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ABSTRACT 
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FAULT LOCALIZATION TECHNIQUE 

 

 

 

BAYRAKTAR, Özkan 

Ph. D., Department of Information Systems 

Supervisor: Assoc. Prof. Dr. Aysu Betin Can 

 

 

 

June 2015, 135 pages 

 

 

 

Software debugging consists of locating software faults, finding their causes, and fixing 

them. Among all these activities, the fault localization is the most difficult one and requires 

manual effort. Although there are several studies on automating this process, their 

effectiveness has not yet reached at a desired level. 

In this dissertation, we propose a fault localization framework that introduces a new fault 

localization metric called Ela, three test suite reduction strategies to improve the 

effectiveness of fault localization, and an effective ranking strategy to improve the ranking 

of statements. Several experiments are performed on the Siemens suite to evaluate the 

proposed metric. Besides the expense metric used in fault localization literature, we also 

adapt the mean reciprocal rank to measure the overall ranking quality of the four techniques. 

Ela has better ranking than the other techniques in 4 of 118 versions while it is one of the 

best performing techniques for the remaining 114 versions of the subject programs. 

We apply an equivalent test elimination strategy to neutralize the bias caused by the 

existence of the equivalent tests. This strategy achieves on average 99.5% test size reduction. 

Ela has better ranking than the other techniques in 31 of 118 versions while it is one of the 

best performing techniques for the remaining 87 versions of the subject programs. 

We propose three test suite reduction strategies to reduce the effort for the fault 

localization. The best of these strategies achieves on average 34.1% test size reduction while 

resulting an improvement up to 1.7 in Jaccard, up to 2.46% in Tarantula, up to 1.01% in 

Ochiai, and up to 0.38% in Ela in terms of average expense. 

We propose an effective ranking strategy, called Local Maxima, to improve the ranking 

of statements. This strategy achieves an improvement 10.54% in Jaccard, 10.47% in 

Tarantula, 10.74% in Ochiai, and 10.88% in Ela in terms of average expense. 

 

Keywords: Software Testing, Statement Coverage, Statistical Fault Localization, Test Suite 

Reduction, Local Maxima 
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Yazılım hatalarını ayıklama yazılım hatalarının yerelleştirilmesi, hataların nedenlerinin 

bulunması, ve hataların düzeltilmesinin kapsamaktadır. Bu aktivitiler içerisinde, hata 

yerelleştirme en zor aktivitedir ve elle düzeltme eforu gerektirmektedir. Bu işlemin 

otomatikleştirilmesi konusunda yapılan farklı çalışmalar olmasına rağmen, bu çalışmaların 

etkisi hala istenen seviyeye ulaşmamıştır. 

Bu doktora tezinde, Ela olarak adlandırılan yeni bir hata yerelleştirme metriği, hata 

yerelleştirme etkinliğini iyileştirmek için üç adet test suit küçültme stratejisi, ifade sıralamayı 

iyileştirmek için bir etkin sıralama stratejisi içeren bir hata yerelleştirme çerçevesi önerdik. 

Önerilen metriği ölçmek için Siemens suiti üzerinde deneyler yapıldı. Literatürde kullanılan 

gider metriğinin yanı sıra dört tekniğin kalitesini ölçmek için ortalama ters sıra metriği de 

adapte edildi. Söz konusu programların 118 versiyonunun 4’ünde Ela tekniği diğer 

tekniklerden daha iyi sıralama yeteneğine sahipken kalan 114 versiyondaysa en iyi sıralama 

yeteneğine sahip tekniklerden birisidir. 

Eşdeğer testlerin varlığının ifade sıralamada neden olduğu sapmayı etkisizleştirmek için 

eşdeğer test eleme stratejisi uyguladık. Bu strateji ortalama 99.5% test suit küçültme elde 

etmektedir. Söz konusu programların 118 versiyonunun 31’inde Ela tekniği diğer 

tekniklerden daha iyi sıralama yeteneğine sahipken kalan 87 versiyondaysa en iyi sıralama 

yeteneğine sahip tekniklerden birisidir. 

Hata yerelleştirme eforunu düşürmek için üç adet test suit küçültme stratejisi önerdik. Bu 

stratejilerin en iyisi ortalama %34.1 test suit küçültme sağlarken, ortlama gider açısından 

Jaccard’ta %1.7’e kadar, Tarantula’da %2.46’ya kadar, Ochiai’de %1.01’e kadar, ve Ela’da 

%0.38’e kadar iyileşme elde etmektedir. 

İfade sıralamayı iyileştirmek için Yerel Maksimum olarak adlandırılan bir etkin sıralama 

stratejisi önerdik. Bu strateji ortalama gider açısından Jaccard’ta %10.54, Tarantula’da 

%10.47, Ochiai’de %10.74, ve Ela’da %10.88 iyileşme elde etmektedir. 

 

Anahtar Kelimeler: Yazılım Testi, İfade Kapsama, İstatistiksel Hata Yerelleştirme, Test Suit 

Küçültme, Yerel Maksimum 
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1. INTRODUCTION 

 

 

 

 

 

 

Software debugging is an expensive and time consuming task since it is generally a manual 

process (Newman, 2002; Wong & Debroy, 2009; Srivastav, Singh, & Chauhan, 2010). 

Software debugging involves the process of locating software faults, finding their causes, 

and fixing them. Among all these activities, the fault localization is the most difficult one. 

Fault localization is the activity of identifying the exact locations of program faults during 

program debugging (Wong & Debroy, 2009). To automate or semi automate this difficult 

activity with minimum human intervention, a smart fault localization technique is always 

needed. Unfortunately, the techniques that claim to effectively locate software faults have 

not yet reached at a desired level (Wong, Debroy, & Xu, 2012; Sahoo, Criswell, Geigle, & 

Adve, 2013). 

 

Many techniques have been proposed for automating the fault localization process in the 

literature. These techniques can be categorized into traditional debugging techniques (Balzer, 

1969; Agrawal, De Millo, & Spafford, 1991), algorithmic debugging techniques (Shapiro, 

1983), program slice based techniques (Agrawal, 1991; Agrawal, Horgan, London, & Wong, 

1995; Renieris & Reiss, 2003), memory state based techniques (Cleve & Zeller, 2005), 

statistical techniques (Jones & Harrold, 2005; Liu, Yan, Fei, Han, & Midkiff, 2005; Abreu, 

Zoeteweij, & Van Gemund, 2006; Jeffrey, Gupta, & Gupta, 2008; Parsa, Vahidi-Asl, Arabi, 

& Minaei-Bidgoli, 2009; Wong et al., 2012; Xu, Chan, Zhang, Tse, & Li, 2011; Zhang, 

Chan, Tse, Yu, & Hu, 2011), and slice-based statistical techniques (Mao, Lei, Dai, Qi, & 

Wang, 2014; Ju et al., 2014). 

 

Among these techniques, the statistical fault localization techniques (SFL) are the most 

commonly used ones since they are lightweight and do not require users to provide 

additional information such as the structure of the program. Statistical techniques analyze the 



2 

 

relationship between the fail/pass results of tests and the program elements (e.g. statements) 

executed by these tests. Based on the test results and corresponding execution information of 

program elements, each SFL uses a different way to assign a suspiciousness value for the 

program elements. There are some representative techniques such as Tarantula (Jones, 

Harrold, & Stasko, 2002), Jaccard (Abreu et al., 2006), and Ochiai (Abreu et al., 2007) 

which are the most well known the statistical fault localization techniques (Kim & Lee, 

2014). The effectiveness of these techniques is still a bottleneck due to the abstraction level. 

Although Jaccard, Tarantula, and Ochiai include the statement coverage of passed tests to 

their calculations of suspiciousness values, they assign same weights to the statement 

coverage information of both kinds of tests. There can be some cases in which the statement 

coverage information of failed tests are the same but the statement coverage information of 

passed tests are different. In these cases, the existing techniques do not differentiate the 

faulty statement from the innocent statements. The effectiveness of fault localization could 

be improved including such information during the process. 

 

Together with the fault localization effort, the size of the test suite affects the time spent 

during software debugging process. Although test suite reduction is mostly studied for 

regression testing, there are several recent studies that evaluate the effect of test suite 

reduction on fault localization techniques. However, there is no consensus on the effects of 

test suite reduction on fault localization. A number of studies proposing test suite reduction 

strategies show that the test reduction results in a decrease in the fault localization 

effectiveness (Yu, Jones, & Harrold, 2008; Rothermel, Harrold, Ostrin, & Hong, 1998; Hao 

et al., 2010; Baudry, Fleurey, & Le Traon, 2006). There are also other studies showing that 

the test reduction results in an improvement in the fault localization effectiveness (Masri & 

Assi, 2014; Dandan, Tiantian, Xiaohong, & Peijun, 2013; Hao, Zhang, Zhong, Mei, & Sun, 

2005a). They suggest excluding the passed tests that may obscure the process based on 

several criteria. Most of the techniques in the literature apply clustering, classification, and 

sampling of failed and passed tests without considering whether they are good or bad tests, 

i.e. without considering whether they contain valuable statement coverage information or 

not. 

 

We propose a fault localization framework that introduces a new fault localization metric 

called Ela, three test suite reduction strategies to improve the effectiveness of fault 

localization, and an effective ranking strategy to improve the ranking of statements. We 

focus on the situations not covered by the existing fault localization techniques and test suite 
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reduction techniques to improve the fault localization effectiveness and decrease the fault 

localization effort by this framework. 

 

We propose a new metric for statistical fault localization. The intuition is that a faulty 

statement is more frequently executed by the failed tests and less frequently executed by the 

passed tests. We also differ from the existing techniques in expressing these frequencies and 

their combinations. We performed several experiments to evaluate the proposed metric on 

the Siemens suite (Hutchins, Foster, Goradia, & Ostrand, 1994) available at the software-

artifact infrastructure repository (SIR, 2014). The Siemens suite contains seven programs: 

PrintTokens, PrintTokens2, Replace, Schedule, Schedule2, Tcas, and TotInfo. Due to its 

high quality, many researchers studying the fault localization have performed their 

experiments on this test suite (Renieris & Reiss, 2003; Cleve & Zeller, 2005; Jones & 

Harrold, 2005; Liu et al., 2005; Abreu et al., 2006; Jeffrey et al., 2008; Parsa et al., 2009; 

Wong et al., 2012; Zhang et al., 2011). In our experiments, we have used the three popular 

fault localization techniques, which are Jaccard, Tarantula, and Ochiai coefficients, as a base 

line. The experimental results show that the proposed technique outperforms these three 

prominent techniques. During the comparison, in addition to using the widely accepted 

expense and code examination effort metrics, we adapt a metric of the information retrieval 

domain, called Mean Reciprocal Rank (MRR), to assess the overall ranking quality of the 

SFL techniques. The proposed technique has a higher ranking than others for 3.4% (4 of 

118) of all the versions of the subject programs while it is one of the best performing 

techniques for 96.6% (114 of 118) of all the versions of the subject programs. 

 

We apply equivalent test elimination strategy (Distinct Test Suite Strategy) to achieve more 

accurate fault localization whereas most of the statistical fault localization techniques do not 

consider the bias caused by the existence of the equivalent tests. If two tests execute the 

same set of statements, then we consider them as equivalent tests with respect to their 

statement coverage. We assume that there are several bad tests in the test suite: bad passed 

tests and bad fail tests. A bad passed test is defined as “the test that passes even if it executes 

the faulty statement”. A bad fail test is defined as “the test that executes too many innocent 

statements”. We empirically show that increasing the number of tests that are equivalent to a 

bad test has a negative effect on the result of the fault localization. The details are given in 

the subsection 5.4. Since it is not known whether a test is a bad test or not, the existence of 

the equivalent tests can cause a bias in the ranking of statements according to their 

suspiciousness values during the process of statistical fault localization. Therefore, we select 

the safe side and eliminate the equivalent tests from both passed and failed tests in our 
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experiments. This strategy achieves on average 99.5% test size reduction. Moreover, the 

proposed technique has a higher ranking than others for 26.3% (31 of 118) of all the versions 

of the subject programs while it is one of the best performing techniques for 73.7% (87 of 

118) of all the versions of the subject programs with this Distinct Test Suite Strategy. 

 

We propose a new test suite reduction strategy to reduce the effort for the fault localization 

by reducing the test suite size. Different from the literature, we propose to eliminate the 

failed tests that may mislead the SFL to assign higher suspiciousness values to innocent 

program elements (FminCov Test Suite Strategy). We empirically show the effects of this 

strategy on three popular SFL techniques (Jaccard, Tarantula, and Ochiai) by using the 

Siemens suite. This strategy achieves on average 10.1% test size reduction. 

 

In addition, we investigate two kinds of reductions of the passed tests in combination with 

the FminCov Test Suite Strategy. In the first kind of reduction, we aim to eliminate the 

passed tests that are close to the eliminated failed tests, similar to Masri and Assi (2014). The 

intuition is to remove the tests that execute the faulty statement but still pass (Classification 

Strategy). We first classify the passed tests into the eliminated failed tests and the remaining 

failed tests by using KNN classification algorithm. Then select the class that contains the 

remaining failed tests and remove other class. This strategy achieves on average 30.3% test 

size reduction. In the second kind of reduction, similar to Dandan, Tiantian, Xiaohong, and 

Peijun (2013), we aim to eliminate the passed tests that are not very close to the remaining 

failed tests (Clustering Strategy). The intuition is that of delta debugging (Zeller, 1999) 

which states that a passing run closest to a failing run contains the most information. We 

cluster the remaining failed tests and all the passed tests into subsets by using a hierarchical 

clustering algorithm, specifically Agglomerative clustering, and then select the subset that 

contains the remaining failed tests. This strategy achieves on average 34.1% test size 

reduction. 

 

In our experiments, we examine all three test suite reduction strategies and show that all the 

reduction strategies result in significant reductions in the size of tests. Among all three, the 

failed test elimination strategy results in the best improvement but the elimination of the 

passed tests similar to the eliminated failed tests (Classification Strategy) results in quite 

comparable results to failed test elimination strategy. Removing the passed tests similar to 

the eliminated failed tests results in high reductions in the size of test suite (up to 81%). Best 

of these test suite reduction strategies achieves an improvement up to 1.7% in Jaccard, up to 
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2.46% in Tarantula, up to 1.01% in Ochiai, and up to 0.38% in Ela in terms of average 

expense. 

 

We propose a new effective ranking strategy for improving the ranking of statements (Local 

Maxima Strategy) in order to improve the effectiveness and decrease the effort for the fault 

localization. Instead of serving all the statements with their suspiciousness ranks to the 

software developers, we aim to serve only the statements which are the local maximum in its 

1-nearest neighborhood. This strategy reduces the number of statements that software 

developers must inspect to locate the fault. It assumes that the innocent statements near to 

the faulty statement are likely to be assigned with high suspiciousness values and should be 

eliminated from the list of suspicious statements. This strategy achieves an improvement 

10.54% in Jaccard, 10.47% in Tarantula, 10.74% in Ochiai, and 10.88% in Ela in terms of 

average expense. 

1.1. Research Questions 

This dissertation proposes a fault localization framework that consists of a new fault 

localization metric called Ela, three test suite reduction strategies to improve the 

effectiveness of fault localization, and an effective ranking strategy to improve the ranking 

of statements. To achieve these goals four main research questions are answered. 

 

RQ.1: Can we define a metric to achieve better fault localization accuracy? 

RQ.2: Does the redundancy of tests affect the fault localization accuracy? What is the effect 

of equivalent tests? 

RQ.3: Can we improve test suite quality? 

RQ.3.1: What type of tests affect test suite quality? 

RQ.3.2: Can we find a subset of tests that have better test suite quality by clustering and 

classification of failed and passed tests? 

RQ.4: How can we improve the ranking of statements? Can we implement a post processing 

technique to improve the fault localization accuracy based on suspiciousness values of 

statements?  
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1.2. Contributions of the Dissertation 

The contributions of this dissertation are as follows: 

 A new fault localization metric: Ela. 

 Empirical evidence showing that equivalent tests distort the result of fault 

localization and a distinct test selection strategy. 

 Three test suite reduction strategies and their empirical evaluations. 

 A new effective suspiciousness ranking strategy: Local Maxima. 

1.3. Structure of the Dissertation 

The rest of this dissertation is organized as follows: Section 2 gives an overview of the fault 

localization techniques in the literature. Section 3 introduces the preliminaries of the fault 

localization: the suspiciousness metrics (Jaccard, Tarantula, and Ochiai), the evaluation 

metrics: expense, code examination effort, and mean reciprocal rank. Section 4 describes the 

proposed fault localization technique: Ela. Section 5 explains the proposed three test suite 

reduction strategies. Section 6 explains the proposed three test suite reduction strategies. 

Section 7 presents the experiments, the comparisons and the results. Section 8 discusses the 

threats to the validity of the research. Section 9 presents the conclusions and the discussions. 

Section 10 discusses the directions for the future work. 
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CHAPTER 2 

 

 

 

 

2. LITERATURE REVIEW 

 

 

 

 

 

 

Fault localization is a research topic which aims to reduce the effort and the cost of the 

software projects by improving the rate of fault detection. Many techniques have been 

proposed for automating the fault localization process in order to achieve this aim. In this 

chapter, we first review the fault localization techniques, and then present the current state-

of-the-art for test suite reduction and test suite selection techniques applied on the fault 

localization in the literature. 

2.1.  Fault Localization 

In this study, we categorize the fault localization techniques into five categories: traditional 

debugging technique, algorithmic debugging technique, program slice based technique, 

memory state based technique, and statistical technique. The studies proposed in the 

literature under these categories are covered in the following subsections. 

2.1.1. Traditional Debugging Technique 

Software developers traditionally use two different approaches for finding the software 

faults. In the first one, software developers insert print statements into the subject programs 

and monitor whether the program executions reach to these print statements or not. In 

addition, they can output several variables and their values in the print statements to show 

the runtime behavior of the subject programs. In the second one, software developers use the 

symbolic debuggers to debug the subject programs. They can stop at a particular point and 

examine the current states of the variables in the programs. In addition, they can change the 

current values of the variables and follow the runtime behavior of the programs by using 

these symbolic debuggers (Balzer, 1969; Agrawal et al., 1991). 
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2.1.2. Algorithmic Debugging Technique 

In this technique, complex computations are decomposed into the simpler sub-computations. 

Software developers check each of the sub-computations for correctness. When a complex 

computation is incorrect then its sub-computations are checked for correctness. If a sub-

computation is determined as incorrect, then it is assumed that the fault is localized in this 

sub-computation. On the other hand, a complex computation can be incorrect while all of its 

sub-computations are correct. In this case, it is assumed that the fault is located in the 

compositions of the sub-computations (Shapiro, 1983). 

2.1.3. Program Slice Based Technique 

It is a code based technique used for software debugging and fault localization. Execution 

slice is defined as the set of statements executed by a program for a particular test (Agrawal, 

1991). In this technique, the initial set of suspicious statements is generated by removing the 

statements executed by the passed tests from the set of statements executed by the failed 

tests. The techniques set difference (SD), set union (SU), set intersection (SI), and nearest 

neighbor (NN) are four different specific program slicing techniques. 

2.1.3.1. Set Difference Technique (SD) 

In this technique, one passed and one failed tests are used. The set of the statements executed 

by a passed test is removed from the set of the statements executed by a failed test. The 

resulting set is used as the initial set of suspicious statements for finding the software faults 

(Agrawal et al., 1995). 

Einitial = Efailed – Epassed         (1) 

Agrawal, Horgan, London, and Wong (1995) present a fault localization tool called χSlice 

(χSuds, 1998) based on slicing and dicing for the standard C programming language. An 

experiment is performed on a complex UNIX sort program to show the usefulness of slicing 

in locating software faults. They seed the sort program one at a time with a total of 25 bugs 

resulting in 25 erroneous variants of the sort program with a single bug. The experimental 

results show that χSlice is an effective tool in locating software faults since the ratio of the 

block coverage and the decision coverage are 96% and 89% respectively. 

2.1.3.2. Set Union (SU) & Set Intersection (SI) Techniques 

The set union and the set intersect techniques are two specific approaches of the program 

slicing techniques (Renieris & Reiss, 2003). The union of the statements executed by all 

passed tests is removed from the set of the statements executed by a single failed test. 
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Einitial = Efailed – Epassed         (2) 

The set of the statements executed by a single failed test is removed from the intersection of 

the statements executed by every passed test. 

Einitial = Epassed –Efailed         (3) 

The resulting set is used as the initial set of suspicious statements for finding the software 

faults (Renieris & Reiss, 2003). 

2.1.3.3. Nearest Neighbor (NN) Technique 

In this technique, any single failed test is selected first and then the passed test having most 

similar coverage to the selected failed test is found. Afterwards, the set of the statements 

executed by the found passed test is removed from the set of the statements executed by the 

selected failed test. The resulting set is used as the initial set of suspicious statements for 

finding the software faults (Renieris & Reiss, 2003). 

Einitial = Efailed – Epassed         (4) 

The authors perform an experiment on the Siemens test suite. The NN technique is compared 

with SU and SI techniques on this test suite. The experimental results show that the NN 

technique outperforms SU and SI techniques. 

2.1.4. Memory State Based Technique 

Cleve and Zeller (2005) propose a cause transition (CT) technique to locate the failure 

inducing faults. This technique performs a binary search of the memory states of a program 

between a passed test and a failed test. It defines a method to automate the process of making 

hypotheses about how state changes affect the output of the program. The authors compare 

their technique with the NN technique on the Siemens suite. The experimental results show 

that their technique stops searching with the 10% code examination effort for 35.66% of all 

the faulty versions of the subject programs while the NN technique stops searching with the 

10% code examination effort for 16.51% of all the faulty versions of the subject programs. 

Therefore, their technique outperforms the NN technique. 

2.1.5. Statistical Technique 

The coverage information on different entities such as classes, methods, blocks, branches, 

predicates, statements etc. are used in the statistical fault localization techniques. First, the 

suspiciousness values for these entities based on their coverage information are calculated. 
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Then, these entities are ranked according to their suspiciousness values. Afterwards, 

software developers investigate these entities according to their ranks in order to find the 

software faults. The studies using the statistical fault localization techniques are categorically 

introduced in the following subsections. 

2.1.5.1. Predicate Based Technique 

Liu, Yan, Fei, Han, and Midkiff (2005) propose SOBER which uses the predicate coverage 

information to localize the software faults without any prior knowledge of the program 

semantics. The SOBER approach models the evaluation patterns of predicates in both correct 

and incorrect runs respectively. An experiment is conducted on the programs of the Siemens 

test suite. The accuracies of the SOBER and two statistical fault localization techniques CT 

and BI are compared on this test suite. The experimental results show that the SOBER 

approach can help software developers locate the software fault for the 68 out of 130 faulty 

versions of the subject programs while the better of two statistical fault localization 

techniques can help software developers locate the software faults for the 52 out of 130 

faulty versions of the subject programs with less than or equal to the 10% code examination 

effort. As a result, their approach outperforms these two techniques in terms of code 

examination effort which is the percentage of faults located. 

 

Zhang, Chan, Tse, Yu, and Hu (2011) offer a predicate based fault localization framework 

based on the three types of hypothesis testing methods. The first method includes non-

parametric tests (Mann-Whiney test and Wilcoxon Signed Rank test), the second method 

includes standard parametric tests (F-test and t-test), and the third method includes 

debugging specific parametric tests (BI and SOBER). An experiment is carried out on the 

Siemens test suite to compare the three methods with each other. Mann-Whitney and 

Wilcoxon Signed Rank tests reach the most relevant predicate for 5.41% and for 17.2% of all 

the faulty versions of the subject programs respectively with the 10% code examination 

effort. F-test and t-test reach the most relevant predicate for 1.8% and for 4.5% of all the 

faulty versions of the subject programs respectively with the 10% code examination effort. 

BI and SOBER techniques reach the most relevant predicate for 9.01% and for 8.11% of all 

faulty versions respectively with the 10% code examination effort. Therefore, non-

parametric testing method outperforms the other two methods. 

 

Parsa, Vahidi-Asl, Arabi, and Minaei-Bidgoli (2009) propose a statistical debugging 

approach based on elastic net. This approach first finds the smallest effective subset of 

program predicates known as bug predictors and then detects the main causes of the faults by 
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using backward slicing technique. When the number of executions is much smaller than the 

number of predicates, this approach is more advantageous since it reduces the set of program 

predicates into the smallest effective subset of program predicates. A linear regression model 

is constructed to find the relationship between program predicates and the falling and passing 

state of the program. An experiment is performed on the Siemens test suite and a real life 

image processing program EXIF. Each program in the test suite is instrumented by a small 

code to collect the values of the program predicates. Their approach is compared with the 

statistical fault localization techniques SOBER and BI. The experimental results show that 

the elastic net approach finds 92 out of 132 faulty versions of the subject programs while 

SOBER and BI find 68 and 53 out of 132 faulty versions of the subject programs 

respectively with less than or equal to the 10% code examination effort. As a result, their 

approach outperforms two statistical fault localization techniques SOBER and BI on the 

subject programs. 

2.1.5.2. Statement Based Technique 

Jones and Harrold (2005) present the Tarantula (Jones et al., 2002) fault localization 

technique which uses the statement coverage and compares it with the fault localization 

techniques from the literature such as SI, SU, NN and CT. Their experimental results show 

that the Tarantula technique is able to guide software developers to the faults for 13.93% of 

all the faulty versions of the subject programs while the best of other techniques is able to 

guide software developers to the faults for 5.43% of all the faulty versions of the subject 

programs with less than or equal to the 10% code examination effort on the Siemens test 

suite. Therefore, their technique is about twice more effective than the best of other 

techniques for finding faulty statements. 

 

Wong, Debroy, and Xu (2012) present a crosstab based (CTB) statistical technique which 

uses the executions of executable statements for each test and the result of each test (success 

or fail) in order to localize software faults in an efficient and effective manner. Several 

experiments are performed on small size programs in the Siemens test suite and the UNIX 

test suite and on large size programs such as Space, Grep, Gzip, and Make. Each faulty 

version of the subject programs is instrumented by the instrumentation tool χSuds (χSuds, 

1998) to collect their statement coverage information. Crosstab is constructed for each 

statement in order to determine its suspiciousness ratio. χ2 test is used to determine the 

associations between the statement coverage information and the result of tests. This 

technique is compared with the Tarantula, SOBER and BI. The experimental results show 
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that the CTB statistical technique outperforms SOBER and BI techniques since it is more 

efficient in time spent for locating the faults. 

 

Jeffrey, Gupta, and Gupta (2008) present a value profile replacement approach for ranking 

the program statements according to their likelihood of being faulty. They propose a new 

value profile based approach for fault localization which involves searching for the program 

statements that can affect the output of a failing run such that an incorrect output becomes a 

correct output. This is done by replacing the values used in a statement during the execution 

of a failing run with an alternate set of values and checking whether the resulting output 

becomes a correct output or not. They compare their technique with the Tarantula on the 

Siemens test suite. The experimental results show that the value profile replacement 

approach locates software faults for 10.85% of all the faulty versions of the subject programs 

while the Tarantula approach locates software faults for 2.33% of all the faulty versions of 

the subject programs with less than or equal to the 10% code examination effort. As a result, 

their approach outperforms the Tarantula approach. 

2.1.5.3. Method Based Technique 

Dallmeier, Lindig, and Zeller (2005) propose a plug-in called Ample that helps software 

developers to locate the causes of failure in the Java programs. Ample works by comparing 

the method call sequences of the passing tests with the sequences of the failing tests. A 

difference in the method call sequences is assumed to be likely to locate the erroneous class. 

It presents the ranking of the classes which are likely to be responsible for the failure. 

Therefore, software developers looking for the bugs are advised to inspect the classes in the 

presented order. They perform an experiment on the NanoXml parser to evaluate their 

rankings. Their experimental results show that the defective class is immediately identified 

in 36% of all test runs. It is stated that a software developer using their technique must 

inspect on average 21% of the executed classes (10% of all classes) before finding the bug. 

2.1.5.4. Block Based Technique 

Abreu, Zoeteweij, and Van Gemund (2006) propose a block coverage based fault 

localization technique. It is aimed to localize the software faults by using different similarity 

coefficients. The coefficients are selected from the automated fault localization techniques 

Jaccard, Tarantula, Ample (Dallmeier, Lindig, & Zeller, 2005), and Ochiai (Abreu et al., 

2007). An experiment is performed on the Siemens test suite. Every single program in the 

test suite is instrumented by the instrumentation tool called Front (Augusteijn, 2002). The 

effectiveness of selected coefficients in terms of code examination effort is evaluated on this 
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test suite. The experimental results show that the Ochiai coefficient decreases the percentage 

of the code blocks needed to be inspected by 5% and outperforms the other three 

coefficients. 

 

Xu, Chan, Zhang, Tse, and Li (2011) present the Minus and Key Block Chain (MKBC) fault 

localization technique which is based on the chains of key basic blocks. The MKBC 

technique is compared with five fault localization techniques, which are Minus (Xu et al., 

2011), Jaccard, Ochiai, BI, and Tarantula, on three real life medium size programs (Jtopas, 

Xml-security, and Ant) from the software-artifact infrastructure repository (SIR, 2014). Each 

program in the test suite is instrumented by the instrumentation tool called Soot (Vallée-Rai 

et al., 1999). The experimental results show that the MKBC localize software faults for 

10.35% of all the faulty versions of the subject programs while Minus, Jaccard, Ochiai, BI, 

and Tarantula techniques localize software faults for 3.45%, 3.45%, 3.45%, 0%, and 3.45% 

of all the faulty versions of the subject programs respectively with less than or equal to 1% 

code examination effort. Therefore, the MKBC technique outperforms other five techniques 

in terms of the code examination effort. 

2.2. Test Suite Reduction and Test Suite Selection 

Test suite reduction and test selection have gained a great attention in recent years in fault 

localization community. There are several studies proposing new test suite reduction 

strategies and evaluating their effects on fault localization in the literature. Currently, there is 

no consensus on the effects of test suite reduction and test suite selection on the fault 

localization. The studies have showed that these strategies resulted in a decrease of fault 

localization effort and achieved an improvement over fault localization effectiveness. 

 

Yu, Jones, and Harrold (2008) investigate the effect of six reduction strategies, which are 

variations of removing the tests that execute the same statements (coverage vector-based 

reduction), and variations of removing the tests that do not contribute to the statement 

coverage (statement-based reduction). They show that the statement coverage based 

reduction causes extensive reduction in the effectiveness whereas the coverage-vector based 

elimination improves the effectiveness. Hao et al. (2010) propose test reduction strategies 

that select a subset of a test suite with minimal undistinguishable statements. They assume 

that two statements are undistinguishable if every test executes both of them or neither of 

them. In one of their strategies, they extend the definition of undistinguishable statements to 

the statements which are executed by the same number of failed and passed tests. Their 
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experimental results show that these reductions cause minor decrease in fault localization 

effectiveness. 

 

Abreu, Zoeteweij, and Van Gemund (2007) and Baudry, Fleurey, and Le Traon (2006) 

investigate the effect of the number of tests in fault localization. Baudry et al. (2006) 

enhance the existing test suite by adding new tests that increase dynamic basic blocks which 

are set of statements covered by the same tests. They state that adding such tests increase the 

fault localization effectiveness. Abreu et al. (2007) select subsets with varying numbers of 

passed and failed tests. Their experimental results show that the effect of adding more than 

six failed tests or more than twenty passed tests results in minimal impact on the fault 

localization effectiveness. 

 

There are also several studies showing that test reduction improves fault localization 

effectiveness. Dandan et al. (2013) propose a two-step reduction. They first remove the 

passed tests whose coverage vector is orthogonal to that of all failed tests for programs with 

a single fault. In multi fault localization, the passed tests which are orthogonal to at least one 

failed test are removed. Then, they select representatives with minimal execution path length 

for each group of tests with identical coverage vectors. Hao et al. (2005b) claims that 

redundant tests in the test suite may cause a bias and harm the SFL effectiveness. They 

propose similarity aware fault localization based on the application of fuzzy sets. In their 

experiments reported in Hao, Zhang, Zhong, Mei, and Sun (2005a), the elimination of 

redundant tests improves the fault localization effectiveness. They use the technique 

proposed by Harrold, Gupta, and Soffa (1993) but do not state whether they use the 

statement coverage as test requirement or def-use pairs as in the original paper. Masri and 

Assi (2014) define the term coincidental correctness for a test when it executes the faulty 

statement but still produces the correct result (i.e. passed test). They propose several 

techniques to remove such tests by using a clustering based approach where they eliminate 

the passed tests similar to failed ones. They achieve better fault localization with such 

elimination for some cases. However, they remove some of the most informative tests with 

this approach as well. Zeller (1999) states that a passed test similar to a failed test contains 

most information. 

 

Podgurski, Masri, McCleese, Wolff, and Yang (1999) present a stratified random sampling 

approach to reduce the number of program executions that software developers should check 

manually in the testing process. They first collect the profiles of the programs executions. 

Next, they cluster these program executions according to the similarities among their 
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profiles. Afterwards, they perform a stratified random sampling to estimate the proportion of 

failures in the entire execution population for the program. In this sampling, a random 

sample is selected from each cluster without replacement. They perform their experiments on 

five ANSI C parsers and a project scheduling system. They compare the efficiency of the 

stratified random sampling with simple random sampling. The execution population for each 

of five parsers is clustered into approximately 100, 150, 200, and 250 strata (5x4=20 cases). 

Moreover the execution population for the project scheduling system is clustered into 

approximately 100, 150, and 200 strata (6x3=18 cases). They use a two stage clustering 

approach which combines partitioning and hierarchical clustering algorithms. In the first 

stage, they partition the executions into first-stage clusters by using k-medoids algorithm. In 

the second stage, they cluster the first-stage clusters into second-stage clusters by using 

hierarchical clustering algorithm. Finally, they select a random sample from each second-

stage cluster without replacement. Experimental results show that the stratified random 

sampling is more accurate than simple random sampling for 97.36% of all cases (37 of 38). 

 

Dickinson, Leon, and Podgurski (2001a) evaluate the effectiveness of the cluster analysis of 

execution profiles to find failures among the program executions. They compare several 

filtering procedures which involve a clustering strategy and a sampling strategy. They 

perform their experiments on five programs which are a word count program, a directory 

listing program, a regular expression parser, a regular expression finder, and a java pretty 

printer. They use agglomerative clustering algorithm and five sampling strategies which are 

random sampling, one-per-cluster sampling, adaptive sampling, n-per-cluster sampling, and 

small cluster sampling in their experiments. They use 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 

and 30% percentages of the size of the execution population as the cluster counts. 

Experimental results indicate that adapting sampling strategy is more efficient for finding 

failure than other four sampling strategies for all program variations. 

 

Dickinson, Leon, and Podgurski (2001b) propose a failure pursuit sampling which is a form 

of adaptive sampling for revealing failures in the software. They define a cluster filtering 

procedure which involves selecting the clustering algorithm, the dissimilarity metric, the 

cluster count, and the sampling method. They perform their experiments on GNU LilyPond 

music typesetting program (Nienhuys & Nieuwenhuizen, 2003) and the C-language compiler 

of the GNU Compiler Collection (GCC) (Stallman, 2009) to evaluate the failure pursuit 

sampling. The executions are partitioned into the clusters by using the agglomerative 

hierarchical clustering algorithm. N-dimensional Euclidean distance is used as the 

dissimilarity metric. 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, and 30% percentages of the size 
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of the execution population are used as the cluster counts. Five different sampling methods 

which are simple random sampling, one-per cluster sampling, n-per-cluster sampling, small 

cluster sampling, and adaptive sampling are used to select the executions from clusters. 

Experimental results show that the adaptive sampling finds more failures than the simple 

sampling, the one-per-cluster sampling, and n-per-cluster sampling. Moreover, failure-

pursuit sampling and adaptive sampling find similar numbers of failures in the experiments. 

Therefore, they conclude that the failure-pursuit sampling is as effective as adaptive 

sampling. 

 

Podgurski et al. (2003) propose automated support for classifying failed executions in order 

to prioritize them and diagnose their causes. First, they combine the failed executions with a 

random sample of successful executions. Next, they apply the feature selection strategy to 

select the features used to distinguish failed executions from successful executions. These 

features are actually pattern classifiers. Logistic regression models are employed as pattern 

classifiers in this selection strategy. Afterwards, they apply the classification strategy to 

group failed executions whose execution profiles are similar according to the selected 

features. They use k-medoids clustering algorithm and hierarchical multidimensional scaling 

(HMDS) multivariate visualization technique. The resulting classification of failed 

executions is used to find the faults manually in the subject programs. They perform their 

experiments on three large subject programs which are GCC (Stallman, 2009), Jikes (Jikes, 

2014), and Javac (Java, 2014) to evaluate their classification strategy and compare it with 

manual classification. Experimental results indicate that their classification strategy is 

effective and scales to large programs. 

 

Masri and Assi (2014) propose an approach that groups the passing tests into two clusters 

which are true passing tests and coincidentally correct tests. There are actually three clusters 

which are true passing tests, failing tests, and coincidentally correct tests in their approach. A 

coincidentally correct (CC) test is defined as the test in whose executions the program 

produces coincidentally the correct output. In other words, the fault is executed but its 

execution does not take effect on the result of test. They present two kinds of techniques 

which are tech-I and tech-II to find the CC tests. In tech-I, they partition all of passed and 

failed tests into two clusters by using k-means clustering algorithms. Hereafter, they select 

the cluster which contains the majority of the failing tests and label the passing tests within 

this cluster as CC tests. In tech-II, they partition only the passing tests into two clusters by 

using k-means clustering algorithms. Hereafter, they select the cluster which has higher 

relevance and label the passing tests within this cluster as CC tests. They perform their 
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experiments on several subject programs such as PrintTokens, PrintTokens2, Replace, 

Schedule, Schedule2, Tcas, TotInfo, NanoXml parser v.1, NanoXml parser v.3, NanoXml 

parser v.5, Space, Sed, Flex, and Gzip from SIR (SIR, 2014) and JTidy (JTidy, 2014). Their 

experimental results show that their technique is promising. 

 

Farjo and Masri (2014) propose three heuristics which assign weights to the profiling 

elements such that higher weights indicate more potential relevance to failure. Heuristic-I 

assigns higher weight to the profiling elements not covered by many tests, since the number 

of failing tests is typically much smaller than the number of passing tests. Heuristic-II 

extends Heuristic-I by using a fuzzy logic approach in the computation of the weights. 

Heuristic-III assigns higher weights to the profiling elements covered by tests which are very 

dissimilar from others since failing tests are likely to be outliers. They perform several 

experiments on several subject programs such as PrintTokens2, Schedule, TotInfo, Space, 

Flex, Sed, and Gzip from SIR (SIR, 2014), Tomcat (Tomcat, 2014), Jigsaw (Jigsaw, 2014), 

and JTidy (JTidy, 2014). They empirically evaluate their heuristics by measuring their 

impact on an established test suite minimization technique. Experiment results indicate that 

the third one exhibits the most positive impact on the execution profiles. Although their 

results are not positive in all cases, they are encouraging to investigate more heuristics. 

2.3. Surveys about Fault Localization, Test Suite Reduction and Test Suite Selection 

There are several survey papers about fault localization, test suite reduction, and test suite 

selection in the literature. In this section, we provide a brief summary of these papers. 

 

Wong & Debroy (2009) provide an overview of various fault localization methods in the 

literature. They categorize them in seven categories: “static, dynamic and execution slice-

based”, “program spectrum-based”, “statistics-based”, “program state-based”, “machine 

learning-based”, “model-based”, and “data mining-based”. Furthermore, they discuss an 

effectiveness metric called “Exam” for fault localization. 

 

Alipour (2012) categorizes the fault localization techniques based on their common features 

into five categories: “program slicing”, “spectra based fault localization”, “statistical 

inference”, “delta debugging”, and “model checking”. He examine several important 

techniques for automated fault localization under “delta debugging”, and “model checking” 

categories in the literature. Moreover, he briefly discuss the merits and shortcomings of these 

techniques. 
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Agarwal & Agarwal (2014) review various articles, journals and conference papers on 

software fault localization in the literature. They aim to give essential information about the 

methods, dataset, and techniques which are used for comparison. They state that coverage 

based methods gain significant attention and should be used to a large extent. They specify 

that large datasets achieve more accurate results and should be used to evaluate the methods. 

 

Su, Gong, Wang, and Ma (2014) discuss three approaches: test case reduction, fault 

localization, and fault comprehension. They analyze current representative techniques about 

three approaches and their limitations. They also discuss on-going research issues about 

three approaches. 

 

Abreu et al. (2006) studies the influence of four similarity coefficients: Jaccard, Tarantula, 

Ample, and Ochiai. They evaluate four coefficients and assess their effectiveness by using 

block coverage information on the Siemens suite. They conclude that Ochiai coefficient 

consistently outperforms Jaccard, Tarantula, and Ample coefficients. 

 

Kim and Lee (2014) identify the characteristics of the existing studies through the 

experimental analysis. Based on their characteristics, the existing studies are divided into 

three groups: Jaccard group, Ample group, and Ochiai group. They provide the strength and 

the weakness of each group. 

 

Vidács, Beszédes, Tengeri, Siket, and Gyimóthy (2014) investigate the effect of different test 

reduction methods on the performance of fault localization and detection techniques. They 

also provide new combined methods that incorporate both localization and detection aspects. 

They empirically evaluate the methods by measuring detection and localization metrics of 

test suites with various reduction sizes, and by how reduced test suites perform with actual 

faults. They perform their experiments with SIR programs traditionally used in fault 

localization research, and extend the case study with large industrial software systems. 
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CHAPTER 3 

 

 

 

 

3. PRELIMINARIES 

 

 

 

 

 

 

Among the fault localization techniques, statistical fault localization technique is the most 

commonly used technique since it is lightweight and does not require its users to provide 

additional information such as the structure of the program. Statistical techniques analyze the 

relationship between the result of failed or passed tests and the statement coverage of these 

tests. There are some representative techniques such as Tarantula, Jaccard, and Ochiai based 

on the statistical fault localization techniques (Kim & Lee, 2014). These techniques are 

widely used in most of the studies in the literature. Therefore, these leading techniques can 

be compared to evaluate the accuracy of a new statistical fault localization technique. We 

call them the three prominent fault localization techniques in this study. Some example 

studies that use Jaccard, Tarantula, and Ochiai are given below. 

 Jaccard: Abreu et al., 2006; Yu et al., 2008; Zhang, Chan, Tse, Jiang, & Wang, 2009; 

Xie, Wong, Chen, & Xu, 2010; Naish, Lee, & Ramamohanarao, 2011; Xu et al., 2011; 

Zhang et al., 2011; Artzi, Dolby, Tip, & Pistoia, 2012; Chan & Cai, 2012; Qi, Mao, Lei, 

& Wang, 2013; Xu, Zhang, Chan, Tse, & Li, 2013; Mao et al., 2014; Kim & Lee, 2014 

 Tarantula: Jones & Harrold, 2005; Abreu et al., 2006; Liu, Fei, Yan, Han, & Midkiff, 

2006; Jeffrey et al., 2008; Yu et al., 2008; Zhang et al., 2009; Hao et al., 2010; Xie et al., 

2010; Baah, Podgurski, & Harrold, 2011; Naish et al., 2011; Wong et al., 2012; Zhang et 

al., 2011; Xu et al., 2011; Artzi et al., 2012; Chan & Cai, 2012; Maheswari & 

Venkatesakumar, 2013; Qi et al., 2013; Sahoo et al., 2013; Xu et al., 2013; Yoo, Harman, 

& Clark, 2013; Mao et al., 2014; Kim & Lee, 2014 

 Ochiai: Abreu et al., 2006; Yu et al., 2008; Xie et al., 2010; Baah et al., 2011; Naish et 

al., 2011; Xu et al., 2011; Zhang et al., 2011; Artzi et al., 2012; Chan & Cai, 2012; 
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Maheswari & Venkatesakumar, 2013; Qi et al., 2013; Sahoo et al., 2013; Xu et al., 2013; 

Mao et al., 2014; Kim & Lee, 2014 

Given a test suite and their pass/fail results, statistical fault localization techniques, a.k.a. 

spectrum-based or coverage-based fault localization, use the coverage information of failed 

and passed tests to determine the likelihood of a program element (e.g. classes, methods, 

blocks, branches, predicates, statements etc.) being faulty. This likelihood is called the 

suspiciousness of an element. The coverage type used in the spectra determines the unit of 

the faulty program element. For example, if the statement coverage is used, the technique 

determines the suspiciousness of the program statements. In this study, we are using the 

statement coverage as the execution information. 

 

The coverage information of all tests are given to a fault localization technique is in the form 

of a coverage matrix as illustrated in Figure 1. Each row in this matrix is a coverage vector 

of a test in the test suite. Let m be the number of tests in the given test suite, n be the number 

of statements in the program, and let i, j be two integers where 0 < i ≤ m and 0 < j ≤ n. The 

coverage matrix is a boolean m × n matrix where an entry Aij shows whether the test Ti has 

executed the statement sj or not. Aij is 1 if the test run Ti has executed the statement sj. The 

test results are represented with the result vector where each entry Ri shows whether test Ti 

is a passing run (1) or a failing run (0). 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑣𝑒𝑐𝑡𝑜𝑟
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⋮
𝑅𝑚

]
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𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑠𝑢𝑙𝑡

𝑚𝑎𝑡𝑟𝑖𝑥 𝑣𝑒𝑐𝑡𝑜𝑟

 

Figure 1 – Coverage matrix and result vector 

 

m : Number of tests 

n : Number of statements 

Sn : Statement ‘n’  

Tm : Test ‘m’ 

Rm : Result of the test ‘m’ (passed = 1; failed = 0) 

Amn : Coverage result of the statement ‘n’ by the test ‘m’ (executed = 1; not executed = 0)  
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Given such a coverage matrix and its corresponding result vector, each SFL technique 

determines the suspiciousness of program elements based on different intuitions. This 

suspiciousness is computed using the number of failed and passed tests that executed (or not 

executed) the statement. The basic notations used in the calculation of suspiciousness by 

three popular approaches which are Tarantula, Jaccard, and Ochiai coefficients are shown in 

Table 1. 

Table 1 – Metrics used in the suspiciousness formulas of the fault localization techniques 

Af Total # of failed tests 

Ap Total # of passed tests 

Aef (sj) Total # of failed tests executing statement ‘sj’ 

Anf (sj) Total # of failed tests not executing statement ‘sj’ 

Aep (sj) Total # of passed tests executing statement ‘sj’ 

Anp (sj) Total # of passed tests not executing statement ‘sj’ 

 

Using the suspiciousness values, the SFL technique ranks the program elements with respect 

to their likelihoods of containing the fault. There are five ranking strategies which are 

standard competition ranking (1-2-2-4 rule), modified competition ranking (1-3-3-4 rule), 

dense ranking (1-2-2-3 rule), ordinal ranking (1-2-3-4 rule), and fractional ranking (1-2.5-

2.5-4 rule) (Lange, 2014). We use the standard competition ranking in this study. 

3.1. Suspiciousness Metrics 

In this section, we briefly introduce the three prominent fault localization techniques, 

Jaccard, Tarantula, and Ochiai. Three suspiciousness metrics used in the three prominent 

fault localization techniques are described as follows: 

 

Jaccard 

 

Abreu et al. (2006) used the Jaccard metric in their fault localization technique to localize the 

software faults. The Jaccard equation can be represented as: 

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(sj) =
Aef

(Aef+Anf+Aep)
       (5) 

Tarantula 

 

Jones and Harrold (2005) used the Tarantula metric in their fault localization technique to 

localize the software faults. The Tarantula equation can be represented as: 
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𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(sj) =

Aef
Aef+Anf

Aef
Aef+Anf

 + 
Aep

Aep+Anp

      (6) 

Ochiai 

 

Abreu et al. (2007) used the Ochiai metric in their fault localization technique to localize the 

software faults. The Ochiai equation coefficient can be represented as: 

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(sj) =
Aef

√(Aef+Aep)x(Aef+Anf)
      (7) 

3.2. Evaluation Metrics 

Expense and Code Examination Effort are two metrics widely used to measure the 

effectiveness of the fault localization techniques in the literature (Renieres & Reiss, 2003; 

Cleve & Zeller, 2005; Jones & Harrold, 2005; Liu et al., 2005; Zhang et al., 2009). 

3.2.1. Expense 

Expense (Jones, 2008) measures the effort of a user to locate the faulty statement by 

inspecting the list of statements of a program in the order ranked by a fault localization 

technique. A fault localization technique presents a ranked list of statements as an output and 

the user is assumed to locate the faulty statement along this list. For example, if the rank of 

faulty statement is ‘k’ then the user inspects ‘k’ statements of the program to locate this 

faulty statement. The expense metric measures this cost. Expense can be represented as: 

𝐸𝑥𝑝𝑒𝑛𝑠𝑒 = (
Rank of Fault

Number of All Statements
) x 100      (8) 

3.2.2. Code Examination Effort 

Code Examination Effort (Jones & Harrold, 2005) is the number of faults located when 

examining a certain percentage of the source code. 

𝐶𝑜𝑑𝑒 𝐸𝑥𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑜𝑟𝑡 = (
Percentage of Faults Located

Percentage of Code Examined
)    (9) 

Suppose there are 4 versions and the expense for version 1 is 10%, version 2 is 20%, version 

3 is 30%, and version 4 is 40%. Then the fault localization technique is said to catch 50% 

(2/4) of the faults in 20% of code examination effort. Similarly, the technique finds 75% 

(3/4) of the faults with 30% of code examination effort. Finally, the technique finds 100% 

(4/4) of the faults with 40% of code examination effort. 
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3.3. Mean Reciprocal Rank (MRR) 

Mean reciprocal rank (Voorhees,  1999) is a measure used in the information retrieval (IR) 

domain for evaluating a process that returns a list of possible responses to a sample of 

queries, ranked by probability of correctness. In our case, we are evaluating a fault 

localization technique that returns a list of possible faulty statements, ranked by the 

probability of faultiness. To calculate the MRR, we first need to calculate the reciprocal rank 

which is defined as the multiplicative inverse of the rank of the first correct answer in IR 

domain. The reciprocal rank is the multiplicative inverse of the rank of the statement that 

actually has the fault in our case. Let ‘P’ be the set of subject programs, and FaultRankp be 

the rank of the faulty statement reported by a technique for the subject program ‘p' where 

pP. Then, the mean reciprocal rank for the technique is calculated as: 

𝑀𝑅𝑅 =  
1

|𝑃|
∑

1

FaultRankp

𝑁

𝑝𝑃
        (10) 

3.4. Subject programs 

In this study, we used the Siemens suite (Hutchins et al., 1994) available at the software-

artifact infrastructure repository (SIR, 2014) as subject programs. We selected this suite 

since it is a quite frequently used benchmark suite in the fault localization and test reduction 

research (Jones et al., 2002; Renieres & Reiss, 2003; Cleve & Zeller, 2005; Abreu, 

Zoeteweij, & Van Gemund, 2007; Yu et al., 2008; Dandan et al., 2013). Siemens suite 

consists of seven C programs and associated test suites. For each of these programs, there are 

several versions, each of which contains manually injected one logical fault. There are 132 

versions of C programs in this suite. For some of these versions, the test suite provided 

cannot differentiate the faulty version from the original program i.e. there were no failed 

tests for these versions. Since statistical fault localization techniques require at least one 

failed test, we excluded these versions in our experiments. We have used 118 versions of C 

programs as the subject programs in our study. Table 2 gives the following information 

about these seven C programs: program name, line of code, number of all tests, and a brief 

description of the program.  
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Table 2 – The seven C programs in SIR 

Program 
# of 

Versions 
LOC 

# of All 

Tests 
Versions Excluded Description 

PrintTokens 7 565 4,130 V04 & V06 lexical analyzer 

PrintTokens2 10 529 4,115 No lexical analyzer 

Replace 32 563 5,501 No pattern replacement 

Schedule 9 412 2,650 V09 priority scheduler 

Schedule2 10 307 2,588 V04 & V09 priority scheduler 

Tcas 41 173 1,608 V13,V14, V15,V36, V38 collision avoidance system 

TotInfo 23 406 1,051 V06,V10, V19,V21 information measurer 

 

The details about this suite are given in the subsection 7.1. 
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CHAPTER 4 

 

 

 

 

4. PROPOSED TECHNIQUE: ELA 

 

 

 

 

 

 

In this section, we propose an automated statistical fault localization technique (Ela) based 

on the statement coverage information of a test set. First, we define the methodology of Ela. 

Next, we briefly describe the motivating examples which are the mid() and 

unblock_process(ratio) functions. Finally, we discuss the results of the experiments 

performed on the motivating examples. 

4.1. Methodology 

It is assumed that the test set at hand contains at least one passed and one failed test. We use 

two kinds of the statement coverage of failed and passed tests: Aef/Af and Anp/Ap. The ratio 

Aef/Af stands for the frequency of a statement executed by failed tests and therefore how 

suspicious a statement is based on the execution information coming from the failed tests. 

The ratio Aep/Ap stands for the frequency of a statement executed by passed tests and 

therefore how innocent a statement is based on the execution information coming from the 

passed tests. We use Anp/Ap which is equal to (1 - Aep/Ap) instead of Aep/Ap in our formula. 

The ratio Anp/Ap stands for the ratio of the non-executions of a statement in passed tests and 

therefore how suspicious it is based on the execution information coming from the passed 

tests. Finally, we decided to take the geometric mean of the suspiciousness values coming 

from both kinds of tests as follows: 

 

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(si) = {√
Aef(𝑠𝑖)

Af
.

Anp(𝑠𝑖)

Ap
.      if Af ≠ 0 & Ap ≠ 0}   (12) 

 

The geometric mean is a kind of mean or average which shows the central tendency of the 

objects being averaged by using the product of their values. It is often used for comparing 

different objects, each of which has multiple properties that have different numeric ranges 



26 

 

(Shin, Muthaiyah, & Raman, 2012). The use of a geometric mean normalizes the ranges of 

the properties in order to neutralize their weighting effects. A change in the values of the 

properties has the same effect on the geometric mean. When data consist of percentages, 

ratios, rates of change, the geometric mean is a useful measure of central tendency (Brase & 

Brase, 2011). 

 

Since software developers try to write their best code without making any faults and 

software testers find most of the faults during the testing process, Ap is generally much larger 

than Af. Hence; we decided to use the geometric mean for averaging the suspiciousness 

values coming from failed and passed tests in order to neutralize their weighting effects. 

 

However, there are some special cases that must be considered in this formula. For example, 

let s1, s2, and s3 be three statements Assume that s1 is executed in m passed tests and no fail 

test executed it; s2, is never executed by any test, s3 is executed in n failed tests and no 

passed tests. Then, Aef(s1)/Af = 0, Anp(s1)/Ap = m, Aef(s2)/Af = 0 and Anp(s2)/Ap = 0, Aef(s3)/Af 

= n and Anp(s3)/Ap = 0. Thus, suspiciousness(s1) = sqrt(0 x m) = 0, suspiciousness(s2) =sqrt(0 

x 0) = 0, and suspiciousness(s3) = sqrt(n x 0) = 0 which means that suspiciousness values for 

these three statements are all equal to 0 because of the multiplication property of zero. 

However, s1 and s3 are executed by pass and failed tests respectively. Therefore, we use y = 

power(2, x) power transformation function to overcome the problem in these special cases. 

 

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(si) = {√
2

Aef(𝑠𝑖)

Af . 2
Anp(𝑠𝑖)

Ap      if Af ≠ 0 & Ap ≠ 0
}   (13) 

4.1.1. The Effects of the Bases of Aef(si)/Af and Anp(si)/Ap 

We performed several experiments and measure the effects of the bases of Aef(si)/Af and 

Anp(si)/Ap on the suspiciousness value. First we set the base of Anp(si)/Ap to 2 and increased 

the base of Aef(si)/Af from 2 to 10 by 1 and measure their effects on the suspiciousness 

values. We realized that the expense is decreased for the bases in this range. Second we set 

the base of Aef(si)/Af to 2 and increased the base of Anp(si)/Ap from 2 to 10 and measure their 

effects on the suspiciousness values. We realized that the expense is increased for the bases 

in this range. We also measured the effects of decreasing the base of Anp(si)/Ap from 2 to 1 

by 0.1 on the suspiciousness values. We realized that the expense is decreased for the bases 

in this range. We performed the experiments on a train set which contains the 15 versions of 

PrintTokens and PrintTokens2 program and selected the bases of Aef(si)/Af and Anp(si)/Ap on 
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this set. Afterwards, we validated the selected bases of Aef(si)/Af and Anp(si)/Ap on the test set 

which contains 103 versions of Replace, Schedule, Schedule2, Tcas, and TotInfo programs. 

 

Figure 2 displays that increasing the base of Aef/Af from 2 to 10 by 1 has a positive effect on 

the suspiciousness value on average of all the subject programs. Improvements in the 

expense for the bases between 4 and 10 (i.e. the circles right to the white circle) are less than 

1% and can be ignored. Therefore, we decided to increase and use the base of Aef/Af as 4. 

 

Figure 2 – Effect of the base of Aef/Af from 2 to 10 

 

Figure 3 shows that increasing the base of Anp/Ap from 2 to 10 by 1 has a negative effect on 

the suspiciousness value on average of all the subject programs. Therefore, we decided not to 

increase and use the base of Anp/Ap and as 2.  
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Figure 3 – Effect of the base of Anp/Ap from 2 to 10 

 

Figure 4 displays that decreasing the base of Anp/Ap from 2 to 1 by 0.1 has a positive effect 

on the suspiciousness value on average of all the subject programs. Moreover, it indicates 

that omitting this coefficient would be a crucial mistake. The expense rises dramatically 

when the base of Anp/Ap is 1 which is equal to excluding this coefficient. Improvements in 

the expense for the bases between 1 and 2 (i.e. the circles left to the white circle) are less 

than 1% and can be ignored. Therefore, we decided to use the base of Anp/Ap as 2.  
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Figure 4 – Effect of the base of Anp/Ap between 1 and 2 

 

There can be some cases in which the statement coverage information of failed tests are the 

same but the statement coverage information of passed tests are different. In these cases, the 

faulty statement and the innocent statements cannot be differentiated from each other. 

Therefore, Anp/Ap should be included to the calculation of suspiciousness values. A detailed 

discussion is given on the two motivating examples in the subsection 4.2. For example, the 

expense rises dramatically when the base of Anp/Ap is 1 which is equal to excluding this 

coefficient in Figure 3. Omitting this coefficient would be a crucial mistake. 

 

Based on these empirical results, we decide to use the base of Aef(si)/Af as 4 and the base of 

Anp(si)/Ap as 2. The formula is updated with these bases as follows: 
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4.2. Motivating Examples 

We have chosen the mid() function as the first motivating example (Jones et al., 2002). It is a 

function that finds the middle number of three numbers inputted. At the line 7, the 

assignment “m=x” is mistakenly coded as the assignment “m=y”. The source code of mid() 

function is given in Figure 5. 

 

 

mid() { 

 

   int x, y, z, m; 

s1    read("Enter 3 numbers: ", x, y, z); 

s2    m = z; 

s3    if (y<z) 

s4       if (x<y) 

s5          m = y; 

s6       else if (x<z) 

s7          m = x; // changed to: m = y 

s8    else 

s9       if (x>y) 

s10          m = y; 

s11       else if (x>z) 

s12          m = x; 

s13    print("Middle number is: ", m); 

 

} 

Figure 5 – Source code of mid() function 

 

There are five passed test cases and one failed test case written for mid() function. These test 

cases are given in Table 3. Table 3 gives the following information for these cases: name, 

input, expected output, actual output, and test result. 

Table 3 – Five passed test cases and one failed test case written for mid() function 

Test Case 
Input Expected 

Output 

Actual 

Output 

Test 

Result x y z 

T
1
 3 3 4 3 3 P 

T
2
 2 3 4 3 3 P 

T
3
 4 3 2 2 2 P 

T
4
 1 3 2 2 2 P 

T
5
 5 3 4 3 3 P 

T
6
 3 2 4 3 2 F 
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The coverage matrix of the statements and the result vector of tests are given in Table 4. In 

this example, there is only one fail test (T6) and five pass tests. 

Table 4 – Coverage matrix and result vector of mid() function 

Test  S
1
 S

2
 S

3
 S

4
 S

5
 S

6
 

S
7
  

(Fault) 

S
8
 S

9
 S

10
 S

11
 S

12
 S

13
 

Result  

Vector 

T
1
  1 1 1 1 0 1 1 0 0 0 0 0 1 1 (P) 

T
2
  1 1 1 1 1 0 0 0 0 0 0 0 1 1 (P) 

T
3
  1 1 1 0 0 0 0 1 1 1 0 0 1 1 (P) 

T
4
  1 1 1 0 0 0 0 1 1 0 1 0 1 1 (P) 

T
5
  1 1 1 1 0 1 0 0 0 0 0 0 1 1 (P) 

T
6 
 1 1 1 1 0 1 1 0 0 0 0 0 1 0 (F) 

 

Let us exemplify how the technique is applied on the statement S7. For this statement, based 

on the coverage matrix in Table 4, Aef=1, Af=1, Anp=4, and Ap= 5. Hence the suspiciousness 

value for this statement √41 1⁄ . 24 5⁄  = 2.639. We apply Ela to the motivating example and 

the technique assigns the suspiciousness values to the statements as in Table 5. Table 5 

shows the suspiciousness values as well as the rankings (e.g. J. Rank denotes the ranking 

assigned by Jaccard) assigned by the SFL techniques to the statements of the program. 

Table 5 – The suspiciousness values and ranks of the statements on mid() function 

Statement Jaccard J. Rank Tarantula T. Rank Ochiai O. Rank Ela E. Rank 

S1 0.167 7 0.5 7 0.408 7 2 7 

S2 0.167 7 0.5 7 0.408 7 2 7 

S3 0.167 7 0.5 7 0.408 7 2 7 

S4 0.25 3 0.625 3 0.5 3 2.297 3 

S5 0 13 0 13 0 13 1.32 11 

S6 0.333 2 0.714 2 0.577 2 2.462 2 

S7 (Fault) 0.5 1 0.833 1 0.707 1 2.639 1 

S8 0 13 0 13 0 13 1.231 13 

S9 0 13 0 13 0 13 1.231 13 

S10 0 13 0 13 0 13 1.32 11 

S11 0 13 0 13 0 13 1.32 11 

S12 0 13 0 13 0 13 1.414 8 

S13 0.167 7 0.5 7 0.408 7 2 7 
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As Table 5 shows, Ela gives rank 1 to the faulty statement which is line 7. Actually, Ela 

suggests the developers examine the lines in following order: S7, S6, S4, S5, S10, S11, S8, S9, 

S1, S2, S3, S13, S12. This order of the statements is generated according to their suspiciousness 

ranks in descending order. 

 

As mentioned in 4.1.1, there can be some cases in which the statement coverage information 

of failed tests are the same but the statement coverage information of passed tests are 

different. For example, if we have excluded Anp/Ap from the calculation of suspiciousness 

values then Aef/Af for the failed test T
6
 are the same for the following statements: S1, S2, S3, 

S4, S6, S7 (fault), and S13 on the first motivating example. Then the proposed technique 

would assign the same rank to these 7 statements including the faulty statement and could 

not have differentiated the faulty statement from the innocent statements. As a result, we 

should include Anp/Ap to the calculation of suspiciousness values in order to differentiate the 

faulty statement from the innocent statements. 

 

We have chosen the unblock_process(ratio) function as the second motivating example 

(Zhang et al., 2009). It is a function that processes the queue according to its priority. At the 

line 6, the assignment “count=block_queue->mem_count” is mistakenly coded as the 

assignment “count=block_queue->mem_count+1”. Five passed tests and two failed tests are 

written for it. The source code of unblock_process(ratio) function is given in Figure 6. 

 

   void unblock_process(ratio) 

   float ratio; 

   { 

s1      int count; 

s2      int n; 

s3      Ele *proc; 

s4      int prio; 

s5      if (block_queue) { 

s6 
         count=block_queue->mem_count;  

        // count=block_queue->mem_count+1 

s7          n = (int) (count*ratio+1); 

s8          proc=find_nth(block_queue,n); 

s9          if (proc) { 

s10              block_queue=del_ele(block_queue,proc); 

s11              prio=proc->priority; 

s12              prio_queue[prio]=append_ele(prio_queue[prio],proc); 

s13          } 

s14      } 

   } 

Figure 6 – Source code of unblock_process function  
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The coverage matrix of the statements and the result vector of tests are given in Table 6. In 

this example, there are two fail tests (T3 & T6) and five pass tests. 

Table 6 – Coverage matrix and result vector of unblock_process function 

Test  S
1
 S

2
 S

3
 S

4
 S

5
 

S
6
 

(Fault) 
S

7
 S

8
 S

9
 S

10
 S

11
 S

12
 S

13
 S

14
 

Result  

Vector 

T
1
  1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 (P) 

T
2
  1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 (P) 

T
3
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 (F) 

T
4
  1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 (P) 

T
5
  1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 (P) 

T
6 
 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 (F) 

T
7
 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 (P) 

 

Let us exemplify how the technique is applied on the statement S6. For this statement, based 

on the coverage matrix in Table 6, Aef=2, Af=2, Anp=3, and Ap= 5. Hence the suspiciousness 

value for this statement √42 2⁄ . 23 5⁄  = 2.463. We apply Ela to the motivating example and 

the technique assigns the suspiciousness values to the statements as in Table 7. Table 7 

shows the suspiciousness values as well as the rankings (e.g. J. Rank denotes the ranking 

assigned by Jaccard) assigned by the SFL techniques to the statements of the program. 
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Table 7 – The suspiciousness values and ranks of the statements on unblock_process 

function 

Statement Jaccard J. Rank Tarantula T. Rank Ochiai O. Rank Ela E. Rank 

S1 0.286 14 0.5 14 0.535 14 2 14 

S2 0.286 14 0.5 14 0.535 14 2 14 

S3 0.286 14 0.5 14 0.535 14 2 14 

S4 0.286 14 0.5 14 0.535 14 2 14 

S5 0.286 14 0.5 14 0.535 14 2 14 

S6 (Fault) 0.5 7 0.714 7 0.707 7 2.463 4 

S7 0.5 7 0.714 7 0.707 7 2.463 4 

S8 0.5 7 0.714 7 0.707 7 2.463 4 

S9 0.5 7 0.714 7 0.707 7 2.463 4 

S10 0.5 7 1 3 0.707 7 2 14 

S11 0.5 7 1 3 0.707 7 2 14 

S12 0.5 7 1 3 0.707 7 2 14 

S13 0.286 14 0.5 14 0.535 14 2 14 

S14 0.286 14 0.5 14 0.535 14 2 14 

 

As Table 7 shows, Ela gives rank 4 to the faulty statement which is line 6. Actually, Ela 

suggests the developers examine the lines in following order: S6, S7, S8, S9, S1, S2, S3, S4, S5, 

S10, S10, S12, S13, S14. 

 

The second motivating example shows that Jaccard technique cannot distinguish the faulty 

statement from other statements, Tarantula and Ochiai techniques distinguish the faulty 

statement from other statements but mislead the developers to wrong statements. On the 

other hand, Ela technique leads the developers to the faulty statement correctly earlier than 

other three techniques. The intuition behind this difference is that Jaccard, Tarantula, and 

Ochiai techniques either do not consider Anp(si) in their metrics or assign same weight to it 

with Aef(si) while considering it. On the other hand, Ela technique considers Aef(si) and 

Anp(si) at the same time and assigns more appropriate weights to them. Therefore, Ela 

technique neutralizes the bias caused by the weights of Aef(si) and Anp(si) and assigns the 

suspiciousness values to the statements more properly. 

4.3. Discussion on the Application of Ela to the Multiple Faults 

There is a traditional approach for the multiple fault localization. In this approach, faults are 

located and corrected one by one iteratively by the software developers until no faults remain 

in the program. First, tests are run on the subject program. Second, a coverage matrix is 

generated from the execution information in these tests. Third, a fault localization technique 
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is applied to this coverage matrix and the ordered list of suspicious statements is generated. 

Fourth, software developers locate the fault by using this list and correct it. Fifth, tests are 

rerun. If there is still a test that fails, then there is a fault in the program and the process starts 

from the beginning. Yu et al., (2008) evaluates the effectiveness of this approach on the 

multiple fault localization. They use SBI, Jaccard, Ochiai, and Tarantula metrics in their 

study. DiGiuseppe and Jones (2011) investigate the ability of the coverage based fault 

localization techniques to effectively localize multiple faults by suing this approach. They 

use Tarantula metric in their study. The proposed metric Ela could be used in this approach 

as the base metric since its requirements are the same as the Tarantula metric. 

 

There are different approaches proposed for multiple fault location in the literature. Jones, 

Bowring, and Harrold (1995) present a parallel debugging technique which generates a 

specific set of test cases for each of multiple faults and assigns each set to a specific 

developer for simultaneous debugging of multiple faults. Tarantula technique is applied to 

each specific set of test cases in their research. Liu and Han (2006) propose a new type of 

failure proximity (R-Proximity) in order to group the failing traces due to the same fault. The 

failing traces are considered as similar traces if they suggest approximately the same fault 

location in this proximity. They suggest the fault locations according to the failing traces by 

using SOBER technique in their study. 

 

Several metrics such as SBI, Jaccard, Ochiai, Tarantula, and SOBER are used in these 

approaches. Since the requirements and inputs of all these techniques are the same as Ela, we 

can use Ela as the base metric for these multiple fault localization approaches. 
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CHAPTER 5 

 

 

 

 

5. PROPOSED TEST SUITE REDUCTION STRATEGIES 

 

 

 

 

 

 

In this chapter, we will present four test suite reduction strategies. 

5.1. Heuristic I: FminCov Test Suite Strategy 

We propose a failed test reduction strategy called “FminCov Test Suite Strategy” for 

programs with single fault. This strategy can be extended to multiple fault programs as a 

heuristic. There are several approaches: Yu et al., (2008); DiGiuseppe and Jones (2011); 

Jones et al. (1995); Liu and Han (2006) for the programs with multiple faults. Our strategy 

can be applied to these approaches as a fault localization metric. 

 

  Statements T1 T2 T3 T4 T5 T6 T7 

  void unblock_process(ratio)               

  float ratio;               

  {               

s1     int count; 1 1 1 1 1 1 1 

s2     int n; 1 1 1 1 1 1 1 

s3     Ele *proc; 1 1 1 1 1 1 1 

s4     int prio; 1 1 1 1 1 1 1 

s5     if (block_queue) { 1 1 1 1 1 1 1 

s6 

        count=block_queue->mem_count; 

        // count=block_queue->mem_count+1 
1 0 1 0 1 1 0 

s7         n = (int) (count*ratio+1); 1 0 1 0 1 1 0 

s8         proc=find_nth(block_queue,n); 1 0 1 0 1 1 0 

s9         if (proc) { 1 0 1 0 1 1 0 

s10             block_queue=del_ele(block_queue,proc); 0 0 1 0 0 0 0 

s11             prio=proc->priority; 0 0 1 0 0 0 0 

s12 

                

prio_queue[prio]=append_ele(prio_queue[prio],proc); 
0 0 1 0 0 0 0 

s13         } 1 1 1 1 1 1 1 

s14     } 1 1 1 1 1 1 1 

  }               

  Test Results 1 1 0 1 1 0 1 

Figure 7 – Example code segment and its coverage matrix  
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Let us explain the reason behind the failed test elimination with an example. Consider the 

code segment with corresponding coverage matrix and test result given in Figure 7. This 

code segment is from the program called “replace” in the Siemens suite. In this example the 

fault is in statement S6. There are two failed tests, T3 and T6 and they have different coverage 

vectors. T3 has executed all the statements that T6 has executed plus three more statements. 

With this coverage matrix and the result vector, Tarantula and Ochiai reports the statement 

S10, S11, S12 to be the most suspicious of being faulty. Jaccard gives the same suspiciousness 

rank to S6 to S12. This obstruction is caused by the failed test T3. Since there is a single fault, 

the additional statements that T3 has executed are actually innocent statements. However, 

according to SFL approach, the suspiciousness of a statement increases with the number of 

failed tests that executed the statement. Therefore, the test T3 is misleading the SFL 

effectiveness by causing innocent program elements to get high suspiciousness values. 

 

We propose to eliminate the failed tests that mislead the SFL ranking, such as T3 in the 

example. Since there is a single fault, all the failed tests should execute that statement. Let 

cov(T) represent the coverage vector of the test T and cov(T)(s) be a function that returns 1 if 

T has executed the statement s and 0 otherwise. Let T1 and T2 be two failed tests, and n be the 

number of statements. We define a subsume relation as follows: T1 subsumes T2 when 

cov(T1) = cov(T2) and for each statement 0 < s ≤ n, cov(T2)(s) = 1 ⇒ cov(T1)(s) = 1. Based 

on this definition, we remove all the failed tests from the test suite who subsumes at least one 

other failed test. We could have found the minimum coverage vector that is subsumed by all 

the failed tests. However, we do not want to insert artificial test coverage information, 

therefore; we are not applying the boolean ∧ operation on the elements of the coverage 

vectors. 

 

We also propose two different reduction strategies for passed tests to be used in combination 

with the failed test reduction strategy. They are presented in the next two subsections. 

5.2. Heuristic II: FminCov Cluster Test Suite Strategy 

Our goal is to find a subset of tests that have better test suite quality by clustering of failed 

and passed tests. We propose a strategy called “FminCov Cluster Test Suite Strategy” to 

obtain this quality. In this strategy, we cluster the test suite resulted from the failed test 

reduction (FminCov Test Suite Strategy) into subsets by using a clustering technique. After 

the clustering, we choose the subgroup that contains the failed test as the new reduced test 

suite. This reduction eliminates the passed tests that are not similar to the failed ones. The 
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intuition behind this novel technique is in parallel with Zeller (1999) who state that a passing 

run closest to a failing run contains the most information. 

 

To implement this reduction technique, we need to decide on a clustering technique and a 

distance metric. Aggarwal and Reddy divide distance based clustering techniques into two 

types: partitioning and hierarchical (Aggarwal and Reddy, 2013). Three representatives of 

partitioning clustering technique are k-means, k-medians, and k-medoids. Two 

representatives of hierarchical clustering technique are agglomerative and divisive. Although 

partitioning clustering is generally faster, hierarchical clustering generates more accurate 

clusters. Unlike hierarchical clustering, partitioning clustering algorithms need to choose 

initial cluster centers which highly affect the resulting clusters. In other words, they are 

sensitive to the initially selected cluster centers. The partitioning clustering techniques not 

necessarily find the optimum clusters because of this sensitivity. Moreover, hierarchical 

clustering returns a much more meaningful and subjective division of clusters with the help 

of a dendrogram while partitioning clustering results in exactly ‘k’ clusters. Partitioning 

clustering is more suitable for the round shaped and roughly equal density cluster while 

hierarchical clustering is more suitable for the non-round shaped and different density 

clusters (Aggarwal and Reddy, 2013). There are different sized clusters in our data. 

Therefore, we prefer applying hierarchical clustering algorithms. The results of hierarchical 

clustering can be presented in a dendrogram. This dendrogram can be used to obtain the 

desired number of clusters by “cutting” it at the proper level. There are two types of 

hierarchical clustering: agglomerative and divisive. First one is a "bottom up" approach in 

which each observation starts in its own cluster, and pairs of clusters are merged as moving 

up the hierarchy. Second one is a "top down" approach in which all observations start in one 

cluster, and splits are performed recursively as moving down the hierarchy. The complexity 

of agglomerative clustering (O(n3)) is lower than the complexity of divisive clustering 

(O(2n)) in general cases. This makes agglomerative clustering faster than divisive clustering 

for large data sets. Therefore, we decide to use agglomerative clustering technique. 

 

Agglomerative clustering technique uses various distance metrics to merge two clusters such 

as Euclidean, City block, Minkowski, Chebychev, Mahalanobis, Cosine, Correlation, 

Spearman, Hamming, and Jaccard. Since feature vectors contain binary data of the statement 

coverage in our case, we use Hamming distance as the distance metric. 

 

Hamming distance is the percentage of the coordinates that differ in the feature vectors. 

Hamming distance equation can be represented as: 
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𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(fv1, fv2) =
A10(fv1,fv2)+A01(fv1,fv2)

A11(fv1,fv2)+A00(fv1,fv2)+A10(fv1,fv2)+A01(fv1,fv2)
  (15) 

A11(cov(T1), cov(T2)) = Number of 1s at the same index in both coverage vectors. 

A00 (cov(T1), cov(T2)) = Number of 0s at the same index in both coverage vectors. 

A10(cov(T1), cov(T2)) = 
Number of 1s and 0s at the same index in coverage  

vectors of T1 and T2 respectively. 

A01(cov(T1), cov(T2)) = 
Number of 0s and 1s at the same index in coverage  

vectors of T1 and T2 respectively. 

 

Agglomerative clustering technique uses linkage criterion to decide which object to use to 

compute distance between clusters such as Single (shortest distance), Complete (furthest 

distance), Average (unweighted average distance), Weighted (weighted average distance), 

Centroid (centroid distance), Median (weighted center of mass distance), and Ward (inner 

squared distance) linkages. Centroid, Median, and Ward linkages are used when Euclidean 

distance metric is preferred. Since Hamming distance metric is used in this study, only 

single, complete, average, and weighted linkages can be used as linkage criterion. Moreover, 

average, and weighted linkages may not merge close groups because of outlier members that 

are far apart in the data. 

 

To decide on the linkage criteria, we calculate the cophenetic correlation coefficients (Farris, 

1969) for different linkage criteria when Hamming distance is used as a distance metric in 

agglomerative clustering. The cophenetic correlation for a cluster tree is defined as the linear 

correlation coefficient between the cophenetic distances obtained from the cluster tree and 

the original distances which are used to construct the cluster tree. In other words, it measures 

how realistically the cluster tree represents the dissimilarities between observations. 

Table 8 – The Cophenetic Correlation Coefficients for different linkage criteria when 

Hamming distance is used as a distance metric 

Linkage Criteria Cophenetic Correlation Coefficient 

Single 0.8026 

Complete 0.8005 

Average 0.8016 

Weighted 0.7994 

 

Table 8 shows that the maximum cophenetic correlation coefficient is obtained when single 

linkage criterion is used. Therefore, we decide to use single linkage criterion in this study. 
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5.2.1. Visualization of tests via Multi-Dimensional Scaling (MDS) 

In our study, it is aimed to visualize where failed and passed tests are on the coordinate 

system according to their distance to each other based on their statement coverage 

information. The points are often visualized with a scatter plot. However, in some cases, the 

data might not be in the form of points at all, but rather in the form of pairwise similarities or 

dissimilarities to each other. We have multi-dimensional vectors that contain the statement 

coverage information of failed and passed tests in our study. The tests cannot be plotted by 

using their feature vectors. In these cases, it is possible to use the similarities or 

dissimilarities between tests to visualize where they are. The distances between the failed 

and tests are calculated by using the Hamming similarity metric in this study. 

 

Multi-Dimensional Scaling (MDS) can represent the multi-dimensional data in a small 

number of dimensions. It does not require raw data, but only a matrix of pairwise distances 

or dissimilarities. The pairwise Hamming distances between tests for the first version of 

PrintTokens program (PrintTokens_v01) in Siemens suite are given in Table 9. Table 9 is 

shaded according to the Hamming distances between tests. 

Table 9 – Hamming distances between tests on PrintTokens_v01 with Distinct FminCov 

Cluster Test Suite 

  T1 T4 T6 T7 T10 T20 T21 T23 T24 T34 T45 T49 T55 T83 T90 T97 T271 T623 T1463 T4101 
Result 

Vector 

T1 0 0.37 0.31 0.29 0.23 0.17 0.16 0.11 0.1 0.09 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.04 0.05 0.08 P 

T4 0.37 0 0.06 0.07 0.14 0.19 0.2 0.25 0.26 0.27 0.29 0.3 0.31 0.32 0.34 0.35 0.36 0.41 0.41 0.44 P 

T6 0.31 0.06 0 0.02 0.08 0.14 0.15 0.2 0.21 0.22 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.35 0.36 0.39 P 

T7 0.29 0.07 0.02 0 0.07 0.12 0.13 0.18 0.19 0.2 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.34 0.34 0.37 P 

T10 0.23 0.14 0.08 0.07 0 0.06 0.07 0.12 0.13 0.14 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.27 0.27 0.3 P 

T20 0.17 0.19 0.14 0.12 0.06 0 0.01 0.06 0.07 0.08 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.21 0.22 0.25 P 

T21 0.16 0.2 0.15 0.13 0.07 0.01 0 0.05 0.06 0.07 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.2 0.21 0.24 P 

T23 0.11 0.25 0.2 0.18 0.12 0.06 0.05 0 0.01 0.02 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.16 0.19 P 

T24 0.1 0.26 0.21 0.19 0.13 0.07 0.06 0.01 0 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.14 0.15 0.18 P 

T34 0.09 0.27 0.22 0.2 0.14 0.08 0.07 0.02 0.01 0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.13 0.14 0.17 P 

T45 0.07 0.29 0.24 0.22 0.16 0.1 0.09 0.04 0.03 0.02 0 0.01 0.02 0.03 0.04 0.05 0.06 0.11 0.12 0.15 P 

T49 0.06 0.3 0.25 0.23 0.17 0.11 0.1 0.05 0.04 0.03 0.01 0 0.01 0.02 0.03 0.04 0.05 0.1 0.11 0.14 P 

T55 0.05 0.31 0.26 0.24 0.18 0.12 0.11 0.06 0.05 0.04 0.02 0.01 0 0.01 0.02 0.03 0.04 0.09 0.1 0.13 P 

T83 0.04 0.32 0.27 0.25 0.19 0.13 0.12 0.07 0.06 0.05 0.03 0.02 0.01 0 0.01 0.02 0.03 0.08 0.09 0.12 P 

T90 0.03 0.34 0.28 0.26 0.2 0.14 0.13 0.08 0.07 0.06 0.04 0.03 0.02 0.01 0 0.01 0.02 0.07 0.08 0.11 P 

T97 0.02 0.35 0.29 0.27 0.21 0.15 0.14 0.09 0.08 0.07 0.05 0.04 0.03 0.02 0.01 0 0.01 0.06 0.07 0.1 P 

T271 0.01 0.36 0.3 0.28 0.22 0.16 0.15 0.1 0.09 0.08 0.06 0.05 0.04 0.03 0.02 0.01 0 0.05 0.06 0.09 F 

T623 0.04 0.41 0.35 0.34 0.27 0.21 0.2 0.15 0.14 0.13 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0 0.01 0.04 P 

T1463 0.05 0.41 0.36 0.34 0.27 0.22 0.21 0.16 0.15 0.14 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0.01 0 0.03 P 

T4101 0.08 0.44 0.39 0.37 0.3 0.25 0.24 0.19 0.18 0.17 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.04 0.03 0 P 

Result 

Vector 
P P P P P P P P P P P P P P P P F P P P   

 

By using the MDS approach, the tests are plotted to 2D coordinate system based on the 

Hamming distance between them in Figure 8. The labels on the dots are ids of the tests in 

this figure.  
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Figure 8 – Failed and pass tests before clustering of failed and passed tests on 

PrintTokens_v01 

 

Figure 8 indicates that there are 1 failed test and 19 passed tests on the coordinate system. 

We cluster 20 tests into two clusters. We apply silhouette analysis to determine the optimum 

number of clusters. We cluster the tests into 2 to 5 clusters according to their feature vectors. 

Silhouette coefficients for 2 to 5 clusters on PrintTokens_v01 are given in Figure 9, Figure 

10, Figure 11, and Figure 12. 

 

Figure 9 – Silhouette coefficients for 2 clusters on PrintTokens_v01  
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Figure 10 – Silhouette coefficients for 3 clusters on PrintTokens_v01 

 

 

Figure 11 – Silhouette coefficients for 4 clusters on PrintTokens_v01  
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Figure 12 – Silhouette coefficients for 5 clusters on PrintTokens_v01 

 

Our aim is to find the optimal ‘k’ value for the clustering algorithm. Therefore, we plot the 

mean silhouette coefficient scores for 2 to 5 clusters on PrintTokens_v01 in order to find the 

optimal ‘k’ value. Figure 13 shows that the optimal ‘k’ value is 2 since it has highest mean 

silhouette coefficient scores. Therefore, we decide to cluster the tests into 2 clusters. 

 

Figure 13 – Selection of optimum ‘k’ according to the mean silhouette values  
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We aim to find the passed tests that are not very close to the remaining failed tests and 

eliminate them to achieve better fault localization. Therefore, we cluster the tests into 2 

cluster and eliminate the cluster that does not contain the remaining failed tests. 

 

After completing the clustering of the test cases of PrintTokens_v01, 16 passed tests and one 

failed test shaped as circle are clustered together. In addition, 3 passed tests shaped as square 

are clustered to together. Figure 14 shows the tests and their clusters on the coordinate 

system. The labels on the dots are ids of the tests in this figure. 

 

Figure 14 – Failed and pass tests after clustering of failed and passed tests on 

PrintTokens_v01 

 

In order to validate agglomerative clustering visually, we use a dendrogram of tests on 

PrintTokens_v01. Figure 15 shows this dendrogram which contains 1 failed test and 19 

passed tests. It is observed that 3 tests (thick lines) are close to each other while 17 tests (thin 

lines) are close to each other. 
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Figure 15 – Dendrogram of tests on PrintTokens_v01 [Clustering] 

 

Our purpose is to observe the effect of Clustering strategy on the fault localization. 

Therefore, we evaluate the effect of FminCov Cluster Test Suite Strategy on 

PrintTokens_v01. Figure 16 shows this effect on PrintTokens_v01. It is observed that 

Clustering strategy has a decline on the fault localization. 

 

Figure 16 – The effect of FminCov Cluster Test Suite Strategy on PrintTokens_v01 

5.3. Heuristic III: FminCov Classify Test Suite Strategy 

Our goal is to find a subset of tests that have better test suite quality by clustering of failed 

and passed tests. We propose a strategy called “FminCov Cluster Test Suite Strategy” to 
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obtain this quality. In this strategy, we classify the passed tests into two classes of the failed 

tests. The eliminated failed tests (FminCov Test Suite Strategy) form one class, and the 

remaining failed tests form the other class. Then we remove the subgroup that contains the 

eliminated failed tests. This elimination removes a subset of the tests which are similar to all 

failed ones due to the subsumption relation among all the failed tests. The intuition is to 

approximate and reduce the tests that have executed the faulty statement but still pass. 

 

There are different types of classification techniques to be used for this process: K nearest 

neighbors (KNN), Naïve Bayes, Support Vector Machines (SVMs), Decision Trees (DTs). 

KNN classification algorithm is non-parametric algorithm since it does not make any 

assumption on the distribution of the underlying data. Therefore, it can be used for 

classification when there is little or no prior knowledge about the distribution of the 

underlying data. Moreover, KNN classification algorithm is a lazy learning algorithm since 

there is no explicit model training phase and a model construction is deferred until it is 

needed to make a classification. 

 

We prefer to use KNN classification algorithm since it is a simple, non-parametric and lazy 

learning algorithm. KNN classification algorithm uses various distance metrics such as 

Euclidean, City block, Minkowski, Chebychev, Mahalanobis, Cosine, Correlation, 

Spearman, Hamming, and Jaccard. Since feature vectors contain binary data of the statement 

coverage in our case, we use Hamming distance as the distance metric. We select ‘k’ as 1 

which means that one nearest neighbor in each class is used to classify a new test into the 

classes. Therefore, we can say that we use “nearest neighbor” algorithm instead of “k nearest 

neighbors” algorithm. 

 

In this strategy, we first form two classes of failed tests. The eliminated failed tests using 

FminCov Test Suite Strategy form one class, and the remaining failed tests form the other 

class. Then we classify the passed tests into appropriate classes by using KNN classification 

algorithm. If a passed test has the same smallest similarity to the classes of the eliminated 

failed tests and the remaining failed tests, then it is classified to the remaining failed tests. 

Finally, we remove the subgroup that contains the eliminated failed tests. 

5.3.1. Visualization of tests via Multi-Dimensional Scaling (MDS) 

We use MDS to visualize the data and the result of the FminCov Classify Test Suite 

Strategy. It is also used for visual validation of the classification process. Consider pairwise 

Hamming distances between tests for the first version of PrintTokens program 
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(PrintTokens_v01) in Siemens suite are given in Table 10. Table 10 is shaded according to 

the Hamming distances between tests. 

Table 10 – Hamming distances between tests on PrintTokens_v01 with Distinct FminCov 

Classify Test Suite 

  T1 T4 T6 T7 T10 T11 T21 T23 T24 T34 T45 T49 T55 T83 T90 T97 T271 T623 T1463 T2592 T3296 T4101 
Result 

Vector 

T1 0 0.37 0.31 0.29 0.23 0.17 0.16 0.11 0.1 0.09 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.05 0.07 0.04 0.05 0.08 P 

T4 0.37 0 0.06 0.07 0.14 0.19 0.2 0.25 0.26 0.27 0.29 0.3 0.31 0.32 0.34 0.35 0.36 0.42 0.43 0.41 0.41 0.44 P 

T6 0.31 0.06 0 0.02 0.08 0.14 0.15 0.2 0.21 0.22 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.36 0.38 0.35 0.36 0.39 P 

T7 0.29 0.07 0.02 0 0.07 0.12 0.13 0.18 0.19 0.2 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.35 0.36 0.34 0.34 0.37 P 

T10 0.23 0.14 0.08 0.07 0 0.06 0.07 0.12 0.13 0.14 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.28 0.29 0.27 0.27 0.3 P 

T20 0.17 0.19 0.14 0.12 0.06 0 0.01 0.06 0.07 0.08 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.22 0.24 0.21 0.22 0.25 P 

T21 0.16 0.2 0.15 0.13 0.07 0.01 0 0.05 0.06 0.07 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.21 0.23 0.2 0.21 0.24 P 

T23 0.11 0.25 0.2 0.18 0.12 0.06 0.05 0 0.01 0.02 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.16 0.18 0.15 0.16 0.19 P 

T24 0.1 0.26 0.21 0.19 0.13 0.07 0.06 0.01 0 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.15 0.17 0.14 0.15 0.18 P 

T34 0.09 0.27 0.22 0.2 0.14 0.08 0.07 0.02 0.01 0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.14 0.16 0.13 0.14 0.17 P 

T45 0.07 0.29 0.24 0.22 0.16 0.1 0.09 0.04 0.03 0.02 0 0.01 0.02 0.03 0.04 0.05 0.06 0.12 0.14 0.11 0.12 0.15 P 

T49 0.06 0.3 0.25 0.23 0.17 0.11 0.1 0.05 0.04 0.03 0.01 0 0.01 0.02 0.03 0.04 0.05 0.11 0.13 0.1 0.11 0.14 P 

T55 0.05 0.31 0.26 0.24 0.18 0.12 0.11 0.06 0.05 0.04 0.02 0.01 0 0.01 0.02 0.03 0.04 0.1 0.12 0.09 0.1 0.13 P 

T83 0.04 0.32 0.27 0.25 0.19 0.13 0.12 0.07 0.06 0.05 0.03 0.02 0.01 0 0.01 0.02 0.03 0.09 0.11 0.08 0.09 0.12 P 

T90 0.03 0.34 0.28 0.26 0.2 0.14 0.13 0.08 0.07 0.06 0.04 0.03 0.02 0.01 0 0.01 0.02 0.08 0.1 0.07 0.08 0.11 P 

T97 0.02 0.35 0.29 0.27 0.21 0.15 0.14 0.09 0.08 0.07 0.05 0.04 0.03 0.02 0.01 0 0.01 0.07 0.09 0.06 0.07 0.1 P 

T271 0.01 0.36 0.3 0.28 0.22 0.16 0.15 0.1 0.09 0.08 0.06 0.05 0.04 0.03 0.02 0.01 0 0.06 0.08 0.05 0.06 0.09 F 

T623 0.05 0.42 0.36 0.35 0.28 0.22 0.21 0.16 0.15 0.14 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0 0.02 0.01 0.01 0.03 P 

T1463 0.07 0.43 0.38 0.36 0.29 0.24 0.23 0.18 0.17 0.16 0.14 0.13 0.12 0.11 0.1 0.09 0.08 0.02 0 0.03 0.02 0.01 P 

T2592 0.04 0.41 0.35 0.34 0.27 0.21 0.2 0.15 0.14 0.13 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0.01 0.03 0 0.01 0.04 F 

T3296 0.05 0.41 0.36 0.34 0.27 0.22 0.21 0.16 0.15 0.14 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0.01 0.02 0.01 0 0.03 F 

T4101 0.08 0.44 0.39 0.37 0.3 0.25 0.24 0.19 0.18 0.17 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.03 0.01 0.04 0.03 0 P 

Result 

Vector 
P P P P P P P P P P P P P P P P F P P F F P   

 

By using the MDS approach, the tests are plotted to 2D coordinate system based on the 

Hamming distance between them in Figure 17. The labels on the dots are ids of the tests in 

this figure. 

 

Figure 17 – Failed and pass tests before classifying the passed tests to the failed tests on 

PrintTokens_v01 

 

Figure 17 indicates that there are 3 failed tests and 19 passed tests on the coordinate system. 

We classify 19 passed tests cases into the appropriate classes by using KNN classification 

algorithm. 
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After completing the classification process, 16 passed tests shaped as circle are classified to 

one failed test shaped as circle. In addition, 3 passed tests shaped as square are classified to 2 

failed tests shaped as square. Figure 18 shows the tests and their classes on the coordinate 

system. The labels on the dots are ids of the tests in this figure. 

 

Figure 18 – Failed and pass tests after classifying the passed tests to the failed tests on 

PrintTokens_v01 

 

In order to validate KNN classification visually, we use a dendrogram of tests on 

PrintTokens_v01. Figure 19 shows this dendrogram which contains 3 failed tests and 19 

passed tests. It is observed that 5 tests (thick lines) are close to each other while 17 tests (thin 

lines) are close to each other. 

 

Figure 19 – Dendrogram of tests on PrintTokens_v01 [Classification] 

 

We would like to observe the effect of Classification strategy on the fault localization. 

Therefore, we evaluate the effect of FminCov Classify Test Suite Strategy on 
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PrintTokens_v01. Figure 20 shows this effect on the PrintTokens_v01. It is observed that 

Classification strategy has an improvement over the fault localization. 

 

Figure 20 – The effect of FminCov Classify Test Suite Strategy on PrintTokens_v01 

5.4. Heuristic IV: Equivalent Test Elimination (Distinct Test Selection) 

If two tests have executed the set of same statements (i.e. if they have covered the same set 

of statements), then we consider them as equivalent tests with respect to their statement 

coverage. We claim that existence of equivalent tests affects the computation of the 

suspiciousness values of the statements. Existence of equivalent tests lead to the repetition of 

test vectors in a coverage matrix. Since the fault localization metrics are based on the 

number of occurrences of 1’s and 0’s in this coverage matrix, the repetition of test vectors 

will have a direct effect on the computation of the suspiciousness values. We suggest the 

elimination of equivalent tests from both passed and failed tests. This approach is called 

“Distinct Test Suite Strategy”. 

 

We categorize failed tests as good failed tests and bad failed tests. While a good failed test is 

defined as the failed test that has the minimum statement coverage, a bad failed test is 

defined as the failed test that have the greater statement coverage than the good test in this 

study. In the rest of this section, we analyze the effect of having equivalent tests in both of 

these categories. 

 

Having more than one test with the same coverage vector in the coverage matrix corresponds 

to row scaling (Tan, Kumar, & Srivastava, 2002). If the SFL measures are not invariant 

under row scaling then the redundancy can cause an unpredictable effect on the effectiveness 
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of fault localization techniques. Let us show that how this redundancy affects the 

effectiveness of fault localization techniques. 

 

We apply row scaling invariance property to the coverage matrix in our case. First, we 

replicate the good failed tests by applying scaling factor as 2. That is, we replicate all the 

rows of coverage matrix for good failed tests by 2. Afterwards, we check whether Jaccard, 

Tarantula, Ochiai, and Ela metrics are invariant or not under this process. Second, we 

replicate the bad failed tests by applying scaling factor as 2 and then check whether these 

four metrics are invariant or not under this process. We empirically see that each type of the 

tests has different effect on the effectiveness of fault localization techniques. Replication of 

good failed tests increases the effectiveness of fault localization while replication of bad tests 

has a negative impact as expected. Since it is not known whether a test is good test or not, we 

select the safe side and eliminate the equivalent tests from both failed and passed tests in the 

experiments. 

 

Let us show how the effect of equivalent tests on first version of PrintTokens program 

(PrintTokens_v01) and how it can cause a bias on the effect of the fault localization 

techniques by applying the row scaling invariance property. 

 

FailMinCov tests which are kinds of good failed tests are replicated by 2 and the results in 

Table 11 are obtained on the Redundant Test Suite. 

Table 11 – Improvements on Redundant Test Suite where FailMinCov tests are replicated by 

2 

  Jaccard Tarantula Ochiai Ela 

PrintTokens 0% 0% 2.3% 9.92% 

PrintTokens2 5.95% 7.56% 6.91% 0% 

Replace 4.25% 4.04% 1.48% 2.56% 

Schedule 0% 0% 0% 0% 

Schedule2 0% 0% 0% 0% 

Tcas 0% 0% 0% 0% 

TotInfo 0.15% 0.29% 0% 0% 
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Figure 21 – Improvements by replicating the FailMinCov tests by 2 

 

Figure 21 shows the improvements by replicating the FailMinCov tests by 2. While Ela 

technique has a maximum 9.92% improvement, Jaccard technique has a maximum 5.95% 

improvement, Tarantula technique has a maximum 7.56% improvement, and Ochiai 

technique has a maximum 6.91% improvement. 

 

FailOther tests which are kinds of bad failed tests are replicated by 2 and the results in Table 

12 are obtained on the Redundant Test Suite. 

Table 12 – Declines on Redundant Test Suite where FailOther tests are replicated by 2 

  Jaccard Tarantula Ochiai Ela 

PrintTokens -22.54% -22.54% 0% 0% 

PrintTokens2 0% -18% -16.81% -16.53% 

Replace -15.76% -22.91% -5.04% -4.94% 

Schedule -7.45% -16.82% 0% 0% 

Schedule2 0% 0% 0% 0% 

Tcas -0.1% -0.1% 0% 0% 

TotInfo -0.72% -1.36% -0.15% -0.31% 
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Figure 22 – Declines by replicating the FailOther tests by 2 

 

Figure 22 shows the declines by replicating the FailOther tests by 2. While Ela technique has 

a maximum 16.53% decline, Jaccard technique has a maximum 22.54% decline, Tarantula 

technique has a maximum 22.91% decline, and Ochiai technique has a maximum 16.81% 

decline. 

5.4.1. Discussion 

Figure 21 and Figure 22 show the effects of replicating the FailMinCov tests and the 

FailOther tests by 2 on the expenses of PrintTokens_v01. 

 

We observe that while replicating the FailMinCov tests by 2 has a positive effect, replicating 

the FailOther tests by 2 has a negative effect on the expenses of PrintTokens_v01. 

 

Good failed tests increase the suspiciousness values of the faulty statements and the rank of 

faulty line is automatically decreased. Therefore, the expense for finding the faulty statement 

is automatically decreased too. If the good failed tests are duplicated without being aware of 

it, then this positive effect is duplicated too. Bad fail tests increase the suspiciousness values 

of the innocent statements and the rank of faulty line is automatically increased. Therefore, 

the expense for finding the faulty statement is automatically increased too. If the bad failed 

tests are duplicated without being aware of it, then this negative effect is duplicated too. 

Since it is not known that whether a test is good test or not, the existence of the equivalent 

tests can cause a bias in the ranking of statements according to their suspiciousness values. 

Therefore, we select the safe side and eliminate the equivalent tests from both passed and 

failed tests in the experiments. 
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CHAPTER 6 

 

 

 

 

6. EFFECTIVE RANKING STRATEGY: LOCAL MAXIMA 

 

 

 

 

 

 

In this chapter, we propose a Local Maxima strategy to obtain effective ranking of 

statements according to their suspiciousness values. The rationale behind this strategy is 

explained in the methodology section. 

6.1. Methodology 

Statistical fault localization techniques assign suspiciousness values to the statements 

according to whether they are executed or not in the tests. They aim to assign the highest 

suspiciousness value to the faulty statement. Moreover, they assign higher suspiciousness 

values to the statements near to the faulty statement since these statements are on the same 

execution path with the faulty statement. However, the statements near the faulty statement 

are not actually suspicious statements. In other words, these statements are assigned with 

higher suspiciousness values since they are in the neighborhood of the faulty statement. 

Therefore, they should be removed from the list of suspicious statements. 

 

We propose a Local Maxima strategy to remove these statements. In this strategy, the most 

suspicious statements are assumed to have the highest suspiciousness values in their 

neighborhoods. In other words, they are assumed to be local maxima in their neighborhoods. 

Therefore, only the statements which are local maxima are left and the other statements are 

removed from the list of suspicious statements when presented to the user. We write a 

function called findLocalMaxima to find select the most suspicious statements which are 

local maxima in their neighborhoods. The algorithm of the findLocalMaxima is defined as 

follows:  
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/*********************************************************************** 

Name : findLocalMaxima 

Function : This function finds the list of the local maxima values  

among the suspiciousness values of the statements of a  

program 

Algorithm : For each statement of a program, the local maximum  

value among the suspiciousness values of its  

preceding statement, itself, and its succeeding statement  

is found and added to the list of the local maxima values 

Input : The list of the suspiciousness values of the statements  

of a program 

Output : The list of the local maxima values among the  

suspiciousness values of the statements of a program 

***********************************************************************/ 

List<LocalMaximumOfStatement>  

findLocalMaxima(List<SuspiciousnessOfStatement> svsList) { 

   List< LocalMaximumOfStatement> lmsList = ; 

   index := 0; 

   For each statement si in svsList 

      si,left := si-1; // the statement in the previous line of si 

      si,right := si+1; // the statement in the next line of si 

      If si ≥ si,left && si ≥ si,right Then 

         LocalMaximumOfStatement lmsElement = si; 

         lmsList.put(index, lmsElement); 

         index++; 

      End If 

   End For 

   Return lmsList; 

} 

Figure 23 – Pseudo code of the findLocalMaxima algorithm  

 

In this algorithm, the list of statements whose suspiciousness values are assigned by the 

statistical fault localization techniques are taken as an input. Each statement in the list is 

compared with the statement in its previous line (left statement) and the statement in its next 

line (right statement). If the suspiciousness value of a statement is greater or equal to the 

suspiciousness values of its left and right statements at the same time, then it is added to the 

list of suspicious statements which will be presented to the user. At the end, the list of most 

suspicious statements which are local maxima in their neighborhoods are returned as an 

output. 
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6.2. Motivating Example 

The suspiciousness values of all the statement of the first version of PrintTokens program 

(PrintTokens_v01) in the Siemens suite are given as line graphs for Jaccard, Tarantula, 

Ochiai, and Ela techniques in Figure 24, Figure 25, Figure 26, and Figure 27. In these 

figures, the x axis shows the statement number as it occurs in the program and the y axis 

shows the suspiciousness values assigned to the corresponding statements. 

 

The peak statements shaped as black triangle in the line graphs are the local maxima 

statements since they have highest suspiciousness values in their neighborhoods. The faulty 

statement surrounded by a gray square is one of the local maxima statements. Notice that 

some statements shaped as white circles have higher suspiciousness values than the faulty 

statement. The faulty statement is going to be ranked after these statements. We claim that 

these statements are assigned with higher suspiciousness values since they are neighboring 

statements of local maxima statements due to their control flow. Therefore, our strategy 

excludes such neighboring statements and presents the user only the local maxima 

statements to examine instead of the whole ranked list of statements. By using this approach, 

the neighboring statements which have higher suspiciousness values than the faulty 

statement are removed and the rank of faulty statement is automatically decreased. The 

horizontal gray line is the threshold value for the neighboring statements which are non-local 

maxima statements that affect the rank of the faulty statement. 

 

The Local Maxima strategy assumes that the faulty statement must have the greatest 

suspiciousness value. Therefore, the most suspicious statements must also have the greatest 

suspiciousness values around their neighborhoods. We examine 1-nearest neighborhoods (its 

left statements and its right statements) of the statements and find the local maxima 

statements among them. Afterwards, we present a ranked list of these local maxima 

statements to the user.  
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Figure 24 – Application of Local Maxima for Jaccard on PrintTokens_v01 with Distinct Test 

Suite 

 

In Figure 24, there are 19 white circles which have higher suspiciousness values than faulty 

line must be excluded. Therefore, the rank of faulty line is decreased to 52 from 71.  
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Figure 25 – Application of Local Maxima for Tarantula on PrintTokens_v01 with Distinct 

Test Suite 

 

In Figure 25, there are 19 white circles which have higher suspiciousness values than faulty 

line must be excluded. Therefore, the rank of faulty line is decreased to 52 from 71.  
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Figure 26 – Application of Local Maxima for Ochiai on PrintTokens_v01 with Distinct Test 

Suite 

 

In Figure 26, there are 19 white circles which have higher suspiciousness values than faulty 

line must be excluded. Therefore, the rank of faulty line is decreased to 49 from 68.  
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Figure 27 – Application of Local Maxima for Ela on PrintTokens_v01 with Distinct Test 

Suite 

 

In Figure 27, there are 17 white circles which have higher suspiciousness values than faulty 

line must be excluded. Therefore, the rank of faulty line is decreased to 43 from 60. 

 

There are four cases to be considered about the location of a statement for Local Maxima 

strategy since the process of finding the Local Maxima is different in these cases. First case 

occurs when the statement is the first statement of the program. Second case occurs when the 

statement is the last statement of the program. Third case occurs when the statement is the 

first statement of a method in the program. Fourth case occurs when the statement is the last 

statement of a method in the program. Border problems can arise in these cases. In order to 

handle these problems, we search for the local maxima around the only 1-right neighborhood 

of a statement for the cases 1 and 3 while we search for the local maxima around only the 1-

left neighborhood of a statement for the cases 2 and 4. 

6.3. Effect of LM on PrintTokens program 

Table 13 shows the improvements of Local Maxima strategy on Ela and three prominent 

techniques on PrintTokens_v01 with Distinct Test Suite. The details of the results achieved 
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with Local Maxima for Redundant, Distinct, Distinct FminCov, Distinct FminCov Cluster, 

and Distinct FminCov Classify Test Suites are given in the section 7.7. 

Table 13 – Improvement of Local Maxima Strategy for Expenses on PrintTokens_v01 with 

Distinct Test Suite 

  Jaccard Tarantula Ochiai Ela 

Distinct Test Suite 21.45 21.45 20.54 18.13 

Distinct Test Suite with  

Local Maxima Strategy 
15.71 15.71 14.8 12.99 

Improvement (%) 26.76 26.76 27.94 28.33 

 

Table 13 indicates that Ela technique has a 28.33% improvement while Jaccard, Tarantula, 

and Ochiai techniques have 26.76%, 26.76%, and 27.94% improvements respectively. 
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CHAPTER 7 

 

 

 

 

7. EXPERIMENTAL EVALUATION 

 

 

 

 

 

 

In this chapter, we first introduce the subject programs that are used in our experiments. 

Next, we give the experimental results of the proposed fault localization technique (Ela) and 

compare it with three prominent fault localization techniques. Afterwards, we give the 

experimental result of the proposed test suite reduction technique and its improvements on 

the Ela and the three prominent fault localization techniques. Finally, we give the 

experimental result of the proposed Local Maxima technique and its improvements on the 

Ela and the three prominent fault localization techniques. 

7.1. Subject Programs 

In this study, we used the Siemens suite available at the software-artifact infrastructure 

repository as subject programs. We selected this suite since it is a quite frequently used 

benchmark suite in the fault localization and test reduction research. Siemens suite consists 

of seven C programs and associated test suites. For each of these programs, there are several 

versions, each of which contains manually injected one logical fault. There are 132 versions 

of C programs in this suite. For some of these versions, the test suite provided cannot 

differentiate the faulty version from the original program i.e. there were no failed tests for 

these versions. Since statistical fault localization techniques require at least one failed test, 

we excluded these versions in our experiments. We have used 118 versions of C programs as 

the subject programs in our study. We have added line breaks into the programs so that there 

would be one statement at each line. For the experiments, we needed to create a result vector 

and a coverage matrix for each version. To create the coverage matrix, we used gcov to 

collect the statement coverage. The repository contains an original version of the program as 

well as its mutants. We compiled all versions with gcc, run them with the tests, and record 

their outputs as text files. To determine whether a test has passed or failed on a mutant, we 

compared its output with the original version of the program. If both of them produce the 
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same output on the same test, we mark it as passed otherwise as failed. Table 14 gives the 

following information about these seven C programs: program name, line of code, number of 

all tests, versions of tests excluded, and a brief description of the program. 

Table 14 – The seven C programs in SIR 

Program 
# of 

Versions 
LOC 

# of All 

Tests 
Versions Excluded Description 

PrintTokens 7 565 4,130 V04,V06 lexical analyzer 

PrintTokens2 10 529 4,115 No lexical analyzer 

Replace 32 563 5,501 No pattern replacement 

Schedule 9 412 2,650 V09 priority scheduler 

Schedule2 10 307 2,588 V04,V09 priority scheduler 

Tcas 41 173 1,608 V13,V14,V15,V36,V38 collision avoidance system 

TotInfo 23 406 1,051 V06,V10,V19,V21 information measurer 

 

As discussed in Chapter 5, the existence of the equivalent tests can cause a bias in the 

ranking of statements. Equivalents of good tests increase the effectiveness and bad tests 

decrease the effectiveness of fault localization. Because whether a test is good test or not is 

not known, we select the safe side and eliminate the equivalent tests from both passed and 

failed tests in the experiments. The average number of tests used after the equivalent test 

elimination are given in Table 15. 

Table 15 – The seven C programs in SIR after equivalent test elimination 

Program 
# of 

Versions 
LOC 

Average # 

of Tests 

Used 

Versions Excluded Description 

PrintTokens 7 565 26 V04,V06 lexical analyzer 

PrintTokens2 10 529 25 No lexical analyzer 

Replace 32 563 23 No pattern replacement 

Schedule 9 412 9 V09 priority scheduler 

Schedule2 10 307 9 V04,V09 priority scheduler 

Tcas 41 173 6 V13,V14,V15,V36,V38 collision avoidance system 

TotInfo 23 406 9 V06,V10,V19,V21 information measurer 

7.2. Experimental Results I: Comparison with the Three Prominent Fault Localization 

Techniques on the Original Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 

which are Jaccard, Tarantula, and Ochiai on the original test suite. Recall that the original 
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suite contains many equivalent test cases. In the rest of this section, we call the experiments 

performed with the original test suite as “Redundant Test Suite”. 

 

Figure 28 shows a comparison of the four techniques on the seven subject programs with 

Redundant Test Suite. Each version in these seven programs has one fault. We need to 

examine 7.19% of the source code when the suspiciousness rankings computed by Ela until 

we find the faulty statement while 7.86%, 7.86%, 7.19% of the source code for the other 

three techniques: Jaccard, Tarantula, and Ochiai respectively for the PrintTokens program. 

 

Figure 28 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Redundant Test Suite 

 

From Figure 28, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 40.57% of the code to find the fault by using Ela 

technique. In the best case, on average only 3.81% needs to be inspected. Ela technique 

achieves improvements ranging from 0.09% to 11.43% on average per program over the 

Ochiai technique which is the second best technique. An important conclusion drawn from 

Figure 28 is that under the specific conditions of our experiments, Ela technique gives a 

better effectiveness: it always performs at least as good as the other techniques, with an 

average improvement of 1.65% over the second best technique (Ochiai). 

 

Table 16 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with Redundant Test Suite. Our aim is to compare Ela 

technique with three prominent techniques according their averaged expenses on 
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seven subject programs with Redundant Test Suite. As Table 16 shows, Ela has the 

lowest expense for the two subject programs and one of the lowest expenses for the five 

subject programs. 

Table 16 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Redundant Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 7.86 7.86 7.19 7.19 

PrintTokens2 4.65 4.97 4.3 3.81 

Replace 10.16 10.16 9.77 9.77 

Schedule 7.22 7.22 7.22 7.22 

Schedule2 17.18 17.18 17.18 17.18 

Tcas 40.57 40.57 40.57 40.57 

TotInfo 23.74 23.78 23.66 23.63 

 

Figure 29 shows a comparison of the four techniques on the seven subject programs with 

Redundant Test Suite in terms of their MRR values. Our purpose is to compare Ela 

technique with three prominent techniques across the versions of seven subject 

programs with Redundant Test Suite. 

 

Figure 29 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Redundant Test Suite 

 

Figure 29 indicates that Ela technique has the highest MRR value for the two subject 

programs and one of the highest MRR values for the five subject programs. Detailed 
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information about the MRR values of the four techniques with Redundant Test Suite on the 

seven programs is given in Table 17. 

Table 17 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Redundant Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 0.3288 0.3288 0.9629 0.9629 

PrintTokens2 0.8472 0.7536 0.8964 0.9551 

Replace 0.6098 0.6098 0.6481 0.6481 

Schedule 0.5846 0.5846 0.5846 0.5846 

Schedule2 0.6381 0.6381 0.6381 0.6381 

Tcas 0.0608 0.0608 0.0608 0.0608 

TotInfo 0.0632 0.0632 0.0633 0.0634 

 

The effectiveness of Ela and the three prominent fault localization techniques are compared 

in Table 18 in terms of their code examination efforts. The percentages of the code examined 

until the fault is found for each of the subject programs are given for Ela and the three 

prominent techniques. Table 18 indicates that Ela finds 35.6% of the total software faults 

with only 5% code examination effort while Jaccard, Tarantula, and Ochiai techniques find 

33.6%, 33.9%, 35.6% of the total software faults for covering only 5% of the total source 

code on average of all the subject programs respectively. 

Table 18 – Code examination efforts of four techniques on the subject programs 

Code Examination Effort Proportion of faults located 

  Jaccard Tarantula Ochiai Ela 

5 33.6% 33.9% 35.6% 35.6% 

10 44.5% 44.9% 44.9% 44.9% 

15 50.4% 50.8% 50.8% 50.8% 

20 57.1% 57.6% 57.6% 57.6% 

25 58% 57.6% 57.6% 57.6% 

30 65.5% 65.3% 65.3% 65.3% 

35 68.9% 68.6% 68.6% 68.6% 

40 69.7% 69.5% 69.5% 69.5% 

45 74.8% 74.6% 74.6% 74.6% 

  50+ 100% 100% 100% 100% 

 

Due to the large number of equivalent passed tests in Redundant Test Suite, the percentage 

of the failed tests is less than 5% for PrintTokens (1.31%), Replace (1.9%), Schedule 

(3.61%), Schedule2 (1.36%), and Tcas (2.31%). Therefore, it is difficult to differentiate the 

faulty statement from the innocent statements for these five test suites. On the other hand, the 

percentage of the failed tests is greater than 5% for PrintTokens2 (5.44%) and TotInfo 
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(8.34%) in Redundant Test Suite. Therefore, it is relatively easy to differentiate the faulty 

statement from the innocent statements. As a result, Ela technique differentiated the faulty 

statement from the innocent statements and achieved better fault localization effectiveness 

than the three prominent techniques for PrintTokens2 and TotInfo. Besides, it achieved same 

fault localization effectiveness for the remaining five programs. 

7.2.1. Significance Analysis of Ela Effectiveness on Redundant Test Suite 

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and 

Ochiai with Wilcoxon signed rank test at =0.05 significance level for seven programs on 

Redundant Test Suite. The null hypothesis H0 and the alternative hypothesis H1 are as 

follows: 

 

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Redundant Test Suite. 

 

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Redundant Test Suite. 

 

Ela has statistically significant improvement over Jaccard for PrintTokens2 and Replace 

programs (p-value=0.016 and p-value=6.1x10-5 respectively). Moreover, it has statistically 

significant improvement over Tarantula for PrintTokens2 and Replace programs (p-

value=0.008 and p-value=6.1x10-5 respectively). On the other hand, it does not have 

statistically significant improvement over Ochiai. The details of the significance analyses are 

given in the Appendix A. 

 

To sum up, Ela technique has a higher ranking than three prominent techniques in 4 of 118 

of all the versions of the subject programs while it is one of the best performing techniques 

for the remaining 114 versions. We can conclude that Ela technique is superior to the three 

prominent techniques on Redundant Test Suite. 

7.3. Experiment II: Test Reduction Strategy I – Distinct Test Suite 

In this experiment, we eliminated the equivalent tests and use the coverage matrix for the 

resulting suite of distinct tests. Using this input, we compare Ela with the three widely used 

SFL techniques. In the rest of this section, we refer the elimination of equivalent tests as the 

‘Distinct Test Suite Strategy’. 
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7.3.1. Experimental Results II: Comparison with the Three Prominent Fault 

Localization Techniques with Distinct Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 

which are Jaccard, Tarantula, and Ochiai on Distinct Test Suite. 

 

Figure 30 shows a comparison of the four techniques on the seven subject programs with 

Distinct Test Suite. Each version in these seven programs has one fault. We need to examine 

6.59% of the source code when the suspiciousness rankings computed by Ela until we find 

the faulty statement while 7.55%, 8.4%, 7.19% of the source code for the other three 

techniques: Jaccard, Tarantula, and Ochiai respectively for the PrintTokens program. 

 

Figure 30 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Distinct Test Suite 

 

From Figure 30, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 40.57% of the code to find the fault by using Ela 

technique. In the best case, on average only 3.78% needs to be inspected. Ela technique 

achieves improvements ranging from 1.2% to 8.4% on average per program over the Ochiai 

technique which is the second best technique. An important conclusion drawn from Figure 

30 is that under the specific conditions of our experiments, Ela technique gives a better 

effectiveness: it always performs at least as good as the other techniques, with an average 

improvement of 2.81% over the second best technique (Ochiai). 
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Table 19 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with Distinct Test Suite. Our aim is to compare Ela 

technique with three prominent techniques according their averaged expenses on 

seven subject programs with Distinct Test Suite. As Table 19 shows, Ela has the lowest 

expense for the four subject programs and one of the lowest expenses for the three subject 

programs. 

Table 19 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Distinct Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 7.55 8.4 7.19 6.59 

PrintTokens2 4.35 5.46 3.94 3.78 

Replace 11.33 12.09 10.65 10.02 

Schedule 7.65 8.01 7.3 7.22 

Schedule2 17.23 17.37 17.09 17.09 

Tcas 40.57 40.71 40.57 40.57 

TotInfo 24.09 24.67 23.63 23.63 

 

Figure 31 shows a comparison of the four techniques on the seven subject programs with 

Distinct Test Suite in terms of their MRR values. Our purpose is to compare Ela 

technique with three prominent techniques across the versions of seven subject 

programs with Distinct Test Suite. 

 

Figure 31 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Distinct Test Suite 
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Figure 31 indicates that Ela technique has the highest MRR value for the four subject 

programs and one of the highest MRR values for the three subject programs. Detailed 

information about the MRR values of the four techniques with Distinct Test Suite on the 

seven programs is given in Table 20. 

Table 20 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Distinct Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 1.4030 0.3442 1.4093 1.4116 

PrintTokens2 0.8985 0.5556 0.9552 0.9558 

Replace 0.4901 0.4575 0.5381 0.6638 

Schedule 0.5553 0.5361 0.5845 0.5846 

Schedule2 0.6320 0.6235 0.6381 0.6381 

Tcas 0.0608 0.0607 0.0608 0.0608 

TotInfo 0.0619 0.0612 0.0634 0.0634 

 

The accuracies of Ela and the three prominent fault localization techniques are compared in 

Table 21 in terms of their code examination efforts. The percentages of the code examined 

until the fault is found for each of the subject programs are given for Ela and the three 

prominent techniques. Table 21 indicates that Ela finds 34.7% of the total software faults 

with only 5% code examination effort while Jaccard, Tarantula, and Ochiai techniques find 

31.9%, 31.4%, 33.9% of the total software faults for covering only 5% of the total source 

code on average of all the subject programs. 

Table 21 – Code examination efforts of four techniques on the subject programs 

Code Examination Effort Proportion of faults located 

  Jaccard Tarantula Ochiai Ela 

5 31.9% 31.4% 33.9% 34.7% 

10 42% 40.7% 44.9% 44.9% 

15 50.4% 50.8% 50.8% 50.8% 

20 56.3% 56.8% 56.8% 57.6% 

25 58% 57.6% 57.6% 57.6% 

30 65.5% 65.3% 65.3% 65.3% 

35 66.4% 66.1% 66.9% 68.6% 

40 68.9% 67.8% 69.5% 69.5% 

45 73.9% 70.3% 74.6% 74.6% 

  50+ 100% 100% 100% 100% 

 

After eliminating the equivalent tests from Redundant Test Suite, the percentage of the failed 

tests has been relatively increased in Distinct Test Suite. The percentage of the failed tests is 

greater than 5% for PrintTokens (15.01%), PrintTokens2 (11.74%), Replace (15.1%), 
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Schedule (18.02%), Schedule2 (16.74%), Tcas (20.12%), and TotInfo (31.41%). Therefore, 

it is relatively easy to differentiate the faulty statement from the innocent statements in 

Distinct Test Suite. However, there are some relatively difficult types of faulty statements to 

be located in PrintTokens (Comment or Delete method call; Comment or Delete variable 

assignment), PrintTokens2 (Comment or Delete return value; Change variable assignment), 

Replace (Change method call; Change method body; Change variable assignment; Change or 

Comment or Delete variable assignment; Change variable initialization; Change lines of 

code), and Schedule (Change variable assignment; Change or Comment or Delete variable 

assignment) programs. The list of fault types are given in Table 56 in the Appendix B. 

Consequently, it is relatively difficult to locate the faulty statements for these version of the 

programs in the Siemens test suite. 

7.3.2. Significance Analysis of Ela Effectiveness on Distinct Test Suite 

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and 

Ochiai or not with Wilcoxon signed rank test at =0.05 significance level for seven 

programs on Distinct Test Suite. The null hypothesis H0 and the alternative hypothesis H1 are 

as follows: 

 

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Distinct Test Suite. 

 

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Distinct Test Suite. 

 

Ela has statistically significant improvement over Jaccard for PrintTokens2, Replace, and 

TotInfo programs (p-value=0.031, p-value=7.5x10-9, and p-value=9.8x10-4 respectively). 

Moreover, it has statistically significant improvement over Tarantula for PrintTokens, 

PrintTokens2, Replace, Tcas, and TotInfo programs (p-value=0.031, p-value=0.002, p-

value=7.5x10-9, p-value=0.016, and p-value=2.4x10-4 respectively). Furthermore, it has 

statistically significant improvement over Ochiai for Replace program (p-value=7.5x10-9). 

The details of the significance analyses are given in the Appendix A. 

 

To sum up, Ela technique has a higher ranking than three prominent techniques in 31 of 118 

of all the versions of the subject programs while it is one of the best performing techniques 

for the remaining 87 versions. We can conclude that Ela technique is superior to the three 

prominent techniques on Distinct Test Suite. 
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7.4. Experiment III: Test Reduction Strategy II – Distinct FminCov Test Suite 

We applied the failed test reduction strategy on four SFL techniques. In this experiment, we 

eliminated the equivalent tests and use the coverage matrix for the resulting suite of distinct 

tests to eliminate the bias. 

7.4.1. Experimental Results III: Comparison with the Three Prominent Fault 

Localization Techniques with Distinct FminCov Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 

which are Jaccard, Tarantula, and Ochiai on Distinct FminCov Test Suite. On average 10.1% 

test size reduction is achieved with this strategy. 

 

Figure 32 shows a comparison of the four techniques on the seven subject programs with 

Distinct FminCov Test Suite. Each version in these seven programs has one fault. We need 

to examine 6.47% of the source code until we find the faulty statement for the PrintTokens 

program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai. 

 

Figure 32 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Distinct FminCov Test Suite 

 

From Figure 32, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 40.57% of the code to find the fault by using Ela 

technique. In the best case, on average only 3.78% needs to be inspected. Ela technique 

achieves same performance with other three techniques.  
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Table 22 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with Distinct FminCov Test Suite. Our aim is to 

compare Ela technique with three prominent techniques according their averaged 

expenses on seven subject programs with Distinct FminCov Test Suite. As Table 22 

shows, Ela has one of the lowest expenses for each of the programs. 

Table 22 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Distinct FminCov Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 6.47 6.47 6.47 6.47 

PrintTokens2 3.78 3.78 3.78 3.78 

Replace 9.63 9.63 9.63 9.63 

Schedule 7.22 7.22 7.22 7.22 

Schedule2 17.09 17.09 17.09 17.09 

Tcas 40.57 40.57 40.57 40.57 

TotInfo 23.61 23.61 23.61 23.61 

 

Figure 33 shows a comparison of the four techniques on the seven subject programs with 

Distinct FminCov Test Suite in terms of their MRR values. Our purpose is to compare Ela 

technique with three prominent techniques across the versions of seven subject 

programs with Distinct FminCov Test Suite. 

 

Figure 33 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Distinct FminCov Test Suite 
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Figure 33 indicates that Ela technique has one of the highest MRR values for each of the 

seven subject programs. Detailed information about the MRR values of the four techniques 

with Distinct FminCov Test Suite on the seven programs is given in Table 23. 

Table 23 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Distinct FminCov Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 1.4120 1.4120 1.4120 1.4120 

PrintTokens2 0.9558 0.9558 0.9558 0.9558 

Replace 0.6667 0.6667 0.6667 0.6667 

Schedule 0.5846 0.5846 0.5846 0.5846 

Schedule2 0.6381 0.6381 0.6381 0.6381 

Tcas 0.0608 0.0608 0.0608 0.0608 

TotInfo 0.0634 0.0634 0.0634 0.0634 

 

The accuracies of Ela and the three prominent fault localization techniques are compared in 

Table 24 in terms of their code examination efforts. The percentages of the code examined 

until the fault is found for each of the subject programs are given for Ela and the three 

prominent techniques. Table 24 indicates that Ela, Jaccard, Tarantula, and Ochiai techniques 

find 35.6% of the total software faults with only 5% code examination effort, i.e. covering 

only 5% of the total source code on average of all the subject programs. 

Table 24 – Code examination efforts of four techniques on the subject programs 

Code Examination Effort Proportion of faults located 

  Jaccard Tarantula Ochiai Ela 

5 35.6% 35.6% 35.6% 35.6% 

10 44.9% 44.9% 44.9% 44.9% 

15 50.8% 50.8% 50.8% 50.8% 

20 57.6% 57.6% 57.6% 57.6% 

25 57.6% 57.6% 57.6% 57.6% 

30 65.3% 65.3% 65.3% 65.3% 

35 68.6% 68.6% 68.6% 68.6% 

40 69.5% 69.5% 69.5% 69.5% 

45 74.6% 74.6% 74.6% 74.6% 

  50+ 100% 100% 100% 100% 

 

For each of the subject programs in Distinct FminCov Test Suite, there is only one failed test 

which is not subsumed by any other failed test (called FminCov failed test). Thus, the 

percentage of the failed tests is very small compared to Redundant and Distinct test suites. 

Consequently, it is difficult to differentiate the faulty statement from the innocent statements 

for this test suite. We can say that if we had a test suite with more than one FminCov failed 
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test, the faulty statement would be differentiated from the innocent statements and Ela would 

achieve better fault localization effectiveness than the three prominent fault localization 

techniques for this test suite. 

7.4.2. Significance Analysis of Ela Effectiveness on Distinct FminCov Test Suite 

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and 

Ochiai or not with Wilcoxon signed rank test at =0.05 significance level for seven 

programs on Distinct FminCov Test Suite. The null hypothesis H0 and the alternative 

hypothesis H1 are as follows: 

 

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Distinct FminCov Test Suite. 

 

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Distinct FminCov Test Suite. 

 

Ela does not have statistically significant improvement over Jaccard, Tarantula and Ochiai. 

The details of the significance analyses are given in the Appendix A. 

7.4.3. Significance Analysis of Failed Test Reduction 

We test whether there is a statistically significant failed test reduction or not with Wilcoxon 

signed rank test at =0.05 significance level. The null hypothesis H0 and the alternative 

hypothesis H1 are as follows: 

 

H0: Median of failed test reduction is zero. 

H1: Median of failed test reduction is greater than zero. 

 

There is a statistically significant failed test reduction (p-value=0.0156). 

7.5. Experiment IV: Test Reduction Strategy III - Distinct FminCov Cluster Test Suite 

We applied the clustering based passed test reduction strategy on four SFL techniques. In 

this experiment, we used the coverage matrix of the test suite after the elimination of the 

equivalent tests to remove the bias. 
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7.5.1. Experimental Results IV: Comparison with the Three Prominent Fault 

Localization Techniques with Distinct FminCov Cluster Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 

which are Jaccard, Tarantula, and Ochiai on Distinct FminCov Cluster Test Suite. On 

average 34.1% test size reduction is achieved with this strategy. 

 

Figure 34 shows a comparison of the four techniques on the seven subject programs with 

Distinct FminCov Cluster Test Suite. Each version in these seven programs has one fault. 

We need to examine 13.29% of the source code until we find the faulty statement for the 

PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai. 

 

Figure 34 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Distinct FminCov Cluster Test Suite 

 

From Figure 34, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 40.57% of the code to find the fault by using Ela 

technique. In the best case, on average only 9.14% needs to be inspected. Ela technique 

achieves same performance with other three techniques. 

 

Table 25 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with Distinct FminCov Cluster Test Suite. Our aim is 

to compare Ela technique with three prominent techniques according their averaged 
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expenses on seven subject programs with Distinct FminCov Cluster Test Suite. As 

Table 25 shows, Ela has one of the lowest expenses for each of the programs. 

Table 25 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Distinct FminCov Cluster Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 13.29 13.29 13.29 13.29 

PrintTokens2 17.73 17.73 17.73 17.73 

Replace 13.75 13.75 13.75 13.75 

Schedule 9.14 9.14 9.14 9.14 

Schedule2 19.78 19.78 19.78 19.78 

Tcas 40.57 40.57 40.57 40.57 

TotInfo 35.48 35.48 35.48 35.48 

 

Figure 35 shows a comparison of the four techniques on the seven subject programs with 

Distinct FminCov Cluster Test Suite in terms of their MRR values. Our purpose is to 

compare Ela technique with three prominent techniques across the versions of seven 

subject programs with Distinct FminCov Cluster Test Suite. 

 

Figure 35 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Distinct FminCov Cluster Test Suite 

 

Figure 35 indicates that Ela technique has one of the highest MRR values for each of the 

seven subject programs. Detailed information about the MRR values of the four techniques 

with Distinct FminCov Cluster Test Suite on the seven programs is given in Table 26.  
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Table 26 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Distinct FminCov Cluster Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 1.4044 1.4044 1.4044 1.4044 

PrintTokens2 0.9198 0.9198 0.9198 0.9198 

Replace 0.6574 0.6574 0.6574 0.6574 

Schedule 0.5835 0.5835 0.5835 0.5835 

Schedule2 0.6363 0.6363 0.6363 0.6363 

Tcas 0.0608 0.0608 0.0608 0.0608 

TotInfo 0.0505 0.0505 0.0505 0.0505 

 

The accuracies of Ela and the three prominent fault localization techniques are compared in 

Table 27 in terms of their code examination efforts. The percentages of the code examined 

until the fault is found for each of the subject programs are given for Ela and the three 

prominent techniques. Table 27 indicates that Ela, Jaccard, Tarantula, and Ochiai techniques 

find 33.9% of the total software faults with only 5% code examination effort, i.e. covering 

only 5% of the total source code on average of all the subject programs. 

Table 27 – Code examination efforts of four techniques on the subject programs 

Code Examination Effort Proportion of faults located 

  Jaccard Tarantula Ochiai Ela 

5 33.9% 33.9% 33.9% 33.9% 

10 42.4% 42.4% 42.4% 42.4% 

15 46.6% 46.6% 46.6% 46.6% 

20 46.6% 46.6% 46.6% 46.6% 

25 46.6% 46.6% 46.6% 46.6% 

30 46.6% 46.6% 46.6% 46.6% 

35 51.7% 51.7% 51.7% 51.7% 

40 54.2% 54.2% 54.2% 54.2% 

45 64.4% 64.4% 64.4% 64.4% 

50 96.6% 96.6% 96.6% 96.6% 

55 98.3% 98.3% 98.3% 98.3% 

  60+ 100% 100% 100% 100% 

 

Same reason in the subsection 7.4.1 is hold in Distinct FminCov Cluster Test Suite. Since the 

percentage of the failed tests is very small compared to Redundant and Distinct test suites, it 

is difficult to differentiate the faulty statement from the innocent statements for this test 

suite. We can say that if we had a test suite with more than one FminCov failed test, the 

faulty statement would be differentiated from the innocent statements and Ela would achieve 

better fault localization effectiveness the three prominent fault localization techniques for 

this test suite. 
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7.5.2. Significance Analysis of Ela Effectiveness on Distinct FminCov Cluster Test 

Suite 

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and 

Ochiai or not with Wilcoxon signed rank test at =0.05 significance level for seven 

programs on Distinct FminCov Cluster Test Suite. The null hypothesis H0 and the alternative 

hypothesis H1 are as follows: 

 

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Distinct FminCov Cluster Test Suite. 

 

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Distinct FminCov Cluster Test Suite. 

 

Ela does not have statistically significant improvement over Jaccard, Tarantula and Ochiai. 

The details of the significance analyses are given in the Appendix A. 

7.5.3. Significance Analysis of Passed Test Reduction with Clustering 

We test whether there is a statistically significant passed test reduction with clustering or not 

with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and the 

alternative hypothesis H1 are as follows: 

 

H0: Median of passed test reduction with clustering is zero. 

H1: Median of passed test reduction with clustering is greater than zero. 

 

There is a statistically significant passed test reduction with clustering (p-value=0.0078). 

7.6. Experiment V: Test Reduction Strategy IV - Distinct FminCov Classify Test Suite 

We applied the classification based passed test reduction strategy in combination with 

FminCov Test Suite Strategy on four SFL techniques. In this experiment, we used the 

coverage matrix of the test suite after the elimination of the equivalent tests to remove the 

bias. 

7.6.1. Experimental Results V: Comparison with the Three Prominent Fault 

Localization Techniques with Distinct FminCov Classify Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 
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which are Jaccard, Tarantula, and Ochiai on Distinct FminCov Classify Test Suite. On 

average 30.3% test size reduction is achieved with this strategy. 

 

Figure 36 shows a comparison of the four techniques on the seven subject programs with 

Distinct FminCov Classify Test Suite. Each version in these seven programs has one fault. 

We need to examine 6.47% of the source code until we find the faulty statement for the 

PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai. 

 

Figure 36 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Distinct FminCov Classify Test Suite 

 

From Figure 36, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 40.57% of the code to find the fault by using Ela 

technique. In the best case, on average only 3.78% needs to be inspected. Ela technique 

achieves same performance with other three techniques. 

 

Table 28 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with Distinct FminCov Classify Test Suite. Our aim is 

to compare Ela technique with three prominent techniques according their averaged 

expenses on seven subject programs with Distinct FminCov Classify Test Suite. As 

Table 28 shows, Ela has one of the lowest expenses for each of the programs.  
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Table 28 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with Distinct FminCov Classify Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 6.47 6.47 6.47 6.47 

PrintTokens2 3.78 3.78 3.78 3.78 

Replace 9.63 9.63 9.63 9.63 

Schedule 7.22 7.22 7.22 7.22 

Schedule2 17.09 17.09 17.09 17.09 

Tcas 40.57 40.57 40.57 40.57 

TotInfo 23.61 23.61 23.61 23.61 

 

Figure 37 shows a comparison of the four techniques on the seven subject programs with 

Distinct FminCov Classify Test Suite in terms of their MRR values. Our purpose is to 

compare Ela technique with three prominent techniques across the versions of seven 

subject programs with Distinct FminCov Classify Test Suite. 

 

Figure 37 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Distinct FminCov Classify Test Suite 

 

Figure 37 indicates that Ela technique has one of the highest MRR values for each of the 

seven subject programs. Detailed information about the MRR values of the four techniques 

with Distinct FminCov Classify Test Suite on the seven programs is given in Table 29.  
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Table 29 – MRR values for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with Distinct FminCov Classify Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 1.4120 1.4120 1.4120 1.4120 

PrintTokens2 0.9558 0.9558 0.9558 0.9558 

Replace 0.6667 0.6667 0.6667 0.6667 

Schedule 0.5846 0.5846 0.5846 0.5846 

Schedule2 0.6381 0.6381 0.6381 0.6381 

Tcas 0.0608 0.0608 0.0608 0.0608 

TotInfo 0.0634 0.0634 0.0634 0.0634 

 

The accuracies of Ela and the three prominent fault localization techniques are compared in 

Table 30 in terms of their code examination efforts. The percentages of the code examined 

until the fault is found for each of the subject programs are given for Ela and the three 

prominent techniques. Table 30 indicates that Ela, Jaccard, Tarantula, and Ochiai techniques 

find 35.6% of the total software faults with only 5% code examination effort, i.e. covering 

only 5% of the total source code on average of all the subject programs. 

Table 30 – Code examination efforts of four techniques on the subject programs 

Code Examination Effort Proportion of faults located 

  Jaccard Tarantula Ochiai Ela 

5 35.6% 35.6% 35.6% 35.6% 

10 44.9% 44.9% 44.9% 44.9% 

15 50.8% 50.8% 50.8% 50.8% 

20 57.6% 57.6% 57.6% 57.6% 

25 57.6% 57.6% 57.6% 57.6% 

30 65.3% 65.3% 65.3% 65.3% 

35 68.6% 68.6% 68.6% 68.6% 

40 69.5% 69.5% 69.5% 69.5% 

45 74.6% 74.6% 74.6% 74.6% 

  50+ 100% 100% 100% 100% 

 

Same reason in the subsection 7.4.1 is hold in Distinct FminCov Classify Test Suite. Since 

the percentage of the failed tests is very small compared to Redundant and Distinct test 

suites, it difficult enough to differentiate the faulty statement from the innocent statements 

for this test suite. We can say that if we had a test suite with more than one FminCov failed 

test, the faulty statement would be differentiated from the innocent statements and Ela would 

achieve better fault localization effectiveness the three prominent fault localization 

techniques for this test suite. 
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7.6.2. Significance Analysis of Ela Effectiveness on Distinct FminCov Classify Test 

Suite 

We test whether Ela has statistically significant improvement over Jaccard, Tarantula, and 

Ochiai or not with Wilcoxon signed rank test at =0.05 significance level for seven 

programs on Distinct FminCov Classify Test Suite. The null hypothesis H0 and the 

alternative hypothesis H1 are as follows: 

 

H0: Median Expense of Ela is equal to Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Distinct FminCov Classify Test Suite. 

 

H1: Median Expense of Ela is less than Median Expense of Jaccard (Tarantula and Ochiai for 

other comparisons) on Distinct FminCov Classify Test Suite. 

 

Ela does not have statistically significant improvement over Jaccard, Tarantula and Ochiai. 

The details of the significance analyses are given in the Appendix A. 

7.6.3. Significance Analysis of Passed Test Reduction with Classification 

We test whether there is a statistically significant passed test reduction with classification or 

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and 

the alternative hypothesis H1 are as follows: 

 

H0: Median of passed test reduction with classification is zero. 

H1: Median of passed test reduction with classification is greater than zero. 

 

There is a statistically significant passed test reduction with classification (p-value=0.0078). 

7.7. Experiment VI: Effective Ranking Strategy: Local Maxima 

We applied one post processing strategy called local maxima strategy to rank statements 

effectively. 

7.7.1. Effective Ranking Strategy on Redundant Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 

which are Jaccard, Tarantula, and Ochiai with LM strategy on Redundant Test Suite. 
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Figure 38 shows a comparison of the four techniques on the seven subject programs for LM 

strategy on Redundant Test Suite. Each version in these seven programs has one fault. We 

need to examine 5.44% of the source code when the suspiciousness rankings computed by 

Ela until we find the faulty statement while 6.1%, 6.1%, 5.44% of the source code for the 

other three techniques: Jaccard, Tarantula, and Ochiai respectively for the PrintTokens 

program. 

 

Figure 38 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with LM strategy on Redundant Test Suite 

 

Table 31 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs on Redundant Test Suite. As Table 31 shows, Ela has the 

lowest expense for the two subject programs and one of the lowest expenses for the five 

subject programs. 

Table 31 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs on Redundant Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 7.86 7.86 7.19 7.19 

PrintTokens2 4.65 4.97 4.3 3.81 

Replace 10.16 10.16 9.77 9.77 

Schedule 7.22 7.22 7.22 7.22 

Schedule2 17.18 17.18 17.18 17.18 

Tcas 40.57 40.57 40.57 40.57 

TotInfo 23.74 23.78 23.66 23.63 

 

0

5

10

15

20

25

30

35

40

Ex
p

e
n

se
 (

%
)

Jaccard

Tarantula

Ochiai

Ela



86 

 

Table 32 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with LM strategy on Redundant Test Suite. 

Table 32 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with LM strategy on Redundant Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 6.1 6.1 5.44 5.44 

PrintTokens2 4.3 4.62 3.97 3.48 

Replace 8.99 8.99 8.69 8.69 

Schedule 6.91 6.91 6.91 6.91 

Schedule2 15.03 15.03 15.03 15.03 

Tcas 36.42 36.42 36.42 36.42 

TotInfo 22.47 22.52 22.43 22.41 

 

From Table 32, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 36.42% of the code to find the fault by using Ela 

technique. In the best case, on average only 3.48% needs to be inspected. Ela technique 

achieves improvements ranging from 0.1% to 12.37% on average per program over the 

Ochiai technique which is the second best technique. 

 

Table 32 shows that under the specific conditions of our experiments, Ela technique gives a 

better effectiveness: it always performs at least as good as the other techniques, with an 

average improvement of 1.78% over the second best technique (Ochiai). 

 

Figure 39 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai, 

and Ela techniques on seven programs on Redundant Test Suite. 
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Figure 39 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and 

Ela techniques for seven programs on Redundant Test Suite 

 

Figure 39 indicates that Ela technique has 10.88% averaged improvement while Jaccard, 

Tarantula, and Ochiai techniques have 10.54%, 10.47%, and 10.74% averaged 

improvements respectively on average of all subject programs. There is approximately 10% 

averaged improvement of LM strategy for all techniques on Redundant Test Suite. 

7.7.1.1. Significance Analysis of Local Maxima with Ela Technique on Redundant Test 

Suite 

We test whether there is a statistically significant improvement of local maxima with Ela or 

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and 

the alternative hypothesis H1 are as follows: 

 

H0: Median Expense Improvement of Local Maxima is zero on Redundant Test Suite. 

H1: Median Expense Improvement of Local Maxima is greater than zero on Redundant Test 

Suite. 

 

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078) 

on Redundant Test Suite. 

7.7.2. Effective Ranking Strategy on Distinct Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 

which are Jaccard, Tarantula, and Ochiai with LM strategy on Distinct Test Suite. 
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Figure 40 shows a comparison of the four techniques on the seven subject programs for LM 

strategy on Distinct Test Suite. Each version in these seven programs has one fault. We 

need to examine 5.08% of the source code when the suspiciousness rankings computed by 

Ela until we find the faulty statement while 5.86%, 6.53%, 5.56% of the source code for the 

other three techniques: Jaccard, Tarantula, and Ochiai respectively for the PrintTokens 

program. 

 

 

Figure 40 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on seven 

programs with LM strategy on Distinct Test Suite 

 

Table 33 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs on Distinct Test Suite. As Table 33 shows, Ela has the 

lowest expense for the four subject programs and one of the lowest expenses for the three 

subject programs. 

Table 33 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs on Distinct Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 7.55 8.4 7.19 6.59 

PrintTokens2 4.35 5.46 3.94 3.78 

Replace 11.33 12.09 10.65 10.02 

Schedule 7.65 8.01 7.3 7.22 

Schedule2 17.23 17.37 17.09 17.09 

Tcas 40.57 40.71 40.57 40.57 

TotInfo 24.09 24.67 23.63 23.63 
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Table 34 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with LM strategy on Distinct Test Suite. 

Table 34 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with LM strategy on Distinct Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 5.86 6.53 5.56 5.08 

PrintTokens2 4.02 5.08 3.64 3.48 

Replace 9.72 10.38 9.27 8.78 

Schedule 7.35 7.52 7 6.91 

Schedule2 15.16 15.12 15.12 15.12 

Tcas 36.42 36.46 36.42 36.42 

TotInfo 22.69 22.97 22.43 22.43 

 

From Table 34, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 36.42% of the code to find the fault by using Ela 

technique. In the best case, on average only 3.48% needs to be inspected. Ela technique 

achieves improvements ranging from 1.25% to 8.7% on average per program over the Ochiai 

technique which is the second best technique. 

 

Table 34 is that under the specific conditions of our experiments, Ela technique gives a better 

effectiveness: it always performs at least as good as the other techniques, with an average 

improvement of 2.81% over the second best technique (Ochiai). 

 

Figure 41 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai, 

and Ela techniques on seven programs on Distinct Test Suite. 



90 

 

 

Figure 41 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and 

Ela techniques for seven programs on Distinct Test Suite 

 

Figure 41 indicates that Ela technique has 10.61% averaged improvement while Jaccard, 

Tarantula, and Ochiai techniques have 10.87%, 11.38%, and 10.61% averaged 

improvements respectively on average of all subject programs. There is about 10% averaged 

improvement of LM strategy for all techniques on Distinct Test Suite. 

7.7.2.1. Significance Analysis of Local Maxima with Ela Technique on Distinct Test 

Suite 

We test whether there is a statistically significant improvement of local maxima with Ela or 

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and 

the alternative hypothesis H1 are as follows: 

 

H0: Median Expense Improvement of Local Maxima is equal to zero on Distinct Test Suite. 

H1: Median Expense Improvement of Local Maxima is greater than zero on Distinct Test 

Suite. 

 

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078) 

on Distinct Test Suite. 

7.7.3. Effective Ranking Strategy on Distinct FminCov Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 

which are Jaccard, Tarantula, and Ochiai with LM strategy on Distinct FminCov Test 

Suite.  
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Figure 42 shows a comparison of the four techniques on the seven subject programs for LM 

strategy on Distinct FminCov Test Suite. Each version in these seven programs has one 

fault. We need to examine 4.95% of the source code until we find the faulty statement for the 

PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai. 

 

 

Figure 42 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with LM strategy on Distinct FminCov Test Suite 

 

Table 35 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs on Distinct FminCov Test Suite. As Table 35 shows, Ela 

has one of the lowest expenses for each of the programs. 

Table 35 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs on Distinct FminCov Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 6.47 6.47 6.47 6.47 

PrintTokens2 3.78 3.78 3.78 3.78 

Replace 9.63 9.63 9.63 9.63 

Schedule 7.22 7.22 7.22 7.22 

Schedule2 17.09 17.09 17.09 17.09 

Tcas 40.57 40.57 40.57 40.57 

TotInfo 23.61 23.61 23.61 23.61 

 

Table 36 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with LM strategy on Distinct FminCov Test Suite.  
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Table 36 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with LM strategy on Distinct FminCov Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 4.95 4.95 4.95 4.95 

PrintTokens2 3.48 3.48 3.48 3.48 

Replace 8.59 8.59 8.59 8.59 

Schedule 6.91 6.91 6.91 6.91 

Schedule2 15.12 15.12 15.12 15.12 

Tcas 36.42 36.42 36.42 36.42 

TotInfo 22.43 22.43 22.43 22.43 

 

From Table 36, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 36.42% of the code to find the fault by using Ela 

technique. In the best case, on average only 3.48% needs to be inspected. Ela technique 

achieves same performance with other three techniques for each of the seven subject 

programs. 

 

Figure 43 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai, 

and Ela techniques on seven programs on Distinct FminCov Test Suite. 

 

Figure 43 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and 

Ela techniques for seven programs on Distinct FminCov Test Suite 

 

Figure 43 indicates that Ela and other three techniques have 10.44% averaged improvements 

on average of all subject programs for Distinct FminCov Test Suite. 
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7.7.3.1. Significance Analysis of Local Maxima with Ela Technique on Distinct 

FminCov Test Suite 

We test whether there is a statistically significant improvement of local maxima with Ela or 

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and 

the alternative hypothesis H1 are as follows: 

 

H0: Median Expense Improvement of Local Maxima is equal to zero on Distinct FminCov 

Test Suite. 

H1: Median Expense Improvement of Local Maxima is greater than zero on Distinct 

FminCov Test Suite. 

 

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078) 

on Distinct FminCov Test Suite. 

7.7.4. Effective Ranking Strategy on Distinct FminCov Cluster Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 

which are Jaccard, Tarantula, and Ochiai with LM strategy on Distinct FminCov Cluster 

Test Suite. 

 

Figure 44 shows a comparison of the four techniques on the seven subject programs for LM 

strategy on Distinct FminCov Cluster Test Suite. Each version in these seven programs has 

one fault. We need to examine 11% of the source code until we find the faulty statement for 

the PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and Ochiai. 
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Figure 44 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with LM strategy on Distinct FminCov Cluster Test Suite 

 

Table 37 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs on Distinct FminCov Cluster Test Suite. As Table 37 

shows, Ela has one of the lowest expenses for each of the programs. 

Table 37 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs on Distinct FminCov Cluster Test Suite 

 

Table 38 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with LM strategy on Distinct FminCov Cluster Test 

Suite.  
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Jaccard Tarantula Ochiai Ela 

PrintTokens 13.29 13.29 13.29 13.29 

PrintTokens2 17.73 17.73 17.73 17.73 

Replace 13.75 13.75 13.75 13.75 

Schedule 9.14 9.14 9.14 9.14 

Schedule2 19.78 19.78 19.78 19.78 

Tcas 40.57 40.57 40.57 40.57 

TotInfo 35.48 35.48 35.48 35.48 
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Table 38 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with LM strategy on Distinct FminCov Cluster Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 11 11 11 11 

PrintTokens2 16.67 16.67 16.67 16.67 

Replace 12.43 12.43 12.43 12.43 

Schedule 8.83 8.83 8.83 8.83 

Schedule2 17.95 17.95 17.95 17.95 

Tcas 36.42 36.42 36.42 36.42 

TotInfo 34.1 34.1 34.1 34.1 

 

From Table 38, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 36.42% of the code to find the fault by using Ela 

technique. In the best case, on average only 8.83% needs to be inspected. Ela technique 

achieves same performance with other three techniques for each of the seven subject 

programs. 

 

Figure 45 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai, 

and Ela techniques on seven programs on Distinct FminCov Cluster Test Suite. 

 

Figure 45 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and 

Ela techniques for seven programs on Distinct FminCov Cluster Test Suite 

 

Figure 45 indicates that Ela and other three techniques have 8.51% averaged improvements 

on average of all subject programs for Distinct FminCov Cluster Test Suite. 
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7.7.4.1. Significance Analysis of Local Maxima with Ela Technique on Distinct 

FminCov Cluster Test Suite 

We test whether there is a statistically significant improvement of local maxima with Ela or 

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and 

the alternative hypothesis H1 are as follows: 

 

H0: Median Expense Improvement of Local Maxima is equal to zero on Distinct FminCov 

Cluster Test Suite. 

H1: Median Expense Improvement of Local Maxima is greater than zero on Distinct 

FminCov Cluster Test Suite. 

 

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078) 

on Distinct FminCov Cluster Test Suite. 

7.7.5. Effective Ranking Strategy on Distinct FminCov Classify Test Suite 

In this section, we present the effectiveness of Ela in terms of expense and MRR in the 

experiments and compare it with those of the three prominent fault localization techniques 

which are Jaccard, Tarantula, and Ochiai with LM strategy on Distinct FminCov Classify 

Test Suite. 

 

Figure 46 shows a comparison of the four techniques on the seven subject programs for LM 

strategy on Distinct FminCov Classify Test Suite. Each version in these seven programs has 

one fault. We need to examine 4.95% of the source code until we find the faulty statement 

for the PrintTokens program with all of the four techniques: Ela, Jaccard, Tarantula, and 

Ochiai. 
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Figure 46 – Averaged Expense for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with LM strategy on Distinct FminCov Classify Test Suite 

 

Table 39 displays the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs on Distinct FminCov Classify Test Suite. As Table 39 

shows, Ela has one of the lowest expenses for each of the programs. 

Table 39 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs on Distinct FminCov Classify Test Suite 

 

Table 40 shows the averaged expenses for Jaccard, Tarantula, Ochiai, and Ela 

techniques on seven programs with LM strategy on Distinct FminCov Classify Test 

Suite.  
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Jaccard Tarantula Ochiai Ela 

PrintTokens 6.47 6.47 6.47 6.47 

PrintTokens2 3.78 3.78 3.78 3.78 

Replace 9.63 9.63 9.63 9.63 

Schedule 7.22 7.22 7.22 7.22 

Schedule2 17.09 17.09 17.09 17.09 

Tcas 40.57 40.57 40.57 40.57 

TotInfo 23.61 23.61 23.61 23.61 
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Table 40 – Averaged Expenses for Jaccard, Tarantula, Ochiai, and Ela techniques on 

seven programs with LM strategy on Distinct FminCov Classify Test Suite 

 

Jaccard Tarantula Ochiai Ela 

PrintTokens 4.95 4.95 4.95 4.95 

PrintTokens2 3.48 3.48 3.48 3.48 

Replace 8.59 8.59 8.59 8.59 

Schedule 6.91 6.91 6.91 6.91 

Schedule2 15.12 15.12 15.12 15.12 

Tcas 36.42 36.42 36.42 36.42 

TotInfo 22.43 22.43 22.43 22.43 

 

From Table 40, it is clear that Ela technique is superior to three prominent techniques under 

the specific conditions of our experiments. In the worst case of these experiments, the user 

still has to inspect on average only 36.42% of the code to find the fault by using Ela 

technique. In the best case, on average only 3.48% needs to be inspected. Ela technique 

achieves same performance with other three techniques for each of the seven subject 

programs. 

 

Figure 47 shows LM Improvement over averaged expense for Jaccard, Tarantula, Ochiai, 

and Ela techniques on seven programs on Distinct FminCov Classify Test Suite. 

 

Figure 47 – LM Improvement over Averaged Expense for Jaccard, Tarantula, Ochiai, and 

Ela techniques for seven programs on Distinct FminCov Classify Test Suite 

 

Figure 47 indicates that Ela and other three techniques have 10.44% averaged improvements 

on average of all subject programs for Distinct FminCov Classify Test Suite. 

0

5

10

15

20

25

Im
p

ro
ve

m
e

n
t 

(%
)

Jaccard

Tarantula

Ochiai

Ela



99 

 

7.7.5.1. Significance Analysis of Local Maxima with Ela Technique on Distinct 

FminCov Classify Test Suite 

We test whether there is a statistically significant improvement of local maxima with Ela or 

not with Wilcoxon signed rank test at =0.05 significance level. The null hypothesis H0 and 

the alternative hypothesis H1 are as follows: 

 

H0: Median Expense Improvement of Local Maxima is equal to zero on Distinct FminCov 

Classify Test Suite. 

H1: Median Expense Improvement of Local Maxima is greater than zero on Distinct 

FminCov Classify Test Suite. 

 

There is a statistically significant improvement of local maxima with Ela (p-value=0.0078) 

on Distinct FminCov Classify Test Suite. 

7.7.6. Discussion on the Results 

The experimental results show that LM strategy achieved about 10% averaged improvements 

on Redundant, Distinct, Distinct FminCov, and Distinct FminCov Classify test suites for all 

four techniques while it achieved about 8.5% averaged improvements on Distinct FminCov 

Cluster test suite for all four techniques. Since fault localization techniques cannot 

differentiate the faulty statement from the innocent statements due to the limited number of 

failed test which is not subsumed by any other failed test on Distinct FminCov Cluster test 

suite, LM strategy achieved relatively smaller averaged improvements in this suite than other 

four test suites. 

 

Since Ela technique has best or one of the best fault localization effectiveness on five test 

suites, LM strategy has lowest averaged improvements with Ela technique on these test 

suites. Moreover, PrintTokens program has the largest averaged block size and Schedule 

program has the smallest averaged block size. Therefore, LM strategy achieved the highest 

averaged improvements on PrintTokens program and the lowest averaged improvements on 

Schedule program. 
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CHAPTER 8 

 

 

 

 

8. THREATS TO VALIDITY 

 

 

 

 

 

 

In this chapter, we discuss the threats to the validity of our study. 

8.1. Internal Validity 

Threats to the internal validity can arise from the implementation errors which can affect the 

results of experiments without the knowledge of researchers and the programs used in the 

experiments. We used gcov to collect the statement coverage and assume that this tool 

produces the reliable execution information for the Siemens test suite. This can cause a threat 

to the internal validity. The feature vectors chosen for clustering and classification contain 

large number of elements due to the number of statements. This can affect the clustering and 

the classification processes and could be addressed by using dimensionality reduction 

techniques. However, we have used these processes only as heuristics. 

8.2. External Validity 

Threats to the external validity occur when the results of an experiment cannot be 

generalized to the other situations. The major threat to the external validity is the seven C 

programs with total of 132 versions in the Siemens suite that we used as subject programs. 

We have used them to compare our results with related work since it is extensively used in 

the literature. In addition to the limited number of programs, they are relatively small scale 

programs and we have used the versions with single fault injected. Therefore, we do not state 

that our findings generally hold for all the programs from all scales. The reduction strategy is 

for single fault cases. However, we have discussed that it could be adapted to multi fault case 

as heuristic which needs to be investigated with further experiments. During the failed test 

reduction, the test suite of each program contained only one kind of failed test that was 

subsumed by others. This might not be the case in general. Further empirical evidence with 
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variety of programs and test suites with different execution profiles are needed to overcome 

these issues. 

8.3. Construct Validity 

Threats to the construct validity occur when the metrics used for evaluation do not accurately 

measure what they intend to measure. The major threat to the construct validity is the metrics 

used in our evaluations. We used the expense metric as an effectiveness metric to measure 

and compare the effectiveness of the fault localization techniques. This metric assumes that 

the programmers inspect the source code in the ranked list of statements, which is generated 

by the fault localization techniques, and they correctly identify the faulty statements. 

Although this assumption may not hold for all the cases in software debugging process, this 

metric is reasonable approximation for effective comparison of fault localization techniques. 

8.4. Conclusion Validity 

Threats to the conclusion validity occur when a relationship is investigated in the data. 

Whenever we investigate a relationship, we essentially have either a relationship in our data 

or not. However, we could lead to an incorrect conclusion in either case. We might conclude 

that there is a relationship when in fact there is not, or we might infer that there is not a 

relationship when in fact there is. We assume that there is a relationship between the 

statement coverage of failed and passed tests and the location of the faulty statement. In 

addition, we observed this relationship empirically on the seven C program with total of 132 

versions in the Siemens suite. The major threat to the conclusion validity is that we can lead 

to an incorrect conclusion about this relationship in our observations. 
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CHAPTER 9 

 

 

 

 

9. CONCLUSIONS 

 

 

 

 

 

 

In this dissertation, we presented a fault localization framework that consists of test suite 

reduction strategies which aim to improve the effectiveness of fault localization, a new fault 

localization metric, and an effective ranking strategy that improves the ranking of 

statements. 

 

We propose a new metric for effective statistical fault localization. The intuition is that a 

faulty statement is more frequently executed by the failed tests and less frequently executed 

by the passed tests. We also differ from the existing techniques in expressing these 

frequencies and their combinations. During the comparison, in addition to using the widely 

accepted expense and code examination effort metrics, we adapt a metric of the information 

retrieval domain, called mean reciprocal rank (MRR), to assess the overall ranking quality of 

the SFL techniques. We conducted a number of experiments to measure the effectiveness of 

Ela and compare it with the three prominent fault localization techniques which are Jaccard, 

Tarantula, and Ochiai on the Siemens test suite. The proposed technique has a higher ranking 

than others for 3.4% (4 of 118) of all the versions of the subject programs while it is one of 

the best performing techniques for 96.6% (114 of 118) of all the versions of the subject 

programs. Thus, this experimental result answers empirically RQ.1 which inquires if we can 

define a metric to achieve better fault localization accuracy. The experimental results show 

the proposed technique outperforms these prominent techniques. As a result, we can 

conclude that the proposed technique and its different weights for failed and passed tests 

achieve promising results on the effectiveness of the fault localization techniques in terms of 

average expense comparing to the three prominent techniques. 

 

We apply equivalent test elimination strategy (Distinct Test Suite Strategy) to achieve more 

accurate fault localization. If two tests have executed the set of same statements, then we 
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consider them as equivalent tests with respect to their statement coverage. We assume that 

there are several bad tests in the test suite: bad passed tests and bad fail tests. A bad passed 

test is defined as “the test that passes even if it executes the faulty statement”. A bad fail test 

is defined as “the test that executes too many innocent statements”. We empirically show 

that increasing the tests that are equivalent to a bad test case affects the result of the fault 

localization. Since it is not known that whether a test is good test or not, the existence of the 

equivalent tests can cause a bias in the ranking of statements according to their 

suspiciousness values during the process of statistical fault localization. Therefore, we select 

the safe side and eliminate the equivalent tests from both passed and failed tests in the 

experiments. We conducted a number of experiments to measure the effectiveness of 

Distinct Test Suite Strategy for Jaccard, Tarantula, Ochiai and Ela on the Siemens test suite. 

This strategy achieves on average 99.5% test size reduction. As a result, we can conclude 

that the proposed test suite reduction strategy significantly reduce the test suite; therefore, it 

will reduce the effort significantly too. This experimental result empirically answers RQ.2 

which asks the effect of equivalent tests in the fault localization effectiveness. Moreover, the 

proposed technique has a higher ranking than others for 26.3% (31 of 118) of all the versions 

of the subject programs while it is one of the best performing techniques for 73.7% (87 of 

118) of all the versions of the subject programs with this Distinct Test Suite Strategy. Thus, 

this experimental result answers empirically RQ.1 which inquires if we can define a metric 

to achieve better fault localization accuracy. 

 

We propose a new test suite reduction strategy to reduce the effort for the fault localization 

by reducing the test suite size. Different from the literature, we propose to eliminate the 

failed tests that may mislead the SFL to assign higher suspiciousness values to innocent 

program elements (FminCov Test Suite Strategy). We empirically show the effect of this 

strategy on three popular SFL (Tarantula, Jaccard, and Ochiai) by using the Siemens suite. 

We conducted a number of experiments to measure the effectiveness of FminCov Test Suite 

Strategy for Jaccard, Tarantula, Ochiai and Ela on the Siemens test suite. This strategy 

achieves on average 10.1% test size reduction. As a result, we can conclude that the 

proposed test suite reduction strategy considerably reduce the test suite; therefore, it will 

reduce the effort considerably too. Hence, this experimental result answers empirically 

RQ.3.1 which asks what type of tests affect test suite quality. 

 

To address RQ.3.2, we investigate two kinds of reductions of the passed tests in combination 

with the FminCov Test Suite Strategy. RQ.3.2 asks if clustering and/or classification of 

failed and passed tests can result in a subset of test suite that increase the fault localization 
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effectiveness. In the first passed test case elimination strategy, we aim to eliminate the 

passed tests that are close to the eliminated failed tests, similar to Masri and Assi (2014). The 

intuition is to remove the test that have executed the faulty statement but still pass 

(Classification Strategy). We classify the passed tests into the eliminated failed tests and the 

remaining failed tests by using KNN classification algorithm and then select the class that 

contains the remaining failed tests and remove other class. We conducted a number of 

experiments to measure the effectiveness of Classification strategy for Jaccard, Tarantula, 

Ochiai and Ela on the Siemens test suite. This strategy achieves on average 30.3% test size 

reduction. As a result, we can conclude that the proposed test suite reduction strategy greatly 

reduce the test suite; therefore, it will reduce the effort greatly too. Hence, this experimental 

result answers empirically RQ.3.2. In the second passed test case elimination strategy, 

similar to Dandan et al. (2013), we aim to eliminate the passed tests that are not very close to 

the remaining failed tests (Clustering Strategy). The intuition is that of delta debugging 

(Zeller, 1999) which states that a passing run closest to a failing run contains the most 

information. We cluster the remaining failed tests and all the passed tests into subsets by 

using a hierarchical clustering algorithm, specifically Agglomerative clustering, and then 

select the subset that contains the remaining failed tests. This strategy achieves on average 

34.1% test size reduction. As a result, we can conclude that the proposed test suite reduction 

strategy greatly reduce the test suite; therefore, it will reduce the effort greatly too. Hence, 

this experimental result answers empirically RQ.3.2. 

 

In our experiments, we examine all three test suite reduction strategies and shows that all the 

reduction strategies result in significant reductions in the size of tests. Among all three, the 

failed test elimination strategy results in the best improvement but the elimination of the 

passed tests similar to the eliminated failed tests (Classification Strategy) results in quite 

comparable results to failed test elimination strategy. Removing the passed tests similar to 

the remaining failed tests results in high reductions in the size of test suite (up to 81%). We 

conducted a number of experiments to measure the effectiveness of Clustering strategy for 

Jaccard, Tarantula, Ochiai and Ela on the Siemens test suite. Best of these test suite 

reduction strategies achieves an improvement up to 1.7% in Jaccard, up to 2.46% in 

Tarantula, up to 1.01% in Ochiai, and up to 0.38% in Ela in terms of average expense. 

 

We propose a new effective ranking strategy for improving the ranking of statements (Local 

Maxima Strategy) in order to improve the effectiveness and therefore decrease the effort for 

the fault localization. Instead of serving all the statements with their suspiciousness ranks to 

the software developers, we aim to serve only the statements which are the local maximum 
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in its 1-nearest neighborhood. This strategy decreases the number of statements that software 

developers must inspect to locate the fault. It assumes that the innocent statements near to 

the faulty statement are likely to be assigned with high suspiciousness values and should be 

eliminated from the list of suspicious statements. We conducted a number of experiments to 

measure the effectiveness of Local Maxima strategy for Jaccard, Tarantula, Ochiai and Ela 

on the Siemens test suite. This strategy achieves an improvement 10.54% in Jaccard, 10.47% 

in Tarantula, 10.74% in Ochiai, and 10.88% in Ela in terms of average expense. As a result, 

we can conclude that the proposed technique achieve considerable improvement over the 

effectiveness of the fault localization techniques in terms of average expense. This 

experimental result answers empirically RQ.4 which asks if we can implement a post 

processing technique to improve the fault localization accuracy based on suspiciousness 

values of statements. 
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CHAPTER 10 

 

 

 

 

10. FUTURE WORK 

 

 

 

 

 

 

This chapter discusses the ideas on extending our work and on future research directions to 

be investigated. 

10.1. Application of Ela to Different Test Suites from Different Scales 

Siemens test suite used in our study has a limited number of computer programs. We plan to 

evaluate the robustness of Ela technique on different kinds of computer programs. The 

programs written in sequential and procedural programming languages such as C language 

are chosen as the subject programs from Siemens test suite. We will perform experiments on 

the computer programs written in object oriented programming languages such as Java and 

C# languages. In addition, the subject programs are relatively small scale programs. 

Therefore, we plan to perform experiments on the large scale computer programs which 

contain real life software faults. 

 

In addition, we can measure the effectiveness of Ela on different kinds of programs by 

classifying the versions of different programs into different categories according to the 

nature of their fault types. We plan to investigate the relation of fault types and fault 

localization power of Ela technique by performing several experiments on different kinds of 

programs. 

10.2. Application of Ela with Different Coverage Entities 

This dissertation has proposed a new fault localization metric applied on the statement 

coverage of tests. This technique can be applied to a number of different coverage entities 

such as classes, methods, blocks, branches, predicates etc. Future researchers may evaluate 

the effectiveness of Ela technique with other coverage entities. The type of coverage entity 

may affect the effectiveness of Ela according to the types of faults used. Future researchers 
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may explore the correlation between the fault types and the coverage entities to find best 

coverage entity. 

10.3. Investigating Optimal Percentage of Failed Tests in Test Suites 

The percentage of the failed tests in the Siemens test suite is relatively small. We can achieve 

higher percentage of the failed tests in other test suites and investigate the optimal 

percentage of the failed tests in the test suites. Therefore, we will carry out experiments to 

investigate the optimal percentage of the failed tests in other test suites. Moreover, test case 

generation techniques in the literature (Rayadurgam & Heimdahl, 2001; Artho et al., 2003; 

Papadakis & Malevris, 2010) can be applied to create additional failed tests and increase 

their percentage in the test suites. 

10.4. Application of Ela to Multiple Faults 

We have used the versions of the subject programs with single fault in our study. Although 

we have stated that Ela technique can be applied to the multiple faults, we want to see more 

experimental evidences to support our conclusion. Therefore, we will conduct new 

experiments on the computer programs with multiple faults and evaluate the effectiveness of 

Ela technique. 

10.5. Designing User Studies on Focus Groups 

An empirical justification of the evaluation metrics used in our study indicates a confidence 

that Ela technique provides an evidence of good effectiveness. The intuition behind the 

hypothetical idea of a perfect debugging, which is the breadth first search with terminating 

when a faulty line is encountered, seems reasonable. However, it is highly desirable to show 

the direct correlation between the effectiveness of Ela technique under the evaluation metrics 

and under the actual user debugging experience. Therefore, we plan to design several user 

studies on focus group of software developers to evaluate effectiveness of Ela technique and 

compare with the prominent techniques in the literature on the subject programs. 
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A. WILCOXON SIGNED RANK TESTS 

 

 

Table 41 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven 

programs with Redundant Test Suite 

Programs Ela & Jaccard Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 0.125 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 0.016 Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 6.1x10-5 Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 0.125 Fail to Reject H0 
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Table 42 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven 

programs with Redundant Test Suite 

Programs Ela & Tarantula Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 0.125 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 0.008 Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 6.1x10-5 Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 0.125 Fail to Reject H0 
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Table 43 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven 

programs with Redundant Test Suite 

Programs Ela & Ochiai Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 0.125 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 0.5 Fail to Reject H0 
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Table 44 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven 

programs with Distinct Test Suite 

Programs Ela & Jaccard Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 0.125 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 0.031 Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 7.5x10-9 Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 0.063 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 0.125 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 9.8x10-4 Reject H0 
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Table 45 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven 

programs with Distinct Test Suite 

Programs Ela & Tarantula Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 0.031 Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 2.0x10-3 Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 7.5x10-9 Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 0.063 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 0.125 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 0.016 Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 2.4x10-4 Reject H0 
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Table 46 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven 

programs with Distinct Test Suite 

Programs Ela & Ochiai Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 0.25 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 0.5 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 7.5x10-9 Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 0.5 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 
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Table 47 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven 

programs with Distinct FminCov Test Suite 

Programs Ela & Jaccard Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 
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Table 48 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven 

programs with Distinct FminCov Test Suite 

Programs Ela & Tarantula Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 
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Table 49 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven 

programs with Distinct FminCov Test Suite 

Programs Ela & Ochiai Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 
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Table 50 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven 

programs with Distinct FminCov Cluster Test Suite 

Programs Ela & Jaccard Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 
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Table 51 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven 

programs with Distinct FminCov Cluster Test Suite 

Programs Ela & Tarantula Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 
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Table 52 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven 

programs with Distinct FminCov Cluster Test Suite 

Programs Ela & Ochiai Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 
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Table 53 – Wilcoxon signed rank test for the significance test of Ela and Jaccard on seven 

programs with Distinct FminCov Classify Test Suite 

Programs Ela & Jaccard Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Jaccard, Expense) 

H1:Med(Ela, Expense) < Med(Jaccard, Expense) 
0.05 1 Fail to Reject H0 
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Table 54 – Wilcoxon signed rank test for the significance test of Ela and Tarantula on seven 

programs with Distinct FminCov Classify Test Suite 

Programs Ela & Tarantula Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Tarantula, Expense) 

H1:Med(Ela, Expense) < Med(Tarantula, Expense) 
0.05 1 Fail to Reject H0 

 

  



131 

 

Table 55 – Wilcoxon signed rank test for the significance test of Ela and Ochiai on seven 

programs with Distinct FminCov Classify Test Suite 

Programs Ela & Ochiai Comparison Alpha P-value Result 

PrintTokens 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

PrintTokens2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Replace 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Schedule 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Schedule2 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

Tcas 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 

TotInfo 
H0:Med(Ela, Expense)=Med(Ochiai, Expense) 

H1:Med(Ela, Expense) < Med(Ochiai, Expense) 
0.05 1 Fail to Reject H0 



132 

 

  



133 

 

B. FAULT TYPES AND THEIR DIFFICUILTIES 

 

 

Table 56 – Fault types and their difficulties in seven programs of Siemens test suite 

Fault Type Difficuilty 

Add [if, else-if, else] condition Low 

Change [if, else-if, else] condition Low 

Comment or Delete [if, else-if, else] condition Low 

Add [if, else-if, else] block Low 

Change [if, else-if, else] block Low 

Comment or Delete [if, else-if, else] block Low 

Add case condition Low 

Change case condition Low 

Comment or Delete case condition Low 

Add case block Low 

Change case block Low 

Comment or Delete case block Low 

Add [for, while] condition Low 

Change [for, while] condition Low 

Comment or Delete [for, while] condition Low 

Add [for, while] block Low 

Change [for, while] block Low 

Comment or Delete [for, while] block Low 

Add return value Medium 

Change return value Medium 

Comment or Delete return value Medium 

Add method call High 

Change method call High 

Comment or Delete method call High 

Add method body High 

Change method body High 

Comment or Delete method body High 

Add variable assignment High 

Change variable assignment High 

Comment or Delete variable assignment High 

Add variable initialization High 

Change variable initialization High 

Comment or Delete variable initialization High 

Add lines of code High 

Change lines of code High 
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