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ABSTRACT

MULTI-DIMENSIONAL MODELLING OF EVAPORATION IN THE
MICRO REGION OF A MICRO GROOVED HEAT PIPE

AKKU�, Y���T

Ph.D., Department of Mechanical Engineering

Supervisor : Prof. Dr. Zafer Dursunkaya

Co-Supervisor : Prof. Dr. Hakan I³�k Tarman

June 2015, 143 pages

Capillary cooling devices are preferred in heat removal from electronic compo-

nents which are characterized by high heat dissipation rates. Heat pipes use

various wick structures to generate the necessary capillary action. Heat pipes

that use grooved micro-channels as wick structures, have been widely studied

by researchers due to the fact that their simple geometry enables the modelling

of �uid �ow and heat transfer both analytically and numerically. Near the at-

tachment point of liquid-vapor free surface to the groove wall tip, there exists

an extended meniscus geometry which is generally known as the micro region.

The low thermal resistance across the evaporating thin �lm of the micro region

enables high heat transfer rates, and a considerable amount of the evaporation

originates from this region. In the literature, evaporation has been modelled

using the unidirectional �ow assumption of the liquid. In the present study, the

three directions of the liquid �ow are considered. This thesis solves the evap-

oration in the micro region with the unidirectional �ow model starting from a
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location where the e�ect of disjoining pressure is small. Unlike many studies

in the literature, the boundary conditions de�ned at the starting point are not

tuned during the solution procedure to match the undisturbed meniscus radius.

The results of the unidirectional �ow based model reveal that the curvature of

the �lm thickness pro�le may change its sign and bends inward near the contact

line depending on the physical system considered in the problem. Following

unidirectional model, the present study applies the spectral element method to

solve the linear momentum equations in order to get the e�ect of vertical �ow

of the liquid. Although the amount of inlet mass �ow or the �lm thickness

pro�le is not changed substantially with the application of bi-directional �ow

based evaporation model, determination of the distribution of vertical velocity

in the micro region enables understanding of the underlying physical phenom-

ena. Finally, the contribution of the axial �ow to evaporation is investigated by

solving the distribution of axial velocity using spectral element method and the

contribution of the axial �ow to evaporation is found to be negligible. Systems

which form small apparent contact angles at a de�nite superheat, are found to

have higher heat removal capacity.

Keywords: Grooved heat pipe, extended meniscus, micro region, evaporating

thin �lm
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ÖZ

M�KRO KANALLI B�R ISI BORUSUNUN M�KRO BÖLGES�NDEK�
BUHARLA�MANIN ÇOK BOYUTLU MODELLENMES�

AKKU�, Y���T

Doktora, Makina Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Zafer Dursunkaya

Ortak Tez Yöneticisi : Prof. Dr. Hakan I³�k Tarman

Haziran 2015 , 143 sayfa

Yüksek �s� at�m de§erlerine sahip elektronik bile³enlerin so§utulmas�nda k�lcal

s�v� ta³�nmas� prensibi kullanarak so§utma sa§layan cihazlar tercih edilmektedir.

Is� borular�nda k�lcal ta³�nmay� sa§layan çe³itli �til yap�lar� mevcuttur. Mikro

oluklu kanallar� �til yap�s� olarak kullanan �s� borular� basit geometrilerinin ana-

litik ve say�sal modellemeyi kolayla³t�rmas� sebebiyle ara³t�rmac�lar taraf�ndan

s�kl�kla çal�³�lmaktad�r. S�v�-gaz serbest yüzeyinin oluk duvar�n�n ucu ile birle³-

ti§i nokta yak�n�nda, literatürde genellikle mikro bölge olarak bilinen, esnemi³

bir menisküs geometrisi olu³maktad�r. Mikro bölgedeki buharla³an ince �lm ta-

bakas� dü³ük �s� direnci sebebiyle dikkate de§er oranda buharla³man�n gerçek-

le³ti§i bir bölgedir. Literatürde, buharla³ma modelleri genellikle tek yönlü s�v�

ak�³� durumuna göre olu³turulmu³tur. Bu çal�³mada ise, üç yönden de s�v� ak�³�

göz önüne al�nm�³t�r. Çal�³maya, tek yönlü s�v� ak�³�na ba§l� yakla³�m�n, ayr�lma

bas�n�c�n�n yeterince dü³ük oldu§u bir noktada tan�mlanan ba³lang�ç ko³ullar�
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kullan�larak, modellenmesiyle ba³lanm�³t�r. Literatürdeki pek çok çal�³madan

farkl� olarak, deforme olmam�³ menisküs yar�çap�n� tutturmak amac�yla, çözüm

s�ras�nda s�n�r ko³ullar�yla oynamalar yap�lmam�³t�r. Tek yönlü s�v� ak�³�na ba§l�

modelin sonuçlar�, problemde ele al�nan �ziksel sisteme göre, �lm kal�nl�§� pro-

�linin e§rili§inin i³aret de§i³tirip içeri yönlü bükülebildi§ini göstermi³tir. Tek

yönlü modeli takiben, dik yöndeki s�v� ak�³�n�n etkisini de i³in içine katmak

için, momentum denklemleri spektral element yöntemi ile çözülmü³tür. �ki yönlü

ak�³a ba§l� modelin uygulanmas� sonucunda �lm kal�nl�§� da§�l�m�n�n veya giri³-

teki kütle ak�³� miktar�n�n çok de§i³memesine ra§men, mikro bölgede dikey h�z

da§�l�m�n belirlenmesi, problemin alt�nda yatan �ziksel mekanizmay� anlamay�

kolayla³t�rm�³t�r. Son olarak, eksenel yöndeki ak�³�n buharla³maya olan katk�s�,

eksenel h�z da§�l�m�n�n spektral element yöntemi ile çözülmesiyle ara³t�r�lm�³t�r

ve eksenel yöndeki ak�³�n buharla³maya önemli bir etkisinin olmad�§� bulunmu³-

tur. Belirli bir s�cakl�k fark�nda daha dü³ük temas aç�lar�na sahip sistemlerin

daha yüksek �s� atma kapasitesilerine sahip olduklar� belirlenmi³tir.

Anahtar Kelimeler: Oluklu �s� borusu, esnemi³ menisküs, mikro bölge, buharla-

³an ince �lm
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CHAPTER 1

INTRODUCTION

Heat pipe is a closed device which operates passively between a heat source

and a heat sink. Thermal energy is removed from the heat source by means of

evaporation of liquid and subsequent vapor �ow away from the heat source or

evaporator. The vapor condenses near the heat sink, or condenser, and conden-

sate returns to the evaporator by the capillary action.

A typical heat pipe is a sealed tube. The inner wall of the tube has a wicking

structure to generate capillary e�ect. In the manufacturing of a heat pipe, tube

is vacuumed in order to lower the boiling point of the working �uid, subsequently

the working �uid is added and the tube is hermetically sealed. Such a design

provides the phase change of the working �uid with relatively small changes in

temperature.

Heat pipes utilize the latent heat of evaporation of the �uid for transfer of heat

between high and low temperature reservoirs. When one end of the heat pipe

is subjected to a heat load, the working �uid evaporates and the newly formed

vapor �ows through the hollow core of tube to the cold end of the pipe. In

the cold end, heat is removed from the heat pipe and the vapor condenses. The

condensate travels back to the hot end of the heat pipe by the capillary action of

the wick structure surrounding the inner wall of heat pipe. This cycle continues

as long as a temperature di�erence exists between the two ends of heat pipe.

The working cycle of a heat pipe is given in Figure 1.1.
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Figure 1.1: Working principle of a heat pipe [1]

Capillary action can be de�ned as the motion of liquid through narrow tubes

or permeable substances due to adhesive and cohesive forces between the liquid

and the surface. It only occurs when the adhesive forces which are the attraction

of dissimilar particles, are stronger than the cohesive forces which are attrac-

tion of similar particles. The wicking structure providing the capillary action,

may be any material capable of exerting capillary pressure on the condensed

liquid to wick it back to the heated end. In commercial heat pipes, three main

types of wick structures are used, namely sintered powder wick, grooved wick

and wire mesh wick. The sintered powder is formed in a bonding process and

porous structure provides the capillary action. Grooved wick is composed of �ne

channels located in the periphery of the inner wall. Channels may have di�er-

ent geometries such as triangular, rectangular or trapezoidal. The wire mesh

screen wick is, on the other hand, composed of multiple layers of interwoven

wires applied to the inner wall of the heat pipe.

In Figure 1.2, examples of heat pipes having di�erent wick structures can be

seen. The pictures on the left show the cross-sections of the heat pipes. In

the pictures on the right, on the other hand, heat pipes are cut and opened to

show their wick structures surrounding their inner walls. From top to bottom,

examples of sintered, grooved and mesh screen wick structures can be seen.
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Figure 1.2: Wick structures [2]

In the design of a wick structure, pore size optimization should be carefully

made. Pore size should be small enough to get the maximum capillary head.

On the other hand, it shouldn't be too small such that the permeability of the

wick structure is reduced.

In addition to the proper selection of the wick structure, the material of the

wall of the heat pipe should be properly selected. The very �rst requirement

for the wall material is its compatibility with the working �lm. Materials which

have high energy surfaces, are generally desired to get wetting systems. Secondly,

thermal conductivity of the material should be high because conduction through

the heat pipe wall should be high to provide high heat transfer rates from the
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heat source.

After the selection of the wick structure and wall material, the type of the

working �uid should be decided. The �uid must form a wetting or partial wetting

system on the wall material. To create adequate capillary head, the surface

tension of the �uid should be su�ciently high. The latent heat of the �uid

should also be high to increase the amount of heat removal. Fluids which can

operate in very low temperatures must be selected in space applications such as

liquid nitrogen. Inversely, high temperature applications of heat pipes, such as

cooling of reactors, require the utilization of liquid metals. The common usage

of heat pipes occurs in the cooling of electronic components, most commonly

in computer processors. Working �uids used in these heat pipes are water,

ammonia and acetone. In summary, the operation conditions determine the

selection of heat pipe and its components. An improperly selected or designed

heat pipe will not function e�ciently. The heat pipe may experience dry out or

it may not initiate its operation.

1.1 Types of Heat Pipes

1.1.1 Traditional Cylindrical Heat Pipes

These are the simplest and most popular type of heat pipes. They are used in

most applications to transfer thermal energy from one point to another. The

shape of the cross-section is generally cylindrical or similar rounded geometries.

The inner wall of the heat pipe is composed of di�erent wick structures de-

pending on the application. The shape of the pipe can be adjusted by bending.

However, every bending creates extra resistance against �uid �ow through the

wick structure. Thus, the number and the radius of curvature of the bends

should be carefully decided. Heat pipes shown in Figure 1.2, are also examples

of traditional heat pipes.
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1.1.2 Micro Heat Pipes

Micro heat pipes consist of long thin non-circular channels. Sharp-angled corners

of channel work as liquid arteries. Micro heat pipes can be characterized by the

equation: rc/rh ≥ 1 where rc is the capillary radius, i.e. radius in a cross-section

and rh is the hydraulic radius, i.e. radius along the heat pipe axis. The size

of hydraulic radius is generally about 100µm. Micro heat pipes with various

cross-sections are shown in Figure 1.3.

Figure 1.3: Various cross-sections of micro heat pipes [3]

1.1.3 Flat Heat Pipes

Flat heat pipes are very similar to traditional cylindrical heat pipes especially

in terms of working principles but they have a rectangular cross-section instead.

In addition to the purpose of heat removal, �at heat pipes are capable of tem-
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perature �attening on electronic devices due to their geometry. In Figure 1.4, a

schematic of a �at heat pipe geometry can be seen.

Figure 1.4: Schematic of a �at heat pipe: (a) geometry of heat pipe and (b)
cross-sectional view [4]

1.1.4 Loop Heat Pipes

Loop heat pipes have the advantage of being able to provide reliable operation

over a long distance. They can transport a large heat load over a long distance

with a small temperature di�erence. Their ability of operating against gravity

makes them the �rst choice in aerospace applications. Di�ering from the stan-

dard heat pipes, loop heat pipes have separate vapor and liquid lines. They have

a compensation chamber which helps maintain the �uid inventory. Figure 1.5

exhibits the operation cycle of a loop heat pipe.
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Figure 1.5: Operation cycle of a loop heat pipe [5]

1.1.5 Variable Conductance Heat Pipes

The variable conductance heat pipe, sometimes called the gas-controlled or gas-

loaded heat pipe, has the ability of maintaining a device mounted at the evap-

orator at near constant temperature. This feature is achieved by maintaining

constant pressure but at the same time varying the condensing area, which is

called �gas bu�ering�. The reservoir �lled with inert gas has a pressure equal to

saturation pressure during normal operation. However, when the heat load at

the source is increased, saturation pressure also increases which pushes the gas

in the reservoir. When the volume occupied by the reservoir decreases, condens-

ing area increases. Thus, more heat is removed via the heat pipe. Figure 1.6

shows a schematic for a variable conductance heat pipe.
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Figure 1.6: Variable conductance heat pipe [6]

1.2 Literature Review

The study of Bressler and Wyatt [7] in 1970 is one of the major initial stud-

ies which examine the surface wetting and evaporation of a �uid in a capillary

groove. Capillary rise of the liquid was balanced by the gravity and the wall

shear was taken into consideration in �uid �ow which supplies liquid to the

evaporating meniscus. Unidirectional average �uid velocity was assumed in the

direction which is parallel to the groove wall. At the liquid-vapor interface, nor-

mal velocity gradient was taken as zero. Moreover, deformation of the meniscus

due to disjoining pressure wasn't studied. The study of Bressler and Wyatt [7]

did not apply any special phase change model at the the liquid-vapor interface.

Evaporation at the liquid-vapor interface was assumed to take place due to ther-

mal conduction through the liquid �lm. The wall temperature of the groove and

the liquid-vapor interface temperatures were taken as constants. Based on these

simple assumptions, Bressler and Wyatt [7] evaluated the average heat �ux in

an evaporating meniscus.

In 1971, Wayner and Coccio [8] conducted the �rst study concerning heat and

mass transfer in the vicinity of triple interline of a meniscus formed on a �at plate

immersed in a pool of liquid. The concepts of triple interline or simply interline

which are frequently used in this study [8] and also in the literature, indicate the

solid-liquid-vapor interface formed at the end of the meniscus. The study [8] had

an experimental part and analytical part in which results of experimental part

were used. In the experimental part, a pair of �at plates joined back to back
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and a row of thermocouples was sandwiched between them. This assembly was

partially immersed to in a pool of liquid which was at controlled temperature.

The assembly was heated from the top by means of a resistance heater and heat

is conducted down the plates into the meniscus region. In the analytical part,

�rstly, two-dimensional di�erential equation for the steady state temperature

in the plate was solved. For the boundary conditions, center line temperature

distribution of the plates, the temperature of the top of the plates and the

temperature of the bottom of the plates were experimentally determined. On

the other hand, the last boundary condition, the temperature distribution on

the surface of the plates, was assumed initially. The appropriateness of the

assumed pro�le was checked comparing the center line temperature distributions

found from the analytical solution and from the experimental results. After the

determination of the temperature distribution in the plates, Wayner and Coccio

[8] applied Fourier's law of conduction to �nd the �lm thickness distribution

in the interline region. Interface temperature between liquid and vapor was

assumed at the equilibrium saturation temperature. Calculated pro�les of �lm

thickness were found to be signi�cantly thinner than equilibrium pro�le revealing

the result that heat transfer process in the interline region cannot be explained

by only using purely conduction model. Authors of [8], have concluded that large

resultant heat �ux in the interline region required a considerable additional work.

Moreover, at the end of their study, Wayner and Coccio [8] suggested the thin

�lm transport model which uses the concept of disjoining pressure, to explain

the accelerated rates of evaporation in the interline region.

Wayner had continued his studies to understand the physical mechanisms near

the contact line in following years. In 1972, Potash and Wayner [9] published

the �rst study which use the concept of disjoining pressure in the liquid and the

concept of interfacial resistance in the phase change phenomena. Authors [9]

divided an evaporating meniscus which is formed on the surface of a hot vertical

plate immersed in a pool of liquid, into three regions. The main or bulk portion

of the meniscus which is originating from the surface of the liquid reservoir, is

described by the conventional equation of capillarity. This region was named as

intrinsic meniscus. The region of the meniscus where evaporation takes places
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and disjoining pressure plays an e�ective role, was named as evaporating thin

�lm. The ultra thin �lm region where there is no evaporation, was named as

equilibrium thin �lm. Intrinsic region with evaporating and equilibrium �lm

regions were named as extended meniscus. The formation of thin �lm regions

which �rst appeared in the literature by the study of Potash and Wayner [9], at

the end of the intrinsic region is due to the existence of disjoining pressure which

increases with decreasing �lm thickness and the de�nition and explanation of

disjoining pressure shall be made in �Chapter 2� of the thesis, in detail. The data

of disjoining pressure vs. �lm thickness was taken from the study of Derjaguin

and Zorin [10] which is the �rst study in which theory of thin �lm adsorption

and disjoining pressure were explored both theoretically and experimentally. Al-

though it was not stated in [9], Wayner pointed in his following study [11] that

contact angle was taken as zero in [9]. Depending on this assumption, Potash

and Wayner [9] started the calculation for the evaporating meniscus from the in-

tersection of equilibrium thin �lm region and evaporating thin �lm region with

zero �lm thickness slope. The slope at the end of the �rst increment of the

solution domain was calculated using an equation derived from the balance of

disjoining pressure and hydrostatic head. The size of the increment was taken

as 1 nm. Knowing the slope and the increment length, the �lm thickness at

the end of the increment was calculated. Disjoining pressure corresponding to

this �lm thickness, was obtained from the data of [10] as explained previously.

Knowing the disjoining pressure, the �lm vapor pressure was calculated from a

modi�ed version of Kelvin equation suggested by Padday [12]. Heat �ux was

calculated from the equation derived from the interfacial resistance to evapora-

tion by Schrage [13]. In the use of Schrage's equation vapor temperature and

interface temperature were taken as equal to simplify the equation. Both in

modi�ed Kelvin equation and Schrage's equation, a constant interface temper-

ature was used along the increment. Correction of this assumption was made

applying Fourier's law of heat conduction formula between the wall surface kept

at a constant temperature and interfacial surface using the value of heat trans-

ferred found. After, iterations were repeated until there was a negligible change

in the interfacial temperature, the �nal amount of the heat transferred or the

mass evaporated from the �rst increment was calculated and the average �uid
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velocity entering the �rst increment from the second increment was calculated

such that all of the evaporated mass supplied by the �uid �ow. Calculations

were continued for the consecutive increments until the �lm became su�ciently

thick and the disjoining pressure had a negligible e�ect on the heat �ux. In the

intrinsic region, Clausius-Clapeyron equation was used to �nd vapor pressure

of the �lm which was substituted into Schrage's equation to �nd the amount of

heat transfer in an increment. The volumetric �ow entering an increment was

equated to the evaporated mass, again. In the absence of disjoining pressure

gradient, change of meniscus curvature resulting from the hydrostatic change

was responsible for �uid �ow. At the start of the intrinsic region, various initial

curvatures were tried until the resulting curvature became zero at the surface

of the pool. At the end of the solution procedure, Potash and Wayner [9] found

the heat �ux, vertical liquid pressure, average velocity and �lm thickness dis-

tributions both in thin �lm and intrinsic meniscus regions. Authors reported

that change in disjoining pressure in the thin �lm region and change in capillary

pressure in the intrinsic region were su�cient to generate the �uid �ow required

for evaporation. Moreover, authors observed that the velocity and heat �ux

pro�les went through their maximum values near the contact line and returned

negligible values when the meniscus became relatively thick.

In 1973, Wayner [11] discussed the �uid �ow of an evaporating meniscus hav-

ing a non-zero contact angle. He called this type of meniscus as a �nonwetting

meniscus�. Due the fact that equilibrium �lm pressure can be greater than

spreading coe�cient of solid-liquid interface, the author concluded that an in-

trinsic meniscus and an adsorbed thin �lm can exist together for a non-zero

contact angle meniscus. However, following Derjaguin and Zorin [10], Wayner

stated that �the contact angle can di�er from zero only if no continuous transi-

tion from the adsorption layer to the bulk phase through a series of increasing

thickness corresponding to thermodynamically stable states is possible.� Thus,

for the quantitative description of the evaporation, discontinuous �lm thickness

data is necessary in a non-zero contact angle meniscus system.

In 1976, Wayner et al. [14] studied the evaporation and �uid �ow in the thin

�lm region of a horizontal meniscus and considered only the disjoining pressure
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excluding the e�ect of the curvature change and gravity. a wetting liquid, in

other words the system having a zero-contact angle, was studied. Furthermore,

the analysis was restricted to the use of a non-polar liquid because disjoining

pressure of non-polar liquids can be described by a simple power relation as

suggested by the study of Derjaguin and Zorin [10]. Assuming continuum, ne-

glecting inertial terms due to small liquid velocities and neglecting the second

derivative of the velocity with respect to �ow direction, 1-D steady momentum

equation was solved in the direction of �ow which was assumed to be parallel

to solid wall, to �nd the velocity distribution. These assumptions on the mo-

mentum equation are also known as lubrication assumptions. The amount of

evaporation from the surface was calculated based on Schrage's [13] evaporation

model. Similar to the previous study of Potash and Wayner [11], in the use

of Schrage's equation vapor temperature and interface temperature were taken

as equal to simplify the equation. However, to �nd the vapor pressure of the

�lm which were substituted into Schrage's equation, both Clausius-Clapeyron

equation and the equation suggested by Derjaguin [10] were used enabling a

more comprehensive approach. The equation suggested by Derjaguin [10], on

the other hand, is similar to Kelvin equation but capillary pressure is replaced

with disjoining pressure. At the end, evaporative mass �ux leaving the �lm sur-

face was equated to liquid mass �ow rate per unit width of the �lm. Resulting

di�erential equation for the �lm thickness was solved using the orthogonal collo-

cation method. As one of the initial conditions, interline �lm thickness was used

but its value was slightly increased, without an explanation. The other initial

condition was the �lm slope at the interline which was zero due to the use of

wetting liquid.

In 1978, Renk et al. [15] studied the shape of a zero contact angle meniscus

formed on an isothermal �at plane. Although [15] did not include any evapo-

ration process, this study had importance due to the fact that it was the �rst

study which continuously used the disjoining and capillary pressures together

with hydrostatic pressure in the whole meniscus.

In 1979, Holm and Goplen [16] studied the heat transfer in a meniscus formed

between the walls of a liquid-�lled capillary groove. Only the e�ect of disjoining
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pressure was used which reduced the vapor pressure at the liquid-vapor interface

in the evaporating thin �lm region. Capillary pressure, on the other hand, was

used to calculate the �lm pressure at the liquid-vapor interface in the intrinsic

region. A wedge �ow model was applied to determine the pressure gradient

in the liquid. Holm and Goplen [16] solved the heat transfer problem in sev-

eral capillary groove con�gurations and presented their results with respect to

geometrical parameters of the grooves.

In 1979, Wayner [17] studied the interline region of a falling evaporating thin

�lm. The di�erence between the real and apparent contact angles was empha-

sised. Furthermore, real contact angle was analyzed for both isothermal and

evaporating conditions. Isothermal contact angle for wetting �uids had already

been accepted as zero. However, at the interline of a falling evaporating �lm

real contact angle was found to be very small and it was a function of the

temperature gradient and the interline velocity. Lastly, heat sink capability of

a simple �uid on metal was larger than that of a simple �uid on glass due to

higher London-van der Waals dispersion force of the metal-�uid system, in other

words, due to higher disjoining pressure created by the metal-�uid system with

respect to the glass-�uid system.

Renk and Wayner conducted an experimental study [18] for an evaporating

ethanol meniscus in 1979. Authors measured the pro�le of the meniscus using

the optical technique of interferometry for di�erent heat loads. Measurements

showed that the evaporating meniscus pro�le was stable and that it was a func-

tion of the heat load. In order to complete the study, authors made a following

analytical study [19]. Due to the fact that ethanol is a polar liquid, it was ac-

cepted as a non-wetting liquid and a �nite contact angle meniscus was assumed

and the disjoining pressure was neglected. In the calculation of liquid pressure

gradient, all derivatives of the �lm thickness were ignored except the highest

derivative term, the third derivative. There was no phase change model used

at the interface. The major di�culty of suggesting an analytical model was the

lack of experimental data in the close vicinity of contact line. Renk and Wayner

[19] proposed an equation which was believed to represents the volumetric �ow

rate in the evaporating meniscus, and claimed that the use of the incoming vol-
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umetric �ow rate coupled the microscopic �uid �ow model to the macroscopic

heat transfer measurements. Then, equating the incoming volumetric �ow rate

to the mass �ux of liquid calculated from the liquid pressure gradient, Renk and

Wayner [19] solved a third order di�erential equation starting from the interline.

As a �rst initial condition, �lm thickness was assumed as zero due to the absence

of disjoining pressure in the model. Other initial conditions were non-zero �rst

and second derivatives of the �lm thickness due to nonwetting liquid. Results

showed that evaporative heat �ux distribution started at zero at the interline,

went through a maximum at the very near point to the interline and approached

zero asymptotically with increasing meniscus thickness.

In 1980, Moosman and Homsy [20] modelled the transport process in an evapo-

rating meniscus using the same geometry of studies [15] and [19]. In modelling,

Moosman and Homsy included the e�ects of both capillarity and multilayer

adsorption. In the formulation of the evaporating �ow, they eliminated the in-

terface temperature in favour of the wall temperature and de�ned a new temper-

ature jump concept between the wall and the vapor. Furthermore, Moosman and

Homsy [20] applied a scaling process on the governing equations. This approach

was the �rst explanatory order of magnitude analysis applied on the individual

terms in equations which govern the conservation of mass, linear momentum

and energy in an evaporating meniscus. On the other hand, Moosman and

Homsy [20] reduced the governing equations to two non-linear equations, which

contain non-dimensional liquid pressure and non-dimensional �lm thickness as

unknowns. They solved this set of equations with the corresponding boundary

conditions assuming in�nite domain in the positive and negative longitudinal di-

rections. In the solution procedure of the set of equations dependent variables,

liquid pressure and �lm thickness, were expanded in a regular perturbation se-

ries about isothermal condition. Zeroth order solution which corresponded to

isothermal solution and �rst order solution were taken into consideration. At

the end of their study, Moosman and Homsy [20] stated that the perturbation

solution was applicable for only extremely small superheat values which were

not reasonable in practical applications. Full non-linear set of equations must

be solved to simulate a realistic problem.
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In 1980, Wayner made a study [21] regarding the �lm thickness pro�le in the

vicinity of the contact line of an isothermal �nite contact angle system. The

author had analyzed non-zero contact angle systems in his previous study [11]

and concluded that it is possible for an intrinsic meniscus and an adsorbed thin

�lm to exist together. Wayner's study published in 1980 [21], on the other hand,

suggested a model which enabled the calculation of �lm thickness distribution

in the contact line region of a �nite contact angle system but the presence

of non-evaporating region was not included in this study. In modelling e�ort,

Wayner augmented the disjoining pressure to the Young-Laplace equation of

capillarity. However, the author used capillary pressure and disjoining pressure

with di�erent signs stating that �for a system at equilibrium, the vapor pressure

change due to capillarity has to be o�set by an equal vapor pressure change

of opposite sign due to �lm thickness�. Starting his analysis with zero initial

slope and e�ective thin-�lm thickness of the order of interatomic spacing at the

contact line, Wayner demonstrated that �nite apparent contact angle system

could be formed with substantial initial curvature. Finding a thin-�lm thickness

of the order of interatomic spacing at the contact line contradicted with the

thicker thin-�lm equilibrium results of Derjaguin [10]. However, referring to

the study of Hu and Adamson [22] who pointed out the incapability of their

experiment on di�erentiating between patches of �uid and a continuous �lm,

Wayner claimed that patches of �uid indeed formed. Furthermore, due to the

small dimension associated with the contact line region, Wayner preferred to use

the term �e�ective� for values of curvature and thickness at the contact line.

In 1982, Wayner examined the relationship between the equilibrium shape of a

thin �lm at the contact line, superheat, and interfacial forces for both zero and

�nite contact angle systems [23]. The systems having zero apparent isothermal

contact angle were named as spreading systems and ones with �nite apparent

isothermal contact angle were named as non-spreading systems. Wayner used

di�erent signs for the capillary and disjoining pressures when forming the aug-

mented Young-Laplace equation in his previous work [21] in which a �nite con-

tact angle system (non-spreading system) was studied. The author generalized

this approach with use of the term �characteristic frequency for van der Waals
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interaction� which multiplies the disjoining pressure term and has di�erent signs

for spreading and non-spreading systems. For an isothermal spreading system,

only a constant thickness adsorbed liquid �lm was predicted. For an evaporat-

ing spreading system, on the other hand, formation of an evaporating meniscus

which is at equilibrium with its adsorbed non-evaporating �lm was predicted and

this led to formation of an apparent contact angle. The contact line thickness

was expected to be thinner in the evaporating spreading system with respect to

isothermal spreading system. Curvature at the contact line was zero for both

systems. Non-spreading systems, on the other hand, always had apparent con-

tact angles but contact angle of the evaporating system was higher that that of

the isothermal system. Likewise, there were �nite curvature values of �lm pro�le

at the contact line for both isothermal and evaporating non-spreading systems

and curvature value of the evaporating system was higher.

In 1991, Sujanani and Wayner [24] studied the optical investigation of near-

equilibrium thin liquid �lms. They compared their experimental results with

the ones obtained from the theoretical solution. In the formulation of the prob-

lem, pressure jump between the liquid-vapor surface and bulk vapor phase was

assumed constant over the transition region. However, this assumption was not

veri�ed in the study. Moreover, Sujanani and Wayner [24] used the minus fourth

power of the �lm thickness to simulate the disjoining pressure in the whole prob-

lem domain. However, separate disjoining pressure formulations have been used

for the thin and thick parts of the �lm in the literature. The study of Sujanani

and Wayner [24] has importance regarding the formulation of the mass �ux of

vapor leaving the liquid-vapor interface. Although the same formulation was

represented in di�erent con�gurations in the past studies, the representation of

Sujanani and Wayner [24] which contained the temperature and pressure jumps

multiplied by two di�erent constants, became a standard representation and is

being used in current studies.

In 1992, Schonberg and Wayner [25] suggested an analytical solution to the gov-

erning equations in an evaporating �lm. However, they neglected the capillary

e�ect in the close vicinity of the contact line which led to a misrepresentation

of underlying physical phenomena.
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In 1993, Dasgupta et al. [26] used the augmented Young-Laplace equation to

evaluate experimental data for an extended meniscus. In the formulation of the

problem, there were no order of magnitude analysis applied and gravity was

also not considered. In the formulation of the �uid �ow, lubrication assumption

which was veri�ed by Moosman and Homsy [20] in 1980, was applied. In the

formulation of the curvature, a fairly �at �lm was assumed and square of the

�rst derivative of the �lm thickness was assumed to be much smaller than unity.

This approach was also veri�ed by Moosman and Homsy [20]. For the evap-

oration of liquid at the interface, well-known temperature and pressure jumps

model was used by following the representation of Sujanani and Wayner [24].

Evaporation model and liquid �ow were combined but the augmented Young-

Laplace equation was kept separate resulting a non-linear system of di�erential

equations which is very similar to one found by Moosman and Homsy [20]. A

Taylor series expansion of this non-linear system was used to tune the extremely

sensitive initial conditions at the interline. Thickness of the non-evaporating

�lm and the value of superheat were taken from the measurements of the exper-

iment. The value of Hamaker constant was calculated from these measurements.

Therefore, the average value of the modi�ed Hamaker constant was measured in

situ. Thus, constant thickness approximation to determine a value of Hamaker

constant, was not anymore necessary. The experimental data of �lm thickness

and the theoretically calculated pro�le were in a good agreement except for some

small deviations in the transition region. Lastly, it should be stated that super-

heat values used in the experiment and theoretical calculations by Dasgupta et

al. [26] were extremely small.

The following studies of Dasgupta et al. [27, 28] and Kim et al. [29] were

quite similar regarding the formulation and solution strategies to the study of

Dasgupta et al. [26].

In 1995, Schonberg et al. [30] studied the evaporation from a meniscus formed

in a channel of a heat pipe. Using the same formulation of the previous studies

[26, 27, 28, 29], Schonberg et al. worked on a system which had very high values

of superheats about 5K. Analysis was not only performed in a micro region

but also a de�nite part of the macroscopic region was included in the solution
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domain. Due to the radical divergence of the length scales of micro and macro

regions, matched asymptotic expansion method was applied. Formulation of a

stable evaporating meniscus with a very high heat �ux was proved theoretically,

however, it was stated that there were no experiments conducted for such high

superheat values. Finally, Schonberg et al. [30] attributed the large apparent

contact angles to large viscous stresses in the contact line region where �uid �ow

in an extremely thin �lm.

Stephan and Busse [31] studied the heat transfer in a grooved heat pipe com-

bining the solution of a two-dimensional heat conduction problem with the cal-

culation of the shape of the liquid-vapor interface and its temperature in 1992.

Unlike other studies in the literature [26, 27, 28, 29, 30], Stephan and Busse

[31] merged the governing di�erential equations and solved a single di�erential

equation having all boundary conditions de�ned at the intersection of absorbed

layer and evaporating thin �lm. With this representation, the problem became

an initial value problem solved with fourth order Runge-Kutta method. In the

application of initial conditions, the �lm thickness and the �lm curvature were

perturbed from their original values by assuming very small capillary pressure

instead of zero capillary pressure. Thus, the possibility of having a trivial so-

lution was prevented. Furthermore, the third derivative of the �lm thickness

at the origin was iterated so that integration ended in a meniscus with desired

curvature. Stephan and Busse [31] also investigated the e�ect of using varying

wall temperature along the micro region and concluded that wall temperature is

nearly constant in the micro region. Finally, authors stated that the assumption

of an interface temperature equal to the saturation temperature of the vapor

could lead to a large over-prediction of heat transfer coe�cient.

In 1996, Ha and Peterson [32] studied the analytical investigation of heat transfer

characteristics for evaporating thin liquid �lms in V-shaped microgrooves. This

study was important in two aspects. First one was that the liquid �ow in

the axial direction of grooves was taken into consideration. The change of the

radius of curvature in the intrinsic region part of the liquid-vapor interface was

responsible for the axial �ow and a �rst order di�erential equation with respect

to the radius of curvature was derived and solved. Second important aspect of
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the study of Ha and Peterson [32] was the application of non-uniform heat �ux

along the axial direction of grooves. The evaporation at the interface, on the

other hand, was modelled following the study of Schonberg and Wayner [25]

which included only the disjoining pressure for the force balance at the liquid-

vapor interface. The evaporative mass �ux in the thin �lm region was matched

with the applied non-uniform heat �ux along the axial direction. Thus, the

model of Ha and Peterson [32] enabled the understanding of the axial variation

of the average heat transfer coe�cient and the e�ective evaporating length.

The study of Thomas et al. [33] in 2001, was only about the liquid �ow along

trapezoidal grooves and did not analyze the evaporation process. In the formu-

lation of liquid �ow along the axis of a groove, Ha and Peterson [32] had been

used a friction factor, but Thomas et al. [33] presented the two dimensional

distribution of axial velocity by solving the non-dimensional Poisson equation

which was derived from Navier-Stokes equation by assuming fully developed,

laminar �ow with negligible body and inertial forces. In order to get the dimen-

sional values of axial velocity, pressure gradient along the axis had to be known

which was function of the radius of curvature along the groove axis as suggested

by Ha and Peterson [32].

In 2004, Launay et al. [34] studied the �uid �ow along a micro-heat pipe ar-

ray together with the evaporation and condensation processes. Condensation

was modelled comprising the Nusselt theory and the assumption of a fourth

order polynomial in the condensation �lm and transition region, respectively.

Evaporation was modelled based on the suggestion of Wayner et al. [14]. The

evaporation was modelled through a fourth order non-linear di�erential equation

of �lm thickness which was solved using the fourth-order Runge-Kutta proce-

dure. All the initial conditions were de�ned at the intersection of absorbed

region and evaporating thin �lm region. The �rst and second derivatives of the

�lm thickness were taken as zero. Although the fact that the use of this set

of initial conditions without any tuning of derivatives of �lm thickness could

lead to a �at �lm having a thickness of absorbed layer, the authors [34] did not

mention about experiencing such a di�culty in the numerical solution process.
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In 2005, Wee et al. [35] studied the e�ects of the liquid polarity and the wall

slip on the heat and mass transport characteristics of an evaporating thin �lm.

Evaporation was modelled again following the suggestions of Wayner. The dif-

ferential equation was solved starting from the intersection of the absorbed layer

and evaporating thin �lm as in the study of Launay et al. [34]. However, Wee et

al. [35] did explain how they tuned the initial conditions in order to prevent a

trivial solution. Furthermore, the authors [35] stated that an iterative technique

was employed on the initial conditions such that the solution converged to the

appropriate curvature in the bulk meniscus region. Finally, it was found that

the liquid polarity reduces the evaporation due to stronger van der Waals forces

of polar liquid.

In 2007, Wang et al. [36] studied the evaporation from a meniscus formed

between the walls of a micro-channel for di�erent channel sizes. Formulation

and the solution methodology were similar to the previous studies of Stephan

and Busse [31] and Wee et al. [35]. However, Wang et al. [36] did not apply the

assumption, which was commonly used in the literature and was suggested by

Wayner et al. [14], in their evaporation model. The assumption was about the

temperature values of bulk vapor and vapor at the close vicinity of the liquid-

vapor interface. Wayner et al. [14] assumed the equality of the two temperatures

in the net mass �ux formula suggested by Schrage [13]. Wang et al. [36],

on the other hand, studied the problem without applying this assumption and

found that this assumption led to underestimation of interfacial evaporation heat

transfer coe�cient for superheats above 5K. Lastly, Wang et al. [36] concluded

that the contribution of the thin-�lm region to the overall heat transfer was

inversely proportional to the channel size and wall superheat.

In 2008, Wang et al. [37] suggested an analytical solution to the problem which

they solved in their previous study [36]. The two simpli�cations of the proposed

analytical solution were the negligible capillary pressure assumption and the

application of the simple evaporation model developed by Wayner et al. [14].

At the end of their study, the authors [37] concluded that the results of the full

numerical model and simpli�ed analytical model agreed well.
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In 2009, Bertossi et al. [38] studied the modelling of heat and mass transfer

in the micro region. The approach of Bertossi et al. [38] to the problem was

similar to the study of Stephan and Busse [31] except the alteration of the initial

conditions. Stephan and Busse [31] assumed very small capillary pressure, which

led to small perturbations on the absorbed layer thickness and second derivative

of the �lm thickness, at the intersection of absorbed layer and evaporating thin

�lm region which was the starting point of the integration or could be named

as origin. Bertossi et al. [38], on the other hand, assigned small perturbation

parameters to the slope of the �lm and heat �ux from the interface leading to

small alterations on �lm thickness and �rst derivative of the �lm thickness at

the origin, respectively. At the end of their parametric study, the authors [38]

concluded that the contact angle and the radius of curvature of the intrinsic

meniscus region were totally independent of each other.

The two di�erent studies of Do et al. [39, 40] were about the thermal perfor-

mance of grooved heat pipes. In the modelling e�ort of the evaporation from the

micro region, Do et al. [39, 40] used the evaporation model suggested by Wayner

et al. [14] but they chose the intersection of intrinsic meniscus and evaporating

thin �lm region as the starting point of integration. The authors [39, 40] did

not report any �lm thickness distribution or heat �ux distribution in the micro

region in detail.

In 2011, Du and Zhao [41] studied the evaporation of thin-�lm in a rectangular

micro-channel. The authors used the same solution methodology of Wang et al.

[36] except the far �eld boundary condition which was the radius of the intrinsic

meniscus. Wang et al. [36] took the half of the channel height as the radius of

curvature of intrinsic meniscus. However, Du and Zhao [41] developed a simple

geometrical formulation to calculate the value of the radius of intrinsic meniscus

so that the center of the meniscus was kept on the axis of the channel. With

the application of the renewed boundary condition, Du and Zhao [41] found a

larger intrinsic meniscus than the undisturbed conditions.

In 2012, Benselama et al. [42] studied the thermocapillary e�ects on steadily

evaporating contact line region. The authors [42] started modelling the �ow
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from the two-dimensional Navier-Stokes and continuity equations without ne-

glecting any terms. Furthermore, normal stress balance, shear stress balance

and energy balance at the interface were applied including thermocapillary ef-

fect and without any simpli�cation to determine boundary conditions at the

liquid-vapor interface. Governing equations were non-dimensionalized with re-

lated scaling parameters and a dimensionless system was developed. A domain

perturbation method was used to solve zeroth and �rst order solutions of this

system. Zeroth order formulation of the problem, on the other hand, reduced

the lubrication model of Moosman and Homsy [20] except the thermocapillarity

e�ect. However, the addition of the �rst order solution by perturbation was

a new practice in the solution of heat and mass transfer from an evaporating

meniscus. In addition, Benselama et al. [42] suggested their closed-form solution

to be used in the estimation of correct and accurate contact line conditions for

full micro region models, which require conditions on �lm thickness and its �rst

three derivatives to start the solution.

In summary, up to 1992, a lot of experimental studies had been conducted.

Common traits of these studies were estimating some of the physical parameters

from the experiments, applying very small temperature di�erence (heat load) to

the experimental systems and using boundary conditions both at the entrance

and end of solution domains in theoretical veri�cation. After 1992, in addition to

experimental studies, pure theoretical studies were also made such as [31], [30],

[36], [41]. Common traits of these studies were using non-measured physical

parameters (properties), applying superheats which are suitable for engineering

problems, starting solution from the contact line and assuming zero contact angle

and zero curvature at the contact line. Furthermore, these studies have tuned

the boundary conditions de�ned at the contact angle to achieve convergence.

Except a few studies such as [39, 40, 43], there exists no theoretical study which

chose another the starting point of integration than contact line in the literature.

Moreover, these a few studies did not present the results of any pressure or

pressure gradient distributions in the micro region in detail. On the other hand,

evaporation in the micro region has never been modelled including the e�ect of

the �ows in three directions.
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1.3 Objective of the Thesis

The main objective of the present study is to develop a multi-dimensional evap-

oration model in the micro region of a micro grooved heat pipe considering the

�uid �ow from all three perpendicular directions. Moreover, in order to elim-

inate the dependencies of boundary conditions to the contact line, analysis is

aimed to start from the bulk meniscus region. Furthermore, as an higher order

method, spectral element method is aimed to use in the micro region to get

su�cient accuracy.
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CHAPTER 2

DEFINITIONS AND OUTLINE OF THE THESIS

2.1 Capillary Pressure

Capillary pumping is generated by surface tension forces at the liquid-vapor

interface resulting from deformation of the interface curvatures along two or-

thogonal directions. Capillary pressure between liquid and vapor is written in

accordance with the Young-Laplace equation:

Pc =
σ

R1

+
σ

R2

. (2.1)

The radius of curvature along the groove axis is much larger than the radius of

curvature at the cross-section of the groove. Then, one term at the right hand

side of Equation 2.1 can be neglected. For simplicity, the subscript is dropped

in the rest of the study,

Pc =
σ

R
. (2.2)

2.2 Disjoining Pressure

2.2.1 De�nition and Formulation

In order to remove a small increment of liquid layer from the bulk of the liquid

�lm, generally an equilibrium force is required. The magnitude of the equilib-
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rium force increases while the �lm becomes thinner. �When the �lm is very thin,

this attractive force between the liquid molecules and the solid surface act to

pull liquid into the layer as if the pressure in the layer were reduced below the

ambient pressure by an amount of Pd, which is known as the disjoining pressure

�[44].

One of the most clear physical explanation of the disjoining pressure was made

by Carey [44] considering a model system consisting of a hemispherical housing

with a trapped bubble of gas. As it can be seen from Figure 2.1, the liquid

does not wet the inside of the housing. Moreover, the pressure of the gas in

the housing is kept constant by a connected tube. In this model system, the

hemispherical housing is submerged in a liquid �lm which is in contact with and

fully wets the horizontal solid wall. When the housing is brought very close

to the solid surface, the gas pressure inside the hemispherical housing becomes

greater than the sum of the ambient pressure and the hydrostatic liquid pressure

of the liquid �lm. The di�erence in the pressure values is equal to the disjoining

pressure. In the absence of the additional pressure which is equal to disjoining

pressure, the pressure of the gas in the hemispherical housing cannot be adequate

to sustain the thin �lm thickness between solid wall and housing, and the system

should maintain a thicker �lm at this place.

Figure 2.1: The model system used in [44]
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Disjoining pressure, on the other hand, can also be de�ned in terms of the free

energy of the liquid �lm. Derjaguin and Obuchov [45] described the disjoin-

ing pressure as the change of free energy with thickness and de�ned it as in

Equation 2.3,

γ = γ0 +

∫ ∞
h

Pd dh, (2.3)

where γ is the speci�c surface free energy of the thin liquid �lm, γ0 is the speci�c

surface free energy of an in�nitely thick �lm and h is the thickness of the layer.

A more general formulation of disjoining pressure was made by Derjaguin and

Scherbakov [46] in Equation 2.4 in terms of the chemical potential of molecules

and the total free energy, w, of the thin �lm,

R T ln

(
P

Ps

)
= V

∂w

∂h
, (2.4)

where, V is the molar volume of the liquid, P is the vapor pressure in equilibrium

with thin �lm and Ps is the saturated vapor pressure at temperature T. The

change in the total free energy of the system with respect to the height of the

�lm thickness is the disjoining pressure,

Pd = −∂w
∂h

∗
, (2.5)

Then, reduction of vapor pressure on the surface of equilibrium thin �lm can be

de�ned by Equation 2.6.:

R T ln

(
P

Ps

)
= V Pd. (2.6)

It should be noted that the minus sign at the right side of Equation 2.6 is dropped

because disjoining pressure is assumed to be negative by de�nition and with a

minus sign, the value becomes positive. In order to overcome this confusion of

sign, disjoining pressure is taken as positive without multiplication by the minus

sign in the formulations.

27



In 1957, Derjaguin and Zorin [10] conducted an experimental work for the planar

thin �lms of various liquids which were absorbed on smooth glass from their

vapor phase. The apparatus used in the experiments can be seen in Figure 2.2.

The liquid whose vapor adsorption was to be studied, was frozen in the bottom of

the test tube, kept at a constant temperature T2. The plate on which adsorption

would take place, was kept at a constant temperature T1. In order to maintain

the relative pressures P/Ps with an accuracy of 0.001 to 0.002, the di�erence

between T1 and T2 was set with accuracy an of 0.01◦C.

Figure 2.2: Apparatus used in the study of Derjaguin and Zorin [10]

In the experiments, adsorption isotherms of polar and non-polar liquids showed

di�erent trends. The adsorption isotherm of polar liquids (water, alcohols, ni-

trobenzene) intersected the saturation ordinate. This behaviour could be repre-

sented only by an exponential relation. Non-polar liquids (carbon tetrachloride,

benzene), on the other hand, had the saturation ordinate as their asymptote

enabling it to be represented by a power relation. The data of non-polar liquids
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collected during the experiments was led to the derivation of the famous power

representation of non-polar liquids,

Pd =
Ad
δ3
, (2.7)

where Ad is the dispersion constant which takes di�erent values according to the

type of the non-polar liquid and the solid plate on which liquid �lm exists. The

sign of the dispersion constant is positive for wetting systems and negative for

non-wetting systems.

A negative disjoining pressure, on the other hand, acts in an opposite manner

with respect to a positive one. Its de�nition should be conjoining pressure rather

than disjoining pressure. Following this idea, Starov [47] suggested to name this

pressure as Derjaguin's pressure and use this name in his studies.

In a later study of Derjaguin [48], the use of Equation 2.7 was restricted to thin

�lms thinner than 20 nm. An inverse quartic relationship was recommended to

describe retarded interactions for thicker �lms.

For polar liquids, on the other hand, Derjaguin [49] developed a modi�ed ex-

pression in 1985,

Pd =
Ad
δ3

+Ke−δ/l, (2.8)

where constants K and l could take the values of 3 × 107 Pa and 8 × 10−10 m,

respectively, when pure water on quartz glass was studied.

Other examples of disjoining pressure expressions for polar liquids can be found

in various studies in literature such as Holm and Goplen [16] or Khrustalev and

Faghri [50]. Generally, these expressions were developed by �tting a curve to

the experimental data of Derjaguin and Zorin [10].
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2.2.2 Application of Disjoining Pressure on Curved Surfaces

The e�ect of disjoining pressure becomes apparent when the �lm is su�ciently

thin. In the capillary cooling devices, such as heat pipes, the interface of liquid

and gas phases is curved near the presence of a solid boundary. This inter-

section of the three phases has various names in the literature such as contact

line, triple line or triple contact line. In the close proximity of a contact line,

disjoining pressure is e�ective due to very thin values of the �lm height. The

presence of disjoining pressure leads to deviations from the undisturbed perfect

circular meniscus shape. When the liquid-solid system is wetting, the value of

the disjoining pressure is positive. It means that the �lm resists further thinning

by the amount of disjoining pressure. In Figure 2.3, the interface of the liquid

and gas phases are represented by three curves. The �rst curve is the part of

the interface where the e�ect of the disjoining pressure is small due to high �lm

thickness resulting in no signi�cant deviation from the original circular geom-

etry. This section is generally called the intrinsic meniscus in the literature.

The second curve is the extension of the �rst one when the e�ect of disjoining

pressure is not included. When the �lm thickness becomes su�ciently small,

the curve deviates from its original shape as described by the third curve.

Figure 2.3: Deformation of a meniscus with the presence of disjoining pressure
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The example in Figure 2.3 clearly points out that disjoining pressure must be

present in the interface force balance when the �lm thickness is small. The

classic Young-Laplace equation which de�nes the force balance at the curved

surface then should be modi�ed by the disjoining pressure. When the liquid-

solid system is wetting, the positive disjoining pressure acts against the vapor

pressure. The balance of the pressures can be seen in Figure 2.4.

Figure 2.4: Pressure balance at the liquid-vapor interface

The modi�ed version of the Young-Laplace equation by the addition of the

disjoining pressure, is known as the augmented Young-Laplace equation given

in Equation 2.9.:

Pv − Pl = Pc + Pd. (2.9)

In spite of the common usage of the classic disjoining pressure formulations in the

pressure balance of curved surfaces, it should be kept in mind that derivations of

the disjoining pressure formulas were made based on experiments which studied

the planar �lms. Almost all of the authors who use disjoining pressure corre-

lations in curved �lms, state that the studied problem includes low �lm slopes.
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If the liquid pro�le is moderately inclined, the application of disjoining pres-

sure correlations becomes questionable. In his study published in 2010, Starov

[47] claims that the non-zero contradictory equilibrium contact angle which ap-

peared in the study of Miller and Ruckenstein [51], was due to moderate �lm

slopes. On the other hand, the study of Stephan and Busse [31] had moderate

slopes but the authors stated no problem arising from the utilization of classic

disjoining formulation. In a recent study, Biswal et al. [52] used a slope and

curvature dependent disjoining pressure correlation developed by Wu and Wong

[53]. Unfortunately, the applications of slope and curvature dependent disjoining

pressure correlations for di�erent solid-liquid systems require the determination

of a separate corresponding correlation constants for each solid-liquid systems.

To determine these constants, a comprehensive experimental study should be

carried out. Without such experimental study and set of data, the slope and

curvature dependent disjoining pressure correlations cannot be applied to the

practical problems.

2.3 Problem De�nition

In the current study, heat pipes with a grooved wicking structure are going to

be studied. Cross-section of the grooves which will be studied, is selected as

rectangular for the computational advantage. The cross-section of a heat pipe

with rectangular grooves, can be seen in Figure 2.5.

Figure 2.5: Cross-section of a grooved heat pipe
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Micro grooves located on the periphery of the inner wall, serve as liquid arteries

that carry the condensed liquid to the evaporator where the heat pipe is in

contact with the device which is desired to be cooled. The evaporator region

can also be called as the heat source of the heat pipe. In the middle cavity of the

heat pipe, the vapor phase which forms in the evaporator, �ows to the condenser

section of the heat pipe due to gas pressure gradient. In the condenser section

which is the cold end of the heat pipe (and also called as the heat sink of the

heat pipe), the vapor phase condenses into liquid. Thus, heat pipe completes its

self operating cycle.

Considering the high number of grooves in the periphery, �uid �ow and heat

transfer problem in a single rectangular groove is analyzed. Due to symmetry

with respect to the channel mid-plane, only half of this geometry is chosen as the

problem domain with symmetrical boundary conditions as shown in Figure 2.6.

Figure 2.6: Cross-section of the single groove

The geometrical parameters and the coordinate system of the problem domain

where the problem will be formulated, can be seen in Figure 2.7. The transverse

y is de�ned between the side wall of the groove to the center of the groove. The

x-coordinate is parallel to the side wall.
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Figure 2.7: Groove geometry

Dimensions of the groove geometry studied in this thesis, are listed in Table 2.1.

Table 2.1: Dimensions of the groove geometry

Groove depth (µm) h 1711.6

Groove half width (µm) b 855.8

Apparent contact angle (◦) θ 19.7

Intrinsic interface radius (µm) R 909

Due to forces of adhesion between the wall and the wetting liquid, the meniscus

attaches to the top of the groove as shown in Figure 2.7. It is assumed that

there is always su�cient liquid in the heat pipe enabling the meniscus to remain

attached to the top of the groove. Thus, dry-out situation or corner �ow is not

considered in this work. Resulting pro�le of the liquid along the groove can be
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seen in Figure 2.8 where the z-coordinate of the problem is taken along the axis

of the groove.

Figure 2.8: Liquid pro�le along the groove of heat pipe [43]

The curvature of the meniscus adjusts itself in order to counterbalance the pres-

sure losses in the liquid and vapor phases. In the evaporator section, the amount

of liquid decreases due to evaporation, resulting in a decrease in the radius of

curvature. On the other hand, radius of curvature increases due to increased

amount of liquid �lled in the groove because of the condensation of vapor in

the condenser. The variation in the radius of curvature along the heat pipe

generates a pressure gradient in the liquid forcing the liquid �ow towards the

evaporator.

In this study, only the evaporator side of the heat pipe is investigated. The �ow

along the heat pipe, which is assumed to be fully developed, laminar, steady

and incompressible, is coupled with evaporation from the liquid-vapor interface

in order to develop a comprehensive three directional evaporation model.

Near the intersection point of the side wall and meniscus, a region exists with

very small liquid thickness. The low thermal resistance across this thin �lm

enables high heat transfer rates. The majority of evaporation takes place in
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this region. Therefore, most of the evaporation models in the literature only

consider this extended meniscus region. With the increasing e�ect of disjoining

pressure which will be discussed in the following chapter in detail, the interfacial

line bends and the meniscus is stretched. Extended meniscus is practically

divided into three regions with di�erent characteristics as shown in Figure 2.9.

Meniscus (intrinsic meniscus) or bulk region is the region where disjoining forces

are negligible and �uid �ow is only due to the change in the curvature of the

meniscus. In the evaporating thin �lm region �uid �ow is maintained by both

capillary and disjoining forces and very high heat �ux values are achieved due

to ultra-thin thickness of the �lm. Non-evaporating region, on the other hand,

is characterized by very high disjoining pressure which prevents evaporation.

Evaporating thin �lm region and non-evaporating region is generally called as

micro region in the literature.

Figure 2.9: Extended meniscus

As the major part of the evaporation occurs in the thin �lm region, the evapo-

ration model to be developed is based on this region.
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2.4 Outline of the Thesis

Modelling of evaporation in the micro region starts with the analysis of �ow in

an arbitrary cross-section along the evaporator part of the heat pipe.

Figure 2.10: Micro region on an arbitrary cross-section

First, evaporation is modelled based on the u velocity as shown in Figure 2.11.

Unlike existing unidirectional �ow based models in the literature, analysis starts

at a point in the bulk meniscus region.

Figure 2.11: Unidirectional �ow in the micro region
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Second, evaporation is modelled based on both u and v velocities using spectral

element method as shown in Figure 2.12. In this part, the results of the unidi-

rectional �ow based evaporation model are also applied to conserve the mass.

The detailed solution process is summarized on a �ow chart in Appendix A.

Figure 2.12: Bi-directional �ow in the micro region

Last, the mass supply contribution of the �uid �ow in the axial direction of the

heat pipe is investigated by solving 2-D Poission's equation for axial velocity, w.

Figure 2.13: Axial �ow in the micro region

At the end of the thesis, a parametric study is made using the developed model.
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CHAPTER 3

EVAPORATION MODEL BASED ON

UNIDIRECTIONAL FLOW

3.1 Theory of Evaporation

3.1.1 Evaporative Heat Flux from the Kinetic Theory of Gases

Evaporation is associated with high heat transfer coe�cients. It enables to

transfer high heat loads with small temperature di�erences so that heat pipes

use the advantage of phase change heat transfer. Estimation of the limitation

of heat transfer achieved by evaporation requires the investigation of the liquid-

vapor interface at molecular level. Following the detailed study made by Carey

[44] in his book, vapor molecules in the vicinity of liquid-vapor interface are

going to be investigated, �rstly.

In the kinetic theory of gases, Maxwell velocity distribution, formulated in Equa-

tion 3.1, is applied:

dnuvw
n

=

(
m

2πkBT

)3/2

exp
(
− (m/2kBT )

(
u2
m + v2

m + w2
m

) )
dumdvmdwm,

(3.1)

where n is total number of the molecules and the left side of the equation is the

fraction of the total number of molecules having velocity between u and u+ du,

v and v + dv, w and w + dw along x, y and z coordinates, respectively. In the

right side of the equation, m, kB and T are the mass of a gas molecule, Boltzman
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constant and absolute temperature, respectively.

In order to determine the �ux of gas molecules which have a Maxwell velocity

distribution through an arbitrary plane, the geometry depicted in Figure 3.1 is

considered where Lx, Ly and Lz are dimensions of the box.

Figure 3.1: Geometry used in the analysis of molecular �ux through a surface [44]

In this �gure, the cross hatched surface is S∗x and the amount of molecules

within the box that will go through the surface S∗x per unit time, is to be

investigated. Regardless of the velocities v and w, the molecules which have

a velocity component in the x direction, will pass through the S∗x as long as they

are located in a distance closer than u∆t. The fraction of the molecules having

a velocity range between u and U +du can be calculated using Maxwell velocity

distribution as given in Equation 3.2,

dnu
n

=

∫
v

∫
w

dnuvw
n

=

(
m

2πkBT

)1/2

e−mc
2/2kBTdu. (3.2)

The fraction of molecules which have u velocity and pass through to S∗x per unit

area and time, on the other hand, can be calculated considering the dimensions

of the box:

40



dju =

(
u∆t

Lx

)
dnu

(
1

LzLy

)(
1

∆t

)
. (3.3)

When Equations 3.2 and 3.3 are combined and integrated for all possible values

of u, the total rate at which molecules pass through S∗x is found as shown in

Equation 3.4,

ju =

(
1

4

)( n
V

)(8kBT

πm

)1/2

=

(
M

2πRu

)1/2
P

mT 1/2
. (3.4)

Equation 3.4 shows that the �ux in x direction is independent of any other

dimension. Then, Equation 3.4 can be generalized to be used for any planar

surfaces in a gas volume,

jn =

(
1

4

)( n
V

)(8kBT

πm

)1/2

=

(
M

2πRu

)1/2
P

mT 1/2
. (3.5)

Equation 3.5, now, can be used to analyze the motion of the vapor molecules

in the close proximity of a liquid-vapor interface. Let's assume a planar surface

which is parallel to interface and located in an in�nitesimally distance from the

interface. The evaporation process requires that the number of vapor molecules

that just escaped from the liquid phase must be greater than the number of

vapor molecules merging with the liquid phase. Thus, the net evaporation rate

is the di�erence between the �ux of vapor molecules evaporated and the �ux of

vapor molecules condensing:

ṁ′′evap = m′′l −m′′v . (3.6)

Flow rate of vapor molecules stated in Equation 3.5 was derived for stationary

gases. However, the relation must be corrected for gases which have a bulk

velocity. Vapor molecules which originate from bulk vapor phase and condensing

on the liquid surface, have bulk velocity when crossing the planar surface which

is just above the interface. Then, the relation for the �ux of molecules is modi�ed

by a correction factor, Γ, as suggested by Schrage [13],
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jnw = Γ(a∗)

(
M

2πRuT

)1/2
P

m
. (3.7)

The de�nition of the correction factor, Γ, is given in Equation 3.8:

Γ(a∗) = exp
(
(a∗)2

)
+ a∗π1/2

(
1 + erf(a∗)

)
. (3.8)

If the bulk velocity of the vapor molecules which moves toward to the liquid is

taken as w0, the de�nition of a∗ becomes,

a∗ =
w0

(2RuT/M)1/2
. (3.9)

The molecules which are vaporized from the liquid phase, on the other hand,

have negligible velocity due to in�nitesimally small distance of the planar surface

from the interface. Thus, Equation 3.5 is used to describe the �ow rate of these

vapor molecules.

In addition to the bulk velocity correction, re�ection correction should also be

considered in the �ow rate of vapor molecules. For example, all the vapor

molecules moving away from the interface do not have to be vaporized from the

liquid phase. Some of them are molecules re�ected from the interface because

vapor molecules which hit the interface sometimes do not condense and are

re�ected from the interface. Similarly, the correction is necessary for vapor

molecules which move towards the interface. Only some of the molecules actually

condense and others are re�ected. The correction factor for both cases are

assumed to be the same and generally called as the accommodation coe�cient, σ̂.

Moreover, to determine the net mass �ux at the interface, �ow rates of the

molecules have to be multiplied by the mass of a vapor molecule, m,

ṁ′′evap = mσ̂ (jn − jnw) . (3.10)

Substitution of Equation 3.5 and 3.7 to 3.10 yields the following relation for the

evaporative mass �ux at the interface,
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ṁ′′evap = σ̂

(
M

2πRu

)1/2
(
Pv,lv

T
1/2
lv

− Γ(a∗)Pv

T
1/2
v

)
, (3.11)

where Pl and Pv are the saturation pressures corresponding to the temperatures

of liquid, Tl, and bulk vapor phase, Tv, respectively.

The magnitude of velocity correction factor, Γ, depends on the magnitude of

a∗. To estimate the magnitude of a∗, the bulk velocity of vapor molecules at

the interface has to be determined. At the interface, continuity of the vapor

molecules requires the following relation for the vapor velocity,

w0 =
ṁ′′evap
ρv

. (3.12)

With the substitution of Equation 3.12 to 3.9, the relation for the a∗ becomes

as follows,

a∗ =
ṁ′′evap
ρv

(
2RuTv
M

)1/2

. (3.13)

The value of a∗ is small for the evaporation processes at high temperatures. In

the limit of small a∗, velocity correction factor can be simpli�ed to

Γ = 1 + a∗π1/2 . (3.14)

Substituting Equation 3.14 with 3.13 to 3.11, using the ideal gas relation and

rearranging terms, the evaporative mass �ux at the liquid-vapor interface is

reduced to Equation 3.15,

ṁ′′evap =

(
2σ̂

2− σ̂

)(
M

2πRu

)1/2
(
Pv,lv

T
1/2
lv

− Pv

T
1/2
v

)
. (3.15)

This useful formulation is commonly attributed to the Schrage [13] in the studies

which focus on the topic of thin �lm evaporation. In the Soviet literature, on

the other hand, Equation 3.15 is referred as the Kucherov-Rikenglaz equation.
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3.1.2 The Equilibrium Pressure Di�erence at the Liquid-vapor In-

terface

The equilibrium pressure di�erence at the liquid-vapor interface is related to the

temperature di�erence between phases and surface forces at the interface. The

relationship between equilibrium temperature and vapor pressure is obtained

from the Clasius-Clapeyron equation. The surface forces which determine the

shape of the interface, are capillary and disjoining forces. Modi�ed Kelvin equa-

tion is applied to relate these forces to the pressure jump at the interface.

3.1.2.1 Clapeyron e�ect

Mathematical expression for the Clasius-Clapeyron equation can be shown in

Equation 3.16,

dP

dT
=
hlv
∆v

1

T
. (3.16)

Transition between gas and liquid phase occurs at temperatures much lower

than the critical temperature. In this case, the speci�c volume of the gas phase

is much larger than that of the liquid phase. Thus, the di�erence between the

speci�c volume of the phases can be approximated to the speci�c volume of gas

phase,

∆v = vg

(
1− vl

vg

)
≈ vg. (3.17)

Furthermore, assuming low pressure, vapor can be approximated by the ideal

gas law,

vg =
Ru

M

T

P
. (3.18)

With the substitution of Equation 3.17 and 3.18, the relation of Clasius-Clapeyron

for the ideal gases becomes as follows,
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dP

dT
=

P

T 2

hlvM

Ru

. (3.19)

Equation 3.19, then, is integrated between the states of the bulk vapor and the

vapor in�nitesimally above the interface,

ln

(
Pv,lv
Pv

)
=
hlvM

R

(
1

Tv
− 1

Tlv

)
. (3.20)

Taylor series expansion of the left side of Equation 3.20 yields Equation 3.21:

(
Pv,lv
Pv

)
− 1 =

hlvM

R

(
1

Tv
− 1

Tlv

)
. (3.21)

After algebraic manipulations, the pressure di�erence of vapor at the interface

is expressed as a function of superheat,

Pv,lv − Pv =
hlvMPv
R Tlv Tv

(Tlv − Tv). (3.22)

3.1.2.2 Curvature e�ect

The change in vapor pressure due to a curved liquid-vapor interface, is expressed

by the Kelvin equation:

ln

(
Pv,lv
Pv

)
= − M

ρlRTlv
Pc. (3.23)

When the evaporating �lm is thin enough, however dispersion forces start acting

on the interface shape in addition to the capillary force. In his study published

in 1970, Padday [12] stated that the disjoining pressure and curvature is additive

on the �lm vapor pressure and he suggested the modi�ed Kelvin equation in the

calculation of vapor pressures of evaporating thin �lms,

ln

(
Pv,lv
Pv

)
= − M

ρlRuTlv
(Pc + Pd). (3.24)
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Taylor series expansion of the left side of Equation 3.24 yields Equation 3.25,

Pv,lv
Pv
− 1 = − M

ρlRuTlv
(Pc + Pd). (3.25)

Equation 3.25 can be arranged to express the pressure di�erence of vapor at the

interface as a function of capillary and disjoining pressures,

Pv,lv − Pv = − VlPv
RuTlv

(Pc + Pd), (3.26)

where Vl is the molar volume of the liquid.

3.1.3 Evaporation Model of Wayner

In the evaporation process taking place in an extending meniscus, Wayner et al.

[14] suggested the following relation assuming small superheat values:

T
1/2
lv ≈ T 1/2

v . (3.27)

With this simpli�cation, evaporative mass �ux at the interface reduces to a

function of pressure di�erence between bulk vapor phase and the vapor just

above the interface,

ṁ′′evap =

(
2σ̂

(2− σ̂)

)(
M

2πRuTv

)1/2

(Pv,lv − Pv). (3.28)

The pressure di�erence arises from the additive e�ects of superheat, curvature

and dispersion forces as explained above. Then, Equation 3.28 can be written

as a function of them,

ṁ′′evap =
2σ̂

2− σ̂

(
M

2πRuTv

)1/2(
hlvMPv
RTlvTv

(Tlv − Tv)−
VlPv
RuTlv

(Pc + Pd)

)
. (3.29)
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Following Wayner et al. [14], Equation 3.29 is simply expressed in the form of

Equation 3.30 in the literature,

ṁ′′evap = a (Tlv − Tv)− b (Pc + Pd) , (3.30)

where

a =
2σ̂

2− σ̂

(
M

2πRuTlv

)1/2(
MPvhlv
RuTvTlv

)
, (3.30a)

b =
2σ̂

2− σ̂

(
M

2πRuTlv

)1/2(
PvVl
RuTlv

)
. (3.30b)

Furthermore, Moosman and Homsy [20] eliminated the interface temperature

in favour of the wall temperature assuming simple conduction in the transverse

direction. Thus, temperature jump or superheat is de�ned in terms wall and

saturated bulk vapor temperatures as shown in Equation 3.31:

ṁ′′evap =
1

1 + aδhlv/kl

(
a(Tw − Tv)− b(Pc + Pd)

)
. (3.31)

3.2 Unidirectional Fluid Flow in the Thin Film Region

As explained previously, the major contribution to evaporation occurs in the

thin �lm region where both capillary and dispersion forces are e�ective. The

formulation of unidirectional �uid �ow with the evaporation will be based on

this region. However, there is no distinct boundary which separates the thin

�lm region from the intrinsic region where only capillary forces exist. Then, it

would be safe to start the �ow analysis from a place in the intrinsic meniscus

region where the ratio of disjoining pressure to capillary pressure is su�ciently

small.

The evaporation process taking place at the interface creates a pressure gradient

which enables the supply of liquid from the bulk meniscus to the thin �lm region.
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The necessary pressure gradient in the intrinsic meniscus region is generated due

to the deformation of the curvature of the meniscus. To formulate the liquid

pressure gradient at the interface of the intrinsic meniscus region, derivative of

the Young-Laplace equation is used. It should be noted that Kelvin equation

(Equation 3.23) reduces to Young-Laplace equation if the superheat between

liquid and vapor phases is negligible. In the thin �lm region, on the other hand,

disjoining pressure is also taken into account and derivative of the augmented

Young-Laplace equation which is given in Equation 3.32, is used to �nd the liquid

pressure gradient at the interface. It should be noted that the vapor pressure

can be assumed constant for a heat pipe, which is indeed a closed container for

the vapor phase, therefore, the gradient of vapor pressure can be neglected:

− dPl
dx

=
dPc
dx

+
dPd
dx

. (3.32)

Assuming unidirectional �ow in the x direction, the change of pressure in the y

direction is neglected. Then, the liquid pressure gradient at the interface can be

used for entire domain.

The radius of curvature, R, can be geometrically de�ned as follows,

R =

(
1 + (dδ/dx)2)3/2

d 2δ/dx 2
, (3.33)

where δ, is the �lm thickness at an x position. It should be noted that the above

de�nition of radius of curvature, R, di�ers from the common de�nition, using

absolute values of the second derivative, which renders the radius of curvature

positive. The current de�nition, however, accounts for the change in the sign of

capillary pressure due to a change in the sign of the second derivative, enabling

mathematical formulation and solution of the problem.

When Equations 2.2, 2.7 and 3.33 are substituted to Equation 3.32, the liquid

pressure gradient in the x direction can be formulated as in Equation 3.34 where

the only unknown is the �lm thickness, δ,
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− dPl
dx

= −3Ad
δ4

dδ

dx
+ σ

d 3δ/dx 3(
1 + (dδ/dx)2)3/2

− 3σ
(d 2δ/dx 2)

2(
(1 + (dδ/dx)2)5/2

dδ

dx
. (3.34)

At the end of the thin �lm region, a non-evaporating region exists where the

evaporation is suppressed due to low �lm pressure caused by very high disjoining

pressures. The non-evaporated stationary block of liquid behaves like a solid.

Then, all of the liquid entering the thin �lm region must evaporate until non-

evaporating region to satisfy conservation of mass. For the momentum, on the

other hand, x component of the Navier-Stokes equation should be solved be-

cause of unidirectional �uid �ow assumption. Heat pipes have capillary pressure

driven �ows with very low velocities. Physics of the �ow is based on balance

of pressure forces originating from capillary e�ect and viscous forces originating

from shear between liquid and solid boundaries. Furthermore, many heat pipes

can work against gravity in earth applications or they can work in micro gravity

applications in space. Thus, body forces do not play an e�ective role in the �ow

mechanism depending on the relative magnitude of capillary forces. Then, ap-

plying boundary layer approximations, x momentum equation can be simpli�ed

to Equation 3.35:

dPl
dx

= µ
d 2u

dy2
. (3.35)

Equation 3.35 is integrated twice to get the u velocity distribution at an x

location depending on the value of liquid pressure gradient at this position.

The integration constants are determined using boundary conditions at the wall

surface and liquid-vapor interface. At the wall, no slip condition is applied. At

the liquid-vapor interface, negligible shear stress between vapor and liquid is

assumed. The resulting u velocity distribution can be seen in Equation 3.36:

u =
1

µ

dPl
dx

(
y2

2
− δy

)
. (3.36)
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The only unknown in Equation 3.36 is the �lm thickness. In order to �nd the

distribution of the �lm thickness in the thin �lm region, domain is discretized

using strips.

Figure 3.2: Solution domain

In each strip, conservation of mass is applied by equating the di�erence of inlet

and outlet mass �ow rates to the evaporative mass �ow rate.

Figure 3.3: Mass conservation on a single strip
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where

ṁ′i = ρl

∫ δi

0

u dy. (3.37)

When the formulation of the u velocity is substituted in Equation 3.37, mass

�ow per unit depth is obtained as follows,

ṁ′i = −1

ν

dPl
dx

δ3
i

6
, (3.38)

where mass �ow per unit depth, m′i, is only a function of �lm thickness, δ, due

to the fact that dPl/dx is function of δ.

In the solution procedure, initially the total mass �ow rate entering the domain

which is also equal to the amount of total evaporated �uid from the interface,

is estimated. Analysis starts from an initial �lm thickness at which the ratio

of disjoining pressure to the capillary pressure is negligible. In the �rst strip of

the domain, the amount of �uid entering the strip is known. The amount of

�uid exiting from the strip is a function of the thickness of the �lm at the end

of the strip. The amount of �uid evaporating within the strip is a function of

the average �lm thicknesses at the beginning and end of the strip. Then, the

following relation is set to �nd the �lm thickness at the end of the �rst strip.

f(δi+1) = ṁ′i − ṁ′i+1(δi+1)− ṁ′evap
(
δi + δi+1

2

)
= 0 (3.39)

The step size of the numerical solution is set when the domain is divided to

strips. This step size is used in the discretization of Equation 3.40 which is a 3rd

order, non-linear di�erential equation requiring three initial conditions set at the

boundary. In the numerical solution of the equation, �nite di�erence method is

applied. During the solution procedure, secant method is used for root �nding.

At the end of the numerical solution performed on the �rst strip, the exit �lm

thickness of the �rst strip is found. It is also the �lm thickness at the beginning

of the second strip. Then, the same solution procedure is used for the second and

successive strips. When all of the �uid is evaporated, the analysis is stopped
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and the liquid pressure gradient is checked. If the liquid pressure gradient is

di�erent than zero, the guess of the total amount of the �uid entering to the

domain, is updated. Iterations are continued until the point on which liquid

pressure gradient vanishes, coincides with the point where all of the �uid is

evaporated.

3.3 Boundary Conditions

In the studies in which the numerical solution of the governing di�erential equa-

tion is started from the intersection of the non-evaporating and evaporating thin

�lm region ([31], [36], [41], [54], [55]), thickness and �rst three derivatives of the

�lm have to be speci�ed. Equation 3.30 is set to zero to �nd the thickness at

the edge of the non-evaporating region. The �rst derivative of the �lm thickness

is taken as zero for spreading �uids. The second derivative of the �lm thickness

is zero due to zero curvature assumption at the contact line. Third derivative

of the �lm thickness, on the other hand, can be expressed as functions of the

�lm thickness and �rst two derivatives from di�erentiation of the augmented

Young-Laplace equation, Equation 2.9. However, in various studies these initial

conditions are manipulated in di�erent ways to overcome the numerical di�-

culties encountered. Stephan and Busse [31] calculated a non-evaporating �lm

thickness thicker than the theoretical value and used a very small value for the

second derivative of the �lm thickness by assuming very small capillary pressure

instead of zero capillary pressure at the contact line. Moreover, they chose a

suitable value for the third derivative of the �lm thickness so that the integra-

tion ended in a meniscus with the desired curvature. Wang et al. [36] chose a

higher non-evaporating �lm thickness and non-zero �rst derivative. In addition,

they manipulated the second derivative to match the far �eld boundary condi-

tion. Although the authors claim that such small alterations of the boundary

conditions do not a�ect the results, this approach leads to a misrepresentation

of underlying physical phenomena.

Furthermore, specifying boundary conditions at the contact line is not a reliable

method especially for the systems which are subjected to large superheat because
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�lm thickness becomes extremely small thin in these systems. The shape of the

contact line cannot be predicted in these systems due to the fact that there

exists no experiment measuring such a thin �lm thickness which may be at the

order of molecular separation.

Before presenting the boundary conditions used in this thesis, the contact angle

should be discussed because apparent and real contact angles are frequently

confused with each other. Generally, the term contact angle is used to represent

the angle between the tangent line of the liquid-vapor and the solid at the triple

intersection of solid-liquid-vapor. The contact angle which can be identi�ed

with the naked eye is called as apparent contact angle. The real contact angle,

on the other hand, is the angle of the free surface at the junction of it with

the adsorbed liquid. Real contact angle is sometimes at the level of surface

roughness and it cannot be measured easily. In his study published in 1982

[23], Wayner stated that real contact angle is at the molecular level and cannot

be seen. However, nearly all of the spreading systems were solved using the

zero real contact angle as boundary condition without an exact experimental

evidence. For example, the experimental results of Dasgupta et. al [26] could

not show the real contact angle with the su�cient resolution but the analytical

model based on the experimental results assumed zero real contact angle. For

these reasons, instead of true contact angle at the contact line, apparent contact

angle should be de�ned in a system.

In order to avoid the numerical di�culties and physical con�icts, in the current

study, analysis starts from a place in the intrinsic meniscus region where the

ratio of disjoining pressure to capillary pressure is su�ciently small.

Equation 3.39 is a third order di�erential equation requiring the speci�cation

of three initial conditions at the inlet of the solution domain. Integration is

started at a location such that the e�ect of disjoining forces is negligible. The

�rst derivative of the �lm thickness is calculated from the apparent contact angle,

θ, the second derivative of the �lm thickness is calculated from Equation 3.33

based on the undisturbed meniscus curvature in the intrinsic meniscus region.

The amount of �uid to be evaporated in the problem domain is unknown a priori
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to solution. This amount is found in an iterative manner so that when the

entire amount of �uid entering the domain evaporates, �lm thickness reaches

the non-evaporating thickness value at the end of the solution domain, where

the �lm terminates. Note that the thickness of the non-evaporating �lm also

an unknown a priori, and can only be obtained through the solution of the

evaporation problem.

3.4 Results

Equation 3.39 is solved using the �nite di�erence method with the physical data

of the study of Stephan and Busse [31], where ammonia was the working �uid,

given in Table 3.1.

Table 3.1: Physical parameters used in evaporation model

Vapor temperature (K) Tv 300
Wall temperature (K) Tw 301
Vapor pressure (Pa) Pv 1.06× 106

Density of saturated vapor (kg/m3) ρv 9
Density of liquid (kg/m3) ρl 600
Latent heat of evaporation (J/kg) hlv 1.18× 106

Surface tension (N/m) σ 2.0× 10−2

Dynamic viscosity of liquid (Pa · s) µl 1.3× 10−4

Thermal conductivity (W/m ·K) kl 0.48
Molar mass of liquid (kg/mol) M 17.3× 10−3

Molar volume of liquid (m3/mol) Vl 28.8× 10−6

Accommodation coe�cient σ̂ 1
Dispersion constant (J) Ad 2.0× 10−21

Initial �lm thickness (µm) δ 0.282
Apparent contact angle (◦) θ 19.7
Intrinsic interface radius (µm) R 909
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In the numerical solution, an adaptive step size reduction is used to resolve the

physics of the problem near the contact line where peak heat �ux values abruptly

drop to zero. However, adequate resolution could not be achieved to distinguish

the di�erence in numerical parameters between two successive steps. This is due

to the insensitivity of the evaporative �ux to �lm thickness. To overcome this

problem, quadruple precision is used instead of double precision for the variables

in the numerical calculation and convergence is achieved in the iterations.

Film thickness predictions of the current study and Stephan and Busse [31] are

given in Figure 3.4. To explore the behaviour of the �lm thickness variation

near the contact line, a blown up �gure is also provided in Figure 3.4.

Figure 3.4: Film thickness variation of the current study and that of Stephan
and Busse [31]
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As shown in Figure 3.4, change in the curvature of the �lm thickness of the

present study is less observable when compared with the �lm thickness of Stephan

and Busse. Furthermore, when there is no enforced boundary condition, the

second derivative of �lm thickness, δ, changes sign and bends inward near the

contact line instead of asymptotically approaching zero. This behaviour can be

explained by examining the pressure balance at the interface which is shown in

Figure 3.5.

Figure 3.5: Variation of pressures

Augmented Young-Laplace equation, Equation 2.9, can be written to express

the liquid pressure as follows,

Pl = Pv − (Pc + Pd), (3.40)
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where summation of capillary and disjoining pressures should not exceed the

vapor pressure, otherwise absolute liquid pressure drops below zero which leads

to a complete non-physical state. In order to prevent such a non-physical situ-

ation, rapidly increasing disjoining pressure should be somehow balanced. The

sign change of the curvature creates a negative capillary pressure. This mech-

anism balances the rapidly increasing disjoining pressure due to ultra-thin �lm

thickness values near the contact line. Thus, liquid pressure never drops below

zero before the evaporation of all �uid entering the problem domain. However,

in the absence of such a mechanism, the value of disjoining pressure exceeds

2.3MPa at the contact line whereas the value of saturated vapor pressure is only

about 0.1MPa resulting a negative absolute pressure in the study of Stephan

and Busse [31].

Figure 3.6: Contribution of capillary and disjoining pressures to liquid pressure
gradient
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In addition to a non-negative absolute liquid pressure value, the liquid pressure

gradient at the end of the evaporating thin �lm must be zero because there

is no �uid motion at the non-evaporating thin �lm zone where evaporation is

suppressed by ultimately high disjoining pressure. Figure 3.6 shows the variation

of the di�erent contributions to pressure gradient within the evaporating thin

�lm region and the liquid pressure gradient reaches zero at the contact line.

Figure 3.7: Heat �ux variation of the current study and Stephan and Busse [31]
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Figure 3.7 shows the variation of heat �ux of the present and the reference studies

in the thin-�lm region. Heat �ux values of the present study match the values of

Stephan and Busse [31] when the e�ect of disjoining pressure is small compared

to the capillary pressure. However, for progressively small �lm thicknesses, heat

�ux of the present study increases more rapidly. After reaching the maximum

value of the heat �ux, which is 6% higher than the value reached in the study of

Stephan and Busse [31], heat �ux abruptly drops to zero. To get the adequate

resolution for analysing this sudden decrease, excessively small step sizes are

used in the numerical solution. The blown up plot in Figure 3.7, shows the

resolved heat �ux variation in the close neighbourhood of the maximum value

of the heat �ux.

The total heat transferred in the micro region (0 ≤ x ≤ 1µm) was reported as

6.6W/m in the study of Stephan and Busse [31]. In the current study, starting

the analysis with the same initial �lm thickness used in the study of Stephan and

Busse [31], the total heat transferred is estimated as 5.38W/m corresponding

an 18.5% decrease in the total heat transferred.
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CHAPTER 4

EVAPORATION MODEL BASED ON

BI-DIRECTIONAL FLOW

4.1 Formulation

Although the assumption of unidirectional �ow is generally applied to the micro

region in the literature, a more general approach is necessary to get a compre-

hensive evaporation model. In the thin �lm region of an extended evaporating

meniscus, both u and v velocities actually exist. Therefore, the y momentum

equation should also be solved in addition to the x momentum, simultaneously.

Moreover, conservation of mass within the solution domain should be guaran-

teed. The e�ect of gravity can be neglected as mentioned previously. Then,

steady state, two-dimensional conservation of mass and linear momentum equa-

tions in Cartesian coordinates can be written as follows,

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν
(∂2u

∂x2
+
∂2u

∂y2

)
, (4.2)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν
(∂2v

∂x2
+
∂2v

∂y2

)
. (4.3)

Before starting the solution of governing equations, an order of magnitude anal-

ysis is applied to them. Unlike many studies in the literature, the solution of
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unidirectional model yielded moderate slope values instead of values which are

very close to zero. Therefore �lm thickness and longitudinal distance cannot

be compared to determine a scale for the order of magnitude analysis. On the

other hand, the components of the surface velocity are suitable to be used in

the order of magnitude analysis due to the fact that the geometry of the liquid-

vapor interface was estimated in the solution of unidirectional model. For small

contact angles, approximately less than 20◦, the following can be used, due to

the geometry of the contact line:

uolv
volv

> 1. (4.4)

Non-dimensional parameters for the longitudinal direction, x, transverse direc-

tion, y, x velocity, u, and y velocity, v, can be de�ned as follows,

x̄ =
x

xo
, (4.5)

ȳ =
y

δ
, (4.6)

ū =
u

uolv
, (4.7)

v̄ =
v

volv
, (4.8)

such that all dimensionless quantities are of the magnitude O(1).

Firstly, conservation of mass, Equation 4.1, is subjected to the order of mag-

nitude analysis to determine a relation for the scale of longitudinal distance,

xo:

uolv
xo
∂ū

∂x̄
+
volv
δ

∂v̄

∂ȳ
= 0. (4.9)
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Since the dimensionless terms are of the O(1), the coe�cients of the non-

dimensional terms must be equal, and scale of longitudinal distance can be

expressed as follows,

xo = δ
uolv
volv
. (4.10)

Before the order of magnitude analysis of conservation of linear momentum

equations, the scale of absolute liquid pressure should be determined. However,

when the comparison is made between the corresponding terms of the x and y

momentum equations, �nding a relation for the scale of the liquid pressure may

not necessary. Thus, reference pressure, P o, is used to make the absolute liquid

pressure non-dimensional without an a priori de�nition,

P̄ =
P

P o
. (4.11)

Now, conservation of linear momentum equations can be non-dimensionalized,

uolvv
o
lv

δ
ū
∂ū

∂x̄
+
uolvv

o
lv

δ
v̄
∂ū

∂ȳ
= −v

o
lvP

o

uolvρ

∂P̄

∂x̄
+

(volv)
2ν

δ2uolv

∂2ū

∂x̄2
+
uolvν

δ2

∂2ū

∂ȳ2
, (4.12)

(volv)
2

δ
ū
∂v̄

∂x̄
+

(volv)
2

δ
v̄
∂v̄

∂ȳ
= −P

o

ρ

∂P̄

∂ȳ
+

(volv)
3ν

δ2(uolv)
2

∂2v̄

∂x̄2
+
volvν

δ2

∂2v̄

∂ȳ2
. (4.13)

For simplicity, x momentum equation is multiplied by δ/uolvv
o
lv and y momentum

equation is multiplied by δ/(volv)
2,

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= − P o

(uolv)
2ρ

∂P̄

∂x̄
+

volvν

δ(uolv)
2

∂2ū

∂x̄2
+

ν

δvolv

∂2ū

∂ȳ2
, (4.14)

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= − P o

(volv)
2ρ

∂P̄

∂ȳ
+

volvν

δ(uolv)
2

∂2v̄

∂x̄2
+

ν

δvolv

∂2v̄

∂ȳ2
. (4.15)

When the terms in Equations 4.14 and 4.15 are compared one by one from left

to right, the orders of the each corresponding terms are same except the orders
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of pressure gradient terms. In a heat pipe or in an extending meniscus of an

heat pipe inertial terms are small due to creeping �ow. Therefore, the balance is

between the pressure gradient that causes the �ow and shear at the wall which

balances it. Following this fact, the order of the viscous terms and pressure

gradient term of Equation 4.14 can be assumed same or at least comparable. The

order of viscous terms in Equation 4.15 are same with the ones in Equation 4.14

as mentioned previously. However, the order of the pressure gradient term of the

y momentum equation, Equation 4.15, is (uolv/v
o
lv)

2 times higher than the order

of viscous terms. In the y momentum equation, there exists no term which can

balance the pressure gradient which makes the presence of the pressure gradient

non-physical. Then, the pressure gradient in the y direction is dropped from the

governing equations:

∂u

∂x
+
∂v

∂y
= 0, (4.16)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
+ ν
(∂2u

∂x2
+
∂2u

∂y2

)
, (4.17)

u
∂v

∂x
+ v

∂v

∂y
= ν

(∂2v

∂x2
+
∂2v

∂y2

)
. (4.18)

4.2 Solution Procedure

Equations which govern the �uid �ow within the solution domain, contain three

unknowns which are u velocity, v velocity and the liquid pressure. Three equa-

tions with three unknowns, can be mathematically solved. However, the bound-

aries of the solution domain are not known a priori because the �lm thickness

variation is actually the result of the de�ned problem. So, an initial estimate for

the �lm thickness distribution is required to begin the solution of bi-directional

�uid �ow. The �lm thickness distribution result of the unidirectional analysis

can be used as an �rst estimate. Furthermore, �lm thickness distribution is

directly linked to the pressure gradient in the x direction as suggested by Equa-

tion 3.34 and to evaporative mass �ux as suggested by Equation 3.31. Thus,

64



liquid pressure is not an unknown if �lm thickness variation is known. The re-

maining two unknowns, u and v, can be calculated by solving only two equations

and these equations should be momentum equations because continuity equa-

tion drops due to the direct application of evaporative mass �ux as an initial

estimate.

The conservation of mass within the solution domain is going to be satis�ed in

an iterative process depending on the updates of the �lm thickness distribution

which are achieved by the simultaneous solution of x and y momentum equations.

Details about the conservation of mass will be explained in Section 4.2.2.

4.2.1 Solution of Momentum Equations by Spectral Element Method

Spectral element method, which is an hp formulation of the �nite element

method, is used in the solution of momentum equations. Spectral element

method uses high degree piecewise polynomials (p), thus a fast convergence

to the exact solution is realized with fewer number of elements (h). With the

application of the spectral element method, higher order, accurate and contin-

uous velocity distribution is aimed to achieve. Furthermore, the short range

in which evaporative heat �ux reaches its highest point and suddenly drops to

zero, can be easily solved with adeqate resolution by the help of non-uniformly

spaced Gauss-Lobatto-Legendre (GLL) nodes which enable high resolution near

boundaries. Figure 4.1 shows a distribution of 10× 10 Gauss-Lobatto-Legendre

nodes in a square.

Figure 4.1: Distribution of 10× 10 Gauss-Lobatto-Legendre nodes in a square
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The spectral element method is capable of modelling complex and irregular ge-

ometries. In the current study, one quadrilateral element is used and it requires

four vertex and four mathematically expressible edges to perform mapping be-

tween the irregular physical domain, Ω, and standard quadrilateral domain, Ωst.

The irregular physical domain on which spectral element method is applied, is

seen in Figure 4.2

Figure 4.2: Physical domain

The set of two-dimensional momentum equations which are going to be solved

by spectral element method is shown in Equations 4.19a-b:

u
∂u

∂x
+ v

∂u

∂y
= ν
(∂2u

∂x2
+
∂2u

∂y2

)
+ f(δ), (4.19a)

u
∂v

∂x
+ v

∂v

∂y
= ν
(∂2v

∂x2
+
∂2v

∂y2

)
. (4.19b)

where f(δ) represents the liquid pressure gradient in the x direction and it is a

known function of the �lm thickness. The boundary conditions of the momentum

equations are established in Equations 4.20a-d:
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I : u = v = 0 at y = 0, (4.20a)

II : u = u0(y) v = v0(y) at x = 0, (4.20b)

III : u · n = m′′evap(δ)/ρ at the free surface, (4.20c)

IV : u = v = 0 at x = Lne. (4.20d)

where u = [u, v]T .

4.2.1.1 Weak Formulation

The weak formulation of the equations is a variational statement of the problem.

To achieve a weak form of a di�erential equation, equation is multiplied by a test

function and integrated over the domain. The selection of the test functions can

change according to the method preferred. When the dependent variable of the

di�erential equation is approximated by trial functions, the result of integration

is not exactly zero but equals to a residual. Then, the aim is to minimize the

error between actual and approximate solutions.

Two-dimensional momentum equations, Equations 4.19a and 4.19b, are written

in the vectorial form for the convenience, in the rest of the weak formulation,

u · ∇u = ∇ · ¯̄σ + F, (4.21)

where the vector, F, which represents the body forces in Equation 4.21 should

have the following form,

F = [f(δ), 0]T . (4.22)

The space of test functions,V , is de�ned on the boundaries as follows,

V = {v ∈ E(Ω) | v|I = v|II = v|IV = 0 ; v · n|III = 0}, (4.23)
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where v is test function and E(Ω) is energy space.

Equation 4.21 is projected onto the space of test functions. The result of the

integration can be seen below, in index notation:

∫∫
Ω

vjui
∂uj
∂xi

dΩ =

∫∫
Ω

vj
∂σij
∂xi

dΩ +

∫∫
Ω

vjFj dΩ. (4.24)

The �rst term at the right hand side of Equation 4.24 can be rewritten applying

the chain rule,

∫∫
Ω

vjui
∂uj
∂xi

dΩ =

∫∫
Ω

[
∂(vjσij)

∂xi
− σij

∂vj
∂xi

]
dΩ +

∫∫
Ω

vjFj dΩ. (4.25)

Considering only two-dimensional vector �elds, divergence theorem is applied to

the leading term of the �rst term at the right hand side of Equation 4.25:

∫∫
Ω

vjui
∂uj
∂xi

dΩ =

∫
∂Ω

ni · (vjσij) ds −
∫∫
Ω

σij
∂vj
∂xi

dΩ +

∫∫
Ω

vjFj dΩ. (4.26)

The �rst term at the right hand side of Equation 4.26 is equal to zero due to

the de�nition of test function on the boundaries. Then, the weak formulation

of the problem yields Equation 4.27 which is going to solve using trial functions

for approximation,

∫∫
Ω

vjui
∂uj
∂xi

dΩ = −
∫∫
Ω

σij
∂vj
∂xi

dΩ +

∫∫
Ω

vjFj dΩ. (4.27)

Equation 4.27 can also be expressed in vector-operator notation:

∫∫
Ω

(v⊗ u) : ∇u dΩ = −
∫∫
Ω

¯̄σ : ∇v dΩ +

∫∫
Ω

v · F dΩ. (4.28)
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4.2.1.2 Mapping

In order to perform the numerical di�erentiations and integrations within the

domain using of the Gauss-Lobatto-Legendre (GLL) nodes, the problem should

be transformed to a standard domain which is a unit square.

Figure 4.3: Standard domain

Actual irregular physical domain, Ω, then, should be mapped to the standard

domain, Ωst.

Figure 4.4: Mapping of physical domain to standard domain
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The relation between actual and standard coordinates is constructed by using

the mapping functions, X1 and X2:

x = X1(s, t), (4.29a)

y = X2(s, t). (4.29b)

Mapping functions, on the other hand, are constructed using the linear blend-

ing [56]. In this problem, mapping functions for the longitudinal and vertical

coordinates are found as follows,

X1(s, t) =
1 + s

2
L0 , (4.30a)

X2(s, t) = δ

(
1 + s

2
L0

)
1 + t

2
, (4.30b)

where −1 ≤ s, t ≤ 1 and δ is function of s as it is indicated. In the rest of the

derivations, δ is going to be used without its argument for clarity.

The Jacobian of transformation is determined in Equation 4.31:

|J | =
∣∣∣∣ ∂(s, t)

∂(x, y)

∣∣∣∣ =

∣∣∣∣∣∣
 L0

2
0

δ′L0

2
1+t

2
δ
2

∣∣∣∣∣∣ =
L0

4
δ. (4.31)

The calculation of mixed derivatives is necessary to evaluate the numerical dif-

ferentiation operations in Equation 4.28. Mixed derivatives of transformation

appears as in the form of Equations 4.32a-d:
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∂s

∂x
=

2

L0

, (4.32a)

∂s

∂y
= 0 , (4.32b)

∂t

∂x
= − 2

1 + t

L0

δ′

δ
, (4.32c)

∂t

∂y
=

2

δ
. (4.32d)

The gradient operator, then, becomes,

∇ =

 ∂
∂x

∂
∂y

 =

 2
L0

∂
∂s
− 2(1+t)

L0

δ′

δ
∂
∂t

2
δ
∂
∂t

 . (4.33)

4.2.1.3 Discretization

Dependent variable of the problem, which is the velocity, u, in Equations 4.27 or

4.28 of the current study, is discretized by using polynomials next. In Galerkin

approach, polynomial expansion is used for both trial space, U , and test space,

V . Polynomial approximation of the dependent variable is shown in Equation

4.34:

u
v

 (x, y) ∼=
M∑
p=0

N∑
q=0

upq
vpq

Lp(s)Lq(t), (4.34)

where L denotes Lagrange polynomial interpolant through Gauss-Lobatto-Legendre

(GLL) points, {sp, tq}, typically,

Lp(s) =
M∏

m=0,m 6=p

s− sm
sp − sm

and Lq(t) =
N∏

n=0,n6=q

t− tn

tq − tn

, (4.35)

where

upq
vpq

 =

u
v

 (X1(sp, tq), X2(sp, tq)).
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At the GLL nodes, Lagrange interpolants, Equation 4.35, exhibit Kronecker-

Delta property,

Lp(sm) = δpm , (4.36a)

Lq(tn) = δqn , (4.36b)

with `−1 = s0 < ... < sM = 1 and −1 = t0 < ... < tN = 1.

GLL nodes together with the associated weights {wm, wn} provide high accu-

racy quadrature approximation for integrals. A representative integration for

the longitudinal velocity on the physical domain is performed in the following

equations.

First, actual physical domain is transformed to the standard domain:

∫∫
Ω

u(x, y) dΩ =

∫∫
Ωst

u (x(s, t), y(s, t)) J dsdt . (4.37)

Secondly, discretization of the dependent variable is performed:

∫∫
Ω

u(x, y) dΩ ∼=
M∑
p=0

N∑
q=0

upq

∫∫
Ωst

JLp(s)Lq(t) dsdt . (4.38)

Next, numerical integration is applied with the associated weights {wk, wl}:

∫∫
Ω

u(x, y) dΩ ∼=
M∑
p=0

N∑
q=0

upq

(
M∑
k=0

N∑
l=0

J(sk, tl)Lp(sk)Lq(tl)wkwl

)
. (4.39)

Then, Kronecker-Delta property of the Lagrange interpolants is used:

∫∫
Ω

u(x, y) dΩ ∼=
M∑
p=0

N∑
q=0

upq

(
M∑
k=0

N∑
l=0

J(sk, tl)δpkδqlwkwl

)
. (4.40)
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The �nal, transformed and integrated form of the term can be seen in Equa-

tion 4.41:

∫∫
Ω

u(x, y) dΩ ∼=
M∑
k=0

N∑
l=0

uklJklwkwl, (4.41)

where Jkl = J (X1(sk, tl), X2(sk, tl)).

To sum up, the weak form of momentum equations, Equation 4.28 or 4.29, has

formed. Then, mapping of physical domain to standard domain has explained.

After that, discretization procedure of trial and test spaces has shown.

Discretized formulation yields a de�nite set of equations. The number of equa-

tions is equal to the number of GLL nodes used in the domain. In this problem,

61×61 nodes are used to discretize the domain and one single element is used to

represent the domain. Thus, the polynomials which approximate the trial and

test space, are of 60th degree.

4.2.1.4 Boundary Conditions

Boundary conditions were given in Equations 4.20a-d for the actual physical

domain. These boundary conditions should also be transformed and discretized

for the standard domain on which numerical calculation is performed.

Equation 4.20a, which states zero velocities at the wall, is result of the no-

slip condition assumption of �uid particles at the solid contact. Due to this

condition, velocities de�ned at the nodes of the boundary I is zero:

up0 = vp0 = 0 for p = 0, 1, ...,M. (4.42)

Equation 4.20b shows the initial velocity distributions, u0(y) and v0(y). They

are assumed to have parabolic velocity pro�les. Their magnitudes, on the other

hand, are speci�ed to satisfy the amount of inlet mass �ow. The amount of inlet

mass �ow, on the other hand, cannot be known a priori because it must be equal
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to the total evaporated �uid amount which is one of the result of the complete

analysis. Thus, the inlet mass �ow, so as the initial velocity distributions are

subjected to changes which are performed in an iterative manner and procedure

is going to be explained in the Section 4.2.2. Discretization of the initial velocities

at II can be seen in Equation 4.43:

u0q = u0 (X2(s0, tq)) and v0q = v0 (X2(s0, tq)) for q = 0, 1, ..., N.

(4.43)

Equation 4.20c states the relation between evaporative mass �ux from the liquid-

vapor interface and �uid velocities at the interface. As in the case of initial

velocities, evaporative mass �ux is also subjected to changes because the dis-

tribution of evaporative mass �ux is a result of complete analysis and cannot

known a priori. Before giving the discretization of the boundary condition at

interface, unit normal vector to the surface must be de�ned:

n =
−δ′√

1 + (δ′)2
i+

1√
1 + (δ′)2

j . (4.44)

After the multiplication of unit normal vector with velocity vector, Equation

4.20c can be rewritten as shown by Equation 4.45:

− δ′u+ v =

√
1 + (δ′)2

ρ
m′′evap . (4.45)

The boundary condition of surface velocities at III can also be expressed as in

the form of Equation 4.46:

− upNδ′(sp) + vpN =

√
1 + (δ′(sp))2

ρ
m′′evap(sp) for p = 0, 1, ...,M. (4.46)

Equation 4.20d is the boundary condition at the end of the evaporating thin �lm

region or at the starting point of non-evaporating region which is completely a

stationary zone behaving like a solid body. Therefore, the velocities at the nodes

of the boundary IV are zero,
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uMq = vMq = 0 for q = 0, 1, ..., N. (4.47)

For the homogeneous boundary conditions, test functions, v, are discretized in

the same way and after implementing boundary conditions, the resultant set

of equations is solved using the MATLAB software. In the numerical solution

procedure, Picard iteration is used to handle the non-linear terms of the Navier-

Stokes equation.

4.2.2 Application of Conservation of Mass

By solving the linear momentum equations, distributions of u and v velocity

in the micro region have been determined without considering the conservation

of mass in the spectral formulation. However, the �lm thickness distribution

which is used as a constant boundary for the solution domain of spectral element

method, has to be updated such that conservation of mass must hold even in

the presence of transverse velocity, v. To update the �lm thickness distribution,

spectral element method cannot be applied due to the fact that it requires non-

changing boundaries to discretize the domain by nodes. Then, mass conservation

is obtained by using the evaporation model based unidirectional �ow.

In the solution of the unidirectional �ow, only x momentum equation was con-

sidered. Furthermore, inertial terms and second derivative of the u velocity with

respect to x direction were neglected due to boundary layer assumptions. The

evaporation model based on the bi-directional �ow, on the other hand, includes

these neglected terms in the x momentum equation which is Equation 4.17 and

rewritten below,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
+ ν
(∂2u

∂x2
+
∂2u

∂y2

)
. (4.17)

Equation 4.17, can be written as follows,
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∂2u

∂y2
=

1

µ

dP

dx
+

1

ν

(
u
∂u

∂x
+ v

∂u

∂y

)
− ∂2u

∂x2
. (4.48)

Furthermore, the neglected terms in the unidirectional �ow model are grouped

and named as φ,

φ(x, y) =
1

ν

(
u
∂u

∂x
+ v

∂u

∂y

)
− ∂2u

∂x2
. (4.49)

Then, Equation 4.48 can be written in term of φ:

∂2u

∂y2
=

1

µ

dP

dx
+ φ(x, y). (4.50)

The term on the left side and the �rst term at the right hand side of Equation

4.50 are the terms existing in the derivation of the evaporation model based on

both unidirectional and bi-directional �ow. The term φ(x, y), on the other hand,

exists only on the formulation of evaporation model based on bi-directional �ow.

Although the spectral element formulation of the bi-directional �ow considers

only the conservation of linear momentum, unidirectional �ow based solution

takes both mass and momentum conservation into consideration. Then, in order

to satisfy conservation of mass, unidirectional �ow model can be used. The term

φ contains the e�ect of bi-directional solution. If the unidirectional model is

applied by adding the values of the term φ into the formulation, in other words,

if Equation 4.50 is used in formulation of unidirectional �ow, a new �lm thickness

distribution including the e�ect of bi-directional solution, can be achieved and

conservation of mass is satis�ed. However, the values of the term φ(x, y) within

the domain have a two-dimensional distribution as a natural consequence of

the spectral element solution. In order to use the unidirectional �ow model,

Equation 4.50 should be integrated twice in y direction. With the presence of

two-dimensional φ(x, y) term, Equation 4.52 cannot be analytically integrated.

To overcome this di�culty, the average values of the term at the x-coordinates,

φ̄(x), are calculated. Then, the right hand side of Equation 4.52 becomes only

function of x as shown in Equation 4.51:
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∂2u

∂y2
=

1

µ

dP

dx
+ φ̄(x). (4.51)

With the no slip boundary condition at the wall surface and no shear assumption

at the liquid-vapor interface, two times integration of Equation 4.53 yields the

u velocity distribution of unidirectional �ow:

u =
( 1

µ

dP

dx
+ φ̄(x)

)(y2

2
− δy

)
. (4.52)

Using this velocity distribution and the solution methodology explained in Sec-

tion 3.2, a new �lm thickness having the e�ect of v velocity from the spectral

element solution via the term φ̄(x), is achieved. However, this process is not

enough to conform the conservation of mass and momentum at the same time.

The new �lm thickness distribution and the new evaporative heat �ux distri-

bution as a function of �lm thickness, are not used as boundary or boundary

condition to the bi-directional �ow domain. Then, using the new �lm thickness

distribution and evaporative heat �ux distribution, solution of the bi-directional

model should be repeated. After that, unidirectional �ow model should be

applied again to add the e�ect of new values of φ̄(x) to the conservation of

mass. This iterative procedure must be repeated until convergence. The de-

tailed solution process which includes the application of conservation of mass

for bi-directional �ow based evaporation model, is summarized on a �ow chart

in Appendix A.

4.3 Results

After making three cycles of iterations between the solutions of spectral element

method and unidirectional �ow model, the change in the �lm thickness variation

becomes negligible. Then, the results at the end of three iterations can be

taken as �nal results which satisfy the conservation of mass and x and y linear

momentum equations for the bi-directional liquid �ow. Thus, the evaporation

model which includes both the e�ect of planar velocities u and v, is completed
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and results can be examined. The distributions of u and v velocities with the

distribution of heat �ux in the micro region and in the close proximity of contact

line are shown in Figures 4.5 and 4.6, respectively.

Figure 4.5: Bi-directional velocity vectors in the micro region

Figure 4.6: Bi-directional velocity vectors near contact line
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The magnitudes of the velocity vectors show increasing trend with decreasing

�lm thickness at �rst glance in Figure 4.5. This trend is a result of decreasing

�ow area and increasing evaporation rate. When Figure 4.6 is examined, �uid

continues to accelerate in the horizontal direction until peak evaporation �ux

is reached. To understand the detailed behaviour of the horizontal velocity, a

contour plot of it is given in Figure 4.7.

Figure 4.7: Distribution of u velocity near contact line

Due to the sharp increase of the disjoining pressure, evaporation is suppressed

and �uid comes to rest at the point of zero evaporation which is the start-

ing point of the non-evaporating region. As it can be seen from Figure 4.6,

the distance between the maximum evaporation point and starting point of the

non-evaporating region is very short. Therefore, �ow starts to decelerate before

the point of maximum evaporation and matches the �zero �uid velocity� con-

dition at the contact line. As it can be seen from Figure 4.7, the maximum u

velocity is reached approximately at a distance of 765 nm whereas the maximum

evaporation occurs at a distance of 777 nm.

The distribution of the v velocity in the micro region is shown in Figure 4.8.
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Figure 4.8: Distribution of v velocity in the micro region

Figure 4.8 shows that the magnitude of the v velocity increases with diminishing

�ow area, similar to u velocity. To see the distribution of v velocity near the

contact line, a close up plot is given in Figure 4.9.

Figure 4.9: Distribution of v velocity near contact line

When Figure 4.9 is examined, the magnitude of the v velocity decelerates due to
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the e�ect of the stationary contact line except the sharp increase at the maximum

evaporation point. The resolution of the contour plot is not su�cient to view the

phenomena occurring at the close vicinity of the maximum evaporation point

together with the rest of the micro region. Observing the values of the v velocity

at the free surface may yield a better understanding of the change of v velocity

within the micro region.

Figure 4.10: Distribution of v velocity at the free surface

The change of v velocity at the liquid-vapor interface is informative in repre-

senting the distribution trend of the v velocity throughout the problem domain.

Initially, the magnitude of the v velocity decreases due to the contraction of the

�ow area and the sign of the v velocity is negative due to the slope of the free

surface. Then, magnitude of the v velocity begins to drop at about a distance

of 735 nm, because the �ow decelerates due to the e�ect of the stationary �uid

boundary condition at the contact line. On the other hand, the evaporation

curve reaches its peak at a distance of 777 nm and �uid molecules escape from

the liquid phase at higher rates when approaching this point. Thus, instead of

coming to a rest, �uid molecules accelerate in the positive vertical direction and
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v velocity reaches its maximum magnitude with the positive sign at the point of

maximum evaporation. After this peak, due to the sudden drop in evaporation,

v velocity drops sharply and becomes zero at the contact line.

Finally, it should be noted that the e�ect of the bi-directional �ow based evap-

oration model to the total evaporated mass is found to be negligible because

the total evaporated mass decreases only 0.04% from the mass found by uni-

directional �ow based evaporation model. However, the presentation of the

distribution of vertical velocity in the micro region enables to understand the

underlying physical phenomena.
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CHAPTER 5

CONTRIBUTION OF AXIAL FLOW TO

EVAPORATION

A considerable amount of the evaporation originates from the micro region or

speci�cally from the evaporating thin �lm region part of the micro region. Pre-

vious chapters have been devoted to modelling the evaporation occurring in the

thin �lm region of an arbitrary cross-section of grooved heat pipe. Firstly, a uni-

directional �ow model is developed without considering the vertical component

of the �uid velocity. Secondly, a bi-directional model is suggested by including

the vertical component of the velocity by solving the two-dimensional momen-

tum equations in two directions by using a one element spectral method. The

undisturbed meniscus region of the bulk �uid is taken as the �uid supply to the

evaporating thin �lm region in the one and two dimensional analyses. However,

in order to suggest a complete model, the mass supply contribution of the �uid

�ow in the axial direction of the heat pipe, to the micro region must be added.

The �uid �ow which is parallel to the groove axis (heat pipe axis), must be

modelled to asses the amount of mass entering the micro region.

5.1 Formulation

The complete formulation of the �uid �ow in the z direction (i.e. parallel to

groove axis) of heat pipe requires the solution of conservation of mass and linear

momentum equations. Conservation of mass including the e�ect of �ow in the

z direction can only be modelled including the evaporation and condensation
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process as whole. However, this study only aims to create a three-dimensional

evaporation model of the micro region and condensation phenomena is not cov-

ered in this thesis. Thus, a comprehensive model of �uid �ow in the z direction

cannot be covered. At this point, it is decided that only conservation of linear

momentum equations are taken into account to get the w velocity distribution

on a cross-section of the groove. Moreover, the required mass conservation infor-

mation is going to be taken from the study of Odaba³� [43] which covers the axial

�uid �ow as an whole, in a similar geometry. Conservation of linear momen-

tum requires the solution of the following three components of the Navier-Stokes

equation:

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
+ ν
(∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, (5.1)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂P

∂y
+ ν
(∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
, (5.2)

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂P

∂z
+ ν
(∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
. (5.3)

However, before starting solving them, an order of magnitude analysis should be

applied. The ratio of the groove depth, d, or groove thickness, h, to the groove

length, L can be chosen as the scaling parameter which is much smaller than

one,

ε =
d

L
. (5.4)

As another scaling parameter, capillary number can be used whose de�nition is

the ratio of the viscous forces to capillary forces,

C =
µU

σ
. (5.5)

where U is the velocity scale in the axial direction. Capillary number is usually

large for high-speed �ows and low for low-speed �ows. In the case of a heat
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pipe, low-speed �ows are experienced. Then, following the study of Markos-

Gebresilassie [57], these scaling parameters are taken equal for creeping �ow

assumption,

ε = C. (5.6)

Non-dimensionalization of the coordinates can be seen below,

x̄ =
x

d
, (5.7)

ȳ =
y

d
, (5.8)

z̄ =
z

L
= ε

z

d
. (5.9)

Considering the continuity, velocities can be non-dimensionalized as follows,

ū =
u

εU
, (5.10)

v̄ =
v

εU
, (5.11)

w̄ =
w

U
. (5.12)

The main driving force for the �ow is associated with the deformation of the

curvature of the free surface in a heat pipe. Then, the absolute pressure can be

scaled by the capillary pressure,

P̄ =
P

σ/d
. (5.13)
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Then, Equations 5.1 to 5.3 are non-dimensionalized by inserting non-dimensional

forms of the variables,

ε2U2

d

(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄

)
= − σ

d2ρ

∂P̄

∂x̄
+
εUν

d2

(∂2ū

∂x̄2
+
∂2ū

∂ȳ2
+
∂2ū

∂z̄2

)
, (5.14)

ε2U2

d

(
ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
+ w̄

∂v̄

∂z̄

)
= − σ

d2ρ

∂P̄

∂ȳ
+
εUν

d2

(∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
+
∂2v̄

∂z̄2

)
, (5.15)

εU2

d

(
ū
∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄

)
= − εσ

d2ρ

∂P̄

∂z̄
+
Uν

d2

(∂2w̄

∂x̄2
+
∂2w̄

∂ȳ2
+
∂2w̄

∂z̄2

)
. (5.16)

Using the equality de�ned in Equation 5.6, surface tension is written in terms

of absolute viscosity, µ, velocity scale, U , and small scaling parameter, ε:

σ =
µU

ε
. (5.17)

Equation 5.17 can be used to eliminate the term surface tension appearing in

Equations 5.14 to 5.16:

ε2U2

d

(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄

)
= −Uν

εd2

∂P̄

∂x̄
+
εUν

d2

(∂2ū

∂x̄2
+
∂2ū

∂ȳ2
+
∂2ū

∂z̄2

)
, (5.18)

ε2U2

d

(
ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
+ w̄

∂v̄

∂z̄

)
= −Uν

εd2

∂P̄

∂ȳ
+
εUν

d2

(∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
+
∂2v̄

∂z̄2

)
, (5.19)

εU2

d

(
ū
∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄

)
= −Uν

d2

∂P̄

∂z̄
+
Uν

d2

(∂2w̄

∂x̄2
+
∂2w̄

∂ȳ2
+
∂2w̄

∂z̄2

)
. (5.20)

If Equations 5.18 and 5.19 are multiplied by the ε and Equations 5.18 to 5.20

are divided to Uν/d2, the resultant equations becomes as follows,
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ε3U

νd3

(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄

)
= −∂P̄

∂x̄
+ ε2

(∂2ū

∂x̄2
+
∂2ū

∂ȳ2
+
∂2ū

∂z̄2

)
, (5.21)

ε3U

νd3

(
ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
+ w̄

∂v̄

∂z̄

)
= −∂P̄

∂ȳ
+ ε2

(∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2
+
∂2v̄

∂z̄2

)
, (5.22)

εU

νd3

(
ū
∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄

)
= −∂P̄

∂z̄
+
(∂2w̄

∂x̄2
+
∂2w̄

∂ȳ2
+
∂2w̄

∂z̄2

)
. (5.23)

Order one approximation of Equations 5.21 to 5.23 yields following equations,

∂P̄

∂x̄
=
∂P̄

∂ȳ
= 0, (5.24)

∂P̄

∂z̄
=
∂2w̄

∂x̄2
+
∂2w̄

∂ȳ2
. (5.25)

Equation 5.24 implies that the change of absolute pressure is only a function of

z-coordinate at the leading order. The change of pressure with the z-coordinate

is formulated by Equation 5.25 which is the two-dimensional Poisson's Equation.

5.2 Solution Procedure

Equation 5.25 shows that to get the axial velocity, w, distribution in an arbitrary

cross-section of the heat pipe groove, the value of the pressure gradient at that

axial location must be known. In other words, to solve Equation 5.25 for the w,

the left side of the equation has to be known. In her study, Odaba³� [43] used

the same groove geometry to model the �ow along the groove channel. The

change of the radius of curvature of the liquid-vapor interface and the pressure

gradient along the groove axis were calculated in the study of Odaba³�. Then, an

approximate value of the pressure gradient corresponding to the axial location

where the undisturbed main radius of the interface is close to the radius value

used in the current study, can be taken from the study of Odaba³� [43]. In spite

of the fact that current study and study of Odaba³� use di�erent approaches in
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the solution of evaporation phenomena, the approximate value taken from the

study of Odaba³� [43] is su�cient to estimate the contribution of axial �ow as a

source of �uid supply to the evaporation process. Therefore, the average liquid

pressure gradient at the cross-section on which the problem is going to be solved,

has a known value,

∂P̄

∂z̄

∣∣∣∣∣
z∗

= f(z∗), (5.26)

where z∗ is the z-coordinate corresponding to the location of the cross-section

along the axial direction and f(z∗) is the value of the average pressure gradient

at that section.

Equation 5.25 is going to be solved using spectral element method because spec-

tral element method can give adequate accuracy even in small regions like evap-

orating thin �lm region, the schematic of which given in Figure 5.1.

Figure 5.1: Evaporating thin �lm region

In order to solve Poisson's Equation in the evaporating thin �lm region, bound-

ary conditions at the boundaries have to be de�ned. No slip boundary condition
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is assumed at the wall surface. At the end of the domain, zero velocity is con-

sidered due to stationary, non-evaporating �uid. No shear is assumed at the

liquid-vapor interface. At the entrance of the domain, on the other hand, ve-

locity distribution of the axial velocity is unknown and the problem cannot be

solved without this information. To get an estimate for the distribution of the

inlet velocity at the entrance of the micro region, the problem is solved on the

half of the groove cross-section which includes micro region and has de�nite

boundary conditions as well.

5.2.1 Solution of Poisson's Equation on the Groove Cross-Section

Quadrilateral element requires the use of 4 vertex points and 4 edges which

should be suitable to de�ne by de�nite functions. The selection of the half

of the groove cross-section together with the micro region as problem domain

creates 5 vertex points and 5 edges as it can be seen in Figure 5.2.

Figure 5.2: Half cross-section having 5 vertex points

89



The height of the non-evaporating region which is assumed as a horizontal line

attached to the tip of the groove rather than representing a region, is lying

between points 1 and 2 of Figure 5.2 and existence this boundary creates an

extra vertex and edge. However, the length of this boundary is at the order of 1

nanometer. When compared with the dimensions of the groove, this boundary

can be neglected. Figure 5.3 shows the simpli�ed domain having 4 vertex points

and edges.

Figure 5.3: Half cross-section having 4 vertex points

Moreover, the approximate location of the entrance of thin �lm region is shown

by a dashed line in Figure 5.3.

When the problem is solved on the domain indicated by Figure 5.3, the w velocity

distribution is achieved throughout the domain. Applying a simple post process,

the w velocity distribution at the entrance line of the thin �lm region can be

extracted from the overall results. Then, solution of the Poisson's Equation on

the groove cross-section is the initial task to reach the w velocity distribution at
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the micro region.

Before solving the Poisson's Equation, the boundary conditions have to be de-

�ned at the half groove geometry. Firstly, no slip condition is assumed at the

groove walls. At the center line of the groove, symmetry condition is assumed.

Lastly, negligible shear force between liquid and gas phases is assumed at the

liquid-vapor interface. The non-dimensional Poisson's Equation with the bound-

ary conditions can be seen below,

∂2w̄

∂x̄2
+
∂2w̄

∂ȳ2
= f(z∗), (5.27)

w̄ = 0 at x̄ = 0, (5.28a)

w̄ = 0 at ȳ = 0, (5.28b)

n · ¯̄σ · t = 0 at the free surface, (5.28c)
∂w̄

∂x̄
= 0 at ȳ = b. (5.28d)

The solution of the Poisson's Equation is performed by spectral element method

which uses one element discretized by 77 × 77 GLL nodes. The details about

the discretization of the formulation or mapping between physical and standard

domain in the spectral element method were given in Chapter 4.2.1. So, spectral

element method is not reviewed again in the current chapter.

The resultant distribution of the axial velocity, w, is seen in Figure 5.4.
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Figure 5.4: Axial velocity distribution in the groove

5.2.2 Solution of Poisson's Equation on the Micro Region

The dimensions and the location of the micro region on the groove cross-section

were calculated in the previous chapters. From the velocity distribution shown

in Figure 5.4, velocity of the �uid entering to the micro region (evaporating thin

�lm region) can be extracted. The problem domain for the micro region is seen

in Figure 5.5 where the coordinate x′ is replaced by x for the simplicity.

Figure 5.5: Evaporating thin �lm region
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The governing equation with the corresponding boundary condition can be ex-

pressed as follows,

∂2w̄

∂x̄2
+
∂2w̄

∂ȳ2
= f(z∗), (5.29)

w̄ = w̄0(ȳ), at x̄ = 0, (5.30a)

w̄ = 0 at ȳ = 0, (5.30b)

n · ¯̄σ · t = 0 at the free surface, (5.30c)

w̄ = 0 at ȳ = Lne. (5.30d)

The solution of the Poisson's Equation on the micro region is also performed

by spectral element method which uses one quadrilateral element and again

discretized by 77× 77 number of GLL nodes. The resultant distribution of the

axial velocity, w, on the micro region can be seen in Figure 5.6.

Figure 5.6: Axial velocity distribution in the micro region
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5.3 Evaluation of the Results

From the distribution of the axial velocity shown in Figure 5.6, the amount

of �uid �owing across the micro region is calculated as approximately 10−21

kg/s. It was stated that, solution of the axial velocity contains the information

of the pressure gradient in the axial direction and this information was taken

from the study of Odaba³� [43] by using the radius distribution found in that

study. The step size between the two successive cross-sections was approximately

1mm. Then, the pressure gradient was estimated between two the cross-sections,

separated by 1mm. Total evaporated liquid for the unit depth of the micro

region was calculated as 4.5612 × 10−6 kg/s·m . Considering 1mm step sizes

in the axial direction, total evaporated mass in one step can be calculated as

4.5612× 10−9 kg/s.

When the axial mass �ow and total evaporative �ow is compared, the ratio of

the axial �ow to the supply of liquid which evaporates in the micro region, is

about 2× 10−13. This ratio shows that axial �ow does not bring a considerable

amount of liquid to the micro region and all of the �uid evaporated in the micro

region is supplied from the undisturbed bulk meniscus region.
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CHAPTER 6

PARAMETRIC STUDY

Unlike most of the studies in the literature, Stephan and Busse [31] shared

almost all of the parameters that were used in their analysis. In order to make

a reasonable comparison with an existing study, parameters and the geometry

of the study of Stephan and Busse [31] were used in this thesis. Table 2.1 and

Table 3.1 summarize the geometry and physical parameters of the problem which

match those of the reference study. As can be seen from the Table 3.1, initial

conditions of the current study are �lm thickness (δ = 0.282µm), apparent

contact angle (θ = 19.7◦) and radius of curvature (R = 909µm).

The values of the apparent contact angle and radius of curvature are directly

taken from the reference study [31]. However, the information about the ge-

ometry of rectangular groove cannot be directly taken from the reference study

because Stephan and Busse used a triangular groove geometry in their study.

Therefore, the geometry of the rectangular groove used in the present study is

determined to match the study of Stephan and Busse. For a rectangular groove,

the half width of the groove geometry is a function of contact angle and radius

of curvature:

b = cos(θ)R. (6.1)

The depth of the groove is taken equal to the width of the groove for the sim-

plicity.

In addition to the case of Stephan and Busse, the present study aims to test
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di�erent cases to understand the behaviour of the developed model for di�er-

ent superheats, contact angles and physical properties. It should be noted that

parametric study is performed considering only unidirectional �ow based evap-

oration model due to the fact that contributions of the �ow in other directions

are found to be negligible in the previous chapter of this thesis.

6.1 E�ect of Superheat

Superheat is the di�erence between the temperatures of the vapor phase and

the solid wall on which evaporating liquid �lm exists. In the previous chapters,

a 1K superheat is used for the analyses. This temperature di�erence can be

categorized as a high superheat value considering the studies in the literature.

Furthermore, evaporation model of Wayner fails for superheats higher than 5K

[36]. Therefore, superheats higher than 1K were not studied. However, small

superheats are widely used in the evaporation analyses in the literature such as

[26], [27] or [28]. Therefore, the present study tests di�erent superheats which

are equal and smaller than 1K.

In Figure 6.1, �lm thickness variations of the systems which have di�erent su-

perheats, are shown. Moreover, variations of �lm thickness near the contact line

are given in a blown up plot in Figure 6.1.

96



Figure 6.1: Variations of �lm thickness for di�erent superheats

The �rst observation from Figure 6.1 is that the extension of the meniscus con-

tracts with decreasing superheat. Thus, the length of the micro region becomes

smaller. The thickness of the contact line, on the other hand, increases with

decreasing superheat, as expected. The magnitude of the disjoining pressure

decreases with increasing �lm thickness. Thus, systems which have lower su-

perheats, are subjected to reduced disjoining pressures. As a result of this, the

bending of the curves becomes less apparent at the contact line for reduced su-

perheats and the systems which have superheats smaller than 0.1K, cannot be

distinguished in Figure 6.2. Therefore, the systems having superheats less than

0.1K are grouped and they are evaluated separately from the systems which
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are subjected to large superheats. On the other hand, superheats of 1K, 0.75K

or 0.5K are meaningful in case of the engineering applications of heat pipes.

Besides, utilization of extremely small superheats helps only to understand the

underlying physical phenomena, where experimental data is also available in lit-

erature. In the rest of the parametric study, superheats are divided to groups of

small and large superheats for these reasons.

In Figure 6.2, �lm thickness variations of small superheated systems are shown

in a close-up view. Even at this magni�cation, the systems which are subjected

to 0.01K, 0.005K and 0.001K superheats, cannot be distinguished from each

other, easily. To overcome this di�culty, a marker is placed at the contact line

of each pro�le. The highest contact line has the lowest superheat. Moreover,

the contraction of the length of the micro region can be seen from Figure 6.2.

Figure 6.2: Variations of �lm thickness for small superheats near contact line

Summary of the �lm thickness variations at the contact line for di�erent super-

heats are given in Figure 6.3.
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Figure 6.3: Film thicknesses at the contact line for di�erent superheats

A natural consequence of the lower superheat is a reduction in the total evapo-

rated mass within the micro region. The total evaporated masses in the micro

region normalized with respect to the value for a 1K superheat, are shown in

Figure 6.4.

Figure 6.4: Normalized total evaporated mass for di�erent superheats
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In Figure 6.4, the amount of total evaporated mass changes almost linearly with

superheat. In order to con�rm this linear trend, a scatter plot of the data is

given in Figure 6.5 for selected superheats.

Figure 6.5: Normalized total evaporated mass for selected superheats

It is apparent in Figure 6.5 that the total amount of evaporation in the micro

region is a linear function of superheat.

The e�ect of reducing superheat on the variation of evaporative heat �ux within

the micro region, on the other hand, can be deduced from Figure 6.6. The

resolution of the plot is not su�cient to show the heat �ux variation for small

superheats, therefore, a blown up plot is also provided in Figure 6.6.
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Figure 6.6: Variations of evaporative heat �ux for di�erent superheats

It can be seen from Figure 6.6 that evaporation peak drops and peak shape

becomes smoother when superheat is reduced. To describe the relation between

the superheat and the peak of the evaporative heat �ux, Figure 6.7 should be

examined.
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Figure 6.7: Normalized maximum heat �ux values for selected superheats

Figure 6.7, in which the peak evaporation of 1K superheat applied system is

taken as the reference for normalization process, shows that the value of the

maximum evaporative heat �ux in the micro region is also a linear function of

superheat.

In addition to the variation of evaporative �ux, the variation of cumulative

evaporation from the system may also be examined for di�erent superheats.

Figure 6.8 shows the cumulative evaporations from the micro region normalized

with respect to total for each superheat evaporated mass.
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Figure 6.8: Variations of normalized cumulative evaporation for di�erent super-
heats

It can be seen from Figure 6.8 that normalized cumulative evaporation curves

di�er from each other due to the di�erent lengths of the evaporating regions. In

order to eliminate this di�erence and explore the trend of the cumulative evap-

oration for di�erent superheats, the length of the micro region of each system

can be normalized. Figure 6.9 shows the normalized evaporation with respect

to the normalized x span for di�erent superheats.
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Figure 6.9: Variations of normalized cumulative evaporation in the scaled micro
region for di�erent superheats

It can be deducted from Figure 6.9 that although there is no considerable dif-

ference between cumulative evaporation curves of di�erent superheats, in the

higher ones, contribution to evaporation near the contact line or near the peak

point of the evaporative �ux, is larger. One can also see that the dominant

contribution to evaporation occurs in the vicinity of the contact line.

The balance between disjoining and capillary pressures determines the liquid

pressure in the �ow. The e�ect of di�erent superheats on these pressures should

also be investigated.

Disjoining pressure variations of the systems for di�erent superheats are shown in

Figure 6.10. Note that disjoining pressure is only e�ective at the close proximity

of the contact line, therefore, Figure 6.10 only reports results in this restricted

region.
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Figure 6.10: Variations of disjoining pressure for di�erent superheats

Being an inverse function of the �lm thickness, disjoining pressure decreases in

systems having small superheat due to increased contact line thickness as shown

in Figure 6.10.

Capillary pressure is a function of the radius of curvature of the liquid-vapor

surface. The variation of radius of curvature is su�cient to represent the capil-

lary pressure. Furthermore, the radius of curvature directly dictates the shape of

the �lm pro�le, therefore, examining the radius of curvature instead of capillary

pressure helps to understand the shape of the �lm pro�le near the contact line.

Figure 6.11 shows the variations of radius of curvature for di�erent superheats.
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The variation of radius of curvature exhibits di�erent trends for small and large

superheats. Systems having large superheats have the superheat values of 1K,

0.75K and 0.5K and are shown in Figure 6.11(a) to Figure 6.11(c). Away from

the contact line the radius of curvature deforms (decreases) to generate the

capillary pumping e�ect. Near the contact line, on the other hand, disjoining

pressure is dominant and disjoining pressure gradient is responsible for supply-

ing the necessary liquid pressure gradient. It can be understood from the small

positive peaks of the radius of curvatures in the �rst three plots of Figure 6.11

that capillary pressure decreases in this region where disjoining pressure is e�ec-

tive. Furthermore, the decrease in capillary pressure is not su�cient to balance

the aggressively increasing disjoining pressure and the second derivative of �lm

thickness, δ, changes sign, e�ectively changing the sign of capillary pressure by

bending the �lm thickness pro�le towards the solid wall. In Figure 6.11, a small

magnitude negative peak follows the small magnitude positive peak for this rea-

son. The system which is subjected to a 0.1K superheat exhibits a transition

trend between the large and small superheats. The systems having small super-

heats, on the other hand, separate from the larger ones especially in terms of

the change of capillary pressure on the undisturbed meniscus side of the close

proximity of the contact line. The systems having small superheats have small

evaporation rates. Therefore, the amount of �uid �ow or liquid pressure gradient

is also small for these systems. This small liquid pressure gradient is generated

by both capillary and disjoining pressure gradients. Therefore, capillary pres-

sure gradient is not su�cient for generating the liquid pressure gradient. In

Figure 6.11(e) to Figure 6.11(h), changes in the radius of curvature, away from

the contact line, are not recognizable for this reason. Moreover, positive and

negative peaks of the radius of curvature have large magnitudes in the close

proximity of the contact line due to the fact that there is no need for high cap-

illary pressures to balance the small disjoining pressures for small superheats.

Variations of liquid, capillary and disjoining pressure gradients for all superheats

are summarized in Figure 6.12.
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When plots (a) to (e) of Figure 6.12 are examined, it can be seen that the

capillary pressure gradient increases from the entrance of micro region until a

maximum is reached. In this region, disjoining pressure and the gradient of dis-

joining pressure are small, therefore capillary pressure gradient drives the liquid

�ow. When approaching the contact line, on the other hand, the value of dis-

joining pressure increases due to very thin �lm thicknesses and its value exceeds

that of the capillary pressure. After this point, disjoining pressure gradient dom-

inates the capillary pressure gradient and drives the liquid �ow. Moreover, in

the close vicinity of the contact line, disjoining pressure reaches extremely high

values and in order to counterbalance this e�ect, capillary pressure becomes

negative by the changing sign of the radius of curvature. This mechanism is not

valid for the plots (f) to (h) of Figure 6.12 which correspond to extremely small

superheats, and evaporations are very small in these cases. Small evaporation

requires less liquid �ow so that the value of the required pressure gradient is very

small. In these cases, the magnitude of disjoining pressure gradient is su�cient

to create this liquid pressure gradient. Therefore, capillary pressure gradient

does not increase and drive the liquid �ow. In the plots (f) to (h) of Figure 6.12,

capillary pressure gradient decreases without a sign change for this reason.

Local heat transfer coe�cient of evaporation is expressed as evaporative heat

�ux and superheat as shown in Equation 6.2:

h =
q′′

Tw − Tv
. (6.2)

Variations of local heat transfer coe�cient in the micro region are shown in

Figure 6.13 for di�erent superheats. It should be noted that the local heat

transfer coe�cients are plotted starting from the contact line in Figure 6.13.

Moreover, a blown up plot is provided in Figure 6.13 to show the distribution

near the contact line.
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Figure 6.13: Variations of local heat transfer coe�cient for di�erent superheats

As shown in Figure 6.13, local heat transfer coe�cient increases with increasing

superheats. Moreover, the di�erences between the magnitudes of the local heat

transfer coe�cients are maximum in the close vicinity of peak evaporation point.

Finally, variations of local Nusselt number are given in Figure 6.14 for di�er-

ent superheats. In this �gure, the variation of local Nusselt number is plotted

starting from the contact line.
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Figure 6.14: Variations of local Nusselt number for di�erent superheats

Similar to the local heat transfer coe�cient, local Nusselt number increases

with increasing superheats. However, the maximum di�erences between the

magnitudes of the local Nusselt numbers for di�erent superheats do not appear

in the close vicinity of the maximum evaporation point as in the case of heat

transfer coe�cients.

6.2 E�ect of Contact Angle

To understand the behaviour of the model for contact angles other than 19.7◦, a

parametric study is carried out. For �ve di�erent contact angle values between

10◦ and 20◦, �ve simulations are performed. Moreover, these analyses are made

for one large and one small superheat values to examine the e�ect of contact

angle for di�erent superheats.
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6.2.1 Large Superheat

A 1K superheat is applied to the system and �ve di�erent contact angles are

used in the model developed for the unidirectional �ow based evaporation model.

However, the developed algorithm for the model cannot solve every di�erent

case. When dispersion constant is altered by a de�nite amount, a solution can

be obtained. The reason of this situation actually arises from the de�nition of

the physical problem. A contact angle between a solid wall and a liquid is a

property of a system. It means that when all other parameters are �xed, there

exists a unique contact angle for a system. It is known that the physical prob-

lem de�ned with the contact angle of 19.7◦ has a physically realizable solution.

In other words, the system having 19.7◦ contact angle does in fact exist. How-

ever, it is not certain that systems constructed with other contact angles are

physically possible. On the other hand, by changing the dispersion constant,

a physically realizable system may be obtained because the value of dispersion

constant is crucial for the evaporation models since it directly determines the

value of disjoining pressure. Instead of assigning a value, the magnitude of the

dispersion constant is calculated in the experimental studies, by measuring the

non-evaporating thickness at the contact line. Actually, dispersion constant is

unique to the system because it depends on molecular properties of liquid and

solid which are a�ected by the thermal state of the problem. Furthermore,

the geometry of the �lm thickness, especially slope, also a�ects the value of the

dispersion constant. Therefore, di�erent numerical values for the dispersion con-

stant are tried and the one which enables a solution to all �ve cases, is selected.

The remaining physical parameters are the same as Table 3.1.

The �lm thickness distributions of the �ve cases are shown in Figure 6.15.
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Figure 6.15: Variations of �lm thickness for di�erent contact angles at 1K su-
perheat

Similar to the original problem, apparent contact angles are preserved until the

close vicinity of the contact line. Thus, when the contact angle is reduced, the

range of the evaporation increases, as shown in Figure 6.15.

The distributions of the evaporative �ux for the �ve cases are shown in Fig-

ure 6.16.

Figure 6.16: Variations of evaporative heat �ux for di�erent contact angles at
1K superheat
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The peak value of the evaporative heat �ux curves of the all cases are approxi-

mately the same as shown in Figure 6.16. Then, the case which has the smallest

contact angle, should have the maximum total evaporation due to the fact that

it has the longest evaporation distance. Total amount of heat transfer for the

�ve cases can be seen in Figure 6.17.

Figure 6.17: Total heat transferred for di�erent contact angles at 1K superheat

In addition to variation of evaporative heat �ux, variation of cumulative evapo-

ration is presented for di�erent contact angles of when the system is subjected

to 1K superheat. To eliminate the di�erence arising from the length of evap-

oration, the length of the micro region is normalized for each system in the

results. Furthermore, cumulative evaporation of each system is also normalized

to understand the trend of cumulative evaporation for di�erent contact angles.

Figure 6.18 shows the normalized evaporation with respect to the normalized x

span for di�erent contact angles.
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Figure 6.18: Variations of normalized cumulative evaporation in the scaled micro
region for di�erent contact angles at 1K superheat

It can be deducted from Figure 6.18 that although there exists no considerable

di�erence between cumulative evaporation curves of the systems having di�erent

contact angles, contribution to evaporation near the contact line is larger for

large contact angles.

Variations of liquid, capillary and disjoining pressure gradients for di�erent con-

tact angles of 1K superheat applied system are shown in Figure 6.19 which

reveals that the contribution of capillary pressure gradient to the liquid pres-

sure gradient increases with smaller contact angles because systems which have

smaller contact angles, have small disjoining pressure gradient due to their low

slopes.
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6.2.2 Small Superheat

In this part of the parametric study, e�ect of contact angle is investigated for the

system subjected to 0.01K superheat. The same value of dispersion constant

is used as the one used in large superheat case. Film thickness distributions

corresponding �ve di�erent contact angles, are shown in Figure 6.20.

Figure 6.20: Variations of �lm thickness for di�erent contact angles at 0.01K
superheat

Variations of �lm thickness for the small superheat condition is similar to the

ones obtained for large superheat condition except the length of the micro re-

gions. Reduced evaporation leads to a decrease in the extension of the meniscus

and micro region lengths when the corresponding contact angles are reduced.

The distributions of the evaporative �ux for the �ve cases are shown in Fig-

ure 6.21.
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Figure 6.21: Variations of heat �ux for di�erent contact angles at 0.01K super-
heat

Similar to the analysis made for the large superheat, the peak values of the

evaporative heat �ux curves of the all cases are approximately equal as shown

in Figure 6.21. Then, the case which has the lowest contact angle, has the

maximum total evaporation due to the fact that it has the largest evaporation

distance. Total amount of heat transferred for the �ve cases can be seen in

Figure 6.22.

Figure 6.22: The total heat transferred for di�erent contact angles at 0.01K
superheat
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Figure 6.23 shows the normalized evaporation with respect to the normalized x

span for di�erent contact angles when the system is subjected to small superheat.

Figure 6.23: Variations of cumulative evaporation in the scaled micro region for
di�erent contact angles at 0.01K superheat

The di�erences between the cumulative evaporation curves of the systems having

di�erent contact angles are less apparent in Figure 6.23 when compared with

the large superheat case presented in Figure 6.18.

Finally, variations of liquid, capillary and disjoining pressure gradients for di�er-

ent contact angles of 0.01K superheat applied systems are shown in Figure 6.24.
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As can be seen in all individual plots of Figure 6.24, capillary pressure gradient

is always negative for all contact angles. This means that disjoining pressure

gradient drives the �ow instead of capillary pressure gradient. The reason for

this mechanism is due to the fact that evaporation is su�ciently small for this

small superheat. Moreover, increased dispersion constant for the analyses also

suppresses evaporation. Thus, there exists very small mass �ow and liquid pres-

sure gradient. The changes in disjoining pressure even at large �lm thicknesses

dominate the liquid pressure gradient such that capillary pressure gradient has

virtually no e�ect.

6.3 E�ect of Physical Properties

As the third part of the parametric study, ammonia is replaced by another

working liquid, keeping all other parameters the same. Although various kinds

of liquids were used in the literature, their properties, which are de�ned at

the thermal and geometrical conditions corresponding to the system used in

these studies, were not completely available. The only liquid whose properties

are available at di�erent states is water. Therefore, water is chosen as the

alternative �uid in the problem to be used instead of ammonia. It should be

noted that water shows strong polarity and Equation 2.8 should be used instead

of Equation 2.7 to formulate the disjoining pressure. Both formulations are

used to compare the e�ect of using di�erent disjoining pressure models. The

di�erence of total evaporated mass between the two models for 1K superheat is

estimated to be only 0.337%. Due to this small di�erence, di�erent disjoining

models are not used in the rest of the parametric study.

6.3.1 Large Superheat

When ammonia is replaced by water and 1K superheat is applied, variations

of the �lm thickness and evaporative heat �ux are shown in Figure 6.25 and

Figure 6.26, respectively.
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Figure 6.25: Variation of �lm thickness for water

Figure 6.26: Variation of evaporative heat �ux for water

In order to compare the e�ect di�erent working �uids, results should be reported

on the same �gures for water and ammonia. However, when Figure 6.25 is
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examined, the �lm thickness pro�les are very close to each other except in the

close proximity of the contact line. Therefore, the comparison between the �lm

pro�les of water and ammonia is made in the close proximity of the contact line

in Figure 6.27.

Figure 6.27: Variations of �lm thickness for water and ammonia

Replacing ammonia with water results in approximately a 10 nm decrease in the

length of the micro region as shown in Figure 6.27.

Similar to the �lm thickness, pro�les of the variation of evaporative heat �ux

for both water and ammonia utilizing systems should be displayed on the same

�gure. However, the magnitudes of the heat �uxes of water and ammonia have

di�erent orders due to their di�erent properties, especially the latent heat of

evaporation. Moreover, the lengths of the micro regions of these systems are

also not equal. Therefore, both heat �uxes and micro region lengths of water

and ammonia utilizing systems are normalized and given in Figure 6.28.
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Figure 6.28: Variations of normalized heat �ux in the scaled micro region for
water and ammonia

The parametric studies made in the present study always show that the con-

tribution in the vicinity of peak heat �ux to the total evaporation is high for

ammonia utilizing system. However, when the ammonia is replaced by water,

variation of heat �ux shows a linear trend when approaching the peak point as

shown in Figure 6.28. Moreover, magnitude of the normalized evaporative heat

�ux is larger for water at the inlet of the problem domain. These �ndings show

that for a water system, an earlier starting point should be selected to achieve

an evaporative heat �ux distribution similar to ammonia system.

Although Figures 6.25 to 6.28 show expected trends without exhibiting any

inconsistency, the absolute liquid pressure of the system drops below zero by

creating a physical con�ict. The liquid pressure of the system is given with

capillary and disjoining pressures in Figure 6.29. Moreover, the constant vapor

pressure is also added to Figure 6.29.
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Figure 6.29: Variations of pressures for the system using water

It can be easily detected from Figure 6.29 that absolute liquid pressure becomes

negative within the problem domain. The reason for this non-physical situation

arises again from the de�nition of the problem. A water-aluminium system

having 19.7◦ apparent contact angle and 909µm radius of curvature values at

the �lm thickness of 0.282µm may never form a stable evaporating meniscus at

a temperature of 300 K. To perform a realistic analysis, the problem should be

carefully de�ned. Therefore, it can be concluded that analytical approach should

be coupled with experimental work to have a realistic model of the system.

6.3.2 Small Superheat

To investigate the e�ect of small superheat on water utilizing system, 0.01 K

superheat is applied to the system.

Due to the fact that variations of �lm thicknesses of water and ammonia utiliz-

ing systems are very close, the comparison between them is made in the close

proximity of the contact line as shown in Figure 6.30.
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Figure 6.30: Variation of �lm thickness for water

Replacing ammonia with water results in an approximately, 4 nm decrease in

the length of the micro region as shown in Figure 6.30.

As in the case of large superheat, variations of heat �uxes of water and ammonia

utilizing systems are given in a normalized plot for small superheat, as shown

in Figure 6.31.

Figure 6.31: Variations of normalized heat �ux in the scaled micro region for
water and ammonia
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When compared with systems subjected to high superheat, the same trends of

heat �uxes are also achieved for small superheat as shown in Figure 6.31.

The negative absolute liquid pressure reported in the water system for large

superheats (Figure 6.31) is also encountered in case of small superheat.
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CHAPTER 7

DISCUSSION

The present study starts with the solution of simple unidirectional �ow based

evaporation model. Instead of starting the solution from the contact line, a

location in the intrinsic meniscus region, where the e�ect of disjoining pressure

is small, is taken as the starting point to the numerical solution in order to avoid

the numerical di�culties and physical con�icts existing at the contact line.

The results of the unidirectional �ow based model do not match the results of

Stephan and Busse [31]. Starting with the same thickness, slope and radius of

curvature values found at the end of the reference study, total heat transferred

is estimated to be 18.5% less than the result of study of Stephan and Busse [31].

The reason for this decrease is originated from the di�erence of �lm thickness

distributions of the two studies. As it was shown in Figure 3.4, when there is

no enforced boundary condition at the contact line, �lm thickness of the present

study does not asymptotically approaching zero. At �rst glance, �lm thickness

preserves its contact angle and intersects with the x axis. This situation leads

to a decrease in the length of the problem domain and explains the decrease

in the total amount of evaporation. However, an interesting situation in the

distribution of the �lm thickness reveals itself when the close vicinity of the

contact line is examined. As shown in Figure 3.4, the second derivative of �lm

thickness, δ, changes sign and the �lm pro�le bends inward near the contact line

instead of asymptotically approaching zero. Such a pro�le is unusual and does

not appear in the results of the studies reported in the literature. However, when

the literature is carefully studied, a similar pro�le can be seen in Wayner [23]
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published in 1982. Wayner drew the conceptual views of the spreading and non-

spreading systems for the isothermal and evaporating cases. In the sketch of the

non-spreading systems, the contact line of the �lm bended inward and absorbed

layer was not shown. In the present study, the �lm thickness at the contact

line was estimated to be approximately, 0.5 nm. This value is even smaller than

any realistic surface roughness of solid materials. Therefore, there is no physical

counterpart of the adsorbed layer depicted as in the sketch of Wayner [23] for

non-spreading systems. It does not mean that adsorbed layer does not exist

but a smooth transition to the absorbed layer from the evaporating layer is

not necessary at such a scale smaller than the surface roughness. In short, the

�lm distribution found in the present study matches the non-spreading system

de�nition of Wayner. Wayner [23] used di�erent signs for the capillary and

disjoining pressures when forming the augmented Young-Laplace equation for

the non-spreading system. The author generalized this approach with use of the

term �characteristic frequency for van der Waals interaction� which multiplies the

disjoining pressure term and has di�erent signs for spreading and non-spreading

systems. However, the present study does not force the signs of the terms of the

governing equations to change depending on whether the system is spreading

or non-spreading. Instead, formulation of the the radius of curvature in the

capillary pressure term is allowed to change its sign without any interference.

An ammonia droplet does not entirely spread on an aluminium surface. Then,

the system may be characterized as a non-spreading system. Following this

fact, the sign of radius of the curvature of the system is changed to negative

by bending the interface inward at a point near to the contact line. Due to the

fact that capillary pressure is a function of curvature, it also becomes negative.

The negative capillary pressure is important because there exists no mechanisms

which can balance the rapidly increasing disjoining pressure due to ultra-thin

�lm thickness values near the contact line.

It should be noted that summation of capillary and disjoining pressures should

not exceed the vapor pressure, otherwise absolute liquid pressure drops below

zero which leads to a physically unrealizable state. When the solution starts at

the non-evaporating contact line, the thickness of the contact line is determined
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by equating Equation 3.31 to zero with the assumption of negligible capillary

pressure. In other words, curvature at the contact line is assumed zero. Then,

only the disjoining pressure survives at the right hand side of augmented Young-

Laplace equation. The vapor pressure of the saturated system is the function

of the vapor temperature, so its value is also �xed. Then, the value of liquid

pressure can be calculated at the contact line from the augmented Young-Laplace

equation. Some studies which start the solution from the contact line, such as

Stephan and Busse [31], Wang et al. [36] or Du and Zhao [41], found negative

liquid pressures at the contact line. Physically, there is no meaning of having

negative absolute pressure. Then, the problems solved in these studies cannot

exist physically. Starting the solution from the intrinsic region �xes this problem

in the present study.

The maximum value of the heat �ux, on the other hand, is estimated to be

6% higher than the value reached in the study of Stephan and Busse [31]. The

reason of this di�erence is also due to the negative capillary pressure existing at

the point of maximum evaporation. According to the evaporation �ux model of

Wayner, Equation 3.31, evaporation is promoted by superheat and suppressed

by the temperature jump which is the summation of capillary and disjoining

pressures. The negative capillary pressure forming at the close vicinity of the

evaporation peak, reduces the pressure jump and thus, evaporation is promoted.

Another prediction of the current study is that analysis ends up with a contact

line thickness value smaller than estimated in the literature. Except for the

studies which analyze the problem experimentally and theoretically simultane-

ously, theoretical studies which have boundary conditions at the contact line,

use Equation 3.31 to �nd the non - evaporating thickness by equating the heat

�ux to zero and using zero capillary pressure. However, when capillary pressure

becomes negative with the sign change of the curvature of the �lm, a decrease

in the �lm thickness of the non-evaporating region should be expected. Thus,

non-evaporating thickness cannot be found a priori, and the problem has to be

solved till the end of the domain where the liquid pressure gradient vanishes.

The application of the unidirectional �ow assumption to the systems having
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moderate contact angles is questionable. The present study investigates the

evaporation from the ammonia surface formed on aluminium surface with 19.7◦

contact angle. Therefore, small �lm slope assumption is not valid throughout

the problem domain and vertical component of the velocity is also taken into

consideration by replacing the unidirectional �ow with the bi-directional �ow.

The solution of the evaporation model based on bi-directional �ow in the problem

domain, is only 0.04% di�erent from the unidirectional �ow based model. This

result shows that there is no necessity of using bi-directional �ow to model

the evaporation in the systems having contact angles at least smaller than 20◦.

However, presentation of the distribution of vertical velocity in the micro region

enables to understand the underlying physical phenomena.

To relate the model to the three dimensional problem in a heat pipe channel, the

contribution of axial �ow to the mass supply of the micro region is also analyzed

in the present study. Although it was estimated that the contribution of the

axial �ow might be negligible due to the small dimensions of the micro region

with respect to the whole groove geometry, a quantitative description of the

phenomena is carried out to complete the analysis. The ratio of the axial mass

�ow to the evaporating mass in the micro region, is estimated to be 2 × 10−13.

This ratio shows that all of the �uid evaporated in the micro region is supplied

from the undisturbed bulk meniscus region.

This thesis also includes a parametric study in which, a linear increase of the

heat transfer is reported with the increasing superheat. Moreover, small contact

angles yields increased heat transferred in the micro region due to extended

range of micro region. As an outcome of the parametric study, systems which

form small apparent contact angles between the wall and liquid, are suggested

to get enhanced heat transfer.
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CHAPTER 8

CONCLUSION AND SUGGESTIONS FOR FUTURE

WORK

8.1 Conclusion

The contact line region of the evaporating meniscus has been subjected to the

extensive research for approximately 50 years. Most of the analytic formulations

are based on the unidirectional �ow of the �uid parallel to the solid wall on

which the meniscus forms. However, small �lm slope assumption is not valid for

moderate contact angles and and vertical component of the velocity should be

taken into consideration. Therefore, present study considers the solution of bi-

directional �ow based evaporation model in addition to unidirectional �ow based

model. Furthermore, the present study considers the evaporating meniscus as

a part of the liquid-vapor interface formed within the groove of a rectangular

grooved heat pipe and adds the e�ect of the �ow perpendicular to the meniscus

plane. Thus, three directional evaporation model is built for the �rst time in

the literature for an evaporating meniscus or simply for a micro region. During

the modelling e�orts of the present study, following predictions are made:

1) By starting the solution of the unidirectional �ow based evaporation model

from the intrinsic meniscus region, the need for modi�cation or tuning of bound-

ary conditions is eliminated as long as no pre-determined shape is forced at the

contact line.

2) In the present study, the sign change capability of the capillary pressure

preserves the absolute liquid pressure from the possibility of having negative
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values, as long as the problem is physically realizable.

3) Thickness of the contact line cannot be found a priori before the end of the

numerical solution where the liquid pressure gradient becomes zero.

4) Unidirectional �ow based evaporation model can be used even at the systems

having moderate apparent contact angles.

5) In a heat pipe, the mass carried to the micro region due to axial �ow is

negligible.

6) To build a consistent evaporation model, theoretical study should be sup-

ported by an experimental study.

8.2 Suggestions For Future Work

In order to validate the use of models in engineering applications where large

superheats are possible, more experimental data are needed. The application

of experimental data obtained for small superheats to problems with large su-

perheats, at bent, is questionable. The e�ect of surface roughness should be

carefully investigated in these systems due to the fact that extremely small �lm

thicknesses are predicted in large superheat systems, even smaller than the order

of surface roughness.

On the other hand, experimental studies on the systems which have large contact

angles, should be carried together with analytical veri�cations which use slope

dependent disjoining pressure formulations.
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APPENDIX A

FLOW CHART OF THE SOLUTION PROCEDURE

Select a cross-section where θ (apparent) and R known

Using Unidirectional Flow Based Evaporation Model (UFBEM)

estimate δ distribution

Using δ dist. found by UFBEM, solve momentum equations

(Eq.4.19a-b) with SEM to estimate u and v dist.

Use δmod for δ dist.

Using modi�ed UFBEM (Eq.4.54) estimate modi�ed δ dist., δmod

δmod

converged to

δ

Solve Poisson's eq. on the half groove by SEM to estimate the axial

velocity dist. at the inlet of micro region

Solve Poisson's eq. on the micro region by SEM to estimate the

amount of axial �ow

Contribution of axial �ow is negligible

yes

no
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