
STANDALONE STATIC BINARY EXECUTABLE REWRITING FOR
SOFTWARE PROTECTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGÜR SAYGIN BICAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2015

Approval of the thesis:

STANDALONE STATIC BINARY EXECUTABLE REWRITING FOR
SOFTWARE PROTECTION

submitted by ÖZGÜR SAYGIN BICAN in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Dr. Onur Tolga Şehitoğlu
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Department, METU

Dr. Onur Tolga Şehitoğlu
Computer Engineering Department, METU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering Department, METU

Assist. Prof. Dr. Selim Temizer
Computer Engineering Department, METU

Assoc. Prof. Dr. Osman Abul
Computer Engineering Department, TOBB ETU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ÖZGÜR SAYGIN BICAN

Signature :

iv

ABSTRACT

STANDALONE STATIC BINARY EXECUTABLE REWRITING FOR
SOFTWARE PROTECTION

Bican, Özgür Saygın

M.S., Department of Computer Engineering

Supervisor : Dr. Onur Tolga Şehitoğlu

June 2015, 59 pages

This study introduces a static binary rewriting method for improving security of exe-
cutable binaries. For software security, when the network and host-based precautions
are passed by the adversary or they are not present at all, the software has to defend
itself. Nevertheless, applying software protection methods during software devel-
opment requires extra source code development and know-how. Furthermore, these
methods inherently make the software undesirably complex. Applying these meth-
ods after compilation of the software will decouple the software development and
protection processes. Binary rewriting is such a method that externally modifies an
executable file in order to make binary hard to reverse engineer and tamper. Along
with software protection, binary rewriting is also applied on other areas such as bi-
nary instrumentation and semantic patching etc. that are out of the scope of this study.
Some prior proposed approaches use a special compiler and/or linker and some oth-
ers use a third party commercial disassemblers to make analysis on the binary file,
making process highly dependent on performance of these tools. In this study, a stan-
dalone static binary rewriting framework that can work directly on the output of the
compiler without any third party disassembler or special compiler/linker dependency
is developed. The framework uses debug information in binary to get function lo-
cations, and then relocates functions, then update the references to point to the new
addresses in the binary. The implementation is tested on various open source software

v

written in C and C++ for performance overhead. Then, as a case study, a software
protection method is applied to a program using our framework, and the security of
resulting binary is compared in terms of how control flow graph reveals information
about software structure.

Keywords: Static Binary Rewriting, Software Protection, Software Security, Software
Obfuscation, Software Tamper-Proofing

vi

ÖZ

YAZILIM KORUMA İÇİN BAĞIMSIZ STATİK İKİLİ ÇALIŞTIRILABİLİR
DOSYA TEKRAR YAZIMI

Bican, Özgür Saygın

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Onur Tolga Şehitoğlu

Haziran 2015 , 59 sayfa

Bu çalışma çalıştırılabilir ikili dosyaların güvenliğini arttırmak için bir statik ikili
dosya tekrar yazım (SİDTY) metodu tanıtmaktadır. Yazılımın güvenliği için, ağ ve
bilgisayar tabanlı önlemler saldırgan tarafından aşıldığında yada hiç olmaması duru-
munda yazılımın kendi kendini savunması gerekir. Ancak, yazılım koruma yöntemle-
rinin yazılım geliştirme aşamasında uygulanması ek kaynak kod geliştirme ve teknik
bilgi gerektirmektedir. Ayrıca, bu yöntemler yapıları gereği yazılımı istenmeyen bir
seviyede karmaşık hale getirmektedir. Bu yöntemleri yazılım derlendikten sonra uy-
gulamak, yazılım geliştirme sürecini ve yazılım koruma sürecini birbirinden ayrıştırır.
SİDTY tersine mühendisliği ve istenmeyen değişikliği zorlaştırmak için çalıştırıla-
bilir dosyaları dışarıdan değiştiren bir yöntemdir. İkili dosya tekrar yazımı, yazılım
koruma ile birlikte bu çalışmanın kapsamının dışında olan ikili dosya enstrümantas-
yonu, semantik yamalama gibi alanlarda da kullanılır. Önceki bazı çalışmalar özel
derleyici ya da bağlayıcı kullanan yaklaşımlar önermektedir. Bazıları ise üçüncü parti
ticari ayrıştırıcılar kullanarak ikili dosya üzerinde analiz yapmaktadır. Bu durum sü-
reci büyük oranda bu araçların başarısına bağımlı kılmaktadır. Bu çalışmada herhangi
bir ayrıştırıcı yada özel derleyici/bağlayıcı bağımlılığı olmayan, doğrudan derleyici-
nin çıktısı üzerinde çalışabilen bağımsız bir SİDTY çatısı geliştirilmiştir. Geliştirilen
çatı, fonksiyonların yerini tespit edebilmek için hata ayıklama bilgisi kullanmaktadır,
daha sonra fonksiyonları taşıyıp referansları yeni adresleri gösterecek şekilde güncel-

vii

lemektedir. Uygulama, performans ek yükü için C ve C++ dillerinde yazılmış çeşitli
açık kaynak yazılımlar üzerinde test edilmiştir. Daha sonra, örnek çalışma olarak,
uygulamamız kullanılarak bir yazılım koruma yöntemi bir programa uygulanmış ve
ortaya çıkan ikili dosyanın güvenliği kontrol akış grafiğinin yazılım yapısı hakkında
verdiği bilgi açısından karşılaştırılmıştır.

Anahtar Kelimeler: Statik İkili Dosya Tekrar Yazımı, Yazılım Koruma, Yazılım Gü-
venliği, Yazılım Karıştırma, Yazılımın Değişikliğe Karşı Korunması

viii

To my family, my lovely girlfriend and people who are reading this thesis

ix

ACKNOWLEDGMENTS

I wish to thank my advisor and committee members who were more than generous
with their precious time. A special thanks to my advisor Dr. Onur Tolga Şehitoğlu
for his continuous support and guidance during the entire process. Thank you İsmail
Hakkı Toroslu, Ertan Onur, Selim Temizer, Osman Abul for agreeing to serve on my
committee.

I would like to acknowledge and thank to my company MilSOFT Software Technolo-
gies for allowing me to continue my education and conduct my research while I am
working there and providing any assistance requested. Special thanks goes to Serhat
Toktamışoğlu, my supervisor at work, for his guidance and my colleagues for their
support at the development.

Finally, I would like to acknowledge and thank to Türkiye Bilimsel ve Teknolojik
Araştırma Kurumu (TUBİTAK) for their 2228-A Son Sınıf Lisans Öğrencileri için
Lisansüstü (Yüksek Lisans/Doktora) Burs Programı which provided me financial sup-
port by their scholarship during my two tears long Master of Science education.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Software Protection . 1

1.1.1 Software Protection Methods 3

1.2 Motivation . 5

1.3 Challenges . 5

1.4 Former Studies . 7

1.5 Scope of the Thesis . 8

2 BACKGROUND . 11

xi

2.1 x86 Assembly Language . 11

2.2 Stack . 13

2.3 ELF Format . 15

2.4 Debug Information Format DWARF 17

2.5 Disassembler . 17

2.6 Assembler . 19

3 IMPLEMENTATION . 21

3.1 Analyzing ELF Format . 22

3.2 Finding Functions . 22

3.3 Creating New Executable Section 23

3.4 Disassembly . 25

3.5 Assembly . 27

3.6 Rewriting . 28

3.6.1 Handling Incoming Function Calls 30

3.6.2 Handling Dynamic Jumps 31

3.6.2.1 Finding Possible Dynamic Jump Targets 33

3.6.2.2 Redirection Map For Dynamic Jump
Targets 35

3.6.2.3 Dynamic Jump Target Translation At
Runtime 38

3.6.3 Handling PIC . 40

4 TESTS AND RESULTS . 43

xii

4.1 Case Study . 47

5 CONCLUSION . 53

5.1 Future Work . 54

REFERENCES . 57

xiii

LIST OF TABLES

TABLES

Table 2.1 if-else Statement Example In x86 Assembly Language 12

Table 3.1 Example Program Header . 23

Table 3.2 Before Creating New Section . 25

Table 3.3 After Creating New Section . 26

Table 3.4 Example Dynamic Jump With and Without Computation 39

Table 3.5 Translation Examples (Without Extra Array) 40

Table 3.6 Translation Examples (With Extra Array) 41

Table 3.7 Example PIC . 42

Table 4.1 Numbers About The Tested Binaries 45

Table 4.2 Execution times in seconds; o: original, r: rewritten 46

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Overall Architecture . 10

Figure 2.1 Stack Structure (Adapted from [5, Ch. 3.7.1]) 14

Figure 3.1 Rewriting Example: (a) Step 4 - Disassembled Function, (b) Step
7 - Function At New Address (old address + 0x1000) 31

Figure 3.2 Rewriting Example: (a) Step 8 - Initial Relocation Map, (b) Step
10 - New Code Pieces Inserted . 32

Figure 3.3 Rewriting Example: (a) Step 13 - Updated Relocation Map, (b)
Step 14 - Static Jumps Fixed . 33

Figure 3.4 Rewriting Example: Step 11 - Redirecting Incoming Function Calls 34

Figure 3.5 Rewriting Example: (a) Function With A Dynamic Jump, (b) Redi-
rection Entries For Possible Jump Targets 0x804850d, 0x8048513 and
0x8048519 . 36

Figure 3.6 Rewriting Example: (a) Redirection Entries For Possible Jump Tar-
gets 0x804850d, 0x804850e, 0x80485013, 0x8048516, 0x8048519, (b)
Redirection Entries In Extra Array . 38

Figure 4.1 Tested Binaries and Execution Times 47

Figure 4.2 Execution Time of A Function With A Dynamic Jump (for a Doxy-
gen function) . 48

Figure 4.3 Execution Time of A Function Without Dynamic Jump (for a Doxy-
gen function) . 49

Figure 4.4 Case Study: Original Control Flow Graph 51

Figure 4.5 Case Study: Control Flow Graph After Branch Function Method . . 52

xv

LIST OF ABBREVIATIONS

IDS Intrusion Detection System

IPS Intrusion Prevention System

CPU Central Processing Unit

IA32 Intel Architecture 32

AMD Advanced Micro Devices

ELF Executable and Linkable Format

DWARF Debugging With Attribute Record Formats

NASM Netwide Assembler

PIC Position independent code

gcc Gnu Compiler collection

ASLR Address space layout randomization

xvi

CHAPTER 1

INTRODUCTION

1.1 Software Protection

With the developing technology and the growth in number of devices that are con-

nected to the Internet, the number and effect of the cyber-attacks have increased as

well. Therefore, providing confidentiality, integrity and availability of the informa-

tion and services has become harder and more crucial.

These facts lead the cyber-attacks to become more professional. Unlike the past,

cyber-attacks are not organized by individual hackers or script kiddies anymore. Be-

hind the cyber-attacks, now, there are professional groups with specific targets and

purposes. In addition, nowadays, hacktivists — a group of hackers who organize

cyber-attacks for protesting, activism, and civil disobedience — and even countries

organize cyber-attacks.

In 2010, a computer worm, called Stuxnet, was discovered in Iran [15]. Stuxnet tar-

geted Iran’s nuclear centrifuges and it is considered as first cyber weapon. In Stuxnet,

a couple of zero day vulnerabilities, the vulnerabilities previously unknown so that

the developers cannot create a patch, are used. It accomplished to ruin some of Iran’s

nuclear centrifuges. Investigating this kind of professional attacks clearly shows that

zero day vulnerabilities make every system prone to be hacked. It is important to note

that zero day vulnerabilities are, by definition, caused by the software itself rather

than the network perimeter.

In addition to cyber-attacks, another important issue targeting computer systems se-

1

curity is the reverse engineering and cracking of the software. Today, there are a lot

of critical software in defense industry such as radars, command and control systems

etc. including a lot of critical information that has to be kept secret. Consider a fighter

jet of a country crashed in another country. Reversing the software of the jet may re-

veal crucial information compromising country defense. Furthermore, these critical

systems should be prevented from tampering 1. Consider tampering a radar software

and changing its behaviour to make it blind for some countries’ jets.

Software companies’ products involve secrets as well. The companies’ intellectual

property, such as new algorithms, should be protected. In addition, software compa-

nies should prevent the illegal copies of their software. In other words, they should

prevent tampering the software and bypassing license check mechanism. Preventing

illegal copies has important commercial significance for software companies.

For example, Skype2 is a software product that provides video chat and voice calls

from computers and mobile devices via the Internet to other devices or telephones/s-

martphones. Skype is well protected with some techniques against reverse engineer-

ing. With the help of this protection it dominated the market. It remained uncracked

and not-reversed for years so that after that time period cracking or reversing it did

not mean too much to developers of Skype. However, it is reversed by professional

hackers in 2006 and presented in Black Hat Europe [2]. These facts show that in ad-

dition to securing the network perimeter and the hosts, securing the software itself is

really important. This brings us to a forgotten topic at cyber security, named Software

Protection.

Software Protection is considered as the last point of defense in cyber security. When

the firewall, Intrusion Detection System (IDS), Intrusion Prevention System (IPS),

anti-viruses etc. are passed by adversary or they are not present at all, the software

has to defend itself [30]. Moreover, in order to accomplish some of the attacks, the

adversary has to examine the software to find vulnerabilities. Software protection

methods make examining, analyzing and cracking the software more complicated.

Therefore, finding and exploiting the zero day vulnerabilities become harder.

1 Tampering is to make unauthorized modification that alters the software execution and behaviour.
2 http://www.skype.com/en/. [Last accessed on June 26, 2015].

2

http://www.skype.com/en/

The purpose of the software protection is (i) keeping the internals of the software

as secret, (ii) preserving the functionality and the behaviour of the software, (iii)

preventing the unwanted copies, and cracking of the software.

Zero day vulnerabilities are found by analyzing and investigating the software. By

keeping the internals of the software as secret, software protection makes it harder

to find these vulnerabilities. Moreover, it protects the intellectual property, because

it is harder to reverse engineer the software. Keeping internals as secret also helps

to preserving the functionality and the behaviour of the software, because finding the

function points and understanding the behaviour is harder.

Preserving the functionality and the behaviour of the software prevents the unwanted

changes caused by the targeted attacks. Furthermore, it makes harder to crack the

software’s license mechanism.

1.1.1 Software Protection Methods

Software protection methods can be categorized according to their purpose. Some

methods mainly aim to hardening the software against reverse engineering whereas

some of them try to detect and prevent the changes in the behaviour and functionality

of the software. Moreover, there are software labeling methods such as fingerprinting,

watermarking etc. These methods can be used to prove the software is cracked, copied

illegally and ownership/origin of the software. Detailed information can be found in

[24].

Two examples for these software protection method categories which are named as

obfuscation and tamper-proofing are explained below.

Software Obfuscation [24, Ch. 4-5] is hiding or making the internals of the program

ambiguous. This can be done statically and dynamically. The dynamic obfus-

cation makes changes in the program at runtime, whereas static obfuscation

does it at compile time or in the file after compilation or before program starts

to execute. Obfuscation is accomplished differently in different programming

languages. Compiled programming languages such as C, C++ are compiled to

3

machine codes that run directly on the processor. In this case, compiled code is

kind of already obfuscated since it is nearly impossible to return back to original

source code from machine code. Nevertheless, the disassemblers can generate

accurate assembly code from machine code. Besides, they can even generate

the control flow graph, call graph, and data flow graph with pretty good ac-

curacy. In addition to disassemblers, with the help of debuggers the software

can be analyzed dynamically. Therefore, reversing is not a hard task for a re-

verse engineer when the software is not obfuscated. Obfuscation of compiled

programming languages includes techniques that misdirect disassemblers and

reverse engineers. This task accomplished by mangling the machine instruc-

tions and data in the software without changing any behaviour and functionality

of the software. On the other hand, in the interpreted programming languages

which require virtual machine such as JAVA, intermediate bytecodes are pro-

duced. In this case, returning back to the original source code is quite easy

by using decompilers which translates low level representation of the code into

high level programming language form. For this case, in addition to the tech-

niques for compiled programming languages, name mangling can be applied as

an obfuscation technique.

Example obfuscation methods can be inserting bogus control flow [8], control

flow flattening [18], self-modifying state machine [24, Ch. 6.2.2 p. 266-276]

etc.

Software Tamper-proofing [24, Ch. 7] is making harder to modify the software.

This is accomplished by self-checking the content of the software. By tamper-

proofing, when an adversary try to change the instructions or behaviour of the

software, the software either can repair this modification or be aware of this

change and take action about it such as crashing, reporting or deleting itself

etc. Guards network method by Atallah et al [6], can be an example to this

category.

4

1.2 Motivation

Applying software protection methods during software development requires extra

source code development and know-how. These methods usually do not provide

much protection individually. Therefore, more than one protection method should

be applied with layered approach. Furthermore, these methods make the software

more complex inherently which is an unwanted situation in software development

process.

If these methods can be applied after compilation of the software, the software de-

velopment and protection processes will be decoupled. This task requires making

changes and inserting new code pieces after compilation. This process can be called

as static binary rewriting. It is called as static because, the changes are made on the

binary file, not at the runtime.

In the thesis we focus on the executable binary files which are produced by compil-

ing the source code written in compiled programming languages. These executable

binary files include the native machine codes which run on the Central Processing

Unit (CPU). Moreover, the executable file formats are different in different operating

systems. Therefore, static binary rewriting process depends on the CPU architecture

and the operating system. However, most of the challenges and steps to be followed

are common. Therefore, by making minor changes, an existing solution for one ar-

chitecture and operating system can be adapted to other architectures and operating

systems.

This thesis aims to apply software protection methods without source code modifica-

tion, propose a solution and address the challenges in static binary rewriting for the

software written in compiled programming languages.

1.3 Challenges

A successful binary rewriting process has to preserve the software’s all the existing

functionalities and capabilities without corrupting the program. To achieve this there

are some challenges to be addressed.

5

The memory addresses in the binary file are pre-computed and flow of execution is

highly dependent on the memory addresses. It is a challenging task to make changes

and insert new code pieces into the executable binary file without corrupting the mem-

ory addresses.

The executable binary files include all information required to load, dynamically link

and optionally debug and profile the program. Executable file formats supported

by different operating systems are strict formats including tightly coupled variable,

symbol and code information on complex structures. After binary rewriting process

the information in the file should be consistent and the file should be consistent with

the format.

The challenges mentioned above are the main problems that are need be solved. In

addition to those, the sub-problems in static binary rewriting can be listed as the

following:

Space to insert new code pieces: The binary file is loaded to the memory according

to mapping information in the file. These mappings depend on the file offsets.

Hence, the positions of the bytes in the file are important. However, inserting

new code pieces will make the offsets of the following bytes to be shifted.

Therefore, this will create inconsistencies in the file.

Accuracy of disassembly: Disassembly is used to analyze the existing executable

machine code before binary rewriting. The changes in the binary file are de-

termined based on the output of the disassembly. Therefore, the success of the

binary rewriting is highly dependent on the accuracy of disassembly.

Safely altering the addresses: When a new code piece is inserted, the memory ad-

dress of the following bytes will be shifted because only one byte can be in a

memory address. Moreover, the inserted codes have to be part of the execution

of the program. This can be done either by inserting the new code piece into a

function or jumping to the new code piece from a function and returning back

(which also requires inserting a couple of bytes). In either way the inserted

bytes will shift the memory address of the following bytes. This situation cor-

rupts the program execution because all the operations which are dependent on

6

memory addresses will be wrong.

1.4 Former Studies

In binary rewriting there are some dynamic binary rewriting solutions such as PIN

[20], Valgrind [25] and DynamoRIO [4] which make modifications at runtime. Dy-

namic binary rewriting, is generally is used for monitoring the software execution or

measuring the performance. In this approach the changes last only throughout the

execution. Nevertheless, our purpose is to make modifications in the file statically

and these modifications should be permanent. Therefore the static binary rewriting is

more appropriate for us.

In prior studies on static binary rewriting such as Sutter et al, 2005 (Diablo) [13] and

Muth et al, 2009 (Alto) [23], they can operate on the binaries that are generated by

the special compilers. They implemented their own compilers to make modification at

link time. However, the disadvantages of these studies are the dependency to special

compilers.

More lightweight approaches exist which do not require special compilers such as

Romer et al, 1997 [27] and Hunt et al 1999 [17]. In these studies in order to insert code

pieces to execution, they create trampolines which include the code to be inserted and

then change the execution flow to access these trampolines. In other words, they do

not insert the code piece in the code of the program. Instead, they write the code

pieces at the end of the binary file, then in order to execute these code pieces they

change the execution of the program by inserting branch instructions. Nevertheless,

this approach is not successful at inserting code piece anywhere in the execution

flow of the program. Moreover, it does not have enough flexibility to apply software

protection methods to binary file. For some of the software protection methods it

may not be enough to execute the new code pieces. In order to apply some software

protection methods (for instance: Inserting garbage bytes to mislead disassembly [3]),

it is required the inserted code pieces to be placed into the code of the program which

is not supported by this approach.

The study Laurenzano et al, 2010 (PEBIL) [19] implemented a static binary rewriting

7

tool for Linux based operating systems without using any special compiler. In the

implementation, they use symbol table which is a part of the debug information. In

their approach, the main challenge is handling dynamic jumps. To overcome this

challenge, they use backward analysis on the code in order to determine the targets of

the dynamic jumps which is a heuristic method. This may cause corruption of the file

when the analysis of the dynamic jump target cannot be accurate.

Wartell et al, 2012 [31] and Deng et al, 2013 [14] is the most inspiring two studies

for us in static binary rewriting. They do not use any specific compiler. In order to

handle dynamic jump instructions they use runtime translation approach for redirect-

ing dynamic jump targets. However, they do not use debug information and they have

dependency on IDA [26] which is a commercial disassembly tool.

Deng et al, assumes the program is perfectly disassembled by IDA which is imprac-

tical. As cited in Wartell et al. the perfect disassembly cannot be achieved in general.

Deng et al, makes an analysis on the binary for finding possible dynamic jump targets

and proposes some criteria for pruning these targets. We inspired from this analysis

method and pruning criteria for finding possible jump targets.

On the other hand, Wartell et al, uses IDA for finding possible dynamic jump targets

which brings a dependency to a commercial disassembly tool. He uses the old space

of the code that is relocated to store the entries which are used in runtime dynamic

jump redirection. Therefore, in this approach if a data is interpreted as a dynamic

jump target by IDA it may corrupt the data because it overwrites some values for

runtime redirection of dynamic jumps. In this study, we inspired from the idea of

storing entries for redirection at old space of the relocated code.

In our solution we aimed to remove the IDA dependency and perfect disassembly

assumption in these two studies.

1.5 Scope of the Thesis

In this thesis, we implemented a standalone function based static binary rewriting

framework for x86 32 bit Linux based operating systems and for the software written

8

in compiled languages. It has no third party tool dependency nor it uses any specific

compiler and/or linker. It works directly on the output of the compiler.

In this framework, the inputs are the executable binary file, debug information of the

binary file, and code insertion map (function descriptions in which the code pieces

will be inserted, code pieces to be inserted and the offsets to where the code pieces

will be inserted). The output is the rewritten binary file. The debug information is

used for finding the codes of the function whose descriptions (function name and if

available namespace and class name) are provided in input. This gives opportunity

to make different operations on the different functions. Note that our motivation is

applying software protection methods. Hence, instead of applying same methods to

all functions, being able to apply different methods to different function is an advan-

tage. Moreover, since the functions can be selected, the performance overhead of the

protection can be adjusted according to the user’s will. Another use of debug infor-

mation is increasing the disassembly accuracy. Details about this will be explained in

the sections 2.4 and 3.2.

The framework inserts each code piece to its given offset of a function according

to the code insertion map. The framework supports inserting multiple code pieces

to multiple offset. The offset is the relative offset according to the beginning of the

function.

In order to accomplish static binary rewriting, we made some fair assumptions about

the input executable binary file. First, the input file should not be obfuscated. As we

mentioned before, obfuscation hardens the disassembly and our framework makes

analysis depending on the disassembly. Secondly, the input binary file should not

use self-modification. Self-modification is a technique which is used generally by

malwares. In this technique the program modifies its code during runtime. There-

fore, insertion of new code piece will corrupt the program because the modifications

which are done at runtime will not be done correctly. The last assumption about the

input binary file is that the input file should not be hand crafted; it should be output

of a compiler. In other words the source code of the input file should not include

hand coded assembly code. In this case the programmer can go beyond the restric-

tions of the programming language such as jumping to middle of a function from

9

New Executable
Binary File

Function Based Static
Binary Rewriting

FrameworkCode Insertion Map

+ Function Description
+ Code piece to be inserted

+ Offset to insert

Executable Binary File

Debug
Information

Function X

0xc0de

Function X

0xc0de

Figure 1.1: Overall Architecture

another function. Hence, these cases may cause our framework to fail in preserving

the existing functionality.

We tested our framework against open source C and C++ programs. In our experi-

ments we force rewriting of nearly all of the functions that are called in these pro-

grams. We tested if the programs produce same output after they were processed by

our framework. Moreover, we measured performance overhead of binary rewriting in

these programs.

In chapter 2 some important terms and concepts are defined. Next, our approach is

described and the challenges of it are addressed in the chapter 3. Then, the experi-

ments and the results are explained in chapter 4. Finally, the conclusion and the future

work discussions are provided in the chapter 5.

10

CHAPTER 2

BACKGROUND

2.1 x86 Assembly Language

An assembly language is a low level programming language which corresponds to a

human readable symbolic version of the machine code. Therefore, it is highly depen-

dent on the CPU architecture. The interpretation or compilation process of assembly

language is named as assembly. Outcome of this process is the executable machine

code, to be executed directly by the CPU. For this reason, in contrast to high level

programming languages, an assembly language is not portable among different CPU

architectures. Assembly languages use mnemonic to represent each instruction in or-

der to ease reading and writing. Each mnemonic corresponds to an instruction which

has a corresponding machine code instruction for the CPU.

x86 architecture introduced by Intel for their 8086 CPU [11, Ch. 2.1]. The first design

was a 16 bit architecture which is the ancestor of Intel Architecture 32 (IA32). 16 bit

architecture was improved to become IA32 that supports 32 bit data and addresses.

Later, IA32’s 64 bit extension was developed by Advanced Micro Devices (AMD).

x86’s 64 bit version is referred as x64. This successive processor line has been de-

signed to be backward compatible, in order to be able to run code compiled for any

earlier version. This study targets the 32 bit version of x86 and we refer it as x86.

In x86 assembly language there are eight registers (eax, ebx, edx etc.) to hold 32-bit

integer values [11, Ch. 3.4]. In order to track the address of the next instruction to

execute, there is a register named eip - instruction pointer. Plus, there are a set of

floating point registers to store floating point data. Furthermore, there are flags such

11

as zero, carry, and overflow. These flags help in conditional branching and arithmetic

operations. Some instructions have side affects of modifying flags.

In x86 each instruction has an opcode that serves as the id for that instruction. Some

of the instructions have arguments which are called as operands. The opcodes can be

at most 2 bytes and the operands have variable size. Therefore, the instructions have

variable sizes.

Like almost all imperative languages, in addition to data manipulation instructions,

x86 assembly language has instructions for branching. It has call (call function at

the address given in operand) instruction in order to handle function calls and ret

(return from the function) instruction for returning from a function [5, Ch. 3.7.2]. The

unconditional and conditional jumps are handled by jmp (jump to the address given

in operand) and jcc (conditional jump - jump if the condition is met) instructions

respectively where cc is the condition (it can be e - equal, ne - not equal, g - greater

than, le - less than or equal to etc.) [5, Ch. 3.6]. The conditions mostly checked by

cmp (compare two operands) instruction. This instruction modifies some of the flags

according to its operands. According to which flags are set, the result of the compare

operation determines whether the following conditional jump will be skipped or not.

Not skipping the jump is conventionally called as taking the jump which results in the

address given in the operand is loaded to the instruction pointer as next instruction.

Intuitively, skipping the jump is conventionally called as not taking the jump. Table

2.1 shows an example of if-else statements written in C and the corresponding x86

assembly language code. Detailed information about x86 and full list of instructions

can be found in [11, 12].

Table 2.1: if-else Statement Example In x86 Assembly Language

C code piece The corresponding assembly code

1 i f (x == 0)
2 / / i f s t a t e m e n t s
3 e l s e
4 / / e l s e s t a t e m e n t s
5

1 cmp eax , 0 ; eax h o l d s t h e x v a l u e
2 j n z e l s e
3 ; i f a c t i o n s t a t e m e n t s
4 e l s e :
5 ; e l s e a c t i o n s t a t e m e n t s

In x86 assembly language the call and jmp instructions can have the address operand

as literal. This type of branch instructions can be referred as static branch instructions

12

such as jmp 0x1234. This type of branch instructions’ target address, the address

that the instruction will direct to, can be determined without any backward analysis

on the operand. On the other hand, there are also dynamic branch instructions whose

operand is a register or a memory location such as jmp [eax] or call ebx. This kind of

branch instructions are also referred as indirect branch instructions. Since the value at

the register or memory location is determined at runtime of the program, this type of

instructions’ target address may not be known without dynamic analysis or backward

analysis on the operand. For example, when the C or C++ switch statements are

compiled, they are generally handled by dynamic jumps [5, Ch. 3.6.6]. The addresses

of the statements in the case conditions are held in a jump table. Therefore, the

corresponding statement’s address is obtained from the jump table at the runtime

according to the matched case.

One of the important challenges of the static binary rewriting is handling the dynamic

branch instructions. When an instruction’s address in the program is changed after

compilation, the dynamic branch instructions’ target address may become a dangling

address. This study aims static rewriting which involves rewriting without dynamic

analysis. Therefore handling this case without prior information on run time behavior

is a challenging task.

2.2 Stack

In x86 the programs uses the program stack in order to handle function calls. During

runtime of the program a portion of the stack, named as stack frame, is allocated for

the running function. The stack frame can be used for parameter passing, as a local

storage and saving registers for later restoration. Figure 2.1 shows the conventional

stack structure [5, Ch. 3.7.1]. In x86 the esp register is called as stack pointer which

is used to hold the address of the top of the stack frame and the ebp register is called

as frame pointer which holds the address of the bottom of it. The stack pointer can

move during execution of the function. As the figure shows the stack frame grows

towards decreasing addresses. In other words as the stack frame grows the address

in the esp decreases. Intuitively, as the stack frame shrinks, the address in the esp

increases. x86 has push and pop instructions in order to manipulate stack frame. The

13

push instruction decreases the esp by four and writes the operand of it to top of the

stack frame. On the other hand, the pop does the inverse of the push, it reads the top

of the stack frame into its operand and increases the esp by four.

Increasing
address

Earlier frames

Caller’s frames

Current frame

Return address

Argument n
.
.
.

.

.

.

.

.

.

Argument 1

Frame pointer
ebp

Stack pointer
esp

Top of the stack

Bottom of the stack

Figure 2.1: Stack Structure (Adapted from [5, Ch. 3.7.1])

Function calling and returning from the functions is done by the call and ret instruc-

tions, respectively [5, Ch. 3.7]. The call instruction actually does two operations.

First, it pushes the address of the next instruction. Then, it loads the operand of it

to instruction pointer, so the execution will continue from the called function. The

pushed address is referred as return address which is actually the address that the ex-

ecution will continue after the called function returns. The parameters of the function

can be pushed into the stack (It is not mandatory to use the stack. The registers may

be used for parameter passing) before the function call so the called function can read

14

the parameters from the stack. The ret instruction pops the return address pushed by

the call instruction to instruction pointer, so the execution will continue from return

address. The return value conventionally is held in the eax register; however, the

stack can be used as well.

As it is mentioned before, the stack frame is used for storing the local variables also.

When a local variable is defined, a place to hold the value is opened in the stack

frame. Opening space actually means growth of the stack frame. Before the function

returns, the allocated stack frame for the function is released back with the help of

leave instruction. Therefore, when the function returns the local variables become

unreachable.

2.3 ELF Format

Operating systems have special file format for binary files. In these formats the infor-

mation about the binary file is stored according to the specific structures of the format.

The format of binary files in Linux based operating systems is named as Executable

and Linkable Format (ELF). This is a common format for executable files, static or

dynamic libraries, object files etc. Some of the most important information that is

held in the structures in ELF format:

ELF Header contains the general information about the file. For example file type,

entry point, program header offset, section header offset, program header entry

count and section header entry count information is held in ELF header. File

type indicates the type of binary file such as executable file, shared object file

etc. Entry point indicates what the virtual address of the instruction, that will be

executed first, is. Program header offset and section header offsets indicates the

offset where these headers start at file. The entry counts indicate the number of

the entries in these headers.

Program Header contains information about segments in the file. The segments are

mapped into the memory when the binary loaded into the memory. Program

header indicates the type of the segment, how the segments will be mapped into

15

the memory and the read, write, execute rights of the segment. One segment

can be located in another segment in the memory.

Section Header contains information about sections. Sections are the subparts of

the segments and each section has to be mapped to at least one segment. For

each section there is an entry for it in the section header. In the entries each

section have file offset, virtual address, size, alignment and read, write, execute

rights information.

Relocation Entries are the entries that are used the process of adjusting the code and

data in the program. The information about the relocation process is actually

held in some specific sections. Relocation entries tells loader of the operating

system how to modify some parts of the program so that the executable or

shared object (.so) files run properly when it is loaded to the memory. For

example, a shared object file can be loaded different virtual addresses. Thus,

the direct data accesses, direct function calls etc. has to be adjusted when it is

loaded to the memory. Otherwise, these addresses will be dangling addresses.

In addition, ELF holds a lot of other information about the program such as string

table for holding the strings, procedure linkage table for function calls from external

libraries, debug related information etc. The detailed information can be found in

reference [10].

For reading and parsing the ELF format, in Linux the command line tool named

readelf1 can be used . It parses the ELF format and gives the information at ELF

header, section header, program header etc. as output.

In an executable binary file generally there is one LOAD type segment which has

read and execute right for executable parts of the binary and there is another LOAD

type segment which has read and write right for the data parts of the binary. The

executable machine code is generally located in an executable section named .text

which is located in the executable LOAD type segment. The code lies in .text sec-

tion generally with no or a little alignment space between functions. Thus, when a

new code piece inserted, the following bytes should be shifted. However, since the

1 http://linux.die.net/man/1/readelf. [Last accessed on June 26, 2015].

16

http://linux.die.net/man/1/readelf

addresses in the code bytes will be dangling when they are shifted, the program will

be corrupted. Plus, fixing the shifted addresses is a very challenging task. Therefore,

instead of shifting, creating a new executable section will be a better approach.

2.4 Debug Information Format DWARF

After the compilation usually the most of the source code level information such as

variable names, function names, function definitions etc. will be removed because,

they become redundant at executable machine code level. However, when the pro-

gram is wanted to be debugged, this information is useful. In binary level debugging

connecting the assembly code and the virtual address values with the source code like

function names and variable names, is necessary. Otherwise, it would be really hard

to find where each function starts and ends or what the variable’s addresses are.

For debug purposes in ELF optionally there are debug related sections which can be

referred as debug information. The debug information has a format named Debugging

With Attribute Record Formats (DWARF) [9] and the debug information can be in a

separate file.

For static binary rewriting the information in the debug information is helpful. Know-

ing function start and end addresses makes possible to relocate a function for opening

space for the code piece to be inserted.

2.5 Disassembler

Disassemblers are the tools for translating executable machine code into assembly

language. Due to the strict correspondence between assembly language and the ma-

chine code, disassemblers can do successful disassembly operation. However, there

are some problems that prevent disassembly with 100% accuracy. For x86 assem-

bly language, the instruction sizes are not fix, so each instruction’s size depends on

the opcode of it. Thus, starting point and the address of the next instruction to be

disassembled is crucial.

17

Disassemblers use two approaches for disassembly operation [28].

Linear sweep is the straightforward approach that disassembles instructions in a lin-

ear way. It assumes each instruction is located next to the previous one. Once it

disassembles one instruction, it knows the size of the current instruction. Thus,

it calculates the beginning of the next instruction. Starting with an instruction

it continues with the next one without considering the control flow of the pro-

gram. Since, it does not consider the control flow, linear approach fails in some

cases. For example, when there is data after a unconditional jump that jumps

over the data, it assumes the data as instruction and disassembles the data. The

data may correspond to some instruction that has a different size from the size

of the data. Thus, the disassembler will be misled about the beginning of the

next instruction. In Linux based operating systems disassembler named obj-

dump2 uses this approach.

Recursive traversal takes into consideration the branch instructions. It disassembles

instruction by instruction like the linear approach. However, it takes into ac-

count the control flow of the program. When it reaches to a branch instruction,

it continues from the target address first. Then, it returns back to the branch

instruction and continues with the next instruction after the branch instruction.

By this way the accuracy of disassembly operation increases.

In addition, there may be improvements on these approaches. However, there are still

challenges on the disassembly operation. One of the issues is the code interleaving

with data. Compilers may insert data between the code. In some cases even recursive

traversal approach may have problems at providing 100% accuracy. For example, an-

alyzing the targets of dynamic branch instructions is a hard problem, so distinguishing

code and data very is challenging. Another issue is the hardening the disassembly in-

tentionally. There are some techniques to do so. These methods are mostly used by

malwares since; they are not wanted to be analyzed.

In addition to the disassembly operation the disassemblers analyze the program also.

Using the disassembled code which is now in assembly language, they can generate

control flow, call flow, data flow diagrams with pretty good accuracy.
2 http://linux.die.net/man/1/objdump. [Last accessed on June 26, 2015].

18

http://linux.die.net/man/1/objdump

2.6 Assembler

Assembly operation is the reverse of the disassembly. Assemblers are the programs

that translate the assembly language code into executable machine code. It matches

the corresponding instruction opcode using mnemonics in assembly language.

In static binary rewriting using assemblers the executable machine code of the code

pieces to be inserted can be generated. In addition, in assemblers the origin address

can be adjusted. Thus, while inserting the code piece to a specific address in the

program, by using this property, the direct address usages can be handled according

to where the code will be inserted.

19

20

CHAPTER 3

IMPLEMENTATION

In static binary rewriting framework, the code piece to be inserted should be executed,

so, it should be also a part of the execution flow of the program. To achieve this, we

propose inserting the code pieces into pre-existing functions in the binary or changing

the control flow of the function so that the inserted code pieces executed during the

execution of the function. We developed a static binary rewriting framework for

Linux based x86 32 bit architectures. The developed framework is dependent to the

architecture and operating system because rewriting is done on native binaries. First

of all, the task requires disassembly and assembly operations which are dependent

on the architecture by nature. Secondly, the executable file formats are operating

system dependent. This affects the analysis and manipulation of the executable file.

Thus, operations like creating a new section, retrieving information from file format

are dependent on the operating system. Plus, apart from the operating system, the

executable file format might be the architecture dependent as well.

It is worth to note that, although the implementation is dependent on the architecture

and operating system, the main problems in static binary rewriting are generally in-

dependent from architecture and operating system. Thus, the solutions to the main

problems and the methodology can be easily adapted to other platforms.

The implementation consists of following steps:

1. Finding function addresses to rewrite

2. Creating new executable section for injected code

3. Disassembly of the function for retrieving instructions and jump addresses

21

4. Assembly of the injected code

5. Rewriting of binary with injected code and relocated addresses.

3.1 Analyzing ELF Format

The ELF structure contains information about the binary file. In order to manipulate

the binary file and do further analysis on the binary file we need to analyze and obtain

some information from the ELF structure. For example, we need to know where

the code and data is located in the file and where they will be loaded in the memory.

Besides, file offset and virtual memory correspondence can be obtained by parsing the

program header. Furthermore, the conversion between file offset and virtual memory

or vice versa is used a lot in manipulating the ELF structure. For example, the debug

information give the virtual address of the functions. Thus, finding the virtual address

and file offset correspondence is used for finding the code of the function in the file.

In implementation we used the elf.h library1. The structures in the ELF format are

defined in this library.

3.2 Finding Functions

In the proposed method we use debug information for finding function addresses and

sizes. libdwarf [1] is used for parsing the debug information which is in DWARF

format. DWARF has hierarchical tree like structure. Classes are children of names-

paces. Class members are children of the classes. We use libdwarf for finding the

function with the provided function name, class name (if it is a member function)

and namespace name (if the class is under a namespace). There is an exception for

overloaded and template functions. For these cases for the specific namespace and

class the function name is not unique. Thus, for further clarification the parameter

list or type information for templates can be provided. Another exception is for inline

functions. The inlined functions cannot be found in the debug information or even if

it is found, the execution does not flow from the function at runtime. Since it is in-
1 http://linux.die.net/man/5/elf. [Last accessed on June 26, 2015].

22

http://linux.die.net/man/5/elf

lined, the copy of it is executed inside the caller function. For this case, the function

to be rewritten has to be prevented from inlining by adding no-inline attribute to the

function’s definition.

3.3 Creating New Executable Section

In order to insert code pieces into the executable binary file, space for the extra code

piece bytes is needed. Generally, there is no or a few byte long padding space between

the functions in the binary file. These padding spaces can be nop instructions that

does nothing or dummy instructions that do redundant tasks like moving a register’s

value into the same register. Besides, the proposed method should not depend on the

assumption of pre-existing spaces in the binary. Thus, we propose creating a new

executable section in the binary file.

In an executable generally there is a LOAD type segment for executable parts and, a

LOAD type segment for the data parts. Table 3.1 shows an example program header

output.

Table 3.1: Example Program Header

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4
INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0x1

[Requesting program interpreter: /lib/ld linux.so.2]
LOAD 0x000000 0x08048000 0x08048000 0x0da1c 0x0da1c R E 0x1000
LOAD 0x00da1c 0x08056a1c 0x08056a1c 0x00d08 0x5145c RW 0x1000
DYNAMIC 0x00da30 0x08056a30 0x08056a30 0x000c8 0x000c8 RW 0x4
NOTE 0x000148 0x08048148 0x08048148 0x00044 0x00044 R 0x4
GNU EH FRAME 0x00d880 0x08055880 0x08055880 0x0004c 0x0004c R 0x4
GNUSTACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4

In order to the new executable section to be loaded properly, it has to be located in

a LOAD type segment, because, executable section should be a loadable section in

order to be loaded into the memory [10, Ch. 2]. Thus, in ELF format the header

entries have to be modified properly. Creating new section requires three steps:

1. Opening space for the new section. The new section content should be located

at the end of the file.

23

2. Creating a new section header entry for the new section. This entry specifies

the file offset (the offset where the new section’s content is located in the file),

virtual address (the address the section to be loaded), alignment and read, write,

execute right information of the section. Note that the new section header entry

requires space too. Therefore, the section header should be moved to the end of

the file and the section header also has to be located in a LOAD type segment.

3. Adjusting program header for locating the new section and the section header’s

new location in a LOAD type segment. In order to do this, we add a new

program header entry which causes also moving the program header to the end

of the file due to the space problem. Note that program header also has to be

located in a LOAD type segment.

In executable binary files, optionally there can be a PHDR type program header entry

which holds the information about the program header itself. For opening a new

section we follow the following steps:

1. Move the program header to end of the file. If there is a PHDR type program

header entry, change the type as LOAD. Otherwise add a new LOAD type

entry. Then, modify the entry according to the new file and memory location of

the program header in both cases.

2. Move the section header to end of the file. Add a new section header entry

for the new section. Then, add a new LOAD type segment to hold the section

header.

3. Add another LOAD type segment for the new section content. Then, write

the content of the section to the file. Note that, section header entry and the

program header entry information has to be consistent about the file position

and memory address of the new section.

Table 3.2 shows an example output of readelf2 before creating a new section and table

3.3 shows the output of readelf after creating a new section. The changes highlighted

with bold. In ELF header the start offset of the program header table and section
2 http://linux.die.net/man/1/readelf. [Last accessed on June 26, 2015].

24

http://linux.die.net/man/1/readelf

Table 3.2: Before Creating New Section

1 ELF Header:
2 ... //omitted parts of ELF header information
3 Start of program headers: 52 (bytes into file)
4 Start of section headers: 111388 (bytes into file)
5 Flags: 0x0
6 Size of this header: 52 (bytes)
7 Size of program headers: 32 (bytes)
8 Number of program headers: 8
9 Size of section headers: 40 (bytes)

10 Number of section headers: 39
11 Section header string table index: 36
12

13 Section Headers:
14 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
15 [0] NULL 00000000 000000 000000 00 0 0 0
16 ... //omitted parts of the section header information
17 [38] .strtab STRTAB 00000000 01d4c4 001285 00 0 0 1
18 Key to Flags:
19 W (write), A (alloc), X (execute), M (merge), S (strings)
20 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
21 O (extra OS processing required) o (OS specific), p (processor specific)
22

23 Program Headers:
24 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
25 PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4
26 INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0x1
27 [Requesting program interpreter: /lib/ld linux.so.2]
28 LOAD 0x000000 0x08048000 0x08048000 0x0da1c 0x0da1c R E 0x1000
29 LOAD 0x00da1c 0x08056a1c 0x08056a1c 0x00d08 0x5145c RW 0x1000
30 DYNAMIC 0x00da30 0x08056a30 0x08056a30 0x000c8 0x000c8 RW 0x4
31 NOTE 0x000148 0x08048148 0x08048148 0x00044 0x00044 R 0x4
32 GNU EH FRAME 0x00d880 0x08055880 0x08055880 0x0004c 0x0004c R 0x4
33 GNUSTACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4
34 //omited: rest of the output

header table is changed to the new offsets of them. Plus, the number of section headers

and program headers are increased in ELF header. In section header table the new

section is added with no name. In program header table two new program headers

added (first one - line 35 - holds the section header table and the second one - line 36 -

holds the new section content). In addition, the fields of the first program header (line

26) is changed according to the new position of the program header table LOAD and

the type is changed to LOAD from PHDR.

3.4 Disassembly

Our method needs to insert machine codes for repairing relocated address references

in functions. For inserting new machine codes, the function should be analyzed first.

25

Table 3.3: After Creating New Section

1 ELF Header:
2 ... //omitted parts of ELF header information
3 Start of program headers: 124745 (bytes into file)
4 Start of section headers: 190281 (bytes into file)
5 Flags: 0x0
6 Size of this header: 52 (bytes)
7 Size of program headers: 32 (bytes)
8 Number of program headers: 10
9 Size of section headers: 40 (bytes)

10 Number of section headers: 40
11 Section header string table index: 36
12

13 Section Headers:
14 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
15 [0] NULL 00000000 000000 000000 00 0 0 0
16 ... //omitted parts of the section header information
17 [38] .strtab STRTAB 00000000 01d4c4 001285 00 0 0 1
18 [39] PROGBITS 08037749 02f749 010000 00 WX 0 0 4
19 Key to Flags:
20 W (write), A (alloc), X (execute), M (merge), S (strings)
21 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
22 O (extra OS processing required) o (OS specific), p (processor specific)
23

24 Program Headers:
25 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
26 LOAD 0x01e749 0x08035749 0x08035749 0x00500 0x00500 RWE 0x1000
27 INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0x1
28 [Requesting program interpreter: /lib/ld linux.so.2]
29 LOAD 0x000000 0x08048000 0x08048000 0x0da1c 0x0da1c R E 0x1000
30 LOAD 0x00da1c 0x08056a1c 0x08056a1c 0x00d08 0x5145c RW 0x1000
31 DYNAMIC 0x00da30 0x08056a30 0x08056a30 0x000c8 0x000c8 RW 0x4
32 NOTE 0x000148 0x08048148 0x08048148 0x00044 0x00044 R 0x4
33 GNU EH FRAME 0x00d880 0x08055880 0x08055880 0x0004c 0x0004c R 0x4
34 GNUSTACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4
35 LOAD 0x02e749 0x08036749 0x08036749 0x01000 0x01000 RWE 0x1000
36 LOAD 0x02f749 0x08037749 0x08037749 0x10000 0x10000 RWE 0x1000
37 ... //omited: rest of the output

Thus, the function should be disassembled to extract information on each instruction

and its operands precisely. The first purpose of disassembly is checking the place

to insert code. Inserting bytes into an instruction would corrupt the function and can

cause non-deterministic behaviour in function. If the offset is not proper, an exception

is thrown. Furthermore, inserting new machine codes generally has aim of adding

new functionality or changing the existing one. Thus, the insertion should be made

to proper places. The second and the most important purpose is to locate the branch

instructions in the function. During the binary rewriting the targets of the static and

dynamic branch instructions will be corrupted. In order to fix this issue we need to

locate them in the function.

26

Note that, disassembly with 100% accuracy is a really challenging task and still open

problem. However, the problems that prevent the 100% disassembly can be elimi-

nated in our case. First of all, we make use of the debug information which provides

an advantage. Since we disassemble each function individually, the possible data

or padding bytes between the functions, that cause fallacies in disassembly, do not

cause problems for us. Secondly, our scope excludes the self-modifying, hand crafted

and obfuscated binary files. Hence, these challenging cases are eliminated for our

situation.

We use an open source disassembly library named BeaEngine3. BeaEngine supports

x86 32 bit, x64 and some more architectures. It takes the code to disassemble and

size as input. The third input parameter is the virtual address that the code is located.

With this information it can calculate the virtual addresses of the instructions and

virtual addresses of the targets of relative branch instructions. Using this library we

disassemble functions with linear approach. It is worth to note that the compiler might

append the jump table of a switch statement at the end of the function. In this case

this jump table can be detected with further analysis [7]. In our tests we didn’t come

up with such a case.

3.5 Assembly

For inserting a new functionality or changing the existing one, new codes should be

inserted. Since, these codes should be a machine language codes, we need a con-

version to machine language. At this step, the new codes to be inserted should be

written in assembly language because of the ease of conversion to machine language

and ease of manipulation. Here, manipulation refers to on the fly address calculation

and change. In assembly language, unlike high level programming languages, the

branches, data accesses and function calls can be easily handled using relative ad-

dresses. Besides, the load address of the code can be adjusted easily so that the code

fits to the address that it will be inserted.

We use Netwide Assembler (NASM)4 to assemble the codes in the implementation.

3 http://www.beaengine.org/home. [Last accessed on June 26, 2015].
4 http://www.nasm.us/. [Last accessed on June 26, 2015].

27

http://www.beaengine.org/home
http://www.nasm.us/

NASM is an assembly tool which can give output in different formats. However,

since we insert the output into another binary file, we get the output as bare machine

language bytes.

3.6 Rewriting

The rewriting section contains the algorithm logic. The algorithm runs the following

main steps for inserting one code piece, into one function, into one executable binary

file:

1. Get the input. Input consists of:

• the executable binary file and debug information if it is separated from

binary file

• the name of the function, and the namespace and class names if they are

required for clarifying the function. Plus, for the overloaded functions the

parameter types can be given.

• the code to be inserted written in assembly language

• the insertion offset relative to the beginning of the function

2. Retrieve the function beginning address and the size of the function from debug

information. In debug information, the function beginning address is held as the

virtual address which is the address that the function will be loaded. This virtual

address is converted to file offset which gives the location of the function in the

file. This conversion is done with the help of analyzing program headers in the

ELF format. As we mentioned earlier, program header holds the file offset and

memory address correspondence information.

3. Read the machine language codes of the function from the file to the memory.

4. Disassemble the function. Virtual address of the beginning of the function is

also given to BeaEngine so that the instruction and branch target addresses are

also computed.

28

5. Find all static branch instructions and store the target addresses of them. Note

that these instructions’ target addresses are calculated relative to their virtual

addresses. Thus, after any change in these instructions’ position, the target

addresses should be fixed. The target address information will be used for

fixing the target addresses.

6. Add a new executable section in the binary file.

7. Move the function machine language codes of the function to the new exe-

cutable section in the file.

8. Create a map, named relocation map, of each instruction according to their

memory addresses. In this map hold the old and the corresponding new vir-

tual address of the each instruction in the function. This map will be used for

bookkeeping of the instructions’ new addresses.

9. Assemble and obtain the machine language codes of the code to be inserted that

is written in assembly language

10. Insert the machine language codes to the given offset that is relative to the be-

ginning of the function. Note that, this insertion corrupts the relative branches

because some bytes are inserted between the instructions. Thus, the precom-

puted relative addresses are wrong now.

11. Handle incoming function calls. The details of this step are explained in sub-

section 3.6.1

12. Handle dynamic jumps in the functions and calls to the function. Note that, the

function is moved to a different address. Thus, now all function calls to the

function and dynamic branches will flow to a dangling address. The details of

this step are explained in the subsection 3.6.2.

13. Update the relocation map according to the new addresses of the instructions.

14. Fix the static relative jumps and calls according to the last state of the reloca-

tion map. Change the operands of the static relative jumps and calls so that

the targets remain unchanged. In x86 the short jumps have one byte operand.

Hence, the short jumps can address from -128 to +127 byte relative range. Note

29

that, after rewriting due to the new inserted bytes, the targets of the short jumps

can go beyond this range. In this case, we should change short jumps to near

jumps which have four byte operand. Therefore, the size of the static jump in-

structions can change. This means byte shift in the function too. Thus, before

fixing the static jumps and calls the possible size changes should be computed

first.

Figure 3.1, 3.2 and 3.3 shows an example for the steps of the rewriting of a function

without a dynamic jump instruction.

Figure 3.1.a shows the assembly instructions of the function obtained by disassembly

and 3.2.b shows the assembly instructions of the same function after it is moved to

the new address.

Figure 3.2.a shows the initial relocation map which holds the original addresses of

the instructions in first column and the new address of the instruction in the second

column. Figure 3.2.b shows the assembly instructions after new code pieces inserted.

For simplicity only nop instructions are inserted in example.

Figure 3.3.a shows the updated relocation map (updated entries are written in red).

Figure 3.3.b shows the assembly instructions after the static jump instructions are

fixed.

3.6.1 Handling Incoming Function Calls

Moving the function to another address causes the function calls to the function to

become dangling. As a solution, detecting the incoming function calls and updating

them with the new address of the function can be proposed. However, these function

calls can be dynamic, in which the target is determined at runtime. In such cases

detecting the incoming function calls is a challenging task. For this reason, incoming

function calls are handled with a different approach. Instead of detecting incom-

ing function calls and updating them, in the proposed method the function calls are

redirected to the new address of the function. This is accomplished by inserting an

unconditional jump instruction, whose target is the new address of the function, to the

30

0x8048509

0x804850b

0x804850d

0x8048512

0x8048514

0x804851a

0x804851c

0x804851d

0x804851f

0x8048524

0x8048525

cmp eax, 0x0

jnz 0x804851f

mov ebx, 0xdeadc0de

add ecx, ebx

cmp ecx, 0xdeadbeef

je 0x8048524

dec eax

jmp 0x8048509

mov eax, 0xff

leave

ret

0x8049509

0x804950b

0x804950d

0x8049512

0x8049514

0x804951a

0x804951c

0x804951d

0x804951f

0x8049524

0x8049525

cmp eax, 0x0

jnz 0x804851f

mov ebx, 0xdeadc0de

add ecx, ebx

cmp ecx, 0xdeadbeef

je 0x8048524

dec eax

jmp 0x8048509

mov eax, 0xff

leave

ret

(a) (b)

Figure 3.1: Rewriting Example: (a) Step 4 - Disassembled Function, (b) Step 7 -

Function At New Address (old address + 0x1000)

original beginning address of the function [14]. Hence, whenever the moved function

is called, no matter the call instruction is dynamic or static; first the execution will

reach to the original address of the function. Then, the unconditional jump instruction

will redirect the execution to the new address of the function. Note that, inserting the

additional unconditional jump to the original beginning address of the function does

not affect the stack frame. Therefore, the return from the function is not affected.

Figure 3.4 shows the inserted unconditional jump instruction at the beginning of the

example function in the figure 3.1. Note that, the code of the function is moved to

another address. So the space at the function’s original position can be overwritten.

3.6.2 Handling Dynamic Jumps

One of the biggest challenges about static binary rewriting is handling the dynamic

jumps. The targets of the dynamic jumps are determined at runtime according to

state of the program. Hence, after moving the function to another address, the targets

of the dynamic jumps point to dangling addresses. Unlike static jumps, the target

addresses cannot be updated easily. Because, determining the target of the dynamic

31

0x8048509

0x804850b

0x804850d

0x8048512

0x8048514

0x804851a

0x804851c

0x804851d

0x804851f

0x8048524

0x8048525

0x8049509

0x804950b

0x804950d

0x8049512

0x8049514

0x804951a

0x804951c

0x804951d

0x804951f

0x8049524

0x8049525

0x8049509

0x804950b

0x804950d

0x804950e

0x804950f

0x8049514

0x8049516

0x804951c

0x804951e

0x8048524

0x8048525

0x804951f

0x8049521

0x8049522

0x8049523

0x8049524

0x8049529

0x804952a

mov ebx, 0xdeadc0de

add ecx, ebx

cmp ecx, 0xdeadbeef

je 0x8048524

dec eax

jmp 0x8048509

nop

nop

nop

mov eax, 0xff

leave

ret

cmp eax, 0x0

jnz 0x804851f

nop

nop

(a) (b)

Figure 3.2: Rewriting Example: (a) Step 8 - Initial Relocation Map, (b) Step 10 -

New Code Pieces Inserted

jumps requires analysis of the code. In fact, in most cases the target can have differ-

ent values at runtime dependent on the input, where the most typical example is the

switch statements. Thus, even a successful analysis on the possible target values of

the specific dynamic jump does not solve the problem. Instead of analyzing the tar-

get and statically redirecting it to the new address of instruction, the target should be

altered at runtime so that the target becomes correct for all cases. To achieve this, in-

stead of determining which dynamic jump instruction is targeting to which addresses,

we propose first to find the addresses, which may be a possible dynamic jump target,

without determining the correspondence between the dynamic jump instructions and

target addresses. The found possible target addresses are actually a superset of the

possible dynamic jump targets. The obtained set may include some addresses which

are not a target address but, it must include all actual target addresses.

32

0x8048509

0x804850b

0x804850d

0x8048512

0x8048514

0x804851a

0x804851c

0x804851d

0x804851f

0x8048524

0x8048525

0x8049509

0x804950b

0x804950f

0x8049514

0x8049516

0x804951c

0x804951e

0x804951f

0x8049524

0x8049529

0x804952a

0x8049509

0x804950b

0x804950d

0x804950e

0x804950f

0x8049514

0x8049516

0x804951c

0x804951e

0x8048524

0x8048525

0x804951f

0x8049521

0x8049522

0x8049523

0x8049524

0x8049529

0x804952a

mov ebx, 0xdeadc0de

add ecx, ebx

cmp ecx, 0xdeadbeef

je 0x8049529

dec eax

jmp 0x8049509

nop

nop

nop

mov eax, 0xff

leave

ret

cmp eax, 0x0

jnz 0x8049524

nop

nop

(a) (b)

Figure 3.3: Rewriting Example: (a) Step 13 - Updated Relocation Map, (b) Step 14 -

Static Jumps Fixed

3.6.2.1 Finding Possible Dynamic Jump Targets

The dynamic jump target is obtained from data at run time. Although the target

address may change according to the input or values (i.e. register values, data fields

at memory etc.), the target addresses should be present in the binary file. The target

addresses of the dynamic jump instructions are determined based on a lookup table

like the switch case. Therefore, in spite of the difficulty of determining possible

targets of a specific dynamic jump with perfect accuracy [31], it is possible to find a

superset of all possible jump targets without analyzing the execution of the program.

In order to find the superset of all possible jump targets, we interpreted the all non-

executable sections as data. Note that, we do not know the structure of these sections;

hence, we do not know how to interpret the values. What we did is that, we took the

33

0x8048509

0x804850e

...

...

jmp 0x8049509

...

...

...

Figure 3.4: Rewriting Example: Step 11 - Redirecting Incoming Function Calls

section as a block and treated each byte as if it is a beginning of an address value. Plus,

in order to cover possible data bytes between the function’s codes and the immediate

values in the function’s code, we did the same treatment to the function code (from

function begin address to end address as a block). In the end, all address values are

added to the superset of the all possible jump targets. This approach includes a lot of

address that is not a jump target. On the other hand, the advantage is that it includes

all real dynamic jump targets. This approach for finding the possible jump targets

was successful in the tests (i.e. we did not come up with a case that a dynamic jump

target is not handled). Nevertheless, if it is needed, the search area for the possible

jump targets can be extended.

As we mentioned, the computed superset of all possible jump target includes redun-

dant address values. However, the redundant address values in the superset can be

pruned [14]. Note that, the possible jump target must point beginning of one of the

instructions in the function. Otherwise, the jump target would be in the middle of an

instruction which is not a valid case if the binary file is not hand crafted or obfuscated.

The other possibility is that if the target is not inside the function, the dynamic jump

target may be actually beginning of a function. This case does not cause a problem

even if the target function is also relocated. Since, as it is mentioned in the section

3.6.1, the incoming function calls to the relocated target function are handled by in-

serting a jump instruction at the beginning of the function, if the possible jump target

points an address outside the function, it can be pruned. At the end, the superset in-

cludes only the addresses which are actually the begin address of an instruction inside

the function.

34

3.6.2.2 Redirection Map For Dynamic Jump Targets

Since dynamic jump targets are determined at runtime according to the state of the

program, for preventing dangling target addresses, after relocating the function, the

dynamic jump targets should be redirected according to the new position of the func-

tion. This redirection cannot be done statically because, each execution of one dy-

namic jump instruction may lead to different target addresses.

For dynamic jump target translation at runtime, it is necessary to store the new ad-

dresses of the instructions of the function. In other words, we need a map for query-

ing the new position of the dynamic jump targets. Therefore, the map should hold

the old and the new addresses of the instructions of the function. Since this map will

be accessed at runtime, it has to be stored in the binary file. Moreover, finding the

new address of the target should be fast (preferably with O(1) time complexity) for

reducing the overhead.

A straightforward solution is holding the map like an array. Array’s zeroth index cor-

responds to the new address of the first instruction of the function and the following

indexes correspond to the new addresses of following instructions of the function.

Hence, the array holds the new address of each instruction in the indexes. However,

note that in x86 the instruction sizes are not fixed so that without a secondary map for

querying the beginning addresses of the instructions, we cannot find the new address

of the specific instruction with O(1) time complexity. A solution can be holding an

entry for each byte of the function in the array. Although, the array would be redun-

dantly long, with this approach without secondary map for querying the beginning of

the instructions, we can find the new address of each byte of the function with O(1)

time complexity.

If the possible dynamic jump targets could not be determined, we would need to put

an entry to the map for every byte in the function. However, by analyzing the possible

jump targets, the addresses that cannot be dynamic jump target are eliminated. As a

result, number of entries that should be held in the map reduces. Actually, after

pruning the entries by finding the superset of possible jump targets, we can use a

different approach for storing new addresses of the possible target instructions.

35

Since the new addresses of the instructions is only required for translating the dy-

namic jump targets, we only need to find the new addresses of the instructions which

are included in the superset of possible jump targets. Besides, note that the code of

the function is moved to another address. Therefore, the space at the function’s origi-

nal position is available and we can safely write the new addresses of the instructions

to the possible jump targets. On each possible jump target address which is actually

beginning of an instruction, we store the new address of the instruction with a one

byte marker at the beginning of the address [31]. The purpose of the marker is to in-

dicate that the following four bytes is an address value which is the new address of the

instruction. This address value is used to redirect the dynamic jump targets to the cor-

rect addresses. The reasons why we use marker byte will be explained in the section

3.6.2.3. Figure 3.5.a shows an example to a function with a dynamic jump. Figure

3.5.b with assuming the found possible jump targets are 0x804850d, 0x8048513 and

0x8048519, shows how the redirection entries stored in that function after the original

function is moved to another address. Suppose the numbers next to the 0xF4 byte are

the new addresses of the instructions, after they moved to another address in the new

executable section.

...

0x804850d

0x8048510

0x8048513

0x8048516

0x8048518

0x8048519

...

...

mov eax, [ebp+8]

mov ebx, [ebp+0xc]

mov ecx, [ebp+0x10]

jmp eax

inc ebx

dec ecx

...

...

0x804850d

0x8048513

0x8048519

...

...

0xF4 0x804950d

...

0xF4 0x8049513

...

...

0xF4 0x8049530

...

(a) (b)

Figure 3.5: Rewriting Example: (a) Function With A Dynamic Jump, (b) Redirection

Entries For Possible Jump Targets 0x804850d, 0x8048513 and 0x8048519

0xF4 is used as marker byte. In x86 it is the opcode of the halt instruction which

is not a valid instruction [31]. Note that, one byte marker and four bytes address

value is written to the possible target instruction. Therefore it requires five bytes

36

space to store the new addresses of the instructions. Nevertheless, the problem is

that there can be multiple possible target in five bytes range, because, in x86 there

are instructions shorter than five bytes. Furthermore, the space for storing the new

addresses is restricted with the size of the function. Hence, possible jump targets that

are in the last four bytes of the function cause the same problem. Plus, in order to

handle the incoming function calls to the relocated function, as we mentioned earlier,

a jump instruction, whose length is also five bytes, is written at the beginning of the

function. Therefore, if there is a possible jump target in the first five bytes of the

function, we cannot overwrite five byte on the jump instruction.

In order to handle such cases where we cannot write five bytes due to space restriction,

we write one byte array index indicator to the possible jump target address. Then,

the new address is stored in an array at the corresponding index. Then, the array is

stored in the binary for accessing at runtime. Except the case that there is a possible

jump target in the first five bytes of the function, the array index can be assigned

incrementally from 0 to 0xFF and skipping 0xF4. If there is a possible jump target

in the first five bytes of the function, we use the byte that is already written in the

jump instruction as array index indicator. At the end, for one function we can store

up to 255 new addresses for the possible jump targets. During the tests we didn’t

come up with such a case that 255 index bytes weren’t enough. However, if such a

case occurs, one of the previously mentioned approaches can be used such as storing

the new address of each byte of the function in an array. Figure 3.6.a with assuming

the found possible jump targets are 0x804850d, 0x804850e, 0x80485013, 0x8048516

and 0x8048519, shows the redirection entries stored in the function 3.5.a. Figure 3.6.b

shows the array holding the extra redirection entries. Since we cannot insert five bytes

between 0x804850d and 0x804850e, we used an array index indicator at 0x804850d.

Again, there is not five bytes space between 0x8048516 and 0x8048519, so we used

another array index indicator at 0x8048516.

One remaining exception about storing the new addresses of possible jump targets

occurs when the jump instruction written at the beginning of the function has a 0xF4

byte in it and there is a possible jump target corresponding that byte. In this case we

cannot use that byte as array index indicator because it is the marker byte. By moving

the function to a different address, the problem can be solved. Since the operand bytes

37

...

0x804850d

0x804850e

0x8048513

0x8048516

0x8048519

...

...

0x00

0xF4 0x804950e

0xF4 0x8049513

...

0x01 ...

0xF4 0x8049530

...

0x0

0x1

0x804950e

0x8049516

(a) (b)

Figure 3.6: Rewriting Example: (a) Redirection Entries For Possible Jump Targets

0x804850d, 0x804850e, 0x80485013, 0x8048516, 0x8048519, (b) Redirection En-

tries In Extra Array

of the jump instruction will change according to its target address, if the new address

of the function is changed properly, it will change the bytes in the instruction.

3.6.2.3 Dynamic Jump Target Translation At Runtime

The target address of the dynamic jumps should be updated at runtime. According

to the original target address, it has to be translated to its corresponding new address

with the help of the map explained in the section 3.6.2.2. In order to accomplish this

task, we need to insert a code piece just before the dynamic jump instruction. The

code piece should look the original target address, retrieve the new position of the

target and update the target of dynamic jump accordingly.

We categorize the dynamic jumps into two categories according to their operands’ for-

mat. In one category it is simpler to do the translation. In this category the operand of

the dynamic jump is just a register like eax, ebx, etc. The target of the dynamic jump

is directly the value in the operand register. Therefore, in order to handle this case,

we just need to update the value in the register. On the other hand, the other category

uses memory reference. In this category, the target of the dynamic jump is stored in a

memory location and the operand shows the address of the memory location. More-

over, the address of memory location might be resolved with a computation in the

38

operand. Table 3.4 shows example instructions from these categories. For the sec-

ond category, we split the instruction. First, we insert an instruction which does the

computation - if there is any - and obtain the actual target address from the memory

location that holds the actual target address. Next, we insert a code piece which up-

dates the target address according to our map. Finally, we replace the dynamic jump

with a dynamic jump instruction from the first category.

Table 3.4: Example Dynamic Jump With and Without Computation

Dynamic jump without computation Dynamic jump with computation

1 jmp eax 1 jmp [0 xdeadc0de +eax 4]

The code piece that does the translation differs depending on whether we need an

array to store the new addresses or not. If there is no need for the array, which means

for all possible jump targets there are five bytes space, the translation code piece is

simpler. It just has to check if the first byte of the target address is 0xF4 or not. Table

3.5 shows the code pieces for this case. If the extra array is used for storing some of

the new addresses of the possible jump targets, the code piece has to look into array

to retrieve the new address from the array. Table 3.6 shows the code pieces for this

case.

The marker byte is used to discriminate whether the new address is in the extra array

or not. If 0xF4 was written at the first byte of the target address, this indicates that the

following four byte is the new address of the target. On the other hand, other bytes

mean that the new address of the target is stored in the array. For the case that extra

array is not needed, another purpose of the marker byte is to indicate if the dynamic

jump target leads into the function that is actually relocated or it leads to another

function. Since, in x86 no valid instruction can start with 0xF4 byte, if there is a

0xF4 byte at the beginning of an instruction, we can be sure that the byte was written

by us. Hence, we can be sure the target address actually leads into the function that

was relocated. For the case that extra array is needed, in order to be sure the target

address actually leads into the function, we check if the target address is between the

function’s original begin and end address.

One important issue is that saving the values of the used registers in these code pieces.

39

Table 3.5: Translation Examples (Without Extra Array)

Translation of jmp eax Translation of jmp [0xdeadc0de+eax*4]

1 cmp b y t e [eax] , 0xF4
2 cmovz eax , [eax +1]
3 jmp eax

1 sub esp , 4
2 push eax
3 mov eax , [0 xdeadc0de +eax 4]
4 cmp b y t e [eax] , 0xF4
5 cmovz eax , [eax +1]
6 mov [esp + 4] , eax
7 pop eax
8 r e t

Since the code pieces inserted after compilation, if the value of any register is changed

due to the code piece inserted by us, it will cause change in the logic of the program.

Moreover, the stack frame has to remain unchanged. Most of the operations in the

binary is dependent on the stack frame like function calls, function returns, local

variables etc. In order to preserve values of the used register by the code piece and

the values in the stack frame we used some extra instructions.

In the second columns of the table 3.5 and 3.6, the first instruction is opening space

in the stack frame to store the new address of the jump target. The found new address

of the jump target is stored in that space by the instruction mov [esp+4], eax. The

second instruction pushes the value of the eax register so, after our task is done, the

old value is restored by pop eax instruction. Note that the last instructions are ret

however, it is not used for returning from a function. As we mentioned before, the

ret instruction pops an address from top of the stack into the instruction pointer. We

used this fact, for redirecting the execution to the new address of the jump target and

restoring the stack frame which is modified at the first instruction by opening space.

3.6.3 Handling PIC

Position independent code (PIC) is the code which executes independent from where

it is loaded into memory [21]. PIC is not tied to a fixed address. Since it includes no

absolute address, it can execute correctly wherever it is loaded to memory. However,

it uses relative addresses in order to access to memory. PIC retrieves the current

value of the instruction pointer and computes the address to be accessed relative to

40

Table 3.6: Translation Examples (With Extra Array)

Translation of jmp eax Translation of jmp [0xdeadc0de+eax*4]

1 cmp b y t e [eax] , 0xF4
2 j e n o t E x t r a
3 cmp dword eax , funcAddr
4 j l o u t
5 cmp dword eax , funcEndAddr
6 j g e o u t
7 mov b y t e a l , [eax]
8 and eax , 0xFF
9 mov eax , [a r r a y A d d r + eax 4]

10 jmp o u t
11 n o t E x t r a :
12 mov eax , [eax +1]
13 o u t :
14 jmp eax

1 sub esb , 4
2 push eax
3 mov eax , [0 xdeadc0de +eax 4]
4 cmp b y t e [eax] , 0xF4
5 j e n o t E x t r a
6 cmp dword eax , funcAddr
7 j l o u t
8 cmp dword eax , funcEndAddr
9 j g e o u t

10 mov b y t e a l , [eax]
11 and eax , 0xFF
12 mov eax , [a r r a y A d d r + eax 4]
13 jmp o u t
14 n o t E x t r a :
15 mov eax , [eax +1]
16 o u t :
17 mov [esp + 4] , eax
18 pop eax
19 r e t

the instruction pointer. Therefore, changing the position of the PIC in the binary will

make the relative addresses be computed wrong.

In x86 direct accesses to instruction pointer is not allowed. Therefore, value of in-

struction pointer is retrieved with the help of call instruction. As we mentioned ear-

lier, the call instruction implicitly pushes the address of the instruction following the

call instruction to the stack. In other words, it pushes the return address to the stack.

With the help of this fact, in PIC the return address is retrieved from stack by the pop

instruction or by reading the return value from stack. After relocating the function the

corrupted PICs are fixed by searching this PIC pattern in the function code and up-

dating the register value that holds the instruction pointer value according to the new

position of the function code. Table 3.7 shows an example to PIC and with assuming

the address of the add ebx, 0x1234 instruction is 0x8048ABC, how it is modified

during rewriting.

41

Table 3.7: Example PIC

Example Original PIC Example Rewritten PIC

1 ge tE IPVa lue :
2 mov ebx , [esp]
3 r e t
4 . . .
5 c a l l ge tE IPVa lue
6 add ebx , 0 x1234
7 c a l l [ebx +0 x1c]
8 . . .

1 ge tE IPVa lue :
2 mov ebx , [esp]
3 r e t
4 . . .
5 c a l l ge tE IPVa lue
6 mov ebx , 0x8048ABC
7 add ebx , 0 x1234
8 c a l l [ebx +0 x1c]
9 . . .

42

CHAPTER 4

TESTS AND RESULTS

We implemented a standalone function based static binary rewriting framework for

executable binary files, Linux based operating systems and x86 32 bit architectures.

It takes an executable file, code insertion description including the function and the

offset relative to the beginning of the function to which the code piece will be inserted.

The framework gives the new executable binary file as output, after the code insertion

process is complete.

The tests were run on virtual machine with an Ubuntu 14.04 guest operating system.

The virtual machine has a single core 2.83 GHz processor and 2 GB of RAM.

We tested our implementation against nine applications. Seven of them are written

in C programming language and two of them are written in C++. The names of the

applications and the small description of them are listed below:

base64: it does base64 encoding/decoding of the given input1

md5sum: it computes and verifies the md5 hash of the given input2

sha1sum: it computes and verifies the sha1 hash of the given input3

tsort: it performs topological sort on the given input4

gzip: it compresses the given file using Lempel-Ziv coding5

1 http://linux.die.net/man/1/base64. [Last accessed on June 26, 2015].
2 http://linux.die.net/man/1/md5sum. [Last accessed on June 26, 2015].
3 http://linux.die.net/man/1/sha1sum. [Last accessed on June 26, 2015].
4 http://linux.die.net/man/1/tsort. [Last accessed on June 26, 2015].
5 http://linux.die.net/man/1/gzip. [Last accessed on June 26, 2015].

43

http://linux.die.net/ man/1/base64
http://linux.die.net/man/1/md5sum
http://linux.die.net/man/1/sha1sum
http://linux.die.net/man/1/tsort
http://linux.die.net/man/1/gzip

diff: it compares the given files line by line6

readelf: it parses and displays the information in the given ELF files7

cppcheck: it is a static analysis tool for C/C++ code8

doxygen: it is a tool for generating documentation from annotated C++ source

codes9

Those applications are all open source. They are compiled with gcc (Gnu Compiler

Collection)10 with -pg -g flags11. The -pg flag is used for enabling profiling and -g

flag is to include the debug information to the file. These executable binary files are

our control binaries.

After compilation, the applications are run with their inputs and profiled with gprof12

[16]. gprof outputs the list of all executed functions that takes measurable time (some

functions takes very small execution time so that the profiler cannot measure). The

functions that are in the list, are the functions that will be processed by our framework

in our tests. Besides, for the functions in the list gprof outputs how many times that

each function is executed. Plus, the total execution time of each function in the list

and the total execution time of the program are available in the output of the gprof.

We inserted four bytes of nop (each nop is one byte) instructions to the beginning of

all the functions in the list using our framework. The resulting executable binary files

are our experimental binaries. Table 4.1 shows how many function was rewritten by

our framework and total numbers of the static and dynamic jump instructions in the

rewritten functions.

In our tests, we ran both control binaries and experimental binaries with the same

inputs which are actually the inputs we used to obtain the function list. Both control

and experimental binaries were run 31 times. The first runs were ignored in order to

eliminate the effect of hard disk cache. The first run usually takes dramatically longer
6 http://linux.die.net/man/1/diff. [Last accessed on June 26, 2015].
7 http://linux.die.net/man/1/readelf. [Last accessed on June 26, 2015].
8 http://linux.die.net/man/1/cppcheck. [Last accessed on June 26, 2015].
9 http://www.doxygen.org/. [Last accessed on June 26, 2015].

10 https://gcc.gnu.org/. [Last accessed on June 26, 2015].
11 https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html. [Last accessed on June

26, 2015].
12 http://linux.die.net/man/1/gprof.. [Last accessed on June 26, 2015].

44

http://linux.die.net/man/1/diff
http://linux.die.net/man/1/readelf
http://linux.die.net/man/1/cppcheck
http://www.doxygen.org/
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
http://linux.die.net/man/1/gprof.

Table 4.1: Numbers About The Tested Binaries
of rewritten functions # of static jumps # of dynamic jumps

base64 4 54 0
md5sum 10 48 0
sha1sum 10 51 0

tsort 15 149 0
gzip 43 480 0
diff 40 729 1

readelf 38 2439 8
cppcheck 609 28620 7
doxygen 1695 1982 103

execution time. The following runs take less execution time because the input file is

cached.

For all applications, the execution times of 30 runs for both control and experimental

binaries are measured with the help of gprof. Then the average, minimum, maxi-

mum and standard deviation of the execution times were calculated. Table 4.2 shows

the results for each application (o stands for original executable file, r stands for the

rewritten executable file). Plus, the figure 4.1 shows the graph of the results.

In order to validate that the experimental binaries provide same functionality correctly

with the control binaries, for each application the hash of the output of the each run

was computed by md5sum13 shell tool. Then, each hash were checked if it same

for control binary and experimental binary. In the tests the output hash checks were

successful for all binaries for all runs.

In order to observe the effect of handling dynamic jumps and scaling of our method

over the size of data, we did an additional test. In doxygen application we picked two

different functions. One of the functions, which is named HtmlGenerator::codify,

includes one dynamic jump instruction. The other function, which is named QG-

Dict::look_ascii, does not include dynamic jump instruction. In one case we inserted

four bytes of nop instructions only to the beginning of the function with a dynamic

jump. In the other case we did the same operation to only the function without dy-

namic jump.

13 http://linux.die.net/man/1/md5sum. [Last accessed on June 26, 2015].

45

http://linux.die.net/man/1/md5sum

Table 4.2: Execution times in seconds; o: original, r: rewritten

average minimum maximum stdev

o r o r o r o r

base64 2.76 2.66 2.51 2.38 3.04 3.17 0.15 0.21

md5sum 2.09 2.08 1.73 1.50 2.67 2.59 0.25 0.29

sha1sum 7.01 6.80 6.68 6.57 7.38 7.03 0.19 0.15

tsort 8.55 7.46 5.28 4.74 12.70 11.15 2.40 1.94

gzip 42.43 44.28 39.64 43.44 44.01 45.66 1.06 0.58

diff 21.91 22.45 19.78 20.66 24.10 25.61 1.23 1.38

readelf 3.81 7.67 3.13 6.83 4.20 8.24 0.44 0.4

cppcheck 71.57 78.88 68.87 76.77 72.75 81.00 0.99 1.15

doxygen 3.52 4.10 3.06 3.63 3.96 4.60 0.21 0.27

In both cases we used eight inputs with the size range of 200mb to 1.6 GB with

increase amount of 200mb. In both cases, for each input the application were run 21

times with ignoring the first one. Then, for each input the average execution time of

the altered function was measured for both cases. Moreover, as in the previous test

the output hash check was done and the checks were successful. Figure 4.2 shows the

graph of the execution times of the function with a dynamic jump instruction. Figure

4.3 shows the graph of the execution times of the function without dynamic jump

instruction.

As the graphs indicate the main cause of the overhead comes from handling the dy-

namic jump instructions. If there is no dynamic jump instruction in the function, the

execution time of the original and the altered function are approximately same. The

overhead of the handling dynamic jump instructions grows approximatively linear

with the increasing input size.

As it can be seen from the table 4.2 and graph in the figure 4.1, the performance

overhead in the readelf is much more higher than the performance overhead in the

other applications. The reason for this high performance overhead in the read-

elf application is caused by the handling the dynamic jump instructions. In read-

elf application there is a function with a dynamic jump instruction whose name is

byte_get_little_endian. This function takes 79.3% of the total execution time in the

46

Figure 4.1: Tested Binaries and Execution Times

original executable file. Therefore, considering this fact and the fact that handling

dynamic jumps is the main cause of performance overhead (as the figure 4.2 and 4.3

indicates), shows us the reason of this high performance overhead in readelf.

Note that, after inserting the nop instructions, the function’s position is changed. This

causes the failure of the profiling by gprof, because, it depends on the symbol table

entries in the binary file which becomes wrong after relocation of the function. For

the tests, after the code insertion process, we fixed the corresponding symbol table

entries in the binary. Nevertheless, apart from this special case, after the rewriting of

the binary the debug information become wrong due to the relocation of the functions.

4.1 Case Study

Our main motivation behind static binary rewriting study is applying software protec-

tion methods without source code modification. For the sake of showing this use case

we applied a known obfuscation method to an executable binary file without making

any change in source code using our binary rewriting framework.

As we mentioned earlier, disassemblers can generate the control flow graph of a pro-

47

Figure 4.2: Execution Time of A Function With A Dynamic Jump (for a Doxygen

function)

gram with a pretty good accuracy. This information is important for a reverse engi-

neer, because, the control flow graph reveals how the program executes. With further

analysis, based on the control flow graph a reverse engineer can obtain the if-else and

loop mechanisms in a program. Therefore, this kind of information can be a good

hint for learning the secret algorithm in the program.

For hardening the control flow graph analysis we implemented a method named as

jump through branch functions [24, Ch. 4.3.5]. This method replaces static jump in-

structions with a function call. Note that the ret instruction pops the return address

from the stack and execution continues from the popped address. Using this fact, in

the stack the return point of those functions are changed with the target address of the

corresponding static jump instruction. Therefore, instead of returning to the instruc-

tion next to the call instruction, the functions return to the target addresses of the jump

instructions. This method relies on the fact that the disassemblers assume that the call

instruction returns to the following instruction of call instruction. Furthermore, tar-

gets of the static jump instructions can be determined intuitively (the operand is the

relative distance to the target or the absolute address). When these static jump in-

structions are replaced with function calls, it becomes harder to determine the targets.

48

Figure 4.3: Execution Time of A Function Without Dynamic Jump (for a Doxygen

function)

Hence, the disassemblers’ accuracy at constructing the correct control flow decreases.

In this method for each conditional and unconditional static jump instruction, a new

function is defined and the jump instruction is replaced with a call instruction to its

corresponding function. For conditional jump instructions, the condition is checked

in the corresponding function and if the condition does not hold, the return address

is not modified so the behaviour remains unchanged. The call instruction does not

modify the flags so the condition checks can be done safely after the function call.

We applied this method to a function named gen_codes in gzip14. Figure 4.4 shows

the original control flow graph of the function and 4.5 shows the control flow graph

of the function after the method applied to the function. The control flow graphs

are generated by IDA-Pro [26]. As it can be seen from the generated control flow

graphs, before the method is applied IDA-Pro is successfully generated the control

flow graph including the decision making mechanism (i.e. if-else statements). On the

other hand, after the method is applied the control flow graph becomes flat. In this

case the decision making mechanism and the algorithm of the function is harder to

14 http://linux.die.net/man/1/gzip. [Last accessed on June 26, 2015].

49

http://linux.die.net/man/1/gzip

understand. The adversary should trace the function calls in the function in order to

understand the algorithm. Plus, for making even harder to understand, these functions

can be obfuscated with other methods as well.

50

Figure 4.4: Case Study: Original Control Flow Graph

51

Figure 4.5: Case Study: Control Flow Graph After Branch Function Method

52

CHAPTER 5

CONCLUSION

In this thesis we studied on static binary rewriting. Static binary rewriting provides

capability of inserting some code pieces to executable binary files. Inherently, it is

usually used as a subcomponent in a bigger task such as applying software protection

methods to executable binary files without source code modification. Therefore, it is

important to have standalone implementation for using the static binary rewriting as

a subcomponent in other products.

Some prior studies use a special compiler and/or linker in their approaches. Some

others use a third party commercial disassembly tool (mostly IDA Pro) to make anal-

ysis on the binary file. Unlike these studies, our implementation can work directly

on the output of the compiler without any third party disassembly tool or special

compiler/linker dependency. To remove the disassembly tool dependency, we used

an open source disassembly library which translates the given byte sequence to x86

representation. Then, the required analysis is done by our framework.

In our solution we use the debug information. This brings us two advantages. One

of them is the disassembly accuracy. Since the functions begin and end addresses is

known, the code data interleaving, which reduces the disassembly accuracy, is much

less problematic. The other advantage is the flexibility to select functions from the

input program and insert different code pieces to different functions. This is impor-

tant for applying software protection methods in terms of performance and provided

protection. Since, the software protection methods have some performance overhead,

instead of applying to all functions, applying to some critic functions reduces the

overall performance overhead.

53

According to the test results, the main cause of our implementation’s overhead is

caused by handling dynamic jump instructions. As we mentioned, we insert some

extra code pieces and redirection maps for translating the dynamic jump targets to

their new addresses. That’s why handling dynamic jump instructions brings some

overhead. On the other hand, the execution time of the function without dynamic

jump is nearly not affected.

The most important challenge was handling the dynamic jump instructions in static

binary rewriting. We proposed a runtime translation based solution to this problem.

As a solution we searched the possible jump targets of the dynamic jump instructions

in the binary. Then, the possible jump targets are used at runtime translation. This

translation should be fast in order to reduce performance overhead. In the framework

the runtime translation of dynamic jump targets are done in constant time algorithmic

complexity.

5.1 Future Work

In our study the implementation is done for Linux based operating systems and x86

32 bit architecture. As a future work, the implementation can be adapted to other

platforms such as 64 bit architecture and windows operating systems.

Another remaining work is handling the case where the binaries can be loaded into

different addresses each time they are executed. Address space layout randomization

(ASLR)[29] property of the operating systems, libraries and shared objects are the

instances of this case. In these cases, since the binary file can be loaded into different

address each time it’s loaded, the accesses to memory using direct address values are

problematic. The address values will be changed when the binary file loaded into

different address. These direct accesses to memory addresses normally handled with

the help of relocation information in the binary file [22]. The relocation information

stores the direct address values that should be updated according to the load address.

Then, the address update operation is done while loading the binary file to memory

using the relocation information in the file. Therefore, the direct addresses will show

the correct addresses after the file is loaded into memory.

54

In our implementation we insert code pieces that use direct addresses to access data

(for example, the address of the extra array which is used at runtime translation of

dynamic jump targets). This is problematic when ASLR property of the operating

system is active or the binary file is a library or shared object. As a solution the direct

addresses which are used should be added to relocation information of the binary file.

Therefore, during loading of the binary file the addresses will be updated.

As we mentioned earlier, during rewriting process the rewritten functions (i.e. code

inserted functions) are moved to another address. Hence, the debug information of

the executable binary file become wrong. In order to fix this issue, after the rewriting

process the related debug information can bu updated.

55

56

REFERENCES

[1] David A. Libdwarf and dwarfdump. http://www.prevanders.net/
dwarf.html. [Last accessed on June 26, 2015].

[2] Philippe Biondi and Fabrice Desclaux. Presentation at black hat europe:
Silver needle in the skype, 2006. https://www.blackhat.com/
presentations/bh-europe-06/bh-eu-06-biondi/bh-eu-06-
biondi-up.pdf. [Last accessed on June 26, 2015].

[3] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto.
Scientific but not academical overview of malware anti-debugging, anti-
disassembly and anti-vm technologies. Black Hat USA, 2012.

[4] Derek Lane Bruening. Efficient, transparent, and comprehensive runtime code
manipulation. PhD thesis, Massachusetts Institute of Technology, 2004.

[5] Randal Bryant, O’Hallaron David Richard, and O’Hallaron David Richard.
Computer systems: a programmer’s perspective, volume 2, chapter 3.6–3.7,
pages 138–171. Prentice Hall Upper Saddle River, 2003.

[6] Hoi Chang and Mikhail J Atallah. Protecting software code by guards. In
Security and privacy in digital rights management, pages 160–175. Springer,
2002.

[7] Cristina Cifuentes and Mike Van Emmerik. Recovery of jump table case state-
ments from binary code. In Program Comprehension, 1999. Proceedings. Sev-
enth International Workshop on, pages 192–199. IEEE, 1999.

[8] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 184–196. ACM, 1998.

[9] DWARF Debugging Information Format Committee et al. Dwarf debugging
information format, version 4. Free Standards Group, 2010.

[10] Tool Interface Standards Committee et al. Executable and linkable format (elf).
Specification, Unix System Laboratories, 2001.

[11] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 1: Basic Architecture, chapter 2–3. 2015.

57

http://www.prevanders.net/dwarf.html
http://www.prevanders.net/dwarf.html
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf

http://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-software-
developer-vol-1-manual.pdf. [Last accessed on June 26, 2015].

[12] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 2: Instruction Set Reference, A-Z, chapter 3–4.
2015. http://www.intel.com.tr/content/dam/www/public/
us/en/documents/manuals/64-ia-32-architectures-
software-developer-instruction-set-reference-manual-
325383.pdf. [Last accessed on June 26, 2015].

[13] Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Link-time binary
rewriting techniques for program compaction. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 27(5):882–945, 2005.

[14] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. Bistro: Binary component
extraction and embedding for software security applications. In Computer
Security–ESORICS 2013, pages 200–218. Springer, 2013.

[15] James P Farwell and Rafal Rohozinski. Stuxnet and the future of cyber war.
Survival, 53(1):23–40, 2011.

[16] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. Gprof: A call
graph execution profiler. In ACM Sigplan Notices, volume 17, number 6, pages
120–126. ACM, 1982.

[17] Galen Hunt and Doug Brubacher. Detours: Binaryinterception ofwin 3 2 func-
tions. In Usenix Windows NT Symposium, pages 135–143, 1999.

[18] Tımea László and Ákos Kiss. Obfuscating c++ programs via control flow flat-
tening. Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös
Nominatae, Sectio Computatorica, 30:3–19, 2009.

[19] Michael A Laurenzano, Mustafa M Tikir, Laura Carrington, and Allan Snavely.
Pebil: Efficient static binary instrumentation for linux. In Performance Analysis
of Systems & Software (ISPASS), 2010 IEEE International Symposium on, pages
175–183. IEEE, 2010.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: build-
ing customized program analysis tools with dynamic instrumentation. In Acm
Sigplan Notices, volume 40, number 6, pages 190–200. ACM, 2005.

[21] Sun Microsystems. Linker and Libraries Guide, pages 115–116.
2004. http://docs.oracle.com/cd/E19683-01/817-3677/817-
3677.pdf. [Last accessed on June 26, 2015].

58

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com.tr/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com.tr/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com.tr/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com.tr/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://docs.oracle.com/cd/E19683-01/817-3677/817-3677.pdf
http://docs.oracle.com/cd/E19683-01/817-3677/817-3677.pdf

[22] Sun Microsystems. Linker and Libraries Guide, chapter 3. 2004. http://
docs.oracle.com/cd/E19683-01/817-3677/817-3677.pdf. [Last
accessed on June 26, 2015].

[23] Robert Muth, Saumya K Debray, Scott Watterson, and Koen De Bosschere. alto:
a link-time optimizer for the compaq alpha. Software: Practice and Experience,
31(1):67–101, 2001.

[24] Jasvir Nagra and Christian Collberg. Surreptitious software: obfuscation, wa-
termarking, and tamperproofing for software protection, chapter 4–9, pages
201–601. Pearson Education, 2009.

[25] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan notices, volume 42, number
6, pages 89–100. ACM, 2007.

[26] Hex Rays. Ida pro disassembler and debugger. https://www.hex-
rays.com/products/ida/. [Last accessed on June 26, 2015].

[27] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank
Levy, Brian Bershad, and Brad Chen. Instrumentation and optimization of
win32/intel executables using etch. In Proceedings of the USENIX Windows
NT Workshop, volume 1997, pages 1–8, 1997.

[28] Benjamin Schwarz, Saumya Debray, and Gregory Andrews. Disassembly of
executable code revisited. In Reverse engineering, 2002. Proceedings. Ninth
working conference on, pages 45–54. IEEE, 2002.

[29] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the effectiveness of address-space randomization. In Pro-
ceedings of the 11th ACM conference on Computer and communications secu-
rity, pages 298–307. ACM, 2004.

[30] Serhat Toktamışoğlu. Last man standing or self defensive software. Defence
Turkey, 8(48):46, 2013.

[31] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code. In
Proceedings of the 2012 ACM conference on Computer and communications
security, pages 157–168. ACM, 2012.

59

http://docs.oracle.com/cd/E19683-01/817-3677/817-3677.pdf
http://docs.oracle.com/cd/E19683-01/817-3677/817-3677.pdf
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Software Protection
	Software Protection Methods

	Motivation
	Challenges
	Former Studies
	Scope of the Thesis

	BACKGROUND
	x86 Assembly Language
	Stack
	ELF Format
	Debug Information Format DWARF
	Disassembler
	Assembler

	IMPLEMENTATION
	Analyzing ELF Format
	Finding Functions
	Creating New Executable Section
	Disassembly
	Assembly
	Rewriting
	Handling Incoming Function Calls
	Handling Dynamic Jumps
	Finding Possible Dynamic Jump Targets
	Redirection Map For Dynamic Jump Targets
	Dynamic Jump Target Translation At Runtime

	Handling PIC

	TESTS AND RESULTS
	Case Study

	CONCLUSION
	Future Work

	REFERENCES

