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ABSTRACT

MULTIRESOLUTION ANALYSIS OF S&P500 TIME SERIES

Kilig, Deniz Kenan
M.S., Department of Financial Mathematics
Supervisor : Assoc. Prof. DOmur Ugur

June 2015, 168 pages

Time series analysis is an essential research area forhthpsople who are dealing
with scientific and engineering problems. Main aim is to ustend the underlying

characteristics of the time series by using time as welleguency domain analyses.
Then one can make a prediction for the desired system todstebservations ahead.
Time series modeling, frequency domain analysis and soswigéve statistical anal-

ysis are main subjects of this thesis. Choosing an apprepmatiel is the main focus
of all analysis in order to make a good prediction. In thisthénancial time series are
focused, particularly S&P500 daily closing prices and iésurn values are handled.
Fourier transform and wavelet transform are creativehjhatdenter of the frequency
domain analysis. Knowing the fact that financial time seaes complex data sets
to sufficiently predict the future, multiresolution anat/gs handled in this thesis us-
ing the wavelet transforms to figure out specialties of S&P8ata. Also, apparently,

models that are appropriate for the financial time seriedigmeissed in the application
part.

Keywords Time series analysis, wavelets, multiresolution analysatistical analysis
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S&P500 ZAMAN SERSININ COKLU COZUNURLUK ANAL iZi

Kili¢, Deniz Kenan
Y uksek Lisans, Finansal MatematiloBmi
Tez Yoneticisi : Dog. Dr.Omiir Ugur

Haziran 2015188 sayfa

Zaman serisi analizi hemen hemémt bilim ve mihendislik problemleri ile grasan
kisiler icin gerekli bir arastirma alanidir. Temel amaaman uzayi ve ayni zamanda
frekans uzayi analizini kullanarak zaman serisinin alirydtanozelliklerini anla-
maktir. Sonrasinda, zaman serisinin ileriy@idk verileri tahmin edilebilir. Zaman
serisi modellemesi, frekans uzay! analizi ve bazi tanirolagtatistiksel analizler bu
tezin ana konularidir. Uygun bir model segmek, iyi bir tamieme yapabilmek igin
analizin ana od@ni olusturmaktadir. Bu calismada finansal zaman sefileerine
odaklaniimistir vedzellikle S&P500 gnlik kapanis fiyatlari ve getiri derleri ele
alinmistir.  Fourier dnisimi ve dalgacik dnisimi frekans analizinin merkezini
olusturmaktadir. Finansal zaman serilerinin, yeteilzelyde geled@ tahmin etmek
icin karmasik veri setleri oldju bilindigi icin, bu calismada S&P500 verisiniizellik-
lerini ortaya ¢ikarmak icin dalgacilogigimleri kullanilarak ¢oklu @zintrlik analizi
ele alinmistir. Ayni zamanda, finansal zaman serileni igigun olan modeller uygu-
lama kisminda tartisiimistir.

Anahtar Kelimeler Zaman serisi analizi, dalgaciklar, coklozfinirlik analizi, is-
tatiksel analizler
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CHAPTER 1

INTRODUCTION

Time series can be defined as recording of observations efteel variable with re-
spect to different time points. One can assume a time sesiasmnal. There are two
domains which are named frequency and time to analyze thessér some sense one
needs to look both frequency and time domain to catch reahchtexistic of data.

Time series analysis is very important issue according toynsgientific fields such

as biology, geology, astronomy, economy, meteorology,ichesl finance etc. . In

other words, time series analysis is used by engineers agtists who are dealing

with applied sciences. Especially financial time series §tock market data are in the
area of our interest in this thesis. Tsay(inl[68] points oat fmancial theory includes

undetermined factors. Therefore we need to understand statistical theories and

methods to analyze the data. Then one can make a forecash@fsgries whose

underlying mechanism is understood.

Moreover, correlation analysis is linked to the time-domanalysis. Using correla-
tions of adjacent points in time and parametric functiorthsas SARIMA, researchers
try to predict the future values of linear time series. UshngSARIMA function is also

explained as multiplicative model where data set is modbledifferential equation

operators. Additive model is also used to analyze time seéspecially in financial

and economic time series. Then seasonal, trend and noitsegparseparated to un-
derstand time series in basic components. In order to amalgnlinear time series,
one can use again parametric methods such as LSTAR. Variaabesi includes the
method of GARCH models.

Spectral analysis and wavelet analysis are example of éggiéncy-domain analysis.
Following the wavelet analysis, multiresolution analy$#RA) can be done as well.
Frequency-domain analysis is basically used to detectahedicity of the time series.
Fourier transform is very famous in frequency domain analysis ahdstbeen apply-
ing for several years. On the other hand, wavelet transfaansbe regarded as new
issue since modern wavelet theory has taken shape afteterii€lf0’s. Wavelets are
recently popular issue due to providing time-scale anslyerefore one can analyze
any time series with desired scales and time intervals.

There are many fields where wavelet theory is used. Some @fppikcations can be
counted as: applying scale based decomposition to unddrs¢al characteristic of



data, signal de-noising and smoothing, data compress@n Einancial time series
analysis by using multiresolution analysis is one of scajekis thesis.

In [17] and in [64] wavelet analysis is handled with dilatiequations to illustrate
construction of multiresolution analysis. Lyubushin séatin [41] multidimensional
wavelet analysis applied on geophysical monitoring tintreeseén the Moscow region.
Aim of study is illustrating that wavelet transform is bettean Fourier transform
such that wavelet analysis catches both high and low freyueamponents in se-
lected time intervals. Similarly, study of Masset(in[[463@khows that wavelet trans-
form has several advantages compared to Fourier transforawley clearly summa-
rized fundamentals of wavelets and applications to econam finance areas in [20].
MRA is applied to Nokia share volatility by Vuorenmaa in[71h [76] In [5] Aloui
and Nguyen combine the global Hurst exponent and Morlet igawaulti-resolution
analysis in order to understand behavior of six differenekiye stock markets data
in Mediterranean region. In [56] Ramsey et al. analyzed stoakket data which is
complex time series. They concluded that wavelets are Ligefietect non-detectable
structures in system. Yousefi, Weinrech and Reinarz applidtirasolution analysis
in order to understand dynamics of wavelet-based preditiyaising oil prices. Abab-
neh, Al Wadi and Ismail showed that ARIMA modeling with wauelansform gives
better accuracy results compared to original ARIMA fitting using Amman stock
market (Jordan) in_J1]. Similarly, Al Wadi et al. shows sanesult in [72]. In [49]
Nouri, Oryoie and Fallahi use ARIMA—GARCH model to calculateeestep-ahead
forecasts of monthly gold returns. Data is separated irfferdnt scales and fore-
casts of each part is added together. Then forecasting egarated data increases
forecasting performance compared to forecasting withauelets. Rocha, Paredes,
Carvalho,Henriques and Harris in [58] studied how to combvagelet analysis and
neural network to predict acute hypotensive episodes data.

In Chapte 2, some terminologies used in time series analyilibe defined with
some examples. Chapter will give to reader clear definitionsilerstand time series
concept.

In Chaptek B, subjects that are related to frequency domailysia will be covered.
Two main title are Fourier transform and wavelet transfonnfréequency domain. We
will discuss why do we need any other method than Fourierstoam in frequency
domain analysis.

In Chaptef# empirical results will be given by using S&P50ftdriical data. Descrip-
tive statistics, results of linear model fittings, spectsymultiresolution analysis and
some other modeling methods will be covered. Models will tsapared according to
information criteria values and results of accuracy messur

Finally in Chapte’ b consequences of this study will be givethwossible future
works.



CHAPTER 2

LINEAR TIME SERIES AND HETEROSCEDASTIC MODELS

In this chapter firstly time series basic issues and defmstiof linear time series
models like ARp), MA(q), ARMA(p, q), ARIMA (p,d,q) and SARIMA(p,d, q) x
(P, D, Q), will be considered. Numerical examples will be given to ustend char-
acteristic of models. Structure, properties and examplie@r model forecasting will
be covered.

Secondly, definitions and examples of heteroscedastic Isitile ARCH, GARCH
etc., will be given to consider volatility issues.

Finally other methods which are used in time series analydlibe given shortly with
definitions and some examples.

2.1 Introduction

Time series analysis is important for understanding theress of the data. Corre-
lations of observed data are used to catch the charaatevis§ieries and then some
operations are applied to series according to correlations

Let's give some important definitions related to time setsisig the methodology of
Shumway and Stoffer mentioned [n [62].

Definition 2.1 (Sample Autocovariance)lhe sample autocovarianceofis

) = 53 (reen —7) (7). @)

t=1
wherez is the mean of, andy(h) = 4(—h) forh =0,1,...., N — 1.

Definition 2.2 (Theoretical Autocovariance)he theoretical autocovariance function
is calculated by the sample autocovariance funcfioh [6@)varitten as

V(h) = El(zin — p) (20 = )], (2.2)

wherey is the mean andél = |s — ¢| is the lag for alls, t. Other notations for the auto-
covariance function can be listed@ass, t), y(s, t), y(t,t —h), y(t+h, t), cov(x, z;),
COV(Zy1p, x¢) @Nd CONzy,, o).



Definition 2.3 (Strictly Stationary Time Seriesptrictly stationary time series is a time
series which ensures the following condition,

P{xtl S claxtz S Cyy - 7xtk S ck;}
=P{ay, +h<ci,z, +h<ey,-ya, +h <c}. (2.3)

Definition 2.4 (Weakly Stationary Time SeriesWeakly stationary time series is a
finite variance process that has following conditions,

1. The mean of;, is 1, = E[z;] = p(constant = [~z f,(z)dx

2. The autocovariance(s,t) = E[(zs — p) (z; — p)] depends on only and ¢
through their differencé = |s — ¢| which is called as lag.

Claim 2.1. If the time seriest; is stationary, then first difference af is given as
Yy = V.

Proof. Expectation ofy, is zero and autocovariance g¢f is independent of time as
follows;

. Ely) =E[lz; —24 ] =p—pu=0
ii. 7y (h) = COV(Tp4n — Town—1, T — 1) = Ya(h) = Va(h+1) = Ye(h—1) +72(R)

depends on only the lag ]

If one is interested in the signal to be stationary, it is ssaey to remove trend and
seasonal part in the signal. In other words, time seriesaosiary if there is no
systematic change in the mean and the variance with havingeriodic variations.
The correlogram that will be defined in Definitibn 2.5, cutbadter 2 or 3 lags if the
time series is stationary.

Definition 2.5 (Autocorrelation Function)Autocorrelation function can be written as
the autocovariance funcion that is divided by square roatwftiplication of variances
of series according te andt.

s,t) = 7(5 1) 2.4
A Y A~ PRV &4

Autocorrelation function satisfies thatl < p(s,¢) < 1. It can be proved by Cauchy-
Schwartz inequality [62].

Definition 2.6 (Backward Shift Operator and Forward Shift Operat@&ackward shift
operator and forward shift operator are written respelstifag first difference and for
kth difference as

B.ﬁUt = Tt and kat = Ti—L, (25)

F.It = Tt41 and Fkﬂft = Ttk (26)
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Then difference operator can be written by using the backwhift operator a& =
(1 — B) proved by follows,

th =Xy — Xp—1 — Xy — BZ‘t = (1 — B)It (27)
It is also valid or higher dimensions such%é = (1 — B)?, d € Ny.

Definition 2.7 (Autoregressive Process (AR)). Autoregressive process is constructed
on sum of past values of time serigsand and Gaussian white noigg. Autoregres-
sive process of orderis

Tp = Q1041 + Qoo + - -+ 4 GpTp_p + Wy, (2.8)

wherez, is stationary and,, ¢», . . ., ¢, are constantg, # 0) andw; ~ w,(0,02) is
a white noise and is particularly assumed to be independentdantically distributed
with A/(0,02).

One can rewrite Equatidn 2.8 by replacingwith x; — i in case the meanis different
from zero as follows;

Ty — = O1(Ti—1 — p) + Pa(xi—2 — ) + -+ Gp(wi—p — p1) + Wy (2.9)
After some arrangements, Equationl 2.9 can be written as
Ty =+ Q1T + Pay—g + -+ QpTi_p + Wy, (2.10)
wherea = p(1 — ¢1 — ¢ — - - - — ¢,,). Finally we can write the-order autoregressive
process ARp) in compact form as
$(B)z, = wy, (2.12)
where¢(B) =1 — ¢;B — ¢, B* — - -- — ¢, B? is AR operator of ordep.

Definition 2.8 (Moving Average Model(MAq))). Moving average model of orderis
xy = Opwy + hweq + - - + 0wy, (2.12)
wheref, is different from zero. In simple form it can be written as
x; = 0(B)wy, (2.13)
wheref(B) =1+ 6,B + 6,B*+--- +0,B1,

2.2 Autoregressive Moving Average (ARMA) Models

Time seriesr; can be written as sum of autoregressive part and moving geerart
according to ARMA model of order andq respectively.

Ty = P1Tp—1 + QX9 + -+ Ty + Wy + Orwy—g + - -+ Oqwy_y. (2.14)
Simply we can write Equatidn 2.114 as
&(B)w, = 0(B)w,. (2.15)
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Definition 2.9 (Causal ARMAQp, q) Process) If the model predicts backward obser-
vations, then it is not causal but it can be stationary pmcds ARMA(p, ¢) model is
causal in case the time series can be written as

Ty = i Yiw_; = ¢(B)wta (2.16)
i=0

wherey(B) = > ;B and) 2 [¢h] < oo for ¢ = 1.

Definition 2.10(Invertible ARMA(p, ¢) Process)An ARMA (p, ¢) model is invertible
in case the time series is written as

Wy = Zﬂﬂt—i = 7(B)y, (2.17)
i=0

wherer(B) = o2 mBand) "2 |m| < oo for my = 1.

Definition 2.11 (AR and MA Polynomials) AR and MA polynomials are given re-
spectively as

B(2) =1 — 1z — - — P2’ (2.18)
and

0(z) =140,z — - — 0,29, (2.19)
wherez is complex number ang, andd, are different than zero.

Definition 2.12 (Causality of ARMA(p, ¢) Process) An ARMA (p, ¢) model is causal
if and only if p(z) # 0 for |z| < 1, i.e. zeros ofy(z) lie outside of unit circle. One can
achieve coefficients of Equatién 2116 by solving Equafigiii?.

P(z) = Zd}izi = QEZ) (2.20)

¢(2)’
where|z| < 1.

Definition 2.13 (Invertibility of ARMA (p, ¢) Process) An ARMA (p, q) model is in-
vertible if and only ifd(z) # 0 for |z| < 1,i.e.0(z) = 0 for |z| > 1. One can achieve
coefficients of Equation 2.17 by solving Equation 2.21,

m(z) = Z;mzi = %, (2.21)

where|z| < 1.

Example 2.1(ARMA (2, 2) Process) Let’s write ARMA(2, 2) process with its coeffi-
cients according to autoregressive and moving averags asut

Tt — 0.21}_1 - 0.151}_2 = w; + 0.71015_1 + 0.1271)15_2.

After finding roots of¢(B) andf(B), we can write AR and MA polynomials respec-
tively as
¢(z) = (1 —0.52)(1+0.32),
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and
0(z) = (1+0.42)(1 + 0.32).

It is seen that they have same factorgs- 0.3z). As a result we can cancel out this
factor which is mentioned gsarameter redundandyy Shumway and Stoffer in [62].
Finally we get ARMA(1, 1) process as

(1—0.5B)z; = (1+0.4B)w,
where¢(B) = (1 — 0.5B) andf(z) = (1 + 0.4B). According to Definitior 2712

and Definitior[ 2.1, process is causal and invertible. o) = 0, we havez = ;-

and |%} > 1 (outside of the unit circle), so process is causal (as wetditaisonary).
Forf(z) = 0, we havez = —3 and|—;| > 1 (outside of the unit circle), so
process is invertible. Hence, we can write the process mgef v -coefficients and
w-coefficients. Firstly, for)-coefficients we have
0(B)
and
(1—=0.5B) (1o + 1B+ 1eB*+-++) = (14 0.4B),

wherey, = 1. If we equalize the coefficients @& asy; — 0.5¢y = 0.4, v, is founded
as0.9. For other coefficients we have — 0.5¢;_1 = 0 and after; iterations we get
¥; = (0.9)(0.5)7"! for j = 1,2,.... So the time series, is written in the form as

(0.9]

zr=w; + (0.9) ) (0.5) w,_.

=1
Secondly, forr-coefficients we have

o(B)
6(B)

Wt =

2, = m(B)zy = 0(B)7(B) = ¢(B),
and
(1+04B)(mg +mB +mB?+---) = (1 - 0.5B),

wherer, = 1. Then applying similar steps as we didincoefficientsr-coefficients
are written ast; = (—0.9)(—0.4)"~! for j = 1,2,... . Finally the time series;, is
written in the form as following,

wy =z, — (0.9) ) (—04)"z, ;.
i=1

2.3 Autoregressive Integrated Moving Average (ARIMA) Models

In addition to autoregressive and moving average partseimeould involve integra-
tion part, i.e. differencing part. Then model is called asaatoregressive integrated
moving average ARIMAp, d, q) process and it is of the form;

6(B)V%a, = 9(B)(L - B)'a, = 6(B)uy, (2.22)
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whereg¢(B) is stationary AR operator of order 6(B) is invertible MA operator of or-
derq and(1 — B)? is difference operator of ordér Operators can be written explicitly
as

¢(B)(1 — B)! = p(B) = o+ ¢1B + -+ + ppya B
=(1=¢:B—--—¢B")(1 - B)",

and
(B)=60,+6,B+---+6,B%.

If E[vz,] = u, then we consider the model in more general form and it canrtieew

as [62]

¢(B)(1 = B)"x, = fo + 0(B)wy, (2.23)
wherefy = (1 — ¢1 — --- — ¢,)p. In addition we can define random shock form
(MA (o0)) and inverted form (ARx)) respectively as [62]

1 = " (B)O(B)w, = (B, (2.24)
and

w, = 07 (B)p(B)z, = n(B)a,, (2.25)

wherep! = ¢~ 1(B)(1 — B)™.

Taking difference with needed order of the non-stationangtseries makes the time
series stationary. Many analyses are done via using stagidime series according to
see de-trended properties of the signal. It is better to ifBehced time series for
forecasting issue. AR part shows how strongly past obsenstffects the present
observations. MA part shows model present using past esfgnediction.

Example 2.2(ARIMA (2, 2,2) Process) If we consider an ARIMA2, 2,2) process
with general coefficients, operators can be written asvig|o

¢(B)=(1—¢1B - ¢2Bz>7
v?=(1-B)’=(1-2B+ B?),
0(B)=(1+6,B+ 9232),
and
p(B) = ¢(B)V?
= (1 — 2B+ B?) — ¢1(B — 2B* + B?) — ¢»(B* — 2B* + B*).
Explicitly the model can be written as;
Ty — 241+ Tp0 — G141 + 20174 2 — Q143 — GaTy 2 + 20974 3 — P2y y

= wy + 0wy + Orw;_o,

or
Ty — 012+ 1) + 22 (1 + 201 — ¢2) — 24-3(P1 — 202) — Pax4—4

= wy; + O1we—q + Orwy_s.
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Figure 2.1: Simulated AR ) Processes.

Random shock form and inverted form can be found respectiwebetting following
equations as,
¢(B)(1 — B)*(B) = p(B)¢(B) = 0(B),
and
0(B)m(B) = ¢(B).
After setting the equalities, one can find the coefficienthwaspect to our time series
in order to write random shock form and inverted form.

Example 2.3(Simulated ARIMA Processes) et’s consider AR1), AR(2), MA(1),
MA(2), ARMA(1,1), ARMA(2,2), ARIMA(1,1,1) and ARIMA(2, 1, 1) with arbi-
trary coefficients given in the plots. ACF and PACF plots ar® gsen for some
processes.

AR(1) Processes

In Figure[2.1 first simulated series looks like financial datdhout trend, especially
daily closing prices without trend. The one with negativef@oient looks like re-
turn of a financial data, especially first difference of lotiamic stock market data.
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Series: x1

Figure 2.2: ACF and PACF Plots of AR) Process with First 1000 Observations where
¢ = +0.8.

ACF and PACF plots of simulated AR) processes are given as follows in Figurg 2.2,
Figure[2.8 and Figule2.4:

AR(2) Process

In Figure[Z.b simulated AR) process and in Figuie 2.6 its ACF and PACF are given
with respect to given coefficients.

MA (1) Process

In Figure[2.Y simulated MAL) process and in Figufe 2.8 its ACF and PACF are given
with respect to given coefficient.

MA (2) Process

In Figure[2.9 simulated M) process and in Figufe Z]10 its ACF and PACF are given
with respect to given coefficients.
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Series: x1

ACF
00 0.2 04 06 08 1.0

T T T T T I
0 20 40 60 80 100
LAG

PACF
00 02 04 06 08 1.0

LAG

Figure 2.3: ACF and PACF Plots of AR) Process with First 100 Observations where
¢ = +0.38.
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Series: x2
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Figure 2.4: ACF and PACF Plots of AR) Process with First 100 Observations where
¢ =—0.8.
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AR(2) ¢ =05 @=04
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Figure 2.5: Simulated AR) Process.
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Series: X

Figure 2.6: ACF and PACF Plots of AR) Process with First 100 Observations where
¢1 = 0.5and¢, = 0.4.

14



MA(1) 6=0.5
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Figure 2.7: Simulated MAL) Process.
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Series: X
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Figure 2.8: ACF and PACF Plots of MA) Process with First 100 Observations where
6 = 0.5.
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Figure 2.9: Simulated M&) Process.
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Series: X
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Figure 2.10: ACF and PACF Plots of MA) Process with First 100 Observations
whered; = —0.5 andf, = —0.9.
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Figure 2.11: Simulated ARMA, 2) Process.

ARMA (2,2) Process

In Figure[2.11 simulated ARM£, 2) process and in Figufe 2]12 its ACF and PACF
are given with respect to given coefficients.

ARIMA (1,1,1) Processes

In Figure[2.18 simulated ARIMAL, 1, 1) processes and their ACF and PACF are given
with respect to given coefficients.

After fitting the ARIMA model to simulated series where whoseficients are given
as¢ = 0.5 andfd = —0.4, coefficients are calculated & = 0.5976 andf =
—0.5040 in R program. Sigma square, log likelihood and AIC are caltad a$.9876,
—1412.69 and2831.39 respectively.

19



Series: X
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Figure 2.12: ACF and PACF Plots of ARMA, 2) Process with First 100 Observations
where Coefficients are Given as in Figre 2.11.
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Figure 2.13: Simulated ARIMAL, 1, 1) Processes and related ACF plots.
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2.4 Multiplicative Seasonal Autoregressive Integrated Mowig Average (SARIMA)
Models

Seasonality is important subject for many time series sgaficanomic and financial
data sets. Forecasting depends on past values. If pass\ai@en seasonal compo-
nents, model can be modified to SARIMA model.

Definition 2.14 (Seasonal OperatorYhe seasonal autoregressive operator of oftler
and the seasonal moving average operator of apdare given respectively as

dp(B*)=1— &, B° — dyB*s —--- — &pBFs, (2.26)

and
Og(B*) =1+ 01B° + ©,B%s — -+ — 0o BYs, (2.27)

wheres is seasonal period.

Definition 2.15 (Seasonal Difference)lhe simplifying operator (or seasonal differ-
ence) of ordeD is defined as

vl =(1-B%P, (2.28)
wheres is seasonal period.

Definition 2.16 (SARIMA Model). By using Definitio{ 2.4 and Definitidn 2115, the
SARIMA model, i.e. ARIMA(p,d, q) x (P, D, Q)s model can be defined as follows

p(B*)$(B)VV iz, = Og(B*)0(B)uw:. (2.29)

Let’s consider ARIMAQ0, 0,0) x (1,0, 1);2 model. If one writes it explicitly, it will be
seen that model is same as ARMA, 12).

Example 2.4(ARIMA (2,3,1) x (1,2,1), Process)

(1-6,B%(1—-6,B—0,B*(1 - B)*(1 - B%)1, = (1+ & B?)(1+ ¢ B)w,.

2.5 Forecasting

Basically aim of forecasting or prediction is calculatingufte values approximately
by using given sample data set. We can liken the fog to noifieeitime series. If the
fog is less, visibility of the forward will be much better. fézasting is getting more
complex if the noise is higher than the original signal. Cliwgs$he correct model and
estimating correct parameters are very important for ptixat.

There are several methods to predict future values of the sienies by using observed
data set. Seasonal moving average, exponential smoothinge{ghted moving aver-
age), ARIMA [18], state spaceé [31] [37], neural netwark [8],y8aian and wavelets
are some methods which are used to forecast desired futluresvaf the time series.
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Most of them are applied on theoretical basis of minimum nszarared error to min-
imize the error between real values and predicted values.

Consider ARIMA(p, d, q) process and let's write observation at time 1 as

Typ1 = Q10+ a1+ -+ Ppra®i—p—dp1 + W1 + 01wy + - - 4+ Oqwy_g11, (2.30)
wherey, = 0, = 0. In general we can write Equatién 2130 at time/ (I-lead ahead)
by writingt =t + 17— 1 as

Tl = P1Tt41-1 T P2Tpqi—2 + -+

+ PprdTipi—p—d + Wi + O w1 + -+ Ogwi—q. (2.31)

In addition, infinite weighted sum af; ,; can be written by putting+ [ — k instead of
ias

t+1

Tty = Z¢iwt+l—i = Z wtﬂ—kwk (2-32)
i=0

k=—0o0

= YWyt + V1Wip—1 + - -+ YW + Yiwe + YW + -

If we consider ther coefficients, we can write the process as
oo
T4l = — Z TiTppl—i + Wit (2.33)
=1

Let z,(l) be thel-lead linear forecast af,; based on observed data set and it is given
as

T (1) = Yfwy + Yfwiay + Vg o + - - (2.34)

One can find the mean squared error of the forecast by usinatiéq2.32 as
E [(zi41 — 2:(1))°]

- 2
=K <¢owt+z W1 W + Z (Virs — Vi) wt—i)
=0

= L+ + 95+ + U)oy, (2.35)
wherew; ~ w, (0,52). In order to minimize Equatiodn Z.B5, the equality,, = v,

needs to hold foi = 0,1,2,---. Therefore forecast of the leddvhich is made at
origin ¢, which minimizes the mean squared error is,

Ty (1) = Yrwy + Yrpawi—1 + Yrypwe—o + - - (2.36)
whereu);’s arey-coefficients.
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Note. One can write the value at tintet [ as sum of forecast and error as following,

T = (Wi + Y1wesi—1 + - -+ + Yy weer) + (Y + Yrpwe—y + -+ +)
= e () + 24(1), (2.37)

wherey, = 1 ande,(l) is mean squared error of lead
Consequentlyi, (1) can be written in the form of conditional expectation as
i‘t(l) =E [$t+l|wt, We—1, - - ] = Et [I’t_H] =E {l‘t+l|xt, Ti_1y-- ] y (238)

whereE; [e;(1)] = 0. In addition to expectation, variance of error part is ckltad as

var,(l) = vare, ()] = Y ¢io2. (2.39)

There are some important properties of forecasting aswsl|&5,[13];

e Both expectation of past values and expectation of pastvalues are same as
their own values. On the other hand expectation of futuvalues are predicted
ones and expectation of fututevalues are zero. This property is called as rules
of thumb in statistics.

E (2] =2y and Eyjw, ] =w,; for >0, (2.40)

and
E [zii] = 2(1) and Ey|w] =0 for i>1. (2.41)

e We can write forecasting function by usingcoefficients orr-coefficients as
follows respectively by using Equatién 2132 and Equafi@3?.

JAUt(l Et It+l Z 1/)1Et Wt41—i (2-42)

and
Z%t(l ]Et wt+l ZWzEt Tiq1— z (2-43)

o Forl =1we havee, (1) = Yowip1 + e (Vi 4+ 1 —F, ; Jwy—_;. FOr minimizing
error term, we write); ., = 1/, ;. Then we have
Wi = T — (1) = e(1). (2.44)
e Updating forecast is illustrated as following equation
Tepa(l) = 2¢(1 + 1) + hrwega. (2.45)

Equatiorf2.45 can be found by writirig, (1) andz, (I + 1) explicitly.
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Example 2.5(ARIMA (1,0,0) x (1,0, 1), Forecasting) Consider the SARIMA pro-
cess(1 — ®BY)(1 — ¢B)z; = (1 + ©B*)w,;. We can rearrange the process as

(1—¢B — ®B* + ®¢B°)z; = (1 + OBy,

or
= ¢xi + Puy_y — PPx_5 + Wy + Owy_y.

Then by taking conditional expectation we will get foreaagtfunction forl > 0,

(1) = p24(1 — 1) + P24 (1 — 4) — PPy (1 — 5) + E[wsyy] + OF[wiy 4.
Using the conventiont,(—k) = z,_. for £ > 0, we can write the following forecasts,
T

(1) = ¢y + Pay_g — Pozy_y + Owy_g,

i‘t(2> (1) + (I)ZL’t 9 — @¢It 3 -+ @wt 2,
4(3) = ( )+ Pxi 1 — PPy 4+ Owy_y,
(4) ( ) -+ q)l't — q>¢$t_1 + @wt,

24(5) = d74(4) + Py (1) — Py,
(1) = pz4(Il — 1) + @24 (1 — 4) — Pz (L — 5), for 1>6.

Asaresul{1—-®D")(1-¢D)i4(l) = 0forl = 6,7,8,.... Let® andp bel/16 and1/2
respectively. We have roots ®f+2 and=+2i for equation1—®D*)(1—¢D)34(1) = 0.
Therefore the eventual forecast function has form of,

1\’ 1\’ 1\ 1\ 1\ ™
(1) = cﬁ” (5) +c§t) (§> l+c§t) (—§> +cff) (5) cos <2l> —|—cét) <§) sin <§l> ,

wherec! are discovered froni,(h) for h = 1,2, 3,4, 5.

2.6 Heteroscedastic Models

In perspective of finance, volatility is fluctuation of prioéthe financial instrument.
Generally, higher volatility means that one will face witlgler risk in the related
finance instrument. Most of usages are seen in option traahdgasset returns data.
Volatility can be historical or implied. We call it histoactif the volatility is extracted
from past market prices. On the other hand it is called inapifethe volatility is
obtained by the market price of a market traded derivative.

Shumway and Stoffer stated that volatility is consideredasstant in ARMA mod-

els while the autoregressive conditionally heteroscedasvdel (ARCH) stands for
detecting the changes in variatidn [62]. There are sevgpalst of ARCH model by

modifications. We will cover the autoregressive conditlynaeteroscedastic model
(GARCH) and the generalized autoregressive conditionaligrbscedastic (GARCH)
model.
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Figure 2.14: Daily Closing Prices of DAX data and its returives.

2.6.1 ARCH and GARCH Models

ARCH model is used to do variance analysis. Method was firsttpduced by Engle
in [23] to model volatility. Assume that we have a time sertesvhich gives the stock
values at related time Return ofz, at timet, i.e. relative gain[62], is given as

re= Tl o log(x)] - (2.46)

Ti—1

Return of a financial time series is used for variance analygbsising volatility mod-
els. Versions of ARCH model and some state-space models amgbxéor volatility
or variance analysis.

ARCH(1) model for returnr; is given by following equations
Ty = Ot (2.47)

and
ol =g+ ayr? |, (2.48)
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Table 2.1: Coefficients of Fitted AR)-ARCH(1) DAX Data

9251 w
3.3857e-02 9.4651e-05

aq

1.0752e-01

0
6.9409e-04

whereg, is standard Gaussian white noise that is distributee as iid /N (0,1). By
using Equation 2.47 and Equation 2.48, it is also possibleite the ARCH1) model
as non-Gaussian AR) model as

rf =g+ alrtz_l + vy, (2.49)

wherev; = o?(e? — 1). ARCH(1) model has the following properties62],

e For the condition) < a; < 1, r; is white noise and its distribution is leptokurtic.

o If 30} < 1, ry is causal AR1) model and if3c; > 1, r? is strictly stationary
process with infinite variance.

Parametersy, and «; are estimated by conditional maximum likelihood estinratio
(MLE). Details can be found in Shumway and Stoffer|[62] in pa§3.

Example 2.6 (DAX Return Data with AR1)-ARCH(1) Fitting). EuStockMarkets
data was taken from ‘datasets’ package in R program. It dedumajor European
stock indices: Germany DAX (Ibis), Switzerland SMI, Frar€AC, and UK FTSE
with 1860 observations on 4 variables. Only DAX data was usetthe following
examples. Some results of fitting AR—ARCH(1) model to return of DAX data are
given in Tablé 211 and in Table2.2. In Tablel2.2 standardeare calculated based on
Hessian and significant codesx*«’, ‘ x «’, ‘«’, *. and* stands fo0.001, 0.01, 0.05,0.1
and1 respectively.

Table 2.2: Error Analysis

Estimate | Std. Error| ¢-value | Pr(> |¢])
i | 6.941e-04| 2.344e-04| 2.962 | 0.00306**
¢y | 3.386e-02 2.669e-02 1.268 | 0.20466
w | 9.465e-05 3.740e-06| 25.309 | < 2e-16 ***
ay | 1.075e-01) 2.718e-02| 3.955 | 7.65e-05***

Estimation of ARCHm) is done via using ARCH ) and conditional likelihood of

returnsr,, .1, ..., givenry, ..., r,,. Then ARCHm) can be illustrated by following
equations;

Ty = O,
and

2 2
oy = Qo+ ar_q + -
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Figure 2.15: GARCKHIL, 1) Model Fitted to DAX Return Data.

On the other hand generalized ARGH, f) or GARCH(m, f) model which is intro-
duced by Bollerslev in[12], is given as

m /
O'tQ = Qg + Z Oéﬂ"f_i + Z ﬁiO'tQ_Z-. (252)
=1 i=1

Then the one-step-ahead forecasts of the volatility ig&rias
m f .
Gty = Go + Z Qi + Z Bioi s (2.53)
=1 i=1

Example 2.7(DAX Return Data with GARCHIL, 1) Fitting). In Table[2.3, error anal-
ysis of DAX data with fitted model GARCH, 1) is seen and significant codes are
same as in Example2.6. In Tallel2.4 related informatioegoih statistics are given
for fitted model. In Figur¢ 2.15 GARCH, 1) model which is fitted to DAX return
data is shown and prediction of volatility is with 25;.
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2.6.2 Other Heteroscedastic Models

There are many types of ARCH model according to related dataexXample Equa-
tion[2.52 can be rewritten as

max (m,f) f
r=agt Y (Bt A= B, (2.54)
A =1
whereg? ;, = r? ., —mn_;fori = 0,1,..., f. Then one can have integrated GARCH

model (IGARCH) in case the AR polynomial of the Equation 2.54 haunit root.
GARCH in the mean (GARCH-M) model can be used for detect the smiatlations
in the financial time series with respect to related volatilAnother modified version
of GARCH model is the exponential GARCH model. It provides a usagsymmet-
ric return dynamics of positive and negative assets. Inrdaenanage with leverage
effect, the threshold GARCH (TGARCH) model is used. Moreover, @&NB model
can be used for modeling the volatility of time series. Destiir ARCH and GARCH
models are given by Tsay in [68] of Chapter 3.

2.7 Other Methods: Overview

There are many other modeling types for time series analySise can use linear
or nonlinear method to model selected time series. For ebartipeshold methods,
neural networks, hidden Markov model and state space maodelde candidate for
time series which will be analyzed.

2.7.1 Threshold Models

Threshold methods are included in nonlinear modeling sslet’s consider the sim-
ple AR(p) model given in Equation 2.10 for time seriesas,

Ty =+ Q141 + Payo + - - 4+ Gp1r_py + €0, (2.55)

wheree, ~ WN(0,1) ando > 0 is standard deviation of disturbance term. In the
sense off hreshold AutoRegressive (TAR) modelated to threshold variablg model
parameters would be changeable. We can write the relatetifaras follows,

z, = o) + Xt(ﬁg)) +oWe¢, if ri_; < 2z <1y, (2.56)
whereX; = (1,241, %—9,...,24—p) for j = 1,2,... k,i = 1,2,...,pand—oco =
ro <1 < ---<r, = oo. The domain of threshold variable is separated int&

different order by thé: — 1 non-trivial thresholds that are given s, rs,...,rx_1).
In each order, time series meets with different(ARmodel.
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Rule of theself-exciting TAR (SETAR) modslthat the threshold variable is lagged
value of the time series. We can write the formula of SETAR as,

Ty = Oé(j) + (bgj)l'tfl + (bgj):ct,z +---+ ¢§,j)xt,p + O'(j)Et Zf Tj—i <z < Tj, (257)

wherek andd are positive integers anfl= 1,2,...,k, i = 1,2,...,pand—oco =
ro <1 < --- < ry = oo. The threshold variable is one of{z;, 7,4, ..., Z1—(n_1)a}
whered is the delay parameter.

If the binary indicator function is replaced by smooth titioa functionG(z;) which is
dependent on transition variablg we get thesmooth transition autoregressive model
(STAR)EE] as

Smooth transition function is given for logistic and expoti@ equations respectively
as,
1

G(z;7,¢) = 11 e o’

(2.59)

and ,
G(z;7,¢) =1 — e =79 (2.60)

wherec can be said as threshold and> 0 shows the speed and smoothness of tran-
sition [77]. Logistic smooth transition autoregressivedmloand exponential smooth
transition autoregressive model are given as LSTAR and ESifAshort terms. We
have also threshold version of GARCH model as we mentionedts&uion 2.6]2.

2.7.2 Neural Networks

Neural network system is one of learning algorithm whiclo ateludes linear regres-
sion, logistic regression, bagging, boosting, decisieadr naive Bayes, support vector
machine (SVM) etc. . It is actually based on artificial leamivhich is inspired by
brain of animals and humans. There are nodes that have staglies with neurons
in a brain. Most system is formed of input, hidden and outmaes that are each in-
terconnected with previous and next ones. In other words egut and each hidden
nodes are connected each other with some weights. Samectionngructures exist
between hidden nodes and output nodes. In Figuré 2.16,ftivenation flow direction

is to right. A numerical example for IBM stock is given by Tsay68].

Neural networks are used also for nonlinear time seriescésting [9]. It provides
convenience for solving complex problems like nonlineaadsets. In Figuré 2.16
structure of neural network is given.

Example 2.8 (Forecasting of DAX Data by Using Feed-Forward Neural Nek)o

DAX daily stock prices data between middle of year 1991 andiihei of year 1994, is
used to find one year forecast by using neural network modéligure 2.1V it catches
the fractal structure of stock data. The fitted model NNAR) is analogous to an
SARIMA(2,0,0) x (1,0,0); model with nonlinear functions and one hidden layer.
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Input layer Hidden tayer Output layer
Out,
Out,
Out,,
Figure 2.16: Typical Structure of a Neural Network System.

(http://mechanicalforex.com/wp-content/uploads/206ANN.png)

Forecasts from NNAR(2,1)

(a) Original Data (b) Forecasting

Figure 2.17: Forecasting by Fitting NNAR 1) Model.
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2.7.3 Other Methods

According to time series analysis, we have some other nesdlimodels like Bilinear
Model, Markov Switching Model, Nonlinear Additive AR ModeNonlinear State-
Space Model etc. . In addition there are nonparametric rsddetime series analysis.
Moreover there are such models for volatility, multivagigime series and principal
component analysis. After statistical analysis one cafddeghich model fits better

the related data set[68,131, 25].
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Table 2.3: Error Analysis of Fitted GARGH, 1) DAX Data

Estimate

Std. Error

t-value

Pr(>|t])

6.535e-04

2.158e-04

3.029

0.00245 **

4.754e-06

1.264e-06

3.760

0.00017***

651

6.842e-02

1.478e-02

4.630

3.66e-06***

8.876e-01

2.356e-02

37.677

i

< 2e-16***

Table 2.4: Information Criterion Statistics of Fitted GARQH1) DAX Data

Information
Criterion Statistics
AlIC BIC SIC HQIC
-6.414432| -6.402538| -6.414441| -6.410049
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CHAPTER 3

FUNDAMENTALS OF FOURIER AND WAVELET THEORY:
FREQUENCY DOMAIN ANALYSIS

In this chapter, firstly theoretical background of Fourieedry and wavelet theory
will be covered. Non-complex signals or time series can layaed with using time

domain analysis. When data is getting more complex, frequdomain analysis is
also used to reach other characteristics of data. Massetegoout in [46] that if

the system relies on more than one frequency components;damain analysis is
inadequate to reveal important information of real data.

Both Fourier and wavelet transform are linked to the frequetamain analysis, but
Fourier analysis has several drawbacks compared to theletaualysis. Vuoren-
maa[71] says that wavelet analysis provide non-parammatiltiscale technigue which
is useful in both time and frequency domain where Fouriersi@arm is inadequate for
time information. In addition location parameter is heldhmase and it is too hard to
reach it. Also, function and the Fourier coefficients areettd each other in very sen-
sitive way. In order to get away from some drawbacks, Windb®eurier Transform
(WFT) was used for analysis. However it doesn't still provditferent levels of res-
olution for different time and frequencies regions. In otiwverds WFT cannot handle
physical space and Fourier space at the same time. Develepsidn of Fourier the-
ory, which is called wavelet theory, has fixed many probleaegd in Fourier analysis.

Variance of the financial time series is analyzed by takirgdtiference of the con-
secutive observations which are smoothed by logarithns dlso called as volatility
which is known as standard deviation. Since the variandeeisguare of the standard
deviation, volatility is used in variance analysis for b&turier and wavelet analysis.
Volatility can be given as absolute value of the daily resud?];

Y = |log(x) — log(xs—1)] . (3.1)
We use thdog difference without absolute value for some empirical resstd make
the data stationary.

After giving basic properties and theoretical backgrounidsoth Fourier and wavelet
transform, applied examples will be covered. In technigglanations and in exam-
ples we are using signal, function and time series altelnate
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3.1 Fourier Theory

3.1.1 Introduction

According to Joseph Fourier [10], any continuous or disicmatus function can be
written as sum combination of infinite sine and cosine fuordi Actually this is not
the case that some discontinuous functions are not Fowereass For instance, the
convergent trigonometric seriés, - % where0 < « < 1/2, is not a Fourier
series as given by Gelbaum and Olmsted in [27]. Apart fromeserteptions, Fourier

transforms are used to alter the domain of the wave from tarieetjuency.

Eachsineandcosinefunction has a frequency and amplitude. Later on we will call
the plot of frequency versus amplitude of thesiee and cosinefunctions as power
spectrum or periodogram.

On the other hand, many time series can be explained in eifferequency com-
ponents using Fourier transform. As well as, it can be thbagha filter so that the
original time series can be decomposed into different fieegy parts. Specially, finan-
cial time series are showing different behaviors accortingjfferent frequencies and
different time scales [63]. After applying Fourier transfg no time information will
be left to occur. Fourier transform filters the concernecktseries to only frequency
domain. Then from different frequency zones, different porment analysis can be
done.

3.1.2 Continuous Fourier Transform

Let f € L1(R) andw = 27k wherek € R stays for frequency component, then
Continuous Fourier Transform gfis defined as

) = [ it @2
and Inverse Continuous Fourier Transform is given as
16 = [ elfiw)edo (3.3)

If the partei2™t is rewritten by usingEuler's Theoreih [33], then original signal can
be represented onto a set of sinusoidal functions that Etedgo a specific frequency
component.

3.1.3 Discrete Fourier Transform

In order to solve problems with computers, we need to maketiwms suitable for
numerical evolution and implementation. Continuous nucakrcalculations which

boemi2mht — cos(2mkt) — i sin(2mkt).
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are done with computers are using actually approximatechasons. Due to infinite
number of elements, we need to do sampling before implemg/urier transform.
Then transform with discrete function is called discreteii@r transform. For inte-
grable functionf which hasN samplesk/N = wy, is frequency component, Discrete
Fourier Transform off is defined as in[62, 33],

N
:D[k’/N] _ N—1/2 Zf(t) 6—27ritk/N
t=1

N1/ (ﬁ; F(t) cos (27;?’“) - Zi F(t) cos (27;““» (3.4)

t=1

fork=0,1,...,n
If we consider DFT then amplitude and phase are given relspgcas

V Re(D[k/N])2 + Im(D[k/N])>
N

[O[k/N]| /N = (3.5)

and

arg(D[k/N]) = atanZIm(D[k/N]), Re(D[k/N])) = —i * In (%) . (3.6)

where atan2 iarctan representation for two variablds.

3.1.4 Spectral Analysis and Periodogram

Distribution of the variance of the signal(t) over the frequency ingredients can be
represented by the power spectrum. In addition spectrugsginformation about pe-
riodicity of the datal[1B]. In other words, cyclical beharg®f the time series can be
viewed in the frequency domain [32]. However, as we mentidneSubsectiof 3.111,
all time knowledge will be lost after Fourier transform. Mower, Fourier analysis is
effective for only periodic and stationary time series [55]

The Short-time Fourier transform (STFT) and the Gabor fans are designed to
divide the time series into little pieces to add new paramageime shifting near the
frequency([28]. However it brings a problem about the leraftthe slice that is not fit
with both time and frequency at the same time. If a window fiomchas wide interval,
then the consequence gives better frequency resolutiodebétee bad time resolution
and vice versa. In addition STFT doesn't give informatiopuidifferent resolutions.

The spectrum of the windowed time series can be given as [55];

N
STFT,(n,w) = > a(t)h*(t — n)e ™", (3.7)
t=1
2 See |http://en.wikipedia.org/wiki/Discrete Fourier trans form | [Retrieved

23.11.2014]
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Xt ch[‘*’k]

signal transformed
signal
XXt | C‘b[wk] |2
autocovariance power
spectrum

Figure 3.1: Relation between power spectrum and autocowagia

whereh(t) is a window function centered at a time pointw is the angular frequency
andh* is the complex conjugate of a window function. In order taralkize the energy
spectral density of(¢), spectrogranof the time series is written as

2

Spectrogram(n,w) = | x(t)h*(t —n)e ™| . (3.8)

t=1

Power spectrum is obtained by taking the Fourier transfdram@utocovariance func-
tion. The connection between autocovariance and the pquestrsim is that inverse
Fourier transform of the power spectrum is autocovariancetion. Loop for the
signal, autocovariance and power spectrum can be showntas inelow graph for
discrete Fourier transform.
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In general formperiodogramof the time series can be written as

2

—2miwgt

. N . 2
— %(;xtcos (27;\{115/{:)) +% (;xtsin (27;3%)) . (3.9

If we consider the sample autocovariances, we can write éhegogram forv, = 0
asl(0) = Nx? andwy, for k # 0 by following equation,

N—-1
I () = e it = 5

——(N-1) h=1

MZ

) cos(2mwyih), (3.10)

where7(h) is the sample autocovariance and for lafgey(h) is approximately unbi-

ased fory(h). In other words we have the equalify(h)] =~ v(h). Then we can edit
Equatiorf 3.0 as
N-1 00
B[l (we)] ~ Y(R)e Tt a3 (R)e 2t
h=—(N-1) h=—00
= )+ 2 Z v(h) cos(2mwih) = f(wy), (3.11)

wheref(wy) is spectral density
On the other hand thecaled periodograns given as

Py(wy) = (%) L(w). (3.12)

. 2
The part|>.Y | z,e 27| in Equatior3.p which is linked to discrete Fourier trans-

form of the time series is called @aower spectrumAll the definitions according to
spectral analysis above are also valid for continues casiéally, the idea of peri-
odogram was created to identify and measure the amplitudmefand cosine factors
whose frequencies are known [13]. Many researchers usemtpgram to analyze the
data in frequency domain. For instance, Box and Jenkins ihy4&d periodogram
for detecting the randomness of the time series and findiriggie parts of unknown
frequencies.

Spectral Density
If a number of processes in a function repeat itself in a agedap, we consider the
periodicity issue in this function. Sine and cosine funasi@are periodic functions.
They are used to define periodic processes. Then perioditidncan be written as
follows

xy = By sin(2rwt) 4+ By cos(2mwt), (3.13)
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where B; = Asin¢ and B, = —Acos¢ are random variables. Then the ampli-
tude isA = /B?+ B2 and the starting point which is called as phase)is=
tan~!(—B;/B,). In addition, B, and B, are independent if and only il and¢ are
independent random variables with some conditions [62¢nTthe autovariance func-
tion of z; in Equatior 3.1B for independent, andB; is

CoOV( Ty, T¢)
= o {sin(27w(t + h)) sin(27wt) + cos(2ww(t 4+ h)) cos(2rwt)} . (3.14)

From the trigonometric equations which are sum and diffeedormulas[[16], we can
write Equatiori 3.14 as

COV(z4 14, 7) = 02 cos(2mw(t + h — t)) = o cos(2nwh), (3.15)
whereh = |s — t| is the lag for every andt.

In general form, as Schuster pointed outlin/ [59] that ped@diries can be written as
the sum of the several number of sine and cosine functiorsasiEL3]

m

Ty = Z [le sin(27rwl-t) + Big COS(QWwit)] s (316)

=1

whereB;; and B;, are independent zero-mean random variables with variarfctes
i=1,2,...,m. Inadditionw,’s are distinct frequencies [28]. Then the autocovariance
function ofx; that is defined in Equatidn 3.6 can be given as for indepdmdadom
variablesB;’s

y(t + h,t) = Z o2 cos(2mw;t). (3.17)
i=1

The autocovariance in Equatibn 3.17 depends on only thentztglepend on andt.
Thereforer; is a mean-zero stationary function with variarice [62]

m

Y(0) = va(t, 1) = E(x7) = cov(z,, z) = Y o} (3.18)

i=1

Shumway and Stoffer mentioned [n [62] that Equation 3.16@lgfor almost all sta-
tionary time series [62]. Then one can link the spectral ysislof stationary time
series with variance analysis. If one fix the frequencin Equation 3.18 as’, then
process complete’ cycles for anyt = 0, +1,+2,.... One can write the autocovari-
ance function in Equation_3.115 by using the Euler’s theor@8] pnd the Riemann
Stieltjes integration [7] as

o (6727riwlh_'_627riw,h>

2
COV(.I'tJrh,.I't) = ?

1/2 ‘ 1/2
= / AT AR (w) = 2 / cos(2nwh)dF (w), (3.19)
—1/2 0
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whereF(w) is spectral distribution function and given by

0 if w< —w,
Flw)=10?/2 if —w <w<d, (3.20)
o? if w> .

If the absolute sum of the autocovariance function with eespo Equatiorh 3.13 is
finite whereh is between-oco and oo, then we can write Riemann Stieltjes for=
0,£1,£2,...as

1/2 1/2
COM(Tyip, Ty) = / Xl f(w)dw = 2/ cos(2mwh) f(w)dw, (3.21)
- 0

1/2

with the inverse transform of thepectral densityas

o0

flw) = Z COV(Zyp, ) e 2™ = 4(0) + 227 ) cos(2mwh), (3.22)

h=—oc0

where—1/2 < w < 1/2. In other words,F’(w) = f(w) in caseF(w) is absolutely
continuous. The spectral density is even function of pedod. As a result one can
verify that f (w) is illustrated only foro > 0. In addition, f (w) = f(—w) and f(w) =
f(1 —w) as Shumway and Stoffer explained in[62]. Another propestigeing non-
negative, i.e.f(w) > 0. The variance of;,; can be written by choosiniaso,

1/2
var(z;) = fw)dw < oo. (3.23)

—1/2

The autocovariance function and the spectral density immcatch the same properties
of the signal in terms of lag and cycle respectively [62].

The periodogram chooses strong frequencies in the finitglearn the other hand,
for a stationaryr,, the spectral density can be used to define population mddhe.
spectral density is approximation of expected value of teeogdogram as seen in
Equation 3.111. As a result plotting expectation of the p#gram gives similar re-
sult with the spectral density. On the other hand, estimatdhe spectral density
would be the periodogram. Drawback of choosing the pericaiogas an estimator
of the spectral density is providing poor estimate due targaonly two degree of
freedom.

Example 3.1(Examples of Spectral Density: White Noisél)ake into consideration
a series of uncorrelated random variable® with varianceos? [68]. The mean is
tw, = E[wy] = 0 and the autocovariances,(h) = cov(wy, wt) is equal tos? for
h = 0 and equalt ta@) for h # 0. White noisesu, ., andw; are uncorrelated. We find
out thatw; is a stationary (weak) process. Moreover it has a constaméipspectral

density such that
fulw) = a3, (3.24)
wherew is between-1/2 and1/2. It means that the power in each frequency is equal.
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Example 3.2(Examples of Spectral Density: Moving Averag@ssume we have such

a process as;, = %(wt—l + w; + weyq). It has zero mean and the autocovariance of
the process is computed hyh) = %cov(wt_l + Wy + W1, Wepn—1 + Weph, Wethi1)-
Then we get autocovariance function as

2oa,  ifh=0,
252 ifh==F1
B) = ¢ 2% ’
(k) 152 ifh =72,
0 if |h| > 2.

Process is stationary since it does not depengamdt. It only depends on lag. The
spectral density of the process is estimated from Equbi®h &nd given as

2

folw) = Z—g[i’) + 4 cos(2mw) + 2 cos(4rw)].

Example 3.3(Examples of Spectral Density: ARMA Proceskgt z; be ARMA(p, q)
process such that(B)z; = 0(B)w, whereB is backshift operator and, # are oper-
ators for autoregression and moving average respectivehen spectral density of
ARMA (p, q) is given by in [62]

—2miw\ |2
_ o [0(e*™))]

(e
whereg(z) =17 ¢zt andf(z) =1+ Y71, 6,2

fo(w) (3.25)

Assume that we have a ARMA, 1) process such thag = —0.4z;_1+0.62;_o+w; +
0.5w;_. Itis seen that; = —0.4, ¢ = 0.6 andf; = 0.5. Then we have,

10(e27) [ = |1 4 0.5¢727|* = (1 + 0.5¢727)(1 + 0.5¢>7)
= 1.25 4+ 0.5(e 2™ + €*™) = 1.25 + cos(2mw).
|6(e72™ )| = (1 + 0.4e72™ — 0.6~ 1™) (1 + 0.4€>™ — 0.6¢'™)
= 1.52 — 0.2(e7?™ 4+ &™) — 0.6(e” ™ + ')
= 1.52 — 0.4 cos(2mw) — 1.2 cos(4mw).

Finally by using Equation3.25 spectral density of our AR#4;) process is written
as,

) 1.25 + cos(27w)
folw) =0op .
1.52 — 0.4 cos(2mw) — 1.2 cos(4dmw)
However AR part is not satisfy the causality, becausg),| is not outside of the unit

circle. So let’'s change, as0.3 and write the spectral density after same calculations
as

folw) = 02 1.25 + cos(2mw)
S TW.25 — 0.56 cos(2mw) — 0.6 cos(4mw)
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Figure 3.2: The Spectral Densities of White Noise, Moving rage and Autoregres-
sive Process separately in Examiplg 3.1, Example 3.2 and H=&18.

Theoretical spectra of white noise, moving average, agtessive process and ARMA
process are given in Figure B.2 and in Figurd 3.3. The ARRIA) process has the
highest spectrum a& 7777778 at frequency0.5 and it has a spectrum df8595041

at frequency). As we see in Figure 3.2, AR process has also the highestrapeat
frequency0.5 as11.1111111. As a result it has highest spectrum at a period at two
cycles per point.

If we have the same example with only AR process instead of ARMA&, 1), then
we would get the spectral density as

1
2
fo(w) = a3, 1.25 — 0.56 cos(27w) — 0.6 cos(4rw)’

Example 3.4(Simulated Series Examplel.et’s define three sine functions,z, and

x5 with frequenciesv; = -, wy = 2> andw; = — respectively and with each has
100 observations, i.et. = 1,2, ..., 100. Series are given as
27tH 27tH
t) = 3sin(—— 4
x1(t) sin( 100)+ cos( 100)’
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Figure 3.3: The spectral density of ARM2 1) in Exampld_3.B.
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Figure 3.4: Three periodic functions with different freqgaees and their sum.

., 2mt25 2mt25

xo(t) = 2sin( 100 ) + 3 cos( 100 ),
2mt85 2mt85

x3(t) sin( 100 ) + 6 cos( 100 )

Sum of above three functions includes three different feamgy components with re-
spect to sine and cosine components. For equal number afvatisas, function with
higher frequency includes denser signal due to reserving momber of cycles per
unit time. Due to the fact that all three functions are cyadlithe sum of these functions
is also cyclical. In addition amplitude of the sum is totalgitnde of three functions.
In Figure[3.4 three simulated functions and the sum aretititesd.

Shumway and Stofer in [62] gives the formula of the scale@bpegram as

P (%) - (% Zn:a:t sin (?)) + (% zn:xt Cos (?)) 7 (3.26)

wherej /n represents thgth frequency. The peaks values in Figlrel 3.5 and in Fig-
ure[3.6 are the values which are the square amplitudes ofrthéaged functions by
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Figure 3.5: Periodogram of sum function by using FFT.

using the Fast Fourier Transform. We get the mirrors of peatksrespect to frequency
0.5 for each function sinc®(j/n) = P(1 — j/n). Figure[3.5 shows the periodogram
of sum function. If we change the third frequency.gs= 75/100, we will see 4 peaks
instead of 6 peaks since the periodogram of the second ariditddunction will be
the same. If we choose tHé&' and 2" functions same, but™ one by changing the
frequencyws = 50/100 then we will get 5 peaks.

Example 3.5(DAX Data). In the below analysis, DAX data from R program database
is used and it has 1860 observations with frequency 260.

It is seen from ACF plot of the data DAX that the time series isstationary since all
autocorrelation values exceed the confidence interval.

Histogram is skewed right (positive). In Figdrel3.8, histg on the right has more
number of cells and so details are more visible. Data isidigid non-normally. In
general normal distributed data is symmetric and it has tecdre. mean, median, and
mode are all same. On the contrary, mean, median, and modifarent each other
for the non-symmetric distributions. In order to have areidé centerness issue for
data which has a skewed histogram, it is better to look alhadd measures. It is seen
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Table 3.1: Basic Statistical Results of DAX Data

Min. | 1st Qu.| Median | Mean
1402 1744 | 2141 2531
3rd Qu.| Max Mode Kurtosis
2722 6186 | 1542.77| 4.565346

in Table[3.1 that median, mean and mode values are diffeaeht @her for DAX data
which means that distribution is non-normal. Having loweuids cause also skewed
distributions. Last two figures in Figute 8.7 show the Quarfuantile plot that is
fitting sample data to the normal distribution. We see themamal distribution from
the S type of the line which is not fitting the normality line.

In Figure[3.9 the right top graph shows the estimated sgedtrasity of DAX data
by smoothed periodogram using FFT. Algorithm uses taparmaent to link relation
between the series and taper by applying a split cosinedyf tto the beginning and
the end of the time series. It should be between 0 and 0.5.tHeee argument is 0 and
there is no character to qualify log scale. The figure on tfidbtdtom has a log scale
characterization and it is seem that it is hard to read theifgignt spectrums which
are related to seasonality. The AR fitted spectrum figureistsnef four methods.
OLS method and Burg method almost follow each other. Other YueWalker and
MLE methods, OLS and Burg methods are giving better spectesults, since we
can realize peaks better.

In Figure[3.10, first graph is the periodogram of time seridXDOther graphs are the
smoothed ones with using modified Daniell smoother and widftsmoothing values
are given in graphs. It is seen that, after some values ohwiilis easier to catch the
important peaks. In addition to peaks between frequen€ie¥240-60 and frequency
about 40 in the AR fitted spectrum, we catch the peak betweguéncies 110-120.

In Figure[3I1, again Daniell smoother is used with the Keamgument. It gives
almost same periodograms with spanning argument, but kargement makes the
periodogram smoother than span argument does.

3.2 Wavelet Theory

3.2.1 Introduction

Wavelet theory is a nearly recent and popular issue in alalbshgineering and sci-
ence areas. Itis applied in many areas like finance, ecororage processing, signal
analysis etc. One of its important properties is providingiatiresolution analysis
to get decomposed parts of signal for analysis, processiegoising or compres-
sion [15]. Specific examples of usage areas can be givensasisalata for geologists,
voice and fingerprint data for FBI, image processing like J2BG0 standard [2] for
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NASA, pattern recognition, filter design, de-noisingl[36€].e

For any independent scale, data can be analyzed by consrmualiscrete ways. Tong
says that wavelet analysis is very significant tool for finalhmarket data for short term
prediction and the calculation of the variance in relatoparticular time scales [54].
In financial markets, it is very important to look time-scdiecomposition with mul-
tiresolution analysis for traders. For example short-taaders are interested in the
detailed parts which are included in wavelet coefficientictvlare constructed by high-
frequency filters and for long-term traders vice versa.

People have used Fourier transform for many years to uraaetshe characteristic of
functions or signals in the view of frequency. However, keutransform has some
drawbacks compared to wavelet transform. Specificallynfired time series like stock
market prices includes high-frequency data and Fouriersfoam is insufficient to
analyze these types of data, since it does not have the #eaiid detailed parts. On
the other hand wavelets ,which is called as mathematicabstope by Burke in [14],
have resolution information.

Here are some properties which make us to use wavelet tramsédher than Fourier
transform:

e Fourier method requires stationary data while waveletsfiaams does not re-
quires[[45]. In addition to capturing stationary and noatishary signals, wavelets
also catch signals that are aperiodic. Especially thesarddges are very im-
portant in analyzing financial time series.

e Projections of a data onto Fourier space are fundamentalafwhere projec-
tions of a data onto wavelet space are fundamentally locahcH, one can go
into desired details of data with wavelet transform likengsa microscope [57,
[14].

e Fourier transform only provides frequency analysis whilevelet transforms
ensure that data can be analyzed for any times with the ddie@quency details.
Time-scale information has importance for complex dats et financial time
series.

e Most of wavelet algorithms are faster than Fourier algongheven faster than
FFT (Fast Fourier Transform).

e Wavelets provide catching breakdown points, discontiesidind self-similarities
if there exist.

Both continuous and discrete transforms will be given in seeohnical and math-
ematical details in the next subsections. Relation betwesrelst transforms and
multiresolution analysis will be covered to understand howover a function with
detail and smooth parts.
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3.2.2 Continuous Wavelet Transform

The continuous wavelet transfori, ,, of signalz(t) is actually done by dilation and
translation of the mother wavelét) in order to measure the difference in the signal
for specific frequency and specific tinie [46]. Equafion B.2dves continuous wavelet
transform.

Yoo = [ eyt (3.27)

(e}

where

Y (t) = [u| 72 0 (t - “) . (3.28)

u

The parametersg andv are dilation (or scale) and translation (or location) pagters
respectively. These parameters make wavelets flexible asyl &lapted tools. Ac-
cording to their flexible structure, one can analyze difié@mponents aof(t) easily.
Original function has only one variablavhile new one has two variablesandv. The
signalz(t) can be also written from its wavelet coefficients. This innpdatation is
called “synthesizingand signal can be written as:

o) =g [ [ Xewtualt)a?)ded (3.29)
Ci/) —00 J —c0 '
whereC,, is given in Equatiof 3.30.

There are some conditions for constructing desirable fioams as Gencay et al. men-
tioned in [28] according to the mother wavelet Firstly, ¢(¢) needs to satisfy the
admissibility conditiorwhich is given as

/OO de < 00, (3.30)
0 w

wherew is frequency and is the Fourier transform af(¢). Admissibility condition
makes the CWT invertibleé [45]. In addition it signifies that theurier transform of
Y (t)disappears where the frequency is zero such as

|€(w)* |uzo = 0. (3.31)

Valens says in[[69] that since the Fourier transform at feeqy zero is zero, this
ensures that the wavelets have a band-pass similar to spectr

Condition of being zero for (0) or following condition in Equatiof 3.32 provides the
finitenesof Cy, [28]. So it can be said that wavelets have zero average arefone it
has a shape of wave or wave form.

/OO Y(t)dt =0, (3.32)

Another condition stays for that wavelet function has umérmgy (according to its
domain integrated squared function) and it can be shown as

/OO () =1. (3.33)
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Under the construction of above conditions, the wavelettion must have at least
some nonzero coefficients and these nonzero coefficientsaanisel out([28, 60].

One can analyze or decompasg) by wavelet basis using the above structures. In
addition, if Equatio3.30 holds therit) can be reconstructed from its wavelet coeffi-
cients as given in Equatidn 3]29.

In practice it is nearly unachievable to use all wavelet ficiehts to analyze the signal.
One cannot compute almost infinite number of coefficients daydhor by computer.
In theory, it is more applicable to use CWT for continuous fiored but not for time
series or discrete signals as Masset pointed olt in [46]. resualt it is better to work
with sampled wavelets.

3.2.3 Discrete Wavelet Transform

Critical Sampling
Beside the calculation problem, CWT has also drawback comonmg fion-essential
information. Because the CWT has two variables, they bring nmicie information
than necessary. As a result one needs to struggle with exeastrmation as well.
However we can eliminate the information that we will not usethe help of dis-
cretization of the CWT[[28]. Two variables of CWT, i.e andv, can be reconstructed
for anyk andj as

vu=a"’ and v=kba . (3.34)

For dyadic wavelet bases,andb are chosen as 2 and 1 respectivelyl [45]. Critical
sampling is used for choosing minimum number of coefficié&rum the CWT with-
out any missing information. The scaldrs- 1,2,...,27 andj = 1,2, ..., J are stays
for again translation and scale factors respectively. Tdaesnumber can reach its
maximum if the dyadic power of scale is equal to number of pla®ns, i.e2’ < N
orJ <log,(N) < J+1whereN is number of observations in data set. Consequently,
DWT requires dyadic length for transformationaft). If the signal has not a dyadic
length, one can take away some observations from data seeaam add some obser-
vations (generally zeros) to data set to make the lengthidy&irst way invites loss
of information, so compared to first one second way is moregpjate. Using zeros
to complete data set is calledéro padding The sample mean or the last values in
the series are other examples to pad the signal.

Then foru = 277 andv = k277, we use the CWT to write new wavelet transform and
mother wavelet such as -
Xk :/ x(t);(t)dt, (3.35)

where .
Yin(t) = 200(2t — k). (3.36)

The functiony(¢) is also called as basis function as a result of reproducing;al¢)
functions. Resolution of the DWT is described in both time aeddiency bycritical
samplingwith the set of discrete dilations and discrete translatidrhe wavelet basis
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is consists of the mother wavelet and the father wavelet. fatier wavelet is given
also in the same form of the mother wavelet as

o k(t) = 2 (27t — k). (3.37)
The DWT is constructed by high-pass (or wavelet) filter and-pags (or scale) filter
that are shown a8, = (ho,hy,...,hy—1) andg, = (90,01, ..,91—1 respectively
wherel is length of filters. As a result, the wavelet filter capturgghkfrequency (i.e.
short scales) components and the scale filter capturesreayuéncy (i.e. long scales)
components. These two filters creat®aadrature Mirror Filter (QMF) pair [73]
and if wavelets are orthonormal, they can be written in thieiong equality forl =

0,1,...,L —1as[28]73]
hi=(-1)'gp-1 and g = (=1)""h_. (3.38)
QMF reduces the aliasing effects which appear while the @ation is done([74].

For desirable frequency gap, it is possible to construcdhzass filter from high-
frequency and low-frequency filters. Details are covereddgncay et al. in[[28]
between pages 106 and 110.

Wavelet filter has three properties given as below

1. summation to zero:

h =0 (3.39)

2. unit energy:

=1 (3.40)
3. orthogonality to even shifts:

L—1 o)
Z huhigon = Z hihiion =0 forallintegers except £ 0  (3.41)
=0

l=—o00

Wavelet filter is familiar with the difference operator amting to first and second
properties([[46]. In addition, second property shows thargy is protected in the
series [[40]. Both second and third property implies the atmality, i.e. wavelet
coefficients are independent or uncorrelated to constracelet coefficient bases [52].

Then according ta,, the scaling filtery, has following properties:

1. summation tat/2:
Zgz =2 (3.42)



2. unit energy:

> a’=1 (3.43)
=0
3. orthogonality to even shifts:
L—-1 00
ZQZQH—Qn = Z Gi91+2n =0 (3.44)
=0 l=—00

4. orthogonality to wavelet filter at even shifts:

L—1 0o
S ghiion = > gihiyan =0 (3.45)
=0

l=—00

In the form of wavelet and scaling filters, the father and tloéirar wavelet can be writ-
ten as below equations respectively by using dilation egadahat is clearly explained
in Strang’s paper [64]

o(t) =22 "gp(2t —1) and (t) =272 o2t — 1), (3.46)
l l

wherel =0,1,...,L —1.

Crowley mentioned in [20] that the mother wavelet stands yofical part of data and
the father wavelet stands for the trend. By the help of flexsbiecture of wavelets, one
can go into details for high-frequency and low-frequencanponents for any time.

Construction of the DWT
Assume we have time seriast) with dyadic lengthN = 27. Then we can write
wavelet and scaling coefficients as

w = Waz, (3.47)

whereW is an N x N orthonormal matrix of DWT and the length of the vector=
[wy,ws, ..., wy,vs]T is J + 1. In order to satisfy Equatidn 3.4W must have length
of N. Hence we set the length af; asN/2/ and the length of; as N/2/ according
to scale lengths as; = 2/-! and\; = 2/~! respectively wherg = 1,2,...,J. Let
hg.o) be unit scale wavelet coefficients. If the length of the fiigek, then elements that
are betweerl. and N, namelyL < ¢t < N, are zero. So the filter vector is given as

WO = [hy(N = 1), hi(N = 2),..., by (1), by (0)]" (3.48)

Then, we define the orthonormal wavelet coeﬁicie{hi@, hff), . ,h?*l)] by shift-

ing each element digo) with length of27 in each step. As a result next step gives the
vectorh{?) = [hy(1), 7y (0), by (N = 1), by (N —2),. .., h1(3), h1(2)]” and so on. After

% — 1 steps we find the matri¥/; as given below

T
N _
Wy = [0 @ p© (3.49)
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Other matrices$V’s are set up similarly where the scale factojis 1,2,...,.J. One
can write the matrixV with submatrices as

W - [Wl W2 e WJ VJ]T, (350)

whereW, is (N/27) x N andVj is (N/27) x N matrices wherg = 1,2,...,J.
The matricesV; andV; can be written by using the high-pass and low-pass filters.
Construction oW can be also done in different ways like defining submatrices f
high-pass and low-pass filters again where sorting of therdiltan be different from
Equatior{3.48. Each submatrix is defined from first quartgre¥ious submatrix]4].
Let's show a simple construction example of DWT with usigllat’s pyramid algo-
rithm which will be illustrated in details after Equatibn BL6 [43]

Example 3.6(Construction Example of DWT)Assume that we are dealing with time
seriesz(t) where number of observations # = 16 and the length of the filter is
L = 4. Then8 x 16 matrices{H;,G1}, 4 x 8 matrices{ Hy, G2}, 2 x 4 matrices
{H;,G3} and1 x 2 matrices{ H,, G4} are written as follows by taking first quarter
part from previous matrix 6],

i he 00 0 0 0 0 0 0 0 0 0 0 hy h
hs hs hi he 0 0 0 0 0 0 0 0 0 0 0 0
0 0 hy hy by hg 0 0 0 0 0 0 0 0 0 0
|0 0 0 0 By hy b ke 00 0 0 0 0 0 0
=10 0 0 0 0 0 hy hy b hg 0 0 0 0 0 0
000 0 0 0 0 0 0 hy hy hy hg 0 0 0 0
000 0 0 0 0 0 0 0 0 hy hy hi hg 0 0
(000 00 0 0 0 0 0 0 0 0 hy hy hy ho
biohe 00 0 0 hy hy
b |hs b hoho 00 00 0
2=10 0 hy hy by ho 0 0]
000 0 0 hy hy hi ho
hi ho hs hs
H?’—[hg hy ho}’
Hy= [ hs).
G 0 0 0 0 0 0 0 0 0 0 0 0 0 g g
G5 &2 91 90 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g5 g 61000000000 0 0
G |0 00 0 5% og g g0 0000000
00 0 00 0 g6 g g 00000 0
00 000000 g 6agp0o0 0
00 00000000 g ¢agp?00
000 000000000 0 g5 60 g5 o
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g1 9 0 0 0 0 g3 92
G, = |B 92 9 % 0 0 0 0

0 0 g3 92 g1 90 0 0"

0 0 0 0 g5 g2 91 9o

G — g1 9o 93 92
3 — )
g3 g2 91 9o

Gy = [91 92} .

The relation between the high-pass and low-pass filterssengn the Equatioh 3.38.
Then the matrixV is written by usingMallat’s pyramid algorithmas

Wy H,

W2 HQGl
W = W3 - H3G2G1

W4 H4G3G2G1

Vi G4G3GaGy

Then we can get the vectarby multiplying the original time series BY/. In general,
coefficientsw,’s have length ofV/27 andv, has length ofN/27. In Example[3.5,
w1, we, w3, wy anduvy has 8,4,2,1 and 1 observations respectively.

Pyramid Algorithm
Now we consider the construction of wavelet coefficient£MfT. Letz(¢) be time se-
ries with N observations{x(1), z(2), ..., z(N)}. The mother and the father wavelet

filters convolute with the time series to get first level of tecomposition of the
wavelet and the scaling coefficients. Before passing toRyeamid Algorithm [43]

that describe a iteration algorithm to construct the wa\asle scaling coefficients [43,
48], let’s write the first coefficients for both the waveletiahe scaling coefficients as

L—1 L—1
wi(t) =Y (') and vi(t) =Y ga(t), (3.51)
=0 =0

wheret =0,1,...,(5) —1andt = 2t + 1 — [ mod N. Wavelet coefficients at the
first scale includes the highest frequency componenis dif is seen that the number
of samples is divided into half of its value far,(¢) andv,(¢). It is the preliminary

of the first step of pyramid algorithm. The varialileensures the subsampling and
positiveness of step af. Masset point out that modulus stays for solving boundary
problems|[[46]. Construction of the pyramid algorithm takkape from iteration of
the scaling coefficients in the Equation 3.51. In each s@ppse size is decreases as
the half of the previous step (downsampling by 2). For exampthe second step time
variables are given as= 0,1, ..., % —landt =2t+1—1 mod N for wy(t) and
Ug(t).

After J step iterations wherg = [log, N is the scale, one can get the wavelet and the
scaling coefficients as

L-1 L—1
wy(t) = huy(t) and v(t) = gy (t), (3.52)
=0 =0
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Figure 3.12: Flowchart of the pyramid algorithm for decomsipg. In every iteration
each coefficients divided by 2 which is called downsamplisg@ntioned by Gencay
et al. in [28]. Frequency decreasesjascreases.

LEVEL 2 § LEVEL 1
a0, h : 21
2] au(t) h
do(t S
20 g 2 LX)
did) |
o — g

Figure 3.13: Flowchart of the pyramid algorithm for syntise#n every iteration each
coefficients multiplied by 2 which is called upsampling aswiened by Gencay et al.
in [28].
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wheret = 0,1,...,(55) — land# = 2t + 1 —{ mod N. At the end of iterations,

vector space with wavelet and scaling coefficients occutmebmsv,

W = [w1 Wo ... Wy UJ]T. (353)

This vector contains the all frequency components accgrtbnour choice of scale
band in related times. It is also known as the filter bank aggno It is not necessary
to implement all scales, i.e. scale can be less thaihen it is called partial discrete
wavelet transform (PDWT).

In the above constructions we used high-pass and low-pé&ss fibr the decomposi-
tion of the time series(¢). Reverse operation for the DWT is used for reconstruction
of the original time series(¢). Reconstruction is done by opposite iteration of the
last level of the wavelet and scaling coefficients using tated filters([28]. Down-
sampling is used for decomposition. On the contrary, upsams employed in each
iteration for reconstruction of time series. Then the vextg, andv; are given as

wy = [0,w;(0)]" and o4 = [0,v,(0)]". (3.54)

Then the scaling coefficient;_; is

L—1 L—1
v () =Y () + ) g (t), (3.55)
=0 =0

wheret = 0,1 andt = t + 1 mod 2. Then second step is similarly done with
upsampling such that

L—1 L—1
via(t) =D hw) () + > gl (1), (3.56)
1=0 =0

wheret = 0,1,2,3 andt’ =t + 1 mod 4. If the iteration procedure is keeping until
the first level of wavelet and scaling coefficients by usingarppling, the original data
set can be obtained as

L—1 L—1
w(t) =Y hwi(t) + > gwi(t), (3.57)
=0 =0

wheret =0,1,2,...,N —1landt’ =t+1 mod N.

Vuorenmaa points out in_[71] that Mallat’s pyramid algoniths also called as Fast
Wavelet Transform (FWT), because the algorithm requiregiphigiations at most of
order N rather than DWT’s multiplications which is at most of ordgf. He is also
adding that Fast Fourier Transform requires at mésbdg, N multiplications which
has larger calculation steps than FWT as well. As a result, F8Wery effective
algorithm for big data sets.
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3.2.4 Maximal Overlap Discrete Wavelet Transform

Discrete wavelet transform (DWT) has some drawbacks duedletgin of the con-
struction. For instance, DWT need a data which has dyadidheagcording to us-
ing downsampling and upsampling in analysis and synthesisectively. Otherwise
one needs to add some observations or remove some obsesvatimake the length
of data dyadic. MODWT, which does not employ upsampling angrg@ampling,
does not require dyadic length whereas DWT restrict the datéehgth2/+ where
0 < Jp < J+ 1. Moreover, Gencay et al. states(in[[28] that the MODWT is uyivey
to circularly shifting the data set where the DWT does not lioéd property. In addi-
tion, it is mentioned that the variance analysis of MODWT igreneffective than the
variance analysis of DWT [53].

One can get the MODWT by settingandv as2~7 andk respectively. It means that
scaling parameter is same as DWT'’s parameter, but trargiadirameter provides that
in each scale there are same number of coefficients in the MORWE parameter is
k277 in DWT. In other words number of wavelet and scaling coeffitieare equal to
length of the original time series in at every step of thetfanm since subsampling is
not implemented in the MODWT differently from the DWT |16]. @thsteps are done
in similar ways as done in the DWT.

Consider the same time series that is used in the DWT constnuantid letv be wavelet
and scaling coefficients of the MODWT,

W= [ﬁ;17ﬂ527"';ﬂ5(]7,6(]]T7 (358)

where length ofi; is V/27 and the length ofi; is N/2” according to scale lengths
as)\;, = 2771 and)\; = 277! respectively wherg = 1,2,...,J. DWT wavelet
and scaling coefficients can be captured by subsampling estdling the MODWT
coefficients, mentioned by Gencay et al.[in|][28]. Relatiarsifavelet coefficients can
be written as

w;(t) = 222w (29 (t + 1) — 1), (3.59)
wheret = 0,1, ..., % — 1 and relation for scaling coefficient can be written as

vs(t) = 2720,(27(t + 1) — 1), (3.60)
wheret =0,1,..., % — 1.

) 9J

In similar way to the DWT, the vectaw can be constructed using high-pass and low-
pass filters. Details can be found in Gencay et al. betwega9435-137[28]. The
vector of coefficients is written such as

W =W, (3.61)

whereW = [Wl, Wa, ..., Wy, V,]7is (J + 1)N x N matrix which implies that each
W, andV; are N x N matrices. It ensures that in each scale level number of the

coefficients is equal to number of the observations in the tg@ries that isV. It
shows that the MODWT can handle with any size of data set.
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In order to compute the MODWTpyramid algorithm’that is showed in Figuffe 3.112
and in Figuré_3.13 is applied without using downsamplinguf@sampling in the oppo-
site direction). Algorithm again starts with convolvingettime series with high-pass
and low-pass filters to get first level wavelet and scalindfaments as following

L—1 L—1
i(t) =Y () and Bi(t) =Y Ga(i), (3.62)
1=0 1=0
wheret = 0,1,...,N — 1 andt = t — [ mod N. In order to get second level of

wavelet and scaling coefficients,(¢) is convolved with the high-pass filtey and low-
pass filterg,. After J iterations, where/ = log, N, wavelet and scaling coefficients
are written as

L-1 L-1
wy(t)=> hvy_a(t) and T,(t) = Gis(b), (3.63)
=0 =0

wheret =0,1,...,N — 1l andt =t — 2/~' mod N. Then decomposition gives the
vectorw asw = [w, ws ... w; v )T.

Reverse iteration is also done with similar way used in DWT! leasl of wavelet and
scaling coefficients are convolved with high-pass filter Emdpass filter respectively.
Afterward, summation of two convolving parts gives the sgatoefficient of previous
level as given below [28],

L—-1 L—1
Tyoa(t) =Y hiws () + > Gvs(h), (3.64)
=0 =0
wheret =0,1,...,N—1andf{ =t+[ mod N. Iteration can be continued up to first
level of wavelet and scaling coefficients to get the origtirak series as
L—-1 " L—-1
w(t) =Y () + > qin(h), (3.65)
=0 =0

wheret =0,1,...,N —landf =t 4+ mod N.

Example 3.7(MODWT Example) Assume that we are dealing with time seri€s)
where number of observations 6 = 8 and the length of the filter i& = 2. Then

8 x 8 matrix ﬁl is written as follows,

Ty 00 0 0 0 0 hy
hy hy 0 0 0 0 0 0
0O hy , 0 0 0 0 O
~ 0 0 hg 0 0 0 O
o, = .
0 0 0 hy hy 0 0 0
0 0 0 0 hy hy 0 0
0 0 0 0 0 hy hy 0
(0 0 0 0 0 0 hy hy
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HQ is calculated by replacmgl by s in H1 andH3 is calculated by replacmgl by

hs in H, [71]. Slmllarly8 x 8§ matricesH,, H, and H; are written in the same way
with filters g, g» andgs.

Then the matriX\ is written by using agaiiMallat’'s pyramid algorithmas

W H,
w— |W2| = | HGo
Ws H3GyGY
Vs eenel

It is seen than,W%Wg andX73, have8 x 8 entries which shows that there is no
downsampling.

The MODWT is called by other names as “translation invariadtD, “time invariant
DWT”, “redundant DWT", “stationary DWT” and “undecimated DWT538,28]. Both
DWT and MODWT provide a scale based multiresolution analysi$ scale based
variance analysis. Pyramid algorithm can be applied to tratisform. However they
have some differences due to the construction of transfoiithe DWT requires time
series with dyadic length and it is affected by circular tshib time series. On the other
hand, the MODWT can handle with time series with any numberbskovations. In
opposition to the DWT, the MODWT is not influenced by circulaiftsh The MODWT
gives always same coefficients although there is a timeishatiginal time series. In
addition the MODWT is not orthonormal where it causes beirghlyi redundant as
Percival and Walden pointed out in [53].

3.2.5 Multiresolution Analysis

Definition 3.1 (Multiresolution Analysis) MRA algorithm divides data into vectors
of coefficients which are linked to the specific time scale®RRAs a series of closed
nested subspacé¥; j € Z} in Ly(R) with the conditions below/[[26, 7L, 70]

1. {¢(z — k); k € Z} is an orthonormal basis fdf, where¢ is scaling function of
the MRA

{0} C---CV; CVjj C--- C Ly(R)
Closure ofUjc7V;) = Lo(R) such that any union is dense ifR)
N,ezV; = {0} so zero element is the only common object

. f(t) € Vi< f(2t) € Vi1 SOV — spaces are self-similar

o o oA w N

. V11 = V; @ W; where the spacl/; is thejth resolution level of the MRA[71]
andV; N W, = {0}
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In first property, it is seen that if we translate any functionl;, then we get new
function again inl;. Similarly, wavelet function (or mother wavelet) creates an
orthonormal basis for; that is orthogonal complement &f in V., [26]. This implies

that in general form, scalingp) and wavelet(y)) functions are basis fo¥; and IV
subspaces respectively whélg is difference ofl;; andVj. In practice we start
from subspacé/;, and then add other subspaces to enlarge space. Secondtyroper
shows the nested space. Third and fourth properties sh@nasrih of space.

We are using dilation and translation parameters to cowef4fIR) space. Main idea
of the MRA is writing L»(IR) space or any function in it by combination of detail and
smooth parts.

One can gev;,, from last property in Definitiof 3]1 as

Vim=VooWoeWi®---aoW;). (3.66)

Fryzlewicz pointed out inN[26] that one can take limit in Etjaa[3.66 depending on
the third property in Definitiof 3]1.

o0

6o (@) o @) wen

for any jo. Equatior3.6l7 shows that any data or signal can be writtdargs scale
features described by; subspaces and small scale features (details) can be d=bcrib
by W; subspaces.

According to constructions of the DWT and the MODWT, origiriade series can be
written by the combination of the wavelet and scaling coefits. In Equatiof 3.47
« can be written by multiplying both sides by”. SinceW is orthogonal matrix,
its transpose is the inverse of itself, i.8&VW? = |. Then we getr = W'w. In
Equation 3.61LW is not orthogonal matrix but we can find the parts of origiralet
series in each scale level by multiplying transposegtbflevel transform matrix by
related coefficient matrix. For example we can fjitkd detail level ofz(t) as

dj = W w;.

Firstly let's define the reconstruction of the MRA for the DWThdathen do it for
MODWT. In Exampld_3.6, we defined tiw by the pyramid algorithm. If we write it
in general form; can be written as

xTr = lel + G1H2w2 + Gngngg + -
+G1"'GJ_lHJwJ+G1"'GJ_1GJUJ. (368)

In the additive decomposition components are called asl @eié smooth by Percival

and Walden in[[53]. Detail and smooth components are givenfe1,2,...,.J as
dj = G1G2 e G]’_lij]', (369)
and
Sj = GlGQ...GJ_lHJ?JJ. (370)
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As a result the data x can be written as

J
$:d1+d2+"'+dJ+SJ:Zdj+SJ. (371)

i=1

Equatior 3.71 is illustration of the MRA. The last componentncludes the average
information (or trend) of the original data at the largestle@nd it is associated with
the scaling coefficients. Componenlss, from first scale to last scale, are related to
wavelet coefficients. They are deployed for catching higieguency information, i.e.
they include detail coefficients [46].

All steps are similar in the MODWT. According to pyramid algbm, = can be written
as

xr = ],2711711 + 61]".721’172 + élégﬁgwg + -
-+ él s éj_lﬁjwj + él ce éj_léj;lj]. (372)

Using the variables of the MODWT and put those into Equdtié8l and Equation 3.70
x can be decomposed as

J
v=ditdyt-+d+35,=Y di+5;. (3.73)

J=1

It is not necessary to use all scales for the resolution arsalpr both DWT and
MODWT. One can choose the scale which is less thiame., 1 < J, < J. We
have already mentioned choosirigas partial wavelet transform. Masset says ifi [46]
that it is also possible to estimate the original time sdmegsing the wavelet and scal-
ing coefficients where the scale is betwegrand.J. One of the objectives of doing
the composition in that way is separating out the noise oséasonality from the data.

3.2.6 Wavelet Variance Analysis

We mentioned that Equatidn_3]33 and Equafion13.43 standhfmwisg the unit en-
ergy in the wavelet and the scaling filters. Sample variarfca tme series can
be decomposed scale-by-scale as a result of energy postentthe DWT and the
MODWT [28,[71]. It is seen easily that

|z)* = 2"z = (WTw)TWiw = w"WWTw = w'w = ||jw]|*, (3.74)

whereW is N x N orthonormal matrix and is the vector which contains the wavelet
and scaling coefficients as defined in construction of the DW& a result one can
write energy ofr as

J (N/29)—-1

Iw|? —Z Z t)+05(0) =Y 2(t) = ||| (3.75)
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Simply, energy ofc can be written as follows by using the orthonormality of etens
with respect to the matri¥W as Gencay et al. [28] referred to

J J
11 = [lws 1+ Hlvsl* = Y llds|* + llsa® (3.76)
j=1 j=1
Then decomposition of the sample variancesff@an be written as
. 1 N-1 N 1 J , 1 s
0y = N;(l”(t)—l") = N;H%H JrNHUJH — T (3.77)

wherez denotes the sample meanxoénd written as

1
N

t

x(t). (3.78)

T =

Il
=)

Wavelet spectrum can be regarded as the energyasfd given as
J
2 2 2
Wl =" lwj|* + [lvslf (3.79)
j=1
and if we have the condtiof |vs||* = #2, the sample variance faris

J
1
~2 2
0= Z sl (3.80)

Let’s consider the MODWT as a next step. Energy is protectedetisn the MODWT
like being in the DWT. As a result we get

J
l2l* =D a1+ o] (3.81)
j=1

Unlike the DWT,N x N matrix W is not orthonormal in the MODWT. Consequently
Equatiori3.76 does not hold for the MODWT and|sa [28, 40]

~ |12
;|

;]|* # (3.82)

and )
d, — TTW,W, ;. (3.83)

2 ~T _
s

~ |12
Gencay et al[[28] referenced Percival and Walden [53] HH@H < |J@,||*. Hence it

is seen that the MODWT wavelet coefficients are important mavae analysis, not
the wavelet detail$ [28].
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Estimation of Wavelet Variance
Consider theth level MODWT coefficients as

Lj—1

Z hji%it moany and w;(i Z hjazi—i, (3.84)

wheret = 0,1,...,N — 1 andf = 0,%1,...,£(N — 1). Thenw,(t) andwj( ) are
equal if the conditio; — 1 < t < N [52]. Unbiased estimator ef?()\;) is calculated
for N —L; >0as

2o =— 3 @) =— Y @), (3.85)

whereN; = N — L, +1andL; = (2 —1)(L —1) + 1. As Crowley mentioned if [20]
that Nj is the number of coefficients which are not influenced by bamnffect.
Beside that number of the MODWT coefficients that are computid laoundary
is represented by;. Scale level and length of the filter are showedXyyand L
respectively. Differently from the MODWT, is between; = (L — 2)(1 —277) and

N/27 —1 and equation is normalized by the factor; in the estimation of the unbiased
estimator ofr2(\;) [28].

Referred to Percival [52], one can construct the biased astinofo2()\;) as (here the
MODWT is used)

Lj—2 N-1

53()\]-):%2@]2-@):% S a@n+ Y @] (386)

In Equatior:3.86 the sum from zero Ig — 2 is affected by the periodicity.

In general the wavelet variance is determined for bothataty and non-stationary
processes. If the process is stationary then time-indegpgvavelet variance is con-
sidered for analysis. Time-dependent and time-indepeéndaxelet variances are
showed as? ,()\;) ando?();) respectively. Sometimes they are called also as wavelet

spectrum([711]. We can use the coeﬁicieﬁfgt) in Equatior:3.84 for general purpose
to write the wavelet spectrum as

o2 () = var(a@; (1)). (3.87)

Then the variance af; is given as
var(z;) Z o2, (3.88)

For DWT scale is\; = 2/~ ! and itis in the frequency band @f/27**, 1/27]. Moreover
the wavelet spectrum for the DWT is

o2, () = %var( (1) (3.89)
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Spectral density function (SDF) separated the variance way of frequency-by-
frequency whereas the wavelet spectrum decomposes tlamearon a scale-by-scale
basis. The connection of two spectrums can be written as

1/27

or () = 2/ -~ SL(H)df, (3.90)
1/2i+1
whereS,.(f) is called as periodogram and given as
1|y 2
Sa(fr) = N Z wye I (3.91)
t=0

In Equation[3.91f, = k/N andk represents théth Fourier frequency fok =
0,1,...,N/2.

Confidence Interval for the Wavelet Variance

Let « be our time series withlV observations{zg,z1,...,zx_1}, wWith meany =

E(z;). The variance of the sample mean is(vgr= %2 with z = Zi\:)l x;. Then

(1 — «) confidence interval (Cl) for the mean can be defined as [28]

Ttés (%) , (3.92)
for unknowno?. Moreover unbiased estimator ofis
& =(N=1)"> (2, — 7). (3.93)
t
Basicly we can write the confidence interval as
Pl7— a0 <<t ta U}:(l—a). (3.94)
‘N ‘N
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CHAPTER 4

EMPIRICAL RESULTS

We will consider the daily closing prices of S&P500 data tkaibserved fronYahoo
Financeweb page (http://ichart.finance.yahoo.com/table.csghdth of the data is 21
years which is between 01.01.1990 and 01.01.2011. Therg4d+4 observations in
data set.

4.1 Characteristic of S&P500 Data

First of all we have looked recurrence plots, histogram®) Qlots, ACF and PACF
plots and some statistical tests to understand both daibyra prices and return values
of S&P500 data. In order to see details and to compare reseltyill consider both
S&P500 daily closing prices and its return values. As we ineetd before, return
series is found by logarithmic difference of the originahé& series. Plots of daily
closing prices and return values are given in Fiduré 4.1.

Recurrence Plots to See Characteristics of Time Series

Idea of recurrence plot is that if the phase space trajeabtize dynamical system
passes through the same area in the phase space, then thgigtortest distance. In
other words, it compares two vector of the system and if tridovemeets itself then
the Euclideandistance will be zero. We can write vectors for time seriesvith NV
observations as,

. T
,U(Z) = {xia Ligry Lig 27y« - - axi+(m71)7'} )

wherem is embedding dimension andis the time delay. The corresponding recur-
rence matrix of embedding vectors is given as,

_ o it (i) — ()| > € . _

Ri,j(e)—{ ) — (] o for i,j=1,...,n=N—(m—1)T,

I
Lot o@@) = v()]

where||-|| is the Euclideandistance, and is threshold for distancé [11]. So in our
recurrence plots, lighter shades shows longer distancés ddrker shades represent
shorter distances.

Recurrence plots gives some characteristics of the timesserishow which type the
time series is. Some types can be given as Wiener processij@mWotion), Gaus-
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Figure 4.1: S&P500 Daily Closing Price Data and Return DataalClosing Prices
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Figure 4.2: Recurrence Plots of S&P500 Daily Closing Prices.

sian white noise, periodic signal (sine and cosine signplgke trend signal, log peri-
odic signal etc.[[24].

In our recurrence graph lighter shades show longer distanEabretti and Ausloos
in [24] state that homogeneity in recurrence plot shows tiatsignal has stationary
characteristic. Therefore as we see in the Figurk 4.3,realues are stationary. On
the other hand, in Figufe 4.2 white and light gray bandstilaie the non-stationary
parts. Hence, daily closing prices show non-stationaryadtaristics and divided trend
parts [24]. One can link S&P500 Daily Closing Prices with Waeprocess (Brownian
motion). Then again one can link the return values with Gansshite noise[[51, 50].

Histograms, Q-Q Plots, Normality Tests, ACF and PACF

There may be missing values in historical data sets. Thexefe have to fill the miss-
ing values in both closing prices data and return data to wattkthem. Simply we fill
the missing values with the average of the observed valngSigure 4.4 normal Q-Q
plot shows that distribution is mixture of positive skewadtiabutions and negative
skewed distributions. In Figufe 4.5, it can be realizedmreualues are not normally
distributed. The bulk of the daily return series for S&P58between-4% and+4%.
However Q-Q plot of return series has clear tilted S-shapewtteviates from linear-
ity in both left and right tails of the distribution. The daileturn of S&P500 has much
fatter tails than the normal distribution. In Figlirel4.6 @lots according to normal,
log-normal, uniform and student-t distributions are giviéis seen that none of distri-
butions exactly fit our return data. Student-t distributipres the least deflection from
the line.

We can apply some normality tests to our data set as well. ¥@ample Shapiro-Wilk
normality test can be applied, but it restricts the sampte dietween 3 and 5000.
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Figure 4.3: Recurrence Plots of S&P500 Return Values.

Therefore we use the first 5000 observations in the test. régstts being normally
distributed ifp-value< 0.05. The results for daily closing prices, return prices and firs
difference of daily closing prices are given in Tablel 4.1.

Table 4.1: Shapiro-Wilk and Kolmogorov-Smirnov Tests Resstor Normality for
Daily Closing Prices (DCP), Return Values (RV), and First Difece of Daily Closing
Prices (FD-DCP).

Shapiro-Wilk normality test | Kolmogorov-Smirnov test
W p-value D p-value
DCP 0.9186| <2.2e7-16} 0.1299| <2.2e7-16}
RV 0.9104| <2.2e7-16} 0.082 | <2.2e7-16}
FD-DCP| 0.8902| <2.2e7-16} 0.1197| <2.2e7-16}

According to results of Shapiro-Wilk normality test, pivalues reject the null hypoth-
esis. Therefore none of above data is normally distributethther test for normality
Is Kolmogorov-Smirnov test which has a alternative hypsihef two-sided. It also
says that none of the following data set is normally distedu The results are in

Table[4.].

Let's look the scatterplots of a series versus lagged vadtitise series of both daily
closing prices and its return values up to lag 9.

It is seen that daily closing prices of S&P500 have the largsitive correlation at
each lag until lag 9. According to plots in Figurel4.7, we capthat our original data
comes from an underlying autoregressive model with stragitipe autocorrelation.
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Figure 4.9: S&P500 Return Series and its Absolute and Squameses.

Process is highly non-random. In other words there is strefagionship between an
observation and next observation.

On the other hand, return values have approximately zemeletion at each lag as
seen in Figuré_4]18. Return values seems more random or we ygahnasalata comes
from an underlying autoregressive model with moderate cutelation. It has also
almost zero autocorrelation value for higher lag valuesiddaeturn data seems to be
random. We can consider stock market returns as random wall&eiler and Rom
stated in[[60]. Nevertheless, having almost zero autolzdioa does not mean that
returns are independent over time. Daily returns of S&P3@@vsnonlinear time de-
pendence according to changing volatility in time. In otherds, although many price
of stocks act independently, in crises periods they all terfdll down [22]. In order to
see the nonlinear time dependency in daily return volgtiite will plot the absolute
and squared daily returns and their autocorrelation fonsti

In Figurel 4,10, graph on the left shows ACF of absolute valu®8#500 return values.
Graph on the right shows squared of S&P500 return valuesclear that there is time
dependence in the daily absolute and squared returns.ilNglaf the daily returns
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Figure 4.11: ACF and PACF of S&P500 Daily Closing Prices and itsifReValues.

is expressed by the daily absolute and squared returns. Asudt there is positive
time dependence in daily return volatility. It is seen thalatlity is autocorrelated and
hence it is predictable.

In Figure[4.11 we plot autocorrelation functions and paeigocorrelation functions
of closing prices and return values up to lag 40. The graph®prshows ACF and
PACF of daily closing price series and graphs on bottom sho@s And PACF of
return value series.

ACF of closing prices data shows that original data is conepfaton-stationary. Al-
most all ACF values are close to 1 and they exceed the confidetergal. The data
comes from an underlying autoregressive model with stravgitipe autocorrelation.
On the other hand ACF of return values exceed the confideneevaitat lags 0, 1, 2,
7,10,11,12, 16, 18, 21, 22, 26 and 34 with non important size.

ACF of differenced return values data exceeds confidencevaitat lags 0, 1, 2, 3, 7,
8, 10, 11, 12, 15, 16, 18, 19, 21, 22, 24, 25, 26, 27, 33, 34 amitBonon important
size. First difference exceeds at 13 points while secorfdrdiice exceeds 22 points
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Figure 4.12: ACF and PACF of Differenced S&P500 Return Values.
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Figure 4.13: ACF and PACF of S&P500 Daily Closing Prices withdaency 1.

between lag 0 and lag 40.

Actually lag axes are in terms of frequency. If we considerftequency as 260, then
each lag corresponds to lags that 260 times itself. In our plequency is 1 and if

we change the frequency as 260 than maximum lag can be foond riumber of

observation divided by the frequency. Following plots imgure[4.18, Figuré 4.14,
Figure[4.16 and Figuife 4.116 explain frequency concepts leezly.

In Table[4.2, there are some descriptive statistics of detkathat belong to S&P500
daily closing prices. Return data is the same as the firstrdiffee of the logarithmic
closing data set as we see in the following table.

Kurtosis of return values is higher than the value of nornmgthidbution with kurtosis=3
which means that the financial time series data has theifattaacteristic[[38]. The
skewness of both daily closing price data and return dataatreero, so that both are
not symmetric.

Some Other Statistical Tests
Here we apply some tests to daily closing prices and itsmetwith both frequency 1
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Figure 4.14: ACF and PACF of S&P500 Daily Closing Prices withgerency 260.

Table 4.2: Descriptive Statistics of Data Sets Related toS®HMDaily Closing Prices

Data Mean Standard Deviation | Skewness Kurtosis
close.data 940.5007954 | 371.7583052 -0.2997497 1.6993896
return.data 0.0002213655 0.0116499799 -0.2137863793 11.861584086(
log(close.data) 6.7464941 0.4766666 -0.6841409 1.9951488
diff(close.data) 0.1543965 12.0781645 -0.3036438 10.8152632
diff(log(close.data))| 0.0002213655 0.0116510502 -0.2137667433 11.8594052498
diff(diff(close.data)) | -0.01090408 | 17.60439277 0.46129925 10.95511959

diff(return.data)

5.163097e-07

1.691974e-02

5.512029e-01

1.226257e+01
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Series: return.data
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Table 4.3: Augmented Dickey-Fuller Test for Stationary &ISS Test for Trend
Stationary

Augmented Dickey-Fuller Test KPSS Test

Dickey-Fuller | Lag order | p-value | KPSS Trend| Truncation lag parametef p-value
close.data | -1.6186 17 0.7399 | 3.9387 17 0.01
return.data| -17.8034 17 0.01 0.0709 17 0.1

and frequency 260. Results of frequency 260 are same withathe series with fre-
quency 1. Tests are applied to see if series are stationdny msiduals are correlated.
Firstly we handle with the Augmented Dickey-Fuller test b@ing stationary or not.
Results are given in Table 4.3 for closing prices and retulmega

Dickey-Fuller test says that we cannot rejéfgtfor daily closing prices data. It means
that these series are non-stationary and there existsagtit ©On the other hand test
says that we can rejed{, for p-value which is 0.01 and so there is no unit root, i.e.
return series is stationary.

We can also use KPSS test to consider that time series isr&afior not where results
are given in Tablé 4]3. According to KPSS test we cannot tdjgdor daily closing
prices data set, i.e. series is non-stationary. On the bted we can reject the null
hypothesis for return series, i.e. return series is station

Data Characteristic

According to daily closing prices of S&P500, it is seen thates look like random
walk non-stationary and return values look like mostly e@sce stationary. Returns
are nearly uncorrelated over time and there is little ewtgenf linear time dependence.
Distributions of returns have much fatter tails than thenmalrdistribution (excess kur-
tosis). It means that returns are not normally distributddreover volatility seems to
be autocorrelated.

Since daily closing prices of S&P500 data looks like randoalkwand it is non-
stationary, it is better to look the first difference of logjamic version of the original
data to see if there is a predictable pattern.

Decomposition

In general time series is gathering observations from tepgeaeasurements over time
and it consists of three basic components that are giveriad,tseasonality and irreg-
ularity (residuals). Trend shows long term direction, seadity shows systematic and
calendar related effects and irregularity shows unsydienshort term fluctuations.

First of all let’s look the linear filtering applied to dailyasing prices of S&P500 for
a = 2,12, 65 in Figure[4.18. Coefficients for filtering are found gy

We cannot use the data with frequency 1, since it does natdecperiodicity with
construction of frequency 1. Decomposition of data requaeleast 2 periodic parts.
Therefore we use basic decomposition on the data with fresu260. In Figuré 4.79,
decomposition is done by usihgess(Local Polynomial Regression Fitting) method.
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Figure 4.18: Linear Filtering of Daily Closing Prices with= 2, 5 and65.
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Figure 4.19: Decomposition of Logarithmic Closing Price$&P500 with Frequency
260 by UsingLoessMethod.

In other words it is linear regressiopltis k-nearest neighbors. Method first derives
the seasonal part from the difference of the original sigimal its trend. It divides the
data into three parts as seasonal, trend and remainderSuart.of these three parts
gives the original data, i.e. type is additive.

Moreover one can use classical seasonal decomposition ayngaverages. Contrary
to loessmethod, this method firstly derives the trend part by moviagrages. In
Figure[4.20, plot of decomposition of this method is seen.

We can reach values that are cleaned by trend componenteasigifFigurd 4.2]1.
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Figure 4.20: Decomposition of Logarithmic Closing Price$&P500 with Frequency
260 by Using MA Method.
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Figure 4.21: S&P500 Daily Closing Prices without Trend Congran
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Figure 4.22: S&P500 Data with Holt-Winters Smoothing.

4.2 Exponential Smoothing

Exponential smoothing is done to estimate the next valuéseofime series with no
trend or seasonal components. Basically it is written as,

T=M w1+ Xoxy o+,

where); = a(1 — )’ for 0 < a < 1. Extended version of this method is Holt-Winters
smoothing which accept the time series with both trend aad@®l components. The
S&P500 daily closing prices and its smoothed values arengivé-igure[4.2P. Then
the next 200 predicted observations are given in Figurd ByAsing Holt-Winters.

Forecast with 75% and 95% confidence intervals are givengarEi4.2%4, again using
Holt-Winters method.

Another forecasting method is short term load forecastiity 5% and 95% con-
fidence intervals. It uses in here exponential smoothintg Space model which is
given by Hyndman et al. in[37] and ih.[B4]. The charactersiclvtare given in the
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Figure 4.23: Predicted 200 Observations by Using Holt-@fstviethod.
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Forecasts from HoltWinters
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Figure 4.24: Predicted 200 Observations by Using Holt-@mtwith 75% and 95%
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Forecasts from STL + ETS(M,A,N)
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Figure 4.25: Forecasting of S&P500 Data by STLF Method.

ETS brackets, are the error type, the trend type and the sé&gs®, respectively. The
trend type and the season type can bBE=hone, “A’=additive, “M”=multiplicative
and “Z"=automatically selected. The error type can be A, M or Z.rEfiare it is seen
in the figure that our method goes with the model of ENSA, N) which means that
it is simple exponential smoothing with multiplicative @rs as given in Figure 4.25.

4.3 Frequency Domain Analysis

4.3.1 Fourier Transform Analysis

S&P500 data is very complex data as we regarded from the sestednd the prop-
erties of the data. It includes different type of frequenognponents in it and Fourier
analysis is used to look the time series in the frequency donha Figure[4.26, orig-
inal data and some related periodograms are given. The fggutke right top is the
raw periodogram without smoothness. The figure on the lgfbbois kerne(10, 20)
smoothed version of the raw periodogram. It is better thanatfiginal one but still
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Figure 4.26: S&P500 Daily Closing Prices Data and Differeyae of Periodograms.

there is nothing to analyze from the figure. The figure on thktribottom is AR fitted

spectrum with four methods. As we mentioned in the DAX exanafain MLE and

Yule-Walker methods are similar in each other. Only differe is that MLE method
has lower spectrum for the same frequencies. OLS method amgghizthod are better
than Yule-Walker and MLE, since one can choose clear picks their results. Peak
results are disappearing for Yule-Walker and MLE methods.

If we consider the periodogram which is AR fitted by Burg metgaes the following
peak numbers of frequencies. If one look at the number ofréguency and divide
1 by that frequency, the period or cycle related to that fezmy can be found. Bold
numbers of frequencies are selected and considered in kh@ataons. Peaks: 75,
103 135, 166 190,225 254, 312, 368 407, 454488

Bold numbers are chosen important frequencies and theyagr gs follows, respec-
tively related to peak number; 0.074148297, 0.1022044034268537, 0.165330661,
0.224448898, 0.253507014, 0.311623246, 0.367735471 48dD’5952. Some of
these frequencies are also seen in Daniell smoothed periaahs in Figuré 4.26 and
in Figure[4.2Y. In Figure_4.28, chosen peak values are sigpeibtted lines.
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Figure 4.27: Periodograms of S&P500 Data with Given SmosghriParameters.
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If we divide 1 by the chosen frequencies, we will get peridgtis in days as 13.4865,
0.7843,7.4478, 6.0485, 4.4554, 3.9447, 3.2090, 2.7192 £4@3 respectively. How-
ever we cannot reach the long term periodicities with thishoe.

Spectrum graphs tell us that higher frequency parts haveatavver the spectrum.
Other frequency components are almost lost under highguémrcy part. That’'s why
non-stationary time series like financial time series ateappropriate to be analyzed
by Fourier analysis. Therefore trend component shoulddsered from the time series.
In R program, functiondetrend de-trends the time series by using a linear trend model
by default option.

Not doing smoothing or doing too much smoothing result in-r@ble frequency

components in time series. On the other hand if one thinkstigasmoothness is in
moderation, then many frequency components can be missee ase in the peri-
odogram results. In addition, it is not clear to understahectvfrequency component
belongs to which time slice which is important drawback ofiffer transform.

4.3.2 Wavelet Analysis

For practical issues we need to decide which wavelet filtdrveawvelet transform will
be used. Time series are discrete data sets and so disaretéotms are used rather
than continuous transforms. As we mentioned in Subsect@,2he CWT has some
drawbacks according to the DWT like requiring more compateti Padding or re-
moving the time series is needed for the DWT due to requiringddylength. The
MODWT can be used instead of the DWT not to be forced to use dyadgth. Dis-
crete transforms are discussed in this chapter with usingogram to analyze the
financial time series.

Length of the filter is another issue which one needs to censiéfor instance, as
the length of the filter is getting larger, it can catch betygical properties in signal.
However it causes some results as Vuorenmaa_in [71] memtisneh ad increasing
number of coefficients causes more computation and resuiteieasing number of
coefficients that are affected by the boundary conditionorgamaa in[[7/1] suggests
the appropriate filter for the DWT as L&) in practice. According to Masset in [46],
many researchers in finance choose Daubechies(D) or LegstiAetric(LA) filters
of length 4 to 8 in wavelet analysis. Setzlin[61] used Morlatelet, which has non-
orthogonal and complex function, for wavelet transforimagito analyze the financial
data.

In each DWT and MODWT figures, level-j wavelet coefficients caps the differ-
ences of/~! day averages of the time series. It means that, for examplbédfirst
level of the decomposition we see day-by-day fluctuatiomkitgoes on like this.

As we mentioned in Sectidn 3.2, DWT requires time series wytdit length. Other-
wise one has to reflect the original time series in order tahs®WT. In Figuré 4.29,
only wavelet scales of daily closing prices data are plotiedo scale 5 and in Fig-
ure[4.30 wavelet scales of return data are plotted up to €calith smooth scale at
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Figure 4.29: DWT of S&P500 Daily Closing Prices with Least Astnt(8) Filter by
Reflected Data of Wavelet Scales up to 5.

level 6.

In MODWT analyses, decompositions has 8 levels and eachillistrates2’~! fluc-
tuations up to level 8. From first level to last level, compaiséllustrate fluctuations
from 1-day to 128-days. Similarly, 10 level decompositi@s lfluctuation up to 1024
days.

In each figure of wavelet decomposition, both high and losgfrency fluctuations are
seen in time-scale analysis from finest scale (first levedptirser scales. After level-5,
MODWT of the S&P500 daily closing prices show remarkable deas. In addition,

after 8-th level wavelet coefficients are look like quasiipaic behavior which means
that it has a fractal structure. According to Asian crisishlle net (or dot com bubble),
and mortgage crisis which occurred respectively in 19999kthd 2007, it is seen that
stock prices were affected by unstable economic indicatarBigher scales there are
low frequency oscillations and vice versa. MODWT of dailyuret series provides

opportunity of trading for both long-term traders and stteri traders since it shows
changes in different scales with related time intervalss lard to read day by day, 2
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Figure 4.30: DWT of S&P500 Daily Returns with Least Asymd8icFilter by Re-
flected Data of Wavelet Scales up to 6.
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Figure 4.31: MODWT of S&P500 Daily Closing Prices with= 8 by Using Haar
Filter.
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Figure 4.32: MODWT of S&P500 Daily Closing Prices with= 8 by Using Least
Asymetric Filter with Length 8.
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Figure 4.33: MODWT of Daily Closing Prices up to Level 10.
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Figure 4.34: MODWT of S&P500 Daily Returns with= 8 by Using Haar Filter.

days, 4 days and 8 days results. They look like noise and gtigibto look them in
return analysis.

Now on let’s look the MODWT of return values.

It is more clear from Figure_4.86 and Figure 4.37 that(RAfilter is smoother than
Haar filter. Moreover, longer wavelet filters are better iméalate the disorder of the
data. Longer filters have higher order vanishing momentstaadare used to separate
regular and noisy parts from chaotic and fractal parts.

According to MODWT and MRA of return series, there are fluctoagi between ob-
servations 1900 and 3300 in wavelet coefficients betweesl e\and 6. There are
short fluctuations between observations 100 and 200 in 2d@ehlevel wavelet co-
efficients. Fluctuations around observation 1900 is resuksian crisiswhich oc-
curred in 1997[[22]. Fluctuations between observation24id 2800 is related to
collapse ointernet bubblen between years 1999 and 2001. In addition there are huge
fluctuations between observations in 4200-5100 in wavelefficients that has range
between 1 and 6. There are high level of volatility betweeseotations due to the
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Figure 4.35: MODWT of S&P500 Daily Returns with= 8 by Using Least Asymetric
Filter with Length 8.
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Figure 4.36: MODWT of S&P500 Daily Returns with levels 5, 6, l\8Using Haar
Filter.
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Figure 4.37: MODWT of S&P500 Daily Returns with levels 5, 6, fyBUsing Least
Asymetric Filter with Length 8.
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Figure 4.38: MODWT of S&P500 Daily Returns with levels 8, 9 byirdg Least
Asymetric Filter with Length 8.
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Figure 4.39: MRA of Absolute S&P500 Return Values with Scaledld.
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global crises occurred in 2007. It happened because of agetgsue which affected
banks terribly and it has continued its bad effect until 2@&0. There was a domino
effect which influenced all world and all sectors resultedblgking sector. After level

6, we see that there are low frequency oscillations in theseMavelet coefficient

of level 8 or level 9 show quasi-periodic behavior. We seettlaiions between ob-
servations 1900 and 3300 (in higher scales it is divided imboe parts) and between
observations 4200-5100 there are quasi-periodicities aftale level 7.

Having too many rapid fluctuations in some periods of retwmes means that there
are economic problems in periods that have rapid fluctuatidn the bullish trend
of economy, wavelet coefficients of return series are seerbe more stable. On the
other hand, the bear trend part of the series gives high #étiots in the high frequency
wavelet coefficients of the return series. Moreover, smaotfficients of the return
series shows falling trend as we seen if® Vin the MODWT of return series after late
2009.

Wavelet Power Spectrum

The wavelet power spectrum is computed by applying the Movigvelet in Fig-
ure[4.40, in Figuré 4,42 and in Figure 4.44. The confidencenmats are shown by
white lines and it is changeable due to the parameters usieshation. The vertical
axis shows the Fourier periods and the horizontal axis shiowesstep counts. Quan-
tiles of power or equidistant breakpoints (covering thenwl from 0 to maximum
power) can describe the color levels, with the number ofl¢eae a further parameter.
We are not interested in transparent white parabolic regiencone of influence. Itis
seen that the highest power colors stands in periods betd4&428, around 260 and
between 1300-1560. In long term, it is seen that originad dabws periodicity around
4-6 years. As we see in the wavelet power spectrum, in pebetigeen 4 and 6 years
region shows high powers.

Figure[4.41 includes original detrended time series andngtcuction of (detrended)
time series analyzed by wavelet transformation.

In Figure4.4P method shuffles the given time series in esiims. It gives very similar
result in reconstruction as we get bywhite Nois& method.

AR(1) method is weak compared white noiseandshufflemethod for reconstructing.

In Figure[4.48, thdias-correctedvavelet power anBiasedwavelet power, which are
explained by Liu et al. in[39], are given. Basic algorithm waitten by Christopher
Torrence and Gibert P. Compo in Matlab[67]. Corrected vergiorides clearer plots
by removing noises. Power increases from light blue to dedk Significance contours
are drawn where spectrum over percentile is equal or lahger tolerance level which
is 95% in Figurd_4.46. The mother wavelet is Morlet functibiattis used in the
analysis. Between 2000th and 3000th observations, thermiaidie powered signs
around periods 22, 66, 260, 512 and 1024. It shows that threrenanthly, several
monthly (i.e.2-3 monthly), yearly or several yearly (i.e 42/ears) seasonal effects in
the S&P500 daily closing prices data.
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Figure 4.40: Wavelet Power Spectrum by usinghite noisé method of generating
surrogate time series.
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Figure 4.41: Reconstruction of the de-trended (0.75 spanserks by the white
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Figure 4.42: Wavelet Power Spectrum by usisgufflé method of generating surro-
gate time series.
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Figure 4.44: Wavelet Power Spectrum by using(ARmethod of generating surrogate
time series.
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Figure 4.45: Reconstruction of the de-trended (0.75 spareseis by AR1) method.
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Figure 4.46:Bias-correctedand BiasedWavelet Spectra of S&P500 Daily Closing
Prices.

118



Standardized Residuals

-5

0 1000 2000 3000 4000 5000
Time
ACF of Residuals Normal Q-Q Plot of Std Residuals
. " 50
) 2 b
(=] : g
b — O o A
< o 7 @
Forcsohdocor PR el s R el B Pt |-|--I.-_-n- 113 [
- Fo-Te - TI-T-=- |- B B I e L % o -
7 n
! o
T T T T T T T T
0 20 40 60 80 -4 -2 0 2 4
LAG Theoretical Quantiles

p values for Ljung—-Box statistic

0.8

p value
0.4

lag

Figure 4.47: ARIMA(, 1, 1) Fitted S&P500 Daily Closing Prices.

4.4 Time Domain Analysis

4.4.1 SARIMA Fitting

The Box-Jenkins model

Before defining the Box-Jenkins model let’s give some examplBARIMA fitted
data. In Figuré_4.47, in Figufe_4]48 and in Figlre 4.49 SARIM#fefi data sets are
given with related models given in figures.

According to Box-Jenkins model, sharp cut-off of PACF in thegimal time series
shows the AR signature. ACF of our original time series decagse slowly than
PACF. Cut-off number of ACF of first difference of logarithm ofroariginal data
shows the MA signature.

It is seen from ACF that MA2) model is appropriate. In PACF graph, it cuts off
at lag 1 and so AR) model can be appropriate. We can consider AR(WA, 2),
ARIMA (1,1,0) and ARIMA(1, 1,2) models. One of them can be selected by using
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Figure 4.48: SARIMAL, 1,1) x (0,1, 1)4 Fitted S&P500 Daily Closing Prices with
Frequency 260.
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Figure 4.49: ARIMA(, 1, 1) Fitted S&P500 Return Values.
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Figure 4.50: PACF of S&P500 Daily Closing Prices and ACF of S&PR@turn Val-
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Figure 4.51: Daily Closing Prices of S&P500 versus Simulg&&dMA (0, 1,2) Re-
lated to Original Data.

AlC.

One of the candidates of SARIMA models for S&P500 daily clgsprice data is
ARIMA (0,1,2) given by Hyndman and Khandakar in [35]. Original data and the
selected ARIMA process are given in Figlre 4.51.

It doesn't fit quite well since the simulated ARIMA\ 1,2) process gives different
graph in each simulation due to generating random valueadh simulation. Fitted
model can be written ag — 1 = w;—6,w;_; —62w,_» Wwhere we apply the ARMA), 2)
model to first differenced data. If we fit the ARMA, 2) model with non-zero mean
to first difference of daily closing prices then we will gesuodts with intercepts, i.e.
intercept is the mean of the differenced data, which is tife dr

On the other hand, by using BIC, suggested model for daily mipgrices turns out to
be ARIMA(1,1,1). The results of ARIMAL, 1, 1) model fitting to closing data and
the results of ARIMAT, 0, 1) model fitting to first differenced closing data are given
in Table[4.4. Moreover results of ARIMA, 1, 2) fitted to daily closing prices and
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Figure 4.52: 100 Step Prediction of ARIMA 1,0) Model which is Suggested by
AIC.

ARIMA (0, 0, 2) fitted to first difference of daily closing prices are givenTable[4.4.

Best ARIMA model selected by AIC gives ARIMA, 1, 0)model whose AIC value is
42533.76 that is smaller than any model in Tablé 4.4. In Feigub2 100 step prediction
of S&P500 daily closing prices is seen according to modesehdy AIC.

Forecasts for Auto Selected Models

We will plot the forecast graphs for daily closing prices atdfirst difference in a
99.5% prediction interval with offered ARIMA models as givienFigure[4.58. Auto
selected models are ARIMA, 1,2) and ARIMA(1, 1,1) by using AIC and BIC re-
spectively.

In Figure[4.54 it is seen that variances of the forecast @am® almost constant. More-
over the forecast errors are not distributed normally aeditleans are approximately
zero as seen in histogram plots. Their means are 0.1770021.314022, 0.1846697
and 0.008642171 respectively. ACF plots of residuals sheivttie forecast errors do
not correlated.
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Figure 4.53: Forecasts for S&P500 Data and its First Diffeeswith Auto Selected
ARIMA Models.
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Figure 4.55: ACF Plots of Residuals (forecast errors) of Awtte&ed Models given
in Figure[4.58.
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Figure 4.56: Histogram Plots of Forecast Errors Related tto Aelected Models
Respectively in Figure 4.53.
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Figure 4.57: Prediction without Drift and with Drift modetl by ARIMA(0, 1, 2)
Model.

The problem with forecasts in Figure 4153 is not considettmegconstant term in mod-
els, which is also called drift. If we include the drift term the forecasting than we
will get trend term as well. In Figufe 4.68 difference betwgeediction with constant
term and prediction without constant term is seen.

Prediction with constant term catches some trend comparnecktliction without drift
term. In Figuré_4.59 following predictions include the dtérms.

We showed some results of some SARIMA model. Now we will shoditazhal
results of different model fitting in Table'4.4. In model SARAYD, d, ¢) x (P, D, Q)s,
parameter, d, q, P, D, ands are AR order, difference order, MA order, seasonal
AR order, seasonal MA order, seasonal difference and sabpenod respectively.
Parameter®’, D, () ands are used for only seasonal models.

In Table[4.4, close.data, return.data and freq.data refdaily closing prices, return
values and daily closing prices with frequency 260 respelsti

Itis seen in Table 414 ARIMA2, 1, 0) gives the smallest AIC if we don’t use seasonal
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Figure 4.58: Zoomed Version of Prediction without Drift andh Drift modelled by

ARIMA (0, 1, 2) Model.
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Figure 4.59: Predictions of S&P500 Daily Closing Prices ofwGiven SARIMA

Models.
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Table 4.4: Results of SARIMA Fitting to Related Data

sigma’2 | log likelihood | AIC AlCc BIC

ARIMA(0,1,2) close.data 144.8 -21259.51 42527.02| 42527.03| 42553.43
ARIMA(0,0,2) diff(close.data) 144.8 -21263.42 42534.83| 42534.84| 42561.24
ARIMA (1,1,1) close.data 144.9 -21260.55 42529.1 | 42529.11| 42555.51
ARIMA(1,0,1) diff(close.data) 144.8 -21264.46 42536.92 | 42536.92 | 42563.33
ARIMA(1,2,2) close.data 144.9 -21265.52 42539.04 | 42539.05| 42565.45
ARIMA(1,1,2) close.data 144.8 -21259.35 42528.7 42528.71| 42561.71
ARIMA(0,1,1) close.data 145.2 -21266.85 42539.7 | 42539.7 | 42559.5

ARIMA(1,1,0) close.data 145.3 -21268.23 42542.46| 42542.46 | 42562.27
ARIMA(2,1,0) close.data 144.8 -21259.4 42526.8 | 42526.8 | 42553.2

ARIMA(2,1,1) close.data 144.8 -21259.38 42528.75| 42528.77 | 42561.76
SARIMA(1,1,1,0,1,1,42) freq.close | 144.9 -21203.98 42415.95| 42415.96 | 42442.33
SARIMA(1,2,2,0,1,1,42) freq.close | 146 -21226.21 42464.42| 42464.44| 42503.99
SARIMA(1,1,1,0,1,1,22) freq.close | 145.5 -21239.84 42487.69 | 42487.69| 42514.08
SARIMA(1,1,1,0,1,1,21) freq.close | 145 -21243.66 42495.32 | 42495.33| 42521.71
SARIMA(1,1,1,0,1,1,63) freq.close | 144.9 -21159.62 42327.25| 42327.26| 42353.61
SARIMA(1,1,2,0,1,1,130) freq.close 144.8 -21001.95 42013.9 | 42013.92| 42046.79
SARIMA(2,1,0,0,1,1,130) freqg.close 144.8 -21002 42012.01| 42012.02 | 42038.32
SARIMA(0,1,2,0,1,1,130) freqg.close 144.8 -21001.97 42011.94| 42011.95| 42038.25

model part. ARIMA, 1, 1) gives the second smallest AIC value in ARIMA models.
On the other hand if we use the seasonal parts SARIMA 2) x (0,1, 1)30 gives
the smallest AIC. It means that seasonality is important irdelag financial time
series. SARIMA models with frequencies which are also cagutiny wavelet analysis
in Subsection 4.3]2, have smaller AIC values than ARIMA msediich are not taking
into account the seasonality. Therefore in order to makdigtien, it is better to use
SARIMA models compared to ARIMA for financial time series.

Forecasting Accuracies

We measures the forecast accuracy to understand which gigdslbetter result. Here
we choose 5344 observations out of 5444 observations taabenn set. Remained
observations form test set to compare real values with &stérg values. Details of
accuracy measures are described by Hyndman and Koehleg]in [3

In Table[4.5, in Table4l6and in Talile ¥.7 definitions of abilat®ons are;

e ME: Mean Error

RMSE: Root Mean Absolute Error

MAE: Mean Absolute Error

MPE: Mean Percentage Error

MAPE: Mean Absolute Percentage Error
MASE: Mean Absolute Scaled Error

ACF1: Autocorrelation of errors at lag 1.
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Figure 4.60: Forecasts of Daily Closing Prices with Sele&a&IMA Models.

In Table[4.5 ARIMA(1,1,1), ARIMA (0, 1,2) and ARIMA(2,1,0) have smaller test
set errors. ARIMAL, 1, 1) has smallest values in each measure of accuracy. In Ta-
ble[4.6 SARIMA0, 1,2) x (0, 1, 1)260 model gives smallest test set errors except ACF1
method. In Tablé 417 results are given again for ARIMAL, 1), ARIMA (0, 1,2),
ARIMA (2,1,0) and SARIMA(0, 1,2) x (0,1, 1)s60. It is seen that seasonal autore-
gressive integrated moving average model has better agcuadues than others. In
Figure[4.6D four different forecasts are given with 100 ahéa Figurd 4,61l selected
four models give smaller accuracies than other models achsting.

Wavelet Transform Based ARIMA Fitting

In Tabled4.b, itis seen that ARIMA, 1, 1) model has better accuracy values compared
to other ARIMA models. If we consider the ARIMA, 1,1) model fitting to daily
closing prices of S&P500 data with first 5344 observatiorsget sum of residuals as
1121,65 for 100 step ahead forecasts. Residuals are diffesdaetween daily closing
prices and fitted values.

Then we apply DWT and MODWT to S&P500 daily closing prices witlstfid096
and 5344 observations respectively. We used 4096 obsamgafor DWT, because
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Figure 4.61: Zoomed Versions of Forecasts of Daily ClosinigeRrwith Selected

SARIMA Models.
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transform requires time series with dyadic length. We usedtlasymmetric wavelet
filter with length 8 in both transform. In addition, scale éév are chosen as 2 for
both transformations, i.e. we have 2 detail parts and 1 a@padion part for both
transformations. ARIMAL, 1, 1) model was fitted to all scales of DWT coefficients.
Afterward, summation of residuals which are coming from $t#p ahead forecasts of
each ARIMA(1, 1, 1) fitted scales, is -178,47.

ARIMA models are chosen according to AIC values for each deakd of MODWT.
Then ARIMA(5, 1,5), ARIMA (2,0, 4) and ARIMA(0, 0, 5) models were fitted to smooth
part, second detail part and first detail part respectivedy. each fitted model, again
100 step ahead forecasts were found. Sum of residuals i2 @516is time. We can
easily say that for model fitting and forecasting, using Veteased ARIMA models

Is better than only applying ARIMA models according to rethégnpirical results.

4.42 GARCH Methods

In Q-Q plots given in Sectioh 4.1, we have seen that studdrgttibution is more
appropriate for S&P500 data. It is better to use skewed steddistribution while
data is fitted to GARCH model. Using skewed generalized erstribdution gives also
better results. In Table 4.8, GARCH models are fitted to retata @hich is multiplied

by 100 and removed from trend. According to informationestdn statistics, AIC and
SIC say that GARCIL, 1) model with skewed generalized error distribution is better
than other models. BIC and HQIC suggest that GARCH) model with skewed
generalized error distribution is better than others.

In Figure[4.62, conditional standard deviation, 2 condiiostandard deviation su-
perimposed with return series, standardized residualstan8lCF, ACF of squared
standardized residuals and Q-Q plot are given. It is sedrrésaluals are not corre-
lated each other. In addition, distribution of model is adtiit with used data.

In respect of information criterion statistics, ACF of ragids and Q-Q plot, GARCH, 1)
can be used with generalized error distribution for valstinodeling.

4.4.3 Other Methods for Time Series Analysis

AAR (Additive nonlinear autoregressive model)
Nonparametric additive autoregressive model is given as,

Tpys = [+ Z 55 (xt—(j—l)d) (4.1)
j=1

wheres; is nonparametric univariate function of lagged time sevialsies that are
described by cubic regression splines [75].

135



Optimal time delay and embedding dimension for S&P500 cafobed by average
mutual information and by false nearest neighbors witheesfp optimal time delay
respectively([19, 13, 47]. Results are given for embeddingedisions 3, 4, 10 and time
delay 1 fitted to S&P500 daily closing prices. Predictionasd for 100 steps between
observations 5345 and 5444. Accuracy results with giveredsions and time delays,
are given in Tablg4]9.

LSTAR (Logistic Smooth Transition AutoRegressive Model)
In Subsectiof 2.7]11, mathematical definitions are giverortter to find more details
one can see Franses and Dik/[25].

Model is applied for m=4, d=1 and coefficients for the laggetktseries as 0,1,2,3.
Training set is observations between 1 and 5344 of S&P509 daising prices and
test set is last 100 observations. Values of the accuracgumesare given in Takle 4.9.

In Table[4.9, it is seen that LSTAR gives smaller error vathest SARIMA(0, 1, 2) x
(0,1, 1)960 except ACF1 method. If we consider AAR model, accuracy isngtietter
in case embedding dimension is getting larger. AAR with mad@ d=1, shows better
accuracy results than SARIMA, 1,2) x (0,1, 1)a60 in ME, MAE, MPE and MAPE
measures.

AIC Values of Some Models

In Table[4.10, AIC values of SETAR, LSTAR, AAR and SARIMA modets given.
It is seen that regime switching models and nonlinear mduale much more smaller
AIC values than SARIMA model which means that regime switghitodels and non-
linear models are more appropriate for financial time series
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Table 4.5: Accuracy Values of Training Set and Test Set watspect to Related
ARIMA Model

ARIMA(0,1,2)
ME RMSE MAE MPE
Training Set | 0.2010764 | 12.01217 | 7.667793 0.01986503
Test Set 17.4081355| 33.89432 | 28.947227 1.27504809
MAPE MASE ACF1 Theil's U
Training Set | 0.7867608 | 0.9980797| -0.0007129374] NA
Test Set 2.1917985 | 3.7679214| 0.8195796219 | 2.592994
ARIMA(L,1,1)
ME RMSE MAE MPE
Training Set | 0.209889 | 12.01520 | 7.667983 0.02079551
Test Set 16.250759 | 33.29349 | 28.405878 1.18699826
MAPE MASE ACF1 Theil's U
Training Set | 0.7866443 | 0.9981045| 0.001995627 | NA
Test Set 2.1520228 | 3.6974566| 0.819534466 | 2.548832
ARIMA(L,1,2)
ME RMSE MAE MPE
Training Set | 0.1996574 | 12.01178 | 7.66771 0.01971641
Test Set 17.5682628| 33.97777 | 29.02159 1.28723402
MAPE MASE ACF1 Theil's U
Training Set | 0.7868012 | 0.9980689 | -0.0002997833| NA
Test Set 2.1972617 | 3.7776011| 0.8195603581 | 2.599162
ARIMA(0,1,1)
ME RMSE MAE MPE
Training Set | 0.1896198 | 12.03165 | 7.66648 0.01864417
Test Set 175471431| 33.97076 | 29.01858 1.28561879
MAPE MASE ACF1 Theil's U
Training Set | 0.7866316 | 0.9979089| 0.003926237 | NA
Test Set 2.1970606 | 3.7772090| 0.819615759 | 2.598472
ARIMA(L,1,0)
ME RMSE MAE MPE
Training Set | 0.1870117 | 12.03517 | 7.666008 0.01837357
Test Set 17.6074035| 34.00220 | 29.046741 1.29020488
MAPE MASE ACF1 Theil's U
Training Set | 0.7864954 | 0.9978474 | -0.004347022 | NA
Test Set 2.1991296 | 3.7808746| 0.819618423 | 2.600783
ARIMA(Z,1,0)
ME RMSE MAE MPE
Training Set | 0.1985839 | 12.01202 | 7.667259 0.01960365
Test Set 17.6814261| 34.03736 | 29.075111 1.29584538
MAPE MASE ACF1 Theil's U
Training Set | 0.7867622 | 0.9980102| -7.238344e-05| NA
Test Set 2.2011958 | 3.7845674| 8.195789e-01 | 2.603537
ARIMA(2,1,1)
ME RMSE MAE MPE
Training Set | 0.1984932 | 12.01200 | 7.66724 0.01959421
Test Set 17.6907784| 34.04224 | 29.07942 1.29655716
MAPE MASE ACF1 Theil's U
Training Set | 0.7867626 | 0.9980078| -0.0001238208| NA
Test Set 2.2015119 | 3.7851279| 0.8195779808 | 2.603898
ARIMA(L,1,2)
ME RMSE MAE MPE
Training Set | 0.199948 | 12.01191 | 7.667711 0.01974665
Test Set 17541211 | 33.96376 | 29.009330 1.28517509
MAPE MASE ACF1 Theil's U
Training Set | 0.7867878 | 0.9980691 | -0.000125071 | NA
Test Set 2.1963617 | 3.7760051| 0.819571858 | 2.508118
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Table 4.6: Accuracy Values of Training Set and Test Set wa$pect to Related

SARIMA Model
ARIMA (0, 1, 1) X (0, 1, 1)260
ME RMSE MAE MPE
Training Set | -0.001992195 | 13.10853 | 8.43074 -0.001456642
Test Set 214.983147651| 241.74554| 216.14151 16.354929617
MAPE MASE ACF1 Theil's U
Training Set | 0.8667416 1.097389 | 0.1431508 NA
Test Set 16.4464264 28.134101| 0.9694050 18.65588
ARIMA (1, 1, 0) X (0, 1, 1)260
ME RMSE MAE MPE
Training Set | -0.0004665282| 12.03372 | 7.656206 0.003001934
Test Set 8.7373979494 | 31.78757 | 26.713677 0.613206074
MAPE MASE ACF1 Theil's U
Training Set | 0.7856908 0.9965715| -0.004285541 | NA
Test Set 2.0340338 3.4771908| 0.828029619 2.45375
ARIMA (1, 1, 1) X (0, 1, 1)260
ME RMSE MAE MPE
Training Set | 0.04554281 12.05698 | 7.672398 0.007762099
Test Set -46.39757939 | 67.07280 | 50.462464 -3.592632772
MAPE MASE ACF1 Theil's U
Training Set | 0.7869763 0.9986791| -0.04925805 NA
Test Set 3.8949318 6.5684563 | 0.90099761 5.27051
ARIMA (0, 1, 2) X (0, 1, 1)260
ME RMSE MAE MPE
Training Set | -0.0007803767| 12.01051 | 7.655735 0.003270706
Test Set 8.5058085779 | 31.72167 | 26.633174 0.595588306
MAPE MASE ACF1 Theil's U
Training Set | 0.7857506 0.9965102 | -0.0004955254| NA
Test Set 2.0282102 3.4667122| 0.8279689754 | 2.449416
ARIMA (2, 1, 2) X (0, 1, 1)260
ME RMSE MAE MPE
Training Set | -0.0007205613| 12.01022 | 7.655616 0.00322816
Test Set 8.8252603242 | 31.80971 | 26.736386 0.61989985
MAPE MASE ACF1 Theil's U
Training Set | 0.785791 0.9964947| -0.0001506475| NA
Test Set 2.035645 3.4801468| 0.8279449836 | 2.455462
ARIMA (2, 1, 0) X (0, 1, 1)260
ME RMSE MAE MPE
Training Set | -0.0007348941| 12.01038 | 7.655437 0.00323189
Test Set 8.7903951016 | 31.80013 | 26.725720 0.61724594
MAPE MASE ACF1 Theil's U
Training Set | 0.7857633 0.9964714| 2.467592e-05 | NA
Test Set 2.0348795 3.4787584 | 8.279648e-01 | 2.454785
ARIMA (2, 1, 1) X (0, 1, 1)260
ME RMSE MAE MPE
Training Set | 0.05037788 12.03905 | 7.658431 0.008766098
Test Set -33.73441096 | 56.01539 | 41.955653 -2.627817482
MAPE MASE ACF1 Theil's U
Training Set | 0.7859909 0.9968612| -0.003247522 | NA
Test Set 3.2397870 5.4611656| 0.891556915 | 4.408117
ARIMA (1, 1, 2) X (0, 1, 1)260
ME RMSE MAE MPE
Training Set | -0.0007028143| 12.01042 | 7.656021 0.003228572
Test Set 8.7970774785 | 31.80189 | 26.726933 0.617754967
MAPE MASE ACF1 Theil's U
Training Set | 0.7858302 0.9965474| -0.0001075208| NA
Test Set 2.0349635 3.4789164 | 0.8279161080 | 2.454943
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Table 4.7: Accuracy Values of Training Set and Test Set a¢@et Models

ARIMA(2,1,0)
ME RMSE MAE MPE
Training Set| 0.1985839 12.01202 | 7.667259 0.01960365
Test Set 17.6814261 34.03736 | 29.075111 1.29584538
MAPE MASE ACF1 Theil's U
Training Set| 0.7867622 0.9980102| -7.238344e-05| NA
Test Set 2.2011958 3.7845674| 8.195789e-01 | 2.603537
ARIMA(0,1,2)
ME RMSE MAE MPE
Training Set| 0.2010764 12.01217 | 7.667793 0.01986503
Test Set 17.4081355 33.89432 | 28.947227 1.27504809
MAPE MASE ACF1 Theil's U
Training Set| 0.7867608 0.9980797| -0.0007129374 NA
Test Set 2.1917985 3.7679214| 0.8195796219| 2.592994
ARIMA(1,1,1)
ME RMSE MAE MPE
Training Set| 0.209889 12.01520 | 7.667983 0.02079551
Test Set 16.250759 33.29349 | 28.405878 1.18699826
MAPE MASE ACF1 Theil’s U
Training Set| 0.7866443 0.9981045| 0.001995627 | NA
Test Set 2.1520228 3.6974566| 0.819534466 | 2.548832
ARIMA (0, 1,2) X (O, 1, 1)260
ME RMSE MAE MPE
Training Set| -0.0007803767 12.01051 | 7.655735 0.003270706
Test Set 8.5058085779| 31.72167 | 26.633174 0.595588306
MAPE MASE ACF1 Theil’s U
Training Set| 0.7857506 0.9965102( -0.0004955254 NA
Test Set 2.0282102 3.4667122| 0.8279689754 | 2.449416
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Table 4.8: Information Criterion Statistics for Selected R&H Models with given

Distributions

Information Criterion Statistics

AIC BIC SIC HQIC
g?tﬁgﬂiglﬁo) withnormal 1 5 ,46101| 3.048617| 3.046191] 3.047038
Stﬁge%':fz’g)tr‘i"ggt‘iﬁewed 2.859012| 2.863864| 2.859011| 2.860705
Stﬁc?e%l:%i?t r‘i"glﬂrt‘igﬁewed 2.747997| 2.756488| 2.747994| 2.750960
Stﬁge%':f‘gils)tr‘i"ggt‘iiﬁewed 2.677922| 2.687625| 2.677917| 2.681308
geﬁ]'zgﬁ:g‘édlmg? ji‘;f;’iﬂi on2-675907| 2.685610] 2.675902) 2.679293
Stﬁgecn':fld’i?tr‘i"gfﬂigﬁewed 2.679437| 2.685501| 2.679435| 2.681553
g&zgﬁtjmg jg‘fmﬂi on2-677056| 2.683120| 2.677054) 2.679172

Table 4.9: Accuracy Values of Test Set of AAR and LSTAR Models

AAR with m=3 and d=1

ME

RMSE

MAE

MPE

Test Set

-3.821709

34.07534

26.95399

-0.3453562

MAPE

ACF1

Theil's U

Test Set

2.070063

0.8479687

2.667273

AAR with m=4 and d=1

ME

RMSE

MAE

MPE

Test Set

-3.467193

33.67968

26.6773

-0.3181473

MAPE

ACF1

Theil's U

Test Set

2.048477

0.8459106

2.635209

AAR with m=10 and d=1

ME

RMSE

MAE

MPE

Test Set

-3.667028

32.5765

25.64558

-0.3322671

MAPE

ACF1

Theil's U

Test Set

1.969833

0.8395296

2.550718

LSTAR wit

h m=4 and d=1

ME

RMSE

MAE

MPE

Test Set

6.319223

31.05532

25.85419

0.429437

MAPE

ACF1

Theil's U

Test Set

1.971797

0.8280158

2.403215
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Figure 4.62: Plots According to GARGH 1) Fitting with Skewed Generalized Error
Distribution.
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Table 4.10: AIC Values of Given Models

SETAR(m =4,d = 1)

[STAR(m = 4,d = 1)

AAR(m = 4)

SARIMA (U, 1, 2) X (0, 1, 1)260

AIC

27075.92

27078.05

27097.23

42536.88
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CHAPTER 5

CONCLUSION AND OUTLOOK

In this thesis, time series concept is handled to togethdr definitions as well as

their extensions. Linear time series models, volatilitgd ather models are explained
through selected examples. Time series analysis is a iggllyrtant issue for everyone
to understand the real world issues as well as to predictdliehaviors of systems in
many areas of interest. However, usually time series aisdlyat includes only time

domain is inadequate in general. Therefore, frequency doaraalysis comes into

prominence when time domain analysis is weak to catch sorpertant characteristic

properties. At this stage, Fourier and wavelet transforommeas into play and are
covered in details with definitions and carefully chosemepies.

Study of empirical results are handled to reach some desgiad conclusions. Time
series of S&P500 daily closing prices, its logarithmic fagterence as well as its first
difference, are used in within the scope of this study. Adoay to the recurrence
plots, daily closing prices behave like a Wiener process\yBian motion) and the
values for the returns behave like Gaussian white noisexeldre non-stationary parts
in recurrence plots of daily closing prices while recuren€returns shows stationary
characteristics. ACF plots and results of Augmented Didkeler as well as KPSS
tests support the results of recurrence plots: daily ctpgiices are non-stationary, but
return values are. Moreover, Shapiro-Wilk and Kolmogo&mirnov tests results in
that none of daily closing prices data and returns are ndyrdatributed. As a matter
of fact, Student-t distribution is the most appropriate foreeturns (Figuré€ 416).

On the other hand, for frequency domain analysis, we havetbaethe use of wavelet
transform produces better results than Fourier transfasesd Smoothed raw peri-
odograms and AR fitted spectrums in fact catch some pertgdicid OLS and Burg
methods used in AR fitted spectrum have shown peaks at soupgefrieies. These
peaks give periodicities in terms of days as, such as, 18,488843, 7.4478, 6.0485,
4.4554, 3.9447, 3.2090, 2.7194 and 2.0493. Largest pesiagproximately 14 days
which is far from low frequency ones. Higher frequency comgras overlap low fre-
guency ones. Therefore, non-stationary time series, lik@ntiial time series in our
case, are not suitable candidates for Fourier transformalysis. Even further, time
information is lost in applying Fourier transforms. STFThieh is a modified version
of DFT, however, provides us with the time information; btili,sit does not con-

tain multiresolution analysis. In order to cover such draeks of Fourier transform,
wavelet transform was developed.
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It is found from the wavelet analysis that series of S&P50/ddosing prices shows
a quasi-periodic behavior after the scale level 5. This méaat for approximately 2
weeks, 1 month, 3 months, 6 months and for higher scaley, dasing prices have
fractal structured [44]. Time-scale decomposition catdhéerest of both short-term
and long-term traders: short-term traders are mainlya@sted with low scales, namely,
the high frequency analysis, while the long-term tradeesfacused on high scales of
the time series of interest. In fact, MRA of the values for thims gives information
about economic landmarks. MODWT of S&P500 returns capturefsian crisis,
dot-comcollapse andnortgagecrisis occurred in 1997, 1999 and 2007, respectively.
Sizes of such fluctuations are observed in scales and intiteevals. Looking wavelet
spectrums, it is found out that time series of S&P500 daibgiclg prices has periods
of 22, 66, 260, 512 and 1024 days arowtat-comcrisis. In periods between 4 and
6 years, data has high power during high number of years. édéata has periods in
low frequency components for long years.

In order to analyse the S&P500 data with linear models, ARIMA S8ARIMA models

are used and their results are compared. Some periods wéduskin wavelet anal-
ysis are also used in SARIMA. According to AIC, AICc and BIC, SARIMAL, 2) x
(0,1,1)130 seems the best among such ARIMAand SARIMAmodels. Furthermore
SARIMA(0,1,2) x (0,1,1);3 has more accurate values for the test set than those
of ARIMA and SARIMA models such that the first 5344 observatigeserate the
training set and the last 100 observations form the tesEseédence of long term sea-
sonality found in wavelet transform supports that the tssalle accurate enough for
the SARIMA(0, 1,2) x (0,1, 1)130 model. In addition, using multiresolution analysis
provides a better fitting and forecasting. We have divideity ddosing prices time
series into 3 scales and modeled each part with different ARMvbdels. Total sum

of the residuals from each scale is less than the sum of tidueds which were found
using only ARIMA model with the original data.

On the other hand, LSTAR model with = 4 andd = 1 gives more accurate results,
except ACF1 method. AAR model with, = 10 andd = 1 gives better results in terms
of ME, MAE, MPE and MAPE measures. Besides accuracy, AIC wbfeéSETAR,
LSTAR and AAR models are much smaller than that of SARIMAL, 2) x (0,1, 1);30.
Likewise, values fo the information criteria are companeaider to find out which
GARCH model is more suitable for the volatility modeling. Itsabeen found that
GARCH(4, 1) model with skewed generalized error distribution has thallest AIC,
BIC, SIC and HQIC values. Student-t distributed GAR@H ) model has very close
values too. Because we have found in descriptive statistatdistribution of returns
Is not normal, Student-t distribution approximately fit thega.

In conclusion, financial time series have nonlinear and dexptructures. There-
fore, it is better to model financial time series with nonéinenodels whenever pos-
sible. In addition, complex time series requires waveletlysis instead of Fourier
analysis when passing to the frequency domain. Wavelesftvem provides a time
domain analysis as well as a frequency domain analysis &nmeously. Particularly,
SARIMA(0,1,2) x (0,1, 1)130 model, which has better accuracy and information cri-
teria values than other linear models, is most appropria@eaifor the S&P500 daily
closing prices. Furthermore, it should always be prefergiitht modeling after MRA
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gives better fitted models, especially for forecasting theetseries. However, non-
linear models fit better than linear ones do for the finanaiaé¢tseries. For instance,
AAR model withm = 10 andd = 1 has better values than other fitted models in our
study. Thus it would be better to use nonlinear methods fadetiog financial time
series, such as S&P500 data.

Shortly, some of possible future works on financial timeesewould include

e multivariate time series analysis by using wavelets,
e applications of wavelets to ODEs and PDEs by using chaatie series [21, 48],
e wavelet-based multi-fractal analysis, Hybrid forecagtinodels[[29, 65].
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Appendix A

Some of theR-Codes

]Simulated ARMA Codes of Section 2.3 IZI\

# AR(1) Processes
x1 = arima.sim(list(order=c(1,0,0), ar=.8), n=1000)
x2 = arima.sim(list(order=c(1,0,0), ar=-.8), n=1000)
par(mfrow=c(2,1))
plot(x1, main=(expression(AR(1)""phi==+.8)))
plot(x2, main=(expression(AR(1)" phi==-.8)))
dev.new()
acf2(x1, 999)
acf2(x1, 100)
acf2(x2, 100)
#AR(2) Process
x = arima.sim(list(order=c(2,0,0), ar=c(.5,.4)), n=100)
dev.new()
plot(x,main=(expression(AR(2)" phi[1]==.5""phi[2] ==.4)))
dev.new()
acf2(x)
#MA(1) Process
x = arima.sim(list(order=c(0,0,1), ma=.5), n=1000)
dev.new()
plot(x, main=(expression(MA(1)"theta==.5)))
dev.new()
acf2(x,100)
#MA(2) Process
x = arima.sim(list(order=c(0,0,2), ma=c(-.5,-.9)), n=50 0)
plot(x, main=(expression(MA(2)"theta[1]==-.5""
theta[2]==-.9)))
dev.new()
acf2(x,100)
#ARMA(2,2) Process

x = arima.sim(list(order=c(2,0,2), ar=c(.5,.4),ma=c(-. 5,-.9)),
n=1000)
plot(x, main=(expression(ARMA(2,2)""phi[1]==.5""ph i[2]==.4""

theta[1]==-.5""theta[2]==-.9)))
dev.new()
acf2(x,100)
#ARIMA(1,1,1) Process
x1 = arima.sim(list(order=c(1,1,1), ar=.9, ma=.5), n=100 0)
x2 = arima.sim(list(order=c(1,1,1), ar=.5, ma=-.4), n=10 00)
par(mfrow=c(2,2))
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plot(x1, main=(expression(ARIMA(1,1,1)" phi==.9""

theta==.5)))
plot(x2, main=(expression(ARIMA(1,1,1)" " phi==.5""
theta==-.4)))

acf(x1,100)
acf(x2,100)

|GARCH Codes of Subsection 2.6
#plotting dax data and its returns

dax<-(EuStockMarkets)[,"DAX"]

return.dax<-diff(log(dax))

par(mfrow=c(1,2))

plot(dax)

plot(return.dax)

#summary of AR(1)-ARCH(1) of return of DAX

install.packages("fGarch")

library(fGarch)

summary(garchFit("arma(1,0)+garch(1,0),return.dax))

summary(dax.g <- garchFit("garch(1,1),return.dax))

#Forecast of GARCH(1,1) volatility of DAX return

u = dax.g@sigma.t

plot(window(return.dax), ylim=c(-.12,.12),
ylab="DAX Returns")

lines(window(return.dax-2 *U), Ity=2, col=4)

lines(window(return.dax+2 *U), lty=2, col=4)

| Neural Network Codes of Subsection 2.7.2 ]|

library(forecast)

data(EuStockMarkets)

dax<-EuStockMarkets[, "DAX"]

a<- window(dax, start = c¢(1991, 130), end
c(1994, 130))

fit <- nnetar(a)

fore<-forecast(fit,h=260)

plot(fore)

dev.new()

plot(window(dax, start = ¢(1991, 130), end
c(1995, 130)))

accuracy(fore,window(dax, start = c¢(1994, 130),

end = c(1995, 130)))

]Spectral Analysis Codes of Subsection 3.1.4 [ ]

#Spectral Density of Noise and ARMA

par(mfrow=c(3,1))

arma.spec(log="no", main="White Noise")

arma.spec(ma=.5, log="no", main="Moving Average")

arma.spec(ar=c(-.4,.3), log="no", main="Autoregressio n")
arma.spec(ar=c(-.4,.3),ma=.5, log="no", main="Autoreg ression")
#Example Sine Series

x1<-3 *sin(2 *pi *1:100 *5/100)+4 =*cos(2 *pi *1:100 *5/100)

X2<-2 *sin(2 *pi *1:100 *25/100)+3 =*cos(2 *pi *1:100 *25/100)
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x3<-4 xsin(2 =*pi »1:100 *85/100)+6 =*cos(2 *pi »1:100 *85/100)

sum=x1+x2+x3

par(mfrow=c(2,2))

plot.ts(x1, ylim=c(-10,10), main=expression(frequency
==5/100""A"2==25))

plot.ts(x2, ylim=c(-10,10), main=expression(frequency
==25/100""A"2==13))

plot.ts(x3, ylim=c(-10,10), main=expression(frequency
==85/100""A"2==52))

plot.ts(sum, ylim=c(-20,20), main="sum")

P = abs(2 *fft(sum)/100)2

f = 0:99/100

plot(f, P, type="I", xlab="frequency", ylab="periodogra

x3<-4 *sin(2 *pi *1:100 *75/100)+6 =*cos(2 *pi *»1:100 *75/100)

sum=x1+x2+x3

par(mfrow=c(1,2))

P = abs(2 = fft(sum)/100)2

f = 0:99/100

plot(f, P, type="I", xlab="frequency", ylab="periodogra

x3<-4 xsin(2 *pi *1:100 *50/100)+6 =*cos(2 *pi »1:100 *50/100)

sum=x1+x2+x3

#periodogram of sum series

P = abs(2 = fft(sum)/100)2

f = 0:99/100

plot(f, P, type="I", xlab="frequency", ylab="periodogra

| DAX Example Codes of Subsection 3.12 ]

m)

m)

#some descriptive analysis
dax<-(EuStockMarkets)[,"DAX"]
par(mfrow=c(3,2))
plot(dax)
acf(dax)
pacf(dax)
hist(dax)
ggnorm(dax)
gqline(dax)
qgplot(rt(1000,df=3), dax, main="t(3) Q-Q Plot",ylab=
"Sample Quantiles")
qqgline(dax)
par(mfrow=c(1,2))
#for comparing the histograms for different number of break
hist(dax)
hist(dax,100)
summary(dax)
kurtosis(dax)
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]

}
Mode(dax)
#general look at spectrums of DAX
DAX<-ts(EuStockMarkets[0:1860],frequency=260,
start=c(1991,130))
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par(mfrow=c(2,2))
plot(DAX)
spec.pgram(DAX, taper=0, log="no")
spectrum(DAX)
spectrum(DAX,method="ar")
spectrum(DAX,method="ar",na.action=na.pass)
spec.ar(DAX, plot=TRUE, method = "mle",
add = TRUE,col = "forest green")
spec.ar(DAX, plot=TRUE, method = "ols",
add = TRUE,col = "blue")
spec.ar(DAX, plot=TRUE, method = "burg",
add = TRUE,col = "red")
legend("topleft",c("YuleWalker","MLE","OLS","Burg")
lty=c(1,1,1,1),
lwd=c(2.5,2.5,2.5,2.5),col=c("black",
"forest green","blue","red"))
#spanned smooth periodograms(Daniell)
par(mfrow=c(2,2))
spectrum(DAX)
spectrum(DAX, spans = ¢(3,5))
text(100,1e+05,"widths(3,5)",col="blue")
spectrum(DAX, spans = c¢(5,7))
text(100,1e+05,"widths(5,7)",col="blue")
spectrum(DAX, spans = ¢(19,23))
text(100,10000,"widths(19,23)",col="blue")
#kernel smooth periodograms(Daniell)
par(mfrow=c(2,2))
spectrum(DAX)
spectrum(DAX kernel("daniell”, c(3,5)))
text(100,10000,"widths(3,5)",col="blue")
spectrum(DAX,kernel("daniell”, ¢(5,7)))
text(100,10000,"widths(5,7)",col="blue")
spectrum(DAX,kernel("daniell”, ¢(19,23)))
text(100,10000,"widths(19,23)",col="blue")

]Empirical Results Codes of Chapter 4 EI‘
#getting data form yahoo web page

str <- sprintf("%s?s="GSPC&d=7&e=4&f=2011&g=d&a=0&h=3 &c=1950",
"http://ichart.finance.yahoo.com/table.csv")
df <- tryCatch(read.csv(url(str)), error = function(e) NA )

names(df) <- tolower(names(df))

df$date <- as.Date(df$date)

df <- df[order(df$date), ]

start.date <- "1990-01-01"

end.date <- "2011-01-01"

close.data<-ts(subset(df,date>=start.date|date>=end .date)
[,c("close™)])

df$return <- c(diff(log(df$close)), NA)

return.data<-ts(subset(df,date>=start.date|date>=en d.date)
[,c("return")])

par(mfrow=c(1,2))

plot(subset(df,date>=start.date|date>=end.date)

[,c("date","close")],
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type="I",main="S&P 500", xlab="", col="tomato")
plot(subset(df,date>=start.date|date>=end.date)
[,c("date","return")],
type="I",main="S&P 500 Return", xlab="", col="blue")
#recurrence plots to see characteristics of time series
install.packages("tseriesChaos")
recurr(close.data,m=12,d=1)
recurr(close.data,m=60,d=2)
recurr(return.data,m=12,d=1)
recurr(return.data,m=60,d=2)
#histogram and Q-Q plot
par(mfrow=c(2,1))
hist(close.data, prob=TRUE, 60)
lines(density(close.data,na.rm = TRUE))
qgnorm(close.data)
qgline(close.data)
par(mfrow=c(2,1))
hist(return.data, prob=TRUE, 60)
lines(density(return.data,na.rm = TRUE))
qggnorm(return.data)
qqline(return.data)
library(car)
par(mfrow=c(2,2))
ggPlot(return.data, distribution="norm",
ylab="S&P500 quantiles"”,
envelope=FALSE)
ggPlot(return.data, distribution="Inorm",
ylab="S&P500 quantiles",
envelope=FALSE)
qgPlot(return.data, distribution="unif",
ylab="S&P500 quantiles",
envelope=FALSE)
ggPlot(return.data, distribution="t", df=5,
ylab="S&P500 quantiles",
envelope=FALSE)
#Shapiro-Wilk normality test
shapiro.test(close.data[0:4999])
shapiro.test(return.data[0:4999])
shapiro.test(diff(close.data[0:4999]))
#Kolmogorov-Smirnov test
ks.test(close.data, "pnorm”, mean(close.data),
sd(close.data))
ks.test(return.data, "pnorm", mean(return.data),
sd(return.data))
ks.test(diff(close.data), "pnorm", mean(diff(close.da ta)),
sd(diff(close.data)))
#for looking the lag-lag plot fill the missing values with
#average values and get the lag plot
mean(close.data, na.rm=T)
#for missing values
close.data[is.na(close.data)]<-mean(close.data,

na.rm=T)
lagl.plot(close.data, 9)
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mean(return.data, na.rm=T)
return.datafis.na(return.data)]<-mean(return.data,
na.rm=T)
lagl.plot(return.data, 9)
#Abs(return) and squared return
par(mfrow=c(3,1))
plot(return.data)
plot(abs(return.data))
plot(return.data™2)
dev.new()
par(mfrow=c(1,2))
acf(abs(return.data))
acf(return.data’2)
#Acf and Pacf analysis
dev.new()
par(mfrow=c(2,2))
acf(close.data,40)
pacf(close.data,40)
acf(return.data,40)
pacf(return.data,40)
acf2(diff(return.data),40)
#Big picture of the data with frequecny 1 and frequency 260
acf2(close.data,5566)
freq.close<-ts(close.data,frequency=260,
start=c(1990,1))
acf2(freq.close, 5566)
acf2(return.data,5566)
freq.return<-ts(return.data,frequency=260,
start=c(1990,1))
acf2(freq.return, 5566)
acf2(diff(return.data),5565)
#descriptive statistics
library(moments)
close.stats <- c(mean(close.data), sd(close.data),
skewness(close.data), kurtosis(close.data))
names(close.stats) <- statNames
close.stats
return.stats <- c(mean(return.data),
sd(return.data), skewness(return.data),
kurtosis(return.data))
names(return.stats) <- statNames
return.stats
log.close.stats <- c(mean(log(close.data)),
sd(log(close.data)), skewness(log(close.data)),
kurtosis(log(close.data)))
names(log.close.stats) <- statNames
log.close.stats
diff.close.stats <- c(mean(diff(close.data)),
sd(diff(close.data)), skewness(diff(close.data)),
kurtosis(diff(close.data)))
names(diff.close.stats) <- statNames
diff.close.stats
diff.log.close.stats <- c(mean(diff(log(close.data)))
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sd(diff(log(close.data))), skewness(diff(log(close.d
kurtosis(diff(log(close.data))))

names(diff.log.close.stats) <- statNames

diff.log.close.stats

diff.diff.close.stats <- c(mean(diff(diff(close.data)
sd(diff(diff(close.data))), skewness(diff(diff(close
kurtosis(diff(diff(close.data))))

names(diff.diff.close.stats) <- statNames

diff.diff.close.stats

diff.return.stats <- c(mean(diff(return.data)),
sd(diff(return.data)), skewness(diff(return.data)),
kurtosis(diff(return.data)))

names(diff.return.stats) <- statNames

diff.return.stats

#tests

adf.test(close.data, alternative="stationary")

adf.test(return.data, alternative="stationary")

library(tseries)

kpss.test(close.data, null

kpss.test(return.data, null

#linear filtering

plot(close.data, type = "I")

tui.l <- filter(close.data, filter

tui.2 <- filter(close.data, filter

tui.3 <- filter(close.data, filter

"Trend")
"Trend")

rep(1/5, 5))
rep(1/25, 25))
rep(1/131, 131))

lines(tui.1, col = "red")
lines(tui.2, col = "purple")
lines(tui.3, col = "blue")

#decomposition

plot(decom <- stl(log(freq.close), "per")) #Loess method

plot(decom2 <-decompose(log(freqg.close))) #MA method

decomposed.data <- decompose(freq.close,
type="multiplicative")

plot(freq.close - decomposed.data$trend,

main="signal without trend component")

#Exponential smoothing

model <- HoltWinters(freq.close)

plot(freg.close)

lines(model$fitted[,"xhat"], col="red")

pred <- predict(imodel, n.ahead=200)

plot(freq.close)

lines(pred, col="red", Ity=2)

plot(forecast(model, h=200, level=c(75,95)))

dev.new()

fit <- stlf(freq.close)

plot(forecast(fit, level=c(75,95)))

summary(fit)

#Fourier analysis

par(mfrow=c(2,2))

plot(subset(df, date >= start.date)[ , c("date", "close")

type="I",main="S&P 500", xlab="", col="tomato")
mtext(sprintf("Closing prices since %s", start.date))
spectrum(close.data,na.action=na.pass)
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spectrum(close.data,kernel("daniell", ¢(10,20)),
na.action=na.pass)
spectrum(close.data,method="ar",na.action=na.pass)
spec.ar(close.data, plot=TRUE, method = "mle",
add = TRUE,col = "forest green")
spec.ar(close.data, plot=TRUE, method = "ols",
add = TRUE,col = "blue")
spec.ar(close.data, plot=TRUE, method = "burg",
add = TRUE,col = "red")
legend("topleft”,c("YuleWalker","MLE","OLS","Burg")
Ity=c(1,1,1,1),lwd=c(2.5,2.5,2.5,2.5),
col=c("black","forest green","blue","red"))
#smoothed periodograms of daily closing prices
par(mfrow=c(2,2))
specvaluesl <- spec.pgram(close.data,

kernel("daniell", ¢(13,13)),taper=0)

text(0.4,100000,"widths(13,13)",col="blue")
specvalues?2 <- spec.pgram(close.data,

kernel("daniell”, c(21,21)),taper=0)

text(0.4,100000,"widths(21,21)",col="blue")
specvalues3 <- spec.pgram(close.data,

kernel("daniell", c(13,41)),taper=0)

text(0.4,100000,"widths(13,41)",col="blue")

specvalues <- spec.pgram(close.data,taper=0, log="no"

text(0.4,40000000,"lag=no",col="blue")

#peaks at periodogram

spectrum(close.data,method="ar",na.action=na.pass)

a<-spec.ar(close.data, plot=TRUE, method = "burg",
add = TRUE,col = "red")

x<-a$spec

y<-a$freq

z<-ts(X,y)

install.packages("quantmod")

findPeaks(z, thresh=0) #thresh is for minimum peak/valley

legend("topleft",c("YuleWalker","Burg"),lty=c(1,1),

lwd=c(2.5,2.5), col=c("black","red"))

as$freq

abline(v=1/13.4865, Ity="dotted")

abline(v=1/9.7843, Ity="dotted")

abline(v=1/7.4478, Ity="dotted")

abline(v=1/6.0485, Ity="dotted")

abline(v=1/4.4554, Ity="dotted")

abline(v=1/3.9447, Ity="dotted")

abline(v=1/3.2090, Ity="dotted")

abline(v=1/2.7194, Ity="dotted")

abline(v=1/2.0493, Ity="dotted")

#Wavelet analysis

install.packages("wavelets")

library(wavelets)

#DWT

wt <- dwt((close.data[1:5444]), boundary="reflection",
fast=FALSE)

plot.dwt(wt, levels = list(c(1,2,3,4,5),c()),
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draw.boundary = TRUE,col.boundary = "green")
wt2 <- dwt((return.data[1:5444]), boundary="reflection
fast=FALSE)
plot.dwt(wt2, levels=6, draw.boundary = TRUE,
col.boundary = "green")
#MODWT
modwt.close.data<-modwt(close.data,filter="d2",

n.levels=8, boundary="periodic",fast=TRUE)

plot.modwt(modwt.close.data)
dev.new()
modwt.close.data2<-modwt(close.data,filter="d2",

n.levels=10,boundary="periodic",fast=TRUE)

plot. modwt(modwt.close.data2)
modwt.close.data3<-modwt(close.data,filter="1a8",

n.levels=8,boundary="periodic",fast=TRUE)

plot.modwt(modwt.close.data3)
modwt.close.data4d<-modwt(close.data,filter="1a8",

n.levels=10,boundary="periodic",fast=TRUE)

plot.modwt(modwt.close.data4)
modwt.return.data<-modwt(return.data,filter="d2",

n.levels=8,boundary="periodic",fast=TRUE)

plot. modwt(modwt.return.data)
modwt.return.data2<-modwt(return.data,filter="1a8",

n.levels=8,boundary="periodic",fast=TRUE)

plot.modwt(modwt.return.data?)
plot.modwt(modwt.return.data2, levels = list(c(5,6,7,8

draw.boundary = TRUE,col.boundary = "green")

modwt.return.data3<-modwt(return.data,filter="1a8",

n.levels=9,boundary="periodic",fast=TRUE)

plot.modwt(modwt.return.data3, levels = list(c(8,9),c(

draw.boundary = TRUE,col.boundary = "green”)

library(waveslim)
SP500.volatility <- abs(return.data[1:5444])
SP500V.haar <- mra(SP500.volatility, "haar", 4, "modwt")
names(SP500V.haar) <- c('d1", "d2", "d3", "d4", "s4")
SP500V.Ia8 <- mra(SP500.volatility, "la8", 4, "modwt")
names(SP500V.la8) <- c('d1", "d2", "d3", "d4", "s4")
par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(SP500.volatility, axes=FALSE, ylab="", main="(
for(i in 1:5)

plot.ts(SP500V.haar[[i]], axes=FALSE, ylab=names(SP50
axis(side=1, at=seq(0,368,by=23),

+ labels=c(0,",46,",92,",138,",184,"™,230,",276
",322,",368))

par(mfcol=c(6,1), pty="m", mar=c(5-2,4,4-2,2))
plot.ts(SP500.volatility, axes=FALSE, ylab="", main="(
for(i in 1:5)

plot.ts(SP500V.la8[[i]], axes=FALSE, ylab=names(SP500
axis(side=1, at=seq(0,368,by=23),

labels=c(0,",46,",92,",138,",184,",230,",276,

".322,",368))

#Wavelet Power Spectrum
install.packages("WaveletComp")
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library(WaveletComp)
my.data = data.frame(freq.close)
my.w = analyze.wavelet(my.data)
wt.image(my.w)
dev.new()
reconstruct(my.w, plotwaves = F, lwd = c¢(1,2),
legend.coords = "bottomleft")
my.wl = analyze.wavelet(my.data,method="shuffle")
wt.image(my.w1)
dev.new()
reconstruct(my.wl, plotwaves = F, lwd = c¢(1,2),
legend.coords = "bottomleft")
my.w2 = analyze.wavelet(my.data,method="ARIMA")
wt.image(my.w2)
dev.new()
reconstruct(my.w2, plot.waves =
legend.coords =
library(biwavelet)
wtl=wt(cbind(1:5444,close.data[1:5444]))
par(mfrow=c(1,2))
plot(wtl, type="power.corr.norm",
main="Bias-corrected wavelet power")
plot(wtl, type="power.norm",
main="Biased wavelet power")
#SARIMA fitting
#The Box-Jenkins model
a<-pacf(close.data)
b<-acf(return.data)
par(mfrow=c(1,2))
plot(a)
plot(b)
#SARIMA models
sarima(close.data, 1, 1, 1)
sarima(return.data, 1, 1, 1)
sarima(freq.close,1,1,1,0,1,1,42)
#Autoselected models
library(forecast)
auto.arima(close.data) #gives ARIMA(O,1,2)
par(mfrow=c(1,2))
plot(close.data)
plot(arima.sim(list(order=c(0,1,2), ma=c(.0675,.0525
n=5566))

L wd = c(1,2),

F
"bottomleft")

#Data fitting
close.data.arima <- arima(close.data,
order=c(0,1,2))
close.data.arima
diff.close.data.arima <- arima(diff(close.data),
order=c(0,0,2))
diff.close.data.arima
#Auto selection by bic criterion
auto.arima(close.data,ic="bic") #gives ARIMA(1,1,1)
diff.close.data.arima <- arima(diff(close.data),
order=c(1,0,1))
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diff.close.data.arima
#Best ARIMA model by AIC
get.best.arima <- function(x.ts, maxord = c¢(1,1,1))
{
best.aic <- 1e8
n <- length(x.ts)

for (p in O:maxord[1]) for(d in O:maxord[2]) for(gq in 0:maxo

{

fit <- arima(x.ts, order = c(p,d,q))

fit.aic <- -2 * fit$loglik + (log(n) + 1)

if (fit.aic < best.aic)

{

best.aic <- fit.aic
best.fit <- fit
best.model <- c(p,d,q)
1

list(best.aic, best.fit, best.model)

get.best.arima(close.data, maxord=c(2,2,2))
close.arima<-arima(close.data, ord=c(2,1,0),
xreg=1:length(close.data))
nobs=length(close.data)
close.pred <- predict(close.arima, n.ahead=100,
newxreg=(nobs+1):(nhobs+100))
ts.plot(close.data,close.pred$pred, col=1:2,
xlim=c(5000,5544),ylim=c(800,1400))
#forecasts
library("forecast")
par(mfrow=c(2,2))
close.data.arima <- arima(close.data,
order=c(0,1,2))
forecasts <- forecast.Arima(close.data.arima
h=500,level=c(99.5))
plot.forecast(forecasts)
diff.close.data.arima <- arima(diff(close.data),
order=c(0,0,2))
forecasts2 <- forecast.Arima(diff.close.data.arima ,
h=500,level=c(99.5))
plot.forecast(forecasts?2)
close.data.arima2 <- arima(close.data,
order=c(1,1,1))
forecasts3 <- forecast.Arima(close.data.arima2 ,
h=500,level=c(99.5))
plot.forecast(forecasts3)
diff.close.data.arima2 <- arima(diff(close.data),
order=c(1,0,1))
forecasts4 <- forecast.Arima(diff.close.data.arima2 ,
h=500,level=c(99.5))
plot.forecast(forecasts4)
dev.new()
par(mfrow=c(2,2))
acf(forecasts$residuals, lag.max=40)
acf(forecasts2$residuals, lag.max=40)

163

* length(fitscoef)

rd[3])



acf(forecasts3$residuals, lag.max=40)
acf(forecasts4$residuals, lag.max=40)
dev.new()
par(mfrow=c(2,2))
plot.ts(forecasts$residuals)
plot.ts(forecasts2$residuals)
plot.ts(forecasts3$residuals)
plot.ts(forecasts4$residuals)
dev.new()
par(mfrow=c(2,2))
plotForecastErrors <- function(forecasterrors)
{
mybinsize <- IQR(forecasterrors)/4
mysd <- sd(forecasterrors)
mymin <- min(forecasterrors) - mysd *5
mymax <- max(forecasterrors) + mysd *3
mynorm <- rnorm(10000, mean=0, sd=mysd)
mymin2 <- min(mynorm)
mymax2 <- max(mynorm)
if (mymin2 < mymin) { mymin <- mymin2 }
if (mymax2 > mymax) { mymax <- mymax2 }
mybins <- seq(mymin, mymax, mybinsize)
hist(forecasterrors, col="red", freq=FALSE,
breaks=mybins)
myhist <- hist(mynorm, plot=FALSE,
breaks=mybins)
points(myhist$mids, myhist$density, type="I",
col="blue", Ilwd=2)
}
plotForecastErrors(forecasts$residuals)
plotForecastErrors(forecasts2$residuals)
plotForecastErrors(forecasts3$residuals)
plotForecastErrors(forecasts4$residuals)
#mean of forecast residuals
mean(forecasts$residuals)
mean(forecasts2$residuals)
mean(forecasts3$residuals)
mean(forecasts4$residuals)
#ARIMA with Drift
fitl = arima(close.data, order=c(0,1,2))
nobs = length(close.data)
fit2 = arima(close.data, order=c(0,1,2),
xreg=1:nobs)
forel predict(fitl, 200)
fore2 predict(fit2, 200, newxreg=(nobs+1):(nobs+200))
par(mfrow=c(2,1))
ts.plot(close.data,forel$pred, col=1:2,
main="Prediction Without Constant Term")
ts.plot(close.data,fore2$pred, col=1:2,
main="Prediction With Constant Term")
par(mfrow=c(2,1))
ts.plot(close.data,forel$pred, col=1:2,
xlim=c(5000,5644),ylim=c(800,1400),
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main="Prediction Without Constant Term")
ts.plot(close.data,fore2$pred, col=1:2,
xlim=c(5000,5644),ylim=c(800,1400),
main="Prediction With Constant Term")
#predictions for sarima models with frequency 260
par(mfrow=c(2,2))
close.sl<-arima(close.data, order=c(2,1,2),
seas=list(order=c(0,1,1), 260))
predict<-predict(close.s1, n.ahead=300)
ts.plot(cbind(close.data, predict$pred), Ity=1:2, col=
main="ARIMA(2,1,2)x(0,1,1) with Frequency 260")
lines(predict$pred+2 * predict$se, col="red", Ity=3)
lines(predict$pred-2 * predict$se ,col="red", Ity=3)
close.s2<-arima(close.data, order=c(0,1,2),
seas=list(order=c(0,1,1), 260))
predict<-predict(close.s2, n.ahead=300)
ts.plot(cbind(close.data, predict$pred), Ity=1:2, col=
main="ARIMA(0,1,2)x(0,1,1) with Frequency 260")
lines(predict$pred+2 * predict$se, col="red", Ity=3)
lines(predict$pred-2 *predict$se ,col="red", lty=3)
close.s3<-arima(close.data, order=c(2,1,0),
seas=list(order=c(0,1,1), 260))
predict<-predict(close.s3, n.ahead=300)
ts.plot(cbind(close.data, predict$pred), lty=1:2, col=
main="ARIMA(2,1,0)x(0,1,1) with Frequency 260")
lines(predict$pred+2 * predict$se, col="red", Ity=3)
lines(predict$pred-2 * predict$se ,col="red", Ity=3)
close.s4<-arima(close.data, order=c(1,1,1),
seas=list(order=c(0,1,1), 260))
predict<-predict(close.s4, n.ahead=300)
ts.plot(cbind(close.data, predict$pred), Ity=1:2, col=
main="ARIMA(1,1,1)x(0,1,1) with Frequency 260")

lines(predict$pred+2 * predict$se, col="red", Ity=3)
lines(predict$pred-2 * predict$se ,col="red", Ity=3)
#Accuracy

library(forecast)

a<- window(close.data,1,5344)
fitO<-arima(a, order=c(0,1,1),

seas=list(order=c(0,1,1), 260))
foreO<-forecast(fit0,h=101)
accuracy(fore0,window(close.data,5344,5444),d=0,D=0
fit<-arima(a, order=c(1,1,0),

seas=list(order=c(0,1,1), 260))
fore<-forecast(fit,h=101)
accuracy(fore,window(close.data,5344,5444),d=0,D=0)
fitl<-arima(a, order=c(1,1,1),

seas=list(order=c(0,1,1), 260))
forel<-forecast(fitl,h=101)
accuracy(forel,window(close.data,5344,5444),d=0,D=0
fit2<-arima(a, order=c(0,1,2),

seas=list(order=c(0,1,1), 260))
fore2<-forecast(fit2,h=101)
accuracy(fore2,window(close.data,5344,5444),d=0,D=0
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fit3<-arima(a, order=c(2,1,2),
seas=list(order=c(0,1,1), 260))
fore3<-forecast(fit3,h=101)
accuracy(fore3,window(close.data,5344,5444),d=0,D=0
fitd<-arima(a, order=c(2,1,0),
seas=list(order=c(0,1,1), 260))
fored<-forecast(fit4,h=101)
accuracy(fore4,window(close.data,5344,5444),d=0,D=0
fit<-arima(a, order=c(2,1,1),
seas=list(order=c(0,1,1), 260))
fore5<-forecast(fit5,h=101)
accuracy(fore5,window(close.data,5344,5444),d=0,D=0
fit<-arima(a, order=c(1,1,2),
seas=list(order=c(0,1,1), 260))
fore6<-forecast(fit6,h=101)
accuracy(fore6,window(close.data,5344,5444),d=0,D=0
fit7<-arima(a, order=c(1,1,0))
fore7<-forecast(fit7,h=101)
accuracy(fore7,window(close.data,5344,5444),d=0,D=0
fitB<-arima(a, order=c(0,1,1))
fore8<-forecast(fit8,h=101)
accuracy(fore8,window(close.data,5344,5444),d=0,D=0
fit9<-arima(a, order=c(0,1,2))
fore9<-forecast(fit9,h=101)
accuracy(fore9,window(close.data,5344,5444),d=0,D=0
fitlO<-arima(a, order=c(2,1,0))
forel0<-forecast(fit10,h=101)
accuracy(fore10,window(close.data,5344,5444),d=0,D=
fitll<-arima(a, order=c(1,1,1))
forell<-forecast(fit11,h=101)
accuracy(forell,window(close.data,5344,5444),d=0,D=
fitl2<-arima(a, order=c(2,1,2))
forel2<-forecast(fit12,h=101)
accuracy(fore12,window(close.data,5344,5444),d=0,D=
fitl3<-arima(a, order=c(1,1,2))
forel3<-forecast(fit13,h=101)
accuracy(fore13,window(close.data,5344,5444),d=0,D=
fitl4<-arima(a, order=c(2,1,1))
foreld<-forecast(fit14,h=101)
accuracy(forel4,window(close.data,5344,5444),d=0,D=
par(mfrow=c(2,2))
plot(fore,main="ARIMA(1,1,0)x(0,1,1)
with Frequency 260")
plot(fore2,main="ARIMA(0,1,2)x(0,1,1)
with Frequency 260")
plot(fore4,main="ARIMA(2,1,0)x(0,1,1)
with Frequency 260")
plot(fore3,main="ARIMA(2,1,2)x(0,1,1)
with Frequency 260")
# Wavelet Transform Based ARIMA Fitting
close.dwt.la8.2<-dwt(close.data[1:4096],"a8",2)
V2<- close.dwt.la8.2$s2
W2<- close.dwt.la8.2%$d?2
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W1<- close.dwt.la8.2$d1
arima.V2<-arima(V2,order=c(1,1,1))
arima.W2<-arima(W2,order=c(1,1,1))
arima.Wl<-arima(W1,order=c(1,1,1))
fore.V2<-forecast(arima.V2,h=100)
fore.W2<-forecast(arima.W2,h=100)
fore.W1l<-forecast(arima.W1,h=100)
sum(fore.V2%residuals+fore.W2$residuals
+fore.W1$residuals)
close.modwt.la8.2<-modwt(close.data[1:5344],
"la8",2)
class(close.modwt.la8.2)
names(close.modwt.|a8.2)
cV2<-close.modwt.la8.2$s2
cW2<-close.modwt.la8.2$d2
cW1<-close.modwt.la8.2%d1
sum(close.data[1:5344]2)
sum(cW1"2)+sum(cW2"2)+sum(cV2°2)
sum(close.data[1:5344]°2)-(sum(cW1"2)
+sum(cW2"2)+sum(cV2°2))
auto.arima(cV2)
auto.arima(cwW2)
auto.arima(cW1)
a<-arima(cV2,order=c(5,1,5))
b<-arima(cW2,order=c(2,0,4))
c<-arima(cW1,order=c(0,0,5))
foreO<-forecast(a,h=100)
forel<-forecast(b,h=100)
fore2<-forecast(c,h=100)
fit.arima<-arima(close.data[1:5344],
order=c(1,1,1))
forecast.arima<-forecast(fit.arima,h=100)
sum(forecast.arima$residuals)
sum(foreO$residuals+forel$residuals
+fore2$residuals)
sum(fore.V2%residuals+fore. W2%residuals
+fore.W1$residuals)
#GARCH Fittings
y=diff(log(close.data)) * 100
y=y-mean(y)
garchFit("garch(1,0),data=y,
include.mean=FALSE)
summary(garchFit("garch(1,0),data=y,
include.mean=FALSE))
garchFit("garch(1,0),data=y,
include.mean=FALSE,cond.dist="sstd",trace=F)
summary(garchFit("garch(1,0),data=y,
include.mean=FALSE,cond.dist="sstd",
trace=F))
garchFit("garch(4,0),data=y,
include.mean=FALSE,cond.dist="sstd",trace=F)
summary(garchFit("garch(4,0),data=y,
include.mean=FALSE,cond.dist="sstd",
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trace=F))
garchFit("garch(4,1),data=y,include.mean=FALSE,
cond.dist="sstd",trace=F)
summary(garchFit("garch(4,1),data=y,
include.mean=FALSE,cond.dist="sstd",
trace=F))
garchFit("garch(4,1),data=y,include.mean=FALSE,
cond.dist="sged",trace=F)
summary(garchFit("garch(4,1),data=y,
include.mean=FALSE,cond.dist="sged",
trace=F))
garchFit("garch(1,1),data=y,include.mean=FALSE,
cond.dist="sstd" ,trace=F)
summary(garchFit("garch(1,1),data=y,
include.mean=FALSE,cond.dist="sstd",
trace=F))
garchFit("garch(1,1),data=y,
include.mean=FALSE,cond.dist="sged" ,trace=F)
summary(garchFit("garch(1,1),data=y,
include.mean=FALSE,cond.dist="sged",
trace=F))
#Other methods
#AAR
library(tsDyn)
a<- window(close.data,1,5344)
fit<-aar(a,m=3,d=1,steps=100)
pred<-predict(fit, n.ahead=100)
accuracy(pred,window(close.data,5344,5444),d=0,D=0)
fit<-aar(a,m=4,d=1)
pred<-predict(fit, n.ahead=100)
accuracy(pred,window(close.data,5344,5444),d=0,D=0)
fit<-aar(a,m=10,d=1)
pred<-predict(fit, n.ahead=100)
accuracy(pred,window(close.data,5344,5444),d=0,D=0)
#LSTAR(Logistic Smooth Transition AutoRegressive Model)
mod.Istar <- Istar(a,m=4, d=1,mTh=c(0,1,2,3),
control=list(maxit=3000))
pred<-predict(mod.Istar, n.ahead=101)
accuracy(pred,window(close.data,5344,5444),d=0,D=0)
#SETAR(Self Threshold Autoregressive model)
selectSETAR(log(close.data), m=4, mL=1:3, mH=1:3,
thSteps = 5, thDelay=0:2)
mod <- list()
mod[["linear"]] <- linear(close.data, m=4)
mod[['setar"]] <- setar(close.data, m=4,d=1, thDelay=1)
mod[["Istar"]] <- Istar(close.data, m=4,d=1, thDelay=1)
mod[["'nnetTs"]] <- nnetTs(close.data, m=4, size=5)
mod[['aar"]] <- aar(close.data, m=4)
mod[['sarima"]] <- arima(close.data, order=c(0,1,2),
seas=list(order=c(0,1,1), 260))
sapply(mod, AIC)
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