

ELA: AN AUTOMATED STATISTICAL

FAULT LOCALIZATION TECHNIQUE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZKAN BAYRAKTAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JUNE 2015

ELA: AN AUTOMATED STATISTICAL

FAULT LOCALIZATION TECHNIQUE

Submitted by Özkan BAYRAKTAR in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in Information Systems, Middle East Technical University by,

Prof. Dr. Nazife Baykal

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department, Information Systems

Assoc. Prof. Dr. Aysu Betin Can

Supervisor, Information Systems

Examining Committee Members:

Prof. Dr. Nazife Baykal

Information Systems, METU

Assoc. Prof. Dr. Aysu Betin Can

Information Systems, METU

Assoc. Prof. Dr. Pınar Karagöz

Computer Engineering, METU

Assist. Prof. Dr. Tuğba Taşkaya Temizel

Information Systems, METU

Assoc. Prof. Dr. Vahid Garousi Yusifoğlu

Computer Engineering, Hacettepe University

Date: 18/06/2015

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

Name, Last name : Özkan Bayraktar

Signature :

iv

ABSTRACT

ELA: AN AUTOMATED STATISTICAL

FAULT LOCALIZATION TECHNIQUE

BAYRAKTAR, Özkan

Ph. D., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Aysu Betin Can

June 2015, 135 pages

Software debugging consists of locating software faults, finding their causes, and fixing

them. Among all these activities, the fault localization is the most difficult one and requires

manual effort. Although there are several studies on automating this process, their

effectiveness has not yet reached at a desired level.

In this dissertation, we propose a fault localization framework that introduces a new fault

localization metric called Ela, three test suite reduction strategies to improve the

effectiveness of fault localization, and an effective ranking strategy to improve the ranking

of statements. Several experiments are performed on the Siemens suite to evaluate the

proposed metric. Besides the expense metric used in fault localization literature, we also

adapt the mean reciprocal rank to measure the overall ranking quality of the four techniques.

Ela has better ranking than the other techniques in 4 of 118 versions while it is one of the

best performing techniques for the remaining 114 versions of the subject programs.

We apply an equivalent test elimination strategy to neutralize the bias caused by the

existence of the equivalent tests. This strategy achieves on average 99.5% test size reduction.

Ela has better ranking than the other techniques in 31 of 118 versions while it is one of the

best performing techniques for the remaining 87 versions of the subject programs.

We propose three test suite reduction strategies to reduce the effort for the fault

localization. The best of these strategies achieves on average 34.1% test size reduction while

resulting an improvement up to 1.7 in Jaccard, up to 2.46% in Tarantula, up to 1.01% in

Ochiai, and up to 0.38% in Ela in terms of average expense.

We propose an effective ranking strategy, called Local Maxima, to improve the ranking

of statements. This strategy achieves an improvement 10.54% in Jaccard, 10.47% in

Tarantula, 10.74% in Ochiai, and 10.88% in Ela in terms of average expense.

Keywords: Software Testing, Statement Coverage, Statistical Fault Localization, Test Suite

Reduction, Local Maxima

v

ÖZ

ELA: OTOMATİK İSTATİSTİKSEL

HATA YERELLEŞTİRME TEKNİĞİ

BAYRAKTAR, Özkan

Doktora, Bilişim Sistemleri Bölümü

Danışman: Doç. Dr. Aysu Betin Can

Haziran 2015, 135 sayfa

Yazılım hatalarını ayıklama yazılım hatalarının yerelleştirilmesi, hataların nedenlerinin

bulunması, ve hataların düzeltilmesinin kapsamaktadır. Bu aktivitiler içerisinde, hata

yerelleştirme en zor aktivitedir ve elle düzeltme eforu gerektirmektedir. Bu işlemin

otomatikleştirilmesi konusunda yapılan farklı çalışmalar olmasına rağmen, bu çalışmaların

etkisi hala istenen seviyeye ulaşmamıştır.

Bu doktora tezinde, Ela olarak adlandırılan yeni bir hata yerelleştirme metriği, hata

yerelleştirme etkinliğini iyileştirmek için üç adet test suit küçültme stratejisi, ifade sıralamayı

iyileştirmek için bir etkin sıralama stratejisi içeren bir hata yerelleştirme çerçevesi önerdik.

Önerilen metriği ölçmek için Siemens suiti üzerinde deneyler yapıldı. Literatürde kullanılan

gider metriğinin yanı sıra dört tekniğin kalitesini ölçmek için ortalama ters sıra metriği de

adapte edildi. Söz konusu programların 118 versiyonunun 4’ünde Ela tekniği diğer

tekniklerden daha iyi sıralama yeteneğine sahipken kalan 114 versiyondaysa en iyi sıralama

yeteneğine sahip tekniklerden birisidir.

Eşdeğer testlerin varlığının ifade sıralamada neden olduğu sapmayı etkisizleştirmek için

eşdeğer test eleme stratejisi uyguladık. Bu strateji ortalama 99.5% test suit küçültme elde

etmektedir. Söz konusu programların 118 versiyonunun 31’inde Ela tekniği diğer

tekniklerden daha iyi sıralama yeteneğine sahipken kalan 87 versiyondaysa en iyi sıralama

yeteneğine sahip tekniklerden birisidir.

Hata yerelleştirme eforunu düşürmek için üç adet test suit küçültme stratejisi önerdik. Bu

stratejilerin en iyisi ortalama %34.1 test suit küçültme sağlarken, ortlama gider açısından

Jaccard’ta %1.7’e kadar, Tarantula’da %2.46’ya kadar, Ochiai’de %1.01’e kadar, ve Ela’da

%0.38’e kadar iyileşme elde etmektedir.

İfade sıralamayı iyileştirmek için Yerel Maksimum olarak adlandırılan bir etkin sıralama

stratejisi önerdik. Bu strateji ortalama gider açısından Jaccard’ta %10.54, Tarantula’da

%10.47, Ochiai’de %10.74, ve Ela’da %10.88 iyileşme elde etmektedir.

Anahtar Kelimeler: Yazılım Testi, İfade Kapsama, İstatistiksel Hata Yerelleştirme, Test Suit

Küçültme, Yerel Maksimum

vi

DEDICATION

To my family: Pelin Bayraktar and Ela Nil Bayraktar

vii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor, Assoc. Prof. Dr. Aysu

Betin Can for her support, guidance, and friendly encouragement. I appreciate her

contributions of time and ideas to make my Ph.D. experience productive and stimulating.

I am very grateful to Assoc. Prof. Dr. Pınar Karagöz, Assist Prof. Dr. Tuğba Taşkaya

Temizel, Prof. Dr. Nazife Baykal, and Assoc. Prof. Dr. Vahid Garousi Yusifoğlu for their

valuable suggestions and comments.

I would like to thank my dear friend H. Arda Nural for his encouragement throughout the

research.

I would like to express my sincere appreciation to my father Dursun Bayraktar, my mother

Safiye Bayraktar, and my mother-in-law Müfide Beriat for their constant love and endless

support.

Very special thanks go to my wife Pelin Bayraktar for her endless support, encouragement,

and suggestions during all the hard times since the beginning of the research. Finally, my

kisses go to my daughter: Ela Nil Bayraktar.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ... v

DEDICATION .. vi

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... xii

LIST OF FIGURES .. xv

LIST OF ABBREVIATIONS .. xvii

CHAPTERS ... 1

1. INTRODUCTION .. 1

1.1. Research Questions .. 5

1.2. Contributions of the Dissertation.. 6

1.3. Structure of the Dissertation ... 6

2. LITERATURE REVIEW ... 7

2.1. Fault Localization ... 7

2.1.1. Traditional Debugging Technique .. 7

2.1.2. Algorithmic Debugging Technique .. 8

2.1.3. Program Slice Based Technique ... 8

2.1.3.1. Set Difference Technique (SD) .. 8

2.1.3.2. Set Union (SU) & Set Intersection (SI) Techniques... 8

2.1.3.3. Nearest Neighbor (NN) Technique .. 9

2.1.4. Memory State Based Technique ... 9

2.1.5. Statistical Technique .. 9

2.1.5.1. Predicate Based Technique... 10

2.1.5.2. Statement Based Technique ... 11

2.1.5.3. Method Based Technique ... 12

2.1.5.4. Block Based Technique .. 12

2.2. Test Suite Reduction and Test Suite Selection ... 13

2.3. Surveys about Fault Localization, Test Suite Reduction and Test Suite Selection 17

3. PRELIMINARIES.. 19

3.1. Suspiciousness Metrics ... 21

3.2. Evaluation Metrics ... 22

3.2.1. Expense .. 22

3.2.2. Code Examination Effort .. 22

ix

3.3. Mean Reciprocal Rank (MRR) .. 23

3.4. Subject programs ... 23

4. PROPOSED TECHNIQUE: ELA ... 25

4.1. Methodology .. 25

4.1.1. The Effects of the Bases of Aef(si)/Af and Anp(si)/Ap ... 26

4.2. Motivating Examples ... 30

4.3. Discussion on the Application of Ela to the Multiple Faults 34

5. PROPOSED TEST SUITE REDUCTION STRATEGIES ... 37

5.1. Heuristic I: FminCov Test Suite Strategy .. 37

5.2. Heuristic II: FminCov Cluster Test Suite Strategy .. 38

5.2.1. Visualization of tests via Multi-Dimensional Scaling (MDS) 41

5.3. Heuristic III: FminCov Classify Test Suite Strategy ... 46

5.3.1. Visualization of tests via Multi-Dimensional Scaling (MDS) 47

5.4. Heuristic IV: Equivalent Test Elimination (Distinct Test Selection) 50

5.4.1. Discussion .. 53

6. EFFECTIVE RANKING STRATEGY: LOCAL MAXIMA .. 55

6.1. Methodology .. 55

6.2. Motivating Example ... 57

6.3. Effect of LM on PrintTokens program .. 61

7. EXPERIMENTAL EVALUATION .. 63

7.1. Subject Programs ... 63

7.2. Experimental Results I: Comparison with the Three Prominent Fault Localization

Techniques on the Original Test Suite ... 64

7.2.1. Significance Analysis of Ela Effectiveness on Redundant Test Suite 68

7.3. Experiment II: Test Reduction Strategy I – Distinct Test Suite 68

7.3.1. Experimental Results II: Comparison with the Three Prominent Fault Localization

Techniques with Distinct Test Suite .. 69

7.3.2. Significance Analysis of Ela Effectiveness on Distinct Test Suite 72

7.4. Experiment III: Test Reduction Strategy II – Distinct FminCov Test Suite 73

7.4.1. Experimental Results III: Comparison with the Three Prominent Fault Localization

Techniques with Distinct FminCov Test Suite .. 73

7.4.2. Significance Analysis of Ela Effectiveness on Distinct FminCov Test Suite 76

7.4.3. Significance Analysis of Failed Test Reduction .. 76

7.5. Experiment IV: Test Reduction Strategy III - Distinct FminCov Cluster Test Suite 76

7.5.1. Experimental Results IV: Comparison with the Three Prominent Fault Localization

Techniques with Distinct FminCov Cluster Test Suite .. 77

7.5.2. Significance Analysis of Ela Effectiveness on Distinct FminCov Cluster Test Suite

 80

7.5.3. Significance Analysis of Passed Test Reduction with Clustering.......................... 80

x

7.6. Experiment V: Test Reduction Strategy IV - Distinct FminCov Classify Test Suite 80

7.6.1. Experimental Results V: Comparison with the Three Prominent Fault Localization

Techniques with Distinct FminCov Classify Test Suite ... 80

7.6.2. Significance Analysis of Ela Effectiveness on Distinct FminCov Classify Test

Suite 84

7.6.3. Significance Analysis of Passed Test Reduction with Classification 84

7.7. Experiment VI: Effective Ranking Strategy: Local Maxima 84

7.7.1. Effective Ranking Strategy on Redundant Test Suite .. 84

7.7.1.1. Significance Analysis of Local Maxima with Ela Technique on Redundant Test

Suite 87

7.7.2. Effective Ranking Strategy on Distinct Test Suite ... 87

7.7.2.1. Significance Analysis of Local Maxima with Ela Technique on Distinct Test

Suite 90

7.7.3. Effective Ranking Strategy on Distinct FminCov Test Suite 90

7.7.3.1. Significance Analysis of Local Maxima with Ela Technique on Distinct

FminCov Test Suite .. 93

7.7.4. Effective Ranking Strategy on Distinct FminCov Cluster Test Suite 93

7.7.4.1. Significance Analysis of Local Maxima with Ela Technique on Distinct

FminCov Cluster Test Suite ... 96

7.7.5. Effective Ranking Strategy on Distinct FminCov Classify Test Suite 96

7.7.5.1. Significance Analysis of Local Maxima with Ela Technique on Distinct

FminCov Classify Test Suite .. 99

7.7.6. Discussion on the Results ... 99

8. THREATS TO VALIDITY .. 101

8.1. Internal Validity ... 101

8.2. External Validity .. 101

8.3. Construct Validity .. 102

8.4. Conclusion Validity .. 102

9. CONCLUSIONS .. 103

10. FUTURE WORK ... 107

10.1. Application of Ela to Different Test Suites from Different Scales 107

10.2. Application of Ela with Different Coverage Entities ... 107

10.3. Investigating Optimal Percentage of Failed Tests in Test Suites 108

10.4. Application of Ela to Multiple Faults ... 108

10.5. Designing User Studies on Focus Groups .. 108

REFERENCES ... 109

APPENDICES .. 116

A. WILCOXON SIGNED RANK TESTS ... 117

B. FAULT TYPES AND THEIR DIFFICUILTIES .. 133

xi

CURRICULUM VITAE .. 135

xii

LIST OF TABLES

Table 1 – Metrics used in the suspiciousness formulas of the fault localization techniques .. 21

Table 2 – The seven C programs in SIR... 24

Table 3 – Five passed test cases and one failed test case written for mid() function 30

Table 4 – Coverage matrix and result vector of mid() function ... 31

Table 5 – The suspiciousness values and ranks of the statements on mid() function 31

Table 6 – Coverage matrix and result vector of unblock_process function 33

Table 7 – The suspiciousness values and ranks of the statements on unblock_process

function... 34

Table 8 – The Cophenetic Correlation Coefficients for different linkage criteria when

Hamming distance is used as a distance metric .. 40

Table 9 – Hamming distances between tests on PrintTokens_v01 with Distinct FminCov

Cluster Test Suite ... 41

Table 10 – Hamming distances between tests on PrintTokens_v01 with Distinct FminCov

Classify Test Suite .. 48

Table 11 – Improvements on Redundant Test Suite where FailMinCov tests are replicated by

2 .. 51

Table 12 – Declines on Redundant Test Suite where FailOther tests are replicated by 2 52

Table 13 – Improvement of Local Maxima Strategy for Expenses on PrintTokens_v01 with

Distinct Test Suite .. 62

Table 14 – The seven C programs in SIR... 64

Table 15 – The seven C programs in SIR after equivalent test elimination 64

Table 16 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Redundant Test Suite ... 66

Table 17 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Redundant Test Suite .. 67

Table 18 – Code examination efforts of four techniques on the subject programs 67

Table 19 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct Test Suite .. 70

Table 20 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct Test Suite ... 71

Table 21 – Code examination efforts of four techniques on the subject programs 71

Table 22 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Test Suite ... 74

Table 23 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Test Suite .. 75

Table 24 – Code examination efforts of four techniques on the subject programs 75

Table 25 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Cluster Test Suite ... 78

xiii

Table 26 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Cluster Test Suite .. 79

Table 27 – Code examination efforts of four techniques on the subject programs 79

Table 28 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Classify Test Suite ... 82

Table 29 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Classify Test Suite .. 83

Table 30 – Code examination efforts of four techniques on the subject programs 83

Table 31 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Redundant Test Suite .. 85

Table 32 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Redundant Test Suite ... 86

Table 33 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Distinct Test Suite ... 88

Table 34 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct Test Suite .. 89

Table 35 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Distinct FminCov Test Suite .. 91

Table 36 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Test Suite............................. 92

Table 37 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Distinct FminCov Cluster Test Suite .. 94

Table 38 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Cluster Test Suite 95

Table 39 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Distinct FminCov Classify Test Suite .. 97

Table 40 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Classify Test Suite 98

Table 41 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Redundant Test Suite ... 117

Table 42 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Redundant Test Suite ... 118

Table 43 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Redundant Test Suite ... 119

Table 44 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Distinct Test Suite .. 120

Table 45 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Distinct Test Suite .. 121

Table 46 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Distinct Test Suite .. 122

Table 47 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Distinct FminCov Test Suite .. 123

xiv

Table 48 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Distinct FminCov Test Suite .. 124

Table 49 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Distinct FminCov Test Suite .. 125

Table 50 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Distinct FminCov Cluster Test Suite ... 126

Table 51 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Distinct FminCov Cluster Test Suite ... 127

Table 52 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Distinct FminCov Cluster Test Suite ... 128

Table 53 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Distinct FminCov Classify Test Suite .. 129

Table 54 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Distinct FminCov Classify Test Suite .. 130

Table 55 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Distinct FminCov Classify Test Suite .. 131

Table 56 – Fault types and their difficulties in seven programs of Siemens test suite 133

xv

LIST OF FIGURES

Figure 1 – Coverage matrix and result vector 20

Figure 2 – Effect of the base of Aef/Af from 2 to 10 27

Figure 3 – Effect of the base of Anp/Ap from 2 to 10 28

Figure 4 – Effect of the base of Anp/Ap between 1 and 2 29

Figure 5 – Source code of mid() function 30

Figure 6 – Source code of unblock_process function 32

Figure 7 – Example code segment and its coverage matrix 37

Figure 8 – Failed and pass tests before clustering of failed and passed tests on

PrintTokens_v01 42

Figure 9 – Silhouette coefficients for 2 clusters on PrintTokens_v01 42

Figure 10 – Silhouette coefficients for 3 clusters on PrintTokens_v01 43

Figure 11 – Silhouette coefficients for 4 clusters on PrintTokens_v01 43

Figure 12 – Silhouette coefficients for 5 clusters on PrintTokens_v01 44

Figure 13 – Selection of optimum ‘k’ according to the mean silhouette values 44

Figure 14 – Failed and pass tests after clustering of failed and passed tests on

PrintTokens_v01 45

Figure 15 – Dendrogram of tests on PrintTokens_v01 [Clustering] 46

Figure 16 – The effect of FminCov Cluster Test Suite Strategy on PrintTokens_v01 46

Figure 17 – Failed and pass tests before classifying the passed tests to the failed tests on

PrintTokens_v01 48

Figure 18 – Failed and pass tests after classifying the passed tests to the failed tests on

PrintTokens_v01 49

Figure 19 – Dendrogram of tests on PrintTokens_v01 [Classification] 49

Figure 20 – The effect of FminCov Classify Test Suite Strategy on PrintTokens_v01 50

Figure 21 – Improvements by replicating the FailMinCov tests by 2 52

Figure 22 – Declines by replicating the FailOther tests by 2 53

Figure 23 – Pseudo code of the findLocalMaxima algorithm 56

Figure 24 – Application of Local Maxima for Jaccard on PrintTokens_v01 with Distinct Test

Suite 58

Figure 25 – Application of Local Maxima for Tarantula on PrintTokens_v01 with Distinct

Test Suite 59

Figure 26 – Application of Local Maxima for Ochiai on PrintTokens_v01 with Distinct Test

Suite 60

Figure 27 – Application of Local Maxima for Ela on PrintTokens_v01 with Distinct Test

Suite 61

Figure 28 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Redundant Test Suite 65

xvi

Figure 29 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Redundant Test Suite 66

Figure 30 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct Test Suite 69

Figure 31 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct Test Suite 70

Figure 32 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Test Suite 73

Figure 33 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Test Suite 74

Figure 34 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Cluster Test Suite 77

Figure 35 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Cluster Test Suite 78

Figure 36 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Classify Test Suite 81

Figure 37 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Classify Test Suite 82

Figure 38 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Redundant Test Suite 85

Figure 39 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Redundant Test Suite 87

Figure 40 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with LM strategy on Distinct Test Suite 88

Figure 41 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Distinct Test Suite 90

Figure 42 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Test Suite 91

Figure 43 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Distinct FminCov Test Suite 92

Figure 44 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Cluster Test Suite 94

Figure 45 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Distinct FminCov Cluster Test Suite 95

Figure 46 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Classify Test Suite 97

Figure 47 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Distinct FminCov Classify Test Suite 98

xvii

LIST OF ABBREVIATIONS

ANSI : American National Standards Institute

BI : Bug Isolation

CC : Coincidentally Correct

CT : Cause Transition

CTB : Crosstab Based

DT : Decision Tree

FMINCOV : Fault with Minimum Coverage

GCC : GNU Compiler Collection

HMDS : Hierarchical Multidimensional Scaling

IR : Information Retrieval

KNN : K Nearest Neighbors

LM : Local Maxima

LOC : Line of Code

MDS : Multi Dimensional Scaling

MKBC : Minus and Key Block Chain

MRR : Mean Reciprocal Rank

NIST : National Institute of Standards and Technology

NN : Nearest Neighbor

SD : Set Difference

SFL : Statistical Fault Localization

SI : Set Intersection

SIR : Software-artifact Infrastructure Repository

SU : Set Union

SVM : Support Vector Machine

1

CHAPTERS

CHAPTER 1

1. INTRODUCTION

Software debugging is an expensive and time consuming task since it is generally a manual

process (Newman, 2002; Wong & Debroy, 2009; Srivastav, Singh, & Chauhan, 2010).

Software debugging involves the process of locating software faults, finding their causes,

and fixing them. Among all these activities, the fault localization is the most difficult one.

Fault localization is the activity of identifying the exact locations of program faults during

program debugging (Wong & Debroy, 2009). To automate or semi automate this difficult

activity with minimum human intervention, a smart fault localization technique is always

needed. Unfortunately, the techniques that claim to effectively locate software faults have

not yet reached at a desired level (Wong, Debroy, & Xu, 2012; Sahoo, Criswell, Geigle, &

Adve, 2013).

Many techniques have been proposed for automating the fault localization process in the

literature. These techniques can be categorized into traditional debugging techniques (Balzer,

1969; Agrawal, De Millo, & Spafford, 1991), algorithmic debugging techniques (Shapiro,

1983), program slice based techniques (Agrawal, 1991; Agrawal, Horgan, London, & Wong,

1995; Renieris & Reiss, 2003), memory state based techniques (Cleve & Zeller, 2005),

statistical techniques (Jones & Harrold, 2005; Liu, Yan, Fei, Han, & Midkiff, 2005; Abreu,

Zoeteweij, & Van Gemund, 2006; Jeffrey, Gupta, & Gupta, 2008; Parsa, Vahidi-Asl, Arabi,

& Minaei-Bidgoli, 2009; Wong et al., 2012; Xu, Chan, Zhang, Tse, & Li, 2011; Zhang,

Chan, Tse, Yu, & Hu, 2011), and slice-based statistical techniques (Mao, Lei, Dai, Qi, &

Wang, 2014; Ju et al., 2014).

Among these techniques, the statistical fault localization techniques (SFL) are the most

commonly used ones since they are lightweight and do not require users to provide

additional information such as the structure of the program. Statistical techniques analyze the

2

relationship between the fail/pass results of tests and the program elements (e.g. statements)

executed by these tests. Based on the test results and corresponding execution information of

program elements, each SFL uses a different way to assign a suspiciousness value for the

program elements. There are some representative techniques such as Tarantula (Jones,

Harrold, & Stasko, 2002), Jaccard (Abreu et al., 2006), and Ochiai (Abreu et al., 2007)

which are the most well known the statistical fault localization techniques (Kim & Lee,

2014). The effectiveness of these techniques is still a bottleneck due to the abstraction level.

Although Jaccard, Tarantula, and Ochiai include the statement coverage of passed tests to

their calculations of suspiciousness values, they assign same weights to the statement

coverage information of both kinds of tests. There can be some cases in which the statement

coverage information of failed tests are the same but the statement coverage information of

passed tests are different. In these cases, the existing techniques do not differentiate the

faulty statement from the innocent statements. The effectiveness of fault localization could

be improved including such information during the process.

Together with the fault localization effort, the size of the test suite affects the time spent

during software debugging process. Although test suite reduction is mostly studied for

regression testing, there are several recent studies that evaluate the effect of test suite

reduction on fault localization techniques. However, there is no consensus on the effects of

test suite reduction on fault localization. A number of studies proposing test suite reduction

strategies show that the test reduction results in a decrease in the fault localization

effectiveness (Yu, Jones, & Harrold, 2008; Rothermel, Harrold, Ostrin, & Hong, 1998; Hao

et al., 2010; Baudry, Fleurey, & Le Traon, 2006). There are also other studies showing that

the test reduction results in an improvement in the fault localization effectiveness (Masri &

Assi, 2014; Dandan, Tiantian, Xiaohong, & Peijun, 2013; Hao, Zhang, Zhong, Mei, & Sun,

2005a). They suggest excluding the passed tests that may obscure the process based on

several criteria. Most of the techniques in the literature apply clustering, classification, and

sampling of failed and passed tests without considering whether they are good or bad tests,

i.e. without considering whether they contain valuable statement coverage information or

not.

We propose a fault localization framework that introduces a new fault localization metric

called Ela, three test suite reduction strategies to improve the effectiveness of fault

localization, and an effective ranking strategy to improve the ranking of statements. We

focus on the situations not covered by the existing fault localization techniques and test suite

3

reduction techniques to improve the fault localization effectiveness and decrease the fault

localization effort by this framework.

We propose a new metric for statistical fault localization. The intuition is that a faulty

statement is more frequently executed by the failed tests and less frequently executed by the

passed tests. We also differ from the existing techniques in expressing these frequencies and

their combinations. We performed several experiments to evaluate the proposed metric on

the Siemens suite (Hutchins, Foster, Goradia, & Ostrand, 1994) available at the software-

artifact infrastructure repository (SIR, 2014). The Siemens suite contains seven programs:

PrintTokens, PrintTokens2, Replace, Schedule, Schedule2, Tcas, and TotInfo. Due to its

high quality, many researchers studying the fault localization have performed their

experiments on this test suite (Renieris & Reiss, 2003; Cleve & Zeller, 2005; Jones &

Harrold, 2005; Liu et al., 2005; Abreu et al., 2006; Jeffrey et al., 2008; Parsa et al., 2009;

Wong et al., 2012; Zhang et al., 2011). In our experiments, we have used the three popular

fault localization techniques, which are Jaccard, Tarantula, and Ochiai coefficients, as a base

line. The experimental results show that the proposed technique outperforms these three

prominent techniques. During the comparison, in addition to using the widely accepted

expense and code examination effort metrics, we adapt a metric of the information retrieval

domain, called Mean Reciprocal Rank (MRR), to assess the overall ranking quality of the

SFL techniques. The proposed technique has a higher ranking than others for 3.4% (4 of

118) of all the versions of the subject programs while it is one of the best performing

techniques for 96.6% (114 of 118) of all the versions of the subject programs.

We apply equivalent test elimination strategy (Distinct Test Suite Strategy) to achieve more

accurate fault localization whereas most of the statistical fault localization techniques do not

consider the bias caused by the existence of the equivalent tests. If two tests execute the

same set of statements, then we consider them as equivalent tests with respect to their

statement coverage. We assume that there are several bad tests in the test suite: bad passed

tests and bad fail tests. A bad passed test is defined as “the test that passes even if it executes

the faulty statement”. A bad fail test is defined as “the test that executes too many innocent

statements”. We empirically show that increasing the number of tests that are equivalent to a

bad test has a negative effect on the result of the fault localization. The details are given in

the subsection 5.4. Since it is not known whether a test is a bad test or not, the existence of

the equivalent tests can cause a bias in the ranking of statements according to their

suspiciousness values during the process of statistical fault localization. Therefore, we select

the safe side and eliminate the equivalent tests from both passed and failed tests in our

4

experiments. This strategy achieves on average 99.5% test size reduction. Moreover, the

proposed technique has a higher ranking than others for 26.3% (31 of 118) of all the versions

of the subject programs while it is one of the best performing techniques for 73.7% (87 of

118) of all the versions of the subject programs with this Distinct Test Suite Strategy.

We propose a new test suite reduction strategy to reduce the effort for the fault localization

by reducing the test suite size. Different from the literature, we propose to eliminate the

failed tests that may mislead the SFL to assign higher suspiciousness values to innocent

program elements (FminCov Test Suite Strategy). We empirically show the effects of this

strategy on three popular SFL techniques (Jaccard, Tarantula, and Ochiai) by using the

Siemens suite. This strategy achieves on average 10.1% test size reduction.

In addition, we investigate two kinds of reductions of the passed tests in combination with

the FminCov Test Suite Strategy. In the first kind of reduction, we aim to eliminate the

passed tests that are close to the eliminated failed tests, similar to Masri and Assi (2014). The

intuition is to remove the tests that execute the faulty statement but still pass (Classification

Strategy). We first classify the passed tests into the eliminated failed tests and the remaining

failed tests by using KNN classification algorithm. Then select the class that contains the

remaining failed tests and remove other class. This strategy achieves on average 30.3% test

size reduction. In the second kind of reduction, similar to Dandan, Tiantian, Xiaohong, and

Peijun (2013), we aim to eliminate the passed tests that are not very close to the remaining

failed tests (Clustering Strategy). The intuition is that of delta debugging (Zeller, 1999)

which states that a passing run closest to a failing run contains the most information. We

cluster the remaining failed tests and all the passed tests into subsets by using a hierarchical

clustering algorithm, specifically Agglomerative clustering, and then select the subset that

contains the remaining failed tests. This strategy achieves on average 34.1% test size

reduction.

In our experiments, we examine all three test suite reduction strategies and show that all the

reduction strategies result in significant reductions in the size of tests. Among all three, the

failed test elimination strategy results in the best improvement but the elimination of the

passed tests similar to the eliminated failed tests (Classification Strategy) results in quite

comparable results to failed test elimination strategy. Removing the passed tests similar to

the eliminated failed tests results in high reductions in the size of test suite (up to 81%). Best

of these test suite reduction strategies achieves an improvement up to 1.7% in Jaccard, up to

5

2.46% in Tarantula, up to 1.01% in Ochiai, and up to 0.38% in Ela in terms of average

expense.

We propose a new effective ranking strategy for improving the ranking of statements (Local

Maxima Strategy) in order to improve the effectiveness and decrease the effort for the fault

localization. Instead of serving all the statements with their suspiciousness ranks to the

software developers, we aim to serve only the statements which are the local maximum in its

1-nearest neighborhood. This strategy reduces the number of statements that software

developers must inspect to locate the fault. It assumes that the innocent statements near to

the faulty statement are likely to be assigned with high suspiciousness values and should be

eliminated from the list of suspicious statements. This strategy achieves an improvement

10.54% in Jaccard, 10.47% in Tarantula, 10.74% in Ochiai, and 10.88% in Ela in terms of

average expense.

1.1. Research Questions

This dissertation proposes a fault localization framework that consists of a new fault

localization metric called Ela, three test suite reduction strategies to improve the

effectiveness of fault localization, and an effective ranking strategy to improve the ranking

of statements. To achieve these goals four main research questions are answered.

RQ.1: Can we define a metric to achieve better fault localization accuracy?

RQ.2: Does the redundancy of tests affect the fault localization accuracy? What is the effect

of equivalent tests?

RQ.3: Can we improve test suite quality?

RQ.3.1: What type of tests affect test suite quality?

RQ.3.2: Can we find a subset of tests that have better test suite quality by clustering and

classification of failed and passed tests?

RQ.4: How can we improve the ranking of statements? Can we implement a post processing

technique to improve the fault localization accuracy based on suspiciousness values of

statements?

6

1.2. Contributions of the Dissertation

The contributions of this dissertation are as follows:

 A new fault localization metric: Ela.

 Empirical evidence showing that equivalent tests distort the result of fault

localization and a distinct test selection strategy.

 Three test suite reduction strategies and their empirical evaluations.

 A new effective suspiciousness ranking strategy: Local Maxima.

1.3. Structure of the Dissertation

The rest of this dissertation is organized as follows: Section 2 gives an overview of the fault

localization techniques in the literature. Section 3 introduces the preliminaries of the fault

localization: the suspiciousness metrics (Jaccard, Tarantula, and Ochiai), the evaluation

metrics: expense, code examination effort, and mean reciprocal rank. Section 4 describes the

proposed fault localization technique: Ela. Section 5 explains the proposed three test suite

reduction strategies. Section 6 explains the proposed three test suite reduction strategies.

Section 7 presents the experiments, the comparisons and the results. Section 8 discusses the

threats to the validity of the research. Section 9 presents the conclusions and the discussions.

Section 10 discusses the directions for the future work.

7

CHAPTER 2

2. LITERATURE REVIEW

Fault localization is a research topic which aims to reduce the effort and the cost of the

software projects by improving the rate of fault detection. Many techniques have been

proposed for automating the fault localization process in order to achieve this aim. In this

chapter, we first review the fault localization techniques, and then present the current state-

of-the-art for test suite reduction and test suite selection techniques applied on the fault

localization in the literature.

2.1. Fault Localization

In this study, we categorize the fault localization techniques into five categories: traditional

debugging technique, algorithmic debugging technique, program slice based technique,

memory state based technique, and statistical technique. The studies proposed in the

literature under these categories are covered in the following subsections.

2.1.1. Traditional Debugging Technique

Software developers traditionally use two different approaches for finding the software

faults. In the first one, software developers insert print statements into the subject programs

and monitor whether the program executions reach to these print statements or not. In

addition, they can output several variables and their values in the print statements to show

the runtime behavior of the subject programs. In the second one, software developers use the

symbolic debuggers to debug the subject programs. They can stop at a particular point and

examine the current states of the variables in the programs. In addition, they can change the

current values of the variables and follow the runtime behavior of the programs by using

these symbolic debuggers (Balzer, 1969; Agrawal et al., 1991).

8

2.1.2. Algorithmic Debugging Technique

In this technique, complex computations are decomposed into the simpler sub-computations.

Software developers check each of the sub-computations for correctness. When a complex

computation is incorrect then its sub-computations are checked for correctness. If a sub-

computation is determined as incorrect, then it is assumed that the fault is localized in this

sub-computation. On the other hand, a complex computation can be incorrect while all of its

sub-computations are correct. In this case, it is assumed that the fault is located in the

compositions of the sub-computations (Shapiro, 1983).

2.1.3. Program Slice Based Technique

It is a code based technique used for software debugging and fault localization. Execution

slice is defined as the set of statements executed by a program for a particular test (Agrawal,

1991). In this technique, the initial set of suspicious statements is generated by removing the

statements executed by the passed tests from the set of statements executed by the failed

tests. The techniques set difference (SD), set union (SU), set intersection (SI), and nearest

neighbor (NN) are four different specific program slicing techniques.

2.1.3.1. Set Difference Technique (SD)

In this technique, one passed and one failed tests are used. The set of the statements executed

by a passed test is removed from the set of the statements executed by a failed test. The

resulting set is used as the initial set of suspicious statements for finding the software faults

(Agrawal et al., 1995).

Einitial = Efailed – Epassed (1)

Agrawal, Horgan, London, and Wong (1995) present a fault localization tool called χSlice

(χSuds, 1998) based on slicing and dicing for the standard C programming language. An

experiment is performed on a complex UNIX sort program to show the usefulness of slicing

in locating software faults. They seed the sort program one at a time with a total of 25 bugs

resulting in 25 erroneous variants of the sort program with a single bug. The experimental

results show that χSlice is an effective tool in locating software faults since the ratio of the

block coverage and the decision coverage are 96% and 89% respectively.

2.1.3.2. Set Union (SU) & Set Intersection (SI) Techniques

The set union and the set intersect techniques are two specific approaches of the program

slicing techniques (Renieris & Reiss, 2003). The union of the statements executed by all

passed tests is removed from the set of the statements executed by a single failed test.

9

Einitial = Efailed – Epassed (2)

The set of the statements executed by a single failed test is removed from the intersection of

the statements executed by every passed test.

Einitial = Epassed –Efailed (3)

The resulting set is used as the initial set of suspicious statements for finding the software

faults (Renieris & Reiss, 2003).

2.1.3.3. Nearest Neighbor (NN) Technique

In this technique, any single failed test is selected first and then the passed test having most

similar coverage to the selected failed test is found. Afterwards, the set of the statements

executed by the found passed test is removed from the set of the statements executed by the

selected failed test. The resulting set is used as the initial set of suspicious statements for

finding the software faults (Renieris & Reiss, 2003).

Einitial = Efailed – Epassed (4)

The authors perform an experiment on the Siemens test suite. The NN technique is compared

with SU and SI techniques on this test suite. The experimental results show that the NN

technique outperforms SU and SI techniques.

2.1.4. Memory State Based Technique

Cleve and Zeller (2005) propose a cause transition (CT) technique to locate the failure

inducing faults. This technique performs a binary search of the memory states of a program

between a passed test and a failed test. It defines a method to automate the process of making

hypotheses about how state changes affect the output of the program. The authors compare

their technique with the NN technique on the Siemens suite. The experimental results show

that their technique stops searching with the 10% code examination effort for 35.66% of all

the faulty versions of the subject programs while the NN technique stops searching with the

10% code examination effort for 16.51% of all the faulty versions of the subject programs.

Therefore, their technique outperforms the NN technique.

2.1.5. Statistical Technique

The coverage information on different entities such as classes, methods, blocks, branches,

predicates, statements etc. are used in the statistical fault localization techniques. First, the

suspiciousness values for these entities based on their coverage information are calculated.

10

Then, these entities are ranked according to their suspiciousness values. Afterwards,

software developers investigate these entities according to their ranks in order to find the

software faults. The studies using the statistical fault localization techniques are categorically

introduced in the following subsections.

2.1.5.1. Predicate Based Technique

Liu, Yan, Fei, Han, and Midkiff (2005) propose SOBER which uses the predicate coverage

information to localize the software faults without any prior knowledge of the program

semantics. The SOBER approach models the evaluation patterns of predicates in both correct

and incorrect runs respectively. An experiment is conducted on the programs of the Siemens

test suite. The accuracies of the SOBER and two statistical fault localization techniques CT

and BI are compared on this test suite. The experimental results show that the SOBER

approach can help software developers locate the software fault for the 68 out of 130 faulty

versions of the subject programs while the better of two statistical fault localization

techniques can help software developers locate the software faults for the 52 out of 130

faulty versions of the subject programs with less than or equal to the 10% code examination

effort. As a result, their approach outperforms these two techniques in terms of code

examination effort which is the percentage of faults located.

Zhang, Chan, Tse, Yu, and Hu (2011) offer a predicate based fault localization framework

based on the three types of hypothesis testing methods. The first method includes non-

parametric tests (Mann-Whiney test and Wilcoxon Signed Rank test), the second method

includes standard parametric tests (F-test and t-test), and the third method includes

debugging specific parametric tests (BI and SOBER). An experiment is carried out on the

Siemens test suite to compare the three methods with each other. Mann-Whitney and

Wilcoxon Signed Rank tests reach the most relevant predicate for 5.41% and for 17.2% of all

the faulty versions of the subject programs respectively with the 10% code examination

effort. F-test and t-test reach the most relevant predicate for 1.8% and for 4.5% of all the

faulty versions of the subject programs respectively with the 10% code examination effort.

BI and SOBER techniques reach the most relevant predicate for 9.01% and for 8.11% of all

faulty versions respectively with the 10% code examination effort. Therefore, non-

parametric testing method outperforms the other two methods.

Parsa, Vahidi-Asl, Arabi, and Minaei-Bidgoli (2009) propose a statistical debugging

approach based on elastic net. This approach first finds the smallest effective subset of

program predicates known as bug predictors and then detects the main causes of the faults by

11

using backward slicing technique. When the number of executions is much smaller than the

number of predicates, this approach is more advantageous since it reduces the set of program

predicates into the smallest effective subset of program predicates. A linear regression model

is constructed to find the relationship between program predicates and the falling and passing

state of the program. An experiment is performed on the Siemens test suite and a real life

image processing program EXIF. Each program in the test suite is instrumented by a small

code to collect the values of the program predicates. Their approach is compared with the

statistical fault localization techniques SOBER and BI. The experimental results show that

the elastic net approach finds 92 out of 132 faulty versions of the subject programs while

SOBER and BI find 68 and 53 out of 132 faulty versions of the subject programs

respectively with less than or equal to the 10% code examination effort. As a result, their

approach outperforms two statistical fault localization techniques SOBER and BI on the

subject programs.

2.1.5.2. Statement Based Technique

Jones and Harrold (2005) present the Tarantula (Jones et al., 2002) fault localization

technique which uses the statement coverage and compares it with the fault localization

techniques from the literature such as SI, SU, NN and CT. Their experimental results show

that the Tarantula technique is able to guide software developers to the faults for 13.93% of

all the faulty versions of the subject programs while the best of other techniques is able to

guide software developers to the faults for 5.43% of all the faulty versions of the subject

programs with less than or equal to the 10% code examination effort on the Siemens test

suite. Therefore, their technique is about twice more effective than the best of other

techniques for finding faulty statements.

Wong, Debroy, and Xu (2012) present a crosstab based (CTB) statistical technique which

uses the executions of executable statements for each test and the result of each test (success

or fail) in order to localize software faults in an efficient and effective manner. Several

experiments are performed on small size programs in the Siemens test suite and the UNIX

test suite and on large size programs such as Space, Grep, Gzip, and Make. Each faulty

version of the subject programs is instrumented by the instrumentation tool χSuds (χSuds,

1998) to collect their statement coverage information. Crosstab is constructed for each

statement in order to determine its suspiciousness ratio. χ2 test is used to determine the

associations between the statement coverage information and the result of tests. This

technique is compared with the Tarantula, SOBER and BI. The experimental results show

12

that the CTB statistical technique outperforms SOBER and BI techniques since it is more

efficient in time spent for locating the faults.

Jeffrey, Gupta, and Gupta (2008) present a value profile replacement approach for ranking

the program statements according to their likelihood of being faulty. They propose a new

value profile based approach for fault localization which involves searching for the program

statements that can affect the output of a failing run such that an incorrect output becomes a

correct output. This is done by replacing the values used in a statement during the execution

of a failing run with an alternate set of values and checking whether the resulting output

becomes a correct output or not. They compare their technique with the Tarantula on the

Siemens test suite. The experimental results show that the value profile replacement

approach locates software faults for 10.85% of all the faulty versions of the subject programs

while the Tarantula approach locates software faults for 2.33% of all the faulty versions of

the subject programs with less than or equal to the 10% code examination effort. As a result,

their approach outperforms the Tarantula approach.

2.1.5.3. Method Based Technique

Dallmeier, Lindig, and Zeller (2005) propose a plug-in called Ample that helps software

developers to locate the causes of failure in the Java programs. Ample works by comparing

the method call sequences of the passing tests with the sequences of the failing tests. A

difference in the method call sequences is assumed to be likely to locate the erroneous class.

It presents the ranking of the classes which are likely to be responsible for the failure.

Therefore, software developers looking for the bugs are advised to inspect the classes in the

presented order. They perform an experiment on the NanoXml parser to evaluate their

rankings. Their experimental results show that the defective class is immediately identified

in 36% of all test runs. It is stated that a software developer using their technique must

inspect on average 21% of the executed classes (10% of all classes) before finding the bug.

2.1.5.4. Block Based Technique

Abreu, Zoeteweij, and Van Gemund (2006) propose a block coverage based fault

localization technique. It is aimed to localize the software faults by using different similarity

coefficients. The coefficients are selected from the automated fault localization techniques

Jaccard, Tarantula, Ample (Dallmeier, Lindig, & Zeller, 2005), and Ochiai (Abreu et al.,

2007). An experiment is performed on the Siemens test suite. Every single program in the

test suite is instrumented by the instrumentation tool called Front (Augusteijn, 2002). The

effectiveness of selected coefficients in terms of code examination effort is evaluated on this

13

test suite. The experimental results show that the Ochiai coefficient decreases the percentage

of the code blocks needed to be inspected by 5% and outperforms the other three

coefficients.

Xu, Chan, Zhang, Tse, and Li (2011) present the Minus and Key Block Chain (MKBC) fault

localization technique which is based on the chains of key basic blocks. The MKBC

technique is compared with five fault localization techniques, which are Minus (Xu et al.,

2011), Jaccard, Ochiai, BI, and Tarantula, on three real life medium size programs (Jtopas,

Xml-security, and Ant) from the software-artifact infrastructure repository (SIR, 2014). Each

program in the test suite is instrumented by the instrumentation tool called Soot (Vallée-Rai

et al., 1999). The experimental results show that the MKBC localize software faults for

10.35% of all the faulty versions of the subject programs while Minus, Jaccard, Ochiai, BI,

and Tarantula techniques localize software faults for 3.45%, 3.45%, 3.45%, 0%, and 3.45%

of all the faulty versions of the subject programs respectively with less than or equal to 1%

code examination effort. Therefore, the MKBC technique outperforms other five techniques

in terms of the code examination effort.

2.2. Test Suite Reduction and Test Suite Selection

Test suite reduction and test selection have gained a great attention in recent years in fault

localization community. There are several studies proposing new test suite reduction

strategies and evaluating their effects on fault localization in the literature. Currently, there is

no consensus on the effects of test suite reduction and test suite selection on the fault

localization. The studies have showed that these strategies resulted in a decrease of fault

localization effort and achieved an improvement over fault localization effectiveness.

Yu, Jones, and Harrold (2008) investigate the effect of six reduction strategies, which are

variations of removing the tests that execute the same statements (coverage vector-based

reduction), and variations of removing the tests that do not contribute to the statement

coverage (statement-based reduction). They show that the statement coverage based

reduction causes extensive reduction in the effectiveness whereas the coverage-vector based

elimination improves the effectiveness. Hao et al. (2010) propose test reduction strategies

that select a subset of a test suite with minimal undistinguishable statements. They assume

that two statements are undistinguishable if every test executes both of them or neither of

them. In one of their strategies, they extend the definition of undistinguishable statements to

the statements which are executed by the same number of failed and passed tests. Their

14

experimental results show that these reductions cause minor decrease in fault localization

effectiveness.

Abreu, Zoeteweij, and Van Gemund (2007) and Baudry, Fleurey, and Le Traon (2006)

investigate the effect of the number of tests in fault localization. Baudry et al. (2006)

enhance the existing test suite by adding new tests that increase dynamic basic blocks which

are set of statements covered by the same tests. They state that adding such tests increase the

fault localization effectiveness. Abreu et al. (2007) select subsets with varying numbers of

passed and failed tests. Their experimental results show that the effect of adding more than

six failed tests or more than twenty passed tests results in minimal impact on the fault

localization effectiveness.

There are also several studies showing that test reduction improves fault localization

effectiveness. Dandan et al. (2013) propose a two-step reduction. They first remove the

passed tests whose coverage vector is orthogonal to that of all failed tests for programs with

a single fault. In multi fault localization, the passed tests which are orthogonal to at least one

failed test are removed. Then, they select representatives with minimal execution path length

for each group of tests with identical coverage vectors. Hao et al. (2005b) claims that

redundant tests in the test suite may cause a bias and harm the SFL effectiveness. They

propose similarity aware fault localization based on the application of fuzzy sets. In their

experiments reported in Hao, Zhang, Zhong, Mei, and Sun (2005a), the elimination of

redundant tests improves the fault localization effectiveness. They use the technique

proposed by Harrold, Gupta, and Soffa (1993) but do not state whether they use the

statement coverage as test requirement or def-use pairs as in the original paper. Masri and

Assi (2014) define the term coincidental correctness for a test when it executes the faulty

statement but still produces the correct result (i.e. passed test). They propose several

techniques to remove such tests by using a clustering based approach where they eliminate

the passed tests similar to failed ones. They achieve better fault localization with such

elimination for some cases. However, they remove some of the most informative tests with

this approach as well. Zeller (1999) states that a passed test similar to a failed test contains

most information.

Podgurski, Masri, McCleese, Wolff, and Yang (1999) present a stratified random sampling

approach to reduce the number of program executions that software developers should check

manually in the testing process. They first collect the profiles of the programs executions.

Next, they cluster these program executions according to the similarities among their

15

profiles. Afterwards, they perform a stratified random sampling to estimate the proportion of

failures in the entire execution population for the program. In this sampling, a random

sample is selected from each cluster without replacement. They perform their experiments on

five ANSI C parsers and a project scheduling system. They compare the efficiency of the

stratified random sampling with simple random sampling. The execution population for each

of five parsers is clustered into approximately 100, 150, 200, and 250 strata (5x4=20 cases).

Moreover the execution population for the project scheduling system is clustered into

approximately 100, 150, and 200 strata (6x3=18 cases). They use a two stage clustering

approach which combines partitioning and hierarchical clustering algorithms. In the first

stage, they partition the executions into first-stage clusters by using k-medoids algorithm. In

the second stage, they cluster the first-stage clusters into second-stage clusters by using

hierarchical clustering algorithm. Finally, they select a random sample from each second-

stage cluster without replacement. Experimental results show that the stratified random

sampling is more accurate than simple random sampling for 97.36% of all cases (37 of 38).

Dickinson, Leon, and Podgurski (2001a) evaluate the effectiveness of the cluster analysis of

execution profiles to find failures among the program executions. They compare several

filtering procedures which involve a clustering strategy and a sampling strategy. They

perform their experiments on five programs which are a word count program, a directory

listing program, a regular expression parser, a regular expression finder, and a java pretty

printer. They use agglomerative clustering algorithm and five sampling strategies which are

random sampling, one-per-cluster sampling, adaptive sampling, n-per-cluster sampling, and

small cluster sampling in their experiments. They use 1%, 2.5%, 5%, 10%, 15%, 20%, 25%,

and 30% percentages of the size of the execution population as the cluster counts.

Experimental results indicate that adapting sampling strategy is more efficient for finding

failure than other four sampling strategies for all program variations.

Dickinson, Leon, and Podgurski (2001b) propose a failure pursuit sampling which is a form

of adaptive sampling for revealing failures in the software. They define a cluster filtering

procedure which involves selecting the clustering algorithm, the dissimilarity metric, the

cluster count, and the sampling method. They perform their experiments on GNU LilyPond

music typesetting program (Nienhuys & Nieuwenhuizen, 2003) and the C-language compiler

of the GNU Compiler Collection (GCC) (Stallman, 2009) to evaluate the failure pursuit

sampling. The executions are partitioned into the clusters by using the agglomerative

hierarchical clustering algorithm. N-dimensional Euclidean distance is used as the

dissimilarity metric. 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, and 30% percentages of the size

16

of the execution population are used as the cluster counts. Five different sampling methods

which are simple random sampling, one-per cluster sampling, n-per-cluster sampling, small

cluster sampling, and adaptive sampling are used to select the executions from clusters.

Experimental results show that the adaptive sampling finds more failures than the simple

sampling, the one-per-cluster sampling, and n-per-cluster sampling. Moreover, failure-

pursuit sampling and adaptive sampling find similar numbers of failures in the experiments.

Therefore, they conclude that the failure-pursuit sampling is as effective as adaptive

sampling.

Podgurski et al. (2003) propose automated support for classifying failed executions in order

to prioritize them and diagnose their causes. First, they combine the failed executions with a

random sample of successful executions. Next, they apply the feature selection strategy to

select the features used to distinguish failed executions from successful executions. These

features are actually pattern classifiers. Logistic regression models are employed as pattern

classifiers in this selection strategy. Afterwards, they apply the classification strategy to

group failed executions whose execution profiles are similar according to the selected

features. They use k-medoids clustering algorithm and hierarchical multidimensional scaling

(HMDS) multivariate visualization technique. The resulting classification of failed

executions is used to find the faults manually in the subject programs. They perform their

experiments on three large subject programs which are GCC (Stallman, 2009), Jikes (Jikes,

2014), and Javac (Java, 2014) to evaluate their classification strategy and compare it with

manual classification. Experimental results indicate that their classification strategy is

effective and scales to large programs.

Masri and Assi (2014) propose an approach that groups the passing tests into two clusters

which are true passing tests and coincidentally correct tests. There are actually three clusters

which are true passing tests, failing tests, and coincidentally correct tests in their approach. A

coincidentally correct (CC) test is defined as the test in whose executions the program

produces coincidentally the correct output. In other words, the fault is executed but its

execution does not take effect on the result of test. They present two kinds of techniques

which are tech-I and tech-II to find the CC tests. In tech-I, they partition all of passed and

failed tests into two clusters by using k-means clustering algorithms. Hereafter, they select

the cluster which contains the majority of the failing tests and label the passing tests within

this cluster as CC tests. In tech-II, they partition only the passing tests into two clusters by

using k-means clustering algorithms. Hereafter, they select the cluster which has higher

relevance and label the passing tests within this cluster as CC tests. They perform their

17

experiments on several subject programs such as PrintTokens, PrintTokens2, Replace,

Schedule, Schedule2, Tcas, TotInfo, NanoXml parser v.1, NanoXml parser v.3, NanoXml

parser v.5, Space, Sed, Flex, and Gzip from SIR (SIR, 2014) and JTidy (JTidy, 2014). Their

experimental results show that their technique is promising.

Farjo and Masri (2014) propose three heuristics which assign weights to the profiling

elements such that higher weights indicate more potential relevance to failure. Heuristic-I

assigns higher weight to the profiling elements not covered by many tests, since the number

of failing tests is typically much smaller than the number of passing tests. Heuristic-II

extends Heuristic-I by using a fuzzy logic approach in the computation of the weights.

Heuristic-III assigns higher weights to the profiling elements covered by tests which are very

dissimilar from others since failing tests are likely to be outliers. They perform several

experiments on several subject programs such as PrintTokens2, Schedule, TotInfo, Space,

Flex, Sed, and Gzip from SIR (SIR, 2014), Tomcat (Tomcat, 2014), Jigsaw (Jigsaw, 2014),

and JTidy (JTidy, 2014). They empirically evaluate their heuristics by measuring their

impact on an established test suite minimization technique. Experiment results indicate that

the third one exhibits the most positive impact on the execution profiles. Although their

results are not positive in all cases, they are encouraging to investigate more heuristics.

2.3. Surveys about Fault Localization, Test Suite Reduction and Test Suite Selection

There are several survey papers about fault localization, test suite reduction, and test suite

selection in the literature. In this section, we provide a brief summary of these papers.

Wong & Debroy (2009) provide an overview of various fault localization methods in the

literature. They categorize them in seven categories: “static, dynamic and execution slice-

based”, “program spectrum-based”, “statistics-based”, “program state-based”, “machine

learning-based”, “model-based”, and “data mining-based”. Furthermore, they discuss an

effectiveness metric called “Exam” for fault localization.

Alipour (2012) categorizes the fault localization techniques based on their common features

into five categories: “program slicing”, “spectra based fault localization”, “statistical

inference”, “delta debugging”, and “model checking”. He examine several important

techniques for automated fault localization under “delta debugging”, and “model checking”

categories in the literature. Moreover, he briefly discuss the merits and shortcomings of these

techniques.

18

Agarwal & Agarwal (2014) review various articles, journals and conference papers on

software fault localization in the literature. They aim to give essential information about the

methods, dataset, and techniques which are used for comparison. They state that coverage

based methods gain significant attention and should be used to a large extent. They specify

that large datasets achieve more accurate results and should be used to evaluate the methods.

Su, Gong, Wang, and Ma (2014) discuss three approaches: test case reduction, fault

localization, and fault comprehension. They analyze current representative techniques about

three approaches and their limitations. They also discuss on-going research issues about

three approaches.

Abreu et al. (2006) studies the influence of four similarity coefficients: Jaccard, Tarantula,

Ample, and Ochiai. They evaluate four coefficients and assess their effectiveness by using

block coverage information on the Siemens suite. They conclude that Ochiai coefficient

consistently outperforms Jaccard, Tarantula, and Ample coefficients.

Kim and Lee (2014) identify the characteristics of the existing studies through the

experimental analysis. Based on their characteristics, the existing studies are divided into

three groups: Jaccard group, Ample group, and Ochiai group. They provide the strength and

the weakness of each group.

Vidács, Beszédes, Tengeri, Siket, and Gyimóthy (2014) investigate the effect of different test

reduction methods on the performance of fault localization and detection techniques. They

also provide new combined methods that incorporate both localization and detection aspects.

They empirically evaluate the methods by measuring detection and localization metrics of

test suites with various reduction sizes, and by how reduced test suites perform with actual

faults. They perform their experiments with SIR programs traditionally used in fault

localization research, and extend the case study with large industrial software systems.

19

CHAPTER 3

3. PRELIMINARIES

Among the fault localization techniques, statistical fault localization technique is the most

commonly used technique since it is lightweight and does not require its users to provide

additional information such as the structure of the program. Statistical techniques analyze the

relationship between the result of failed or passed tests and the statement coverage of these

tests. There are some representative techniques such as Tarantula, Jaccard, and Ochiai based

on the statistical fault localization techniques (Kim & Lee, 2014). These techniques are

widely used in most of the studies in the literature. Therefore, these leading techniques can

be compared to evaluate the accuracy of a new statistical fault localization technique. We

call them the three prominent fault localization techniques in this study. Some example

studies that use Jaccard, Tarantula, and Ochiai are given below.

 Jaccard: Abreu et al., 2006; Yu et al., 2008; Zhang, Chan, Tse, Jiang, & Wang, 2009;

Xie, Wong, Chen, & Xu, 2010; Naish, Lee, & Ramamohanarao, 2011; Xu et al., 2011;

Zhang et al., 2011; Artzi, Dolby, Tip, & Pistoia, 2012; Chan & Cai, 2012; Qi, Mao, Lei,

& Wang, 2013; Xu, Zhang, Chan, Tse, & Li, 2013; Mao et al., 2014; Kim & Lee, 2014

 Tarantula: Jones & Harrold, 2005; Abreu et al., 2006; Liu, Fei, Yan, Han, & Midkiff,

2006; Jeffrey et al., 2008; Yu et al., 2008; Zhang et al., 2009; Hao et al., 2010; Xie et al.,

2010; Baah, Podgurski, & Harrold, 2011; Naish et al., 2011; Wong et al., 2012; Zhang et

al., 2011; Xu et al., 2011; Artzi et al., 2012; Chan & Cai, 2012; Maheswari &

Venkatesakumar, 2013; Qi et al., 2013; Sahoo et al., 2013; Xu et al., 2013; Yoo, Harman,

& Clark, 2013; Mao et al., 2014; Kim & Lee, 2014

 Ochiai: Abreu et al., 2006; Yu et al., 2008; Xie et al., 2010; Baah et al., 2011; Naish et

al., 2011; Xu et al., 2011; Zhang et al., 2011; Artzi et al., 2012; Chan & Cai, 2012;

20

Maheswari & Venkatesakumar, 2013; Qi et al., 2013; Sahoo et al., 2013; Xu et al., 2013;

Mao et al., 2014; Kim & Lee, 2014

Given a test suite and their pass/fail results, statistical fault localization techniques, a.k.a.

spectrum-based or coverage-based fault localization, use the coverage information of failed

and passed tests to determine the likelihood of a program element (e.g. classes, methods,

blocks, branches, predicates, statements etc.) being faulty. This likelihood is called the

suspiciousness of an element. The coverage type used in the spectra determines the unit of

the faulty program element. For example, if the statement coverage is used, the technique

determines the suspiciousness of the program statements. In this study, we are using the

statement coverage as the execution information.

The coverage information of all tests are given to a fault localization technique is in the form

of a coverage matrix as illustrated in Figure 1. Each row in this matrix is a coverage vector

of a test in the test suite. Let m be the number of tests in the given test suite, n be the number

of statements in the program, and let i, j be two integers where 0 < i ≤ m and 0 < j ≤ n. The

coverage matrix is a boolean m × n matrix where an entry Aij shows whether the test Ti has

executed the statement sj or not. Aij is 1 if the test run Ti has executed the statement sj. The

test results are represented with the result vector where each entry Ri shows whether test Ti

is a passing run (1) or a failing run (0).

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑣𝑒𝑐𝑡𝑜𝑟
↓

𝑆1 𝑆2 … 𝑆𝑛

𝑇1

𝑇
⋮

𝑇𝑚

[

𝐴11 𝐴12 ⋯ 𝐴1𝑛

𝐴21 𝐴22 ⋯ 𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑚1 𝐴𝑚2 ⋯ 𝐴𝑚𝑛

] [

𝑅1

𝑅2

⋮
𝑅𝑚

]

↑ ↑
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑠𝑢𝑙𝑡

𝑚𝑎𝑡𝑟𝑖𝑥 𝑣𝑒𝑐𝑡𝑜𝑟

Figure 1 – Coverage matrix and result vector

m : Number of tests

n : Number of statements

Sn : Statement ‘n’

Tm : Test ‘m’

Rm : Result of the test ‘m’ (passed = 1; failed = 0)

Amn : Coverage result of the statement ‘n’ by the test ‘m’ (executed = 1; not executed = 0)

21

Given such a coverage matrix and its corresponding result vector, each SFL technique

determines the suspiciousness of program elements based on different intuitions. This

suspiciousness is computed using the number of failed and passed tests that executed (or not

executed) the statement. The basic notations used in the calculation of suspiciousness by

three popular approaches which are Tarantula, Jaccard, and Ochiai coefficients are shown in

Table 1.

Table 1 – Metrics used in the suspiciousness formulas of the fault localization techniques

Af Total # of failed tests

Ap Total # of passed tests

Aef (sj) Total # of failed tests executing statement ‘sj’

Anf (sj) Total # of failed tests not executing statement ‘sj’

Aep (sj) Total # of passed tests executing statement ‘sj’

Anp (sj) Total # of passed tests not executing statement ‘sj’

Using the suspiciousness values, the SFL technique ranks the program elements with respect

to their likelihoods of containing the fault. There are five ranking strategies which are

standard competition ranking (1-2-2-4 rule), modified competition ranking (1-3-3-4 rule),

dense ranking (1-2-2-3 rule), ordinal ranking (1-2-3-4 rule), and fractional ranking (1-2.5-

2.5-4 rule) (Lange, 2014). We use the standard competition ranking in this study.

3.1. Suspiciousness Metrics

In this section, we briefly introduce the three prominent fault localization techniques,

Jaccard, Tarantula, and Ochiai. Three suspiciousness metrics used in the three prominent

fault localization techniques are described as follows:

Jaccard

Abreu et al. (2006) used the Jaccard metric in their fault localization technique to localize the

software faults. The Jaccard equation can be represented as:

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(sj) =
Aef

(Aef+Anf+Aep)
 (5)

Tarantula

Jones and Harrold (2005) used the Tarantula metric in their fault localization technique to

localize the software faults. The Tarantula equation can be represented as:

22

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(sj) =

Aef
Aef+Anf

Aef
Aef+Anf

 +
Aep

Aep+Anp

 (6)

Ochiai

Abreu et al. (2007) used the Ochiai metric in their fault localization technique to localize the

software faults. The Ochiai equation coefficient can be represented as:

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(sj) =
Aef

√(Aef+Aep)x(Aef+Anf)
 (7)

3.2. Evaluation Metrics

Expense and Code Examination Effort are two metrics widely used to measure the

effectiveness of the fault localization techniques in the literature (Renieres & Reiss, 2003;

Cleve & Zeller, 2005; Jones & Harrold, 2005; Liu et al., 2005; Zhang et al., 2009).

3.2.1. Expense

Expense (Jones, 2008) measures the effort of a user to locate the faulty statement by

inspecting the list of statements of a program in the order ranked by a fault localization

technique. A fault localization technique presents a ranked list of statements as an output and

the user is assumed to locate the faulty statement along this list. For example, if the rank of

faulty statement is ‘k’ then the user inspects ‘k’ statements of the program to locate this

faulty statement. The expense metric measures this cost. Expense can be represented as:

𝐸𝑥𝑝𝑒𝑛𝑠𝑒 = (
Rank of Fault

Number of All Statements
) x 100 (8)

3.2.2. Code Examination Effort

Code Examination Effort (Jones & Harrold, 2005) is the number of faults located when

examining a certain percentage of the source code.

𝐶𝑜𝑑𝑒 𝐸𝑥𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑜𝑟𝑡 = (
Percentage of Faults Located

Percentage of Code Examined
) (9)

Suppose there are 4 versions and the expense for version 1 is 10%, version 2 is 20%, version

3 is 30%, and version 4 is 40%. Then the fault localization technique is said to catch 50%

(2/4) of the faults in 20% of code examination effort. Similarly, the technique finds 75%

(3/4) of the faults with 30% of code examination effort. Finally, the technique finds 100%

(4/4) of the faults with 40% of code examination effort.

23

3.3. Mean Reciprocal Rank (MRR)

Mean reciprocal rank (Voorhees, 1999) is a measure used in the information retrieval (IR)

domain for evaluating a process that returns a list of possible responses to a sample of

queries, ranked by probability of correctness. In our case, we are evaluating a fault

localization technique that returns a list of possible faulty statements, ranked by the

probability of faultiness. To calculate the MRR, we first need to calculate the reciprocal rank

which is defined as the multiplicative inverse of the rank of the first correct answer in IR

domain. The reciprocal rank is the multiplicative inverse of the rank of the statement that

actually has the fault in our case. Let ‘P’ be the set of subject programs, and FaultRankp be

the rank of the faulty statement reported by a technique for the subject program ‘p' where

pP. Then, the mean reciprocal rank for the technique is calculated as:

𝑀𝑅𝑅 =
1

|𝑃|
∑

1

FaultRankp

𝑁

𝑝𝑃
 (10)

3.4. Subject programs

In this study, we used the Siemens suite (Hutchins et al., 1994) available at the software-

artifact infrastructure repository (SIR, 2014) as subject programs. We selected this suite

since it is a quite frequently used benchmark suite in the fault localization and test reduction

research (Jones et al., 2002; Renieres & Reiss, 2003; Cleve & Zeller, 2005; Abreu,

Zoeteweij, & Van Gemund, 2007; Yu et al., 2008; Dandan et al., 2013). Siemens suite

consists of seven C programs and associated test suites. For each of these programs, there are

several versions, each of which contains manually injected one logical fault. There are 132

versions of C programs in this suite. For some of these versions, the test suite provided

cannot differentiate the faulty version from the original program i.e. there were no failed

tests for these versions. Since statistical fault localization techniques require at least one

failed test, we excluded these versions in our experiments. We have used 118 versions of C

programs as the subject programs in our study. Table 2 gives the following information

about these seven C programs: program name, line of code, number of all tests, and a brief

description of the program.

24

Table 2 – The seven C programs in SIR

Program
of

Versions
LOC

of All

Tests
Versions Excluded Description

PrintTokens 7 565 4,130 V04 & V06 lexical analyzer

PrintTokens2 10 529 4,115 No lexical analyzer

Replace 32 563 5,501 No pattern replacement

Schedule 9 412 2,650 V09 priority scheduler

Schedule2 10 307 2,588 V04 & V09 priority scheduler

Tcas 41 173 1,608 V13,V14, V15,V36, V38 collision avoidance system

TotInfo 23 406 1,051 V06,V10, V19,V21 information measurer

The details about this suite are given in the subsection 7.1.

25

CHAPTER 4

4. PROPOSED TECHNIQUE: ELA

In this section, we propose an automated statistical fault localization technique (Ela) based

on the statement coverage information of a test set. First, we define the methodology of Ela.

Next, we briefly describe the motivating examples which are the mid() and

unblock_process(ratio) functions. Finally, we discuss the results of the experiments

performed on the motivating examples.

4.1. Methodology

It is assumed that the test set at hand contains at least one passed and one failed test. We use

two kinds of the statement coverage of failed and passed tests: Aef/Af and Anp/Ap. The ratio

Aef/Af stands for the frequency of a statement executed by failed tests and therefore how

suspicious a statement is based on the execution information coming from the failed tests.

The ratio Aep/Ap stands for the frequency of a statement executed by passed tests and

therefore how innocent a statement is based on the execution information coming from the

passed tests. We use Anp/Ap which is equal to (1 - Aep/Ap) instead of Aep/Ap in our formula.

The ratio Anp/Ap stands for the ratio of the non-executions of a statement in passed tests and

therefore how suspicious it is based on the execution information coming from the passed

tests. Finally, we decided to take the geometric mean of the suspiciousness values coming

from both kinds of tests as follows:

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(si) = {√
Aef(𝑠𝑖)

Af
.

Anp(𝑠𝑖)

Ap
. if Af ≠ 0 & Ap ≠ 0} (12)

The geometric mean is a kind of mean or average which shows the central tendency of the

objects being averaged by using the product of their values. It is often used for comparing

different objects, each of which has multiple properties that have different numeric ranges

26

(Shin, Muthaiyah, & Raman, 2012). The use of a geometric mean normalizes the ranges of

the properties in order to neutralize their weighting effects. A change in the values of the

properties has the same effect on the geometric mean. When data consist of percentages,

ratios, rates of change, the geometric mean is a useful measure of central tendency (Brase &

Brase, 2011).

Since software developers try to write their best code without making any faults and

software testers find most of the faults during the testing process, Ap is generally much larger

than Af. Hence; we decided to use the geometric mean for averaging the suspiciousness

values coming from failed and passed tests in order to neutralize their weighting effects.

However, there are some special cases that must be considered in this formula. For example,

let s1, s2, and s3 be three statements Assume that s1 is executed in m passed tests and no fail

test executed it; s2, is never executed by any test, s3 is executed in n failed tests and no

passed tests. Then, Aef(s1)/Af = 0, Anp(s1)/Ap = m, Aef(s2)/Af = 0 and Anp(s2)/Ap = 0, Aef(s3)/Af

= n and Anp(s3)/Ap = 0. Thus, suspiciousness(s1) = sqrt(0 x m) = 0, suspiciousness(s2) =sqrt(0

x 0) = 0, and suspiciousness(s3) = sqrt(n x 0) = 0 which means that suspiciousness values for

these three statements are all equal to 0 because of the multiplication property of zero.

However, s1 and s3 are executed by pass and failed tests respectively. Therefore, we use y =

power(2, x) power transformation function to overcome the problem in these special cases.

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(si) = {√
2

Aef(𝑠𝑖)

Af . 2
Anp(𝑠𝑖)

Ap if Af ≠ 0 & Ap ≠ 0
} (13)

4.1.1. The Effects of the Bases of Aef(si)/Af and Anp(si)/Ap

We performed several experiments and measure the effects of the bases of Aef(si)/Af and

Anp(si)/Ap on the suspiciousness value. First we set the base of Anp(si)/Ap to 2 and increased

the base of Aef(si)/Af from 2 to 10 by 1 and measure their effects on the suspiciousness

values. We realized that the expense is decreased for the bases in this range. Second we set

the base of Aef(si)/Af to 2 and increased the base of Anp(si)/Ap from 2 to 10 and measure their

effects on the suspiciousness values. We realized that the expense is increased for the bases

in this range. We also measured the effects of decreasing the base of Anp(si)/Ap from 2 to 1

by 0.1 on the suspiciousness values. We realized that the expense is decreased for the bases

in this range. We performed the experiments on a train set which contains the 15 versions of

PrintTokens and PrintTokens2 program and selected the bases of Aef(si)/Af and Anp(si)/Ap on

27

this set. Afterwards, we validated the selected bases of Aef(si)/Af and Anp(si)/Ap on the test set

which contains 103 versions of Replace, Schedule, Schedule2, Tcas, and TotInfo programs.

Figure 2 displays that increasing the base of Aef/Af from 2 to 10 by 1 has a positive effect on

the suspiciousness value on average of all the subject programs. Improvements in the

expense for the bases between 4 and 10 (i.e. the circles right to the white circle) are less than

1% and can be ignored. Therefore, we decided to increase and use the base of Aef/Af as 4.

Figure 2 – Effect of the base of Aef/Af from 2 to 10

Figure 3 shows that increasing the base of Anp/Ap from 2 to 10 by 1 has a negative effect on

the suspiciousness value on average of all the subject programs. Therefore, we decided not to

increase and use the base of Anp/Ap and as 2.

4.60

4.70

4.80

4.90

5.00

5.10

5.20

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=2

;

B
as

e
o

f
A

ef
/A

f=
3

;
B

as
e

o
f

A
n

p
/A

p
=2

;

B
as

e
o

f
A

ef
/A

f=
4

;
B

as
e

o
f

A
n

p
/A

p
=2

;

B
as

e
o

f
A

ef
/A

f=
5

;
B

as
e

o
f

A
n

p
/A

p
=2

;

B
as

e
o

f
A

ef
/A

f=
6

;
B

as
e

o
f

A
n

p
/A

p
=2

;

B
as

e
o

f
A

ef
/A

f=
7

;
B

as
e

o
f

A
n

p
/A

p
=2

;

B
as

e
o

f
A

ef
/A

f=
8

;
B

as
e

o
f

A
n

p
/A

p
=2

;

B
as

e
o

f
A

ef
/A

f=
9

;
B

as
e

o
f

A
n

p
/A

p
=2

;

B
as

e
o

f
A

ef
/A

f=
1

0
;

B
as

e
o

f
A

n
p

/A
p

=2
;

Ex
p

e
n

se
 (

%
)

28

Figure 3 – Effect of the base of Anp/Ap from 2 to 10

Figure 4 displays that decreasing the base of Anp/Ap from 2 to 1 by 0.1 has a positive effect

on the suspiciousness value on average of all the subject programs. Moreover, it indicates

that omitting this coefficient would be a crucial mistake. The expense rises dramatically

when the base of Anp/Ap is 1 which is equal to excluding this coefficient. Improvements in

the expense for the bases between 1 and 2 (i.e. the circles left to the white circle) are less

than 1% and can be ignored. Therefore, we decided to use the base of Anp/Ap as 2.

5.0

5.3

5.6

5.9

6.2

6.5

6.8

7.1

7.4

7.7

8.0

8.3

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=2

;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=3

;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=4

;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=5

;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=6

;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=7

;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=8

;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=9

;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

0
;

Ex
p

e
n

se
 (

%
)

29

Figure 4 – Effect of the base of Anp/Ap between 1 and 2

There can be some cases in which the statement coverage information of failed tests are the

same but the statement coverage information of passed tests are different. In these cases, the

faulty statement and the innocent statements cannot be differentiated from each other.

Therefore, Anp/Ap should be included to the calculation of suspiciousness values. A detailed

discussion is given on the two motivating examples in the subsection 4.2. For example, the

expense rises dramatically when the base of Anp/Ap is 1 which is equal to excluding this

coefficient in Figure 3. Omitting this coefficient would be a crucial mistake.

Based on these empirical results, we decide to use the base of Aef(si)/Af as 4 and the base of

Anp(si)/Ap as 2. The formula is updated with these bases as follows:

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(si) = {√
4

Aef(𝑠𝑖)

Af . 2
Anp(𝑠𝑖)

Ap if Af ≠ 0 & Ap ≠ 0
} (14)

1.0
4.0
7.0

10.0
13.0
16.0
19.0
22.0
25.0
28.0
31.0
34.0
37.0
40.0
43.0
46.0
49.0
52.0
55.0
58.0

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.0
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.1
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.2
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.3
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.4
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.5
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.6
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.7
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.8
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=1

.9
;

B
as

e
o

f
A

ef
/A

f=
2

;
B

as
e

o
f

A
n

p
/A

p
=2

;

Ex
p

e
n

se
 (

%
)

30

4.2. Motivating Examples

We have chosen the mid() function as the first motivating example (Jones et al., 2002). It is a

function that finds the middle number of three numbers inputted. At the line 7, the

assignment “m=x” is mistakenly coded as the assignment “m=y”. The source code of mid()

function is given in Figure 5.

mid() {

 int x, y, z, m;

s1 read("Enter 3 numbers: ", x, y, z);

s2 m = z;

s3 if (y<z)

s4 if (x<y)

s5 m = y;

s6 else if (x<z)

s7 m = x; // changed to: m = y

s8 else

s9 if (x>y)

s10 m = y;

s11 else if (x>z)

s12 m = x;

s13 print("Middle number is: ", m);

}

Figure 5 – Source code of mid() function

There are five passed test cases and one failed test case written for mid() function. These test

cases are given in Table 3. Table 3 gives the following information for these cases: name,

input, expected output, actual output, and test result.

Table 3 – Five passed test cases and one failed test case written for mid() function

Test Case
Input Expected

Output

Actual

Output

Test

Result x y z

T
1
 3 3 4 3 3 P

T
2
 2 3 4 3 3 P

T
3
 4 3 2 2 2 P

T
4
 1 3 2 2 2 P

T
5
 5 3 4 3 3 P

T
6
 3 2 4 3 2 F

31

The coverage matrix of the statements and the result vector of tests are given in Table 4. In

this example, there is only one fail test (T6) and five pass tests.

Table 4 – Coverage matrix and result vector of mid() function

Test S
1
 S

2
 S

3
 S

4
 S

5
 S

6

S
7

(Fault)

S
8
 S

9
 S

10
 S

11
 S

12
 S

13

Result

Vector

T
1
 1 1 1 1 0 1 1 0 0 0 0 0 1 1 (P)

T
2
 1 1 1 1 1 0 0 0 0 0 0 0 1 1 (P)

T
3
 1 1 1 0 0 0 0 1 1 1 0 0 1 1 (P)

T
4
 1 1 1 0 0 0 0 1 1 0 1 0 1 1 (P)

T
5
 1 1 1 1 0 1 0 0 0 0 0 0 1 1 (P)

T
6
 1 1 1 1 0 1 1 0 0 0 0 0 1 0 (F)

Let us exemplify how the technique is applied on the statement S7. For this statement, based

on the coverage matrix in Table 4, Aef=1, Af=1, Anp=4, and Ap= 5. Hence the suspiciousness

value for this statement √41 1⁄ . 24 5⁄ = 2.639. We apply Ela to the motivating example and

the technique assigns the suspiciousness values to the statements as in Table 5. Table 5

shows the suspiciousness values as well as the rankings (e.g. J. Rank denotes the ranking

assigned by Jaccard) assigned by the SFL techniques to the statements of the program.

Table 5 – The suspiciousness values and ranks of the statements on mid() function

Statement Jaccard J. Rank Tarantula T. Rank Ochiai O. Rank Ela E. Rank

S1 0.167 7 0.5 7 0.408 7 2 7

S2 0.167 7 0.5 7 0.408 7 2 7

S3 0.167 7 0.5 7 0.408 7 2 7

S4 0.25 3 0.625 3 0.5 3 2.297 3

S5 0 13 0 13 0 13 1.32 11

S6 0.333 2 0.714 2 0.577 2 2.462 2

S7 (Fault) 0.5 1 0.833 1 0.707 1 2.639 1

S8 0 13 0 13 0 13 1.231 13

S9 0 13 0 13 0 13 1.231 13

S10 0 13 0 13 0 13 1.32 11

S11 0 13 0 13 0 13 1.32 11

S12 0 13 0 13 0 13 1.414 8

S13 0.167 7 0.5 7 0.408 7 2 7

32

As Table 5 shows, Ela gives rank 1 to the faulty statement which is line 7. Actually, Ela

suggests the developers examine the lines in following order: S7, S6, S4, S5, S10, S11, S8, S9,

S1, S2, S3, S13, S12. This order of the statements is generated according to their suspiciousness

ranks in descending order.

As mentioned in 4.1.1, there can be some cases in which the statement coverage information

of failed tests are the same but the statement coverage information of passed tests are

different. For example, if we have excluded Anp/Ap from the calculation of suspiciousness

values then Aef/Af for the failed test T
6
 are the same for the following statements: S1, S2, S3,

S4, S6, S7 (fault), and S13 on the first motivating example. Then the proposed technique

would assign the same rank to these 7 statements including the faulty statement and could

not have differentiated the faulty statement from the innocent statements. As a result, we

should include Anp/Ap to the calculation of suspiciousness values in order to differentiate the

faulty statement from the innocent statements.

We have chosen the unblock_process(ratio) function as the second motivating example

(Zhang et al., 2009). It is a function that processes the queue according to its priority. At the

line 6, the assignment “count=block_queue->mem_count” is mistakenly coded as the

assignment “count=block_queue->mem_count+1”. Five passed tests and two failed tests are

written for it. The source code of unblock_process(ratio) function is given in Figure 6.

 void unblock_process(ratio)

 float ratio;

 {

s1 int count;

s2 int n;

s3 Ele *proc;

s4 int prio;

s5 if (block_queue) {

s6
 count=block_queue->mem_count;

 // count=block_queue->mem_count+1

s7 n = (int) (count*ratio+1);

s8 proc=find_nth(block_queue,n);

s9 if (proc) {

s10 block_queue=del_ele(block_queue,proc);

s11 prio=proc->priority;

s12 prio_queue[prio]=append_ele(prio_queue[prio],proc);

s13 }

s14 }

 }

Figure 6 – Source code of unblock_process function

33

The coverage matrix of the statements and the result vector of tests are given in Table 6. In

this example, there are two fail tests (T3 & T6) and five pass tests.

Table 6 – Coverage matrix and result vector of unblock_process function

Test S
1
 S

2
 S

3
 S

4
 S

5

S
6

(Fault)
S

7
 S

8
 S

9
 S

10
 S

11
 S

12
 S

13
 S

14

Result

Vector

T
1
 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 (P)

T
2
 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 (P)

T
3
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 (F)

T
4
 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 (P)

T
5
 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 (P)

T
6
 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 (F)

T
7
 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 (P)

Let us exemplify how the technique is applied on the statement S6. For this statement, based

on the coverage matrix in Table 6, Aef=2, Af=2, Anp=3, and Ap= 5. Hence the suspiciousness

value for this statement √42 2⁄ . 23 5⁄ = 2.463. We apply Ela to the motivating example and

the technique assigns the suspiciousness values to the statements as in Table 7. Table 7

shows the suspiciousness values as well as the rankings (e.g. J. Rank denotes the ranking

assigned by Jaccard) assigned by the SFL techniques to the statements of the program.

34

Table 7 – The suspiciousness values and ranks of the statements on unblock_process

function

Statement Jaccard J. Rank Tarantula T. Rank Ochiai O. Rank Ela E. Rank

S1 0.286 14 0.5 14 0.535 14 2 14

S2 0.286 14 0.5 14 0.535 14 2 14

S3 0.286 14 0.5 14 0.535 14 2 14

S4 0.286 14 0.5 14 0.535 14 2 14

S5 0.286 14 0.5 14 0.535 14 2 14

S6 (Fault) 0.5 7 0.714 7 0.707 7 2.463 4

S7 0.5 7 0.714 7 0.707 7 2.463 4

S8 0.5 7 0.714 7 0.707 7 2.463 4

S9 0.5 7 0.714 7 0.707 7 2.463 4

S10 0.5 7 1 3 0.707 7 2 14

S11 0.5 7 1 3 0.707 7 2 14

S12 0.5 7 1 3 0.707 7 2 14

S13 0.286 14 0.5 14 0.535 14 2 14

S14 0.286 14 0.5 14 0.535 14 2 14

As Table 7 shows, Ela gives rank 4 to the faulty statement which is line 6. Actually, Ela

suggests the developers examine the lines in following order: S6, S7, S8, S9, S1, S2, S3, S4, S5,

S10, S10, S12, S13, S14.

The second motivating example shows that Jaccard technique cannot distinguish the faulty

statement from other statements, Tarantula and Ochiai techniques distinguish the faulty

statement from other statements but mislead the developers to wrong statements. On the

other hand, Ela technique leads the developers to the faulty statement correctly earlier than

other three techniques. The intuition behind this difference is that Jaccard, Tarantula, and

Ochiai techniques either do not consider Anp(si) in their metrics or assign same weight to it

with Aef(si) while considering it. On the other hand, Ela technique considers Aef(si) and

Anp(si) at the same time and assigns more appropriate weights to them. Therefore, Ela

technique neutralizes the bias caused by the weights of Aef(si) and Anp(si) and assigns the

suspiciousness values to the statements more properly.

4.3. Discussion on the Application of Ela to the Multiple Faults

There is a traditional approach for the multiple fault localization. In this approach, faults are

located and corrected one by one iteratively by the software developers until no faults remain

in the program. First, tests are run on the subject program. Second, a coverage matrix is

generated from the execution information in these tests. Third, a fault localization technique

35

is applied to this coverage matrix and the ordered list of suspicious statements is generated.

Fourth, software developers locate the fault by using this list and correct it. Fifth, tests are

rerun. If there is still a test that fails, then there is a fault in the program and the process starts

from the beginning. Yu et al., (2008) evaluates the effectiveness of this approach on the

multiple fault localization. They use SBI, Jaccard, Ochiai, and Tarantula metrics in their

study. DiGiuseppe and Jones (2011) investigate the ability of the coverage based fault

localization techniques to effectively localize multiple faults by suing this approach. They

use Tarantula metric in their study. The proposed metric Ela could be used in this approach

as the base metric since its requirements are the same as the Tarantula metric.

There are different approaches proposed for multiple fault location in the literature. Jones,

Bowring, and Harrold (1995) present a parallel debugging technique which generates a

specific set of test cases for each of multiple faults and assigns each set to a specific

developer for simultaneous debugging of multiple faults. Tarantula technique is applied to

each specific set of test cases in their research. Liu and Han (2006) propose a new type of

failure proximity (R-Proximity) in order to group the failing traces due to the same fault. The

failing traces are considered as similar traces if they suggest approximately the same fault

location in this proximity. They suggest the fault locations according to the failing traces by

using SOBER technique in their study.

Several metrics such as SBI, Jaccard, Ochiai, Tarantula, and SOBER are used in these

approaches. Since the requirements and inputs of all these techniques are the same as Ela, we

can use Ela as the base metric for these multiple fault localization approaches.

36

37

CHAPTER 5

5. PROPOSED TEST SUITE REDUCTION STRATEGIES

In this chapter, we will present four test suite reduction strategies.

5.1. Heuristic I: FminCov Test Suite Strategy

We propose a failed test reduction strategy called “FminCov Test Suite Strategy” for

programs with single fault. This strategy can be extended to multiple fault programs as a

heuristic. There are several approaches: Yu et al., (2008); DiGiuseppe and Jones (2011);

Jones et al. (1995); Liu and Han (2006) for the programs with multiple faults. Our strategy

can be applied to these approaches as a fault localization metric.

 Statements T1 T2 T3 T4 T5 T6 T7

 void unblock_process(ratio)

 float ratio;

 {

s1 int count; 1 1 1 1 1 1 1

s2 int n; 1 1 1 1 1 1 1

s3 Ele *proc; 1 1 1 1 1 1 1

s4 int prio; 1 1 1 1 1 1 1

s5 if (block_queue) { 1 1 1 1 1 1 1

s6

 count=block_queue->mem_count;

 // count=block_queue->mem_count+1
1 0 1 0 1 1 0

s7 n = (int) (count*ratio+1); 1 0 1 0 1 1 0

s8 proc=find_nth(block_queue,n); 1 0 1 0 1 1 0

s9 if (proc) { 1 0 1 0 1 1 0

s10 block_queue=del_ele(block_queue,proc); 0 0 1 0 0 0 0

s11 prio=proc->priority; 0 0 1 0 0 0 0

s12

prio_queue[prio]=append_ele(prio_queue[prio],proc);
0 0 1 0 0 0 0

s13 } 1 1 1 1 1 1 1

s14 } 1 1 1 1 1 1 1

 }

 Test Results 1 1 0 1 1 0 1

Figure 7 – Example code segment and its coverage matrix

38

Let us explain the reason behind the failed test elimination with an example. Consider the

code segment with corresponding coverage matrix and test result given in Figure 7. This

code segment is from the program called “replace” in the Siemens suite. In this example the

fault is in statement S6. There are two failed tests, T3 and T6 and they have different coverage

vectors. T3 has executed all the statements that T6 has executed plus three more statements.

With this coverage matrix and the result vector, Tarantula and Ochiai reports the statement

S10, S11, S12 to be the most suspicious of being faulty. Jaccard gives the same suspiciousness

rank to S6 to S12. This obstruction is caused by the failed test T3. Since there is a single fault,

the additional statements that T3 has executed are actually innocent statements. However,

according to SFL approach, the suspiciousness of a statement increases with the number of

failed tests that executed the statement. Therefore, the test T3 is misleading the SFL

effectiveness by causing innocent program elements to get high suspiciousness values.

We propose to eliminate the failed tests that mislead the SFL ranking, such as T3 in the

example. Since there is a single fault, all the failed tests should execute that statement. Let

cov(T) represent the coverage vector of the test T and cov(T)(s) be a function that returns 1 if

T has executed the statement s and 0 otherwise. Let T1 and T2 be two failed tests, and n be the

number of statements. We define a subsume relation as follows: T1 subsumes T2 when

cov(T1) = cov(T2) and for each statement 0 < s ≤ n, cov(T2)(s) = 1 ⇒ cov(T1)(s) = 1. Based

on this definition, we remove all the failed tests from the test suite who subsumes at least one

other failed test. We could have found the minimum coverage vector that is subsumed by all

the failed tests. However, we do not want to insert artificial test coverage information,

therefore; we are not applying the boolean ∧ operation on the elements of the coverage

vectors.

We also propose two different reduction strategies for passed tests to be used in combination

with the failed test reduction strategy. They are presented in the next two subsections.

5.2. Heuristic II: FminCov Cluster Test Suite Strategy

Our goal is to find a subset of tests that have better test suite quality by clustering of failed

and passed tests. We propose a strategy called “FminCov Cluster Test Suite Strategy” to

obtain this quality. In this strategy, we cluster the test suite resulted from the failed test

reduction (FminCov Test Suite Strategy) into subsets by using a clustering technique. After

the clustering, we choose the subgroup that contains the failed test as the new reduced test

suite. This reduction eliminates the passed tests that are not similar to the failed ones. The

39

intuition behind this novel technique is in parallel with Zeller (1999) who state that a passing

run closest to a failing run contains the most information.

To implement this reduction technique, we need to decide on a clustering technique and a

distance metric. Aggarwal and Reddy divide distance based clustering techniques into two

types: partitioning and hierarchical (Aggarwal and Reddy, 2013). Three representatives of

partitioning clustering technique are k-means, k-medians, and k-medoids. Two

representatives of hierarchical clustering technique are agglomerative and divisive. Although

partitioning clustering is generally faster, hierarchical clustering generates more accurate

clusters. Unlike hierarchical clustering, partitioning clustering algorithms need to choose

initial cluster centers which highly affect the resulting clusters. In other words, they are

sensitive to the initially selected cluster centers. The partitioning clustering techniques not

necessarily find the optimum clusters because of this sensitivity. Moreover, hierarchical

clustering returns a much more meaningful and subjective division of clusters with the help

of a dendrogram while partitioning clustering results in exactly ‘k’ clusters. Partitioning

clustering is more suitable for the round shaped and roughly equal density cluster while

hierarchical clustering is more suitable for the non-round shaped and different density

clusters (Aggarwal and Reddy, 2013). There are different sized clusters in our data.

Therefore, we prefer applying hierarchical clustering algorithms. The results of hierarchical

clustering can be presented in a dendrogram. This dendrogram can be used to obtain the

desired number of clusters by “cutting” it at the proper level. There are two types of

hierarchical clustering: agglomerative and divisive. First one is a "bottom up" approach in

which each observation starts in its own cluster, and pairs of clusters are merged as moving

up the hierarchy. Second one is a "top down" approach in which all observations start in one

cluster, and splits are performed recursively as moving down the hierarchy. The complexity

of agglomerative clustering (O(n3)) is lower than the complexity of divisive clustering

(O(2n)) in general cases. This makes agglomerative clustering faster than divisive clustering

for large data sets. Therefore, we decide to use agglomerative clustering technique.

Agglomerative clustering technique uses various distance metrics to merge two clusters such

as Euclidean, City block, Minkowski, Chebychev, Mahalanobis, Cosine, Correlation,

Spearman, Hamming, and Jaccard. Since feature vectors contain binary data of the statement

coverage in our case, we use Hamming distance as the distance metric.

Hamming distance is the percentage of the coordinates that differ in the feature vectors.

Hamming distance equation can be represented as:

40

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(fv1, fv2) =
A10(fv1,fv2)+A01(fv1,fv2)

A11(fv1,fv2)+A00(fv1,fv2)+A10(fv1,fv2)+A01(fv1,fv2)
 (15)

A11(cov(T1), cov(T2)) = Number of 1s at the same index in both coverage vectors.

A00 (cov(T1), cov(T2)) = Number of 0s at the same index in both coverage vectors.

A10(cov(T1), cov(T2)) =
Number of 1s and 0s at the same index in coverage

vectors of T1 and T2 respectively.

A01(cov(T1), cov(T2)) =
Number of 0s and 1s at the same index in coverage

vectors of T1 and T2 respectively.

Agglomerative clustering technique uses linkage criterion to decide which object to use to

compute distance between clusters such as Single (shortest distance), Complete (furthest

distance), Average (unweighted average distance), Weighted (weighted average distance),

Centroid (centroid distance), Median (weighted center of mass distance), and Ward (inner

squared distance) linkages. Centroid, Median, and Ward linkages are used when Euclidean

distance metric is preferred. Since Hamming distance metric is used in this study, only

single, complete, average, and weighted linkages can be used as linkage criterion. Moreover,

average, and weighted linkages may not merge close groups because of outlier members that

are far apart in the data.

To decide on the linkage criteria, we calculate the cophenetic correlation coefficients (Farris,

1969) for different linkage criteria when Hamming distance is used as a distance metric in

agglomerative clustering. The cophenetic correlation for a cluster tree is defined as the linear

correlation coefficient between the cophenetic distances obtained from the cluster tree and

the original distances which are used to construct the cluster tree. In other words, it measures

how realistically the cluster tree represents the dissimilarities between observations.

Table 8 – The Cophenetic Correlation Coefficients for different linkage criteria when

Hamming distance is used as a distance metric

Linkage Criteria Cophenetic Correlation Coefficient

Single 0.8026

Complete 0.8005

Average 0.8016

Weighted 0.7994

Table 8 shows that the maximum cophenetic correlation coefficient is obtained when single

linkage criterion is used. Therefore, we decide to use single linkage criterion in this study.

41

5.2.1. Visualization of tests via Multi-Dimensional Scaling (MDS)

In our study, it is aimed to visualize where failed and passed tests are on the coordinate

system according to their distance to each other based on their statement coverage

information. The points are often visualized with a scatter plot. However, in some cases, the

data might not be in the form of points at all, but rather in the form of pairwise similarities or

dissimilarities to each other. We have multi-dimensional vectors that contain the statement

coverage information of failed and passed tests in our study. The tests cannot be plotted by

using their feature vectors. In these cases, it is possible to use the similarities or

dissimilarities between tests to visualize where they are. The distances between the failed

and tests are calculated by using the Hamming similarity metric in this study.

Multi-Dimensional Scaling (MDS) can represent the multi-dimensional data in a small

number of dimensions. It does not require raw data, but only a matrix of pairwise distances

or dissimilarities. The pairwise Hamming distances between tests for the first version of

PrintTokens program (PrintTokens_v01) in Siemens suite are given in Table 9. Table 9 is

shaded according to the Hamming distances between tests.

Table 9 – Hamming distances between tests on PrintTokens_v01 with Distinct FminCov

Cluster Test Suite

 T1 T4 T6 T7 T10 T20 T21 T23 T24 T34 T45 T49 T55 T83 T90 T97 T271 T623 T1463 T4101
Result

Vector

T1 0 0.37 0.31 0.29 0.23 0.17 0.16 0.11 0.1 0.09 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.04 0.05 0.08 P

T4 0.37 0 0.06 0.07 0.14 0.19 0.2 0.25 0.26 0.27 0.29 0.3 0.31 0.32 0.34 0.35 0.36 0.41 0.41 0.44 P

T6 0.31 0.06 0 0.02 0.08 0.14 0.15 0.2 0.21 0.22 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.35 0.36 0.39 P

T7 0.29 0.07 0.02 0 0.07 0.12 0.13 0.18 0.19 0.2 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.34 0.34 0.37 P

T10 0.23 0.14 0.08 0.07 0 0.06 0.07 0.12 0.13 0.14 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.27 0.27 0.3 P

T20 0.17 0.19 0.14 0.12 0.06 0 0.01 0.06 0.07 0.08 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.21 0.22 0.25 P

T21 0.16 0.2 0.15 0.13 0.07 0.01 0 0.05 0.06 0.07 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.2 0.21 0.24 P

T23 0.11 0.25 0.2 0.18 0.12 0.06 0.05 0 0.01 0.02 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.16 0.19 P

T24 0.1 0.26 0.21 0.19 0.13 0.07 0.06 0.01 0 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.14 0.15 0.18 P

T34 0.09 0.27 0.22 0.2 0.14 0.08 0.07 0.02 0.01 0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.13 0.14 0.17 P

T45 0.07 0.29 0.24 0.22 0.16 0.1 0.09 0.04 0.03 0.02 0 0.01 0.02 0.03 0.04 0.05 0.06 0.11 0.12 0.15 P

T49 0.06 0.3 0.25 0.23 0.17 0.11 0.1 0.05 0.04 0.03 0.01 0 0.01 0.02 0.03 0.04 0.05 0.1 0.11 0.14 P

T55 0.05 0.31 0.26 0.24 0.18 0.12 0.11 0.06 0.05 0.04 0.02 0.01 0 0.01 0.02 0.03 0.04 0.09 0.1 0.13 P

T83 0.04 0.32 0.27 0.25 0.19 0.13 0.12 0.07 0.06 0.05 0.03 0.02 0.01 0 0.01 0.02 0.03 0.08 0.09 0.12 P

T90 0.03 0.34 0.28 0.26 0.2 0.14 0.13 0.08 0.07 0.06 0.04 0.03 0.02 0.01 0 0.01 0.02 0.07 0.08 0.11 P

T97 0.02 0.35 0.29 0.27 0.21 0.15 0.14 0.09 0.08 0.07 0.05 0.04 0.03 0.02 0.01 0 0.01 0.06 0.07 0.1 P

T271 0.01 0.36 0.3 0.28 0.22 0.16 0.15 0.1 0.09 0.08 0.06 0.05 0.04 0.03 0.02 0.01 0 0.05 0.06 0.09 F

T623 0.04 0.41 0.35 0.34 0.27 0.21 0.2 0.15 0.14 0.13 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0 0.01 0.04 P

T1463 0.05 0.41 0.36 0.34 0.27 0.22 0.21 0.16 0.15 0.14 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0.01 0 0.03 P

T4101 0.08 0.44 0.39 0.37 0.3 0.25 0.24 0.19 0.18 0.17 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.04 0.03 0 P

Result

Vector
P P P P P P P P P P P P P P P P F P P P

By using the MDS approach, the tests are plotted to 2D coordinate system based on the

Hamming distance between them in Figure 8. The labels on the dots are ids of the tests in

this figure.

42

Figure 8 – Failed and pass tests before clustering of failed and passed tests on

PrintTokens_v01

Figure 8 indicates that there are 1 failed test and 19 passed tests on the coordinate system.

We cluster 20 tests into two clusters. We apply silhouette analysis to determine the optimum

number of clusters. We cluster the tests into 2 to 5 clusters according to their feature vectors.

Silhouette coefficients for 2 to 5 clusters on PrintTokens_v01 are given in Figure 9, Figure

10, Figure 11, and Figure 12.

Figure 9 – Silhouette coefficients for 2 clusters on PrintTokens_v01

43

Figure 10 – Silhouette coefficients for 3 clusters on PrintTokens_v01

Figure 11 – Silhouette coefficients for 4 clusters on PrintTokens_v01

44

Figure 12 – Silhouette coefficients for 5 clusters on PrintTokens_v01

Our aim is to find the optimal ‘k’ value for the clustering algorithm. Therefore, we plot the

mean silhouette coefficient scores for 2 to 5 clusters on PrintTokens_v01 in order to find the

optimal ‘k’ value. Figure 13 shows that the optimal ‘k’ value is 2 since it has highest mean

silhouette coefficient scores. Therefore, we decide to cluster the tests into 2 clusters.

Figure 13 – Selection of optimum ‘k’ according to the mean silhouette values

45

We aim to find the passed tests that are not very close to the remaining failed tests and

eliminate them to achieve better fault localization. Therefore, we cluster the tests into 2

cluster and eliminate the cluster that does not contain the remaining failed tests.

After completing the clustering of the test cases of PrintTokens_v01, 16 passed tests and one

failed test shaped as circle are clustered together. In addition, 3 passed tests shaped as square

are clustered to together. Figure 14 shows the tests and their clusters on the coordinate

system. The labels on the dots are ids of the tests in this figure.

Figure 14 – Failed and pass tests after clustering of failed and passed tests on

PrintTokens_v01

In order to validate agglomerative clustering visually, we use a dendrogram of tests on

PrintTokens_v01. Figure 15 shows this dendrogram which contains 1 failed test and 19

passed tests. It is observed that 3 tests (thick lines) are close to each other while 17 tests (thin

lines) are close to each other.

46

Figure 15 – Dendrogram of tests on PrintTokens_v01 [Clustering]

Our purpose is to observe the effect of Clustering strategy on the fault localization.

Therefore, we evaluate the effect of FminCov Cluster Test Suite Strategy on

PrintTokens_v01. Figure 16 shows this effect on PrintTokens_v01. It is observed that

Clustering strategy has a decline on the fault localization.

Figure 16 – The effect of FminCov Cluster Test Suite Strategy on PrintTokens_v01

5.3. Heuristic III: FminCov Classify Test Suite Strategy

Our goal is to find a subset of tests that have better test suite quality by clustering of failed

and passed tests. We propose a strategy called “FminCov Cluster Test Suite Strategy” to

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

D
e

cl
in

e
 (

%
)

Jaccard Tarantula Ochiai2 Ela

47

obtain this quality. In this strategy, we classify the passed tests into two classes of the failed

tests. The eliminated failed tests (FminCov Test Suite Strategy) form one class, and the

remaining failed tests form the other class. Then we remove the subgroup that contains the

eliminated failed tests. This elimination removes a subset of the tests which are similar to all

failed ones due to the subsumption relation among all the failed tests. The intuition is to

approximate and reduce the tests that have executed the faulty statement but still pass.

There are different types of classification techniques to be used for this process: K nearest

neighbors (KNN), Naïve Bayes, Support Vector Machines (SVMs), Decision Trees (DTs).

KNN classification algorithm is non-parametric algorithm since it does not make any

assumption on the distribution of the underlying data. Therefore, it can be used for

classification when there is little or no prior knowledge about the distribution of the

underlying data. Moreover, KNN classification algorithm is a lazy learning algorithm since

there is no explicit model training phase and a model construction is deferred until it is

needed to make a classification.

We prefer to use KNN classification algorithm since it is a simple, non-parametric and lazy

learning algorithm. KNN classification algorithm uses various distance metrics such as

Euclidean, City block, Minkowski, Chebychev, Mahalanobis, Cosine, Correlation,

Spearman, Hamming, and Jaccard. Since feature vectors contain binary data of the statement

coverage in our case, we use Hamming distance as the distance metric. We select ‘k’ as 1

which means that one nearest neighbor in each class is used to classify a new test into the

classes. Therefore, we can say that we use “nearest neighbor” algorithm instead of “k nearest

neighbors” algorithm.

In this strategy, we first form two classes of failed tests. The eliminated failed tests using

FminCov Test Suite Strategy form one class, and the remaining failed tests form the other

class. Then we classify the passed tests into appropriate classes by using KNN classification

algorithm. If a passed test has the same smallest similarity to the classes of the eliminated

failed tests and the remaining failed tests, then it is classified to the remaining failed tests.

Finally, we remove the subgroup that contains the eliminated failed tests.

5.3.1. Visualization of tests via Multi-Dimensional Scaling (MDS)

We use MDS to visualize the data and the result of the FminCov Classify Test Suite

Strategy. It is also used for visual validation of the classification process. Consider pairwise

Hamming distances between tests for the first version of PrintTokens program

48

(PrintTokens_v01) in Siemens suite are given in Table 10. Table 10 is shaded according to

the Hamming distances between tests.

Table 10 – Hamming distances between tests on PrintTokens_v01 with Distinct FminCov

Classify Test Suite

 T1 T4 T6 T7 T10 T11 T21 T23 T24 T34 T45 T49 T55 T83 T90 T97 T271 T623 T1463 T2592 T3296 T4101
Result

Vector

T1 0 0.37 0.31 0.29 0.23 0.17 0.16 0.11 0.1 0.09 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.05 0.07 0.04 0.05 0.08 P

T4 0.37 0 0.06 0.07 0.14 0.19 0.2 0.25 0.26 0.27 0.29 0.3 0.31 0.32 0.34 0.35 0.36 0.42 0.43 0.41 0.41 0.44 P

T6 0.31 0.06 0 0.02 0.08 0.14 0.15 0.2 0.21 0.22 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.36 0.38 0.35 0.36 0.39 P

T7 0.29 0.07 0.02 0 0.07 0.12 0.13 0.18 0.19 0.2 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.35 0.36 0.34 0.34 0.37 P

T10 0.23 0.14 0.08 0.07 0 0.06 0.07 0.12 0.13 0.14 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.28 0.29 0.27 0.27 0.3 P

T20 0.17 0.19 0.14 0.12 0.06 0 0.01 0.06 0.07 0.08 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.22 0.24 0.21 0.22 0.25 P

T21 0.16 0.2 0.15 0.13 0.07 0.01 0 0.05 0.06 0.07 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.21 0.23 0.2 0.21 0.24 P

T23 0.11 0.25 0.2 0.18 0.12 0.06 0.05 0 0.01 0.02 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.16 0.18 0.15 0.16 0.19 P

T24 0.1 0.26 0.21 0.19 0.13 0.07 0.06 0.01 0 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.15 0.17 0.14 0.15 0.18 P

T34 0.09 0.27 0.22 0.2 0.14 0.08 0.07 0.02 0.01 0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.14 0.16 0.13 0.14 0.17 P

T45 0.07 0.29 0.24 0.22 0.16 0.1 0.09 0.04 0.03 0.02 0 0.01 0.02 0.03 0.04 0.05 0.06 0.12 0.14 0.11 0.12 0.15 P

T49 0.06 0.3 0.25 0.23 0.17 0.11 0.1 0.05 0.04 0.03 0.01 0 0.01 0.02 0.03 0.04 0.05 0.11 0.13 0.1 0.11 0.14 P

T55 0.05 0.31 0.26 0.24 0.18 0.12 0.11 0.06 0.05 0.04 0.02 0.01 0 0.01 0.02 0.03 0.04 0.1 0.12 0.09 0.1 0.13 P

T83 0.04 0.32 0.27 0.25 0.19 0.13 0.12 0.07 0.06 0.05 0.03 0.02 0.01 0 0.01 0.02 0.03 0.09 0.11 0.08 0.09 0.12 P

T90 0.03 0.34 0.28 0.26 0.2 0.14 0.13 0.08 0.07 0.06 0.04 0.03 0.02 0.01 0 0.01 0.02 0.08 0.1 0.07 0.08 0.11 P

T97 0.02 0.35 0.29 0.27 0.21 0.15 0.14 0.09 0.08 0.07 0.05 0.04 0.03 0.02 0.01 0 0.01 0.07 0.09 0.06 0.07 0.1 P

T271 0.01 0.36 0.3 0.28 0.22 0.16 0.15 0.1 0.09 0.08 0.06 0.05 0.04 0.03 0.02 0.01 0 0.06 0.08 0.05 0.06 0.09 F

T623 0.05 0.42 0.36 0.35 0.28 0.22 0.21 0.16 0.15 0.14 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0 0.02 0.01 0.01 0.03 P

T1463 0.07 0.43 0.38 0.36 0.29 0.24 0.23 0.18 0.17 0.16 0.14 0.13 0.12 0.11 0.1 0.09 0.08 0.02 0 0.03 0.02 0.01 P

T2592 0.04 0.41 0.35 0.34 0.27 0.21 0.2 0.15 0.14 0.13 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0.01 0.03 0 0.01 0.04 F

T3296 0.05 0.41 0.36 0.34 0.27 0.22 0.21 0.16 0.15 0.14 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0.01 0.02 0.01 0 0.03 F

T4101 0.08 0.44 0.39 0.37 0.3 0.25 0.24 0.19 0.18 0.17 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.03 0.01 0.04 0.03 0 P

Result

Vector
P P P P P P P P P P P P P P P P F P P F F P

By using the MDS approach, the tests are plotted to 2D coordinate system based on the

Hamming distance between them in Figure 17. The labels on the dots are ids of the tests in

this figure.

Figure 17 – Failed and pass tests before classifying the passed tests to the failed tests on

PrintTokens_v01

Figure 17 indicates that there are 3 failed tests and 19 passed tests on the coordinate system.

We classify 19 passed tests cases into the appropriate classes by using KNN classification

algorithm.

49

After completing the classification process, 16 passed tests shaped as circle are classified to

one failed test shaped as circle. In addition, 3 passed tests shaped as square are classified to 2

failed tests shaped as square. Figure 18 shows the tests and their classes on the coordinate

system. The labels on the dots are ids of the tests in this figure.

Figure 18 – Failed and pass tests after classifying the passed tests to the failed tests on

PrintTokens_v01

In order to validate KNN classification visually, we use a dendrogram of tests on

PrintTokens_v01. Figure 19 shows this dendrogram which contains 3 failed tests and 19

passed tests. It is observed that 5 tests (thick lines) are close to each other while 17 tests (thin

lines) are close to each other.

Figure 19 – Dendrogram of tests on PrintTokens_v01 [Classification]

We would like to observe the effect of Classification strategy on the fault localization.

Therefore, we evaluate the effect of FminCov Classify Test Suite Strategy on

50

PrintTokens_v01. Figure 20 shows this effect on the PrintTokens_v01. It is observed that

Classification strategy has an improvement over the fault localization.

Figure 20 – The effect of FminCov Classify Test Suite Strategy on PrintTokens_v01

5.4. Heuristic IV: Equivalent Test Elimination (Distinct Test Selection)

If two tests have executed the set of same statements (i.e. if they have covered the same set

of statements), then we consider them as equivalent tests with respect to their statement

coverage. We claim that existence of equivalent tests affects the computation of the

suspiciousness values of the statements. Existence of equivalent tests lead to the repetition of

test vectors in a coverage matrix. Since the fault localization metrics are based on the

number of occurrences of 1’s and 0’s in this coverage matrix, the repetition of test vectors

will have a direct effect on the computation of the suspiciousness values. We suggest the

elimination of equivalent tests from both passed and failed tests. This approach is called

“Distinct Test Suite Strategy”.

We categorize failed tests as good failed tests and bad failed tests. While a good failed test is

defined as the failed test that has the minimum statement coverage, a bad failed test is

defined as the failed test that have the greater statement coverage than the good test in this

study. In the rest of this section, we analyze the effect of having equivalent tests in both of

these categories.

Having more than one test with the same coverage vector in the coverage matrix corresponds

to row scaling (Tan, Kumar, & Srivastava, 2002). If the SFL measures are not invariant

under row scaling then the redundancy can cause an unpredictable effect on the effectiveness

0

2

4

6

8

10

12

14

16

18

20

Im
p

ro
ve

m
e

n
t

(%
)

Jaccard Tarantula Ochiai2 Ela

51

of fault localization techniques. Let us show that how this redundancy affects the

effectiveness of fault localization techniques.

We apply row scaling invariance property to the coverage matrix in our case. First, we

replicate the good failed tests by applying scaling factor as 2. That is, we replicate all the

rows of coverage matrix for good failed tests by 2. Afterwards, we check whether Jaccard,

Tarantula, Ochiai, and Ela metrics are invariant or not under this process. Second, we

replicate the bad failed tests by applying scaling factor as 2 and then check whether these

four metrics are invariant or not under this process. We empirically see that each type of the

tests has different effect on the effectiveness of fault localization techniques. Replication of

good failed tests increases the effectiveness of fault localization while replication of bad tests

has a negative impact as expected. Since it is not known whether a test is good test or not, we

select the safe side and eliminate the equivalent tests from both failed and passed tests in the

experiments.

Let us show how the effect of equivalent tests on first version of PrintTokens program

(PrintTokens_v01) and how it can cause a bias on the effect of the fault localization

techniques by applying the row scaling invariance property.

FailMinCov tests which are kinds of good failed tests are replicated by 2 and the results in

Table 11 are obtained on the Redundant Test Suite.

Table 11 – Improvements on Redundant Test Suite where FailMinCov tests are replicated by

2

 Jaccard Tarantula Ochiai Ela

PrintTokens 0% 0% 2.3% 9.92%

PrintTokens2 5.95% 7.56% 6.91% 0%

Replace 4.25% 4.04% 1.48% 2.56%

Schedule 0% 0% 0% 0%

Schedule2 0% 0% 0% 0%

Tcas 0% 0% 0% 0%

TotInfo 0.15% 0.29% 0% 0%

52

Figure 21 – Improvements by replicating the FailMinCov tests by 2

Figure 21 shows the improvements by replicating the FailMinCov tests by 2. While Ela

technique has a maximum 9.92% improvement, Jaccard technique has a maximum 5.95%

improvement, Tarantula technique has a maximum 7.56% improvement, and Ochiai

technique has a maximum 6.91% improvement.

FailOther tests which are kinds of bad failed tests are replicated by 2 and the results in Table

12 are obtained on the Redundant Test Suite.

Table 12 – Declines on Redundant Test Suite where FailOther tests are replicated by 2

 Jaccard Tarantula Ochiai Ela

PrintTokens -22.54% -22.54% 0% 0%

PrintTokens2 0% -18% -16.81% -16.53%

Replace -15.76% -22.91% -5.04% -4.94%

Schedule -7.45% -16.82% 0% 0%

Schedule2 0% 0% 0% 0%

Tcas -0.1% -0.1% 0% 0%

TotInfo -0.72% -1.36% -0.15% -0.31%

0%

2%

4%

6%

8%

10%

Jaccard Tarantula Ochiai Ela

Im
p

ro
ve

m
e

n
t

PrintTokens

PrintTokens2

Replace

Schedule

Schedule2

Tcas

TotInfo

53

Figure 22 – Declines by replicating the FailOther tests by 2

Figure 22 shows the declines by replicating the FailOther tests by 2. While Ela technique has

a maximum 16.53% decline, Jaccard technique has a maximum 22.54% decline, Tarantula

technique has a maximum 22.91% decline, and Ochiai technique has a maximum 16.81%

decline.

5.4.1. Discussion

Figure 21 and Figure 22 show the effects of replicating the FailMinCov tests and the

FailOther tests by 2 on the expenses of PrintTokens_v01.

We observe that while replicating the FailMinCov tests by 2 has a positive effect, replicating

the FailOther tests by 2 has a negative effect on the expenses of PrintTokens_v01.

Good failed tests increase the suspiciousness values of the faulty statements and the rank of

faulty line is automatically decreased. Therefore, the expense for finding the faulty statement

is automatically decreased too. If the good failed tests are duplicated without being aware of

it, then this positive effect is duplicated too. Bad fail tests increase the suspiciousness values

of the innocent statements and the rank of faulty line is automatically increased. Therefore,

the expense for finding the faulty statement is automatically increased too. If the bad failed

tests are duplicated without being aware of it, then this negative effect is duplicated too.

Since it is not known that whether a test is good test or not, the existence of the equivalent

tests can cause a bias in the ranking of statements according to their suspiciousness values.

Therefore, we select the safe side and eliminate the equivalent tests from both passed and

failed tests in the experiments.

-20%

-15%

-10%

-5%

0%

Jaccard Tarantula Ochiai Ela

D
e

cl
in

e
PrintTokens

PrintTokens2

Replace

Schedule

Schedule2

Tcas

TotInfo

54

55

CHAPTER 6

6. EFFECTIVE RANKING STRATEGY: LOCAL MAXIMA

In this chapter, we propose a Local Maxima strategy to obtain effective ranking of

statements according to their suspiciousness values. The rationale behind this strategy is

explained in the methodology section.

6.1. Methodology

Statistical fault localization techniques assign suspiciousness values to the statements

according to whether they are executed or not in the tests. They aim to assign the highest

suspiciousness value to the faulty statement. Moreover, they assign higher suspiciousness

values to the statements near to the faulty statement since these statements are on the same

execution path with the faulty statement. However, the statements near the faulty statement

are not actually suspicious statements. In other words, these statements are assigned with

higher suspiciousness values since they are in the neighborhood of the faulty statement.

Therefore, they should be removed from the list of suspicious statements.

We propose a Local Maxima strategy to remove these statements. In this strategy, the most

suspicious statements are assumed to have the highest suspiciousness values in their

neighborhoods. In other words, they are assumed to be local maxima in their neighborhoods.

Therefore, only the statements which are local maxima are left and the other statements are

removed from the list of suspicious statements when presented to the user. We write a

function called findLocalMaxima to find select the most suspicious statements which are

local maxima in their neighborhoods. The algorithm of the findLocalMaxima is defined as

follows:

56

/***

Name : findLocalMaxima

Function : This function finds the list of the local maxima values

among the suspiciousness values of the statements of a

program

Algorithm : For each statement of a program, the local maximum

value among the suspiciousness values of its

preceding statement, itself, and its succeeding statement

is found and added to the list of the local maxima values

Input : The list of the suspiciousness values of the statements

of a program

Output : The list of the local maxima values among the

suspiciousness values of the statements of a program

***/

List<LocalMaximumOfStatement>

findLocalMaxima(List<SuspiciousnessOfStatement> svsList) {

 List< LocalMaximumOfStatement> lmsList = ;

 index := 0;

 For each statement si in svsList

 si,left := si-1; // the statement in the previous line of si

 si,right := si+1; // the statement in the next line of si

 If si ≥ si,left && si ≥ si,right Then

 LocalMaximumOfStatement lmsElement = si;

 lmsList.put(index, lmsElement);

 index++;

 End If

 End For

 Return lmsList;

}

Figure 23 – Pseudo code of the findLocalMaxima algorithm

In this algorithm, the list of statements whose suspiciousness values are assigned by the

statistical fault localization techniques are taken as an input. Each statement in the list is

compared with the statement in its previous line (left statement) and the statement in its next

line (right statement). If the suspiciousness value of a statement is greater or equal to the

suspiciousness values of its left and right statements at the same time, then it is added to the

list of suspicious statements which will be presented to the user. At the end, the list of most

suspicious statements which are local maxima in their neighborhoods are returned as an

output.

57

6.2. Motivating Example

The suspiciousness values of all the statement of the first version of PrintTokens program

(PrintTokens_v01) in the Siemens suite are given as line graphs for Jaccard, Tarantula,

Ochiai, and Ela techniques in Figure 24, Figure 25, Figure 26, and Figure 27. In these

figures, the x axis shows the statement number as it occurs in the program and the y axis

shows the suspiciousness values assigned to the corresponding statements.

The peak statements shaped as black triangle in the line graphs are the local maxima

statements since they have highest suspiciousness values in their neighborhoods. The faulty

statement surrounded by a gray square is one of the local maxima statements. Notice that

some statements shaped as white circles have higher suspiciousness values than the faulty

statement. The faulty statement is going to be ranked after these statements. We claim that

these statements are assigned with higher suspiciousness values since they are neighboring

statements of local maxima statements due to their control flow. Therefore, our strategy

excludes such neighboring statements and presents the user only the local maxima

statements to examine instead of the whole ranked list of statements. By using this approach,

the neighboring statements which have higher suspiciousness values than the faulty

statement are removed and the rank of faulty statement is automatically decreased. The

horizontal gray line is the threshold value for the neighboring statements which are non-local

maxima statements that affect the rank of the faulty statement.

The Local Maxima strategy assumes that the faulty statement must have the greatest

suspiciousness value. Therefore, the most suspicious statements must also have the greatest

suspiciousness values around their neighborhoods. We examine 1-nearest neighborhoods (its

left statements and its right statements) of the statements and find the local maxima

statements among them. Afterwards, we present a ranked list of these local maxima

statements to the user.

58

Figure 24 – Application of Local Maxima for Jaccard on PrintTokens_v01 with Distinct Test

Suite

In Figure 24, there are 19 white circles which have higher suspiciousness values than faulty

line must be excluded. Therefore, the rank of faulty line is decreased to 52 from 71.

59

Figure 25 – Application of Local Maxima for Tarantula on PrintTokens_v01 with Distinct

Test Suite

In Figure 25, there are 19 white circles which have higher suspiciousness values than faulty

line must be excluded. Therefore, the rank of faulty line is decreased to 52 from 71.

60

Figure 26 – Application of Local Maxima for Ochiai on PrintTokens_v01 with Distinct Test

Suite

In Figure 26, there are 19 white circles which have higher suspiciousness values than faulty

line must be excluded. Therefore, the rank of faulty line is decreased to 49 from 68.

61

Figure 27 – Application of Local Maxima for Ela on PrintTokens_v01 with Distinct Test

Suite

In Figure 27, there are 17 white circles which have higher suspiciousness values than faulty

line must be excluded. Therefore, the rank of faulty line is decreased to 43 from 60.

There are four cases to be considered about the location of a statement for Local Maxima

strategy since the process of finding the Local Maxima is different in these cases. First case

occurs when the statement is the first statement of the program. Second case occurs when the

statement is the last statement of the program. Third case occurs when the statement is the

first statement of a method in the program. Fourth case occurs when the statement is the last

statement of a method in the program. Border problems can arise in these cases. In order to

handle these problems, we search for the local maxima around the only 1-right neighborhood

of a statement for the cases 1 and 3 while we search for the local maxima around only the 1-

left neighborhood of a statement for the cases 2 and 4.

6.3. Effect of LM on PrintTokens program

Table 13 shows the improvements of Local Maxima strategy on Ela and three prominent

techniques on PrintTokens_v01 with Distinct Test Suite. The details of the results achieved

62

with Local Maxima for Redundant, Distinct, Distinct FminCov, Distinct FminCov Cluster,

and Distinct FminCov Classify Test Suites are given in the section 7.7.

Table 13 – Improvement of Local Maxima Strategy for Expenses on PrintTokens_v01 with

Distinct Test Suite

 Jaccard Tarantula Ochiai Ela

Distinct Test Suite 21.45 21.45 20.54 18.13

Distinct Test Suite with

Local Maxima Strategy
15.71 15.71 14.8 12.99

Improvement (%) 26.76 26.76 27.94 28.33

Table 13 indicates that Ela technique has a 28.33% improvement while Jaccard, Tarantula,

and Ochiai techniques have 26.76%, 26.76%, and 27.94% improvements respectively.

63

CHAPTER 7

7. EXPERIMENTAL EVALUATION

In this chapter, we first introduce the subject programs that are used in our experiments.

Next, we give the experimental results of the proposed fault localization technique (Ela) and

compare it with three prominent fault localization techniques. Afterwards, we give the

experimental result of the proposed test suite reduction technique and its improvements on

the Ela and the three prominent fault localization techniques. Finally, we give the

experimental result of the proposed Local Maxima technique and its improvements on the

Ela and the three prominent fault localization techniques.

7.1. Subject Programs

In this study, we used the Siemens suite available at the software-artifact infrastructure

repository as subject programs. We selected this suite since it is a quite frequently used

benchmark suite in the fault localization and test reduction research. Siemens suite consists

of seven C programs and associated test suites. For each of these programs, there are several

versions, each of which contains manually injected one logical fault. There are 132 versions

of C programs in this suite. For some of these versions, the test suite provided cannot

differentiate the faulty version from the original program i.e. there were no failed tests for

these versions. Since statistical fault localization techniques require at least one failed test,

we excluded these versions in our experiments. We have used 118 versions of C programs as

the subject programs in our study. We have added line breaks into the programs so that there

would be one statement at each line. For the experiments, we needed to create a result vector

and a coverage matrix for each version. To create the coverage matrix, we used gcov to

collect the statement coverage. The repository contains an original version of the program as

well as its mutants. We compiled all versions with gcc, run them with the tests, and record

their outputs as text files. To determine whether a test has passed or failed on a mutant, we

compared its output with the original version of the program. If both of them produce the

64

same output on the same test, we mark it as passed otherwise as failed. Table 14 gives the

following information about these seven C programs: program name, line of code, number of

all tests, versions of tests excluded, and a brief description of the program.

Table 14 – The seven C programs in SIR

Program
of

Versions
LOC

of All

Tests
Versions Excluded Description

PrintTokens 7 565 4,130 V04,V06 lexical analyzer

PrintTokens2 10 529 4,115 No lexical analyzer

Replace 32 563 5,501 No pattern replacement

Schedule 9 412 2,650 V09 priority scheduler

Schedule2 10 307 2,588 V04,V09 priority scheduler

Tcas 41 173 1,608 V13,V14,V15,V36,V38 collision avoidance system

TotInfo 23 406 1,051 V06,V10,V19,V21 information measurer

As discussed in Chapter 5, the existence of the equivalent tests can cause a bias in the

ranking of statements. Equivalents of good tests increase the effectiveness and bad tests

decrease the effectiveness of fault localization. Because whether a test is good test or not is

not known, we select the safe side and eliminate the equivalent tests from both passed and

failed tests in the experiments. The average number of tests used after the equivalent test

elimination are given in Table 15.

Table 15 – The seven C programs in SIR after equivalent test elimination

Program
of

Versions
LOC

Average #

of Tests

Used

Versions Excluded Description

PrintTokens 7 565 26 V04,V06 lexical analyzer

PrintTokens2 10 529 25 No lexical analyzer

Replace 32 563 23 No pattern replacement

Schedule 9 412 9 V09 priority scheduler

Schedule2 10 307 9 V04,V09 priority scheduler

Tcas 41 173 6 V13,V14,V15,V36,V38 collision avoidance system

TotInfo 23 406 9 V06,V10,V19,V21 information measurer

7.2. Experimental Results I: Comparison with the Three Prominent Fault Localization

Techniques on the Original Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

which are Jaccard, Tarantula, and Ochiai on the original test suite. Recall that the original

65

suite contains many equivalent test cases. In the rest of this section, we call the experiments

performed with the original test suite as “Redundant Test Suite”.

Figure 28 shows a comparison of the four techniques on the seven subject programs with

Redundant Test Suite. Each version in these seven programs has one fault. We need to

examine 7.19% of the source code when the suspiciousness rankings computed by Ela until

we find the faulty statement while 7.86%, 7.86%, 7.19% of the source code for the other

three techniques: Jaccard, Tarantula, and Ochiai respectively for the PrintTokens program.

Figure 28 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Redundant Test Suite

From Figure 28, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 40.57% of the code to find the fault by using Ela

technique. In the best case, on average only 3.81% needs to be inspected. Ela technique

achieves improvements ranging from 0.09% to 11.43% on average per program over the

Ochiai technique which is the second best technique. An important conclusion drawn from

Figure 28 is that under the specific conditions of our experiments, Ela technique gives a

better effectiveness: it always performs at least as good as the other techniques, with an

average improvement of 1.65% over the second best technique (Ochiai).

Table 16 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with Redundant Test Suite. Our aim is to compare Ela

technique with three prominent techniques according their averaged expenses on

0

5

10

15

20

25

30

35

40

45

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela

66

seven subject programs with Redundant Test Suite. As Table 16 shows, Ela has the

lowest expense for the two subject programs and one of the lowest expenses for the five

subject programs.

Table 16 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Redundant Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 7.86 7.86 7.19 7.19

PrintTokens2 4.65 4.97 4.3 3.81

Replace 10.16 10.16 9.77 9.77

Schedule 7.22 7.22 7.22 7.22

Schedule2 17.18 17.18 17.18 17.18

Tcas 40.57 40.57 40.57 40.57

TotInfo 23.74 23.78 23.66 23.63

Figure 29 shows a comparison of the four techniques on the seven subject programs with

Redundant Test Suite in terms of their MRR values. Our purpose is to compare Ela

technique with three prominent techniques across the versions of seven subject

programs with Redundant Test Suite.

Figure 29 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Redundant Test Suite

Figure 29 indicates that Ela technique has the highest MRR value for the two subject

programs and one of the highest MRR values for the five subject programs. Detailed

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Jaccard Tarantula Ochiai Ela

M
R

R

PrintTokens

PrintTokens2

Replace

Schedule

Schedule2

Tcas

TotInfo

67

information about the MRR values of the four techniques with Redundant Test Suite on the

seven programs is given in Table 17.

Table 17 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Redundant Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 0.3288 0.3288 0.9629 0.9629

PrintTokens2 0.8472 0.7536 0.8964 0.9551

Replace 0.6098 0.6098 0.6481 0.6481

Schedule 0.5846 0.5846 0.5846 0.5846

Schedule2 0.6381 0.6381 0.6381 0.6381

Tcas 0.0608 0.0608 0.0608 0.0608

TotInfo 0.0632 0.0632 0.0633 0.0634

The effectiveness of Ela and the three prominent fault localization techniques are compared

in Table 18 in terms of their code examination efforts. The percentages of the code examined

until the fault is found for each of the subject programs are given for Ela and the three

prominent techniques. Table 18 indicates that Ela finds 35.6% of the total software faults

with only 5% code examination effort while Jaccard, Tarantula, and Ochiai techniques find

33.6%, 33.9%, 35.6% of the total software faults for covering only 5% of the total source

code on average of all the subject programs respectively.

Table 18 – Code examination efforts of four techniques on the subject programs

Code Examination Effort Proportion of faults located

 Jaccard Tarantula Ochiai Ela

5 33.6% 33.9% 35.6% 35.6%

10 44.5% 44.9% 44.9% 44.9%

15 50.4% 50.8% 50.8% 50.8%

20 57.1% 57.6% 57.6% 57.6%

25 58% 57.6% 57.6% 57.6%

30 65.5% 65.3% 65.3% 65.3%

35 68.9% 68.6% 68.6% 68.6%

40 69.7% 69.5% 69.5% 69.5%

45 74.8% 74.6% 74.6% 74.6%

 50+ 100% 100% 100% 100%

Due to the large number of equivalent passed tests in Redundant Test Suite, the percentage

of the failed tests is less than 5% for PrintTokens (1.31%), Replace (1.9%), Schedule

(3.61%), Schedule2 (1.36%), and Tcas (2.31%). Therefore, it is difficult to differentiate the

faulty statement from the innocent statements for these five test suites. On the other hand, the

percentage of the failed tests is greater than 5% for PrintTokens2 (5.44%) and TotInfo

68

(8.34%) in Redundant Test Suite. Therefore, it is relatively easy to differentiate the faulty

statement from the innocent statements. As a result, Ela technique differentiated the faulty

statement from the innocent statements and achieved better fault localization effectiveness

than the three prominent techniques for PrintTokens2 and TotInfo. Besides, it achieved same

fault localization effectiveness for the remaining five programs.

7.2.1. Significance Analysis of Ela Effectiveness on Redundant Test Suite

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and

Ochiai with Wilcoxon signed rank test at =0.05 significance level for seven programs on

Redundant Test Suite. The null hypothesis H0 and the alternative hypothesis H1 are as

follows:

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Redundant Test Suite.

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Redundant Test Suite.

Ela has statistically significant improvement over Jaccard for PrintTokens2 and Replace

programs (p-value=0.016 and p-value=6.1x10-5 respectively). Moreover, it has statistically

significant improvement over Tarantula for PrintTokens2 and Replace programs (p-

value=0.008 and p-value=6.1x10-5 respectively). On the other hand, it does not have

statistically significant improvement over Ochiai. The details of the significance analyses are

given in the Appendix A.

To sum up, Ela technique has a higher ranking than three prominent techniques in 4 of 118

of all the versions of the subject programs while it is one of the best performing techniques

for the remaining 114 versions. We can conclude that Ela technique is superior to the three

prominent techniques on Redundant Test Suite.

7.3. Experiment II: Test Reduction Strategy I – Distinct Test Suite

In this experiment, we eliminated the equivalent tests and use the coverage matrix for the

resulting suite of distinct tests. Using this input, we compare Ela with the three widely used

SFL techniques. In the rest of this section, we refer the elimination of equivalent tests as the

‘Distinct Test Suite Strategy’.

69

7.3.1. Experimental Results II: Comparison with the Three Prominent Fault

Localization Techniques with Distinct Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

which are Jaccard, Tarantula, and Ochiai on Distinct Test Suite.

Figure 30 shows a comparison of the four techniques on the seven subject programs with

Distinct Test Suite. Each version in these seven programs has one fault. We need to examine

6.59% of the source code when the suspiciousness rankings computed by Ela until we find

the faulty statement while 7.55%, 8.4%, 7.19% of the source code for the other three

techniques: Jaccard, Tarantula, and Ochiai respectively for the PrintTokens program.

Figure 30 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct Test Suite

From Figure 30, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 40.57% of the code to find the fault by using Ela

technique. In the best case, on average only 3.78% needs to be inspected. Ela technique

achieves improvements ranging from 1.2% to 8.4% on average per program over the Ochiai

technique which is the second best technique. An important conclusion drawn from Figure

30 is that under the specific conditions of our experiments, Ela technique gives a better

effectiveness: it always performs at least as good as the other techniques, with an average

improvement of 2.81% over the second best technique (Ochiai).

0

5

10

15

20

25

30

35

40

45

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela

70

Table 19 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with Distinct Test Suite. Our aim is to compare Ela

technique with three prominent techniques according their averaged expenses on

seven subject programs with Distinct Test Suite. As Table 19 shows, Ela has the lowest

expense for the four subject programs and one of the lowest expenses for the three subject

programs.

Table 19 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 7.55 8.4 7.19 6.59

PrintTokens2 4.35 5.46 3.94 3.78

Replace 11.33 12.09 10.65 10.02

Schedule 7.65 8.01 7.3 7.22

Schedule2 17.23 17.37 17.09 17.09

Tcas 40.57 40.71 40.57 40.57

TotInfo 24.09 24.67 23.63 23.63

Figure 31 shows a comparison of the four techniques on the seven subject programs with

Distinct Test Suite in terms of their MRR values. Our purpose is to compare Ela

technique with three prominent techniques across the versions of seven subject

programs with Distinct Test Suite.

Figure 31 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct Test Suite

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Jaccard Tarantula Ochiai Ela

M
R

R

PrintTokens

PrintTokens2

Replace

Schedule

Schedule2

Tcas

TotInfo

71

Figure 31 indicates that Ela technique has the highest MRR value for the four subject

programs and one of the highest MRR values for the three subject programs. Detailed

information about the MRR values of the four techniques with Distinct Test Suite on the

seven programs is given in Table 20.

Table 20 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 1.4030 0.3442 1.4093 1.4116

PrintTokens2 0.8985 0.5556 0.9552 0.9558

Replace 0.4901 0.4575 0.5381 0.6638

Schedule 0.5553 0.5361 0.5845 0.5846

Schedule2 0.6320 0.6235 0.6381 0.6381

Tcas 0.0608 0.0607 0.0608 0.0608

TotInfo 0.0619 0.0612 0.0634 0.0634

The accuracies of Ela and the three prominent fault localization techniques are compared in

Table 21 in terms of their code examination efforts. The percentages of the code examined

until the fault is found for each of the subject programs are given for Ela and the three

prominent techniques. Table 21 indicates that Ela finds 34.7% of the total software faults

with only 5% code examination effort while Jaccard, Tarantula, and Ochiai techniques find

31.9%, 31.4%, 33.9% of the total software faults for covering only 5% of the total source

code on average of all the subject programs.

Table 21 – Code examination efforts of four techniques on the subject programs

Code Examination Effort Proportion of faults located

 Jaccard Tarantula Ochiai Ela

5 31.9% 31.4% 33.9% 34.7%

10 42% 40.7% 44.9% 44.9%

15 50.4% 50.8% 50.8% 50.8%

20 56.3% 56.8% 56.8% 57.6%

25 58% 57.6% 57.6% 57.6%

30 65.5% 65.3% 65.3% 65.3%

35 66.4% 66.1% 66.9% 68.6%

40 68.9% 67.8% 69.5% 69.5%

45 73.9% 70.3% 74.6% 74.6%

 50+ 100% 100% 100% 100%

After eliminating the equivalent tests from Redundant Test Suite, the percentage of the failed

tests has been relatively increased in Distinct Test Suite. The percentage of the failed tests is

greater than 5% for PrintTokens (15.01%), PrintTokens2 (11.74%), Replace (15.1%),

72

Schedule (18.02%), Schedule2 (16.74%), Tcas (20.12%), and TotInfo (31.41%). Therefore,

it is relatively easy to differentiate the faulty statement from the innocent statements in

Distinct Test Suite. However, there are some relatively difficult types of faulty statements to

be located in PrintTokens (Comment or Delete method call; Comment or Delete variable

assignment), PrintTokens2 (Comment or Delete return value; Change variable assignment),

Replace (Change method call; Change method body; Change variable assignment; Change or

Comment or Delete variable assignment; Change variable initialization; Change lines of

code), and Schedule (Change variable assignment; Change or Comment or Delete variable

assignment) programs. The list of fault types are given in Table 56 in the Appendix B.

Consequently, it is relatively difficult to locate the faulty statements for these version of the

programs in the Siemens test suite.

7.3.2. Significance Analysis of Ela Effectiveness on Distinct Test Suite

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and

Ochiai or not with Wilcoxon signed rank test at =0.05 significance level for seven

programs on Distinct Test Suite. The null hypothesis H0 and the alternative hypothesis H1 are

as follows:

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Distinct Test Suite.

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Distinct Test Suite.

Ela has statistically significant improvement over Jaccard for PrintTokens2, Replace, and

TotInfo programs (p-value=0.031, p-value=7.5x10-9, and p-value=9.8x10-4 respectively).

Moreover, it has statistically significant improvement over Tarantula for PrintTokens,

PrintTokens2, Replace, Tcas, and TotInfo programs (p-value=0.031, p-value=0.002, p-

value=7.5x10-9, p-value=0.016, and p-value=2.4x10-4 respectively). Furthermore, it has

statistically significant improvement over Ochiai for Replace program (p-value=7.5x10-9).

The details of the significance analyses are given in the Appendix A.

To sum up, Ela technique has a higher ranking than three prominent techniques in 31 of 118

of all the versions of the subject programs while it is one of the best performing techniques

for the remaining 87 versions. We can conclude that Ela technique is superior to the three

prominent techniques on Distinct Test Suite.

73

7.4. Experiment III: Test Reduction Strategy II – Distinct FminCov Test Suite

We applied the failed test reduction strategy on four SFL techniques. In this experiment, we

eliminated the equivalent tests and use the coverage matrix for the resulting suite of distinct

tests to eliminate the bias.

7.4.1. Experimental Results III: Comparison with the Three Prominent Fault

Localization Techniques with Distinct FminCov Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

which are Jaccard, Tarantula, and Ochiai on Distinct FminCov Test Suite. On average 10.1%

test size reduction is achieved with this strategy.

Figure 32 shows a comparison of the four techniques on the seven subject programs with

Distinct FminCov Test Suite. Each version in these seven programs has one fault. We need

to examine 6.47% of the source code until we find the faulty statement for the PrintTokens

program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai.

Figure 32 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Test Suite

From Figure 32, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 40.57% of the code to find the fault by using Ela

technique. In the best case, on average only 3.78% needs to be inspected. Ela technique

achieves same performance with other three techniques.

0

5

10

15

20

25

30

35

40

45

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela

74

Table 22 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with Distinct FminCov Test Suite. Our aim is to

compare Ela technique with three prominent techniques according their averaged

expenses on seven subject programs with Distinct FminCov Test Suite. As Table 22

shows, Ela has one of the lowest expenses for each of the programs.

Table 22 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 6.47 6.47 6.47 6.47

PrintTokens2 3.78 3.78 3.78 3.78

Replace 9.63 9.63 9.63 9.63

Schedule 7.22 7.22 7.22 7.22

Schedule2 17.09 17.09 17.09 17.09

Tcas 40.57 40.57 40.57 40.57

TotInfo 23.61 23.61 23.61 23.61

Figure 33 shows a comparison of the four techniques on the seven subject programs with

Distinct FminCov Test Suite in terms of their MRR values. Our purpose is to compare Ela

technique with three prominent techniques across the versions of seven subject

programs with Distinct FminCov Test Suite.

Figure 33 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Test Suite

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Jaccard Tarantula Ochiai Ela

M
R

R

PrintTokens

PrintTokens2

Replace

Schedule

Schedule2

Tcas

TotInfo

75

Figure 33 indicates that Ela technique has one of the highest MRR values for each of the

seven subject programs. Detailed information about the MRR values of the four techniques

with Distinct FminCov Test Suite on the seven programs is given in Table 23.

Table 23 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 1.4120 1.4120 1.4120 1.4120

PrintTokens2 0.9558 0.9558 0.9558 0.9558

Replace 0.6667 0.6667 0.6667 0.6667

Schedule 0.5846 0.5846 0.5846 0.5846

Schedule2 0.6381 0.6381 0.6381 0.6381

Tcas 0.0608 0.0608 0.0608 0.0608

TotInfo 0.0634 0.0634 0.0634 0.0634

The accuracies of Ela and the three prominent fault localization techniques are compared in

Table 24 in terms of their code examination efforts. The percentages of the code examined

until the fault is found for each of the subject programs are given for Ela and the three

prominent techniques. Table 24 indicates that Ela, Jaccard, Tarantula, and Ochiai techniques

find 35.6% of the total software faults with only 5% code examination effort, i.e. covering

only 5% of the total source code on average of all the subject programs.

Table 24 – Code examination efforts of four techniques on the subject programs

Code Examination Effort Proportion of faults located

 Jaccard Tarantula Ochiai Ela

5 35.6% 35.6% 35.6% 35.6%

10 44.9% 44.9% 44.9% 44.9%

15 50.8% 50.8% 50.8% 50.8%

20 57.6% 57.6% 57.6% 57.6%

25 57.6% 57.6% 57.6% 57.6%

30 65.3% 65.3% 65.3% 65.3%

35 68.6% 68.6% 68.6% 68.6%

40 69.5% 69.5% 69.5% 69.5%

45 74.6% 74.6% 74.6% 74.6%

 50+ 100% 100% 100% 100%

For each of the subject programs in Distinct FminCov Test Suite, there is only one failed test

which is not subsumed by any other failed test (called FminCov failed test). Thus, the

percentage of the failed tests is very small compared to Redundant and Distinct test suites.

Consequently, it is difficult to differentiate the faulty statement from the innocent statements

for this test suite. We can say that if we had a test suite with more than one FminCov failed

76

test, the faulty statement would be differentiated from the innocent statements and Ela would

achieve better fault localization effectiveness than the three prominent fault localization

techniques for this test suite.

7.4.2. Significance Analysis of Ela Effectiveness on Distinct FminCov Test Suite

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and

Ochiai or not with Wilcoxon signed rank test at =0.05 significance level for seven

programs on Distinct FminCov Test Suite. The null hypothesis H0 and the alternative

hypothesis H1 are as follows:

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Distinct FminCov Test Suite.

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Distinct FminCov Test Suite.

Ela does not have statistically significant improvement over Jaccard, Tarantula and Ochiai.

The details of the significance analyses are given in the Appendix A.

7.4.3. Significance Analysis of Failed Test Reduction

We test whether there is a statistically significant failed test reduction or not with Wilcoxon

signed rank test at =0.05 significance level. The null hypothesis H0 and the alternative

hypothesis H1 are as follows:

H0: Median of failed test reduction is zero.

H1: Median of failed test reduction is greater than zero.

There is a statistically significant failed test reduction (p-value=0.0156).

7.5. Experiment IV: Test Reduction Strategy III - Distinct FminCov Cluster Test Suite

We applied the clustering based passed test reduction strategy on four SFL techniques. In

this experiment, we used the coverage matrix of the test suite after the elimination of the

equivalent tests to remove the bias.

77

7.5.1. Experimental Results IV: Comparison with the Three Prominent Fault

Localization Techniques with Distinct FminCov Cluster Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

which are Jaccard, Tarantula, and Ochiai on Distinct FminCov Cluster Test Suite. On

average 34.1% test size reduction is achieved with this strategy.

Figure 34 shows a comparison of the four techniques on the seven subject programs with

Distinct FminCov Cluster Test Suite. Each version in these seven programs has one fault.

We need to examine 13.29% of the source code until we find the faulty statement for the

PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai.

Figure 34 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Cluster Test Suite

From Figure 34, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 40.57% of the code to find the fault by using Ela

technique. In the best case, on average only 9.14% needs to be inspected. Ela technique

achieves same performance with other three techniques.

Table 25 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with Distinct FminCov Cluster Test Suite. Our aim is

to compare Ela technique with three prominent techniques according their averaged

0

5

10

15

20

25

30

35

40

45

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela

78

expenses on seven subject programs with Distinct FminCov Cluster Test Suite. As

Table 25 shows, Ela has one of the lowest expenses for each of the programs.

Table 25 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Cluster Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 13.29 13.29 13.29 13.29

PrintTokens2 17.73 17.73 17.73 17.73

Replace 13.75 13.75 13.75 13.75

Schedule 9.14 9.14 9.14 9.14

Schedule2 19.78 19.78 19.78 19.78

Tcas 40.57 40.57 40.57 40.57

TotInfo 35.48 35.48 35.48 35.48

Figure 35 shows a comparison of the four techniques on the seven subject programs with

Distinct FminCov Cluster Test Suite in terms of their MRR values. Our purpose is to

compare Ela technique with three prominent techniques across the versions of seven

subject programs with Distinct FminCov Cluster Test Suite.

Figure 35 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Cluster Test Suite

Figure 35 indicates that Ela technique has one of the highest MRR values for each of the

seven subject programs. Detailed information about the MRR values of the four techniques

with Distinct FminCov Cluster Test Suite on the seven programs is given in Table 26.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Jaccard Tarantula Ochiai Ela

M
R

R

PrintTokens

PrintTokens2

Replace

Schedule

Schedule2

Tcas

TotInfo

79

Table 26 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Cluster Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 1.4044 1.4044 1.4044 1.4044

PrintTokens2 0.9198 0.9198 0.9198 0.9198

Replace 0.6574 0.6574 0.6574 0.6574

Schedule 0.5835 0.5835 0.5835 0.5835

Schedule2 0.6363 0.6363 0.6363 0.6363

Tcas 0.0608 0.0608 0.0608 0.0608

TotInfo 0.0505 0.0505 0.0505 0.0505

The accuracies of Ela and the three prominent fault localization techniques are compared in

Table 27 in terms of their code examination efforts. The percentages of the code examined

until the fault is found for each of the subject programs are given for Ela and the three

prominent techniques. Table 27 indicates that Ela, Jaccard, Tarantula, and Ochiai techniques

find 33.9% of the total software faults with only 5% code examination effort, i.e. covering

only 5% of the total source code on average of all the subject programs.

Table 27 – Code examination efforts of four techniques on the subject programs

Code Examination Effort Proportion of faults located

 Jaccard Tarantula Ochiai Ela

5 33.9% 33.9% 33.9% 33.9%

10 42.4% 42.4% 42.4% 42.4%

15 46.6% 46.6% 46.6% 46.6%

20 46.6% 46.6% 46.6% 46.6%

25 46.6% 46.6% 46.6% 46.6%

30 46.6% 46.6% 46.6% 46.6%

35 51.7% 51.7% 51.7% 51.7%

40 54.2% 54.2% 54.2% 54.2%

45 64.4% 64.4% 64.4% 64.4%

50 96.6% 96.6% 96.6% 96.6%

55 98.3% 98.3% 98.3% 98.3%

 60+ 100% 100% 100% 100%

Same reason in the subsection 7.4.1 is hold in Distinct FminCov Cluster Test Suite. Since the

percentage of the failed tests is very small compared to Redundant and Distinct test suites, it

is difficult to differentiate the faulty statement from the innocent statements for this test

suite. We can say that if we had a test suite with more than one FminCov failed test, the

faulty statement would be differentiated from the innocent statements and Ela would achieve

better fault localization effectiveness the three prominent fault localization techniques for

this test suite.

80

7.5.2. Significance Analysis of Ela Effectiveness on Distinct FminCov Cluster Test

Suite

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and

Ochiai or not with Wilcoxon signed rank test at =0.05 significance level for seven

programs on Distinct FminCov Cluster Test Suite. The null hypothesis H0 and the alternative

hypothesis H1 are as follows:

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Distinct FminCov Cluster Test Suite.

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Distinct FminCov Cluster Test Suite.

Ela does not have statistically significant improvement over Jaccard, Tarantula and Ochiai.

The details of the significance analyses are given in the Appendix A.

7.5.3. Significance Analysis of Passed Test Reduction with Clustering

We test whether there is a statistically significant passed test reduction with clustering or not

with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and the

alternative hypothesis H1 are as follows:

H0: Median of passed test reduction with clustering is zero.

H1: Median of passed test reduction with clustering is greater than zero.

There is a statistically significant passed test reduction with clustering (p-value=0.0078).

7.6. Experiment V: Test Reduction Strategy IV - Distinct FminCov Classify Test Suite

We applied the classification based passed test reduction strategy in combination with

FminCov Test Suite Strategy on four SFL techniques. In this experiment, we used the

coverage matrix of the test suite after the elimination of the equivalent tests to remove the

bias.

7.6.1. Experimental Results V: Comparison with the Three Prominent Fault

Localization Techniques with Distinct FminCov Classify Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

81

which are Jaccard, Tarantula, and Ochiai on Distinct FminCov Classify Test Suite. On

average 30.3% test size reduction is achieved with this strategy.

Figure 36 shows a comparison of the four techniques on the seven subject programs with

Distinct FminCov Classify Test Suite. Each version in these seven programs has one fault.

We need to examine 6.47% of the source code until we find the faulty statement for the

PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai.

Figure 36 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Classify Test Suite

From Figure 36, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 40.57% of the code to find the fault by using Ela

technique. In the best case, on average only 3.78% needs to be inspected. Ela technique

achieves same performance with other three techniques.

Table 28 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with Distinct FminCov Classify Test Suite. Our aim is

to compare Ela technique with three prominent techniques according their averaged

expenses on seven subject programs with Distinct FminCov Classify Test Suite. As

Table 28 shows, Ela has one of the lowest expenses for each of the programs.

0

5

10

15

20

25

30

35

40

45

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela

82

Table 28 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with Distinct FminCov Classify Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 6.47 6.47 6.47 6.47

PrintTokens2 3.78 3.78 3.78 3.78

Replace 9.63 9.63 9.63 9.63

Schedule 7.22 7.22 7.22 7.22

Schedule2 17.09 17.09 17.09 17.09

Tcas 40.57 40.57 40.57 40.57

TotInfo 23.61 23.61 23.61 23.61

Figure 37 shows a comparison of the four techniques on the seven subject programs with

Distinct FminCov Classify Test Suite in terms of their MRR values. Our purpose is to

compare Ela technique with three prominent techniques across the versions of seven

subject programs with Distinct FminCov Classify Test Suite.

Figure 37 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Classify Test Suite

Figure 37 indicates that Ela technique has one of the highest MRR values for each of the

seven subject programs. Detailed information about the MRR values of the four techniques

with Distinct FminCov Classify Test Suite on the seven programs is given in Table 29.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Jaccard Tarantula Ochiai Ela

M
R

R

PrintTokens

PrintTokens2

Replace

Schedule

Schedule2

Tcas

TotInfo

83

Table 29 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with Distinct FminCov Classify Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 1.4120 1.4120 1.4120 1.4120

PrintTokens2 0.9558 0.9558 0.9558 0.9558

Replace 0.6667 0.6667 0.6667 0.6667

Schedule 0.5846 0.5846 0.5846 0.5846

Schedule2 0.6381 0.6381 0.6381 0.6381

Tcas 0.0608 0.0608 0.0608 0.0608

TotInfo 0.0634 0.0634 0.0634 0.0634

The accuracies of Ela and the three prominent fault localization techniques are compared in

Table 30 in terms of their code examination efforts. The percentages of the code examined

until the fault is found for each of the subject programs are given for Ela and the three

prominent techniques. Table 30 indicates that Ela, Jaccard, Tarantula, and Ochiai techniques

find 35.6% of the total software faults with only 5% code examination effort, i.e. covering

only 5% of the total source code on average of all the subject programs.

Table 30 – Code examination efforts of four techniques on the subject programs

Code Examination Effort Proportion of faults located

 Jaccard Tarantula Ochiai Ela

5 35.6% 35.6% 35.6% 35.6%

10 44.9% 44.9% 44.9% 44.9%

15 50.8% 50.8% 50.8% 50.8%

20 57.6% 57.6% 57.6% 57.6%

25 57.6% 57.6% 57.6% 57.6%

30 65.3% 65.3% 65.3% 65.3%

35 68.6% 68.6% 68.6% 68.6%

40 69.5% 69.5% 69.5% 69.5%

45 74.6% 74.6% 74.6% 74.6%

 50+ 100% 100% 100% 100%

Same reason in the subsection 7.4.1 is hold in Distinct FminCov Classify Test Suite. Since

the percentage of the failed tests is very small compared to Redundant and Distinct test

suites, it difficult enough to differentiate the faulty statement from the innocent statements

for this test suite. We can say that if we had a test suite with more than one FminCov failed

test, the faulty statement would be differentiated from the innocent statements and Ela would

achieve better fault localization effectiveness the three prominent fault localization

techniques for this test suite.

84

7.6.2. Significance Analysis of Ela Effectiveness on Distinct FminCov Classify Test

Suite

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and

Ochiai or not with Wilcoxon signed rank test at =0.05 significance level for seven

programs on Distinct FminCov Classify Test Suite. The null hypothesis H0 and the

alternative hypothesis H1 are as follows:

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Distinct FminCov Classify Test Suite.

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for

other comparisons) on Distinct FminCov Classify Test Suite.

Ela does not have statistically significant improvement over Jaccard, Tarantula and Ochiai.

The details of the significance analyses are given in the Appendix A.

7.6.3. Significance Analysis of Passed Test Reduction with Classification

We test whether there is a statistically significant passed test reduction with classification or

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and

the alternative hypothesis H1 are as follows:

H0: Median of passed test reduction with classification is zero.

H1: Median of passed test reduction with classification is greater than zero.

There is a statistically significant passed test reduction with classification (p-value=0.0078).

7.7. Experiment VI: Effective Ranking Strategy: Local Maxima

We applied one post processing strategy called local maxima strategy to rank statements

effectively.

7.7.1. Effective Ranking Strategy on Redundant Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

which are Jaccard, Tarantula, and Ochiai with LM strategy on Redundant Test Suite.

85

Figure 38 shows a comparison of the four techniques on the seven subject programs for LM

strategy on Redundant Test Suite. Each version in these seven programs has one fault. We

need to examine 5.44% of the source code when the suspiciousness rankings computed by

Ela until we find the faulty statement while 6.1%, 6.1%, 5.44% of the source code for the

other three techniques: Jaccard, Tarantula, and Ochiai respectively for the PrintTokens

program.

Figure 38 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Redundant Test Suite

Table 31 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs on Redundant Test Suite. As Table 31 shows, Ela has the

lowest expense for the two subject programs and one of the lowest expenses for the five

subject programs.

Table 31 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Redundant Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 7.86 7.86 7.19 7.19

PrintTokens2 4.65 4.97 4.3 3.81

Replace 10.16 10.16 9.77 9.77

Schedule 7.22 7.22 7.22 7.22

Schedule2 17.18 17.18 17.18 17.18

Tcas 40.57 40.57 40.57 40.57

TotInfo 23.74 23.78 23.66 23.63

0

5

10

15

20

25

30

35

40

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela

86

Table 32 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with LM strategy on Redundant Test Suite.

Table 32 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Redundant Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 6.1 6.1 5.44 5.44

PrintTokens2 4.3 4.62 3.97 3.48

Replace 8.99 8.99 8.69 8.69

Schedule 6.91 6.91 6.91 6.91

Schedule2 15.03 15.03 15.03 15.03

Tcas 36.42 36.42 36.42 36.42

TotInfo 22.47 22.52 22.43 22.41

From Table 32, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 36.42% of the code to find the fault by using Ela

technique. In the best case, on average only 3.48% needs to be inspected. Ela technique

achieves improvements ranging from 0.1% to 12.37% on average per program over the

Ochiai technique which is the second best technique.

Table 32 shows that under the specific conditions of our experiments, Ela technique gives a

better effectiveness: it always performs at least as good as the other techniques, with an

average improvement of 1.78% over the second best technique (Ochiai).

Figure 39 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai,

and Ela techniques on seven programs on Redundant Test Suite.

87

Figure 39 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Redundant Test Suite

Figure 39 indicates that Ela technique has 10.88% averaged improvement while Jaccard,

Tarantula, and Ochiai techniques have 10.54%, 10.47%, and 10.74% averaged

improvements respectively on average of all subject programs. There is approximately 10%

averaged improvement of LM strategy for all techniques on Redundant Test Suite.

7.7.1.1. Significance Analysis of Local Maxima with Ela Technique on Redundant Test

Suite

We test whether there is a statistically significant improvement of local maxima with Ela or

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and

the alternative hypothesis H1 are as follows:

H0: Median Expense Improvement of Local Maxima is zero on Redundant Test Suite.

H1: Median Expense Improvement of Local Maxima is greater than zero on Redundant Test

Suite.

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078)

on Redundant Test Suite.

7.7.2. Effective Ranking Strategy on Distinct Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

which are Jaccard, Tarantula, and Ochiai with LM strategy on Distinct Test Suite.

0

5

10

15

20

25

30

Im
p

ro
ve

m
e

n
t

(%
)

Jaccard

Tarantula

Ochiai

Ela

88

Figure 40 shows a comparison of the four techniques on the seven subject programs for LM

strategy on Distinct Test Suite. Each version in these seven programs has one fault. We

need to examine 5.08% of the source code when the suspiciousness rankings computed by

Ela until we find the faulty statement while 5.86%, 6.53%, 5.56% of the source code for the

other three techniques: Jaccard, Tarantula, and Ochiai respectively for the PrintTokens

program.

Figure 40 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on seven

programs with LM strategy on Distinct Test Suite

Table 33 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs on Distinct Test Suite. As Table 33 shows, Ela has the

lowest expense for the four subject programs and one of the lowest expenses for the three

subject programs.

Table 33 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Distinct Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 7.55 8.4 7.19 6.59

PrintTokens2 4.35 5.46 3.94 3.78

Replace 11.33 12.09 10.65 10.02

Schedule 7.65 8.01 7.3 7.22

Schedule2 17.23 17.37 17.09 17.09

Tcas 40.57 40.71 40.57 40.57

TotInfo 24.09 24.67 23.63 23.63

0

5

10

15

20

25

30

35

40

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela

89

Table 34 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with LM strategy on Distinct Test Suite.

Table 34 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 5.86 6.53 5.56 5.08

PrintTokens2 4.02 5.08 3.64 3.48

Replace 9.72 10.38 9.27 8.78

Schedule 7.35 7.52 7 6.91

Schedule2 15.16 15.12 15.12 15.12

Tcas 36.42 36.46 36.42 36.42

TotInfo 22.69 22.97 22.43 22.43

From Table 34, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 36.42% of the code to find the fault by using Ela

technique. In the best case, on average only 3.48% needs to be inspected. Ela technique

achieves improvements ranging from 1.25% to 8.7% on average per program over the Ochiai

technique which is the second best technique.

Table 34 is that under the specific conditions of our experiments, Ela technique gives a better

effectiveness: it always performs at least as good as the other techniques, with an average

improvement of 2.81% over the second best technique (Ochiai).

Figure 41 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai,

and Ela techniques on seven programs on Distinct Test Suite.

90

Figure 41 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Distinct Test Suite

Figure 41 indicates that Ela technique has 10.61% averaged improvement while Jaccard,

Tarantula, and Ochiai techniques have 10.87%, 11.38%, and 10.61% averaged

improvements respectively on average of all subject programs. There is about 10% averaged

improvement of LM strategy for all techniques on Distinct Test Suite.

7.7.2.1. Significance Analysis of Local Maxima with Ela Technique on Distinct Test

Suite

We test whether there is a statistically significant improvement of local maxima with Ela or

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and

the alternative hypothesis H1 are as follows:

H0: Median Expense Improvement of Local Maxima is equal to zero on Distinct Test Suite.

H1: Median Expense Improvement of Local Maxima is greater than zero on Distinct Test

Suite.

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078)

on Distinct Test Suite.

7.7.3. Effective Ranking Strategy on Distinct FminCov Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

which are Jaccard, Tarantula, and Ochiai with LM strategy on Distinct FminCov Test

Suite.

0

5

10

15

20

25
Im

p
ro

ve
m

e
n

t
(%

)

Jaccard

Tarantula

Ochiai

Ela

91

Figure 42 shows a comparison of the four techniques on the seven subject programs for LM

strategy on Distinct FminCov Test Suite. Each version in these seven programs has one

fault. We need to examine 4.95% of the source code until we find the faulty statement for the

PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai.

Figure 42 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Test Suite

Table 35 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs on Distinct FminCov Test Suite. As Table 35 shows, Ela

has one of the lowest expenses for each of the programs.

Table 35 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Distinct FminCov Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 6.47 6.47 6.47 6.47

PrintTokens2 3.78 3.78 3.78 3.78

Replace 9.63 9.63 9.63 9.63

Schedule 7.22 7.22 7.22 7.22

Schedule2 17.09 17.09 17.09 17.09

Tcas 40.57 40.57 40.57 40.57

TotInfo 23.61 23.61 23.61 23.61

Table 36 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with LM strategy on Distinct FminCov Test Suite.

0

5

10

15

20

25

30

35

40

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela

92

Table 36 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 4.95 4.95 4.95 4.95

PrintTokens2 3.48 3.48 3.48 3.48

Replace 8.59 8.59 8.59 8.59

Schedule 6.91 6.91 6.91 6.91

Schedule2 15.12 15.12 15.12 15.12

Tcas 36.42 36.42 36.42 36.42

TotInfo 22.43 22.43 22.43 22.43

From Table 36, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 36.42% of the code to find the fault by using Ela

technique. In the best case, on average only 3.48% needs to be inspected. Ela technique

achieves same performance with other three techniques for each of the seven subject

programs.

Figure 43 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai,

and Ela techniques on seven programs on Distinct FminCov Test Suite.

Figure 43 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Distinct FminCov Test Suite

Figure 43 indicates that Ela and other three techniques have 10.44% averaged improvements

on average of all subject programs for Distinct FminCov Test Suite.

0

5

10

15

20

25

Im
p

ro
ve

m
e

n
t

(%
)

Jaccard

Tarantula

Ochiai

Ela

93

7.7.3.1. Significance Analysis of Local Maxima with Ela Technique on Distinct

FminCov Test Suite

We test whether there is a statistically significant improvement of local maxima with Ela or

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and

the alternative hypothesis H1 are as follows:

H0: Median Expense Improvement of Local Maxima is equal to zero on Distinct FminCov

Test Suite.

H1: Median Expense Improvement of Local Maxima is greater than zero on Distinct

FminCov Test Suite.

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078)

on Distinct FminCov Test Suite.

7.7.4. Effective Ranking Strategy on Distinct FminCov Cluster Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

which are Jaccard, Tarantula, and Ochiai with LM strategy on Distinct FminCov Cluster

Test Suite.

Figure 44 shows a comparison of the four techniques on the seven subject programs for LM

strategy on Distinct FminCov Cluster Test Suite. Each version in these seven programs has

one fault. We need to examine 11% of the source code until we find the faulty statement for

the PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai.

94

Figure 44 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Cluster Test Suite

Table 37 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs on Distinct FminCov Cluster Test Suite. As Table 37

shows, Ela has one of the lowest expenses for each of the programs.

Table 37 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Distinct FminCov Cluster Test Suite

Table 38 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with LM strategy on Distinct FminCov Cluster Test

Suite.

0

5

10

15

20

25

30

35

40
Ex

p
e

n
se

 (
%

)

Jaccard

Tarantula

Ochiai

Ela

Jaccard Tarantula Ochiai Ela

PrintTokens 13.29 13.29 13.29 13.29

PrintTokens2 17.73 17.73 17.73 17.73

Replace 13.75 13.75 13.75 13.75

Schedule 9.14 9.14 9.14 9.14

Schedule2 19.78 19.78 19.78 19.78

Tcas 40.57 40.57 40.57 40.57

TotInfo 35.48 35.48 35.48 35.48

95

Table 38 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Cluster Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 11 11 11 11

PrintTokens2 16.67 16.67 16.67 16.67

Replace 12.43 12.43 12.43 12.43

Schedule 8.83 8.83 8.83 8.83

Schedule2 17.95 17.95 17.95 17.95

Tcas 36.42 36.42 36.42 36.42

TotInfo 34.1 34.1 34.1 34.1

From Table 38, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 36.42% of the code to find the fault by using Ela

technique. In the best case, on average only 8.83% needs to be inspected. Ela technique

achieves same performance with other three techniques for each of the seven subject

programs.

Figure 45 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai,

and Ela techniques on seven programs on Distinct FminCov Cluster Test Suite.

Figure 45 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Distinct FminCov Cluster Test Suite

Figure 45 indicates that Ela and other three techniques have 8.51% averaged improvements

on average of all subject programs for Distinct FminCov Cluster Test Suite.

0

2

4

6

8

10

12

14

16

18

20

Im
p

ro
ve

m
e

n
t

(%
)

Jaccard

Tarantula

Ochiai

Ela

96

7.7.4.1. Significance Analysis of Local Maxima with Ela Technique on Distinct

FminCov Cluster Test Suite

We test whether there is a statistically significant improvement of local maxima with Ela or

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and

the alternative hypothesis H1 are as follows:

H0: Median Expense Improvement of Local Maxima is equal to zero on Distinct FminCov

Cluster Test Suite.

H1: Median Expense Improvement of Local Maxima is greater than zero on Distinct

FminCov Cluster Test Suite.

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078)

on Distinct FminCov Cluster Test Suite.

7.7.5. Effective Ranking Strategy on Distinct FminCov Classify Test Suite

In this section, we present the effectiveness of Ela in terms of expense and MRR in the

experiments and compare it with those of the three prominent fault localization techniques

which are Jaccard, Tarantula, and Ochiai with LM strategy on Distinct FminCov Classify

Test Suite.

Figure 46 shows a comparison of the four techniques on the seven subject programs for LM

strategy on Distinct FminCov Classify Test Suite. Each version in these seven programs has

one fault. We need to examine 4.95% of the source code until we find the faulty statement

for the PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and

Ochiai.

97

Figure 46 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Classify Test Suite

Table 39 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs on Distinct FminCov Classify Test Suite. As Table 39

shows, Ela has one of the lowest expenses for each of the programs.

Table 39 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs on Distinct FminCov Classify Test Suite

Table 40 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela

techniques on seven programs with LM strategy on Distinct FminCov Classify Test

Suite.

0

5

10

15

20

25

30

35

40

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela

Jaccard Tarantula Ochiai Ela

PrintTokens 6.47 6.47 6.47 6.47

PrintTokens2 3.78 3.78 3.78 3.78

Replace 9.63 9.63 9.63 9.63

Schedule 7.22 7.22 7.22 7.22

Schedule2 17.09 17.09 17.09 17.09

Tcas 40.57 40.57 40.57 40.57

TotInfo 23.61 23.61 23.61 23.61

98

Table 40 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on

seven programs with LM strategy on Distinct FminCov Classify Test Suite

Jaccard Tarantula Ochiai Ela

PrintTokens 4.95 4.95 4.95 4.95

PrintTokens2 3.48 3.48 3.48 3.48

Replace 8.59 8.59 8.59 8.59

Schedule 6.91 6.91 6.91 6.91

Schedule2 15.12 15.12 15.12 15.12

Tcas 36.42 36.42 36.42 36.42

TotInfo 22.43 22.43 22.43 22.43

From Table 40, it is clear that Ela technique is superior to three prominent techniques under

the specific conditions of our experiments. In the worst case of these experiments, the user

still has to inspect on average only 36.42% of the code to find the fault by using Ela

technique. In the best case, on average only 3.48% needs to be inspected. Ela technique

achieves same performance with other three techniques for each of the seven subject

programs.

Figure 47 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai,

and Ela techniques on seven programs on Distinct FminCov Classify Test Suite.

Figure 47 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and

Ela techniques for seven programs on Distinct FminCov Classify Test Suite

Figure 47 indicates that Ela and other three techniques have 10.44% averaged improvements

on average of all subject programs for Distinct FminCov Classify Test Suite.

0

5

10

15

20

25

Im
p

ro
ve

m
e

n
t

(%
)

Jaccard

Tarantula

Ochiai

Ela

99

7.7.5.1. Significance Analysis of Local Maxima with Ela Technique on Distinct

FminCov Classify Test Suite

We test whether there is a statistically significant improvement of local maxima with Ela or

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and

the alternative hypothesis H1 are as follows:

H0: Median Expense Improvement of Local Maxima is equal to zero on Distinct FminCov

Classify Test Suite.

H1: Median Expense Improvement of Local Maxima is greater than zero on Distinct

FminCov Classify Test Suite.

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078)

on Distinct FminCov Classify Test Suite.

7.7.6. Discussion on the Results

The experimental results show that LM strategy achieved about 10% averaged improvements

on Redundant, Distinct, Distinct FminCov, and Distinct FminCov Classify test suites for all

four techniques while it achieved about 8.5% averaged improvements on Distinct FminCov

Cluster test suite for all four techniques. Since fault localization techniques cannot

differentiate the faulty statement from the innocent statements due to the limited number of

failed test which is not subsumed by any other failed test on Distinct FminCov Cluster test

suite, LM strategy achieved relatively smaller averaged improvements in this suite than other

four test suites.

Since Ela technique has best or one of the best fault localization effectiveness on five test

suites, LM strategy has lowest averaged improvements with Ela technique on these test

suites. Moreover, PrintTokens program has the largest averaged block size and Schedule

program has the smallest averaged block size. Therefore, LM strategy achieved the highest

averaged improvements on PrintTokens program and the lowest averaged improvements on

Schedule program.

100

101

CHAPTER 8

8. THREATS TO VALIDITY

In this chapter, we discuss the threats to the validity of our study.

8.1. Internal Validity

Threats to the internal validity can arise from the implementation errors which can affect the

results of experiments without the knowledge of researchers and the programs used in the

experiments. We used gcov to collect the statement coverage and assume that this tool

produces the reliable execution information for the Siemens test suite. This can cause a threat

to the internal validity. The feature vectors chosen for clustering and classification contain

large number of elements due to the number of statements. This can affect the clustering and

the classification processes and could be addressed by using dimensionality reduction

techniques. However, we have used these processes only as heuristics.

8.2. External Validity

Threats to the external validity occur when the results of an experiment cannot be

generalized to the other situations. The major threat to the external validity is the seven C

programs with total of 132 versions in the Siemens suite that we used as subject programs.

We have used them to compare our results with related work since it is extensively used in

the literature. In addition to the limited number of programs, they are relatively small scale

programs and we have used the versions with single fault injected. Therefore, we do not state

that our findings generally hold for all the programs from all scales. The reduction strategy is

for single fault cases. However, we have discussed that it could be adapted to multi fault case

as heuristic which needs to be investigated with further experiments. During the failed test

reduction, the test suite of each program contained only one kind of failed test that was

subsumed by others. This might not be the case in general. Further empirical evidence with

102

variety of programs and test suites with different execution profiles are needed to overcome

these issues.

8.3. Construct Validity

Threats to the construct validity occur when the metrics used for evaluation do not accurately

measure what they intend to measure. The major threat to the construct validity is the metrics

used in our evaluations. We used the expense metric as an effectiveness metric to measure

and compare the effectiveness of the fault localization techniques. This metric assumes that

the programmers inspect the source code in the ranked list of statements, which is generated

by the fault localization techniques, and they correctly identify the faulty statements.

Although this assumption may not hold for all the cases in software debugging process, this

metric is reasonable approximation for effective comparison of fault localization techniques.

8.4. Conclusion Validity

Threats to the conclusion validity occur when a relationship is investigated in the data.

Whenever we investigate a relationship, we essentially have either a relationship in our data

or not. However, we could lead to an incorrect conclusion in either case. We might conclude

that there is a relationship when in fact there is not, or we might infer that there is not a

relationship when in fact there is. We assume that there is a relationship between the

statement coverage of failed and passed tests and the location of the faulty statement. In

addition, we observed this relationship empirically on the seven C program with total of 132

versions in the Siemens suite. The major threat to the conclusion validity is that we can lead

to an incorrect conclusion about this relationship in our observations.

103

CHAPTER 9

9. CONCLUSIONS

In this dissertation, we presented a fault localization framework that consists of test suite

reduction strategies which aim to improve the effectiveness of fault localization, a new fault

localization metric, and an effective ranking strategy that improves the ranking of

statements.

We propose a new metric for effective statistical fault localization. The intuition is that a

faulty statement is more frequently executed by the failed tests and less frequently executed

by the passed tests. We also differ from the existing techniques in expressing these

frequencies and their combinations. During the comparison, in addition to using the widely

accepted expense and code examination effort metrics, we adapt a metric of the information

retrieval domain, called mean reciprocal rank (MRR), to assess the overall ranking quality of

the SFL techniques. We conducted a number of experiments to measure the effectiveness of

Ela and compare it with the three prominent fault localization techniques which are Jaccard,

Tarantula, and Ochiai on the Siemens test suite. The proposed technique has a higher ranking

than others for 3.4% (4 of 118) of all the versions of the subject programs while it is one of

the best performing techniques for 96.6% (114 of 118) of all the versions of the subject

programs. Thus, this experimental result answers empirically RQ.1 which inquires if we can

define a metric to achieve better fault localization accuracy. The experimental results show

the proposed technique outperforms these prominent techniques. As a result, we can

conclude that the proposed technique and its different weights for failed and passed tests

achieve promising results on the effectiveness of the fault localization techniques in terms of

average expense comparing to the three prominent techniques.

We apply equivalent test elimination strategy (Distinct Test Suite Strategy) to achieve more

accurate fault localization. If two tests have executed the set of same statements, then we

104

consider them as equivalent tests with respect to their statement coverage. We assume that

there are several bad tests in the test suite: bad passed tests and bad fail tests. A bad passed

test is defined as “the test that passes even if it executes the faulty statement”. A bad fail test

is defined as “the test that executes too many innocent statements”. We empirically show

that increasing the tests that are equivalent to a bad test case affects the result of the fault

localization. Since it is not known that whether a test is good test or not, the existence of the

equivalent tests can cause a bias in the ranking of statements according to their

suspiciousness values during the process of statistical fault localization. Therefore, we select

the safe side and eliminate the equivalent tests from both passed and failed tests in the

experiments. We conducted a number of experiments to measure the effectiveness of

Distinct Test Suite Strategy for Jaccard, Tarantula, Ochiai and Ela on the Siemens test suite.

This strategy achieves on average 99.5% test size reduction. As a result, we can conclude

that the proposed test suite reduction strategy significantly reduce the test suite; therefore, it

will reduce the effort significantly too. This experimental result empirically answers RQ.2

which asks the effect of equivalent tests in the fault localization effectiveness. Moreover, the

proposed technique has a higher ranking than others for 26.3% (31 of 118) of all the versions

of the subject programs while it is one of the best performing techniques for 73.7% (87 of

118) of all the versions of the subject programs with this Distinct Test Suite Strategy. Thus,

this experimental result answers empirically RQ.1 which inquires if we can define a metric

to achieve better fault localization accuracy.

We propose a new test suite reduction strategy to reduce the effort for the fault localization

by reducing the test suite size. Different from the literature, we propose to eliminate the

failed tests that may mislead the SFL to assign higher suspiciousness values to innocent

program elements (FminCov Test Suite Strategy). We empirically show the effect of this

strategy on three popular SFL (Tarantula, Jaccard, and Ochiai) by using the Siemens suite.

We conducted a number of experiments to measure the effectiveness of FminCov Test Suite

Strategy for Jaccard, Tarantula, Ochiai and Ela on the Siemens test suite. This strategy

achieves on average 10.1% test size reduction. As a result, we can conclude that the

proposed test suite reduction strategy considerably reduce the test suite; therefore, it will

reduce the effort considerably too. Hence, this experimental result answers empirically

RQ.3.1 which asks what type of tests affect test suite quality.

To address RQ.3.2, we investigate two kinds of reductions of the passed tests in combination

with the FminCov Test Suite Strategy. RQ.3.2 asks if clustering and/or classification of

failed and passed tests can result in a subset of test suite that increase the fault localization

105

effectiveness. In the first passed test case elimination strategy, we aim to eliminate the

passed tests that are close to the eliminated failed tests, similar to Masri and Assi (2014). The

intuition is to remove the test that have executed the faulty statement but still pass

(Classification Strategy). We classify the passed tests into the eliminated failed tests and the

remaining failed tests by using KNN classification algorithm and then select the class that

contains the remaining failed tests and remove other class. We conducted a number of

experiments to measure the effectiveness of Classification strategy for Jaccard, Tarantula,

Ochiai and Ela on the Siemens test suite. This strategy achieves on average 30.3% test size

reduction. As a result, we can conclude that the proposed test suite reduction strategy greatly

reduce the test suite; therefore, it will reduce the effort greatly too. Hence, this experimental

result answers empirically RQ.3.2. In the second passed test case elimination strategy,

similar to Dandan et al. (2013), we aim to eliminate the passed tests that are not very close to

the remaining failed tests (Clustering Strategy). The intuition is that of delta debugging

(Zeller, 1999) which states that a passing run closest to a failing run contains the most

information. We cluster the remaining failed tests and all the passed tests into subsets by

using a hierarchical clustering algorithm, specifically Agglomerative clustering, and then

select the subset that contains the remaining failed tests. This strategy achieves on average

34.1% test size reduction. As a result, we can conclude that the proposed test suite reduction

strategy greatly reduce the test suite; therefore, it will reduce the effort greatly too. Hence,

this experimental result answers empirically RQ.3.2.

In our experiments, we examine all three test suite reduction strategies and shows that all the

reduction strategies result in significant reductions in the size of tests. Among all three, the

failed test elimination strategy results in the best improvement but the elimination of the

passed tests similar to the eliminated failed tests (Classification Strategy) results in quite

comparable results to failed test elimination strategy. Removing the passed tests similar to

the remaining failed tests results in high reductions in the size of test suite (up to 81%). We

conducted a number of experiments to measure the effectiveness of Clustering strategy for

Jaccard, Tarantula, Ochiai and Ela on the Siemens test suite. Best of these test suite

reduction strategies achieves an improvement up to 1.7% in Jaccard, up to 2.46% in

Tarantula, up to 1.01% in Ochiai, and up to 0.38% in Ela in terms of average expense.

We propose a new effective ranking strategy for improving the ranking of statements (Local

Maxima Strategy) in order to improve the effectiveness and therefore decrease the effort for

the fault localization. Instead of serving all the statements with their suspiciousness ranks to

the software developers, we aim to serve only the statements which are the local maximum

106

in its 1-nearest neighborhood. This strategy decreases the number of statements that software

developers must inspect to locate the fault. It assumes that the innocent statements near to

the faulty statement are likely to be assigned with high suspiciousness values and should be

eliminated from the list of suspicious statements. We conducted a number of experiments to

measure the effectiveness of Local Maxima strategy for Jaccard, Tarantula, Ochiai and Ela

on the Siemens test suite. This strategy achieves an improvement 10.54% in Jaccard, 10.47%

in Tarantula, 10.74% in Ochiai, and 10.88% in Ela in terms of average expense. As a result,

we can conclude that the proposed technique achieve considerable improvement over the

effectiveness of the fault localization techniques in terms of average expense. This

experimental result answers empirically RQ.4 which asks if we can implement a post

processing technique to improve the fault localization accuracy based on suspiciousness

values of statements.

107

CHAPTER 10

10. FUTURE WORK

This chapter discusses the ideas on extending our work and on future research directions to

be investigated.

10.1. Application of Ela to Different Test Suites from Different Scales

Siemens test suite used in our study has a limited number of computer programs. We plan to

evaluate the robustness of Ela technique on different kinds of computer programs. The

programs written in sequential and procedural programming languages such as C language

are chosen as the subject programs from Siemens test suite. We will perform experiments on

the computer programs written in object oriented programming languages such as Java and

C# languages. In addition, the subject programs are relatively small scale programs.

Therefore, we plan to perform experiments on the large scale computer programs which

contain real life software faults.

In addition, we can measure the effectiveness of Ela on different kinds of programs by

classifying the versions of different programs into different categories according to the

nature of their fault types. We plan to investigate the relation of fault types and fault

localization power of Ela technique by performing several experiments on different kinds of

programs.

10.2. Application of Ela with Different Coverage Entities

This dissertation has proposed a new fault localization metric applied on the statement

coverage of tests. This technique can be applied to a number of different coverage entities

such as classes, methods, blocks, branches, predicates etc. Future researchers may evaluate

the effectiveness of Ela technique with other coverage entities. The type of coverage entity

may affect the effectiveness of Ela according to the types of faults used. Future researchers

108

may explore the correlation between the fault types and the coverage entities to find best

coverage entity.

10.3. Investigating Optimal Percentage of Failed Tests in Test Suites

The percentage of the failed tests in the Siemens test suite is relatively small. We can achieve

higher percentage of the failed tests in other test suites and investigate the optimal

percentage of the failed tests in the test suites. Therefore, we will carry out experiments to

investigate the optimal percentage of the failed tests in other test suites. Moreover, test case

generation techniques in the literature (Rayadurgam & Heimdahl, 2001; Artho et al., 2003;

Papadakis & Malevris, 2010) can be applied to create additional failed tests and increase

their percentage in the test suites.

10.4. Application of Ela to Multiple Faults

We have used the versions of the subject programs with single fault in our study. Although

we have stated that Ela technique can be applied to the multiple faults, we want to see more

experimental evidences to support our conclusion. Therefore, we will conduct new

experiments on the computer programs with multiple faults and evaluate the effectiveness of

Ela technique.

10.5. Designing User Studies on Focus Groups

An empirical justification of the evaluation metrics used in our study indicates a confidence

that Ela technique provides an evidence of good effectiveness. The intuition behind the

hypothetical idea of a perfect debugging, which is the breadth first search with terminating

when a faulty line is encountered, seems reasonable. However, it is highly desirable to show

the direct correlation between the effectiveness of Ela technique under the evaluation metrics

and under the actual user debugging experience. Therefore, we plan to design several user

studies on focus group of software developers to evaluate effectiveness of Ela technique and

compare with the prominent techniques in the literature on the subject programs.

109

REFERENCES

[1] Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2006, December). An evaluation of

similarity coefficients for software fault localization. In Dependable Computing,

2006. PRDC'06. 12th Pacific Rim International Symposium on (pp. 39-46). IEEE.

[2] Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2007, September). On the accuracy

of spectrum-based fault localization. In Testing: Academic and Industrial

Conference Practice and Research Techniques-MUTATION, 2007. TAICPART-

MUTATION 2007 (pp. 89-98). IEEE.

[3] Agarwal, P., & Agrawal, A. P. (2014). Fault-localization techniques for software

systems: a literature review. ACM SIGSOFT Software Engineering Notes, 39(5), 1-8.

[4] Aggarwal, C. C., & Reddy, C. K. (Eds.). (2013). An Introduction to Cluster

Analysis. Data clustering: algorithms and applications (pp. 5-7). CRC Press.

[5] Agrawal, H. (1991). Towards automatic debugging of computer programs (Doctoral

dissertation, Purdue University).

[6] Agrawal, H., De Millo, R. A., & Spafford, E. H. (1991). An execution-backtracking

approach to debugging. Software, IEEE, 8(3), 21-26.

[7] Agrawal, H., Horgan, J., London, S., & Wong, W. (1995). Fault localization using

execution slices and dataflow tests. Proceedings of IEEE Software Reliability

Engineering, 143-151.

[8] Alipour, M. A. (2012). Automated fault localization techniques: a survey. Technical

report, Oregon State University.

[9] Artho, C., Drusinksy, D., Goldberg, A., Havelund, K., Lowry, M., Pasareanu, C., &

Visser, W. (2003, January). Experiments with test case generation and runtime

analysis. In Abstract State Machines 2003 (pp. 87-108). Springer Berlin Heidelberg.

[10] Artzi, S., Dolby, J., Tip, F., & Pistoia, M. (2012). Fault localization for dynamic web

applications. Software Engineering, IEEE Transactions on, 38(2), 314-335.

[11] Augusteijn, L. (2002). Front: a front-end generator for Lex, Yacc and C, Release 1.0,

Retrieved from: http://www.extra.research.philips.com/ist, Philips Research

Laboratories, Eindhoven, Netherlands.

[12] Baah, G. K., Podgurski, A., & Harrold, M. J. (2011, September). Mitigating the

confounding effects of program dependences for effective fault localization. In

Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering (pp. 146-156). ACM.

110

[13] Balzer, R. M. (1969, May). EXDAMS: extendable debugging and monitoring

system. In Proceedings of the May 14-16, 1969, spring joint computer conference

(pp. 567-580). ACM.

[14] Baudry, B., Fleurey, F., & Le Traon, Y. (2006, May). Improving test suites for

efficient fault localization. In Proceedings of the 28th international conference on

Software engineering (pp. 82-91). ACM.

[15] Brase, C. H., & Brase, C. P. (2011). Understandable statistics: concepts and

methods. Cengage Learning.

[16] Chan, W. K., & Cai, Y. (2013). In quest of the science in statistical fault localization.

Software: Practice and Experience, 43(8), 971-987.

[17] Cleve, H., & Zeller, A. (2005, May). Locating causes of program failures. In

Proceedings of the 27th international conference on Software engineering (pp. 342-

351). ACM.

[18] Dallmeier, V., Lindig, C., & Zeller, A. (2005, September). Lightweight bug

localization with AMPLE. In Proceedings of the sixth international symposium on

Automated analysis-driven debugging (pp. 99-104). ACM.

[19] Dandan, G., Tiantian, W., Xiaohong, S., & Peijun, M. (2013). A test-suite reduction

approach to improving fault-localization effectiveness. Computer Languages,

Systems & Structures, 39(3), 95-108.

[20] Dickinson, W., Leon, D., & Podgurski, A. (2001a, July). Finding failures by cluster

analysis of execution profiles. In Proceedings of the 23rd international conference

on Software engineering (pp. 339-348). IEEE Computer Society.

[21] Dickinson, W., Leon, D., & Podgurski, A. (2001b, September). Pursuing failure: the

distribution of program failures in a profile space. In ACM SIGSOFT Software

Engineering Notes (Vol. 26, No. 5, pp. 246-255). ACM.

[22] DiGiuseppe, N., & Jones, J. A. (2011, July). On the influence of multiple faults on

coverage-based fault localization. In Proceedings of the 2011 international

symposium on software testing and analysis (pp. 210-220). ACM.

[23] Farjo, J., & Masri, W. (2014, March). Weighted Execution Profiles for Software

Testing. In Software Testing, Verification and Validation Workshops (ICSTW), 2014

IEEE Seventh International Conference on (pp. 298-301). IEEE.

[24] Farris, J. S. (1969). On the cophenetic correlation coefficient. Systematic Biology,

18(3), 279-285.

[25] Hao, D., Zhang, L., Zhong, H., Mei, H., & Sun, J. (2005a, September). Eliminating

harmful redundancy for testing-based fault localization using test suite reduction: An

experimental study. In Software Maintenance, 2005. ICSM'05. Proceedings of the

21st IEEE International Conference on (pp. 683-686). IEEE.

111

[26] Hao, D., Pan, Y., Zhang, L., Zhao, W., Mei, H., & Sun, J. (2005b, November). A

similarity-aware approach to testing based fault localization. In Proceedings of the

20th IEEE/ACM international Conference on Automated software engineering (pp.

291-294). ACM.

[27] Hao, D., Xie, T., Zhang, L., Wang, X., Sun, J., & Mei, H. (2010). Test input

reduction for result inspection to facilitate fault localization. Automated software

engineering, 17(1), 5-31.

[28] Harrold, M. J., Gupta, R., & Soffa, M. L. (1993). A methodology for controlling the

size of a test suite. ACM Transactions on Software Engineering and Methodology

(TOSEM), 2(3), 270-285.

[29] Hutchins, M., Foster, H., Goradia, T., & Ostrand, T. (1994, May). Experiments of

the effectiveness of dataflow-and controlflow-based test adequacy criteria. In

Proceedings of the 16th international conference on Software engineering (pp. 191-

200). IEEE Computer Society Press.

[30] Javac. (2014). Retrieved from:

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html

[31] Jeffrey, D., Gupta, N., & Gupta, R. (2008, July). Fault localization using value

replacement. In Proceedings of the 2008 international symposium on Software

testing and analysis (pp. 167-178). ACM.

[32] Jigsaw. (2014). Retrieved from: http://www.w3.org/Jigsaw/

[33] Jikes. (2014). Retrieved from: http://jikes.sourceforge.net/

[34] Jones, J. A., Harrold, M. J., & Stasko, J. (2002, May). Visualization of test

information to assist fault localization. In Proceedings of the 24th international

conference on Software engineering (pp. 467-477). ACM.

[35] Jones, J. A., & Harrold, M. J. (2005, November). Empirical evaluation of the

tarantula automatic fault-localization technique. In Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineering (pp. 273-

282). ACM.

[36] Jones, J. A., Bowring, J. F., & Harrold, M. J. (2007, July). Debugging in parallel. In

Proceedings of the 2007 international symposium on Software testing and analysis

(pp. 16-26). ACM.

[37] Jones, J. A. (2008). Semi-Automatic Fault Localization (Doctoral dissertation,

Georgia Institute of Technology).

[38] JTidy. (2014). Retrieved from: http://jtidy.sourceforge.net/

[39] Ju, X., Jiang, S., Chen, X., Wang, X., Zhang, Y., & Cao, H. (2014). HSFal: Effective

fault localization using hybrid spectrum of full slices and execution slices. Journal of

Systems and Software, 90, 3-17.

112

[40] Kim, J., & Lee, E. (2014, February). Empirical evaluation of existing algorithms of

spectrum based fault localization. In Information Networking (ICOIN), 2014

International Conference on (pp. 346-351). IEEE.

[41] Lange, M. M. (2014). A Comparison of Estimators for Respondent-Driven Sampling

(Master's thesis, University of California).

[42] Liblit, B., Aiken, A., Zheng, A. X., & Jordan, M. I. (2003). Bug isolation via remote

program sampling. ACM SIGPLAN Notices, 38(5), 141-154.

[43] Liblit, B., Naik, M., Zheng, A. X., Aiken, A., & Jordan, M. I. (2005, June). Scalable

statistical bug isolation. In ACM SIGPLAN Notices (Vol. 40, No. 6, pp. 15-26).

ACM.

[44] Liu, C., Yan, X., Fei, L., Han, J., & Midkiff, S. P. (2005). SOBER: statistical model-

based bug localization. ACM SIGSOFT Software Engineering Notes, 30(5), 286-295.

[45] Liu, C., Fei, L., Yan, X., Han, J., & Midkiff, S. P. (2006). Statistical debugging: A

hypothesis testing-based approach. Software Engineering, IEEE Transactions on,

32(10), 831-848.

[46] Liu, C., & Han, J. (2006, November). Failure proximity: a fault localization-based

approach. In Proceedings of the 14th ACM SIGSOFT international symposium on

Foundations of software engineering (pp. 46-56). ACM.

[47] Maheswari, G., & Venkatesakumar, V. (2013, May). Fault Localization for Dynamic

Web Application. International Journal of Emerging Trends & Technology in

Computer Science (IJETTCS), 2(3), 71-77.

[48] Mao, X., Lei, Y., Dai, Z., Qi, Y., & Wang, C. (2014). Slice-based statistical fault

localization. Journal of Systems and Software, 89, 51-62.

[49] Masri, W., & Assi, R. A. (2014). Prevalence of coincidental correctness and

mitigation of its impact on fault localization. ACM Transactions on Software

Engineering and Methodology (TOSEM), 23(1), 8.

[50] Naish, L., Lee, H. J., & Ramamohanarao, K. (2011). A model for spectra-based

software diagnosis. ACM Transactions on software engineering and methodology

(TOSEM), 20(3), 11.

[51] Newman, M. (2002). Software errors cost US economy 59.5 billion annually, NIST

assesses technical needs of industry to improve software-testing. Press Release,

http://www.nist.gov/public_affairs/releases, (02), 10.

[52] Nienhuys, H. W., & Nieuwenhuizen, J. (2003, May). LilyPond, a system for

automated music engraving. In Proceedings of the XIV Colloquium on Musical

Informatics (XIV CIM 2003) (pp. 167-172).

[53] Ochiai, A. (1957). Zoogeographic studies on the soleoid fishes found in Japan and its

neighbouring regions. Bull. Jpn. Soc. Sci. Fish, 22(9), 526-530.

113

[54] Papadakis, M., & Malevris, N. (2010, November). Automatic mutation test case

generation via dynamic symbolic execution. In Software reliability engineering

(ISSRE), 2010 IEEE 21st international symposium on (pp. 121-130). IEEE.

[55] Parsa, S., Vahidi-Asl, M., Arabi, S., & Minaei-Bidgoli, B. (2009). Software fault

localization using elastic net: A new statistical approach. In Advances in Software

Engineering (pp. 127-134). Springer Berlin Heidelberg.

[56] Podgurski, A., Masri, W., McCleese, Y., Wolff, F. G., & Yang, C. (1999).

Estimation of software reliability by stratified sampling. ACM Transactions on

Software Engineering and Methodology (TOSEM), 8(3), 263-283.

[57] Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., & Wang, B.

(2003, May). Automated support for classifying software failure reports. In Software

Engineering, 2003. Proceedings. 25th International Conference on (pp. 465-475).

IEEE.

[58] Qi, Y., Mao, X., Lei, Y., & Wang, C. (2013, July). Using automated program repair

for evaluating the effectiveness of fault localization techniques. In Proceedings of

the 2013 International Symposium on Software Testing and Analysis (pp. 191-201).

ACM.

[59] Rayadurgam, S., & Heimdahl, M. P. (2001). Coverage based test-case generation

using model checkers. In Engineering of Computer Based Systems, 2001. ECBS

2001. Proceedings. Eighth Annual IEEE International Conference and Workshop on

the (pp. 83-91). IEEE.

[60] Renieres, M., & Reiss, S. P. (2003, October). Fault localization with nearest

neighbor queries. In Automated Software Engineering, 2003. Proceedings. 18th

IEEE International Conference on (pp. 30-39). IEEE.

[61] Ridgeway, M. (2004). Using code coverage tools in the Linux kernel.

[62] Rothermel, G., Harrold, M. J., Ostrin, J., & Hong, C. (1998, November). An

empirical study of the effects of minimization on the fault detection capabilities of

test suites. In Software Maintenance, 1998. Proceedings. International Conference

on (pp. 34-43). IEEE.

[63] Sahoo, S. K., Criswell, J., Geigle, C., & Adve, V. (2013). Using likely invariants for

automated software fault localization. ACM SIGARCH Computer Architecture News,

41(1), 139-152.

[64] Shapiro, E. Y. (1983). Algorithmic Program Debugging. Cambridge, MA, USA:

MIT Press.

[65] Shin, W. H., Muthaiyah, S., & Raman, M. (2012, December). Green Evaluation

Metrics and Software Tool for Data Center. Advances in Environment,

Computational Chemistry and Bioscience, (pp. 25-30).

[66] Software-artifact infrastructure repository (SIR). (2014).

114

Retrieved from: http://sir.unl.edu/php/previewfiles.php.

[67] Srivastav, M., Singh, Y., & Chauhan, D. S. (2010). Faulty Slice Distribution using

Complexity Estimation for Debugging in Parallel. International Journal of

Computer Applications (0975–8887), 7(1).

[68] Stallman, R. M. (2009). Using the GNU Compiler Collection: A GNU Manual for

GCC Version 4.3. 3. CreateSpace.

[69] Su, X. H., Gong, D. D., Wang, T. T., & Ma, P. J. (2014, July). A Survey of

Automated Software Fault Localization Approach. In Applied Mechanics and

Materials (Vol. 556, pp. 6102-6105).

[70] Tan, P. N., Kumar, V., & Srivastava, J. (2002, July). Selecting the right

interestingness measure for association patterns. In Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data mining (pp. 32-

41). ACM.

[71] Tomcat. (2014). Retrieved from: http://tomcat.apache.org/

[72] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., & Sundaresan, V. (1999,

November). Soot-a Java bytecode optimization framework. In Proceedings of the

1999 conference of the Centre for Advanced Studies on Collaborative research (p.

13). IBM Press.

[73] Vidács, L., Beszédes, Á., Tengeri, D., Siket, I., & Gyimóthy, T. (2014, February).

Test suite reduction for fault detection and localization: A combined approach. In

Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),

2014 Software Evolution Week-IEEE Conference on (pp. 204-213). IEEE.

[74] Voorhees, E. M. (1999, November). The TREC-8 Question Answering Track

Report. In TREC (Vol. 99, pp. 77-82).

[75] Wong, W. E., & Debroy, V. (2009). A survey of software fault localization.

Department of Computer Science, University of Texas at Dallas, Tech. Rep. UTDCS-

45-09.

[76] Wong, W. E., Debroy, V., & Xu, D. (2012). Towards better fault localization: A

crosstab-based statistical approach. Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, 42(3), 378-396.

[77] Xie, X., Wong, W. E., Chen, T. Y., & Xu, B. (2010, February). Spectrum-based fault

localization without test oracles. In proceedings of the 11th International Conference

on Quality Software (QSIC’11) (pp. 1-10).

[78] χSuds. (1998). Software Understanding System User's Manual, Release 1.2,

Retrieved from:

https://www.cs.purdue.edu/homes/apm/foundationsBook/Labs/coverage/xsuds.pdf.

115

[79] Xu, J., Chan, W. K., Zhang, Z., Tse, T. H., & Li, S. (2011, July). A dynamic fault

localization technique with noise reduction for java programs. In Quality Software

(QSIC), 2011 11th International Conference on (pp. 11-20). IEEE.

[80] Xu, J., Zhang, Z., Chan, W. K., Tse, T. H., & Li, S. (2013). A general noise-

reduction framework for fault localization of Java programs. Information and

Software Technology, 55(5), 880-896.

[81] Yoo, S., Harman, M., & Clark, D. (2013). Fault localization prioritization:

Comparing information-theoretic and coverage-based approaches. ACM

Transactions on Software Engineering and Methodology (TOSEM), 22(3), 19.

[82] Yu, Y., Jones, J. A., & Harrold, M. J. (2008, May). An empirical study of the effects

of test-suite reduction on fault localization. In Proceedings of the 30th international

conference on Software engineering (pp. 201-210). ACM.

[83] Zeller, A. (1999, January). Yesterday, my program worked. Today, it does not.

Why?. In Software Engineering—ESEC/FSE’99 (pp. 253-267). Springer Berlin

Heidelberg.

[84] Zhang, Z., Chan, W. K., Tse, T. H., Jiang, B., & Wang, X. (2009, August).

Capturing propagation of infected program states. In Proceedings of the 7th joint

meeting of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering (pp. 43-52). ACM.

[85] Zhang, Z., Chan, W. K., Tse, T. H., Yu, Y. T., & Hu, P. (2011). Non-parametric

statistical fault localization. Journal of Systems and Software, 84(6), 885-905.

116

APPENDICES

117

A. WILCOXON SIGNED RANK TESTS

Table 41 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Redundant Test Suite

Programs Ela & Jaccard Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 0.125 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 0.016 Reject H0

Replace
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 6.1x10-5 Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 0.125 Fail to Reject H0

118

Table 42 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Redundant Test Suite

Programs Ela & Tarantula Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 0.125 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 0.008 Reject H0

Replace
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 6.1x10-5 Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 0.125 Fail to Reject H0

119

Table 43 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Redundant Test Suite

Programs Ela & Ochiai Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 0.125 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 0.5 Fail to Reject H0

120

Table 44 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Distinct Test Suite

Programs Ela & Jaccard Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 0.125 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 0.031 Reject H0

Replace
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 7.5x10-9 Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 0.063 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 0.125 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 9.8x10-4 Reject H0

121

Table 45 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Distinct Test Suite

Programs Ela & Tarantula Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 0.031 Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 2.0x10-3 Reject H0

Replace
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 7.5x10-9 Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 0.063 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 0.125 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 0.016 Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 2.4x10-4 Reject H0

122

Table 46 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Distinct Test Suite

Programs Ela & Ochiai Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 0.25 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 0.5 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 7.5x10-9 Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 0.5 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

123

Table 47 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Distinct FminCov Test Suite

Programs Ela & Jaccard Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

124

Table 48 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Distinct FminCov Test Suite

Programs Ela & Tarantula Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

125

Table 49 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Distinct FminCov Test Suite

Programs Ela & Ochiai Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

126

Table 50 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Distinct FminCov Cluster Test Suite

Programs Ela & Jaccard Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

127

Table 51 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Distinct FminCov Cluster Test Suite

Programs Ela & Tarantula Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

128

Table 52 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Distinct FminCov Cluster Test Suite

Programs Ela & Ochiai Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

129

Table 53 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven

programs with Distinct FminCov Classify Test Suite

Programs Ela & Jaccard Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Jaccard, Expense)

H1:Med(Ela, Expense) < Med(Jaccard, Expense)
0.05 1 Fail to Reject H0

130

Table 54 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven

programs with Distinct FminCov Classify Test Suite

Programs Ela & Tarantula Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Tarantula, Expense)

H1:Med(Ela, Expense) < Med(Tarantula, Expense)
0.05 1 Fail to Reject H0

131

Table 55 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven

programs with Distinct FminCov Classify Test Suite

Programs Ela & Ochiai Comparison Alpha P-value Result

PrintTokens
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

PrintTokens2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Replace
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Schedule
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Schedule2
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

Tcas
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

TotInfo
H0:Med(Ela, Expense)=Med(Ochiai, Expense)

H1:Med(Ela, Expense) < Med(Ochiai, Expense)
0.05 1 Fail to Reject H0

132

133

B. FAULT TYPES AND THEIR DIFFICUILTIES

Table 56 – Fault types and their difficulties in seven programs of Siemens test suite

Fault Type Difficuilty

Add [if, else-if, else] condition Low

Change [if, else-if, else] condition Low

Comment or Delete [if, else-if, else] condition Low

Add [if, else-if, else] block Low

Change [if, else-if, else] block Low

Comment or Delete [if, else-if, else] block Low

Add case condition Low

Change case condition Low

Comment or Delete case condition Low

Add case block Low

Change case block Low

Comment or Delete case block Low

Add [for, while] condition Low

Change [for, while] condition Low

Comment or Delete [for, while] condition Low

Add [for, while] block Low

Change [for, while] block Low

Comment or Delete [for, while] block Low

Add return value Medium

Change return value Medium

Comment or Delete return value Medium

Add method call High

Change method call High

Comment or Delete method call High

Add method body High

Change method body High

Comment or Delete method body High

Add variable assignment High

Change variable assignment High

Comment or Delete variable assignment High

Add variable initialization High

Change variable initialization High

Comment or Delete variable initialization High

Add lines of code High

Change lines of code High

134

135

CURRICULUM VITAE

 PERSONAL INFORMATION

 Surname, Name : Bayraktar, Özkan

 Nationality : Turkish (TC)

 Date and Place of Birth : 30 September 1979, Ankara

 Marital Status : Married

 Phone : +90 532 4036135

 Email : ozkanbayraktar@gmail.com

 EDUCATION

Degree Institution Graduation Year

PhD. Metu – Information Systems 2007 – present

Ms. Metu – Information Systems 2004 – 2007

Bs. Metu – Statistics 1998 – 2003

High School Ankara Anıttepe High School 1994 – 1997

 WORK EXPERIENCE

Year Place Enrollment

2004 – 2012 METU – Informatics Institute / TURKEY Research Assistant

2012 – 2014 GCA L.C. / TURKEY Senior Software Specialist

2014 – present Biznet I.C. / TURKEY Senior Software Specialist

 FOREIGN LANGUAGES

 Advanced English

