

CITY LOGISTICS SYSTEM DESIGN UNDER COST UNCERTAINTY

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

UTKU CAN KUNTER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

JULY 2015

iii

Approval of the thesis:

CITY LOGISTICS SYSTEM DESIGN UNDER COST UNCERTAINTY

submitted by UTKU CAN KUNTER in partial fulfillment of the requirements for

the degree of Master of Science in Industrial Engineering Department, Middle

East Technical University by,

Prof. Dr. M. Gülbin Dural Ünver _____________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Murat Köksalan _____________

Head of Department, Industrial Engineering

Assoc. Prof. Dr. Cem İyigün _____________

Supervisor, Industrial Engineering Dept., METU

Prof. Dr. Haldun Süral _____________

Co-Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Zeynep Pelin Bayındır _____________

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Cem İyigün _____________

Industrial Engineering Dept., METU

Prof. Dr. Haldun Süral _____________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Sakine Batun _____________

Industrial Engineering Dept., METU

Assist. Prof. Dr. Özlem Çavuş _____________

Industrial Engineering Dept., Bilkent University

Date: 23.07.2015

iv

I hereby declare that all the information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last Name: UTKU CAN KUNTER

Signature:

v

ABSTRACT

CITY LOGISTICS SYSTEM DESIGN UNDER COST UNCERTAINTY

Kunter, Utku Can

M.S., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Cem İyigün

Co-Supervisor : Prof. Dr. Haldun Süral

July 2015, 202 pages

City Logistics (CL) is a quickly developing area of research aiming to develop the

methods for designing efficient and effective freight distribution networks. We make

an extensive review on CL as well as studies related to CL in order to describe the

position of CL in the literature. Based on this review, the location and allocation

decisions in a CL system under transportation cost uncertainty is analyzed from a

strategic point of view. We use Value of Information analysis to compare different

formulations of the problem and measure the difference between the facility location

problems in the conventional setting and in CL setting in terms of value of information.

Next, we propose two solution methods to handle instances of realistic size. First one

is a variation of the L-Shaped method, using scenario-group cuts; and second one is

an evolutionary algorithm which makes use of an embedded hybrid heuristic to

evaluate chromosomes in reasonable time. The methods proposed have significant

advantage over standard solvers, especially when solving large instances.

Keywords: City Logistics, Stochastic Programming, Benders Decomposition,

Evolutionary Algorithm

vi

ÖZ

MALİYET BELİRSİZLİĞİ ALTINDA KENT LOJİSTİĞİ SİSTEMİ TASARIMI

Kunter, Utku Can

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cem İyigün

Ortak Tez Yöneticisi : Prof. Dr. Haldun Süral

Temmuz 2015, 202 sayfa

Kent Lojistiği (KL) hızla gelişen bir araştırma alanıdır ve etkin yük taşıma ağlarını

oluşturmak için gereken metotların geliştirilmesini amaçlar. KL konusunun

literatürdeki yerini belirlemek amacıyla KL ile ilgili çalışmalar üzerine geniş bir

literatür taraması yapılmıştır. Bu taramadan yola çıkarak, KL sistemindeki yer seçimi

ve atama kararları ulaştırma maliyeti belirsizliği altında stratejik bakış açısıyla

incelenmiştir. Bilginin değeri analiziyle bu problemin farklı formülasyonları

karşılaştırılarak, KL sistemlerinin bilginin değeri açısından klasik yer seçimi

problemlerinden farkı gösterilmiştir. Ayrıca, uygulamada karşılaşılacak büyüklükteki

problemlerin çözülebilmesi için iki çözüm metodu önerilmiştir. Bunlardan ilki, L-

Şekilli metodun senaryo-grubu kesileri kullanılan bir varyasyonu, ikincisi ise

kromozomların makul zamanda değerlendirilmesi için melez bir sezgisel yöntem

kullanan bir evrimsel algoritmadır. Önerilen yöntemlerin, özellikle büyük boyutlu

problemlerin çözülmesinde standart çözücülere göre önemli yararlar sağladığı

görülmüştür.

Anahtar Kelimeler: Kent Lojistiği, Olasılıksal Programlama, Benders Ayrıştırma,

Evrimsel Algoritma

vii

To my family,

for their love and unconditional support

viii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Cem

İyigün and co-supervisor Prof. Dr. Haldun Süral for their guidance, advice, criticism,

encouragements and insight throughout the research.

I also would like to thank Assist. Prof. Dr. Sakine Batun, Assist. Prof. Dr. Özlem Çavuş

and Assoc. Prof. Dr. Zeynep Pelin Bayındır for their valuable suggestions and

comments.

This study is part of Project 113M121 supported by the TÜBİTAK.

This study was supported by the TÜBİTAK under 2211 National Graduate Fellowship

Programme.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xiii

LIST OF FIGURES ... xv

CHAPTERS

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 5

2.1 Overview ... 5

2.1.1 City Logistics ... 6

2.1.2 Stochastic/Robust Optimization .. 8

2.1.3 Relevant OR Literature .. 9

2.2 Defining Uncertainty in the City Logistics Context 15

2.3 Causes of Uncertainty ... 17

2.4 Approaches for Modeling Uncertainty .. 18

2.5 Review Articles ... 19

2.6 Stochastic Programming Approaches ... 21

2.6.1 Demand Uncertainty .. 21

2.6.2 Throughput Cost / Unit Cost Uncertainty .. 22

2.6.3 Travel Time / Service Time Uncertainty ... 23

2.6.4 Other Cases .. 23

x

2.7 Robust Optimization Approaches .. 24

2.7.1 Minimax Cost / Regret ... 24

2.7.2 p-Robustness .. 26

2.7.3 bw-Robustness ... 27

2.7.4 Other Cases .. 27

2.8 Conclusions on the Literature Review and Framing Our Work 28

2.8.1 Factors of Uncertainty .. 28

2.8.2 Solution Approach .. 29

2.8.3 Benders Decomposition Method .. 30

2.9 Comparison of Journals ... 31

3. PROBLEM FORMULATION .. 33

3.1 Deterministic Location-Allocation Problem ... 35

3.2 Modeling Uncertainty .. 39

3.3 Single-Stage Stochastic Location-Allocation Problem 44

3.4 Two-Stage Stochastic Location-Allocation Problem 48

3.5 Measuring the Value of Using Different Formulations 53

3.6 Significance of Value of Information in City Logistics 64

3.7 The Tradeoff Between Transportation Cost and Coordination Cost 66

4. EXACT SOLUTION METHODS .. 69

4.1 Benders Decomposition ... 71

4.2 L-Shaped Method .. 77

4.2.1 Multi-Cut .. 82

4.2.2 Scenario-Group-Cut ... 87

4.2.3 Variable Number of Cuts ... 92

4.2.4 Adding Initial Cuts ... 93

4.2.5 Partial Decomposition .. 95

4.2.6 Eliminating Dominated Cuts .. 99

xi

4.3 Other Methods for Accelerating Benders Decomposition 101

4.4 Branch and Cut Based on Benders Decomposition 103

4.4.1 No Decomposition ... 104

4.4.2 Full Decomposition .. 105

4.4.3 Partial Decomposition .. 108

4.5 Comparison of Exact Solution Methods ... 109

4.5.1 First Level Comparison .. 109

4.5.2 Second Level Comparison ... 113

5. APPROXIMATE SOLUTION METHODS ... 117

5.1 Representation Scheme ... 118

5.2 Decoding and Fitness Evaluation .. 119

5.2.1 Hybrid Algorithm ... 120

5.2.2 Fitness Database ... 128

5.3 Initial Population ... 129

5.4 Parent Selection ... 130

5.5 Crossover ... 131

5.6 Mutation .. 134

5.6.1 Repair ... 135

5.7 Replacement .. 136

5.8 Stopping Condition .. 138

5.9 Exact Evaluation .. 140

5.10 Experimental Design ... 142

6. COMPUTATIONAL RESULTS .. 151

6.1 Framework ... 151

6.2 Results ... 153

7. ROUTING DECISIONS: POSSIBLE SOLUTION APPROACHES 161

7.1 Making Lower Level Decisions .. 161

xii

7.2 Approximating Lower Level Costs ... 162

7.2.1 Tour Length Approximation .. 163

7.2.2 Heuristics .. 164

8. DISCUSSION AND COMMENTS .. 173

REFERENCES ... 177

APPENDIX .. 187

xiii

LIST OF TABLES

TABLES

Table 2.1 Comparison of Journals 31

Table 3.1 Decisions of the Expected Value Model 46

Table 3.2 Decisions of the Two-Stage Stochastic Model 50

Table 3.3 Decisions of the Wait-and-See Model 53

Table 3.4 VSS Results for Circular Patterns 60

Table 3.5 VSS Results for Square Patterns 61

Table 3.6 EVPI Results for Circular Patterns 63

Table 3.7 EVPI Results for Square Patterns 63

Table 3.8 Comparison of VSS in CL vs. Classical Location Setting 64

Table 3.9 Comparison of EVPI in CL vs. Classical Location Setting 65

Table 3.10 Customers with Changing Assignments 66

Table 3.11 Customers with Changing Assignments without Congested Days 67

Table 3.12 Customers with Changing Assignments under Classical Loc Set 67

Table 4.1 Comparison of Exact Solution Methods with Small Instance 110

Table 4.2 Comparison of Exact Solution Methods with Medium Instance 111

Table 4.3 Comparison of Exact Solution Methods with Large Instance 112

Table 4.4 Comp. of Selected Exact Solution Methods with Small Inst. 114

Table 4.5 Comp. of Selected Exact Solution Methods with Medium Inst. 114

Table 4.6 Comp. of Selected Exact Solution Methods with Large Inst. 115

Table 5.1 Comparison of Evaluation Methods 123

xiv

Table 5.2 Comparison of Evaluation Methods 125

Table 5.3 Factors and Levels Considered in the Experiments 143

Table 5.4 Selected Factor Levels 146

Table 6.1 Computational Results for Small Instances 154

Table 6.2 Computational Results for Medium Instances 155

Table 6.3 Computational Results for Large Instances 156

Table A.1 Results of TLAP Experiments with Small Instances 187

Table A.2 Results of TLAP Experiments with Medium Instances 188

Table A.3 Results of TLAP Experiments with Large Instances 189

Table A.4 Results of MC Experiments with Small Instances 190

Table A.5 Results of MC Experiments with Medium Instances 190

Table A.6 Results of MC Experiments with Large Instances 191

Table A.7 Results of SGC Experiments with Small Instances 192

Table A.8 Results of SGC Experiments with Medium Instances 193

Table A.9 Results of SGC Experiments with Large Instances 194

Table A.10 Results of PD Experiments with Small Instances 195

Table A.11 Results of PD Experiments with Medium Instances 196

Table A.12 Results of PD Experiments with Large Instances 197

Table A.13 Results of B&C-PD Experiments with Small Instances 198

Table A.14 Results of B&C-PD Experiments with Medium Instances 198

Table A.15 Results of B&C-PD Experiments with Large Instances 199

Table A.16 Results of EA Experiments with Small Instances 200

Table A.17 Results of EA Experiments with Medium Instances 201

Table A.18 Results of EA Experiments with Large Instances 202

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Number of studies on City Logistics in Recent Years (OR&MS) 7

Figure 2.2 Number of Studies on City Logistics in Recent Years (All) 8

Figure 2.3 Number of Studies on Stochastic Prg. and Robust Opt. in R. Y. 9

Figure 2.4 Number of Studies on Facility Location in Recent Years 10

Figure 2.5 Number of Studies on Fleet Managment in Recent Years 11

Figure 2.6 Number of Studies on Vehicle Routing in Recent Years 12

Figure 2.7 Taniguchi's Classification of Reasons for Uncertainty 16

Figure 3.1 Decision-Making Process in City Logistics 34

Figure 3.2 Deterministic Solution of a Typical Instance 37

Figure 3.3 Division of City Space 40

Figure 3.4 BPR Function and the Selected Regions 41

Figure 3.5 Different Urban Traffic Speed Patterns throughout the Day 43

Figure 3.6 Expected Value Solution of a Typical Instance 47

Figure 3.7 Expected Value Solution of a Typical Instance when LD is Pen 47

Figure 3.8 Customers with Changing Assignments 51

Figure 3.9 Circular Patterns 56

Figure 3.10 Square Patterns 59

Figure 3.11 Comp. of City Center Customer Density in Circular Patterns 61

Figure 4.1 Repr. of the Model SLP2S and the Benders Dec. Setting 71

Figure 4.2 Benders Decomposition Algorithm (BD) 72

xvi

Figure 4.3 Convergence of BD 76

Figure 4.4 L-Shaped Algorithm (LS) 77

Figure 4.5 Repr. of the Model SLP2S and the Decomposition Setting 78

Figure 4.6 Convergence of LS 81

Figure 4.7 L-Shaped Multi-Cut Algorithm (MC) 83

Figure 4.8 Convergence of MC 86

Figure 4.9 Convergence of SGC 91

Figure 4.10 Convergence of VC 92

Figure 4.11 Convergence of VC-2 with small instances 93

Figure 4.12 Convergence of IC 94

Figure 4.13 Convergence of PD 98

Figure 4.14 Convergence of CE 100

Figure 4.15 B&Cut with Benders Decomposition Algorithm (B&C-BD) 104

Figure 4.16 Convergence of B&C-BD 106

Figure 4.17 Convergence of B&C-BD-2 107

Figure 4.18 Convergence of B&C-PD 108

Figure 5.1 Evolutionary Algorithm 118

Figure 5.2 Range Values of the Hybrid Algorithm 122

Figure 5.3 Performance of the Hybrid Algorithm with Constant Ranges 124

Figure 5.4 Performance of the Hybrid Algorithm with Changeable Ranges 126

Figure 5.5 Convergence of the Evolutionary Algorithm 139

Figure 5.6 Main Effects and Interaction Plots of Objective Function Values 145

Figure 5.7 Half Normal and Residual Plots for Solution Times 146

Figure 5.8 Main Effects and Interaction Plots for Solution Times 148

Figure 7.1 Clustering Approaches when CDCs are Located on City Bound 165

Figure 7.2 Cluster Centers when CDCs are Located on City Boundaries 166

xvii

Figure 7.3 Cluster Centers in a Circular City 167

Figure 7.4 Output of the Algorithm 169

xviii

1

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

Large amounts of freight is transported daily from city outskirts into urban centers.

Making these operations efficiently and effectively is crucial especially when one

considers the vast amount of resources used in the process and the resulting

environmental impact. City Logistics (CL) is a quickly developing area of research

aiming to develop the methods and tools to design efficient and effective freight

distribution networks for urban areas.

To achieve efficiency in freight distribution, one of the widely accepted approaches is

to setup cross-docking facilities where the incoming shipments are combined in order

to make the deliveries possible with a smaller fleet. These cross-docking facilities are

called City Distribution Centers (CDC) or Urban Distribution Centers (UDC). In 1-

echelon CL network design, the process of combining delivery loads in order to

achieve higher capacity utilization of distribution vehicles are typical consolidation

activities. In addition, for such operations to be effective, all supply and demand points

in the system must be considered as a whole. The measures aiming to provide effective

communication and collaboration of all the stakeholders are called coordination.

Consolidation and coordination are the two main tools employed in the city logistics

literature.

The related studies in the literature mostly deal with the CL decisions from a

deterministic point of view. The deterministic view of the freight distribution system

is a step towards obtaining a more complete model of the freight distribution network,

since it reduces the problem complexity and allows the solution of larger instances.

However, the deterministic approach is not sufficient to represent the real life systems.

In order for the models to provide solutions that are applicable in real life, they must

include the uncertainty and risk factors inherent in the nature of the real life systems.

2

Problems with uncertainty and risk factors are studied extensively in the stochastic

programming and robust optimization literature. There are many articles that suggest

approaches and methods related to our problem. There are, for example, articles

dealing with the stochastic/robust facility location problem (Snyder, 2006); however,

to the best of our knowledge, there is stochastic or robust optimization study

considering a freight distribution network system in a CL setting. This study aims to

provide a stochastic freight distribution network design formulation from a strategic

CL perspective, along with the solution methods and analysis of the results.

We use a single echelon setting for the network design problem. We believe the 1-

echelon setting would be suitable for our purpose, since the focus of our work is on

the strategic and tactical decisions. We analyze the decisions to be made in a 1- echelon

CL system in three groups: investment decisions, recourse decisions, and routing

decisions. Investment decisions are usually strategic decisions such as determining the

locations of facilities. Recourse decisions are made on a tactical level, effective in

short/medium-term, such as allocating customers to CDCs. Finally the routing

decisions take place on an operational level and are subject to change on a daily basis.

We do not try to build a single optimization model that would make these three sets of

decisions all together, as the complexity of such a model prohibits us from obtaining

optimal solutions for even small size problem instances. Rather, we divide the problem

into location-allocation and vehicle routing decisions. Then, we optimize the critical

strategic/tactical decisions while leaving the lower level decisions to be made and

updated during operations, according to the changes in uncertain parameters.

Higher level decisions are further divided into two: location decisions are made under

uncertainty and allocation decisions are made after the parameters under uncertainty

can be observed. In the literature, two-stage stochastic programming models allow for

such a division of decisions in a dynamic decision making framework. After making

a Value of Information (VoI) analysis comparing different approaches that incorporate

uncertainty, we found that a two-stage stochastic model provides a significant cost

reduction for all instances we considered. The improvement over the much simpler

Expected Value Model is large enough to compensate for the computational

complexity of making allocation decisions for each scenario. More importantly,

transferring allocation decisions to a recourse problem is meaningful for a CL system

3

because customer allocations can be changed periodically according to the system

conditions, in contrast to the number and locations of CDCs.

Using a two-stage stochastic approach to deal with uncertainty, it is meaningful for us

to select a kind of uncertainty that can be handled by the recourse problem. Among

several causes of uncertainty found in the literature, we choose to deal with the travel

time/transportation cost uncertainty, which is expected to have a large impact on our

decisions in an urban environment. Other causes of uncertainty such as demand

amount, service cost, or unit cost etc. are expected to be largely fixed to the values

agreed on contracts. Service/unit cost largely depends on the demand amount and

constitute a relatively small part of the system’s operating costs. On the other hand,

transportation cost is a large part of these costs and is deeply affected from the changes

on the transportation network. These changes may be occurring daily or infrequently,

may be predictable or unpredictable, may be planned or unplanned. Anticipating those

changes leads to more realistic plans. For these reasons, incorporating the

transportation cost uncertainty in our models seems to be the best choice.

Since standard solvers usually fail to generate even a feasible solution in reasonable

time for the large instances of the problem, we evaluate several alternative exact

solution methods. Among these methods, L-Shaped method with scenario-group cuts

produces the best results. Unfortunately, it fails to converge within the time limit, even

though it finds optimal solutions as its best integer solutions. As an alternative method,

we develop an evolutionary algorithm that makes use of a hybrid evaluation heuristic.

This heuristic reaches the best solution in shorter time than the other two methods and

this solution is optimum in most cases where we know an optimal solution. The

solutions obtained by the algorithm also usually agree with the L-Shaped method’s

solutions for the large instances.

After the location-allocation part, we proceed by handling the routing decisions. Due

to the fixed allocation decisions made for each scenario, we only have to consider the

vehicle routing problem (VRP) for each CDC, thus the solution space is much smaller

than it would be in the Multi-Depot VRP. It is possible for the decision maker to solve

these small VRP instances, whenever a change in the higher level decisions are made,

or a change in the parameters has been observed. Incorporating the routing decisions

into the main problem is also desirable. The routing stage would provide much more

4

accurate information on the cost of making different allocation decisions. To do so, we

develop an algorithm to handle the routing stage with a CL perspective and we discuss

how the algorithm can be implemented within the methods we proposed.

This study offers two main contributions to the related literature. First, we describe the

City Logistics literature in terms of its relations and overlaps with other fields in the

relevant operations research (OR) and industrial engineering (IE) literature. Second,

we develop two efficient solution methods that are able to find solutions for instances

of realistic size. In addition to these, we report the value of information in a CL setting

under transportation cost uncertainty.

Remaining part of the thesis is organized as follows: In the next section, we first

provide an overview of the recent developments in the related research areas, and then

present an extensive review of the literature on the strategic decisions. Section 3

considers several formulations of the City Logistics Network Design Problem under

Uncertainty and provides their comparison in a Value of Information framework. In

section 4, we present the exact solution methods based on Benders Decomposition. In

section 5, we present the evolutionary algorithm. Section 6 provides the computational

results for each solution method and their assessments. In section 7, we discuss how

the routing decisions can be incorporated into the proposed solution methods. Section

8 includes concluding remarks and possible extensions of our study.

5

CHAPTER 2

LITERATURE REVIEW

2. LITERATURE REVIEW

Achieving a complete view of the CL systems is difficult without an understanding of

the current developments in the related research areas. We reviewed the studies that

explicitly address CL as well as the studies that are quite relevant to the decisions of a

CL system. In order to find methods and approaches that can be employed in CL

setting, we also reviewed studies on stochastic/robust optimization.

To present our findings in a structured way, we group these studies into a few

categories. However, most studies usually fall into multiple categories, which make it

difficult to obtain a general view of trends in the literature. Using the findings of this

extensive review, we first provide a recent overview of the related literature.

2.1 Overview

To be able to identify the trends in the literature, we searched how many articles have

been published on each individual subject, such as facility location, fleet management

and vehicle routing.

All analyses are made using the Web of Science database. We searched for the specific

terms in the titles of articles, such as “city logistics”, “transportation”, “robust” etc.,

specified the research areas and recorded the number of publications on each year. We

also specified some important publications that were selected according to their

number of citations.

6

2.1.1 City Logistics

CL is a relatively new subject. The term “City Logistics” became popular in the late

1990s and 2000s. While there are still few articles that specifically focus on CL,

research on this subject increased significantly in recent years. This is mainly due to

the CL projects applied in European cities. These projects reveal the necessity for the

construction of a CL theory. While the decisions of CL systems are in many ways

similar to the widely studied network design problems, there are still some differences

that require an exclusive CL focus in new studies.

First, CL focuses on the consolidation of freight and coordination of customers and

suppliers. This leads to different parameters of the system to have significant effect on

the solution performance. For instance, in the classical stochastic location literature,

mostly demand uncertainty is considered, but within a CL point of view, demand

uncertainty loses its significance as the factor with the largest impact. Second, CL

takes place in urban environments, which has characteristics that must be reflected on

the solution methods and test instances. For example, it is not possible to locate

facilities on a continuous plane, because the probability of a location to be free is very

low. Rather, locations must be selected from a predetermined set of available spaces.

Also, CL requires the locations to be on the city boundaries, rather than within the city,

which has quite different implications than the traditional way of locating facilities.

Lastly, the coordination aspect of CL systems make it possible to relax some

assumptions of the classical location studies. For instance, when the state of the

transportation network changes, we can update the decisions assigning customers to

CDCs. Since the system is managed in a centralized way, making such changes is

possible and may bring great benefit in terms of transportation cost.

Figure 2.1 summarizes the number of studies that are published each year from 2005

until 2013. There was no entry matching with the search criteria for the years before

2005. The blue line shows studies having “City Logistics” term on their title and the

orange line shows studies that consider uncertainty. Since there are several alternative

terms for expressing uncertainty, we searched for all the terms by joining them with

“OR” operators (uncertainty OR uncertain OR robust OR stochastic). The research

area is specified as “Operations Research Management Science”.

7

Figure 2.1: Number of Studies on City Logistics in Recent Years (OR&MS)

Crainic et al. (2009) suggest a variety of formulations and solution methods for the

deterministic city logistics problem. Due to the high complexity of the formulations,

there are no solution methods proposed yet that can consider all decisions at the same

time.

When the studies on city logistics under uncertainty are observed, it can be seen that

there are only two papers published in the last nine years. These two articles, Sheu

(2006) and Taniguchi et al. (2010), are cited 23 times in total.

Although we are mainly interested in the city logistics problems within the ORMS

context, we also searched for relevant studies in the CL literature. For example,

specifying the research area as “Transportation”, we found earlier studies that are

mainly concerned about the need for CL systems and about the difficulties of setting

up such systems. These articles usually evaluate the solution alternatives from a

strategic point of view and do not generally go into the details of how such a system

can be constructed. Figure 2.2 shows the number of studies from 2001 to 2013.

8

Figure 2.2: Number of Studies on City Logistics in Recent Years (All)

2.1.2 Stochastic/Robust Optimization

We also investigated the use of stochastic and robust optimization in the literature for

years after 2001. Stochastic programming literature is considerably larger and more

quickly expanding than that of robust optimization, which only recently started to gain

popularity due to the higher complexity of robust optimization problems.

While these two approaches towards uncertainty do not generally overlap, it seems

that the “robust” and “stochastic” terms are sometimes used interchangeably in the

literature. Note that, stochastic programming requires probability distribution of the

parameters to be known, so that scenarios can be constructed for different realizations

of the parameters. In stochastic programming problems, the objective function usually

becomes a weighted average of cost realizations in different scenarios, as the weights

being the probabilities of these scenarios. On the other hand, robust optimization does

not require probability distributions. It is sufficient to know the upper and lower

bounds of the parameters. This way, robust optimization problems mostly try to

optimize against the worst-case realization of the parameters under uncertainty.

In Figure 2.3, we provide the number of studies using the terms “Stochastic

Programming” and “Robust Optimization”. The research area is specified as

“Operations Research Management Science”.

9

Figure 2.3: Number of Studies on Stochastic Prg. and Robust Opt. in Recent Years

In this area, there are three important review papers. Fouskakis and Draper (2002) is

the last comprehensive one on stochastic programming. Since there has been a lot of

studies on this subject, the recent reviews choose to focus on only one application area,

such as stochastic facility location, stochastic vehicle routing etc.

The other two articles, Bertsimas et al. (2011) and Gabrel et al. (2014a) review the

robust optimization literature. Due to the smaller number of papers where robustness

is considered, these reviews include a variety of applications in many different areas.

2.1.3 Relevant OR Literature

There are a set of decisions to be made in a CL system design. The following is the list

of these decisions:

 Number of city distribution centers (CDC) (strategic level)

 Locations of each CDC (strategic level)

 Number of vehicles to be assigned to each CDC (tactical level)

 Assignment of customers to CDCs (tactical level)

 Vehicle routes to serve the customers (operational level)

Clearly, such a CL system design problem would require many different sub-problems

to be solved simultaneously. In our case, these decisions are also subject to uncertainty.

Therefore, the complexity of a formulation incorporating all these decisions would be

10

very high. That’s why there has been no optimization study yet to address all these

decisions at once. Rather, most of the relevant studies consider only a single decision

level. Now, we make similar analyses on these studies with respect to the decision

level they consider:

 Strategic level: Stochastic Facility Location Problem

 Tactical level: Stochastic Fleet Sizing/Management Problem

 Operational level: Stochastic Vehicle Routing Problem

Stochastic Facility Location Problem

There is a large literature on facility location. However, facility location under

uncertainty is not studied that much. Figure 2.4 summarizes the number of facility

location articles in recent years. While the literature on the deterministic problems is

still growing, we can say that facility location under uncertainty does not draw as much

attention. The research area is specified as “Operations Research Management

Science” in this search.

Figure 2.4: Number of Studies on Facility Location in Recent Years

We believe three of these studies are especially important: Louveaux and Peeters

(1992) make an important contribution to the stochastic facility location literature with

their dual-based procedure. Wang et al. (2002) consider demand uncertainty in a

11

stochastic facility location setting. This is one of the earlier studies that focuses on

uncertainty, and proposes three efficient solution methods. Snyder (2006) provides an

extensive review of facility location studies that consider uncertainty. These three

studies own 44% of the citations (193 out of 444) in the literature of facility location

under uncertainty in the specified years.

Fleet Management Problem

There are few studies that consider only the fleet management decision. Nevertheless,

Figure 2.5 summarizes the number of studies in the literature on this problem. While

searching for the relevant articles, the keywords we used were “fleet sizing”, “fleet

management” and “fleet planning” connected by “OR” operators, since any of these

could be used in the titles of the relevant articles. The research area is specified as

“Operations Research Management Science”.

Figure 2.5: Number of Studies on Fleet Management in Recent Years

One of the articles in the relevant literature stands out: List et al. (2003) consider fleet

sizing problem under demand uncertainty. They considered the tradeoff between the

cost of expanding the vehicle fleet and the additional transportation cost with a smaller

fleet. They use a two-stage stochastic model and have taken 60% of the citations (51

out of 84) in the relevant literature.

12

Vehicle Routing Problem

Literature on the vehicle routing problem is much larger than the problems we have

analyzed up to now. Since the nature of the VRP is closer to the operational level

decisions, there have been many extensions to the basic VRP throughout the years.

Starting decades ago with the simpler Traveling Salesman Problem, the literature

expanded into the multi-vehicle problems and recently into the multi-depot multi-

vehicle problems. Of course, the complexity of the models increases as they are

considering many decisions simultaneously. This requires more effective approaches

and new solution methods to be developed. There are also some extensions originating

from urban applications, such as hard/soft time windows and eco-friendly vehicles for

delivery.

Figure 2.6 summarizes the literature on the VRP and the VRP under uncertainty. For

the uncertainty aspect of our search, we looked for the keywords “uncertainty”,

“uncertain”, “robust”, “stochastic”, and “reliability”. We added reliability to the set of

keywords; because, unlike the previous problem types, reliability plays a greater role

in the VRP under uncertainty, especially in studies considering the VRP networks in a

graph-theoretical framework. The research area is specified as “Operations Research

Management Science”.

Figure 2.6: Number of Studies on Vehicle Routing in Recent Years

13

As we mentioned earlier, the VRP under uncertainty has been studied more extensively

than the other problems. Naturally, there are a few articles to be specified as important

contributions. We selected six of them as particularly relevant. For the relevant

literature before 2000, we refer the reader to two review papers, Bertsimas and

SimchiLevi (1996) and Gendreau et al. (1996). The former deals with robust

algorithms, while the latter is on the stochastic VRP.

Others are as follows: Kenyon et al. (2003) consider random travel times, Bent and

Van Hentenryck (2004) make scenario-based plans considering stochastic customers,

Fukasawa et al. (2006) suggest a robust branch-and-cut-and-price algorithm for the

capacitated VRP. Ando and Taniguchi (2006) look into travel time reliability in the

VRP with time windows.

These four articles have got 33% of the citations (276 out of 836) of the literature on

the VRP under uncertainty in the years after 2000.

Taş et al. (2014) is a very recent work that considers the VRP with soft time windows

under travel time uncertainty. Their assumptions are close to real life systems and the

method they present is efficient. However, the high complexity of their model prevents

them from solving medium sized instances optimally.

There are also some other studies that consider multiple levels of city logistics

decisions. Below, we provide an overview of articles that combine decisions in

multiple levels.

Facility Location – Fleet Management

There is one study that considers the facility location and fleet management decisions

under uncertainty. Fazel-Zarandi et al. (2013) consider travel time uncertainty subject

to probability distributions, so that scenarios can be constructed to represent the

uncertainty situation in the system. They use logic-based Benders’ decomposition as

their solution method. An important novelty in this study is the use of three-level

decomposition in this kind of problem.

14

Fleet Management – Vehicle Routing

Generally, studies on vehicle routing problems try to find the optimal routes to be used

by a fixed number of vehicles to serve a set of customers. However, in a smaller

number of articles, the number of vehicles is not fixed. Such problems are a

generalization of the classical VRP in the sense that a new tradeoff is introduced

concerning the cost and benefit of additional vehicles. None of these articles consider

uncertainty. Nevertheless, we would like to mention three selected articles as possible

references on this field.

Gheysens et al. (1984) compare the performance of different heuristics, propose a new

heuristic and provide computational results on the fleet size and mix VRP. Brandao

(2009) uses tabu search algorithm to determine the fleet size and vehicle routes

simultaneously. Liu et al. (2009) use a genetic algorithm for the fleet size and mix

problem.

Facility Location – Vehicle Routing

Facility location and vehicle routing decisions are studied together more frequently

due to their practical relationship. The literature on location-routing problems has been

expanding for decades. There are also other problems that are structurally similar to

location-routing, such as inventory-routing and production-routing. For example, the

selection of a facility location in location-routing problems is modeled in a similar way

to the selection of periods with positive inventory in inventory-routing problems, and

to the selection of periods with production in production-routing problems. This

structural similarity allows the modification of algorithms developed for one problem

to be used for another.

All these problems deal with a first level decision of locating facilities, stockpiling or

scheduling production and a second level decision of routing. The two-level decision

making in these problems has led to the use of two-stage stochastic models, where the

first stage decisions are made under uncertainty and second stage decisions are made

after the parameters under uncertainty have been observed.

15

We selected three important articles considering the location-routing problem under

uncertainty. Laporte et al. (1989) and Berman et al. (1995) develop methods to deal

with both decisions simultaneously. Albareda-Sambola et al. (2007) suggest a heuristic

algorithm to find the lower bound to the stochastic location-routing problem. Note that

this article is still represents state-of-the-art in this area, as even finding a lower bound

for the stochastic location-routing problem is hard.

As for the inventory-routing problem, we selected four articles. While Berman and

Larson (2001) and Kleywegt et al. (2002) employ stochastic programming as their

solution approach, Solyalı et al. (2012) employ robust optimization approach. Coelho

et al. (2014) provide an extensive review of the inventory-routing studies in the last

three decades.

Among the studies considering production-routing problem, we selected two major

ones. Adulyasak et al. (2015a) use Benders’ decomposition to solve the production-

routing problem under demand uncertainty in a stochastic setting. Adulyasak et al.

(2015b) provide a review of production-routing algorithms.

Now, we present a more detailed literature review on the freight distribution network

design problem under uncertainty and topics related to the problem. Here we intend to

determine the relevant modeling and solution methods in the literature to provide a

basis for our study on network design under uncertainty.

Since the main characteristic of our work will be uncertainty, we first review the

literature on optimization under uncertainty. Then, we will focus on the causes of

uncertainty that have an impact on freight distribution network design. Lastly, we will

look at the approaches compatible with our problem.

2.2 Defining Uncertainty in the City Logistics Context

Rosenhead (1972) divides decision making into three categories in terms of nature of

information: certainty, risk and uncertainty. In certainty situations, deterministic

models can be effectively used. In risk situations, parameters regarding available

information are not exactly known, but they are governed by probability distributions

which can be used to assign probabilities to different levels of a parameter. Lastly, in

16

uncertainty situations, probability distributions are not available either. In this chapter,

we will deal with risk and uncertainty situations. While it may not be possible to obtain

probability distributions of disruptions in a large freight distribution system, we may

come up with scenarios and assign probabilities to them. For the sake of simplicity,

we will refer to risk and uncertainty concepts together as uncertainty.

Taniguchi et al. (2010) provide a review of natural and manmade hazards that have an

impact on city logistics (see Figure 2.7). They classify the hazards in two axes:

frequency and complexity/uncertainty. They also classify the studies made in this area

with respect to the approaches used, such as robustness, stochastic programming,

simulation, and multi-objective optimization. The causes of uncertainty mentioned in

this article are mostly related to the design decisions on operational level. Since we

will be mainly considering design decisions on strategic and tactical levels, only the

approaches developed for these levels have been taken into account in this article.

Particularly, we will be interested in robust optimization and stochastic programming

approaches due to their ability to deal with uncertainty.

Figure 2.7: Taniguchi's Classification of Reasons for Uncertainty

We investigate the decision making in freight distribution network design in three

levels, operational, tactical and strategic. Each level of decision making is affected by

uncertainty in a different way. For example, on operational level, an urban

transportation vehicle driver may choose to use an alternative road after learning there

has been an accident on the road previously planned. On tactical level, allocation of

customers to CDCs may be updated according to the changes on the road network

connecting the supply and demand nodes of the system. On strategic level, CDC

17

locations may be changed or additional CDCs may be opened according to the changes

in demand from different regions of the city. Decision making on all levels are highly

dependent on the information obtained from the real life system, and the information

is usually just an estimate which is subject to change with time.

Since we want to determine the uncertainty factor most effective and the solution

approach most suitable in a CL setting, we start by presenting an overview of the

causes of uncertainty and modeling approaches used in the relevant literature. Then

we present the reviewed studies categorized accordingly.

2.3 Causes of Uncertainty

In the literature, the main causes of uncertainty and risk in a freight distribution

network design problem are specified as follows:

 Demand amount

 Travel time / Transportation cost

 Service time

 Throughput cost

 Unit cost

 Rare events (Manmade and natural disasters) such as link failures and facility

disruptions

Demand amount is the uncertainty factor most frequently considered in the literature.

This may be due to the fact that capacity constraints have traditionally been included

in the widely studied problems, especially in the facility location literature. Thus, in

order to ensure feasibility over capacity constraints or to reduce the cost of changes to

accommodate the uncertain demand, researchers used robust/stochastic programming

to deal with demand uncertainty. In the literature for facility location under

uncertainty, vast majority of the studies deal with demand uncertainty.

When the fleet management and vehicle routing problems are considered, however,

we see that demand uncertainty is not the single dominant cause of uncertainty in the

literature. Half of the few studies dealing with fleet management under uncertainty

consider transportation cost uncertainty. If we look at VRP studies, we see that there

18

is roughly one study considering travel time/service time uncertainty for every three

studies considering demand amount uncertainty.

Until recent years, most studies focused on the strategic decisions of the logistics

problems and aimed at making long-term investment decisions such as facility location

and capacity planning in an aggregated way. As may be expected, demand uncertainty

has been the most critical factor for such decisions by a large margin. However, as

more advanced methods are being developed for more complex problems, tactical

decisions are coming into consideration along with strategic ones. Uncertainty factors

other than demand amount have been increasingly considered through time, as they

are critical for the tactical decisions. So, one may expect that the current state of the

literature will change and uncertainty factors other than demand amount will gain

popularity.

2.4 Approaches for Modeling Uncertainty

Although several other approaches can be found in the stochastic programming and

the robust optimization literature, we consider only the ones applicable in our case for

incorporating the causes of uncertainty:

 Stochastic programming

o Mean-outcome models

 Robust optimization

o Minimax regret / Worst case optimization

o p-robustness

o bw-robustness

The main difference between stochastic programming and robust optimization can be

specified as follows. Stochastic programming takes into account all the anticipated

uncertainty realizations weighted with their corresponding probabilities, however

robust optimization tries to find the solutions that would not fail to produce a targeted

objective value no matter how the uncertainty is realized. Both approaches have their

advantages and disadvantages.

19

Since stochastic programming optimizes an objective function that involves the

expected outcome of the decisions, the probability attributed to scenarios or the

probability functions that fit to the uncertain parameters have a large impact on the

behavior of the model. For example, stochastic programming models may select

solutions that would obtain good performance with 99% probability, but very bad

performance with 1% probability. However, the performance that would occur with

1% probability could be unacceptable to the decision maker. Therefore, the main

criticism against stochastic programming approach is that it fails to take into account

the worst case scenarios and leaves the system vulnerable to such occurrences.

On the other hand, in the robust optimization approach, where mostly the worst case

scenarios are considered, the performance of the solution may be unsatisfactory under

the steady conditions. Since the decisions are made according to the worst case,

performance under normal conditions are often much worse than optimum. Therefore,

robust optimization is criticized for over-conservatism, i.e. over-emphasizing the risk

in the worst case scenarios. p-Robustness and bw-robustness are methods that try to

deal with this problem up to a certain extent, but they also perform unsatisfactorily

when the worst case performance is significantly different than the average occurrence.

2.5 Review Articles

Gabrel et al. (2014a) provide a review on robust optimization and robustness. The

robustness problems are studied in two groups: static robust optimization where all

decisions must be made under uncertainty and multi-stage decision making where

some recourse actions are possible after uncertain parameters are observed.

Gabrel et al. (2014a) state that, although a large portion of the static robust

optimization literature focuses on applying worst case optimization over a convex

uncertainty set, such approaches do not produce satisfactory results under normal

conditions. For example, determining the optimal solution according to a worst-case

scenario with probability 0.01% may result in operating the system with a solution far

from optimal 99.99% of the time. When the performance at the worst-case is not so

critical, this approach does not produce applicable results. This characteristic of worst

case optimization creates the need for new approaches that take into account the

20

performance of decisions under normal conditions as well as worst case scenarios.

Examples of such approaches are p-robustness which obtains solutions to guarantee

that the objective function value will always be within c% difference of the overall

optimal solution and bw-robustness which provides solutions that guarantee an

objective value w and maximizes the probability of achieving an objective value b.

Studies using these approaches will be presented later on.

The multi-stage decision making problems are generally studied as two-stage

stochastic models. In the first stage, selected decisions are made under uncertainty.

These are usually investment decisions with long term effects. In the second stage,

recourse decisions can be made after the uncertainty has been resolved. The recourse

decisions such as vehicle routing, generally have shorter term effects. Studies using

these approaches mostly consider the facility location decisions in the first-stage and

vehicle routing decisions in the second stage. We will present several studies using

this approach later on.

Snyder (2006) makes a review of articles dealing with the facility location problem in

the presence of uncertainty. Articles are divided into two categories: stochastic

location and robust location problems. For the stochastic location problems, mean-

outcome, mean variance and probabilistic models are discussed. Stochastic models

assign probabilities to the elements of their scenario set. Mean-outcome models try to

optimize the expected value of the objective function. Mean-variance models consider

both the mean-outcome and mean-variance of the objective value, so that the risk

aversion of the decision maker can be reflected on the model. Probabilistic models try

to maximize the probability that the solution will achieve good performance, where

the definition of good performance is selected by the decision maker.

For the robust location problems, minimax cost / minimax regret models are dominant,

accompanied with sensitivity analysis and p-robustness. Minimax cost and minimax

regret models are the worst case optimization approaches already discussed above. P-

robustness is an approach aiming to produce solutions that will always achieve

objective value at most within c% difference of the overall optimal.

Bertsimas et al. (2011) offer an extensive review of robust optimization problems,

regardless of application domain. They focus on computational attractiveness and

modeling power aspects rather than making the conceptual classification of the related

21

articles. Bertsimas et al. (2011) also distinguish between single-stage and multi-stage

decision making problems and give a list of application areas of these solution methods

such as portfolio optimization and supply chain management.

2.6 Stochastic Programming Approaches

2.6.1 Demand Uncertainty

In this section, we review the articles dealing with demand uncertainty with the help

of stochastic programming. Contrary to the definition by Rosenhead (1972), the word

uncertainty refers both to the risk and uncertainty in the stochastic programming

literature. If it is not possible to represent the distribution of parameters with

probability distributions, scenarios are constructed and they are assigned probabilities.

Chan et al. (2001) minimize the expected cost of a stochastic location routing problem

with demand uncertainty. Probability of demand that occurs at the nodes is estimated

using a queueing process. They solve the problem with the help of stochastic

decomposition and space-filling curves.

Daskin et al. (2002) study the facility location problem with demand uncertainty. They

obtain a nonlinear program to minimize the expected cost of inventory in distribution

centers. The model is solved using Lagrangian relaxation.

Crainic et al. (2012a) propose a detailed two-tiered capacitated location problem

minimizing the expected cost of operating the system under demand uncertainty. They

follow a two-stage stochastic programming approach with recourse actions. The first

stage is for having the nominal plan and the second stage modifies some parts of the

plan to adapt to the realization of demand. They consider demand around a point

estimation. While they propose a modeling framework, they do not propose a solution

method.

Listes and Dekker (2005) apply the stochastic programming approach on the facility

location problem in a reverse logistics network. They maximize the expected profit of

the system under uncertainty in demand amounts and locations.

Tsiakis et al. (2001) develop a mixed integer programming model that determines the

number, location and capacity of distribution centers which minimizes the annual

22

expected cost of the entire network. The model operates under demand uncertainty but

differs from the above studies with its capability of handling multi-echelon networks.

Gülpınar et al. (2013) consider the stochastic facility location problem with single

commodity and multiple capacitated facilities under demand uncertainty. They

minimize the expected cost of the system and claim that their model obtains better

results than the models not considering robustness both in terms of worst case and

average total cost.

Adulyasak et al. (2015a) deal with the production routing problem under demand

uncertainty. They propose a two-stage stochastic production routing problem

formulation and use Benders Decomposition as a solution method to solve the

formulation. They make several computational enhancements on the classical Benders

Decomposition algorithm. They propose using Sample Average Approximation for

handling the possible large number of scenarios.

2.6.2 Throughput Cost / Unit Cost Uncertainty

Throughput cost is the variable cost of processing a unit in CDCs. Unit cost is the

variable cost of producing and/or shipping one unit of product. These cost parameters

are also subject to uncertainty and change through time.

Ricciardi et al. (2002) minimize the expected transportation cost on a network where

the throughput costs in distribution centers are random. They solve a nonlinear

problem using heuristics. Baldi et al. (2012) study the same problem and apply

asymptotic approximation method. They also analyze the effect of using different

probability distributions on the solution.

Yu and Li (2000) minimize the expected cost of operations considering a scenario set

under uncertainty of unit costs. They transform the robust model into a linear program

by adding new variables and demonstrate the computational efficiency of their model

on two examples. In the first example, they formulate the production, inventory and

transportation plan of a wine company. In the second example, they provide a model

scheduling aircraft routes of an airline company.

23

2.6.3 Travel Time / Service Time Uncertainty

In a city logistics network, shipments are often subject to time constraints. In other

words, transportation vehicles are often required to reach their destinations within

specified time windows. Therefore, travel time from CDCs to demand points and

service time within CDCs are important factors of uncertainty in freight distribution

networks. Nevertheless, few studies incorporate these factors into freight distribution

network formulations.

Ando and Taniguchi (2006) fit normal distribution to travel time, according to data

obtained from real freight operations. They model a probabilistic vehicle routing and

scheduling problem with time windows and solve it using genetic algorithms. They

also provide a case study that includes a pick-up delivery truck and 11 customers. The

problem is formulated as a vehicle routing problem with time-windows.

Binart et al. (2015) propose a two-stage formulation for the multi-depot vehicle routing

problem with time windows under stochastic travel and service times. They suggest

dividing customers into two groups: the first group consists of mandatory customers

and the second group consists of optional customers. They set up the “skeleton” of the

network regarding only the mandatory customers and serve optional customers if

profitable. The suggestion of grouping customers as mandatory and optional is the

defining characteristic of this study. Binart et al. (2015) model the stochastic travel

and service times with discrete triangular distributions and minimize the total travel

time while visiting as many optional customers as possible.

2.6.4 Other Cases

Santoso et al. (2005) propose using the sample average approximation and accelerated

Benders decomposition for handling supply chain network design under uncertainty.

The problem of interest includes a set of supply facilities, processing facilities, and

customers, and a set of arcs connecting them. Santoso et al. (2005) minimize the total

annual cost of operating the system. They claim that their method can deal with the

problems of a realistic scale and potentially infinite number of scenarios. The problem

is formulated in a two-stage setting. The stochastic model is capable of dealing with

24

all kinds of uncertainty as long as the joint distribution of scenarios involving uncertain

parameters are known.

2.7 Robust Optimization Approaches

2.7.1 Minimax Cost / Regret

Problems based on regret are often more difficult than the stochastic problems due to

their minimax structure (Snyder, 2006). Still, minimax regret is a widely studied

problem in the literature. Their solution methods yield good results when the worst

case scenario occurs; however, their results may not achieve satisfactory performance

under normal conditions. Since the objective function does not reflect the solution

performance under normal conditions, the importance of the performance in worst case

is over-emphasized. As a result, the performance under normal conditions is sacrificed

for slightly better results in the worst case (over-conservatism).

Demand Uncertainty

Averbakh and Berman (2000) study 1-median problem on a transportation network

where node weights (possibly demand) are uncertain. They use weight scenarios to

investigate relative regrets at each case.

Ukkusuri et al. (2007) deal with the network design under demand uncertainty and

solve their robust model using genetic algorithms. In this paper, the focus is on a traffic

network design problem, rather than specifically considering the freight distribution

aspect.

Alumur et al. (2012) consider facility setup costs and customer demands to be

uncertain and cannot be expressed in a probability distribution. They minimize the

maximum regret under all scenarios to determine hub locations in a two-stage strategic

setting. In the first stage, hub locations and allocations are determined and in the

second stage, routing decisions are made.

25

Atamtürk and Zhang (2007) construct a two-stage robust optimization model for the

multicommodity network design problem under demand uncertainty. They apply the

method to the lot-sizing and location transportation problems.

Gabrel et al. (2014b) employ a two-stage robust optimization setting for the location

transportation problems under demand uncertainty. They use cutting plane algorithm

to solve the problem and propose a tight bound for solving large instances.

Gounaris et al. (2013) study the capacitated vehicle routing problem under demand

uncertainty. They try to find the minimum cost solution that will be feasible under all

demand realizations by using minimax cost approach.

Remli (2011) studies a two-stage robust location transportation problem focusing on

the worst case scenario. In this study, demand is considered uncertain and the proposed

model is solved through linear relaxation of the mixed integer formulation of the

problem.

Transportation Cost / Travel Time Uncertainty

Yin and Lou (2009) assume demands belong to an uncertainty set, but they don’t

follow a probability distribution. They use minimax approach to deal with

transportation costs.

Han et al. (2013) study the vehicle routing problem under travel time uncertainty. They

suggest using range estimates rather than point estimates for the travel times and plan

according to the worst case scenarios in these ranges. This way, Han et al. (2013) claim

that more meaningful estimations can be made about the uncertain parameters, leading

to the solutions to be more applicable.

Demand and Transportation Cost Uncertainty

Mudchanatongsuk et al. (2008) consider both transportation cost and demand

uncertainty. They represent uncertainty with independent closed convex sets defined

as deviations from a nominal value. They try to minimize the cost for the worst-case

and propose a column generation method for the solution of their problem.

26

Other Factors

Inuiguchi and Sakawa (1995), Mausser and Laguna (1999), and Averbakh (2000)

study the minimax regret approach for the linear programming problems with

uncertainty on the objective function coefficients. Inuiguchi and Sakawa (1995) use

decision theory to determine the final solution so that a reference solution set is used

to apply minimax criterion on the candidate solutions. Mausser and Laguna (1999) use

mixed integer programming formulation to deal with the minimax relative regret

problem where the objective function coefficients are known to take values in an

interval. Averbakh (2000) considers the combinatorial optimization problems and

illustrates the proposed approach on minimax multifacility location problems under

uncertainty of objective function coefficients.

2.7.2 p-Robustness

As mentioned earlier, minimax approach only considers the worst case scenarios, thus

producing solutions that will perform badly under normal conditions. To remedy this

problem, which is called over-conservatism in the literature, p-robustness measure is

developed. p-Robustness guarantees that the solution found by the model will obtain

satisfactory results under all scenarios. The objective function will take values between

(1-c%) and (1+c%) of the actual optimal objective value in all cases. This way, the

solutions performing well under normal conditions are not sacrificed for the worst

case, but a solution is found taking into account all scenarios at the same time.

Liu et al. (2010) suggest p-robustness, where p is the upper bound of relative regrets

in disruption scenarios. They solve deterministic optimization models for a given set

of scenarios and constrain the relative regret of each scenario to be smaller than a

percentage of the optimal objective value.

Snyder and Daskin (2006) suggest p-robustness for the facility location models under

transportation cost uncertainty. They use Lagrangian relaxation as a solution approach.

Peng et al. (2011) use genetic algorithms to minimize the nominal cost of operations

while considering p-robustness under facility disruptions. They refer to Bundschuh et

27

al. (2006) while stressing the difference between reliability and robustness. Bundschuh

et al. (2006) define robustness as the ability of a system to perform its intended

function relatively well under disruptions and reliability as the probability of a system

to perform its function within a given time horizon and environment. In the light of

these definitions, Peng et al. (2011) incorporate both reliability and robustness in their

model that minimizes costs under possible facility disruptions.

Gutierrez et al. (1996) propose adaptations of the Benders decomposition for finding

robust network designs. They search for p-robust solutions to the uncapacitated

network design problem and suggest the Multi-Masters Benders algorithm,

considering all scenarios to simultaneously generate a number of robust designs.

2.7.3 bw-Robustness

Another robustness measure is bw-robustness which is suggested by Roy (2010). In

this measure, determining two values, w and b, is proposed. w is the least acceptable

objective value and b is an objective value that is strictly preferred to w. In a bw-

robustness model, the objective is to guarantee the objective value w for all scenarios

and to maximize the probability of achieving objective value b. Again, bw-robustness

measure overcomes the over-conservatism problem and offers the ability to control

two parameters b and w according to the preferences of the decision maker.

2.7.4 Other Cases

Koulakezian et al. (2012) consider the general traffic assignment problem under

uncertainty. They consider weather conditions and traffic accidents as major reasons

for a decrease in traffic supply and add that traffic demand is uncertain. As a result,

traffic congestion may occur and travel times may increase. They define network

criticality as a graph metric measuring the robustness of a network and try to minimize

total travel time using this concept.

Wang et al. (2006) suggest a reliability perspective for the robust transportation

network design problem. They provide a detailed optimization model, considering the

reliability of a network. They compare the telecommunication networks with the

28

logistics networks and try to apply the telecommunication network reliability concept

to logistics systems. They incorporate the spatial distributions of the nodes in a system

using density functions.

Crainic et al. (2012b) suggest an approach for dealing with multi-scenario problems.

They group similar or dissimilar scenarios using k-means clustering. They also

introduce the concept of scenario covers, where each scenario appears in two groups.

They conclude that by solving multi-scenario subproblems where scenario covers are

used, the number of iterations can be reduced and solution quality can be increased.

2.8 Conclusions on the Literature Review and Framing Our Work

2.8.1 Factors of Uncertainty

Considering the strategic point of view in freight distribution network design under

uncertainty, we have the following observations and preferences that will be

incorporated into our work.

The demand uncertainty aspect of the problem is usually handled by the aggregate

demand forecasts. These are long-term estimations that are expected to be sufficiently

accurate for short to medium term. Customers of the system are responsible for

reporting their demand correctly to the CL administration, but any changes may be

accommodated by the system with some additional cost/fee incurred to the customer.

Since we do not consider the relations between customers and CL administration in

this study, we can ignore the daily fluctuations in demand. All in all, we will not be

considering demand uncertainty.

On the other hand, planning for the changes in transportation cost falls into the

responsibility of the CL administration. Moreover, transportation cost uncertainty is a

main issue in an urban area with frequent traffic congestion. In a stochastic/robust

optimization model dealing with transportation cost uncertainty, it would be possible

to meaningfully divide our decisions into two stages. In the first stage the facility

location decisions are made under uncertainty and in the second stage, allocation of

customers can be made after uncertainty on transportation cost has been realized; as

would be the case in a real life CL system. Without making any changes to the

formulation of location-allocation models, we can model the transportation cost

29

parameter on travel time, since transportation cost is expected to be proportional to

travel time. Also, there are several studies in the literature that model travel time in a

city.

Uncertainty on service time is not very different from uncertainty on travel time as the

time spent on travel and on service can be aggregated into a single parameter. This

parameter is to be constrained by the time-window effective on the city-wide freight

transportation. Since we will not be focusing on the operational level decisions, routing

and time windows are not represented in our models. Thus, service time uncertainty

will not be considered.

Uncertainty of throughput cost and unit cost will not be considered in our study. These

cost items are not affected by the decisions on facility locations, customer allocations

or vehicle routes.

Link failures and facility disruptions could be considered in the context of disasters

(earthquakes, floods etc.), but these are rare events which are outside of the focus of

our work. Such a system will be certainly affected in case of a natural disaster and cost

of maintaining service will be much higher. However, planning against such rare

events at the expense of performance under normal conditions would not be

reasonable. Still, small changes in road capacities due to accidents, congestion, etc.,

which can be considered as link failures, may be represented as causes of the travel

time/transportation cost uncertainty.

2.8.2 Solution Approach

In the light of these discussions, we choose to employ the stochastic programming

approach. We believe that the over-conservatism problem in robust optimization is

difficult to handle, while planning against the worst case could be possible also in

stochastic programming by assigning larger probability values to the worst case

scenarios. This way, the weight of worst case situations would be larger in the

objective function, so that the proposed solutions perform satisfactorily in all

scenarios. The amount of increase in the probabilities of worst cases may be

determined according to the preferences of the decision makers.

30

More importantly, robust optimization does not represent a real life system as well as

stochastic programming. In the real life CL system, the goal is to find solutions that

provide the best long-term performance; bad performance in only one scenario should

not prevent the selection of a good solution on average. Robust optimization focuses

on the goodness of our results in the worst-cases at the expense of achieving a good

long-term solution performance; however, stochastic programming focuses on the

average performance over the long-term. For these reasons, we believe that stochastic

programming is more suitable approach for CL systems.

2.8.3 Benders Decomposition Method

Regarding the studies reviewed above, a two-stage formulation appears to be suitable

for the location-allocation part of our problem. In two-stage stochastic formulations

decisions are divided into two groups: first stage decisions and second stage decisions.

Factors under uncertainty are observed between the first stage and the second stage.

It seems natural to approach the location-allocation problem in this manner: facility

location decisions (which are investment decisions) are to be made under uncertainty

and customer allocation decisions (which can be changed in time) are to be made after

the actual parameter values are observed. The second stage decisions are also called

recourse decisions. In most studies, first stage decisions are represented with binary

variables and recourse decisions are represented with continuous variables. This is the

case in our problem.

The computational complexity inherent in the nature of this problem forces us to use

decomposition methods. Among these methods, Benders decomposition has been

extensively applied to two-stage stochastic models. This method is very suitable for

two-stage stochastic models, because it decomposes binary and continuous variables,

an approach that naturally matches the variable types in a two-stage stochastic setting.

Unfortunately, the Benders Decomposition approach does not give satisfactory results

by itself. There have been many computational enhancements proposed for improving

Benders Decomposition, especially in a stochastic setting. These enhancements

include L-shaped method, addition of multiple cuts at each iteration, є-optimal

solution, cross-decomposition, local-branching, lower bound lifting inequalities,

31

scenario group cuts and pareto-optimal cuts. We work on some of these enhancements

that we find applicable for our problem.

2.9 Comparison of Journals

Lastly, we provide the journals where the articles selected in our analyses were

published. We believe these journals are the ones that did the most important

contribution to the City Logistics literature. The following table lists the most-cited

journals in decreasing order of the number of references we used (excluding journals

with fewer citations than 2):

Table 2.1: Comparison of Journals

Journal Number of Citations

European Journal of Operational Research 17

Transportation Science 9

Operations Research 8

Annals of Operations Research 6

Computers & Operations Research 6

Transportation Research Part B 5

Mathematical Programming 4

Operations Research Letters 4

Transportation Research Part E 4

IIE Transactions 3

Journal of the Operational Research Society 3

Management Science 3

INFORMS Journal on Computing 2

32

33

CHAPTER 3

PROBLEM FORMULATION

3. PROBLEM FORMULATION

The problem we are interested in this thesis is the City Logistics Network Design

Problem under Transportation Cost Uncertainty. The following major decisions are to

be made in such a network: number and locations of CDCs, allocation of customers to

the CDCs, and determining fleet size and routing of vehicles.

To the best of our knowledge, there is no study in the literature that considers all these

decisions together under uncertainty and manages to find optimal solutions for

instances with a realistic size. Our preliminary experiments showed that finding an

optimal solution to a realistic size instance would not be possible in reasonable time,

even with simplifying assumptions.

Therefore, we divide the problem according to the decision levels we specified. We

consider the strategic level decisions on the number and locations of CDCs and the

tactical level decisions on allocation of customers to CDCs. Since these decisions are

more critical due to their long-term effect, attempting to optimize these decisions is

promising the largest benefit for the system. Also, these decisions need to be made

earlier in a real-life system and they directly define the solution space for the lower-

level decisions. Figure 3.1 illustrates this point in a two-stage stochastic framework;

decisions related to CDCs are only made once, while the other decisions are

specifically made for each scenario.

34

Figure 3.1: Decision-Making Process in City Logistics

The logical precedence between these decisions makes it possible to decompose them

in a meaningful way and without losing too much information by refusing to optimize

the whole system. Once the higher-level decisions are made, it is possible and may be

realistic to make the remaining decisions later when the actual parameter values can

be observed. When the decisions are divided into two in this way, one major tradeoff

arises at each stage:

 1st stage:

o CDC operating costs vs.

o Costs from the 2nd stage model

 2nd stage:

o Vehicle operating costs vs.

o Routing costs of delivery to customers vs.

o Penalty costs due to the violation of time windows

These two stages are connected through the allocation decisions (assignment of

customers to CDCs). Since even the 1st stage decisions take too much time for

instances of realistic size, we do not attempt a solution method that iterates between

the two stages to reach an optimal solution for the whole system. Rather, we

35

acknowledge that these stages follow a natural sequence. The first stage decisions are

preemptive over the whole solution space. Based on these observations, we prefer a

sequential solution procedure.

Each of the lower level decisions will be effective in only a single scenario and on a

local level within the system. For this reason, we believe that dividing the decisions in

this way provides a suitable way of reducing solution complexity without sacrificing

solution quality significantly.

Of course, there are more than one way of formulating the location-allocation model

under uncertainty, depending on the nature of the system and preferences of the

decision maker. The simplest one is the classical location-allocation problem which

does not take into account the uncertainty factors. A second way of modeling is the

use of scenarios and a stochastic programming approach. When the uncertainty on

parameters is represented with the help of scenarios, the objective function becomes

the weighted average of costs incurred by the decision through all scenarios; therefore,

this formulation is called the expected value model.

We also consider a generalization of the expected value model, called the two-stage

stochastic model. In a two-stage setting, first stage decisions (facility location) are

made once and are not subject to change through time. However, second stage

decisions (assignment of customers to CDCs) are made after the factors under

uncertainty have been observed.

Now, we explain the different ways of formulating the strategic level decisions of city

logistics network design.

3.1 Deterministic Location-Allocation Problem

In this network model, we use two decision variables:

 𝑧𝑖 determines whether the candidate CDC location i is selected or not

 𝑥𝑖𝑗 determines the amount of demand served from CDC i to customer j

Parameters used in the model are the following:

 𝐹𝑖, the fixed cost of opening CDC i

36

 𝐶𝑖, the service capacity of CDC i

 𝑇𝑖𝑗, the travel time/transportation cost between location i and location j

 𝐷𝑗 , the demand amount from customer j

We use the abbreviation DLAP to denote the Deterministic Location-Allocation

Problem.

DLAP Model:

minimize

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ 𝑇𝑖𝑗 ∗ 𝑥𝑖𝑗𝑗𝑖 (1)

subject to

∑ 𝑥𝑖𝑗𝑖 = 𝐷𝑗 ∀ 𝑗 (2)

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖 ∀ 𝑖 (3)

𝑥𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 (4)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (5)

The objective function (1) minimizes the total cost which is the sum of two cost items:

fixed costs arising from opening and operating CDCs and transportation costs arising

from the distance between customers and their assigned CDCs. Constraints (2) satisfy

the demand of each customer. Constraints (3) enforce the limits on service capacities

of each CDC. Constraints (4) and (5) are domain limitations.

Note that from now on, we will refer to 𝑇𝑖𝑗 as the distance and the cost of transportation

between locations i and j, assuming we spend one unit money per unit distance. We

will make the meaning of 𝑇𝑖𝑗 clear whenever necessary.

When the model is applied on a problem instance we generated, the results can be

illustrated as in Figure 3.2. The legend to the bottom left of the figure shows the

numbers of selected candidate facilities:

37

Figure 3.2: Deterministic Solution of a Typical Instance

Figure 3.2, the circled points on the city boundary are the candidate CDC locations.

Blue circles indicate that the CDC is closed and red circles indicate that the CDC is

open. Other points represent the customer locations. Largest part of the customers’

demand is supplied by the CDCs whose color matches their colors. We make use of

similar figures many times, to illustrate the changes in optimal solution when a

different approach is taken.

We can modify the model to put an upper limit to the longest distance to be traveled

between a customer and a CDC to reflect the service time performance. For this

purpose, we define an additional continuous decision variable and a parameter.

 𝐿𝐷 represents the longest distance to be travelled from a CDC to a customer

 𝑅𝐻𝑆 represents the upper limit on the allowed distance in the system

And add the constraints:

𝐿𝐷 ≥ 𝑇𝑖𝑗 ∗ 𝑥𝑖𝑗 ∀ 𝑖, 𝑗 (6)

𝐿𝐷 ≤ 𝑅𝐻𝑆 (7)

The first constraint set (6) forces LD to be equal to the largest of the distances between

a customer and its assigned CDC. The second constraint set (7) forces LD to be smaller

than a specified RHS value. The selection of the RHS value should be made carefully.

38

Since all candidate CDC locations are on the city boundary, small values would make

the model infeasible.

An alternative to constraining the longest distance is penalizing its cost in the objective

function. We introduce another cost item to represent penalty due to the largest

distance between a customer and its assigned CDC.

We define:

 𝑝𝑡, the penalty due to unit distance in the longest travel distance between a

customer and a CDC in the system

It is clear that estimating pt would not be trivial. It may be used to express a strong

preference on LD, or to make an analysis on the tradeoff between LD and total

transportation cost. We use the abbreviation DLAP-P to denote the Deterministic

Location-Allocation Problem with Longest Distance Penalty.

DLAP-P Model:

minimize

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ 𝑇𝑖𝑗 ∗ 𝑥𝑖𝑗𝑗𝑖 + 𝑝𝑡 ∗ 𝐿𝐷 (8)

subject to

∑ 𝑥𝑖𝑗𝑖 = 𝐷𝑗 ∀ 𝑗 (2)

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖 ∀ 𝑖 (3)

𝐿𝐷 ≥ 𝑇𝑖𝑗 ∗ 𝑥𝑖𝑗 ∀ 𝑖, 𝑗 (6)

𝑥𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 (4)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (5)

Note that we only modified the objective function. This time, the objective function

(8) minimizes the total cost of function (1) together with the penalty incurring from

the longest travel time in the system. In this case, as pt increase, its impact on the LD

will increase the objective function value. As pt decreases, the system will converge

to the first model (1)-(5).

39

3.2 Modeling Uncertainty

In this section, we explain how the transportation cost parameter is taken into account

in our approach and consequently we develop the scenarios to solve the problem under

uncertainty. While there are many studies on modeling travel time, transportation cost

has never been modeled on its own to the best of our knowledge. Therefore, we focus

on the factors affecting travel time.

The real-life causes of travel-time uncertainty are the following:

 Rush-hours

 Occasional traffic congestion

 Accidents

 Maintenance/construction

These causes may be divided into two groups: time-dependent traffic congestion and

disruptions to traffic. Time-dependency can also be divided into two: fluctuations of

congestion within a day and fluctuations through several days.

Rush hours, for example, are a kind of daily time-dependency. During the morning

hours when commuters are going to work, there is significantly higher traffic

congestion. Similarly, during the evening hours when commuters are coming back

from work, traffic congestion is observed. Effect of time dependency can be observed

also in other hours to a smaller extent.

Second, we observe significant difference in traffic congestion through the week. For

instance, weekly delivery of freight is made mostly on Mondays and Fridays, while

less congestion is expected to occur during the week-days between them. Naturally,

people rarely encounter traffic congestion on weekends, except on long weekends and

holidays.

40

Figure 3.3: Division of City Space

Disruption conditions include all other causes of traffic congestion. Accidents,

construction projects, weather, social events etc. all have an impact on the travel time.

There is, however, an important difference between disruption type and time-

dependent causes. While time-dependent causes have city-wide effects, disruptions

often affect a smaller area within the city. We will call this “local congestion” from

now on.

For constructing meaningful scenarios, all these causes of traffic congestion must be

taken into account properly.

To separately represent city-wide congestion and local congestion, we divide the cities

into four regions: northwest, northeast, southeast, and southwest (see Figure 3.3).

These can be considered as neighborhoods within a city. Vehicles traveling within a

neighborhood use regular or narrow roads, while vehicles traveling between

neighborhoods use highways or wider roads.

Deterministic travel time between two points in a city is proportional to the Euclidean

distance between these points. But modeling the stochasticity of travel time is a

different issue. In the literature, there are several alternatives for modeling travel times.

Branston (1976) makes a review of the most frequently used travel time models.

In this study, we use the Bureau of Public Roads (BPR) function. This function is

widely known and frequently used in the transportation literature. It does not require

41

any distribution parameters to be estimated by the user. As we do not have real-life

data from which such estimations can be made, there is a risk that the result of using

statistical methods would be inaccurate. On the other hand, BPR function requires only

the estimate of the proportion of used road capacity, which is much easier to estimate

correctly.

Below, we give the Bureau of Public Roads function:

𝑆𝑎(𝑣𝑎) = 𝑡𝑎 ∗ (1 + 0.15 ∗ (
𝑣𝑎

𝑐𝑎
)

4

)

where

 𝑆𝑎(𝑣𝑎) is the average travel time on link

 𝑡𝑎 is the free flow travel time on link

 𝑣𝑎 is the volume of traffic on link per unit time

 𝑐𝑎 is the capacity of link per unit time

In this function, the only parameter to be estimated is the ratio of current traffic flow

to the road capacity. We illustrate the function’s behaviour with respect to this ratio

with the following plots in Figure 3.4:

(a) BPR Function (b) Selected Regions on the BPR Funct.

Figure 3.4: BPR Function and the Selected Regions

Observe that the travel time does not increase a lot until the traffic flow exceeds link

capacity. This first part, between no usage and full capacity usage, provides a good

estimation of traffic on weekends. However, on regular weekdays, the traffic flow is

surely larger. Considering the roads will rarely be empty and flow sometimes exceed

42

capacity, we choose the region between 50-150% capacity usage to represent the

traffic on regular weekdays. Lastly, we select a region for the heavy traffic case. For

most major cities, it would not be surprising to see that the flow/capacity ratio take

very high values, especially during rush-hours on busy days. We select the region

between 150-250% capacity usage to represent the heavy-traffic.

Since we are dealing with a freight distribution network design problem, we are mostly

interested in the heavy-congestion days. Therefore, we generate a higher number of

scenarios from the corresponding regions of the BPR function. The following list

reflects the composition of the scenarios we generate:

 Low congestion days (20%)

 Average days (40%)

o No local traffic (20%)

o With local traffic (20%)

 SE region congested (5%)

 NE region congested (5%)

 NW region congested (5%)

 SW region congested (5%)

 Congested days (40%)

o No local traffic (20%)

o With local traffic (20%)

 SE region congested (5%)

 NE region congested (5%)

 NW region congested (5%)

 SW region congested (5%)

These scenario sets represent the changes in travel time due to time-dependency. The

term “time-dependency” is used extensively in the literature, especially in the recent

years, to describe the fluctuations of the travel times in a city. The effect of city traffic

and the limitations of time windows made it necessary for the models to take into

account the real-life conditions on the urban road network. The time-dependency

concept essentially uses the same logic we did when introducing the rush hour

43

congestion and expands it to include all hours of the day. The graph on Figure 3.5

taken from Van Woensel et al. (2008) illustrates the time-dependency of travel times.

Figure 3.5: Different Urban Traffic Speed Patterns throughout the Day

In this graph, you see four different representations of average travel speed on the city

roads. The first one shows real life observations. The second one shows the time-

independent representation of travel speed. In this representation, travel speed is

averaged through all hours of the day and it is reduced to a single travel speed to be

used in the model for all hours. The third type is about three time zones. It is very

similar to our rush-hour representation, since it decreases the travel speed significantly

during the rush-hours. The last one is the queueing approach, which tries to achieve a

representation as close to the real life observations as possible. Since using a queueing

approach would cause further difficulties in our models, we chose to consider a three

time zone representation when constructing scenarios.

Time-dependency can be useful in a CL setting, but only if the delivery windows are

implemented on a city scale (if time windows are the same for all customers). In such

a case, if the delivery windows are set earlier, the travel time values in the model would

change significantly and the decisions would not be optimal anymore. We do not

explicitly consider time-dependency. The scenarios may still be interpreted in a time-

dependency context.

44

3.3 Single-Stage Stochastic Location-Allocation Problem

Now, we use these scenarios in a stochastic programming model. The single stage

stochastic model optimizes the weighted average of costs that is incurred under

different scenarios, where weights represent the probabilities of scenarios. We add a

new parameter 𝑝𝑠 to our basic location-allocation model and we change the objective

function (1) only slightly.

 𝑝𝑠: probability of scenario s

We use the abbreviation SLAP to denote the Single-Stage Stochastic Location-

Allocation Problem.

SLAP Model:

minimize

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑗 ∗ 𝑝𝑠𝑖 (9)

subject to

∑ 𝑥𝑖𝑗𝑖 = 𝐷𝑗 ∀ 𝑗 (2)

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖 ∀ 𝑖 (3)

𝑥𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 (4)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (5)

The objective function (9) minimizes the total of fixed CDC opening costs and the

weighted average of transportation costs across scenarios. 𝑇𝑖𝑗𝑠 is the modified version

of 𝑇𝑖𝑗 and indicates the cost of transportation between CDC i and customer j in scenario

s.

To penalize the longest distance in the system, we further modify the objective

function as seen in (10). We use the abbreviation SLAP-P to denote Single-Stage

Stochastic Location-Allocation Problem with Longest Distance Penalty.

45

SLAP-P Model:

minimize

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑗 ∗ 𝑝𝑠𝑖 + 𝑝𝑡 ∗ 𝐿𝐷 (10)

subject to

∑ 𝑥𝑖𝑗𝑖 = 𝐷𝑗 ∀ 𝑗 (2)

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖 ∀ 𝑖 (3)

𝐿𝐷 ≥ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗 ∀ 𝑖, 𝑗, 𝑠 (6)

𝑥𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 (4)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (5)

The objective function (9) and (10) can actually be simplified easily by replacing the

second cost term with:

∑ ∑ 𝐸𝑠[𝑇𝑖𝑗𝑠] ∗ 𝑥𝑖𝑗𝑗𝑖 (11)

where 𝐸𝑠[𝑇𝑖𝑗𝑠] represents the expected distance calculated over all scenarios. This is

because the decisions on locations and allocations are made only once, for all

scenarios. As the objective function does not distinguish between scenarios, the second

term is equivalent to the sum-product of expected distances and assignment decisions.

In Table 3.1, we illustrate the decisions in a Single-Stage Stochastic Models, also

known as Expected Value Models. For a location-allocation problem with 10

scenarios, both decisions are made only once, effective for all scenarios. In other

words, both the location and allocation decisions are the same across scenarios. This

will not be the case in other formulations of the problem, such as Two-Stage Stochastic

Models and Wait-and-See Models, both of which will be explained in the coming

sections.

46

Table 3.1: Decisions of the Expected Value Model

Scenarios Location Allocation

1 Z X

2 Z X

3 Z X

4 Z X

5 Z X

6 Z X

7 Z X

8 Z X

9 Z X

10 Z X

When the constraints are not affected by the changes in transportation cost, the

stochastic character of the model disappears. In such a case, we just need the expected

values of transportation cost and no scenarios. Therefore, the model becomes an

“expected value problem” where the parameters under uncertainty are simply replaced

with the expected values of those parameters.

On the other hand, when the constraints are affected by the differences in

transportation cost, the scenarios should still be used. For instance, the longest distance

is calculated considering travel times in each scenario. Thus, using only the expected

values of transportation cost would not give the worst-case occurrence of

transportation cost. Therefore, scenarios should be kept in use when the longest

distance is constrained or penalized.

47

Figure 3.6 shows the selected CDC locations and customer assignments when the

“expected value problem” is considered. As can be seen, there are unusual assignments

near the middle of the city, which are circled in green. These assignments are due the

way we represented the rush hour traffic congestion in the scenarios in order to hedge

against uncertainty.

Figure 3.6: Expected Value Solution of a Typical Instance

When the longest distance is penalized, the results change significantly:

Figure 3.7: Expected Value Solution of a Typical Instance when LD is Penalized

48

As can be seen in Figures 3.6 and 3.7, penalizing LD has significant effect on the

optimal solution. This effect can be seen especially in the selection of CDCs.

3.4 Two-Stage Stochastic Location-Allocation Problem

We can also formulate the location-allocation problem in a two-stage stochastic

approach. When such a setting is used, decisions in the first stage are made under

uncertainty and decisions in the second stage are made after uncertain parameters are

observed. In other words, the first stage decisions are made only once, to be effective

for all scenarios. However, the second stage decisions are made specifically for each

scenario to be effective only for that particular scenario.

To formulate the location-allocation problem in a two-stage stochastic model, we add

the index s to the allocation decision variable 𝑥𝑖𝑗. Since location decisions are to be

made only once, their representation does not change.

 𝑥𝑖𝑗𝑠 determines the amount of demand served from CDC i to customer j in

scenario s (continuous variable)

We use the abbreviation TLAP to denote the Two-Stage Stochastic Location-

Allocation Problem.

TLAP Model:

minimize

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑠𝑗 ∗ 𝑝𝑠𝑖 (12)

subject to

∑ 𝑥𝑖𝑗𝑠𝑖 = 𝐷𝑗 ∀ 𝑗, 𝑠 (13)

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑠𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖 ∀ 𝑖, 𝑠 (14)

𝑥𝑖𝑗𝑠 ≥ 0 ∀ 𝑖, 𝑗, 𝑠 (15)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (5)

The objective function (12) minimizes the total of fixed CDC opening costs and the

weighted average of transportation costs across scenarios. 𝑥𝑖𝑗𝑠 is the modified version

49

of 𝑥𝑖𝑗 and indicates whether the arc between CDC i and customer j in scenario s used

for transportation. Constraints (13)-(15) are modified versions of constraints (2)-(4).

We use the abbreviation TLAP-P to denote the Two-Stage Stochastic Location-

Allocation Problem with Longest Distance Penalty.

TLAP-P Model:

minimize

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑠𝑗 ∗ 𝑝𝑠𝑖 + 𝑝𝑡 ∗ 𝐿𝐷 (16)

subject to

∑ 𝑥𝑖𝑗𝑠𝑖 = 𝐷𝑗 ∀ 𝑗, 𝑠 (13)

∑ 𝐷𝑗 ∗ 𝑥𝑖𝑗𝑠𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖 ∀ 𝑖, 𝑠 (14)

𝐿𝐷 ≥ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠 ∀ 𝑖, 𝑗, 𝑠 (17)

𝑥𝑖𝑗𝑠 ≥ 0 ∀ 𝑖, 𝑗, 𝑠 (15)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (5)

The objective function (16) minimizes the total fixed and variable cost items along

with the longest distance penalty. Constraints (13)-(15) are modified from (2)-(4) and

constraints (17) is modified from (6).

Table 3.2 illustrates the decisions of the Two-Stage Stochastic Model. Parallel to Table

3.1, we observe the location and allocation decisions across 10 scenarios. Unlike the

result of the Expected Value Model where a single decision set was effective for all

scenarios, the Two-Stage Stochastic Model produces different allocation decisions for

each scenario, while keeping location decisions the same.

50

Table 3.2: Decisions of the Two-Stage Stochastic Model

Scenarios Location Allocation

1 Z X1

2 Z X2

3 Z X3

4 Z X4

5 Z X5

6 Z X6

7 Z X7

8 Z X8

9 Z X9

10 Z X10

Note that there is only a small distinction between the two formulations; however, the

logic behind is different. In the single stage stochastic model, we optimize allocation

decisions against the expected value of transportation cost, while in the two-stage

stochastic model, we can find the optimum allocation decisions for each scenario.

Thus, the Two-Stage Stochastic model implies that it is possible to set the second stage

decisions according to realized conditions. When there is no recourse capability, single

stage stochastic models make more sense, because they work on the assumption that

the decisions are made only once. However, in a typical CL system, updating customer

assignment is certainly possible. In fact, we would expect such a capability to bring

significant benefit in terms of transportation cost.

Making different allocation decisions at each scenario reveals another measure about

the performance and applicability of our decisions. In a real-life application, both

minimizing transportation cost and minimizing changes in allocation decisions would

be desirable, so it is necessary to strike a balance between those conflicting objectives

according to the preferences of the decision maker.

In Figure 3.8, we illustrate the change in customer assignments through scenarios.

Here, the x-axis represents different customers (from 1 to 100) and the y-axis

represents different scenarios (from 1 to 20). The bars are colored to show the number

of scenarios in which a customer is assigned to a CDC, different colors representing

51

different CDCs. For instance, customer 90 is assigned to CDC 9 in four scenarios, to

CDC 10 in seven scenarios and to CDC 11 in nine scenarios. This graph does not show

the assignments made in each scenario. Instead, we are interested in the number of

changes in allocation decisions for each customer.

Figure 3.8: Customers with Changing Assignments

We count the changes in the following way. We create a new binary variable that keeps

track of whether two allocation variables corresponding to a particular CDC-customer

pair are different in two consecutive scenarios. If there is at least one change, this

11

4

2

0

9

10

52

indicator variable stores the information by taking the value one. The sum of these

indicator variables equal the number of customers with changing assignments. We

only consider the allocation changes across scenarios. We do not consider it a

coordination necessity if the customers are serviced by multiple CDCs in a particular

scenario.

If changes in the allocation decisions are costly or they are generating some issues that

are not considered in the models but could be important in practice, then it is possible

to modify the model to restrict or penalize the number of customers with changing

CDC assignments. For this purpose, we define indicator variables to distinguish how

many times a customer is assigned to a particular CDC through scenarios:

 δj identifies the customers assigned to different CDCs

And we add the following set of constraints:

∑ ∑ 𝑥𝑖1𝑗𝑠 ∗ 𝑖1 ≤ ∑ ∑ 𝑥𝑖2𝑗𝑠+1 ∗ 𝑖2 + 𝑀 ∗ 𝛿𝑗𝑠+1𝑖2𝑠𝑖1
 ∀ 𝑗, 𝑠 ∈ {1 … |𝑆| − 1} (18)

∑ ∑ 𝑥𝑖1𝑗𝑠 ∗ 𝑖1 ≥ ∑ ∑ 𝑥𝑖2𝑗𝑠+1 ∗ 𝑖2 − 𝑀 ∗ 𝛿𝑗𝑠+1𝑖2𝑠𝑖1
 ∀ 𝑗, 𝑠 ∈ {1 … |𝑆| − 1} (19)

These constraints force the indicator variable to take value 1 if a customer j is assigned

to different CDCs 𝑖1 and 𝑖2 in different scenarios 𝑠1 and 𝑠2.

If a constraint will be added to limit the number of customers assigned to different

CDCs, we add the following:

∑ δj𝑗 ≤ 𝑅𝐻𝑆 (20)

If the number of customers with changing assignments is to be penalized, we change

the objective function as follows:

minimize

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠 ∗ 𝑝𝑠𝑠𝑗𝑖 + ∑ δj𝑗 ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (21)

Both approaches are valid and one of them can be preferred according to the

characteristics of the system of interest. If there is an estimated cost equivalent of the

coordination requirement, penalization makes sense. If not, the relationship between

coordination requirement and objective function value can be identified by obtaining

the non-dominated solution set of the problem.

53

3.5 Measuring the Value of Using Different Formulations

There are several ways of measuring the value of information when there is uncertainty

in one of the parameters.

Expected Value of Perfect Information (EVPI) is the price that the decision maker is

willing to pay so that decisions can be made with perfect information. To calculate

EVPI, we need to consider two solution approaches and their results.

The first approach requires solving a set of problems called the Wait-and-See

problems. In this approach, each Wait-and-See problem corresponds to a particular

scenario in which the parameters under uncertainty are replaced with the values given

in that particular scenario. In each scenario, both location and allocation decisions are

made optimally. Then, the Wait-and-See solution (WS) becomes the expected cost of

these solutions (See Table 3.3):

𝑊𝑆 = 𝐸𝑠[∑ 𝑧𝑖𝑠 ∗ 𝐹𝑖 +𝑖 ∑ 𝑥𝑖𝑗𝑠 ∗ 𝐷𝑖𝑗𝑠] = ∑ 𝑝𝑠 ∗𝑠 ∑ (𝑧𝑖𝑠 ∗ 𝐹𝑖 + 𝑥𝑖𝑗𝑠 ∗ 𝑇𝑖𝑗𝑠)𝑖,𝑗𝑖,𝑗

(22)

Table 3.3: Decisions of the Wait-and-See Model

Scenarios Location Allocation

1 Z1 X1

2 Z2 X2

3 Z3 X3

4 Z4 X4

5 Z5 X5

6 Z6 X6

7 Z7 X7

8 Z8 X8

9 Z9 X9

10 Z10 X10

Table 3.3 illustrates the approach. Zs and Xs refer respectively to the optimal location and

allocation decisions in the scenario s.

54

A different approach is using two-stage stochastic models. In such a setting, first stage

decisions are made for all scenarios, but second stage decisions are made specifically

for each scenario. Thus, while first stage decisions are fixed, second stage decisions

are made optimally for each scenario. Such problems are called Recourse Problems or

Here-and-Now Problems. The objective function value obtained in Recourse Problems

is the sum of two cost items: RP is the cost of first stage decisions and the expected

cost of second stage decisions:

𝑅𝑃 = 𝐸𝑠[∑ 𝑧𝑖 ∗ 𝐹𝑖 + ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠] = ∑ 𝑧𝑖 ∗ 𝐹𝑖 + ∑ [𝑝𝑠 ∗𝑠 ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠𝑖,𝑗]𝑖𝑖,𝑗𝑖

 (23)

The second measure, Value of Stochastic Solution (VSS) coined by Birge (1982),

indicates the benefit of making updates on the second stage decisions. To calculate

VSS we need to consider a third kind of problem: the Expected Value Problem (EV),

where the parameters under uncertainty are simply replaced by their expected values

over all scenarios. Expected cost of using the Expected Value Problem (EEV) is then:

𝐸𝐸𝑉 = 𝐸𝑠[∑ 𝑧𝑖 ∗ 𝐹𝑖 + ∑ 𝐸𝑠(𝑇𝑖𝑗𝑠) ∗ 𝑥𝑖𝑗] = ∑ 𝑧𝑖 ∗ 𝐹𝑖 + ∑ 𝑥𝑖𝑗 ∗ ∑ 𝑝𝑠 ∗ 𝑇𝑖𝑗𝑠𝑠𝑖,𝑗𝑖𝑖,𝑗𝑖

 (24)

Since we are dealing with a minimization problem, the following relation can be easily

observed (Madansky, 1960):

𝐸𝐸𝑉 ≥ 𝑅𝑃 ≥ 𝑊𝑆 (25)

Then, for minimization problems, EVPI is found as:

𝐸𝑉𝑃𝐼% =
𝑅𝑃−𝑊𝑆

𝑊𝑆
∗ 100 (26)

Also, for minimization problems, VSS is found as:

𝑉𝑆𝑆% =
𝐸𝐸𝑉−𝑅𝑃

𝑅𝑃
∗ 100 (27)

EVPI is a useful measure when the parameters under uncertainty will not keep

changing once they are observed. For example, when planning for disaster relief,

decisions are made for a single rare event. The parameter values we are interested in

are the ones that are observed once the event occurs. Such models are actually planning

for a single scenario, but they cannot perfectly predict it. If EVPI is high, more

55

resources should be spent on better predicting that scenario. For a discussion of Value

of Information in Humanitarian Logistics, see Noyan (2012) and Doyen et al. (2012).

On the other hand, when city logistics systems are considered, plans are made for the

long-term while the transportation costs keep changing every day. Therefore, our

decisions must be valid for a number of different scenarios, rather than a single one.

In such a case, VSS becomes more useful. This is because VSS measures the cost we

avoid if we can change our second stage decisions according to the realization of

uncertainty. If VSS is high, more investments can be made for the capability of

adapting second stage decisions to the environment. If it is near zero, expected value

of parameters can be successfully used to make near optimal decisions. For further

discussion on expected value solutions, see Maggioni and Wallace (2012).

Now we present our calculations on VSS as a percentage of the RP value. Since we

have to come up with fixed location decisions, we cannot obtain meaningful WS

results. Thus, RP is the best result available to us. Also, as mentioned earlier, the

single-stage stochastic model reduces to the Expected Value Problem, when we do not

consider any constraint or penalty on the longest distance to be traveled. We can

calculate EEV using the solutions of this model. VSS is simply the difference between

those values.

Generated Instances

We generated a set of instances each of them including 100 customers and 100

scenarios. These instances are constructed in two main groups according to their

shapes: circular and square. Customers in circular instances are generated with normal

distribution and these distributions are used for observing the change in VSS with

respect to change of standard deviation. We make use of the fact that as the standard

deviation increases, normal distribution within a restricted circular area approaches

uniform distribution.

We use the following standard deviation values for circular shaped instances: 2, 4, 6

and 8. Figure 3.9 represents each instance respectively. Here the blue stars correspond

to the customer locations and red stars indicate candidate CDC sites. In all instances

56

100 customers are distributed normally around the city center. Candidate CDC sites

are uniformly distributed in all directions on the city boundary.

(a) Circular Pattern with σ=2 (b) Circular Pattern with σ=4

(c) Circular Pattern with σ=6 (d) Circular Pattern with σ=8

Figure 3.9: Circular Patterns

Square shaped instances are generated in three patterns (See Figure 3.10): random,

clustered and mixed (in line with the Solomon Instances: R, C and RC). Each group

has two subgroups with different spatial distributions. Cities in all instances are 30x30

km in size.

57

 Random Pattern

o Uniformly distributed customers (R_u_100)

Both customers and CDCs are uniformly distributed along both axes.

At each side of the city (north, south, etc.) there are 5 CDCs, which are

distributed uniformly along that side.

o Normally distributed customers (R_n_100)

Customers are normally distributed around a single center (x,y) which

is created inside a central square with the corners on (5,5), (5,25),

(25,5), and (25,25). Center point is chosen by a normal distribution with

parameters NX(15,5) and NY(15,5), so that the instances represent a

wider variety of customer patterns. Around the center point, normally

distributed customers are created with parameters NX(x,7) and NY(y,7).

Customers that are created outside the city boundaries are not

represented in the instances. At each side of the city (north, south etc.)

there are 5 CDCs, which are distributed uniformly along that side.

 Clustered Pattern

o Uniformly distributed customers on normally distributed cluster

centers (*) (C_u_100)

Customers are uniformly distributed around 10 centers that are created

inside a central square with the corners on (2,2), (2,28), (28,2), and

(28,28). Center points are distributed normally within the square with

parameters NX(15,7) and NY(15,7). Around each center point, 10

uniformly distributed customers are created within the 4x4 km box

around the center. At each side of the city (north, south, etc.) there are

5 CDCs, which are distributed uniformly along that side.

o Normally distributed customers on normally distributed cluster centers

(C_n_100)

Customers are normally distributed around 10 centers that are created

inside a central square with the corners on (2,2), (2,28), (28,2), and

(28,28). Center points are distributed normally within the square with

parameters NX(15,7) and NY(15,7). Around each center point, normally

distributed customers are created with parameters NX(x,2) and NY(y,2).

Customers that are created outside the city boundaries are replaced with

58

new customers. At each side of the city (north, south etc.) there are 5

CDCs, which are distributed uniformly along that side.

 Mixed Pattern

o Uniformly distributed customers along with * (RC_u_100)

In these hybrid instances, half of the customers are created with

uniform distribution and the other half are created through the process

explained in *. At each side of the city (north, south, etc.) there are 5

CDCs, which are distributed uniformly along that side.

o Normally distributed customers along with * (RC_n_100)

In these hybrid instances, half of the customers are created with normal

distribution around a single center (x,y) that is created inside a central

square with the corners on (5,5), (5,25), (25,5), and (25,25). The center

point is chosen by a normal distribution with parameters NX(15,5) and

NY(15,5), so that the instances represent a wider variety of customer

patterns. Around the center point, normally distributed customers are

created with parameters NX(x,7) and NY(y,7). The other half are created

through the process explained in *. At each side of the city (north, south,

etc.) there are 5 CDCs, which are distributed uniformly along that side.

59

(a) Square Pattern with Unif. Distr. (b) Square Pattern with Normal Distr.

 (c) Square Pattern with Unif. Clust. (d) Square Pattern with Normal Clust.

(e) Square Pattern with Mixed Unif. D. (f) Square Pattern with Mixed Normal D.

Figure 3.10: Square Patterns

From each recipe, we created 20 instances. In order for VIO results to exclusively

show the effect of the transportation cost uncertainty, we use the same (unit) demand

and capacity values in all instances. Capacity of each CDC is 24 times the unit

demand. Longest distance and changes in allocation are not penalized. Now, we

present the VSS and EVPI values obtained from the analyses made on these instances.

60

VSS

Now we present the statistics on VSS and EVPI values found in our computations for

each of the instance groups that contain 20 instances. In Tables 3.4-3.7, we present the

average, minimum, maximum and range (minimum-maximum) values for VSS and

EVPI of instances.

Table 3.4: VSS Results for Circular Patterns

VSS-Circular Average(%) Min(%) Max(%) Range(%)

σ=2 18.8 17.8 19.5 1.8

σ=4 12.6 11.7 13.6 1.9

σ=6 9.5 8.3 11.0 2.7

σ=8 9.2 8.7 9.5 0.8

Observe that VSS level with σ=2 is more than twice the VSS level with σ=8 in Table

3.4. Based on VSS values calculated for the circular instances, we can see that the

distribution of customer locations significantly changes the level benefit of using a

two-stage stochastic approach instead of an expected value approach. In other words,

when the standard deviation is lower, it is more important for the CL system to be able

to change the allocation decisions when encountered with different scenarios.

The explanation for this observation is not solely based on the difference between

normal and uniform distribution. Because a more important difference than the

distribution is the customer density in the city center. We make the comparison

between instances lowest and highest standard deviation with the help of Figure 3.11:

61

(a) Circular Pattern with σ=2 (b) Circular Pattern with σ=8

Figure 3.11: Comparison of City Center Customer Density in Circular Patterns

Figure 3.11 represents the instances with the lowest (σ=2) and highest (σ=8) standard

deviation. The red circles roughly indicate the region we consider the city center. The

significance of customer density in the city center is due to CDCs locations being on

the city boundaries. Since CDCs are located far from the city center, there is a higher

possibility for customers in the city center to have a different closest CDC in different

scenarios.

For instance, if we consider a customer near the city boundary, we would expect it to

have a fixed assignment to the closest CDC. On the other hand, if a customer in the

city center is considered, since it is farther away from all CDCs, its assignment would

probably change depending on the scenarios. As a result, when there are more

customers in the city center, there is higher value that can be obtained from allowing

CDC assignments to change over time, which is reflected by the higher VSS.

Table 3.5: VSS Results for Square Patterns

VSS-Square Average(%) Min(%) Max(%) Range(%)

R_u_100 8.9 7.0 10.8 3.9

R_n_100 13.1 11.0 15.8 4.8

C_u_100 10.6 5.8 17.3 11.5

C_n_100 13.1 10.3 16.9 6.6

RC_u_100 10.1 6.2 13.1 6.9

RC_n_100 11.1 7.3 13.7 6.5

62

Now, we analyze the instances with square patterns. While EVPI values do not differ

greatly between instances, VSS values show large variation. We can consider the

instances R_u_100, C_u_100 and C_n_100 to be the extremes of the pool of instances,

since the former provides the most uniform spatial distribution of the customers and

the latter does the opposite. Therefore, it is not surprising to observe the large

difference between their VSS values as their average values are the highest and lowest.

It is also expected that the mixed instances’ values lie between the two extremes. The

instances called R_n_100 produce high VSS values since the distribution of customers

is far from being uniform through the city, rather the number of customers is much

higher near the city center than in the city outskirts. Therefore, a small change in

transportation cost may change the optimal allocation decision for more customers.

The R_u_100 instances show the lowest range. However, the results from clustered

instances differ greatly according to the locations of cluster centers. We observe the

largest range in C_u_100 and not in C_n_100 because the customers are located more

closely to the cluster centers in the former, while they are allowed to deviate more

from the cluster centers (an effect of normal distribution) in the latter. Therefore, in

C_u_100 the VSS values depend largely on the selection of cluster centers, but the

effect of cluster centers is smaller in C_n_100. VSS ranges for mixed instances are

again between the extremes.

An interesting remark is that when we compare the circular instance with highest

standard deviation (which can be considered closest to uniform) and the square

instance with random uniform distribution, we observe similar VSS results, which may

indicate that the effect of city’s shape is negligible compared to the effect of customer

distribution.

EVPI

When we look at the EVPI results given in Tables 3.6-3.7, the most important

observation is that the average EVPI values are always significantly smaller than the

average VSS values. Table 3.6 summarizes EVPI results for the circular instances.

63

Table 3.6: EVPI Results for Circular Patterns

EVPI-Circular Average(%) Min(%) Max(%) Range(%)

σ=2 3.4 3.0 3.7 0.7

σ=4 3.1 2.7 3.5 0.9

σ=6 2.8 2.5 3.0 0.5

σ=8 2.9 2.3 3.2 0.8

Similar to the VSS results, we again observe a decrease in EVPI results as the standard

deviation increases for the instances with circular patterns. This decrease, however, is

not as large as it was in the VSS case, but it is still significant. The reason for the

decrease is the same as before; the transportation costs of customers in the city center

are less stable. Thus, when the customer density in the city center is higher, we expect

the collective change in the transportation cost matrix to have more impact on the

selection of candidate CDCs.

Table 3.7: EVPI Results for Square Patterns

EVPI-Square Average(%) Min(%) Max(%) Range(%)

R_u_100 2.9 1.5 4.6 3.1

R_n_100 2.4 1.1 3.5 2.3

C_u_100 2.2 0.9 3.4 2.5

C_n_100 2.6 1.5 4.0 2.5

RC_u_100 2.3 1.2 3.2 2.0

RC_n_100 2.5 1.1 4.0 2.9

Similar comments can be made about the EVPI values for square instances. Again, the

instances called R_u_100 and C_u_100 seem to be the extreme cases, while others’

EVPI values are in-between.

When the VSS and EVPI values are compared, we can easily see that the difference

between RP and EEV approaches are much more significant than the difference

between WS and RP approaches. This means that most of the benefit from having

perfect information can be obtained just by updating allocation decisions for each

scenario. We must also note that periodically changing customer allocations according

64

to system conditions would be possible in a real-life system, whereas it is surely

impossible to change the locations of CDCs in the short term; thus, the best realistic

solution is obtained by the two-stage stochastic solution. Based on these observations,

we will use the two-stage approach solving the CL network design problem under cost

uncertainty.

3.6 Significance of Value of Information in City Logistics

It is clear that the ability to make allocation decisions specifically for each scenario

brings great benefit in a City Logistics system. However, we also wanted to analyze

the impact of locating CDCs on the city boundaries, which is a defining feature of City

Logistics systems. Therefore, we compared the VSS and EVPI values obtained from

instances with CDCs on the city boundaries and with CDCs located inside the city.

Only changing the candidate CDC locations are changed. New locations are selected

using uniform distribution on both x and y axes. The Tables 3.8-3.9 show the average

values over 20 instances from each group:

Table 3.8: Comparison of VSS in CL vs. Classical Location Setting

VSS-Square City Logistics(%) Classical LP(%)

R_u_100 8.9 5.7

R_n_100 13.1 8.3

C_u_100 10.6 6.9

C_n_100 13.1 4.4

RC_u_100 10.1 5.4

RC_n_100 11.1 6.8

The values in the “City Logistics” column are the same as the ones explained in the

previous section. The values in the “Classical LP” column, however, are obtained after

we modified the instances by locating the candidate CDCs uniformly inside the city.

There is a clear difference between VSS values in the CL setting and the classical

facility location setting for every instance group. The reason for this observation can

be explained in the following way: When the CDCs are located on the city boundaries,

their distance to the customers near the city center do not vary greatly; thus, small

65

changes in transportation cost may change the optimal allocation decision for a

customer. Therefore, the two-stage stochastic approach produces significantly better

results, providing optimal allocations for such customers, while the expected value

approach cannot. On the other hand, when some of the CDCs are located close to the

city center, the customers near the city center are automatically allocated to those

CDCs. Thus, there are fewer customers that would benefit from allocation changes,

and the benefit of using the two-stage stochastic approach is reduced.

Table 3.9: Comparison of EVPI in CL vs. Classical Location Setting

EVPI-Square City Logistics(%) Classical LP(%)

R_u_100 2.9 2.6

R_n_100 2.4 1.6

C_u_100 2.2 1.2

C_n_100 2.6 0.5

RC_u_100 2.3 2.3

RC_n_100 2.5 0.7

We can see significant differences also for the EVPI values for most instance groups.

The benefit of having perfect information on the transportation cost parameter is

reduced when CDCs are located inside the city, because in such a case, not selecting

the best CDC for a particular scenario does not significantly increase the transportation

cost.

Another argument could be made on the relative distance of customers and facilities.

In the classical location literature, the customers are closer to facilities in all instances,

since facilities are located within the region. As we have seen in Figure 3.11, higher

standard deviation values for customer location distribution create smaller distances

between customers and CDCs and vice versa. Thus, the instances with high standard

deviation are closer in behavior to the classical instances. We observe that such

instances produce smaller VSS, which is parallel to our conclusion that VSS is larger

in the CL context.

66

From these observations, we conclude that using two-stage stochastic formulation

provides larger benefit in a City Logistics location problem than in a classical facility

location problem.

3.7 The Tradeoff Between Transportation Cost and Coordination Cost

As explained in the previous subsections, the ability to change customer assignments

according to changing conditions brings large benefits. While changing assignments

would be possible in a real-life system, it would come with a coordination cost due to

the expenses of maintaining the organization despite the changes. If the assignment

decisions are to be changed periodically, the corresponding stakeholders of the system

need to update their shipments arrangements accordingly.

It is difficult to estimate the magnitude of coordination costs in a real-life system and

it would not be meaningful to compare the coordination costs to transportation costs

as different decision makers would have different priorities. However, we can compare

the necessity of coordination in terms of the number of customers with changing

assignments. We may assume the number of customers with changing assignments to

be proportional to the coordination cost in a real-life system. Table 3.10 summarizes

our findings on the coordination necessity. We report the average proportion of

customers with changing assignments within the whole customer population, along

with minimum, maximum and range values.

Table 3.10: Number of Customers with Assignment Change

Customers with Assignment Change Average(%) Min(%) Max(%) Range(%)

R_u_100 82.9 79 89 10

R_n_100 94.7 88 99 11

C_u_100 92.0 80 100 20

C_n_100 92.3 84 99 15

RC_u_100 87.9 77 96 19

RC_n_100 90.5 85 97 12

Here we see that the coordination requirement is significantly affected by the spatial

distribution and pattern of customers. We expect this requirement to be lower when a

67

larger proportion of the customers are located close to the city boundaries, since only

large changes in travel times would change the allocation decisions for these

customers. Among our instance groups, the ones called R_u_100, RC_u_100 and

RC_u_100 are the ones that consistently place more customers far from the city center.

Thus it is expected that these instances result in a higher average number of stable

assignments. Conversely, the instances called R_n_100 put most of the customers near

city center. The instances called C_u_100 and C_n_100 vary according to the selection

of cluster centers; therefore, their values are between the two extremes.

Table 3.11: Customers with Assignment Change without Congested Days

Customers with Assignment Change Average(%)

Average w/o

Congested Days(%)

R_u_100 82.9 63.7

R_n_100 94.7 87.1

C_u_100 92.0 84.0

C_n_100 92.3 84.9

RC_u_100 87.9 77.5

RC_n_100 90.5 82.7

When we exclude the congested days from our scenarios (See Table 3.11), we

expectedly find a significantly larger number of stable assignments. Since the travel

times are not changed as much as in the previous case, we obtain roughly two times

the number of stable assignments.

Table 3.12: Customers with Assignment Change under Classical Location Setting

Customers with Assignment Change City Logistics(%) Classical LP(%)

R_u_100 82.9 81.9

R_n_100 94.7 84.7

C_u_100 92.0 77.2

C_n_100 92.3 74.0

RC_u_100 87.9 85.8

RC_n_100 90.5 81.7

68

If the CDCs were located within city, the results are again different (See Table 3.12).

This time clustered instances have significantly lower coordination requirements,

because clusters are simply assigned to CDCs with all their members; larger changes

in travel times are needed for changing assignments, thus changes occur less often. We

also observe an increase in the number of stable assignments when an instance includes

more customers close to the city center. Due to the same reason, the closely packed

customers are assigned as a whole. On the other hand, uniformly distributed instances

are not significantly affected from the change.

In conclusion, the results and observations in this chapter made it clear that a City

Logistics system must be adaptable to the ever-changing city environment. Cities are

dynamic organizations that evolve over time according to the needs and actions of their

inhabitants. The quality, capacity and coverage of the road network are among the

most important characteristics of a city that participate in the evolution process. These

characteristics are the subject of our interest in our analyses on the travel time

uncertainty. Our findings show that an effective City Logistics system can only be

implemented if the tactical and operational level decisions are updated in reaction to

the changes on the traffic conditions.

69

CHAPTER 4

EXACT SOLUTION METHODS AND PRELIMINARY COMPUTATIONAL

RESULTS

4. EXACT SOLUTION METHODS

In the previous section, we have seen that significant gains can be achieved when we

allow the allocation decisions to change over time. Since such an approach would be

realistic, we apply the two-stage stochastic formulation to the city logistics system

design problem.

Recall that the location-allocation problem is NP-hard (Snyder, 2006) and a small

increase in the number of customers results in a large increase in solution time. Since

we consider uncertainty through scenarios and need to make assignment decisions

specifically for each scenario, the computational complexity of the problem is higher

than its deterministic counterpart. For example, the instances considered in Chapter 3

include 20 binary and 100 continuous variables when the expected value formulation

is used and 20 binary and 10000 continuous variables when the two-stage stochastic

formulation is used (with 100 scenarios). To be able to deal with instances of realistic

size, we need to employ suitable solution methods. The largest instances that can be

solved under 2 hours include around 100 customers, which is clearly not a sufficiently

large customer base for a CL system.

Benders (1962) introduced Benders Decomposition for mixed integer problems. In

order to avoid the large number of variables, Benders suggests decomposing the

variables into two sets: continuous variables and complicating (binary/integer)

variables. The method requires construction of a Master Problem (MP) including the

complicating variables and a Sub-Problem (SP) including the continuous variables. At

each iteration, SP creates the cuts that constrain the solution space for MP and MP

makes guesses on the optimal levels of complicating variables and sends them to SP.

70

The algorithm converges in finite number of iterations and MP reaches a solution that

is equal/very close to the upper bound found by SP.

In this chapter, we construct and implement several Benders Decomposition algorithm

variants for computational enhancements.

The following is the optimization model of the city logistic system design problem

under cost uncertainty:

Variables

 𝑧𝑖 determines if the candidate CDC location i is selected or not (binary

variable)

 𝑥𝑖𝑗𝑠 determines the amount of demand served from CDC i to customer j in

scenario s (continuous variable)

Parameters

 𝐷𝑗 , demand from customer j

 𝐶𝑖, capacity of CDC i

 𝑇𝑖𝑗𝑠, travel time between CDC i and customer j in scenario s

 𝐹𝑖, fixed cost of opening and operating CDC i

 𝑃𝑠, probability of scenario s

Model – SLP2S

min

∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ ∑ ∑ 𝑇𝑖𝑗𝑠 ∗ 𝑥𝑖𝑗𝑠 ∗ 𝑃𝑠𝑠𝑗𝑖 (1.1)

subject to

∑ 𝑥𝑖𝑗𝑠𝑗 ≤ 𝐶𝑖 ∗ 𝑧𝑖 ∀ 𝑖𝑠 (1.2)

∑ 𝑥𝑖𝑗𝑠𝑖 = 𝐷𝑗 ∀ 𝑗𝑠 (1.3)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (1.4)

𝑥𝑖𝑗𝑠 ≥ 0 ∀ 𝑖𝑗𝑠 (1.5)

71

The objective function minimizes the sum of fixed cost of opening and operating

CDCs and variable cost of making deliveries to customers. Constraints (1.2) ensure

that the CDCs in service are open, constraints (1.3) guarantee the demand of each

customer to be satisfied and constraints (1.4)-(1.5) describe the domain of variables.

4.1 Benders Decomposition

Although Benders Decomposition is an effective approach when dealing with large-

scale mixed integer programming (MIP) problems and it has been used for decades on

many kinds of optimization problems, it also presents some difficulties. Benders

Decomposition algorithms often require very high solution times for convergence, due

to the fact that the algorithm may need to run for thousands of iterations (You and

Grossman, 2013). When the algorithm requires many iterations for convergence, both

Master Problem (MP) and Sub-problem (SP) need to be solved many times, plus the

solution time increases as the complexity of these problems increase.

We first observe the advantages and drawbacks of the Benders Decomposition

algorithm before proceeding with enhancements on it. The following figure illustrates

how we decompose the variables of our problem:

Figure 4.1: Repr. of the Model SLP2S and the Benders Decomposition Setting

72

Figure 4.2: Benders Decomposition Algorithm (BD)

Below we give the necessary definitions to be used in this chapter.

73

BD Subproblem

 𝑢𝑖𝑠, positive dual variable corresponding to (1.2)

 𝑣𝑗𝑠, free dual variable corresponding to (1.3)

 𝑧𝑖
′, constant that keeps the location decisions made in MP

 𝑧𝑆𝑃, objective function value of subproblem

max

𝑧𝑆𝑃 = ∑ ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠 ∗ 𝑧𝑖
′

𝑠𝑖 + ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠𝑠𝑗 (2.1)

subject to

−𝑢𝑖𝑠 + 𝑣𝑗𝑠 = 𝑇𝑖𝑗𝑠 ∗ 𝑃𝑠 ∀ 𝑖𝑗𝑠 (2.2)

𝑢𝑖𝑠 ≥ 0 ∀ 𝑖𝑠 (2.3)

𝑣𝑗𝑠 𝑈𝑅𝑆 ∀ 𝑗𝑠 (2.4)

𝑧𝑆𝑃 𝑈𝑅𝑆 (2.5)

BD Modified Subproblem

max

0 (2.6)

subject to

∑ ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠 ∗ 𝑧𝑖
′

𝑠𝑖 + ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠𝑠𝑗 = 1 (2.7)

−𝑢𝑖𝑠 + 𝑣𝑗𝑠 ≤ 0 ∀ 𝑖𝑗𝑠 (2.8)

𝑢𝑖𝑠 ≥ 0 ∀ 𝑖𝑠 (2.9)

𝑣𝑗𝑠 𝑈𝑅𝑆 ∀ 𝑗𝑠 (2.10)

74

BD Cut Generation

 oc, set of optimality cuts

 fc, set of feasibility cuts

 𝑐1𝑜𝑐 and 𝑐1𝑓𝑐 , constant value in a particular cut

 𝑐2𝑜𝑐,𝑖 and 𝑐2𝑓𝑐,𝑖 , variable coefficient in a particular cut

 𝑢𝑖𝑠
′ , constant that keeps the corresponding decisions made in SP or MSP

 𝑣𝑗𝑠
′ , constant that keeps the corresponding decisions made in SP or MSP

Optimality cuts and feasibility cuts are generated in the same way. For optimality cuts:

𝑐1𝑜𝑐 = ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠
′

𝑠𝑗 (2.11)

𝑐2𝑜𝑐,𝑖 = ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠
′

𝑠 (2.12)

For feasibility cuts:

𝑐1𝑓𝑐 = ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠
′

𝑠𝑗 (2.13)

𝑐2𝑓𝑐,𝑖 = ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠
′

𝑠 (2.14)

BD Master Problem

 𝑧𝑖, binary variable that indicates whether the CDC location i is selected or not

 𝑧𝑀𝑃, objective function value of master problem

min

𝑧𝑀𝑃 (2.15)

subject to

𝑧𝑀𝑃 ≥ ∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + 𝑐1𝑜𝑐 + ∑ 𝑐2𝑜𝑐,𝑖 ∗ 𝑧𝑖𝑖 ∀ 𝑜𝑐 (2.16)

𝑐1𝑓𝑐 + ∑ 𝑐2𝑓𝑐,𝑖 ∗ 𝑧𝑖𝑖 ≤ 0 ∀ 𝑓𝑐 (2.17)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (2.18)

𝑧𝑀𝑃 𝑈𝑅𝑆 (2.19)

75

Algorithm 4.1 Benders Decomposition Algorithm

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖, Time limit

Output: Gap, best solution generated

 1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹

 2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do

 3: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

 4: solve (2.1) - (2.5)

 5: if 𝑧𝑆𝑃 < 𝐼𝑁𝐹 then

 6: if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + 𝑧𝑆𝑃 < 𝑈𝐵 then

 7: 𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + 𝑧𝑆𝑃

 8: 𝐵𝑒𝑠𝑡 ← 𝑍

 9: end if

10: generate cut from (2.11) - (2.12)

11: else

12: solve (2.6) - (2.10)

13: generate cut from (2.13) - (2.14)

14: end if

15: solve (2.15) - (2.19)

16: 𝐿𝐵 ← 𝑧𝑀𝑃

17: end while

To observe convergence of the algorithm, we experiment with three groups of

instances: small (10 customers), medium (100 customers) and large (1000 customers).

All instances include 20 candidate CDC locations and 100 scenarios.

76

We examine the convergence behavior of the algorithm using some numerical

examples. The following figures are the convergence plots of such instances. The runs

were limited to 4 hours. We observed that only two feasibility cuts are added in the

second and third iterations of the algorithm. Addition of these cuts could be avoided if

a simple constraint ensuring the feasibility by forcing total capacity to be more than

total demand. However, we did not add such a cut, since the strength of feasibility cuts

are stronger than this constraint.

(a) Convergence of BD with small inst. (b) Convergence of BD with medium inst.

(c) Convergence of BD with large inst.

Figure 4.3: Convergence of BD

As can be seen in Figure 4.3, the algorithm requires about 180 iterations even for the

small instance and CPU time requirement is 92 seconds. For the middle size instance,

we see that the LB does not increase quickly and the algorithm does not converge in 4

hours. Same is true for the large instance where the LB increases only a little through

all the iterations. We also observe an important detail in the plot of the large instance,

since only around 120 iterations could be completed in 4 hours, while over 1800

77

iterations could be completed for the middle instance. Size of SP must be the reason

for this observation, since we keep the number of binary variables constant for all

instances, and size of MP does not change. To ensure that the size of SP is not affected

this much from the changes in the instance size, we apply the L-Shaped method.

4.2 L-Shaped Method

Slyke and Wets (1969) proposed the L-shaped method to further decompose SP into

smaller problems, each corresponding to a scenario of the problem. To show how this

is possible, we present the L-Shaped method representation in Figures 4.4-4.5:

Figure 4.4: Repr. of the Model SLP2S and the Lshaped Decomposition Setting

78

Figure 4.5: L-Shaped Algorithm (LS)

Note that the SP is decomposed into many smaller problems. The following changes

are made on the algorithm to decompose SP with respect to scenarios:

LS Algorithm Subproblem (s)

 𝑧𝑆𝑃𝑠
, objective function value of subproblem s

max

𝑧𝑆𝑃𝑠
= ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠 ∗ 𝑧𝑖

′
𝑖 + ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠𝑗 (3.1)

subject to

−𝑢𝑖𝑠 + 𝑣𝑗𝑠 = 𝑇𝑖𝑗𝑠 ∗ 𝑃𝑠 ∀ 𝑖𝑗 (3.2)

𝑢𝑖𝑠 ≥ 0 ∀ 𝑖 (3.3)

𝑣𝑗𝑠 𝑈𝑅𝑆 ∀ 𝑗 (3.4)

𝑧𝑆𝑃𝑠
 𝑈𝑅𝑆 (3.5)

79

LS Algorithm Modified Subproblem (s)

max

0 (3.6)

subject to

∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠 ∗ 𝑧𝑖
′

𝑖 + ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠𝑗 = 1 (3.7)

−𝑢𝑖𝑠 + 𝑣𝑗𝑠 ≤ 0 ∀ 𝑖𝑗 (3.8)

𝑢𝑖𝑠 ≥ 0 ∀ 𝑖 (3.9)

𝑣𝑗𝑠 𝑈𝑅𝑆 ∀ 𝑗 (3.10)

LS Cut Generation

Same as BD Cut Generation.

LS Master Problem

Same as BD Master Problem.

80

Algorithm 4.2 L-Shaped Algorithm

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖, Time limit

Output: Gap, best solution generated

 1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹

 2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do

 3: for 𝑠 = 1 𝑡𝑜 |𝑆| do

 4: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

 5: solve (3.1) - (3.5)

 6: end for

 7: if ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝐼𝑁𝐹 then

 8: if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝑈𝐵 then

 9: 𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠

10: 𝐵𝑒𝑠𝑡 ← 𝑍

11: end if

12: generate cut from (2.11) - (2.12)

13: else

14: for 𝑠 = 1 𝑡𝑜 |𝑆| do

15: solve (3.6) - (3.10)

16: end for

17: generate cut from (2.13) - (2.14)

18: end if

19: solve (2.15) - (2.19)

20: 𝐿𝐵 ← 𝑧𝑀𝑃

21: end while

81

Using this method, we significantly reduce the size of SP and obtain |S| small SPs.

When the instance size increases, sizes of these small SPs increase much slower than

with the SP of Benders Decomposition. The following are the convergence plots of

the L-Shaped method for the same three instances. To be able to compare the Benders

algorithm with the L-Shaped method, we plot their results together:

(a) Convergence of LS with small inst. (b) Convergence of LS with medium inst.

 (c) Convergence of LS with large inst.

Figure 4.6: Convergence of LS

As expected, the number of iterations did not change when we used L-Shaped method.

However, the solution time is much higher this time; because the SP was already small

and defining 100 SPs, which are sequentially solved at each iteration, was not efficient.

Thus, the solution time increased from 92 seconds to 1432 seconds. It seems that the

Benders algorithm gives better results, for small instances.

82

For the medium instance, we observe that the L-Shaped method does not do well since

the instance is not large enough to complete iterations more quickly with |S| smaller

SPs. Since the convergence does not occur until time limit, we can only observe the

number of iterations, and how much the LB could be increased. Again both bounds of

the two methods follow the same trajectories as expected.

However, a significant improvement could be observed when L-Shaped method is

used for the large instances. Since SP of the large instance is very large, replacing it

with small SPs provide great benefit. The number of iterations that we could observe

increased from 126 to 877 in this way, with the same time limit.

4.2.1 Multi-Cut

The reason for slow convergence of these algorithms is mainly due to the weakness of

the cuts generated by SPs. At each iteration we add one cut to MP, an optimality cut

or a feasibility cut, depending on SP being bounded/unbounded. A possible solution

to this problem could be adding multiple cuts at each iteration. Although these cuts

would be weak individually, their combined effect would hopefully achieve a faster

convergence.

83

Figure 4.7: L-Shaped Multi-Cut Algorithm (MC)

Birge and Louveaux (1988) and Birge and Louveaux (2011) propose the generation

multiple cuts, based on the L-Shaped method. Normally, we aggregate the dual prices

found by the |S| many SPs in the L-Shaped method, and create a single cut at each

iteration. The proposal is creating cuts out of each SP separately instead of aggregating

the cut data. Oliveira et al. (2014) and You and Grossman (2013) also use this method

when solving a two-stage stochastic model of a stochastic supply chain problem.

The following changes are made on the algorithm to allow for the creation of multiple

cuts (See Figure 4.7):

MC Subproblem (s)

Same as LS Subproblem(s).

MC Modified Subproblem (s)

Same as LS Modified Subproblem(s).

84

MC Cut Generation

For optimality cuts:

𝑐1𝑜𝑐,𝑠 = ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠
′

𝑗 (4.1)

𝑐2𝑜𝑐,𝑖,𝑠 = −𝐶𝑖 ∗ 𝑢𝑖𝑠
′ (4.2)

For feasibility cuts:

𝑐1𝑓𝑐 = ∑ ∑ 𝐷𝑗 ∗ 𝑣𝑗𝑠
′

𝑠𝑗 (4.3)

𝑐2𝑓𝑐,𝑖 = ∑ −𝐶𝑖 ∗ 𝑢𝑖𝑠
′

𝑠 (4.4)

MC Master Problem

 𝑧1𝑠, free variables that enable specific cuts for each scenario

min

𝑧𝑀𝑃 = ∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ 𝑧1𝑠𝑠 (4.5)

subject to

𝑧1𝑠 ≥ 𝑐1𝑜𝑐,𝑠 + ∑ 𝑐2𝑜𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖 ∀ 𝑜𝑐, 𝑠 (4.6)

𝑐1𝑓𝑐,𝑠 + ∑ 𝑐2𝑓𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖 ≤ 0 ∀ 𝑓𝑐, 𝑠 (4.7)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (4.8)

 𝑧1𝑠 𝑈𝑅𝑆 ∀ 𝑠 (4.9)

 𝑧𝑀𝑃 𝑈𝑅𝑆 (4.10)

85

Algorithm 4.3 Multi-Cut Algorithm

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖, Time limit

Output: Gap, best solution generated

 1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹

 2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do

 3: for 𝑠 = 1 𝑡𝑜 |𝑆| do

 4: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

 5: solve (3.1) - (3.5)

 6: end for

 7: if ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝐼𝑁𝐹 then

 8: if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝑈𝐵 then

 9: 𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠

10: 𝐵𝑒𝑠𝑡 ← 𝑍

11: end if

12: generate cut from (4.1) - (4.2)

13: else

14: for 𝑠 = 1 𝑡𝑜 |𝑆| do

15: solve (3.6) - (3.10)

16: end for

17: generate cut from (4.3) - (4.4)

18: end if

19: solve (4.5) - (4.10)

20: 𝐿𝐵 ← 𝑧𝑀𝑃

21: end while

By adding multiple cuts, we expect MP to be much more tightly constrained, and

convergence to occur in a smaller number of iterations. Figure 4.8 illustrates the

convergence plots of the Multi-cut algorithm for the same three instances. To be able

to compare the Multi-cut algorithm with the L-Shaped method, we plot their results

together:

86

 (a) Convergence of MC with small ins. (b) Convergence of MC with medium ins.

(c) Convergence of MC with large ins.

Figure 4.8: Convergence of MC

For the small instance, the number of iterations was reduced significantly compared to

the L-Shaped method. This is the result of constraining MP much stronger by adding

|S| cuts at each iteration. Thanks to this reduction, the CPU time is also reduced to 416

seconds (although still higher than the solution time of the Benders algorithm). For

small instances, it seems the Benders algorithm gives better results.

For medium and large instances, adding many cuts at each iteration results in MP

becoming very hard to solve after a number of iterations. Since these instances are

expected to require many iterations for convergence, we can predict that the size of

MP will increase with time, thus iterations will take more and more time. Although we

can observe a smaller number of iterations for this reason, the final LB found by the

Multi-Cut algorithm is higher than the one found by the L-Shaped algorithm.

87

4.2.2 Scenario-Group-Cut

A possible solution for creating too many cuts may be finding a balance between the

number of cuts (complexity of MP) and aggregate strength of cuts. Adulyasak et al.

(2015a) propose such a method. Instead of generating cuts for each scenario, they

suggest creating groups of scenarios and generating cuts for each scenario group. This

way, the number of cuts can be significantly reduced, thus making it possible to

observe more iterations with large instances. Naturally, the speed of convergence will

be reduced, but this is expected to be compensated by the higher number of iterations.

With more iterations, we can generate cuts based on a wider variety of levels for

complicating variables and creating cuts on different regions of the solution space.

This method is especially suitable in our problem, since we already generated the

scenarios in groups. We also expect that the real life travel time data can be easily

grouped in a similar way to how we constructed our scenarios. There would be three

main groups of high, medium and low traffic congestion levels. In addition, disruptions

to traffic flow would have deteriorating effect on the local level, especially for some

of the high and medium congestion days. The resulting five groups could be further

divided into two, by taking into account the similarities or dissimilarities between days.

In this subsection, we perform an experiment with the Scenario Group Cut (SGC)

Algorithm, so that its effect on the solution performance can be observed.

We can readily define scenario groups due to the way scenarios are constructed, as

explained in Chapter 3. The following are the natural groups that can be used:

 Average days

o Group 1 (No local traffic)

o Group 2 (With local traffic)

 Congested days

o Group 3 (No local traffic)

o Group 4 (With local traffic)

 Relaxed days

o Group 5

There are two ways for constructing scenario groups. One way is to create

representative scenario groups by sampling from the original groups we constructed.

88

To do the sampling, we simply take one scenario from each original group. This

approach actually maximizes dissimilarity within groups. Since in each group, we have

a representative sample of all the scenarios, the scenario groups resemble each other.

The second way is to create natural scenario groups, simply taking the original groups

as a whole. With this approach, we maximize similarity within each scenario group.

Therefore, we obtain dissimilar groups, in contrast to the first grouping approach.

It is clear that the scenario grouping approach that generates stronger cuts would lead

to better solution performance. To be able to compare them, we conducted some

preliminary experiments. The experiments showed that the second approach is

significantly more successful than the first one.

There is a simple reason for this result. When the scenario groups are similar, as is the

case with the first approach, the cuts generated from these groups are also similar.

Therefore, the combination of the cuts generated in one iteration is weaker. Since cuts

are similar, their effects overlap and the result is close to the single cut case.

On the other hand, when the scenario groups are dissimilar, the cuts they generate are

also dissimilar. Therefore, the effect of cuts do not overlap and the combined strength

of all cuts is higher.

We use the natural scenario groups. For this purpose, we construct 10 scenarios for

every instance, as this number is compatible with the number of scenarios in the

original groups. Preliminary experiments show that decreasing or increasing the

number of groups deteriorates solution performance.

Below we explain the modifications on the algorithm in order to generate scenario

group cuts:

SGC Subproblem (s)

Same as LS Subproblem(s).

89

SGC Modified Subproblem (s)

Same as LS Modified Subproblem(s).

SGC Cut Generation

Same as MC Cut Generation.

SGC Master Problem

 𝐺𝑠𝑔, set of scenarios included in scenario group sg

min

𝑧𝑀𝑃 = ∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ 𝑧1𝑠𝑔𝑠𝑔 (5.1)

subject to

𝑧1𝑠𝑔 ≥ ∑ 𝑐1𝑜𝑐,𝑠𝑠∈𝐺𝑠𝑔
+ ∑ ∑ 𝑐2𝑓𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖𝑠∈𝐺𝑠𝑔

 ∀ 𝑜𝑐, 𝑠𝑔 (5.2)

∑ 𝑐1𝑓𝑐,𝑠𝑠∈𝐺𝑠𝑔
+ ∑ ∑ 𝑐2𝑓𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖𝑠∈𝐺𝑠𝑔

 ≤ 0 ∀ 𝑓𝑐, 𝑠𝑔 (5.3)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (5.4)

 𝑧1𝑠𝑔 𝑈𝑅𝑆 ∀ 𝑠 (5.5)

90

Algorithm 4.4 Scenario-Group Cut Algorithm

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖, Time limit

Output: Gap, best solution generated

 1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹

 2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do

 3: for 𝑠 = 1 𝑡𝑜 |𝑆| do

 4: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

 5: solve (3.1) - (3.5)

 6: end for

 7: if ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝐼𝑁𝐹 then

 8: if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝑈𝐵 then

 9: 𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠

10: 𝐵𝑒𝑠𝑡 ← 𝑍

11: end if

12: generate cut from (4.1) - (4.2)

13: else

14: for 𝑠 = 1 𝑡𝑜 |𝑆| do

15: solve (3.6) - (3.10)

16: end for

17: generate cut from (4.3) - (4.4)

18: end if

19: solve (5.1) - (5.5)

20: 𝐿𝐵 ← 𝑧𝑀𝑃

21: end while

With this method, we reduce the number of cuts, at the expense of faster convergence.

Figure 4.9 shows the convergence plots of the Scenario Group Cut algorithm for the

same instances. To be able to observe the performance of the algorithm, we plot the

results together with the Benders Algorithm and Multi-Cut Algorithm:

91

 (a) Convergence of SGC with small ins. (b) Convergence of SGC with medium ins.

(c) Convergence of MC with large ins.

Figure 4.9: Convergence of SGC

The results are in parallel with our expectations. In the small instance, we can easily

observe that the new algorithm has slower convergence than Multi-Cut Algorithm, but

faster convergence than L-Shaped Algorithm, which creates a single cut at each

iteration. The solution time of 1100 seconds is also between these algorithms.

For the medium and large instances, the situation is similar. But especially for the large

instance, we observe a significant improvement both in terms of the number of

iterations and final LB value. When a good balance can be found between the number

of cuts (and the resulting increase in MP size) and the strength of added constraint set,

we achieve better bounds in the same amount of time.

92

4.2.3 Variable Number of Cuts

Another way to hybridize the algorithms is to start by following the multi-cut

procedure for some number of iterations and then continue by adding single/scenario-

group cuts. This method avoids adding too many cuts to MP, while retaining the

strength of the multi-cut algorithm for some iterations.

Below, we make the comparison on the same instances. For simplicity, we provide the

convergence plot of the Variable Cut (VC) algorithm along with the plots of L-Shaped

and Multi-Cut algorithms in Figure 4.10. In these experiments, we generate multiple

cuts for the first 30 iterations and continue with single cuts afterwards.

 (a) Convergence of VC with small ins. (b) Convergence of VC with medium ins.

(c) Convergence of VC with large ins.

Figure 4.10: Convergence of VC

For the small instance, plots look like what we expected. LB of the Variable Cut

algorithm increases as quickly as LB of the Multi-Cut algorithm for the first 30

iterations. Then, only a single cut is added at each iteration and the plots proceed

93

almost parallel to LB of the L-Shaped algorithm. Time until convergence is 846

seconds for the Variable Cut algorithm.

For the medium and large instances, we see that the variable cut idea did not work.

Since the number of iterations for achieving a meaningful increase in LB is very high,

generating multiple cuts for 30 iterations does not make much difference from the

ordinary L-Shaped algorithm. Still it produces slightly better results than the L-Shaped

algorithm and worse results than Multi-Cut algorithm.

If we create multiple cuts periodically, every 10 iterations, instead of for the first 30

iterations (VC-2), the resulting convergence plot for the small instances greatly

resembles to the one of L-Shaped algorithm (See Figure 4.11):

Figure 4.11: Convergence of VC-2 with small ins.

Note that there are small jumps every 10 iterations, but this is not sufficient to make a

significant difference on the speed of convergence. For larger instances the results are

similar.

4.2.4 Adding Initial Cuts

A similar approach can be used to generate many cuts at the beginning of the algorithm

but proceed by adding single/scenario-group cuts afterwards. We know that MP does

not select optimal locations (at least for the first iterations) and the cuts are generated

based on bad location decisions. Therefore, we may generate cuts based on arbitrarily

selected locations, too.

94

To select the locations, we solve each scenario separately in a Wait-and-See setting

and generate cuts based on these results. In this way, we avoid solving MP for |S| many

times, while generating better cuts than the ones produced by the algorithm on its own.

In Figure 4.12, we give the convergence plots of the algorithm that adds initial cuts

(IC).

 (a) Convergence of IC with small ins. (b) Convergence of IC with medium ins.

(c) Convergence of IC with large ins.

Figure 4.12: Convergence of IC

 For the small instance, the effect of adding initial cuts is clear from the figure. The

lower bound started the iterations from a significantly larger value. However, the

collective strength of the cuts we add through the iterations seems to be lower, since

the slope of the LB curve is lower than the LShaped method. Adding multiple cuts

produces better results.

For the medium and large instances, we observe that the effect of adding initial cuts is

much smaller. With the large instance, adding the initial cuts takes so much time that

there is little time left for making the actual iterations.

95

4.2.5 Partial Decomposition

Despite having implemented the Multi-Cut and Scenario-Group Cut algorithms, we

still cannot achieve fast convergence. One of the reasons for slow convergence of our

Benders Decomposition variants is that MP does not maintain any information on the

effect of its selection of complicating variables. It only takes into account the lower

bound values generated by the SP for some combinations of the complicating

variables. Therefore, MP has the tendency to select a combination that is not yet

covered by the cuts, whether this selection improves the objective function of the real

problem or not.

To maintain some of the information from the real problem in MP, Crainic et al. (2014)

suggest the partial decomposition (PD) method. In this method, the main idea of fully

separating the continuous and complicating variables into SP and MP is abandoned.

Instead the authors propose keeping some of the continuous variables in MP, so that

the problem is forced by the corresponding constraints to produce feasible objective

function values while also to improve the objective function value more quickly.

Since the continuous variables of our problem is suitable for decomposition with

respect to scenarios (as in the L-Shaped method), we can easily select some of the

scenarios to represent the continuous part of the problem and insert them into MP.

Naturally, dealing with large instances, it would be a good idea to only insert a small

number of constraints into MP, in order to avoid increasing the size of it too much.

Also, since we use this procedure to help MP make a more informed selection on the

complicating variables, we select the scenarios in a way that they collectively carry as

much information as possible. Therefore, the dissimilarity of scenarios is desirable.

We take one scenario from each scenario-group explained in the Section 6.2, to

construct a representative group of scenarios.

We add scenario-group cuts at each iteration. Since MP is already large, we try not to

further increase its size through adding a lot of cuts. When we use scenario-group cuts,

we maintain a good amount of information generated from subproblems without

suffering the drawbacks of the multi-cut approach.

96

PD Subproblem (s)

Same as LS Subproblem(s). Some subproblems are not used.

PD Modified Subproblem (s)

Same as LS Modified Subproblem(s). Some modified subproblems are not used.

PD Cut Generation

Same as MC Cut Generation.

PD Master Problem

 𝐺𝑠𝑔, set of scenarios included in a certain scenario group

 𝑈𝐺, union of all scenario groups

min

𝑧𝑀𝑃 = ∑ 𝐹𝑖 ∗ 𝑧𝑖𝑖 + ∑ 𝑧1𝑠𝑔𝑠𝑔 + ∑ ∑ ∑ 𝑥𝑖𝑗𝑠 ∗ 𝑇𝑖𝑗𝑠 ∗ 𝑃𝑖𝑗𝑠𝑗𝑖𝑠∉UG (6.1)

subject to

𝑧1𝑠𝑔 ≥ ∑ 𝑐1𝑜𝑐,𝑠𝑠∈𝐺𝑠𝑔
+ ∑ ∑ 𝑐2𝑜𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖𝑠∈𝐺𝑠𝑔

 ∀ 𝑜𝑐, 𝑠𝑔 (6.2)

∑ 𝑐1𝑓𝑐,𝑠𝑠∈𝐺𝑠𝑔
+ ∑ ∑ 𝑐2𝑓𝑐,𝑖,𝑠 ∗ 𝑧𝑖𝑖𝑠∈𝐺𝑠𝑔

 ≤ 0 ∀ 𝑓𝑐, 𝑠𝑔 (6.3)

∑ 𝑥𝑖𝑗𝑠𝑗 ≤ 𝑧𝑖 ∗ 𝐶𝑖 ∀ 𝑖, 𝑠 ∉ UG (6.4)

∑ 𝑥𝑖𝑗𝑠𝑖 ≤ 𝐷𝑗 ∀ 𝑗, 𝑠 ∉ UG (6.5)

𝑥𝑖𝑗𝑠 ∈ {0,1} ∀ 𝑖𝑗𝑠 (6.6)

𝑧𝑖 ∈ {0,1} ∀ 𝑖 (6.7)

 𝑧1𝑠𝑔 𝑈𝑅𝑆 ∀ 𝑠 (6.8)

97

Algorithm 4.5 Partial Decomposition Algorithm

Input: 𝑇𝑖𝑗𝑠, 𝐷𝑗 , 𝐶𝑖, 𝐹𝑖 , 𝑝𝑠, 𝜖, Time limit

Output: Gap, best solution generated

 1: 𝑖𝑡𝑒𝑟 ← 0, 𝑈𝐵 ← +𝐼𝑁𝐹, 𝐿𝐵 ← −𝐼𝑁𝐹

 2: while 𝑈𝐵 − 𝐿𝐵 > 𝜖 do

 3: for 𝑠 = 1 𝑡𝑜 |𝑆| do

 4: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

 5: solve (3.1) - (3.5)

 6: end for

 7: if ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝐼𝑁𝐹 then

 8: if ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠 < 𝑈𝐵 then

 9: 𝑈𝐵 ← ∑ 𝑧𝑖′𝑖 ∗ 𝐹𝑖 + ∑ 𝑧𝑆𝑃𝑠𝑠

10: 𝐵𝑒𝑠𝑡 ← 𝑍

11: end if

12: generate cut from (4.1) - (4.2)

13: else

14: for 𝑠 = 1 𝑡𝑜 |𝑆| do

15: solve (3.6) - (3.10)

16: end for

17: generate cut from (4.3) - (4.4)

18: end if

19: solve (6.1) - (6.8)

20: 𝐿𝐵 ← 𝑧𝑀𝑃

21: end while

The convergence plot of the Partial Decomposition algorithm along with the L-Shaped

and Multi-Cut algorithms are given in Figure 4.13.

98

 (a) Convergence of PD with small ins. (b) Convergence of PD with medium ins.

 (c) Convergence of PD with large ins.

Figure 4.13: Convergence of PD

There are clear differences between the algorithms’ performances. The most striking

difference is that both for small and medium instances, UB very quickly reaches

optimum (we already know the optimal solution). In addition, LB also increases

sharply and reaches optimum more rapidly than any other algorithm we implemented

for the small instance. However, this is not the case for the medium instance. In fact,

only 80 iterations could be completed in a time limit of 4 hours. This is due to the

increased size of MP, which takes a lot more time to be solved, due to the additional

continuous variables. An important observation is that the partial decomposition idea

does not work for our problem, if we attempt to deal with large instances.

99

4.2.6 Eliminating Dominated Cuts

A way to avoid increasing the size of MP due to the addition of multiple cuts may be

to eliminate the cuts that are dominated by others. We implemented such an

elimination procedure into our algorithm, In order to see how many cuts can be

eliminated and what effect the procedure would have on the results. To explain cut

dominance, we give the following generic example, given in Magnanti and Wong

(1981):

When the problem can be formulated as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑌,𝑧∈𝑅 {𝑧: 𝑧 ≥ 𝑓(𝑢) + 𝑦𝑔(𝑢) ∀ 𝑢 ∈ 𝑈}

where R is the set of real numbers, and we have two cuts:

𝑧 ≥ 𝑓(𝑢1) + 𝑦𝑔(𝑢1) (a)

𝑧 ≥ 𝑓(𝑢) + 𝑦𝑔(𝑢) (b)

We say that (a) dominates (b) if the following condition is satisfied with strict

inequality for at least one point 𝑦 ∈ 𝑌:

𝑓(𝑢1) + 𝑦𝑔(𝑢1) ≥ 𝑓(𝑢) + 𝑦𝑔(𝑢) ∀ 𝑦 ∈ 𝑌

If no cut dominates (a), we call this a Pareto-optimal cut.

To determine if a cut dominates another, we have to know whether the inequality is

valid for all elements of the set Y, which has tens of thousands of elements in our case.

At this point, we need to take into account the tradeoff between the computational

burden of determining dominance relations and the benefit of reducing the number of

constraints. Based on our preliminary experiments, we choose twenty location

decision combinations on which to decide the validity of the inequality. We risk losing

some non-dominated cuts since we do not consider all the combinations.

100

When we implemented the cut elimination (CE) procedure, we obtained the following

results. We plot the results together with the L-Shaped and Multi-Cut algorithms for

convenience in Figure 4.14:

 (a) Convergence of IC with small ins. (b) Convergence of IC with medium ins.

(c) Convergence of CE with large ins.

Figure 4.14: Convergence of CE

For both the small and large instances, we observe that the cut-elimination procedure

did not improve or deteriorate the algorithm performance. The statistics show that 414

cuts were eliminated out of 4600 cuts generated for the small instance, and 2025 cuts

were eliminated out of 27100 cuts generated for the large instance. On the other hand,

the number of iterations for the small instance increased from 43 to 46 and from 266

to 271 respectively. Solution time slightly increased for the small instance, and did not

change for the larger instance. Overall, we can conclude that the elimination procedure

does not produce significant improvement on these problem instances.

101

4.3 Other Methods for Accelerating Benders Decomposition

Other than the ones we considered, there are many modifications proposed in the

literature attempting to accelerate the Benders Decomposition algorithm. Some of

these methods achieve great improvement over the original algorithm. However, these

modifications are usually problem-specific and fail to make significant difference for

other problems. In this section, we list these modifications and discuss the reasons why

we did not consider them in our study.

Pareto-optimal Cuts

A frequently used method in the Benders Decomposition literature is the addition of

Pareto-Optimal Cuts to MP. This method was proposed by Magnanti and Wong (1981)

and has been used due to its ease of implementation. The method exploits the idea that

several different cuts can be generated based on a single location decision, if the

resulting SP is degenerate. Then, the problem becomes finding the tightest (non-

dominated) cut for addition to MP. This can be done using another SP for detecting

the tightest possible cut with the help of a core point in the feasible region of the

complicating variables. Usually, application of this method obtains slightly better

results than the original algorithm.

Wentges (1996), Adulyasak et al. (2015a), Sherali and Lunday (2013) and Papadakos

(2008) use this method and provide insights on how the algorithm can be further

developed. However, generating pareto-optimal cuts do not guarantee an overall

improvement on the solution performance. As pointed out by Oliveira et al. (2014),

there are several implementation issues. For instance, a core point must be selected

according to the current convex hull of the complicating variables and an additional

SP is required for the algorithm to find a pareto-optimal cut. These two requirements

are major problems for the algorithmic efficiency, because finding a core point may

be difficult and may require an additional separation problem to be solved at each

iteration, plus solving the SP dedicated to pareto-optimal cuts may be difficult in itself.

Thus, the solution time for each iteration increases due to the extensions and adding

slightly better cuts does not provide significant benefit.

102

Є-optimal solution

Geoffrion and Graves (1974) suggest not solving MP to optimality, but solving it until

a specified gap is obtained (when UB-LB<Є). This method does not prevent the proof

of optimality, because the decisions of MP are only required for the generation of cuts.

This approach accelerates the completion of iterations when the master problem is hard

to solve. Fischetti et al. (2010) also uses this method.

For our case, this enhancement does not make much difference. This is because our

Master Problem is small. It includes only 20 binary variables. The complexity of MP

increases only when a large number of cuts are added to the problem or when the

original problem is decomposed partially, leaving some continuous variables in MP.

Our experiments showed that even in those cases, the effect of this enhancement is

insignificant. For this reason, we do not implement it in our algorithms.

Local branching

Fischetti and Lodi (2003) propose the local branching method. In this method, the

feasible region of a large optimization problem is divided into smaller regions and the

optimal solutions in each region are found separately by using significantly smaller

models, thus in a shorter time. Then, these results are used with a branching strategy

to solve the original problem. Rei et al. (2009) uses this method.

The main advantage of this enhancement is to obtain faster solution of MP especially

when there is a meaningful way of dividing the feasible region. We do not consider its

implementation, because we can divide the feasible region only arbitrarily. Also, the

time-consuming part of our algorithm is solving SPs rather than solving MP.

Cross-decomposition

Lastly, we have the cross-decomposition method proposed by Roy (1986) and used by

Uster and Agrahari (2011). This method aims to accelerate the Benders Decomposition

algorithm by achieving a faster solution of MP. Since MP usually includes only binary

variables, there are several decomposition methods that may provide a quicker solution

103

than the classical Branch and Bound; for instance, Lagrangean Relaxation is a good

example to such methods.

Advantages of this enhancement and reasons for us not implementing it are the same

as local branching.

Other methods we did not consider are as follows: maximum feasible subsystem cut

generation strategy (Saharidis and Ierapetritou, 2010a), covering cut bundle generation

(Saharidis et al., 2010b), valid inequalities in initialization (Saharidis et al., 2011),

maximum density cut generation (Saharidis and Ierapetritou, 2013), minimal

infeasible subsystems (Fischetti et al., 2008).

4.4 Branch and Cut Based on Benders Decomposition

The cut generation procedure used in Benders Decomposition is also frequently used

in combination with the Branch and Bound method. One of the first studies to use this

framework is McDaniel and Devine (1977). A contemporary example can be seen in

Fortz and Poss (2009). The main idea is to make use of the Benders cuts in order to

more efficiently search the classical Branch and Bound tree. Benders cuts reduce the

size of the feasible region at each node, resulting in larger lower bounds, which

increases the number of fathomed branches. Being able to fathom more branches,

algorithm is expected to search a larger portion of the tree compared to the classical

Branch and Bound algorithm.

We observed that most of the studies considering the Branch and Benders Cut (B&BC)

procedure consider problems requiring more feasibility cuts than optimality cuts for

convergence. Such behavior increases the benefit of using B&BC, since a lot of nodes

can be fathomed due to infeasibility, which allows for a significantly faster search.

Although a large majority of our cuts are of optimality type, we still consider this

solution method as a possibility.

There are many alternative strategies that can be implemented in a B&BC framework.

For instance, using depth-first, breadth-first, and best-first strategies produce quite

different outcomes. The number of cuts to be added at each iteration is also an

important choice. These alternatives will be explored in this section.

104

Before explaining the distinctions between different B&BC settings, we give the

general B&BC algorithm. Figure 4.15 illustrates the main steps of the algorithm.

Figure 4.15: Branch and Cut with Benders Decomposition Algorithm (B&C-BD)

4.4.1 No Decomposition

Not making any decomposition in the original problem results in a similar method to

the classical Branch and Bound. With this approach, the whole problem, including

decision variables from both stages, is solved at each node of the tree. For our case,

the only advantage of this approach over the Branch and Bound method may be the

use of optimality cuts with the hope of fathoming more nodes which would accelerate

the search.

Our preliminary experiments showed that this acceleration is not large enough to

rationalize using this method. Especially in medium and large instances, solving the

whole problem at each node takes too much time. Even when the binary constraints

are relaxed, the sheer number of continuous variables require a long solution time at

each node. We abandoned this method, since we have obtained more promising results

with the L-Shaped method.

105

4.4.2 Full Decomposition

In this setting, we fully decompose the first and second stage decision variables. We

solve MP and SPs at each node. Similarly to the L-Shaped method, we combine the

results of MP and SPs to make the necessary computations. For instance, as the

objective function value of MP does not fully include the transportation cost associated

with the given location decisions (it only includes the cost as much as forced by the

optimality cuts, which may not be strong enough), we obtain the transportation cost

term from the SPs. The objective function value obtained in this way becomes lower

bound for the node. If the location decisions made in MP are integral, then the solution

of the current node is a candidate solution and its objective function value becomes

the upper bound if it is the best solution found so far.

We know from the preliminary experiments that a few feasibility cuts are required

when full decomposition is employed. To simplify the tree, we generate these

feasibility cuts with an initial cut generation procedure. We apply the L-Shaped

method for only 10 iterations and generate the necessary cuts. We still maintain the

modified SPs within the B&BC algorithm. After this initial procedure no additional

feasibility cuts are needed. The algorithm only generates optimality cuts in the B&BC

algorithm.

Parallel to the L-Shaped method, we have three main alternative approaches for cut

generation: single-cut, multiple-cuts and scenario-group cuts. We do not consider the

other enhancements to the L-Shaped method, since the preliminary experiments

showed that they are inferior to the selected approaches.

The advantages and disadvantages of using these approaches are similar to the ones

explained earlier in section 6.2. However, there is an important difference between

B&BC and L-Shaped method. Master problems of B&BC include continuous location

decisions. This leads to much lower computational complexity for the master problems

which neutralizes the main drawback of adding multiple cuts. When MP was a binary

integer problem in L-Shaped method, adding cuts increased the complexity of MP so

much that the L-Shaped algorithm would slow down after too many cuts were added.

This is not expected to be the case with B&BC, since this time MP is a continuous

problem.

106

Based on these results we expect that adding multiple cuts will perform significantly

better than the others and preliminary experiments showed this is the case. Figure 4.16

shows the convergence behavior of the algorithm for this particular implementation.

We plot the results of B&BC along with L-Shaped and MultiCut algorithms. Note that

the iteration number for B&BC is equal to the number of nodes search in the tree.

 (a) Conv. of B&C-BD with small ins. (b) Conv. of B&C-BD with medium ins.

(c) Conv. of B&C-BD with large ins.

Figure 4.16: Convergence of B&C-BD

The most important difference in the results obtained by the B&BC algorithm is the

large gaps left after the time limit is reached. This is due to the unexplored nodes in

the branch and bound tree. Since the algorithm cannot search the tree fast enough to

fathom these nodes, there are always unexplored nodes in the tree with very small

lower bound values. Thus, the gap we obtain at the time limit is not as small as the

ones obtained by the previous algorithms.

The algorithm spends a lot of time for solving SPs. To accelerate the search, we

considered solving SPs at only integer nodes. Solving SPs allow us to observe the real

107

LB values at each node and we are able to fathom some nodes by comparing them with

the UB. If we sacrifice quick fathoming, it is possible to avoid solving SPs at non-

integer nodes, since the objective function value found by MP is a valid LB, however,

it is not tight. We experimented on this idea and the results are illustrated in Figure

4.15.

 (a) Conv. of B&C-BD-2 with small ins. (b) Conv. of B&C-BD-2 with medium ins.

 (c) Conv. of B&C-BD-2 with large ins.

Figure 4.17: Convergence of B&C-BD-2

With this approach we are able to search a much larger part of the tree and we find

better UBs most of the time. However, we still cannot decrease the gap at the time

limit. In fact, the gap is larger this time, because LBs are equal to the objective function

values of MP. In other words, we do not find the actual LBs for the nodes of the tree,

but we use the bounds that correspond to the L-Shaped methods LBs for each node.

108

4.4.3 Partial Decomposition

Partial decomposition is the hybrid implementation between no decomposition and full

decomposition. We consider partial decomposition due to its success in finding good

solutions faster than the full decomposition method. The allocation decisions left in

MP have more significant power than optimality cuts in directing MP to good

solutions. On the other hand, it has the same drawback as no decomposition method.

With large instances, the extra assignment decisions increase the complexity of MP

significantly. Therefore, MP takes longer to be solved and the algorithm slows down.

With the lower speed, only a smaller part of the tree can be searched.

We provide the preliminary results for partial decomposition (B&C-PD), in Figure

4.16. This time we only consider the results obtained by solving SPs in fewer nodes.

 (a) Conv. of B&C-PD with small ins. (b) Conv. of B&C-PD with medium ins.

(c) Conv. of B&C-PD with large ins.

Figure 4.18: Convergence of B&C-PD

The results are very similar to the previous algorithm. We observe two differences.

First, very good UBs are found in the early stages of the algorithm. These UBs are

109

often equal to the best known integer solutions in our experiments. Also, for the small

instance, the algorithm converges in a moderate time. Second difference is the

significant decrease in the number of nodes that can be searched within time limit. For

the medium and large instances, this number decreased because MP takes significantly

longer due to the continuous variables it includes.

4.5 Comparison of Exact Solution Methods

In this subsection, we test and compare performances of the algorithms implemented.

We mainly consider two performance measures, some other details are also given for

assessing the differences between the algorithms:

 Percent gap between the best integer solution found and lower bound at the

time of completion

 CPU time in seconds

We make the comparison on two levels. On the first level, we experiment with all

methods on 3 instances (R_u_L_10, R_u_L_100 and R_u_L_1000). We use this level

of computational results to screen out the methods that are obviously dominated by

others in terms of solution quality. On the second level, we experiment with selected

methods on 36 instances. Obviously the larger number of instances provide a more

reliable base for comparing the selected methods.

4.5.1 First Level Comparison

Tables 4.1-4.3 summarize our findings for the small, medium and large instances

respectively. We report the best integer/UB, lower bound, number of iterations

(number of nodes checked), CPU time and Gap results. Gap is always calculated as

the percent difference between the last UB and LBs found by the method.

𝐺𝑎𝑝 % =
𝑈𝐵−𝐿𝐵

𝐿𝐵
*100

110

Table 4.1: Comparison of Exact Solution Methods with Small Instance

Results for

R_u_L_10_1

Best

Integer

Lower

Bound

Iter.

(Nodes

Checked)

CPU Time

(sec)
GAP%

Two-Stage St. 250160.1 250160.1 N/A 2.6 0.0

Benders Dec. Alg. 250160.1 250160.1 170 75.3 0.0

L-Shaped Alg. 250160.1 250160.1 175 1203 0.0

Multi-Cut Alg. 250160.1 250160.1 42 402.1 0.0

Sc. Gr. Cut Alg. 250160.1 250160.0 120 618.5 0.0

Variable Cut Alg. 250160.1 250160.1 58 640.4 0.0

Initial Cut Alg. 250160.1 250160.1 100+137 103.7 0.0

Partial Dec. 250160.1 250160.1 38 375.2 0.0

B&C-BD-2 250160.1 250160.1 46(1313) 1494.9 0.0

B&C-PD 250160.1 250160.1 38(993) 1295.4 0.0

For the small instance, we can see that all algorithms are able to find the optimal

solution within time limit. As explained in the corresponding sections, Benders

Algorithm appear to converge in considerably shorter time than others, since SP is

small, and further decomposition does more harm than good. We see that the multi-

cut algorithm sharply reduces the CPU time and number of iterations, and the scenario-

group cut algorithm performs between the two, as expected. Variable cut algorithm

performs badly despite the small number of iterations, but partial decomposition is

able to further reduce the number of iterations.

111

Table 4.2: Comparison of Exact Solution Methods with Medium Instance

Results for

R_u_L_100_1

Best

Integer

Lower

Bound

Iter.

(Nodes

Checked)

CPU Time

(sec)
GAP%

Two-Stage St. 251602.1 251602.1 N/A 9706.6 0.0

Benders Dec. Alg. 251602.1 251378.1 1818 * 0.1

L-Shaped Alg. 251602.1 251409.4 977 * 0.1

Multi-Cut Alg. 251602.1 251220.2 225 * 0.2

Sc. Gr. Cut Alg. 251610.9 251305.6 599 * 0.1

Variable Cut Alg. 251610.9 251217.9 498 * 0.2

Initial Cut Alg. 251622.1 251462.4 100+2501 * 0.1

Partial Dec. 251622.3 251222.2 111 * 0.2

B&C-BD-2 251602.1 228391.8 817(4904) * 10.2

B&C-PD 251610.9 228394.3 653(3125) * 10.2

* Time Limit Exceeded

For the medium instance, none of the Benders algorithm variants reach convergence

within the time limit. Although they produce small gaps, they do not perform in any

way better than CPLEX. Although the algorithms do not converge within time limit,

an important observation is that most of their UB values are equal to the optimal

objective function value. This shows that all the algorithms find the optimal location

decisions at some point and they update their UB to the optimal value with the

corresponding dual prices. Actually, this often happens quite early through the

iterations, for example at the 4th iteration of the partial decomposition procedure.

112

Table 4.3: Comparison of Exact Solution Methods with Large Instance

Results for

R_u_L_1000_1

Best

Integer

Lower

Bound

Iter.

(Nodes

Checked)

CPU

Time

(sec)

GAP%

Two-Stage St. 1010631.3 239004.7 N/A * 322.8

Benders Dec. Alg. 265938.4 260631.3 199 * 2.0

L-Shaped Alg. 265603.0 260631.3 877 * 1.9

Multi-Cut Alg. 265595.0 260861.2 292 * 1.8

Sc. Gr. Cut Alg. 265595.0 261182.8 612 * 1.7

Variable Cut Alg. 265605.7 260679.6 661 * 1.9

Initial Cut Alg. 276335.5 260631.3 100+6 * 6.0

Partial Dec. 265593.4 261407.5 6 * 1.6

B&C-BD-2 266185.4 235856.5 620(2116) * 12.9

B&C-PD 265593.4 235869.9 491(1188) * 12.6

* Time Limit Exceeded

The real power of the algorithms can be seen when the large instance is considered.

While CPLEX cannot find any meaningful results within the time limit (it also failed

to produce a good integer solution in 48 hours), algorithms are able to conduct many

iterations, gradually finding better bounds. This time, the differences between

algorithms appear to be more important.

Since the problem size is large, dealing with a large SP reduces the performance of

Benders Decomposition algorithm considerably. L-Shaped algorithm does not suffer

from such a large SP, but it lacks the cuts to produce good bounds, despite completing

877 iterations. On the other hand, multi-cut and scenario-group cut algorithms obtain

the best solutions among all due to the addition of multiple cuts at each iteration. Multi-

cut algorithm reaches the best UB luckily at the 265th iteration and scenario-group cut

algorithm later at 341st iteration due to the lower number of cuts added each time.

Since the actual number of iterations needed for convergence is very high, we do not

expect the variable-cut algorithm to be a lot different than the l-shaped algorithm; in

113

fact, it gives slightly worse results, since the addition of multiple cuts at the beginning

increases MP size and wastes time during the rest of the algorithm.

In the light of these observations, we select MC, SGC, PD and B&C-PD for making

further experiments on the second level. The first three are able to consistently produce

low gap values and their UBs are always optimal or equal to the best solution known.

B&C-PD will be included in the experiments because it is also good at finding good

UBs, despite producing very bad gap values.

4.5.2 Second Level Comparison

In addition to the methods selected in the previous section, we provide the results of

TLAP as well.

Tables 4.4-4.6 summarize our findings for the small, medium and large instances

respectively. Best solutions for each instance are given in bold.

114

T

a
b

le
 4

.4
:

C
o
m

p
ar

is
o
n
 o

f
S

el
ec

te
d
 E

x
ac

t
S

o
lu

ti
o
n
 M

et
h
o
d
s

w
it

h
 S

m
al

l
In

st
an

ce
s

T
a

b
le

 4
.5

:
C

o
m

p
ar

is
o
n
 o

f
S

el
ec

te
d
 E

x
ac

t
S

o
lu

ti
o

n
 M

et
h
o

d
s

w
it

h
 M

ed
iu

m
 I

n
st

an
ce

s

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

R
_

u_
L

_
1
0

_
1

2
5
0

1
6

0
.1

2
.6

0
.0

2
5
0

1
6

0
.1

4
0
2

.1
0

.0
2

5
0

1
6

0
.1

6
1
8

.5
0

.0
2

5
0

1
6

0
.1

3
7
5

.2
0

.0
2

5
0

1
6

0
.1

1
2
9

5
.4

0
.0

R
_

n_
L

_
1
0

_
1

2
5
0

1
7

9
.6

7
.2

0
.0

2
5
0

1
7

9
.6

1
9
7

3
.3

0
.0

2
5
0

1
7

9
.6

4
5
4

3
.0

0
.0

2
5
0

1
7

9
.6

7
7
0

.6
0

.0
2

5
0

1
7

9
.6

3
7
8

1
.9

0
.0

C
_

u_
L

_
1
0

_
1

2
5
0

1
8

0
.5

2
.9

0
.0

2
5
0

1
8

0
.5

4
8
3

.1
0

.0
2

5
0

1
8

0
.5

7
8
9

.2
0

.0
2

5
0

1
8

0
.5

2
4
1

.9
0

.0
2

5
0

1
8

0
.5

9
9
8

.6
0

.0

C
_

n_
L

_
1
0

_
1

2
5
0

1
6

7
.2

2
.4

0
.0

2
5
0

1
6

7
.2

1
6
0

.2
0

.0
2

5
0

1
6

7
.2

2
2
4

.9
0

.0
2

5
0

1
6

7
.2

1
0
5

.2
0

.0
2

5
0

1
6

7
.2

4
5
6

.7
0

.0

R
C

_
u_

L
_

1
0

_
1

2
5
0

1
8

0
.7

4
.2

0
.0

2
5
0

1
8

0
.7

4
9
2

.8
0

.0
2

5
0

1
8

0
.7

1
2
4

8
.2

0
.0

2
5
0

1
8

0
.7

2
7
1

.3
0

.0
2

5
0

1
8

0
.7

1
2
3

7
.0

0
.0

R
C

_
n_

L
_

1
0

_
1

2
5
0

1
5

5
.7

3
.2

0
.0

2
5
0

1
5

5
.7

2
6
7

.4
0

.0
2

5
0

1
5

5
.7

2
8
1

.5
0

.0
2

5
0

1
5

5
.7

1
7
4

.5
0

.0
2

5
0

1
5

5
.7

7
2
1

.2
0

.0

R
_

u_
S

_
1

0
_

1
7

3
0

2
4

4
.1

4
.4

0
.0

7
3
0

2
4

4
.1

6
9
8

.2
0

.0
7

3
0

2
4

4
.1

1
9
1

1
.0

0
.0

7
3
0

2
4

4
.1

4
9
4

.5
0

.0
7

3
0

2
4

4
.1

1
9
2

7
.9

0
.0

R
_

n_
S

_
1

0
_

1
7

8
8

6
6

9
.3

7
.1

0
.0

7
8
8

6
6

9
.3

3
0
2

3
.7

0
.0

7
8
8

6
6

9
.3

9
4
3

5
.6

0
.0

7
8
8

6
6

9
.3

1
0
8

9
.4

0
.0

7
8
8

6
6

9
.3

6
5
9

1
.5

0
.0

C
_

u_
S

_
1

0
_

1
7

9
1

5
8

6
.6

3
.0

0
.0

7
9
1

5
8

6
.5

7
3
7

.1
0

.0
7

9
1

5
8

6
.5

1
5
9

4
.1

0
.0

7
9
1

5
8

6
.5

3
8
6

.4
0

.0
7

9
1

5
8

6
.5

1
3
1

3
.1

0
.0

C
_

n_
S

_
1

0
_

1
7

5
1

5
6

1
.4

2
.1

0
.0

7
5
1

5
6

1
.4

3
2
0

.2
0

.0
7

5
1

5
6

1
.4

5
9
5

.7
0

.0
7

5
1

5
6

1
.4

1
5
0

.5
0

.0
7

5
1

5
6

1
.4

4
9
6

.7
0

.0

R
C

_
u_

S
_

1
0
_

1
7

9
2

0
6

6
.5

4
.0

0
.0

7
9
2

0
6

6
.5

7
1
4

.0
0

.0
7

9
2

0
6

6
.5

2
2
9

7
.8

0
.0

7
9
2

0
6

6
.5

4
1
8

.6
0

.0
7

9
2

0
6

6
.5

1
6
8

6
.4

0
.0

R
C

_
n_

S
_

1
0
_

1
7

0
8

7
7

6
.3

3
.3

0
.0

7
0
8

7
7

6
.3

3
8
5

.0
0

.0
7

0
8

7
7

6
.3

8
2
9

.3
0

.0
7

0
8

7
7

6
.3

2
6
8

.8
0

.0
7

0
8

7
7

6
.3

1
0
2

3
.6

0
.0

R
e
su

lt
s

fo
r

S
m

a
ll

In
st

a
n
ce

s

T
L

A
P

B
&

C
-P

D
M

C
S

G
C

P
D

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

R
_
u_

L
_
1
0
0
_
1

2
5
1
6
0
2
.1

9
7
0
6
.6

0
.0

2
5
1
6
0
2
.1

*
0
.2

2
5
1
6
1
0
.9

*
0
.1

2
5
1
6
2
2
.3

*
0
.2

2
5
1
6
1
0
.9

*
1
0
.2

R
_
n_

L
_
1
0
0
_
1

2
5
1
7
4
4
.3

7
5
3
8
.3

0
.0

2
5
1
7
4
4
.3

*
0
.1

2
5
1
7
4
7
.3

*
0
.1

2
5
1
7
4
7
.7

*
0
.1

2
5
1
7
4
4
.3

*
1
0
.1

C
_
u_

L
_
1
0
0
_
1

2
5
1
5
5
1
.2

6
3
0
5
.9

0
.0

2
5
1
5
5
1
.2

*
0
.0

2
5
1
5
5
1
.2

*
0
.0

2
5
1
5
5
1
.2

*
0
.0

2
5
1
5
5
1
.2

*
1
0
.1

C
_
n_

L
_
1
0
0
_
1

2
5
1
5
6
0
.9

5
1
3
9
.4

0
.0

2
5
1
5
6
0
.9

*
0
.1

2
5
1
5
6
0
.9

*
0
.0

2
5
1
5
6
0
.9

*
0
.1

2
5
1
5
6
0
.9

*
1
0
.1

R
C

_
u_

L
_
1
0
0
_
1

2
5
1
4
5
5
.0

6
3
6
1
.9

0
.0

2
5
1
4
7
2
.8

*
0
.1

2
5
1
4
5
5
.0

*
0
.1

2
5
1
4
6
2
.0

*
0
.1

2
5
1
4
5
5
.0

*
1
0
.1

R
C

_
n_

L
_
1
0
0
_
1

2
5
1
6
7
7
.3

5
5
5
3
.7

0
.0

2
5
1
6
7
7
.3

*
0
.1

2
5
1
6
7
7
.3

*
0
.0

2
5
1
6
7
7
.3

*
0
.0

2
5
1
6
7
7
.3

*
1
0
.0

R
_
u_

S
_
1
0
0
_
1

7
3
0
6
2
4
.5

1
7
5
4
.9

0
.0

7
3
3
2
6
3
.9

*
1
9
.3

7
3
8
2
6
0
.1

*
1
6
.1

7
3
6
6
7
9
.9

*
1
9
.2

7
3
3
2
6
3
.9

*
3
0
.1

R
_
n_

S
_
1
0
0
_
1

7
7
3
2
9
2
.2

1
9
9
4
.9

0
.0

7
7
4
1
8
2
.3

*
1
4
.5

7
7
3
2
9
2
.2

*
1
1
.7

7
7
4
3
1
8
.1

*
1
2
.3

7
7
3
2
9
2
.2

*
2
1
.3

C
_
u_

S
_
1
0
0
_
1

7
1
5
3
6
9
.3

4
3
6
.7

0
.0

7
1
5
3
6
9
.3

*
5
.0

7
1
5
3
6
9
.3

*
3
.5

7
1
5
3
6
9
.3

*
3
.4

7
1
5
3
6
9
.3

*
1
5
.8

C
_
n_

S
_
1
0
0
_
1

7
1
8
2
7
4
.1

7
6
9
.0

0
.0

7
1
8
2
7
4
.1

*
8
.0

7
1
8
2
7
4
.1

*
6
.1

7
1
8
2
7
4
.1

*
6
.6

7
1
8
2
7
4
.1

*
1
9
.1

R
C

_
u_

S
_
1
0
0
_
1

6
8
6
5
0
7
.6

7
6
9
.0

0
.0

6
8
6
5
0
7
.6

*
1
2
.4

6
8
6
5
0
7
.6

*
9
.8

6
8
8
6
0
7
.4

*
1
2
.5

6
8
6
5
0
7
.6

*
2
4
.6

R
C

_
n_

S
_
1
0
0
_
1

7
5
3
2
0
0
.8

8
5
7
.8

0
.0

7
5
3
2
0
0
.8

*
5
.9

7
5
3
2
0
0
.8

*
4
.1

7
5
3
2
0
0
.8

*
4
.1

7
5
3
2
0
0
.8

*
1
4
.5

R
e
su

lt
s

fo
r

M
e
d
iu

m

In
st

a
n
ce

s

T
L

A
P

B
&

C
-P

D
M

C
S

G
C

P
D

*
 T

im
e

lim
it

 e
xc

ee
d

ed
.

115

T
a
b

le
 4

.6
:

C
o
m

p
ar

is
o
n
 o

f
S

el
ec

te
d
 E

x
ac

t
S

o
lu

ti
o
n
 M

et
h
o
d
s

w
it

h
 L

ar
g
e

In
st

an
ce

s

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

B
e
st

 I
n
te

g
e
r

C
P

U
 T

im
e

(s
e
c)

G
A

P
%

R
_

u_
L

_
1
0

0
0

_
1

1
0
1
0
6
3
1
.3

*
3

2
2

.8
2

6
5

5
9

5
.0

*
1

.8
2

6
5

5
9

5
.0

*
1

.7
2

6
5

5
9

3
.4

*
1

.6
2

6
5

5
9

3
.4

*
1

2
.6

R
_

n_
L

_
1
0

0
0

_
1

1
0
1
4
4
8
7
.2

*
3

1
9

.6
2

6
7

8
8

6
.6

*
1

.2
2

6
7

8
4

0
.4

*
1

.2
2

6
7

8
8

6
.9

*
1

.0
2

6
7

8
4

0
.4

*
1

1
.7

C
_

u_
L

_
1
0

0
0

_
1

1
0
1
2
6
7
3
.4

*
3

2
1

.0
2

6
5

9
4

7
.9

*
1

.1
2

6
5

9
4

7
.9

*
1

.0
2

6
5

9
4

7
.9

*
0

.9
2

6
6

0
0

2
.4

*
1

1
.8

C
_

n_
L

_
1
0

0
0

_
1

1
0
1
3
5
1
5
.5

*
3

2
0

.0
2

6
7

1
2

0
.0

*
1

.3
2

6
7

1
2

0
.0

*
1

.2
2

6
7

1
2

0
.0

*
1

.0
2

6
7

1
2

0
.0

*
1

1
.9

R
C

_
u_

L
_

1
0

0
0

_
1

1
0
1
2
5
5
0
.9

*
3

2
1

.2
2

6
6

4
5

6
.9

*
1

.4
2

6
6

4
5

6
.9

*
1

.3
2

6
6

4
9

9
.1

*
1

.2
2

6
6

4
5

6
.9

*
1

2
.1

R
C

_
n_

L
_

1
0

0
0

_
1

1
0
1
1
9
9
4
.5

*
3

2
2

.0
2

6
5

9
7

5
.3

*
1

.5
2

6
5

9
4

0
.7

*
1

.4
2

6
5

9
4

0
.7

*
1

.2
2

6
5

9
2

0
.5

*
1

2
.1

R
_

u_
S

_
1

0
0

0
_

1
1
3
1
8
9
3
7
.5

*
1

0
7

.6
7

1
8

1
7

0
.6

*
2

4
.9

7
1
7

8
0

2
.7

*
2

2
.8

7
1
7

8
0

2
.7

*
2

1
.2

7
2
6

1
4

6
.0

*
3

3
.3

R
_

n_
S

_
1

0
0

0
_

1
1
4
3
4
6
1
7
.2

*
9

8
.6

7
8
5

2
1

1
.0

*
1

4
.0

7
8
5

2
1

1
.0

*
1

3
.8

7
8
6

6
0

5
.8

*
1

0
.6

7
8
5

2
1

1
.0

*
1

8
.9

C
_

u_
S

_
1

0
0

0
_

1
1
3
8
0
2
0
2
.2

*
1

0
2

.1
7

2
8

4
3

6
.7

*
1

3
.5

7
2
8

4
3

6
.7

*
1

1
.8

7
2
8

4
3

6
.7

*
1

1
.1

7
3
2

6
8

0
.1

*
2

0
.9

C
_

n_
S

_
1

0
0

0
_

1
1
4
0
5
4
6
4
.6

*
9

9
.1

7
6
3

5
9

9
.7

*
1

5
.7

7
6
3

5
9

9
.7

*
1

4
.8

7
6
3

5
9

9
.7

*
1

2
.1

7
6
3

5
9

9
.7

*
2

1
.0

R
C

_
u_

S
_

1
0
0

0
_

1
1
3
7
6
5
2
7
.1

*
1

0
2

.5
7

4
3

7
0

5
.8

*
1

7
.9

7
4
3

7
0

5
.8

*
1

7
.1

7
4
4

9
7

2
.8

*
1

4
.3

7
5
0

6
7

2
.6

*
2

4
.6

R
C

_
n_

S
_

1
0
0

0
_

1
1
3
5
9
8
3
5
.6

*
1

0
5

.4
7

2
8

5
5

4
.3

*
1

8
.6

7
2
7

6
1

4
.1

*
1

7
.4

7
2
8

2
2

0
.1

*
1

4
.9

7
2
7

6
1

4
.1

*
2

4
.3

R
e
su

lt
s

fo
r

L
a

rg
e

In
st

a
n
ce

s

T
L

A
P

B
&

C
-P

D
M

C
S

G
C

P
D

*
 T

im
e

lim
it

 e
xc

ee
d

ed
.

116

On Table 4.4, the most successful method is TLAP. Since the instances in this groups

are small, the low computational complexity of the model does not necessitate a

decomposition approach. MC, SGC, PD and B&C-PD are all able to find the optimal,

but they require much longer solution time to converge. The average solution time is

only 3.9 seconds for TLAP, while for other methods, this figure is 804.8, 2030.7, 395.6

and 1794.2 respectively. In terms of solution time, PD is the most efficient exact

solution method with small instances. This result is due to the lower number of

iterations needed until convergence. On average, only 36 iterations are enough for PD

to converge. For MC and SGC, 49 and 171 are the average number of iterations,

respectively. B&C-PD takes longer time until convergence, since it explores hundreds

of nodes on the branch-and-bound tree and needs to solve MP at each node.

Table 4.5 shows a different picture. This time, none of the decomposition methods

converge within the time limit of four hours for any of the instances. Still the UB

values are often equal to the optimal objective function values. The average gap

obtained by MC, SGC, PD and B&C-PD are 5.5%, 4.3%, 4.9% and 15.5%

respectively. The number of instances where the methods’ UBs are equal to optimal

are 9, 9, 6 and 10, respectively.

For large instances, TLAP is not able to find any optimal solution. Decomposition

methods also fail to converge within time limit. Average gap obtained by MC, SGC,

PD and B&C-PD are 9.4%, 8.8%, 7.6% and 17.9%. The number of instances where

the methods’ UBs are equal to the best known values are 7, 10, 6 and 8, respectively.

Overall, we observe that MC, SGC and PD produce comparable gap values, while

B&C-PD is unsuccessful with respect to this performance measure. SGC and PD are

the most successful methods with medium and large instances, respectively. For

medium and large instances, where solution time is always limited to the time limit,

we cannot make a comparison with respect to this performance measure. For small

instances, PD is by far the fastest solution method.

Among the exact solution methods we considered in this study, we believe SGC and

PD are the two most successful ones. In Chapter 6, we give the results from further

experiments with these methods.

117

CHAPTER 5

APPROXIMATE SOLUTION METHODS AND PRELIMINARY

COMPUTATIONAL RESULTS

5. APPROXIMATE SOLUTION METHODS

Methods based on Benders Decomposition are more successful with large problem

instances than the standard solvers, as expected. Although they do not converge within

the time limit, they are able to produce good upper bounds, which are often found in

early steps and stay as the best solution until the end. Most of the time it is hard to find

any other solutions to which these solutions can be compared for large instances. This

makes it difficult for a benchmarking study to be performed.

We usually observe that the methods based on Benders Decomposition find optimal

solutions, but they may not converge within time limit in order to certify optimality

for medium instances.

In this chapter, we introduce an evolutionary algorithm to deal with the benchmarking

issues, assessment of results of computational experiments, and finding a good upper

bound in a reasonable time.

We briefly summarize the relevant studies in the literature. Kung-Jeng et al. (2011)

propose a genetic algorithm for the location-allocation problem in a two-echelon

supply chain with stochastic demand. Altınel et al. (2009) develop a location-

allocation heuristic for the capacitated multi-facility Weber problem with probabilistic

customer locations. Stanimirovic and Kratica (2007) present two heuristics based on

genetic algorithms and fast interchange heuristic in order to solve the discrete ordered

median problem. Bischoff and Dachert (2009) compare several heuristic algorithms

for the solution of generalized location-allocation problems. Their primary focus is on

the local search algorithms for the allocation decisions. Lastly, Rajagopalan et al.

(2007) develop four metaheuristic algorithms for a probabilistic location model. We

118

analyzed the operators of the algorithms in these studies, and the conventional ones in

the literature, before developing our algorithm.

In this section, we first explain the details of the algorithm. Then, we conduct a

factorial design analysis to find the best parameter values. The major steps of an

evolutionary algorithm can be illustrated as given in Figure 5.1:

Figure 5.1: Evolutionary Algorithm

Now, we go into the detail of the algorithm steps one by one.

5.1 Representation Scheme

We use a simple binary representation scheme, only storing the first-stage decisions in

the chromosomes. This is a valid approach, because there is only a single optimum set

of second-stage decisions for each set of first-stage decisions. Thus, no information is

lost by storing only the first-stage decisions.

Also, we do not need to include the second-stage decisions in the chromosomes,

because it would not be meaningful to apply algorithmic operators (crossover and

mutation) to them. For example, we cannot perform a crossover operation between the

second-stage decisions of two solutions if their first-stage decisions are different.

119

A typical chromosome looks like the one given in Example 5.1:

Example 5.1.

Each CDC candidate is assigned a binary variable determining whether it is open or

not.

5.2 Decoding and Fitness Evaluation

In our case, decoding is a very important part of the algorithm, since the whole set of

second-stage decisions are to be modeled in this part. There are several alternative

methods that can be used to obtain these decisions: making optimal decisions, using

(nested) metaheuristics, using heuristics.

Making optimal decisions for the second-stage is possible through solving a simple

mathematical model for each chromosome. Note that we fix the first-stage decision

variables to the values on the chromosome. Since the second-stage decision variables

are all continuous, this process is expected to be relatively short. However, the process

may take too much time in application. For instance, our preliminary experiments

showed that for large instances, evaluation of each chromosome in this way takes more

than 90 seconds. Considering that the algorithm needs to evaluate possibly thousands

of distinct chromosomes, we believe that making optimal decisions would not serve

our purpose.

Instead of dealing with longer computational times, it is possible to use metaheuristics

embedded within an algorithm focusing on the first-stage decisions. Second-stage

decisions can be made using another evolutionary or tabu search algorithm. If we

consider the large instances, let us say each of which include 1000 customers and 100

scenarios, the estimated time required for convergence would still be too large.

For such an evolutionary algorithm, using crossover and mutation operators to change

customer allocations, it would not be efficient in finding good solutions compared to

a simple heuristic. Due to the random nature of evolutionary algorithms, these

operators are preserving the solution variety, as the algorithm relies on evaluating a

CDC Candidate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

120

large number of alternatives in finding a good solution. Such a process may waste the

precious solution time by disregarding the allocation decisions that can be easily made.

To direct the search, we can make local search within the algorithm, using an

improvement heuristic. We believe that such an improvement heuristic can be

successful without an evolutionary algorithm and find the solutions of similar quality

in much shorter time.

If implemented efficiently, it also provides as good results as a tabu search algorithm.

The main advantage of tabu search algorithms over simple heuristics is their permitting

moves that worsen the solution performance. In this way, tabu search algorithms

escape local optima. In our case, in which the customer demand is usually much

smaller than the CDC capacities, local optima are very close to the global optimum.

We can expect a simple swapping move to find good results. With these points in mind,

we develop a heuristic for making second-stage decisions.

5.2.1 Hybrid Algorithm

We first consider developing a greedy algorithm for making the second-stage

decisions. At each iteration, the algorithm simply searches the transportation costs

between non-assigned customers and open CDCs and then finds customer-CDC pair

that incurs the smallest cost and assigns the customer to that CDC, provided the CDC

still has enough capacity.

Unfortunately, it did not work very well. We have seen that the solutions produced are

not very close to the optimum. On average, we observe a large gap for the solution

performance of greedy algorithm from the optimal solution.

The reason for the failure of greedy algorithm is that the customers close to the city

center in our problem setting. All these customers who are far away from all CDCs are

always assigned in the later iterations of the algorithm. Since some CDCs are already

working at full capacity in these stages, such customers cannot be assigned to their

closest CDCs. Instead, they are assigned to the closest CDCs with some available

capacity.

121

To prevent such an outcome, we need to improve the solution found by the greedy

algorithm. When CDCs are at full capacity, an improving move can be in the form of

a swap. Thus, an improvement heuristic such as 2-opt or 3-opt may suit very well to

the purpose.

Applying 2-opt or 3-opt to the whole set of customers is very time-consuming for large

instances. As expected, preliminary experiments showed that the time requirement of

2-opt (3-opt) is close to (much larger) than the time needed for optimizing the second

stage decisions.

An obvious remedy to this problem is to reduce the number of customers considered

in the improvement heuristic. Unfortunately, it is not possible without reducing the

solution performance. However we can benefit from problem specific knowledge to

keep solution performance as high as possible, while reducing the time requirement.

Locations of CDC candidates being on the city boundaries is a very important feature

of our problem. A typical instance can be seen in Figure 5.2. As mentioned earlier,

customers close to the city boundaries can easily be assigned to their closest CDCs by

the greedy algorithm, but this is not the case for customers close to the city center.

Clearly, it does not make sense for us to consider these customers in the improvement

stage. Instead, we determine a range value, and assignments incurring transportation

cost below that value are not considered in the improvement stage. Reducing this value

is expected to improve solution performance, while increasing it deteriorates solution

performance.

122

Figure 5.2: Range Values of the Hybrid Algorithm

We made experiments combining the greedy algorithm to construct a feasible solution

and the swapping algorithm to improve this solution. The results are summarized in

the following table. 20 experiments are made with different sets of location decisions

for each combination of parameters. Note that average gap to optimal values only take

into account the transportation cost terms of the objective function.

123

Table 5.1: Comparison of Evaluation Methods

Method Range Value
Average # of

Nodes Included

Average Gap

to Optimal

(Tr. Cost) (%)

Average

Time (sec)

Greedy+2opt

25 204.3 1.4 19.4

35 120.7 2.1 7.9

40 81.0 2.6 6.1

50 24.3 3.2 5.2

70 2.1 3.4 4.6

100 0.3 3.5 4.6

Greedy+3opt

25 204.3 - +90.0

35 120.7 - +90.0

40 81.0 - +90.0

50 24.3 3.2 60.1

70 2.1 3.4 7.2

100 0.3 3.5 5.0

LP solution N/A N/A 0.0 90.0

Range values are determined so that the effect of small and large values can be

observed. Also, values smaller than 25 are not considered, since the time requirement

gets close to 90 seconds even for the first combination. Thus, the method loses its

advantage over LP solution.

It can be easily seen from the table that the average gap to optimal does not change

when 3-opt algorithm is used instead of 2-opt. This is because the demand from

individual customers are very small in comparison to the CDC capacity. Therefore, we

may expect the 2-way swaps to cover most or all of the improving moves. 3-way swaps

only make sense when 3 customers that are assigned to 3 different CDCs must be

swapped for improvement. However, due to the same reason mentioned above, such a

swap is also possible with 2 consecutive 2-way swaps. When we compare the average

times they take, we can say that the first combination, i.e. greedy algorithm and 2-opt,

is much better.

124

Also when we compare the heuristic solutions and optimal solutions for a large number

of chromosomes (See Figure 5.3). While some heuristic solutions are close to the

optimum, others are very far from it. We are mostly interested in the ranking of

chromosomes, because the algorithm is expected to converge to the best solution, no

matter how well it has been evaluated. If the ranking of chromosomes is wrong, the

algorithm continues the search in the wrong direction.

Figure 5.3: Performance of the Hybrid Algorithm with Constant Ranges

At this point an important observation was made. The range values determined above

are constant for all scenarios. However, we construct our scenarios in groups to

represent low congestion, high congestion and local congestion cases. This creates

differences between the average transportation costs of different scenarios. Therefore,

a constant distance limit affects each scenario differently. While hundreds of

customers are considered for 2-opt in one scenario, only a few customers may be

considered in another. This way, allocation may be made badly in one scenario, while

it may be made near-optimally in another. Since we are interested in the average cost

through scenarios, we need to make equally good decisions in all scenarios.

The solution we found to this problem is using variable range values. This time, they

are determined specifically for each scenario, depending on the average and standard

deviation of transportation cost. Table 5.2 summarizes the results. We do not consider

3-opt in this setting, since the previous results showed no significant difference

between using 2-opt or 3-opt, despite the higher time requirement of 3-opt.

125

Table 5.2: Comparison of Evaluation Methods

Method
Range Value

(Std. Dev.)

Average # of

Nodes

Included

Average

Gap to

Optimal

(Tr. Cost)

Average

Time (sec)

Greedy+2opt

0.0 423.5 0.2 36.3

0.5 205.3 0.8 18.3

1.0 112.5 2.0 9.7

1.5 82.0 2.7 6.7

2.0 55.4 2.9 5.7

2.5 33.2 3.0 5.2

3.0 18.9 3.1 4.9

LP solution N/A N/A 0.0 90.0

The improvement obtained from using variable distance limits can be most clearly

seen in a comparison between first row of Table 5.1 and second row of Table 5.2.

While the average time it takes for the algorithms to complete are nearly the same on

these rows, the average gap to optimal is significantly lower with range values are

variable.

We make the same comparison with these range values, we obtain Figure 5.4. This

time we observe a significant improvement in the stability of the performance of

heuristic solutions. Fitness ranking of chromosomes is quite similar to the actual

ranking. This leads us to believe that determining the range values in this way makes

the heuristic performance reliable.

126

Figure 5.4: Performance of the Hybrid Algorithm with Changeable Ranges

We implement the hybrid algorithm in the evaluation step of the evolutionary

algorithm. We use variable distance limits. The last decision regarding this step is

determining how many standard deviations should be used for selecting the distance

limits. σ=0 takes too much time, so it will not be considered. σ=0.5 again takes long,

but it provides a significant benefit in the solution performance. σ=1.5, σ=2, σ=2.5 and

σ=3 are close to each other with respect to solution performance, thus σ=3 can be

considered due to its time requirement being shorter.

The average gap of 3% is still a little problematic, especially for small and large size

instances. Although, the main algorithm is able to find the chromosome containing

optimal decisions, it may converge towards a different solution with seemingly better

performance due to the suboptimal allocation decisions. We could think of two

different solutions to this problem.

As the main algorithm gets closer to satisfying the stopping condition, the distance

limit may be reduced. This way, a finer evaluation of chromosome is possible without

resorting to time-consuming methods like solving LPs. When this solution is

implemented, we found that σ=0.5 performs sufficiently well. The timing we choose

to switch to σ=0.5 will be explained later in the subsection 7.8.

After the main algorithm converges, we considered all the chromosomes evaluated so

far, sorted them according to their fitness values (which are found with the hybrid

heuristic) and selected the best chromosomes for exact evaluation. If the best fitness

127

found so far is scaled to 1, we select the chromosomes until fitness value 1.05. If the

optimal set of location decisions have already been found, the corresponding

chromosome will most likely fall into the set selected for exact evaluation. Exact

evaluation is made with the help of an LP model that takes fixed location decisions as

input and produces optimum allocation decisions.

Algorithm 5.1 describes the steps of the hybrid algorithm. It takes the chromosome,

CDC capacities, customer demands, transportation costs and range value as inputs and

calculates the total cost of assignment decisions.

Algorithm 5.1 Hybrid Algorithm (HA)

Input: Chromosome, CDC cap.s, Cust. demands, Transp. costs, Range value

Output: Cost of assignment

 1: Initialize assignment variables

 2: for 𝑠 = 1 𝑡𝑜 |𝑆| do

 3: Initialize CDC capacities

 4: Initialize customer demands

 5: while ∑ 𝐷𝑒𝑚𝑗𝑗 > 0 do

 6: let 𝑇𝑖𝑗𝑠 be the minimum cost between an unassigned customer and a

 CDC with sufficient capacity

 7: 𝐴𝑠𝑠𝑖𝑔𝑛𝑖𝑗𝑠 ← 1

 8: 𝐶𝑎𝑝𝑖 ← 𝐶𝑎𝑝𝑖 − 𝐷𝑒𝑚𝑗

 9: 𝐷𝑒𝑚𝑗 ← 0

10: end while

11: Initialize customer demands

12: 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 ← 𝐴𝑠𝑠𝑖𝑔𝑛 ∗ 𝑇

13: for each customer pair with 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 > 𝜇(𝑇) + 𝑙𝑖𝑚𝑖𝑡 ∗ 𝜎(𝑇) do

14: if 𝐷𝑒𝑚𝑗1
+ 𝐶𝑎𝑝𝑖1

> 𝐷𝑒𝑚𝑗2
 𝒂𝒏𝒅 𝐷𝑒𝑚𝑗2

+ 𝐶𝑎𝑝𝑖2
> 𝐷𝑒𝑚𝑗1

 do

15: 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
← 𝑇𝑖1𝑗1𝑠 + 𝑇𝑖2𝑗2𝑠 − 𝑇𝑖1𝑗2𝑠 − 𝑇𝑖2𝑗1𝑠

16: else

17: 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
← −1

18: end if

128

19: end for

20: let 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
 be the largest improvement

21: while 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
> 0 do

22: 𝐴𝑠𝑠𝑖𝑔𝑛𝑖1𝑗1𝑠 ← 0

23: 𝐴𝑠𝑠𝑖𝑔𝑛𝑖2𝑗2𝑠 ← 0

24: 𝐴𝑠𝑠𝑖𝑔𝑛𝑖1𝑗2𝑠 ← 1

25: 𝐴𝑠𝑠𝑖𝑔𝑛𝑖2𝑗1𝑠 ← 1

26: 𝐶𝑎𝑝𝑖1
← 𝐶𝑎𝑝𝑖1

+ 𝐷𝑒𝑚𝑗1
− 𝐷𝑒𝑚𝑗2

27: 𝐶𝑎𝑝𝑖2
← 𝐶𝑎𝑝𝑖2

+ 𝐷𝑒𝑚𝑗2
− 𝐷𝑒𝑚𝑗1

28: 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 ← 𝐴𝑠𝑠𝑖𝑔𝑛 ∗ 𝑇

29: for each customer pair with 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 > 𝜇(𝑇) + 𝑙𝑖𝑚𝑖𝑡 ∗ 𝜎(𝑇) do

30: if 𝐷𝑒𝑚𝑗1
+ 𝐶𝑎𝑝𝑖1

> 𝐷𝑒𝑚𝑗2
 and 𝐷𝑒𝑚𝑗2

+ 𝐶𝑎𝑝𝑖2
> 𝐷𝑒𝑚𝑗1

 do

31: 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
← 𝑇𝑖1𝑗1𝑠 + 𝑇𝑖2𝑗2𝑠 − 𝑇𝑖1𝑗2𝑠 − 𝑇𝑖2𝑗1𝑠

32: else

33: 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
← −1

34: end if

35: end for

36: let 𝐼𝑚𝑝𝑟𝑖1𝑗1𝑖2𝑗2
 be the largest improvement

37: end while

38: end for

39: 𝐶𝑜𝑠𝑡 ← ∑(𝐴𝑠𝑠𝑖𝑔𝑛 ∗ 𝑇)

5.2.2 Fitness Database

No matter which method we select, fitness evaluation of chromosomes is

computationally expensive. Even when σ=3, it takes around 5 seconds for each

chromosome. Due to the large number of chromosomes that requires evaluation, most

of the solution time is spent on evaluating chromosomes.

We make use of a matrix called fitness database to prevent the evaluation of the same

chromosomes in different generations. This matrix stores the chromosomes in its rows

and the corresponding fitness values at the end of each row. Before evaluating each

129

chromosome, we first check this database. If the chromosome is already evaluated, we

simply take the fitness value from the database; if not, we evaluate it using the hybrid

algorithm.

When the standard deviation value is changed, for instance from σ=3 to σ=0.5, all

entries in the database are cleared, since the old fitness values are most probably not

equal with the finer evaluation that can be done with the smaller distance limits.

5.3 Initial Population

We use two methods to generate the initial population. If the evolutionary algorithm

is to be run after a Benders Decomposition based algorithm, it is possible to include

the good solutions found by that method in the initial population of evolutionary

algorithm. Knowing that these are all good solutions, we can expect EA to converge

quickly. If the number of initial solutions obtained in this way is fewer than the

population size, the remaining solutions can be generated randomly or by modifying

the original solutions.

Preliminary experiments showed that the effect of using this approach is not

satisfactory. While the convergence is quicker as expected, the good solutions found

in the initial population rapidly direct the search to their neighborhood, and the

algorithm often converges without finding a better solution than the best solution in

the initial population. Changing the algorithm parameters such as crossover rate,

mutation rate or tournament selection coefficient does not change this behavior.

On the other hand, when the initial population is constructed with randomly generated

chromosomes, we observe slightly slower convergence. However, the algorithm is

often able to find better results than the ones found in the previous setting. This change

may be attributed to the diversity provided by the initial population. For a significantly

diverse initial population, the algorithm is able to search a larger portion of the solution

space. Due to these reasons, we choose to construct the initial population with

randomly generated chromosomes. Since the chromosomes are simple constructs and

all set of open CDCs are valid as long as they have sufficient capacity, we do not use

a dedicated heuristic for selecting good locations.

130

Chromosomes are randomly generated in the following way. We start with a

chromosome where all entries are zero. When we call the repair function, which will

be explained later in subsection 7.6. The repair function selects random closed CDCs

and opens them. This process is repeated until the total capacity is sufficient for total

demand.

Algorithm 5.2 describes the steps of the process. The algorithm operates a single loop

for generating “population size” many chromosomes. RO is the abbreviation of Repair

Operator.

Algorithm 5.2 Initial Population Generator (IPG)

Input: 𝑃𝑆𝑖𝑧𝑒

Output: Initial population

 1: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do

 2: 𝑃𝑜𝑝𝑖 ← 𝑅𝑂(𝑧𝑒𝑟𝑜 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒)

 3: end for

5.4 Parent Selection

We use the roulette wheel selection method to select the parents that will be included

in the mating pool. We rank the chromosomes according to their fitness and assign

them numbers that will determine selection probability. The best chromosome takes 0,

the second one 1, the third one 1+p, the fourth one 1+p+p2 etc. When a random number

generated between 0 and the number assigned to the last chromosome, we select the

chromosome with the largest number smaller than the random number. The selection

is made with replacement, so that the chromosomes are allowed to be represented more

than once in the mating pool. We repeat this process until the mating pool is full.

The p value has significant effect on the algorithm behavior. We will call p the “Elitism

Rate”. When the elitism rate is higher, we apply elitism less strongly during the

selection process. When p is small, the good solutions have a large selection

probability, while bad solutions are rarely selected. This leads to faster convergence

and less genetic variety, since the bad solutions cannot produce offspring and their

genes are left out of the population. On the other hand, when p is large, the probability

131

of selecting good or bad chromosomes are not very different. This leads to slower

convergence and more genetic variety.

We work with p values around 0.95 and 0.97 to conserve genetic variety. Genetic

variety is much more valuable than saving time with faster convergence, since the

algorithm performance is largely affected by genetic variety.

Algorithm 5.3 describes the steps of parent selection process. The algorithm takes

population size, number of matings, selection rate, population and fitness values of

population members to create the mating pool.

Algorithm 5.3 Parent Selector (PS)

Input: 𝑃𝑆𝑖𝑧𝑒, 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝑆𝑅𝑎𝑡𝑒, 𝑃𝑜𝑝, 𝑍𝑃𝑜𝑝

Output: 𝑀𝑃𝑜𝑜𝑙

 1: 𝑃𝑜𝑝 ← sort 𝑃𝑜𝑝 in descending order of 𝑍𝑃𝑜𝑝

 2: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do

 3: 𝑆𝑃𝑜𝑝𝑖
← 𝑆𝑅𝑎𝑡𝑒𝑖−1

 4: end for

 5: for 𝑖 = 1 𝑡𝑜 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do

 6: generate 𝑟𝑛𝑑, a standard random variable

 7: for 𝑗 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do

 8: if 𝑆𝑃𝑜𝑝𝑗+1
> 𝑟𝑛𝑑 ∗ 𝑆𝑃𝑜𝑝𝑃𝑆𝑖𝑧𝑒

 do

 9: 𝑀𝑃𝑜𝑜𝑙𝑖 ← 𝑃𝑜𝑝𝑗

10: break

11: end if

12: end for

13: end for

5.5 Crossover

One-point and two-point crossover operators are the most frequently used operators in

the facility location literature. However, we believe these operators are very

inefficient, at least in our case, since they often produce infeasible solutions. Even

132

when they manage to produce feasible solutions, the number of open facilities may be

more than needed, leading to a bad solution performance. Often repair or local search

operators are used in order to modify the resulting offspring into reasonable solutions.

This process is often time-consuming and can be prevented with an effective crossover

operator.

We use a simple operator. The parent chromosomes, taken as arrays, are multiplied

with a constant smaller than or equal to 0.5. The result of their summation includes

entries equal to 0, 1, or a fractional value. From this resulting array, both child

chromosomes are constructed randomly. If the summation includes 1’s, the

corresponding CDCs are opened in both child chromosomes. Other CDCs with

nonzero genes are opened randomly until the total capacity is sufficient to serve all

customers. If the summation does not include any 1’s, the CDCs with nonzero genes

are opened randomly until the same condition is satisfied.

Selection of the constant may be left to the decision maker. If it is taken 0.5, the CDCs

that are open in both parents will always be open in both children. If it is taken smaller

than 0.5, this is not the case. In our case, we prefer the constant to be smaller than 0.5,

to conserve or even increase the population diversity.

We believe we serve two conflicting objectives at the same time with this operator.

First, we are able to transfer the genetic information from parents to their offspring;

second, we conserve genetic variety by the random selection of candidate CDCs. The

computational results also show that the operator is successful.

Example 5.2 illustrates the crossover process. Crossover constant is selected as 0.4.

The selected parents are multiplied with the constant. We call their summation the

mold, since two chromosomes are shaped by it. Then, the two chromosomes are

generated in the way explained above.

133

Example 5.2.

We prefer a large crossover rate to quickly search the solution space. Nevertheless, we

will investigate the effect of alternative rates in the factorial design, which will be

explained in the subsection 7.10.

Algorithm 5.4 describes the steps of the crossover operator. It takes number of matings,

crossover rate and mating pool as inputs and creates the offspring.

Parent 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

Parent 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0

Mold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 0.8 0.0 0.0 0.0 0.0 0.4 0.8 0.0 0.4 0.0 0.4 0.4 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0

Offspring 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0

Offspring 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

134

Algorithm 5.4 Crossover Operator (CO)

Input: 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝐶𝑅𝑎𝑡𝑒, 𝑀𝑃𝑜𝑜𝑙

Output: Offspring before mutation

 1: 𝑖 ← 0

 2: while 𝑖 < 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 − 1 do

 3: generate 𝑟𝑛𝑑, a standard random variable

 4: if 𝑟𝑛𝑑 < 𝐶𝑅𝑎𝑡𝑒 do

 5: 𝑃𝑎𝑟𝑒𝑛𝑡1 ← 𝑀𝑃𝑜𝑜𝑙𝑖+1 ∗ 0.4

 6: 𝑃𝑎𝑟𝑒𝑛𝑡2 ← 𝑀𝑃𝑜𝑜𝑙𝑖+2 ∗ 0.4

 7: 𝑂𝑓𝑓𝑠𝑖+1 ← 𝑅𝑂(𝑃𝑎𝑟𝑒𝑛𝑡1 + 𝑃𝑎𝑟𝑒𝑛𝑡2)

 8: 𝑂𝑓𝑓𝑠𝑖+2 ← 𝑅𝑂(𝑃𝑎𝑟𝑒𝑛𝑡1 + 𝑃𝑎𝑟𝑒𝑛𝑡2)

 9: else

10: 𝑂𝑓𝑓𝑠𝑖+1 ← 𝑀𝑃𝑜𝑜𝑙𝑖+1

11: 𝑂𝑓𝑓𝑠𝑖+2 ← 𝑀𝑃𝑜𝑜𝑙𝑖+2

12: end if

13: 𝑖 ← 𝑖 + 2

14: end while

5.6 Mutation

Mutation is also carried out with a simple operator. One of the open CDCs is closed

randomly and then the resulting chromosome is repaired. We always close only 1 open

CDC in this way.

The following is an example of the mutation process. At first, the original chromosome

indicates that the set of open CDCs is {1,6,7,11,12}. We randomly select CDC-7 to be

closed. Then CDC-16 is opened again randomly. The repair process is complete since

the capacity requirement is satisfied.

Example 5.3.

Original Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

Mutant Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Repaired Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Open/Closed 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0

135

We again prefer a large mutation rate, so that the genetic variety of the population is

maintained. A chromosome is subject to mutation with probability between 0.3 and

0.5 in our preliminary experiments. These probabilities translate roughly into the

mutation probabilities 0.06 and 0.10 for open CDCs; 0.02 and 0.03 for closed CDCs.

Algorithm 5.5 describes the steps of the mutation process. It takes the number of

matings, mutation rate and set of child chromosomes as inputs and updates the

offspring.

Algorithm 5.5 Mutation Operator (MO)

Input: 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝑀𝑅𝑎𝑡𝑒, 𝑂𝑓𝑓𝑠

Output: Offspring after mutation

 1: for 𝑖 = 1 𝑡𝑜 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do

 2: generate 𝑟𝑛𝑑, a standard random variable

 3: if 𝑟𝑛𝑑 < 𝑀𝑅𝑎𝑡𝑒 do

 4: 𝑂𝑓𝑓𝑠𝑖 ← close a random CDC that is open in 𝑂𝑓𝑓𝑠𝑖

 5: 𝑂𝑓𝑓𝑠𝑖 ← 𝑅𝑂(𝑂𝑓𝑓𝑠𝑖)

 6: end if

 7: end while

5.6.1 Repair

Since the chromosomes represent only the location decisions, repair process only deals

with the feasibility conditions related to those decisions. Feasibility of allocation

decisions is handled by the decoding/fitness evaluation heuristic. Therefore, the repair

process focuses on maintaining sufficient CDC capacity for serving all customer

demand.

Repair algorithm ensures feasibility through opening additional CDCs randomly until

the capacity condition is satisfied. This is a simple operation that we also carry out in

the crossover and mutation operators. For instance, in the crossover operator, once the

mold is constructed, all we do is to open random CDCs with nonzero representation.

136

Similarly to the mutation operator, we open a random CDC. To create a cleaner code,

we make the CDC opening operations of other algorithms by calling the repair

operator. This way, the only operations left to the crossover algorithm are creating the

mold and calling the repair function. Similarly, the mutation algorithm only closes an

open CDC and calls the repair function.

Algorithm 5.6 describes the steps of the repair algorithm. It takes a chromosome as

input and repairs it.

Algorithm 5.6 Repair Operator (RO)

Input: Chromosome

Output: Repaired chromosome

 1: while 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 < 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 do

 2: 𝐶ℎ𝑟 ← open a random CDC that is closed in 𝐶ℎ𝑟

 3: update total capacity

 4: end while

5.7 Replacement

Once we obtain all the child chromosomes, we are ready for starting a new generation.

There are two extremes in selecting the members of the new generation: total elitism

and random selection. Total elitism leads to fast convergence while risking getting

stuck in local optima. Random selection risks no convergence at all. There are several

replacement methods used in the literature attempting to find a compromise between

these two extremes.

Fitness scaling and fitness windowing do not work well for our problem, because the

difference between fitness values of good solutions are very small in some intervals

and very large in others. This leads to large fluctuations of selection probability, which

works against genetic variety by eliminating slightly worse solutions.

To prevent fluctuating selection probabilities, we rank the chromosomes according to

their fitness values and assign selection probabilities according to their ranks, instead

of their fitness values.

137

The best chromosome takes 0, the second one 1, the third one 1+p, the fourth one

1+p+p2 etc. When a random number is generated between 0 and the number assigned

to the last chromosome, we select the chromosome with the largest number smaller

than the random one. Selection is made without replacement. We repeat this process

until the new population is full.

Algorithm 5.7 describes the steps of the replacement algorithm. It takes population

size, number of matings, replacement rate, population, fitness values of population

members, offspring and fitness values of offspring members. It creates the new

population using these inputs.

Algorithm 5.7 Replacement Algorithm (RA)

Input: 𝑃𝑆𝑖𝑧𝑒, 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝑅𝑅𝑎𝑡𝑒, 𝑃𝑜𝑝, 𝑍𝑃𝑜𝑝, 𝑂𝑓𝑓𝑠, 𝑍𝑂𝑓𝑓𝑠

Output: New population

 1: 𝐶𝑎𝑛𝑑 ← concatenate 𝑃𝑜𝑝 with 𝑂𝑓𝑓𝑠

 2: 𝑍𝐶𝑎𝑛𝑑 ← concatenate 𝑍𝑃𝑜𝑝 with 𝑍𝑂𝑓𝑓𝑠

 3: 𝐶𝑎𝑛𝑑 ← sort 𝐶𝑎𝑛𝑑 in descending order of 𝑍𝐶𝑎𝑛𝑑

 4: for 𝑖 = 1 𝑡𝑜 𝑃𝑠𝑖𝑧𝑒 + 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do

 5: 𝑆𝐶𝑎𝑛𝑑𝑖
← 𝑅𝑅𝑎𝑡𝑒𝑖−1

 6: end for

 7: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do

 8: generate 𝑟𝑛𝑑, a standard random variable

 9: for 𝑗 = 1 𝑡𝑜 𝑃𝑠𝑖𝑧𝑒 + 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do

10: if 𝑆𝐶𝑎𝑛𝑑𝑗+1
> 𝑟𝑛𝑑 ∗ 𝑆𝐶𝑎𝑛𝑑𝑃𝑠𝑖𝑧𝑒+𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠∗2

 do

11: 𝑃𝑜𝑝𝑖 ← 𝐶𝑎𝑛𝑑𝑗

12: 𝑍𝑃𝑜𝑝𝑖
← 𝑍𝐶𝑎𝑛𝑑𝑗

13: break

14: end if

15: end for

16: end for

138

5.8 Stopping Condition

The fitness values, in other words the total costs, of solutions represented with each

chromosome take continuous values. Therefore, a natural approach to monitor the

convergence of the algorithm is observing the gap between the average fitness of the

population and the fitness of the best individual.

At the end of each generation, we calculate the percent gap between the population’s

average fitness and best fitness. We assume the population converges when this gap is

very small; the threshold value we use is 10-5%. Since we observed that there appears

to be several solutions with very close fitness to optimum, we select such a small

convergence gap. This way, we wait until the algorithm completes its search within

the region close to the optimal.

While checking the stopping condition, we also check if the convergence gap has been

reduced below a second threshold value, which determines if the range value will be

changed. As explained in the subsection 7.2, we may prefer to make a finer evaluation

of the chromosomes in the later stages of the algorithm. To do so, we determine this

threshold, typically taken 1%. Once the algorithm has achieved this level of

convergence, we can see that the precision of the evaluation heuristic becomes

insufficient with σ=3. Therefore, we update the range value o to σ=0.5 and make a

more precise evaluation. Before the gap falls below 1%, making such a precise

evaluation does not bring significant benefit. Moreover, it increases computational

time substantially.

Updating the distance limit is actually very important with smaller instances. Since

there are fewer customers in those instances, making a few suboptimal assignments

has a larger impact on the solution performance, while the difference would be

negligible for a large instance. Therefore, the solution generated by the heuristic may

be very close to optimum for one chromosome, but far from optimum for another. For

large instances, we expect the difference between heuristic and optimal solutions

becomes more stable.

Updating the distance limit is not a must in this framework. The tradeoffs between the

increased time requirement and more precise evaluation may be assessed in

accordance with the instance of interest. In any case, the heuristic solutions cannot be

139

precise enough for us to select the best solution with confidence. For this reason, we

make exact evaluation at the last stage of the algorithm.

Figure 5.5: Convergence of the Evolutionary Algorithm

Number of generations required for convergence varies between 15 and 50 depending

on the design parameters. With the parameters selected based on the factorial design,

which will be explained in section 4.10, the algorithm takes between 15 to 25

generations to complete.

Algorithm 5.8 describes the steps followed for evaluating whether the stopping

condition is satisfied. It takes population, threshold for updating range value and target

gap as inputs. It determines the value of a binary number stop to indicate whether the

algorithm converged.

140

Algorithm 5.8 Stopping Condition (SC)

Input: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝐶𝐺𝑎𝑝

Output: Stopping condition

 1: 𝑃𝑜𝑝𝐴𝑣𝑔 ← µ(𝑍𝑃𝑜𝑝)

 2: 𝑃𝑜𝑝𝐵𝑒𝑠𝑡 ← 𝑚𝑖𝑛(𝑍𝑃𝑜𝑝)

 3: 𝐺𝑎𝑝 ←
𝑃𝑜𝑝𝐴𝑣𝑔−𝑃𝑜𝑝𝐵𝑒𝑠𝑡

𝑃𝑜𝑝𝐵𝑒𝑠𝑡

 4: if 𝐺𝑎𝑝 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

 5: clear database

 6: update range value

 7: 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0

 8: end if

 9: if 𝐺𝑎𝑝 < 𝐶𝐺𝑎𝑝 do

10: 𝑠𝑡𝑜𝑝 ← 1

11: end if

5.9 Exact Evaluation

As explained in the subsection 7.2, determining the distance limits according to the

standard deviation greatly improves the performance of heuristic evaluation.

Nevertheless, the evaluation algorithm still leaves average gaps from the optimum as

large as 0.79% when σ=0.5 and 3.05% when σ=3. Since these values are averages, we

can expect the gap to be larger for some chromosomes, possibly resulting in a wrong

ranking order.

To be sure of selecting the best chromosome found by the algorithm, we make exact

evaluation at the last stage, after the stopping condition is satisfied. From the fitness

database, we select the best chromosomes to be evaluated optimally. The worst

chromosome to be selected must have a fitness value r times the best fitness value

found so far. We expect the true best chromosome to be included in this group with

high confidence. Also, the value r can be changed in accordance with the heuristic

algorithm parameters. For example, if σ=3 is used, r=1.05 may be necessary, while if

σ=0.5 is used, r=1.02 may be sufficient. Note that a larger r value leads to more

chromosomes to be evaluated in this stage, which takes longer.

141

The evaluation is made with the help of a mathematical model solver. We call an LP

model after fixing the location decisions and solve the assignment model with the

solver to obtain the allocation decisions. After the selected chromosomes are evaluated

optimally, we select the best solution among them and terminate the algorithm.

Algorithm 5.9 describes the steps of the optimal evaluation process. It takes the final

population produced in the evolutionary algorithm and returns the best solution

according to the fitness values obtained through the LP model.

Algorithm 5.9 Optimum Evaluation (OE)

Input: Last population

Output: Best solution generated

 1: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do

 2: 𝑍𝑃𝑜𝑝𝑖
← optimum cost from the LP model (location decisions are fixed)

 3: end for

 4: sort 𝑃𝑜𝑝 in descending order of 𝑍𝑃𝑜𝑝

 5: 𝐵𝑒𝑠𝑡 ← 𝑃𝑜𝑝1

Algorithm 5.10 describes the main steps of the evolutionary algorithm. It takes

population size, number of matings, selection rate, replacement rate, crossover rate,

mutation rate, range value, threshold value and target gap as inputs. It returns the best

solution generated until convergence.

142

Algorithm 5.10 Main Algorithm

Input: 𝑃𝑆𝑖𝑧𝑒, 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠, 𝑆𝑅𝑎𝑡𝑒, 𝑅𝑅𝑎𝑡𝑒, 𝐶𝑅𝑎𝑡𝑒, 𝑀𝑅𝑎𝑡𝑒, 𝐿𝑖𝑚𝑖𝑡, 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,

 𝐶𝐺𝑎𝑝

Output: Best solution generated

 1: 𝑔𝑒𝑛 ← 0, 𝑠𝑡𝑜𝑝 ← 0

 2: 𝑃𝑜𝑝 ← 𝐼𝑃𝐺()

 3: for 𝑖 = 1 𝑡𝑜 𝑃𝑆𝑖𝑧𝑒 do

 4: 𝑍𝑃𝑜𝑝𝑖
← 𝐻𝐴(𝑃𝑜𝑝𝑖)

 5: register 𝑃𝑜𝑝_𝑖 and 𝑍𝑃𝑜𝑝𝑖
 to database

 6: end for

 7: while 𝑠𝑡𝑜𝑝 = 0 do

 8: 𝑔𝑒𝑛 ← 𝑔𝑒𝑛 + 1

 9: 𝑀𝑃𝑜𝑜𝑙 ← 𝑃𝑆(𝑃𝑜𝑝)

10: 𝑂𝑓𝑓𝑠 ← 𝐶𝑂(𝑀𝑃𝑜𝑜𝑙)

11: 𝑂𝑓𝑓𝑠 ← 𝑀𝑂(𝑂𝑓𝑓𝑠)

12: for 𝑖 = 1 𝑡𝑜 𝑁𝑀𝑎𝑡𝑖𝑛𝑔𝑠 ∗ 2 do

13: if 𝑂𝑓𝑓𝑠𝑖 is in database do

14: 𝑍𝑂𝑓𝑓𝑠𝑖
← 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒(𝑂𝑓𝑓𝑠𝑖)

15: else

16: 𝑍𝑂𝑓𝑓𝑠𝑖
← 𝐻𝐴(𝑂𝑓𝑓𝑠𝑖)

17: register 𝑂𝑓𝑓𝑠𝑖 and 𝑍𝑂𝑓𝑓𝑠𝑖
 to database

18: end if

19: end for

20: 𝑃𝑜𝑝, 𝑍𝑃𝑜𝑝 ← 𝑅𝐴(𝑃𝑜𝑝, 𝑍𝑃𝑜𝑝, 𝑂𝑓𝑓𝑠, 𝑍𝑂𝑓𝑓𝑠)

21: 𝑠𝑡𝑜𝑝 ← 𝑆𝐶(𝑃𝑜𝑝)

22: end while

23: 𝐵𝑒𝑠𝑡 ← 𝑂𝐸(𝑃𝑜𝑝)

5.10 Experimental Design

We make a factorial design analysis to determine the values of important algorithm

parameters. In our analyses, we consider the selected algorithm parameters as factors.

143

We experiment with several levels to observe the effect of the factors on the algorithm

performance. Table 5.3 presents the list of factors that we considered in our

experimental design.

Table 5.3: Factors and Levels Considered in the Experiments

Factor Level 1 Level 2

Population Size 50 100

Number of Matings 25 50

Replacement Rate 0.95 0.97

Crossover Rate 0.5 0.9

Mutation Rate 0.3 0.5

Population size is clearly one of the most important parameters of a EA, since it affects

the behavior of the algorithm on several levels. Selecting the population size small

may lead to a rapid convergence and lower solution times, but selecting it larger could

make it more difficult for the population converge but possibly increase solution

quality. Finding a good balance between computational requirements and solution

quality is crucial for an effective implementation of EA. After a few preliminary

experiments, we selected the levels 50 and 100 for the population size, because a larger

population would not be justified by any advantages and a smaller population does not

produce the sufficient diversity needed for detecting near-optimal solutions.

Number of matings is selected in accordance with the population size levels. When the

number of matings is 25 and 50, the algorithm produces 50 and 100 child

chromosomes at each generation, respectively. These numbers are sufficient to ensure

that a new generation is significantly different than the previous one, and they are not

too large to require too much computational time.

As explained earlier, we consider large replacement rates, so that the chromosomes

with worse fitness still have a chance of being represented in the new generation. We

experimented with two values, 0.95 and 0.97, to see the effect of replacement rate on

the algorithm performance.

144

Levels for crossover and mutation rates are determined according to our preliminary

experiments. We compare a small rate and a large rate for crossover, 0.5 and 0.9. The

main difference between is that a small rate significantly reduces the number of distinct

chromosomes to be evaluated, thus reducing overall solution time. However, a small

rate leads to less diversity in the population, since a large part of child chromosomes

are exactly the same as their parents. This may result in a narrow search of the solution

space and convergence to suboptimal solutions. On the other hand, a large rate leads

to greater diversity and longer solution time. Similar things can also be said for the

mutation rate.

We considered two problem instances to measure the effect of different parameter

combinations, small (called 10unif1, 10 customers) and medium (called 100unif1, 100

customers). We use two performance measures for comparison: total cost of best

solution found (Best Obj) and solution time (Time). We created a 25 full factorial

design containing the factors and levels in Table 5.3. 5 replications were made with

each factor combination.

We provide the main effects plots for both performance measures in Figure 5.6 and

residual plots for solution times in Figure 5.7. Since Best Obj values are mostly at the

optimal level with some occasional divergence, the residual plots and half effect plots

are not reliable for this performance measure.

145

(a) Main effects plots for small instance (b) Interaction plots for small instance

(c) Main effects plots for medium instance (d) Interaction plots for medium instance

Figure 5.6: Main Effects and Interaction Plots of Objective Function Values

Main effects plots for “Best Obj” show significant effect by all factors. Especially the

population size factor has very large impact on the solution performance, which can

be attributed to the larger population diversity that can be maintained in a larger

population. A similar observation can be made for the number of matings factor. We

select the larger levels for both of these factors.

When the elitism rate is higher, we can observe a slight deterioration of the solution

quality. As mentioned earlier, a higher elitism rate leads to weaker elitism; based on

the analysis, we prefer applying stronger elitism with p=0.95.

Increasing the crossover rate seems to have a significant effect only for the medium

instance, still the level 0.9 seems to work well for both instances. Mutation rate is the

most significant factor for the medium instance and also has significant effect for the

small instance. We simply select the level 0.5.

In the light of the main effect plots, we select the following factor levels for use in our

final computational experiments as in Table 5.4:

146

Table 5.4: Selected Factor Levels

Factor Selected Level

Population Size 100

Number of Matings 50

Replacement Rate 0.95

Crossover Rate 0.9

Mutation Rate 0.5

When we take a look at the interaction plots, we see that the best possible solution

quality is obtained with the selected levels most of the time. There are four cases where

the interaction plots disagree with our selection, but these are isolated cases and their

effects are also neutralized by other interaction effects. Therefore, we continue with

the levels listed in Table 5.4.

 (a) Half normal plot for small instance (b) Residual plots for small instance

 (c) Half normal plot for medium instance (d) Residual plots for medium instance

Figure 5.7: Half Normal and Residual Plots for Solution Times

From the significance of factor effects we considered extending the experiments with

additional levels. Especially the mutation rate seems to improve solution quality as it

147

increases. However, applying mutation to more than half of the child chromosomes

would conflict with the principle of carrying information from the older generation to

the younger one and bring the risk of creating too many child chromosomes with low

quality. This behavior would slow down the convergence, as well as aggravating the

possibility of losing the optimal solution due to mutation. Also, we do not consider

larger levels for population size and number of matings, since larger populations would

take longer to be constructed with our large instances. Larger levels are rarely used in

the literature anyway.

In this study, we prefer solution quality rather than solution time. However, we still

analyze the effect of factors on the solution time. From the half normal plots in Figure

5.8, we easily see that the main effects of all factors are significant at the p level of

0.05. For the small instance, the significance of the effects is obvious, since the

solution takes shorter time, thus a slight increase or decrease create a significant

difference. We also observe that the interaction effect AC is significant only for the

small instance, but we will not take that into account, as the results of two instances

do not agree.

The residual plots show that the assumptions of the factorial design analysis are

satisfied. Residuals are normally distributed in both cases. No bias can be observed

with the distribution of residuals neither to negative or positive sides. Variance of

residuals seem to be constant over time. Lastly, the observation order does not affect

residual levels, which must be expected since the experiments are made on a computer.

148

(a) Main effects plots for small instance (b) Interaction plots for small instance

(c) Main effects plots for medium instance (d) Interaction plots for medium instance

Figure 5.8: Main Effects and Interaction Plots for Solution Times

The main effect plots in Figure 5.8 agree with the half normal plots in that all main

effects are significant. The factor levels that produce longer solution time are parallel

to our expectations.

With a larger population size or a larger number of matings the computational

requirement naturally increases, since there are more chromosomes to be evaluated by

the algorithm.

With a larger elitism rate (with weaker elitism), the algorithm assigns a larger

probability to the chromosomes with lower fitness, thus it takes longer for the

algorithm to weed out the bad chromosomes and converge.

Lastly, larger crossover and mutation rates increase genetic diversity and lead the

algorithm to search a larger part of the feasible region. Thus, it takes longer for the

algorithm to converge with larger crossover and mutation rates.

None of the interaction effects are significant.

149

At this point, it is important to remember that we are implementing the evolutionary

algorithm to find good solutions to medium and large instances due to the drawbacks

of other solution methods. Standard solvers fail with large instances and they take too

long with medium instances. Our algorithm based on the L-Shaped method does not

converge within the time limit, thus we cannot guarantee if it find the optimal

solutions. In this context, our primary expectation from the evolutionary algorithm is

finding good solutions. Therefore, we do not aim to obtain the solutions in shorter time

at the expense of lower solution quality. We use the factor levels selected according to

the Best Obj main effect plots. Also, we use the same factor levels for instances of all

sizes: small, medium, and large.

150

151

CHAPTER 6

COMPUTATIONAL RESULTS

6. COMPUTATIONAL RESULTS

In this section, we list and compare the computational results obtained with the help

of different solution methods. As explained in the previous chapters, we consider three

solution methods: solving a standard mathematical model by Cplex, using the Benders

Decomposition algorithm, and using the evolutionary algorithm. Details on the last

two methods are introduced in Chapters 4 and 5 respectively.

6. Blank

6.1 Framework

Our purpose in conducting the computational experiments is twofold:

 To identify the strengths and weaknesses of each method

 To observe the disparities between different instance groups with respect to

solution efforts

Details of the methods are given in the previous two chapters. After observing the

performances of several methods based on Benders Decomposition, we decided to use

the L-Shaped method with scenario group cuts for our problem. For the evolutionary

algorithms, we developed a hybrid fitness evaluation algorithm that combines greedy

and 2-opt heuristics. We tune this algorithm for a precise evaluation and we make an

exact evaluation at the last step of the evolutionary algorithm.

We use three sets of instances to test the solution methods. They are: small (10

customers), medium (100 customers), and large (1000 customers) instance sets. All

test instances include 20 candidate CDC locations and 100 scenarios.

Each of these sets includes 24 instances in two groups. These groups are constructed

according to the ratio of total fixed cost over total transportation cost. We believe this

152

ratio may significantly affect solution time. Each group, instance groups with large

and small ratios, contains 6*2 instances constructed in parallel to the square patterned

instances used for the Value of Information analyses given in section 5. The six

patterns are as follows: R_u, R_n, C_u, C_n, RC_u, and RC_n. In total, there are 72

instances we consider. The list of instances are as follows:

 Small:

o Large Ratio: R_u_L_10_1&2, R_n_L_10_1&2, C_u_L_10_1&2,

C_n_L_10_1&2, RC_u_L_10_1&2, RC_n_L_10_1&2

o Small Ratio: R_u_S_10_1&2, R_n_S_10_1&2, C_u_S_10_1&2,

C_n_S_10_1&2, RC_u_S_10_1&2, RC_n_S_10_1&2

 Medium:

o Large Ratio: R_u_L_100_1&2, R_n_L_100_1&2, C_u_L_100_1&2,

C_n_L_100_1&2, RC_u_L_100_1&2, RC_n_L_100_1&2

o Small Ratio: R_u_S_100_1&2, R_n_S_100_1&2, C_u_S_100_1&2,

C_n_S_100_1&2, RC_u_S_100_1&2, RC_n_S_100_1&2

 Large:

o Large Ratio: R_u_L_1000_1&2, R_n_L_1000_1&2,

C_u_L_1000_1&2, C_n_L_1000_1&2, RC_u_L_1000_1&2,

RC_n_L_1000_1&2

o Small Ratio: R_u_S_1000_1&2, R_n_S_1000_1&2,

C_u_S_1000_1&2, C_n_S_1000_1&2, RC_u_S_100_1&2,

RC_n_S_1000_1&2

We refer to the mixed integer program solved by the standard solver as TLAP. We

refer to the scenario-group cuts and partial decomposition approaches as SGC and PD

respectively. We refer to the evolutionary algorithm as EA.

For the standard model, we provide optimum cost value and solution time, if an

optimal solution can be found. For SGC and PD methods, we provide the cost of best

integer solution, % gap between upper bound and lower bound and solution time. Zero

gap indicates that the algorithm has converged and cost value is optimal. Positive gap

indicates that the algorithm could not converge within time limit. For the evolutionary

algorithm, we make 5 replications for each instance. We provide the cost of best

integer solution in 5 replications, best/average gap found in 5 replications, and average

153

time for the algorithm to complete. The gap values are the percent difference from the

optimal, if optimal solution is known. Zero gap indicates that the optimal solution is

found by the evolutionary algorithm. If optimal solution is not known, gap indicates

the percent deviation from the best known solution found by the exact solution

methods (TLAP, SGC and PD). All solution times are shown in seconds.

SGC/PD: 𝐺𝑎𝑝 % =
𝑈𝐵−𝐿𝐵

𝐿𝐵
*100

EA: 𝐵𝑒𝑠𝑡 𝐺𝑎𝑝 % =
𝐵𝑒𝑠𝑡 𝑜𝑓 𝑅𝑒𝑝𝑙−𝑂𝑝𝑡

𝑂𝑝𝑡
∗ 100

EA: 𝐴𝑣𝑒 𝐺𝑎𝑝 % =
𝐴𝑣𝑔 𝑜𝑓 𝑅𝑒𝑝𝑙−𝑂𝑝𝑡

𝑂𝑝𝑡
∗ 100

We impose a time limit of 4 hours (14400 seconds) on each method. Once the time

limit is reached, TLAP immediately stops and reports the most recent bounds found

by the solver. However, SGC, PD and EA are allowed to complete the ongoing

iteration before they report the results. For SGC and PD, we find it necessary for the

last iteration to be completed, because the iterations tend to be gradually longer due to

the cuts added. Enforcing the time limit without flexibility would mean the last

iteration would be completely disregarded, which makes the effective time limit to be

a lot shorter than 4 hours. A similar argument can be made for EA, since each iteration

take a lot of time to complete with large instances.

All experiments are run on identical PCs with 3.00 GHz CPU and 16.00 GB RAM

running MS Windows.

6.2 Results

We report the optimal/best known solution in the second columns of the Tables 6.1-

6.3 and we omit the solutions found by each method. The UB and LB values obtained

in the experiments can be found in the corresponding tables in the Appendix. In this

section, we only report the gap and CPU time results for each method.

In Table 6.1 we provide the results for the small instances.

154

Table 6.1: Computational Results for Small Instances

For small instances, we observe that TLAP, SGC and PD always find optimal

solutions. EA also manages to find optimal solution for most instances. Since optimal

solution can be found for all instances, we compare the solution times. Due to the size

of the instances, TLAP is able to find an optimal solution in very short time, while

SGC and PD struggles for convergence and sometimes takes more than one hour to

complete. EA finds an optimal solution again in short time, but not as short as TLAP.

The average solution time for TLAP is 3.2 seconds, while SGC and PD take 2009.3

418.3 seconds, respectively. EA converges in 21.3 seconds on average.

For this set of instances, we find that TLAP offers the best performance in terms of

solution time. Nevertheless, EA should be considered, too, since it offers alternative

solutions that may be useful for the decision maker.

In Table 6.2, we provide the results for the medium instances.

GAP%

CPU

Time

(sec)

GAP%

CPU

Time

(sec)

GAP%

CPU

Time

(sec)

Best Gap

from

Optimal%

Avg Gap

from

Optimal%

Avg

CPU

Time

(sec)

R_u_L_10_1 250160.1 0.0 2.6 0.0 618.5 0.0 375.2 0.0 0.0 16.2

R_u_L_10_2 250145.6 0.0 3.0 0.0 3293.4 0.0 1026.8 0.0 0.0 35.0

R_n_L_10_1 250179.6 0.0 7.2 0.0 4543.0 0.0 770.6 0.0 0.0 16.7

R_n_L_10_2 250162.6 0.0 1.4 0.0 654.2 0.0 192.2 0.0 0.0 23.3

C_u_L_10_1 250180.5 0.0 2.9 0.0 789.2 0.0 241.9 0.0 0.0 16.7

C_u_L_10_2 250139.0 0.0 1.0 0.0 480.3 0.0 151.9 0.0 0.0 21.4

C_n_L_10_1 250167.2 0.0 2.4 0.0 224.9 0.0 105.2 0.0 0.0 14.8

C_n_L_10_2 250181.8 0.0 1.9 0.0 2139.4 0.0 334.0 0.0 0.0 27.0

RC_u_L_10_1 250180.7 0.0 4.2 0.0 1248.2 0.0 271.3 0.0 0.0 14.3

RC_u_L_10_2 250159.0 0.0 5.1 0.0 1197.1 0.0 352.4 0.0 0.0 30.4

RC_n_L_10_1 250155.7 0.0 3.2 0.0 281.5 0.0 174.5 0.0 0.0 14.6

RC_n_L_10_2 250174.7 0.0 2.1 0.0 1018.8 0.0 147.8 0.0 0.0 24.4

R_u_S_10_1 730244.1 0.0 4.4 0.0 1911.0 0.0 494.5 0.0 0.0 16.3

R_u_S_10_2 686878.5 0.0 4.7 0.0 9008.9 0.0 1721.5 0.0 0.0 33.9

R_n_S_10_1 788669.3 0.0 7.1 0.0 9435.6 0.0 1089.4 0.0 0.0 17.3

R_n_S_10_2 737856.4 0.0 1.5 0.0 671.5 0.0 194.2 0.0 0.0 23.6

C_u_S_10_1 791586.6 0.0 3.0 0.0 1594.1 0.0 386.4 0.0 0.0 14.9

C_u_S_10_2 666935.7 0.0 0.9 0.0 472.4 0.0 149.3 0.0 0.0 23.3

C_n_S_10_1 751561.4 0.0 2.1 0.0 595.7 0.0 150.5 0.0 0.0 15.5

C_n_S_10_2 795264.1 0.0 2.0 0.0 2288.5 0.0 371.7 0.0 0.0 25.6

RC_u_S_10_1 792066.5 0.0 4.0 0.0 2297.8 0.0 418.6 0.0 0.0 13.9

RC_u_S_10_2 727048.0 0.0 5.6 0.0 1560.1 0.0 411.7 0.0 0.0 29.9

RC_n_S_10_1 708776.3 0.0 3.3 0.0 829.3 0.0 268.8 1.2 1.2 14.6

RC_n_S_10_2 774116.4 0.0 2.4 0.0 1070.9 0.0 239.4 0.0 0.0 26.8

Results for Small

Instances

TLAP SGC PD EA

Optimal

Solution

155

Table 6.2: Computational Results for Medium Instances

* Time Limit (4 hours) Exceeded

SGC and PD do not converge within the time limit for any of the instances. For EA,

best and average gaps are 0% for all instances except R_u_S_100, whose average gap

is equal to 0.1%.

For medium instances, we observe that TLAP and EA always find the optimal. SGC

and PD find the optimal solution for most instances as their best integer solutions, but

they cannot converge within the time limit. They leave very small gaps when the ratio

of fixed cost over transportation cost is large and large gaps when the opposite is true.

EA misses the optimal only in one replication for one instance.

Regarding the solution times, we reach a different conclusion than the previous set of

instances. While TLAP has the advantage of proving optimality, it takes much longer

to complete compared to the EA. EA finds the optimal in shorter times and missed

optimality in only 1 replication among 120. Thus it can also be considered a reliable

method. For this set of instances, we find that TLAP offers proof of optimality, while

EA offers solution in short time as well as alternative solutions for the decision maker.

GAP%

CPU

Time

(sec)

GAP%

CPU

Time

(sec)

GAP%

CPU

Time

(sec)

Best Gap

from

Optimal%

Avg Gap

from

Optimal%

Avg

CPU

Time

(sec)

R_u_L_100_1 251602.1 0.0 9706.6 0.1 * 0.2 * 0.0 0.0 156.8

R_u_L_100_2 251557.4 0.0 6954.7 0.1 * 0.1 * 0.0 0.0 236.1

R_n_L_100_1 251744.3 0.0 7538.3 0.1 * 0.1 * 0.0 0.0 137.6

R_n_L_100_2 251700.0 0.0 9328.1 0.1 * 0.1 * 0.0 0.0 337.8

C_u_L_100_1 251551.2 0.0 6305.9 0.0 * 0.0 * 0.0 0.0 126.3

C_u_L_100_2 251653.3 0.0 5482.6 0.0 * 0.1 * 0.0 0.0 188.7

C_n_L_100_1 251560.9 0.0 5139.4 0.0 * 0.1 * 0.0 0.0 139.9

C_n_L_100_2 251702.5 0.0 6060.7 0.1 * 0.1 * 0.0 0.0 232.7

RC_u_L_100_1 251455.0 0.0 6361.9 0.1 * 0.1 * 0.0 0.0 139.2

RC_u_L_100_2 251619.4 0.0 5923.0 0.1 * 0.1 * 0.0 0.0 341.6

RC_n_L_100_1 251677.3 0.0 5553.7 0.0 * 0.0 * 0.0 0.0 122.9

RC_n_L_100_2 251460.3 0.0 6751.9 0.1 * 0.1 * 0.0 0.0 216.0

R_u_S_100_1 730624.5 0.0 1754.9 16.1 * 19.2 * 0.0 0.1 173.6

R_u_S_100_2 717207.5 0.0 1563.3 10.6 * 13.1 * 0.0 0.0 232.7

R_n_S_100_1 773292.2 0.0 1994.9 11.7 * 12.3 * 0.0 0.0 149.7

R_n_S_100_2 760011.0 0.0 1926.9 9.5 * 11.2 * 0.0 0.0 329.0

C_u_S_100_1 715369.3 0.0 436.7 3.5 * 3.4 * 0.0 0.0 145.8

C_u_S_100_2 745984.6 0.0 1148.3 4.9 * 4.8 * 0.0 0.0 188.9

C_n_S_100_1 718274.1 0.0 769.0 6.1 * 6.6 * 0.0 0.0 124.5

C_n_S_100_2 760758.1 0.0 1265.3 6.8 * 7.3 * 0.0 0.0 270.7

RC_u_S_100_1 686507.6 0.0 769.0 9.8 * 12.5 * 0.0 0.0 145.0

RC_u_S_100_2 735827.8 0.0 1145.2 8.9 * 10.5 * 0.0 0.0 340.2

RC_n_S_100_1 753200.8 0.0 857.8 4.1 * 4.1 * 0.0 0.0 133.2

RC_n_S_100_2 688074.3 0.0 1090.5 9.0 * 11.3 * 0.0 0.0 213.4

Results for

Medium Instances

TLAP SGC PD EA

Optimal

Solution

156

The average solution times for TLAP and EA are 3992.9 and 200.9 seconds,

respectively. SGC and PD keep running until the time limit of four hours is exceeded.

In Table 6.3, we provide the results for the large instances.

Since we do not have the optimal solutions of large instances for comparison, this time

we cannot provide gap values. Instead, we make a comparison between best solutions

found by exact methods (BSEM) and EA.

EA: 𝐵𝑒𝑠𝑡 𝐺𝑎𝑝′% =
𝐵𝑒𝑠𝑡 𝑜𝑓 𝑅𝑒𝑝𝑙−𝐵𝑆𝐸𝑀

𝐵𝑆𝐸𝑀
∗ 100

EA: 𝐴𝑣𝑒 𝐺𝑎𝑝′% =
𝐴𝑣𝑔 𝑜𝑓 𝑅𝑒𝑝𝑙−𝐵𝑆𝐸𝑀

𝐵𝑆𝐸𝑀
∗ 100

Table 6.3: Computational Results for Large Instances

* Time Limit (4 hours) Exceeded

** No Feasible Solutions

SGC and PD do not converge within the time limit for any of the instances. For EA,

best and average gaps are close to 0% for all instances.

GAP%

CPU

Time

(sec)

GAP%

CPU

Time

(sec)

GAP%

CPU

Time

(sec)

Best Gap

from Best

Exact%

Avg Gap

from Best

Exact%

Avg

CPU

Time

(sec)

R_u_L_1000_1 265593.4 ** * 1.7 * 1.6 * 0.0 0.0 6463.9

R_u_L_1000_2 265595.6 ** * 1.6 * 1.5 * 0.0 0.0 6345.0

R_n_L_1000_1 267840.4 ** * 1.2 * 1.0 * 0.0 0.0 7093.3

R_n_L_1000_2 266886.5 ** * 1.4 * 1.1 * 0.0 0.0 8454.9

C_u_L_1000_1 265947.9 ** * 1.0 * 0.9 * 0.0 0.0 4594.1

C_u_L_1000_2 265442.7 ** * 0.9 * 0.9 * 0.0 0.0 4694.6

C_n_L_1000_1 267120.0 ** * 1.2 * 1.0 * 0.0 0.2 5138.8

C_n_L_1000_2 265864.7 ** * 0.9 * 0.7 * 0.0 0.0 4336.9

RC_u_L_1000_1 266456.9 ** * 1.3 * 1.2 * 0.0 0.0 6052.1

RC_u_L_1000_2 265511.1 ** * 1.3 * 1.2 * 0.0 0.0 6175.2

RC_n_L_1000_1 265920.5 ** * 1.4 * 1.2 * 0.0 0.0 6651.8

RC_n_L_1000_2 267154.6 ** * 1.0 * 0.8 * 0.0 0.0 4855.6

R_u_S_1000_1 717802.7 ** * 22.8 * 21.2 * 0.0 0.0 7246.1

R_u_S_1000_2 717867.8 ** * 20.7 * 19.3 * 0.0 0.0 8238.7

R_n_S_1000_1 785211.0 ** * 13.8 * 10.6 * 0.0 0.0 7444.5

R_n_S_1000_2 757366.8 ** * 16.6 * 12.9 * -0.1 -0.1 8373.3

C_u_S_1000_1 728436.7 ** * 11.8 * 11.1 * 0.0 0.0 4853.7

C_u_S_1000_2 713279.5 ** * 10.7 * 10.2 * 0.0 0.1 4346.1

C_n_S_1000_1 763599.7 ** * 14.8 * 12.1 * 0.0 0.0 4941.7

C_n_S_1000_2 725942.1 ** * 10.5 * 8.4 * 0.0 0.0 4306.0

RC_u_S_1000_1 743705.8 ** * 17.1 * 14.3 * 0.0 0.0 5523.9

RC_u_S_1000_2 715332.6 ** * 16.9 * 15.6 * 0.0 0.0 6475.4

RC_n_S_1000_1 727614.1 ** * 17.4 * 14.9 * 0.0 0.0 7441.2

RC_n_S_1000_2 764637.5 ** * 11.4 * 9.3 * 0.0 0.1 5081.3

Results for Large

Instances

TLAP SGC PD EA

Best Known

Soln. from

Ex. M.

157

We observe that TLAP does not find any feasible solutions within time limit for large

instances (When the time limit was increased to 48 hours, TLAP still left gap around

30%.). SGC and PD do not converge for any of the instances either. However, they

leave small gaps for instances with large ratio and large gaps for others. EA converges

within time limit, but it sometimes takes more than two hours to complete.

We see that for 20 instances out of 24, the best solutions found by the exact methods

have the same objective function value as the best solution found in all of the

replications of EA. Since these methods use completely different approaches for

convergence, this is an important result signaling the probability of these solutions

being optimal. For the remaining 4 instances, both SGC and PD find the best solution

in one case, and EA finds the best solution in three cases.

In conclusion, we observe that TLAP obtains optimal results for small and medium

instances. With small instances it reaches optimum in very short time, but with

medium instances it takes much longer. TLAP cannot produce any feasible solutions

for large instances within the time limit. SGC and PD are able to converge only for

small instances, but they find the optimal solution most of the time as its best integer

solution. EA is very successful in finding good solutions, and always converges within

time limit. It offers the fastest solution times in medium and large instances and loses

to TLAP only with small instances.

In the light of these observations, we may suggest the decision maker to use standard

solvers when dealing with small instances. If obtaining alternative solutions is

desirable for the decision maker, EA may also be used despite a small increase in

solution time.

For medium instances, EA offers the best performance among the three methods. It

also produces alternative solutions, which can be compared with respect to other

(secondary) objectives by the decision maker. However, since EA does not prove

optimality, TLAP may also be used according to the preference of the decision maker.

Since this is a strategic decision making process, solution times may be considered to

be much less important.

In real life application, we expect the problem to include hundreds of customers,

therefore finding good solutions for large instances is critical. For solving large

158

instances, we only have two alternatives, since TLAP fails to produce any feasible

solutions. We suggest using EA for these instances, since the algorithm converges and

finds the best known solutions. While the best solutions of the remaining methods

agree most of the time, the decision maker may also prefer to apply both methods and

compare their results.

When we compare the instance sets, we also observe several disparities. A clear

difference can be seen between the performance of SGC and PD on large ratio and

small ratio instances. For small instances, SGC and PD reach convergence for all

instances, but small ratio instances take considerably longer to be solved. For SGC,

the average time it takes until convergence is 1374.0 seconds for large ratio instances,

but 2644.7 seconds for small ratio instances. For PD, the figures are 345.3 and 491.3

seconds, respectively. It is safe to argue that small ratio instances are harder to solve,

since the algorithm has more incentive to look for solutions with more open CDCs

with the hope of reducing total variable cost. This is not possible when fixed costs are

much larger than variable costs. We do not have the convergence times for medium

and large instances, but gap values indicate that the same argument can be made. Gap

values are larger for small ratio instances mainly due to the larger share of variable

costs in the objective function value. When fixed cost occupies a larger share and the

optimal number of CDCs can be found in the early iterations, we obtain small gap

values, but this is not the case with small ratio instances.

The solution time differences are not as clear with EA. Since EA only evaluates sets

of locations decisions (chromosomes) instead of trying to come up with an optimal

decision set, the algorithm is not affected a lot from the differences in instances. For

small instances, the average time until completion is 21.2 and 21.3 seconds for large

and small ratio instances, respectively. For medium instances, the figures are 198.0

and 203.9. For large instances, they are 5904.7 and 6189.3.

With TLAP, we observe similar results to SGC and PD for small instances. The

average solution time for large ratio instances is 3.1 seconds, while it is 3.4 seconds

for small ratio instances. We observe an interesting difference for medium instances.

This time the average solution time is 6758.9 seconds and 1226.8 seconds respectively.

For large instances, we do not have the data for such comparison.

159

When we compare the instances with respect to distribution, we find that instances

with normally distributed customers seem to be harder to solve with all three methods.

This may be due to the fact that the customer density in the city center is higher in

those instances. When this is the case, there are fewer customers that can be assigned

to the closest open CDC with confidence, because many customers are closely packed

and swapping their assignments may bring benefit. This phenomenon can be observed

most clearly in the hybrid evaluation algorithm of EA. As explained in Chapter 5, the

algorithm starts by assigning all customers to the closes available CDC, but then

employs a 2-opt procedure to swap the assignments. The swaps are made only when

assignment distance is above some predetermined range value. This approach is

effective in reducing the solution time, but fails to find good solutions in short time

when customer density is high in the city center. In a similar fashion, exact solution

methods encounter many alternative paths to take when it comes to assigning the

customers in the city center. This certainly makes it harder to solve the instances with

customers concentrated in the center.

More detailed data on the experiments can be found in the Appendix.

160

161

CHAPTER 7

ROUTING DECISIONS: POSSIBLE SOLUTION APPROACHES

7. ROUTING DECISIONS: POSSIBLE SOLUTION APPROACHES

So far, we have focused on the strategic decisions of the City Logistics system. As

explained in section 4, we decomposed the decisions with respect to their strategic or

operational nature and considered only the strategic level decisions in our solution

approaches. The main idea was that if these strategic decisions are made near

optimally, the lower level decisions could be made accordingly and the overall system

would work efficiently.

7.1 Making Lower Level Decisions

Once the higher level decisions are made, the remaining decisions, namely fleet sizing

and routing, can also be made optimally. As explained in section 4, the solution space

for these decisions are directly determined by the higher level decisions. More

importantly, as the higher level decisions are fixed, the remaining ones can be

separated with respect to scenarios and to open CDCs.

Previously, we needed to combine the location decisions with scenario based

allocation decisions in order to produce meaningful solutions. However, this is not the

case for the lower level, since routing decisions for different scenarios are completely

unrelated to each other. Each scenario can be solved on its own. A similar observation

can be made for each open CDC. Each set of customers assigned to a CDC constitutes

a separate TSP or VRP problem depending on the number of vehicles that will be used

for delivery.

There is an extensive literature on this kind of the problem. In our case, where the

customers may have delivery time preferences, the city administration may have

delivery time restrictions and balancing workload (both in terms of tour length and

162

delivered amount) between vehicles may be of concern and several extensions of the

VRP literature are of interest. For example, VRP with time-windows (VRPTW),

capacitated VRP (CVRP), multi-trip VRP (MTVRP), fleet size and mix VRP, multi-

commodity VRP (MCVRP) and their combinations are extensively studied in the

literature (Note that there are fewer studies considering these problems under

uncertainty.). Each of these problems relax one assumption of the classical vehicle

routing problem.

We mention the following example based on VRPTW to give an idea of the

capabilities of methods used in the literature. Generally, the state-of-the-art methods

proposed in the VRPTW literature are sufficient for making the lower level decisions

in our case. Since we separate the problem into smaller pieces by fixing the higher

level decisions, it is possible to reach optimal even with large instances. In this process,

we create 5-6 single depot VRPTW problems with about 160-200 customers for each

scenario and instances of this size can be solved efficiently with the methods reviewed

above. It is also important to note that the decisions maker does not have to solve for

all scenarios, since only the decisions related to the current scenario are relevant for

practice. As the conditions change, the lower level decisions can be reoptimized

periodically.

In conclusion, we propose the methods for making strategic level decisions in the CL

system and we suggest the decision makers to use the state-of-the-art methods for the

selected VRP extensions for the remaining decisions. Once the higher level decisions

are fixed, the decision maker has the advantage of considering only the scenario of

interest and remake the computations only when necessary. At that stage, it is also

possible to obtain the lower level decisions optimally for all scenarios and make simple

adjustments on the higher level decisions accordingly. The decision making process is

simplified a lot with this approach.

7.2 Approximating Lower Level Costs

An important point to note is that, by not considering the lower level decisions, like

routing, we make a simplifying assumption that the distance between customers and

CDCs is a good estimator of the additional cost of serving the customer. In real life,

163

this cost would be calculated for a group of customers that share a delivery route,

instead of for individual customers. The only way to avoid this assumption is to make

all location, allocation, fleet sizing and routing decisions at the same time. This is not

possible for our case, since uncertainty is also taken into account. A possible way of

incorporating the lower level decisions into the strategic decision making is

approximating the related costs instead of trying to find them optimally.

Due to the NP-hard nature of the VRP and its appearance in larger problems as in our

case, a large number of studies has been made in order to accurately estimate the

routing cost. All these studies suggest methods to estimate routing cost without

explicitly making routing decisions. We investigate three of these methods and try to

propose a method suitable for use in our case. Since the lower level decisions cannot

be made optimally, it is better to consider these methods within metaheuristics,

possibly as a module of the evolutionary algorithm explained in section 7.

7.2.1 Tour Length Approximation

Tour Length Approximation is a method of estimating route length without explicitly

determining the route. For estimation, the inputs usually required are the distance

metric used, spatial distribution of customers, the size of the region, number of

customers in the region, number of customers to be visited, and average distance of

customers to the warehouse. Approximation methods use equations to estimate the

length of the tour with these specified characteristics.

The idea of estimating the length of tours with an analytical perspective started with

Beardwood et al. (1959). Afterwards, Tour Length Approximation has been used in

many studies, mostly in the 1980s and 1990s. Many studies on TSP, VRP and LRP

used tour length approximation to avoid the complexity due to routing decisions.

Methods to estimate the tour length gradually become more complex and problem-

specific. Other important contributors to the literature on this subject are Christofides

and Eilon (1969), Daganzo (1984a), Daganzo (1984b), Hall (1984), Castillo, J.M.

(1999), Figliozzi (2009). Campbell et al. (1996) provide a review of most of the

relevant studies.

164

Tour length approximation is a good method to estimate tour length when there is little

information available about the customers’ specific locations. However, in a city

logistics system, customers’ exact locations are known. We can use heuristics to

compute better approximations using exact locations. Moreover, tour length

approximation requires triangular inequality to hold. Due to the transportation cost

uncertainty, triangular inequality does not always hold in our instances. In addition,

even if all the required inputs are available, calculating the approximation might be

challenging. For instance, equations might include integral calculations. Lastly, tour

length approximation does not include the time dimension of tours. In a city logistics

system, length of a tour is not the only cost item; penalty costs of violating time

windows could also be considered. Therefore, when we need to take into account the

time-windows, tour length approximation is not a suitable approach.

7.2.2 Heuristics

There are two main advantages of heuristics over the other approximation methods.

Heuristics allow us to use the known information on an instance effectively. For

instance, we can use the transportation costs among a couple of nodes which provide

precise computations compared to other methods. Second, heuristics are more flexible.

With a heuristic algorithm, we can consider different objectives concurrently, add or

remove algorithm modules to fit our purpose. We demonstrate these advantages later

in this subsection.

There are many heuristics and metaheuristics proposed in the literature for VRPTW.

One of the most successful ones for solving the large scale VRPTW is proposed by

Mester and Braysy (2005). This method employs guided evolution strategies and finds

good solutions for instances with up to 1000 nodes. For instances with 100/200/400

nodes, CPU time requirement is around 80 seconds/8 minutes/17 minutes on average.

If we used this method for the routing decisions, we would need to repeat it for each

CDC and each scenario (around 500 times).

We use a different approach that aims to achieve sufficiently good results using shorter

CPU time. First we decide which one of the two approaches should be used: route-

first-cluster-second or cluster-first-route-second.

165

Since the number of nodes allocated to a particular CDC may be in the hundreds,

routing first would require significantly more computation. Since we are using

heuristics for the routing decisions, having a very large number of nodes to be routed

would badly deteriorate the solution performance. It is logical to expect better routing

performance when there are fewer nodes to be considered. Thus, by using cluster-first-

route-second approach, we reduce the number of nodes to be routed by a large margin,

since each time we have to consider only the nodes within a particular cluster.

Dondo and Cerda (2007) propose such a method. It starts by clustering customers.

Then the clusters are assigned to depots. Next sub-clusters are constructed within the

clusters and TSPTW is solved for each sub-cluster with heuristics. The method solves

25-node instances well, but struggles with larger instances.

During the clustering process, we have to take into account two parameters: the width

of the time window and the capacity of vehicles. If the vehicle capacity is considered

as a hard constraint (which is the case in real life) and time window is considered as a

soft constraint (since violating time windows may be penalized but not forbidden in

real life), vehicle capacity constraint is preemptive over time window constraint.

We first try to find the smallest number of vehicles (we call this number k) that can

serve the set of nodes without violating the capacity constraint. Then, we create k

clusters over the area allocated to the CDC of current interest. Now, we need to

determine how to create the clusters in a meaningful way. The following explanations

aim to find a meaningful way of partitioning regions. The results may be an initial

solution for an algorithm that improves the clusters and routes step by step to reduce

the difference between tour lengths.

(a) Customer assignment (b) Clusters in sectors-1 (c) Clusters in sectors-2

Figure 7.1: Clustering Approaches when CDCs are Located on City Boundaries

166

When we are dealing with square cities, the allocation of customers would partition

the city area roughly in a way that is depicted in Figure 7.1 (a).

If the CDCs are near the center of the city, an intuitive way of partitioning the regions

allocated to each CDC would look like the one given in Figure 7.1 (b).

But the CDCs being on the city boundaries, this setting obtains larger tours for the

subregions that do not contain the CDCs. In other words, even if the total route length

within each subregion is equal, the distance for reaching the subregions are

significantly different. We may use a scheme to partition the regions as shown in

Figure 7.1 (c) to solve this problem.

If we assume the city center to contain a dense population of customers, it is easy to

change the boundaries separating subregions, so that demand constraint can be

satisfied. To do that, we may start assigning the customers from the ones that would

incur the highest cost if they are not assigned to their closest cluster center and continue

until that cluster’s capacity is filled. Such an approach is expected to give the

partitioning in Figure 7.2 (with cluster centers marked with dots):

(a) Clusters within sections (b) Approx. locations of cluster centers

Figure 7.2: Cluster Centers when CDCs are Located on City Boundaries

This setting assigns larger areas to subregions on the sides, thus obtains longer tour

lengths for them, while reducing the tour length of the central subregion. The following

setting that tries to find larger central subregions and smaller side-subregions may be

an alternative, but does not solve the problem completely. To preserve the star-shaped

partitioning, we have to select cluster centers a certain distance (r) away from the CDC.

167

Cluster centers may be found in a usual way, but then changed with points r units away

from the CDC to the same direction (angle).

When we are dealing with circular cities, the allocation of customers would partition

the regions in the way given in Figure 7.3:

Figure 7.3: Cluster Centers in a Circular City

Such a partition guarantees feasibility of demand constraint and it gives us subregions

with close tour length values. At this stage, we may take into account the TWs and try

to reduce the tours that violate the time window, as much as possible. If we cannot

make all tours shorter than the TW width, even after we obtain equal tour lengths for

all, we have two alternatives.

If we violate the TW constraint too much, we may introduce an additional vehicle and

restart the process. However, if this is not the case, we may introduce the extra vehicle

according to a comparison between TW penalty incurring with the current solution and

vehicle operating cost.

The steps of the heuristic algorithm are as follows:

168

Algorithm 7.1 Vehicle Routing Stage

Input: Customer assignments, Vehicle capacity, TW width and TW violation

penalty, Vehicle operating cost

Output: New population

 1: for each CDC do

 2: let S be the set of customers assigned to this CDC

 3: |𝑉| ← ⌈
∑ 𝑑𝑒𝑚𝑗𝑗∈𝑆

𝑉𝑒ℎ𝐶𝑎𝑝
⌉

 4: select |𝑉| cluster centers

 5: divide 𝑆 into cluster subsets: 𝑆 = 𝐶1 ∪ 𝐶2 ∪. . .∪ 𝐶|𝑉|

 6: 𝑍𝐶𝑣
← solve TSP for each subset 𝐶𝑣

 7: while ∃𝑣: ∑ 𝑑𝑒𝑚𝑗𝑗∈𝐶𝑣
> 𝑉𝑒ℎ𝐶𝑎𝑝 do

 8: let 𝐶𝑣1
 and 𝐶𝑣2

 be the clusters with largest and smallest demand

 9: for each 𝑗 ∈ 𝐶𝑣1
 do

10: 𝑍′𝐶𝑣2
← solve TSP for 𝐶𝑣2

∪ 𝑗

11: 𝑍′𝐶𝑣1
← solve TSP for 𝐶𝑣1

\ 𝑗

12: 𝐶𝑜𝑠𝑡𝑗 ← 𝑍′𝐶𝑣2
+ 𝑍′𝐶𝑣1

− 𝑍𝐶𝑣2
− 𝑍𝐶𝑣1

13: end for

14: let 𝑗 be the customer with least 𝐶𝑜𝑠𝑡𝑗

15: 𝐶𝑣1
← 𝐶𝑣1

\ 𝑗

16: 𝐶𝑣2
← 𝐶𝑣2

∪ 𝑗

17: end while

18: while ∃𝑣: 𝑍𝐶𝑣
> 𝑇𝑊 do

19: let 𝐶𝑣1
 and 𝐶𝑣2

 be the clusters with longest and shortest tour

20: if [𝑍𝐶𝑣1
> 𝑇𝑊 or ∑ 𝑑𝑒𝑚𝑘𝑘∈𝐶𝑣∪𝑗 > 𝑉𝑒ℎ𝐶𝑎𝑝 ∀𝑗 ∈ 𝐶𝑣1

]

 and 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ∗ ∑ (𝑍𝐶𝑣𝑣 − 𝑇𝑊) > 𝑉𝑒ℎ𝐶𝑜𝑠𝑡 do

21: |𝑉| ← |𝑉| + 1

22: start again by selecting |𝑉| cluster centers (step 4)

23: else if 𝑍𝐶 𝑣1
> 𝑇𝑊 or ∑ 𝑑𝑒𝑚𝑘𝑘∈𝐶𝑣∪𝑗 > 𝑉𝑒ℎ𝐶𝑎𝑝 ∀𝑗 ∈ 𝐶𝑣1

24: break

25: else

169

26: for each 𝑗 ∈ 𝐶𝑣1
: ∑ 𝑑𝑒𝑚𝑘𝑘∈𝐶𝑣∪𝑗 < 𝑉𝑒ℎ𝐶𝑎𝑝 do

27: 𝑍′𝐶𝑣2
← solve TSP for 𝐶𝑣2

∪ 𝑗

28: 𝑍′𝐶𝑣1
← solve TSP for 𝐶𝑣1

\ 𝑗

29: 𝐶𝑜𝑠𝑡𝑗 ← 𝑍′𝐶𝑣2
+ 𝑍′𝐶𝑣1

− 𝑍𝐶𝑣2
− 𝑍𝐶𝑣1

30: end for

31: let 𝑗 be the customer with least 𝐶𝑜𝑠𝑡𝑗

32: 𝐶𝑣1
← 𝐶𝑣1

\ 𝑗

33: 𝐶𝑣2
← 𝐶𝑣2

∪ 𝑗

34: end if

35: end while

36: end for

Figure 7.4: Output of the Algorithm

Figure 7.4 illustrates the effect of the improvement heuristic.

 Top row:

o First figure: Customer allocations in a 300-customer instance

o Second figure: Customers that will be considered in the current run

o Third figure: Customers corresponding to CDC and the customers used

as cluster centers

170

o Fourth figure: Tour lengths (for each cluster and in total) before and

after the improvement heuristic

 Middle row:

o First, second, and third figures: Delivery routes in respective clusters

o Fourth figure: Distribution of demand across clusters

o Fifth figure: Distribution of tour length across clusters

 Bottom row:

o First, second and third figures: Delivery routes in respective clusters

after improvement

o Fourth figure: Distribution of demand across clusters after

improvement

o Fifth figure: Distribution of tour length across clusters after

improvement

Similar results have been observed with different instances. Thus the ones seen in the

figure show the typical behavior of the algorithm. The most important observation is

that, as explained before, most customers are assigned to the cluster closest to the city

center. As a result of this, the delivery route of the central cluster is longer.

The demand and tour length differences between clusters have two implications for

the system. When demand is concentrated in one cluster, it is a clear indicator that the

vehicle capacities in other clusters are not used efficiently. Also, there is a higher

chance of the current solution exceeding the vehicle capacity in the central cluster.

Therefore, it is desirable to construct clusters with close total demand values. When

the tour length of one cluster is significantly larger than others, it can be inferred that

this tour will be more susceptible to be affected by changes in traffic conditions. In

other words, vehicles serving clusters in short tours afford to allocate some of their

time as a buffer against unexpected circumstances during delivery. However, other

vehicles do not have that luxury. Therefore, balancing the tour length as well as

demand is a desirable objective in this problem.

The pie charts in Figure 7.4 show the distribution of demand and tour length across

clusters. Before the improvement algorithm, we observe that 68% of demand and 46%

of total tour length are in the central cluster. After the improvement, we observe that

all clusters share the demand almost equally and their tour lengths are also very close.

171

As can be seen in the bar chart, the tour length of the central cluster decreased while

tour length of corner clusters increased. For this instance, the total tour length

increased by 8.3%. This increase in total tour length is the price of achieving almost

perfect equity between clusters. Note that achieving perfect equity is not possible,

since there are two distinct equity objectives. The balance between equity and tour

length may be struck on different points within the feasible region. These different

points can be found by changing the algorithm parameters. Considering these

decisions are effective on the operational level, selection of algorithm parameters is

left to the decision maker.

The computational efficiency of the algorithm is an important consideration. Figure

7.4 above illustrates only a small part of the problem, a group of customers assigned

to one of the open CDCs in a single scenario among a hundred. To embed the algorithm

within a metaheuristic, we need to obtain fast results. The algorithm takes on average

5.5 seconds and 2.3 seconds with and without the improvement part respectively, for

each set of location decisions. If all scenarios are to be evaluated, the time requirement

would be prohibitive. However, if only the scenarios in a representative group are to

be evaluated, the process would also take much shorter, while maintaining sufficient

accuracy.

172

173

CHAPTER 8

DISCUSSION AND COMMENTS

8. DISCUSSION AND COMMENTS

In this thesis, we pursued three main objectives. The first objective is to analyze the

City Logistics literature in terms of its relations and overlaps with other fields in the

relevant OR literature. We have seen that there are several well-known OR/IE

problems which are strongly related to CL. In fact, the whole set of decisions to be

made in a CL system can be decomposed into subproblems and there are studies

considering similar problems in the literature. We have seen that facility location, fleet

management, vehicle routing problems and several of their combinations have been

studied extensively in a deterministic setting and less frequently under uncertainty.

The relevant literature fails to offer adequate modeling and solution methods due to

two shortcomings. CL systems have several characteristics that need to be taken into

account, especially the CDC locations and the significance of transportation cost

uncertainty. The effect of these characteristics makes it crucial for the decision makers

to use methods that are tailored for the CL setting. We provide the methods for the CL

system from a strategic view.

Modeling all required decisions together may be desirable to achieve a holistic view

of the system. However, the computational complexity of such a model prohibits the

use of any exact solution method. With the current computer technology, it is certainly

not possible to find optimal solutions for all these decisions for the instances of realistic

size. Thus, there remains two options: optimizing the higher level decisions and

solving for the lower level decisions when necessary, or considering all decisions in a

heuristic manner. The former is a natural path that follows the strategic view of the

problem, but we considered the latter. While we did not fully implement the algorithm

and obtain computational results, we provide a sample algorithm that outlines the

174

important points to be considered when the fleet management and routing decisions

are made.

The second objective is to analyze the value of information in a CL setting. Due to the

dynamic nature of cities, CL systems are operating in an ever-changing environment.

This situation makes it crucial for the system to be adaptable to the changes in

parameters from an optimization perspective. Having a strategic view towards the

problem, we see that the location decisions are not subject to change in the short-term,

but it is certainly possible for the allocation decisions to be updated regularly.

We measured the benefit brought by changeable allocation decisions and found that a

large amount of cost reduction is possible. Though the amount of this reduction

depends on the spatial distribution of customers and shape of the city, it is always

significant. Moreover, the reduction is larger in the CL setting than in the classical

facility location setting. For the sake of updating allocation decisions, the CL system

only has to deal with the necessity to coordinate customers.

The third objective of this thesis is to create efficient solution methods that are able to

deal with instances of realistic size. While standard commercial MIP solvers can solve

small instances very quickly and medium instances in long time, they cannot produce

even any feasible solutions for large instances. Since any instance of realistic size

would fall into the large group, these standard solvers cannot be considered for use in

a real-life application.

We propose (in)exact solution methods for solving the problem in a realistic setting.

First one is an enhancement of the L-Shaped method with scenario-group cuts. Due to

the way we construct scenarios, the use of scenario-group cuts is natural to our solution

approach and does not require any additional algorithm to construct scenario groups.

This enhancement proves to be effective in striking a balance between the

computational cost of adding multiple cuts and collective weakness of adding single

cuts. While it does not converge within time limit, the best upper bound found by the

algorithm is usually optimal.

The second method we proposed is an evolutionary algorithm. Parallel to the approach

we followed so far, we separate location and allocation decisions from each other and

handle only the location decisions explicitly. On the other hand, allocation decisions

175

found with a separate decoding/evaluation algorithm. It is a hybrid algorithm using

greedy and 2-opt heuristics that constructs a feasible solution and improves it. We

tailored this algorithm for the CL setting, using the unconventional CDC locations to

our advantage. Both methods are able to obtain good solutions for instances of realistic

size and they find the same solutions most of the time.

In this context, there are several future research directions that we identified. The first

one is the addition of lower level decisions to the optimization model. We believe that

more sophisticated decomposition methods would be necessary to achieve this, and

solving large instances optimally may not be possible even with such methods. A

suitable starting point may be a three-stage formulation with routing decisions on the

last stage, extending on our two-stage stochastic formulation. On the other hand, it

seems possible to consider these decisions within a metaheuristic algorithm, as

suggested in Chapter 7. Still we would need a slightly faster way to evaluate routing

decisions, so that large instances can be solved.

Future studies may also consider other factors under uncertainty. After transportation

cost uncertainty that affects the whole system all the time, demand uncertainty may be

an important factor especially for lower level decisions. It is quite possible that some

customers have less or zero demand in some periods, thus the decision-maker may

prefer operating a smaller fleet of delivery vehicles than what would be required by a

scenario. The change in routing decisions would be less significant in such a case, but

we believe that a model that involves fleet management decisions would work best

under demand uncertainty.

While we tried our best to create efficient solution methods, it is also possible to apply

different methods on the problem, so that larger instances can be solved. Making

further problem-specific enhancements on the L-Shaped method and implementing

different operators within the evolutionary algorithm are two possibilities.

A future study may also generalize our results to multi-echelon case, most importantly

to the two-echelon setting. In this study, we assumed that the CDCs are always located

on the city boundaries and they directly serve the customers with the help of delivery

vehicles. If this does not have to be the case in a CL network since, in a large city, a

second level of facilities, called satellites, need to be located inside the city as an

intermediate level between CDCs and customers. When satellites are used, CDCs

176

supply the satellites and satellites serve customers. This network configuration is

described as two-echelon and leads to a slightly complicated model. The ideas in this

thesis can be modified for use in the two-echelon setting.

Although CL is a relatively a new research area, it is gaining momentum due to CL

projects currently under development. The number of studies that consider CL is

increasing rapidly both in the OR/IE literature and other fields. We expect this trend

to continue until the obstacles we mentioned above can be overcome. Modeling the

CL system with fewer assumptions and using more efficient solution methods have

the potential to bring large benefits in real-life applications. We believe CL offers

important solutions to the every-day problems of urban life and the scientific

community has the responsibility and capability to help with the effective

implementation of these solutions.

177

REFERENCES

1. Adulyasak, Y., Cordeau, J.-F. and Jans, R., 2015a. Benders decomposition for

production routing under demand uncertainty. Operations Research, Articles in

Advance, 1-17.

2. Adulyasak, Y., Cordeau, J.-F., Jans, R., 2015b. The production routing

problem: a review of formulations and solution algorithms. Computers &

Operations Research 55, 141-152.

3. Albareda-Sambola, M., Fernandez, E. and Laporte, G., 2007. Heuristic and

lower bound for a stochastic location-routing problem. European Journal of

Operational Research 179(3), 940-955.

4. Altınel, İ.K., Durmaz, E., Aras, N. and Özkısacık, K.C., 2009. A location–

allocation heuristic for the capacitated multi-facility Weber problem with

probabilistic customer locations. European Journal of Operational Research,

198(3), 790–799.

5. Alumur, S., Nickel, S., & Saldanha-da-Gama, F., 2012. Hub location under

uncertainty. Transportation Research Part B 46, 529–543.

6. Ando, N. and Taniguchi, E., 2006. Travel time reliability in vehicle routing and

scheduling with time windows. Netw Spat Econ 6, 293–311.

7. Atamtürk, A. and Zhang, M., 2007. Two-stage robust network row and design

under demand uncertainty. Operations Research 55, 662–673.

8. Averbakh, I., 2000. Minimax regret solutions for minimax optimization

problems with uncertainty. Operations Research Letters 27, 57-65.

9. Averbakh, I. and Berman, O., 2000. Minimax regret median location on a

network under uncertainty. INFORMS Journal on Computing 12(2), 104-110.

10. Baldi, M.M., Ghirardi, M., Perboli, G. and Tadei, R., 2012. The capacitated

transshipment location problem under uncertainty: a computational study.

Procedia – Social and Behavioral Sciences, Seventh International Conference

on City Logistics 39, 424-436.

178

11. Beardwood, J., Halton, J.H. And Hammersley, J.M., 1959. The shortest path

through many points. Mathematical Proceedings of the Cambridge

Philosophical Society 55(4), 299-327.

12. Benders, J.F., 1962. Partitioning procedures for solving mixed-variables

programming problems. Numerische Mathematik 4, 238–252.

13. Bent, R.W. and Van Hentenryck, P., 2004. Scenario-based planning for

partially dynamic vehicle routing with stochastic customers. Operations

Research 52(6), 977-987.

14. Berman, O., Jaillet, P. and Simchi-Levi, D., 1995. Location–routing problems

with uncertainty. (In: Drezner, Z., Ed.), Facility Location: A Survey of

Applications and Methods. New York. Springer, 427–452.

15. Berman, O. and Larson, R.C., 2001. Deliveries in an inventory/routing problem

using stochastic dynamic programming. Transportation Science 35(2), 192-

213.

16. Bertsimas, D.J. SimchiLevi, D., 1996. A new generation of vehicle routing

research: robust algorithms, addressing uncertainty. Operations Research

44(2), 286-304.

17. Bertsimas, D., Brown, D.B. and Caramanis, C., 2011. Theory and applications

of robust optimization. SIAM Review 53(3), 464–501.

18. Binart, S., Dejax, P., Gendreau, M. and Semet, F., 2015. A 2-stage method for

a field service routing problem with stochastic travel and service times.

Computers & Operations Research, Articles in Advance.

19. Birge, J.R., 1982. The value of the stochastic solution in stochastic linear-

programs with fixed recourse. Mathematical Programming 24(3), 314-325.

20. Birge, J.R. and Louveaux, F. V., 1988. A multicut algorithm for two-stage

stochastic linear programs. European Journal of Operational Research 34, 384–

392.

21. Birge, J. R. and Louveaux F., 2011. Introduction to Stochastic Programming.

Springer Series in Operations Research and Financial Engineering. Springer.

22. Bischoff, M. and Dächert, K., 2009. Allocation search methods for a

generalized class of location–allocation problems. European Journal of

Operational Research 192(3), 793–807.

179

23. Brandao, J., 2009. A deterministic tabu search algorithm for the fleet size and

mix vehicle routing problem. European Journal of Operational Research

195(3), 716-728.

24. Branston, D., 1976. Link capacity functions: a review. Transportation Research

10, 223-236.

25. Bundschuh, M., Klabjan, D. and Thurston, D., 2006. Modeling robust and

reliable supply chains. Working Paper, University of Illinois at Urbana-

Champaign, Urbana, IL 61801, USA.

26. Campbell, J.F., Langevin, A. and Mbaraga, P., 1996. Continuous

approximation models in freight distribution: an overview. Transportation

Research Part E 30(3), 163-188.

27. Castillo, J.M., 1999. A heuristic for the traveling salesman problem based on a

continuous approximation, Transportation Research Part B 33, 123-152.

28. Chan, Y., Carter, W.B. and Burnes, M.D., 2001. A multiple-depot, multiple-

vehicle, location-routing problem with stochastically processed demands.

Computers & Operations Research 28(8), 803-826.

29. Christofides, N. And Eilon, S., 1969. Expected distances in distribution

problems. Operations Research Quarterly 20(4), 437-443.

30. Coelho, L.C., Cordeau, J.-F. and Laporte, G., 2014. Thirty years of inventory

routing. Transportation Science 48(1), 1-19.

31. Crainic, T.G., Ricciardi, N. and Storchi, G., 2009. Models for evaluating and

planning city logistics systems. Transportation Science 43(4), 432-454.

32. Crainic T. G., Errico, F., Rei, W. and Ricciardi, N., 2012a. Modeling demand

uncertainty in two-tiered CL tactical planning. CIRRELT-2012-65.

33. Crainic T. G., Hewitt, M. and Rei, W., 2012b. Scenario-clustering in a

progressive hedging-based meta-heuristic for stochastic network design

CIRRELT-2012-41.

34. Crainic T. G., Hewitt M. and Rei W., 2014. Partial decomposition strategies for

two-stage stochastic integer programs. CIRRELT-2014-13.

35. Daganzo, C.F., 1984a. The distance traveled to visit N points with a maximum

of C stops per vehicle: an analytic model and an application. Transportation

Science 18(4), 331-350.

180

36. Daganzo, C., 1984b. The length of tours in zones of different shapes.

Transportation Research B 188(2), 135-145.

37. Daskin, M.S., Coullard, C.R. and Shen, Z.-J.M., 2002. An inventory location

model: formulation, solution algorithm and computational results. Annals of

Operations Research 110, 83–106.

38. Doyen, A., Necati, A. and Barbarosoglu, G., 2012. A two-echelon stochastic

facility location model for humanitarian relief logistics. Optimization Letters 6,

1123–1145.

39. Fazel-Zarandi, M.M., Berman, O. and Christopher, B.J., 2013. Solving a

stochastic facility location/fleet management problem with logic-based

Benders decomposition. IIE Transactions 45(8), Special Issue SI, 896-911.

40. Figliozzi, M.A., 2009. Planning approximations to the average length of

vehicle routing problems with time window constraints. Transportation

Research Part B 43, 438–447.

41. Fischetti, M. and A. Lodi., 2003. Local branching, Mathematical Programming

98, 23-47.

42. Fischetti, M., Salvagnin, D. and Zanette, A., 2008. Minimal infeasible

subsystems and Benders cuts. Technical Report, DEI, University of Padova,

Italy.

43. Fischetti, M, Salvagnin, D. and Zanette, A., 2010. A note on the selection of

benders’ cuts. Mathematical Programming 124, 175–182.

44. Fortz, B. and Poss, M., 2009. An improved Benders decomposition applied to a

multi-layer network design problem, Operations Research Letters 37, 359–364.

45. Fouskakis, D. and Draper, D., 2002. Stochastic programming: a review.

International Statistical Review, 70(3), 315-349.

46. Fukasawa, R., Longo, H., Lysgaard, J., de Aragao, M.P., Reis, M., Uchoa, E.

and Werneck, R.F., 2006. Robust branch-and-cut-and-price for the capacitated

vehicle routing problem. Mathematical Programming Series A 106, 491–511.

47. Gabrel, V., Murat, C. and Thiele A., 2014a. Recent advances in robust

optimization: an overview. European Journal of Operational Research 235(3),

471-483.

48. Gabrel, V., Lacroix, M., Murat, C. and Remli, N., 2014b. Robust location

transportation problems under uncertain demands. Discrete Applied

Mathematics 164(1), 100–111.

181

49. Gendreau, M., Laporte, G. and Séguin, R., 1996. Stochastic vehicle routing.

European Journal of Operational Research 88, 3-12.

50. Geoffrion, M. and Graves, G.W., 1974. Multicommodity distribution system

design by Benders decomposition. Management Science 20(5), 822–844.

51. Gheysens, F., Golden, B. and Assad, A., 1984. A comparison of techniques for

solving the fleet size and mix vehicle-routing problem. OR Spektrum 6(4),

207-216.

52. Gounaris, C. E., Wiesemann, W. and Floudas, C.A., 2013. The robust

capacitated vehicle routing problem under demand uncertainty. Operations

Research 61(3), 677–693.

53. Gutierrez, G.J., Kouvelis, P. and Kurawarwala, A.A., 1996. A robustness

approach to uncapacitated network design problems. European Journal of

Operational Research 94, 362-376.

54. Hall, R.W., 1984. Travel distance through transportation terminals on a

rectangular grid. Journal of Operational Research Society 35(12), 1067-1078.

55. Han, J., Lee, C. and Park S., 2013. A robust scenario approach for the vehicle

routing problem with uncertain travel times. Transportation Science 48(3),

373-390.

56. Inuiguchi, M. and Sakawa, M., 1995. Minimax regret solution to linear

programming problems with an interval objective function. European Journal

of Operational Research 86, 526-536.

57. Kenyon, A.S. and Morton, D.P., 2003. Stochastic vehicle routing with random

travel times. Transportation Science 37(1), 69-82.

58. Kleywegt, A.J., Nori, V.S. and Savelsbergh, M.W.P., 2002. The stochastic

inventory routing problem with direct deliveries. Transportation Science 36(1),

94-118.

59. Koulakezian, A., Soliman, H. M., Tang, T. and Leon-Garcia, A., 2012. Robust

traffic assignment in transportation, networks using network criticality.

Vehicular Technology Conference (VTC Fall), IEEE.

60. Kung-Jeng, W., Makonda, B. and Liub, S.Y., 2011. Location and allocation

decisions in a two-echelon supply chain with stochastic demand – A genetic-

algorithm based solution. Expert Systems with Applications 38(5), 6125–6131.

182

61. Laporte, G., Louveaux, F. and Mercure, H., 1989. Models and exact-solutions

for a class of stochastic location-routing problems. European Journal of

Operational Research 39(1), 71-78.

62. List, G. F., Wood, B., Nozick, L.K., Turnquist, M.A., Jones, D.A., Kjeldgaard,

E. A. and Lawton, C. R., 2003. Robust optimization for fleet planning under

uncertainty. Transportation Research Part E 39(3), 209-227.

63. Listes, O. and Dekker,R., 2005. A stochastic approach to a case study for

product recovery network design. European Journal of Operational Research

160(2), 268–287.

64. Liu, Z., Guo, S., Snyder, L.V., Lim, A. and Peng, P., 2010. A p-robust

capacitated network design model with facility disruptions. Advanced

manufacturing and sustainable logistics: Proceedings of the 8th International

Heinz Nixdorf Symposium 21(22), 269-280.

65. Liu, S., Huang, W. and Ma, H., 2009. An effective genetic algorithm for the

fleet size and mix vehicle routing problems. Transportatıon Research Part E

45(3), 434-445.

66. Louveaux, F.V. and Peeters, D., 1992. A dual-based procedure for stochastic

facility location. Operations Research 40(3), 564-573.

67. Madansky, A., 1960. Inequalities for stochastic linear programming problems.

Management Science 6, 197-204.

68. Maggioni, F. and Wallace, S.W., 2012. Analyzing the quality of the expected

value solution in stochastic programming. Annals of Operations Research 200,

37–54.

69. Magnanti, T. and Wong, R., 1981. Accelerating Benders decomposition

algorithmic enhancement and model selection criteria. Operations Research 29,

464–484.

70. Mausser, H.E. and Laguna, M., 1999. Minimizing the maximum relative regret

for linear programs with interval objective function coefficients. Journal of the

Operational Research Society 50, 1063-1070.

71. McDaniel, D. and Devine, M., 1977. A modified Benders' partitioning

algorithm for mixed integer programming. Management Science 24(3), 312-

319.

72. Mudchanatongsuk, S., Ordonez, F. and Liu, J., 2008. Robust solutions for

network design under transportation cost and demand uncertainty. Journal of

the Operational Research Society 59, 652-662.

183

73. Noyan, N., 2012. Risk-averse two-stage stochastic programming with an

application to disaster management. Computers & Operations Research 39,

541–559.

74. Oliveira, F., Grossmann, I. E. and Hamacher, S., 2014. Accelerating Benders

stochastic decomposition for the optimization under uncertainty of the

petroleum product supply chain. Computers & Operations Research 49, 47-58.

75. Papadakos, N., 2008. Practical enhancements to the Magnanti-Wong method.

Operations Research Letters 36, 444–449.

76. Peng, P., Snyder, L. V., Lima, A. and Liu, Z., 2011. Reliable logistics networks

design with facility disruptions. Transportation Research Part B 45, 1190–

1211.

77. Rajagopalan, H. K., Vergara, E., Saydam, C. and Xiao, J., 2007. Developing

effective meta-heuristics for a probabilistic location model via experimental

design. European Journal of Operational Research 177(1), 83–101.

78. Rei, W., Cordeau, J.-F., Gendreau, M. and Soriano, P., 2009. Accelerating

Benders decomposition by local branching. INFORMS Journal on Computing

21(2), 333–345.

79. Remli, N., 2011. Robustesse en programmation linéaire. Ph.D. thesis,

Université Paris-Dauphine. Paris, France.

80. Ricciardi, N., Tadei, R. and Grosso, A., 2002. Optimal facility location with

random throughput costs. Computers & Operations Research 29, 593–607.

81. Rosenhead, J., Elton, M. and Gupta, S.K., 1972. Robustness and optimality as

criteria for strategic decisions. Operational Research Quarterly 23(4), 413–431.

82. Van Roy, T. J., 1986. A cross decomposition algorithm for capacitated facility

location. Operations Research 34(1), 145-163.

83. Roy, B., 2010. Robustness in operational research and decision aiding: a multi-

faceted issue. European Journal of Operational Research 200, 629–638.

84. Saharidis, G.K.D. and Ierapetritou, M.G., 2010a. Improving Benders

decomposition using maximum feasible subsystem cut generation strategy.

Computers and Chemical Engineering 34, 1237–1245.

85. Saharidis, G.K.D., Minoux, M., and Ierapetritou, M.G., 2010b. Accelerating

Benders method using covering cut bundle generation. International

Transactions in Operational Research 17, 221–237.

184

86. Saharidis, G., Boile, M. and Theofanis, S., 2011. Initialization of the Benders

master problem using valid inequalities applied to fixed-charge network

problems. Expert Systems with Applications 38(6), 6627-6636.

87. Saharidis, G.K.D. and Ierapetritou, M.G., 2013. Speed-up Benders

decomposition using maximum density cut generation. Annals of Operations

Research 210, 101–123.

88. Santoso, T., Ahmed, S., Goetschalckx, M. and Shapiro, A., 2005. A stochastic

programming approach for supply chain network design under uncertainty.

European Journal of Operational Research 167, 96–115.

89. Sherali, H. and Lunday, B., 2013. On generating maximal nondominated

Benders cuts. Annals of Operations Research 210, 57-72.

90. Sheu, J.B., 2006. A novel dynamic resource allocation model for demand-

responsive city logistics distribution operations. Transportation Research Part

E 42(6), 445-472.

91. Van Slyke, R. and Wets, R.J.-B., 1969. L-shaped programs with applications to

optimal control and stochastic programming. SIAM Journal on Applied

Mathematics 17, 638–663.

92. Snyder, L.V., 2006. Facility location under uncertainty: a review. IIE

Transactions 38(7), 547-564.

93. Snyder, L.V. and Daskin, M.S., 2006. Stochastic p-robust location problems.

IIE Transactions 38, 971–985.

94. Solyalı, O., Cordeau, J.-F. and Laporte, G., 2012. Robust inventory routing

under demand uncertainty. Transportation Science 46(3), 327-340.

95. Stanimirovic, Z. and Kratica, J., 2007. Genetic algorithms for solving the

discrete ordered median problem. European Journal of Operational Research

182(3), 983–1001.

96. Taniguchi, E., Thompson, R. G. and Yamada, T., 2010. Incorporating risks in

city logistics. Procedia Social and Behavioral Sciences 2, 5899–5910.

97. Taş, D., Gendreau, M., Dellaert, N., van Woensel, T. and de Kok, A.G., 2014.

Vehicle routing with soft time windows and stochastic travel times: a column

generation and branch-and-price solution approach. European Journal of

Operational Research 236(3), 789-799.

185

98. Tsiakis, P., Shah, N. and Pantelides, C.C., 2001. Design of multi-echelon

supply chain networks under demand uncertainty. Industrial and Engineering

Chemistry Research 40, 3585–3604.

99. Ukkusuri, S.V., Mathew, T.V. and Waller, S.T., 2007. Robust transportation

network design under demand uncertainty. Computer-Aided Civil and

Infrastructure Engineering 22, 6–18.

100. Uster, H., Agrahari, H., 2011. A Benders decomposition approach for a

distribution network design problem with consolidation and capacity

considerations. Operations Research Letters 39(2), 138–143.

101. Van Woensel, T., Kerbache, L., Peremans, N. and Vandaele, N., 2008. Vehicle

routing with dynamic travel times: a queueing approach. European Journal of

Operations Research 186(3), 990-1007.

102. Wang, Q., Batta, R. and Rump, C.M., 2002. Algorithms for a facility location

problem with stochastic customer demand and immobile servers. Annals of

Operations Research 111(1-4), 17-34.

103. Wang, N., Lu, J.C. and Kvam, P., 2006.Reliability modeling in spatially

distributed logistics systems. IEEE Transactions on Reliability 55(3), 525-534.

104. Wentges, P., 1996. Accelerating Benders’ decomposition for the capacitated

facility location problem. Math. Methods Oper. Res. 44, 267–290.

105. Yin, Y. and Lou, Y., 2009. Robust optimization approach for transportation

network design under demand uncertainty. Critical Issues in Transportation

Systems Planning, Development and Management, ICCTP, 1-12.

106. You, F. and Grossmann I.E., 2013. Multicut Benders decomposition algorithm

for process supply chain planning under uncertainty. Annals of Operations

Research 210, 191–211.

107. Yu, C.S. and Li, H.L., 2000. A robust optimization model for stochastic

logistic problems. Int. J. Production Economics 64, 385-397.

186

187

APPENDIX

Table A.1: Results of TLAP Experiments with Small Instances

Results for

Small Instances

TLAP

Best Integer
Lower

Bound

CPU Time

(sec)
GAP%

R_u_L_10_1 250160.1 250160.1 2.6 0.0

R_u_L_10_2 250145.6 250145.6 3.0 0.0

R_n_L_10_1 250179.6 250179.6 7.2 0.0

R_n_L_10_2 250162.6 250162.6 1.4 0.0

C_u_L_10_1 250180.5 250180.5 2.9 0.0

C_u_L_10_2 250139.0 250139.0 1.0 0.0

C_n_L_10_1 250167.2 250167.2 2.4 0.0

C_n_L_10_2 250181.8 250181.8 1.9 0.0

RC_u_L_10_1 250180.7 250180.7 4.2 0.0

RC_u_L_10_2 250159.0 250159.0 5.1 0.0

RC_n_L_10_1 250155.7 250155.7 3.2 0.0

RC_n_L_10_2 250174.7 250174.7 2.1 0.0

R_u_S_10_1 730244.1 730244.1 4.4 0.0

R_u_S_10_2 686878.5 686878.5 4.7 0.0

R_n_S_10_1 788669.3 788669.3 7.1 0.0

R_n_S_10_2 737856.4 737856.4 1.5 0.0

C_u_S_10_1 791586.6 791586.6 3.0 0.0

C_u_S_10_2 666935.7 666935.7 0.9 0.0

C_n_S_10_1 751561.4 751561.4 2.1 0.0

C_n_S_10_2 795264.1 795264.1 2.0 0.0

RC_u_S_10_1 792066.5 792066.5 4.0 0.0

RC_u_S_10_2 727048.0 727048.0 5.6 0.0

RC_n_S_10_1 708776.3 708776.3 3.3 0.0

RC_n_S_10_2 774116.4 774116.4 2.4 0.0

188

Table A.2: Results of TLAP Experiments with Medium Instances

Results for

Medium

Instances

TLAP

Best

Integer

Lower

Bound

CPU Time

(sec)
GAP%

R_u_L_100_1 251602.1 251602.1 9706.6 0.0

R_u_L_100_2 251557.4 251557.4 6954.7 0.0

R_n_L_100_1 251744.3 251744.3 7538.3 0.0

R_n_L_100_2 251700.0 251700.0 9328.1 0.0

C_u_L_100_1 251551.2 251551.2 6305.9 0.0

C_u_L_100_2 251653.3 251653.3 5482.6 0.0

C_n_L_100_1 251560.9 251560.9 5139.4 0.0

C_n_L_100_2 251702.5 251702.5 6060.7 0.0

RC_u_L_100_1 251455.0 251455.0 6361.9 0.0

RC_u_L_100_2 251619.4 251619.4 5923.0 0.0

RC_n_L_100_1 251677.3 251677.3 5553.7 0.0

RC_n_L_100_2 251460.3 251460.3 6751.9 0.0

R_u_S_100_1 730624.5 730624.5 1754.9 0.0

R_u_S_100_2 717207.5 717207.5 1563.3 0.0

R_n_S_100_1 773292.2 773292.2 1994.9 0.0

R_n_S_100_2 760011.0 760011.0 1926.9 0.0

C_u_S_100_1 715369.3 715369.3 436.7 0.0

C_u_S_100_2 745984.6 745984.6 1148.3 0.0

C_n_S_100_1 718274.1 718274.1 769.0 0.0

C_n_S_100_2 760758.1 760758.1 1265.3 0.0

RC_u_S_100_1 686507.6 686507.6 769.0 0.0

RC_u_S_100_2 735827.8 735827.8 1145.2 0.0

RC_n_S_100_1 753200.8 753200.8 857.8 0.0

RC_n_S_100_2 688074.3 688074.3 1090.5 0.0

189

Table A.3: Results of TLAP Experiments with Large Instances

Results for

Large Instances

TLAP

Best

Integer

Lower

Bound

CPU Time

(sec)
GAP%

R_u_L_1000_1 1010631.3 239004.7 14463.2 322.8

R_u_L_1000_2 1010936.1 239634.9 14444.4 321.9

R_n_L_1000_1 1014487.2 241774.3 14467.1 319.6

R_n_L_1000_2 1013188.1 241038.1 14444.7 320.3

C_u_L_1000_1 1012673.4 240561.9 14462.5 321.0

C_u_L_1000_2 962374.4 240517.9 14444.8 300.1

C_n_L_1000_1 1013515.5 241295.0 14471.5 320.0

C_n_L_1000_2 1013179.9 240895.3 14445.3 320.6

RC_u_L_1000_1 1012550.9 240373.2 14474.4 321.2

RC_u_L_1000_2 961509.3 239934.2 14444.7 300.7

RC_n_L_1000_1 1011994.5 239795.3 14469.4 322.0

RC_n_L_1000_2 1014106.8 242099.6 14445.0 318.9

R_u_S_1000_1 1318937.5 635392.4 14464.9 107.6

R_u_S_1000_2 1328081.8 657559.7 14457.0 102.0

R_n_S_1000_1 1434617.2 722288.0 14644.4 98.6

R_n_S_1000_2 1395642.1 699721.9 14456.6 99.5

C_u_S_1000_1 1380202.2 683079.7 14466.4 102.1

C_u_S_1000_2 1371045.4 681245.1 14456.9 101.3

C_n_S_1000_1 1405464.6 705906.1 14464.8 99.1

C_n_S_1000_2 1395396.2 695293.2 14456.9 100.7

RC_u_S_1000_1 1376527.1 679669.9 14463.9 102.5

RC_u_S_1000_2 1345068.2 666934.7 14456.9 101.7

RC_n_S_1000_1 1359835.6 662088.2 14461.9 105.4

RC_n_S_1000_2 1423203.7 728960.7 14457.6 95.2

190

Table A.4: Results of MC Experiments with Small Instances

Results for

Small

Instances

MC

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU Time

(sec)
GAP%

R_u_L_10_1 250160.1 250160.1 42 402.1 0.0

R_n_L_10_1 250179.6 250179.5 85 1973.3 0.0

C_u_L_10_1 250180.5 250180.5 53 483.1 0.0

C_n_L_10_1 250167.2 250167.1 27 160.2 0.0

RC_u_L_10_1 250180.7 250180.6 48 492.8 0.0

RC_n_L_10_1 250155.7 250155.7 37 267.4 0.0

R_u_S_10_1 730244.1 730244.1 47 698.2 0.0

R_n_S_10_1 788669.3 788669.3 91 3023.7 0.0

C_u_S_10_1 791586.5 791586.5 54 737.1 0.0

C_n_S_10_1 751561.4 751561.4 28 320.2 0.0

RC_u_S_10_1 792066.5 792066.5 49 714.0 0.0

RC_n_S_10_1 708776.3 708776.3 32 385.0 0.0

Table A.5: Results of MC Experiments with Medium Instances

Results for

Medium

Instances

MC

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU

Time (sec)
GAP%

R_u_L_100_1 251602.1 251220.2 225 14448.7 0.2

R_n_L_100_1 251744.3 251424.0 218 14479.0 0.1

C_u_L_100_1 251551.2 251442.9 223 14421.6 0.0

C_n_L_100_1 251560.9 251384.3 215 14403.7 0.1

RC_u_L_100_1 251472.8 251209.9 220 14483.7 0.1

RC_n_L_100_1 251677.3 251545.7 217 14536.2 0.1

R_u_S_100_1 733263.9 614777.0 216 14535.1 19.3

R_n_S_100_1 774182.3 676434.5 216 14563.5 14.5

C_u_S_100_1 715369.3 681334.2 228 14514.3 5.0

C_n_S_100_1 718274.1 665192.2 209 14466.0 8.0

RC_u_S_100_1 686507.6 610984.3 217 14523.9 12.4

RC_n_S_100_1 753200.8 710940.2 207 14503.9 5.9

191

Table A.6: Results of MC Experiments with Large Instances

Results for

Large Instances

MC

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU

Time

(sec)

GAP%

R_u_L_1000_1 265595.0 260861.2 292 14406.7 1.8

R_n_L_1000_1 267886.6 264619.8 298 14454.8 1.2

C_u_L_1000_1 265947.9 263036.6 300 14469.9 1.1

C_n_L_1000_1 267120.0 263687.2 296 14483.9 1.3

RC_u_L_1000_1 266456.9 262706.3 295 14453.5 1.4

RC_n_L_1000_1 265975.3 262143.1 287 14417.1 1.5

R_u_S_1000_1 718170.6 575208.1 289 14468.1 24.9

R_n_S_1000_1 785211.0 688490.6 289 14517.4 14.0

C_u_S_1000_1 728436.7 641946.1 300 14424.4 13.5

C_n_S_1000_1 763599.7 659980.2 289 14494.0 15.7

RC_u_S_1000_1 743705.8 630925.2 287 14502.7 17.9

RC_n_S_1000_1 728554.3 614219.8 278 14486.8 18.6

192

Table A.7: Results of SGC Experiments with Small Instances

Results for

Small

Instances

SGC

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU

Time (sec)
GAP%

R_u_L_10_1 250160.1 250160.0 120 618.5 0.0

R_u_L_10_2 250145.6 250145.5 258 3293.4 0.0

R_n_L_10_1 250179.6 250179.5 345 4543.0 0.0

R_n_L_10_2 250162.6 250162.5 69 654.2 0.0

C_u_L_10_1 250180.5 250180.5 142 789.2 0.0

C_u_L_10_2 250139.0 250139.0 50 480.3 0.0

C_n_L_10_1 250167.2 250167.2 60 224.9 0.0

C_n_L_10_2 250181.8 250181.7 186 2139.4 0.0

RC_u_L_10_1 250180.7 250180.6 188 1248.2 0.0

RC_u_L_10_2 250159.0 250159.0 123 1197.1 0.0

RC_n_L_10_1 250155.7 250155.6 77 281.5 0.0

RC_n_L_10_2 250174.7 250174.6 104 1018.8 0.0

R_u_S_10_1 730244.1 730244.1 167 1911.0 0.0

R_u_S_10_2 686878.5 686878.5 456 9008.9 0.0

R_n_S_10_1 788669.3 788669.3 462 9435.6 0.0

R_n_S_10_2 737856.4 737856.4 71 671.5 0.0

C_u_S_10_1 791586.5 791586.5 150 1594.1 0.0

C_u_S_10_2 666935.7 666935.7 50 472.4 0.0

C_n_S_10_1 751561.4 751561.4 61 595.7 0.0

C_n_S_10_2 795264.1 795264.1 191 2288.5 0.0

RC_u_S_10_1 792066.5 792066.5 198 2297.8 0.0

RC_u_S_10_2 727048.0 727048.0 146 1560.1 0.0

RC_n_S_10_1 708776.3 708776.3 86 829.3 0.0

RC_n_S_10_2 774116.4 774116.4 108 1070.9 0.0

193

Table A.8: Results of SGC Experiments with Medium Instances

Results for

Medium

Instances

SGC

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU

Time

(sec)

GAP%

R_u_L_100_1 251610.9 251305.6 599 14430.4 0.1

R_u_L_100_2 251557.4 251361.9 626 14432.5 0.1

R_n_L_100_1 251747.3 251477.6 591 14401.50 0.1

R_n_L_100_2 251700.0 251481.2 609 14401.5 0.1

C_u_L_100_1 251551.2 251482.5 644 14424.0 0.0

C_u_L_100_2 251653.3 251554.2 632 14406.9 0.0

C_n_L_100_1 251560.9 251438.9 619 14419.4 0.0

C_n_L_100_2 251702.5 251541.4 622 14428.7 0.1

RC_u_L_100_1 251455.0 251287.8 615 14421.2 0.1

RC_u_L_100_2 251619.4 251418.8 602 14432.5 0.1

RC_n_L_100_1 251677.3 251578.9 637 14400.4 0.0

RC_n_L_100_2 251460.2 251300.8 611 14421.6 0.1

R_u_S_100_1 738260.1 635714.9 575 14414.9 16.1

R_u_S_100_2 717207.5 648436.0 589 14448.7 10.6

R_n_S_100_1 773292.2 692359.3 579 14401.0 11.7

R_n_S_100_2 760011.0 694352.5 615 14437.9 9.5

C_u_S_100_1 715369.3 691145.5 609 14408.1 3.5

C_u_S_100_2 745984.6 710877.3 578 14434.2 4.9

C_n_S_100_1 718274.1 677004.1 576 14417.6 6.1

C_n_S_100_2 760758.1 712524.6 616 14427.1 6.8

RC_u_S_100_1 686507.6 625165.4 564 14423.4 9.8

RC_u_S_100_2 735827.8 675498.8 594 14410.6 8.9

RC_n_S_100_1 753200.8 723280.8 623 14418.4 4.1

RC_n_S_100_2 688074.3 631148.8 568 14400.0 9.0

194

Table A.9: Results of SGC Experiments with Large Instances

Results for

Large Instances

SGC

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU

Time

(sec)

GAP%

R_u_L_1000_1 265595.0 261182.8 612 14422.5 1.7

R_u_L_1000_2 265606.8 261511.3 621 14431.9 1.6

R_n_L_1000_1 267840.4 264764.7 611 14423.5 1.2

R_n_L_1000_2 266886.5 263320.3 619 14421.7 1.4

C_u_L_1000_1 265947.9 263409.0 669 14424.6 1.0

C_u_L_1000_2 265442.7 263169.6 654 14429.3 0.9

C_n_L_1000_1 267120.0 263842.6 613 14434.1 1.2

C_n_L_1000_2 265864.7 263564.5 632 14408.9 0.9

RC_u_L_1000_1 266456.9 262908.5 598 14410.6 1.3

RC_u_L_1000_2 265511.1 262077.9 615 14410.1 1.3

RC_n_L_1000_1 265940.7 262351.4 594 14404.4 1.4

RC_n_L_1000_2 267154.6 264553.4 617 14401.5 1.0

R_u_S_1000_1 717802.7 584472.5 593 14408.3 22.8

R_u_S_1000_2 717867.8 594527.9 605 14408.7 20.7

R_n_S_1000_1 785211.0 689833.0 451 14421.6 13.8

R_n_S_1000_2 757366.8 649543.8 616 14439.8 16.6

C_u_S_1000_1 728436.7 651724.2 660 14415.3 11.8

C_u_S_1000_2 713279.5 644600.9 654 14428.6 10.7

C_n_S_1000_1 763599.7 665099.5 603 14405.0 14.8

C_n_S_1000_2 725942.1 657190.7 627 14431.0 10.5

RC_u_S_1000_1 743705.8 635172.4 529 14421.7 17.1

RC_u_S_1000_2 715332.6 611778.2 605 14402.5 16.9

RC_n_S_1000_1 727614.1 619962.8 565 14411.8 17.4

RC_n_S_1000_2 764637.5 686384.6 611 14418.3 11.4

195

Table A.10: Results of PD Experiments with Small Instances

Results for

Small

Instances

PD

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU

Time

(sec)

GAP%

R_u_L_10_1 250160.1 250160.0 38 375.2 0.0

R_u_L_10_2 250145.6 250145.6 90 1026.8 0.0

R_n_L_10_1 250179.6 250179.5 68 770.6 0.0

R_n_L_10_2 250162.6 250162.6 19 192.2 0.0

C_u_L_10_1 250180.5 250180.5 30 241.9 0.0

C_u_L_10_2 250139.2 250139.2 14 151.9 0.0

C_n_L_10_1 250167.2 250167.3 13 105.2 0.0

C_n_L_10_2 250181.8 250181.8 30 334.0 0.0

RC_u_L_10_1 250180.7 250180.8 35 271.3 0.0

RC_u_L_10_2 250159.0 250159.0 34 352.4 0.0

RC_n_L_10_1 250155.7 250155.6 23 174.5 0.0

RC_n_L_10_2 250174.7 250174.7 21 147.8 0.0

R_u_S_10_1 730244.1 730244.1 41 494.5 0.0

R_u_S_10_2 686878.5 686878.5 130 1721.5 0.0

R_n_S_10_1 788669.3 788669.3 82 1089.4 0.0

R_n_S_10_2 737856.4 737856.4 19 194.2 0.0

C_u_S_10_1 791586.5 791586.5 33 386.4 0.0

C_u_S_10_2 667464.0 667464.0 14 149.3 0.0

C_n_S_10_1 751561.4 751561.4 13 150.5 0.0

C_n_S_10_2 795264.1 795264.1 32 371.7 0.0

RC_u_S_10_1 792066.5 792066.4 35 418.6 0.0

RC_u_S_10_2 727048.0 727048.0 36 411.7 0.0

RC_n_S_10_1 708776.3 708776.3 23 268.8 0.0

RC_n_S_10_2 774116.4 774116.4 22 239.4 0.0

196

Table A.11: Results of PD Experiments with Medium Instances

Results for

Medium

Instances

PD

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU Time

(sec)
GAP%

R_u_L_100_1 251622.3 251222.2 111 14425.4 0.2

R_u_L_100_2 251564.5 251283.9 146 14458.2 0.1

R_n_L_100_1 251747.7 251462.3 105 14410.3 0.1

R_n_L_100_2 251703.2 251441.8 147 14512.0 0.1

C_u_L_100_1 251551.2 251474.7 223 14413.6 0.0

C_u_L_100_2 251653.3 251441.8 179 14402.4 0.1

C_n_L_100_1 251560.9 251408.3 168 14501.7 0.1

C_n_L_100_2 251702.5 251527.6 160 14504.4 0.1

RC_u_L_100_1 251462.0 251200.6 133 14551.3 0.1

RC_u_L_100_2 251619.4 251380.1 136 14523.5 0.1

RC_n_L_100_1 251677.3 251578.0 175 14536.5 0.0

RC_n_L_100_2 251460.2 251223.7 145 14442.2 0.1

R_u_S_100_1 736679.9 618221.1 128 14565.6 19.2

R_u_S_100_2 719352.1 635911.5 151 14459.2 13.1

R_n_S_100_1 774318.1 689661.6 128 14536.1 12.3

R_n_S_100_2 760971.7 684223.0 162 14551.9 11.2

C_u_S_100_1 715369.3 692121.1 218 14470.8 3.4

C_u_S_100_2 745984.6 712047.4 196 14444.1 4.8

C_n_S_100_1 718274.1 674071.3 178 14459.9 6.6

C_n_S_100_2 760758.1 708829.8 164 14472.0 7.3

RC_u_S_100_1 688607.4 611963.1 147 14510.2 12.5

RC_u_S_100_2 735827.8 665609.6 145 14403.8 10.5

RC_n_S_100_1 753200.8 723831.1 182 14474.6 4.1

RC_n_S_100_2 688074.3 618433.7 154 14433.3 11.3

197

Table A.12: Results of PD Experiments with Large Instances

Results for

Large Instances

PD

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU

Time

(sec)

GAP%

R_u_L_1000_1 265593.4 261407.5 6 14732.5 1.6

R_u_L_1000_2 265595.6 261719.0 7 15631.8 1.5

R_n_L_1000_1 267886.9 265357.0 8 15944.8 1.0

R_n_L_1000_2 266925.9 264037.8 7 15381.0 1.1

C_u_L_1000_1 265947.9 263486.3 10 15753.6 0.9

C_u_L_1000_2 265442.7 263184.4 10 14930.4 0.9

C_n_L_1000_1 267120.0 264365.8 7 14517.8 1.0

C_n_L_1000_2 265864.7 263970.4 9 14478.7 0.7

RC_u_L_1000_1 266499.1 263392.3 8 15186.8 1.2

RC_u_L_1000_2 265511.1 262288.1 7 15534.5 1.2

RC_n_L_1000_1 265940.7 262794.1 8 16425.0 1.2

RC_n_L_1000_2 267154.6 264957.7 10 15809.1 0.8

R_u_S_1000_1 717802.7 592232.1 7 15670.3 21.2

R_u_S_1000_2 717867.8 601568.9 7 14777.6 19.3

R_n_S_1000_1 786605.8 711382.1 21 15407.8 10.6

R_n_S_1000_2 757778.0 671133.9 7 14529.6 12.9

C_u_S_1000_1 728436.7 655387.9 36 14674.6 11.1

C_u_S_1000_2 713279.5 647119.7 35 14685.2 10.2

C_n_S_1000_1 763599.7 680975.4 7 14729.7 12.1

C_n_S_1000_2 725942.1 669852.2 33 14684.4 8.4

RC_u_S_1000_1 744972.8 651763.6 7 14715.1 14.3

RC_u_S_1000_2 715332.6 618642.6 7 16495.3 15.6

RC_n_S_1000_1 728220.1 633822.2 7 16491.3 14.9

RC_n_S_1000_2 764637.5 699808.7 37 15031.4 9.3

198

Table A.13: Results of B&C-PD Experiments with Small Instances

Results for

Small

Instances

B&C-PD

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU Time

(sec)
GAP%

R_u_L_10_1 250160.1 250160.1 38(993) 1295.4 0.0

R_n_L_10_1 250179.6 250179.6 93(313) 3781.9 0.0

C_u_L_10_1 250180.5 250180.5 50(655) 998.6 0.0

C_n_L_10_1 250167.2 250167.2 25(205) 456.7 0.0

RC_u_L_10_1 250180.7 250180.7 46(935) 1237.0 0.0

RC_n_L_10_1 250155.7 250155.7 39(495) 721.2 0.0

R_u_S_10_1 730244.1 730244.1 53(155) 1927.9 0.0

R_n_S_10_1 788669.3 788669.3 138(504) 6591.5 0.0

C_u_S_10_1 791586.5 791586.5 56(795) 1313.1 0.0

C_n_S_10_1 751561.4 751561.4 26(233) 496.7 0.0

RC_u_S_10_1 792066.5 792066.5 47(134) 1686.4 0.0

RC_n_S_10_1 708776.3 708776.3 31(791) 1023.6 0.0

Table A.14: Results of B&C-PD Experiments with Medium Instances

Results for

Medium

Instances

B&C-PD

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU Time

(sec)
GAP%

R_u_L_100_1 251610.9 228394.3 653(3125) 14402.7 10.2

R_n_L_100_1 251744.3 228640.8 755(2402) 14411.8 10.1

C_u_L_100_1 251551.2 228574.8 307(6613) 14400.2 10.1

C_n_L_100_1 251560.9 228526.0 432(5122) 14401.5 10.1

RC_u_L_100_1 251455.0 228352.2 440(4935) 14402.0 10.1

RC_n_L_100_1 251677.3 228698.8 352(5909) 14401.7 10.0

R_u_S_100_1 733263.9 563750.2 390(6901) 14401.3 30.1

R_n_S_100_1 773292.2 637680.2 400(6593) 14400.9 21.3

C_u_S_100_1 715369.3 617891.5 276(8125) 14401.0 15.8

C_n_S_100_1 718274.1 603261.8 348(7316) 14401.7 19.1

RC_u_S_100_1 686507.6 551126.4 334(7697) 14401.8 24.6

RC_n_S_100_1 753200.8 657751.6 339(7221) 14406.8 14.5

199

Table A.15: Results of B&C-PD Experiments with Large Instances

Results for

Large Instances

B&C-PD

Best

Integer

Lower

Bound

Iterations

(Nodes

Checked)

CPU

Time

(sec)

GAP%

R_u_L_1000_1 265593.4 235869.9 491(1188) 14403.9 12.6

R_n_L_1000_1 267840.4 239736.7 486(1205) 14405.7 11.7

C_u_L_1000_1 266002.4 237921.4 400(1372) 14415.7 11.8

C_n_L_1000_1 267120.0 238761.4 492(1193) 14416.5 11.9

RC_u_L_1000_1 266456.9 237798.4 454(1279) 14412.4 12.1

RC_n_L_1000_1 265920.5 237232.5 503(1171) 14414.0 12.1

R_u_S_1000_1 726146.0 544566.6 246(2024) 14405.7 33.3

R_n_S_1000_1 785211.0 660570.3 313(1888) 14402.0 18.9

C_u_S_1000_1 732680.1 606110.3 268(1975) 14406.3 20.9

C_n_S_1000_1 763599.7 631311.1 218(2101) 14414.3 21.0

RC_u_S_1000_1 750672.6 602420.7 270(1995) 14403.9 24.6

RC_n_S_1000_1 727614.1 585444.9 239(2015) 14402.3 24.3

200

Table A.16: Results of EA Experiments with Small Instances

Results for

Small

Instances

EA

Best OFV Avg OFV

Ave CPU

Time

(sec)

Best Gap

from

Optimal%

Avg Gap

from

Optimal%

R_u_L_10_1 250160.1 250160.1 16.2 0.0 0.0

R_u_L_10_2 250145.6 250145.6 35.0 0.0 0.0

R_n_L_10_1 250179.6 250179.6 16.7 0.0 0.0

R_n_L_10_2 250162.6 250162.7 23.3 0.0 0.0

C_u_L_10_1 250180.5 250180.5 16.7 0.0 0.0

C_u_L_10_2 250139.0 250139.0 21.4 0.0 0.0

C_n_L_10_1 250167.2 250167.2 14.8 0.0 0.0

C_n_L_10_2 250181.8 250181.8 27.0 0.0 0.0

RC_u_L_10_1 250180.7 250180.7 14.3 0.0 0.0

RC_u_L_10_2 250159.0 250159.4 30.4 0.0 0.0

RC_n_L_10_1 250155.7 250155.7 14.6 0.0 0.0

RC_n_L_10_2 250174.7 250174.7 24.4 0.0 0.0

R_u_S_10_1 730244.1 730387.1 16.3 0.0 0.0

R_u_S_10_2 686878.5 686895.4 33.9 0.0 0.0

R_n_S_10_1 788669.3 788669.3 17.3 0.0 0.0

R_n_S_10_2 737856.4 737856.4 23.6 0.0 0.0

C_u_S_10_1 791586.5 791756.0 14.9 0.0 0.0

C_u_S_10_2 666935.7 667041.4 23.3 0.0 0.0

C_n_S_10_1 751561.4 751561.4 15.5 0.0 0.0

C_n_S_10_2 795264.1 795264.1 25.6 0.0 0.0

RC_u_S_10_1 792066.5 792066.5 13.9 0.0 0.0

RC_u_S_10_2 727048.0 727048.0 29.9 0.0 0.0

RC_n_S_10_1 716997.6 716997.6 14.6 1.2 1.2

RC_n_S_10_2 774116.4 774116.4 26.8 0.0 0.0

201

Table A.17: Results of EA Experiments with Medium Instances

Results for

Medium

Instances

EA

Best OFV Avg OFV
Ave CPU

Time (sec)

Best Gap

from

Optimal%

Avg Gap

from

Optimal%

R_u_L_100_1 251602.1 251602.1 156.8 0.0 0.0

R_u_L_100_2 251557.4 251558.8 236.1 0.0 0.0

R_n_L_100_1 251744.3 251744.3 137.6 0.0 0.0

R_n_L_100_2 251700.0 251700.3 337.8 0.0 0.0

C_u_L_100_1 251551.2 251551.2 126.3 0.0 0.0

C_u_L_100_2 251653.3 251653.3 188.7 0.0 0.0

C_n_L_100_1 251560.9 251560.9 139.9 0.0 0.0

C_n_L_100_2 251702.5 251703.3 232.7 0.0 0.0

RC_u_L_100_1 251455.0 251455.0 139.2 0.0 0.0

RC_u_L_100_2 251619.4 251619.4 341.6 0.0 0.0

RC_n_L_100_1 251677.3 251677.3 122.9 0.0 0.0

RC_n_L_100_2 251460.2 251460.2 216.0 0.0 0.0

R_u_S_100_1 730624.5 731152.4 173.6 0.0 0.1

R_u_S_100_2 717207.5 717207.5 232.7 0.0 0.0

R_n_S_100_1 773292.2 773292.2 149.7 0.0 0.0

R_n_S_100_2 760011.0 760011.0 329.0 0.0 0.0

C_u_S_100_1 715369.3 715369.3 145.8 0.0 0.0

C_u_S_100_2 745984.6 745984.6 188.9 0.0 0.0

C_n_S_100_1 718274.1 718355.7 124.5 0.0 0.0

C_n_S_100_2 760758.1 760758.1 270.7 0.0 0.0

RC_u_S_100_1 686507.6 686507.6 145.0 0.0 0.0

RC_u_S_100_2 735827.8 735827.8 340.2 0.0 0.0

RC_n_S_100_1 753200.8 753200.8 133.2 0.0 0.0

RC_n_S_100_2 688074.3 688074.3 213.4 0.0 0.0

202

Table A.18: Results of EA Experiments with Large Instances

Results for

Large Instances

EA

Best OFV Avg OFV

Ave CPU

Time

(sec)

Best Gap

from Best

Exact%

Avg Gap

from Best

Exact%

R_u_L_1000_1 265593.4 265593.4 6463.9 0.0 0.0

R_u_L_1000_2 265595.6 265595.6 6345.0 0.0 0.0

R_n_L_1000_1 267840.4 267840.4 7093.3 0.0 0.0

R_n_L_1000_2 266884.1 266884.1 8454.9 0.0 0.0

C_u_L_1000_1 265947.9 265947.9 4594.1 0.0 0.0

C_u_L_1000_2 265442.7 265465.5 4694.6 0.0 0.0

C_n_L_1000_1 267120.0 267560.0 5138.8 0.0 0.2

C_n_L_1000_2 265864.7 265864.7 4336.9 0.0 0.0

RC_u_L_1000_1 266456.9 266456.9 6052.1 0.0 0.0

RC_u_L_1000_2 265511.1 265511.1 6175.2 0.0 0.0

RC_n_L_1000_1 265920.5 265920.5 6651.8 0.0 0.0

RC_n_L_1000_2 267154.6 267154.6 4855.6 0.0 0.0

R_u_S_1000_1 717850.4 718032.0 7246.1 0.0 0.0

R_u_S_1000_2 717867.8 718035.6 8238.7 0.0 0.0

R_n_S_1000_1 785211.0 785211.0 7444.5 0.0 0.0

R_n_S_1000_2 756521.9 756521.9 8373.3 -0.1 -0.1

C_u_S_1000_1 728436.7 728436.7 4853.7 0.0 0.0

C_u_S_1000_2 713279.5 713965.8 4346.1 0.0 0.1

C_n_S_1000_1 763599.7 763599.7 4941.7 0.0 0.0

C_n_S_1000_2 725942.1 725942.1 4306.0 0.0 0.0

RC_u_S_1000_1 743705.8 743705.8 5523.9 0.0 0.0

RC_u_S_1000_2 715332.6 715332.6 6475.4 0.0 0.0

RC_n_S_1000_1 727614.1 727882.1 7441.2 0.0 0.0

RC_n_S_1000_2 764637.5 765476.9 5081.3 0.0 0.1

