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Director, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Ali Devin Sezer
Head of Department, Financial Mathematics

Assoc. Prof. Dr. Sevtap Kestel
Supervisor, Actuarial Sciences, METU

Assoc. Prof. Dr. Yeliz Yolcu Okur
Co-supervisor, Financial Mathematics, METU

Examining Committee Members:

Assoc. Prof. Dr. Sevtap Kestel
Actuarial Sciences, METU

Prof. Dr. Inci Batmaz
Department of Statistics, METU

Assoc. Prof. Dr. Fatih Tank
Department of Statistics, Ankara University

Date:





I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: DİLEK AYDOĞAN
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ABSTRACT

DETERMINATION OF INFLATION RATE IN A HIDDEN MARKOV MODEL
FRAMEWORK: TURKEY CASE

Aydoğan, Dilek

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Sevtap Kestel

Co-Supervisor : Assoc. Prof. Dr. Yeliz Yolcu Okur

June 2015, 60 pages

Inflation is a significant issue that is cared by every segment of society but especially
by economists since it plays an important role in the economic problems of countries.
In Turkey, inflation has been a substantial problem since 1970s. There is no stability
at inflation rates from that time to 2003. The Central Bank of the Republic of Turkey
became independent and started to apply implicit inflation target regime at 2001. As
a result of these improvements inflation was taken under control at 2004. Although
the rates are more stable after that time, there are some fluctuations still. Hence, it is
essential to study on the inflation data of 2004-2014 year interval.

In this study, a novel approach is preferred in order to analyze, model and predict
the inflation data of Turkey for the mentioned period. Hidden Markov Models are
applied in several fields but there are few applications of it to analyze inflation. Now,
theoretical background of HMMs will be provided. Then, the advantage of performing
well on autocorrelated data just like ours of the model will be taken. The monthly
inflation rates that represent the price level changes at current month with respect to
the same month of previous year will be accepted as observed part of the model and
the hidden part is estimated by EM-algorithm approach adapted to normal-HMM. The
first stage model will be applied to the data for the years 2004-2012 and the test period
of 2013-2014.
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ÖZ

SAKLI MARKOV MODEL ÇERÇEVESİNDE ENFLASYON ORANI
SAPTAMASI: TÜRKİYE DURUMU

Aydoğan, Dilek

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Sevtap Kestel

Ortak Tez Yöneticisi : Doç. Dr. Yeliz Yolcu Okur

Haziran 2015, 60 sayfa

Enflasyon toplumun her kesimini ilgilendiren bir sorun olmanın yanında, ülkelerin
ekonomik problemlerinde önemli bir rol oynadığı için özellikle ekonomistlerin ilgisini
çeken bir konudur. Türkiye’de ise enflasyon 1970’lerden itibaren önemli bir sorun ha-
line gelmiştir ve bu tarihten 2003 yılına kadar durağanlıktan uzak bir seyir izlemiştir.
2001 yılında ise Türkiye Cumhuriyeti Merkez Bankası (TCMB) bağımsız olmuş ve
açık enflasyon hedeflemesi politikası kabul edilmiştir. Bu gelişmelerin sonucunda en-
flasyon 2004 yılında kontrol altına alınmıştır. Bu tarihten itibaren enflasyon oranları
daha durağan bir seyir izlemiştir. Ancak, enflasyon oranında hala bazı dalgalanmalar
devam etmektedir. Bu nedenle 2004-2014 verisi üzerine çalışmaya gerek duyulmuştur.

Bu çalışmada enflasyonu analiz etmek, modellemek ve tahminlemek amacıyla ori-
jinal bir yaklaşım tercih edilmiştir. Saklı Markov Modellerin (SMM) farklı birçok
alanda uygulamaları olmasına rağmen enflasyon verilerini modelleme konusunda çok
az sayıda çalışma mevcuttur. Bu çalışmada SMM’nin teorik altyapısı anlatılacaktır.
Çalışmada kullanılacak enflasyon verisinin otokorelasyonlu olduğu göz önüne alınırsa
bu modelin otokorelasyonlu veriler üzerinde başarılı olma avantajı kullanılacaktır. Bir
önceki yılın aynı ayına göre hesaplanan enflasyon oranları modelimizde görülebilir seri
olarak kullanılacak ve saklı seri normal-SMM’ye uyarlanmış EM- algoritması ile elde
edilecektir. Model 2004-2012 yılları arasındaki enflasyon verisi üzerinde uygulanacak,
2013-2014 yılları için tahminleme yapılacak ve var olan değerlerle karşılaştırılarak test
edilecektir.
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CHAPTER 1

INTRODUCTION

Inflation can be described as an increase in the general price level just to clarify with
the most basic and commonly used definition of it. It is a common problem facing
both developing and developed countries. While some countries cope with the high
inflation, some others complain about the very low inflation rates.

For developing countries as Turkey, high inflation is an important macroeconomic
problem that continues for long periods. [2] Because, high inflation causes the un-
certainty over future inflation as Cukierman and Meltzer presented [10]. This uncer-
tainty may discourage investments and savings also it may cause shortages of goods if
consumers stock with the expectation that prices will increase [22]. Moreover, the dis-
tribution of income may be destroyed since the ability of purchasing power of people
living with a fixed income falls.

Therefore, it is important to analyze, model and forecast the inflation. In order to sup-
port the importance of this issue the following quote from a report of FED is presented
[19]:

”Control of inflation is at the core of monetary policymaking and, consequently, cen-
tral bankers have a great interest in reliable inflation forecasts to help them achieving
this aim. For other agents in the economy accurate inflation forecasts are likewise of
importance, either to be able to assess how policymakers will act in the future or to
help them in forming their inflation expectations when negotiating about wages, price
contracts and so on. And in the academic literature inflation predictability is assessed
to get a gauge on the characteristics of inflation dynamics in general.”.

Therefore, in this thesis the inflation data of Turkey is analyzed, modeled and pre-
dicted. For this purpose Normal Hidden Markov models are preferred since the infla-
tion data of Turkey is non-stationary and HMMs can deal with this type of data.

1.1 General Information about the Hidden Markov Model

There are several definitions of HMM. One of the best of them is represented by Ra-
biner [38]. According to him the HMMs are the extended types of Markov models.
While in Markov models each state corresponds to an observable event, in HMMs
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observations are probabilistic functions of states. An HMM is embedded stochastic
process with an underlying and unobservable stochastic process. It can be observed by
only a stochastic process that produce the same observation sequence. Cheng-Der Fuh
[17] says that ”A hidden Markov model is defined as a parametrized Markov chain
in a Markovian random environment,with the underlying environmental Markov chain
viewed as missing data.”. The key idea of HMM is to decribe a probability distribution
over an infinite number of possible sequences of observations [12].

Since HMMS are general-purpose models they can be used for modeling various types
of time series such as continuous-valued, circular, multivariate, as well as binary data,
bounded and unbounded counts and categorical observations [28]. Some of the appli-
cations of HMMs are speech recognition [37], DNA sequence analysis [9], molecular
biology [26], stock market forecasting [21] and economics [20].

The EM algorithm and the Viterbi algorithm are the solutions to the main problems of
HMM. The EM algorithm is the most famous algorithm for getting the parameters that
maximize the likelihood of the model. On the other hand, the best sequence of hidden
states are estimated by the Viterbi algorithm.

1.2 A Brief History of Inflation in Turkey

The inflation of Turkey started to grow up in the 1960s. However, Turkish economy
came up against conspicuously high inflation rates firstly in the 1970s. Between 1970
and 1980 the price per barrel of crude oil was increased from 2.74 to 11.65 dollars
because of the oil crisis in the world. Moreover, in this period there were exporting
problems in the economies. As a result of these problems, in 1979 the inflation rate
reached to 62%. Although the 24 January decisions had entered into the applications
in 1980 because of the second petrol crisis the inflation rate exceed the percentage of
101 in 1980. However, after a while the new program showed result by decreasing
the inflation rate to 28% in 1982. In the upcoming years inflation again increased and
reached to 73% in 1988. It is also significant that the inflation reached to top points in
the general election periods 1983,1987 and 1991 [13].

The near inflation history of Turkey can be divided into four periods according to the
inflation values and the characteristics of the economy. In the first period that is be-
tween 1989-1993 , prices were influenced by financial liberalization and the inflation
rates were around 60%. The second period was started with the 1994 crisis and con-
tinued till 1999. Inflation reached to an extreme value of 125% in 1994 because of the
exchange market crisis. The austerity plan introduced in 1994 decreased the inflation
rates temporarily but it could not avoid the imbalances in the economy. Although it
decreased to 72% in 1995, it again peaked to 100% in 1997. Consequently, it reduced
to 60% in the end of this period. The exchange-rate based stabilization program is
applied in the third period that is between 2000 and 2001 [25] [11]. The aim of the
Central Bank with this policy was preventing exchange rate rises. Although another
target of the Central Bank is to deal with inflation in this period, constant exchange
rate policy did not allow it.

2



The most important part of the inflation history of Turkey for this thesis is the last
period. This period can be also called as the inflation targeting period. The Central
Bank determined its main target to maintain price stability. The inflation rate that was
70% in 2000 decreased to one digit values in 2004 by the affect of the new policy
and after that time although there have been still fluctuations, they are not as big as in
previous periods. The differences between the last period and the previous ones can be
also seen in Figure 1.1. Moreover, in order to view the data that will be used from now
on more detailed Figure 1.2 is represented.
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Figure 1.1: Inflation rates of Turkey between 1965-2014
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Figure 1.2: Inflation rates of Turkey between 2004-2014
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1.3 Aim of the Study

The main aim of this study is to model, analyze and forecast the inflation rates of
Turkey between 2004-2014. The HMM is preferred to apply on inflation rates since
the data is autocorrelated. In fact, this application is a novel approach. Because, there
are a few studies about the modeling the inflation in Turkey. These studies use VAR,
Bayesian VAR, ARIMA and SARIMA models. However, there are a few studies in
the world about the modeling the inflation rates by using HMM. These studies catego-
rize the inflation rates and then use the Poisson-HMMs. This study benefits from the
advantage of working of HMMs on non-stationary data as the inflation data of Turkey.
Moreover, in order to study on the original data Normal-HMM is used.

In this study, general structure of HMMs is explained by taken ”Hidden Markov Mod-
els for Time Series” by Walter Zucchini and Iain L. MacDonald as a reference and
examples are added in order to give a chance to the readers for understanding the topic
more clearly. The R-codes that are adapted to continuous and normally distributed
data in this thesis are created by inspiring from the codes in the book of Zucchini and
MacDonald [45] and they can be helpful for future studies on similar data. The codes
of the algorithm is written in R and the algorithm is presented in the Appendix A.
Moreover, it is aimed to give a brief explanation about the economical structure of the
inflation. Especially for non-economists these synoptic and basic explanations can be
useful.

This master thesis is comprised of five chapters. Chapter 1 draws a frame for Hidden
Markov Model and represents the inflation history of Turkey. Then, introduces the aim
of the study and summarizes the literature survey. Chapter 2 explains the inflation as
an economic indicator. It explains the computing methods via price indices and gives
the relation of inflation with the aggregate supply and aggregate demand. Moreover,
the Philips curve which shows the relationship between inflation and unemployment
is explained in this chapter. The methodology of HMM is explained in Chapter 3.
Firstly, the Markov chain is mentioned since it is one of the main part (hidden part)
of the HMM. Then, EM-algorithm which estimates the parameters of the model and
Viterbi algorithm which finds the most probable states of the model are explained.
The HMM, which is explained in detail in this chapter , is applied to the 2004-2014
inflation data of Turkey and the results of the application are represented in Chapter 4.
Lastly, Chapter 5 finalizes this thesis with a conclusion and comments.

1.4 Literature Survey

Although there is no study about modeling inflation data of Turkey by using HMM,
there are some studies that use other methods. Meçik and Karabacak(2011) [31] mod-
els inflation of Turkey also. They practice upon the CPIs between 2003-2011 period. In
contrast with our study they use the seasonally adjusted data. The aim of their study is
determining the best ARIMA model for the data and forecasting the CPIs of 2010-2012
period. SARIMA(1,0,0) is selected as the best model according to AIC and BIC. Then,
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the forecasting results and accuracy of the model are represented in that study. Lastly,
it is indicated that the model is succeeding according to these performance indicators.
Saz, G. (2011) [41] models the inflation rates in Turkey between 2003 and 2009. The
monthly CPIs are used as the inflation measure unlike our study . He indicates that the
seasonality in the Turkish inflation rate is both deterministic and stochastic and he uses
SARIMA models for forecasting the inflation rates. Hyndman-Khandakar (HK) algo-
rithm is used to derive the proposed SARIMA models. The most appropriate model
chosen by the study is SARIMA(0,0,0)(1,1,1), i.e., a seasonal autoregressive moving
average model with one degree of seasonal integration, one seasonal autoregressive
and one seasonal moving average part. Akdoğan et al. (2012) [33] make forecasts for
the inflation in Turkey by using several econometric models. They use the percentage
changes in the CPI as in our study. However, they use quarterly inflation rates while
we use monthly ones. In this study, the inflation rates between 2003:Q1 and 2009:Q3
are used as the training sample while the rates between 2009:Q4 and 2011:Q2 are
used as the forecasting sample. They use univariate models, decomposition based ap-
proaches, a Phillips curve motivated time varying parameter model, VAR, BVAR and
dynamic factor model. Consequently, the study concludes that the individual models
that include more economic information model the inflation better than the benchmark
random walk model. In particular, BVAR model is the best fitting model of the inflation
rates of Turkey.

There are several studies that focus on modeling inflation by using HMM in the world.
Hossain, Ahmed and Rabbi (2012) [22] analyzes inflation of different time periods.
They use monthly inflation rates. Firstly, they convert continuous inflation data to dis-
crete data by separating it into classes. Three hidden states are chosen as increasing,
no change and decreasing to model the inflation rates. Then, they train the HMM for
different time periods and test them on 2010-2011 inflation data in order to detect the
similarities of inflation behavior among previous years. Andre Inge (2013) [23] in his
thesis uses the Sweden 1831-2012 inflation data to build the HMM on. He uses the
yearly percentage changes in CPI as an inflation measure. He also estimates param-
eters by using EM-algorithm and determines the most suitable HMM by using AIC
and BIC as in our study. The most suitable HMM for the Sweden inflation rates are
chosen as 5-state HMM in the study. Then, he forecasts the 2013 inflation rate and
the result is in the confidence interval of the expectations of the Sweden Central Bank.
Jochman (2010) [24] applies the Infinite Hidden Markov Model (IHMM) to the U.S.
inflation data in order to find the structural breaks. In this study IHMM is preferred
because it does not predetermine the state number before but learns it from the data
and so it allows modeling time series with unknown number of structural breaks. He
uses personal consumption expenditure (PCE) deflator as the price level and computes
inflation quarterly by the formula of πt = 400ln Pt

Pt−1
where πt is inflation rate and Pt

is price level at time t. The sample of this study is from 1953:Q1 to 2009:Q3. The
study catches the structural breaks during financial crises. Song Yong (2011) [42]
uses also an IHMM to model the U.S. inflation data. In his study in addition to study
of Jochman(2010), a structure is presented to allow getting information about the pa-
rameter of the conditional data density in each state. This structure is named as the
sticky double hierarchical Dirichlet process hidden Markov model (SDHDP-HMM).
He makes comparison between this model with the existing alternative regime switch-
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ing and structural change models. Then, he concludes that SDHDP-HMM is robust
to model uncertainty and makes better forecasts than regime switching and structural
break models according to the results of the application to U.S. inflation data.
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CHAPTER 2

INFLATION AS AN ECONOMIC INDICATOR

In this chapter, the economical basis of inflation is explained, briefly. Firstly, the def-
inition of inflation is given. Then, price indices that are used to calculate inflation are
presented. After the indices, the relationship between the inflation and the pair of ag-
gregate supply and aggregate demand are explained with the structure of them. Lastly,
in order to mention the exchange relation between unemployment and inflation the
Phillips curve is examined.

2.1 Definition of Inflation

There is no consensus about the definition of inflation but there are several alternative
definitions. In this chapter, the most accepted ones are presented. The following def-
inition is one of the most commonly used one:”Inflation is a process of continuously
rising prices, or equivalently, of continuously falling value of money.” [27]. Bronfen-
brenner and Holzman also define inflation as a rise in the price level,i.e, depreciation
of the monetary unit [7]. Namely, it is the reducement of purchasing power of con-
sumers. Although this definition has information about signs of inflation, it does not
present any of causes and effects of it. Hence, Bronfenbrenner and Holzman explain
inflation by four more detailed definitions:

• Inflation is the situation of buying few goods of too much money because of the
generalized excess demand.

• Inflation is a rise of money stock or money income.

• Inflation is a rise in price levels with additional characteristics or conditions: it
is incompletely anticipated; it leads (via cost increases) to further rises; it does
not increase employment and real output; it is faster than some ”safe” rate; it
arises ”from the side of money”; it is measured by prices net of indirect taxes
and subsidies; and/or it is irreversible.

• Inflation is a fall in the external value of money as measured by foreign exchange
rates, by the price of gold, or indicated by excess demand for gold or foreign
exchange at official rates.
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According to monetarist definition of Friedman [14]: ”Inflation is always and every-
where a monetary phenomenon and can be produced only by a more rapid increase in
the quantity of money than in output.”.

Turvey [43] explains inflation as ”the process resulting from competition in attempting
to maintain total real income,total real expenditure, and/or total output at a level which
has become physically impossible, or attempting to increase any of them to a level
which is physically impossible.”.

It is possible to display much more definitions according to the different views of
streams of thoughts, but these distinctions are already examined at following parts in
detail.

2.2 Measurement of Inflation: Price Indices

Measuring inflation requires measuring price changes of goods and services that do not
result form changes in the value such as volume, quality or performance. Since single
price changes cannot represent general inflation in an overall economy, the price of a
large ”basket” of representative goods and services is compared over time. The price
indices are used for this purpose [32].

A price index is a weighted average of the prices of a selected basket of goods and
services relative to their prices in some base-year. The ratio of the goods in the basket
are mentioned as weight. One of the things to take account is updating the basket
regularly in order to prevent losing representative quality of it. The other significant
point is that the base year should not be an unordinary year. Because, in such years for
example in a wartime prices can be extremely high.

Laspeyres and Paasche Indices are the two main price indices that are used to measure
inflation. These two indices diverge from each other at the point of choosing quantities
of the basket as the base year or current year quantity. These indices are explained in
detail in the following parts.

2.2.1 Laspeyres Index

Laspeyres index LP is a base year weighted index and it shows the relative change in
the cost of a basket originally purchased in a base period [16]. If there are n goods
in the basket and the price of good i in period t and the quantity of good i in period t
denoted respectively as pti and xti, then the formula of Laspeyres Index at time period t
(LPt) is as follows,

LPt =

∑n
i=1 p

t
ix

0
i∑n

i=1 p
0
ix

0
i

· 100 (2.1)

The Laspeyres index overestimates the rise in the general price level. Because it does
not take into account that firms and households demand smaller quantities of goods
whose relative prices increases according to their substitutions and they prefer these
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substitute goods. Hence it gives too much weight to relatively expensive goods and
gives too little weight to relatively cheap ones. Although it has such a weakness,
it is the most common price index in statistics. Furthermore, it is also used when
calculating TÜFE(GPI), YI-ÜFE(Domestic PPI) and YD-ÜFE (Foreign PPI) indices
which are used in order to measure the inflation in Turkey.

2.2.2 Paasche Index

The Paasche Index PP is a current year based index because while it determines the
basket of goods, it takes the end period as the reference point. Hence, it does not have
the same weakness of Laspeyres index. However, Paasche index overestimates total
expenditures in the base year and underestimates the rise in the general price level
[16]. The Paasche Index at time period t (PPt) can be summarized by the following
formula,

PPt =

∑n
i=1 p

t
ix
t
i∑n

i=1 p
0
ix

t
i

· 100 (2.2)

where n is the number of goods in the basket, t is the time period, pti is the price of
good i in period t and xti is the quantity of good i in period t.

2.2.3 Fisher Ideal Price Index

The Fisher ideal price index (IP ) is the geometric mean of Laspeyres and Paasche
indices,

IPt =
√
LPt · PPt (2.3)

It is clear that this index uses quantities of base and current period as weight. Hence,
the value of the index is between the value of Laspeyres and Paasche index and it
is closer to the actual course of inflation. However, it does not have common usage
because it has no direct economic interpretation [1].

Example 2.1. Suppose our basket of goods includes only three items: butter, bread,
milk. The base year is determined as 2008 and the current year is 2015. The prices
and quantities of the items according to base and current years are displayed in the
following table,

price(TL) quantity
commodity 2008 2015 2008 2015
butter 10 15 10 20
bread 2 3 35 55
milk 2 4 45 40

The following table is constructed in order to ease the index computation,

Now, Laspeyres, Paasche and Fisher Indices are computed for this scenario as follows,
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2008 2015
commodity p0 x0 pt xt p0x0 ptx0 p0xt ptxt

butter 10 10 15 20 100 150 200 300
bread 2 35 3 55 70 105 110 165
milk 2 45 4 40 90 180 80 160

260 435 390 625

• Laspeyres Index: LPt =
∑n

i=1 p
t
ix

0
i∑n

i=1 p
0
i x

0
i
· 100 = 435

260
· 100 = 167

• Paasche Index:PPt =
∑n

i=1 p
t
ix

t
i∑n

i=1 p
0
i x

t
i
· 100 = 625

390
· 100 = 160

• Fisher Index:IPt =
√
LP · PP =

√
167 · 160 = 163

2.3 Aggregate Demand, Aggregate Supply and Inflation

In this section in order to determine the equilibrium price level in the economy, ag-
gregate demand and aggregate supply curves are put together. Moreover, the affect
of the economy on prices and inversely the affects of the prices on the economy are
examined.

2.3.1 Aggregate Demand

Aggregate demand is the total demand for all goods and services in an economy. The
aggregate demand curve comprises of the points that represents different price and out-
put combinations associated with simultaneous equilibrium in the money and output
markets [3]. When aggregate demand curve is derived, it is assumed that the govern-
ment does not intervene in the economy. Namely, government purchases (G), net taxes
(T ) and money supply (MS) variables are assumed as constant.

Before deriving the AD curve, for non-economists the following brief descriptions can
be needed,

• Money Supply (MS): It is a vertical line because central banks of countries are
authorized controlling the amount of money in the economy and they do not
prefer to associate money supply to interest rate, generally.

• Money Demand (MD): Firms and households hold less money in order to take
the advantage of bonds when interest rates are high. Namely, there is an in-
verse relationship between the interest rate and the quantity of money demanded.
Hence, the money demand curve has negative slope.

• Planned Aggregate Expenditure (AE): It is the sum of aggregate consumption
spending by households (C), planned investments by business firms (I) and gov-
ernment purchases of good and services(G).
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Figure 2.1: Aggregate expenditure curve.

When the price level is increased, demand for money (MD) will increase. Because
households and firms prefer to keep more money in high price levels. In Figure 2.1a
increase at the money demand is displayed by shifting MD curve to the right. Since
money supply does not change, interest rate will increase. This rise in interest rate de-
creases the investment as displayed in Figure 2.2b As a result of the fall in the planned
investment planned aggregate expenditure (AE) decreases and equilibrium output re-
duces from Y0 to Y1 [8].

In Figure 2.2a at the points on the 45 degree line, planned aggregate expenditure is
equal to aggregate output. Hence, point (b) is the equilibrium point while there is an
inflationary gap at point (a) and deflationary gap at point (c).

It becomes reversed when there is a fall in price level. The money demand and cor-
respondingly interest rates decrease . This situation causes a increase in the planned
investment. Hence, planned aggregate expenditures increase. Consequently, equilib-
rium output rises.

Finally, it can be said that when the price level increases, the output decreases. How-
ever, a decrease in price level causes a rise in output level.

The negative relationship between price level and aggregate output is displayed with
aggregate demand (AD) curve, as seen from Figure 2.3. The money and good market
are in the equilibrium at all the points on the AD curve.

When there is a change in the variables G, T and M s that are assumed as constant at
the beginning of this part, the aggregate demand curve will shift:
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• Change in money supply (M s): When the quantity of money is expanded at
a given price level, M s curve will shift to right and interest rates will fall.
Then, planned investment and relatedly planned aggregate expenditure will rise.
Hence, equilibrium output will increase at the given price level. Namely, in-
creased money supply will shift the AD curve to the right. When the quantity of
money is restricted, the situation is reversed.

• Change in government purchases (G): When the government purchases increase
at a given price level, the planned aggregate will rise and so output will increase.
In other words, an increase in G shifts the AD curve to the right.

• Change in net taxes (T ): A decrease in net taxes at a given price level causes an
increase in the consumptions, which will raise the planned aggregate expenditure
and output. Namely, an decrease in T also shifts the AD curve to the right.

Table 2.1 summarize the situations that shifts AD curve to the right or left.

Table 2.1: The factors shifting AD curve

AD curve shifts to the right AD curve shifts to the left
increase in M s decrease in M s

increase in G decrease in G
decrease in T increase in T

2.3.2 Aggregate Supply

Aggregate supply (AS) is the total supply of goods and services in an economy for
a given period of time. The aggregate supply curve shows the output is supplied by
the economy at different price levels. There is disagreement about the shape of the
AS curve but many says that for a short term period it has a positive slope and for low
output level the curve is nearly flat, while for high level of outputs it is nearly horizontal
as in Figure 2.4a. Because, when the output in the economy is low, the economy and
firms are in the excess capacity. Moreover, there is cyclical unemployment in this
output level. Hence, firms can satisfy the increasing demand without extra costs and
get enough labor force without much increase in wage rates since there are unemployed
people that want to get a job. Namely, the economy can produce more output with little
increase in price level when it is at low output level. However, at a level of output the
economy comes to the full employment point. Then, it cannot produce any further
output and the increasing demand only rises the prices. In other words, the AS curve
becomes vertical.

Any factor that changes the firms decisions shifts the AS curve. Some of them are
displayed at Table 2.2 [8]. Lower costs and wages enable firms to produce more at
same price level. Economic growth is also rises the maximum capacity of the economy.
Moreover, supply-side public policies prompt people to work and entrepreneurship.
Lastly, the better conditions met during production like good weather increases supply.
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Figure 2.4: Aggregate supply curve and the equilibrium price

Hence, all of these factors shiftAS curve to the right while the exact opposite situations
cause left shift.

The equilibrium price in the economy is at the intersection points of AD and AS
curves. P0 and Y0 in Figure 2.4b are the coordinates of the equilibrium point. This
point corresponds to firms price output decisions since it is on theAS curve. Moreover,
at this point the money and good markets are in the equilibrium since it is on the AD
curve.

The AS curve has a positive slope in the short term because a gap occurs when the
prices get higher since the wages are sticky and cannot rise as much as prices. There-
fore, firms produce more output when the price level rises. Although the cost gap
increases the output level for a short-term, many economists agree that in the long
term these gap closes. For example, wages rise if the inflation is stable in the long
period since the costs increase again the output return previous level. For this reason,
the long-term aggregate supply (LAS) curve is vertical as in the Figure 2.5. In the
figure the equilibrium point A removes to point B and so output rises from Y0 to Y1 by
increasing price level from P0 to P1. However, after a while the costs increase such as
wages and supply curve shifts to the left. The new equilibrium point moves to point C.
Hence, the output go back to its previous level but the prices rise.

The output point that the long-term aggregate supply curve corresponds name as potential
output. It is the output level that the economy stand there in the long run without in-
flation.
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Table 2.2: The factors shifting the AS curve

AS curve shifts to the right AS curve shifts to the left
Lower Costs Higher Costs
lower input prices higher input prices
lower wage rates higher wage rates
Economic Growth Stagnation
more capital capital deterioration
more labor
technological change
Public Policy Public Policy
supply-side policies waste and inefficiency
tax cuts over-regulation
deregulations
Good Weather Bad weather

2.3.3 Types of Inflation

According to causes of inflation, two types of it can be mentioned as demand-pull and
cost-push inflation.

2.3.3.1 Demand-Pull Inflation

Inflation ensues from the increasing of demand is called as demand-pull inflation. If
the economy is in the full capacity when the demand increase occurs, these demand rise
only will cause a rise in price levels but the output level will not change. Furthermore,
as mentioned before if the long-term AS curve is vertical, even the economy is not in
full capacity the output level will not increase but only the price level will increase in
the long term.

2.3.3.2 Cost-Push Inflation

The inflation is the result of increases of costs is called as cost-push inflation. When
the costs rise, the AS curve shifts to the left. Then, price level increases and beside
that the output level decrases. Appearence of these two problems together is called
as stagflation. Even though the government intervenes the economy (increase in G or
M s or decrease in T ) the output come to its back level but the prices increase more.
Therefore, the costs shocks are significant problems for policy makers.
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Figure 2.5: Long-run aggregate supply curve (LAS)

2.4 Phillips Curve

The remarkable article of A.W. Phillips that is about the relationship between unem-
ployment and inflation is issued at 1958 and from that time it is one of the most im-
portant source of the macroeconomic studies [35]. Many economists use the Philips
curve concept in order to explain the relationship between demand expansion, infla-
tion, unemployment, wages and prices. In this part, the classical type of Phillips curve
which examines the relation of unemployment with the wage changes and the devel-
oped types adapted to inflation relation in short and long term are presented.

2.4.1 Classical Version of Phillips Curve

According to classical Philips curve there is a negative relationship between wages
and unemployment which is displayed in Figure 2.6a . In the plots of Phillips the
curves that shows the relation between unemployment and the percentage changes in
wages are non-linear and have negative slope. It is explained by Philips (1958) [35]
as follows:

”When the demand for labour is high and there are very few unemployed we should
expect employers to bid wage rates up quite rapidly, each firm and each industry be-
ing continually tempted to offer a little above the prevailing rates to attract the most
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Figure 2.6: Classical version of Phillips curve

suitable labour from other firms and industries. On the other hand it appears that work-
ers are reluctant to offer their services at less than prevailing rates when demand for
labour is low and unemployment is high so that wage rates fall only very slowly. The
relationship between unemployement and the rate of change of wage rates is therefore
likely to be highly non-linear.”

Samuelson and Solow (1960) [40] presented the Phillips curve that is the representer of
the relation between the price-level and unemployment firstly. This relation is seen in
Figure 2.6b. Now, it is the most popular version of the Phillips curve. Because it allows
economic policy makers to formulate policy programs with alternative combinations
of unemployment and inflation rates [16].

2.4.2 Long-term Phillips Curve

The long-term Phillips curve is first posed by Milton Friedman [15]. He agrees with
the classical Philips curve in the short term. He describes the long-term Phillips curve
as vertical line in his study in 1977. He explains the reason of that by giving the
following example:

In the case of an unexpected acceleration in the aggregate nominal demand, the pro-
ducer thinks that this increase is special to his product. Then, he wants to produce more
since he expects that the price of his product will be higher than the future market price.
Hence, he is willing to pay higher nominal wages to attract additional workers. Be-
cause the real wage according to his expectations are lower since he perceives that
price as higher than before. From the view point of workers the situation is different.
A rise in nominal wages is perceived by the workers as a rise in the real wages. How-
ever, when the aggregate nominal demand and prices continue to increase, the initial
effect disappears and is reversed for both producers and workers. They find themselves
locked into inappropriate contracts. Ultimately, the unemployment level goes back to
previous level but the prices do not go back.
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Figure 2.7: Long-run Phillips curve

Figure 2.7 summarizes that in the beginning the market is in the equilibrium at the
point E. When the aggregate demand rises , prices increase and the unemployment
decreases. Namely, the economy moves to point A. However, when the workers and
producers realize that they are mistaken, the unemployment moves to its natural rate
U* at the last price level. In other words, short term Phillips curve shifts to the right
and the equilibrium point moves from point A to B.

In this chapter, in order to give a general information about inflation the measurement
method and the economical structure of it are explained. Now, the hidden Markov
model will be presented in the next chapter since it is the other component of the
major subject of this thesis.
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CHAPTER 3

HIDDEN MARKOV MODEL

In this chapter, firstly the Markov Chain will be introduced since the unobservable part
of the Hidden Markov Model is a Markov chain. After the explanation of Markov
Chain, the structure of Hidden Markov Model will be presented. Then, Expectation
Maximization (EM) algorithm that find the parameters maximizing the likelihood of
the model will be introduced. Lastly, Viterbi Algorithm will be explained in order to
decode the hidden states.

3.1 Markov Chain

Markov chain is a special type of stochastic processes and it is named after the series
of papers about theories of finite state Markov chain starting in 1906 that are published
by Russian mathematician Andrei Andreyevich Markov [30]. Today, it is very useful
to capture the nature of stochastic processes of financial and economic variables. Fur-
thermore, it is in use of solving the problems in physics, chemistry, speech recognition,
internet applications, social sciences, music, genetics and many other fields.

Definition 3.1. (Markov Chain) It is a stochastic process X = {Xt; t = 0, 1, ...} that
provides following property for all t ∈ N and for each j ∈ E where E is a discrete
state space,

Pr{Xt+1 = j|X0 = i0, X1 = i1, ..., Xt = it} = Pr{Xt+1 = j|Xt = it}. (3.1)

Let X(t) denote {X0 = i0, X1 = i1, ..., Xt = it} for convenience, then the Equation
(3.6) becomes as follows:

Pr{Xt+1 = j|X(t)} = Pr{Xt+1 = j|Xt = it} (3.2)

Namely, the next outcome of the system only depends on the current outcome not on
previous ones.

To give an example, assume that there is a game between A and B. Each of them have
five fair and unbiased coins and they toss the coin again and again. If it comes up tails A
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gives B a coin, if heads vice versa. It ends when one of them has no coin. Observe that
if A has 4 coins currently, next time the probability of holding 5 coins is 0.5 regardless
of past outcomes. Hence, future is independent from past given present. Then, it can
be clearly seen that the sequence of heads and tails patterns an i.i.d. stochastic process
and the sequence of total number of coins that A or B hold patterns a Markov chain.
[29]

Definition 3.2. (Transition Probabilities) They are the probabilities pij’s that identify
the probability of moving to state j from current state i.

The Markov chain is called homogenous if the probability of transition from state i
to state j is always constant. The property of being a homogenous Markov chain is
displayed also in the following equation,

Pr(Xt = j|Xt−1 = i) = pij, t = 2, 3, · · ·

That is, one-step transition probabilities do not change as time goes on.

Definition 3.3. (Transition Probability Matrix) It is the square matrix with (i, j) ele-
ment pij and it is essential to observe that its row sums equal to 1:

Γ =

p11 · · · p1m
... . . . ...
pm1 · · · pmm

 (3.3)

where m denotes the number states of the Markov chain.

Also, note that in fact Γ is one-step transition probability matrix and it can be im-
plied by Γ(1). If t-step transition probability matrix is required, Chapman-Kolmogorov
equations imply that it can be calculated by taking the t th power of Γ(1):

Γ(t) = Γ(1)t

Definition 3.4. (Unconditional Probabilities) They are the elements of the row vectors
that are denoted by:

π(t) = (Pr(Xt = 1)...P r(Xt = m)), t ∈ N (3.4)

where Pr(Xt = j) is the probability of being in a given state at a given time t.

π(1) is the initial distribution of Markov chain. It will be denoted as δ in this study.
The distribution at time t + 1 can be find out by multiplying the distribution at time t
by the transition probability matrix Γ:

π(t+ 1) = π(t)Γ (3.5)

The Markov chain is said to have stationary transition probabilities if it is homogenous
and additionally provides following property:
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Γδ = δ and δ1
′
= 1

where δ is a row vector with non negative elements. In order to illustrate the definitions
of transition probability matrix, initial probabilities and unconditional probabilities Ex-
ample 3.1 is represented.

Example 3.1. Consider that there is a town that has had only one market (Market A)
and now another market (Market B) is ready to provide service after today. Then,
define state 0 as a customer trades with old market A and state 1 as a customer trades
with new market B, and the transition probabilities are given by the below table.

It can be seen from the table that the probability of remaining loyal to market A is 1/4
and to market B is 2/3 . Thus, the number of customers of the markets is a two-state
Markov chain with the transition probability matrix Γ:

Γ =

[
1/4 3/4
1/3 2/3

]

day t+1
day Market A Market B

Market A 1/4 3/4
Market B 1/3 2/3

Now, assume that at the beginning there are 240 customers of market A (N0(1) = 240)
and market B has no customer (N1(1) = 0) i.e., the distribution of this day’s customer
is

π(1) = (Pr(X1 = 0) Pr(X1 = 1))

= (1 0)

This distribution is the initial distribution of the Markov chain.

The distribution of next day’s customer and the day after next day and so on, can be
computed as follows:

π(2) = (Pr(X2 = 0) Pr(X2 = 1))

= π(1)Γ

= (1/4 3/4)

N0(2) = p00N0(1) + p10N1(1)

= 60

N1(2) = p01N0(1) + p11N1(1)

= 180

π(3) = (Pr(X3 = 0) Pr(X3 = 1))

= π(2)Γ

= (5/16, 11/16)
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N0(3) = p00N0(2) + p10N1(2)

= 75

N1(3) = p01N0(2) + p11N1(2)

= 165

These distributions represent the unconditional probabilities of states for times 2 and
3.

3.1.1 Estimating Transition Probabilities

In order to estimate transition probabilities EM-Algorithm will be used in this thesis.A
basic way for this aim is represented in this section.

One basic way of estimating transition probabilities is by counting the transitions. To
illustrate this method a modified version of an example from Zucchini and MacDonald
(2009) [45] is used.

Example 3.2. Assume that there is a 4-state Markov chain as follows:

3434313414 1241221113 2134241434 4222332413 2143221331 1344242213 2244422424
2223231312 1224331431 1222433242

Then, the matrix of transition counts as below:

4 5 8 4
6 12 3 10
6 7 4 6
5 8 7 4


To illustrate, observe that the entry of (2,4) is equal to the number of transitions from
state 2 to state 4 that is 10. Now, the transition probabilities can be calculated by
dividing these transition counts by total number of transitions from related state.For
example, Γ(2, 4) = 10/31 since the total number of transitions from 2 is 31. Hence,
the transition probability matrix Γ is

Γ =

4/21 5/21 8/21 4/21
6/31 12/31 3/31 10/31
6/23 7/23 4/23 6/23
5/24 8/24 7/24 4/24

 .

3.2 Hidden Markov Model

Hidden Markov Model is a statistical tool for modeling a stochastic process by associ-
ating them to a hidden (unobservable) process. The hidden process follows a Markov
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Figure 3.1: Dependence structure for a hidden Markov model

Chain and the observed data depends only on current state of the hidden process. This
structure can be expressed as follows:

Pr(Xt|X(t−1)) = Pr(Xt|Xt−1), t = 2, 3, ... (3.6)

Pr(Ot|O(t−1), X(t)) = Pr(Ot|Xt−1), t ∈ N (3.7)

where Ot is the observation and Xt is the state at time t.

It can be clearly seen from this structure that HMM does not have a long memory.

In order to construct HMM’s hidden part the initial probability δ and transition prob-
ability matrix Γ that are explained before are used. However, for constructing the
relation between observations and the hidden states Definition 3.5 is provided.

Definition 3.5. (Emission Probabilities) They are the probabilities of observing a par-
ticular value provided that the system is in one of the hidden states [4].

pi(o) = Pr(Ot = o|Xt = i) (3.8)

m distributions pi’s refer to the state − dependent distributions of the model. In
this study, P (o) will refer to the following diagonal matrix consisting of emission
probabilities of observation o:

P (o) =

p1(o) 0
. . .

0 pm(o)



3.2.1 Distribution of Observations

The distribution of observations Ot is as follows,

Pr(Ot = o) =
m∑
i=1

Pr(Xt = i)Pr(Ot = o|Xt = i).
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or equally, it can be represented as,

Pr(Ot = o) =
m∑
i=1

πi(t)pi(o)

where πi(t) = Pr(Xt = i).

Then, it can be rewritten in the matrix form:

Pr(Ot = o) = (π1(t)...πm(t))

p1(o) 0
. . .

0 pm(o)

1
...
1


= π(t)P (o)1′.

(3.9)

Lastly, the distribution takes its final form by substituting π(1)Γt−1 or equally δΓt−1
for π(t) by the help of Equation 3.5 and representing the diagonal matrix with P(o),

Pr(Ot = o) = δΓt−1P (o)1′. (3.10)

For higher-order marginal distributions, for example for bivariate and trivariate distri-
butions the equation can be extended to,

Pr(Ot = v,Ot+k = w) = π(t)P (v)ΓkP (w)1′, (3.11)

Pr(Ot = v,Ot+k = w,Ot+k+l = z) = π(t)P (v)ΓkP (w)ΓlP (z)1′ (3.12)

respectively.

3.2.2 The likelihood

The likelihood of a HMM is the probability of observing the sequenceO = o1, o2, ..., oT
with respect to the parameters of the model,i.e.,

Lt = Pr(O(T ) = o(T ))

=
m∑

x1,...,xT=1

Pr(O(T ) = o(T ), X(T ) = x(T ))

Now, note that the joint distribution of random variables is as follows:

Pr(Z1, Z2, ..., Zn) =
n∏
i=1

Pr(Zi|parents(Zi)) (3.13)

where parents of random variable Zi is a minimal set of predecessors of Zi in the total
ordering such that the other predecessors of Zi are conditionally independent of Zi
given parents(Zi) [36].
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Then, by Equation 3.13 the likelihood is

LT = Pr(O(T ), X(T ))

= Pr(X1)
T∏
k=2

Pr(Xk|Xk−1)
T∏
k=1

Pr(Ok|Xk)
(3.14)

LT =
m∑

x1,...,xT=1

(δx1γx1,x2γx2,x3 ...γxT−1,xT )(px1(o1)px2(o2)...pxT (oT ))

=
m∑

x1,...,xT=1

δx1px1(o1)γx1,x2px2(o2)γx2,x3 ...γxT−1,xT )...pxT (oT )

Hence, the final form of the likelihood is as follows:

LT = δP (o1)ΓP (o2)ΓP (o3)...ΓP (oT )1′. (3.15)

In order to ease the understanding of computation of HMM’s likelihood example 3.3
is given.

Example 3.3. Assume that there is a class and the teacher of mathematics sets a game
in his mind. He thinks that hidden states of students are to understand (U) and not
to understand (N) the subject at that moment. Additionally, the observation symbols
are looking at the teacher (L) and writing on notebook (W). He also sets the initial
distribution, transition and emission matrix as follows,

δ = (δU δN) =
(
0.95 0.05

)
Transition Matrix Emission Matrix

U N U N
U 0.7 0.3 L 0.6 0.9
N 0.4 0.6 W 0.4 0.1

Notice that,

P (o1) = P (L) =

(
p1(L) 0

0 p2(L)

)
=

(
0.6 0
0 0.9

)
Similarly,

P (o2) = P (W ) =

(
0.4 0
0 0.1

)
and, P (o3) = P (L), P (o4) = P (L), P (o5) = P (W )

Additionally, ΓP (L) =

(
0.42 0.27
0.24 0.54

)
, ΓP (W ) =

(
0.28 0.03
0.16 0.06

)
Then, he observes a particular student per minutes along 5-minute and gets the obser-
vation sequence L,W,L,L,W. By computing the probability of observing that sequence
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according to his model ,which is actually an HMM, he comes to the likelihood of the
model,

LT = δP (L)ΓP (W )ΓP (L)ΓP (L)ΓP (W )1′

=
(
0.95 0.05

)(0.6 0
0 0.9

)(
0.28 0.03
0.16 0.06

)(
0.42 0.27
0.24 0.54

)(
0.42 0.27
0.24 0.54

)(
0.28 0.03
0.16 0.06

)
1′

= 0.025

3.3 HMM Parameter Estimation

A commonly used method to estimate parameters of HMM is EM algorithm, which
stands for expectation maximization. It is also known as Baum-Welch algorithm. This
algorithm is rather suitable for the data that have missing parts like HMM’s hidden
states. Moreover, it enables to estimate parameters of models with not stationary but
homogenous Markov chains. The key idea here is to start with an initial distribution
and by iterating getting new distributions. At each step the distribution is better or the
same. However, this does not mean that the algorithm produces the best distribution
since it can reach the local maximum.

In order to apply this estimation method we need the backward and forward proba-
bilities. Hence, forward and backward probabilities are clarified firstly. Then, EM
estimation is explained.

3.3.1 Forward and Backward Probabilities

The forward-backward algorithm is used to find the probability Pr(Xt = k|O(t)) of
being in a specific state k at a particular time t for a given sequence of observations.

3.3.1.1 Forward Probabilities

Forward probabilities are defined as the elements of the vector αt displayed in the
equation (3.16).

αt = δP (o1)ΓP (o2)ΓP (o3)...ΓP (ot) (3.16)

Now, remember the likelihood function of HMM at equation (3.15). Then, the likeli-
hood formula is,

LT = αT1′.

Additionally, note that it can be deduced from the definition of forward probabilities
that αt = αt−1ΓP (ot) for t = 1, ..., T

Moreover, forward probabilities also refer to the probabilities of producing O(t) while
ending up in state j:
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For t=1,2,...,T and j=1,2,...,m

αt(j) = Pr(O(t) = o(t), Xt = j) (3.17)

3.3.1.2 Backward Probabilities

Backward probability also affects Pr(Xt = k|O(t)) as well as forward probability and
is defined by

β′t = ΓP (ot+1)ΓP (ot+2)...ΓP (oT )1′ (3.18)

for t = 1, ..., T From this definition, it can be concluded that β′t = ΓP (ot+1)β
′
t+1 for

t = 1, ..., T − 1.

It is also equal to the probability of producing the observations ot+1, ..., oT given that
the system is at state i at time t.

For t=1,2,...,T-1 and i=1,2,...,m,

βt(i) = Pr(Ot+1 = ot+1, Ot+2 = ot+2, ..., OT = oT |XT = i) (3.19)

For convenience, the vector (Ok, Ok+1, ..., Ol) is denoted by Ol
k, then the equation

(3.19) becomes as follows:

βt(i) = Pr(OT
t+1 = oTt+1|XT = i) (3.20)

Observe that backward probabilities are conditional probabilities while the forwards
are the joint ones.

Moreover, note that since there is no observation after time T, βT can be regarded as the
probability of observing a empty set given the system is at ith state at time T. Hence,
βT (i) = 1.

3.3.1.3 Inferences of Forward and Backward Probabilities

Let’s multiply the two types of probabilities for state i:

αt(i)βt(i) = Pr(O
(t)
1 , xT = i)Pr(O

(T )
t+1|Xt = i)

= Pr(Xt = i)Pr(Ot
1|Xt = i)Pr(OT

t+1|Xt = i)

Then, by using the conditional independence of Ot
1 and OT

t+1 given Xt, the equation is
evaluated as follows:

αt(i)βt(i) = Pr(Xt = i)Pr(Ot
1, O

T
t+1|Xt = i).

Equally, it can be rewritten as,

αt(i)βt(i) = Pr(O(T ), Xt = i) (3.21)
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By summation of equation (3.21), we get the following inference also,

αtβ
′
t = Pr(O(T ) = o(t))

= LT
(3.22)

The other inferences essential for applying EM algorithm are as follows

Pr(Xt = j|O(T ) = o(t)) =
αt(j)βt(j)

LT
(3.23)

Pr(Xt−1 = j,Xt = k|O(T ) = o(t)) =
αt−1(j)γjkpk(ot)βt(k)

LT
(3.24)

Now, an example will be given in order to make the computations of forward and
backward probabilities more clear.

Example 3.4. The forward and backward probabilities of Example 3.3 are computed
in this example. Forward probabilities are as follows,

α1 = δP (o1) =
(
0.57 0.045

)
α2 = α1ΓP (o2) =

(
0.167 0.020

)
α3 = α2ΓP (o3) =

(
0.075 0.056

)
α4 = α3ΓP (o4) =

(
0.045 0.050

)
α5 = α4ΓP (o5) =

(
0.021 0.004

)
and, the backward ones are,

β′5 =

(
1
1

)
β′4 = ΓP (o5)1

′ =

(
0.31
0.22

)
β′3 = ΓP (o4)β4 =

(
0.190
0.193

)
β′2 = ΓP (o3)β3 =

(
0.132
0.150

)
β′1 = ΓP (o2)β2 =

(
0.041
0.030

)
Now, observe that

α1β
′
1 = α2β

′
2 = ... = α5β

′
5 = 0.025 = LT .

It is clearly seen that this result supports the inference in the equation (3.22).
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3.3.2 The EM Algorithm

The EM algorithm is an iterative method that is used to find the maximum-likelihood
estimation of the parameters of an underlying distribution from a given data set when
the data is incomplete or has missing values [5]. The logic of the algorithm is after
giving initial values to parameters, applying two main steps of the model repeatedly.
In the first step, which is the expectation (E) step, for given observations and current
estimation of parameters the conditional expectations of missing data are computed.
In fact, in this step the likelihood of the complete data that already includes condi-
tional expectations of hidden data is computed for convenience. The following step
is maximization (M) step and in this step the log-likelihood of the complete data is
maximized. Then, the parameters that are found at maximization step is used at the
next expectation step and this iteration method is repeated until the convergence. In
the case of HMM, by identifying u and v as follows,

uj(t) = 1 if and only if ct = j, for t=1,...,T and

vjk(t) = 1 if and only if ct−1 = j and ct = k for t=2,...,T.

the log-likelihood of the complete data that consists of the observed and missing ones

log(Pr(o(T ), x(T ))) = log(δx1

T∏
t=2

γxt−1,xt

T∏
t=1

pxt(ot))

= logδx1 +
T∑
t=2

logγxt−1,xt +
T∑
t=1

logpxt(ot)

can be rewritten as,

log(Pr(o(T ), x(T ))) =
m∑
j=1

uj(1)logδj+
m∑
j=1

m∑
k=1

(
T∑
t=2

vjk(t))logγjk+
m∑
j=1

T∑
t=1

uj(t)logpj(ot)

(3.25)

In the expectation step instead of vjk(t) and uj(t) use the conditional expectations of
being in a state at a particular time given the observations:

ûj(t) = Pr(Xt = j|o(T ))

=
αt(j)βt(j)

LT

(3.26)

v̂jk(t) = Pr(Xt−1 = j,Xt = k|o(T ))

=
αt−1(j)γjkpk(ot)βt(k)

LT

(3.27)

Then, in the maximization step maximize the complete data likelihood by maximizing
each term of equation (3.25) and observe that the first term depends only on initial
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distribution δ. Here, the second term depends on transition probability matrix Γ and
the third term depends on the parameters of state dependent distributions.

Namely, maximize the following components of the complete data log-likelihood,

1.
∑m

j=1 ûj(1)logδj with respect to δ,

2.
∑m

j=1

∑m
k=1(

∑T
t=2 v̂jk(t))logγjk with respect to Γ,

3.
∑m

j=1

∑T
t=1 ûj(t)logpj(ot) with respect to state-dependent parameters.

The maximizing values of relevant parameters as follows,

1. δj =
ûj(1)∑m
j=1 ûj(1)

= ûj(1)

2. γjk =
∑T

t=2 v̂jk(t)∑m
k=1

∑T
t=2 v̂jk(t)

3. Since the third term is on state-dependent distributions, this part varies by the
type of the distribution. For give some examples, the maximizing values of this
term for Poisson-HMM are,

λ̂j =

∑T
t=1 ûj(t)ot∑T
t=1 ûj(t)

and for Normal-HMM are,

µ̂j =

∑T
t=1 ûj(t)ot∑T
t=1 ûj(t)

σ̂2
j =

∑T
t=1 ûj(t)(ot − µj)2∑T

t=1 ûj(t)

3.4 Conditional Distributions

In this section, the conditional distribution of the observation at a particular time t given
observations at all other times is computed. The notationO(−t) is used at computations
for convenience as,

O(−t) ≡ (O1, ..., Ot−1, Ot+1, ..., OT )

The conditional distribution is the ratio of the likelihood of the observations with o
instead of ot and the likelihood of observations except for the observation ot that is
treated as missing [45]:

Pr(Ot = o|O(−t) = o(−t)) =
Pr(Ot = ot, O

(−t) = o(−t))

Pr(O(−t) = o(−t))
(3.28)
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=
δP (o1)ΓP (o2)...ΓP (ot−1)ΓP (o)ΓP (ot+1)...ΓP (oT )1′

δP (o1)ΓP (o2)...ΓP (ot−1)ΓΓP (ot+1)...ΓP (oT )1′

=
αt−1ΓP (o)β′t
αt−1Γβ′t

Moreover, equation (3.28) can be written as the the mixture of the m state-dependent
distributions,

Pr(Ot = o|O(−t) = o(−t)) =
m∑
i=1

fi(t)∑m
j=1 fj(t)

pi(o) (3.29)

where fi(t) is the product of the ith entry of the vector αt−1Γ and the ith entry of the
vector βt .

3.5 Forecast Distributions

Forecast distributions of HMM, which is another type of conditional distributions, are
illustrated in this chapter. For this purpose the conditional distribution of Ot+h given
observations OT where h is the forecast horizon is computed as follows,

Pr(OT+h = o|O(T ) = o(T )) =
Pr(O(T ) = o(T ), OT+h = o)

Pr(O(T ) = o(T )

=
δP (o1)ΓP (o2)ΓP (o3)...ΓP (oT )ΓhP (o)1′

δP (o1)ΓP (o2)ΓP (o3)...ΓP (oT )1′

=
αTΓhP (o)1′

αT1′

= ρTΓhP (o)1′

where ρT = αT/αT1′. Similar to conditional distributions, forecast distributions can
also be written in the mixed form of state-dependent probability distributions,

Pr(OT+h = o|O(T ) = o(T )) =
m∑
i=1

τi(h)pi(o) (3.30)

where τi(h) is the ith entry of the vector ρTΓ(h).

3.6 Decoding

In this chapter, two types of decoding method is examined. First one is local decoding
which determines the most likely state at time t and the second one is global decoding
which determines the sequence of most likely states.
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3.6.1 State Probabilities and Local Decoding

The conditional distribution of state Xt given observations O(T ) can be evaluated as

Pr(Xt = i|O(T ) = o(T )) =
Pr(Xt = i, O(T ) = o(T ))

Pr(O(T )) = o(T ))

=
αt(i)βt(i)

LT
.

(3.31)

The most likely state at time t is the state that maximize the conditional distribution of
states given observations and it is represented in the following equation:

i∗ = argmax
i=1,...,m

Pr(Xt = i|O(T ) = o(T ))

= argmax
i=1,...,m

αt(i)βt(i)

LT
.

(3.32)

3.6.2 Global Decoding and Viterbi Algorithm

Although the results of global decoding is very similar to local decoding, they are not
identical. Global decoding has more common usage then local decoding. It does not
deal with estimating most likely state for each separate time but estimates the most
likely sequence of states. Namely, global decoding search for the state sequence that
maximizes the conditional probability

Pr(X(T ) = x(T )|O(T ) = o(T )). (3.33)

Equivalently, the joint probability

Pr(X(T ), O(T ))

Pr(O(T ) = o(T ))
= δx1

T∏
t=2

γxt−1,xt

T∏
t=1

pxt(ot) (3.34)

can be used in order to determine the most likely sequence of HMM.

Recognize that there are mT possible sequences of (x1, x2, ..., xT ). Therefore, mT

function evaluations will be needed if the equation (3.33) is used in order to find the
most likely state sequence. Hence, the decoding will not be feasible for large T . There-
fore, a dynamic programming algorithm is needed for global decoding. Viterbi algo-
rithm is used for that purpose as a dynamic programming algorithm. It can be applied
to both stationary or not stationary underlying Markov chains.

The Viterbi Algorithm was developed to solve the decoding of convolutional codes by
Andrew J. Viterbi in 1967 [44]. Then, Omura showed that it can be interpreted as
a dynamic programming algorithm [34].Moreover, Omura and Forney [34] , [18]
showed that the Viterbi algorithm is a maximum likelihood decoder [39].
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In order to use the Viterbi algorithm in HMM, the following terms are defined firstly,

ϕ1i = Pr(X1 = i, O1 = o1)

= δipi(o1)
(3.35)

and,
ϕti = max

x1,x2,...,xt−1

Pr(X(t−1) = x(t−1), Xt = i, O(T ) = o(T )) (3.36)

for t = 2, 3, ..., T .

The relation between successive ϕ ’s can be shown by following equation,

ϕtj = (max
i

(ϕt−1,iγij))pj(ot) (3.37)

for t = 2, 3, ..., T and i = 1, 2, ...,m.

Then the most likely state sequence is estimated by

iT = argmax
i=1,...,m

ϕT i (3.38)

and,
it = argmax

i=1,...,m
(ϕtiγi,it+1). (3.39)

The following example illustrates the usage of Viterbi algorithm for global decoding.

Example 3.5. Assume that there are two coins with the property that one of them is
fair and the other one is biased. 5 times a randomly chosen coin was tossed and all of
them appear to be head (H). Moreover, the following information about the process is
provided.

The initial distribution is
δ =

(
0.5 0.5

)
and, if it is assumed that choosing biased coin is state 1 while choosing fair one is state
2, the transition probability matrix is

γij =

(
0.4 0.6
0.3 0.7

)
Lastly, the emission probabilities are as follows:

pF (H) = pF (T ) = 0.5, pB(H) = 0.8, pB(T ) = 0.2

Namely, the probability of coming head or tail is equal and it is 0.5 if the coin is fair.
However, if the coin is biased, the probability of coming head is 0.8 while coming tail
is 0.2.

The following table computes the multiplier of equation (3.37) only for observation H,
since all of the observations are H in this example.
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Table 3.1: Multipliers used for passing successive ϕ

i γij pj(ot) γijpj(ot)
B → 0.4 0.8 0.32
↘ 0.6 0.5 0.30

F ↗ 0.3 0.8 0.24
→ 0.7 0.5 0.35

Then, the ϕ ’s can be computed as follows,

ϕ1i = δipi(o1) =

{
ϕ11 = δ1p1(H) = 0.5× 0.8 = 0.40
ϕ12 = δ2p2(H) = 0.5× 0.5 = 0.25

ϕ21 = max
x1

(ϕ1iγi1)p1(o2) = max

{
ϕ11γ11p1(H) = 0.40× 0.32 = 0.128
ϕ12γ21p2(H) = 0.25× 0.24 = 0.06

= 0.128

ϕ22 = max
x1

(ϕ1iγi2)p2(o2) = max

{
ϕ11γ21p1(H) = 0.40× 0.30 = 0.12
ϕ12γ22p2(H) = 0.25× 0.35 = 0.087

= 0.12

Similarly,

ϕ31 = max

{
0.128× 0.32 = 0.041
0.12× 0.24 = 0.029

= 0.041

ϕ32 = max

{
0.128× 0.30 = 0.038
0.12× 0.35 = 0.042

= 0.042

ϕ41 = max

{
0.041× 0.32 = 0.0131
0.042× 0.24 = 0.0101

= 0.0131

ϕ42 = max

{
0.041× 0.30 = 0.0123
0.042× 0.35 = 0.0147

= 0.0147

ϕ51 = max

{
0.0131× 0.32 = 0.0042
0.0147× 0.24 = 0.0035

= 0.0042

ϕ52 = max

{
0.0131× 0.30 = 0.0039
0.0147× 0.35 = 0.0051

= 0.0051

The summary of the equations is in the table
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Table 3.2: ϕ’s with respect to time t

H H H H H
B 0.40 → 0.128 → 0.041 → 0.131 → 0.0042
F 0.25 ↘ 0.12 → 0.042 → 0.0147 → 0.0051

In order to find the best state sequence, the most likely state for time T = 5 is de-
termined as state F since ϕ52 is higher than ϕ51, then the most likely state for time
T − 1 = 4 is found by searching for the producer of the predetermined state F of
T which is state F again. When this process is applied backwardly, the most likely
sequence will be (B,F,F,F,F).

3.7 State Prediction

The conditional distributions of state Xt given observations o(T ) for time t 6 T are
mentioned before. Now, the conditional probabilities of state Xt for t > T will be
determined in order to perform state prediction. Remember that h is the time horizon,
i.e., h = t− T . Then,

Pr(XT+h = i|O(T ) = o(T )) =
αTΓh(, i)

LT
(3.40)

where Γh(, i) is the ith column of the Γh matrix.

3.8 Model Selection

The fit of the model is better if the state numberm is higher but it requires high number
of parameters. However, parsinomy theory suggest as to work with less parameters.
Box and Jenkins explains this subject in their study published in 1970 [6] as follows:
”We have seen that the mathematical models we need to employ contain certain con-
stants or parameters whose values must be estimated from the data. It is important,
in practice, that we employ the smallest possible number of parameters for adequate
representations. The central role played by this principle of parsimony in the use of
parameters will become clearer as we proceed.

In order to decide the number of the states m of the model a criterion that consider the
advantages and disadvantages of higher m is needed. In this part, firstly the AIC and
BIC are introduced in order to choose a more convenient model and then, the pseudo-
residuals are described in order to check whether the selected model is adequate.
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3.8.1 Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC)

AIC is a function of the likelihood and the number of parameters of the model. It has a
negative relationship with the likelihood of the model and a positive relationship with
the number of parameters. Therefore, the model with lower AIC value is better one to
choose. The equation of AIC is,

AIC = −2logL+ 2p

The first term decreases with the increase in m. However, the second term, which is a
penalty term, increases with the increase of m.

BIC is also a function of the likelihood and the number of parameters of the model. It
is similar to AIC but the penalty term of BIC is different from AIC. The formulation
of it,

BIC = −2logL+ plogT

where T is the observation number of the model. It can be clearly seen from the
equation that when T > e2 ,which is the case in most applications, the BIC gives more
weight to penalty term. Hence, BIC often selects the models with fewer parameters
than does AIC.

3.8.2 Model Checking with Pseudo-residuals

The AIC and BIC choose the best model but this does not mean that it is an adequate
model. For this reason, the pseudo-residuals are used to check the general goodness of
fit of the selected model and to identify outliers relative to the model.

Before presenting uniform pseudo-residuals firstly notice that ifX is a random variable
with continuous function F , F (X) is uniformly distributed on the unit interval. Under
the fitting model, the probability of observing a value below the observation ot is called
as uniform pseudo-residual of the observation ot from a continuous random variable
Ot. If the uniform pseudo-residual is denoted as ut, the equation of it will be as follows,

ut = Pr(Ot ≤ ot)

= FOt(xt)

If the model is correct, ut distributed as uniformly and extreme values are close to 0
or 1. However, this closeness is not a net definition and so uniform pseudo-residuals
are not good at identifying outliers. The normal pseudo-residuals are used in order to
overcome this problem.

Before introducing normal pseudo-residuals note that Z ≡ Φ−1(F (X)) is distributed
standard normal where Φ is the distribution function standard normal and X is a ran-
dom variable with distribution function F . Now, the (normal pseudo-residuals) can be
described as follows,

zt = Φ−1(ut)

= Φ−1(FOt(ot))
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When the normal pseudo-residuals are adapted to continuous normal HMMs, it will
be,

zt = Φ−1(Pr(Ot ≤ ot|O(−t) = o(−t)))

Normal pseudo-residuals are distributed standard normal if the the related model is
adequate.
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CHAPTER 4

APPLICATION OF HMM TO THE INFLATION DATA OF
TURKEY

In this chapter, the methods that are explained in Chapter 3 are applied to inflation
data of Turkey between 2004 and 2012. Then, the model is tested on the data of 2013-
2014. When the method is applied, the R codes in appendix A that are adapted to
normal-HMM are used.

4.1 Description of Data

The targeting inflation policy that started in 2001 changed the structure of inflation in
Turkey in one or two year. In order not to deal with extreme changes that preexisting
in the inflation history of Turkey, analyzing the new period of inflation is preferred in
this thesis. Hence, the Hidden Markov Model is applied to the inflation data of Turkey
between 2004 and 2014 that is represented in Figure 4.1.

The data is retrieved from the database of the Central Bank of the Republic of Turkey
(CBRT). Inflation rates are monthly and they are percentage changes that are obtained
by comparing the price level of the current month to the same month of the previous
year. The mentioned price levels are calculated by Laspeyres index and the base year
of them is 2003.

The descriptive statistics of the inflation rates between 2004 and 2012 are displayed
in Table ??. Moreover, histogram, QQ-plot and test of normality results of them rep-
resented in the Figure 4.3, Figure 4.4 and Table 4.1 respectively. It seems from the
QQ-plot that the data is normally distributed. Even so according to the Shapiro-Wilk
results in Table 4.1 the data is normally distributed since the sigma value is bigger then
5%

A part of the dataset belonging to 2002-2012 horizon is used as training set, the model
is build on this time horizon. The other part, i.e. 2013-2014 interval, is used as the test
set.
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Figure 4.1: Inflation rates of Turkey between 2004-2014

 

Descriptives 

 Statistic Std. Error 

inflation Mean 8.4272 .17403 

95% Confidence Interval for 

Mean 

Lower Bound 8.0822  

Upper Bound 8.7722  

5% Trimmed Mean 8.4625  

Median 8.4000  

Variance 3.271  

Std. Deviation 1.80861  

Minimum 3.99  

Maximum 12.06  

Range 8.07  

Interquartile Range 2.39  

Skewness -.335 .233 

Kurtosis -.282 .461 

 
 

Figure 4.2: Histogram of inflation rates between 2004-2014
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4.2 Steps in Normal-HMM

The steps that are followed while modeling, analyzing and forecasting the inflation
rates are itemized as follows:

• Checking normality of data

• Choosing initial parameters (Γ, µ, σ, δ)

• Applying EM Algorithm to estimate parameters

• Choosing most suitable model

• Estimating the most likely states

• Making prediction about the future states

• Estimating forecasting distributions and forecasting values

• Calculating the conditional distributions of observations

• Checking the model by using normal pseudo-residuals

Histogram of inflation
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Figure 4.3: Histogram of inflation rates between 2004-2014

Table 4.1: Normality test results of inflation rates for years 2004-2014

Kolmogorov-Smirnova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

inflation 0.055 132 0.200 0.988 132 0.299
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Figure 4.4: QQ-plot of inflation rates between 2004-2014

4.3 Analyses

The normality of data is examined in the beginning of this chapter and it is concluded
that our data is normally distributed. Hence, the mean mu and standard deviation σ
vectors will be needed besides the parameters transition probability matrix Γ and ini-
tial distribution δ of the HMM. EM algorithm is the starting point of the analysis of
this thesis. Firstly, EM algorithm is applied to the 2004-2012 inflation data of Turkey.
Because of convergency constraints,the choice of initial values are tested for different
values and the optimal selection is derived from the data set. The initial means are
selected around the mean of original data and the initial trasformation matrix is con-
structed by giving the biggest probabilities to the transitions from a state to the same
state. Moreover, it can be beneficial to remember that the EM algorithm can produce
results for local maximums. In order to deal with this problem also several initial val-
ues were tried and the ones that gives the minimal negative log-likelihood accepted as
the actual initial values. The initial parameters of 3-state HMM and 4-state HMM that
are obtained after several trying as follows respectively:

Γ =

0.93 0.05 0.02
0.01 0.94 0.05
0.02 0.06 0.92


µ =

(
5 8 11

)
σ =

(
0.6 0.8 1.1

)
δ =

(
0.95 0.025 0.025

)
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Γ =

0.92 0.05 0.02 0.01
0.01 0.87 0.07 0.05
0.02 0.05 0.92 0.01
0.01 0.05 0.07 0.87


µ =

(
4 5 10 11

)
σ =

(
0.10 0.64 0.68 0.70

)
δ =

(
0.95 0.025 0.020 0.005

)
The initial parameters of 3-state HMM and 4-state HMM are represented only because
it will be seen that they are the most suitable HMMs for our data.

These parameters are used to start the EM-algorithm with expectation step. In this
step the forward and backward probabilities are computed by the initial parameters.
Then, the conditional expectations of states are computed by using the forward and
backward probabilities. The complete data log-likelihood is estimated at the last of
the first estimation step. After that the complete data is maximized in maximization
step. The maximizing values are used again in the estimation step and the same pro-
cesses are repeated. This loop continues until to convergence. Now, it is essential
to indicate that the tolerance for the convergence is accepted as 10−6 in this study.
Consequently, mean and standard deviation vectors of states,transition probability ma-
trix, initial distribution, negative log-likelihood, AIC and BIC values of the model are
obtained. Remember that the formulas of AIC and BIC as follows:

AIC = −2logL+ 2p

BIC = −2logL+ plogT

where the p is the number of parameters. Since the Normal-HMMs are used in this
study, the number of parameters of Normal-HMMs computed by using the following
equation:

p = m2 + 2m− 1.

These parameters’ m − 1 is coming from delta, m is from mean, m is from sigma,

Table 4.2: Comparison of several Normal-HMMs by means of AIC and BIC.

no.of states p (-)log L AIC BIC
2 7 187.21 388.42 407.2
3 14 158.46 344.93 382.48
4 23 152.06 350.13 411.82
5 34 142.11 352.23 443.42
6 47 132.46 358.91 484.97

m2 −m is from the transition probability matrix.

Table 4.2 displays the number of parameters, negative log-likelihood, AIC and BIC of
normal-HMMs with several different state numbers. Since HMMs with more states fit
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Figure 4.5: Autocorrelation functions in two, three, four-state HMMs.

better the data, negative log-likelihood is getting smaller while the number of states
getting higher. However, both AIC and BIC has the smallest value for the three state
HMM. Hence, three state HMM is the most appropriate one for modelling Turkey
inflation data. 5 and 6 state HMMs are not preferable unsuprisingly since 34 and 47
number of parameters are excessive for only 108 observations.

The auto-correlation functions of different HMMs also can be used in order to choose
the most appropriate model. In Figure 4.5 ACFs of the inflation data, two-state, three-
state and four-state model are represented, respectively. By the help of this figure and
Table 4.3, it can be clearly seen that three and four state HMMs correspond well to the
inflation data.

Table 4.3: Autocorrelations of inflation rates and two, three, four-state HMMs.

k 1 2 3 4 5 6 7 8
observations 0.86 0.70 0.52 0.33 0.19 0.06 -0.07 -0.20
2-state HMM 0.83 0.66 0.54 0.42 0.30 0.18 0.06 -0.06
3-state HMM 0.85 0.66 0.49 0.33 0.20 0.07 -0.06 -0.20
4-state HMM 0.86 0.68 0.50 0.36 0.23 0.10 -0.04 -0.19

After that point, 3-state and 4-state models are used. Because of that only their esti-
mated mean vectors, standard deviation vectors and the transition probability matrices
that are the results of EM-algorithm are displayed as follows:
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Figure 4.6: State probabilities for three-state HMM.

• 3-state model:

Γ =

0.90 0.10 0
0.06 0.86 0.08

0 0.16 0.84


µ =

(
5.70 8.27 10.40

)
σ =

(
0.88 0.69 0.74

)
δ =

(
0 0 1

)
• 4-state model:

Γ =

0.66 0.34 0 0
0.06 0.82 0.12 0

0 0.06 0.86 0.08
0 0 0.16 0.84


µ =

(
4.14 5.94 8.27 10.39

)
σ =

(
0.11 0.64 0.68 0.74

)
δ =

(
0 0 0 1

)
Now, the most suitable states will be determined but before that the state probabilities
will be estimated since they are essential for local decoding method. Because in local
decoding method the most likely states will be determined by choosing the states with
biggest probabilities for each time point separately.

Hence, the state probabilities are determined by using the equation (3.31) and the re-
sults for 3-state HMM are displayed in Figure 4.6.
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Figure 4.7: Local decoding for three and four state HMM.

For three and four state HMM the results of local decoding are displayed in Figure 4.7.
The horizontal lines that indicate state dependent means are drawn on related inflation
data of Turkey. In order to illustrate the relation between state probabilities and the
local decoding, observe that in the case of 3-state HMM the states with highest prob-
abilities are 3,3,2,2 and 2 for first five time points and the local decoding selects these
states as the most likely states for the related time points. The other remarkable point
that as seen from the figure that 4-state fits the data better. However, as mentioned
before more parameters can cause a less adequate model, three state model is selected
in analyses.

Similarly, Figure 4.8 displays global decoding results of three and four state HMMs.
This most likely state sequence is achieved by the Viterbi Algorithm. Although it is
mentioned in Chapter 3.6.2 that results of local and global decoding do not have to be
similar, in this study they are same accidentally.

In order to see the success of predicted states in the case of 3-state HMM, the inflation
rate values are simulated according to these states by using their mean and standard
deviation values. The simulation is done by the Excel with the following formula,

IF(”state”=1,NORMINV(RAND(),”mean(1)”,”sd(1)”),

IF(”state”=2,NORMINV(RAND(),”mean(2)”,”sd(2)”),

NORMINV(RAND(),”mean(3)”,”sd(3)”)))

wheremean(i) and sd(i) means the mean and standard deviation of ith state,respectively.
The terms that are in the quotes should be replaced by the cells of these terms. They
are stated in quotation marks in order to give a general definition.

The formulation produces a random number for the probability and for the given values
of mean and standard deviation it gives the inverse of cumulative normal distribution
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Figure 4.8: Global decoding for three and four state HMM.

function. The results of application of it to the inflation data in Figure 4.9.

It can be seen from the Figure 4.9 that the simulation values are very close to the
original inflation rates. Mean error (ME), root mean square error (RMSE), mean ab-
solute error (MAE), mean percentage error (MPE) and mean absolute percentage error
(MAPE) of the simulation is displayed in Table 4.4 in order to observe the accuracy.

Table 4.4: Accuracy of simulation

ME RMSE MAE MPE MAPE
-0.360 1.038 0.829 -6.495 12.172

Table 4.5 gives the state predictions that are the probabilities of being in a given state
in specified year for three state HMM. These prediction probabilities are achieved by
using equation (3.31).

It can be deduced from the Table 4.5 that there is a prediction of a positive trend in the
future inflation rates. Because the probabilities of 2 and 3 states, which have higher
means than state 1, increase when the probability of state 1 decrease.

Table 4.5: State prediction with using a three-state normal HMM.

state Jan-13 Feb-13 May-13 Oct-13 Apr-14 Dec-14
1 0.89 0.81 0.63 0.46 0.37 0.31
2 0.11 0.18 0.32 0.41 0.45 0.47
3 0 0.01 0.05 0.13 0.19 0.22

The forecast distributions of six time points including the limiting distribution are rep-
resented in Figure 4.10. Firstly, distributions are computed for continuous data. How-
ever, in order to work with R the interval between successive numbers are divided into
10 parts and distribution of each integer is recomputed by averaging the distributions of
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following parts till the next integer. Observe that, the forecast distribution approaches
to its limiting distribution.

Then, means which are displayed in Table 4.6 are calculated for these six time points.

Table 4.6: Forecasts of inflation rates with respect to three-state Normal-HMM.

date Jan-13 Feb-13 May-13 Oct-13 Apr-14 Dec-14
horizon 1 2 5 10 16 24
mean 6.43 6.66 7.22 7.81 8.17 8.38

The means are accepted as the forecasting values in this study. These forecasting re-
sults for all months in 2013-2014 interval are displayed in Figure 4.11. The fluctuating
line shows the original inflation rates of Turkey between 2004 and 2014, the dashed
line represents the forecasting results and the bold area is the 95 % confidence inter-
val. It can be clearly seen from the figure that the forecast rates are in the confidence
interval.

The accuracy of the forecasting is displayed in the Table 4.7:

Table 4.7: Accuracy of forecasting

ME RMSE MAE MPE MAPE
-0.385 0.784 0.679 -4.866 8.761

In Figure 4.12 the conditional distributions of observations for some randomly selected
years are presented. The points on the distribution curves are the conditional proba-
bility of real observation of relative year. Observe that each distribution curve has
different shape. Moreover, it is obvious that probabilities of some observations are ex-
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Figure 4.12: Conditional distribution of 3-state HMM for randomly selected years.
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treme relative to their distributions. This observation gives the opinion that conditional
distributions can be used for outlier checking.
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Figure 4.13: Normal pseudo-residuals plot

By looking at conditional distribution, the pseudo-residual is used for checking the
suitability of the HMM for our data and the results are displayed in Figure 4.13. The
columns 1,2 and 3 are relate to 1,2,3 state HMMs, respectively. The top row shows
the values of normal pseudo-residuals. Moreover, the second row displays the QQ-
plot of pseudo-residuals. When the QQ-plots are taken as a reference, it can be said
that the normal pseudo residuals are distributed normally for all of 1,2,3 state HMMs.
However, Shapiro-Wilk test is applied to the normal pseudo-residuals and it also give
the same result since the p-values are bigger than 0.05. Lastly, the last row shows the
auto-correlations of normal pseudo-residuals. It can be clearly seen that 2-state is an
adequate model but auto-correlated. Hence, it has evidential value for the explanation
of Zucchini and MacDonald (2009) [45] that if a model is true, the pseudo-residuals
do not have to be auto-correlated necessarily.
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CHAPTER 5

CONCLUSION AND OUTLOOK

Inflation has been a significant problem since 1970s in Turkey. Although it dropped to
one-digit levels after the price level targeting regime of Central Bank of Republic of
Turkey, it still is not stable. Hence, it still worth to model, analyze and forecast.

This study is the first application of HMM to Turkish inflation rates. However, there
are a few studies that model it with another methods. These studies use vector au-
toregressive models (VAR), Bayesian autoregressive models (BVAR), autoregressive
integrated moving average (ARIMA) and seasonal autoregressive integrated moving
average (SARIMA) models. Comparison of existing studies on Turkish data is out of
scope of this thesis as the index in most of the studies are selected as CPI. This part
is taken as the first step for a future work. Moreover, best of our knowledge there
are a few studies on modeling inflation by using HMM in the world. These studies
categorize the inflation rates and then use the Poisson-HMMs.

In this thesis, the advantage of working of HMM on autocorrelated data is used. More-
over, the Normal-HMM is preferred since our data is normal and continuous. The
inflation rates are not categorized in contrast with the studies using HMM to model in-
flation rates but the parameters of Normal-HMM is considered. This model is applied
to the inflation rates of Turkey between 2004-2014.

Before the applications, the HMM is introduced very briefly in the introduction part.
Moreover, the inflation history of Turkey between 1965-2014 is displayed. The reasons
of the fluctuations in the history are explained. It is concluded that there are less fluc-
tuations after 2004 because of the effects of the inflation targeting regime. However,
it is also indicated that although the fluctuations are lessen in the last period, the rates
still are not stable. Hence, the aim of the thesis represented as the modeling, analyzing
and forecasting the inflation rates between 2004-2014 by using HMM.

In the first chapter, the economical structure behind the inflation theory is represented
firstly. The computation method of price levels which is necessary to compute the
inflation rates, the relation of inflation with the aggregate demand and aggregate supply
and the Philips curve in short and long term are explained.

In the second chapter, HMM is explained in detail before applying it to inflation rates.
The Markov chain is clarified firstly since it is the based on structure of HMM. It
is also explained that HMM consists of hidden states and observations depending on
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these states. Then, the parameters of the HMM is introduced as initial probabilities δ,
transition probability matrix Γ and the parameters of related distribution (mean µ and
standard deviation σ in our case). The most remarkable method EM-algorithm that
estimates these parameters of the HMM is introduced and the estimation of forward
and backward probabilities that are used in EM-algorithm is explained. After that the
methods of selecting the most likely states are represented as local decoding and global
decoding. Since the local decoding selects most likely states as the most probable states
of each time, the estimation of state probabilities is explained also. Morever, Viterbi
algorithm is introduced in order to benefit from it in global decoding method. Then,
the estimation of forecasting distributions are explained. Lastly, AIC,BIC, conditional
distributions of observations and pseudo-residuals are introduced in order to use them
to choose the most suitable model.

In the application part of the thesis, the 2004-2014 inflation data of Turkey is used to
analyze, model and forecast with HMM. R language is preferred in this study while
applying the HMM. The following results are for the 2004-2012 part of the data which
is selected as the training part. The parameters of mean µ, standard deviation σ ,
transition probability matrix Γ and the initial distribution δ are estimated by the EM-
algorithm. The AIC and BIC values are also computed during the estimation of pa-
rameters. According to the both of the criteria 3-state and 4-state HMMs are more ap-
propriate than others, in fact the 3-state HMM is the best one. Therefore, The hidden
states of 3-state HMM are estimated by Viterbi algorithm and the states of 2013-2014
interval are predicted. Then, the forecast distributions of the every month in 2013-2014
interval are computed. The means of them are accepted as the forecasting values for
this study and they are in the %95 confidence interval successfully. Lastly, in order to
be sure that the selected model is adequate it is checked whether the pseudo-residuals
of the model are distributed normally and the result of this checking brings us to a
successful conclusion.
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[3] J. M. Barron and G. J. Lynch, The aggregate demand curve: A defense, The
Journal of Economic Education, 18(1), pp. 41–46, 1987.

[4] R. Bhar and S. Hamori, Hidden Markov Models Applications to Financial Eco-
nomics, Kluwer Academic Publishers, 2004.

[5] J. A. Bilmes, A gentle tutorial of the em algorithm and its application to param-
eter estimation for gaussian mixture and hidden markov models, International
Computer Science Institute, 1998.

[6] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting
and Control, Fourth Edition, John Wiley and Sons, 1970.

[7] M. Bronfenbrenner and F. D. Holzman, Survey of inflation theory, The American
Economic Review, 53(4), pp. 593–661, 1963.

[8] K. E. Case and R. C. Fair, Principles of Economics, Pearson Education, 2006.

[9] L. W.-K. Cheung, Use of run statistics for pattern recognation in genomic dna
sequences, Journal of Computational Biology, 11(1), pp. 107–124, 2004.

[10] A. Cukierman and A. Meltzer, A theory of ambiguity, credibility, and inflation
under discretion and asymmetric information, Econometrica, 54(4), pp. 1099–
1128, 1986.
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APPENDIX A

ALGORITHM OF R CODES

The codes used in this thesis are created by adapting the codes of Zucchini and Mac-
Donald (2009) [45] to the Normal-HMMs.

Firstly, an algorithm that computes the logarithms of forward and backward probabil-
ities is created since it is required for the EM-algorithm. In this algorithm the obser-
vation data, mean vector, standard deviation vector, transition probability matrix and
initial probabilities are the inputs. The only parameters that are needed to calculate the
logarithm of forward and backward probabilities are P (Oi)’s and they are computed
in R by using ”dnorm” function.

Secondly, the function of EM-algorithm is constructed. This function estimates the
mean (µ), standard deviation (σ), initial distribution (δ) vectors and the transition
probability matrix (Γ) and gives the negative log-likelihood, AIC and BIC values of
the model.The algorithm starts with the initial values of µ, σ and δ.Then, it computes
logarithms of forward and backward probabilities in each iteration by using mentioned
forward and backward probability algorithm. The next µ, σ, δ and Γ are computed by
taken the items in 3.3.2 as references. This iteration continues until the sum of the dif-
ferences between the previous parameters and the current ones is smaller than the tol-
erance that is accepted as 10−6 in this thesis. However, in this algorithm it is concluded
that there is no convergence if the criteria does not hold until the 1000th iteration. If it
satisfies the criteria it produces the estimations of µ, σ, δ and Γ. Moreover, the number
of parameters for the model is computed by using the formula m2 + 2m − 1. These
parameters’ m − 1 is from delta, m is from mean, m is from sigma, m2 −m is from
the transition probability matrix. Lastly, the AIC, BIC and negative log-likelihood val-
ues are computed. Remember that the estimated parameters can be the parameters of
local maximums. In order to deal with that problem this algorithm is applied to several
initial values and the ones that reach to the least negative log-likelihood at the end of
the algorithm are accepted as the initial values. This algorithm is applied to several
HMMs with different number of states. By considering the AIC and BIC values of
these HMMs, the most appropriate state number can be chosen for the data.

Thirdly, the Viterbi algorithm is represented in R by calculating the ϕtis, determining
the state that maximizes ϕT i as in equation (3.38) and continuing backwardly to find
the states that maximize ϕtiγi,it+1 as in equation (3.39).

Although Viterbi algorithm is preferred to find the most likely states, we also use lo-
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cal decoding, alternatively. Hence, the algorithm of it also constructed but firstly the
function of conditional state probabilities created since it will be used in the algorithm
of local decoding. Remember that the formula of conditional state probabilities is
Pr(Xt = i|O(T ) = o(t)) = αt(i)βt(i)

LT
. Since this formula includes just forward, back-

ward probabilities and the likelihood, representing it with R-codes is easy by using
forward-backward algorithm.Then, the local decoding is just the function that finds
the states that maximize the conditional state probabilities.

Then, state predictions are turned into R codes that compute the αT/LT firstly and then
multiply it with the ith coloumn of Γh matrix as in equation (3.31).

In order to compute the forecast distributions a range is determined by using mini-
mum and maximum of mean and paying attention to taking into account all of the
observations with significant distributions. Moreover, the interval between successive
numbers in this range divided into 10 parts. The ratio of αT

αT 1′
is computed. Then, by

using a loop this ratio is multiplied with Γh. Consequently, the forecast distributions
of the predetermined x values are calculated. However, in order to find the expected
value of the forecasting, distribution of each integer is recomputed by averaging the
distributions of following percentiles till the next integer. Hence, the distribution of
integers are produced lastly.

While computing the distributions of observations at time t given the other observa-
tions, the intervals between successive integers are distributed into percentiles as in
this algorithm of forecast distributions. Then, by using equation (3.29) the conditional
distributions are computed for the percentiles. Lastly, by averaging of them the final
distributions are produced for integers.

Finally, the algorithm of pseudo-residuals is constructed by using conditional distribu-
tions of observations that are formulated previously. In the algorithm the cumulative
distributions for integers are computed firstly. Then, uniform pseudo-residuals are
computed by taking into account the residues of the observations from the integers.
Lastly, these uniform pseudo-residuals are transformed into normal pseudo-residuals.
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