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Mathematics, Atılım University

Date:





I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: DEṄIZ KENAN KILIÇ
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ABSTRACT

MULTIRESOLUTION ANALYSIS OF S&P500 TIME SERIES

Kılıç, Deniz Kenan

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr.̈Omür Uğur

June 2015, 168 pages

Time series analysis is an essential research area for almost all people who are dealing
with scientific and engineering problems. Main aim is to understand the underlying
characteristics of the time series by using time as well as frequency domain analyses.
Then one can make a prediction for the desired system to forecast observations ahead.
Time series modeling, frequency domain analysis and some descriptive statistical anal-
ysis are main subjects of this thesis. Choosing an appropriate model is the main focus
of all analysis in order to make a good prediction. In this thesis financial time series are
focused, particularly S&P500 daily closing prices and it’sreturn values are handled.
Fourier transform and wavelet transform are creatively at the center of the frequency
domain analysis. Knowing the fact that financial time seriesare complex data sets
to sufficiently predict the future, multiresolution analysis is handled in this thesis us-
ing the wavelet transforms to figure out specialties of S&P500 data. Also, apparently,
models that are appropriate for the financial time series arediscussed in the application
part.

Keywords: Time series analysis, wavelets, multiresolution analysis, statistical analysis

vii



viii



ÖZ

S&P500 ZAMAN SEṘISİNİN ÇOKLU ÇÖZÜNÜRLÜK ANAL İZİ

Kılıç, Deniz Kenan

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr.Ömür Uğur

Haziran 2015, 168 sayfa

Zaman serisi analizi hemen hemen tüm bilim ve m̈uhendislik problemleri ile ŭgraşan
kişiler için gerekli bir araştırma alanıdır. Temel amacı zaman uzayı ve aynı zamanda
frekans uzayı analizini kullanarak zaman serisinin altında yatanözelliklerini anla-
maktır. Sonrasında, zaman serisinin ileriye dönük verileri tahmin edilebilir. Zaman
serisi modellemesi, frekans uzayı analizi ve bazı tanımlayıcı istatistiksel analizler bu
tezin ana konularıdır. Uygun bir model seçmek, iyi bir tahminleme yapabilmek için
analizin ana odăgını oluşturmaktadır. Bu çalışmada finansal zaman serileri üzerine
odaklanılmıştır vëozellikle S&P500 g̈unlük kapanış fiyatları ve getiri değerleri ele
alınmıştır. Fourier d̈onüş̈umü ve dalgacık d̈onüş̈umü frekans analizinin merkezini
oluşturmaktadır. Finansal zaman serilerinin, yeterli düzeyde gelecĕgi tahmin etmek
için karmaşık veri setleri oldŭgu bilindiği için, bu çalışmada S&P500 verisininözellik-
lerini ortaya çıkarmak için dalgacık dönüş̈umleri kullanılarak çoklu ç̈ozünürlük analizi
ele alınmıştır. Aynı zamanda, finansal zaman serileri için uygun olan modeller uygu-
lama kısmında tartışılmıştır.

Anahtar Kelimeler: Zaman serisi analizi, dalgacıklar, çoklu çözünürlük analizi, is-
tatiksel analizler
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CHAPTER 1

INTRODUCTION

Time series can be defined as recording of observations of selected variable with re-
spect to different time points. One can assume a time series as a signal. There are two
domains which are named frequency and time to analyze the series. In some sense one
needs to look both frequency and time domain to catch real characteristic of data.

Time series analysis is very important issue according to many scientific fields such
as biology, geology, astronomy, economy, meteorology, medicine, finance etc. . In
other words, time series analysis is used by engineers and scientists who are dealing
with applied sciences. Especially financial time series like stock market data are in the
area of our interest in this thesis. Tsay in [68] points out that financial theory includes
undetermined factors. Therefore we need to understand somestatistical theories and
methods to analyze the data. Then one can make a forecast of time series whose
underlying mechanism is understood.

Moreover, correlation analysis is linked to the time-domain analysis. Using correla-
tions of adjacent points in time and parametric functions such as SARIMA, researchers
try to predict the future values of linear time series. Usingthe SARIMA function is also
explained as multiplicative model where data set is modeledby differential equation
operators. Additive model is also used to analyze time series, especially in financial
and economic time series. Then seasonal, trend and noise parts are separated to un-
derstand time series in basic components. In order to analyze nonlinear time series,
one can use again parametric methods such as LSTAR. Variance analysis includes the
method of GARCH models.

Spectral analysis and wavelet analysis are example of the frequency-domain analysis.
Following the wavelet analysis, multiresolution analysis(MRA) can be done as well.
Frequency-domain analysis is basically used to detect the periodicity of the time series.
Fourier transform is very famous in frequency domain analysis and ithas been apply-
ing for several years. On the other hand, wavelet transformscan be regarded as new
issue since modern wavelet theory has taken shape after middle 1950’s. Wavelets are
recently popular issue due to providing time-scale analysis. Therefore one can analyze
any time series with desired scales and time intervals.

There are many fields where wavelet theory is used. Some of theapplications can be
counted as: applying scale based decomposition to understand real characteristic of
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data, signal de-noising and smoothing, data compression etc.. Financial time series
analysis by using multiresolution analysis is one of scopesof this thesis.

In [17] and in [64] wavelet analysis is handled with dilationequations to illustrate
construction of multiresolution analysis. Lyubushin studied in [41] multidimensional
wavelet analysis applied on geophysical monitoring time series in the Moscow region.
Aim of study is illustrating that wavelet transform is better than Fourier transform
such that wavelet analysis catches both high and low frequency components in se-
lected time intervals. Similarly, study of Masset in [46] also shows that wavelet trans-
form has several advantages compared to Fourier transform.Crowley clearly summa-
rized fundamentals of wavelets and applications to economic and finance areas in [20].
MRA is applied to Nokia share volatility by Vuorenmaa in [71].In [76] In [5] Aloui
and Nguyen combine the global Hurst exponent and Morlet wavelet multi-resolution
analysis in order to understand behavior of six different weekly stock markets data
in Mediterranean region. In [56] Ramsey et al. analyzed stockmarket data which is
complex time series. They concluded that wavelets are useful to detect non-detectable
structures in system. Yousefi, Weinrech and Reinarz applied multiresolution analysis
in order to understand dynamics of wavelet-based prediction by using oil prices. Abab-
neh, Al Wadi and Ismail showed that ARIMA modeling with wavelet transform gives
better accuracy results compared to original ARIMA fitting byusing Amman stock
market (Jordan) in [1]. Similarly, Al Wadi et al. shows same result in [72]. In [49]
Nouri, Oryoie and Fallahi use ARIMA–GARCH model to calculate one-step-ahead
forecasts of monthly gold returns. Data is separated into different scales and fore-
casts of each part is added together. Then forecasting with separated data increases
forecasting performance compared to forecasting without wavelets. Rocha, Paredes,
Carvalho,Henriques and Harris in [58] studied how to combinewavelet analysis and
neural network to predict acute hypotensive episodes data.

In Chapter 2, some terminologies used in time series analysiswill be defined with
some examples. Chapter will give to reader clear definitions to understand time series
concept.

In Chapter 3, subjects that are related to frequency domain analysis will be covered.
Two main title are Fourier transform and wavelet transform in frequency domain. We
will discuss why do we need any other method than Fourier transform in frequency
domain analysis.

In Chapter 4 empirical results will be given by using S&P500 historical data. Descrip-
tive statistics, results of linear model fittings, spectrums, multiresolution analysis and
some other modeling methods will be covered. Models will be compared according to
information criteria values and results of accuracy measures.

Finally in Chapter 5 consequences of this study will be given with possible future
works.
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CHAPTER 2

LINEAR TIME SERIES AND HETEROSCEDASTIC MODELS

In this chapter firstly time series basic issues and definitions of linear time series
models like AR(p), MA(q), ARMA(p, q), ARIMA (p, d, q) and SARIMA(p, d, q) ×
(P,D,Q)s will be considered. Numerical examples will be given to understand char-
acteristic of models. Structure, properties and example oflinear model forecasting will
be covered.

Secondly, definitions and examples of heteroscedastic models like ARCH, GARCH
etc., will be given to consider volatility issues.

Finally other methods which are used in time series analysiswill be given shortly with
definitions and some examples.

2.1 Introduction

Time series analysis is important for understanding the essence of the data. Corre-
lations of observed data are used to catch the characteristic of series and then some
operations are applied to series according to correlations.

Let’s give some important definitions related to time seriesusing the methodology of
Shumway and Stoffer mentioned in [62].

Definition 2.1 (Sample Autocovariance). The sample autocovariance ofxt is

γ̂(h) =
1

N

N−h∑

t=1

(xt+h − x̄) (xt − x̄) , (2.1)

wherex̄ is the mean ofxt andγ̂(h) = γ̂(−h) for h = 0, 1, ..., N − 1.

Definition 2.2 (Theoretical Autocovariance). The theoretical autocovariance function
is calculated by the sample autocovariance function [62] and written as

γ(h) = E[(xt+h − µ) (xt − µ)], (2.2)

whereµ is the mean andh = |s− t| is the lag for alls, t. Other notations for the auto-
covariance function can be listed asγx(s, t), γ(s, t), γ(t, t−h), γ(t+h, t), cov(xs, xt),
cov(xt+h, xt) and cov(xh, x0).
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Definition 2.3 (Strictly Stationary Time Series). Strictly stationary time series is a time
series which ensures the following condition,

P {xt1 ≤ c1, xt2 ≤ c1, · · · , xtk ≤ ck}
= P {xt1 + h ≤ c1, xt2 + h ≤ c1, · · · , xtk + h ≤ ck} . (2.3)

Definition 2.4 (Weakly Stationary Time Series). Weakly stationary time series is a
finite variance process that has following conditions,

1. The mean ofxt is µt = E[xt] = µ(constant) =
∫

∞

−∞
xft(x)dx

2. The autocovarianceγ(s, t) = E[(xs − µ) (xt − µ)] depends on onlys and t
through their differenceh = |s− t| which is called as lag.

Claim 2.1. If the time seriesxt is stationary, then first difference ofxt is given as
yt = ∇xt.

Proof. Expectation ofyt is zero and autocovariance ofyt is independent of time as
follows;

i. E[yt] = E[xt − xt−1] = µ− µ = 0

ii. γy(h) = cov(xt+h−xt+h−1, xt−xt−1) = γx(h)−γx(h+1)−γx(h−1)+γx(h)

depends on only the lagh.

If one is interested in the signal to be stationary, it is necessary to remove trend and
seasonal part in the signal. In other words, time series is stationary if there is no
systematic change in the mean and the variance with having noperiodic variations.
The correlogram that will be defined in Definition 2.5, cuts off after 2 or 3 lags if the
time series is stationary.

Definition 2.5 (Autocorrelation Function). Autocorrelation function can be written as
the autocovariance funcion that is divided by square root ofmultiplication of variances
of series according tos andt.

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
(2.4)

Autocorrelation function satisfies that−1 ≤ ρ(s, t) ≤ 1. It can be proved by Cauchy-
Schwartz inequality [62].

Definition 2.6 (Backward Shift Operator and Forward Shift Operator). Backward shift
operator and forward shift operator are written respectively for first difference and for
kth difference as

Bxt = xt−1 and Bkxt = xt−k, (2.5)

Fxt = xt+1 and F kxt = xt+k. (2.6)
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Then difference operator can be written by using the backward shift operator as∇ =
(1−B) proved by follows,

∇xt = xt − xt−1 = xt − Bxt = (1−B)xt. (2.7)

It is also valid or higher dimensions such as∇d = (1− B)d, d ∈ N0.

Definition 2.7 (Autoregressive Process (AR(p))). Autoregressive process is constructed
on sum of past values of time seriesxt and and Gaussian white noisewt. Autoregres-
sive process of orderp is

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt, (2.8)

wherext is stationary andφ1, φ2, . . . , φp are constant (φp 6= 0) andwt ∼ wn(0, σ
2
w) is

a white noise and is particularly assumed to be independent and identically distributed
with N (0, σ2

w).

One can rewrite Equation 2.8 by replacingxt with xt−µ in case the meanµ is different
from zero as follows;

xt − µ = φ1(xt−1 − µ) + φ2(xt−2 − µ) + · · ·+ φp(xt−p − µ) + wt. (2.9)

After some arrangements, Equation 2.9 can be written as

xt = α + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt, (2.10)

whereα = µ(1− φ1 − φ2 − · · · − φp). Finally we can write thep-order autoregressive
process AR(p) in compact form as

φ(B)xt = wt, (2.11)

whereφ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p is AR operator of orderp.

Definition 2.8 (Moving Average Model(MA(q))). Moving average model of orderq is

xt = θ0wt + θ1wt−1 + · · ·+ θqwt−q, (2.12)

whereθq is different from zero. In simple form it can be written as

xt = θ(B)wt, (2.13)

whereθ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q.

2.2 Autoregressive Moving Average (ARMA) Models

Time seriesxt can be written as sum of autoregressive part and moving average part
according to ARMA model of orderp andq respectively.

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q. (2.14)

Simply we can write Equation 2.14 as

φ(B)xt = θ(B)wt. (2.15)
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Definition 2.9 (Causal ARMA(p, q) Process). If the model predicts backward obser-
vations, then it is not causal but it can be stationary process. An ARMA(p, q) model is
causal in case the time series can be written as

xt =
∞∑

i=0

ψiwt−i = ψ(B)wt, (2.16)

whereψ(B) =
∑

∞

i=0 ψiB
i and

∑
∞

i=0 |ψi| <∞ for ψ0 = 1.

Definition 2.10(Invertible ARMA(p, q) Process). An ARMA(p, q) model is invertible
in case the time series is written as

wt =
∞∑

i=0

πixt−i = π(B)xt, (2.17)

whereπ(B) =
∑

∞

i=0 πiB
i and

∑
∞

i=0 |πi| <∞ for π0 = 1.

Definition 2.11 (AR and MA Polynomials). AR and MA polynomials are given re-
spectively as

φ(z) = 1− φ1z − · · · − φpz
p (2.18)

and
θ(z) = 1 + θ1z − · · · − θpz

q, (2.19)

wherez is complex number andφp andθp are different than zero.

Definition 2.12 (Causality of ARMA(p, q) Process). An ARMA(p, q) model is causal
if and only if φ(z) 6= 0 for |z| ≤ 1, i.e. zeros ofφ(z) lie outside of unit circle. One can
achieve coefficients of Equation 2.16 by solving Equation 2.20,

ψ(z) =
∞∑

i=0

ψiz
i =

θ(z)

φ(z)
, (2.20)

where|z| ≤ 1.

Definition 2.13 (Invertibility of ARMA (p, q) Process). An ARMA(p, q) model is in-
vertible if and only ifθ(z) 6= 0 for |z| ≤ 1, i.e. θ(z) = 0 for |z| > 1. One can achieve
coefficients of Equation 2.17 by solving Equation 2.21,

π(z) =
∞∑

i=0

πiz
i =

φ(z)

θ(z)
, (2.21)

where|z| ≤ 1.

Example 2.1(ARMA(2, 2) Process). Let’s write ARMA(2, 2) process with its coeffi-
cients according to autoregressive and moving average parts as

xt − 0.2xt−1 − 0.15xt−2 = wt + 0.7wt−1 + 0.12wt−2.

After finding roots ofφ(B) andθ(B), we can write AR and MA polynomials respec-
tively as

φ(z) = (1− 0.5z)(1 + 0.3z),
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and
θ(z) = (1 + 0.4z)(1 + 0.3z).

It is seen that they have same factors as(1 + 0.3z). As a result we can cancel out this
factor which is mentioned asparameter redundancyby Shumway and Stoffer in [62].
Finally we get ARMA(1, 1) process as

(1− 0.5B)xt = (1 + 0.4B)wt,

whereφ(B) = (1 − 0.5B) andθ(z) = (1 + 0.4B). According to Definition 2.12
and Definition 2.13, process is causal and invertible. Forφ(z) = 0, we havez = 1

0.5

and
∣∣ 1
0.5

∣∣ > 1 (outside of the unit circle), so process is causal (as well asstationary).
For θ(z) = 0, we havez = − 1

0.4
and

∣∣− 1
0.4

∣∣ > 1 (outside of the unit circle), so
process is invertible. Hence, we can write the process in terms ofψ-coefficients and
π-coefficients. Firstly, forψ-coefficients we have

xt =
θ(B)

φ(B)
wt = ψ(B)wt ⇒ φ(B)ψ(B) = θ(B),

and
(1− 0.5B)(ψ0 + ψ1B + ψ2B

2 + · · · ) = (1 + 0.4B),

whereψ0 = 1. If we equalize the coefficients ofB asψ1 − 0.5ψ0 = 0.4, ψ1 is founded
as0.9. For other coefficients we haveψj − 0.5ψj−1 = 0 and afterj iterations we get
ψj = (0.9)(0.5)j−1 for j = 1, 2, . . . . So the time seriesxt is written in the form as

xt = wt + (0.9)
∞∑

i=1

(0.5)i−1wt−i.

Secondly, forπ-coefficients we have

wt =
φ(B)

θ(B)
xt = π(B)xt ⇒ θ(B)π(B) = φ(B),

and
(1 + 0.4B)(π0 + π1B + π2B

2 + · · · ) = (1− 0.5B),

whereπ0 = 1. Then applying similar steps as we did inψ-coefficients,π-coefficients
are written asπj = (−0.9)(−0.4)j−1 for j = 1, 2, . . . . Finally the time seriesxt is
written in the form as following,

wt = xt − (0.9)
∞∑

i=1

(−0.4)i−1xt−i.

2.3 Autoregressive Integrated Moving Average (ARIMA) Models

In addition to autoregressive and moving average parts, model would involve integra-
tion part, i.e. differencing part. Then model is called as anautoregressive integrated
moving average ARIMA(p, d, q) process and it is of the form;

φ(B)▽dxt = φ(B)(1−B)dxt = θ(B)wt, (2.22)
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whereφ(B) is stationary AR operator of orderp, θ(B) is invertible MA operator of or-
derq and(1−B)d is difference operator of orderd. Operators can be written explicitly
as

φ(B)(1− B)d = ϕ(B) = ϕ0 + ϕ1B + · · ·+ ϕp+dB
p+d

= (1− φ1B − · · · − φpB
p)(1−B)d,

and
θ(B) = θ0 + θ1B + · · ·+ θqB

q.

If E[▽dxt] = µ, then we consider the model in more general form and it can be written
as [62]

φ(B)(1−B)dxt = β0 + θ(B)wt, (2.23)

whereβ0 = (1 − φ1 − · · · − φp)µ. In addition we can define random shock form
(MA(∞)) and inverted form (AR(∞)) respectively as [62]

xt = ϕ−1(B)θ(B)wt = ψ(B)wt, (2.24)

and
wt = θ−1(B)ϕ(B)xt = π(B)xt, (2.25)

whereϕ−1 = φ−1(B)(1−B)−d.

Taking difference with needed order of the non-stationary time series makes the time
series stationary. Many analyses are done via using stationary time series according to
see de-trended properties of the signal. It is better to use differenced time series for
forecasting issue. AR part shows how strongly past observations affects the present
observations. MA part shows model present using past errorsof prediction.

Example 2.2 (ARIMA (2, 2, 2) Process). If we consider an ARIMA(2, 2, 2) process
with general coefficients, operators can be written as follows;

φ(B) = (1− φ1B − φ2B
2),

▽
2 = (1−B)2 = (1− 2B + B2),

θ(B) = (1 + θ1B + θ2B
2),

and
ϕ(B) = φ(B)▽2

= (1− 2B + B2)− φ1(B − 2B2 + B3)− φ2(B
2 − 2B3 + B4).

Explicitly the model can be written as;

xt − 2xt−1 + xt−2 − φ1xt−1 + 2φ1xt−2 − φ1xt−3 − φ2xt−2 + 2φ2xt−3 − φ2xt−4

= wt + θ1wt−1 + θ2wt−2,

or
xt − xt−1(2 + φ1) + xt−2(1 + 2φ1 − φ2)− xt−3(φ1 − 2φ2)− φ2xt−4

= wt + θ1wt−1 + θ2wt−2.
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Figure 2.1: Simulated AR(1) Processes.

Random shock form and inverted form can be found respectivelyby setting following
equations as,

φ(B)(1− B)2ψ(B) = ϕ(B)ψ(B) = θ(B),

and
θ(B)π(B) = ϕ(B).

After setting the equalities, one can find the coefficients with respect to our time series
in order to write random shock form and inverted form.

Example 2.3(Simulated ARIMA Processes). Let’s consider AR(1), AR(2), MA(1),
MA(2), ARMA(1, 1), ARMA(2, 2), ARIMA (1, 1, 1) and ARIMA(2, 1, 1) with arbi-
trary coefficients given in the plots. ACF and PACF plots are also given for some
processes.

AR(1) Processes

In Figure 2.1 first simulated series looks like financial datawithout trend, especially
daily closing prices without trend. The one with negative coefficient looks like re-
turn of a financial data, especially first difference of logarithmic stock market data.
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Figure 2.2: ACF and PACF Plots of AR(1) Process with First 1000 Observations where
φ = +0.8.

ACF and PACF plots of simulated AR(1) processes are given as follows in Figure 2.2,
Figure 2.3 and Figure 2.4:

AR(2) Process

In Figure 2.5 simulated AR(2) process and in Figure 2.6 its ACF and PACF are given
with respect to given coefficients.

MA (1) Process

In Figure 2.7 simulated MA(1) process and in Figure 2.8 its ACF and PACF are given
with respect to given coefficient.

MA (2) Process

In Figure 2.9 simulated MA(2) process and in Figure 2.10 its ACF and PACF are given
with respect to given coefficients.
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Figure 2.3: ACF and PACF Plots of AR(1) Process with First 100 Observations where
φ = +0.8.
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Figure 2.4: ACF and PACF Plots of AR(1) Process with First 100 Observations where
φ = −0.8.
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Figure 2.5: Simulated AR(2) Process.
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Figure 2.6: ACF and PACF Plots of AR(2) Process with First 100 Observations where
φ1 = 0.5 andφ2 = 0.4.
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Figure 2.7: Simulated MA(1) Process.
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Figure 2.8: ACF and PACF Plots of MA(1) Process with First 100 Observations where
θ = 0.5.
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Figure 2.9: Simulated MA(2) Process.
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Figure 2.10: ACF and PACF Plots of MA(2) Process with First 100 Observations
whereθ1 = −0.5 andθ2 = −0.9.
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Figure 2.11: Simulated ARMA(2, 2) Process.

ARMA (2, 2) Process

In Figure 2.11 simulated ARMA(2, 2) process and in Figure 2.12 its ACF and PACF
are given with respect to given coefficients.

ARIMA (1, 1, 1) Processes

In Figure 2.13 simulated ARIMA(1, 1, 1) processes and their ACF and PACF are given
with respect to given coefficients.

After fitting the ARIMA model to simulated series where whose coefficients are given
as φ = 0.5 and θ = −0.4, coefficients are calculated asφ = 0.5976 and θ =
−0.5040 in R program. Sigma square, log likelihood and AIC are calculated as0.9876,
−1412.69 and2831.39 respectively.
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Figure 2.12: ACF and PACF Plots of ARMA(2, 2) Process with First 100 Observations
where Coefficients are Given as in Figure 2.11.
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Figure 2.13: Simulated ARIMA(1, 1, 1) Processes and related ACF plots.
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2.4 Multiplicative Seasonal Autoregressive Integrated Moving Average (SARIMA)
Models

Seasonality is important subject for many time series such as economic and financial
data sets. Forecasting depends on past values. If past values are in seasonal compo-
nents, model can be modified to SARIMA model.

Definition 2.14 (Seasonal Operator). The seasonal autoregressive operator of orderP
and the seasonal moving average operator of orderQ are given respectively as

ΦP (B
s) = 1− Φ1B

s − Φ2B
2s− · · · − ΦPB

P s, (2.26)

and
ΘQ(B

s) = 1 + Θ1B
s +Θ2B

2s− · · · −ΘQB
Qs, (2.27)

wheres is seasonal period.

Definition 2.15 (Seasonal Difference). The simplifying operator (or seasonal differ-
ence) of orderD is defined as

∇D
s = (1−Bs)D, (2.28)

wheres is seasonal period.

Definition 2.16 (SARIMA Model). By using Definition 2.14 and Definition 2.15, the
SARIMA model, i.e. ARIMA(p, d, q)× (P,D,Q)s model can be defined as follows

ΦP (B
s)φ(B)∇D

s ∇dxt = ΘQ(B
s)θ(B)wt. (2.29)

Let’s consider ARIMA(0, 0, 0)× (1, 0, 1)12 model. If one writes it explicitly, it will be
seen that model is same as ARMA(12, 12).

Example 2.4(ARIMA (2, 3, 1)× (1, 2, 1)12 Process).

(1−Θ1B
12)(1− θ1B − θ2B

2)(1− B)3(1−B12)2xt = (1 + Φ1B
12)(1 + φ1B)wt.

2.5 Forecasting

Basically aim of forecasting or prediction is calculating future values approximately
by using given sample data set. We can liken the fog to noise inthe time series. If the
fog is less, visibility of the forward will be much better. Forecasting is getting more
complex if the noise is higher than the original signal. Choosing the correct model and
estimating correct parameters are very important for prediction.

There are several methods to predict future values of the time series by using observed
data set. Seasonal moving average, exponential smoothing (or weighted moving aver-
age), ARIMA [18], state space [31] [37], neural network [8], Bayesian and wavelets
are some methods which are used to forecast desired future values of the time series.
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Most of them are applied on theoretical basis of minimum meansquared error to min-
imize the error between real values and predicted values.

Consider ARIMA(p, d, q) process and let’s write observation at timet+ 1 as

xt+1 = ϕ1xt+ϕ2xt−1 + · · ·+ϕp+dxt−p−d+1 +wt+1 + θ1wt+ · · ·+ θqwt−q+1, (2.30)

whereϕ0 = Θ0 = 0. In general we can write Equation 2.30 at timet+ l (l-lead ahead)
by writing t = t+ l − 1 as

xt+l = ϕ1xt+l−1 + ϕ2xt+l−2 + · · ·
+ ϕp+dxt+l−p−d + wt+l + θ1wt+l−1 + · · ·+ θqwt+l−q. (2.31)

In addition, infinite weighted sum ofxt+l can be written by puttingt+ l− k instead of
i as

xt+l =
∞∑

i=0

ψiwt+l−i =
t+l∑

k=−∞

ψt+l−kwk (2.32)

= ψ0wt+l + ψ1wt+l−1 + · · ·+ ψl−1wt+1 + ψlwt + ψl+1wt+1 + · · ·

If we consider theπ coefficients, we can write the process as

xt+l = −
∞∑

i=1

πixt+l−i + wt+l. (2.33)

Let x̂t(l) be thel-lead linear forecast ofxt+l based on observed data set and it is given
as

x̂t(l) = ψ∗

l wt + ψ∗

l+1wt−1 + ψ∗

l+2wt−2 + · · · (2.34)

One can find the mean squared error of the forecast by using Equation 2.32 as

E
[
(xt+l − x̂t(l))

2]

= E



(
ψ0wt+l + ψ1wt+l−1 + · · ·+ ψl−1wt+1 +

∞∑

i=0

(
ψi+l − ψ∗

i+l

)
wt−i

)2



=
(
1 + ψ2

1 + ψ2
2 + · · ·+ ψ2

l−1

)
σ2
w, (2.35)

wherewt ∼ wn (0, σ
2
w). In order to minimize Equation 2.35, the equalityψi+l = ψ∗

i+l

needs to hold fori = 0, 1, 2, · · · . Therefore forecast of the leadl which is made at
origin t, which minimizes the mean squared error is,

x̂t (l) = ψlwt + ψl+1wt−1 + ψl+2wt−2 + · · · (2.36)

whereψi’s areψ-coefficients.
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Note. One can write the value at timet+ l as sum of forecast and error as following,

xt+l = (wt+l + ψ1wt+l−1 + · · ·+ ψl−1wt+1) + (ψlwt + ψl+1wt−1 + · · · )
= et(l) + x̂t(l), (2.37)

whereψ0 = 1 andet(l) is mean squared error of leadl.

Consequently,̂xt(l) can be written in the form of conditional expectation as

x̂t(l) = E [xt+l|wt, wt−1, . . .] = Et [xt+l] = E [xt+l|xt, xt−1, . . .] , (2.38)

whereEt [et(l)] = 0. In addition to expectation, variance of error part is calculated as

vart(l) = var[et(l)] =
l−1∑

i=0

ψ2
i σ

2
w. (2.39)

There are some important properties of forecasting as follows [55, 13];

• Both expectation of pastx values and expectation of pastw values are same as
their own values. On the other hand expectation of futurex values are predicted
ones and expectation of futurew values are zero. This property is called as rules
of thumb in statistics.

Et [xt−i] = xt−i and Et [wt−i] = wt−i for i ≥ 0, (2.40)

and
Et [xt+i] = x̂t(l) and Et [wt+i] = 0 for i ≥ 1. (2.41)

• We can write forecasting function by usingψ-coefficients orπ-coefficients as
follows respectively by using Equation 2.32 and Equation 2.33,

x̂t(l) = Et [xt+l] =
∞∑

i=0

ψiEt[wt+l−i], (2.42)

and

x̂t(l) = Et [wt+l]−
∞∑

i=1

πiEt[xt+l−i]. (2.43)

• For l = 1 we haveet(1) = ψ0wt+1+
∑

∞

i=0(ψi+ 1−ψ∗

i+1)wt−i. For minimizing
error term, we writeψi+1 = ψ∗

i+1. Then we have

wt+1 = xt+1 − x̂t(1) = et(1). (2.44)

• Updating forecast is illustrated as following equation

x̂t+1(l) = x̂t(l + 1) + ψlwt+1. (2.45)

Equation 2.45 can be found by writinĝxt+1(l) andx̂t(l + 1) explicitly.
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Example 2.5(ARIMA (1, 0, 0) × (1, 0, 1)4 Forecasting). Consider the SARIMA pro-
cess(1− ΦB4)(1− φB)xt = (1 + ΘB4)wt. We can rearrange the process as

(1− φB − ΦB4 + ΦφB5)xt = (1 + ΘB4)wt,

or
xt = φxt−1 + Φxt−4 − Φφxt−5 + wt +Θwt−4.

Then by taking conditional expectation we will get forecasting function forl > 0,

x̂t(l) = φx̂t(l − 1) + Φx̂t(l − 4)− Φφx̂t(l − 5) + E[wt+l] + ΘE[wt+l−4].

Using the convention̂xt(−k) = xt−k for k ≥ 0, we can write the following forecasts,

x̂t(1) = φxt + Φxt−3 − Φφxt−4 +Θwt−3,

x̂t(2) = φx̂t(1) + Φxt−2 − Φφxt−3 +Θwt−2,

x̂t(3) = φx̂t(2) + Φxt−1 − Φφxt−2 +Θwt−1,

x̂t(4) = φx̂t(3) + Φxt − Φφxt−1 +Θwt,

x̂t(5) = φx̂t(4) + Φx̂t(1)− Φφxt,

x̂t(l) = φx̂t(l − 1) + Φx̂t(l − 4)− Φφx̂t(l − 5), for l ≥ 6.

As a result(1−ΦD4)(1−φD)x̂t(l) = 0 for l = 6, 7, 8, . . .. LetΦ andφ be1/16 and1/2
respectively. We have roots of2,∓2 and∓2i for equation(1−ΦD4)(1−φD)x̂t(l) = 0.
Therefore the eventual forecast function has form of,

x̂t(l) = c
(t)
1

(
1

2

)l
+c

(t)
2

(
1

2

)l
l+c

(t)
3

(
−1

2

)l
+c

(t)
4

(
1

2

)l
cos
(π
2
l
)
+c

(t)
5

(
1

2

)l
sin
(π
2
l
)
,

wherecti are discovered from̂xt(h) for h = 1, 2, 3, 4, 5.

2.6 Heteroscedastic Models

In perspective of finance, volatility is fluctuation of priceof the financial instrument.
Generally, higher volatility means that one will face with higher risk in the related
finance instrument. Most of usages are seen in option tradingand asset returns data.
Volatility can be historical or implied. We call it historical if the volatility is extracted
from past market prices. On the other hand it is called implied if the volatility is
obtained by the market price of a market traded derivative.

Shumway and Stoffer stated that volatility is considered asconstant in ARMA mod-
els while the autoregressive conditionally heteroscedastic model (ARCH) stands for
detecting the changes in variation [62]. There are several types of ARCH model by
modifications. We will cover the autoregressive conditionally heteroscedastic model
(GARCH) and the generalized autoregressive conditionally heteroscedastic (GARCH)
model.
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Figure 2.14: Daily Closing Prices of DAX data and its return values.

2.6.1 ARCH and GARCH Models

ARCH model is used to do variance analysis. Method was firstly introduced by Engle
in [23] to model volatility. Assume that we have a time seriesxt which gives the stock
values at related timet. Return ofxt at timet, i.e. relative gain [62], is given as

rt =
xt − xt−1

xt−1

≈ ∇ [log(xt)] . (2.46)

Return of a financial time series is used for variance analyseswith using volatility mod-
els. Versions of ARCH model and some state-space models are example for volatility
or variance analysis.

ARCH(1) model for returnrt is given by following equations

rt = σtǫt (2.47)

and
σ2
t = α0 + α1r

2
t−1, (2.48)
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Table 2.1: Coefficients of Fitted AR(1)–ARCH(1) DAX Data

µ φ1 ω α1

6.9409e-04 3.3857e-02 9.4651e-05 1.0752e-01

whereǫt is standard Gaussian white noise that is distributed asǫt ∼ iidN(0, 1). By
using Equation 2.47 and Equation 2.48, it is also possible towrite the ARCH(1) model
as non-Gaussian AR(1) model as

r2t = α0 + α1r
2
t−1 + vt, (2.49)

wherevt = σ2
t (ǫ

2
t − 1). ARCH(1) model has the following properties [62],

• For the condition0 ≤ α1 < 1, rt is white noise and its distribution is leptokurtic.

• If 3α2
1 < 1, rt is causal AR(1) model and if3α1 > 1, r2t is strictly stationary

process with infinite variance.

Parametersα0 andα1 are estimated by conditional maximum likelihood estimation
(MLE). Details can be found in Shumway and Stoffer [62] in page 283.

Example 2.6 (DAX Return Data with AR(1)–ARCH(1) Fitting). EuStockMarkets
data was taken from ‘datasets’ package in R program. It includes major European
stock indices: Germany DAX (Ibis), Switzerland SMI, FranceCAC, and UK FTSE
with 1860 observations on 4 variables. Only DAX data was usedin the following
examples. Some results of fitting AR(1)–ARCH(1) model to return of DAX data are
given in Table 2.1 and in Table 2.2. In Table 2.2 standard errors are calculated based on
Hessian and significant codes‘ ∗ ∗∗′, ‘ ∗ ∗′, ‘∗′, ‘.′ and‘′ stands for0.001, 0.01, 0.05, 0.1
and1 respectively.

Table 2.2: Error Analysis

Estimate Std. Error t-value Pr(> |t|)
µ 6.941e-04 2.344e-04 2.962 0.00306**
φ1 3.386e-02 2.669e-02 1.268 0.20466
ω 9.465e-05 3.740e-06 25.309 < 2e-16 ***
α1 1.075e-01 2.718e-02 3.955 7.65e-05***

Estimation of ARCH(m) is done via using ARCH(1) and conditional likelihood of
returnsrm+1, . . . , rn givenr1, . . . , rm. Then ARCH(m) can be illustrated by following
equations;

rt = σtǫt, (2.50)

and
σ2
t = α0 + α1r

2
t−1 + · · ·+ αmr

2
t−m. (2.51)
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Figure 2.15: GARCH(1, 1) Model Fitted to DAX Return Data.

On the other hand generalized ARCH(m, f) or GARCH(m, f) model which is intro-
duced by Bollerslev in [12], is given as

σ2
t = α0 +

m∑

i=1

αir
2
t−i +

f∑

i=1

βiσ
2
t−i. (2.52)

Then the one-step-ahead forecasts of the volatility is written as

σ̂2
t+1 = α̂0 +

m∑

i=1

α̂ir̂
2
t+1−i +

f∑

i=1

β̂iσ̂
2
t+1−i. (2.53)

Example 2.7(DAX Return Data with GARCH(1, 1) Fitting). In Table 2.3, error anal-
ysis of DAX data with fitted model GARCH(1, 1) is seen and significant codes are
same as in Example 2.6. In Table 2.4 related information criterion statistics are given
for fitted model. In Figure 2.15 GARCH(1, 1) model which is fitted to DAX return
data is shown and prediction of volatility is with∓ 2σ̂t.

28



2.6.2 Other Heteroscedastic Models

There are many types of ARCH model according to related data. For example Equa-
tion 2.52 can be rewritten as

r2t = α0 +

max (m,f)∑

i

(αi + βi)r
2
t−i + ηt −

f∑

i=1

βiηt−i, (2.54)

whereσ2
t−i = r2t−i − ηt−i for i = 0, 1, . . . , f . Then one can have integrated GARCH

model (IGARCH) in case the AR polynomial of the Equation 2.54 has a unit root.
GARCH in the mean (GARCH-M) model can be used for detect the serialcorrelations
in the financial time series with respect to related volatility. Another modified version
of GARCH model is the exponential GARCH model. It provides a usagein asymmet-
ric return dynamics of positive and negative assets. In order to manage with leverage
effect, the threshold GARCH (TGARCH) model is used. Moreover, CHARMA model
can be used for modeling the volatility of time series. Details for ARCH and GARCH
models are given by Tsay in [68] of Chapter 3.

2.7 Other Methods: Overview

There are many other modeling types for time series analysis. One can use linear
or nonlinear method to model selected time series. For example, threshold methods,
neural networks, hidden Markov model and state space modelscan be candidate for
time series which will be analyzed.

2.7.1 Threshold Models

Threshold methods are included in nonlinear modeling issues. Let’s consider the sim-
ple AR(p) model given in Equation 2.10 for time seriesxt as,

xt = α + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + ǫtσ, (2.55)

whereǫt ∼ WN(0, 1) andσ > 0 is standard deviation of disturbance term. In the
sense ofThreshold AutoRegressive (TAR) model, related to threshold variablezt model
parameters would be changeable. We can write the related formula as follows,

xt = α(j) +Xtφ
(j)
(i) + σ(j)ǫt if rj−i < zt < rj, (2.56)

whereXt = (1, xt−1, xt−2, . . . , xt−p) for j = 1, 2, . . . , k, i = 1, 2, . . . , p and−∞ =
r0 < r1 < · · · < rk = ∞. The domain of threshold variablezt is separated intok
different order by thek − 1 non-trivial thresholds that are given as(r1, r2, . . . , rk−1).
In each order, time series meets with different AR(p) model.
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Rule of theself-exciting TAR (SETAR) modelis that the threshold variable is lagged
value of the time series. We can write the formula of SETAR as,

xt = α(j)+φ
(j)
1 xt−1+φ

(j)
2 xt−2+ · · ·+φ(j)

p xt−p+σ
(j)ǫt if rj−i < zt < rj , (2.57)

wherek andd are positive integers andj = 1, 2, . . . , k, i = 1, 2, . . . , p and−∞ =
r0 < r1 < · · · < rk = ∞. The threshold variablezt is one of

{
xt, xt−d, . . . , xt−(m−1)d

}

whered is the delay parameter.

If the binary indicator function is replaced by smooth transition functionG(zt) which is
dependent on transition variablezt, we get thesmooth transition autoregressive model
(STAR)[66] as

xt = α(j) +Xtφ
(1)
(i) (1−G(zt)) +Xtφ

(2)
(i)G(zt) + σ(j)ǫt. (2.58)

Smooth transition function is given for logistic and exponential equations respectively
as,

G(zt; γ, c) =
1

1 + e−γ(zt−c)
, (2.59)

and
G(zt; γ, c) = 1− e−γ(zt−c)

2

(2.60)

wherec can be said as threshold andγ > 0 shows the speed and smoothness of tran-
sition [77]. Logistic smooth transition autoregressive model and exponential smooth
transition autoregressive model are given as LSTAR and ESTAR in short terms. We
have also threshold version of GARCH model as we mentioned in Subsection 2.6.2.

2.7.2 Neural Networks

Neural network system is one of learning algorithm which also includes linear regres-
sion, logistic regression, bagging, boosting, decision trees, naive Bayes, support vector
machine (SVM) etc. . It is actually based on artificial learning which is inspired by
brain of animals and humans. There are nodes that have similar tasks with neurons
in a brain. Most system is formed of input, hidden and output nodes that are each in-
terconnected with previous and next ones. In other words each input and each hidden
nodes are connected each other with some weights. Same connection structures exist
between hidden nodes and output nodes. In Figure 2.16, the information flow direction
is to right. A numerical example for IBM stock is given by Tsay in [68].

Neural networks are used also for nonlinear time series forecasting [9]. It provides
convenience for solving complex problems like nonlinear data sets. In Figure 2.16
structure of neural network is given.

Example 2.8 (Forecasting of DAX Data by Using Feed-Forward Neural Network).
DAX daily stock prices data between middle of year 1991 and middle of year 1994, is
used to find one year forecast by using neural network model. In Figure 2.17 it catches
the fractal structure of stock data. The fitted model NNAR(2, 1) is analogous to an
SARIMA(2, 0, 0)× (1, 0, 0)1 model with nonlinear functions and one hidden layer.
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Figure 2.16: Typical Structure of a Neural Network System.
(http://mechanicalforex.com/wp-content/uploads/2011/06/NN.png)
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2.7.3 Other Methods

According to time series analysis, we have some other nonlinear models like Bilinear
Model, Markov Switching Model, Nonlinear Additive AR Model, Nonlinear State-
Space Model etc. . In addition there are nonparametric models for time series analysis.
Moreover there are such models for volatility, multivariate time series and principal
component analysis. After statistical analysis one can decide which model fits better
the related data set [68, 31, 25].
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Table 2.3: Error Analysis of Fitted GARCH(1, 1) DAX Data

Estimate Std. Error t-value Pr(>|t|)
µ 6.535e-04 2.158e-04 3.029 0.00245 **
ω 4.754e-06 1.264e-06 3.760 0.00017***
α1 6.842e-02 1.478e-02 4.630 3.66e-06***
β1 8.876e-01 2.356e-02 37.677 < 2e-16 ***

Table 2.4: Information Criterion Statistics of Fitted GARCH(1, 1) DAX Data

Information
Criterion Statistics

AIC BIC SIC HQIC
-6.414432 -6.402538 -6.414441 -6.410049
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CHAPTER 3

FUNDAMENTALS OF FOURIER AND WAVELET THEORY:
FREQUENCY DOMAIN ANALYSIS

In this chapter, firstly theoretical background of Fourier theory and wavelet theory
will be covered. Non-complex signals or time series can be analyzed with using time
domain analysis. When data is getting more complex, frequency-domain analysis is
also used to reach other characteristics of data. Masset pointed out in [46] that if
the system relies on more than one frequency components, time-domain analysis is
inadequate to reveal important information of real data.

Both Fourier and wavelet transform are linked to the frequency domain analysis, but
Fourier analysis has several drawbacks compared to the wavelet analysis. Vuoren-
maa [71] says that wavelet analysis provide non-parametricmultiscale technique which
is useful in both time and frequency domain where Fourier transform is inadequate for
time information. In addition location parameter is held inphase and it is too hard to
reach it. Also, function and the Fourier coefficients are affected each other in very sen-
sitive way. In order to get away from some drawbacks, Windowed Fourier Transform
(WFT) was used for analysis. However it doesn’t still providedifferent levels of res-
olution for different time and frequencies regions. In other words WFT cannot handle
physical space and Fourier space at the same time. Developedversion of Fourier the-
ory, which is called wavelet theory, has fixed many problems faced in Fourier analysis.

Variance of the financial time series is analyzed by taking the difference of the con-
secutive observations which are smoothed by logarithm. It is also called as volatility
which is known as standard deviation. Since the variance is the square of the standard
deviation, volatility is used in variance analysis for bothFourier and wavelet analysis.
Volatility can be given as absolute value of the daily returns [42];

yt = |log(xt)− log(xt−1)| . (3.1)

We use thelog difference without absolute value for some empirical results to make
the data stationary.

After giving basic properties and theoretical backgroundsof both Fourier and wavelet
transform, applied examples will be covered. In technical explanations and in exam-
ples we are using signal, function and time series alternately.
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3.1 Fourier Theory

3.1.1 Introduction

According to Joseph Fourier [10], any continuous or discontinuous function can be
written as sum combination of infinite sine and cosine functions. Actually this is not
the case that some discontinuous functions are not Fourier series. For instance, the
convergent trigonometric series

∑
∞

n=1
sin(nx)
nα where0 < α ≤ 1/2, is not a Fourier

series as given by Gelbaum and Olmsted in [27]. Apart from some exceptions, Fourier
transforms are used to alter the domain of the wave from time to frequency.

Eachsineandcosinefunction has a frequency and amplitude. Later on we will call
the plot of frequency versus amplitude of thesesine and cosinefunctions as power
spectrum or periodogram.

On the other hand, many time series can be explained in different frequency com-
ponents using Fourier transform. As well as, it can be thought as a filter so that the
original time series can be decomposed into different frequency parts. Specially, finan-
cial time series are showing different behaviors accordingto different frequencies and
different time scales [63]. After applying Fourier transform, no time information will
be left to occur. Fourier transform filters the concerned time series to only frequency
domain. Then from different frequency zones, different component analysis can be
done.

3.1.2 Continuous Fourier Transform

Let f ∈ L1(R) andω = 2πk wherek ∈ R stays for frequency component, then
Continuous Fourier Transform off is defined as

C[f ](ω) =

∫
∞

−∞

f(t)e−iωtdt, (3.2)

and Inverse Continuous Fourier Transform is given as

f(t) =

∫
∞

−∞

C[f ](ω)eiωtdω. (3.3)

If the partei2πkt is rewritten by usingEuler’s Theorem1 [33], then original signal can
be represented onto a set of sinusoidal functions that are related to a specific frequency
component.

3.1.3 Discrete Fourier Transform

In order to solve problems with computers, we need to make functions suitable for
numerical evolution and implementation. Continuous numerical calculations which

1
e
−i2πkt = cos(2πkt)− i sin(2πkt).
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are done with computers are using actually approximated estimations. Due to infinite
number of elements, we need to do sampling before implementing Fourier transform.
Then transform with discrete function is called discrete Fourier transform. For inte-
grable functionf which hasN samples,k/N = ωk is frequency component, Discrete
Fourier Transform off is defined as in [62, 33],

D[k/N ] = N−1/2

N∑

t=1

f(t) e−2πitk/N

= N−1/2

(
N∑

t=1

f(t) cos

(
2πitk

N

)
− i

N∑

t=1

f(t) cos

(
2πitk

N

))
(3.4)

for k = 0, 1, . . . , n.

If we consider DFT then amplitude and phase are given respectively as

|D[k/N ]| /N =

√
Re(D[k/N ])2 + Im(D[k/N ])2

N
(3.5)

and

arg(D[k/N ]) = atan2(Im(D[k/N ]), Re(D[k/N ])) = −i ∗ ln
(

D[k/N ]

|D[k/N ]|

)
, (3.6)

where atan2 isarctan representation for two variables.2

3.1.4 Spectral Analysis and Periodogram

Distribution of the variance of the signalx(t) over the frequency ingredients can be
represented by the power spectrum. In addition spectrum gives information about pe-
riodicity of the data [13]. In other words, cyclical behaviors of the time series can be
viewed in the frequency domain [32]. However, as we mentioned in Subsection 3.1.1,
all time knowledge will be lost after Fourier transform. Moreover, Fourier analysis is
effective for only periodic and stationary time series [55].

The Short-time Fourier transform (STFT) and the Gabor transform are designed to
divide the time series into little pieces to add new parameter as time shifting near the
frequency [28]. However it brings a problem about the lengthof the slice that is not fit
with both time and frequency at the same time. If a window function has wide interval,
then the consequence gives better frequency resolution beside the bad time resolution
and vice versa. In addition STFT doesn’t give information about different resolutions.

The spectrum of the windowed time series can be given as [55];

STFTx(n, ω) =
N∑

t=1

x(t)h∗(t− n)e−iωt, (3.7)

2 See http://en.wikipedia.org/wiki/Discrete_Fourier_trans form [Retrieved
23.11.2014]
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Figure 3.1: Relation between power spectrum and autocovariance.

whereh(t) is a window function centered at a time pointn, ω is the angular frequency
andh∗ is the complex conjugate of a window function. In order to visualize the energy
spectral density ofx(t), spectrogramof the time series is written as

Spectrogramx(n, ω) =

∣∣∣∣∣

N∑

t=1

x(t)h∗(t− n)e−iωt

∣∣∣∣∣

2

. (3.8)

Power spectrum is obtained by taking the Fourier transform of an autocovariance func-
tion. The connection between autocovariance and the power spectrum is that inverse
Fourier transform of the power spectrum is autocovariance function. Loop for the
signal, autocovariance and power spectrum can be shown as inthe below graph for
discrete Fourier transform.
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In general form,periodogramof the time series can be written as

Ix(ωk) = |D[k/N ]|2 = 1

N

∣∣∣∣∣

N∑

t=1

xte
−2πiωkt

∣∣∣∣∣

2

=
1

N

(
N∑

t=1

xt cos

(
2πitk

N

))2

+
1

N

(
N∑

t=1

xt sin

(
2πitk

N

))2

. (3.9)

If we consider the sample autocovariances, we can write the periodogram forωk = 0
asI(0) = Nx̄2 andωk for k 6= 0 by following equation,

Ix(ωk) =
N−1∑

h=−(N−1)

γ̂(h)e−2πiωkh = γ̂(0) + 2
N−1∑

h=1

γ̂(h) cos(2πωkh), (3.10)

whereγ̂(h) is the sample autocovariance and for largeN , γ̂(h) is approximately unbi-
ased forγ(h). In other words we have the equalityE[γ̂(h)] ≈ γ(h). Then we can edit
Equation 3.10 as

E[Ix(ωk)] ≈
N−1∑

h=−(N−1)

γ(h)e−2πiωkh ≈
∞∑

h=−∞

γ(h)e−2πiωkh

= γ(0) + 2
∞∑

h=1

γ(h) cos(2πωkh) = f(ωk), (3.11)

wheref(ωk) is spectral density.

On the other hand thescaled periodogramis given as

Px(ωk) =

(
4

n

)
Ix(ωk). (3.12)

The part
∣∣∣
∑N

t=1 xte
−2πiωkt

∣∣∣
2

in Equation 3.9 which is linked to discrete Fourier trans-

form of the time series is called aspower spectrum. All the definitions according to
spectral analysis above are also valid for continues case. Initially, the idea of peri-
odogram was created to identify and measure the amplitude ofsine and cosine factors
whose frequencies are known [13]. Many researchers used periodogram to analyze the
data in frequency domain. For instance, Box and Jenkins in [13] used periodogram
for detecting the randomness of the time series and finding periodic parts of unknown
frequencies.

Spectral Density
If a number of processes in a function repeat itself in a certain gap, we consider the
periodicity issue in this function. Sine and cosine functions are periodic functions.
They are used to define periodic processes. Then periodic function can be written as
follows

xt = B1 sin(2πωt) + B2 cos(2πωt), (3.13)
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whereB1 = A sinφ andB2 = −A cosφ are random variables. Then the ampli-
tude isA =

√
B2

1 +B2
2 and the starting point which is called as phase isφ =

tan−1(−B1/B2). In addition,B1 andB2 are independent if and only ifA andφ are
independent random variables with some conditions [62]. Then the autovariance func-
tion of xt in Equation 3.13 for independentB1 andB2 is

cov(xt+h, xt)

= σ2 {sin(2πω(t+ h)) sin(2πωt) + cos(2πω(t+ h)) cos(2πωt)} . (3.14)

From the trigonometric equations which are sum and difference formulas [16], we can
write Equation 3.14 as

cov(xt+h, xt) = σ2 cos(2πω(t+ h− t)) = σ2 cos(2πωh), (3.15)

whereh = |s− t| is the lag for everys andt.

In general form, as Schuster pointed out in [59] that periodic series can be written as
the sum of the several number of sine and cosine functions such as [13]

xt =
m∑

i=1

[Bi1 sin(2πωit) + Bi2 cos(2πωit)] , (3.16)

whereBi1 andBi2 are independent zero-mean random variables with variancesσ2
i for

i = 1, 2, . . . ,m. In additionωi’s are distinct frequencies [28]. Then the autocovariance
function ofxt that is defined in Equation 3.16 can be given as for independent random
variablesBi’s

γ(t+ h, t) =
m∑

i=1

σ2
i cos(2πωit). (3.17)

The autocovariance in Equation 3.17 depends on only the lag,not depend ons andt.
Thereforext is a mean-zero stationary function with variance [62]

γ(0) = γx(t, t) = E(x2t ) = cov(xt, xt) =
m∑

i=1

σ2
i . (3.18)

Shumway and Stoffer mentioned in [62] that Equation 3.16 is valid for almost all sta-
tionary time series [62]. Then one can link the spectral analysis of stationary time
series with variance analysis. If one fix the frequencyω in Equation 3.13 asω′, then
process completeω′ cycles for anyt = 0,±1,±2, . . .. One can write the autocovari-
ance function in Equation 3.15 by using the Euler’s theorem [33] and the Riemann
Stieltjes integration [7] as

cov(xt+h, xt) =
σ2

2
(e−2πiω

′

h + e2πiω
′

h)

=

∫ 1/2

−1/2

e2πiωhdF (ω) = 2

∫ 1/2

0

cos(2πωh)dF (ω), (3.19)
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whereF (ω) is spectral distribution function and given by

F (ω) =





0 if ω < −ω′

,

σ2/2 if − ω
′ ≤ ω < ω

′

,

σ2 if ω ≥ ω
′

.

(3.20)

If the absolute sum of the autocovariance function with respect to Equation 3.13 is
finite whereh is between−∞ and∞, then we can write Riemann Stieltjes forh =
0,±1,±2, . . . as

cov(xt+h, xt) =
∫ 1/2

−1/2

e2πiωhf(ω)dω = 2

∫ 1/2

0

cos(2πωh)f(ω)dω, (3.21)

with the inverse transform of thespectral densityas

f(ω) =
∞∑

h=−∞

cov(xt+h, xt)e
−2πiωh = γ(0) + 2

∞∑

h=1

γ(h) cos(2πωh), (3.22)

where−1/2 < ω < 1/2. In other words,F ′(ω) = f(ω) in caseF (ω) is absolutely
continuous. The spectral density is even function of periodone. As a result one can
verify thatf(ω) is illustrated only forω ≥ 0. In addition,f(ω) = f(−ω) andf(ω) =
f(1 − ω) as Shumway and Stoffer explained in [62]. Another property is being non-
negative, i.e.f(ω) ≥ 0. The variance ofxt can be written by choosingh as0,

var(xt) =
∫ 1/2

−1/2

f(ω)dω <∞. (3.23)

The autocovariance function and the spectral density function catch the same properties
of the signal in terms of lag and cycle respectively [62].

The periodogram chooses strong frequencies in the finite sample. On the other hand,
for a stationaryxt, the spectral density can be used to define population model.The
spectral density is approximation of expected value of the periodogram as seen in
Equation 3.11. As a result plotting expectation of the periodogram gives similar re-
sult with the spectral density. On the other hand, estimatorof the spectral density
would be the periodogram. Drawback of choosing the periodogram as an estimator
of the spectral density is providing poor estimate due to having only two degree of
freedom.

Example 3.1(Examples of Spectral Density: White Noise). Take into consideration
a series of uncorrelated random variableswt’s with varianceσ2

w [68]. The mean is
µwt

= E[wt] = 0 and the autocovariance isγw(h) = cov(wt+h, wt) is equal toσ2
w for

h = 0 and equalt to0 for h 6= 0. White noiseswt+h andwt are uncorrelated. We find
out thatwt is a stationary (weak) process. Moreover it has a constant power spectral
density such that

fw(ω) = σ2
w, (3.24)

whereω is between−1/2 and1/2. It means that the power in each frequency is equal.
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Example 3.2(Examples of Spectral Density: Moving Average). Assume we have such
a process asvt = 1

5
(wt−1 + wt + wt+1). It has zero mean and the autocovariance of

the process is computed byγ(h) = 1
25

cov(wt−1 +wt +wt+1, wt+h−1 +wt+h, wt+h+1).
Then we get autocovariance function as

γ(h) =





3
25
σ2
w if h = 0,

2
25
σ2
w if h = ∓1,

1
25
σ2
w if h = ∓2,

0 if |h| > 2.

Process is stationary since it does not depend ons andt. It only depends on lagh. The
spectral density of the process is estimated from Equation 3.22 and given as

fv(ω) =
σ2
w

25
[3 + 4 cos(2πω) + 2 cos(4πω)].

Example 3.3(Examples of Spectral Density: ARMA Process). Letxt be ARMA(p, q)
process such thatφ(B)xt = θ(B)wt whereB is backshift operator andφ, θ are oper-
ators for autoregression and moving average respectively.Then spectral density of
ARMA(p, q) is given by in [62]

fx(ω) = σ2
w

|θ(e−2πiω)|2

|φ(e−2πiω)|2
, (3.25)

whereφ(z) = 1−∑p
l=1 φlz

l andθ(z) = 1 +
∑q

l=1 θlz
l.

Assume that we have a ARMA(2, 1) process such thatxt = −0.4xt−1+0.6xt−2+wt+
0.5wt−1. It is seen thatφ1 = −0.4, φ2 = 0.6 andθ1 = 0.5. Then we have,

∣∣θ(e−2πiω)
∣∣2 =

∣∣1 + 0.5e−2πiω
∣∣2 = (1 + 0.5e−2πiω)(1 + 0.5e2πiω)

= 1.25 + 0.5(e−2πiω + e2πiω) = 1.25 + cos(2πω).
∣∣φ(e−2πiω)

∣∣2 = (1 + 0.4e−2πiω − 0.6e−4πiω)(1 + 0.4e2πiω − 0.6e4πiω)

= 1.52− 0.2(e−2πiω + e2πiω)− 0.6(e−4πiω + e4πiω)

= 1.52− 0.4 cos(2πω)− 1.2 cos(4πω).

Finally by using Equation 3.25 spectral density of our ARMA(p, q) process is written
as,

fx(ω) = σ2
w

1.25 + cos(2πω)

1.52− 0.4 cos(2πω)− 1.2 cos(4πω)
.

However AR part is not satisfy the causality, because1/ |φ2| is not outside of the unit
circle. So let’s changeφ2 as0.3 and write the spectral density after same calculations
as

fx(ω) = σ2
w

1.25 + cos(2πω)

1.25− 0.56 cos(2πω)− 0.6 cos(4πω)
.
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Figure 3.2: The Spectral Densities of White Noise, Moving Average and Autoregres-
sive Process separately in Example 3.1, Example 3.2 and Example 3.3.

Theoretical spectra of white noise, moving average, autoregressive process and ARMA
process are given in Figure 3.2 and in Figure 3.3. The ARMA(2, 1) process has the
highest spectrum as2.7777778 at frequency0.5 and it has a spectrum of1.8595041
at frequency0. As we see in Figure 3.2, AR process has also the highest spectrum at
frequency0.5 as11.1111111. As a result it has highest spectrum at a period at two
cycles per point.

If we have the same example with only AR(2) process instead of ARMA(2, 1), then
we would get the spectral density as

fx(ω) = σ2
w

1

1.25− 0.56 cos(2πω)− 0.6 cos(4πω)
.

Example 3.4(Simulated Series Example). Let’s define three sine functionsx1,x2 and
x3 with frequenciesω1 = 5

100
, ω2 = 25

100
andω3 = 85

100
respectively and with each has

100 observations, i.e.t = 1, 2, . . . , 100. Series are given as

x1(t) = 3 sin(
2πt5

100
) + 4 cos(

2πt5

100
),
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Figure 3.3: The spectral density of ARMA(2, 1) in Example 3.3.
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Figure 3.4: Three periodic functions with different frequencies and their sum.

x2(t) = 2 sin(
2πt25

100
) + 3 cos(

2πt25

100
),

x3(t) = 4 sin(
2πt85

100
) + 6 cos(

2πt85

100
).

Sum of above three functions includes three different frequency components with re-
spect to sine and cosine components. For equal number of observations, function with
higher frequency includes denser signal due to reserving more number of cycles per
unit time. Due to the fact that all three functions are cyclical, the sum of these functions
is also cyclical. In addition amplitude of the sum is total amplitude of three functions.
In Figure 3.4 three simulated functions and the sum are illustrated.

Shumway and Stofer in [62] gives the formula of the scaled periodogram as

P

(
j

n

)
=

(
2

n

n∑

t=1

xt sin

(
2πtj

n

))2

+

(
2

n

n∑

t=1

xt cos

(
2πtj

n

))2

, (3.26)

wherej/n represents thejth frequency. The peaks values in Figure 3.5 and in Fig-
ure 3.6 are the values which are the square amplitudes of the simulated functions by
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Figure 3.5: Periodogram of sum function by using FFT.

using the Fast Fourier Transform. We get the mirrors of peakswith respect to frequency
0.5 for each function sinceP (j/n) = P (1− j/n). Figure 3.5 shows the periodogram
of sum function. If we change the third frequency asω3 = 75/100, we will see 4 peaks
instead of 6 peaks since the periodogram of the second and thethird function will be
the same. If we choose the1st and2nd functions same, but3rd one by changing the
frequencyω3 = 50/100 then we will get 5 peaks.

Example 3.5(DAX Data). In the below analysis, DAX data from R program database
is used and it has 1860 observations with frequency 260.

It is seen from ACF plot of the data DAX that the time series is not stationary since all
autocorrelation values exceed the confidence interval.

Histogram is skewed right (positive). In Figure 3.8, histogram on the right has more
number of cells and so details are more visible. Data is distributed non-normally. In
general normal distributed data is symmetric and it has a center, i.e. mean, median, and
mode are all same. On the contrary, mean, median, and mode aredifferent each other
for the non-symmetric distributions. In order to have an idea of centerness issue for
data which has a skewed histogram, it is better to look all of three measures. It is seen
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Figure 3.6: Periodogram where frequency of 3rd function is 0.75 at left, 0.5 at right.
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Figure 3.7: Data of DAX and Related ACF, PACF, Histogram and Quantile Graphs.
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Table 3.1: Basic Statistical Results of DAX Data

Min. 1st Qu. Median Mean
1402 1744 2141 2531
3rd Qu. Max Mode Kurtosis
2722 6186 1542.77 4.565346

in Table 3.1 that median, mean and mode values are different each other for DAX data
which means that distribution is non-normal. Having lower bounds cause also skewed
distributions. Last two figures in Figure 3.7 show the Quantile-Quantile plot that is
fitting sample data to the normal distribution. We see the non-normal distribution from
the S type of the line which is not fitting the normality line.

In Figure 3.9 the right top graph shows the estimated spectral density of DAX data
by smoothed periodogram using FFT. Algorithm uses taper argument to link relation
between the series and taper by applying a split cosine bell taper to the beginning and
the end of the time series. It should be between 0 and 0.5. Heretaper argument is 0 and
there is no character to qualify log scale. The figure on the left bottom has a log scale
characterization and it is seem that it is hard to read the significant spectrums which
are related to seasonality. The AR fitted spectrum figure consists of four methods.
OLS method and Burg method almost follow each other. Other than YuleWalker and
MLE methods, OLS and Burg methods are giving better spectrum results, since we
can realize peaks better.

In Figure 3.10, first graph is the periodogram of time series DAX. Other graphs are the
smoothed ones with using modified Daniell smoother and widths of smoothing values
are given in graphs. It is seen that, after some values of widths it is easier to catch the
important peaks. In addition to peaks between frequencies 20-40, 40-60 and frequency
about 40 in the AR fitted spectrum, we catch the peak between frequencies 110-120.

In Figure 3.11, again Daniell smoother is used with the kernel argument. It gives
almost same periodograms with spanning argument, but kernel argument makes the
periodogram smoother than span argument does.

3.2 Wavelet Theory

3.2.1 Introduction

Wavelet theory is a nearly recent and popular issue in almostall engineering and sci-
ence areas. It is applied in many areas like finance, economy,image processing, signal
analysis etc. One of its important properties is providing amultiresolution analysis
to get decomposed parts of signal for analysis, processing,de-noising or compres-
sion [15]. Specific examples of usage areas can be given as seismic data for geologists,
voice and fingerprint data for FBI, image processing like JPEG2000 standard [2] for
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Figure 3.10: Periodogram of DAX and its smoothed versions using Daniell smoothers
by spanning.
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Figure 3.11: Periodogram of DAX and its smoothed versions using Daniell smoothers
by kernel.
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NASA, pattern recognition, filter design, de-noising [30] etc. .

For any independent scale, data can be analyzed by continuous or discrete ways. Tong
says that wavelet analysis is very significant tool for financial market data for short term
prediction and the calculation of the variance in relation to particular time scales [54].
In financial markets, it is very important to look time-scaledecomposition with mul-
tiresolution analysis for traders. For example short-termtraders are interested in the
detailed parts which are included in wavelet coefficients which are constructed by high-
frequency filters and for long-term traders vice versa.

People have used Fourier transform for many years to understand the characteristic of
functions or signals in the view of frequency. However, Fourier transform has some
drawbacks compared to wavelet transform. Specifically, financial time series like stock
market prices includes high-frequency data and Fourier transform is insufficient to
analyze these types of data, since it does not have the flexible and detailed parts. On
the other hand wavelets ,which is called as mathematical microscope by Burke in [14],
have resolution information.

Here are some properties which make us to use wavelet transform rather than Fourier
transform:

• Fourier method requires stationary data while wavelet transforms does not re-
quires [45]. In addition to capturing stationary and non-stationary signals, wavelets
also catch signals that are aperiodic. Especially these advantages are very im-
portant in analyzing financial time series.

• Projections of a data onto Fourier space are fundamentally global where projec-
tions of a data onto wavelet space are fundamentally local. Hence, one can go
into desired details of data with wavelet transform like using a microscope [57,
14].

• Fourier transform only provides frequency analysis while wavelet transforms
ensure that data can be analyzed for any times with the related frequency details.
Time-scale information has importance for complex data sets like financial time
series.

• Most of wavelet algorithms are faster than Fourier algorithms, even faster than
FFT (Fast Fourier Transform).

• Wavelets provide catching breakdown points, discontinuities and self-similarities
if there exist.

Both continuous and discrete transforms will be given in sometechnical and math-
ematical details in the next subsections. Relation between wavelet transforms and
multiresolution analysis will be covered to understand howto cover a function with
detail and smooth parts.
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3.2.2 Continuous Wavelet Transform

The continuous wavelet transformXu,v of signalx(t) is actually done by dilation and
translation of the mother wavelet(ψ) in order to measure the difference in the signal
for specific frequency and specific time [46]. Equation 3.27 shows continuous wavelet
transform.

Xu,v =

∫
∞

−∞

x(t)ψu,v(t)dt, (3.27)

where

ψu,v(t) = |u|− 1

2 ψ

(
t− v

u

)
. (3.28)

The parametersu andv are dilation (or scale) and translation (or location) parameters
respectively. These parameters make wavelets flexible and easy adapted tools. Ac-
cording to their flexible structure, one can analyze different components ofx(t) easily.
Original function has only one variablet while new one has two variablesu andv. The
signalx(t) can be also written from its wavelet coefficients. This implementation is
called “synthesizing” and signal can be written as:

x(t) =
1

Cψ

∫
∞

−∞

∫
∞

−∞

Xu,vψu,v(t)(u
−2)dvdu, (3.29)

whereCψ is given in Equation 3.30.

There are some conditions for constructing desirable transforms as Gençay et al. men-
tioned in [28] according to the mother waveletψ. Firstly, ψ(t) needs to satisfy the
admissibility conditionwhich is given as

∫
∞

0

|C(ω)|2
ω

dω <∞, (3.30)

whereω is frequency andC is the Fourier transform ofψ(t). Admissibility condition
makes the CWT invertible [45]. In addition it signifies that theFourier transform of
ψ(t)disappears where the frequency is zero such as

|C(ω)|2 |ω=0 = 0. (3.31)

Valens says in [69] that since the Fourier transform at frequency zero is zero, this
ensures that the wavelets have a band-pass similar to spectrum.

Condition of being zero forψ(0) or following condition in Equation 3.32 provides the
finitenessof Cψ [28]. So it can be said that wavelets have zero average and therefore it
has a shape of wave or wave form.

∫
∞

−∞

ψ(t)dt = 0, (3.32)

Another condition stays for that wavelet function has unit energy (according to its
domain integrated squared function) and it can be shown as

∫
∞

−∞

|ψ(t)|2 = 1. (3.33)
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Under the construction of above conditions, the wavelet function must have at least
some nonzero coefficients and these nonzero coefficients must cancel out [28, 60].

One can analyze or decomposex(t) by wavelet basis using the above structures. In
addition, if Equation 3.30 holds thenx(t) can be reconstructed from its wavelet coeffi-
cients as given in Equation 3.29.

In practice it is nearly unachievable to use all wavelet coefficients to analyze the signal.
One cannot compute almost infinite number of coefficients by hand or by computer.
In theory, it is more applicable to use CWT for continuous functions but not for time
series or discrete signals as Masset pointed out in [46]. As aresult it is better to work
with sampled wavelets.

3.2.3 Discrete Wavelet Transform

Critical Sampling
Beside the calculation problem, CWT has also drawback coming from non-essential
information. Because the CWT has two variables, they bring muchmore information
than necessary. As a result one needs to struggle with excessive information as well.
However we can eliminate the information that we will not useby the help of dis-
cretization of the CWT [28]. Two variables of CWT, i.e.u andv, can be reconstructed
for anyk andj as

u = a−j and v = kba−j. (3.34)

For dyadic wavelet bases,a andb are chosen as 2 and 1 respectively [45]. Critical
sampling is used for choosing minimum number of coefficientsfrom the CWT with-
out any missing information. The scalarsk = 1, 2, . . . , 2j andj = 1, 2, . . . , J are stays
for again translation and scale factors respectively. The scale number can reach its
maximum if the dyadic power of scale is equal to number of observations, i.e.2J ≤ N
orJ < log2(N) < J+1 whereN is number of observations in data set. Consequently,
DWT requires dyadic length for transformation ofx(t). If the signal has not a dyadic
length, one can take away some observations from data set or one can add some obser-
vations (generally zeros) to data set to make the length dyadic. First way invites loss
of information, so compared to first one second way is more appropriate. Using zeros
to complete data set is called “zero padding”. The sample mean or the last values in
the series are other examples to pad the signal.

Then foru = 2−j andv = k2−j, we use the CWT to write new wavelet transform and
mother wavelet such as

Xj,k =

∫
∞

−∞

x(t)ψj,k(t)dt, (3.35)

where
ψj,k(t) = 2(

j

2
)ψ(2jt− k). (3.36)

The functionψ(t) is also called as basis function as a result of reproducing all ψj,k(t)
functions. Resolution of the DWT is described in both time and frequency bycritical
samplingwith the set of discrete dilations and discrete translations. The wavelet basis
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is consists of the mother wavelet and the father wavelet. Thefather wavelet is given
also in the same form of the mother wavelet as

φj,k(t) = 2(
j

2
)φ(2jt− k). (3.37)

The DWT is constructed by high-pass (or wavelet) filter and low-pass (or scale) filter
that are shown ashl = (h0, h1, . . . , hL−1) and gl = (g0, g1, . . . , gL−1 respectively
whereL is length of filters. As a result, the wavelet filter captures high-frequency (i.e.
short scales) components and the scale filter captures low-frequency (i.e. long scales)
components. These two filters create aQuadrature Mirror Filter (QMF) pair [73]
and if wavelets are orthonormal, they can be written in the following equality forl =
0, 1, . . . , L− 1 as [28, 73]

hl = (−1)lgL−1−l and gl = (−1)l+1hL−1−l. (3.38)

QMF reduces the aliasing effects which appear while the convolution is done [74].

For desirable frequency gap, it is possible to construct band-pass filter from high-
frequency and low-frequency filters. Details are covered byGençay et al. in [28]
between pages 106 and 110.

Wavelet filter has three properties given as below

1. summation to zero:
L−1∑

l=0

hl = 0 (3.39)

2. unit energy:
L−1∑

l=0

hl
2 = 1 (3.40)

3. orthogonality to even shifts:

L−1∑

l=0

hlhl+2n =
∞∑

l=−∞

hlhl+2n = 0 for all integers exceptn 6= 0 (3.41)

Wavelet filter is familiar with the difference operator according to first and second
properties [46]. In addition, second property shows that energy is protected in the
series [40]. Both second and third property implies the orthogonality, i.e. wavelet
coefficients are independent or uncorrelated to construct wavelet coefficient bases [52].

Then according tohl, the scaling filtergl has following properties:

1. summation to±
√
2:

L−1∑

l=0

gl =
√
2 (3.42)
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2. unit energy:
L−1∑

l=0

gl
2 = 1 (3.43)

3. orthogonality to even shifts:

L−1∑

l=0

glgl+2n =
∞∑

l=−∞

glgl+2n = 0 (3.44)

4. orthogonality to wavelet filter at even shifts:

L−1∑

l=0

glhl+2n =
∞∑

l=−∞

glhl+2n = 0 (3.45)

In the form of wavelet and scaling filters, the father and the mother wavelet can be writ-
ten as below equations respectively by using dilation equation that is clearly explained
in Strang’s paper [64]

φ(t) = 21/2
∑

l

glφ(2t− l) and ψ(t) = 21/2
∑

l

hlφ(2t− l), (3.46)

wherel = 0, 1, . . . , L− 1.

Crowley mentioned in [20] that the mother wavelet stands for cyclical part of data and
the father wavelet stands for the trend. By the help of flexiblestructure of wavelets, one
can go into details for high-frequency and low-frequency components for any time.

Construction of the DWT
Assume we have time seriesx(t) with dyadic lengthN = 2J . Then we can write
wavelet and scaling coefficients as

w = Wx, (3.47)

whereW is anN × N orthonormal matrix of DWT and the length of the vectorw =
[w1, w2, . . . , wJ , vJ ]

T is J + 1. In order to satisfy Equation 3.47,w must have length
of N . Hence we set the length ofwj asN/2j and the length ofvJ asN/2J according
to scale lengths asλj = 2j−1 andλJ = 2J−1 respectively wherej = 1, 2, . . . , J . Let
h
(0)
j be unit scale wavelet coefficients. If the length of the filterisL, then elements that

are betweenL andN , namelyL < t < N , are zero. So the filter vector is given as

h
(0)
1 = [h1(N − 1), h1(N − 2), . . . , h1(1), h1(0)]

T . (3.48)

Then, we define the orthonormal wavelet coefficients[h
(2)
1 , h

(0)
4 , . . . , h

(N
2
−1)

1 ] by shift-
ing each element ofh(0)1 with length of2j in each step. As a result next step gives the
vectorh(2)1 = [h1(1), h1(0), h1(N −1), h1(N −2), . . . , h1(3), h1(2)]

T and so on. After
N
2
− 1 steps we find the matrixW1 as given below

W1 =

[
h
(0)
1 , h

(2)
1 , h

(0)
4 , . . . , h

(N
2
−1)

1

]T
(3.49)
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Other matricesWj ’s are set up similarly where the scale factor isj = 1, 2, . . . , J . One
can write the matrixW with submatrices as

W = [W1W2 . . . WJ VJ ]
T , (3.50)

whereWj is (N/2j) × N andVJ is (N/2J) × N matrices wherej = 1, 2, . . . , J .
The matricesWj andVJ can be written by using the high-pass and low-pass filters.
Construction ofW can be also done in different ways like defining submatrices from
high-pass and low-pass filters again where sorting of the filters can be different from
Equation 3.48. Each submatrix is defined from first quarter ofprevious submatrix [4].
Let’s show a simple construction example of DWT with usingMallat’s pyramid algo-
rithm which will be illustrated in details after Equation 3.6 [43].

Example 3.6(Construction Example of DWT). Assume that we are dealing with time
seriesx(t) where number of observations isN = 16 and the length of the filter is
L = 4. Then8 × 16 matrices{H1, G1}, 4 × 8 matrices{H2, G2}, 2 × 4 matrices
{H3, G3} and1 × 2 matrices{H4, G4} are written as follows by taking first quarter
part from previous matrix [6],

H1 =




h1 h0 0 0 0 0 0 0 0 0 0 0 0 0 h3 h2
h3 h2 h1 h0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 h3 h2 h1 h0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 h3 h2 h1 h0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 h3 h2 h1 h0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 h3 h2 h1 h0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 h3 h2 h1 h0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 h3 h2 h1 h0




,

H2 =



h1 h0 0 0 0 0 h3 h2
h3 h2 h1 h0 0 0 0 0
0 0 h3 h2 h1 h0 0 0
0 0 0 0 h3 h2 h1 h0


 ,

H3 =

[
h1 h0 h3 h2
h3 h2 h1 h0

]
,

H4 =
[
h1 h2

]
,

G1 =




g1 g0 0 0 0 0 0 0 0 0 0 0 0 0 g3 g2
g3 g2 g1 g0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g3 g2 g1 g0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 g3 g2 g1 g0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 g3 g2 g1 g0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g3 g2 g1 g0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 g3 g2 g1 g0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 g3 g2 g1 g0




,
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G2 =



g1 g0 0 0 0 0 g3 g2
g3 g2 g1 g0 0 0 0 0
0 0 g3 g2 g1 g0 0 0
0 0 0 0 g3 g2 g1 g0


 ,

G3 =

[
g1 g0 g3 g2
g3 g2 g1 g0

]
,

G4 =
[
g1 g2

]
.

The relation between the high-pass and low-pass filters is given in the Equation 3.38.
Then the matrixW is written by usingMallat’s pyramid algorithmas

W =




W1

W2

W3

W4

V4


 =




H1

H2G1

H3G2G1

H4G3G2G1

G4G3G2G1


 .

Then we can get the vectorw by multiplying the original time series byW. In general,
coefficientswj ’s have length ofN/2j andvJ has length ofN/2J . In Example 3.6,
w1, w2, w3, w4 andv4 has 8,4,2,1 and 1 observations respectively.

Pyramid Algorithm
Now we consider the construction of wavelet coefficients forDWT. Letx(t) be time se-
ries withN observations:{x(1), x(2), . . . , x(N)}. The mother and the father wavelet
filters convolute with the time series to get first level of thedecomposition of the
wavelet and the scaling coefficients. Before passing to the ‘Pyramid Algorithm’ [43]
that describe a iteration algorithm to construct the wavelet and scaling coefficients [43,
46], let’s write the first coefficients for both the wavelet and the scaling coefficients as

w1(t) =
L−1∑

l=0

hlx(t
′) and v1(t) =

L−1∑

l=0

glx(t
′), (3.51)

wheret = 0, 1, . . . ,
(
N
2

)
− 1 andt′ = 2t + 1− l mod N . Wavelet coefficients at the

first scale includes the highest frequency components ofx. It is seen that the number
of samples is divided into half of its value forw1(t) andv1(t). It is the preliminary
of the first step of pyramid algorithm. The variablet′ ensures the subsampling and
positiveness of step ofx. Masset point out that modulus stays for solving boundary
problems [46]. Construction of the pyramid algorithm takes shape from iteration of
the scaling coefficients in the Equation 3.51. In each step, sample size is decreases as
the half of the previous step (downsampling by 2). For example in the second step time
variables are given ast = 0, 1, . . . , N

4
− 1 andt′ = 2t + 1 − l mod N for w2(t) and

v2(t).

After J step iterations whereJ = [log2N ] is the scale, one can get the wavelet and the
scaling coefficients as

wJ(t) =
L−1∑

l=0

hlvJ−1(t
′) and vJ(t) =

L−1∑

l=0

glvJ−1(t
′), (3.52)
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Figure 3.12: Flowchart of the pyramid algorithm for decomposing. In every iteration
each coefficients divided by 2 which is called downsampling as mentioned by Gençay
et al. in [28]. Frequency decreases asj increases.

Figure 3.13: Flowchart of the pyramid algorithm for synthesis. In every iteration each
coefficients multiplied by 2 which is called upsampling as mentioned by Gençay et al.
in [28].
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wheret = 0, 1, . . . ,
(
N
2J

)
− 1 andt′ = 2t + 1 − l mod N . At the end of iterations,

vector space with wavelet and scaling coefficients occurs asbelow,

w = [w1w2 . . . wJ vJ ]
T . (3.53)

This vector contains the all frequency components according to our choice of scale
band in related times. It is also known as the filter bank approach. It is not necessary
to implement all scales, i.e. scale can be less thanJ . Then it is called partial discrete
wavelet transform (PDWT).

In the above constructions we used high-pass and low-pass filters for the decomposi-
tion of the time seriesx(t). Reverse operation for the DWT is used for reconstruction
of the original time seriesx(t). Reconstruction is done by opposite iteration of the
last level of the wavelet and scaling coefficients using the related filters [28]. Down-
sampling is used for decomposition. On the contrary, upsampling is employed in each
iteration for reconstruction of time series. Then the vectorswJ andvJ are given as

w0
J = [0, wJ(0)]

T and v0J = [0, vJ(0)]
T . (3.54)

Then the scaling coefficientvJ−1 is

vJ−1(t) =
L−1∑

l=0

hlw
0
J(t

′) +
L−1∑

l=0

glv
0
J(t

′), (3.55)

where t = 0, 1 and t′ = t + l mod 2. Then second step is similarly done with
upsampling such that

vJ−2(t) =
L−1∑

l=0

hlw
0
J−2(t

′) +
L−1∑

l=0

glv
0
J−2(t

′), (3.56)

wheret = 0, 1, 2, 3 andt′ = t + l mod 4. If the iteration procedure is keeping until
the first level of wavelet and scaling coefficients by using upsampling, the original data
set can be obtained as

x(t) =
L−1∑

l=0

hlw
0
1(t

′) +
L−1∑

l=0

glv
0
1(t

′), (3.57)

wheret = 0, 1, 2, . . . , N − 1 andt′ = t+ l mod N .

Vuorenmaa points out in [71] that Mallat’s pyramid algorithm is also called as Fast
Wavelet Transform (FWT), because the algorithm requires multiplications at most of
orderN rather than DWT’s multiplications which is at most of orderN2. He is also
adding that Fast Fourier Transform requires at mostN log2N multiplications which
has larger calculation steps than FWT as well. As a result, FWT is very effective
algorithm for big data sets.
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3.2.4 Maximal Overlap Discrete Wavelet Transform

Discrete wavelet transform (DWT) has some drawbacks due to skeleton of the con-
struction. For instance, DWT need a data which has dyadic length according to us-
ing downsampling and upsampling in analysis and synthesis respectively. Otherwise
one needs to add some observations or remove some observations to make the length
of data dyadic. MODWT, which does not employ upsampling and downsampling,
does not require dyadic length whereas DWT restrict the data for length2Jk where
0 < Jk < J +1. Moreover, Gençay et al. states in [28] that the MODWT is unvarying
to circularly shifting the data set where the DWT does not holdthat property. In addi-
tion, it is mentioned that the variance analysis of MODWT is more effective than the
variance analysis of DWT [53].

One can get the MODWT by settingu andv as2−j andk respectively. It means that
scaling parameter is same as DWT’s parameter, but translating parameter provides that
in each scale there are same number of coefficients in the MODWTwhile parameter is
k2−j in DWT. In other words number of wavelet and scaling coefficients are equal to
length of the original time series in at every step of the transform since subsampling is
not implemented in the MODWT differently from the DWT [16]. Other steps are done
in similar ways as done in the DWT.

Consider the same time series that is used in the DWT construction and let̃w be wavelet
and scaling coefficients of the MODWT,

w̃ = [w̃1, w̃2, . . . , w̃J , ṽJ ]
T , (3.58)

where length ofw̃j is N/2j and the length of̃vJ is N/2J according to scale lengths
asλj = 2j−1 andλJ = 2J−1 respectively wherej = 1, 2, . . . , J . DWT wavelet
and scaling coefficients can be captured by subsampling and rescaling the MODWT
coefficients, mentioned by Gençay et al. in [28]. Relations for wavelet coefficients can
be written as

wj(t) = 2j/2w̃j(2
j(t+ 1)− 1), (3.59)

wheret = 0, 1, . . . , N
2j

− 1 and relation for scaling coefficient can be written as

vJ(t) = 2J/2ṽJ(2
J(t+ 1)− 1), (3.60)

wheret = 0, 1, . . . , N
2J

− 1.

In similar way to the DWT, the vector̃w can be constructed using high-pass and low-
pass filters. Details can be found in Gençay et al. between pages 135-137 [28]. The
vector of coefficients is written such as

w̃ = W̃x, (3.61)

whereW̃ = [W̃1, W̃2, . . . , W̃J , ṼJ ]
T is (J + 1)N × N matrix which implies that each

W̃j and ṼJ areN × N matrices. It ensures that in each scale level number of the
coefficients is equal to number of the observations in the time series that isN . It
shows that the MODWT can handle with any size of data set.
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In order to compute the MODWT,‘pyramid algorithm’ that is showed in Figure 3.12
and in Figure 3.13 is applied without using downsampling (orupsampling in the oppo-
site direction). Algorithm again starts with convolving the time series with high-pass
and low-pass filters to get first level wavelet and scaling coefficients as following

w̃1(t) =
L−1∑

l=0

h̃lx(ṫ) and ṽ1(t) =
L−1∑

l=0

g̃lx(ṫ), (3.62)

wheret = 0, 1, . . . , N − 1 and ṫ = t − l mod N . In order to get second level of
wavelet and scaling coefficients,ṽ1(t) is convolved with the high-pass filterh̃l and low-
pass filter̃gl. After J iterations, whereJ = log2N , wavelet and scaling coefficients
are written as

w̃J(t) =
L−1∑

l=0

h̃lṽJ−1(ṫ) and ṽJ(t) =
L−1∑

l=0

g̃lṽJ−1(ṫ), (3.63)

wheret = 0, 1, . . . , N − 1 andṫ = t− 2J−1l mod N . Then decomposition gives the
vectorw̃ asw̃ = [w̃1 w̃2 . . . w̃J ṽJ ]

T .

Reverse iteration is also done with similar way used in DWT. Last level of wavelet and
scaling coefficients are convolved with high-pass filter andlow-pass filter respectively.
Afterward, summation of two convolving parts gives the scaling coefficient of previous
level as given below [28],

ṽJ−1(t) =
L−1∑

l=0

h̃lw̃J(ṫ) +
L−1∑

l=0

g̃lṽJ(ṫ), (3.64)

wheret = 0, 1, . . . , N −1 andṫ = t+ l mod N . Iteration can be continued up to first
level of wavelet and scaling coefficients to get the originaltime series as

x(t) =
L−1∑

l=0

h̃lw̃1(ṫ) +
L−1∑

l=0

g̃lṽ1(ṫ), (3.65)

wheret = 0, 1, . . . , N − 1 andṫ = t+ l mod N .

Example 3.7(MODWT Example). Assume that we are dealing with time seriesx(t)
where number of observations isN = 8 and the length of the filter isL = 2. Then
8× 8 matrix H̃1 is written as follows,

H̃1 =




h̃1 0 0 0 0 0 0 h̃2
h̃2 h̃1 0 0 0 0 0 0

0 h̃2 h̃1 0 0 0 0 0

0 0 h̃2 h̃1 0 0 0 0

0 0 0 h̃2 h̃1 0 0 0

0 0 0 0 h̃2 h̃1 0 0

0 0 0 0 0 h̃2 h̃1 0

0 0 0 0 0 0 h̃2 h̃1




.
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H̃2 is calculated by replacing̃h1 by h̃2 in H̃1 andH̃3 is calculated by replacing̃h1 by
h̃3 in H̃1 [71]. Similarly 8 × 8 matricesH̃1, H̃2 andH̃3 are written in the same way
with filters g̃1, g̃2 andg̃3.

Then the matrixW̃ is written by using againMallat’s pyramid algorithmas

w̃ =




W̃1

W̃2

W̃3

Ṽ3


 =




H̃1

H̃2G̃1

H̃3G̃2G̃1

G̃3G̃2G̃1


 .

It is seen that̃W1, W̃2, W̃3 and Ṽ3 have8 × 8 entries which shows that there is no
downsampling.

The MODWT is called by other names as “translation invariant DWT”, “time invariant
DWT”, “redundant DWT”, “stationary DWT” and “undecimated DWT” [53, 28]. Both
DWT and MODWT provide a scale based multiresolution analysis and scale based
variance analysis. Pyramid algorithm can be applied to bothtransform. However they
have some differences due to the construction of transforms. The DWT requires time
series with dyadic length and it is affected by circular shifts to time series. On the other
hand, the MODWT can handle with time series with any number of observations. In
opposition to the DWT, the MODWT is not influenced by circular shifts. The MODWT
gives always same coefficients although there is a time shiftin original time series. In
addition the MODWT is not orthonormal where it causes being highly redundant as
Percival and Walden pointed out in [53].

3.2.5 Multiresolution Analysis

Definition 3.1 (Multiresolution Analysis). MRA algorithm divides data into vectors
of coefficients which are linked to the specific time scales. MRA is a series of closed
nested subspaces{Vj; j ∈ Z} in L2(R) with the conditions below, [26, 71, 70]

1. {φ(x− k); k ∈ Z} is an orthonormal basis forV0 whereφ is scaling function of
the MRA

2. {0} ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R)

3. Closure of(∪j∈ZVj) = L2(R) such that any union is dense inL(R)

4. ∩j∈ZVj = {0} so zero element is the only common object

5. f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1 soV − spaces are self-similar

6. Vj+1 = Vj ⊕Wj where the spaceWj is thejth resolution level of the MRA [71]
andVj ∩Wj = {0}
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In first property, it is seen that if we translate any functionin V0 then we get new
function again inV0. Similarly, wavelet function (or mother wavelet)ψ creates an
orthonormal basis forVj that is orthogonal complement ofVj in Vj+1 [26]. This implies
that in general form, scaling(φ) and wavelet(ψ) functions are basis forVj andWj

subspaces respectively whereWj is difference ofVj+1 andVj. In practice we start
from subspaceV0 and then add other subspaces to enlarge space. Second property
shows the nested space. Third and fourth properties shows the limit of space.

We are using dilation and translation parameters to cover theL2(R) space. Main idea
of the MRA is writingL2(R) space or any function in it by combination of detail and
smooth parts.

One can getVj+1 from last property in Definition 3.1 as

Vj+1 = V0 ⊕ (W0 ⊕W1 ⊕ · · · ⊕Wj) . (3.66)

Fryzlewicz pointed out in [26] that one can take limit in Equation 3.66 depending on
the third property in Definition 3.1.

L2(R) = V0 ⊕
(⊕

Wi

)i=∞

i=0
= Vj0 ⊕

(⊕
Wi

)i=∞

i=j0
(3.67)

for any j0. Equation 3.67 shows that any data or signal can be written aslarge scale
features described byVj subspaces and small scale features (details) can be described
byWj subspaces.

According to constructions of the DWT and the MODWT, original time series can be
written by the combination of the wavelet and scaling coefficients. In Equation 3.47
x can be written by multiplying both sides byWT . SinceW is orthogonal matrix,
its transpose is the inverse of itself, i.e.WWT = I . Then we getx = WTw. In
Equation 3.61,W̃ is not orthogonal matrix but we can find the parts of original time
series in each scale level by multiplying transpose ofjth level transform matrix by
related coefficient matrix. For example we can findjth detail level ofx(t) as

d̃j = W̃ T
j w̃j.

Firstly let’s define the reconstruction of the MRA for the DWT, and then do it for
MODWT. In Example 3.6, we defined theW by the pyramid algorithm. If we write it
in general form,x can be written as

x = H1w1 +G1H2w2 +G1G2H3w3 + · · ·
+G1 · · ·GJ−1HJwJ +G1 · · ·GJ−1GJvJ . (3.68)

In the additive decomposition components are called as detail and smooth by Percival
and Walden in [53]. Detail and smooth components are given for j = 1, 2, . . . , J as

dj = G1G2 . . . Gj−1Hjwj, (3.69)

and
sJ = G1G2 . . . GJ−1HJvJ . (3.70)
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As a result the data x can be written as

x = d1 + d2 + · · ·+ dJ + sJ =
J∑

j=1

dj + sJ . (3.71)

Equation 3.71 is illustration of the MRA. The last componentsJ includes the average
information (or trend) of the original data at the largest scale and it is associated with
the scaling coefficients. Componentsdj ’s, from first scale to last scale, are related to
wavelet coefficients. They are deployed for catching higherfrequency information, i.e.
they include detail coefficients [46].

All steps are similar in the MODWT. According to pyramid algorithm,x can be written
as

x = H̃1w̃1 + G̃1H̃2w̃2 + G̃1G̃2H̃3w̃3 + · · ·
+ G̃1 · · · G̃J−1H̃Jw̃J + G̃1 · · · G̃J−1G̃J ṽJ . (3.72)

Using the variables of the MODWT and put those into Equation 3.69 and Equation 3.70
x can be decomposed as

x = d̃1 + d̃2 + · · ·+ d̃J + s̃J =
J∑

j=1

d̃j + s̃J . (3.73)

It is not necessary to use all scales for the resolution analysis for both DWT and
MODWT. One can choose the scale which is less thanJ , i.e., 1 < Jp < J . We
have already mentioned choosingJp as partial wavelet transform. Masset says in [46]
that it is also possible to estimate the original time seriesby using the wavelet and scal-
ing coefficients where the scale is betweenJp andJ . One of the objectives of doing
the composition in that way is separating out the noise or theseasonality from the data.

3.2.6 Wavelet Variance Analysis

We mentioned that Equation 3.33 and Equation 3.43 stand for showing the unit en-
ergy in the wavelet and the scaling filters. Sample variance of a time series can
be decomposed scale-by-scale as a result of energy protection in the DWT and the
MODWT [28, 71]. It is seen easily that

‖x‖2 = xTx = (WTw)TWTw = wTWWTw = wTw = ‖w‖2 , (3.74)

whereW isN ×N orthonormal matrix andw is the vector which contains the wavelet
and scaling coefficients as defined in construction of the DWT.As a result one can
write energy ofx as

‖w‖2 =
J∑

j=1

(N/2j)−1∑

t=0

w2
j (t) + v2J(0) =

N−1∑

t=0

x2(t) = ‖x‖2 . (3.75)
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Simply, energy ofx can be written as follows by using the orthonormality of elements
with respect to the matrixW as Gençay et al. [28] referred to

‖x‖2 =
J∑

j=1

‖wj‖2 + ‖vJ‖2 =
J∑

j=1

‖dj‖2 + ‖sJ‖2 . (3.76)

Then decomposition of the sample variance forx can be written as

σ̂2
x =

1

N

N−1∑

t=0

(x(t)− x̄)2 =
1

N

J∑

j=1

‖wj‖2 +
1

N
‖vJ‖2 − x̄2. (3.77)

wherex̄ denotes the sample mean ofx and written as

x̄ =
1

N

N−1∑

t=0

x(t). (3.78)

Wavelet spectrum can be regarded as the energy ofw and given as

‖w‖2 =
J∑

j=1

‖wj‖2 + ‖vJ‖2 , (3.79)

and if we have the condtion1
N
‖vJ‖2 = x̄2, the sample variance forx is

σ̂2
x =

1

N

J∑

j=1

‖wj‖2 . (3.80)

Let’s consider the MODWT as a next step. Energy is protected aswell in the MODWT
like being in the DWT. As a result we get

‖x‖2 =
J∑

j=1

‖w̃j‖2 + ‖ṽJ‖2 . (3.81)

Unlike the DWT,N ×N matrixW̃ is not orthonormal in the MODWT. Consequently
Equation 3.76 does not hold for the MODWT and so [28, 40]

‖w̃j‖2 6=
∥∥∥d̃j
∥∥∥
2

, (3.82)

and ∥∥∥d̃j
∥∥∥
2

=
∥∥∥W̃

T
w̃j

∥∥∥
2

= w̃Tj W̃jW̃
T

j w̃j. (3.83)

Gençay et al. [28] referenced Percival and Walden [53] that
∥∥∥d̃j
∥∥∥
2

≤ ‖w̃j‖2. Hence it

is seen that the MODWT wavelet coefficients are important in variance analysis, not
the wavelet details [28].
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Estimation of Wavelet Variance
Consider thejth level MODWT coefficients as

w̃j(t) =

Lj−1∑

l=0

h̃j,lxt−l mod N and ¯̃wj(ṫ) =

Lj−1∑

l=0

h̃j,lxt−l, (3.84)

wheret = 0, 1, . . . , N − 1 and ṫ = 0,±1, . . . ,±(N − 1). Thenw̃j(t) and ¯̃wj(ṫ) are
equal if the conditionLj−1 ≤ t < N [52]. Unbiased estimator ofσ2

x(λj) is calculated
for N − Lj ≥ 0 as

σ̂2
x(λj) =

1

N̂j

N−1∑

t=Lj−1

w̃2
j (t) =

1

N̂j

N−1∑

t=Lj−1

¯̃w
2

j(t), (3.85)

whereN̂j = N −Lj +1 andLj = (2j − 1)(L− 1)+1. As Crowley mentioned in [20]
that N̂j is the number of coefficients which are not influenced by boundary effect.
Beside that number of the MODWT coefficients that are computed with boundary
is represented byLj. Scale level and length of the filter are showed byλj andL
respectively. Differently from the MODWT,t is betweenL′

j = (L− 2)(1− 2−j) and
N/2J−1 and equation is normalized by the factor2λj in the estimation of the unbiased
estimator ofσ2

x(λj) [28].

Referred to Percival [52], one can construct the biased estimator ofσ2
x(λj) as (here the

MODWT is used)

σ̃2
x(λj) =

1

N

N−1∑

t=0

w̃2
j (t) =

1

N



Lj−2∑

t=0

w̃2
j (t) +

N−1∑

t=Lj−1

¯̃w
2

j(t)


 . (3.86)

In Equation 3.86 the sum from zero toLj − 2 is affected by the periodicity.

In general the wavelet variance is determined for both stationary and non-stationary
processes. If the process is stationary then time-independent wavelet variance is con-
sidered for analysis. Time-dependent and time-independent wavelet variances are
showed asσ2

x,t(λj) andσ2
x(λj) respectively. Sometimes they are called also as wavelet

spectrum [71]. We can use the coefficients¯̃w
2

j(t) in Equation 3.84 for general purpose
to write the wavelet spectrum as

σ2
x,t(λj) = var( ¯̃w

2

j(t)). (3.87)

Then the variance ofxt is given as

var(xt) =
∞∑

j=1

σ2
x,t(λj). (3.88)

For DWT scale isλj = 2j−1 and it is in the frequency band of[1/2j+1, 1/2j ]. Moreover
the wavelet spectrum for the DWT is

σ2
x,t(λj) =

1

2λj
var(wj(t)) . (3.89)
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Spectral density function (SDF) separated the variance in away of frequency-by-
frequency whereas the wavelet spectrum decomposes the variance on a scale-by-scale
basis. The connection of two spectrums can be written as

σ2
x,t(λj) ≈ 2

∫ 1/2J

1/2j+1

Sx(f)df, (3.90)

whereSx(f) is called as periodogram and given as

Sx(fk) =
1

N

∣∣∣∣∣

N−1∑

t=0

xte
−2πfkt

∣∣∣∣∣

2

. (3.91)

In Equation 3.91fk = k/N and k represents thekth Fourier frequency fork =
0, 1, . . . , N/2.

Confidence Interval for the Wavelet Variance
Let x be our time series withN observations,{x0, x1, . . . , xN−1}, with meanµ =

E(xt). The variance of the sample mean is var(x̄) = σ2

N
with x̄ = 1

N

∑N−1
t=0 xt. Then

(1− α) confidence interval (CI) for the mean can be defined as [28]

x̄± ξα
2

(
σ̂√
N

)
, (3.92)

for unknownσ2. Moreover unbiased estimator ofσ is

σ̂2 = (N − 1)−1
∑

t

(xt − x̄)2. (3.93)

Basicly we can write the confidence interval as

P

[
x̄− ξα

2

σ√
N

≤ µ ≤ x̄+ ξα
2

σ√
N

]
= (1− α). (3.94)
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CHAPTER 4

EMPIRICAL RESULTS

We will consider the daily closing prices of S&P500 data thatis observed fromYahoo
Financeweb page (http://ichart.finance.yahoo.com/table.csv). Length of the data is 21
years which is between 01.01.1990 and 01.01.2011. There are5444 observations in
data set.

4.1 Characteristic of S&P500 Data

First of all we have looked recurrence plots, histograms, Q-Q plots, ACF and PACF
plots and some statistical tests to understand both daily closing prices and return values
of S&P500 data. In order to see details and to compare result,we will consider both
S&P500 daily closing prices and its return values. As we mentioned before, return
series is found by logarithmic difference of the original time series. Plots of daily
closing prices and return values are given in Figure 4.1.

Recurrence Plots to See Characteristics of Time Series
Idea of recurrence plot is that if the phase space trajectoryof the dynamical system
passes through the same area in the phase space, then it givesthe shortest distance. In
other words, it compares two vector of the system and if the vector meets itself then
the Euclideandistance will be zero. We can write vectors for time seriesxi with N
observations as,

v(i) =
{
xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ

}T
,

wherem is embedding dimension andτ is the time delay. The corresponding recur-
rence matrix of embedding vectors is given as,

Ri,j(ε) =

{
0 if ‖v(i)− v(j)‖ > ε
1 if ‖v(i)− v(j)‖ ≤ ε

, for i, j = 1, . . . , n = N − (m− 1)τ,

where‖·‖ is theEuclideandistance, andε is threshold for distance [11]. So in our
recurrence plots, lighter shades shows longer distances while darker shades represent
shorter distances.

Recurrence plots gives some characteristics of the time series to show which type the
time series is. Some types can be given as Wiener process (Brownian Motion), Gaus-
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Figure 4.1: S&P500 Daily Closing Price Data and Return Data of Daily Closing Prices
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(a) Embedding Dimension (m = 12) and Time De-
lay (d = 1)

(b) Embedding Dimension (m = 60) and Time De-
lay (d = 2)

Figure 4.2: Recurrence Plots of S&P500 Daily Closing Prices.

sian white noise, periodic signal (sine and cosine signals), pure trend signal, log peri-
odic signal etc. [24].

In our recurrence graph lighter shades show longer distances. Fabretti and Ausloos
in [24] state that homogeneity in recurrence plot shows thatthe signal has stationary
characteristic. Therefore as we see in the Figure 4.3, return values are stationary. On
the other hand, in Figure 4.2 white and light gray bands illustrate the non-stationary
parts. Hence, daily closing prices show non-stationary characteristics and divided trend
parts [24]. One can link S&P500 Daily Closing Prices with Wiener process (Brownian
motion). Then again one can link the return values with Gaussian white noise [51, 50].

Histograms, Q-Q Plots, Normality Tests, ACF and PACF
There may be missing values in historical data sets. Therefore we have to fill the miss-
ing values in both closing prices data and return data to workwith them. Simply we fill
the missing values with the average of the observed values. In Figure 4.4 normal Q-Q
plot shows that distribution is mixture of positive skewed distributions and negative
skewed distributions. In Figure 4.5, it can be realized return values are not normally
distributed. The bulk of the daily return series for S&P500 is between−4% and+4%.
However Q-Q plot of return series has clear tilted S-shape which deviates from linear-
ity in both left and right tails of the distribution. The daily return of S&P500 has much
fatter tails than the normal distribution. In Figure 4.6, Q-Q plots according to normal,
log-normal, uniform and student-t distributions are given. It is seen that none of distri-
butions exactly fit our return data. Student-t distributiongives the least deflection from
the line.

We can apply some normality tests to our data set as well. For example Shapiro-Wilk
normality test can be applied, but it restricts the sample size between 3 and 5000.
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(a) Embedding Dimension (m = 12) and Time De-
lay (d = 1)

(b) Embedding Dimension (m = 60) and Time De-
lay (d = 2)

Figure 4.3: Recurrence Plots of S&P500 Return Values.

Therefore we use the first 5000 observations in the test. Testrejects being normally
distributed ifp-value≤ 0.05. The results for daily closing prices, return prices and first
difference of daily closing prices are given in Table 4.1.

Table 4.1: Shapiro-Wilk and Kolmogorov-Smirnov Tests Results for Normality for
Daily Closing Prices (DCP), Return Values (RV), and First Difference of Daily Closing
Prices (FD-DCP).

Shapiro-Wilk normality test Kolmogorov-Smirnov test
W p-value D p-value

DCP 0.9186 <2.2e {̂-16} 0.1299 <2.2e {̂-16}
RV 0.9104 <2.2e {̂-16} 0.082 <2.2e {̂-16}
FD-DCP 0.8902 <2.2e {̂-16} 0.1197 <2.2e {̂-16}

According to results of Shapiro-Wilk normality test, allp-values reject the null hypoth-
esis. Therefore none of above data is normally distributed.Another test for normality
is Kolmogorov-Smirnov test which has a alternative hypothesis of two-sided. It also
says that none of the following data set is normally distributed. The results are in
Table 4.1.

Let’s look the scatterplots of a series versus lagged valuesof the series of both daily
closing prices and its return values up to lag 9.

It is seen that daily closing prices of S&P500 have the large positive correlation at
each lag until lag 9. According to plots in Figure 4.7, we can say that our original data
comes from an underlying autoregressive model with strong positive autocorrelation.
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Figure 4.4: Histogram of Daily Closing Prices of S&P500 and Q-Q Plot of Daily
Closing Prices of S&P500.
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Histogram of return.data
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Figure 4.5: Histogram of Return Values of S&P500 and Q-Q Plot of Return Values of
S&P500.
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Figure 4.7: Grid of scatterplots of daily closing prices (t-lag) versus daily closing
prices for lag= 1, 2, . . . , 9.
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Figure 4.8: Grid of scatterplots of return values (t-lag) versus return values for lag=
1, 2, . . . , 9.
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Figure 4.9: S&P500 Return Series and its Absolute and SquaredTypes.

Process is highly non-random. In other words there is strongrelationship between an
observation and next observation.

On the other hand, return values have approximately zero correlation at each lag as
seen in Figure 4.8. Return values seems more random or we can say that data comes
from an underlying autoregressive model with moderate autocorrelation. It has also
almost zero autocorrelation value for higher lag values. Hence return data seems to be
random. We can consider stock market returns as random walksas Seiler and Rom
stated in [60]. Nevertheless, having almost zero autocorrelation does not mean that
returns are independent over time. Daily returns of S&P500 show nonlinear time de-
pendence according to changing volatility in time. In otherwords, although many price
of stocks act independently, in crises periods they all tendto fall down [22]. In order to
see the nonlinear time dependency in daily return volatility, we will plot the absolute
and squared daily returns and their autocorrelation functions.

In Figure 4.10, graph on the left shows ACF of absolute value ofS&P500 return values.
Graph on the right shows squared of S&P500 return values. It is clear that there is time
dependence in the daily absolute and squared returns. Volatility of the daily returns
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Figure 4.10: ACF of Absolute and Squared Types of S&P500 ReturnSeries.
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Figure 4.11: ACF and PACF of S&P500 Daily Closing Prices and its Return Values.

is expressed by the daily absolute and squared returns. As a result there is positive
time dependence in daily return volatility. It is seen that volatility is autocorrelated and
hence it is predictable.

In Figure 4.11 we plot autocorrelation functions and partial autocorrelation functions
of closing prices and return values up to lag 40. The graphs ontop shows ACF and
PACF of daily closing price series and graphs on bottom shows ACF and PACF of
return value series.

ACF of closing prices data shows that original data is completely non-stationary. Al-
most all ACF values are close to 1 and they exceed the confidenceinterval. The data
comes from an underlying autoregressive model with strong positive autocorrelation.
On the other hand ACF of return values exceed the confidence interval at lags 0, 1, 2,
7, 10, 11, 12, 16, 18, 21, 22, 26 and 34 with non important size.

ACF of differenced return values data exceeds confidence interval at lags 0, 1, 2, 3, 7,
8, 10, 11, 12, 15, 16, 18, 19, 21, 22, 24, 25, 26, 27, 33, 34 and 35with non important
size. First difference exceeds at 13 points while second difference exceeds 22 points
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Figure 4.12: ACF and PACF of Differenced S&P500 Return Values.
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Figure 4.13: ACF and PACF of S&P500 Daily Closing Prices with Frequency 1.

between lag 0 and lag 40.

Actually lag axes are in terms of frequency. If we consider the frequency as 260, then
each lag corresponds to lags that 260 times itself. In our plot, frequency is 1 and if
we change the frequency as 260 than maximum lag can be found from number of
observation divided by the frequency. Following plots in Figure 4.13, Figure 4.14,
Figure 4.15 and Figure 4.16 explain frequency concepts moreclearly.

In Table 4.2, there are some descriptive statistics of data sets that belong to S&P500
daily closing prices. Return data is the same as the first difference of the logarithmic
closing data set as we see in the following table.

Kurtosis of return values is higher than the value of normal distribution with kurtosis=3
which means that the financial time series data has the fat-tail characteristic [38]. The
skewness of both daily closing price data and return data arenot zero, so that both are
not symmetric.

Some Other Statistical Tests
Here we apply some tests to daily closing prices and its returns with both frequency 1
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Figure 4.14: ACF and PACF of S&P500 Daily Closing Prices with Frequency 260.

Table 4.2: Descriptive Statistics of Data Sets Related to S&P500 Daily Closing Prices

Data Mean Standard Deviation Skewness Kurtosis
close.data 940.5007954 371.7583052 -0.2997497 1.6993896
return.data 0.0002213655 0.0116499799 -0.2137863793 11.8615840860
log(close.data) 6.7464941 0.4766666 -0.6841409 1.9951488
diff(close.data) 0.1543965 12.0781645 -0.3036438 10.8152632
diff(log(close.data)) 0.0002213655 0.0116510502 -0.2137667433 11.8594052498
diff(diff(close.data)) -0.01090408 17.60439277 0.46129925 10.95511959
diff(return.data) 5.163097e-07 1.691974e-02 5.512029e-01 1.226257e+01
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Figure 4.15: ACF and PACF of S&P500 Return Values with Frequency1.
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Figure 4.16: ACF and PACF of S&P500 Return Values with Frequency260.
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Figure 4.17: ACF and PACF of Differenced S&P500 Return Values with Frequency 1.
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Table 4.3: Augmented Dickey-Fuller Test for Stationary andKPSS Test for Trend
Stationary

Augmented Dickey-Fuller Test KPSS Test
Dickey-Fuller Lag order p-value KPSS Trend Truncation lag parameter p-value

close.data -1.6186 17 0.7399 3.9387 17 0.01
return.data -17.8034 17 0.01 0.0709 17 0.1

and frequency 260. Results of frequency 260 are same with the same series with fre-
quency 1. Tests are applied to see if series are stationary and if residuals are correlated.
Firstly we handle with the Augmented Dickey-Fuller test forbeing stationary or not.
Results are given in Table 4.3 for closing prices and return values.

Dickey-Fuller test says that we cannot rejectH0 for daily closing prices data. It means
that these series are non-stationary and there exists unit root. On the other hand test
says that we can rejectH0 for p-value which is 0.01 and so there is no unit root, i.e.
return series is stationary.

We can also use KPSS test to consider that time series is stationary or not where results
are given in Table 4.3. According to KPSS test we cannot reject H0 for daily closing
prices data set, i.e. series is non-stationary. On the otherhand we can reject the null
hypothesis for return series, i.e. return series is stationary.

Data Characteristic
According to daily closing prices of S&P500, it is seen that prices look like random
walk non-stationary and return values look like mostly covariance stationary. Returns
are nearly uncorrelated over time and there is little evidence of linear time dependence.
Distributions of returns have much fatter tails than the normal distribution (excess kur-
tosis). It means that returns are not normally distributed.Moreover volatility seems to
be autocorrelated.

Since daily closing prices of S&P500 data looks like random walk and it is non-
stationary, it is better to look the first difference of logarithmic version of the original
data to see if there is a predictable pattern.

Decomposition
In general time series is gathering observations from repeated measurements over time
and it consists of three basic components that are given as trend, seasonality and irreg-
ularity (residuals). Trend shows long term direction, seasonality shows systematic and
calendar related effects and irregularity shows unsystematic, short term fluctuations.

First of all let’s look the linear filtering applied to daily closing prices of S&P500 for
a = 2, 12, 65 in Figure 4.18. Coefficients for filtering are found by1

2a+1
.

We cannot use the data with frequency 1, since it does not include periodicity with
construction of frequency 1. Decomposition of data requires at least 2 periodic parts.
Therefore we use basic decomposition on the data with frequency 260. In Figure 4.19,
decomposition is done by usingloess(Local Polynomial Regression Fitting) method.
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Figure 4.18: Linear Filtering of Daily Closing Prices witha = 2, 5 and65.
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Figure 4.19: Decomposition of Logarithmic Closing Prices ofS&P500 with Frequency
260 by UsingLoessMethod.

In other words it is linear regression ‘plus’ k-nearest neighbors. Method first derives
the seasonal part from the difference of the original signaland its trend. It divides the
data into three parts as seasonal, trend and remainder part.Sum of these three parts
gives the original data, i.e. type is additive.

Moreover one can use classical seasonal decomposition by moving averages. Contrary
to loessmethod, this method firstly derives the trend part by moving averages. In
Figure 4.20, plot of decomposition of this method is seen.

We can reach values that are cleaned by trend component as given in Figure 4.21.
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Figure 4.20: Decomposition of Logarithmic Closing Prices ofS&P500 with Frequency
260 by Using MA Method.
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Figure 4.21: S&P500 Daily Closing Prices without Trend Component.
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Figure 4.22: S&P500 Data with Holt-Winters Smoothing.

4.2 Exponential Smoothing

Exponential smoothing is done to estimate the next values ofthe time series with no
trend or seasonal components. Basically it is written as,

x̂ = λ1xt−1 + λ2xt−2 + · · · ,

whereλi = α(1−α)i for 0 < α < 1. Extended version of this method is Holt-Winters
smoothing which accept the time series with both trend and seasonal components. The
S&P500 daily closing prices and its smoothed values are given in Figure 4.22. Then
the next 200 predicted observations are given in Figure 4.23by using Holt-Winters.

Forecast with 75% and 95% confidence intervals are given in Figure 4.24, again using
Holt-Winters method.

Another forecasting method is short term load forecasting with 75% and 95% con-
fidence intervals. It uses in here exponential smoothing state space model which is
given by Hyndman et al. in [37] and in [34]. The characters, which are given in the
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Figure 4.23: Predicted 200 Observations by Using Holt-Winters Method.
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Figure 4.24: Predicted 200 Observations by Using Holt-Winters with 75% and 95%
Confidence Intervals.
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Figure 4.25: Forecasting of S&P500 Data by STLF Method.

ETS brackets, are the error type, the trend type and the season type, respectively. The
trend type and the season type can be “N”=none, “A”=additive, “M”=multiplicative
and “Z”=automatically selected. The error type can be A, M or Z. Therefore it is seen
in the figure that our method goes with the model of ETS(M,A,N) which means that
it is simple exponential smoothing with multiplicative errors as given in Figure 4.25.

4.3 Frequency Domain Analysis

4.3.1 Fourier Transform Analysis

S&P500 data is very complex data as we regarded from the some tests and the prop-
erties of the data. It includes different type of frequency components in it and Fourier
analysis is used to look the time series in the frequency domain. In Figure 4.26, orig-
inal data and some related periodograms are given. The figureon the right top is the
raw periodogram without smoothness. The figure on the left bottom is kernel(10, 20)
smoothed version of the raw periodogram. It is better than the original one but still
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Figure 4.26: S&P500 Daily Closing Prices Data and Different Type of Periodograms.

there is nothing to analyze from the figure. The figure on the right bottom is AR fitted
spectrum with four methods. As we mentioned in the DAX example, again MLE and
Yule-Walker methods are similar in each other. Only difference is that MLE method
has lower spectrum for the same frequencies. OLS method and Burg method are better
than Yule-Walker and MLE, since one can choose clear picks from their results. Peak
results are disappearing for Yule-Walker and MLE methods.

If we consider the periodogram which is AR fitted by Burg methodgives the following
peak numbers of frequencies. If one look at the number of the frequency and divide
1 by that frequency, the period or cycle related to that frequency can be found. Bold
numbers of frequencies are selected and considered in the calculations. Peaks: 75,
103, 135, 166, 190,225, 254, 312, 368, 407, 454,488.

Bold numbers are chosen important frequencies and they are given as follows, respec-
tively related to peak number; 0.074148297, 0.102204409, 0.134268537, 0.165330661,
0.224448898, 0.253507014, 0.311623246, 0.367735471 and 0.487975952. Some of
these frequencies are also seen in Daniell smoothed periodograms in Figure 4.26 and
in Figure 4.27. In Figure 4.28, chosen peak values are signedby dotted lines.
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Figure 4.27: Periodograms of S&P500 Data with Given Smoothness Parameters.

99



0.0 0.1 0.2 0.3 0.4 0.5

1e
+

02
1e

+
04

1e
+

06
1e

+
08

frequency

sp
ec

tr
um

Series: x
AR (3) spectrum 

YuleWalker

Burg

Figure 4.28: AR(3) Fitted Spectrum of S&P500 Data with Yule-Walker and Burg
Methods.
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If we divide 1 by the chosen frequencies, we will get periodicities in days as 13.4865,
9.7843, 7.4478, 6.0485, 4.4554, 3.9447, 3.2090, 2.7194 and2.0493 respectively. How-
ever we cannot reach the long term periodicities with this method.

Spectrum graphs tell us that higher frequency parts have control over the spectrum.
Other frequency components are almost lost under higher frequency part. That’s why
non-stationary time series like financial time series are not appropriate to be analyzed
by Fourier analysis. Therefore trend component should be cleared from the time series.
In R program, function ‘detrend’ de-trends the time series by using a linear trend model
by default option.

Not doing smoothing or doing too much smoothing result in non-visible frequency
components in time series. On the other hand if one thinks that the smoothness is in
moderation, then many frequency components can be missed aswe see in the peri-
odogram results. In addition, it is not clear to understand which frequency component
belongs to which time slice which is important drawback of Fourier transform.

4.3.2 Wavelet Analysis

For practical issues we need to decide which wavelet filter and wavelet transform will
be used. Time series are discrete data sets and so discrete transforms are used rather
than continuous transforms. As we mentioned in Subsection 3.2.2, the CWT has some
drawbacks according to the DWT like requiring more computations. Padding or re-
moving the time series is needed for the DWT due to requiring dyadic length. The
MODWT can be used instead of the DWT not to be forced to use dyadiclength. Dis-
crete transforms are discussed in this chapter with using R program to analyze the
financial time series.

Length of the filter is another issue which one needs to consider. For instance, as
the length of the filter is getting larger, it can catch bettertypical properties in signal.
However it causes some results as Vuorenmaa in [71] mentioned such ad increasing
number of coefficients causes more computation and results in increasing number of
coefficients that are affected by the boundary condition. Vuorenmaa in [71] suggests
the appropriate filter for the DWT as LA(8) in practice. According to Masset in [46],
many researchers in finance choose Daubechies(D) or Least-Asymmetric(LA) filters
of length 4 to 8 in wavelet analysis. Setz in [61] used Morlet wavelet, which has non-
orthogonal and complex function, for wavelet transformations to analyze the financial
data.

In each DWT and MODWT figures, level-j wavelet coefficients captures the differ-
ences of2j−1 day averages of the time series. It means that, for example for the first
level of the decomposition we see day-by-day fluctuations and it goes on like this.

As we mentioned in Section 3.2, DWT requires time series with dyadic length. Other-
wise one has to reflect the original time series in order to usethe DWT. In Figure 4.29,
only wavelet scales of daily closing prices data are plottedup to scale 5 and in Fig-
ure 4.30 wavelet scales of return data are plotted up to scale6 with smooth scale at
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Figure 4.29: DWT of S&P500 Daily Closing Prices with Least Asymetric(8) Filter by
Reflected Data of Wavelet Scales up to 5.

level 6.

In MODWT analyses, decompositions has 8 levels and each levelillustrates2j−1 fluc-
tuations up to level 8. From first level to last level, components illustrate fluctuations
from 1-day to 128-days. Similarly, 10 level decomposition has fluctuation up to 1024
days.

In each figure of wavelet decomposition, both high and low-frequency fluctuations are
seen in time-scale analysis from finest scale (first level) tocoarser scales. After level-5,
MODWT of the S&P500 daily closing prices show remarkable features. In addition,
after 8-th level wavelet coefficients are look like quasi-periodic behavior which means
that it has a fractal structure. According to Asian crisis, bubble net (or dot com bubble),
and mortgage crisis which occurred respectively in 1997, 1999 and 2007, it is seen that
stock prices were affected by unstable economic indicators. In higher scales there are
low frequency oscillations and vice versa. MODWT of daily return series provides
opportunity of trading for both long-term traders and short-term traders since it shows
changes in different scales with related time intervals. Itis hard to read day by day, 2
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Figure 4.30: DWT of S&P500 Daily Returns with Least Asymetric(8) Filter by Re-
flected Data of Wavelet Scales up to 6.
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Figure 4.31: MODWT of S&P500 Daily Closing Prices withJ = 8 by Using Haar
Filter.
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Figure 4.32: MODWT of S&P500 Daily Closing Prices withJ = 8 by Using Least
Asymetric Filter with Length 8.
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(a) Scale Level is 10 and Filter is Haar
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Figure 4.33: MODWT of Daily Closing Prices up to Level 10.
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Figure 4.34: MODWT of S&P500 Daily Returns withJ = 8 by Using Haar Filter.

days, 4 days and 8 days results. They look like noise and it is better to look them in
return analysis.

Now on let’s look the MODWT of return values.

It is more clear from Figure 4.36 and Figure 4.37 that LA(8) filter is smoother than
Haar filter. Moreover, longer wavelet filters are better to eliminate the disorder of the
data. Longer filters have higher order vanishing moments andthey are used to separate
regular and noisy parts from chaotic and fractal parts.

According to MODWT and MRA of return series, there are fluctuations between ob-
servations 1900 and 3300 in wavelet coefficients between level 1 and 6. There are
short fluctuations between observations 100 and 200 in 2nd and 3rd level wavelet co-
efficients. Fluctuations around observation 1900 is resultof Asian crisiswhich oc-
curred in 1997 [22]. Fluctuations between observations 2100 and 2800 is related to
collapse ofinternet bubblein between years 1999 and 2001. In addition there are huge
fluctuations between observations in 4200-5100 in wavelet coefficients that has range
between 1 and 6. There are high level of volatility between observations due to the
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Figure 4.35: MODWT of S&P500 Daily Returns withJ = 8 by Using Least Asymetric
Filter with Length 8.
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Figure 4.36: MODWT of S&P500 Daily Returns with levels 5, 6, 7, 8by Using Haar
Filter.
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Figure 4.37: MODWT of S&P500 Daily Returns with levels 5, 6, 7, 8by Using Least
Asymetric Filter with Length 8.
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Figure 4.38: MODWT of S&P500 Daily Returns with levels 8, 9 by Using Least
Asymetric Filter with Length 8.
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global crises occurred in 2007. It happened because of mortgage issue which affected
banks terribly and it has continued its bad effect until late2010. There was a domino
effect which influenced all world and all sectors resulted bybanking sector. After level
6, we see that there are low frequency oscillations in the series. Wavelet coefficient
of level 8 or level 9 show quasi-periodic behavior. We see fluctuations between ob-
servations 1900 and 3300 (in higher scales it is divided intomore parts) and between
observations 4200-5100 there are quasi-periodicities after scale level 7.

Having too many rapid fluctuations in some periods of return series means that there
are economic problems in periods that have rapid fluctuations. In the bullish trend
of economy, wavelet coefficients of return series are seems to be more stable. On the
other hand, the bear trend part of the series gives high fluctuations in the high frequency
wavelet coefficients of the return series. Moreover, smoothcoefficients of the return
series shows falling trend as we seen in V(9) in the MODWT of return series after late
2009.

Wavelet Power Spectrum

The wavelet power spectrum is computed by applying the Morlet wavelet in Fig-
ure 4.40, in Figure 4.42 and in Figure 4.44. The confidence intervals are shown by
white lines and it is changeable due to the parameters used infunction. The vertical
axis shows the Fourier periods and the horizontal axis showstime step counts. Quan-
tiles of power or equidistant breakpoints (covering the interval from 0 to maximum
power) can describe the color levels, with the number of levels as a further parameter.
We are not interested in transparent white parabolic region, i.e. cone of influence. It is
seen that the highest power colors stands in periods between64-128, around 260 and
between 1300-1560. In long term, it is seen that original data shows periodicity around
4-6 years. As we see in the wavelet power spectrum, in periodsbetween 4 and 6 years
region shows high powers.

Figure 4.41 includes original detrended time series and reconstruction of (detrended)
time series analyzed by wavelet transformation.

In Figure 4.42 method shuffles the given time series in estimations. It gives very similar
result in reconstruction as we get by “White Noise” method.

AR(1) method is weak compared towhite noiseandshufflemethod for reconstructing.

In Figure 4.46, thebias-correctedwavelet power andbiasedwavelet power, which are
explained by Liu et al. in [39], are given. Basic algorithm waswritten by Christopher
Torrence and Gibert P. Compo in Matlab [67]. Corrected versionprovides clearer plots
by removing noises. Power increases from light blue to dark red. Significance contours
are drawn where spectrum over percentile is equal or larger than tolerance level which
is 95% in Figure 4.46. The mother wavelet is Morlet function that is used in the
analysis. Between 2000th and 3000th observations, there aremiddle powered signs
around periods 22, 66, 260, 512 and 1024. It shows that there are monthly, several
monthly (i.e.2-3 monthly), yearly or several yearly ( i.e. 2, 4 years) seasonal effects in
the S&P500 daily closing prices data.
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Figure 4.40: Wavelet Power Spectrum by using “white noise” method of generating
surrogate time series.
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Figure 4.41: Reconstruction of the de-trended (0.75 spanned) series by the “white
noise” method.
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Figure 4.42: Wavelet Power Spectrum by using “shuffle” method of generating surro-
gate time series.
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Figure 4.43: Reconstruction of the de-trended (0.75 spanned) series by the “shuffle”
method.
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Figure 4.44: Wavelet Power Spectrum by using AR(1) method of generating surrogate
time series.
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Figure 4.45: Reconstruction of the de-trended (0.75 spanned) series by AR(1) method.

117



Figure 4.46:Bias-correctedand BiasedWavelet Spectra of S&P500 Daily Closing
Prices.
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Figure 4.47: ARIMA(1, 1, 1) Fitted S&P500 Daily Closing Prices.

4.4 Time Domain Analysis

4.4.1 SARIMA Fitting

The Box-Jenkins model
Before defining the Box-Jenkins model let’s give some example of SARIMA fitted
data. In Figure 4.47, in Figure 4.48 and in Figure 4.49 SARIMA fitted data sets are
given with related models given in figures.

According to Box-Jenkins model, sharp cut-off of PACF in the original time series
shows the AR signature. ACF of our original time series decaysmore slowly than
PACF. Cut-off number of ACF of first difference of logarithm of our original data
shows the MA signature.

It is seen from ACF that MA(2) model is appropriate. In PACF graph, it cuts off
at lag 1 and so AR(1) model can be appropriate. We can consider ARIMA(0, 1, 2),
ARIMA (1, 1, 0) and ARIMA(1, 1, 2) models. One of them can be selected by using
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Figure 4.48: SARIMA(1, 1, 1) × (0, 1, 1)42 Fitted S&P500 Daily Closing Prices with
Frequency 260.
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Figure 4.49: ARIMA(1, 1, 1) Fitted S&P500 Return Values.
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Figure 4.51: Daily Closing Prices of S&P500 versus SimulatedARIMA (0, 1, 2) Re-
lated to Original Data.

AIC.

One of the candidates of SARIMA models for S&P500 daily closing price data is
ARIMA (0, 1, 2) given by Hyndman and Khandakar in [35]. Original data and the
selected ARIMA process are given in Figure 4.51.

It doesn’t fit quite well since the simulated ARIMA(0, 1, 2) process gives different
graph in each simulation due to generating random values in each simulation. Fitted
model can be written asxt−µ = wt−θ1wt−1−θ2wt−2 where we apply the ARMA(0, 2)
model to first differenced data. If we fit the ARMA(0, 2) model with non-zero mean
to first difference of daily closing prices then we will get results with intercepts, i.e.
intercept is the mean of the differenced data, which is the drift.

On the other hand, by using BIC, suggested model for daily closing prices turns out to
be ARIMA(1, 1, 1). The results of ARIMA(1, 1, 1) model fitting to closing data and
the results of ARIMA(1, 0, 1) model fitting to first differenced closing data are given
in Table 4.4. Moreover results of ARIMA(0, 1, 2) fitted to daily closing prices and
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Figure 4.52: 100 Step Prediction of ARIMA(2, 1, 0) Model which is Suggested by
AIC.

ARIMA (0, 0, 2) fitted to first difference of daily closing prices are given inTable 4.4.

Best ARIMA model selected by AIC gives ARIMA(2, 1, 0)model whose AIC value is
42533.76 that is smaller than any model in Table 4.4. In Figure 4.52 100 step prediction
of S&P500 daily closing prices is seen according to model chosen by AIC.

Forecasts for Auto Selected Models
We will plot the forecast graphs for daily closing prices andits first difference in a
99.5% prediction interval with offered ARIMA models as givenin Figure 4.53. Auto
selected models are ARIMA(0, 1, 2) and ARIMA(1, 1, 1) by using AIC and BIC re-
spectively.

In Figure 4.54 it is seen that variances of the forecast errors are almost constant. More-
over the forecast errors are not distributed normally and the means are approximately
zero as seen in histogram plots. Their means are 0.177002, 0.001344022, 0.1846697
and 0.008642171 respectively. ACF plots of residuals show that the forecast errors do
not correlated.
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Figure 4.53: Forecasts for S&P500 Data and its First Difference with Auto Selected
ARIMA Models.
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Figure 4.54: Residuals of Forecasts in Figure 4.53 Respectively, i.e. Time Plot of
Forecast Errors.
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Figure 4.55: ACF Plots of Residuals (forecast errors) of Auto Selected Models given
in Figure 4.53.
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Figure 4.56: Histogram Plots of Forecast Errors Related to Auto Selected Models
Respectively in Figure 4.53.
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Figure 4.57: Prediction without Drift and with Drift modelled by ARIMA(0, 1, 2)
Model.

The problem with forecasts in Figure 4.53 is not consideringthe constant term in mod-
els, which is also called drift. If we include the drift term in the forecasting than we
will get trend term as well. In Figure 4.58 difference between prediction with constant
term and prediction without constant term is seen.

Prediction with constant term catches some trend compared to prediction without drift
term. In Figure 4.59 following predictions include the drift terms.

We showed some results of some SARIMA model. Now we will show additional
results of different model fitting in Table 4.4. In model SARIMA(p, d, q)× (P,D,Q)s,
parametersp, d, q, P,D,Q ands are AR order, difference order, MA order, seasonal
AR order, seasonal MA order, seasonal difference and seasonal period respectively.
ParametersP,D,Q ands are used for only seasonal models.

In Table 4.4, close.data, return.data and freq.data refer to daily closing prices, return
values and daily closing prices with frequency 260 respectively.

It is seen in Table 4.4 ARIMA(2, 1, 0) gives the smallest AIC if we don’t use seasonal
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Figure 4.58: Zoomed Version of Prediction without Drift andwith Drift modelled by
ARIMA (0, 1, 2) Model.
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Figure 4.59: Predictions of S&P500 Daily Closing Prices of with Given SARIMA
Models.
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Table 4.4: Results of SARIMA Fitting to Related Data

sigmaˆ2 log likelihood AIC AICc BIC
ARIMA(0,1,2) close.data 144.8 -21259.51 42527.02 42527.03 42553.43
ARIMA(0,0,2) diff(close.data) 144.8 -21263.42 42534.83 42534.84 42561.24
ARIMA (1,1,1) close.data 144.9 -21260.55 42529.1 42529.11 42555.51
ARIMA(1,0,1) diff(close.data) 144.8 -21264.46 42536.92 42536.92 42563.33
ARIMA(1,2,2) close.data 144.9 -21265.52 42539.04 42539.05 42565.45
ARIMA(1,1,2) close.data 144.8 -21259.35 42528.7 42528.71 42561.71
ARIMA(0,1,1) close.data 145.2 -21266.85 42539.7 42539.7 42559.5
ARIMA(1,1,0) close.data 145.3 -21268.23 42542.46 42542.46 42562.27
ARIMA(2,1,0) close.data 144.8 -21259.4 42526.8 42526.8 42553.2
ARIMA(2,1,1) close.data 144.8 -21259.38 42528.75 42528.77 42561.76
SARIMA(1,1,1,0,1,1,42) freq.close 144.9 -21203.98 42415.95 42415.96 42442.33
SARIMA(1,2,2,0,1,1,42) freq.close 146 -21226.21 42464.42 42464.44 42503.99
SARIMA(1,1,1,0,1,1,22) freq.close 145.5 -21239.84 42487.69 42487.69 42514.08
SARIMA(1,1,1,0,1,1,21) freq.close 145 -21243.66 42495.32 42495.33 42521.71
SARIMA(1,1,1,0,1,1,63) freq.close 144.9 -21159.62 42327.25 42327.26 42353.61
SARIMA(1,1,2,0,1,1,130) freq.close 144.8 -21001.95 42013.9 42013.92 42046.79
SARIMA(2,1,0,0,1,1,130) freq.close 144.8 -21002 42012.01 42012.02 42038.32
SARIMA(0,1,2,0,1,1,130) freq.close 144.8 -21001.97 42011.94 42011.95 42038.25

model part. ARIMA(1, 1, 1) gives the second smallest AIC value in ARIMA models.
On the other hand if we use the seasonal parts SARIMA(0, 1, 2) × (0, 1, 1)130 gives
the smallest AIC. It means that seasonality is important in modeling financial time
series. SARIMA models with frequencies which are also captured by wavelet analysis
in Subsection 4.3.2, have smaller AIC values than ARIMA models which are not taking
into account the seasonality. Therefore in order to make prediction, it is better to use
SARIMA models compared to ARIMA for financial time series.

Forecasting Accuracies
We measures the forecast accuracy to understand which modelgives better result. Here
we choose 5344 observations out of 5444 observations to be training set. Remained
observations form test set to compare real values with forecasting values. Details of
accuracy measures are described by Hyndman and Koehler in [36].

In Table 4.5, in Table 4.6and in Table 4.7 definitions of abbreviations are;

• ME: Mean Error

• RMSE: Root Mean Absolute Error

• MAE: Mean Absolute Error

• MPE: Mean Percentage Error

• MAPE: Mean Absolute Percentage Error

• MASE: Mean Absolute Scaled Error

• ACF1: Autocorrelation of errors at lag 1.
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Figure 4.60: Forecasts of Daily Closing Prices with SelectedSARIMA Models.

In Table 4.5 ARIMA(1, 1, 1), ARIMA (0, 1, 2) and ARIMA(2, 1, 0) have smaller test
set errors. ARIMA(1, 1, 1) has smallest values in each measure of accuracy. In Ta-
ble 4.6 SARIMA(0, 1, 2)×(0, 1, 1)260 model gives smallest test set errors except ACF1
method. In Table 4.7 results are given again for ARIMA(1, 1, 1), ARIMA (0, 1, 2),
ARIMA (2, 1, 0) and SARIMA(0, 1, 2) × (0, 1, 1)260. It is seen that seasonal autore-
gressive integrated moving average model has better accuracy values than others. In
Figure 4.60 four different forecasts are given with 100 ahead. In Figure 4.61 selected
four models give smaller accuracies than other models in forecasting.

Wavelet Transform Based ARIMA Fitting
In Table 4.5, it is seen that ARIMA(1, 1, 1) model has better accuracy values compared
to other ARIMA models. If we consider the ARIMA(1, 1, 1) model fitting to daily
closing prices of S&P500 data with first 5344 observations, we get sum of residuals as
1121,65 for 100 step ahead forecasts. Residuals are differences between daily closing
prices and fitted values.

Then we apply DWT and MODWT to S&P500 daily closing prices with first 4096
and 5344 observations respectively. We used 4096 observations for DWT, because
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Figure 4.61: Zoomed Versions of Forecasts of Daily Closing Prices with Selected
SARIMA Models.
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transform requires time series with dyadic length. We used least asymmetric wavelet
filter with length 8 in both transform. In addition, scale levels are chosen as 2 for
both transformations, i.e. we have 2 detail parts and 1 approximation part for both
transformations. ARIMA(1, 1, 1) model was fitted to all scales of DWT coefficients.
Afterward, summation of residuals which are coming from 100step ahead forecasts of
each ARIMA(1, 1, 1) fitted scales, is -178,47.

ARIMA models are chosen according to AIC values for each scalelevel of MODWT.
Then ARIMA(5, 1, 5), ARIMA (2, 0, 4) and ARIMA(0, 0, 5)models were fitted to smooth
part, second detail part and first detail part respectively.For each fitted model, again
100 step ahead forecasts were found. Sum of residuals is 65,62 at this time. We can
easily say that for model fitting and forecasting, using wavelet based ARIMA models
is better than only applying ARIMA models according to related empirical results.

4.4.2 GARCH Methods

In Q-Q plots given in Section 4.1, we have seen that student-tdistribution is more
appropriate for S&P500 data. It is better to use skewed student-t distribution while
data is fitted to GARCH model. Using skewed generalized error distribution gives also
better results. In Table 4.8, GARCH models are fitted to return data which is multiplied
by 100 and removed from trend. According to information criterion statistics, AIC and
SIC say that GARCH(4, 1) model with skewed generalized error distribution is better
than other models. BIC and HQIC suggest that GARCH(1, 1) model with skewed
generalized error distribution is better than others.

In Figure 4.62, conditional standard deviation, 2 conditional standard deviation su-
perimposed with return series, standardized residuals andit’s ACF, ACF of squared
standardized residuals and Q-Q plot are given. It is seen that residuals are not corre-
lated each other. In addition, distribution of model is almost fit with used data.

In respect of information criterion statistics, ACF of residuals and Q-Q plot, GARCH(4, 1)
can be used with generalized error distribution for volatility modeling.

4.4.3 Other Methods for Time Series Analysis

AAR (Additive nonlinear autoregressive model)
Nonparametric additive autoregressive model is given as,

xt+s = µ+
m∑

j=1

sj
(
xt−(j−1)d

)
(4.1)

wheresj is nonparametric univariate function of lagged time seriesvalues that are
described by cubic regression splines [75].
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Optimal time delay and embedding dimension for S&P500 can befound by average
mutual information and by false nearest neighbors with respect to optimal time delay
respectively [19, 3, 47]. Results are given for embedding dimensions 3, 4, 10 and time
delay 1 fitted to S&P500 daily closing prices. Prediction is done for 100 steps between
observations 5345 and 5444. Accuracy results with given dimensions and time delays,
are given in Table 4.9.

LSTAR (Logistic Smooth Transition AutoRegressive Model)
In Subsection 2.7.1, mathematical definitions are given. Inorder to find more details
one can see Franses and Dijk [25].

Model is applied for m=4, d=1 and coefficients for the lagged time series as 0,1,2,3.
Training set is observations between 1 and 5344 of S&P500 daily closing prices and
test set is last 100 observations. Values of the accuracy measures are given in Table 4.9.

In Table 4.9, it is seen that LSTAR gives smaller error valuesthan SARIMA(0, 1, 2)×
(0, 1, 1)260 except ACF1 method. If we consider AAR model, accuracy is getting better
in case embedding dimension is getting larger. AAR with m=10and d=1, shows better
accuracy results than SARIMA(0, 1, 2) × (0, 1, 1)260 in ME, MAE, MPE and MAPE
measures.

AIC Values of Some Models
In Table 4.10, AIC values of SETAR, LSTAR, AAR and SARIMA models are given.
It is seen that regime switching models and nonlinear modelshave much more smaller
AIC values than SARIMA model which means that regime switching models and non-
linear models are more appropriate for financial time series.
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Table 4.5: Accuracy Values of Training Set and Test Set with respect to Related
ARIMA Model

ARIMA(0,1,2)
ME RMSE MAE MPE

Training Set 0.2010764 12.01217 7.667793 0.01986503
Test Set 17.4081355 33.89432 28.947227 1.27504809

MAPE MASE ACF1 Theil’s U
Training Set 0.7867608 0.9980797 -0.0007129374 NA
Test Set 2.1917985 3.7679214 0.8195796219 2.592994

ARIMA(1,1,1)
ME RMSE MAE MPE

Training Set 0.209889 12.01520 7.667983 0.02079551
Test Set 16.250759 33.29349 28.405878 1.18699826

MAPE MASE ACF1 Theil’s U
Training Set 0.7866443 0.9981045 0.001995627 NA
Test Set 2.1520228 3.6974566 0.819534466 2.548832

ARIMA(1,1,2)
ME RMSE MAE MPE

Training Set 0.1996574 12.01178 7.66771 0.01971641
Test Set 17.5682628 33.97777 29.02159 1.28723402

MAPE MASE ACF1 Theil’s U
Training Set 0.7868012 0.9980689 -0.0002997833 NA
Test Set 2.1972617 3.7776011 0.8195603581 2.599162

ARIMA(0,1,1)
ME RMSE MAE MPE

Training Set 0.1896198 12.03165 7.66648 0.01864417
Test Set 17.5471431 33.97076 29.01858 1.28561879

MAPE MASE ACF1 Theil’s U
Training Set 0.7866316 0.9979089 0.003926237 NA
Test Set 2.1970606 3.7772090 0.819615759 2.598472

ARIMA(1,1,0)
ME RMSE MAE MPE

Training Set 0.1870117 12.03517 7.666008 0.01837357
Test Set 17.6074035 34.00220 29.046741 1.29020488

MAPE MASE ACF1 Theil’s U
Training Set 0.7864954 0.9978474 -0.004347022 NA
Test Set 2.1991296 3.7808746 0.819618423 2.600783

ARIMA(2,1,0)
ME RMSE MAE MPE

Training Set 0.1985839 12.01202 7.667259 0.01960365
Test Set 17.6814261 34.03736 29.075111 1.29584538

MAPE MASE ACF1 Theil’s U
Training Set 0.7867622 0.9980102 -7.238344e-05 NA
Test Set 2.2011958 3.7845674 8.195789e-01 2.603537

ARIMA(2,1,1)
ME RMSE MAE MPE

Training Set 0.1984932 12.01200 7.66724 0.01959421
Test Set 17.6907784 34.04224 29.07942 1.29655716

MAPE MASE ACF1 Theil’s U
Training Set 0.7867626 0.9980078 -0.0001238208 NA
Test Set 2.2015119 3.7851279 0.8195779808 2.603898

ARIMA(1,1,2)
ME RMSE MAE MPE

Training Set 0.199948 12.01191 7.667711 0.01974665
Test Set 17.541211 33.96376 29.009330 1.28517509

MAPE MASE ACF1 Theil’s U
Training Set 0.7867878 0.9980691 -0.000125071 NA
Test Set 2.1963617 3.7760051 0.819571858 2.598118
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Table 4.6: Accuracy Values of Training Set and Test Set with respect to Related
SARIMA Model

ARIMA (0, 1, 1)× (0, 1, 1)260
ME RMSE MAE MPE

Training Set -0.001992195 13.10853 8.43074 -0.001456642
Test Set 214.983147651 241.74554 216.14151 16.354929617

MAPE MASE ACF1 Theil’s U
Training Set 0.8667416 1.097389 0.1431508 NA
Test Set 16.4464264 28.134101 0.9694050 18.65588

ARIMA (1, 1, 0)× (0, 1, 1)260
ME RMSE MAE MPE

Training Set -0.0004665282 12.03372 7.656206 0.003001934
Test Set 8.7373979494 31.78757 26.713677 0.613206074

MAPE MASE ACF1 Theil’s U
Training Set 0.7856908 0.9965715 -0.004285541 NA
Test Set 2.0340338 3.4771908 0.828029619 2.45375

ARIMA (1, 1, 1)× (0, 1, 1)260
ME RMSE MAE MPE

Training Set 0.04554281 12.05698 7.672398 0.007762099
Test Set -46.39757939 67.07280 50.462464 -3.592632772

MAPE MASE ACF1 Theil’s U
Training Set 0.7869763 0.9986791 -0.04925805 NA
Test Set 3.8949318 6.5684563 0.90099761 5.27051

ARIMA (0, 1, 2)× (0, 1, 1)260
ME RMSE MAE MPE

Training Set -0.0007803767 12.01051 7.655735 0.003270706
Test Set 8.5058085779 31.72167 26.633174 0.595588306

MAPE MASE ACF1 Theil’s U
Training Set 0.7857506 0.9965102 -0.0004955254 NA
Test Set 2.0282102 3.4667122 0.8279689754 2.449416

ARIMA (2, 1, 2)× (0, 1, 1)260
ME RMSE MAE MPE

Training Set -0.0007205613 12.01022 7.655616 0.00322816
Test Set 8.8252603242 31.80971 26.736386 0.61989985

MAPE MASE ACF1 Theil’s U
Training Set 0.785791 0.9964947 -0.0001506475 NA
Test Set 2.035645 3.4801468 0.8279449836 2.455462

ARIMA (2, 1, 0)× (0, 1, 1)260
ME RMSE MAE MPE

Training Set -0.0007348941 12.01038 7.655437 0.00323189
Test Set 8.7903951016 31.80013 26.725720 0.61724594

MAPE MASE ACF1 Theil’s U
Training Set 0.7857633 0.9964714 2.467592e-05 NA
Test Set 2.0348795 3.4787584 8.279648e-01 2.454785

ARIMA (2, 1, 1)× (0, 1, 1)260
ME RMSE MAE MPE

Training Set 0.05037788 12.03905 7.658431 0.008766098
Test Set -33.73441096 56.01539 41.955653 -2.627817482

MAPE MASE ACF1 Theil’s U
Training Set 0.7859909 0.9968612 -0.003247522 NA
Test Set 3.2397870 5.4611656 0.891556915 4.408117

ARIMA (1, 1, 2)× (0, 1, 1)260
ME RMSE MAE MPE

Training Set -0.0007028143 12.01042 7.656021 0.003228572
Test Set 8.7970774785 31.80189 26.726933 0.617754967

MAPE MASE ACF1 Theil’s U
Training Set 0.7858302 0.9965474 -0.0001075208 NA
Test Set 2.0349635 3.4789164 0.8279161080 2.454943
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Table 4.7: Accuracy Values of Training Set and Test Set of Selected Models

ARIMA(2,1,0)
ME RMSE MAE MPE

Training Set 0.1985839 12.01202 7.667259 0.01960365
Test Set 17.6814261 34.03736 29.075111 1.29584538

MAPE MASE ACF1 Theil’s U
Training Set 0.7867622 0.9980102 -7.238344e-05 NA
Test Set 2.2011958 3.7845674 8.195789e-01 2.603537

ARIMA(0,1,2)
ME RMSE MAE MPE

Training Set 0.2010764 12.01217 7.667793 0.01986503
Test Set 17.4081355 33.89432 28.947227 1.27504809

MAPE MASE ACF1 Theil’s U
Training Set 0.7867608 0.9980797 -0.0007129374 NA
Test Set 2.1917985 3.7679214 0.8195796219 2.592994

ARIMA(1,1,1)
ME RMSE MAE MPE

Training Set 0.209889 12.01520 7.667983 0.02079551
Test Set 16.250759 33.29349 28.405878 1.18699826

MAPE MASE ACF1 Theil’s U
Training Set 0.7866443 0.9981045 0.001995627 NA
Test Set 2.1520228 3.6974566 0.819534466 2.548832

ARIMA (0, 1, 2)× (0, 1, 1)260
ME RMSE MAE MPE

Training Set -0.0007803767 12.01051 7.655735 0.003270706
Test Set 8.5058085779 31.72167 26.633174 0.595588306

MAPE MASE ACF1 Theil’s U
Training Set 0.7857506 0.9965102 -0.0004955254 NA
Test Set 2.0282102 3.4667122 0.8279689754 2.449416
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Table 4.8: Information Criterion Statistics for Selected GARCH Models with given
Distributions

Information Criterion Statistics
AIC BIC SIC HQIC

GARCH(1,0) with normal
distribution 3.046191 3.048617 3.046191 3.047038

GARCH(1,0) with skewed
student-t distribution 2.859012 2.863864 2.859011 2.860705

GARCH(4,0) with skewed
student-t distribution 2.747997 2.756488 2.747994 2.750960

GARCH(4,1) with skewed
student-t distribution 2.677922 2.687625 2.677917 2.681308

GARCH(4,1) with skewed
generalized error distribution2.675907 2.685610 2.675902 2.679293

GARCH(1,1) with skewed
student-t distribution 2.679437 2.685501 2.679435 2.681553

GARCH(1,1) with skewed
generalized error distribution2.677056 2.683120 2.677054 2.679172

Table 4.9: Accuracy Values of Test Set of AAR and LSTAR Models

AAR with m=3 and d=1
ME RMSE MAE MPE

Test Set -3.821709 34.07534 26.95399 -0.3453562
MAPE ACF1 Theil’s U

Test Set 2.070063 0.8479687 2.667273
AAR with m=4 and d=1
ME RMSE MAE MPE

Test Set -3.467193 33.67968 26.6773 -0.3181473
MAPE ACF1 Theil’s U

Test Set 2.048477 0.8459106 2.635209
AAR with m=10 and d=1
ME RMSE MAE MPE

Test Set -3.667028 32.5765 25.64558 -0.3322671
MAPE ACF1 Theil’s U

Test Set 1.969833 0.8395296 2.550718
LSTAR with m=4 and d=1
ME RMSE MAE MPE

Test Set 6.319223 31.05532 25.85419 0.429437
MAPE ACF1 Theil’s U

Test Set 1.971797 0.8280158 2.403215
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Figure 4.62: Plots According to GARCH(4, 1) Fitting with Skewed Generalized Error
Distribution.
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Table 4.10: AIC Values of Given Models

SETAR(m = 4, d = 1) LSTAR(m = 4, d = 1) AAR(m = 4) SARIMA (0, 1, 2)× (0, 1, 1)260
AIC 27075.92 27078.05 27097.23 42536.88
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CHAPTER 5

CONCLUSION AND OUTLOOK

In this thesis, time series concept is handled to together with definitions as well as
their extensions. Linear time series models, volatility and other models are explained
through selected examples. Time series analysis is a reallyimportant issue for everyone
to understand the real world issues as well as to predict future behaviors of systems in
many areas of interest. However, usually time series analysis that includes only time
domain is inadequate in general. Therefore, frequency domain analysis comes into
prominence when time domain analysis is weak to catch some important characteristic
properties. At this stage, Fourier and wavelet transforms comes into play and are
covered in details with definitions and carefully chosen examples.

Study of empirical results are handled to reach some decisions and conclusions. Time
series of S&P500 daily closing prices, its logarithmic firstdifference as well as its first
difference, are used in within the scope of this study. According to the recurrence
plots, daily closing prices behave like a Wiener process (Brownian motion) and the
values for the returns behave like Gaussian white noise. There are non-stationary parts
in recurrence plots of daily closing prices while recurrence of returns shows stationary
characteristics. ACF plots and results of Augmented Dickey-Fuller as well as KPSS
tests support the results of recurrence plots: daily closing prices are non-stationary, but
return values are. Moreover, Shapiro-Wilk and Kolmogorov-Smirnov tests results in
that none of daily closing prices data and returns are normally distributed. As a matter
of fact, Student-t distribution is the most appropriate onefor returns (Figure 4.6).

On the other hand, for frequency domain analysis, we have seen that the use of wavelet
transform produces better results than Fourier transform does. Smoothed raw peri-
odograms and AR fitted spectrums in fact catch some periodicity and OLS and Burg
methods used in AR fitted spectrum have shown peaks at some frequencies. These
peaks give periodicities in terms of days as, such as, 13.4865, 9.7843, 7.4478, 6.0485,
4.4554, 3.9447, 3.2090, 2.7194 and 2.0493. Largest period is approximately 14 days
which is far from low frequency ones. Higher frequency components overlap low fre-
quency ones. Therefore, non-stationary time series, like financial time series in our
case, are not suitable candidates for Fourier transformed analysis. Even further, time
information is lost in applying Fourier transforms. STFT, which is a modified version
of DFT, however, provides us with the time information; but still, it does not con-
tain multiresolution analysis. In order to cover such drawbacks of Fourier transform,
wavelet transform was developed.
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It is found from the wavelet analysis that series of S&P500 daily closing prices shows
a quasi-periodic behavior after the scale level 5. This means that for approximately 2
weeks, 1 month, 3 months, 6 months and for higher scales, daily closing prices have
fractal structures [44]. Time-scale decomposition catches interest of both short-term
and long-term traders: short-term traders are mainly interested with low scales, namely,
the high frequency analysis, while the long-term traders are focused on high scales of
the time series of interest. In fact, MRA of the values for the returns gives information
about economic landmarks. MODWT of S&P500 returns captures the Asiancrisis,
dot-comcollapse andmortgagecrisis occurred in 1997, 1999 and 2007, respectively.
Sizes of such fluctuations are observed in scales and in time intervals. Looking wavelet
spectrums, it is found out that time series of S&P500 daily closing prices has periods
of 22, 66, 260, 512 and 1024 days arounddot-comcrisis. In periods between 4 and
6 years, data has high power during high number of years. Hence data has periods in
low frequency components for long years.

In order to analyse the S&P500 data with linear models, ARIMA and SARIMA models
are used and their results are compared. Some periods we havefound in wavelet anal-
ysis are also used in SARIMA. According to AIC, AICc and BIC, SARIMA(0, 1, 2)×
(0, 1, 1)130 seems the best among such ARIMAand SARIMAmodels. Furthermore,
SARIMA(0, 1, 2) × (0, 1, 1)130 has more accurate values for the test set than those
of ARIMA and SARIMA models such that the first 5344 observationsgenerate the
training set and the last 100 observations form the test set.Evidence of long term sea-
sonality found in wavelet transform supports that the results are accurate enough for
the SARIMA(0, 1, 2) × (0, 1, 1)130 model. In addition, using multiresolution analysis
provides a better fitting and forecasting. We have divided daily closing prices time
series into 3 scales and modeled each part with different ARIMA models. Total sum
of the residuals from each scale is less than the sum of the residuals which were found
using only ARIMA model with the original data.

On the other hand, LSTAR model withm = 4 andd = 1 gives more accurate results,
except ACF1 method. AAR model withm = 10 andd = 1 gives better results in terms
of ME, MAE, MPE and MAPE measures. Besides accuracy, AIC values of SETAR,
LSTAR and AAR models are much smaller than that of SARIMA(0, 1, 2)×(0, 1, 1)130.
Likewise, values fo the information criteria are compared in order to find out which
GARCH model is more suitable for the volatility modeling. It ahs been found that
GARCH(4, 1) model with skewed generalized error distribution has the smallest AIC,
BIC, SIC and HQIC values. Student-t distributed GARCH(4, 1) model has very close
values too. Because we have found in descriptive statistics that distribution of returns
is not normal, Student-t distribution approximately fit thedata.

In conclusion, financial time series have nonlinear and complex structures. There-
fore, it is better to model financial time series with nonlinear models whenever pos-
sible. In addition, complex time series requires wavelet analysis instead of Fourier
analysis when passing to the frequency domain. Wavelet transform provides a time
domain analysis as well as a frequency domain analysis simultaneously. Particularly,
SARIMA(0, 1, 2)× (0, 1, 1)130 model, which has better accuracy and information cri-
teria values than other linear models, is most appropriate model for the S&P500 daily
closing prices. Furthermore, it should always be preferable that modeling after MRA
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gives better fitted models, especially for forecasting the time series. However, non-
linear models fit better than linear ones do for the financial time series. For instance,
AAR model withm = 10 andd = 1 has better values than other fitted models in our
study. Thus it would be better to use nonlinear methods for modeling financial time
series, such as S&P500 data.

Shortly, some of possible future works on financial time series would include

• multivariate time series analysis by using wavelets,

• applications of wavelets to ODEs and PDEs by using chaotic time series [21, 48],

• wavelet-based multi-fractal analysis, Hybrid forecasting models [29, 65].
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[10] J. B. J. baron Fourier,Théorie analytique de la chaleur, Chez Firmin Didot, p̀ere
et fils, 1822.

[11] J. A. Bastos and J. Caiado, Recurrence quantification analysis of global stock
markets, Physica A, 390(7), pp. 1315–1325, 2011.

[12] T. Bollerslev, Generalized autoregressive conditional heteroscedasticity, J.Econ.,
31, pp. 307–327, 1986.

[13] G. E. P. Box and G. M. Jenkins,Time Series Analysis Forecasting and Control,
Holden-Day, Inc., 1976, ISBN 978-0-470-27284-8.

147



[14] B. Burke, The mathematical microscope: waves, wavelets,and beyond, Scientific
Discovery at the Frontier, chapter 7, pp. 196–235, 1994.

[15] C. S. Burrus, R. A. Gopinath, and H. Guo,Introduction to wavelets and wavelet
transforms, Prentice-Hall, Inc., 1998, ISBN 978-0134896007.

[16] S. Butler, Notes from trigonometry, Technical report, Department of Mathemat-
ics, Iowa State University, 20.12.2014.

[17] C. A. Cabrelli and U. M. Molter, Wavelet transform of the dilation equation,
Journal of the Australian Mathematical Society, 37(4), pp.474–489, 1989.

[18] C. Chatfield,Time-Series Forecasting, Chapman & Hall/CRC, 2000, ISBN 1-
58488-063-5.

[19] T. Conradie,Modelling of Nonlinear Dynamic systems: Using surrogate data
methods, Master’s thesis, University of Stellenbosch, 2000.

[20] P. M. Crowley, An intuitive guide to wavelets for economists, Bank of Finland
Research Discussion Paper, 1, 2005.

[21] W. Dahmen, Wavelet methods for pdes — some recent developments, Journal of
Computational and Applied Mathematics, 128(2), pp. 133–185, March 2001.

[22] J. Danielsson,Financial Risk Forecasting, John Wiley & Sons, Inc., 2011, ISBN
978-0-470-66943-3.

[23] R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation, Econometrica, 50, pp.987–1007, 1982.

[24] A. Fabretti and M. Ausloos, Recurrence plot and recurrence quantification anal-
ysis techniques for detecting a critical regime. Examples from financial market
indices, International Journal of Modern Physics C, 16(5), pp. 671–706, 2011.

[25] P. H. Franses and D. van Dijk,Financial Risk Forecasting, Cambridge University
Press, 2003, ISBN 0 521 77041 6.

[26] P. Z. Fryzlewicz,Wavelet Techniques for Time Series and Poisson Data, Master’s
thesis, The University of Bristol, September 2003.

[27] B. R. Gelbaum and J. M. H. Olmsted,Counterexamples in Analysis, Dover Pub-
lications, Inc., 1992.
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Appendix A

Some of theR-Codes

Simulated ARMA Codes of Section 2.3
# AR(1) Processes
x1 = arima.sim(list(order=c(1,0,0), ar=.8), n=1000)
x2 = arima.sim(list(order=c(1,0,0), ar=-.8), n=1000)
par(mfrow=c(2,1))
plot(x1, main=(expression(AR(1)˜˜˜phi==+.8)))
plot(x2, main=(expression(AR(1)˜˜˜phi==-.8)))
dev.new()
acf2(x1, 999)
acf2(x1, 100)
acf2(x2, 100)
#AR(2) Process
x = arima.sim(list(order=c(2,0,0), ar=c(.5,.4)), n=100)
dev.new()
plot(x,main=(expression(AR(2)˜˜˜phi[1]==.5˜˜˜phi[2] ==.4)))
dev.new()
acf2(x)
#MA(1) Process
x = arima.sim(list(order=c(0,0,1), ma=.5), n=1000)
dev.new()
plot(x, main=(expression(MA(1)˜˜˜theta==.5)))
dev.new()
acf2(x,100)
#MA(2) Process
x = arima.sim(list(order=c(0,0,2), ma=c(-.5,-.9)), n=50 0)
plot(x, main=(expression(MA(2)˜˜˜theta[1]==-.5˜˜˜

theta[2]==-.9)))
dev.new()
acf2(x,100)
#ARMA(2,2) Process
x = arima.sim(list(order=c(2,0,2), ar=c(.5,.4),ma=c(-. 5,-.9)),

n=1000)
plot(x, main=(expression(ARMA(2,2)˜˜˜phi[1]==.5˜˜˜ph i[2]==.4˜˜˜

theta[1]==-.5˜˜˜theta[2]==-.9)))
dev.new()
acf2(x,100)
#ARIMA(1,1,1) Process
x1 = arima.sim(list(order=c(1,1,1), ar=.9, ma=.5), n=100 0)
x2 = arima.sim(list(order=c(1,1,1), ar=.5, ma=-.4), n=10 00)
par(mfrow=c(2,2))
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plot(x1, main=(expression(ARIMA(1,1,1)˜˜˜phi==.9˜˜˜
theta==.5)))

plot(x2, main=(expression(ARIMA(1,1,1)˜˜˜phi==.5˜˜˜
theta==-.4)))

acf(x1,100)
acf(x2,100)

GARCH Codes of Subsection 2.6.1
#plotting dax data and its returns
dax<-(EuStockMarkets)[,"DAX"]
return.dax<-diff(log(dax))
par(mfrow=c(1,2))
plot(dax)
plot(return.dax)
#summary of AR(1)-ARCH(1) of return of DAX
install.packages("fGarch")
library(fGarch)
summary(garchFit(˜arma(1,0)+garch(1,0),return.dax))
summary(dax.g <- garchFit(˜garch(1,1),return.dax))
#Forecast of GARCH(1,1) volatility of DAX return
u = dax.g@sigma.t
plot(window(return.dax), ylim=c(-.12,.12),

ylab="DAX Returns")
lines(window(return.dax-2 * u), lty=2, col=4)
lines(window(return.dax+2 * u), lty=2, col=4)

Neural Network Codes of Subsection 2.7.2
library(forecast)
data(EuStockMarkets)
dax<-EuStockMarkets[, "DAX"]
a<- window(dax, start = c(1991, 130), end =

c(1994, 130))
fit <- nnetar(a)
fore<-forecast(fit,h=260)
plot(fore)
dev.new()
plot(window(dax, start = c(1991, 130), end =

c(1995, 130)))
accuracy(fore,window(dax, start = c(1994, 130),

end = c(1995, 130)))

Spectral Analysis Codes of Subsection 3.1.4
#Spectral Density of Noise and ARMA
par(mfrow=c(3,1))
arma.spec(log="no", main="White Noise")
arma.spec(ma=.5, log="no", main="Moving Average")
arma.spec(ar=c(-.4,.3), log="no", main="Autoregressio n")
arma.spec(ar=c(-.4,.3),ma=.5, log="no", main="Autoreg ression")
#Example Sine Series
x1<-3 * sin(2 * pi * 1:100 * 5/100)+4 * cos(2 * pi * 1:100 * 5/100)
x2<-2 * sin(2 * pi * 1:100 * 25/100)+3 * cos(2 * pi * 1:100 * 25/100)
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x3<-4 * sin(2 * pi * 1:100 * 85/100)+6 * cos(2 * pi * 1:100 * 85/100)
sum=x1+x2+x3
par(mfrow=c(2,2))
plot.ts(x1, ylim=c(-10,10), main=expression(frequency

==5/100˜˜˜Aˆ2==25))
plot.ts(x2, ylim=c(-10,10), main=expression(frequency

==25/100˜˜˜Aˆ2==13))
plot.ts(x3, ylim=c(-10,10), main=expression(frequency

==85/100˜˜˜Aˆ2==52))
plot.ts(sum, ylim=c(-20,20), main="sum")
P = abs(2 * fft(sum)/100)ˆ2
f = 0:99/100
plot(f, P, type="l", xlab="frequency", ylab="periodogra m")
x3<-4 * sin(2 * pi * 1:100 * 75/100)+6 * cos(2 * pi * 1:100 * 75/100)
sum=x1+x2+x3
par(mfrow=c(1,2))
P = abs(2 * fft(sum)/100)ˆ2
f = 0:99/100
plot(f, P, type="l", xlab="frequency", ylab="periodogra m")
x3<-4 * sin(2 * pi * 1:100 * 50/100)+6 * cos(2 * pi * 1:100 * 50/100)
sum=x1+x2+x3
#periodogram of sum series
P = abs(2 * fft(sum)/100)ˆ2
f = 0:99/100
plot(f, P, type="l", xlab="frequency", ylab="periodogra m")

DAX Example Codes of Subsection 3.1.4
#some descriptive analysis
dax<-(EuStockMarkets)[,"DAX"]
par(mfrow=c(3,2))
plot(dax)
acf(dax)
pacf(dax)
hist(dax)
qqnorm(dax)
qqline(dax)
qqplot(rt(1000,df=3), dax, main="t(3) Q-Q Plot",ylab=

"Sample Quantiles")
qqline(dax)
par(mfrow=c(1,2))
#for comparing the histograms for different number of break points
hist(dax)
hist(dax,100)
summary(dax)
kurtosis(dax)
Mode <- function(x) {

ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]

}
Mode(dax)
#general look at spectrums of DAX
DAX<-ts(EuStockMarkets[0:1860],frequency=260,

start=c(1991,130))
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par(mfrow=c(2,2))
plot(DAX)
spec.pgram(DAX, taper=0, log="no")
spectrum(DAX)
spectrum(DAX,method="ar")
spectrum(DAX,method="ar",na.action=na.pass)
spec.ar(DAX, plot=TRUE, method = "mle",

add = TRUE,col = "forest green")
spec.ar(DAX, plot=TRUE, method = "ols",

add = TRUE,col = "blue")
spec.ar(DAX, plot=TRUE, method = "burg",

add = TRUE,col = "red")
legend("topleft",c("YuleWalker","MLE","OLS","Burg") ,

lty=c(1,1,1,1),
lwd=c(2.5,2.5,2.5,2.5),col=c("black",

"forest green","blue","red"))
#spanned smooth periodograms(Daniell)
par(mfrow=c(2,2))
spectrum(DAX)
spectrum(DAX, spans = c(3,5))
text(100,1e+05,"widths(3,5)",col="blue")
spectrum(DAX, spans = c(5,7))
text(100,1e+05,"widths(5,7)",col="blue")
spectrum(DAX, spans = c(19,23))
text(100,10000,"widths(19,23)",col="blue")
#kernel smooth periodograms(Daniell)
par(mfrow=c(2,2))
spectrum(DAX)
spectrum(DAX,kernel("daniell", c(3,5)))
text(100,10000,"widths(3,5)",col="blue")
spectrum(DAX,kernel("daniell", c(5,7)))
text(100,10000,"widths(5,7)",col="blue")
spectrum(DAX,kernel("daniell", c(19,23)))
text(100,10000,"widths(19,23)",col="blue")

Empirical Results Codes of Chapter 4
#getting data form yahoo web page
str <- sprintf("%s?s=ˆGSPC&d=7&e=4&f=2011&g=d&a=0&b=3 &c=1950",

"http://ichart.finance.yahoo.com/table.csv")
df <- tryCatch(read.csv(url(str)), error = function(e) NA )
names(df) <- tolower(names(df))
df$date <- as.Date(df$date)
df <- df[order(df$date), ]
start.date <- "1990-01-01"
end.date <- "2011-01-01"
close.data<-ts(subset(df,date>=start.date|date>=end .date)

[,c("close")])
df$return <- c(diff(log(df$close)), NA)
return.data<-ts(subset(df,date>=start.date|date>=en d.date)

[,c("return")])
par(mfrow=c(1,2))
plot(subset(df,date>=start.date|date>=end.date)

[,c("date","close")],
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type="l",main="S&P 500", xlab="", col="tomato")
plot(subset(df,date>=start.date|date>=end.date)

[,c("date","return")],
type="l",main="S&P 500 Return", xlab="", col="blue")

#recurrence plots to see characteristics of time series
install.packages("tseriesChaos")
recurr(close.data,m=12,d=1)
recurr(close.data,m=60,d=2)
recurr(return.data,m=12,d=1)
recurr(return.data,m=60,d=2)
#histogram and Q-Q plot
par(mfrow=c(2,1))
hist(close.data, prob=TRUE, 60)
lines(density(close.data,na.rm = TRUE))
qqnorm(close.data)
qqline(close.data)
par(mfrow=c(2,1))
hist(return.data, prob=TRUE, 60)
lines(density(return.data,na.rm = TRUE))
qqnorm(return.data)
qqline(return.data)
library(car)
par(mfrow=c(2,2))
qqPlot(return.data, distribution="norm",

ylab="S&P500 quantiles",
envelope=FALSE)

qqPlot(return.data, distribution="lnorm",
ylab="S&P500 quantiles",
envelope=FALSE)

qqPlot(return.data, distribution="unif",
ylab="S&P500 quantiles",
envelope=FALSE)

qqPlot(return.data, distribution="t", df=5,
ylab="S&P500 quantiles",
envelope=FALSE)

#Shapiro-Wilk normality test
shapiro.test(close.data[0:4999])
shapiro.test(return.data[0:4999])
shapiro.test(diff(close.data[0:4999]))
#Kolmogorov-Smirnov test
ks.test(close.data, "pnorm", mean(close.data),

sd(close.data))
ks.test(return.data, "pnorm", mean(return.data),

sd(return.data))
ks.test(diff(close.data), "pnorm", mean(diff(close.da ta)),

sd(diff(close.data)))
#for looking the lag-lag plot fill the missing values with
#average values and get the lag plot
mean(close.data, na.rm=T)
#for missing values
close.data[is.na(close.data)]<-mean(close.data,

na.rm=T)
lag1.plot(close.data, 9)
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mean(return.data, na.rm=T)
return.data[is.na(return.data)]<-mean(return.data,

na.rm=T)
lag1.plot(return.data, 9)
#Abs(return) and squared return
par(mfrow=c(3,1))
plot(return.data)
plot(abs(return.data))
plot(return.dataˆ2)
dev.new()
par(mfrow=c(1,2))
acf(abs(return.data))
acf(return.dataˆ2)
#Acf and Pacf analysis
dev.new()
par(mfrow=c(2,2))
acf(close.data,40)
pacf(close.data,40)
acf(return.data,40)
pacf(return.data,40)
acf2(diff(return.data),40)
#Big picture of the data with frequecny 1 and frequency 260
acf2(close.data,5566)
freq.close<-ts(close.data,frequency=260,

start=c(1990,1))
acf2(freq.close, 5566)
acf2(return.data,5566)
freq.return<-ts(return.data,frequency=260,

start=c(1990,1))
acf2(freq.return, 5566)
acf2(diff(return.data),5565)
#descriptive statistics
library(moments)
close.stats <- c(mean(close.data), sd(close.data),

skewness(close.data), kurtosis(close.data))
names(close.stats) <- statNames
close.stats
return.stats <- c(mean(return.data),

sd(return.data), skewness(return.data),
kurtosis(return.data))

names(return.stats) <- statNames
return.stats
log.close.stats <- c(mean(log(close.data)),

sd(log(close.data)), skewness(log(close.data)),
kurtosis(log(close.data)))

names(log.close.stats) <- statNames
log.close.stats
diff.close.stats <- c(mean(diff(close.data)),

sd(diff(close.data)), skewness(diff(close.data)),
kurtosis(diff(close.data)))

names(diff.close.stats) <- statNames
diff.close.stats
diff.log.close.stats <- c(mean(diff(log(close.data))) ,
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sd(diff(log(close.data))), skewness(diff(log(close.d ata))),
kurtosis(diff(log(close.data))))

names(diff.log.close.stats) <- statNames
diff.log.close.stats
diff.diff.close.stats <- c(mean(diff(diff(close.data) )),

sd(diff(diff(close.data))), skewness(diff(diff(close .data))),
kurtosis(diff(diff(close.data))))

names(diff.diff.close.stats) <- statNames
diff.diff.close.stats
diff.return.stats <- c(mean(diff(return.data)),

sd(diff(return.data)), skewness(diff(return.data)),
kurtosis(diff(return.data)))

names(diff.return.stats) <- statNames
diff.return.stats
#tests
adf.test(close.data, alternative="stationary")
adf.test(return.data, alternative="stationary")
library(tseries)
kpss.test(close.data, null = "Trend")
kpss.test(return.data, null = "Trend")
#linear filtering
plot(close.data, type = "l")
tui.1 <- filter(close.data, filter = rep(1/5, 5))
tui.2 <- filter(close.data, filter = rep(1/25, 25))
tui.3 <- filter(close.data, filter = rep(1/131, 131))
lines(tui.1, col = "red")
lines(tui.2, col = "purple")
lines(tui.3, col = "blue")
#decomposition
plot(decom <- stl(log(freq.close), "per")) #Loess method
plot(decom2 <-decompose(log(freq.close))) #MA method
decomposed.data <- decompose(freq.close,

type="multiplicative")
plot(freq.close - decomposed.data$trend,

main="signal without trend component")
#Exponential smoothing
model <- HoltWinters(freq.close)
plot(freq.close)
lines(model$fitted[,"xhat"], col="red")
pred <- predict(model, n.ahead=200)
plot(freq.close)
lines(pred, col="red", lty=2)
plot(forecast(model, h=200, level=c(75,95)))
dev.new()
fit <- stlf(freq.close)
plot(forecast(fit, level=c(75,95)))
summary(fit)
#Fourier analysis
par(mfrow=c(2,2))
plot(subset(df, date >= start.date)[ , c("date", "close") ],

type="l",main="S&P 500", xlab="", col="tomato")
mtext(sprintf("Closing prices since %s", start.date))
spectrum(close.data,na.action=na.pass)

159



spectrum(close.data,kernel("daniell", c(10,20)),
na.action=na.pass)

spectrum(close.data,method="ar",na.action=na.pass)
spec.ar(close.data, plot=TRUE, method = "mle",

add = TRUE,col = "forest green")
spec.ar(close.data, plot=TRUE, method = "ols",

add = TRUE,col = "blue")
spec.ar(close.data, plot=TRUE, method = "burg",

add = TRUE,col = "red")
legend("topleft",c("YuleWalker","MLE","OLS","Burg") ,

lty=c(1,1,1,1),lwd=c(2.5,2.5,2.5,2.5),
col=c("black","forest green","blue","red"))

#smoothed periodograms of daily closing prices
par(mfrow=c(2,2))
specvalues1 <- spec.pgram(close.data,

kernel("daniell", c(13,13)),taper=0)
text(0.4,100000,"widths(13,13)",col="blue")
specvalues2 <- spec.pgram(close.data,

kernel("daniell", c(21,21)),taper=0)
text(0.4,100000,"widths(21,21)",col="blue")
specvalues3 <- spec.pgram(close.data,

kernel("daniell", c(13,41)),taper=0)
text(0.4,100000,"widths(13,41)",col="blue")
specvalues <- spec.pgram(close.data,taper=0, log="no")
text(0.4,40000000,"lag=no",col="blue")
#peaks at periodogram
spectrum(close.data,method="ar",na.action=na.pass)
a<-spec.ar(close.data, plot=TRUE, method = "burg",

add = TRUE,col = "red")
x<-a$spec
y<-a$freq
z<-ts(x,y)
install.packages("quantmod")
findPeaks(z, thresh=0) #thresh is for minimum peak/valley threshold
legend("topleft",c("YuleWalker","Burg"),lty=c(1,1),

lwd=c(2.5,2.5), col=c("black","red"))
a$freq
abline(v=1/13.4865, lty="dotted")
abline(v=1/9.7843, lty="dotted")
abline(v=1/7.4478, lty="dotted")
abline(v=1/6.0485, lty="dotted")
abline(v=1/4.4554, lty="dotted")
abline(v=1/3.9447, lty="dotted")
abline(v=1/3.2090, lty="dotted")
abline(v=1/2.7194, lty="dotted")
abline(v=1/2.0493, lty="dotted")
#Wavelet analysis
install.packages("wavelets")
library(wavelets)
#DWT
wt <- dwt((close.data[1:5444]), boundary="reflection",

fast=FALSE)
plot.dwt(wt, levels = list(c(1,2,3,4,5),c()),
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draw.boundary = TRUE,col.boundary = "green")
wt2 <- dwt((return.data[1:5444]), boundary="reflection ",

fast=FALSE)
plot.dwt(wt2, levels=6, draw.boundary = TRUE,

col.boundary = "green")
#MODWT
modwt.close.data<-modwt(close.data,filter="d2",

n.levels=8, boundary="periodic",fast=TRUE)
plot.modwt(modwt.close.data)
dev.new()
modwt.close.data2<-modwt(close.data,filter="d2",

n.levels=10,boundary="periodic",fast=TRUE)
plot.modwt(modwt.close.data2)
modwt.close.data3<-modwt(close.data,filter="la8",

n.levels=8,boundary="periodic",fast=TRUE)
plot.modwt(modwt.close.data3)
modwt.close.data4<-modwt(close.data,filter="la8",

n.levels=10,boundary="periodic",fast=TRUE)
plot.modwt(modwt.close.data4)
modwt.return.data<-modwt(return.data,filter="d2",

n.levels=8,boundary="periodic",fast=TRUE)
plot.modwt(modwt.return.data)
modwt.return.data2<-modwt(return.data,filter="la8",

n.levels=8,boundary="periodic",fast=TRUE)
plot.modwt(modwt.return.data2)
plot.modwt(modwt.return.data2, levels = list(c(5,6,7,8 ),c(8)),

draw.boundary = TRUE,col.boundary = "green")
modwt.return.data3<-modwt(return.data,filter="la8",

n.levels=9,boundary="periodic",fast=TRUE)
plot.modwt(modwt.return.data3, levels = list(c(8,9),c( 9)),

draw.boundary = TRUE,col.boundary = "green")
library(waveslim)
SP500.volatility <- abs(return.data[1:5444])
SP500V.haar <- mra(SP500.volatility, "haar", 4, "modwt")
names(SP500V.haar) <- c("d1", "d2", "d3", "d4", "s4")
SP500V.la8 <- mra(SP500.volatility, "la8", 4, "modwt")
names(SP500V.la8) <- c("d1", "d2", "d3", "d4", "s4")
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(SP500.volatility, axes=FALSE, ylab="", main="( a)")
for(i in 1:5)

plot.ts(SP500V.haar[[i]], axes=FALSE, ylab=names(SP50 0V.haar)[i])
axis(side=1, at=seq(0,368,by=23),

+ labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276 ,"
",322,"",368))

par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(SP500.volatility, axes=FALSE, ylab="", main="( b)")
for(i in 1:5)

plot.ts(SP500V.la8[[i]], axes=FALSE, ylab=names(SP500 V.la8)[i])
axis(side=1, at=seq(0,368,by=23),

labels=c(0,"",46,"",92,"",138,"",184,"",230,"",276, "
",322,"",368))

#Wavelet Power Spectrum
install.packages("WaveletComp")
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library(WaveletComp)
my.data = data.frame(freq.close)
my.w = analyze.wavelet(my.data)
wt.image(my.w)
dev.new()
reconstruct(my.w, plot.waves = F, lwd = c(1,2),

legend.coords = "bottomleft")
my.w1 = analyze.wavelet(my.data,method="shuffle")
wt.image(my.w1)
dev.new()
reconstruct(my.w1, plot.waves = F, lwd = c(1,2),

legend.coords = "bottomleft")
my.w2 = analyze.wavelet(my.data,method="ARIMA")
wt.image(my.w2)
dev.new()
reconstruct(my.w2, plot.waves = F, lwd = c(1,2),

legend.coords = "bottomleft")
library(biwavelet)
wt1=wt(cbind(1:5444,close.data[1:5444]))
par(mfrow=c(1,2))
plot(wt1, type="power.corr.norm",

main="Bias-corrected wavelet power")
plot(wt1, type="power.norm",

main="Biased wavelet power")
#SARIMA fitting
#The Box-Jenkins model
a<-pacf(close.data)
b<-acf(return.data)
par(mfrow=c(1,2))
plot(a)
plot(b)
#SARIMA models
sarima(close.data, 1, 1, 1)
sarima(return.data, 1, 1, 1)
sarima(freq.close,1,1,1,0,1,1,42)
#Autoselected models
library(forecast)
auto.arima(close.data) #gives ARIMA(0,1,2)
par(mfrow=c(1,2))
plot(close.data)
plot(arima.sim(list(order=c(0,1,2), ma=c(.0675,.0525 )),

n=5566))
#Data fitting
close.data.arima <- arima(close.data,

order=c(0,1,2))
close.data.arima
diff.close.data.arima <- arima(diff(close.data),

order=c(0,0,2))
diff.close.data.arima
#Auto selection by bic criterion
auto.arima(close.data,ic="bic") #gives ARIMA(1,1,1)
diff.close.data.arima <- arima(diff(close.data),

order=c(1,0,1))
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diff.close.data.arima
#Best ARIMA model by AIC
get.best.arima <- function(x.ts, maxord = c(1,1,1))

{
best.aic <- 1e8
n <- length(x.ts)
for (p in 0:maxord[1]) for(d in 0:maxord[2]) for(q in 0:maxo rd[3])

{
fit <- arima(x.ts, order = c(p,d,q))
fit.aic <- -2 * fit$loglik + (log(n) + 1) * length(fit$coef)
if (fit.aic < best.aic)

{
best.aic <- fit.aic
best.fit <- fit
best.model <- c(p,d,q)
}}

list(best.aic, best.fit, best.model)
}

get.best.arima(close.data, maxord=c(2,2,2))
close.arima<-arima(close.data, ord=c(2,1,0),

xreg=1:length(close.data))
nobs=length(close.data)
close.pred <- predict(close.arima, n.ahead=100,

newxreg=(nobs+1):(nobs+100))
ts.plot(close.data,close.pred$pred, col=1:2,

xlim=c(5000,5544),ylim=c(800,1400))
#forecasts
library("forecast")
par(mfrow=c(2,2))
close.data.arima <- arima(close.data,

order=c(0,1,2))
forecasts <- forecast.Arima(close.data.arima ,

h=500,level=c(99.5))
plot.forecast(forecasts)
diff.close.data.arima <- arima(diff(close.data),

order=c(0,0,2))
forecasts2 <- forecast.Arima(diff.close.data.arima ,

h=500,level=c(99.5))
plot.forecast(forecasts2)
close.data.arima2 <- arima(close.data,

order=c(1,1,1))
forecasts3 <- forecast.Arima(close.data.arima2 ,

h=500,level=c(99.5))
plot.forecast(forecasts3)
diff.close.data.arima2 <- arima(diff(close.data),

order=c(1,0,1))
forecasts4 <- forecast.Arima(diff.close.data.arima2 ,

h=500,level=c(99.5))
plot.forecast(forecasts4)
dev.new()
par(mfrow=c(2,2))
acf(forecasts$residuals, lag.max=40)
acf(forecasts2$residuals, lag.max=40)
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acf(forecasts3$residuals, lag.max=40)
acf(forecasts4$residuals, lag.max=40)
dev.new()
par(mfrow=c(2,2))
plot.ts(forecasts$residuals)
plot.ts(forecasts2$residuals)
plot.ts(forecasts3$residuals)
plot.ts(forecasts4$residuals)
dev.new()
par(mfrow=c(2,2))
plotForecastErrors <- function(forecasterrors)

{
mybinsize <- IQR(forecasterrors)/4
mysd <- sd(forecasterrors)
mymin <- min(forecasterrors) - mysd * 5
mymax <- max(forecasterrors) + mysd * 3
mynorm <- rnorm(10000, mean=0, sd=mysd)
mymin2 <- min(mynorm)
mymax2 <- max(mynorm)
if (mymin2 < mymin) { mymin <- mymin2 }
if (mymax2 > mymax) { mymax <- mymax2 }
mybins <- seq(mymin, mymax, mybinsize)
hist(forecasterrors, col="red", freq=FALSE,

breaks=mybins)
myhist <- hist(mynorm, plot=FALSE,

breaks=mybins)
points(myhist$mids, myhist$density, type="l",

col="blue", lwd=2)
}

plotForecastErrors(forecasts$residuals)
plotForecastErrors(forecasts2$residuals)
plotForecastErrors(forecasts3$residuals)
plotForecastErrors(forecasts4$residuals)
#mean of forecast residuals
mean(forecasts$residuals)
mean(forecasts2$residuals)
mean(forecasts3$residuals)
mean(forecasts4$residuals)
#ARIMA with Drift
fit1 = arima(close.data, order=c(0,1,2))
nobs = length(close.data)
fit2 = arima(close.data, order=c(0,1,2),

xreg=1:nobs)
fore1 = predict(fit1, 200)
fore2 = predict(fit2, 200, newxreg=(nobs+1):(nobs+200))
par(mfrow=c(2,1))
ts.plot(close.data,fore1$pred, col=1:2,

main="Prediction Without Constant Term")
ts.plot(close.data,fore2$pred, col=1:2,

main="Prediction With Constant Term")
par(mfrow=c(2,1))
ts.plot(close.data,fore1$pred, col=1:2,

xlim=c(5000,5644),ylim=c(800,1400),
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main="Prediction Without Constant Term")
ts.plot(close.data,fore2$pred, col=1:2,

xlim=c(5000,5644),ylim=c(800,1400),
main="Prediction With Constant Term")

#predictions for sarima models with frequency 260
par(mfrow=c(2,2))
close.s1<-arima(close.data, order=c(2,1,2),

seas=list(order=c(0,1,1), 260))
predict<-predict(close.s1, n.ahead=300)
ts.plot(cbind(close.data, predict$pred), lty=1:2, col= 1:2,

main="ARIMA(2,1,2)x(0,1,1) with Frequency 260")
lines(predict$pred+2 * predict$se, col="red", lty=3)
lines(predict$pred-2 * predict$se ,col="red", lty=3)
close.s2<-arima(close.data, order=c(0,1,2),

seas=list(order=c(0,1,1), 260))
predict<-predict(close.s2, n.ahead=300)
ts.plot(cbind(close.data, predict$pred), lty=1:2, col= 1:2,

main="ARIMA(0,1,2)x(0,1,1) with Frequency 260")
lines(predict$pred+2 * predict$se, col="red", lty=3)
lines(predict$pred-2 * predict$se ,col="red", lty=3)
close.s3<-arima(close.data, order=c(2,1,0),

seas=list(order=c(0,1,1), 260))
predict<-predict(close.s3, n.ahead=300)
ts.plot(cbind(close.data, predict$pred), lty=1:2, col= 1:2,

main="ARIMA(2,1,0)x(0,1,1) with Frequency 260")
lines(predict$pred+2 * predict$se, col="red", lty=3)
lines(predict$pred-2 * predict$se ,col="red", lty=3)
close.s4<-arima(close.data, order=c(1,1,1),

seas=list(order=c(0,1,1), 260))
predict<-predict(close.s4, n.ahead=300)
ts.plot(cbind(close.data, predict$pred), lty=1:2, col= 1:2,

main="ARIMA(1,1,1)x(0,1,1) with Frequency 260")
lines(predict$pred+2 * predict$se, col="red", lty=3)
lines(predict$pred-2 * predict$se ,col="red", lty=3)
#Accuracy
library(forecast)
a<- window(close.data,1,5344)
fit0<-arima(a, order=c(0,1,1),

seas=list(order=c(0,1,1), 260))
fore0<-forecast(fit0,h=101)
accuracy(fore0,window(close.data,5344,5444),d=0,D=0 )
fit<-arima(a, order=c(1,1,0),

seas=list(order=c(0,1,1), 260))
fore<-forecast(fit,h=101)
accuracy(fore,window(close.data,5344,5444),d=0,D=0)
fit1<-arima(a, order=c(1,1,1),

seas=list(order=c(0,1,1), 260))
fore1<-forecast(fit1,h=101)
accuracy(fore1,window(close.data,5344,5444),d=0,D=0 )
fit2<-arima(a, order=c(0,1,2),

seas=list(order=c(0,1,1), 260))
fore2<-forecast(fit2,h=101)
accuracy(fore2,window(close.data,5344,5444),d=0,D=0 )
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fit3<-arima(a, order=c(2,1,2),
seas=list(order=c(0,1,1), 260))

fore3<-forecast(fit3,h=101)
accuracy(fore3,window(close.data,5344,5444),d=0,D=0 )
fit4<-arima(a, order=c(2,1,0),

seas=list(order=c(0,1,1), 260))
fore4<-forecast(fit4,h=101)
accuracy(fore4,window(close.data,5344,5444),d=0,D=0 )
fit5<-arima(a, order=c(2,1,1),

seas=list(order=c(0,1,1), 260))
fore5<-forecast(fit5,h=101)
accuracy(fore5,window(close.data,5344,5444),d=0,D=0 )
fit6<-arima(a, order=c(1,1,2),

seas=list(order=c(0,1,1), 260))
fore6<-forecast(fit6,h=101)
accuracy(fore6,window(close.data,5344,5444),d=0,D=0 )
fit7<-arima(a, order=c(1,1,0))
fore7<-forecast(fit7,h=101)
accuracy(fore7,window(close.data,5344,5444),d=0,D=0 )
fit8<-arima(a, order=c(0,1,1))
fore8<-forecast(fit8,h=101)
accuracy(fore8,window(close.data,5344,5444),d=0,D=0 )
fit9<-arima(a, order=c(0,1,2))
fore9<-forecast(fit9,h=101)
accuracy(fore9,window(close.data,5344,5444),d=0,D=0 )
fit10<-arima(a, order=c(2,1,0))
fore10<-forecast(fit10,h=101)
accuracy(fore10,window(close.data,5344,5444),d=0,D= 0)
fit11<-arima(a, order=c(1,1,1))
fore11<-forecast(fit11,h=101)
accuracy(fore11,window(close.data,5344,5444),d=0,D= 0)
fit12<-arima(a, order=c(2,1,2))
fore12<-forecast(fit12,h=101)
accuracy(fore12,window(close.data,5344,5444),d=0,D= 0)
fit13<-arima(a, order=c(1,1,2))
fore13<-forecast(fit13,h=101)
accuracy(fore13,window(close.data,5344,5444),d=0,D= 0)
fit14<-arima(a, order=c(2,1,1))
fore14<-forecast(fit14,h=101)
accuracy(fore14,window(close.data,5344,5444),d=0,D= 0)
par(mfrow=c(2,2))
plot(fore,main="ARIMA(1,1,0)x(0,1,1)

with Frequency 260")
plot(fore2,main="ARIMA(0,1,2)x(0,1,1)

with Frequency 260")
plot(fore4,main="ARIMA(2,1,0)x(0,1,1)

with Frequency 260")
plot(fore3,main="ARIMA(2,1,2)x(0,1,1)

with Frequency 260")
# Wavelet Transform Based ARIMA Fitting
close.dwt.la8.2<-dwt(close.data[1:4096],"la8",2)
V2<- close.dwt.la8.2$s2
W2<- close.dwt.la8.2$d2
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W1<- close.dwt.la8.2$d1
arima.V2<-arima(V2,order=c(1,1,1))
arima.W2<-arima(W2,order=c(1,1,1))
arima.W1<-arima(W1,order=c(1,1,1))
fore.V2<-forecast(arima.V2,h=100)
fore.W2<-forecast(arima.W2,h=100)
fore.W1<-forecast(arima.W1,h=100)
sum(fore.V2$residuals+fore.W2$residuals

+fore.W1$residuals)
close.modwt.la8.2<-modwt(close.data[1:5344],

"la8",2)
class(close.modwt.la8.2)
names(close.modwt.la8.2)
cV2<-close.modwt.la8.2$s2
cW2<-close.modwt.la8.2$d2
cW1<-close.modwt.la8.2$d1
sum(close.data[1:5344]ˆ2)
sum(cW1ˆ2)+sum(cW2ˆ2)+sum(cV2ˆ2)
sum(close.data[1:5344]ˆ2)-(sum(cW1ˆ2)

+sum(cW2ˆ2)+sum(cV2ˆ2))
auto.arima(cV2)
auto.arima(cW2)
auto.arima(cW1)
a<-arima(cV2,order=c(5,1,5))
b<-arima(cW2,order=c(2,0,4))
c<-arima(cW1,order=c(0,0,5))
fore0<-forecast(a,h=100)
fore1<-forecast(b,h=100)
fore2<-forecast(c,h=100)
fit.arima<-arima(close.data[1:5344],

order=c(1,1,1))
forecast.arima<-forecast(fit.arima,h=100)
sum(forecast.arima$residuals)
sum(fore0$residuals+fore1$residuals

+fore2$residuals)
sum(fore.V2$residuals+fore.W2$residuals

+fore.W1$residuals)
#GARCH Fittings
y=diff(log(close.data)) * 100
y=y-mean(y)
garchFit(˜garch(1,0),data=y,

include.mean=FALSE)
summary(garchFit(˜garch(1,0),data=y,

include.mean=FALSE))
garchFit(˜garch(1,0),data=y,

include.mean=FALSE,cond.dist="sstd",trace=F)
summary(garchFit(˜garch(1,0),data=y,

include.mean=FALSE,cond.dist="sstd",
trace=F))

garchFit(˜garch(4,0),data=y,
include.mean=FALSE,cond.dist="sstd",trace=F)

summary(garchFit(˜garch(4,0),data=y,
include.mean=FALSE,cond.dist="sstd",
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trace=F))
garchFit(˜garch(4,1),data=y,include.mean=FALSE,

cond.dist="sstd",trace=F)
summary(garchFit(˜garch(4,1),data=y,

include.mean=FALSE,cond.dist="sstd",
trace=F))

garchFit(˜garch(4,1),data=y,include.mean=FALSE,
cond.dist="sged",trace=F)

summary(garchFit(˜garch(4,1),data=y,
include.mean=FALSE,cond.dist="sged",
trace=F))

garchFit(˜garch(1,1),data=y,include.mean=FALSE,
cond.dist="sstd",trace=F)

summary(garchFit(˜garch(1,1),data=y,
include.mean=FALSE,cond.dist="sstd",
trace=F))

garchFit(˜garch(1,1),data=y,
include.mean=FALSE,cond.dist="sged",trace=F)

summary(garchFit(˜garch(1,1),data=y,
include.mean=FALSE,cond.dist="sged",
trace=F))

#Other methods
#AAR
library(tsDyn)
a<- window(close.data,1,5344)
fit<-aar(a,m=3,d=1,steps=100)
pred<-predict(fit, n.ahead=100)
accuracy(pred,window(close.data,5344,5444),d=0,D=0)
fit<-aar(a,m=4,d=1)
pred<-predict(fit, n.ahead=100)
accuracy(pred,window(close.data,5344,5444),d=0,D=0)
fit<-aar(a,m=10,d=1)
pred<-predict(fit, n.ahead=100)
accuracy(pred,window(close.data,5344,5444),d=0,D=0)
#LSTAR(Logistic Smooth Transition AutoRegressive Model)
mod.lstar <- lstar(a,m=4, d=1,mTh=c(0,1,2,3),

control=list(maxit=3000))
pred<-predict(mod.lstar, n.ahead=101)
accuracy(pred,window(close.data,5344,5444),d=0,D=0)
#SETAR(Self Threshold Autoregressive model)
selectSETAR(log(close.data), m=4, mL=1:3, mH=1:3,

thSteps = 5, thDelay=0:2)
mod <- list()
mod[["linear"]] <- linear(close.data, m=4)
mod[["setar"]] <- setar(close.data, m=4,d=1, thDelay=1)
mod[["lstar"]] <- lstar(close.data, m=4,d=1, thDelay=1)
mod[["nnetTs"]] <- nnetTs(close.data, m=4, size=5)
mod[["aar"]] <- aar(close.data, m=4)
mod[["sarima"]] <- arima(close.data, order=c(0,1,2),

seas=list(order=c(0,1,1), 260))
sapply(mod, AIC)
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