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ABSTRACT 

 

MODELING TEMPORAL VARIATION OF SCOURING AT DUAL 

BRIDGE PIERS 

 

Selamoğlu, Meriç 

 Ph.D., Department of Civil Engineering 

 Supervisor : Prof. Dr. A. Melih Yanmaz 

 Co-Supervisor : Assoc. Prof. Dr. Mete Köken 

 

June 2015, 130 pages 

 

Computation of temporal evolution of scour depth around bridge piers is essential 

for the efficient design of bridge pier footings. In this thesis, empirical scour-

prediction equations and a semi-empirical model are developed to predict the 

temporal variation of maximum clear-water scour depth at dual cylindrical 

uniform piers with identical size in tandem arrangement. Experiments are 

conducted using different pier size, pier spacing, and flow intensities. The semi-

empirical model is based on sediment continuity approach and volumetric 

sediment transport rate from the scour hole using a sediment pickup function. The 

results of the semi-empirical model are presented as design charts giving the 

dimensionless scour depth versus time relation, for practical use. Results of the 

proposed model are found to be in relatively good agreement with the 

experimental results, in the test range. 

 

Keywords: Bridge, Pier, Dual Piers, Clear-Water Scour, Sediment Pickup 
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ÖZ 

 

İKİLİ KÖPRÜ AYAKLARINDAKİ OYULMANIN ZAMANSAL 

DEĞİŞİMİNİN MODELLENMESİ 

 

Selamoğlu, Meriç 

 Doktora, İnşaat Mühendisliği Bölümü 

 Tez Yöneticisi  : Prof. Dr. A. Melih Yanmaz 

 Ortak Tez Yöneticisi : Doç. Dr. Mete Köken 

 

Haziran 2015, 130 sayfa 

 

Köprü ayaklarının uygun tasarımı için, ayaklar etrafındaki oyulmanın zamansal 

gelişiminin araştırılması önemlidir.  Bu tezde, arka arkaya konumlanmış, aynı çapa 

sahip silindirik ikili köprü ayaklarındaki maksimum oyulmanın zamansal 

değişimini tespit etmek amacıyla, görgül denklemler türetilmiş ve yarı-görgül bir 

model geliştirilmiştir. Farklı ayak çapı, ayaklar arası mesafe ve akım koşullarında 

deneyler gerçekleştirilmiştir. Yarı-görgül model, sürüntü maddesi sürekliliği ve 

sürüntü maddesi sıçrama fonksiyonu kullanılarak oyulma çukurundan taşınan 

sürüntü maddesinin hacimsel ifadesine dayanmaktadır. Yarı-görgül modelin 

sonuçları, pratikte kullanım kolaylığı sağlamak amacıyla boyutsuz oyulma 

derinliğinin boyutsuz zamana oranını belirten tasarım eğrileri ile sunulmuştur. 

Deneysel koşullar altında, önerilen model sonuçlarının deneysel sonuçlarla 

uyumlu olduğu görülmüştür. 

 

Anahtar Kelimeler: Köprü, Orta Ayak, İkili Orta Ayak, Temiz Su Oyulması, 

Sürüntü Maddesi Sıçraması 
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V* dimensionless volume of the scour hole 

X longitudinal scour hole width at any time 

Xmax maximum longitudinal scour hole width 

x1, x2, x3 exponent 

Y transversal scour hole width at any time 

Ymax maximum longitudinal scour hole width 

Y´ transversal scour hole width at rear pier at any time 

Y´max maximum transversal scour hole width at rear pier 

Z bed level at any time 

Zmax maximum bed level 

α angle of approach flow with the pier axis 

β  coefficient of proportionality 

Δ relative density  

γ specific weight of water 

θ angular coordinate 

λ pier diameter to pier spacing ratio 

ν kinematic viscosity of water  

ϕ angle of repose of the sediment 

ρ water density  

ρs sediment density  

σg geometric standard deviation of sediment size distribution 

τ0 bed shear stress of the approach flow  

τb  bed shear stress on flat region of the scour hole 

τbc critical bed shear stress on flat region of the scour hole 

τcr  critical bed shear stress on flat bed 

ψ factor depending on turbulent fluctuations and oscillation of 

primary vortex 
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the phenomenon concerning the combined effects of three-dimensional separation 

at bridge piers with highly turbulent characteristics, non-uniformity of sediment, 

development and interaction of vortex systems around piers, and time-dependent 

flow pattern and sediment transport mechanism in the scour hole. Although every 

equation is valid for its derivation condition, when these are applied to a common 

problem, the results may differ widely from each other, as a consequence of model 

calibration absence. Due to observational difficulties during floods, very limited 

field data are available, which results in model calibration problems. Therefore, 

none of the available empirical equations is applicable to universal conditions.  

1.2 Objectives of this Study 

Bridge foundations are mostly designed in pier groups in the field, rather than a 

single pier. In case of group of piers, the scouring process becomes further 

complex due to the interaction of local scour mechanisms of piers in close vicinity. 

When groups of piers are in a range that their individual scour holes overlap, flow-

pier-sediment interaction is exposed to additional scour mechanisms, compared to 

a single pier case. Therefore, prediction of local scour at pier groups via empirical 

equations derived for single pier cases will ignore these additional pier group scour 

mechanism. In contrast to the single pier case, there are few studies on the pier 

groups. Those available studies on pier groups emphasize the group effect on the 

maximum local scour depth by developing empirical correction factors to available 

scour prediction equations for single pier cases. 

The aim of this study is to obtain empirical equations and to develop a semi-

empirical model to predict the temporal variation of the maximum clear-water 

scour depth at dual cylindrical uniform piers in tandem arrangement. The semi-

empirical model development is based on the application of sediment continuity 

equation and volumetric sediment transport rate from the scour hole. Temporal 

evolution of the scour hole volume around the dual piers is obtained by the 

experimental data and the sediment transport rate from scour hole is formulated 
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using a sediment pickup function. The findings are integrated in the sediment 

continuity equation of the scour hole and the temporal variation of the maximum 

scour depth, which occurs at the upstream pier, is obtained. The results of the 

semi-empirical model are presented in the design charts for the dimensionless 

form of scour depth and duration, for the practical use in the prediction of 

maximum scour depth variation at tandem piers. This study aims to meet the lack 

of explicit prediction of time-dependent maximum scour depth at dual bridge 

piers. 

In the scope of the thesis, series of experiments are conducted in a laboratory 

medium. Pier models with different sizes are tested. The tests are run under 

different flow intensities in clear-water scour range. Therefore, the model includes 

the effect of pier size and flow intensity on the scour depth. Moreover, 

experiments are conducted with different spacing in between in a range that scour 

holes around front and rear piers are overlapping. This model enables a designer to 

perform proper foundation design, considering flow-sediment interaction. With a 

known design flow rate and its time to peak value, the expected depth of scour is 

obtained corresponding to this time level.     

1.3 Description of the Thesis 

This thesis is composed of five chapters with the following contents: 

In Chapter 1, an introduction to the thesis is presented by giving the problem 

statement and objectives of the study.  

The mechanism of local scour at bridge piers is explained by highlighting the 

effects of parameters in Chapter 2. A detailed explanation for the time effect and 

pier group effect is given, while the previous studies in the literature are reviewed.   

The experimental studies of this thesis are introduced in Chapter 3, giving the 

details of the test setup and scope of the experiments.  
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In Chapter 4, the results of the experiments are presented and discussed. Empirical 

scour prediction equations are also proposed in this chapter. 

In Chapter 5, development of the semi-empirical model to predict the time-

dependent maximum scour depth at dual piers is explained. Comparison of the 

experimental and computed variation of scour depth relative to time is given with 

reference to both empirical and semi-empirical approaches. Design charts for the 

prediction of time-dependent dimensionless scour depth are presented. 

A summary and conclusions of the thesis are given in Chapter 6. The novelty of 

the study is explained and some recommendations for the future works are given. 

In Appendix A, the bed topography maps obtained in the Experiments Part I are 

presented. 

The variation of maximum scour depth with time obtained in the Experiments Part 

II is shown in tabular form in Appendix B. 
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flow and the spiral motion of the horse-shoe vortex. The horse-shoe vortex extends 

downstream through the sides of the pier for a distance of few pier diameters, then 

loses its identity and becomes part of the general turbulence. The strength of these 

vortices depends on the flow Reynolds number, Re and the geometric 

characteristics of the bridge pier. 

 

Figure 2.1 Vortex systems around a bridge pier (Yanmaz, 2002) 

Wake vortices, which occur at the sides and back of the pier, develop as a result of 

shear stress gradients in the separated negative-pressure zone around the bridge 

pier, as shown in Figure 2.1. Transportation of the eroded material from the bed to 

the downstream by the wake vortices are related to the flow intensity and the 

geometric characteristics of the pier. The eroded particles are carried in the 

downstream direction until the effect of wake vortices diminish. The horse-shoe 

vortices are stronger than wake vortices. Thus, the maximum scour depths are 

observed at the upstream side of the pier. To identify relevant variables involved in 

the scouring phenomenon, a dimensional analysis is presented below for a single 

pier. The effects of governing variables are discussed in the following sections. 

Pier 

Surface 
roller 

Downflow 

Bow wave 

Loose  bed 

Horse-shoe vortices 

Scour hole 

Wake 
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Further information is given in detail for the group effect of piers on scour 

development process.  

2.2 Dimensional Analysis of Scouring Parameters 

Estimation of the maximum scour depth at a bridge pier is required for the safe 

design of a bridge on alluvial river. Several researchers have studied the problem 

extensively. However, no single analytically derived equation is available due to 

the complexity of the scouring process, such as combined effects of complex 

turbulent boundary layer, time-dependent flow pattern, and sediment transport 

mechanism in the scour hole (Yanmaz and Altınbilek, 1991). To examine the 

interrelationship of the dimensionless terms, which are effective on the 

development of the scour hole around bridge piers, a dimensional analysis is 

performed. The following functional relationship can be proposed for a vertically 

mounted single uniform pier on a wide river with cohesionless bed material.   

 0),,,,,,,,,,,,,,( 5000 tKbDSuudgdf sgscs         (2.1) 

where ds is the depth of scour,  is the kinematic viscosity of water, g is the 

gravitational acceleration, d0 is the depth of approach flow,  is the angle of 

approach flow with the pier axis, uc is the mean threshold velocity of approach 

flow, S0 is the bed slope, s is the sediment density, D50 is the median sediment 

size, g is the geometric standard deviation of sediment size distribution, b is the 

characteristic size of pier perpendicular to flow direction, Ks is the factor 

indicating the effect of pier shape, and t is time. For the sake of simplicity in 

describing the scouring mechanism, prismatic channel is considered with bed 

material of quartz sand. Pier shape is selected to be uniformly cylindrical and 

angle of attack of flow is 0°. Therefore, both S0 and relative density,  values are 

constant, where Δ=(s-)/, Ks = 1, and the correction factor for α, i.e. Kα = 1. 

Further information is available on the effect of pier shape and alignment on the 

scour depth (Yanmaz, 2002). By using Buckingham’s  theorem, the 
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dimensionless terms are determined (Shames, 1992). By taking , u, and b as 

repeating variables and arranging the dimensionless terms, the following 

expression is obtained: 
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where ds/b is the relative scour depth, 0/ gdu  is the flow Froude number (Fr), 

uD50/ is the particle Reynolds number (Rp), do/b is the relative approach flow 

depth, u/uc is said to be flow intensity, which reflects the type of bed regime, and 

b/D50 is the relative pier size. For fully-developed turbulent flow with live bed 

characteristics, effect of Reynolds number may be ignored. Therefore, 
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Effects of the governing parameters given in Eq. (2.3) on the scouring 

phenomenon are discussed in following sections. 

2.2.1 Effect of Scaling and Froude Number 

The scale effect for experiments on piers has been discussed by Ettema et al. 

(1998). The Froude number may be re-defined to specifically account for the 

effect of local energy gradients for flow around piers. By dividing the stagnation 

pressure head at the upstream face of a pier, by the pier size the dimensionless 

term in the form of the square of the pier Froude number, Frp = u2/gb can be 

obtained. Ettema et al. (1998)  indicated that the scour depth at piers do not scale 

linearly with pier size unless there is complete geometric similitude of pier, flow, 

and bed material. Similitude of experimental scour depth data to the field data 

requires the constancy of Fr, u/uc, and d0/b. However, in flume experiments, bed 

materials which have comparable sizes as the prototype are normally used since 

very fine particles in a laboratory medium would be subject to suspension. 

Therefore, to maintain similar modes of sediment transportation, the dimensionless 
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term accounting for the sediment coarseness, b/D50, cannot satisfy the length scale 

selected according to the other geometric characteristics, such as pier width, flow 

depth, etc. So, the constancy of b/D50 cannot be maintained.  

To attain a desired particle mobility level, the value of u/uc should be the same in 

the laboratory and the field. This implies that greater values of u are needed in a 

laboratory medium than required in Froude number simulation. Hence, Fr used in 

experiments may be greater than that of the corresponding field conditions. On the 

other hand, as can be seen in Figure 2.2, relative scour depth, ds/b, increases with 

increasing Fr in the range of the available data. However, to formulate the effect of 

Fr, a wider range of data is needed. Therefore, greater scour depths relative to the 

pier width can be obtained under clear-water conditions in a laboratory medium, 

than any likely to occur in field. As a concluding remark, empirical scour 

prediction equations using laboratory data overestimate the scour depths, and 

hence can be assumed to give conservative values for the design. 

 

Figure 2.2 Variation of relative scour depth against pier Froude number  
(Yanmaz, 2002) 
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2.2.2 Effect of Approach Flow Depth 

Existence of a pier in a flow section would lead to the development of a surface 

roller, which rotates in counter-clockwise direction, i.e. in the opposite direction of 

the horse-shoe vortex at the bed level. For shallow flows, the surface roller tends 

to retard the downflow. Therefore, it leads to reduction of scour depth. Melville 

and Coleman (2000) classify piers as narrow, intermediate width, and wide with 

respect to d0/b ratio using the following limiting values: For deep flows with 

narrow piers (d0/b > 1.43), the scour depth is independent of flow depth but 

depends on b. Conversely, for shallow flows with wider piers (d0/b  0.2), the 

scour depth is independent of b but varies linearly with d0. For intermediate width 

piers, i.e. 0.2 <d0/b 1.43, the scour depth is proportional to the square root of the 

product of d0 and b. When the available clear-water data in the literature are 

plotted as ds/b versus d0/b, it is observed that the design curves suggested by 

Melville and Coleman (2000) bound the available clear-water scour data  

(See Figure 2.3). Furthermore, the studies of Melville and Coleman (2000) show 

that the live bed data are also bounded by these limiting curves. 

  

Figure 2.3 Variation of relative scour depth against relative approach flow depth 
(Yanmaz, 2002) 
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2.2.3 Effect of Flow Intensity 

 For clear-water conditions, the scour depth increases considerably with increasing 

approach flow velocity up to a threshold peak at which a maximum value is 

attained, as can be seen from Figure 2.4. Provided that the sediment is uniform, the 

scour depth increases almost linearly with flow intensity to its maximum value at 

the threshold velocity, u/uc = 1 (Melville and Chiew, 1999). According to previous 

studies in the literature, the scour depth decreases from its threshold peak to a 

minimum at about u/uc = 1.5-2.0. At this value of flow intensity, the bed generally 

has steepest features. Depth of scour increases again with further increase in the 

flow intensity up to a new peak value at the transition flat bed condition. Over the 

transition flat bed, the form drag component of energy loss is absent and a great 

amount of flow energy is used for sediment transport and scouring. At still higher 

relative velocities under upper flow regime, bed forms develop again and dissipate 

some of the flow energy. Then, the scour depth decreases slightly. However, there 

are limited data for this range. 

Figure 2.4 Variation of scour depth with flow intensity (Yanmaz, 2002) 

2.2.4 Effect of Sediment Grading 

Based on their laboratory experiments, Raudkivi and Ettema (1983) stated that 

sediment grading has a strong effect on the equilibrium depth of clear-water scour. 

As the geometric standard deviation of the grain size distribution increases, larger 

grains apply an armoring effect to the underlying sediment, and hence the depth of 

scour decreases. An adjustment coefficient, K, relative to uniform sediment is 

u/uc

ds 

Clear-water scour 

Live-bed scour
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introduced by Raudkivi (1986). Yanmaz (2002) proposed a best-fit equation to the 

graphical representation of Raudkivi (1986) for 1.0  g  5.0 as follows: 

 12.101.509.441.122.0013.0 2345  gggggK   (2.4) 

For a typical gravel-river with g = 3.5, the expected scour depth is only 20% of 

the scour depth that is likely to occur for uniformly graded sediment case. The 

effect of sediment grading on the depth of live-bed scour is further complex. 

However, there is very limited information on this topic. 

2.2.5 Effect of Pier and Sediment Size 

Effect of relative pier size, b/D50, on the development of scour has been 

investigated by Ettema (1980). The results indicated that the particles are coarse 

compared to the groove excavated by the downflow for the range of b/D50 < 25, 

and the erosion process is hindered. A significant fraction of the downflow 

penetrates the coarse bed material and dissipates its energy (Breusers and 

Raudkivi, 1991). The relative scour depth is observed to be independent of the 

relative pier size for b/D50  25. An adjustment coefficient, Kd, is introduced by 

Melville and Coleman (2000) for b/D50 < 25: 

 









50

24.2log57.0
D

b
Kd  (2.5) 

2.2.6 Effect of Time 

Previous studies are mostly concentrated on determination of equilibrium scour 

depth at single piers using steady flow conditions. Limited studies based on 

determination of scour depth in unsteady flow conditions are conducted e.g. 

Kothyari et al. (1992), Hager and Unger (2010), Schillinger (2011), and Kalantari 

(2014). The equilibrium scour depth under clear-water conditions is attained when 

combined effects of the temporal mean shear stress, the weight component, and the 

turbulent agitation are in equilibrium in the scour hole. The equilibrium condition 
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is reached asymptotically with time, as can be seen in Figure 2.5 and in a 

laboratory medium it takes several days (Breusers et al., 1977; Raudkivi, 1986; 

Melville and Chiew, 1999; Melville and Coleman, 2000). For the time to develop 

the equilibrium scour depth, te, several criteria were proposed by researchers 

(Cardoso and Bettess, 1999; Melville and Chiew, 1999; Simarro-Grande and 

Martin-Vide, 2004). Generally, in a 24-hour experimental duration, the 

equilibrium scour depth is accepted to be reached, when the increase in the depth 

of scour is below a threshold value. Melville and Chiew (1999) and Grimaldi et al. 

(2006) proposed this increase to be less than 5% and 1.7% of the pier diameter, 

respectively, and Fael et al. (2006) suggested it to be less than 2D50. Setia (2008) 

stated that in laboratory medium, equilibrium scour condition cannot be reached 

even in 100 hours of experimental duration. However, peak value of the design 

hydrograph in the field may not last long as the time to reach the equilibrium 

condition (Melville and Chiew, 1999; Mia and Nago, 2003). Therefore, design of 

pier foundations on the basis of equilibrium scour depths under clear-water 

conditions may overestimate the design depth of footings, resulting in 

uneconomical design. For a known time to peak value of the design flood 

hydrograph, smaller scour depths are obtained relative to the case of equilibrium 

condition, which reduce the total cost of construction (Yanmaz and Altınbilek, 

1991; Yanmaz, 2006). Therefore, a realistic mean for hydraulic design is provided 

by investigation of temporal evolution of scour depth. 

Figure 2.5 Variation of scour depth with time (Yanmaz, 2002) 
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The studies on the temporal variation of scour depth at single bridge piers have 

been pioneered by Chabert and Engeldinger (1956) and Ettema (1980). While 

mainly focusing on the determination of equilibrium time, te, Melville and Chiew 

(1999) proposed a method for the temporal development of pier scour on the basis 

of experimental data of Ettema (1980) and new experiments. They proposed the 

following equation for the temporal evolution of scour depth: 
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where, dse is the equilibrium scour depth. In Section 2.3, some of the empirical 

equations to predict dse will be presented. For the implementation of Eq. (2.6),  

te can be determined by (Melville and Chiew, 1999): 
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The time-dependent clear-water scour depth has been studied by Kothyari et al. 

(1992) and Kothyari and Kumar (2012) at circular uniform and circular compound 

piers, respectively. With the use of the concept of primary vortex introduced in 

Kothyari et al. (1992), they also developed a relation for the time variation of shear 

stresses inside the scour hole. A semi-empirical model was developed by Yanmaz 

and Altınbilek (1991) to predict the clear-water scour depth at single cylindrical 

and square piers. Their model was updated by Yanmaz (2006) for cylindrical piers. 

This model is based on the application of the sediment continuity equation to the 

scour hole around a single cylindrical pier under clear-water conditions. In his 

model, variation of depth of scour with time is calculated by the first order 

nonlinear equation (Eq. (2.8)). For practical use, ds versus t relation is converted to 

dimensionless scour depth, S versus dimensionless time, Ts as can be seen in  
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Eq. (2.9). Furthermore, the dimensionless relation is presented as design charts in 

Figure 2.6. 

 










































s
s

s
g

s

s

bd
d

b
d

gDDTD
b

d

b

tu

dt

dd









tantan

tan

2

tan
2.1

)(
2

5050
9.124.0

*

37.095.0

*

 (2.8) 

 
)cot(

)1cot2(
295.0

37.0

SST

SaS

dT

dS

ss 






 (2.9) 

where, 

 9.124.0
*

95.0

5050

*63.0)(tan231.0 gTD
gDD

bu
a 















  (2.10) 

Details of the model development and the terms appearing in the Eqs. (2.8-2.10) 

will be discussed in Chapter 5. 

  

Figure 2.6 Variation of S with respect to Ts in Yanmaz’s semi-empirical model 
(Yanmaz, 2006) 
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Mia and Nago (2003) proposed further semi-empirical model to determine the 

time development of scour depth at circular uniform piers and Lu et al. (2011) 

modified the model for circular compound piers. They both utilized the concept of 

primary vortex by Kothyari et al. (1992). Guo (2014) proposed a semi-empirical 

model to determine the temporal variation of clear water scour at piers in 

prototype conditions. Hong et al. (2012) introduced a model for time-dependent 

variation of clear water scour at cylindrical piers using support vector regression 

approach. 

The scour hole volume in the semi-empirical studies mentioned above was 

approximated by the volume of an inverted frustum of a cone. The time-dependent 

evolution of pier scour has been further studied by Kothyari and Ranga Raju 

(2001), Oliveto and Hager (2002), Chang et al. (2004), Sheppard et al. (2004), and 

Oliveto and Hager (2005). 

2.2.7 Effect of Pier Groups 

A bridge foundation may be designed including group of piers, instead of a single 

pier, according to geotechnical and structural requirements. In case of pier groups, 

the piers may be placed in many different arrangements. Pier groups may be 

arranged as tandem, where two piers are located at the centerline aligned with the 

flow; as side-by-side, where two piers are located normal to the flow; or as (i x j), 

where i is the number of piers normal to the flow and j is the number of piers in-

line with the flow. Piers may also be staggered or triangular, where the piers are 

placed with an angle between each other relative to the flow axis. Due to 

sediment-laden flow interaction between piers, the scour mechanism is further 

complex and prediction of the local scour depth is relatively difficult compared to 

a single pier case (Ataie-Ashtiani and Beheshti, 2006). For this reason, there is 

comparatively limited information in the literature on the effect of pier groups on 

scouring. 
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Previous experimental studies on pier groups are mostly on the basis of effect of 

spacing between piers on the equilibrium scour depth. Başak et al. (1978) studied 

the maximum scour depth at groups of three cylindrical piers with reference to the 

effect of pier spacing and angle of attack of flow with respect to pier axis. They 

proposed empirical design charts for the effect of spacing. Elliott and Baker (1985) 

studied the scour depth at a single row of multiple piers normal to the flow. To 

estimate the scour depth at pier groups, they proposed a correction factor for the 

equation proposed by Breusers et al. (1977), which predicts the equilibrium scour 

depth at single piers. The proposed correction factor includes the effect of pier 

spacing on the scour depth. Melville and Coleman (2000) proposed an equation for 

the estimation of equilibrium scour depth at single piers. In case of pier groups, 

they recommended the use of correction factors for single row of piers (i x 1) and 

double row of piers (i x j). For staggered arrangement of equal sized and tandem 

arrangement of unequal size of piers, Beg (2014) and Beg and Beg (2015) studied 

the effect of pier spacing. Çeşme (2005) and Bozkuş and Çeşme (2010) conducted 

experiments with inclined dual piers in tandem arrangement and they investigated 

the effect of inclination of piers on the scour depth. Similarly, Özalp (2013) 

studied the effect of inclination of piers in case of three and four piers in-line with 

the flow. In all studies, it is concluded that as the inclination of the front pier 

increases in downstream direction, the strength of downflow and horse-shoe 

vortex decreases, therefore the maximum scour depth decreases. 

As the main objective of this study covers the maximum scour depth at piers in 

tandem arrangement, it is worth to focus on the scour mechanisms involved in this 

arrangement and the previous studies on the topic. In addition to downflow, horse-

shoe vortex, and wake vortex, which are the major driving agents in single pier 

scour, there are other mechanisms when pier groups exist. In tandem arrangement 

of piers, these additional mechanisms are namely reinforcing, sheltering, and 

vortex shedding (Hannah, 1978).  
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The mechanism affecting the scour depth at the front pier is reinforcing. In this 

mechanism, the scour depth at the front pier increases by overlapping of the scour 

holes around front and rear piers. In case of a single pier, bed material is picked up 

from the scour hole by horse-shoe vortices and carried downstream for a distance 

and then dropped in the scour hole again due to insufficient energy to be carried 

far from the scour hole itself. However, in the case of existence of a pier at the 

downstream, overlapping of the holes results in reduction of both the bed level and 

bed slope of the exit path of front pier as can be seen in Figure 2.7. Reduced bed 

level and slope result in the decrease of energy required to carry the eroded 

material from the scour hole. Thus, sediment is easily transported from the scour 

hole of front pier and the scour depth at its upstream face increases. The intensity 

of reinforcing decreases with increasing pier spacing and angle of attack of flow 

(Hosseini and Amini, 2015). Yet, the effect of angle of attack of flow is out of 

consideration in the present study. 

  

Figure 2.7 Schematic representation of the reinforcing effect (Redrawn from 
Nazariha (1996)) 

In sheltering mechanism, existence of a front pier decreases the approach velocity 

for the rear pier, since approach flow first hits the front pier. Also, the eroded 

material from the front pier deposits at the upstream of the rear pier, causing a 
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flow deflection upwards from the bed and around the rear pier (Nazariha, 1996). 

The deflected flow results in reduced horse-shoe vortex strength at the rear pier. In 

combination with the decreased approach velocity of flow, reduced horse-shoe 

vortex strength leads to reduced scour depth at the upstream face of the rear pier. 

The effectiveness of sheltering mechanism decreases and then ceases with 

increasing pier spacing. 

Vortex shedding helps lifting of the bed material from rear pier. When vortices 

shed from the front pier, they move downstream following paths at the sides of the 

pier. The distance between the path of shed vortex and its convection speed 

directly affect its strength of scouring at rear pier. However, in tandem 

arrangement of piers, the rear pier does not interfere with the path of shed vortices. 

Therefore, this mechanism is not as effective as piers with staggered arrangement.  

Tandem arrangement of piers and the effect of pier spacing have received the 

attention of several researchers. The scour depth at dual piers in tandem and side-

by-side arrangement has been studied by Hannah (1978) with different spacings 

between piers. Breusers and Raudkivi (1991) interpreted the experimental results 

of Hannah (1978) who performed experiments under clear-water conditions with 

uniform sediment of D50 = 0.75 mm and g = 1.32. For piers in tandem 

arrangement, the scour depth at the upstream of the front pier was the same as for 

a single pier ds under λ = 1, where λ is the ratio of pier diameter (b) to center-to-

center spacing between piers (d). With increasing pier spacing (λ < 1), a maximum 

value of ds was experienced at λ ≈ 0.33 due to the reinforcing effect. From its 

maximum value, ds was decreased with decreasing λ. The reinforcing effect was 

maintained until about λ < 0.09 for the aforementioned experimental conditions. 

For larger spacing, the interference of scour holes diminished and the scour depth 

was the same as for a single pier and separate scour holes formed around bridge 

piers. 

Nazariha (1996) conducted experiments on different arrangement of pier groups. 

In tandem arrangement case with λ ≥ 0.2, it was observed that pier spacing, 
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reinforcing, and sheltering are dominant in the scour mechanism. For higher 

values of λ, greater depths of scour were obtained.  

Another study on different arrangement of pier groups was conducted by Salim 

and Jones (1998). They modified a correction factor introduced by Gao et al. 

(1993) to predict the maximum scour depth at group of piers in-line with the flow. 

They proposed the correction factor to the HEC-18 (Hydrologic Engineering 

Center) scour depth equation for single piers proposed by Richardson and Davis 

(2001) as follows: 
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where, Kj is the factor for the effect of pier groups (in-line with the flow). The 

factor implies that the effect of a rear pier on the scour depth at the upstream of 

front pier will decrease with decreasing λ value. 

In the studies on tandem arrangement of piers, Beg (2004) and Ataie-Ashtiani and 

Beheshti (2006) stated that the scour depth at the upstream of front pier reaches its 

maximum value when λ ≈ 0.33 while the scour depths were obtained slightly lower 

than the maximum value when λ = 0.5. Ataie-Ashtiani and Beheshti (2006) also 

proposed two correction factors to HEC-18 equation (Richardson and Davis, 2001) 

and equation by Melville and Coleman (2000) as presented in Eq. (2.12) and 

(2.13), respectively. 
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Gao et al. (2013) also studied the effect of pier spacing in case of pier groups. 

They concluded that in tandem arrangement case, the maximum scour depth at the 

upstream of front pier occurs when λ = 0.33. They obtained a similar trend with 

the findings of Hannah (1978). The concept of effect of pier spacing in case of 

tandem arrangement has also been studied by Heidarpour et al. (2010) and 

Diwedar (2013). 

Furthermore, a numerical investigation was conducted by Kim et al. (2014) for the 

local scour at group of piers. They have investigated the temporal variation of the 

scour depth in addition to the effect of pier spacing on it. They concluded that the 

maximum value of equilibrium scour depth is obtained when λ ≈ 0.4.  

All the aforementioned researchers concluded that the maximum scour depth at a 

group of piers placed in-line with the flow occurs at the upstream face of the 

frontmost pier and spacing between the piers affects the maximum scour depth. 

2.3 Clear-Water Scour Prediction Methods for Bridge Piers 

Many scour prediction equations have been reported in the literature, which can be 

found in Yanmaz (2002). However, the results of the proposed methods, which 

were mainly derived from experimental studies in laboratory medium, differ 

widely from each other. Each method is normally assumed to be valid for the 

range of its experimental conditions. Very limited field data of scour are available 

due to the observational difficulties during floods, which leads to the problem of 

model calibration. That is why there is no single method for pier scour, which is 

applicable to universal design conditions. The following methods will only be 

given because of their practical importance. Corresponding equations can be 

multiplied with Kj and Kij to estimate the scour depth of pier groups, for the range 

of experimental conditions similar to those where the factors were derived.   
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2.3.1 Melville and Coleman (2000) Method 

Melville and Coleman (2000) propose the following equation composed of several 

multiplicative adjustment factors for general scour at single bridge piers 

 KKKKKd sdIybse   (2.14) 

where Kyb is a factor accounting for the combined effects of flow depth and pier 

size, KI is the flow intensity factor, which is unity for live bed conditions and is 

u/uc for clear water scour in uniform bed, Kd can be determined from Eq. (2.5) for 

b/D50 < 25, Ks is 1.0 for cylindrical piers and rectangular piers with rounded noses, 

and 1.1 for square piers, and K is a factor to account for the effect of angle of 

approach flow which can be determined by (cosα+(Lp/b)sinα)0.65 for  

non-cylindrical piers, where Lp is the length of pier. The adjustment factors Kyb can 

be determined from 2.4b, 2(d0b)0.5 and 4.5d0 for d0/b > 1.43, 0.2  d0/b  1.43, and 

d0/b < 0.2, respectively.  

2.3.2 Richardson and Davis (2001) Method 

This method is widely used in the USA and is also referred to as the Colorado 

State University (CSU) equation or HEC-18 procedure. The equilibrium depth of 

scour, dse, around a single pier is given by Richardson and Davis (2001): 

 43.0
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d






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where Kb is a factor to account for bed condition, which can be taken as 1.1 for 

clear-water scour, plane bed and small dunes, and 1.2 and 1.3 for medium and 

large dunes, respectively. The adjustment factor Kz accounts for the armoring 

effect of the bed material. For D50 < 2 mm or D95 < 20 mm, the value of Kz can be 

taken as unity. For coarser materials, i.e. D50  2 mm and D95  20 mm, the value 

of Kz attain smaller values than unity with its minimum value of 0.4.  
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2.3.3 Oliveto and Hager (2002) Method 

Oliveto and Hager (2002) proposed the following equation for clear water scour at 

cylindrical bridge piers. 

 ddg
R

s TF
L

d
log068.0 5.15.0   (2.16) 

where LR is the reference length )( 3/1
0

3/2 db , Fd is the densimetric particle Froude 

number (u/(∆gD50)
0.5), Td is the dimensionless time of scour (t/tR), and tR is the 

reference time (LR/(∆gD50)
0.5). This equation is independent of equilibrium 

scouring parameters. Therefore, it is of practical importance, over Eq. (2.6). 
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bed material is used to fill the working section with the same slope, 0.001, such 

that a constant bed slope is maintained along the flume. 

The working section is followed by another concrete section with similar 

characteristics of those of the upstream of the flume. The flow is then discharged 

to a downstream pool where the sediment is trapped. With an outflow pipe 

installed at the downstream pool of the test flume, the sediment-free flow is 

discharged to a settling pool and then to a secondary channel. With a point gage, 

the head on the sharp crested weir in the secondary channel is read to check the 

inflow rate. Finally, the outflow is spilled into the underground tank of the 

laboratory. 

Dual piers in this study are modeled with cylindrical PVC pipes. Piers are screwed 

on a plexiglass board with desired spacing between them, to maintain their relative 

locations throughout the experiments. The piers are then buried in the sediment 

section at a reasonable depth and the bed level is adjusted with a trowel. The front 

pier is located approximately 7.85 m downstream of the flume inlet. 

Throughout the experimental study, bed level measurements around the piers are 

carried out with SeaTek 5 MHz Ultrasonic Ranging System. This equipment 

consists of 32 transducers operating submerged to measure the bed elevation. It is 

composed of 3 fixed stainless steel arrays of 8 transducers having 2 cm spacing 

between them, 8 individual transducers, and an electronics package (SeaTek, 

2015). The system works simultaneously with a communication program 

CrossTalk, to generate output. A photograph of the transducer arrays and 

electronics package is presented in Figure 3.2. 



 

 

 

27 

 

 

Figure 3.1 Plan view of the test flume (not to scale) 
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spacing (d), are tested, such as d = 2b, 3b, and 4b. Therefore, the pier diameter to 

spacing ratio, λ = 0.25, 0.33, and 0.50 are used.  

Before specifying the test range of flow intensity, preliminary experiments are 

conducted to calibrate the discharge measurement. As mentioned in the previous 

section, the inflow discharge, Q is adjusted by checking the flow meter 

measurement and the head over the sharp-crested weir (H) in the secondary 

channel. In the preliminary experiments, the discharge is slightly increased and 

decreased with the valve on the inflow pipe, and the measured discharge versus the 

head over the weir is recorded. This calibration part of the experiments is 

performed for several times. The average values of H with respect to 

corresponding Q values are plotted and presented in Figure 3.3. Using the equation 

presented in Figure 3.3, the discharge measurements by the flowmeter is 

continuously checked throughout the experiments.  

 

Figure 3.3 Discharge versus head over the sharp-crested weir      

Once the discharge is set to a desired value, the approach flow depth is measured 

by transparent rulers attached to the glass wall of the flume. Almost uniform flow 

is attained in the flume according to flow depth measurement at several locations 

along the test section. The experiments are run under three different flow 

intensities, u/uc = 0.917, 0.936, and 0.946, and their corresponding flow Froude 

numbers are 0.443, 0.428, and 0.413, respectively. In this study, flow intensity is 
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defined by u/uc. Since the maximum clear-water scour depth occurs when u = uc, 

this ratio gives information about the degree of proximity of flow to the critical 

condition to initiate sediment motion at the bed. Flow intensities smaller than 

0.917 are not tested, since the corresponding flow depths are small enough not to 

permit scour measurements accurately. For the flow intensities higher than 0.946, 

movement of some bed material is observed at the upstream of the piers. Therefore 

to restrict the flow in clear-water condition, higher values of flow intensity is not 

tested. In the experimental study, clear-water scour conditions are maintained, i.e. 

the shear velocity of the approach flow (u
*
) is less than the critical shear velocity 

of the sediment (u
*c) according to Shields’ criterion (Garde and Ranga Raju, 

2006). The critical shear velocity, u
*c and the mean threshold velocity, uc can be 

determined from Melville and Coleman (2000) as follows: 

 4.1
50* 0125.00115.0 Du c   (3.1) 
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From Eq. (3.1) u
*c is calculated as 0.022 m/s and from Eq. (3.2) uc = 0.303, 0.312, 

0.32 m/s for Q = 8, 10, 12 lt/s, respectively. In the course of the experiments, u is 

always smaller than uc and u
*
 is always smaller than u

*c. Therefore, clear-water 

scour conditions are maintained throughout the study. The scope of the 

experiments is presented in Table 3.2. As can be seen from Table 3.2, two parts of 

experiments are conducted in the course of this thesis. In Experiments Part I  

(E2-E7), the temporal variation of the scour hole topography is obtained around 

dual piers. The common scour hole volume and its surface area are determined 

explicitly as a function of dimensionless time, Ts and λ. Experiments Part II  

(E11-E17) is conducted to obtain the evolution of the maximum scour depth at the 

upstream of the front pier and sides of both piers. The findings of this part and 

volume expression determined in the first part are used to develop the semi-

empirical model explained in Chapter 5. 
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Table 3.2 Scope of the experiments 

Part I 

Run b (cm) λ d0 (cm) Q (lt/s) u/uc u
*
/u

*c Fd 

E2 (11 runs) 7.5 0.33 5.50 12 0.946 0.986 2.54 

E3 (11 runs) 7.5 0.25 5.50 12 0.946 0.986 2.54 

E4 (6 runs) 6.3 0.33 5.50 12 0.946 0.986 2.54 

E5 (6 runs) 6.3 0.25 5.50 12 0.946 0.986 2.54 

E6 (6 runs) 4.0 0.33 5.50 12 0.946 0.986 2.54 

E7 (6 runs) 4.0 0.25 5.50 12 0.946 0.986 2.54 

Part II 

Run b (cm) λ d0 (cm) Q (lt/s) u/uc u
*
/u

*c Fd 

E11-8 7.5 0.50 4.00 8 0.917 0.856 2.33 

E11-10 7.5 0.50 4.75 10 0.936 0.924 2.45 

E11-12 7.5 0.50 5.50 12 0.946 0.986 2.54 

E12-8 7.5 0.33 4.00 8 0.917 0.856 2.33 

E12-10 7.5 0.33 4.75 10 0.936 0.924 2.45 

E12-12 7.5 0.33 5.50 12 0.946 0.986 2.54 

E13-8 7.5 0.25 4.00 8 0.917 0.856 2.33 

E13-10 7.5 0.25 4.75 10 0.936 0.924 2.45 

E13-12 7.5 0.25 5.50 12 0.946 0.986 2.54 

E14-8 6.3 0.33 4.00 8 0.917 0.856 2.33 

E14-10 6.3 0.33 4.75 10 0.936 0.924 2.45 

E14-12 6.3 0.33 5.50 12 0.946 0.986 2.54 

E15-8 6.3 0.25 4.00 8 0.917 0.856 2.33 

E15-10 6.3 0.25 4.75 10 0.936 0.924 2.45 

E15-12 6.3 0.25 5.50 12 0.946 0.986 2.54 

E16-8 4.0 0.33 4.00 8 0.917 0.856 2.33 

E16-10 4.0 0.33 4.75 10 0.936 0.924 2.45 

E16-12 4.0 0.33 5.50 12 0.946 0.986 2.54 

E17-8 4.0 0.25 4.00 8 0.917 0.856 2.33 

E17-10 4.0 0.25 4.75 10 0.936 0.924 2.45 

E17-12 4.0 0.25 5.50 12 0.946 0.986 2.54 
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As mentioned in Chapter 2, equilibrium clear-water scour depth is reached after 

very long test duration. However, the literature lacks an explicit equation for the 

equilibrium time determination in case of group of piers in tandem arrangement. 

Therefore, to have an idea, it may be rational to calculate the equilibrium time of 

clear-water scour at a single pier. Using the equilibrium time equation proposed by 

Melville and Chiew (1999) in Eq. (2.7b), te is calculated to be in the range of 58 to 

93 hours for the experimental conditions of this study. Considering the main 

objective to investigate the temporal variation of scour hole characteristics, it is 

planned to study the initial and development phases of scouring. Among four 

phases of scouring, namely initial, development, stabilization, and equilibrium 

phases, 85-95% of the equilibrium scour depth is reached at the end of these first 

two rapid evolution phases (Hoffmans and Verheij, 1997; Link, 2006; Zanke, 

1978). Also, Melville and Chiew (1999) state that, the scour depth at single 

cylindrical pier is about 50-80% of the equilibrium scour depth after 10% of the 

equilibrium time, depending on the approach flow velocity. In consideration of 

these studies on the scour depth evolution, the maximum test duration in 

Experiments Part I and Part II is specified as 6 hours. This test duration 

corresponds to relatively long durations in the prototype. For instance, 6 hours of 

test duration corresponds to 6*(50)0.5=42 hours in prototype conditions, for a 1:50 

scaled Froude modeling. This is a reasonable time to peak value for most simple 

storms with single peaks. Moreover, as mentioned before, peak value of the design 

hydrograph is normally not last long as the time to reach the equilibrium condition.   

3.1.3 Experiments Part I 

In this part, the aim is to obtain three-dimensional bed topography maps of the 

scour hole at tandem piers and to determine the time wise variation of the scour 

hole characteristics. The experiments in this part are carried out with a constant 

flow intensity of u/uc =0.946, regarding the similarity of the clear-water scour hole 

characteristics under varying flow intensities. Experiments are started with a flat 

bed. The outlet valve is closed at the beginning, while the flume is filled with 
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water very slowly not to disturb the bed material, until the desired approach flow 

depth is reached. By adjusting the inflow valve, the discharge is set to the desired 

value and then outlet valve is fully opened. Each run is stopped at specified 

durations for the scour depth measurements in the erosion and accretion zones in 

order to obtain three-dimensional bed topography maps. In the E4-E7 runs, the 

mapping times are 5, 20, 60, 100, 150, and 360 minutes. However, in the E2-E3 

runs, larger pier size is used and so larger scour hole is expected. Therefore, 

mapping times are specified more frequently, such as 5, 10, 15, 20, 30, 45, 60, 80, 

100, 150, and 360 minutes. At each mapping time, the experiment is paused gently 

for not disturbing the bed topography. After making the measurements, the 

experiment is resumed until the next mapping time. Finally, the scour hole 

topography is mapped at the end of the experiments and then the flume is drained. 

For the next experiment, the pier size and/or spacing is modified, placed in the test 

section, and the bed is then flattened to repeat the test and mapping procedure.  

For bed topography mapping, the ultrasonic transducers are fixed to a plexiglass 

T-shaped frame. The frame is attached to the wheeled tray on the flume, enabling 

movement in transversal and longitudinal directions along the test section. The 

measurements are taken around and between the piers for mapping the erosion and 

accretion zones of scouring. Considering the total number of mapping times of the 

Experiments Part I as seen in Table 3.2, 46 time-dependent bed topography maps 

are created, which are presented in Appendix A. Bed topography maps of runs E2 

and E3, and corresponding three-dimensional views of the scour hole at  

t = 360 min can be seen in Figure 3.4 and Figure 3.5, respectively. In the bed 

topography maps and the three dimensional view of the scour hole, grey circular 

cylinders represent the pier models, respectively. A photograph of the final scour 

hole of Run E3 can be seen in Figure 3.6. The direction of flow is indicated with a 

blue arrow in Figures 3.4 – 3.6 and Figures A.1. – A.46. Similar to the scour hole 

at single piers, the plan view of the scour hole boundary around dual piers is also 

horse-shoe shaped, as can be seen in Figure 3.4. Although in the early stages of 

scouring the horse-shoe shape is not fully developed, the shape is more 
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When the profiles of runs E2 and E3 are examined from Figures 3.13 and 3.14, it 

is observed that the maximum scour depth occurs at the upstream of the front pier. 

Similar to the side slopes (See Figures 3.7 and 3.10), the longitudinal slopes of the 

front pier does not change in time. Therefore, the shape of the scour hole at the 

front pier remains constant throughout the experiments. Considering the 

longitudinal slopes observed in Figures 3.13 and 3.14, slopes at the downstream of 

the front pier (from front pier face to dune), upstream of the rear pier (from dune 

to rear pier face), and downstream of the rear pier (from rear pier face to 

downstream accretion zone) also remain constant in time. Slopes at the upstream 

of the front pier and rear pier are almost identical and approximately equal to the 

angle of repose of the sediment. Furthermore, slopes at the downstream of both 

piers are equal too. 

The maximum scour depth between piers is observed at the downstream face of 

the front pier, along the centerline of the flow direction, i.e. y=0. However, when 

the bed topography maps are examined, it is observed that the location of 

maximum scour depth between piers has an eccentricity in both positive and 

negative y-direction, which will be discussed in detail in Chapter 4.   

Dune location along the flow direction remains constant in time for both runs. The 

distance of the dune from the center of rear pier is obtained as a percentage of pier 

spacing, d. For runs E2 and E3, where the pier size is the same but the pier spacing 

or in other words λ is different, the distance of dune to the center of the rear pier is 

equal to 37% and 38% of d, respectively. Therefore, it can be presumed that, pier 

size to spacing ratio does not have considerable effect on the location of the dune. 

Since the rate of scouring is higher in the beginning of the experiments, the 

accretion zone at the downstream of the rear pier is relatively steep. However, the 

accretion propagates downstream in time and its profile becomes flatter, as can be 

seen in Figures 3.13 and 3.14. At a further distance from the rear pier, close to the 

end of the sediment section, the profile attains the initial condition of bed profile.      
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d profile of Runn E2 (y=0)
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d profile of Runn E3 (y=0)
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A software, which is based on triangularisation method is used to calculate the 

volume (V) and surface area (A) of the scour hole around dual piers composed of 

irregular contours. Therefore, variation of V and A with time is obtained from the 

46 experiments in this part. For practical purposes, V, A and t are transformed to 

dimensionless volume (V*) and surface area of the scour hole (A*) and 

dimensionless time (Ts), respectively. Here, V* is defined as the ratio of V to the 

cross-sectional area of the piers times the maximum scour depth (ds) which is 

measured at the upstream of the front pier, i.e. (2V/(πb2ds)) and A* is defined as 

the ratio of A to the cross-sectional area of the piers (2A/πb2). Dimensionless Ts is 

determined from tD50(ΔgD50)
0.5/b2, which is previously used by Yanmaz and 

Altınbilek (1991), Dey (1996), and Yanmaz (2006) for pier scour modeling. 

Considering 46 experiments, representative regression equations are determined 

for V* and A*. As mentioned before, V* and A* are determined as a function of Ts 

and λ, which includes the effect of pier spacing on the volume and surface area of 

the scour hole around tandem piers. The regression equations of V* and A* are 

obtained with correlation coefficients (R2) of 0.92 and 0.82, respectively: 

 327.0387.0469.1* sTV    (3.3) 

 355.0286.0291.4* sTA    (3.4) 

In the development of the semi-empirical model to determine the temporal 

variation of maximum scour depth at tandem piers, Eq. (3.3) is used. Here, in this 

part of the experimental study, two values of λ are tested, such as 0.33 and 0.25. 

Smaller pier spacing or in another saying, larger value of λ value is not used due to 

the limitation by the size of the frame holding the transducers, which inhibits 

measurement between the piers. However, by means of the similarity of the scour 

conditions, it is presumed that V* can represent the overall conditions tested in this 

study. This assumption is also supported by the comparison of computed scour 

depths with the experimental values for the case when λ=0.5. The A* relation can 
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be used as a tool to calculate the scour protection area. However, detailed study 

can be conducted using longer flow durations to end up with more concrete results. 

3.1.4 Experiments Part II 

In this part of the experimental study, it is aimed to determine the evolution of 

maximum scour depth at specified axes around the piers with more frequent 

intervals. Different than the Experiments Part I, the transducers are attached to the 

piers, allowing the continuous measurement of scour depths throughout the 

experiments. Four separate frames, each with eight transducers, are attached to the 

piers. Two of them are placed at the longitudinal centerline of upstream and 

transversal centerline of side of the front pier. The other two are placed at 

transversal centerline of side of the rear pier and mid distance between the piers. 

Similar to the results of Part I, the maximum scour depths are expected and also 

observed at the upstream face of the front pier at the centerline axis. In the scope 

of the thesis, the concentration is focused on the evolution of the maximum depth 

in the semi-empirical model development, for design purposes. Therefore, in this 

study, only the maximum scour depth measurements are utilized in the model 

development. With this consideration, it is aimed to propose a combined footing 

for both piers whose depth is decided according to the maximum possible depth of 

scour in close vicinity to piers. Under the given experimental conditions in Table 

3.2, 21 experiments are conducted and frequent measurements of the maximum 

scour depth is obtained and presented in Figure 3.15 and Appendix B. As stated in 

the literature and also observed in the experiments, evolution of maximum clear-

water scour depth is very rapid in the beginning of the scouring process, while it 

slows down and then asymptotically tends to equilibrium condition, which can be 

clearly observed in Figure 3.15. Also it is obviously deducted that, for a particular 

flow intensity (u/uc) and λ value, the maximum scour depth increases with 

increasing pier size. In addition, for a particular b and λ, the maximum scour depth 

increases with increasing flow intensity. Furthermore, for a particular b and u/uc, 

the maximum scour depth increases with increasing λ value (reinforcing effect). 
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As mentioned before, the scour depth measurements are obtained at different 

sections. To provide information about the tendency of the scour depth variation in 

time at the sides of both piers and a comparison with the maximum scour depth at 

the upstream face of the front pier, Figure 3.16 is presented for Run E11-12. It is 

observed that the scour depths at the side of the front pier are always less than that 

at its upstream face since vortices at the sides are swept by the flow. So their 

erosive capacities decrease. Also, the scour depths at the side of the rear pier are 

always smaller than that at the side of the front pier. Similar trends are also 

observed in other runs. 

 

Figure 3.16 Comparison of scour depth at different axes for Run E11-12 
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4.1.2 Shear Stress Variation in the Scour Hole around Upstream Pier 

The time-variation of the bed shear stress on the flat region of the scour hole, τb is 

determined using the bed shear stress model proposed by Kothyari et al. (1992). 

Although the model is valid for single piers, it is applied for the dual pier case in 

this study, to have an idea on the variation of bed shear stress at the upstream pier 

nose. According to their model, before the scour begins, the bed shear stress at the 

pier nose is approximately 4τ0, where τ0 = γRS0 is the bed shear stress of the 

approach flow, γ is the specific weight of water, and R is the hydraulic radius. The 

primary vortex area increases during scouring. Thus, the bed shear stress decreases 

and equilibrium scour condition is attained when τb < τcr, where τcr is the critical 

bed shear stress on flat bed. The temporal variation of the shear stress at the pier 

nose is obtained by Eq. (4.1): 

 

57.0

0
04 










t
b A

A
  (4.1) 

where, A0 = (π/4)Dv
2 is the initial cross-sectional area of the primary vortex at  

t = 0, Dv = 0.28d0(b/d0)
0.85 is the thickness of the separated boundary layer,  

At = A0 + As is the cross-sectional area of the primary vortex at any time t,  

As = (ds
2/2)cotϕ is the cross-sectional area of the scour hole when the scour depth 

is ds, and ϕ is the angle of repose of the sediment. Time-dependent bed shear stress 

at the pier nose is then calculated by Eq. (4.1) using experimental ds – t relation to 

obtain the variation of As values. The variation of bed shear stress for the particular 

combination of λ = 0.33 and u/uc = 0.936 is presented in Figure 4.1 by comparing 

two different pier sizes of b = 6.3 cm and 4.0 cm. The bed shear stress at the 

approach flow, τ0, is also plotted for comparison purpose. As expected, the bed 

shear stress at the pier nose decreases in time. Also, bed shear stress decreases 

with decreasing pier size for a particular flow intensity and λ. Based on the study 

for equilibrium bed shear stress by Melville and Raudkivi (1977), Dey (1996) 

stated that τb tends to 0.3τcr for clear-water scour at circular cylinders. The bed 
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shear stress is below τcr at the end of the experiments, and they tend to different 

multiples of τcr in the range of 0.51 – 0.71 for the ranges covered in all 

experiments.  

 

Figure 4.1 Variation of bed shear stress at the pier nose 

4.1.3 Shape of the Scour Hole 

Using the bed topography maps presented in Appendix A, the change of the side 

inclination of the scour hole is determined. For this purpose, longitudinal scour 

width (X), transversal scour width (Y), and bed level (Z) as shown in Figure 4.2 at 

each test duration of Experiments Part I are obtained by reading the coordinates of 

the scour hole boundaries in front of (longitudinal) and at the side of (transversal) 

the front pier. Similarly, at each test duration, transversal scour width (Y´) and bed 
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Y/Ymax - Z/Zmax, and Y´/Y´max - Z/Zmax are determined and presented in  

Figures 4.3 – 4.5, respectively. It is observed that the scour hole shape at the front 

pier remains nearly unchanged throughout the test duration and the side inclination 

of the scour hole is almost equal to the angle of repose of sediment except its rear 

face (See also Figures 3.7, 3.10, 3.13, and 3.14). However, at the side of the rear 

pier, cross-section of the scour hole varies in time, due to interchanging erosion of 

bed material according to scouring and accretion of bed material transported from 

the upstream scour hole (See Figure 4.5 and also Figures 3.9 and 3.12).  

 

Figure 4.2 Definition sketch for the characteristic dimensions of the scour hole 

 

Figure 4.3 Correlation between X/Xmax – Z/Zmax 
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Figure 4.4 Correlation between Y/Ymax – Z/Zmax 

 

Figure 4.5 Correlation between Y´/Y´max – Z/Zmax 
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maximum scour depth between the piers and its location is also investigated from 

the bed topography maps obtained in Experiments Part I. Since the downstream 

nose of the front pier (point A in Figures 4.6 – 4.11) is sheltered by the pier itself 

along the centerline in the wake region, this zone is under the effect of wake 

vortices. However, the zone where the maximum scour depth between piers occurs 

is under the combined effect of both horse-shoe and wake vortices. Therefore, the 

maximum scour depth occurs eccentrically with respect to pier axis as shown in 

Figures 4.6 – 4.11. The black arrows in these figures indicate the flow direction. 

The maximum scour depth generally occurs at ~2.5 cm downstream of the front 

piers’ downstream face and its eccentricity from the centerline on both sides is 0.3-

3.6 cm along the flow direction. In Table 4.1 and Table 4.2, locations of the 

maximum scour depth between piers for runs E2-E3 and E4-E7 are presented, 

respectively. In this table, r is the radial coordinate of the maximum scour depth 

location with respect to the center of the front pier and θ is the angular coordinate 

with respect to the centerline along the flow direction. In the experiments, it is 

clearly observed that the time-dependent maximum scour depth between piers 

occur symmetrically with respect to axes of piers, as shown in Figures 4.6 – 4.11. 

Table 4.1 Radial and angular cooridanates for runs E2-E3 

t 
(min) 

E2 E3 

r (cm) θ (°) r (cm) θ (°) 

5 5.90 12.74 8.19 58.74 

10 6.19 21.80 5.78 5.96 

15 6.19 21.80 5.78 5.96 

20 5.90 12.74 6.19 21.80 

30 6.19 21.80 6.31 24.33 

45 6.31 24.33 6.19 21.80 

60 6.31 24.33 5.78 5.96 

80 6.78 32.05 5.76 2.99 

100 6.78 32.05 6.31 24.33 

150 6.78 32.05 5.78 5.96 

360 6.78 32.05 6.06 18.29 
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Table 4.2 Radial and angular coordinates for runs E4-E7 

  

Reinforcing effect is also observed in the maximum scour depth between piers. 

For instance, for b = 7.5 cm, approximately 7.5% increase in the maximum scour 

depth is observed for λ = 0.33 relative to the case when λ = 0.25. Reinforcing 

effect is stronger, and the reduction in the exit slope and height (see  

Figure 2.7) is higher when λ = 0.33. In the smaller piers, the duration of the 

experiments is not sufficient to observe this effect.  

Variation of the location of the maximum scour depth between piers can be seen 

on the sketches given in Figures 4.6 – 4.11. Radial and angular coordinates of the 

maximum scour depth locations with respect to the center of the front pier at an 

arbitrary time are also shown on the figures. Although more frequent 

measurements are taken for runs E2 and E3, the locations corresponding to the test 

times similar to runs E3-E7 are presented for one-to-one comparison. 

 

t 
(min) 

E4 E5 E6 E7 

r (cm) θ (°) r (cm) θ (°) r (cm) θ (°) r (cm) θ (°) 

5 5.95 25.92 5.68 19.55 4.54 7.59 4.51 3.81 

20 5.95 25.92 5.58 16.65 4.54 7.59 4.51 3.81 

60 5.51 13.66 5.68 19.55 4.54 7.59 4.51 3.81 

100 5.36 3.21 5.58 16.65 4.54 7.59 4.51 3.81 

150 5.36 3.21 5.51 13.66 4.54 7.59 4.54 7.59 

360 5.36 3.21 5.36 3.21 4.51 3.81 4.51 3.81 
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Figure 4.6 Locatiion of the maxim

 

mum scour deptth between pierss for Run E2
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Figure 4.7 Locatiion of the maxim

 

 

mum scour deptth between pierss for Run E3
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Figure 4.8 Locatiion of the maxim

 

 

mum scour deptth between pierss for Run E4
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Figure 4.9 Locatiion of the maxim

 

 

mum scour deptth between pierss for Run E5
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Figure 4.10 Locattion of the maxi

 

 

imum scour deppth between pierrs for Run E6
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Figure 4.11 Locattion of the maxi

 

 

imum scour deppth between pierrs for Run E7
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4.2 Scour Prediction Equations 

Results of the Experiments Part I are grouped into three according to their λ values 

and multiple linear regression equations are obtained for the maximum scour depth 

at the upstream of front pier. Using the governing parameters included in scouring 

process as independent variables, the following regression equations are obtained 

with R2 = 0.98, 0.83, and 0.83, respectively: 

 112.0856.1

337.0

0 )()(135.0 sd
s TF

b

d

b

d






            (λ = 0.5)  (4.2a) 

 126.0687.2
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0 )()(053.0 sd
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d


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              (λ = 0.33)  (4.2b) 

 123.0984.1

154.0

0 )()(098.0 sd
s TF

b

d

b

d






              (λ = 0.25)  (4.2c) 

These empirical equations will be compared with the experimental data in  

Chapter 5 together with the results of the semi-empirical model that will be 

discussed in the same chapter. 
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functions reported in the literature. Considering the experimental condition of the 

current study, a proper pickup function proposed by Dey and Debnath (2001) is 

selected. This function, given in Eq. (5.3) is valid for horizontal, mild, steep, and 

adverse slopes, sediment size range of 0.24 – 1.55 mm, and both uniform and non-

uniform sediments. Eq. (5.3) has been applied satisfactorily by Yanmaz (2006) and 

Yanmaz and Köse (2009) to single cylindrical piers and to abutments of different 

shapes, respectively.  

 50
9.124.0

*0006.0 gDTDE sg        (5.3) 

where T = (τb - τbc) / τbc is the transport-stage parameter due to scouring, τb is the 

bed shear stress on the flat region of the scour hole, τbc = ψτcr is the critical bed 

shear stress on the flat region of the scour hole, ψ is a factor depending on 

turbulent fluctuations and oscillation of primary vortex, τcr is the critical bed shear 

stress on flat bed, D
*
 = D50(Δg/ν2)1/3 is the dimensionless particle diameter.  

Parameter T represents the mobility of sediment particles during pickup in the 

scour hole (Dey and Debnath, 2001).  

In the current study, the time-averaged value of τb, which is calculated by Eq. (4.1) 

is assumed to be equal to τ0 throughout the experiments, similar to the assumptions 

made by Yanmaz (2006) and Yanmaz and Köse (2009) in their previous studies. 

Additional force is exerted by the turbulent fluctuations and oscillation of primary 

vortex, toward the motion of sediment in the three-dimensional vortex mechanism 

of scouring. During scouring, the corresponding ψ term is not necessarily constant; 

however use of an average value of ψ brings practical solution. Moreover, as 

mentioned previously, equilibrium scour condition is attained when τb tends to ψτcr 

(Dey and Barbhuiya, 2005). Therefore, ψ is a significant factor in scouring process 

and the representative ψ value in the computations needs to be determined 

carefully. For clear-water scour at abutments, Barbhuiya (2003) proposed the 

average value of ψ = 0.5 and it is used by Dey and Barbhuiya (2005) and Yanmaz 

and Köse (2009) in their studies. Yanmaz (2006) also used ψ = 0.5 for clear-water 
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scour at single cylindrical bridge piers, considering the fundamental similarity of 

the clear-water scour hole characteristics.  

A sensitivity analysis is carried out in this study for ψ term and the most proper 

values of ψ are selected for different experimental conditions to have good 

agreement between experimental and computed scour depths. 

Another important term in the sediment pickup theory, the coefficient of 

proportionality (β) is determined by using the experimental results of the 

maximum scour depth variation in time. To begin with, volume of the scour hole is 

determined from Eq. (3.3) by inserting the values of V* and Ts. The scour hole 

volume is then:  

 sdtcV 327.0
1  (5.4) 

Here, c
1
 = 0.7345πλ-0.387D50

0.327
(ΔgD50)

0.1635b1.346. Eq. (5.1) is solved together with 

Eqs. (5.2), (5.3), and (5.4). The β term is determined as follows: 

  
dt

dV

EAp

s


  (5.5) 

For single cylindrical pier scour, Ap is defined as the projected width of scour hole 

normal to the flow at the upstream of the pier multiplied by the particle size 

(Yanmaz and Altınbilek, 1991; Yanmaz, 2006). For dual piers, representative 

pickup area can also be defined at the upstream of the front pier. Knowing that the 

side inclination of the scour hole at front pier remains unchanged with respect to 

time and almost equal to angle of repose of the sediment, Ap is calculated from 

(2dscotϕ + b)D50. To solve Eq. (5.5), time derivative of V is obtained as: 

 673.0
1

327.0
1 327.0

)(  tdc
dt

dd
tc

dt

dV
s

s  (5.6) 
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Finally, relevant parameters are inserted into Eq. (5.5), and β is obtained as:  

 


 







dtbd

dttdccddtcc

s

ss

)cot2(

327.0)( 673.0
21

327.0
21


  (5.7) 

where c
2
 = Δρs/ED50. For the limits of the integration in Eq. (5.7), the experimental 

data of ds versus t at the upstream face of the front pier as presented in Table B.1 

are used and successive values of β are then computed. Variation of β in time can 

be found in Figures 5.1 – 5.7. As can be seen from the figures, sediment transport 

rate from the scour hole is high at the beginning of scouring, which results in large 

values of β. As Qso decreases with time, the β values also decrease.  

 

 

Figure 5.1 Variation of β with time for Runs E11 
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Figure 5.2 Variation of β with time for Runs E12 

 

 

Figure 5.3 Variation of β with time for Runs E13 
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Figure 5.4 Variation of β with time for Runs E14 

 

 

Figure 5.5 Variation of β with time for Runs E15 

 

1

10

100

1000

10000

0 100 200 300 400 500 600

β

Ts

E14-8

E14-10

E14-12

1

10

100

1000

10000

0 100 200 300 400 500 600

β

Ts

E15-8

E15-10

E15-12



 

67 

 

 

 

 

Figure 5.6 Variation of β with time for Runs E16 

 

 

Figure 5.7 Variation of β with time for Runs E17 
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To determine the time-variation of the scour depth, β term is to be expressed in an 

explicit form. Since β term reflects the combined effects of scour hole geometry, 

pier size, time, and properties of sediment and flow, possible combinations of 

dimensionless parameters accounting for these characteristics are tested. To this 

end, functional forms of the dimensionless parameters u
*
t/b, u

*
t/d0, u

*
tD50/b

2, 

dscotϕ/b, and u/uc are combined as follows: 
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where, m is the coefficient, x
1
, x

2
, and x

3
 are exponents of the functional form of β. 

Using a multiple linear regression analysis, m, x
1
, x

2
, and x

3
 are calculated.  

5.1.1 Selection of β Combination and Solution Method 

In the selection of the representative β combination to apply for all experiments, 

sensitivity analyses are carried out to select the proper solution method to solve 

d(ds)/dt in Eq. (5.9), which is a first-order nonlinear differential equation. With  

ψ = 0.5 as an initial guess, β1 combination is used to test numerical solution 

methods, such as Euler, modified Euler, and 4th order Runge-Kutta method. Using 

these solution methods, Eqs. (5.1), (5.2), (5.6), and (5.8a) are solved together for 

d(ds)/dt. The experimental ds - t data of all experiments are compared with 

computed ds - t values using the solution methods mentioned above. Considering 

the correlation coefficient (R2) and root mean square error of the estimate (RMSE), 
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modified Euler method is selected as the proper solution method to solve for 

d(ds)/dt (See Table 5.1). Once the solution method is selected, the optimum β 

combination is selected again with ψ = 0.5 and considering the average R2 and 

RMSE values of the experiments. As can be seen from Table 5.1, The 

representative combination is selected as β1, to be used in the numerical solution of 

d(ds)/dt.  

Table 5.1 Decision table for solution method and β combination 

Statistics 

Solution method β combination 

Euler 
Modified 

Euler 
4th order 

Runge Kutta 
β1 β2 β3 β4 

R2 0.963 0.977 0.981 0.977 0.974 0.978 0.971 

RMSE(cm) 0.58 0.42 0.50 0.42 0.44 0.61 0.85 

 

5.1.2 Selection of ψ values 

Together with the similar selection criteria as mentioned above, ψ values of the 

experiments are selected by graphical comparison between experimental and 

computed values of ds versus t. A representative value of ψ is intended to be 

obtained for a particular value of λ, regarding the basic similarity of vortex fields 

in the scour hole. Table 5.2 shows the R2 and RMSE values of the ψ trials. As 

discussed above, the experiments are grouped according to their λ values, since the 

scour hole volume depends on the λ value. Therefore, ψ = 0.6 is selected for  

λ = 0.5 (Run E11) and ψ = 0.5 is selected for both λ = 0.33 and 0.25  

(Runs E12-17).  

 



 

 

 70 

Table 5.2 Decision table for ψ value 

Run 
ψ = 0.4 ψ = 0.45 ψ = 0.48 ψ = 0.50 ψ = 0.52 ψ = 0.55 ψ = 0.6 

R2 
RMSE 
(cm) 

R2 
RMSE 
(cm) 

R2 
RMSE 
(cm) 

R2 
RMSE 
(cm) 

R2 
RMSE 
(cm) 

R2 
RMSE 
(cm) 

R2 
RMSE 
(cm) 

E11-8 0.990 0.40 0.990 0.33 0.991 0.29 0.991 0.27 0.991 0.24 0.991 0.20 0.990 0.14 
E11-10 0.959 0.31 0.959 0.29 0.959 0.28 0.958 0.27 0.955 0.27 0.949 0.28 0.990 0.23 
E11-12 0.980 0.41 0.983 0.35 0.985 0.31 0.986 0.29 0.987 0.25 0.988 0.22 0.989 0.16 
E12-8 0.974 0.53 0.977 0.57 0.979 0.59 0.980 0.62 0.981 0.65 0.983 0.69 0.983 0.79 
E12-10 0.986 0.18 0.989 0.17 0.991 0.15 0.992 0.14 0.993 0.13 0.995 0.10 0.996 0.06 
E12-12 0.962 0.43 0.967 0.45 0.970 0.48 0.972 0.50 0.974 0.51 0.977 0.56 0.981 0.64 
E13-8 0.985 0.46 0.987 0.51 0.988 0.56 0.989 0.61 0.990 0.65 0.991 0.71 0.992 0.84 
E13-10 0.979 0.23 0.981 0.20 0.981 0.19 0.981 0.19 0.981 0.18 0.981 0.17 0.979 0.19 
E13-12 0.961 0.35 0.964 0.41 0.966 0.45 0.967 0.46 0.968 0.50 0.970 0.56 0.971 0.67 
E14-8 0.969 0.56 0.969 0.47 0.970 0.42 0.969 0.37 0.969 0.33 0.968 0.26 0.965 0.18 
E14-10 0.992 0.57 0.991 0.56 0.990 0.58 0.990 0.57 0.989 0.57 0.989 0.59 0.937 0.74 
E14-12 0.995 0.49 0.994 0.53 0.994 0.57 0.993 0.59 0.993 0.60 0.992 0.65 0.990 0.72 
E15-8 0.998 0.51 0.998 0.44 0.998 0.38 0.998 0.33 0.998 0.29 0.998 0.22 0.997 0.08 
E15-10 0.958 0.86 0.960 0.87 0.961 0.87 0.961 0.86 0.961 0.86 0.961 0.87 0.959 0.89 
E15-12 0.987 0.17 0.986 0.21 0.986 0.24 0.985 0.25 0.984 0.28 0.982 0.33 0.974 0.43 
E16-8 0.991 0.10 0.991 0.22 0.990 0.29 0.989 0.35 0.989 0.41 0.987 0.50 0.984 0.67 
E16-10 0.964 0.40 0.964 0.34 0.964 0.32 0.964 0.29 0.964 0.27 0.964 0.24 0.965 0.19 
E16-12 0.961 0.65 0.963 0.61 0.964 0.60 0.964 0.58 0.965 0.56 0.966 0.54 0.969 0.50 
E17-8 0.988 0.31 0.989 0.40 0.989 0.47 0.989 0.52 0.989 0.57 0.989 0.65 0.989 0.81 
E17-10 0.962 0.29 0.962 0.27 0.962 0.26 0.961 0.24 0.960 0.24 0.959 0.24 0.951 0.28 
E17-12 0.934 0.61 0.937 0.62 0.939 0.62 0.940 0.61 0.942 0.62 0.944 0.62 0.949 0.63 
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For the selected numerical solution method, β1 combination, and ψ values,  

Table 5.3 shows m coefficient and x
1
 and x

2
 exponents for corresponding λ values. 

Since β equation is calibrated using the time-variation of maximum experimental 

scour depths at the upstream of the front pier, the computed scour depths by  

Eq. (5.9) also addresses the same location.  

Hence, using the corresponding β functions and other relevant parameters 

mentioned previously, d(ds)/dt is solved and the differential equations for λ = 0.5, 

0.33, and 0.25 are obtained in Eq. (5.9a), (5.9b), and (5.9c), respectively: 
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Table 5.3 Coefficient and exponents of the functional form of β1 

λ ψ m x1 x2 

0.5 0.6 1695 -0.347 -3.367 
0.33 0.5 2603 -0.595 -1.465 
0.25 0.5 2449 -0.563 -1.674 

 

5.2 Comparison of Scour Prediction Models 

The experimental scour depths are compared with the results of empirical 

regression equations given by Eq. (4.2) and the semi-empirical model results 

obtained by Eq. (5.9) are compared for all 21 runs and their graphical comparison 

is presented in Figures 5.8 – 5.28. The results are also compared for their RMSE 

and R2 values for each run as can be seen in Table 5.4. The semi-empirical model 
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results for ds - t from Eq. (5.9), in which Δ = 1.65 for quartz sand and ϕ = 33°, are 

satisfactorily in good agreement with the experimental results. The empirical 

equation results show that the results of Eq. (4.2) also provide good prediction for 

the variation of scour depth with time. However, Figures 5.8 – 5.28 and Table 5.4 

show that the semi-empirical model provides better estimation for the scour depths 

than the empirical equation. Therefore, the use of semi-empirical model results is 

recommended. 

Another important fact is that the semi-empirical model includes the application of 

a conservation law, i.e. sediment continuity equation and a volumetric sediment 

transport rate from the scour hole with the use of a sediment pickup function. 

Therefore, semi-empirical model includes the physics of the scouring process and 

sediment transport mechanism in the scour hole in its background, compared to the 

empirical approach.  

 

 

Figure 5.8 Comparison for Run E11-8 
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Figure 5.9 Comparison for Run E11-10 

 

Figure 5.10 Comparison for Run E11-12 
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Figure 5.11 Comparison for Run E12-8 

 

Figure 5.12 Comparison for Run E12-10 
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Figure 5.13 Comparison for Run E12-12 

 

Figure 5.14 Comparison for Run E13-8 
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Figure 5.15 Comparison for Run E13-10 

 

Figure 5.16 Comparison for Run E13-12 
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Figure 5.17 Comparison for Run E14-8 

 

Figure 5.18 Comparison for Run E14-10 
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Figure 5.19 Comparison for Run E14-12 

 

Figure 5.20 Comparison for Run E15-8 
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Figure 5.21 Comparison for Run E15-10 

 

Figure 5.22 Comparison for Run E15-12 
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Figure 5.23 Comparison for Run E16-8 

 

Figure 5.24 Comparison for Run E16-10 
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Figure 5.25 Comparison for Run E16-12 

 

Figure 5.26 Comparison for Run E17-8 
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Figure 5.27 Comparison for Run E17-10 

 

Figure 5.28 Comparison for Run E17-12 

 

0.0

2.0

4.0

6.0

8.0

0 100 200 300 400

d s
(c

m
)

t (min)

Experimental

Semi-empirical

Empirical

0.0

2.0

4.0

6.0

8.0

0 100 200 300 400

d s
(c

m
)

t (min)

Experimental

Semi-empirical

Empirical



 

83 

 

Table 5.4 Comparison of semi-empirical model with empirical equation 

Run 
Semi-Empirical Model Empirical Equation 

R2 
RMSE 
(cm) 

R2 
RMSE 
(cm) 

E11-8 0.990 0.14 0.986 0.11 
E11-10 0.990 0.23 0.997 0.06 
E11-12 0.989 0.16 0.995 0.17 
E12-8 0.980 0.62 0.959 0.46 
E12-10 0.992 0.14 0.970 0.63 
E12-12 0.972 0.50 0.988 0.31 
E13-8 0.989 0.61 0.972 0.49 
E13-10 0.981 0.19 0.977 0.46 
E13-12 0.967 0.46 0.992 0.29 
E14-8 0.969 0.37 0.948 0.56 
E14-10 0.990 0.57 0.859 0.65 
E14-12 0.993 0.59 0.893 0.52 
E15-8 0.998 0.33 0.914 0.58 
E15-10 0.961 0.86 0.983 0.63 
E15-12 0.985 0.25 0.948 0.34 
E16-8 0.989 0.35 0.870 0.42 
E16-10 0.964 0.29 0.853 0.32 
E16-12 0.964 0.58 0.871 0.38 
E17-8 0.989 0.52 0.869 0.44 
E17-10 0.961 0.24 0.979 0.17 
E17-12 0.940 0.61 0.874 0.44 

 

Since the use of semi-empirical model is recommended, dimensionless form of  

Eq. (5.9) may be of practical interest. The following dimensionless equations are 

obtained by substituting the dimensionless time, Ts and dimensionless scour depth, 

S = ds/b into Eq. (5.9):  

 
sss T

S

ST

Sp

dT

dS 327.0

)cot(

)1cot2(
367.3674.0








         (λ = 0.5) (5.10a) 
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S
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dS 327.0

)cot(

)1cot2(
465.1922.0








          (λ = 0.33) (5.10b) 
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Here, p is calculated by: 

 
347.0

9.124.0
*347.0267.0

F

TD
kp g          (λ = 0.5) (5.11a) 

 
595.0

9.124.0
*595.041.0

F

TD
kp g
             (λ = 0.33) (5.11b) 

 
563.0

9.124.0
*563.0386.0

F

TD
kp g           (λ = 0.25) (5.11c)

    

where, k = b/D50 and F = u
*
/(ΔgD50)

0.5 is the square root of Shields’ parameter. The 

value of p is constant, for a particular combination of flow, sediment properties, 

and pier size and spacing. In fact p is composed of design input parameters. 

Therefore, the variation of S with respect to Ts is obtained by the numerical 

solution of the nonlinear differential equation given in Eq. (5.10). 

5.3 Design Charts 

For the practical use of Eq. (5.10), the solution is presented as design charts in 

Figures 5.29 – 5.35, to reduce computational efforts. To use the design charts for a 

particular λ value, p is computed for given pier size and spacing, sediment 

properties, and design flow data. Then, Ts is computed for the time-to-peak value 

of the design flood and corresponding S is determined from the respective curve 

for p. Linear interpolation may be applied for p values outside the range of those 

considered in this study. The design chart implies that for a particular λ value, as 

the p value increases, the dimensionless scour depth, S increases.  
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Figure 5.29 Design chart for λ = 0.5 and k = 85.23 

 

 

Figure 5.30 Design chart for λ = 0.33 and k = 85.23 
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Figure 5.31 Design chart for λ = 0.25 and k = 85.23 

 

 

Figure 5.32 Design chart for λ = 0.33 and k = 71.59 
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Figure 5.33 Design chart for λ = 0.25 and k = 71.59 

 

 

Figure 5.34 Design chart for λ = 0.33 and k = 45.45 
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Figure 5.35 Design chart for λ = 0.25 and k = 45.45 
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of temporal variation of scour depth at bridge piers will provide more realistic 

estimates for the scour depth.  

Considering all these facts, a semi-empirical model is developed in this study to 

predict the temporal variation of maximum clear-water scour depth at dual 

cylindrical uniform piers in tandem arrangement. The experiments are carried out 

with uniformly graded bed material, using three different pier diameters with three 

different pier diameter to spacing ratio. The semi-empirical model is developed on 

the basis of sediment continuity approach and volumetric sediment transport rate 

from the scour hole using a proper sediment pickup function proposed by Dey and 

Debnath. Bed topography maps of the scour hole and accretion zones are obtained 

and time-evolution of the scour hole volume around the piers is derived from those 

maps to be used in the model development. Finally, the semi-empirical model is 

developed giving the temporal variation of maximum scour depth at tandem piers. 

Design charts are presented to obtain the dimensionless scour depth versus 

dimensionless time for practical use. In addition to the semi-empirical model, an 

empirical equation is also proposed for the prediction of maximum scour depth for 

different pier spacing conditions.  

The findings of the study are as follows: 

 The maximum scour depth around dual piers in tandem arrangement 

always occurs at the upstream face of the front pier.  

 For a particular flow intensity and λ, the maximum scour depth increases 

with the increasing pier size. Also, for a particular pier size and λ, the 

maximum scour depth increases with the increasing flow intensity. In 

addition, for a given pier size and flow intensity, the maximum scour depth 

increases with increasing λ. This is a consequence of reinforcing effect of 

pier groups. It is observed that the strength of reinforcing effect decreases 

with decreasing λ value. 
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 The scour depth at the upstream of the rear pier is always less than the 

scour depth at the downstream of the front pier. This is a consequence of 

sheltering effect of pier groups.  

 To form an opinion for the bed shear stress variation in the scour hole, a 

model proposed by Kothyari et al. for the variation of shear stress at single 

piers is used. Accordingly, the bed shear stress at the front pier nose 

decreases as the scour depth and projected area of the scour hole develops 

in time. Eventually, it tends to a range of 0.51τcr – 0.71τcr. 

 The scour holes are widening and deepening in time. Location of the 

maximum scour depth at the sides of the front piers remains constant in 

time. However, the maximum scour depth at the dune cross-section 

between piers and rear pier cross-section moves towards the centerline of 

flow direction in time.  

 Side slopes and the longitudinal slopes of the front pier do not change in 

time. Therefore, shape of the scour hole at front pier remained almost 

constant throughout the experiments. However, side slopes of the rear pier 

and so the scour hole shape changes in time, due to simultaneous erosion at 

the pier and accretion of materials transported from the front pier.  

 Longitudinal slopes at the rear pier remain constant in time. Slopes at the 

upstream of the front pier and rear pier are identical and approximately 

equal to the angle of repose of the sediment. Furthermore, slopes at the 

downstream of both piers are equal too. 

 The maximum scour depth between the piers is obtained for different 

experimental conditions. The location of maximum scour depth between 

piers has an eccentricity in both positive and negative y-direction. It is 

observed that the location shows little variation in time. For a particular 

pier size and flow intensity, the maximum scour depth is compared for 

different λ values. The maximum scour depth increases when λ increases, 

as a consequence of reinforcing effect of pier groups.  
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 Dune location along the flow direction remains constant in time. For the 

maximum pier size, the distance of the dune from the center of rear pier is 

obtained as approximately 38% of d. Pier size to spacing ratio does not 

have considerable effect on the location of the dune. 

 The accretion zone at the downstream of the rear pier is relatively steep in 

the beginning of the experiments. However, the accretion propagates 

downstream in time and its profile becomes flatter.  

 The variation of scour depth at the sides of the front pier and rear pier are 

obtained. It is observed that the scour depths at the side of the front pier are 

always less than that at its upstream face. Also, the scour depths at the side 

of the rear pier are always smaller than that at the side of the front pier.  

 The results of the semi-empirical model are compared with the 

experimental results. It is observed that the predicted scour depths are 

relatively in good agreement with the experimental results, in the test 

range.  

 The results of the empirical equation are compared with the experimental 

results and the semi-empirical model. Although the empirical equation 

provides quite good prediction for the time-dependent maximum scour 

depth, semi-empirical model results are in better agreement with the 

experimental results. Furthermore, it is based on conservation of mass 

principle which is coupled with sediment transport mechanism in the scour 

hole. 

6.2 Novelty of the Study 

The worth of this study is in relation to following considerations: 

 Rate of sediment transport from the combined scour hole around dual piers 

is formulated using conservation of mass principle and a sediment pickup 

function. Since the bed load transport formulas reported in the literature 

normally refer to horizontal and sloping beds, formulation of bed load rate 
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from a hole may be a contribution to the classical sediment transport 

theories. 

 The volume of the scour hole around dual piers is calculated by frequent 

bed topography measurements. Expressions for the variation of 

dimensionless scour hole volume and surface area are obtained with 

respect to λ and dimensionless Ts. This information may provide useful tool 

for designing armoring countermeasures around dual piers, concerning 

areal extension of scour protection and number of protective layers. 

 A semi-empirical model is proposed for the prediction of the time-variation 

of the maximum scour depth at dual piers. Sediment continuity approach is 

utilized and it is coupled with the volumetric sediment transport rate and 

sediment pickup function.  

 In development of the model, sensitivity analysis is made for the ψ term to 

select a proper value to apply to the experimental data. Therefore, the 

effect of vortices on shear stress development in the scour hole is searched 

with reference to the comparison of the measured scour depths with those 

obtained from the semi-empirical model. 

 The mathematical expressions and design charts presented for the temporal 

variation of maximum scour depth at dual piers allow researchers to 

calculate the scour depth corresponding to a design flood duration. 

6.3 Recommendations for Future Research 

During this study, the investigation of temporal variation of the maximum scour 

depth at dual piers is carried out by detailed experimental work and semi-empirical 

model development. However, due to the complexity of scour phenomenon, which 

further increases in case of dual piers, and physical conditions of the current 

laboratory and the equipment, several research limitations came into the picture. 

These limitations may be overcome in the future studies and wider range of 

parameters may be considered as follows:  
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 Longer flow durations may be considered to observe subsequent phases of 

scouring before the equilibrium clear-water scour condition.  

 To obtain a mathematical expression for the effect of λ on the reinforcing 

effect of dual piers, different pier spacings may be tested. 

 Lower flow intensities may also be considered to further investigate the 

effect of flow intensity on the scour depth evolution using more 

sophisticated measuring equipment. 

 Detailed investigation for the dimensionless surface area of the scour hole 

may be beneficial to obtain design guidelines for proper placement of 

armoring scour countermeasures.  

 Different arrangement of piers such as side-by-side placement, etc. may be 

tested. 

 Numerical simulation of the scouring characteristics at pier groups may 

also be carried out using a proper Computational Fluid Dynamics software. 
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Table B.1 Experimental ds - t values 

t 
(min) 

ds (cm) 

E11-8 E11-10 E11-12 E12-8 E12-10 E12-12 E13-8 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 3.85 3.50 4.97 3.47 4.33 4.54 2.88 

2 4.18 4.98 5.63 3.69 5.20 5.33 3.67 

4 4.50 5.52 6.30 4.01 5.79 6.01 4.62 

6 4.72 5.84 6.71 4.39 6.27 6.50 4.88 

8 5.06 5.94 6.82 4.68 6.40 6.59 5.12 

10 5.14 6.12 6.94 4.91 6.55 6.73 5.24 

14 5.35 6.30 7.17 5.37 6.79 6.98 5.55 

18 5.48 6.37 7.31 5.54 6.95 7.11 5.67 

22 5.67 6.64 7.40 5.68 7.04 7.29 5.82 

26 5.83 6.68 7.66 5.77 7.12 7.41 6.01 

30 5.94 6.86 7.72 5.94 7.22 7.62 6.13 

40 6.09 7.04 7.87 6.18 7.38 7.89 6.28 

50 6.22 7.14 8.00 6.43 7.43 8.05 6.50 

60 6.38 7.29 8.14 6.61 7.54 8.22 6.57 

70 6.50 7.42 8.21 6.76 7.67 8.38 6.71 

80 6.64 7.50 8.33 6.89 7.77 8.42 6.81 

90 6.69 7.68 8.45 6.97 7.83 8.47 6.90 

100 6.81 7.82 8.56 7.02 7.89 8.54 6.96 

120 6.90 7.94 8.74 7.07 8.03 8.66 7.03 

140 6.96 8.01 8.86 7.10 8.17 8.88 7.09 

160 7.00 8.12 9.01 7.20 8.26 9.03 7.14 

180 7.09 8.26 9.17 7.25 8.30 9.13 7.25 

200 7.14 8.36 9.29 7.28 8.33 9.19 7.31 

240 7.21 8.67 9.51 7.42 8.40 9.28 7.48 

280 7.31 8.78 9.59 7.48 8.45 9.34 7.54 

320 7.42 8.89 9.74 7.57 8.49 9.45 7.59 

360 7.48 8.95 9.88 7.62 8.55 9.52 7.74 
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Table B.1 (continued) 

t 
(min) 

ds (cm) 

E13-10 E13-12 E14-8 E14-10 E14-12 E15-8 E15-10 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 3.01 4.04 1.54 1.51 3.20 1.84 2.62 

2 4.63 5.04 2.35 2.67 4.50 2.20 3.33 

4 5.26 5.81 2.95 3.62 5.57 3.19 4.00 

6 5.70 6.02 3.44 4.03 5.76 3.66 4.30 

8 5.95 6.33 3.63 4.57 6.03 3.84 4.46 

10 6.20 6.50 3.94 4.74 6.26 4.02 4.65 

14 6.36 6.68 4.19 5.14 6.37 4.24 4.78 

18 6.48 6.90 4.35 5.26 6.62 4.42 4.86 

22 6.58 7.11 4.50 5.52 6.83 4.52 4.92 

26 6.71 7.23 4.58 5.63 6.88 4.60 4.98 

30 6.86 7.30 4.71 5.78 7.02 4.69 5.07 

40 7.05 7.39 4.77 5.93 7.13 4.83 5.24 

50 7.24 7.53 4.82 6.02 7.21 4.98 5.41 

60 7.36 7.66 4.85 6.10 7.30 5.07 5.51 

70 7.48 7.76 4.89 6.18 7.36 5.14 5.71 

80 7.52 7.91 4.97 6.25 7.39 5.16 5.81 

90 7.59 8.06 5.05 6.30 7.41 5.19 5.91 

100 7.63 8.12 5.13 6.34 7.45 5.23 5.97 

120 7.78 8.23 5.32 6.36 7.52 5.28 6.06 

140 7.85 8.36 5.43 6.38 7.58 5.38 6.15 

160 7.89 8.53 5.51 6.40 7.61 5.44 6.27 

180 8.00 8.65 5.60 6.43 7.63 5.48 6.30 

200 8.06 8.73 5.67 6.47 7.65 5.51 6.33 

240 8.25 8.92 5.78 6.57 7.69 5.60 6.39 

280 8.31 9.04 5.82 6.63 7.73 5.65 6.46 

320 8.44 9.23 5.87 6.70 7.86 5.69 6.52 

360 8.62 9.44 5.92 6.77 7.95 5.77 6.58 
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Table B.1 (continued) 

t 
(min) 

ds (cm) 

E15-12 E16-8 E16-10 E16-12 E17-8 E17-10 E17-12 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 2.44 1.64 2.06 2.39 1.40 1.60 2.10 

2 3.52 2.35 2.18 3.00 2.18 2.93 3.20 

4 4.85 3.00 2.85 3.80 3.35 3.48 4.33 

6 5.20 3.27 3.75 4.50 3.60 3.73 4.57 

8 5.44 3.74 4.12 4.77 3.74 3.91 4.62 

10 5.80 3.89 4.28 4.96 3.82 4.02 4.70 

14 5.97 4.06 4.42 5.06 4.04 4.13 4.75 

18 6.13 4.16 4.65 5.10 4.17 4.21 4.80 

22 6.31 4.21 4.73 5.14 4.29 4.27 4.85 

26 6.44 4.25 4.76 5.18 4.37 4.31 4.87 

30 6.52 4.32 4.78 5.20 4.42 4.36 4.91 

40 6.79 4.47 4.84 5.26 4.53 4.45 4.94 

50 7.00 4.57 4.88 5.30 4.60 4.53 4.98 

60 7.22 4.62 4.94 5.39 4.64 4.67 5.06 

70 7.35 4.65 4.98 5.45 4.65 4.79 5.11 

80 7.42 4.67 5.02 5.49 4.67 4.89 5.15 

90 7.51 4.69 5.06 5.53 4.69 4.95 5.18 

100 7.62 4.70 5.10 5.57 4.71 4.98 5.20 

120 7.70 4.76 5.21 5.62 4.76 5.05 5.25 

140 7.75 4.79 5.32 5.70 4.79 5.11 5.28 

160 7.79 4.81 5.41 5.78 4.85 5.16 5.31 

180 7.84 4.83 5.49 5.85 4.93 5.19 5.35 

200 7.87 4.85 5.54 5.89 4.95 5.25 5.39 

240 7.98 4.92 5.65 5.98 4.98 5.33 5.55 

280 8.06 4.98 5.71 6.06 5.02 5.37 5.62 

320 8.16 5.06 5.74 6.16 5.06 5.42 5.66 

360 8.22 5.12 5.76 6.19 5.11 5.50 5.68 
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