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ABSTRACT 

 

EVOLUTION OF BLADDER CANCER INVESTIGATED USING 

EXOME SEQUENCING 

 

 

Özkurt, Ezgi 

M.S., Department of Biology 

Supervisor  : Assist. Prof. Dr. Mehmet Somel 

 

June 2015, 86 pages 

 

 

New genome sequencing technologies today allow the study of cancer 

evolution within individual tissues. In bladder cancer, it is commonly observed 

that multiple tumours co-occur in a tissue. However, whether these tumours are 

related (clonal hypothesis) or develop independently but synchronously (field 

effect hypothesis), was yet unknown. In this study, exome sequencing data was 

utilized to reveal the origin of multifocal tumours. The data was generated in 

an experiment where samples from bladder tumour (3 tumour samples per 

patient) and neighbouring normal mucosa (1 normal sample per patient) from 3 

patients were collected and sequenced. The tumour samples were composed of 

apex and base sections of the tumours. Thousands of single nucleotide variants 

(SNV) were called in each patient. The phylogenetic trees constructed by SNV 

datasets of the 2 patients showed a topology consistent with clonal origin 

hypothesis, with a long shared tumour branch, indicating that the tumours 

derive from the same origin. The third patient's samples were suspected to be 

contaminated with neoplastic material, and thus not included in the rest of the 

analysis. An analysis of SNV types with respect to sequence context revealed 

that TpC
*
 mutations were particularly enriched on the shared tumour branch, 

indicative of activity of APOBEC enzymes (single stranded DNA/RNA editing 
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proteins) causing accumulation of TpC
*
 mutations. Thus, it is hypothesized that 

a period of APOBEC activity led to accumulation of TpC* mutations, some of 

which included driver mutations that led to tumour formation, and subsequent 

separation of the tumours in 2 patients.   

Keywords: Next-generation sequencing, population genetics, cancer evolution, 

phylogeny, genome editing, tumour multifocality 
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ÖZ 

 

EKZOM DİZİLEME YOLUYLA MESANE KANSERİ EVRİMİNİN 

ARAŞTIRILMASI 

 

Özkurt, Ezgi 

Yüksek Lisans, Biyoloji Bölümü 

Tez Yöneticisi : Assist. Prof. Dr. Mehmet Somel 

 

Haziran 2015,  86 sayfa 

 

 

Günümüzde yeni nesil genom dizileme teknolojileri kanser evrimini bireysel 

örneklemlerle çalışmaya olanak tanımaktadır. Mesane kanseri vakalarının 

%30'unda, birden fazla tümör aynı anda gözlemlenmiştir. Fakat, bu tümörlerin 

bağlantılı olup olmadığı (Klonal Köken Hipotezi) ya da birbirinden bağımsız 

olarak aynı anda oluşup oluşmadığı (Alan Etkisi Hipotezi) bilinmemektedir. Bu 

çalışmada, bu tümörlerin kökenini anlamak için ekzom sekanslama yöntemi 

kullanıldı. Mesane tümörü örnekleri (hasta başına 3 tümör örneği) ve komşu 

normal mukoza örneği (hasta başına 1 örnek), 3 hastadan toplandı ve dizilendi. 

Örnekler, tümör kesitlerinin apeks ve baz kısmından alındı. 2 hastanın, tek 

nükleotit varyant (TNV) datalarından oluşturulan filogenetik ağaçlar, klonal 

köken hipoteziyle uyumluydu; yani sonuçlar bu hastalarda tümörlerin aynı 

kökenden geldiği yönündeydi. Öteyandan, üçüncü hastanın örneklerine 

neoplastik materyal bulaştığı sonucuna varıldı. Dolayısıyla, bu hasta analizden 

çıkarıldı. Daha sonra, örneklerde TNV motifleri analiz edildi ve daha önceden 

de literatürde belirtildiği üzere; TpC
*
 mutasyonlarının, özellikle tümör dalında 

zenginleştiği farkedildi. Bu bulgular ışığında, 2 hastada enfeksiyonu takiben 

APOBEC enzimleri (tek sarmallı DNA/RNA editleme proteinleri) aktivitesinin 

TpC
*
 mutasyonu birikimine sebep olduğundan şüphelenildi. Bu mutasyonların 
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bir kısmının kanseri tetikleyici bölgelerde  yer alarak, tümörleşmeye sebep 

olduğu ve bunu takriben tümörlerin birbirinden ayrıldığı hipotezi öne sürüldü. 

Anahtar kelimeler: Yeni nesil dizileme, popülasyon genetiği, kanser evrimi, 

filogeni, genom editleme, tümör multifokalitesi  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Cancer and Evolution 

1.1.1 Heterogeneity & Clonal Evolution 

 

Tumours are any abnormal growth of a group of cells, either confined to their 

own location or capable of conquering other tissues, classified accordingly 

either as "benign tumours" or "malignant tumours", respectively (Geoffrey M. 

Cooper, Elements of Human Cancer, 1992, p.16). Tumour populations are not 

much different from populations of bacteria, finches, or any other species; 

where individual units compete with each other for resources, get exposed to 

predation, sometimes even cooperate, and develop fascinating adaptations 

(Crespi & Summers, 2005).  

A tumour is a mosaic collection of mutant cells, frequently showing large 

genetic and epigenetic heterogeneity. Tumours actually can be considered as 

"microcosms of evolution". There exists large phenotypic variation among 

neoplastic cells within the same tumour, and their fitness (can be defined as 

average contribution of each tumour cell's genotype to future generation) also 

differ according to interactions with other cells and with their 

microenvironment (Merlo, Pepper, Reid, & Maley, 2006) (Crespi & Summers, 

2005). The phenotypic variation is mostly heritable, and therefore neoplasms 

can evolve. Because cancer cells can evolve very rapidly, many cancers are 

very challenging to cure. In his paper published in 1976, Nowell was the first 

to suggest a model of evolution for tumour cells (Nowell, 1976). He proposed 

clonal evolution for tumour cell populations and described a sequential 
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selection process from the very first neoplastic cell formation to the 

malignancy stage. Since its introduction in 1976, the description of cancer as 

an evolutionary process gained wide support and was further expanded through 

other studies. The "clonal evolution" model proposed by Nowell is summarized 

in Figure 1: 

 

 

Figure 1: The "clonal evolution" model for tumour cell populations 

suggested by Nowell.  

N represents a progenitor normal cell and T1-6 represent different clones. The 

numbers inside the circles are chromosome numbers. The hatched circles show 

variants that died because of metabolic or immunologic disadvantage. Taken 

from Nowell, 1976. 

 

 

In the Figure 1, tumour initiation occurs in a single cell (N), which was 

previously a normal cell. However, it transforms into a neoplastic cell. The 

neoplastic cell begins to proliferate, but because of genetic instability among 

the neoplastic cells, different subclones are formed (T1, T2, T4 and T6). For 
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example, T1 and T6 maintain different chromosome numbers. Some of these 

clones, T3 for example, is eliminated because of metabolic or immunologic 

disadvantage. On the other hand, T2 continues to survive until an even fitter 

clone appears (T4). This selection process results in the fixation of an 

aneuploid karyotype (n=97) and in malignancy (T6). 

 

 

1.1.2 Natural Selection in Cancer 

 

Proliferative capacity, orchestrated primarily by growth factors (Witsch, Sela, 

& Yarden, 2011) is a hallmark of cancer cells (Hanahan & Weinberg, 2011), 

providing extensive selective advantage to them. While normal cells 

meticulously control the production and release of growth-promoting signals 

and thereby maintain homeostasis of cell numbers and tissue architecture; 

cancer cells acquire the ability to deregulate these signals and develop 

proliferative capacity in several ways, such as producing their own growth 

factor ligands or increasing the number of receptor proteins at the surface; thus 

becoming hypersensitive to limited numbers of growth factor ligands (Paolo et 

al., 1987). Genetic and epigenetic traits conferring proliferative capacity to 

tumour cells will thereby be selected and lead to clonal expansion. 

In organismal populations, ecological interactions within and among species 

are driving components of natural selection. Particularly, predation and 

competition are such driving interactions. The same ecological interactions also 

act on somatic evolution of cancer (Crespi & Summers, 2005). 

The cellular form of competition in nature exists also within the body, among 

tumour cells. Tumour cells survive in a complex environment; where a clone of 

cells competes with other clones for resources (Crespi & Summers, 2005). 

"Glycolytic phenotype" of some tumour cells can be given as an example of 

the cellular form of adaptation to competition. After a certain stage in their 
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development, some invasive tumour cells develop this phenotype, which leads 

to local acidosis that is harmless to the cell itself but toxic to competing cells. 

Also, the acidified microenvironment facilitates the destruction of the 

neighbouring normal cell populations and the extracellular matrix (Gatenby & 

Gillies, 2004). The phenotype can thus be considered as "adaptive", providing 

a proliferative advantage to the cell. 

The cellular analogue of predation is immune attack where there is continual 

immunosurveillance for cells recognized as aberrant (Jakóbisiak, Lasek, & 

Gołb, 2003). Moreover, cancer cells, in just the same way as natural 

populations’ adaptation to their predators, can evolve adaptations against 

immunosurveillance. Inadvertently, however, the immune system will select 

for tumour cells that are less immunogenic (Dunn et al., 2004). For example, 

some tumours develop in hypoxic (low oxygen) environments before getting 

vascularized, and this represents an adaptation as such environments are not 

reachable by the immune system (Gatenby & Gillies, 2004). 

Sometimes, tumours can even develop maladaptations. "Hypertumours" can be 

given as example to maladaptation, where a tumour proliferates so aggressively 

that after some time, it cannot support additional angiogenesis and goes extinct 

(Nagy, 2004).   

 

 

1.1.3 Genetic Drift 

 

As noted by Fisher in 1930 for normal populations of the nature (Fisher, 1930), 

selection is not always necessarily the most important evolutionary force in 

tumour cell populations. The "chance" effect should never be underestimated. 

Like selection, stochastic events can also be a reason for changes in allele 

frequencies, called genetic drift in evolutionary biology terminology. Effective 
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population size (Ne, the number of cells contributing to next generation) is the 

main determinant of the strength of drift.  

Genetic drift also applies to healthy tissues and tumours. The random loss or 

fixation of alleles is especially more effective in "population bottlenecks", 

which can occur inside the body (Merlo et al., 2006). For instance, the 

apoptosis of breast epithelium during menstrual cycle forces the cell population 

through a bottleneck. Mutations occurring in the early stages of development 

can also go to fixation easily, forming large clones, which are named as 

"jackpots" (Hutchinson et al., 2003). Cancer therapy might also lead population 

bottlenecks. This aspect of some type of cancer therapies will be further 

discussed in the coming paragraphs. 

Mutations that do not have a fitness effect and are not under selection are 

called neutral mutations. The majority of the mutations seen in neoplasms are 

thought to be neutral mutations. Some neutral mutations are linked to adaptive 

mutations and increase in frequency along with them, and these neutral 

mutations are called hitchhiker mutations (sometimes called as passenger 

mutations in cancer terminology). Distinguishing neutral mutations might 

allow using them as a molecular clock. Molecular clocks are used to help 

determine how much time has passed since the initiation of neoplasm (Tsao, 

Yatabe, Salovaara, Ja, & Shibata, 2000). However, molecular clocks in cancer 

can be inaccurate, as the rate of mutation is highly variable during cancer.
 

 

 

1.1.4 Artificial Selection 

 

One of the major problems about cancer therapeutics is the "recurrence" of the 

tumours. Tumours are highly adaptive systems; they can develop excellent 

adaptations, and can overcome chemotherapy (Crespi & Summers, 2005). 

Although the treatment will cause a dramatic reduction in the tumour size at 
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the beginning, this also will cause an artificial selection for tumour cells 

having resistance to the therapy (Casás-Selves & Degregori, 2011). Consistent 

with this idea, a study on acute lymphoblastic leukemia therapy, which 

analyzed pretherapy and relapse samples, showed that relapse clones were just 

a selected minority of pretherapy clones (Mullighan et al., 2009). 

As already mentioned, cancer is an evolutionary process; thus therapeutic 

interventions should be designed taking into account evolutionary dynamics. 

For instance, some interventions ameliorating progression instead of direct 

killing of the tumour cells could be more effective in controlling tumour size 

(Pepper, Scott Findlay, Kassen, Spencer, & Maley, 2009). "Tamoxifen", which 

is a cytostatic rather than cytotoxic drug, and proven to be effective in breast 

cancer therapy (Robertson, 2004), can exemplify this type of therapeutics. 

Figure 2 shows a representation of an alternative type of therapeutics that reads 

well the evolutionary dynamics of cancer:    
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Figure 2: Illustration of effect of classical chemotherapy and a mild 

chemotherapy on tumour size 

Top panel: Chemotherapy leads to an initial killing of chemo-sensitive 

cells. However, this benefits chemo-resistant clones, which are inadvertently 

selected by the therapy. Thus, chemo-resistant clones repopulate later. Bottom 

panel: A suggested way of chemotherapy, where a mild chemotherapy 

regime is administrated; a portion of the chemo-sensitive cells are still 

alive. These alive cells oppose the growth of the chemo-resistant cells. Hence, 

the tumour size follows a sinusoid growth. Although the tumour is not fully 

eradicated, at least the tumour size can be kept under control (Taken from 

Selves and DeGregori, 2011). 
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1.1.5 Phylogenetic Cancer Trees 

  

The phylogenetic tree of a tumour is a good view of its evolutionary history. It 

can provide information about how the tumour is formed, key points of the 

tumourogenesis and genetic diversity of the clones (Yates & Campbell, 2012). 

The phylogenies have a "trunk" branch, representing the complement of the 

mutations shared by all tumours. The length of the branches represents the 

'molecular clock': the number of mutations that occured on that branch. 

However, this does not correlate with a chronological clock, as the mutation 

rate per time is not necessarily constant (Yates & Campbell, 2012). 

Here, in the Figure 3, a tree representation of linear evolution in acute myeloid 

leukaemia (AML) is shown. It is linearly evolved, because it is formed as a 

result of post-treatment relapse. Thus, it is like a direct descendant of the major 

clone.  

 

Figure 3: Tree representation of linear evolution in AML tumour as a 

result of post-treatment relapse. [Inspired from Yates & Campbell, 2012, 

originally adapted from (Ding et al., 2010)].  

 

On the other hand, in the Figure 4, you see a tree representation of childhood 

acute lymphoblastic leukemia tumour (CALL), where a branching evolution 



   
 

9 
 

pattern, and specifically, "convergent evolution" is observed. The same genetic 

states are independently achieved in different clades of the tree. The blue boxes 

contain the recurrently mutated genes. Brown circles stand for cytogenetically 

distinct populations and the numbers for the number of the copies of the genes. 

Solid lines represent probable origin of the clones, whereas dashed lines 

suggest alternative origins.  

 

Figure 4: Tree representation of branching evolution in CALL tumour. 

[Taken from Yates & Campbell, 2012, originally from (Anderson et al., 2011)]. 

 

 

1.1.6 Tumour Evolution & Organismal Evolution 

 

Tumour evolution differs in some important ways from organismal evolution, 

although they are very similar in many aspects. Tumour cells are not sexually 

reproducing; they are like asexual, single-celled organisms. As a result, there is 

no meiotic recombination, no Hardy-Weinberg equilibrium and no sexual 

selection within the tumour cell populations. In contrast to sexual populations, 

tumour populations are descendant of a single ancestor, a progenitor cell, 

which was originally a normal somatic cell. Hence, in cancer studies there is 
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accession to the ancestral genome of the tumour in the healthy somatic  tissues 

of the body (Merlo et al., 2006). This enables comparisons of tumour 

genotypes with the normal genotype and making inferences about the tumour 

evolution process. In our study, we profit also from accession to ancestral 

genome aspect of tumour cells, by comparing the normal genotype with the 

tumour samples’ genotypes, constructing oncogenetic trees, and reaching 

conclusions about the tumourogenesis process and the order of the events 

during development of the tumours. 

Besides the similar evolutionary forces and dynamics mentioned in previous 

sections, tumour and organismal evolution also share a question mark about the 

mechanism and rate of evolutionary change: The longstanding conflict about 

gradualism versus punctualism in organismal evolution(Gould & Eldredge, 

1993) is maintained also in neoplasmic evolution (Greaves & Maley, 2012). It 

is still under discussion if tumour clones evolve gradually by a sequence of 

genetic alterations and accumulate lesions or have a few, large-scale mutations 

caused by an insult (Greaves and Maley, 2012). 

 

 

1.2 Bladder Cancer: 

 

In our study, tumour development in nonmuscle invasive bladder cancer 

patients is investigated. Because of this reason, in this section, general 

information about nonmuscle invasive bladder carcinoma will be presented. 

Nonmuscle invasive bladder cancer (NMIC) is the most common bladder 

cancer case, occurring in about ~60% of all bladder cancer patients (Knowles 

& Hurst, 2014). It has characteristics of recurrence. 50-70% of NMIC recurs 

within 5 years. However, only 10-30% progress into muscle invasive bladder 

cancer. Because of these facts, patients with NMIC need to be regularly 
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followed in case of recurrence and progression with cystoscopy and urine 

cytology. 

Bladder cancer has many risk factors. "Cigarette smoking" is the primary risk 

factor known in bladder cancer. The population "attributable risk" (a disease 

risk proportion in a population, caused by a risk factor, defined by Levin, 1953) 

for smoking is 46% (American Cancer Society, 2009). Cigarette-smokers are 

approximately three-fold more prone to bladder cancer than non-smokers 

(Zeegers, Tan, Dorant, & van Den Brandt, 2000). Aromatic amines in 

cigarettes are thought to be responsible to trigger bladder cancer. "Age" is the 

other important parameter accounting for bladder cancer. The median age for 

men developing bladder cancer is 69, while for women it is 71 (Volanis et al., 

2010). "Sex" is another factor in bladder cancer; males being 3 times more 

prone to bladder cancer than females (Knowles & Hurst, 2014). According to a 

study conducted in Taiwan in 2004 (Chen, Su, Guo, Houseman, & Christiani, 

2005), exposure to certain industrial chemicals used in occupational settings is 

also a risk factor in bladder cancer, being marginally significantly (p=0.055) 

greater in male exposed workers than non-exposed ones (18% versus 7%). 

Benzidine, used in dye production and rubber industry, as well as 4-

aminobiphenyl used also in rubber industry, can be given as example to these 

chemicals. The workers of these industries are under high risk. It is also 

strongly evident that exposure to "arsenic" in drinking water at concentrations 

exceeding 300 - 500 µg/L is directly linked to bladder cancer risk (Meliker and 

Nriagu, 2007). A dramatically high level of bladder cancer incidence is seen in 

northeastern Taiwan, where high levels of arsenic occur in drinking waters 

(Chiou et al, 2001). 

Bladder cancer can be detected by several symptoms. "Hematuria" is the most 

common symptom, occurring up to 85% of the patients. Irritative voiding 

symptoms and dysuria are also symptoms of bladder cancer (Wakui and Shigai, 

2000). 
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There exist various types of biomarkers of bladder cancer. Epigenetic changes, 

specifically "DNA methylation" seems to be a good biomarker for detection of 

bladder cancer. Detection for aberrant DNA methylation level in just a few 

loci, either from urothelium or biopsy samples of the patient, is sufficient for 

diagnosis (Chihara et al., 2013). BCL2, CDKN2A, APC can be given as 

example for these loci. MicroRNA (miRNA) expression levels may also be 

used as biomarker in bladder cancer (Scher et al., 2012). Specifically, miR-145, 

miR-143 and miR-125b are known to be down-regulated miRNAs in bladder 

cancer, while miR-183, miR-96, miR17-5p and miR-20a are upregulated ones 

(Yoshino et al., 2013). 

 

 

1.3 RNA Editing and Cancer 

1.3.1 RNA Editing 
 

In addition to environmental factors, RNA editing is also emerging as an 

important driver in cancer initiation and progression. Because of the relation of 

RNA editing to tumourogenesis, section 1.3 is devoted to RNA editing, RNA 

editing enzymes and its relation to cancer. 

RNA editing is the process where nucleotide sequence of a transcript, 

originally based on the genomic DNA sequence, is post-transcriptionally 

modified (Anant & Davidson, 2003). RNA editing is thought to have evolved 

to expand the genetic repertoire, regulate gene expression, work as a defence 

system against infection, and plays role in development (Avesson & Barry, 

2014). 

In mammals, two classes of RNA editing exist: One is via deamination of 

cytidine (C) to uridine (U), the other is involves conversion of adenosine (A) to 

inosine (I) within nuclear mRNAs (Savva, Rieder, & Reenan, 2012).  
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A-to-I editing is the most frequent editing mechanism and is performed by 

ADARs (Adenosine Deaminases). There are three ADARs: ADAR1, ADAR2 

and ADAR3. ADARs require a pre-mRNA template containing intronic 

regions as a target to edit (Gerber, 2001). Inosine is recognized as guanosine 

(G), thus the ultimate result of A-to-I editing is the change from A to G base in 

the open reading frame (Gerber, 2001). One of the examples for A-to-I editing 

is the inhibition of hepatitis delta virus (HDV) replication in a process that 

requires RNA editing of endogenous mRNA (Jayan & Casey, 2002). There are 

two forms of hepatitis delta antigen (HDAg): the small form HDAg-S and the 

large form HDAg-L (Lai, 1995). The HDAg-L is edited from U-to-C at 

nucleotide 1012, by changing the stop codon of HDAg-S to tryptophan codon. 

This change in sequence get HDAg-L form 19 nucleotides larger than the small 

form. Moreover, this mutation is reported to occur at a 500-fold higher rate 

than other mutations in other positions of the delta genome (Luo et al., 1990). 

This single-base change, shown to be mediated by ADARs (Casey, Bergmann, 

Brown, Purcell, & Gerin, 1992) is neccessary for the formation of  HDAg-L 

that is required to form infectious HDV virions with a hepatitis B virus surface 

antigen envelope (Glenn & White, 1991). 

The best-characterized example of C-to-U editing is mRNA encoding 

apolipoprotein B (apoB) (Anant & Davidson, 2003). C-to-U editing of apoB 

requires a single-stranded RNA as target. ApoB100 and its shorter isoform 

apoB48 differ due to site-specific C-to-U editing which creates a translational 

terminal codon in apoB48. This C-to-U editing occurs primarily in human 

small intestine, as apoB48 isoform is necessary for the absorption of dietary 

lipid. ApoB100 is encoded by hepatic apoB RNA, which is expressed in human 

liver and is not edited; thus encodes a larger protein. ApoB48 and ApoB100 

share the N-terminal sequence, however ApoB48 does not include ApoB100's 

C-terminal low-density-lipoprotein receptor binding domain (Young, Hubl, 

Smith, Snyder, & Terdiman, n.d.). C-to-U RNA editing is mediated by 
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APOBEC1 enzyme (Mehta, Kinter, Sherman, & Driscoll, 2000), a member of 

APOBEC protein family that will be explained further in the next section.    

 

 

1.3.2 APOBECs 

 

The APOBEC (apolipoprotein B mRNA editing enzyme catalytic polypeptide-

like) protein family are deaminases that are expressed in vertebrates and are 

able to edit DNA and/or RNAs. The human APOBEC family is composed of 

11 members, each with distinct functions (Vieira & Soares, 2013) (Figure 5): 

 

 

Figure 5: Human APOBEC proteins 

a) CD represents catalytic domains and is depicted in green. Proteins 

containing 2 CD copies, are named as CD1 and CD2, accordingly N- and C-

terminal domains respectively. The number next to each bar shows the number 

of amino acids for each APOBEC. b) The conserved amino acid sequence of 

the APOBEC family is shown. Below that, the hydrolytic deamination reaction 

at the C4 position of a cytidine or deoxycytidine is shown (Taken from Vieira 

and Soares, 2013). 
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APOBEC3 enzymes (specifically APOBEC3Bs), which merit special attention 

in our study, have 7 members in humans: APOBEC3A, APOBEC3B, 

APOBEC3C, APOBEC3DE, APOBEC3F, APOBEC3G and APOBEC3H.  

The APOBEC3 gene emerged after the divergence of marsupial and placental 

lineages. After a duplication event, two ancestral APOBEC3 genes evolved in 

the placental mammal lineage. From these two ancestral APOBEC3s, through a 

complex history of duplications and fusions, the other present APOBECs have 

evolved (Conticello, Thomas, Petersen-Mahrt, & Neuberger, 2005). In some 

species like rodents, cattle, and pigs, these two original genes merged and 

formed a single gene while in others such as primates, horses, bats and felines 

these two genes have been duplicated to form the APOBEC family. 

Exclusively in primates, the APOBEC3 locus has rapidly expanded, which is 

thought to be a consequence of selective pressure from their targets (Sawyer, 

Emerman, & Malik, 2004) (Zhang & Webb, 2004). A study about evidence for 

strong positive selection on the APOBECs has reported that these genes are 

selected for genome defence (Sawyer et al., 2004). The existence of recurrent 

positive selection on protein coding regions can be determined by calculating 

the ratio of number of changes per non-synonymous (i.e. altering amino acid 

sequence) sites (Ka) and per synonymous (i.e. not altering amino acid 

sequence) change ratio (Ks), and testing whether this ratio is greater than 1. In 

the case of a neutrally evolving protein, a non-synonymous mutation has the 

same chance of reaching fixation with a synonymous mutation. However, if 

positive selection is acting on the protein, Ka is expected to be higher as 

positive selection will favour the diversity at the amino acid level. To 

investigate the mode of selection on APOBEC3G, Sawyer et al, sequenced the 

APOBEC3G gene from ten primate species, and found Ka/Ks ratio greater than 

1 for the majority of phylogeny. This is signalling for the evidence of positive 

selection acting on the APOBEC3G gene throughout the primate evolution 

history.  Then, they calculated Ka/Ks ratio for other members of APOBEC 
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family and found signals of positive selection on APOBEC1, APOBEC3B, 

APOBEC3C, APOBEC3D, APOBEC3E, APOBEC3DE, APOBEC3F, 

APOBEC3G genes. The selection for APOBECs on the primate lineage is 

speculated to be because of the host defence ability conferred by them.   

APOBEC3 enzymes function as a part of the innate immune system, protecting 

against retroviruses and retrotransposons mainly by DNA editing mechanism 

(Harris & Liddament, 2004). While APOBEC3B preferentially deaminates 

cytosine residues in TpC* context (i.e. when cytosine is adjacent to a 5
'
 

thymine) and GpA* on the complementary strand), APOBEC3G and 

APOBEC3F recognize and edit at CpC* and TpC* dinucleotide context (GpG* 

and GpA* in the complementary strand) (Armitage et al., 2008). Moreover, 

current studies claim that APOBEC3B discriminates for even a more stringent 

motif; trinucleotide TpC*Ap and TpC*Tp (TCW motif) for editing (S. A. 

Roberts et al., 2013). This more stringent motif allows differentiating 

APOBEC3B-induced mutations, preceded by a thymine (S. A. Roberts et al., 

2013), from mutations of the highly mutable CpG* motif, linked to aging-

related mutagenesis (Alexandrov & Stratton, 2014). 

 

 

1.3.3 APOBECs and HPV 

 

It is already known that APOBEC3 enzymes participate in immune response to 

DNA virus infections in human, such as human papillomavirus (HPV), human 

immunodeficiency virus (HIV) (Harris et al., 2003) hepatitis virus B (HBV) 

(Vartanian et al., 2010), and simian immunodeficiency virus (SIV)  (Yu et al., 

2004).  

APOBEC mutation pattern (TCW mutations) and high APOBEC3B mRNA 

levels occur very frequently in cervical cancers (Burns et al., 2013) and over 

99% of cervical cancers occur as a result of HPV (Studies, 1999). It is known 
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that HPV- HNSCC (HPV negative head and neck squamous cell carcinoma) 

typically occurs in heavy smokers while HPV+ HNSCC (HPV positive head 

and neck squamous cell carcinoma usually occurs in non-smokers (Agrawal et 

al., 2011). Henderson et al (Henderson, Chakravarthy, Su, Boshoff, & Fenton, 

2014), tested whether there is a relationship between APOBEC-mediated 

mutagenesis and HPV-driven tumourogenesis. To test this, they compared the 

exomes of HPV+ and HPV- HNSCCs. They confirmed the existence of such 

relationship by showing the high association of APOBEC mutation pattern per 

sample with HPV status, but not with age and smoking status. Also, there was 

significantly higher APOBEC3B expression in HPV+ patients than HPV- 

patients, but expression of APOBEC3B was only weakly, but significantly 

associated TCW mutations. 

 

Figure 6: APOBEC3B mRNA levels in HPV- and HPV+ HNSCC and 

Relationship between APOBEC mRNA levels and TCW mutations 

A) APOBEC3B mRNA levels in HPV- and HPV+ HNSCC (p = 3.66 X 10
-11

 

by Wilcoxon). B) Relationship between APOBEC mRNA levels and TCW 

mutations (p= 0.0127, by Spearman's rho; r= 0.144). Taken from Henderson et 

al, 2014. 
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1.3.4 APOBECs and Cancer 

 

A number of recent studies suggest that a class of APOBEC enzymes may 

inadvertently edit host genome, leading to tumourogenesis. Roberts et al 

(2013) analyzed 954,247 mutations in 2,680 exomes from 14 cancer types and 

revealed an APOBEC-carcinogenesis relationship in bladder, cervical, breast, 

head and neck and lung cancers. In some samples, APOBEC mutations were 

even the majority; some reaching 68% of mutations in the exome. Also, the 

possibility that this result was an artifact of motif-specific functional selection 

could be ruled out, since the same calculations were done with for silent and 

noncoding mutations in each sample and similar results were obtained. 

In support of the idea of APOBEC-mediated carcinogenic mutagenesis, the 

existence of a phenomenon termed kataegis, referring to mutations clustered on 

the same strand, was recently detected through next-generation sequencing in 

multiple myeloma, prostate cancer and HNSCC (S. A Roberts et al., 2012). 

Kataegis is expected in APOBEC-driven mutagenesis, because APOBECs 

could simultaneously create many mutations within a strand. Such clustered 

mutations were enriched at trinucleotide motifs recognized by APOBECs: 

TCW. Moreover, those clusters that included only one mutation pattern were 

often gathered at rearrangement breakpoints. This suggests that the mutations 

could occur on single-stranded DNA (ssDNA) regions formed by aberrant 

DNA double-strand break repair. The observation that ssDNAs are the good 

substrates for APOBEC enzymes (Smith, 2012) further supports the role of 

APOBECs in kataegis formation.  

Roberts et al. (2013) have additionally studied available RNA-sequencing 

(RNA-seq) data from 2,048 tumours of 14 cancer types, and claimed that 

APOBEC3B mRNA level was strongly correlated with TCW mutation motif 

per exome, when compared across samples. In addition, for bladder cancer and 

lung squamous cell cancers, median APOBEC3B expression was increased 
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nearly 3-fold compared to median APOBEC3B expression of all samples across 

all 14 cancer types. In another study, Sasaki et al. (2014) investigated 

APOBEC3B mRNA expression level in 88 non-small-cell lung cancer patients. 

APOBEC3B/β-actin level was significantly higher in lung tumours compared 

to neighbouring normal tissue (p < 0.0001). Besides, the ratio of expression 

levels of APOBEC3B/β-actin between tumour and normal cells did not differ 

with gender, age, smoking status and pathological stages. Meanwhile, Burns et 

al. (Burns et al., 2013) quantified mRNA levels for each member of the 

APOBEC family in breast cancer cell lines. It was only APOBEC3B that 

tended to be upregulated. Overall, these studies support a relationship between 

APOBEC-mediated mutagenesis and development of several cancer types. 

 

 

1.4 Multifocality & Origin of Multifocality Problem 

 

The simultaneous or metachronous occurrence of more than one tumour within 

the tissue of a patient, multifocality, is seen in some cancers like prostate, 

breast and micropapillary thyroid cancer (Ruijter et al, 1996), (Pedersen, 

Gunnarsdottir, Rasmussen, Moeller, & Lanng, 2004), (Ross et al., 2009). 

Multifocality is also a prominent characteristic feature of urothelial carcinoma, 

observed on urothelial tract of a patient (Kakizoe, 1991). To explain this 

situation, two hypotheses were proposed (Harris and Neal, 1992). One is the 

field hypothesis, which suggests that multiple tumour cells arise independently 

by a carcinogen insult on the tissue. Thus, these types of tumours should 

acquire independent genetic alterations. The other is the monoclonality 

hypothesis, which suggests that multifocal tumours originate from a single 

transformed cell, which then migrates to form other urothelial tumours either 

by intraluminal seeding or intraepithelial spread (Garcia, 1999). Tumours 

originated in this way are accordingly expected to share some mutations, 
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including drivers and passengers. Although these two hypotheses are not 

mutually exclusive, it is still under debate which model is more common 

among multifocal bladder tumour cases.  

 

 

Figure 7: Representation of the two hypotheses: Clonal Origin and Field 

Effect 

On the left, the clonal origin hypothesis is described: a single transformed cell 

migrates to form other tumour cells. On the right, the field effect hypothesis is 

described: multiple tumour cells occur independently. Each red square 

represents a single tumour cell, while dashed lines represent migration events. 

 

Several molecular genetics techniques have been used to resolve this long-

debated problem on the origin of multifocal urothelial tumours. In the tables 

below, an overview of molecular studies on this question is provided: 
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Table 1: Overview of molecular studies supporting monoclonal origin of 

multifocal urothelial carcinomas. 

A part of the table is adopted from Hafner et al, 2002 (Christian Hafner, 

Knuechel, Stoehr, & Hartmann, 2002). X-inact: X-chromosome inactivation, 

LOH: loss of heterozygosity, FISH: fluorescence in situ hybridization,  p53: 

p53 gene mutation analysis, CA: cytogenetic analysis, Rb: Rb gene mutation 

analysis, CGH: comparative genomic hybridization. 

 

       

Authors 

       

Patient 

       

Tumour  

     

Methods 

(Sidransky, 1992) 3 10 X-inact, 

LOH 

(Habuchi, 2005) 4 11 p53 

(Miyao et al., 1993) 6 13  p53 

(Xu, 1996) 5 16 p53 

(Chern et al., 1996) 5 10 p53, Rb 

(Takahashi et al., 1998) 20 67 LOH 

(M. Li & Cannizzaro, 1999) 10 35 X-inact 

(Fadl-Elmula et al., 1999) 6 21 CA 

(Hartmann et al., 2000) 9 47 LOH, 

FISH 

Louhelainen, 2000 5 32 LOH 

(Simon et al., 2001) 6 32 CGH 

(Takahashi et al., 2001) 23 73 LOH 

(C Hafner et al., 2001) 10 55 LOH, p53 

(Dalbagni, Ren, Herr, Cordon-

cardo, & Reuter, 2001) 

7 23 p53 

Vriesema, 2001 6 20 p53 

(Kawanishi et al., 2007) 5 24 CGH 

(Wang, Lang, Pin, & Izawa, 2013) 4 32 LOH 
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Table 2: Overview of molecular studies supporting field effect origin of 

multifocal urothelial carcinomas. 

A part of the table is adopted from Hafner et al, 2002. MSI: detection of high 

grade microsatellite instability 

 

 

 

One of the most frequently used methods in this area is X-inactivation pattern 

detection (Christian Hafner et al., 2002). If the tumours are coming from the 

same origin, which means from a monoclonal origin, all should have the same 

X chromosome inactivated in the tumours. However, if these tumours are 

coming from a different precursor cell, they have 50% probability of having 

the same X chromosome to be inactivated (Sidransky et al, 1992). In the first 

Authors Patient Tumour Methods 

(Miyao, 1993) 1 4 p53 

(Petersen, 1993) 1 2 p53 

Spruck, 1994 3 7 LOH, p53 

(Yoshimura, 

Kudoh, Saito, 

Tazaki, & 

Shimizu, 1995) 

 

1 

 

2 

 

p53 

Goto, 1997 13 36 p53 

(Hartmann et al., 

2000) 

1 5 LOH, FISH 

(Takahashi et al., 

2001) 

9 19 LOH 

(C Hafner et al., 

2001) 

5 23 LOH, MSI 

(Hartmann et al., 

2000) 

5 20 LOH, FISH, p53 

(Jones et al., 

2005) 

21 58 LOH, X-inact, 

p53 
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such study, Sidransky et al (1992) used this molecular genetics tool to resolve 

the multifocality problem. In their study with four females with bladder 

carcinoma, after digestion with methylation-sensitive endonucleases, normal 

bladder mucosa showed a polyclonal pattern of X-inactivation. In contrast, 

tumours of the same patient showed a monoclonal pattern after digestion. 

Loss of heterozygosity (LOH) analysis at multiple marker loci is another 

molecular genetics method to address the origin of multifocal tumours 

problem. Especially, deletions on chromosome 9 are of special interest as such 

deletions are usually an early event in bladder carcinoma (Miyao, 1993). In 

Sidransky's study (1992), the authors examined the multifocal bladder tumours 

also for loss of chromosome 9q, 17p and 18q sequences. DNA from the 

tumours of the 3 patients showed the loss of the same 9q allele for each patient. 

However, for 17p and 18q allelic losses, the pattern was not consistent among 

the tumours of a given patient. This may be expected, because 17p and 18q 

losses are usually considered to occur in high-grade tumours. In conclusion, 

Sidransky's study provided strong evidence that the studied multifocal tumours 

are genetically related, and thus arose from a single precursor cell. 

Microsatellite instability could also be utilized for clonal analysis. Jones et al 

(2005), for example, examined microsatellite alterations in 21 urothelial 

carcinoma patients, and supplemented their results by X-chromosome 

inactivation data. This study found evidence for the field effect in the 

coexisting bladder tumours for the majority of the patients (18/21) they studied.  

Mutations in oncogenes, such as p53 are also frequently investigated to answer 

the clonal origin question. One such early study, conducted in 4 patients, found 

evidence for bladder tumours coming from a single progenitor cell (Habuchi, 

1993), whereas later studies using the same method found evidence for the 

field effect (Petersen, 1993) (Yoshimura et al., 1995) (Hartmann et al., 2000).  
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The Comparative Genomic Hybridization (CGH) technique, which compares 

allelic gains and losses at each chromosome, has also been used to address this 

question. Simon et al (2001) utilized CGH to detect unbalanced chromosomal 

aberrations, and then constructed "cytogenic pedigrees" to infer shared 

aberrations. This study, conducted in 6 patients, reached the conclusion of 

monoclonal origin in their patients. Similar to CGH, cytogenetic analysis can 

be also utilized, by comparing karyotype of different tumours (Fadl-Elmula, 

1999). However, reaching a conclusion about the origin of multifocal tumours 

by using cytogenetic analysis technique can be  inaccurate, as during cancer 

development, lots of karyotypic change take place in tumour clones. 

 

 

1.5 Exome sequencing 

 

Exome sequencing is a next-generation "targeted sequencing" approach, which 

focuses on the protein-coding regions of the genome. Although the exomic 

region covers ~1% of the genome, it is worth to note that it harbours 85% of 

mutations with large phenotypic effect (Bamshad et al., 2011). 

Exome sequencing is carried out firstly by randomly shearing DNA into very 

small fragments. Several micrograms of the sample is used to construct a DNA 

library. Then, the fragments are attached to special adaptors. After that step, 

exomic regions are "captured" and enriched in biotinylated DNA or RNA baits 

by oligonucleotides in these baits complementary to the adaptors. The capture 

step is followed by amplification and repeatedly parallel sequencing of the 

fragments (Bamshad et al., 2011). The term "read" is used for the result of a 

sequenced fragment. Finally, the millions of reads are aligned to the reference 

genome and variant calling is achieved. In high coverage sequencing, each 

nucleotide is sequenced repeatedly many times; therefore included in many 

reads (Bick & Dimmock, 2011).  
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In this study, exome sequencing was utilized to study genetic relatedness of 

multifocal bladder tumours. Below, an illustration of the two hypothetical 

phylogenies expected to be found under the monoclonal origin and field effect 

hypotheses is presented: 

 

 

Figure 8: Two hypothetical phylogenetic trees, expected to be observed in 

the case of field effect hypothesis and monoclonal origin hypothesis, 

respectively 

Branch with "*" shows the tumourogenesis branch   (Acar & Ozkurt, 2015),  

under review in BMC cancer.  

 

In the field effect phylogeny, tumour samples are not grouped together as they 

have evolved independently from each other. On the other hand, in the 

monoclonal phylogeny, tumour samples are grouped together as they are 

originating from a one single progenitor cell. Hence, in the latter hypothesis, a 

longer tumourogenesis branch (i.e. the branch where mutations shared by all 

tumours are included) than recent branches is expected. 

If there is low number of mutations in tumourogenesis branch (the branch 

where mutations shared by all tumours are included) but tumours are coming 

from the same origin, it could be difficult to manage to observe the mutations 
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on this branch by using low number of variants. Tumours may separated just 

after tumourogenesis, so the tumourogenesis branch could be short.  Another 

possibility is that after separation of tumours, the mutation rate could increased 

greatly, thus tumourogenesis branch again appeared as short. Hence, there is 

need to analyze high number of variants to be able to observe the shared 

mutations on the tumourogenesis branch. Otherwise, the results could lead to 

misinterpretation of the cases as coming from polyclonal origin. However, 

exome-sequencing allows to high number of variants; thus increasing the 

possibility to observe the prospective shared mutations on a branch. 

 

 

1.6 Aim of the Study: 

 

As mentioned already, various studies using diverse techniques have been 

conducted to address the origin of multifocal bladder tumours. However, there 

is no consensus yet about which hypothesis is more valid about the 

evolutionary relationship among multifocal tumours. In our study, we try to 

investigate the same question with a different approach: exome-sequencing. 

Exome sequencing, which is an economically efficient technique, yields a high 

number of variants, increasing statistical power compared to previous studies. 

Thus, it can be very effective in solving the still open question on the origins of 

multifocal bladder tumours. 

In the study, we aimed to study the type (in dinucleotide and trinucleotide 

context), function (degree of the effect on amino acid sequence) of the 

mutations and mutated bladder cancer driver genes by analyzing exome-

sequencing data. The ultimate goal was to be able to construct a hypothetical 

timeline about the evolutionary processes of the multifocal bladder tumours 

and to show  the utility of exome-sequencing and population genetic analysis 
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on creating this timeline. All these results could contribute greatly to 

therapeutic interventions for bladder cancer. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Clinical Sample Collection and Sequencing 

 

The study was designed following ethical guidelines and the protocol was 

approved by the Koç University Institutional Review Board. During 

transurethral resection, all visible tumours were resected. Four samples, three 

from the tumours and one from  normal mucosa, were collected from each of 

three patients. The location of the normal mucosa sample was at equal distance 

from the tumoural foci as the two tumours were from each other (for further 

information see Acar,  Özkurt et al, 2015, under review in BMC Cancer).  

 

2.1.1 Clinical Information About Patients  

 

Patient 1: A 62-year-old male patient who has presented because of showing 

painless macroscopic hematuria symptom. There was not any remarkable point 

in his past medical history. A tumoural lesion (approximately 2.5 cm) was 

detected on the right bladder wall. The lesion was lying just superior and lateral 

to the ureteric orifice. Additionally, a smaller (approximately 0.5 cm) lesion is 

also detected,  settled 1-2 cm laterally to the index tumoural focus. 

Histopathological examinations allowed classifying the case as high grade, 

pTa, papillary urothelial carcinoma. 

Patient 2: A 64-year-old male patient who has presented because of lower 

urinary tract symptoms and macroscopic hematuria. Multiple tumoural lesions 

were detected inside the bladder by ultrasonography. As remarkable points in 

his medical past, he had diabetes mellitus and he was an active smoker (20 
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packs/year). 2 physically distinct tumoural foci (index lesion ≈ 3 cm, smaller 

lesion ≈ 1 cm) that are settled on the left lateral wall, are observed during 

cystoscopic detection. Histopathological examinations documented the case as 

low grade, pTa, papillary urothelial carcinoma.  

  

Patient 3: A 72-year-old male patient who has presented because of 

macroscopic hematuria symptom. A solid lesion on the right lateral wall of the 

bladder is observed by ultrasonography. As remarkable points in his medical 

past, he has been an active smoker (25 packs/year),  had hypertension and 

suffered from pericarditis in the past. By cystoscopic examinations, 2 

physically separated tumoural foci (index lesion ≈ 2.5 cm, smaller lesion ≈ 1.5 

cm) that are harboured on the right lateral wall, are detected. Histopathological 

examinations allowed to classify the case as high grade, pTa, papillary 

urothelial carcinoma. 

  

 

2.1.2 Molecular biology & Sequence Alignment 

 

Genomic DNA was isolated from the samples by Nathan Lack's laboratory 

(Koç University, School of Medicine) by utilizing Qiagen QIAmp DNA kit. 

Agilent SureSelect v5 capture kit is used to target coding regions. There are 

actually 2 other whole-exome capture platforms, NimbleGen's Sequence 

Capture Array and SeqCap EZ, but all demonstrated to show roughly the same 

exome SNP calling efficiency (Asan et al., 2011). Exomic regions are 

sequenced on an Illumina HiSeq 2000 high-throughput sequencer with 100bp 

paired-end read mode at 100x coverage by Centrillion BioScience, which is 

private biotechnology company in California, providing genomic and 

bioinformatics solution. 
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The exome data generated was aligned  to the reference human genome (hg19 / 

NCBI GRCh37)  by BWA aligner (version 0.7.10) (Table 4 and Table 5). By 

default, "mem" algorithm is used on paired-end mode (H. Li, 2013). After this 

step, the GATK tool is used to realign indel (insertion and deletion)-containing 

reads (McKenna et al., 2010), thus to correct for mapping biases. GATK 

UnifiedGenotyper in multi-sample mode was utilized to generate Single 

Nucleotide Variant (SNV) and insetion and deletion (indel) callsets by merging 

read data from the four samples of a patient (Table 6). 

SNV (Single Nucleotide Variant) term is used instead of SNP (Single 

Nucleotide Variant), because they refer to different things.  SNPs  can be 

defined basically as inheritable, well-validated common variations (>1%) 

within a population   However, SNVs are not well-validated variations; they 

are private to the individual. Because of this fact, variations of cancer tissues 

are named as SNV. 

Several filtering processes are implemented. Firstly, The Variant Quality Score 

Recalibration (VQSR) filter, downloaded from GATK resource bundle version 

2.5, enabled to minimize false positives; thus to generate accurate call sets. The 

VQSR filters call sets, generating for each variant a well-calibrated probability 

whether a position is a true genetic variant or just a data-processing artefact. 

This estimation is inferred from SNP call annotations like 

RMSMappingQuality (Root Mean Square of the mapping quality of reads 

across all samples) or HaplotypeScore, taking place in VCF (Variant Call 

Format) files. Secondly, the variants that are represented in dbSNP (Single 

Nucleotide Polymorphism Database) version 138 are filtered from the dataset; 

because dbSNP archives common SNPs within the species and we are actually 

interested in cancer-specific variants. Also, segmental duplications are 

excluded from the analysis as reading two copies of the same polymorphic 

region could lead to misinterpretation of them, as being heterozygous alleles. 

Finally, the SNV dataset only included SNVs and indels that passed the GATK 
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quality filter and that was read at least 4 times in all four samples. The 

information about the number of raw and filtered SNVs and indels during 

filtering processes are given in the results part (Table 6). The same procedure 

was followed independently for each patient. 

 

 

2.2 Downstream Bioinformatics Analysis 

2.2.1 Analysis of SNVs and Indels 

 

R and Python programming languages are utilized for population genetics 

analysis of the tumour samples. 

By conducting R programming, The SNV data (1628-1733 SNVs per patient, 

Table 6) are converted into binary form: heterozygous (represented as 0/1) or 

homozygous (1/1) non-reference alleles called “1”, and homozygous reference 

alleles (0/0) called “0”. Heterozygous and homozygous non-reference alleles 

are treated in the same way. Normally a mutation affects only one allele. 

However, if both alleles are mutated, this may be either because of parent 

alleles having one alternative allele or just simply because of technical error in 

sequencing. Thus, as we are only interested in mutations occurred because of 

cancer, it is more convenient to call homozygous non-reference positions as 

"1". To construct a reference genome, "0" is assigned to all variants. 

Monoallelic positions are removed from the data. Then, these SNV datasets, 

transformed into numeric form, were used to construct Euclidean distance 

matrices among samples using the R “dist” function. R "ape" package's 

(Paradis, Claude, & Strimmer, 2004) “bionj” algorithm ( a neighbour-joining 

phylogenetic tree construction algorithm) allowed to construct rooted 

phylogenetic trees (e.g. rooted by the reference genome) among samples of the 

patient. "Bionj" algorithm is claimed to perform better than other algorithms 

when branch lengths are variable. As will be shown later, the phylogenetic 
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trees’ branch lengths also showed high variance, because of surplus mutation 

accumulation on tumour branches (Gascuel, 1997). 10,000 bootstraps is 

performed using the “boots.phylo” function of the R “ape” package. 

 

 

2.2.2 Non-parametric Bootstrapping 

 

Bootstrapping statistics (Efron, 1979) is analogous to jackknife statistics where 

the data, whose distribution is not known, is resampled to infer the variability 

of the estimate. Felsenstein (1985) proposed to use bootstrapping to place 

confidence limits (bootstrap proportions) to internal branches of phylogenetic 

trees. 

In bootstrapping method, the data is resampled many times (10,000 times in 

our case) with replacement to form a simulated dataset. Thus, the simulated 

data contains the same set of species but some characters are duplicated while 

some others are dropped and a collection of number of resampling times of 

estimates of the parameter is obtained. This simulated data approximates the 

actual distribution (Felsenstein, 1985). 

Actually, Felsenstein (Felsenstein, 1983) first proposed bootstrapping 

proportions to measure the "repeatability" of the phylogenetic tree. However, 

bootstrapping can be used both to support "repeatability" and "accuracy" of the 

inferred tree (Hillis and Bull, 1993). In statistical terms, we can denote 

"repeatability" as Pn (c ε T
*
| c ε T

*
0), while "accuracy" as P (c ε T| c ε T

*
n) 

(Holmes, 2003). In this notation, "T
*
" denotes metric estimate, "T" denotes true 

estimate and "c" for clade. The "repeability" refers to the probability that 

another sample shares the clade with the true sample, thus the terms repeability 

and accuracy are linked. In the study, bootstrap proportions are used as a 

measure of accuracy, by 10,000 times running of pseudosampling of the SNV 

data. 
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The data set included also 2130-2555 indels in the three patients by GATK 

analysis. (Table 6). The same Euclidean distance, bioinj algorithm 

phylogenetic tree construction and bootstrapping analysis was applied to the 

indel data as well. However, the tumour branches of the tree are not resolved 

clearly, as indicated by low bootstrapping values.  

 

 

2.2.3 Functional analysis 

 

The “SnpEff” open source software (Cingolani et al., 2012)  is used to annotate 

variants' effect according to their impact on protein structure based on genomic 

locations. Mutations are classified as having "high", "moderate", "low" and 

"modifier" effects on protein structure by the software. The "high" or 

"moderate" effect mutations (e.g. loss of splice sites, non-synonymous 

substitutions, stop-codon insertions) are considered as being "functional" and 

others as being "nonfunctional". Then, ratios of functional vs. non-functional 

mutations between SNVs shared by all tumours and SNVs shared by all 

samples including normal mucosa (e.g. representing individual's unique 

genotype) are compared by Fisher's Exact Test. 

 

 

2.2.4 Mutation type analysis 

 

SNVs are classified based on dinucleotide and trinucleotide sequence context, 

inspiring from Lawrence et al. (Lawrence et al., 2013) work. To obtain 

dinucleotide sequence context, the nucleotide preceding a given SNV is noted, 

based on the human reference genome (hg19). To obtain trinucleotide sequence 

context, the nucleotide preceding the given SNV, the SNV itself and the 

following nucleotide again are noted based on hg19. Following Nordentoft et 
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al. (2014),  only A and C positions on each strand are took account to simplify 

the analysis. Thus, all the positions on both strand are considered, as T is 

complementary to A and C is to G. The same analysis is repeated in 

dinucleotide frequency context as well as trinucleotide frequency context. 

 

 

2.2.5 Candidate driver gene analysis 

 

92 candidate driver genes that are frequently mutated in bladder cancer are 

compiled from the COSMIC (Forbes et al., 2010) and ATLAS 

(“Comprehensive molecular characterization of urothelial bladder carcinoma,” 

2014) databases. The potential driver gene list is displayed in the table below 

(Table 3): 

 

Table 3: Compiled list of potential driver genes for bladder cancer  

 

Associated Gene Name Ensembl Gene ID Associated Gene Name Ensembl Gene ID

TARBP2 ENSG00000139546 CREBBP ENSG00000005339

RB1 ENSG00000139687 TACC3 ENSG00000013810

NCOR1 ENSG00000141027 SERPINB1 ENSG00000021355

TP53 ENSG00000141510 CDH1 ENSG00000039068

ERBB2 ENSG00000141736 TPR ENSG00000047410

AKT1 ENSG00000142208 KMT2C ENSG00000055609

EPHA2 ENSG00000142627 LZTS1 ENSG00000061337

HMCN1 ENSG00000143341 RASSF1 ENSG00000068028

FLG ENSG00000143631 FGFR3 ENSG00000068078

AFF3 ENSG00000144218 SMC1A ENSG00000072501

ANK2 ENSG00000145362 XRCC1 ENSG00000073050

KDM6A ENSG00000147050 FGFR1 ENSG00000077782

CDKN2A ENSG00000147889 BRINP1 ENSG00000078725

ATM ENSG00000149311 LRP2 ENSG00000081479

FRG1B ENSG00000149531 GSTP1 ENSG00000084207

DAB2 ENSG00000153071 FXYD3 ENSG00000089356

CD109 ENSG00000156535 MAP3K1 ENSG00000095015

KALRN ENSG00000160145 MYH9 ENSG00000100345

MAPKAPK2 ENSG00000162889 EP300 ENSG00000100393
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Table 3 (cont'd): Compiled list of potential driver genes for bladder cancer  

 
Associated Gene Name Ensembl Gene ID Associated Gene Name Ensembl Gene ID

ELF3 ENSG00000163435 STAG2 ENSG00000101972

TGFBR2 ENSG00000163513 MMP15 ENSG00000102996

NIPBL ENSG00000164190 TSC2 ENSG00000103197

HCN1 ENSG00000164588 CTSH ENSG00000103811

CSMD3 ENSG00000164796 ERCC2 ENSG00000104884

TSC1 ENSG00000165699 PRX ENSG00000105227

KMT2D ENSG00000167548 PTPRS ENSG00000105426

KLK5 ENSG00000167754 FBXW7 ENSG00000109670

CTNNB1 ENSG00000168036 CCND1 ENSG00000110092

LRP1B ENSG00000168702 E2F3 ENSG00000112242

MUC17 ENSG00000169876 LAMA4 ENSG00000112769

PTEN ENSG00000171862 SF3B1 ENSG00000115524

ID4 ENSG00000172201 NFE2L2 ENSG00000116044

SYNPO2 ENSG00000172403 ARID1A ENSG00000117713

CKS1B ENSG00000173207 KMT2A ENSG00000118058

HRAS ENSG00000174775 PIK3CA ENSG00000121879

PDE4DIP ENSG00000178104 CHD6 ENSG00000124177

MUC16 ENSG00000181143 SNAI1 ENSG00000124216

TRAK1 ENSG00000182606 SYNE1 ENSG00000131018

PTCH1 ENSG00000185920 PDZD2 ENSG00000133401

DCC ENSG00000187323 KRAS ENSG00000133703

FAT4 ENSG00000196159 PDGFRA ENSG00000134853

TRPV1 ENSG00000196689 APC ENSG00000134982

NF1 ENSG00000196712 ESPL1 ENSG00000135476

DAPK1 ENSG00000196730 MDM2 ENSG00000135679

RYR2 ENSG00000198626 MYC ENSG00000136997

NRAS ENSG00000213281 ANG ENSG00000214274

 

 

The driver genes overlapping with genes containing functional SNVs and 

indels are determined. Then, it is checked whether the overlapping genes are 

including mutations in TpC* or TpG* context and if they are not mutated in 

normal mucosa sample, but at least in one tumour sample.   

 

 

2.2.6 Statistical Tests 

 

The Fisher's Exact Test is used to calculate (by using "fisher.test" function in 

R) whether there is a significant effect for the categorized data by a 

contingency table: functional & nonfunctional mutations among "all samples 
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shared" (e.g. shared by all samples of a patient, including normal sample) & 

"all tumours shared" (e.g. shared by all tumours of a patient, excluding normal 

sample) mutations, as well as among all samples & tumour-private mutations 

(e.g. mutations that are specific to one tumour sample). The Fisher's Test, but 

not the Chi-square Test is used in the analysis, because Chi-square Test is used 

only for categorical data with large sample sizes, assuming each cell of the 

table is greater than 5. However, Fisher's Exact Test do not have such an 

assumption, could be used for any value for each cell. The test gives results 

about the significance of the difference among groups (e.g. p-value). Fisher's 

Exact Test is also used to check the amount and significance of the difference 

for TpC* and non-TpC* mutations among "all samples" & "all tumours 

shared" mutations (See Results, Section 3.4). Dinucleotide and trinucleotide 

context mutations’ frequencies are also compared by Fisher's Exact Test for 

both “all tumours shared” and "tumour-private mutations" & “all samples 

shared” mutations (Table 9, Table 10, Table 11, Table 12 and Table 13) 

Permutation tests were applied to check whether the overlap between the 

potential driver genes list and specific sets of variants identified in the 

experiments was statistically meaningful or not. Actually, permutation is done 

to simulate the null model by randomly mixing N variants (N being the number 

of "all tumours shared" mutations) 10,000 times, and each time checking the 

number of genes both including these randomly chosen N variants and 

overlapping with the potential driver gene list. Then, the result gives whether 

the observed data significantly differs from the simulated data in terms of 

overlapping with candidate driver genes list. p-value is.  
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2.2.7 Kataegis detection 

Kataegis term is already mentioned in the introduction part, as being clusters of 

the mutations on the same strand. It is checked whether kataegis is seen in the 

samples within 10,000 nucleotide distance.  
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CHAPTER 3 

RESULTS 

 

3.1 Sequencing Results: Number of Reads, SNVs and Indels 

 

To address the origin of the tumours question, exome sequencing of multifocal 

nonmuscle invasive urothelial bladder tumours was conducted at high depth, 

using tumour and normal mucosa samples collected from three patients during 

transurethral resection. The quality results of the sequencing are summarized in 

Table 4 and Table 5. 

 

Table 4: Target size, total number of reads, read length and total 

sequenced bases for each sample 

Sample Target size Total Reads Read length Total bases

1st patient-Tumour1 Base 50,000,000 54,022,290 100 5,402,229,000

1st patient-Tumour2 Apex 50,000,000 51,415,608 100 5,141,560,800

1st patient-Tumour2 Base 50,000,000 52,056,638 100 5,205,663,800

1st patient-Normal 50,000,000 56,497,854 100 5,649,785,400

2nd patient-Tumour1 Apex 50,000,000 52,336,578 100 5,233,657,800

2nd patient-Tumour1 Base 50,000,000 60,280,740 100 6,028,074,000

2nd patient-Tumour2 Apex 50,000,000 56,414,382 100 5,641,438,200

2nd patient-Normal 50,000,000 66,765,540 100 6,676,554,000

3rd patient-Tumor1 Apex 50,000,000 58,541,416 100 5,854,141,600

3rd patient-Tumor1 Base 50,000,000 61,787,922 100 6,178,792,200

3rd patient-Tumor2 Base 50,000,000 57,071,432 100 5,707,143,200

3rd patient-Normal 50,000,000 51,860,180 100 5,186,018,000  

In Table 4, "Total bases" is calculated as the multiplication of the number of 

reads with read length.  

In Table 5, "Expected coverage" describes the average number of times that a 

nucleotide is expected to be sequenced given the target size and the total 

number of sequenced bases (Lander et al, 2001). "Effective coverage" 



   
 

40 
 

represents the exact number of times that a nucleotide in the reference genome 

is covered by aligned reads of the sequencing experiment (Sims, Sudbery, Ilott, 

Heger, & Ponting, 2014). Expected coverage is calculated as the ratio of total 

bases to target size. Meanwhile, effective coverage is calculated as the ratio of 

mapped bases (mapped reads X read length) to target size.  

Normally, 35X coverage would be needed to reliably call SNVs and small 

indels across 95% of the genome or 95% of the exome (Ajay, Parker, Abaan, 

Fajardo, & Margulies, 2010). Here, in Table 5, high effective coverage is found 

for each sample. 

Table 5: Expected Coverage (shown as "Expected Cov."), Mapped Reads 

and Effective Coverage (shown as "Effective Cov.") for each sample 

 

The power of discovering variants is lowered by low base quality and by non-

uniformity of the coverage (Sims et al., 2014). To handle this, some variants 

are eliminated according to what we call here "strict filtering criteria". The 

"strict filtering criteria" involve the GATK quality score (“PASS”), filtering 

out segmental duplications, and also including SNVs only consistently read in 

all 4 samples and identified at minimum depth 4. This latter rule means the 

SNV is covered by at least in 4 reads per sample. Note that we also exclude 

any SNVs in dbSNPv.138 (see section 2.1.2). Table 6 illustrates the number of 

variants remained after strict filtering: 
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Table 6: Number of SNVs and indels before (raw SNVs and indels) and 

after filtering (strict Filter SNVs and indels) for each sample 

Sample Raw SNVs Raw INDELs *Strict Filter SNVs *Strict Filter INDELs

1st patient-Tumour1 Base 225,116 18,022 1,628 2,130

1st patient-Tumour2 Apex 216,393 17,838 1,628 2,130

1st patient-Tumour2 Base 213,508 17,747 1,628 2,130

1st patient-Normal 232,006 18,255 1,628 2,130

2nd patient-Tumour1 Apex 545,565 28,369 1,733 2,278

2nd patient-Tumour1 Base 585,967 29,126 1,733 2,278

2nd patient-Tumour2 Apex 571,255 28,595 1,733 2,778

2nd patient-Normal 618,910 28,894 1,733 2,778

3rd patient-Tumor1 Apex 690,221 30,147 1,628 2,555

3rd patient-Tumor1 Base 653,140 30,148 1,628 2,555

3rd patient-Tumor2 Base 664,479 29,874 1,628 2,555

3rd patient-Normal 600,240 29,479 1,628 2,555  

As the result of filtering, the bulk of raw variants were eliminated and 1628-

1733 SNVs and 2130-2555 indels remained for each sample.   

 

 

3.2 Phylogenetic Trees 

 

After transforming the SNV data into binary form (0 or 1), the filtered SNV 

datasets were used to calculate Euclidean distance matrices among samples of 

each patient. Then, these Euclidean distance matrices were used to construct 

neighbour-joining phylogenetic trees, reflecting genetic relationship of the 

tumour and normal samples relative to reference genome. 

Figure 9 shows the reconstructed SNV phylogenies of the tumour and normal 

mucosa samples of Patient 1 and Patient 2: 
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Figure 9: Phylogenetic trees constructed from SNV data for each patient. 

The bootstrap values of each node are shown next to each node. A bootstrap 

value of 100 means that, among 10,000 bootstraps, the same result was 

obtained 10,000 times. The Reference Genome sequence ("0" assigned to all 

positions) was used as outgroup (Acar, Özkurt et al, 2015; under review in 

BMC Cancer). 

 

The phylogenetic trees of the 2 patients were reconstructed. Both trees were 

consistent with the topology of the hypothetical monoclonal phylogeny in 

Figure 8, with all tumours being grouped together. The normal tissue samples 

are expected to appear as the closest branches to the reference genome, as the 

tumour samples accumulate high number of mutations. As expected, in both 

trees, the normal tissue branch was the closest branch to the reference genome. 

High bootstrap values show that the tree topologies are robust to random 

sequencing and sampling errors; that is, the same topology is seen independent 

of which set of SNVs are chosen randomly.   
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The bootstrap value for the node resolving Tumour1 Apex and Tumour1 Base 

samples of the Patient 2 is 71, meaning that among 10,000 bootstraps, 

Tumour1 Apex and Tumour1 Base cluster together to the exclusion of 

Tumour2 Base only 71% of the time. This suggests that these two tumour 

branches are not resolved very robustly. However, this weak bootstrap support 

does not affect the conclusion that the tumours are clustered to the exclusion of 

the “normal sample” in the trees.  

In contrast to Patient 1 and 2, in the tree of Patient 3, the normal sample is 

grouped together with 2 other tumour samples with high confidence bootstrap 

value (Figure 10). This is unexpected. One possible explanation is mix up of 

samples during sample preparation. Arguing against this, however, it is found 

that a large number of driver mutations for bladder carcinoma are shared by all 

samples of this patient, as will be discussed later (Table 14). 
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Figure 10: Phylogenetic tree constructed from SNV data for the 3rd 

patient. 

The bootstrap values of each node are shown next to each node. The Reference 

Genome sequence ("0" is assigned to all positions) is used as outgroup (Acar, 

Özkurt et al, 2015; under review in BMC Cancer).  

 

Therefore, it is suspected that the normal sample of the 3rd patient was 

contaminated with neoplastic material. In addition, in contrast to Patient 1 and 

Patient 2 trees, neither tumour branch appeared longer than the “normal 

sample” branch. Furthermore, the Tumor1 Apex and Tumor2 Base samples are 

clustered together, meaning that they are coming from the same monophyletic 

clade. This situation suggests that the Patient 3's phylogeny could also be 

explained by monoclonal origin hypothesis, rather than field effect hypothesis.  

As a result, these 3 SNV phylogenetic trees strongly support the monoclonal 

origin hypothesis.  

Indels have been suggested to have higher resolution power than SNVs for 

reconstructing phylogenies than SNVs, because indels are less prone to 

homoplasia (Rokas & Holland, 2000). Therefore, indel data was also used to 

construct the phylogenies of the samples from 3 patients (Figure 11).   
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Figure 11: Indel tree of Patient 1 (A), Patient 2 (B) and Patient 3 (C) 

The bootstrap values of each node are shown next to each node. 100 bootstrap 

value means, for 10,000 bootstraps, 10,000 times the same result is obtained. 
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The Reference Genome sequence is used as outgroup (Acar, Özkurt et al, 

2015; under review in BMC Cancer).  

 

As can be observed in Figure 11, indel phylogenies show low bootstrap values, 

implying that the tree topologies are not reliable. Only the branches separating 

the reference genome shows 100 bootstrap values for each tree, while the 

branches resolving the tumours and normal mucosa show low bootstrap values. 

Based on this result, indel datasets were excluded from the rest of the analysis. 

 

 

3.3 Distribution of SNVs among samples and their functionality 

 

Under the monoclonal origin hypothesis the tumours should share the same 

origin, and therefore higher frequency of "functional" mutation accumulation 

on the tumourogenesis branch could be expected. In contrast, under the field 

effect hypothesis, tumours should have evolved independently, and there will 

be a higher number of "tumour private" mutations than "all tumours shared" 

mutations. The topology of the Patient 1 and Patient 2 shows already that there 

is high mutation accumulation on the tumourogenesis branch, as expected in 

monoclonal origin hypothesis. However, in this section, we checked the exact 

number of the SNVs among different classes and detected  whether  mutations 

on tumourogenesis branch are more "functional" than "all samples shared" 

mutations. 

SNVs of each patient were categorized as "Non-tumour associated" & 

"Tumour-associated" with respect to occurrence among samples. 
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Table 7: The SNV distribution of Patient 1 and Patient 2. 

PATIENT 1    

 
Non-tumour 

associated 
 

Tumour-

associated 

All samples 

shared 

842 
All tumours shared 

428 

Normal private 
3 Tumour1 Base 

private 

80 

Other 
49 Tumour1 Apex 

private 

49 

- 
- Tumour2 Base 

private 

57 

- - Other 120 

PATIENT 2    

 
Non-tumour 

associated 
 

Tumour-

associated 

All samples 

shared 

1059 
All tumours shared 473 

Normal private 
12 Tumour1 Apex 

private 

14 

Other 
98 Tumour1 Base 

private 

11 

- 
- Tumour2 Apex 

private 

18 

- - Other 48 
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Table 8: The SNV distribution of the Patient 3. 

PATIENT 3    

 
Non-tumour 

associated 
 

Tumour-

associated 

All samples 

shared 

1304 
All tumours shared 30 

Normal private 20 Tumour1 Base private 178 

Other 
55 Tumour1 Apex 

private 

20 

- - Tumour2 Base private 8 

- - Other 13 

 

 

"Tumour1 Base Private", "Tumour1 Apex Private", "Tumour2 Base/Apex 

Private", "Normal private" terms represent SNVs only in that sample. The 

SNVs falling into the private category, except "Normal private", are grouped as 

"Tumour-associated" SNVs. "Normal private" SNVs are considered "Non 

tumour-associated" SNVs. "All samples shared" describes SNVs shared by all 

4 samples, including normal mucosa. Thus, these SNVs represent the 

individual genotype, falling into the "Non tumour-associated" category. "All 

tumours shared" describes SNVs shared by all 3 tumour samples, but not by 

normal mucosa. Therefore, these SNVs represent the mutations related with 

tumourogenesis. "Other non tumour-associated" represents SNVs found in the 

normal sample, but not falling into the previous categories. Other "tumour-

associated" refers to SNVs not found in the normal sample and not falling into 

the previous categories. 

In Table 7, the distribution of SNVs to the samples of the patients (Patient 1 

and Patient 2) are summarized. Table 7 shows that number of "all tumours 

shared" SNVs (n=842 to 1059) are higher than "all samples shared" SNVs 

(n=428 to 473). Moreover, the majority of the tumour-associated SNVs were 

found among all 3 tumours in each patient (58 to 84%), only 0.6 to 5% of them 
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(n=11-80 SNVs) were private to each tumour. This result supports again the 

monoclonal origin hypothesis in these patients. Table 8, however, shows that in 

Patient 3, 80% of SNVs were of the category "all samples shared". In contrast, 

only 15% of the SNVs were "tumour-associated", only 2% of these being "all 

tumours shared" SNVs. All of these results are already reflected on the 

phylogenies of the patients: Patient 1 and Patient 2's tree showing long 

tumourogenesis branch, while Patient 3's  tree showing very short one (Figure 

9 and Figure 10). 

 

 

Figure 12: Proportion of functional SNVs in Patients 1 and 2.  

SNVs were grouped as "all samples shared"  (n=143 to 182) and "all tumours 

shared" (n=116 to 152) for Patient 1 and Patient 2. Functionality is defined as a 

SNVs putative effect on protein sequence (see text for details). *** indicates 

Fisher’s exact test p<0.001 (Acar, Özkurt et al, 2015; under review in BMC 

Cancer). 

 

After having determined the number of “all samples shared” and “all tumours 

shared” type of SNVs (Table 7), we investigated differences in the functional 

properties of SNVs in each of these classes for Patient 1 and Patient 2. To do 

this, from 1628 to 1733 SNVs were classified by the SnpEff software, 
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according to their impact on protein sequence. We found that from 350 to 354 

(20 to 22%) of these SNVs were "potentially functional" (See Materials and 

Methods, section 2.2.3). Furthermore, these functional mutations were about 

1.8 to 2.3 times more common among “all tumours shared" SNVs than among 

“all samples shared" SNVs (two- sided Fisher's exact test p<10
-5

). Hence, 

besides the majority of "tumour-associated" mutations being "all tumours 

shared", a higher proportion of the latter mutations were functional than "all 

samples shared" mutations.  

 

 

3.4 Distribution of SNV frequencies, Candidate Driver Gene Analysis, 

Permutation and Kataegis Results 

 

After classifying SNVs with respect to occurrence among samples and their 

effect on protein sequence, we searched for signs of APOBEC enzyme activity 

(i.e. TpC* dinucleotide mutation pattern) among the patients’ tumour sample 

sequences (See Materials and Methods, section 2.2.4).  

As can be observed in Figure 13, the category of “all tumours shared” SNVs 

had 6-6.3 fold higher frequency of TpC* mutations compared to "all samples 

shared" (e.g. SNVs representing the individual's genotype)  in Patient 1 and 

Patient 2 (Fisher's exact test p<10
-41

). To be more specific, TpC*->TpT* and 

TpC*-> TpG* mutation patterns, especially the former, is at higher frequency 

than TpC*->TpA*, which is consistent with APOBEC mutation activity. 

Figure 14 shows the frequency of mutations for Patient 3. The TpC* frequency 

of the Patient 3 does not show any particular elevation.  
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Figure 13: SNVs in dinucleotide context for Patient 1 and Patient 2.  

SNV frequencies between "all samples shared" and "all tumours shared" 

categories are compared. Only A or C mutations in either strand are 

considered, in the manner of Nordentoft et al, 2014. "*" shows the base that is 

mutated; e.g. TpC* stands for the mutations that is from TpC to TpA or to TpG 

or to TpT:  TpC->TpA, TpC->TpG, or TpC->TpT. TpC* mutation bars are red 

colored. Insets show the distribution of TpC* mutations frequency in "all 

tumours shared" SNVs (Acar, Özkurt et al, 2015; under review in BMC 

Cancer).  

 

 

 

Figure 14: Frequencies of SNVs in dinucleotide context for Patient 3.  
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TpC* mutations bar is marked as red coloured. (Acar, Özkurt et al, 2015; under 

review in BMC Cancer) 

 

We then compared the frequencies in dinucleotide and trinucleotide context 

between "all tumours shared"  and "all samples shared" SNVs (Tables 9, 10, 12 

and 13), as well as between "all tumours shared" and "all tumour private" 

SNVs (Table 11). In the tables, "E" refers to exponential notation. To give an 

example, 7.60E-01 is the same as the frequency of TpA* mutations in "all 

tumours shared" category being 0.76 of that of "all samples shared" category. 

As can be seen from Table 9, TpC* mutation is the most common dinucleotide 

mutation type (specifically TpC* to TpT*) when “all tumours shared” SNVs 

are compared with “all samples shared” SNVs in Patient 1 and Patient 2 

(Fisher's exact test p<10
-41

). No other mutation type in dinucleotide pattern is 

significantly common with odds ratio larger than 1 in these patients.  
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Table 9: Frequency differences between “all tumours shared” and “all 

samples shared” SNVs in dinucleotide context.  

The odds ratio and two-sided Fisher’s exact test p-values are shown for 

Patients 1 and 2. "E" is the exponential notation (power of 10). Bold lines mark 

significant results with odds ratio > 1 (Acar, Özkurt et al, 2015; under review 

in BMC Cancer).  

 

Patient 1

Mutated reference sequence Odds Ratio p-value

TpC* 6.06E+00 4.41E-42

TpA* 7.60E-01 2.69E-01

GpC* 5.63E-01 5.08E-03

GpA* 3.87E-01 4.56E-03

CpC* 6.12E-01 3.12E-03

CpA* 3.90E-01 3.27E-05

ApC* 5.23E-01 7.81E-04

ApA* 4.43E-01 1.24E-03

Patient 2

Mutated reference sequence Odds Ratio p-value

TpC* 6.29E+00 3.53E-52

TpA* 6.86E-01 9.63E-02

GpC* 8.00E-01 2.19E-01

GpA* 1.28E-01 2.17E-07

CpC* 5.24E-01 2.16E-05

CpA* 3.93E-01 4.82E-05

ApC* 3.81E-01 5.85E-07

ApA* 4.12E-01 7.01E-04  

 

Table 10 shows that TpC* is again the most common mutation type in 

dinucleotide context, all tumours shared SNVs being 2.5 to 4.6 times higher 

than the tumour private SNVs (p-value<10
-4

). Indeed, TpCpA* and TpCpT* 

mutation types show highest frequency among trinucleotide mutation types 
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(Table 12 and Table 13), which is consistent with APOBEC3B mutation 

context (S. A. Roberts et al., 2013). 

 

Table 10: The odds ratio and Fisher’s exact test p-values for Patient 1 and 

Patient 2's frequency difference between "all tumours shared" and "all 

samples shared" SNVs in dinucleotide pattern and with resulting 

mutations. 

(Acar, Özkurt et al, 2015; under review in BMC Cancer) 

"E" is the exponential notation (power 10). Bold lines mark significant results 

with odds ratio > 1. NAs indicate no observation in that category.  

 

Patient 1 Patient 2

Base Change Odds Ratio p-value Base Change Odds Ratio p-value

TpC*->TpT* 5.20E+00 2.98E-28 TpC*->TpT* 3.59E+00 8.55E-19

TpC*->TpG* 4.08E+00 4.32E-08 TpC*->TpG* 6.65E+00 2.72E-25

TpC*->TpA* 2.23E+00 1.22E-02 TpC*->TpA* 2.20E+00 1.30E-02

TpA*->TpT* 1.76E+00 3.01E-01 TpA*->TpT* 7.44E-01 8.08E-01

TpA*->TpG* 6.54E-01 1.55E-01 TpA*->TpG* 6.98E-01 1.81E-01

TpA*->TpC* 4.35E-01 3.52E-01 TpA*->TpC* 6.08E-01 5.69E-01

GpC*->GpT* 6.17E-01 5.38E-02 GpC*->GpT* 6.64E-01 5.81E-02

GpC*->GpG* 9.64E-02 3.86E-03 GpC*->GpG* 9.21E-01 1.00E+00

GpC*->GpA* 9.35E-01 1.00E+00 GpC*->GpA* 1.20E+00 5.34E-01

GpA*->GpT* 4.35E-01 3.52E-01 GpA*->GpT* 3.71E-01 2.49E-01

GpA*->GpG* 4.50E-01 5.40E-02 GpA*->GpG* 1.03E-01 2.05E-05

GpA*->GpC* 1.95E-01 1.11E-01 GpA*->GpC* NA NA

CpC*->CpT* 5.81E-01 6.35E-03 CpC*->CpT* 5.07E-01 1.38E-04

CpC*->CpG* 6.48E-01 3.08E-01 CpC*->CpG* 2.95E-01 6.10E-03

CpC*->CpA* 9.35E-01 1.00E+00 CpC*->CpA* 1.21E+00 6.04E-01

CpA*->CpT* 7.34E-01 6.51E-01 CpA*->CpT* 1.80E+00 2.09E-01

CpA*->CpG* 3.23E-01 1.34E-04 CpA*->CpG* 2.44E-01 6.43E-06

CpA*->CpC* 4.41E-01 1.02E-01 CpA*->CpC* 3.68E-01 6.29E-02

ApC*->ApT* 4.79E-01 1.38E-03 ApC*->ApT* 3.59E-01 9.59E-06

ApC*->ApG* 7.54E-01 8.02E-01 ApC*->ApG* 2.88E-01 3.19E-02

ApC*->ApA* 6.78E-01 4.43E-01 ApC*->ApA* 7.43E-01 6.80E-01

ApA*->ApT* 3.25E-01 1.59E-01 ApA*->ApT* 9.32E-01 1.00E+00

ApA*->ApG* 2.96E-01 2.48E-04 ApA*->ApG* 2.30E-01 1.09E-04

ApA*->ApC* 1.44E+00 4.67E-01 ApA*->ApC* NA NA  
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We also compared "all tumours shared" SNVs with "all tumour private" SNVs. 

The results presented in Table 11 show that higher amount of mutations 

accumulated on the tumourogenesis branch, compared to the more recent, 

"tumour-private" branches.  

 

Table 11: The odds ratio and Fisher’s exact test p-values for the frequency 

difference between "all tumours shared" and "all tumour private" SNVs 

in dinucleotide context, for Patient 1 and Patient 2. 

(Acar, Özkurt  et al, 2015;  under review in BMC Cancer) 

"E" is the exponential notation (power 10). Bold lines mark significant results 

with odds ratio > 1. 

 

Patient 1

Mutated reference sequence Odds Ratio p-value

TpC* 2.52E+00 6.56E-07

TpA* 1.11E+00 8.58E-01

GpC* 4.16E-01 1.03E-03

GpA* 5.33E-01 1.98E-01

CpC* 7.99E-01 3.79E-01

CpA* 6.48E-01 2.06E-01

ApC* 7.06E-01 2.34E-01

ApA* 6.19E-01 2.35E-01

Patient 2

Mutated reference sequence Odds Ratio p-value

TpC* 4.60E+00 2.00E-05

TpA* 8.39E-01 7.36E-01

GpC* 1.26E+00 8.06E-01

GpA* 8.41E-02 2.30E-03

CpC* 2.97E-01 8.81E-03

CpA* 1.47E+00 1.00E+00

ApC* 4.24E-01 3.36E-02

ApA* 6.20E-01 4.40E-01  
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Table 12: The odds ratio and Fisher’s exact test p-values of frequency 

difference between "all tumours shared" and "all samples shared" SNVs 

in trinucleotide pattern for Patient 1. 

(Acar, Özkurt et al, 2015; under review in BMC Cancer) 

"E" is the exponential notation (power 10). Bold lines mark significant results 

with odds ratio > 1. 

 

Mutated reference sequence Odds Ratio p-value

TC*T 3.97E+00 1.29E-10

TC*G 1.54E+00 1.38E-01

TC*C 1.95E+00 6.14E-03

TC*A 1.19E+01 3.22E-30

TA*T 1.12E+00 7.54E-01

TA*G 6.99E-01 6.28E-01

TA*C 7.36E-01 7.59E-01

TA*A 3.06E-01 6.57E-02

GC*T 5.22E-01 1.39E-01

GC*G 4.93E-01 4.58E-02

GC*C 8.71E-01 8.64E-01

GC*A 4.86E-01 1.99E-01

GA*T 8.93E-01 1.00E+00

GA*G 0.00E+00 2.15E-03

GA*C 1.62E-01 7.19E-02

GA*A 7.85E-01 7.83E-01

CC*T 5.43E-01 9.23E-02

CC*G 4.72E-01 6.99E-03

CC*C 5.03E-01 5.25E-02

CC*A 1.58E+00 1.43E-01

CA*T 3.43E-01 6.41E-03

CA*G 4.21E-01 3.83E-02

CA*C 4.32E-01 1.71E-01

CA*A 5.41E-01 2.70E-01

AC*T 5.27E-01 9.78E-02

AC*G 2.95E-01 1.39E-03

AC*C 7.81E-01 5.12E-01

AC*A 8.40E-01 8.45E-01

AA*T 3.20E-01 1.70E-02

AA*G 4.21E-01 1.04E-01

AA*C 3.43E-01 9.46E-02

AA*A 1.18E+00 7.92E-01  

 



   
 

57 
 

Table 13: The odds ratio and Fisher’s exact test p-values of frequency 

difference between "all tumours shared" and "all samples shared" SNVs 

in trinucleotide pattern for Patient 2. 

(Acar, Özkurt et al, 2015; under review in BMC Cancer) 

"E" is the exponential notation (power 10). Bold lines mark significant results 

with odds ratio > 1. 

 

Mutated reference sequence Odds Ratio p-value

TC*T 4.77E+00 1.61E-17

TC*G 1.95E+00 7.83E-03

TC*C 1.50E+00 1.09E-01

TC*A 7.15E+00 8.62E-29

TA*T 1.06E+00 8.77E-01

TA*G 3.91E-01 1.48E-01

TA*C 1.03E+00 1.00E+00

TA*A 2.64E-01 2.14E-02

GC*T 7.98E-01 5.47E-01

GC*G 6.92E-01 2.26E-01

GC*C 1.25E+00 5.00E-01

GC*A 6.65E-01 3.80E-01

GA*T 8.42E-02 1.08E-03

GA*G 1.48E-01 3.02E-02

GA*C 1.38E-01 3.09E-02

GA*A 2.47E-01 1.89E-01

CC*T 6.61E-01 1.73E-01

CC*G 4.74E-01 2.97E-03

CC*C 4.91E-01 1.53E-02

CC*A 8.36E-01 7.41E-01

CAA 1.16E-01 1.23E-02

CA*T 4.27E-01 4.32E-02

CA*G 4.53E-01 5.91E-02

CA*C 5.79E-01 3.10E-01

AC*T 1.76E-01 7.22E-04

AC*G 3.08E-01 7.76E-04

AC*C 5.36E-01 1.06E-01

AC*A 7.41E-01 4.90E-01

AA*T 2.83E-01 9.39E-03

AA*G 7.98E-01 8.05E-01

AA*C 0.00E+00 4.55E-03

AA*A 7.08E-01 5.44E-01  
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We find that in Patient 1 and Patient 2, TpC* mutations are much more 

accumulated on the tumourogenesis branch (represented by the "all tumours 

shared" category), than the individual's unique genotype (represented by the 

"all samples shared" category) (Table 9). When SNVs are considered with the 

original and derived substitution (Table 10), TpC*->Tp*T mutations appear as 

the most common mutation pattern, consistent with APOBEC activity signature 

on genome. Morever, the most common type of mutation in trinucleotide 

context (Table 12, Table 13) appears as TpCpT* in both Patient 1 and Patient 

2. TpCpT* is already claimed to be the most common motif of APOBEC3B 

activity (S. A. Roberts et al., 2013).  

To check whether TpC* mutations could be the inducer of tumour related 

mutations, we checked TpC* mutations overlapping with potential driver genes 

(Table 14). Half of the "all tumours shared" mutations affecting bladder cancer 

driver genes appear to be in TpC* context. 
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Table 14: The overlap between candidate driver genes and functional 

SNVs for each patient. 

(Acar, Özkurt et al, 2015; under review in BMC Cancer) 

Mutation Effect and Mutation Type are annotated with SnpEff software. 

Mutated Samples shows the samples that show the mutation. Base Conversion 

shows the insertions, deletions, SNVs and their resulting mutations in 

dinucleotide context. TpC* mutations are marked as bold. 

   
PATIENT 1

GENE NAME MUTATION EFFECT MUTATION TYPE MUTATED SAMPLES BASE CONVERSION

KMT2A MODERATE MISSENSE all tumours shared TpC*>TpT*

KMT2D MODERATE MISSENSE all tumours shared TpC*>TpT*

FAT4 MODERATE MISSENSE all tumours shared TpC*>TpT*

ERCC2 MODERATE MISSENSE all tumours shared GpA*>GpC*

ANK2 MODERATE MISSENSE all tumours shared TpA*>TpG*

KDM6A MODERATE MISSENSE all tumours shared TpA*>TpG*

PIK3CA MODERATE MISSENSE Tumour1.Base private GpC*>GpG*,TpT*>TpA*

FGFR3 MODERATE MISSENSE Tumour1.Base private TpC*>TpT*

TSC1 HIGH FRAMESHIFT Tumour1.Apex private C deletion

HMCN1 MODERATE MISSENSE all samples shared T insertion

ARID1A MODERATE MISSENSE all samples shared ApA*>ApG*

HCN1 MODERATE MISSENSE all samples shared ApA*>ApG*

PDE4DIP HIGH FRAMESHIFT all samples shared A insertion

MAP3K1 MODERATE CODON DELETION all samples shared CAA deletion

PATIENT 2

GENE NAME MUTATION EFFECT MUTATION TYPE MUTATED SAMPLES BASE CONVERSION

RB1 HIGH NON SENSE all tumours shared ApC*>ApG*

ATM MODERATE MISSENSE all tumours shared TpC*>TpG*, CpC*>CpT*

LRP1B MODERATE MISSENSE all tumours shared TpC*>TpG*

MUC16 MODERATE MISSENSE

all tumours shared 

Tumour1.Apex,Tumour1.Base TpC*>TpT*

KMT2C MODERATE MISSENSE all samples shared GpC*>GpG*

HMCN1 MODERATE MISSENSE all samples shared GpC*>GpT*

PATIENT 3

GENE NAME MUTATION EFFECT MUTATION TYPE MUTATED SAMPLES BASE CONVERSION

KDM6A HIGH NON SENSE all samples TpC*>TpT*

RYR2 MODERATE MISSENSE all samples TpC*>TpT*

KMT2D MODERATE CODON DELETION all samples TGCTGCTGT deletion

NF1 MODERATE MISSENSE all samples TpC*>TpG*

LRP1B MODERATE MISSENSE all samples ApA*>ApG*

SYNE1 MODERATE MISSENSE private to one sample TpC*>TpG*

STAG2 HIGH SPLICE SITE DONOR shared by 3 samples ApC*>ApA*  

Moreover, to check whether observing that number of both "functional" and 

"all tumours shared" mutations with bladder cancer driver genes was 

meaningful or not, we performed a simulation test using the R programming 

language, where we randomly sampled N variants (N being the number of 

"functional" and "all tumours shared" mutations) among all SNVs 10,000 

times. In other words, we permuted the "all tumours shared" label among 

SNVs. The permutation test p-values was significant for Patient 1 and was not 
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for Patient 2 (p-value = 0.087 and 0.172 for Patient 1 and 2, respectively), 

implying that the number of both "functional" and "all tumours shared" 

mutations overlapping with potential driver genes is not significantly higher 

than the number of mutations in the randomized data. 

As noted earlier, Table 14 shows that Patient 3 has a large number of missense 

mutations in known bladder cancer genes in the normal mucosa sample as well. 

This situation enhances the possibility that the normal mucosa is contaminated 

with neoplastic material. 

Network analysis of potential driver genes showing TpC* mutation pattern is 

also performed in Patient 1 and Patient 2 (Figure 15) (Warde-Farley et al., 

2010). As expected, the network implies that the potential driver genes  of  2 

independent cases share some pathways.  Some genes in the network are co-

expressed or co-localized, while some genes  interact with each other. 
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Figure 15: Network analysis of driver genes showing TpC* mutations in 

Patient 1 and Patient 2.  

Black circles shows the potential driver genes showing TpC* mutation in 

Patient 1 and Patient 2. Purple , blue and green lines represent co-expression, 

co-localization and genetic interactions, respectively. 

 

It can be inferred when these TpC* mutations occurred, by looking at the 

distribution of TpC* mutations within the phylogenetic trees. As can be seen 

from Table 9, Table 10 and Figure 13, TpC* mutations are 6 times more 
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common on the tumourogenesis branch than the ancestral branch. In addition, 

the tumourogenesis branch includes several TpC* mutations occurring in 

potential driver genes in bladder cancer (Table 14).  Also, TpC* mutations are 

almost 2 to 5 times higher on the tumourogenesis branch than on more recent 

branches (Table 11). This suggests that TpC* mutations occurred early in 

development, during tumourogenesis. Later, TpC* accumulation must have 

subsided. This description was summarized in Figure 16: 

 

 

Figure 16: TpC* mutation frequencies reflected on SNV phylogenetic tree. 

The red colored branch shows the tumourogenesis branch. 

 

Finally, the existence of kataegis (see section 1.3.4), that is, an aggregation of 

APOBEC-induced mutations previously detected in the context of bladder and 

other cancers, was investigated in data from Patients 1 and 2. To do this, we 

measured the clustering of TpC* mutations (the numbers of TpC*s within 

10,000 nucleotide distance of each other in each sample) on the same strand. 

Then a permutation test was performed by 10,000 times mixing up the 

positions of mutations randomly and checking the number of TpC* mutations 
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in proximity in this randomized data. Comparing the results of the kataegis test 

with the permutated kataegis test allowed testing whether the number of TpC* 

mutations in proximity in the original test is significant or not. The result was 

insignificant for both patients. 
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CHAPTER 4 

DISCUSSION 

 

4.1 Comments on Previous Studies 

Studying cancer as a Darwinian process can help understand evolutionary 

dynamics of cancer and figure out its progression, which could have clinical 

and precautionary implications. Here, a still-debated question is investigated: 

the origin of multifocal bladder tumours. This problem has been studied many 

times in the past decades (since 1992, by Sidransky et al) and conflicting 

results have been reached (Table 1 and Table 2). The reason for these 

conflicting results may be that the previous studies included a limited number 

of genotypic variants, and thus could have had limited statistical power (variant 

n=1 to 800. Note however that number of tumours collected was usually high: 

n=2 to 73; Table 1 and Table 2). Thus, it could have been power issues that 

was leading to inconsistent results. Also, some of these studies investigated late 

stage invasive carcinomas, where high mutation accumulation can further 

obscure genetic relationships among tumours.  

Moreover, the methods used to detect clonality could have limitations. In some 

of the studies (Sidransky et al, 1992; Li & Cannizzaro, 1999; Jones et al 2005) 

X chromosome inactivation pattern was utilized to evaluate clonality, as 

always the same X chromosome is expected to be methylated in the case of 

monoclonal origin of the tumours. However, X inactivation pattern is limited to 

female patients, whereas the majority of bladder patients are males (Knowles & 

Hurst, 2014). This may lead to limitations in sample availability (Christian 

Hafner et al., 2002).  
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Using X inactivation is also complicated because of unstable methylation in 

tumours (Jones and Buckley, 1990) and preferential amplification of the allele 

having lower molecular weight (Mutter & Boynton, 1995). The human 

androgen receptor (HUMARA) gene is usually used to detect X-inactivation 

pattern of the patients. For example, Jones et al (2005) used HUMARA gene 

alleles to infer X inactivation pattern of the bladder tumours, and their results 

supported the field effect hypothesis. Low quantity and quality of template can 

cause imbalances in PCR (Polymerase Chain Reaction) products, preferentially 

amplifying the HUMARA allele having lower molecular weight. This bias can 

distort the results in favour of monoclonal origin hypothesis, leading to 

inaccurate X-inactivation signals. However, even if a study supports 

monoclonal origin hypothesis by detecting X-inactivation pattern, the result 

could be unreliable.  

Another method used to detect the origin of multifocality is LOH analysis. This 

method could also have caveats. The analysis is usually done for several loci. 

However, not observing a common deletion among the tumours compared 

could be because of neglecting the right marker loci whose deletion is actually 

shared among tumours (Christian Hafner et al., 2002). If there is limited 

number of mutations shared by all tumours, the tumourogenesis branch will be 

short (the common ancestry did not extend long enough), and the evolutionary 

relatedness of the tumours could remain unnoticed (see Figure 8). Hence, it is 

really crucial to detect a high number of variants to address the origin of 

multifocal tumours. Exome sequencing provides a high number of variants, and 

could resolve the evolutionary relatedness even if the tumourogenesis branch is 

fairly short. 
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4.2 Interpretation of SNV data 

 

Here, this long-debated problem was investigated with a different approach: 

exome sequencing. Exome sequencing yields high number of variants (n=1628 

to 1733 in our case) and it is a cost-effective next-generation sequencing 

technique. For each patient, the statistical power of the technique used to reveal 

the origin of multifocal tumours problem is very high, owing to the 

substantially higher number of variants compared to previous techniques that 

utilized a small number of loci. Even if there occur problems in detection of  

some of the variants, exome sequencing, yielding thousands of variants, 

provides enough data that the analysis is minimally affected. The high quality 

of the SNV data also allows avoiding caveats of the previous techniques, such 

as obtaining the wrong signal from X-inactivation detection.  

Tumour DNA sequencing requires higher sequence depth than normal DNA 

does in order to identify accurately variants specific to these tumours (i.e. 

SNVs). Compared to whole genome sequencing, exome-sequencing can be 

more advantageous in cancer studies as it generates high-depth data. However, 

exome-sequencing does not provide information about mutations in non-coding 

regions and genetic alterations at chromosomal level. These can be limitations 

of exome-sequencing to study tumourogenesis mechanism.  However, to reveal 

evolutionary relationships of tumours, exome-sequencing could be optimal 

method for now. 

Using this approach, we generated SNV-based phylogenies for three male 

patients. Phylogenies of two of these, Patients 1 and 2 (Figure 9) showed 

similar topology to the hypothetical monoclonal origin tree (Figure 8), and 

their branches separated with high confidence. In addition, in both trees, the 

tumour branches appeared evidently longer than the normal sample branch. 
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This indicates the accumulation of excess number of mutations in tumour 

lineages.  

For the Patients 1 and 2, 52 to 61% of the mutations were shared among all 

samples, and these were considered representing individual's unique genotype. 

A clear majority of the tumour-associated mutations were "all tumours shared" 

mutations (58 to 84%). Only 0.6 to 5% (n=11 to 80 SNVs) of these "tumour-

associated" mutations were private to each tumour (Table 7). This implies 

much higher mutation accumulation on the putative tumourogenesis branch 

than private branches. 

SNVs of the Patient 1 and 2 were classified according to their "functionality", 

i.e. changing protein sequence or not. "All tumours shared" SNVs were found 

to be 1.8 to 2.3 times more "functional" than "all samples shared" SNVs 

(Fisher's exact test p<10
-5

) (Figure 12). This indicated that the tumour lineage 

branch, tumourogenesis branch, includes high number of "functional" 

mutations. This situation increases the possibility of tumourogenesis occurred 

on this branch, hence the tumours coming from the same origin. As a result, the 

result supports again the monoclonal origin hypothesis. 

Exosomes, being small (50-90 nm)  plasma membrane vesicles, are released 

from cell to extracellular matrix when endosomes fuse with plasma membrane 

(van Niel, Porto-Carreiro, Simoes, & Raposo, 2006). Exosomes are also 

observed in tumour cells . Valadi et al (2007), showed that exosomes can carry 

both mRNA and microRNA,  deliver these RNAs to a recipient cell; 

furthermore  delivered RNAs can be functional in recipient cells (Valadi et al., 

2007). Exosome sharing could be possible also in multifocal bladder tumours, 

leading to some shared genomic regions among tumours, thus misinterpretation 

of the tumours as coming from monoclonal origin. However, exome-

sequencing data provides high number variants (~2000 variants), hence high 

statistical power. Thus, it is robust to such later sharing events. Also, high 
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bootstrap values in the phylogenies of Patient 1 and Patient 2 shows that at 

each resampling, the same tree topology is reconstructed, being independent of 

the exact set of SNVs included. 

 

 

4.3 Patient 3 

 

Meanwhile, the phylogeny of the Patient 3 appeared bizarre (Figure 10); where 

the normal sample is grouped with tumour samples. In addition, neither tumour 

branch appeared longer than the normal sample branch. Moreover, Tumour2 

Base was grouped with Tumour1 Apex. The simplest explanation for this 

pattern is that the Patient 3 normal sample is contaminated with neoplastic 

material.  

Also, Patient 3's SNV distribution profile looked different from Patients 1 and 

2. The great majority of SNVs, 80% of them, were shared among all samples, 

whereas only 15% of them were "tumour-associated". Only 2% of these 

"tumour-associated" mutations were "all tumours shared" mutations (Table 8). 

Furthermore, Patient 3's normal sample contains several functional mutations 

on driver genes known for bladder carcinoma (Table 14), much more than 

observed for the other patients. Thus, it can be concluded that the Patient 3's 

normal mucosa sample looks very similar to the tumour sample profile; it is 

most probably contaminated with neoplastic material. 

On the other hand, the Patient 3 phylogenetic tree topology might still be 

explained best by the clonal hypothesis, rather than the field effect hypothesis. 

This is because Tumour1 and Tumour2 samples do not form separate 

monophyletic clades, which would be expected under the field effect 

hypothesis. In all, it can be claimed that the third patient's SNV dataset also 

supports the clonal hypothesis, where tumours are evolutionary related rather 

than having evolved independently.  
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4.4 Indel Trees & Possible Reasons for Low Bootstrap Values 

 

The same phylogenetic relationships among tumours are reconstructed using 

indel trees. However, indel trees had low bootstrap support values and their 

branches remained unresolved. This result can arise because of several reasons. 

First of all, indel calling is a process more prone to error than SNV calling 

(O’Rawe et al., 2013). Low concordance of different variant calling pipelines 

for indels has been previously reported. For example, indels called by GATK 

Unified Genotyper (v1.5), SOAPindel (v1.0) and SAMtools (v0.1.18), showed 

only 26.8 % of overlap, while SNV overlapping was 57.4% (O'Rawe et al, 

2013). Moreover, Fang et al (Fang et al., 2014) reported that whole genome 

sequencing-specific indels are validated at much higher rates than exome 

sequencing indels (84% & 57%), with exome sequencing missing large indels.  

Secondly, we did not apply most filters considered for SNVs on the indel data; 

and only the GATK quality score ("PASS") was used in indel filtering. Only 

SNVs consistently read in all 4 samples and identified at least in 4 samples are 

included in SNV datasets. Also, segmental duplications are filtered out from 

SNV datasets. However, none of these filtering were applied to the indel data. 

Thus, our indel datasets may not be as reliable as our SNV datasets. It remains 

possible that if we were to use algorithms that reduce the false positive and/or 

negative discovery rate in indel calling and filter the data more strictly, we 

could obtain phylogenies with higher bootstrapping values. 

In short, a conclusion cannot be reach about the origin of these tumours from 

indel data for neither of the patients, because indel trees show low 

bootstrapping values most probably as the consequence of high rate of false 

positive and/or negative rates affecting indel calling. Another possible 

explanation for the unresolved branches in indels tree could be homoplasia 

(convergent changes). However, it is very unlikely that the same indel occurs 

twice exactly at the same position. In fact, homoplasia are so rare among indels 
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that they are claimed to be more reliable as a tool for phylogenomics than 

nucleotide substitutions (Rokas & Holland, 2000). Also, it can be speculated 

that indels could arise at later stages in carcinogenesis; thus they would be 

underrepresented in the tumourigenesis branch and appear private to tumours. 

On the other hand, SNV datasets should be more reliable, first because they 

were subjected to stricter filtering criteria, and also because the trees show high 

bootstrap values, that is they give the same tree topology at each resampling, 

independent of the SNVs included. Therefore, they allow us to reach a 

conclusion about the origin of these tumours.  

 

 

4.5 Detection of APOBEC activity: 

 

Finally, the existence of TpC* substitution accumulation in the tumours of the 

first two patients was studied, in order to investigate recent claims for a 

relationship between bladder carcinoma and APOBEC-mediated RNA editing 

as immune response (S. A. Roberts et al., 2013). Indeed, this was the case in 

Patients 1 and 2: Compared to “all samples shared SNVs” (ancestral branch), 

“all tumours shared” SNVs (tumourogenesis branch) included 6 to 6.3 fold 

higher TpC* substitution frequencies, particularly TpC*->TpT*/TpG*, relative 

to “all samples shared” category mutations (Fisher's exact test p<10
-41

) (Figure 

13) (Table 9, Table 10). Furthermore, when the same data was analyzed in 

trinucleotide context, TpC*pA and TpC*pT mutations were higher in 

frequency, accordant with the APOBEC3B mutational signature (Burns et al., 

2013) (Table 12, Table 13). On the other hand, in Patient 3, TpC* substitution 

frequency did not show any increase in any of the samples, each sample 

showing more or less the same frequency of SNVs in dinucleotide context 

(Figure 14).  
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As explained in section 1.3.3 of the Introduction, there is strong evidence for 

the APOBEC3B enzyme participating in the response to HPV infection. Thus, 

our results can be explained by Patients 1 and 2 having been infected with HPV 

before tumourogenesis started. 

TpC* mutation frequencies of "all samples shared" SNVs (ancestral branch) 

were also compared to SNVs private to each tumour (more recent branches) for 

Patient 1 and 2. Compared to ancestral branch, more recent branches included 

2.5 to 4.6 fold higher TpC* substitution frequencies (p-value<10
-4

) (Table 11). 

It can be concluded that APOBEC enzyme activity increased early in the 

development of carcinoma, and subsequently diminished in the tumours of 

these two patients. However, the same pattern is not observed in Patient 3.   

The overlap between the bladder cancer driver genes list for bladder cancer 

(Table 3) and functional mutations is compared for Patient 1 and 2. The 

majority of overlapping mutations were "tumour-associated" for both patients 

(n1=9/14, n2=4/6). Moreover, approximately half of these were TpC* 

substitutions (Table 12). However, the results of permutation test, simulating 

the significance of the overlap between the number of both "functional" and 

"all tumours shared" mutations and the driver gene list, was significant for 

Patient 1 while not for Patient 2. This indicates that the number of "all tumours 

shared" mutations occurring on bladder cancer driver genes is beyond the 

chance for Patient 1 but not for Patient 2.   

To detect signs of APOBEC enzyme activity on the genome, we further 

investigated the so-called kataegis signature in SNV data from Patient 1 and 

Patient 2. However, we did not detect clustering of TpC mutations on the same 

strand. This result may not be surprising as we were analyzing exome data, and 

therefore missing any SNV clustering that overlaps introns and intergenic 

regions. If the same test would have been applied to whole genome sequences 

of these patients, we might have found a positive signal for kataegis. 
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In addition, we detected also if Ras oncogenes are also mutated in the patients 

or not. Ras isoforms (H-Ras, K-Ras, N-Ras) are proto-oncogenes belonging to 

GTPase protein family, can potentially trigger tumourogenesis when activated 

at codons 12, 13 or 61 by a single mutation (Quinlan & Settleman, 2009). K-

Ras isoform is  by far more frequently detected than other isoforms in different 

cancer types.  However, H-Ras is the most common mutated member of Ras 

family in urinary tract carcinoma contrary to other cancer types, appearing 11% 

of urinary tract carcinoma cases (Prior, Lewis, & Mattos, 2012). Incidence of 

H-Ras mutation in urinary tract is relatively high compared to its incidence in 

other cancer types. Actually, the highest incidence of H-Ras mutation is 

observed in salivary gland cancer, being observed 15% of all patients. H-Ras 

usually favours GGC to GTC mutation context in bladder carcinoma (Prior et 

al., 2012). However, potential driver gene mutation analysis of the 3 patients 

showed none of Ras isoforms are mutated in the tumour of these patients.  

   

 

4.6 Conclusion & Therapeutic Interventions 

 

In conclusion, this study demonstrates the utility of exome sequencing and 

population genetics analysis for answering the origin of multifocal tumours 

question. Also, the study could have ramifications for bladder cancer therapy. 

Determining the origin of multifocal tumours and the timing of genetic 

alterations can provide new therapeutic interventions and change in therapy 

strategy. For example, use of gene therapy could be very effective against 

bladder carcinoma  if tumours are coming from a clonal origin (Duggan et al., 

2004). If tumours are sharing the same oncogenic mutation in a gene, at the 

early stages of cancer, a therapy fixing the mutation on this gene could be more 

effective, compared to the situation where tumours include different oncogenic 

mutations.  
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Additionally, the finding that APOBEC3B activity is increased in the early of 

the tumour development, but calms down during later cancer development 

suggests that targeting APOBEC3B activity may not be proper way for bladder 

cancer therapy. Of course, this pattern is yet demonstrated only in 2 patients, 

and needs to be replicated in larger samples. Also notably, our observation on 

the rate of APOBEC3B activity is different from recent studies. Zhang et al 

(2014) and Bruin et al (2015) , studying lung cancer, reports not calming down 

but accelerated accumulation of APOBEC-mediated mutations. This can be 

interpreted as different cancers behaving differently in terms of APOBEC 

activity. TpC* mutations, being potentially damaging, can impair tumour cell 

survival. In this case, decrease in of TpC* mutation accumulation rate after 

tumourogenesis could also be explained by negative selection acting on these 

deleterious sites. 
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CHAPTER 5 

CONCLUSION 

 

In the study, we investigated the evolutionary history of multifocal bladder 

tumours by using a statistically powerful method: exome-sequencing. 3/3 

patients' multifocal bladder tumour sequence analysis suggested monoclonal 

origin hypothesis. Then, we returned to the very beginning of the story, and 

asked but how the very first progenitor cell is formed. According to TpC* 

substitutions analysis, we proposed APOBEC-mediated RNA editing to be 

tumourogenesis trigerring mechanism. All the evolutionary history of the 

multifocal bladder tumours is summarized in the Figure 17:   

 

Figure 17: Hypothetical timeline summarizing the evolutionary history of 

the multifocal bladder tumours 

 (Acar, Özkurt et al, 2015; under review in BMC Cancer) 
 

According to the results, as illustrated in Figure 17, while APOBEC3B 

enzymes editing virus genome (most probably HPV genome) as an immune 

response to infection, inadvertently edited host genome, specifically in 

TpC*pA trinucleotide context. However, editing acted on genes that are driver 

for bladder carcinoma, thus led to tumourogenesis. Finally, high mutation 

accumulated on the neoplasm and clones migrated and formed other 

evolutionarily related tumours. These newly arised tumours continued to be 

exposed to evolutionary forces, especially selection and genetic drift, as the 
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result of high competition among tumour populations. Finally, the tumours 

diverged from each other in the wake of evolutionary forces but still sharing 

some mutations.  

Here, we developed the hypothetical timeline by considering the result of SNV 

analysis of spatially collected multifocal tumour samples. It could also be 

possible to develop the timeline by analyzing chronologically sampled 

tumours. Early and late sample collection from the same multifocal tumours 

could lead to higher resolution of the timeline, allowing to draw the sequence 

of driver gene mutations and identify the mutations that are eliminated by 

selection or genetic drift. In this case, it would be possible to figure out the 

reason of decrease in of TpC* mutation accumulation, either by calming down 

of APOBEC enzyme activity or by negative selection acting on tumours. 

Also, it should be kept on mind that, this timeline is constructed by analyzing 

just 12 bladder samples exome data from 3 patients, thus it should not be 

generalized. To further support these results, more multifocal bladder tumours 

should be sequenced and expression analysis of the APOBECs (transcriptome 

and immunohistochemistry analysis) should be done.  
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