient to ensure 

that a new generation is significantly different than the previous one, and they are not 

too large to require too much computational time. 

As explained earlier, we consider large replacement rates, so that the chromosomes 

with worse fitness still have a chance of being represented in the new generation. We 

experimented with two values, 0.95 and 0.97, to see the effect of replacement rate on 

the algorithm performance. 
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Levels for crossover and mutation rates are determined according to our preliminary 

experiments. We compare a small rate and a large rate for crossover, 0.5 and 0.9. The 

main difference between is that a small rate significantly reduces the number of distinct 

chromosomes to be evaluated, thus reducing overall solution time. However, a small 

rate leads to less diversity in the population, since a large part of child chromosomes 

are exactly the same as their parents. This may result in a narrow search of the solution 

space and convergence to suboptimal solutions. On the other hand, a large rate leads 

to greater diversity and longer solution time. Similar things can also be said for the 

mutation rate. 

We considered two problem instances to measure the effect of different parameter 

combinations, small (called 10unif1, 10 customers) and medium (called 100unif1, 100 

customers). We use two performance measures for comparison: total cost of best 

solution found (Best Obj) and solution time (Time). We created a 25 full factorial 

design containing the factors and levels in Table 5.3. 5 replications were made with 

each factor combination.  

We provide the main effects plots for both performance measures in Figure 5.6 and 

residual plots for solution times in Figure 5.7. Since Best Obj values are mostly at the 

optimal level with some occasional divergence, the residual plots and half effect plots 

are not reliable for this performance measure.  
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(a) Main effects plots for small instance (b) Interaction plots for small instance 

(c) Main effects plots for medium instance  (d) Interaction plots for medium instance 

Figure 5.6: Main Effects and Interaction Plots of Objective Function Values 

Main effects plots for “Best Obj” show significant effect by all factors. Especially the 

population size factor has very large impact on the solution performance, which can 

be attributed to the larger population diversity that can be maintained in a larger 

population. A similar observation can be made for the number of matings factor. We 

select the larger levels for both of these factors. 

When the elitism rate is higher, we can observe a slight deterioration of the solution 

quality. As mentioned earlier, a higher elitism rate leads to weaker elitism; based on 

the analysis, we prefer applying stronger elitism with p=0.95.  

Increasing the crossover rate seems to have a significant effect only for the medium 

instance, still the level 0.9 seems to work well for both instances. Mutation rate is the 

most significant factor for the medium instance and also has significant effect for the 

small instance. We simply select the level 0.5. 

In the light of the main effect plots, we select the following factor levels for use in our 

final computational experiments as in Table 5.4: 



146 
 

Table 5.4: Selected Factor Levels 

Factor Selected Level 

Population Size 100 

Number of Matings 50 

Replacement Rate 0.95 

Crossover Rate 0.9 

Mutation Rate 0.5 

 

When we take a look at the interaction plots, we see that the best possible solution 

quality is obtained with the selected levels most of the time. There are four cases where 

the interaction plots disagree with our selection, but these are isolated cases and their 

effects are also neutralized by other interaction effects. Therefore, we continue with 

the levels listed in Table 5.4. 

 (a) Half normal plot for small instance (b) Residual plots for small instance 

 (c) Half normal plot for medium instance (d) Residual plots for medium instance 

Figure 5.7: Half Normal and Residual Plots for Solution Times 

From the significance of factor effects we considered extending the experiments with 

additional levels. Especially the mutation rate seems to improve solution quality as it 
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increases. However, applying mutation to more than half of the child chromosomes 

would conflict with the principle of carrying information from the older generation to 

the younger one and bring the risk of creating too many child chromosomes with low 

quality. This behavior would slow down the convergence, as well as aggravating the 

possibility of losing the optimal solution due to mutation. Also, we do not consider 

larger levels for population size and number of matings, since larger populations would 

take longer to be constructed with our large instances. Larger levels are rarely used in 

the literature anyway. 

In this study, we prefer solution quality rather than solution time. However, we still 

analyze the effect of factors on the solution time. From the half normal plots in Figure 

5.8, we easily see that the main effects of all factors are significant at the p level of 

0.05. For the small instance, the significance of the effects is obvious, since the 

solution takes shorter time, thus a slight increase or decrease create a significant 

difference. We also observe that the interaction effect AC is significant only for the 

small instance, but we will not take that into account, as the results of two instances 

do not agree. 

The residual plots show that the assumptions of the factorial design analysis are 

satisfied. Residuals are normally distributed in both cases. No bias can be observed 

with the distribution of residuals neither to negative or positive sides. Variance of 

residuals seem to be constant over time. Lastly, the observation order does not affect 

residual levels, which must be expected since the experiments are made on a computer. 
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(a) Main effects plots for small instance (b) Interaction plots for small instance 

 

(c) Main effects plots for medium instance (d) Interaction plots for medium instance 

Figure 5.8: Main Effects and Interaction Plots for Solution Times 

The main effect plots in Figure 5.8 agree with the half normal plots in that all main 

effects are significant. The factor levels that produce longer solution time are parallel 

to our expectations.  

With a larger population size or a larger number of matings the computational 

requirement naturally increases, since there are more chromosomes to be evaluated by 

the algorithm.  

With a larger elitism rate (with weaker elitism), the algorithm assigns a larger 

probability to the chromosomes with lower fitness, thus it takes longer for the 

algorithm to weed out the bad chromosomes and converge.  

Lastly, larger crossover and mutation rates increase genetic diversity and lead the 

algorithm to search a larger part of the feasible region. Thus, it takes longer for the 

algorithm to converge with larger crossover and mutation rates.  

None of the interaction effects are significant. 
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At this point, it is important to remember that we are implementing the evolutionary 

algorithm to find good solutions to medium and large instances due to the drawbacks 

of other solution methods. Standard solvers fail with large instances and they take too 

long with medium instances. Our algorithm based on the L-Shaped method does not 

converge within the time limit, thus we cannot guarantee if it find the optimal 

solutions. In this context, our primary expectation from the evolutionary algorithm is 

finding good solutions. Therefore, we do not aim to obtain the solutions in shorter time 

at the expense of lower solution quality. We use the factor levels selected according to 

the Best Obj main effect plots. Also, we use the same factor levels for instances of all 

sizes: small, medium, and large. 
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CHAPTER 6 

 

COMPUTATIONAL RESULTS 

 

6. COMPUTATIONAL RESULTS 

In this section, we list and compare the computational results obtained with the help 

of different solution methods. As explained in the previous chapters, we consider three 

solution methods: solving a standard mathematical model by Cplex, using the Benders 

Decomposition algorithm, and using the evolutionary algorithm. Details on the last 

two methods are introduced in Chapters 4 and 5 respectively. 

6. Blank 

6.1 Framework 

Our purpose in conducting the computational experiments is twofold: 

 To identify the strengths and weaknesses of each method 

 To observe the disparities between different instance groups with respect to 

solution efforts 

Details of the methods are given in the previous two chapters. After observing the 

performances of several methods based on Benders Decomposition, we decided to use 

the L-Shaped method with scenario group cuts for our problem. For the evolutionary 

algorithms, we developed a hybrid fitness evaluation algorithm that combines greedy 

and 2-opt heuristics. We tune this algorithm for a precise evaluation and we make an 

exact evaluation at the last step of the evolutionary algorithm. 

We use three sets of instances to test the solution methods. They are: small (10 

customers), medium (100 customers), and large (1000 customers) instance sets. All 

test instances include 20 candidate CDC locations and 100 scenarios.  

Each of these sets includes 24 instances in two groups. These groups are constructed 

according to the ratio of total fixed cost over total transportation cost. We believe this 



152 
 

ratio may significantly affect solution time. Each group, instance groups with large 

and small ratios, contains 6*2 instances constructed in parallel to the square patterned 

instances used for the Value of Information analyses given in section 5. The six 

patterns are as follows: R_u, R_n, C_u, C_n, RC_u, and RC_n. In total, there are 72 

instances we consider. The list of instances are as follows: 

 Small: 

o Large Ratio: R_u_L_10_1&2, R_n_L_10_1&2, C_u_L_10_1&2, 

C_n_L_10_1&2, RC_u_L_10_1&2, RC_n_L_10_1&2 

o Small Ratio: R_u_S_10_1&2, R_n_S_10_1&2, C_u_S_10_1&2, 

C_n_S_10_1&2, RC_u_S_10_1&2, RC_n_S_10_1&2 

 Medium: 

o Large Ratio: R_u_L_100_1&2, R_n_L_100_1&2, C_u_L_100_1&2, 

C_n_L_100_1&2, RC_u_L_100_1&2, RC_n_L_100_1&2 

o Small Ratio: R_u_S_100_1&2, R_n_S_100_1&2, C_u_S_100_1&2, 

C_n_S_100_1&2, RC_u_S_100_1&2, RC_n_S_100_1&2 

 Large: 

o Large Ratio: R_u_L_1000_1&2, R_n_L_1000_1&2, 

C_u_L_1000_1&2, C_n_L_1000_1&2, RC_u_L_1000_1&2, 

RC_n_L_1000_1&2 

o Small Ratio: R_u_S_1000_1&2, R_n_S_1000_1&2, 

C_u_S_1000_1&2, C_n_S_1000_1&2, RC_u_S_100_1&2, 

RC_n_S_1000_1&2 

We refer to the mixed integer program solved by the standard solver as TLAP. We 

refer to the scenario-group cuts and partial decomposition approaches as SGC and PD 

respectively. We refer to the evolutionary algorithm as EA. 

For the standard model, we provide optimum cost value and solution time, if an 

optimal solution can be found. For SGC and PD methods, we provide the cost of best 

integer solution, % gap between upper bound and lower bound and solution time. Zero 

gap indicates that the algorithm has converged and cost value is optimal. Positive gap 

indicates that the algorithm could not converge within time limit. For the evolutionary 

algorithm, we make 5 replications for each instance. We provide the cost of best 

integer solution in 5 replications, best/average gap found in 5 replications, and average 
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time for the algorithm to complete. The gap values are the percent difference from the 

optimal, if optimal solution is known. Zero gap indicates that the optimal solution is 

found by the evolutionary algorithm. If optimal solution is not known, gap indicates 

the percent deviation from the best known solution found by the exact solution 

methods (TLAP, SGC and PD). All solution times are shown in seconds.  

SGC/PD:  𝐺𝑎𝑝 % =
𝑈𝐵−𝐿𝐵

𝐿𝐵
*100 

EA:   𝐵𝑒𝑠𝑡 𝐺𝑎𝑝 % =
𝐵𝑒𝑠𝑡 𝑜𝑓 𝑅𝑒𝑝𝑙−𝑂𝑝𝑡

𝑂𝑝𝑡
∗ 100 

EA:   𝐴𝑣𝑒 𝐺𝑎𝑝 % =
𝐴𝑣𝑔 𝑜𝑓 𝑅𝑒𝑝𝑙−𝑂𝑝𝑡

𝑂𝑝𝑡
∗ 100 

We impose a time limit of 4 hours (14400 seconds) on each method. Once the time 

limit is reached, TLAP immediately stops and reports the most recent bounds found 

by the solver. However, SGC, PD and EA are allowed to complete the ongoing 

iteration before they report the results. For SGC and PD, we find it necessary for the 

last iteration to be completed, because the iterations tend to be gradually longer due to 

the cuts added. Enforcing the time limit without flexibility would mean the last 

iteration would be completely disregarded, which makes the effective time limit to be 

a lot shorter than 4 hours. A similar argument can be made for EA, since each iteration 

take a lot of time to complete with large instances. 

All experiments are run on identical PCs with 3.00 GHz CPU and 16.00 GB RAM 

running MS Windows.  

 

6.2 Results 

We report the optimal/best known solution in the second columns of the Tables 6.1-

6.3 and we omit the solutions found by each method. The UB and LB values obtained 

in the experiments can be found in the corresponding tables in the Appendix. In this 

section, we only report the gap and CPU time results for each method.  

In Table 6.1 we provide the results for the small instances.  
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Table 6.1: Computational Results for Small Instances 

 

For small instances, we observe that TLAP, SGC and PD always find optimal 

solutions. EA also manages to find optimal solution for most instances. Since optimal 

solution can be found for all instances, we compare the solution times. Due to the size 

of the instances, TLAP is able to find an optimal solution in very short time, while 

SGC and PD struggles for convergence and sometimes takes more than one hour to 

complete. EA finds an optimal solution again in short time, but not as short as TLAP. 

The average solution time for TLAP is 3.2 seconds, while SGC and PD take 2009.3 

418.3 seconds, respectively. EA converges in 21.3 seconds on average. 

For this set of instances, we find that TLAP offers the best performance in terms of 

solution time. Nevertheless, EA should be considered, too, since it offers alternative 

solutions that may be useful for the decision maker.  

In Table 6.2, we provide the results for the medium instances.  

GAP%

CPU 

Time 

(sec)

GAP%

CPU 

Time 

(sec)

GAP%

CPU 

Time 

(sec)

Best Gap 

from 

Optimal%

Avg Gap 

from 

Optimal%

Avg 

CPU 

Time 

(sec)

R_u_L_10_1 250160.1 0.0 2.6 0.0 618.5 0.0 375.2 0.0 0.0 16.2

R_u_L_10_2 250145.6 0.0 3.0 0.0 3293.4 0.0 1026.8 0.0 0.0 35.0

R_n_L_10_1 250179.6 0.0 7.2 0.0 4543.0 0.0 770.6 0.0 0.0 16.7

R_n_L_10_2 250162.6 0.0 1.4 0.0 654.2 0.0 192.2 0.0 0.0 23.3

C_u_L_10_1 250180.5 0.0 2.9 0.0 789.2 0.0 241.9 0.0 0.0 16.7

C_u_L_10_2 250139.0 0.0 1.0 0.0 480.3 0.0 151.9 0.0 0.0 21.4

C_n_L_10_1 250167.2 0.0 2.4 0.0 224.9 0.0 105.2 0.0 0.0 14.8

C_n_L_10_2 250181.8 0.0 1.9 0.0 2139.4 0.0 334.0 0.0 0.0 27.0

RC_u_L_10_1 250180.7 0.0 4.2 0.0 1248.2 0.0 271.3 0.0 0.0 14.3

RC_u_L_10_2 250159.0 0.0 5.1 0.0 1197.1 0.0 352.4 0.0 0.0 30.4

RC_n_L_10_1 250155.7 0.0 3.2 0.0 281.5 0.0 174.5 0.0 0.0 14.6

RC_n_L_10_2 250174.7 0.0 2.1 0.0 1018.8 0.0 147.8 0.0 0.0 24.4

R_u_S_10_1 730244.1 0.0 4.4 0.0 1911.0 0.0 494.5 0.0 0.0 16.3

R_u_S_10_2 686878.5 0.0 4.7 0.0 9008.9 0.0 1721.5 0.0 0.0 33.9

R_n_S_10_1 788669.3 0.0 7.1 0.0 9435.6 0.0 1089.4 0.0 0.0 17.3

R_n_S_10_2 737856.4 0.0 1.5 0.0 671.5 0.0 194.2 0.0 0.0 23.6

C_u_S_10_1 791586.6 0.0 3.0 0.0 1594.1 0.0 386.4 0.0 0.0 14.9

C_u_S_10_2 666935.7 0.0 0.9 0.0 472.4 0.0 149.3 0.0 0.0 23.3

C_n_S_10_1 751561.4 0.0 2.1 0.0 595.7 0.0 150.5 0.0 0.0 15.5

C_n_S_10_2 795264.1 0.0 2.0 0.0 2288.5 0.0 371.7 0.0 0.0 25.6

RC_u_S_10_1 792066.5 0.0 4.0 0.0 2297.8 0.0 418.6 0.0 0.0 13.9

RC_u_S_10_2 727048.0 0.0 5.6 0.0 1560.1 0.0 411.7 0.0 0.0 29.9

RC_n_S_10_1 708776.3 0.0 3.3 0.0 829.3 0.0 268.8 1.2 1.2 14.6

RC_n_S_10_2 774116.4 0.0 2.4 0.0 1070.9 0.0 239.4 0.0 0.0 26.8

Results for Small 

Instances

TLAP SGC PD EA

Optimal 

Solution
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Table 6.2: Computational Results for Medium Instances 

 

* Time Limit (4 hours) Exceeded 

SGC and PD do not converge within the time limit for any of the instances. For EA, 

best and average gaps are 0% for all instances except R_u_S_100, whose average gap 

is equal to 0.1%. 

For medium instances, we observe that TLAP and EA always find the optimal. SGC 

and PD find the optimal solution for most instances as their best integer solutions, but 

they cannot converge within the time limit. They leave very small gaps when the ratio 

of fixed cost over transportation cost is large and large gaps when the opposite is true. 

EA misses the optimal only in one replication for one instance.  

Regarding the solution times, we reach a different conclusion than the previous set of 

instances. While TLAP has the advantage of proving optimality, it takes much longer 

to complete compared to the EA. EA finds the optimal in shorter times and missed 

optimality in only 1 replication among 120. Thus it can also be considered a reliable 

method. For this set of instances, we find that TLAP offers proof of optimality, while 

EA offers solution in short time as well as alternative solutions for the decision maker. 

GAP%

CPU 

Time 

(sec)

GAP%

CPU 

Time 

(sec)

GAP%

CPU 

Time 

(sec)

Best Gap 

from 

Optimal%

Avg Gap 

from 

Optimal%

Avg 

CPU 

Time 

(sec)

R_u_L_100_1 251602.1 0.0 9706.6 0.1 * 0.2 * 0.0 0.0 156.8

R_u_L_100_2 251557.4 0.0 6954.7 0.1 * 0.1 * 0.0 0.0 236.1

R_n_L_100_1 251744.3 0.0 7538.3 0.1 * 0.1 * 0.0 0.0 137.6

R_n_L_100_2 251700.0 0.0 9328.1 0.1 * 0.1 * 0.0 0.0 337.8

C_u_L_100_1 251551.2 0.0 6305.9 0.0 * 0.0 * 0.0 0.0 126.3

C_u_L_100_2 251653.3 0.0 5482.6 0.0 * 0.1 * 0.0 0.0 188.7

C_n_L_100_1 251560.9 0.0 5139.4 0.0 * 0.1 * 0.0 0.0 139.9

C_n_L_100_2 251702.5 0.0 6060.7 0.1 * 0.1 * 0.0 0.0 232.7

RC_u_L_100_1 251455.0 0.0 6361.9 0.1 * 0.1 * 0.0 0.0 139.2

RC_u_L_100_2 251619.4 0.0 5923.0 0.1 * 0.1 * 0.0 0.0 341.6

RC_n_L_100_1 251677.3 0.0 5553.7 0.0 * 0.0 * 0.0 0.0 122.9

RC_n_L_100_2 251460.3 0.0 6751.9 0.1 * 0.1 * 0.0 0.0 216.0

R_u_S_100_1 730624.5 0.0 1754.9 16.1 * 19.2 * 0.0 0.1 173.6

R_u_S_100_2 717207.5 0.0 1563.3 10.6 * 13.1 * 0.0 0.0 232.7

R_n_S_100_1 773292.2 0.0 1994.9 11.7 * 12.3 * 0.0 0.0 149.7

R_n_S_100_2 760011.0 0.0 1926.9 9.5 * 11.2 * 0.0 0.0 329.0

C_u_S_100_1 715369.3 0.0 436.7 3.5 * 3.4 * 0.0 0.0 145.8

C_u_S_100_2 745984.6 0.0 1148.3 4.9 * 4.8 * 0.0 0.0 188.9

C_n_S_100_1 718274.1 0.0 769.0 6.1 * 6.6 * 0.0 0.0 124.5

C_n_S_100_2 760758.1 0.0 1265.3 6.8 * 7.3 * 0.0 0.0 270.7

RC_u_S_100_1 686507.6 0.0 769.0 9.8 * 12.5 * 0.0 0.0 145.0

RC_u_S_100_2 735827.8 0.0 1145.2 8.9 * 10.5 * 0.0 0.0 340.2

RC_n_S_100_1 753200.8 0.0 857.8 4.1 * 4.1 * 0.0 0.0 133.2

RC_n_S_100_2 688074.3 0.0 1090.5 9.0 * 11.3 * 0.0 0.0 213.4

Results for 

Medium Instances

TLAP SGC PD EA

Optimal 

Solution
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The average solution times for TLAP and EA are 3992.9 and 200.9 seconds, 

respectively. SGC and PD keep running until the time limit of four hours is exceeded. 

In Table 6.3, we provide the results for the large instances.  

Since we do not have the optimal solutions of large instances for comparison, this time 

we cannot provide gap values. Instead, we make a comparison between best solutions 

found by exact methods (BSEM) and EA.  

EA:  𝐵𝑒𝑠𝑡 𝐺𝑎𝑝′% =
𝐵𝑒𝑠𝑡 𝑜𝑓 𝑅𝑒𝑝𝑙−𝐵𝑆𝐸𝑀

𝐵𝑆𝐸𝑀
∗ 100 

EA:  𝐴𝑣𝑒 𝐺𝑎𝑝′% =
𝐴𝑣𝑔 𝑜𝑓 𝑅𝑒𝑝𝑙−𝐵𝑆𝐸𝑀

𝐵𝑆𝐸𝑀
∗ 100 

Table 6.3: Computational Results for Large Instances 

 

* Time Limit (4 hours) Exceeded 

** No Feasible Solutions 

SGC and PD do not converge within the time limit for any of the instances. For EA, 

best and average gaps are close to 0% for all instances. 

GAP%

CPU 

Time 

(sec)

GAP%

CPU 

Time 

(sec)

GAP%

CPU 

Time 

(sec)

Best Gap 

from Best 

Exact%

Avg Gap 

from Best 

Exact%

Avg 

CPU 

Time 

(sec)

R_u_L_1000_1 265593.4 ** * 1.7 * 1.6 * 0.0 0.0 6463.9

R_u_L_1000_2 265595.6 ** * 1.6 * 1.5 * 0.0 0.0 6345.0

R_n_L_1000_1 267840.4 ** * 1.2 * 1.0 * 0.0 0.0 7093.3

R_n_L_1000_2 266886.5 ** * 1.4 * 1.1 * 0.0 0.0 8454.9

C_u_L_1000_1 265947.9 ** * 1.0 * 0.9 * 0.0 0.0 4594.1

C_u_L_1000_2 265442.7 ** * 0.9 * 0.9 * 0.0 0.0 4694.6

C_n_L_1000_1 267120.0 ** * 1.2 * 1.0 * 0.0 0.2 5138.8

C_n_L_1000_2 265864.7 ** * 0.9 * 0.7 * 0.0 0.0 4336.9

RC_u_L_1000_1 266456.9 ** * 1.3 * 1.2 * 0.0 0.0 6052.1

RC_u_L_1000_2 265511.1 ** * 1.3 * 1.2 * 0.0 0.0 6175.2

RC_n_L_1000_1 265920.5 ** * 1.4 * 1.2 * 0.0 0.0 6651.8

RC_n_L_1000_2 267154.6 ** * 1.0 * 0.8 * 0.0 0.0 4855.6

R_u_S_1000_1 717802.7 ** * 22.8 * 21.2 * 0.0 0.0 7246.1

R_u_S_1000_2 717867.8 ** * 20.7 * 19.3 * 0.0 0.0 8238.7

R_n_S_1000_1 785211.0 ** * 13.8 * 10.6 * 0.0 0.0 7444.5

R_n_S_1000_2 757366.8 ** * 16.6 * 12.9 * -0.1 -0.1 8373.3

C_u_S_1000_1 728436.7 ** * 11.8 * 11.1 * 0.0 0.0 4853.7

C_u_S_1000_2 713279.5 ** * 10.7 * 10.2 * 0.0 0.1 4346.1

C_n_S_1000_1 763599.7 ** * 14.8 * 12.1 * 0.0 0.0 4941.7

C_n_S_1000_2 725942.1 ** * 10.5 * 8.4 * 0.0 0.0 4306.0

RC_u_S_1000_1 743705.8 ** * 17.1 * 14.3 * 0.0 0.0 5523.9

RC_u_S_1000_2 715332.6 ** * 16.9 * 15.6 * 0.0 0.0 6475.4

RC_n_S_1000_1 727614.1 ** * 17.4 * 14.9 * 0.0 0.0 7441.2

RC_n_S_1000_2 764637.5 ** * 11.4 * 9.3 * 0.0 0.1 5081.3

Results for Large 

Instances

TLAP SGC PD EA

Best Known 

Soln. from 

Ex. M.
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We observe that TLAP does not find any feasible solutions within time limit for large 

instances (When the time limit was increased to 48 hours, TLAP still left gap around 

30%.). SGC and PD do not converge for any of the instances either. However, they 

leave small gaps for instances with large ratio and large gaps for others. EA converges 

within time limit, but it sometimes takes more than two hours to complete.  

We see that for 20 instances out of 24, the best solutions found by the exact methods 

have the same objective function value as the best solution found in all of the 

replications of EA. Since these methods use completely different approaches for 

convergence, this is an important result signaling the probability of these solutions 

being optimal. For the remaining 4 instances, both SGC and PD find the best solution 

in one case, and EA finds the best solution in three cases. 

In conclusion, we observe that TLAP obtains optimal results for small and medium 

instances. With small instances it reaches optimum in very short time, but with 

medium instances it takes much longer. TLAP cannot produce any feasible solutions 

for large instances within the time limit. SGC and PD are able to converge only for 

small instances, but they find the optimal solution most of the time as its best integer 

solution. EA is very successful in finding good solutions, and always converges within 

time limit. It offers the fastest solution times in medium and large instances and loses 

to TLAP only with small instances. 

In the light of these observations, we may suggest the decision maker to use standard 

solvers when dealing with small instances. If obtaining alternative solutions is 

desirable for the decision maker, EA may also be used despite a small increase in 

solution time.  

For medium instances, EA offers the best performance among the three methods. It 

also produces alternative solutions, which can be compared with respect to other 

(secondary) objectives by the decision maker. However, since EA does not prove 

optimality, TLAP may also be used according to the preference of the decision maker. 

Since this is a strategic decision making process, solution times may be considered to 

be much less important.  

In real life application, we expect the problem to include hundreds of customers, 

therefore finding good solutions for large instances is critical. For solving large 
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instances, we only have two alternatives, since TLAP fails to produce any feasible 

solutions. We suggest using EA for these instances, since the algorithm converges and 

finds the best known solutions. While the best solutions of the remaining methods 

agree most of the time, the decision maker may also prefer to apply both methods and 

compare their results. 

When we compare the instance sets, we also observe several disparities. A clear 

difference can be seen between the performance of SGC and PD on large ratio and 

small ratio instances. For small instances, SGC and PD reach convergence for all 

instances, but small ratio instances take considerably longer to be solved. For SGC, 

the average time it takes until convergence is 1374.0 seconds for large ratio instances, 

but 2644.7 seconds for small ratio instances. For PD, the figures are 345.3 and 491.3 

seconds, respectively. It is safe to argue that small ratio instances are harder to solve, 

since the algorithm has more incentive to look for solutions with more open CDCs 

with the hope of reducing total variable cost. This is not possible when fixed costs are 

much larger than variable costs. We do not have the convergence times for medium 

and large instances, but gap values indicate that the same argument can be made. Gap 

values are larger for small ratio instances mainly due to the larger share of variable 

costs in the objective function value. When fixed cost occupies a larger share and the 

optimal number of CDCs can be found in the early iterations, we obtain small gap 

values, but this is not the case with small ratio instances.  

The solution time differences are not as clear with EA. Since EA only evaluates sets 

of locations decisions (chromosomes) instead of trying to come up with an optimal 

decision set, the algorithm is not affected a lot from the differences in instances. For 

small instances, the average time until completion is 21.2 and 21.3 seconds for large 

and small ratio instances, respectively. For medium instances, the figures are 198.0 

and 203.9. For large instances, they are 5904.7 and 6189.3. 

With TLAP, we observe similar results to SGC and PD for small instances. The 

average solution time for large ratio instances is 3.1 seconds, while it is 3.4 seconds 

for small ratio instances. We observe an interesting difference for medium instances. 

This time the average solution time is 6758.9 seconds and 1226.8 seconds respectively. 

For large instances, we do not have the data for such comparison. 
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When we compare the instances with respect to distribution, we find that instances 

with normally distributed customers seem to be harder to solve with all three methods. 

This may be due to the fact that the customer density in the city center is higher in 

those instances. When this is the case, there are fewer customers that can be assigned 

to the closest open CDC with confidence, because many customers are closely packed 

and swapping their assignments may bring benefit. This phenomenon can be observed 

most clearly in the hybrid evaluation algorithm of EA. As explained in Chapter 5, the 

algorithm starts by assigning all customers to the closes available CDC, but then 

employs a 2-opt procedure to swap the assignments. The swaps are made only when 

assignment distance is above some predetermined range value. This approach is 

effective in reducing the solution time, but fails to find good solutions in short time 

when customer density is high in the city center. In a similar fashion, exact solution 

methods encounter many alternative paths to take when it comes to assigning the 

customers in the city center. This certainly makes it harder to solve the instances with 

customers concentrated in the center. 

More detailed data on the experiments can be found in the Appendix.  
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CHAPTER 7 

 

ROUTING DECISIONS: POSSIBLE SOLUTION APPROACHES 

 

7. ROUTING DECISIONS: POSSIBLE SOLUTION APPROACHES 

So far, we have focused on the strategic decisions of the City Logistics system. As 

explained in section 4, we decomposed the decisions with respect to their strategic or 

operational nature and considered only the strategic level decisions in our solution 

approaches. The main idea was that if these strategic decisions are made near 

optimally, the lower level decisions could be made accordingly and the overall system 

would work efficiently.  

 

7.1 Making Lower Level Decisions 

Once the higher level decisions are made, the remaining decisions, namely fleet sizing 

and routing, can also be made optimally. As explained in section 4, the solution space 

for these decisions are directly determined by the higher level decisions. More 

importantly, as the higher level decisions are fixed, the remaining ones can be 

separated with respect to scenarios and to open CDCs.  

Previously, we needed to combine the location decisions with scenario based 

allocation decisions in order to produce meaningful solutions. However, this is not the 

case for the lower level, since routing decisions for different scenarios are completely 

unrelated to each other. Each scenario can be solved on its own. A similar observation 

can be made for each open CDC. Each set of customers assigned to a CDC constitutes 

a separate TSP or VRP problem depending on the number of vehicles that will be used 

for delivery.  

There is an extensive literature on this kind of the problem. In our case, where the 

customers may have delivery time preferences, the city administration may have 

delivery time restrictions and balancing workload (both in terms of tour length and 
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delivered amount) between vehicles may be of concern and several extensions of the 

VRP literature are of interest. For example, VRP with time-windows (VRPTW), 

capacitated VRP (CVRP), multi-trip VRP (MTVRP), fleet size and mix VRP, multi-

commodity VRP (MCVRP) and their combinations are extensively studied in the 

literature (Note that there are fewer studies considering these problems under 

uncertainty.). Each of these problems relax one assumption of the classical vehicle 

routing problem. 

We mention the following example based on VRPTW to give an idea of the 

capabilities of methods used in the literature. Generally, the state-of-the-art methods 

proposed in the VRPTW literature are sufficient for making the lower level decisions 

in our case. Since we separate the problem into smaller pieces by fixing the higher 

level decisions, it is possible to reach optimal even with large instances. In this process, 

we create 5-6 single depot VRPTW problems with about 160-200 customers for each 

scenario and instances of this size can be solved efficiently with the methods reviewed 

above. It is also important to note that the decisions maker does not have to solve for 

all scenarios, since only the decisions related to the current scenario are relevant for 

practice. As the conditions change, the lower level decisions can be reoptimized 

periodically. 

In conclusion, we propose the methods for making strategic level decisions in the CL 

system and we suggest the decision makers to use the state-of-the-art methods for the 

selected VRP extensions for the remaining decisions. Once the higher level decisions 

are fixed, the decision maker has the advantage of considering only the scenario of 

interest and remake the computations only when necessary. At that stage, it is also 

possible to obtain the lower level decisions optimally for all scenarios and make simple 

adjustments on the higher level decisions accordingly. The decision making process is 

simplified a lot with this approach. 

 

7.2 Approximating Lower Level Costs 

An important point to note is that, by not considering the lower level decisions, like 

routing, we make a simplifying assumption that the distance between customers and 

CDCs is a good estimator of the additional cost of serving the customer. In real life, 
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this cost would be calculated for a group of customers that share a delivery route, 

instead of for individual customers. The only way to avoid this assumption is to make 

all location, allocation, fleet sizing and routing decisions at the same time. This is not 

possible for our case, since uncertainty is also taken into account. A possible way of 

incorporating the lower level decisions into the strategic decision making is 

approximating the related costs instead of trying to find them optimally.  

Due to the NP-hard nature of the VRP and its appearance in larger problems as in our 

case, a large number of studies has been made in order to accurately estimate the 

routing cost. All these studies suggest methods to estimate routing cost without 

explicitly making routing decisions. We investigate three of these methods and try to 

propose a method suitable for use in our case. Since the lower level decisions cannot 

be made optimally, it is better to consider these methods within metaheuristics, 

possibly as a module of the evolutionary algorithm explained in section 7.  

 

7.2.1 Tour Length Approximation 

Tour Length Approximation is a method of estimating route length without explicitly 

determining the route. For estimation, the inputs usually required are the distance 

metric used, spatial distribution of customers, the size of the region, number of 

customers in the region, number of customers to be visited, and average distance of 

customers to the warehouse. Approximation methods use equations to estimate the 

length of the tour with these specified characteristics.  

The idea of estimating the length of tours with an analytical perspective started with 

Beardwood et al. (1959). Afterwards, Tour Length Approximation has been used in 

many studies, mostly in the 1980s and 1990s. Many studies on TSP, VRP and LRP 

used tour length approximation to avoid the complexity due to routing decisions. 

Methods to estimate the tour length gradually become more complex and problem-

specific. Other important contributors to the literature on this subject are Christofides 

and Eilon (1969), Daganzo (1984a), Daganzo (1984b), Hall (1984), Castillo, J.M. 

(1999), Figliozzi (2009). Campbell et al. (1996) provide a review of most of the 

relevant studies. 
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Tour length approximation is a good method to estimate tour length when there is little 

information available about the customers’ specific locations. However, in a city 

logistics system, customers’ exact locations are known. We can use heuristics to 

compute better approximations using exact locations. Moreover, tour length 

approximation requires triangular inequality to hold. Due to the transportation cost 

uncertainty, triangular inequality does not always hold in our instances. In addition, 

even if all the required inputs are available, calculating the approximation might be 

challenging. For instance, equations might include integral calculations. Lastly, tour 

length approximation does not include the time dimension of tours. In a city logistics 

system, length of a tour is not the only cost item; penalty costs of violating time 

windows could also be considered. Therefore, when we need to take into account the 

time-windows, tour length approximation is not a suitable approach. 

 

7.2.2 Heuristics 

There are two main advantages of heuristics over the other approximation methods. 

Heuristics allow us to use the known information on an instance effectively. For 

instance, we can use the transportation costs among a couple of nodes which provide 

precise computations compared to other methods. Second, heuristics are more flexible. 

With a heuristic algorithm, we can consider different objectives concurrently, add or 

remove algorithm modules to fit our purpose. We demonstrate these advantages later 

in this subsection. 

There are many heuristics and metaheuristics proposed in the literature for VRPTW. 

One of the most successful ones for solving the large scale VRPTW is proposed by 

Mester and Braysy (2005). This method employs guided evolution strategies and finds 

good solutions for instances with up to 1000 nodes. For instances with 100/200/400 

nodes, CPU time requirement is around 80 seconds/8 minutes/17 minutes on average. 

If we used this method for the routing decisions, we would need to repeat it for each 

CDC and each scenario (around 500 times). 

We use a different approach that aims to achieve sufficiently good results using shorter 

CPU time. First we decide which one of the two approaches should be used: route-

first-cluster-second or cluster-first-route-second.  
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Since the number of nodes allocated to a particular CDC may be in the hundreds, 

routing first would require significantly more computation. Since we are using 

heuristics for the routing decisions, having a very large number of nodes to be routed 

would badly deteriorate the solution performance. It is logical to expect better routing 

performance when there are fewer nodes to be considered. Thus, by using cluster-first-

route-second approach, we reduce the number of nodes to be routed by a large margin, 

since each time we have to consider only the nodes within a particular cluster.  

Dondo and Cerda (2007) propose such a method. It starts by clustering customers. 

Then the clusters are assigned to depots. Next sub-clusters are constructed within the 

clusters and TSPTW is solved for each sub-cluster with heuristics. The method solves 

25-node instances well, but struggles with larger instances. 

During the clustering process, we have to take into account two parameters: the width 

of the time window and the capacity of vehicles. If the vehicle capacity is considered 

as a hard constraint (which is the case in real life) and time window is considered as a 

soft constraint (since violating time windows may be penalized but not forbidden in 

real life), vehicle capacity constraint is preemptive over time window constraint. 

We first try to find the smallest number of vehicles (we call this number k) that can 

serve the set of nodes without violating the capacity constraint. Then, we create k 

clusters over the area allocated to the CDC of current interest. Now, we need to 

determine how to create the clusters in a meaningful way. The following explanations 

aim to find a meaningful way of partitioning regions. The results may be an initial 

solution for an algorithm that improves the clusters and routes step by step to reduce 

the difference between tour lengths. 

 

(a) Customer assignment (b) Clusters in sectors-1 (c) Clusters in sectors-2 

Figure 7.1: Clustering Approaches when CDCs are Located on City Boundaries 
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When we are dealing with square cities, the allocation of customers would partition 

the city area roughly in a way that is depicted in Figure 7.1 (a). 

If the CDCs are near the center of the city, an intuitive way of partitioning the regions 

allocated to each CDC would look like the one given in Figure 7.1 (b). 

But the CDCs being on the city boundaries, this setting obtains larger tours for the 

subregions that do not contain the CDCs. In other words, even if the total route length 

within each subregion is equal, the distance for reaching the subregions are 

significantly different. We may use a scheme to partition the regions as shown in 

Figure 7.1 (c) to solve this problem. 

If we assume the city center to contain a dense population of customers, it is easy to 

change the boundaries separating subregions, so that demand constraint can be 

satisfied. To do that, we may start assigning the customers from the ones that would 

incur the highest cost if they are not assigned to their closest cluster center and continue 

until that cluster’s capacity is filled. Such an approach is expected to give the 

partitioning in Figure 7.2 (with cluster centers marked with dots):  

(a) Clusters within sections  (b) Approx. locations of cluster centers 

Figure 7.2: Cluster Centers when CDCs are Located on City Boundaries 

This setting assigns larger areas to subregions on the sides, thus obtains longer tour 

lengths for them, while reducing the tour length of the central subregion. The following 

setting that tries to find larger central subregions and smaller side-subregions may be 

an alternative, but does not solve the problem completely. To preserve the star-shaped 

partitioning, we have to select cluster centers a certain distance (r) away from the CDC. 



167 
 

Cluster centers may be found in a usual way, but then changed with points r units away 

from the CDC to the same direction (angle). 

When we are dealing with circular cities, the allocation of customers would partition 

the regions in the way given in Figure 7.3: 

Figure 7.3: Cluster Centers in a Circular City 

Such a partition guarantees feasibility of demand constraint and it gives us subregions 

with close tour length values. At this stage, we may take into account the TWs and try 

to reduce the tours that violate the time window, as much as possible. If we cannot 

make all tours shorter than the TW width, even after we obtain equal tour lengths for 

all, we have two alternatives.  

If we violate the TW constraint too much, we may introduce an additional vehicle and 

restart the process. However, if this is not the case, we may introduce the extra vehicle 

according to a comparison between TW penalty incurring with the current solution and 

vehicle operating cost. 

The steps of the heuristic algorithm are as follows: 



168 
 

Algorithm 7.1 Vehicle Routing Stage 

Input: Customer assignments, Vehicle capacity, TW width and TW violation 

penalty, Vehicle operating cost 

Output: New population 

  1: for each CDC do 

  2:      let S be the set of customers assigned to this CDC 

  3:      |𝑉| ← ⌈
∑ 𝑑𝑒𝑚𝑗𝑗∈𝑆

𝑉𝑒ℎ𝐶𝑎𝑝
⌉ 

  4:      select |𝑉| cluster centers 

  5:      divide 𝑆 into cluster subsets: 𝑆 = 𝐶1 ∪ 𝐶2 ∪. . .∪ 𝐶|𝑉| 

  6:      𝑍𝐶𝑣
← solve TSP for each subset 𝐶𝑣 

  7:      while ∃𝑣: ∑ 𝑑𝑒𝑚𝑗𝑗∈𝐶𝑣
> 𝑉𝑒ℎ𝐶𝑎𝑝 do 

  8:            let 𝐶𝑣1
 and  𝐶𝑣2

 be the clusters with largest and smallest demand 

  9:            for each 𝑗 ∈ 𝐶𝑣1
 do 

10:                  𝑍′𝐶𝑣2
← solve TSP for 𝐶𝑣2

∪ 𝑗 

11:                  𝑍′𝐶𝑣1
← solve TSP for 𝐶𝑣1

\ 𝑗 

12:                  𝐶𝑜𝑠𝑡𝑗 ←  𝑍′𝐶𝑣2
+ 𝑍′𝐶𝑣1

− 𝑍𝐶𝑣2
− 𝑍𝐶𝑣1

 

13:            end for 

14:            let 𝑗 be the customer with least 𝐶𝑜𝑠𝑡𝑗  

15:            𝐶𝑣1
← 𝐶𝑣1

\ 𝑗 

16:            𝐶𝑣2
← 𝐶𝑣2

∪ 𝑗 

17:      end while 

18:      while ∃𝑣: 𝑍𝐶𝑣
> 𝑇𝑊 do 

19:            let 𝐶𝑣1
 and  𝐶𝑣2

 be the clusters with longest and shortest tour 

20:            if [𝑍𝐶𝑣1
> 𝑇𝑊 or ∑ 𝑑𝑒𝑚𝑘𝑘∈𝐶𝑣∪𝑗 > 𝑉𝑒ℎ𝐶𝑎𝑝 ∀𝑗 ∈ 𝐶𝑣1

]  

                       and 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ∗ ∑ (𝑍𝐶𝑣𝑣 − 𝑇𝑊) > 𝑉𝑒ℎ𝐶𝑜𝑠𝑡 do  

21:                  |𝑉| ← |𝑉| + 1 

22:                  start again by selecting |𝑉| cluster centers (step 4) 

23:            else if 𝑍𝐶 𝑣1
> 𝑇𝑊 or ∑ 𝑑𝑒𝑚𝑘𝑘∈𝐶𝑣∪𝑗 > 𝑉𝑒ℎ𝐶𝑎𝑝 ∀𝑗 ∈ 𝐶𝑣1

 

24:                  break 

25:            else 



169 
 

26:                  for each 𝑗 ∈ 𝐶𝑣1
: ∑ 𝑑𝑒𝑚𝑘𝑘∈𝐶𝑣∪𝑗 < 𝑉𝑒ℎ𝐶𝑎𝑝  do 

27:                        𝑍′𝐶𝑣2
← solve TSP for 𝐶𝑣2

∪ 𝑗 

28:                        𝑍′𝐶𝑣1
← solve TSP for 𝐶𝑣1

\ 𝑗 

29:                        𝐶𝑜𝑠𝑡𝑗 ←  𝑍′𝐶𝑣2
+ 𝑍′𝐶𝑣1

− 𝑍𝐶𝑣2
− 𝑍𝐶𝑣1

 

30:                  end for 

31:                  let 𝑗 be the customer with least 𝐶𝑜𝑠𝑡𝑗 

32:                  𝐶𝑣1
← 𝐶𝑣1

\ 𝑗 

33:                  𝐶𝑣2
← 𝐶𝑣2

∪ 𝑗 

34:            end if 

35:      end while 

36: end for 

 

Figure 7.4: Output of the Algorithm 

Figure 7.4 illustrates the effect of the improvement heuristic.  

 Top row:  

o First figure: Customer allocations in a 300-customer instance 

o Second figure: Customers that will be considered in the current run 

o Third figure: Customers corresponding to CDC and the customers used 

as cluster centers 
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o Fourth figure: Tour lengths (for each cluster and in total) before and 

after the improvement heuristic 

 Middle row:  

o First, second, and third figures: Delivery routes in respective clusters 

o Fourth figure: Distribution of demand across clusters 

o Fifth figure: Distribution of tour length across clusters 

 Bottom row:  

o First, second and third figures: Delivery routes in respective clusters 

after improvement 

o Fourth figure: Distribution of demand across clusters after 

improvement 

o Fifth figure: Distribution of tour length across clusters after 

improvement 

Similar results have been observed with different instances. Thus the ones seen in the 

figure show the typical behavior of the algorithm. The most important observation is 

that, as explained before, most customers are assigned to the cluster closest to the city 

center. As a result of this, the delivery route of the central cluster is longer.  

The demand and tour length differences between clusters have two implications for 

the system. When demand is concentrated in one cluster, it is a clear indicator that the 

vehicle capacities in other clusters are not used efficiently. Also, there is a higher 

chance of the current solution exceeding the vehicle capacity in the central cluster. 

Therefore, it is desirable to construct clusters with close total demand values. When 

the tour length of one cluster is significantly larger than others, it can be inferred that 

this tour will be more susceptible to be affected by changes in traffic conditions. In 

other words, vehicles serving clusters in short tours afford to allocate some of their 

time as a buffer against unexpected circumstances during delivery. However, other 

vehicles do not have that luxury. Therefore, balancing the tour length as well as 

demand is a desirable objective in this problem. 

The pie charts in Figure 7.4 show the distribution of demand and tour length across 

clusters. Before the improvement algorithm, we observe that 68% of demand and 46% 

of total tour length are in the central cluster. After the improvement, we observe that 

all clusters share the demand almost equally and their tour lengths are also very close. 
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As can be seen in the bar chart, the tour length of the central cluster decreased while 

tour length of corner clusters increased. For this instance, the total tour length 

increased by 8.3%. This increase in total tour length is the price of achieving almost 

perfect equity between clusters. Note that achieving perfect equity is not possible, 

since there are two distinct equity objectives. The balance between equity and tour 

length may be struck on different points within the feasible region. These different 

points can be found by changing the algorithm parameters. Considering these 

decisions are effective on the operational level, selection of algorithm parameters is 

left to the decision maker. 

The computational efficiency of the algorithm is an important consideration. Figure 

7.4 above illustrates only a small part of the problem, a group of customers assigned 

to one of the open CDCs in a single scenario among a hundred. To embed the algorithm 

within a metaheuristic, we need to obtain fast results. The algorithm takes on average 

5.5 seconds and 2.3 seconds with and without the improvement part respectively, for 

each set of location decisions. If all scenarios are to be evaluated, the time requirement 

would be prohibitive. However, if only the scenarios in a representative group are to 

be evaluated, the process would also take much shorter, while maintaining sufficient 

accuracy. 
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CHAPTER 8 

 

DISCUSSION AND COMMENTS 

 

8. DISCUSSION AND COMMENTS 

In this thesis, we pursued three main objectives. The first objective is to analyze the 

City Logistics literature in terms of its relations and overlaps with other fields in the 

relevant OR literature. We have seen that there are several well-known OR/IE 

problems which are strongly related to CL. In fact, the whole set of decisions to be 

made in a CL system can be decomposed into subproblems and there are studies 

considering similar problems in the literature. We have seen that facility location, fleet 

management, vehicle routing problems and several of their combinations have been 

studied extensively in a deterministic setting and less frequently under uncertainty. 

The relevant literature fails to offer adequate modeling and solution methods due to 

two shortcomings. CL systems have several characteristics that need to be taken into 

account, especially the CDC locations and the significance of transportation cost 

uncertainty. The effect of these characteristics makes it crucial for the decision makers 

to use methods that are tailored for the CL setting. We provide the methods for the CL 

system from a strategic view.  

Modeling all required decisions together may be desirable to achieve a holistic view 

of the system. However, the computational complexity of such a model prohibits the 

use of any exact solution method. With the current computer technology, it is certainly 

not possible to find optimal solutions for all these decisions for the instances of realistic 

size. Thus, there remains two options: optimizing the higher level decisions and 

solving for the lower level decisions when necessary, or considering all decisions in a 

heuristic manner. The former is a natural path that follows the strategic view of the 

problem, but we considered the latter. While we did not fully implement the algorithm 

and obtain computational results, we provide a sample algorithm that outlines the 
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important points to be considered when the fleet management and routing decisions 

are made. 

The second objective is to analyze the value of information in a CL setting. Due to the 

dynamic nature of cities, CL systems are operating in an ever-changing environment. 

This situation makes it crucial for the system to be adaptable to the changes in 

parameters from an optimization perspective. Having a strategic view towards the 

problem, we see that the location decisions are not subject to change in the short-term, 

but it is certainly possible for the allocation decisions to be updated regularly.  

We measured the benefit brought by changeable allocation decisions and found that a 

large amount of cost reduction is possible. Though the amount of this reduction 

depends on the spatial distribution of customers and shape of the city, it is always 

significant. Moreover, the reduction is larger in the CL setting than in the classical 

facility location setting. For the sake of updating allocation decisions, the CL system 

only has to deal with the necessity to coordinate customers.  

The third objective of this thesis is to create efficient solution methods that are able to 

deal with instances of realistic size. While standard commercial MIP solvers can solve 

small instances very quickly and medium instances in long time, they cannot produce 

even any feasible solutions for large instances. Since any instance of realistic size 

would fall into the large group, these standard solvers cannot be considered for use in 

a real-life application.  

We propose (in)exact solution methods for solving the problem in a realistic setting. 

First one is an enhancement of the L-Shaped method with scenario-group cuts. Due to 

the way we construct scenarios, the use of scenario-group cuts is natural to our solution 

approach and does not require any additional algorithm to construct scenario groups. 

This enhancement proves to be effective in striking a balance between the 

computational cost of adding multiple cuts and collective weakness of adding single 

cuts. While it does not converge within time limit, the best upper bound found by the 

algorithm is usually optimal. 

The second method we proposed is an evolutionary algorithm. Parallel to the approach 

we followed so far, we separate location and allocation decisions from each other and 

handle only the location decisions explicitly. On the other hand, allocation decisions 
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found with a separate decoding/evaluation algorithm. It is a hybrid algorithm using 

greedy and 2-opt heuristics that constructs a feasible solution and improves it. We 

tailored this algorithm for the CL setting, using the unconventional CDC locations to 

our advantage. Both methods are able to obtain good solutions for instances of realistic 

size and they find the same solutions most of the time.  

In this context, there are several future research directions that we identified. The first 

one is the addition of lower level decisions to the optimization model. We believe that 

more sophisticated decomposition methods would be necessary to achieve this, and 

solving large instances optimally may not be possible even with such methods. A 

suitable starting point may be a three-stage formulation with routing decisions on the 

last stage, extending on our two-stage stochastic formulation. On the other hand, it 

seems possible to consider these decisions within a metaheuristic algorithm, as 

suggested in Chapter 7. Still we would need a slightly faster way to evaluate routing 

decisions, so that large instances can be solved. 

Future studies may also consider other factors under uncertainty. After transportation 

cost uncertainty that affects the whole system all the time, demand uncertainty may be 

an important factor especially for lower level decisions. It is quite possible that some 

customers have less or zero demand in some periods, thus the decision-maker may 

prefer operating a smaller fleet of delivery vehicles than what would be required by a 

scenario. The change in routing decisions would be less significant in such a case, but 

we believe that a model that involves fleet management decisions would work best 

under demand uncertainty.  

While we tried our best to create efficient solution methods, it is also possible to apply 

different methods on the problem, so that larger instances can be solved. Making 

further problem-specific enhancements on the L-Shaped method and implementing 

different operators within the evolutionary algorithm are two possibilities.  

A future study may also generalize our results to multi-echelon case, most importantly 

to the two-echelon setting. In this study, we assumed that the CDCs are always located 

on the city boundaries and they directly serve the customers with the help of delivery 

vehicles. If this does not have to be the case in a CL network since, in a large city, a 

second level of facilities, called satellites, need to be located inside the city as an 

intermediate level between CDCs and customers. When satellites are used, CDCs 
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supply the satellites and satellites serve customers. This network configuration is 

described as two-echelon and leads to a slightly complicated model. The ideas in this 

thesis can be modified for use in the two-echelon setting. 

Although CL is a relatively a new research area, it is gaining momentum due to CL 

projects currently under development. The number of studies that consider CL is 

increasing rapidly both in the OR/IE literature and other fields. We expect this trend 

to continue until the obstacles we mentioned above can be overcome. Modeling the 

CL system with fewer assumptions and using more efficient solution methods have 

the potential to bring large benefits in real-life applications. We believe CL offers 

important solutions to the every-day problems of urban life and the scientific 

community has the responsibility and capability to help with the effective 

implementation of these solutions. 
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APPENDIX 

 

 

Table A.1: Results of TLAP Experiments with Small Instances 

Results for 

Small Instances 

TLAP 

Best Integer 
Lower 

Bound 

CPU Time 

(sec) 
GAP% 

R_u_L_10_1 250160.1 250160.1 2.6 0.0 

R_u_L_10_2 250145.6 250145.6 3.0 0.0 

R_n_L_10_1 250179.6 250179.6 7.2 0.0 

R_n_L_10_2 250162.6 250162.6 1.4 0.0 

C_u_L_10_1 250180.5 250180.5 2.9 0.0 

C_u_L_10_2 250139.0 250139.0 1.0 0.0 

C_n_L_10_1 250167.2 250167.2 2.4 0.0 

C_n_L_10_2 250181.8 250181.8 1.9 0.0 

RC_u_L_10_1 250180.7 250180.7 4.2 0.0 

RC_u_L_10_2 250159.0 250159.0 5.1 0.0 

RC_n_L_10_1 250155.7 250155.7 3.2 0.0 

RC_n_L_10_2 250174.7 250174.7 2.1 0.0 

R_u_S_10_1 730244.1 730244.1 4.4 0.0 

R_u_S_10_2 686878.5 686878.5 4.7 0.0 

R_n_S_10_1 788669.3 788669.3 7.1 0.0 

R_n_S_10_2 737856.4 737856.4 1.5 0.0 

C_u_S_10_1 791586.6 791586.6 3.0 0.0 

C_u_S_10_2 666935.7 666935.7 0.9 0.0 

C_n_S_10_1 751561.4 751561.4 2.1 0.0 

C_n_S_10_2 795264.1 795264.1 2.0 0.0 

RC_u_S_10_1 792066.5 792066.5 4.0 0.0 

RC_u_S_10_2 727048.0 727048.0 5.6 0.0 

RC_n_S_10_1 708776.3 708776.3 3.3 0.0 

RC_n_S_10_2 774116.4 774116.4 2.4 0.0 
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Table A.2: Results of TLAP Experiments with Medium Instances  

Results for 

Medium 

Instances 

TLAP 

Best 

Integer 

Lower 

Bound 

CPU Time 

(sec) 
GAP% 

R_u_L_100_1 251602.1 251602.1 9706.6 0.0 

R_u_L_100_2 251557.4 251557.4 6954.7 0.0 

R_n_L_100_1 251744.3 251744.3 7538.3 0.0 

R_n_L_100_2 251700.0 251700.0 9328.1 0.0 

C_u_L_100_1 251551.2 251551.2 6305.9 0.0 

C_u_L_100_2 251653.3 251653.3 5482.6 0.0 

C_n_L_100_1 251560.9 251560.9 5139.4 0.0 

C_n_L_100_2 251702.5 251702.5 6060.7 0.0 

RC_u_L_100_1 251455.0 251455.0 6361.9 0.0 

RC_u_L_100_2 251619.4 251619.4 5923.0 0.0 

RC_n_L_100_1 251677.3 251677.3 5553.7 0.0 

RC_n_L_100_2 251460.3 251460.3 6751.9 0.0 

R_u_S_100_1 730624.5 730624.5 1754.9 0.0 

R_u_S_100_2 717207.5 717207.5 1563.3 0.0 

R_n_S_100_1 773292.2 773292.2 1994.9 0.0 

R_n_S_100_2 760011.0 760011.0 1926.9 0.0 

C_u_S_100_1 715369.3 715369.3 436.7 0.0 

C_u_S_100_2 745984.6 745984.6 1148.3 0.0 

C_n_S_100_1 718274.1 718274.1 769.0 0.0 

C_n_S_100_2 760758.1 760758.1 1265.3 0.0 

RC_u_S_100_1 686507.6 686507.6 769.0 0.0 

RC_u_S_100_2 735827.8 735827.8 1145.2 0.0 

RC_n_S_100_1 753200.8 753200.8 857.8 0.0 

RC_n_S_100_2 688074.3 688074.3 1090.5 0.0 
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Table A.3: Results of TLAP Experiments with Large Instances  

Results for 

Large Instances 

TLAP 

Best 

Integer 

Lower 

Bound 

CPU Time 

(sec) 
GAP% 

R_u_L_1000_1 1010631.3 239004.7 14463.2 322.8 

R_u_L_1000_2 1010936.1 239634.9 14444.4 321.9 

R_n_L_1000_1 1014487.2 241774.3 14467.1 319.6 

R_n_L_1000_2 1013188.1 241038.1 14444.7 320.3 

C_u_L_1000_1 1012673.4 240561.9 14462.5 321.0 

C_u_L_1000_2 962374.4 240517.9 14444.8 300.1 

C_n_L_1000_1 1013515.5 241295.0 14471.5 320.0 

C_n_L_1000_2 1013179.9 240895.3 14445.3 320.6 

RC_u_L_1000_1 1012550.9 240373.2 14474.4 321.2 

RC_u_L_1000_2 961509.3 239934.2 14444.7 300.7 

RC_n_L_1000_1 1011994.5 239795.3 14469.4 322.0 

RC_n_L_1000_2 1014106.8 242099.6 14445.0 318.9 

R_u_S_1000_1 1318937.5 635392.4 14464.9 107.6 

R_u_S_1000_2 1328081.8 657559.7 14457.0 102.0 

R_n_S_1000_1 1434617.2 722288.0 14644.4 98.6 

R_n_S_1000_2 1395642.1 699721.9 14456.6 99.5 

C_u_S_1000_1 1380202.2 683079.7 14466.4 102.1 

C_u_S_1000_2 1371045.4 681245.1 14456.9 101.3 

C_n_S_1000_1 1405464.6 705906.1 14464.8 99.1 

C_n_S_1000_2 1395396.2 695293.2 14456.9 100.7 

RC_u_S_1000_1 1376527.1 679669.9 14463.9 102.5 

RC_u_S_1000_2 1345068.2 666934.7 14456.9 101.7 

RC_n_S_1000_1 1359835.6 662088.2 14461.9 105.4 

RC_n_S_1000_2 1423203.7 728960.7 14457.6 95.2 
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Table A.4: Results of MC Experiments with Small Instances  

Results for 

Small 

Instances 

MC 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU Time 

(sec) 
GAP% 

R_u_L_10_1 250160.1 250160.1 42 402.1 0.0 

R_n_L_10_1 250179.6 250179.5 85 1973.3 0.0 

C_u_L_10_1 250180.5 250180.5 53 483.1 0.0 

C_n_L_10_1 250167.2 250167.1 27 160.2 0.0 

RC_u_L_10_1 250180.7 250180.6 48 492.8 0.0 

RC_n_L_10_1 250155.7 250155.7 37 267.4 0.0 

R_u_S_10_1 730244.1 730244.1 47 698.2 0.0 

R_n_S_10_1 788669.3 788669.3 91 3023.7 0.0 

C_u_S_10_1 791586.5 791586.5 54 737.1 0.0 

C_n_S_10_1 751561.4 751561.4 28 320.2 0.0 

RC_u_S_10_1 792066.5 792066.5 49 714.0 0.0 

RC_n_S_10_1 708776.3 708776.3 32 385.0 0.0 

 

Table A.5: Results of MC Experiments with Medium Instances  

Results for 

Medium 

Instances 

MC 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU 

Time (sec) 
GAP% 

R_u_L_100_1 251602.1 251220.2 225 14448.7 0.2 

R_n_L_100_1 251744.3 251424.0 218 14479.0 0.1 

C_u_L_100_1 251551.2 251442.9 223 14421.6 0.0 

C_n_L_100_1 251560.9 251384.3 215 14403.7 0.1 

RC_u_L_100_1 251472.8 251209.9 220 14483.7 0.1 

RC_n_L_100_1 251677.3 251545.7 217 14536.2 0.1 

R_u_S_100_1 733263.9 614777.0 216 14535.1 19.3 

R_n_S_100_1 774182.3 676434.5 216 14563.5 14.5 

C_u_S_100_1 715369.3 681334.2 228 14514.3 5.0 

C_n_S_100_1 718274.1 665192.2 209 14466.0 8.0 

RC_u_S_100_1 686507.6 610984.3 217 14523.9 12.4 

RC_n_S_100_1 753200.8 710940.2 207 14503.9 5.9 
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Table A.6: Results of MC Experiments with Large Instances  

Results for 

Large Instances 

MC 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU 

Time 

(sec) 

GAP% 

R_u_L_1000_1 265595.0 260861.2 292 14406.7 1.8 

R_n_L_1000_1 267886.6 264619.8 298 14454.8 1.2 

C_u_L_1000_1 265947.9 263036.6 300 14469.9 1.1 

C_n_L_1000_1 267120.0 263687.2 296 14483.9 1.3 

RC_u_L_1000_1 266456.9 262706.3 295 14453.5 1.4 

RC_n_L_1000_1 265975.3 262143.1 287 14417.1 1.5 

R_u_S_1000_1 718170.6 575208.1 289 14468.1 24.9 

R_n_S_1000_1 785211.0 688490.6 289 14517.4 14.0 

C_u_S_1000_1 728436.7 641946.1 300 14424.4 13.5 

C_n_S_1000_1 763599.7 659980.2 289 14494.0 15.7 

RC_u_S_1000_1 743705.8 630925.2 287 14502.7 17.9 

RC_n_S_1000_1 728554.3 614219.8 278 14486.8 18.6 
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Table A.7: Results of SGC Experiments with Small Instances  

Results for 

Small 

Instances 

SGC 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU 

Time (sec) 
GAP% 

R_u_L_10_1 250160.1 250160.0 120 618.5 0.0 

R_u_L_10_2 250145.6 250145.5 258 3293.4 0.0 

R_n_L_10_1 250179.6 250179.5 345 4543.0 0.0 

R_n_L_10_2 250162.6 250162.5 69 654.2 0.0 

C_u_L_10_1 250180.5 250180.5 142 789.2 0.0 

C_u_L_10_2 250139.0 250139.0 50 480.3 0.0 

C_n_L_10_1 250167.2 250167.2 60 224.9 0.0 

C_n_L_10_2 250181.8 250181.7 186 2139.4 0.0 

RC_u_L_10_1 250180.7 250180.6 188 1248.2 0.0 

RC_u_L_10_2 250159.0 250159.0 123 1197.1 0.0 

RC_n_L_10_1 250155.7 250155.6 77 281.5 0.0 

RC_n_L_10_2 250174.7 250174.6 104 1018.8 0.0 

R_u_S_10_1 730244.1 730244.1 167 1911.0 0.0 

R_u_S_10_2 686878.5 686878.5 456 9008.9 0.0 

R_n_S_10_1 788669.3 788669.3 462 9435.6 0.0 

R_n_S_10_2 737856.4 737856.4 71 671.5 0.0 

C_u_S_10_1 791586.5 791586.5 150 1594.1 0.0 

C_u_S_10_2 666935.7 666935.7 50 472.4 0.0 

C_n_S_10_1 751561.4 751561.4 61 595.7 0.0 

C_n_S_10_2 795264.1 795264.1 191 2288.5 0.0 

RC_u_S_10_1 792066.5 792066.5 198 2297.8 0.0 

RC_u_S_10_2 727048.0 727048.0 146 1560.1 0.0 

RC_n_S_10_1 708776.3 708776.3 86 829.3 0.0 

RC_n_S_10_2 774116.4 774116.4 108 1070.9 0.0 
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Table A.8: Results of SGC Experiments with Medium Instances  

Results for 

Medium 

Instances 

SGC 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU 

Time 

(sec) 

GAP% 

R_u_L_100_1 251610.9 251305.6 599 14430.4 0.1 

R_u_L_100_2 251557.4 251361.9 626 14432.5 0.1 

R_n_L_100_1 251747.3 251477.6 591 14401.50 0.1 

R_n_L_100_2 251700.0 251481.2 609 14401.5 0.1 

C_u_L_100_1 251551.2 251482.5 644 14424.0 0.0 

C_u_L_100_2 251653.3 251554.2 632 14406.9 0.0 

C_n_L_100_1 251560.9 251438.9 619 14419.4 0.0 

C_n_L_100_2 251702.5 251541.4 622 14428.7 0.1 

RC_u_L_100_1 251455.0 251287.8 615 14421.2 0.1 

RC_u_L_100_2 251619.4 251418.8 602 14432.5 0.1 

RC_n_L_100_1 251677.3 251578.9 637 14400.4 0.0 

RC_n_L_100_2 251460.2 251300.8 611 14421.6 0.1 

R_u_S_100_1 738260.1 635714.9 575 14414.9 16.1 

R_u_S_100_2 717207.5 648436.0 589 14448.7 10.6 

R_n_S_100_1 773292.2 692359.3 579 14401.0 11.7 

R_n_S_100_2 760011.0 694352.5 615 14437.9 9.5 

C_u_S_100_1 715369.3 691145.5 609 14408.1 3.5 

C_u_S_100_2 745984.6 710877.3 578 14434.2 4.9 

C_n_S_100_1 718274.1 677004.1 576 14417.6 6.1 

C_n_S_100_2 760758.1 712524.6 616 14427.1 6.8 

RC_u_S_100_1 686507.6 625165.4 564 14423.4 9.8 

RC_u_S_100_2 735827.8 675498.8 594 14410.6 8.9 

RC_n_S_100_1 753200.8 723280.8 623 14418.4 4.1 

RC_n_S_100_2 688074.3 631148.8 568 14400.0 9.0 
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Table A.9: Results of SGC Experiments with Large Instances  

Results for 

Large Instances 

SGC 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU 

Time 

(sec) 

GAP% 

R_u_L_1000_1 265595.0 261182.8 612 14422.5 1.7 

R_u_L_1000_2 265606.8 261511.3 621 14431.9 1.6 

R_n_L_1000_1 267840.4 264764.7 611 14423.5 1.2 

R_n_L_1000_2 266886.5 263320.3 619 14421.7 1.4 

C_u_L_1000_1 265947.9 263409.0 669 14424.6 1.0 

C_u_L_1000_2 265442.7 263169.6 654 14429.3 0.9 

C_n_L_1000_1 267120.0 263842.6 613 14434.1 1.2 

C_n_L_1000_2 265864.7 263564.5 632 14408.9 0.9 

RC_u_L_1000_1 266456.9 262908.5 598 14410.6 1.3 

RC_u_L_1000_2 265511.1 262077.9 615 14410.1 1.3 

RC_n_L_1000_1 265940.7 262351.4 594 14404.4 1.4 

RC_n_L_1000_2 267154.6 264553.4 617 14401.5 1.0 

R_u_S_1000_1 717802.7 584472.5 593 14408.3 22.8 

R_u_S_1000_2 717867.8 594527.9 605 14408.7 20.7 

R_n_S_1000_1 785211.0 689833.0 451 14421.6 13.8 

R_n_S_1000_2 757366.8 649543.8 616 14439.8 16.6 

C_u_S_1000_1 728436.7 651724.2 660 14415.3 11.8 

C_u_S_1000_2 713279.5 644600.9 654 14428.6 10.7 

C_n_S_1000_1 763599.7 665099.5 603 14405.0 14.8 

C_n_S_1000_2 725942.1 657190.7 627 14431.0 10.5 

RC_u_S_1000_1 743705.8 635172.4 529 14421.7 17.1 

RC_u_S_1000_2 715332.6 611778.2 605 14402.5 16.9 

RC_n_S_1000_1 727614.1 619962.8 565 14411.8 17.4 

RC_n_S_1000_2 764637.5 686384.6 611 14418.3 11.4 
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Table A.10: Results of PD Experiments with Small Instances  

Results for 

Small 

Instances 

PD 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU 

Time 

(sec) 

GAP% 

R_u_L_10_1 250160.1 250160.0 38 375.2 0.0 

R_u_L_10_2 250145.6 250145.6 90 1026.8 0.0 

R_n_L_10_1 250179.6 250179.5 68 770.6 0.0 

R_n_L_10_2 250162.6 250162.6 19 192.2 0.0 

C_u_L_10_1 250180.5 250180.5 30 241.9 0.0 

C_u_L_10_2 250139.2 250139.2 14 151.9 0.0 

C_n_L_10_1 250167.2 250167.3 13 105.2 0.0 

C_n_L_10_2 250181.8 250181.8 30 334.0 0.0 

RC_u_L_10_1 250180.7 250180.8 35 271.3 0.0 

RC_u_L_10_2 250159.0 250159.0 34 352.4 0.0 

RC_n_L_10_1 250155.7 250155.6 23 174.5 0.0 

RC_n_L_10_2 250174.7 250174.7 21 147.8 0.0 

R_u_S_10_1 730244.1 730244.1 41 494.5 0.0 

R_u_S_10_2 686878.5 686878.5 130 1721.5 0.0 

R_n_S_10_1 788669.3 788669.3 82 1089.4 0.0 

R_n_S_10_2 737856.4 737856.4 19 194.2 0.0 

C_u_S_10_1 791586.5 791586.5 33 386.4 0.0 

C_u_S_10_2 667464.0 667464.0 14 149.3 0.0 

C_n_S_10_1 751561.4 751561.4 13 150.5 0.0 

C_n_S_10_2 795264.1 795264.1 32 371.7 0.0 

RC_u_S_10_1 792066.5 792066.4 35 418.6 0.0 

RC_u_S_10_2 727048.0 727048.0 36 411.7 0.0 

RC_n_S_10_1 708776.3 708776.3 23 268.8 0.0 

RC_n_S_10_2 774116.4 774116.4 22 239.4 0.0 
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Table A.11: Results of PD Experiments with Medium Instances  

Results for 

Medium 

Instances 

PD 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU Time 

(sec) 
GAP% 

R_u_L_100_1 251622.3 251222.2 111 14425.4 0.2 

R_u_L_100_2 251564.5 251283.9 146 14458.2 0.1 

R_n_L_100_1 251747.7 251462.3 105 14410.3 0.1 

R_n_L_100_2 251703.2 251441.8 147 14512.0 0.1 

C_u_L_100_1 251551.2 251474.7 223 14413.6 0.0 

C_u_L_100_2 251653.3 251441.8 179 14402.4 0.1 

C_n_L_100_1 251560.9 251408.3 168 14501.7 0.1 

C_n_L_100_2 251702.5 251527.6 160 14504.4 0.1 

RC_u_L_100_1 251462.0 251200.6 133 14551.3 0.1 

RC_u_L_100_2 251619.4 251380.1 136 14523.5 0.1 

RC_n_L_100_1 251677.3 251578.0 175 14536.5 0.0 

RC_n_L_100_2 251460.2 251223.7 145 14442.2 0.1 

R_u_S_100_1 736679.9 618221.1 128 14565.6 19.2 

R_u_S_100_2 719352.1 635911.5 151 14459.2 13.1 

R_n_S_100_1 774318.1 689661.6 128 14536.1 12.3 

R_n_S_100_2 760971.7 684223.0 162 14551.9 11.2 

C_u_S_100_1 715369.3 692121.1 218 14470.8 3.4 

C_u_S_100_2 745984.6 712047.4 196 14444.1 4.8 

C_n_S_100_1 718274.1 674071.3 178 14459.9 6.6 

C_n_S_100_2 760758.1 708829.8 164 14472.0 7.3 

RC_u_S_100_1 688607.4 611963.1 147 14510.2 12.5 

RC_u_S_100_2 735827.8 665609.6 145 14403.8 10.5 

RC_n_S_100_1 753200.8 723831.1 182 14474.6 4.1 

RC_n_S_100_2 688074.3 618433.7 154 14433.3 11.3 
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Table A.12: Results of PD Experiments with Large Instances  

Results for 

Large Instances 

PD 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU 

Time 

(sec) 

GAP% 

R_u_L_1000_1 265593.4 261407.5 6 14732.5 1.6 

R_u_L_1000_2 265595.6 261719.0 7 15631.8 1.5 

R_n_L_1000_1 267886.9 265357.0 8 15944.8 1.0 

R_n_L_1000_2 266925.9 264037.8 7 15381.0 1.1 

C_u_L_1000_1 265947.9 263486.3 10 15753.6 0.9 

C_u_L_1000_2 265442.7 263184.4 10 14930.4 0.9 

C_n_L_1000_1 267120.0 264365.8 7 14517.8 1.0 

C_n_L_1000_2 265864.7 263970.4 9 14478.7 0.7 

RC_u_L_1000_1 266499.1 263392.3 8 15186.8 1.2 

RC_u_L_1000_2 265511.1 262288.1 7 15534.5 1.2 

RC_n_L_1000_1 265940.7 262794.1 8 16425.0 1.2 

RC_n_L_1000_2 267154.6 264957.7 10 15809.1 0.8 

R_u_S_1000_1 717802.7 592232.1 7 15670.3 21.2 

R_u_S_1000_2 717867.8 601568.9 7 14777.6 19.3 

R_n_S_1000_1 786605.8 711382.1 21 15407.8 10.6 

R_n_S_1000_2 757778.0 671133.9 7 14529.6 12.9 

C_u_S_1000_1 728436.7 655387.9 36 14674.6 11.1 

C_u_S_1000_2 713279.5 647119.7 35 14685.2 10.2 

C_n_S_1000_1 763599.7 680975.4 7 14729.7 12.1 

C_n_S_1000_2 725942.1 669852.2 33 14684.4 8.4 

RC_u_S_1000_1 744972.8 651763.6 7 14715.1 14.3 

RC_u_S_1000_2 715332.6 618642.6 7 16495.3 15.6 

RC_n_S_1000_1 728220.1 633822.2 7 16491.3 14.9 

RC_n_S_1000_2 764637.5 699808.7 37 15031.4 9.3 
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Table A.13: Results of B&C-PD Experiments with Small Instances  

Results for 

Small 

Instances 

B&C-PD 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU Time 

(sec) 
GAP% 

R_u_L_10_1 250160.1 250160.1 38(993) 1295.4 0.0 

R_n_L_10_1 250179.6 250179.6 93(313) 3781.9 0.0 

C_u_L_10_1 250180.5 250180.5 50(655) 998.6 0.0 

C_n_L_10_1 250167.2 250167.2 25(205) 456.7 0.0 

RC_u_L_10_1 250180.7 250180.7 46(935) 1237.0 0.0 

RC_n_L_10_1 250155.7 250155.7 39(495) 721.2 0.0 

R_u_S_10_1 730244.1 730244.1 53(155) 1927.9 0.0 

R_n_S_10_1 788669.3 788669.3 138(504) 6591.5 0.0 

C_u_S_10_1 791586.5 791586.5 56(795) 1313.1 0.0 

C_n_S_10_1 751561.4 751561.4 26(233) 496.7 0.0 

RC_u_S_10_1 792066.5 792066.5 47(134) 1686.4 0.0 

RC_n_S_10_1 708776.3 708776.3 31(791) 1023.6 0.0 

 

Table A.14: Results of B&C-PD Experiments with Medium Instances  

Results for 

Medium 

Instances 

B&C-PD 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU Time 

(sec) 
GAP% 

R_u_L_100_1 251610.9 228394.3 653(3125) 14402.7 10.2 

R_n_L_100_1 251744.3 228640.8 755(2402) 14411.8 10.1 

C_u_L_100_1 251551.2 228574.8 307(6613) 14400.2 10.1 

C_n_L_100_1 251560.9 228526.0 432(5122) 14401.5 10.1 

RC_u_L_100_1 251455.0 228352.2 440(4935) 14402.0 10.1 

RC_n_L_100_1 251677.3 228698.8 352(5909) 14401.7 10.0 

R_u_S_100_1 733263.9 563750.2 390(6901) 14401.3 30.1 

R_n_S_100_1 773292.2 637680.2 400(6593) 14400.9 21.3 

C_u_S_100_1 715369.3 617891.5 276(8125) 14401.0 15.8 

C_n_S_100_1 718274.1 603261.8 348(7316) 14401.7 19.1 

RC_u_S_100_1 686507.6 551126.4 334(7697) 14401.8 24.6 

RC_n_S_100_1 753200.8 657751.6 339(7221) 14406.8 14.5 
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Table A.15: Results of B&C-PD Experiments with Large Instances  

Results for 

Large Instances 

B&C-PD 

Best 

Integer 

Lower 

Bound 

Iterations 

(Nodes 

Checked) 

CPU 

Time 

(sec) 

GAP% 

R_u_L_1000_1 265593.4 235869.9 491(1188) 14403.9 12.6 

R_n_L_1000_1 267840.4 239736.7 486(1205) 14405.7 11.7 

C_u_L_1000_1 266002.4 237921.4 400(1372) 14415.7 11.8 

C_n_L_1000_1 267120.0 238761.4 492(1193) 14416.5 11.9 

RC_u_L_1000_1 266456.9 237798.4 454(1279) 14412.4 12.1 

RC_n_L_1000_1 265920.5 237232.5 503(1171) 14414.0 12.1 

R_u_S_1000_1 726146.0 544566.6 246(2024) 14405.7 33.3 

R_n_S_1000_1 785211.0 660570.3 313(1888) 14402.0 18.9 

C_u_S_1000_1 732680.1 606110.3 268(1975) 14406.3 20.9 

C_n_S_1000_1 763599.7 631311.1 218(2101) 14414.3 21.0 

RC_u_S_1000_1 750672.6 602420.7 270(1995) 14403.9 24.6 

RC_n_S_1000_1 727614.1 585444.9 239(2015) 14402.3 24.3 
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Table A.16: Results of EA Experiments with Small Instances  

Results for 

Small 

Instances 

EA 

Best OFV Avg OFV 

Ave CPU 

Time 

(sec) 

Best Gap 

from 

Optimal% 

Avg Gap 

from 

Optimal% 

R_u_L_10_1 250160.1 250160.1 16.2 0.0 0.0 

R_u_L_10_2 250145.6 250145.6 35.0 0.0 0.0 

R_n_L_10_1 250179.6 250179.6 16.7 0.0 0.0 

R_n_L_10_2 250162.6 250162.7 23.3 0.0 0.0 

C_u_L_10_1 250180.5 250180.5 16.7 0.0 0.0 

C_u_L_10_2 250139.0 250139.0 21.4 0.0 0.0 

C_n_L_10_1 250167.2 250167.2 14.8 0.0 0.0 

C_n_L_10_2 250181.8 250181.8 27.0 0.0 0.0 

RC_u_L_10_1 250180.7 250180.7 14.3 0.0 0.0 

RC_u_L_10_2 250159.0 250159.4 30.4 0.0 0.0 

RC_n_L_10_1 250155.7 250155.7 14.6 0.0 0.0 

RC_n_L_10_2 250174.7 250174.7 24.4 0.0 0.0 

R_u_S_10_1 730244.1 730387.1 16.3 0.0 0.0 

R_u_S_10_2 686878.5 686895.4 33.9 0.0 0.0 

R_n_S_10_1 788669.3 788669.3 17.3 0.0 0.0 

R_n_S_10_2 737856.4 737856.4 23.6 0.0 0.0 

C_u_S_10_1 791586.5 791756.0 14.9 0.0 0.0 

C_u_S_10_2 666935.7 667041.4 23.3 0.0 0.0 

C_n_S_10_1 751561.4 751561.4 15.5 0.0 0.0 

C_n_S_10_2 795264.1 795264.1 25.6 0.0 0.0 

RC_u_S_10_1 792066.5 792066.5 13.9 0.0 0.0 

RC_u_S_10_2 727048.0 727048.0 29.9 0.0 0.0 

RC_n_S_10_1 716997.6 716997.6 14.6 1.2 1.2 

RC_n_S_10_2 774116.4 774116.4 26.8 0.0 0.0 
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Table A.17: Results of EA Experiments with Medium Instances  

Results for 

Medium 

Instances 

EA 

Best OFV Avg OFV 
Ave CPU 

Time (sec) 

Best Gap 

from 

Optimal% 

Avg Gap 

from 

Optimal% 

R_u_L_100_1 251602.1 251602.1 156.8 0.0 0.0 

R_u_L_100_2 251557.4 251558.8 236.1 0.0 0.0 

R_n_L_100_1 251744.3 251744.3 137.6 0.0 0.0 

R_n_L_100_2 251700.0 251700.3 337.8 0.0 0.0 

C_u_L_100_1 251551.2 251551.2 126.3 0.0 0.0 

C_u_L_100_2 251653.3 251653.3 188.7 0.0 0.0 

C_n_L_100_1 251560.9 251560.9 139.9 0.0 0.0 

C_n_L_100_2 251702.5 251703.3 232.7 0.0 0.0 

RC_u_L_100_1 251455.0 251455.0 139.2 0.0 0.0 

RC_u_L_100_2 251619.4 251619.4 341.6 0.0 0.0 

RC_n_L_100_1 251677.3 251677.3 122.9 0.0 0.0 

RC_n_L_100_2 251460.2 251460.2 216.0 0.0 0.0 

R_u_S_100_1 730624.5 731152.4 173.6 0.0 0.1 

R_u_S_100_2 717207.5 717207.5 232.7 0.0 0.0 

R_n_S_100_1 773292.2 773292.2 149.7 0.0 0.0 

R_n_S_100_2 760011.0 760011.0 329.0 0.0 0.0 

C_u_S_100_1 715369.3 715369.3 145.8 0.0 0.0 

C_u_S_100_2 745984.6 745984.6 188.9 0.0 0.0 

C_n_S_100_1 718274.1 718355.7 124.5 0.0 0.0 

C_n_S_100_2 760758.1 760758.1 270.7 0.0 0.0 

RC_u_S_100_1 686507.6 686507.6 145.0 0.0 0.0 

RC_u_S_100_2 735827.8 735827.8 340.2 0.0 0.0 

RC_n_S_100_1 753200.8 753200.8 133.2 0.0 0.0 

RC_n_S_100_2 688074.3 688074.3 213.4 0.0 0.0 
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Table A.18: Results of EA Experiments with Large Instances  

Results for 

Large Instances 

EA 

Best OFV Avg OFV 

Ave CPU 

Time 

(sec) 

Best Gap 

from Best 

Exact% 

Avg Gap 

from Best 

Exact% 

R_u_L_1000_1 265593.4 265593.4 6463.9 0.0 0.0 

R_u_L_1000_2 265595.6 265595.6 6345.0 0.0 0.0 

R_n_L_1000_1 267840.4 267840.4 7093.3 0.0 0.0 

R_n_L_1000_2 266884.1 266884.1 8454.9 0.0 0.0 

C_u_L_1000_1 265947.9 265947.9 4594.1 0.0 0.0 

C_u_L_1000_2 265442.7 265465.5 4694.6 0.0 0.0 

C_n_L_1000_1 267120.0 267560.0 5138.8 0.0 0.2 

C_n_L_1000_2 265864.7 265864.7 4336.9 0.0 0.0 

RC_u_L_1000_1 266456.9 266456.9 6052.1 0.0 0.0 

RC_u_L_1000_2 265511.1 265511.1 6175.2 0.0 0.0 

RC_n_L_1000_1 265920.5 265920.5 6651.8 0.0 0.0 

RC_n_L_1000_2 267154.6 267154.6 4855.6 0.0 0.0 

R_u_S_1000_1 717850.4 718032.0 7246.1 0.0 0.0 

R_u_S_1000_2 717867.8 718035.6 8238.7 0.0 0.0 

R_n_S_1000_1 785211.0 785211.0 7444.5 0.0 0.0 

R_n_S_1000_2 756521.9 756521.9 8373.3 -0.1 -0.1 

C_u_S_1000_1 728436.7 728436.7 4853.7 0.0 0.0 

C_u_S_1000_2 713279.5 713965.8 4346.1 0.0 0.1 

C_n_S_1000_1 763599.7 763599.7 4941.7 0.0 0.0 

C_n_S_1000_2 725942.1 725942.1 4306.0 0.0 0.0 

RC_u_S_1000_1 743705.8 743705.8 5523.9 0.0 0.0 

RC_u_S_1000_2 715332.6 715332.6 6475.4 0.0 0.0 

RC_n_S_1000_1 727614.1 727882.1 7441.2 0.0 0.0 

RC_n_S_1000_2 764637.5 765476.9 5081.3 0.0 0.1 

 


