
UTILITY BASED AND USER DEFINED SCORING BASED MINING OF
SEQUENTIAL PATTERNS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZNUR KIRMEMIŞ ALKAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

MAY 2015

Approval of the thesis:

UTILITY BASED AND USER DEFINED SCORING BASED MINING OF
SEQUENTIAL PATTERNS

submitted by ÖZNUR KIRMEMIŞ ALKAN in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Pınar Karagöz
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Özgür Ulusoy
Computer Engineering Department, Bilkent University

Assoc. Prof. Dr. Pınar Karagöz
Computer Engineering Department, METU

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Department, METU

Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering Department, METU

Assoc. Prof. Dr. Osman Abul
Computer Engineering Department, TOBB University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ÖZNUR KIRMEMIŞ ALKAN

Signature :

iv

ABSTRACT

UTILITY BASED AND USER DEFINED SCORING BASED MINING OF
SEQUENTIAL PATTERNS

Alkan, Öznur Kırmemiş

Ph.D., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Pınar Karagöz

May 2015, 103 pages

Sequential pattern mining is an important data mining problem with broad applica-
tions. The classical frequency-based solutions often lead to many patterns being iden-
tified, most of which are not informative for the end-users. To handle this problem,
utility based mining technique emerged, which assign non-binary values, called util-
ities, to items and calculate pattern utilities accordingly. In the thesis work, two new
frameworks are proposed in response to the challenges and limitations of the exist-
ing solutions in utility based sequence mining. The first solution is a new framework
for high utility sequential pattern mining, which presents efficient data structures and
a new pruning technique that is based on Cumulated Rest of Match (CRoM) based
upper bound so as to efficiently prune the huge combinatorial search space. CRoM,
by defining a tighter upper bound on the utility of the candidates, allows more con-
servative pruning before candidate pattern generation in comparison to the existing
techniques. In addition, an efficient algorithm, HuspExt (High Utility Sequential Pat-
tern Extraction), have been developed, which calculates the utilities of the child pat-
terns based on that of the parents’. Substantial experiments on both synthetic and real
datasets from different domains show that, the proposed solution efficiently discovers
high utility sequential patterns from large scale datasets with different data character-
istics, under low utility thresholds. The second solution presents a new approach for
sequential pattern extraction for the cases where utility definition is not adequate to

v

define the value of the patterns. This solution is based on user-defined scoring mecha-
nism, and the proposed solution is evaluated under the web usage domain. Evaluation
of this solution on real datasets from web domain prove that, the solution effectively
discovers patterns under user defined scoring mechanism.

Keywords: Sequential Pattern Mining, High Utility Sequential Pattern Mining, Effi-
ciency, Candidate Pattern Pruning, Web Usage Mining, Web Access Sequence, Web
Access Pattern, User Defined Pattern Scoring

vi

ÖZ

FAYDAYA BAĞLI VE KULLANICI TANIMLI SKORLAMAYA BAĞLI SIRALI
DESEN MADENCİLİĞİ

Alkan, Öznur Kırmemiş

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pınar Karagöz

Mayıs 2015 , 103 sayfa

Sıralı desen çıkarımı, geniş uygulamaları olan bir veri madenciliği problemidir. Kla-
sik, sıklığa dayalı çözümler, çoğunlukla son kullanıcı için bilgi verici olmayan çok
fazla sayıda desen bulunmasına yol açmaktadır. Bu problemi çözmek için, ikili ol-
mayan, fayda denilen değerleri nesnelere atayan, faydaya dayalı çıkarım teknikleri
ortaya çıkmıştır. Bu tez çalışmasında, faydaya dayalı sıralı desen çıkarımı için öneri-
len çözümlerin varolan eksikliklerine ve zorluklarına cevaben iki yeni çatı geliştiril-
miştir. İlk çözüm, yüksek faydaya dayalı sıralı desen çıkarımı için, verimli veri ya-
pıları, ve büyük arama alanını budamak için, CRoM (Birikmiş Kalan Uyum)’a bağlı
üst limiti kullanarak yeni bir budama tekniği sunan bir çatıdır. CRoM, aday desenle-
rin faydaları üzerinde daha sıkı bir üst limit tanımlayarak, varolan tekniklere kıyasla
daha ölçülü bir budama sağlamaktadır. Buna ek olarak, HuspExt (Yüksek Faydaya
Dayalı Sıralı Desen Çıkarımı) adlı çocuk desenlerin faydasını ana desenden hesap-
layan verimli bir algoritma geliştirilmiştir. Farklı alanlara ait, hem sentetik hem de
gerçek veri kümeleri üzerinde yapılan deneyler göstermektedir ki, önerilen yaklaşım
yüksek faydaya dayalı sıralı desenleri, farklı özelliklerdeki büyük veri kümelerinden,
düşük fayda limitlerinde dahi etkili bir şekilde çıkarmaktadır. İkinci çözüm, fayda ta-
nımının, desenlerin değerlerini tanımlamada yeterli olmadığı durumlar için yeni bir
yaklaşım sunmaktadır. Bu çözüm, kullanıcı tanımlı skorlama mekanizmasına bağlıdır
ve şu anki versiyonu web kullanımı alanında değerlendirilmiştir. Gerçek veriler üze-

vii

rinde yapılan deneyler göstermektedir ki, ikinci çözüm, kullanıcı tanımlı skorlama
mekanizması altında desenleri etkin bir şekilde çıkarmaktadır.

Anahtar Kelimeler: Sıralı Desen Çıkarımı, Yüksek Faydaya Bağlı Sıralı Desen Çı-
karımı, Etkinlik, Aday Desen Budaması, Web Kullanım Madenciliği, Web Erişim
Dizgesi, Web Erişim Deseni, Kullanım Tanımı Desen Skorlama

viii

To my husband Ozan, my twins Masal and Uras

ix

ACKNOWLEDGMENTS

I am greatly indebted to many people without whom this study might not come to an
end.

Foremost, I am grateful to my supervisor Dr. Pınar Karagöz for believing in me,
guiding me and motivating me through the process. She is more than a supervisor to
me; she is my guide and friend.

I am also thankful to my thesis committee members, Prof. Dr. Özgür Ulusoy and Prof.
Dr. İsmail Hakkı Toroslu, for their motivation and valuable comments throughout this
study.

I take this opportunity to record, my sincere gratitude to Scientific and Technological
Research Council of Turkey (TÜBİTAK) for providing me Ph.D. fellowship (2211).

Last but not the least, I would like to thank my family, my mother Kevser Kırmemiş,
my father Davut Kırmemiş, my sister Özlem Kırmemiş Yüce for being a part of my
life. I would like to thank my aunt Çakır Durmuş for her endless support during my
PhD study. My special thanks is to my husband Ozan Alkan, and my lovely twins
Masal Alkan and Uras Alkan for supporting me unconditionally throughout my study.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Organization of the Thesis 6

2 BACKGROUND . 9

2.1 Frequent Pattern Mining . 10

2.2 Sequential Pattern Mining 11

2.2.1 Definitions . 11

xi

2.2.2 Formalization of the Sequential Pattern Mining Prob-
lem . 13

2.3 Utility-Based Sequential Pattern Mining 13

2.3.1 Definitions . 14

2.3.2 Utility Calculations 17

2.3.3 Formalization the Problem of High Utility Sequen-
tial Pattern Mining 19

2.3.4 Research Challenges 20

2.4 Web Usage Mining . 21

3 RELATED WORK . 25

3.1 Sequential Pattern Mining 25

3.1.1 Apriori-Based Approaches 26

3.1.2 Pattern-Growth Based Approaches 28

3.2 Constraint-Based Sequential Pattern Mining 29

3.3 Utility-Based Mining . 31

3.3.1 Utility-Based Itemset Mining 32

3.3.2 Utility-Based Sequence Mining 33

3.4 Web Usage Mining . 35

4 IMPROVING EFFICIENCY OF HIGH UTILITY SEQUENTIAL PAT-
TERN EXTRACTION . 37

4.1 Structure of the Database Sequences 37

4.2 Structure of the Patterns . 39

4.3 Construction of the Pattern Tree 40

xii

4.4 Calculating the Utilities of Child Nodes 42

4.5 Pruning Strategies . 43

4.6 HuspExt Algorithm . 49

5 SEQUENTIAL PATTERN EXTRACTION UNDER USER-DEFINED
PATTERN SCORING . 53

5.1 Data preparation . 54

5.2 Clustering Sequences . 55

5.3 WaPUPS algorithm . 55

5.4 Evaluation Function . 57

6 EVALUATION OF THE PROPOSED SOLUTIONS 61

6.1 Evaluation of the Proposed Solution for High Utility Sequen-
tial Pattern Mining . 61

6.1.1 DataSets . 63

6.1.2 Phase 1: Dataset Characteristics 66

6.1.3 Phase 2: Performance Evaluation 68

6.1.4 Phase 3: Evaluation of the Proposed Pruning Strat-
egy . 70

6.1.5 Phase 4: Scalability of the Proposed Solution . . . 72

6.2 Evaluation of the Proposed Solution for Sequential Pattern
Extraction Under User-Defined Pattern Scoring 74

6.2.1 DataSets . 74

6.2.2 Evaluation Methodology and Metrics 76

6.2.3 Results . 77

xiii

6.2.3.1 Experiments on BF and the Cluster
Count 81

6.2.3.2 Experiments on the Evaluation Func-
tion Parameters 83

6.2.3.3 Comparison with Frequent Pattern Min-
ing 83

7 CONCLUSION . 89

REFERENCES . 93

CURRICULUM VITAE . 101

xiv

LIST OF TABLES

TABLES

Table 2.1 Sequence Database . 13

Table 2.2 Sequence Database . 15

Table 2.3 External Utility Table . 15

Table 4.1 Pattern Structure for < bd > . 40

Table 4.2 Pattern Structure for < b(de) > . 43

Table 6.1 Evaluation Phases . 62

Table 6.2 Properties of Real World Datasets 63

Table 6.3 Parameter Settings of Synthetic Data Sets 64

Table 6.4 Real Dataset Characteristics . 65

Table 6.5 Synthetic Dataset Characteristics 66

Table 6.6 Scalability Evaluation with Chain-Store Dataset 73

Table 6.7 Dataset characteristics . 74

Table 6.8 Average number of extracted patterns versus BF 80

xv

LIST OF FIGURES

FIGURES

Figure 4.1 Structure of the Database for the example in Table 2.2. 38

Figure 4.2 Pattern Tree for the example in Table 2.2. 41

Figure 6.1 Performance comparison on real and synthetic datasets in terms of
Time Complexity . 67

Figure 6.2 Performance comparison on real and synthetic datasets in terms of
Memory Consumption . 69

Figure 6.3 Number of Candidates Generated During Execution 71

Figure 6.4 Performance Analysis under changing Database Sizes (DXkT3S6N1k) 72

Figure 6.5 Performance Analysis under changing Number of Distinct Items
(D50kT3S6NXk) . 72

Figure 6.6 Accuracy results for different datasets 78

Figure 6.7 Coverage results for different datasets 79

Figure 6.8 Accuracy versus weight parameters for different datasets 82

Figure 6.9 Comparison of value results of WaPUPS and PrefixSpan for the
NASA dataset . 84

Figure 6.10 Comparison of value results of WaPUPS and PrefixSpan for the
CENG dataset . 84

Figure 6.11 Comparison of number of patterns extracted by WaPUPS and Pre-
fixSpan . 86

xvi

LIST OF ABBREVIATIONS

PBCG Pruning Before Candidate Generation

PACG Pruning After Candidate Generation

CRoM Cumulated Rest of Match

HuspExt High Utility Sequential Pattern Extraction

BF Branching Factor

KDD Knowledge Discovery in Database

DCP Downward Closure Property

TWU Transaction Weighted Utilization

GSP Generalized Sequential Pattern

SPADE Sequential PAttern Discovery using Equivalent classes

SPAM Sequential Pattern Mining

FP Frequent Pattern

FreeSpan Frequent Pattern Projected Sequential Pattern Mining

WAP Web Access Pattern

PTAC Sequential Frequent Patterns mining with Tough Aggregate Con-
straints

GTC Graph for Time Constraints

SPIRIT Sequential Pattern Mining with Regular Expression Constraints

TWDC Transaction-Weighted Downward Closure

SWU Sequence-Weighted Utility

UL UtilityLevel

UL UtilitySpan

SUUB Sequence Utility Upper Bound

SDCP Sequence Weighted Downward Closure Property

WaPUPS Web Access Pattern Extraction Under User Defined Pattern
Scoring

URL Uniform Resource Identifier

PACG Pruning After Candidate Generation

RMUB Rest of Match Based Upper Bound

xvii

CSeq Containing Sequences

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation

With the progress of development of technology, there has been an increase in our

capabilities for both generating and collecting data. In order to utilize this massive

data effectively, it is important to extract both implicit and explicit unidentified pat-

terns which can direct the process of decision making. Data mining is the area of

research that includes techniques and principles to extract patterns that describe the

characteristic properties of this huge data [22]. Frequent pattern mining is one of the

major fields of data mining, which aims to discover patterns that appear in a dataset

with frequency no less than a user-specified minimum support threshold.

Frequent pattern mining has been studied extensively by data mining researchers [2,

46, 12, 31, 1] and it is used in a wide spectrum of areas, such as financial data analysis,

retail industry, customer shopping history, goods transportation, consumption and

services, telecommunication industry, biological data analysis, scientific applications,

and network intrusion detection.

Although frequent pattern mining has been used in many applications, end-users may

not be interested in patterns that occur at a high ratio in datasets. In other words, sup-

port may not always define the interestingness of the extracted patterns. In many real-

life applications, rare patterns can provide useful information in different decision-

making domains such as business transactions, medical, security, fraudulent transac-

tions, and retail communities. For example, in a supermarket, customers purchase

microwave ovens or teapots rarely as compared to sugar, fruits or bread. But for the

1

supermarket, the former transactions yield more profit. Similarly, the high-profit rare

patterns are found to be very useful in many application areas. For example, the rare

combination of symptoms can provide useful insights for doctors in medical appli-

cations. The classical frequency-based frameworks cannot solve such problems and

this leads to the emergence of high utility pattern mining [59].

In high utility pattern mining, the meaning of utility refers to the interestingness, im-

portance, or profitability of the patterns, and the aim is to extract patterns with utility

greater than or equal to a minimum utility threshold. The success of any high utility

sequential pattern mining solution depends on its power to restrict the number of the

candidates and simplify the computation for calculating the utility [36]. A tighter up-

per bound on the utility of candidate patterns may result in pruning the search space

better. In addition, the phase of the solutions at which the pruning mechanism is used,

effects the performance of the algorithms. Pruning the search space can be performed

either prior to or after candidate generation, which are referred to as PBCG (Prun-

ing Before Candidate Generation) and PACG (Pruning After Candidate Generation),

respectively. In comparison to PACG, PBCG saves more space and time, since can-

didates are eliminated before they are generated and tested. Moreover, most of the

computational complexity of pattern extraction lies in the calculation of the utilities,

and to lower this complexity, efficient data structures should be utilized.

Although utility-based sequential pattern mining provides a solution for the limita-

tions of frequent sequential pattern mining, it does not cover all real-life scenarios. In

other words, existing utility-based pattern mining techniques calculate pattern utilities

based on the utility of the individual items. However, a pattern’s value cannot always

be calculated from the distinct item utilities. For instance, a user may be interested in

patterns that exist in at least for a number of distinct transactions in the dataset. Sim-

ilarly, for the case of discovering interesting patterns from web log data, for instance,

the value of a pattern may depend on the average income of the users that traverse

the pattern. In utility-based frameworks, such values cannot be calculated from the

web page utilities. Instead, they should be calculated for each extracted pattern on its

own. In addition, common to both frequency-based and utility-based techniques, one

important challenge is that, there exists a huge number of possible patterns that are

hidden in databases and the mining algorithm should find the complete set of patterns,

2

when possible, satisfying the minimum support or the minimum utility threshold. For

especially huge and sparse datasets, it is not possible to extract patterns under high

threshold values. For low threshold values, however, state of the art algorithms may

fail to respond.

The contribution of this thesis study to literature is two-fold. First, we have developed

a generic framework for high utility sequential pattern mining, which introduces a

tight upper bound, CRoM (Cumulated Rest of Match) based upper bound that is used

for eliminating candidate patterns before generation, and HuspExt (High Utility Se-

quential Pattern Extraction) algorithm, that utilizes efficient data structures during

utility calculations. We conduct a series of experiments both with synthetic and real

datasets for examining the performance of this solution. The results show that, the

proposed solution efficiently extracts high utility sequential patterns from large scale

datasets under low utility thresholds.

Second, motivated by the limitations of the existing utility-based and frequency-based

techniques, we present a new solution for extracting sequential patterns under user-

defined pattern scoring. There exists two motivations behind developing this tech-

nique. First, we aim to provide a solution for the cases where the utility definition

is not enough to define the value of a pattern. Second, we aim to control the size

of the search space by defining a new parameter, BF (Branching Factor), which en-

ables the solution to extract high-valued patterns even in the cases for which existing

frequency-based techniques and utility-based techniques cannot generate any pattern.

The proposed solution can be used in any domain where the data under considera-

tion is sequential. For the evaluation purposes, the current version of the solution

is adapted to work with the web usage data. Therefore, the data under considera-

tion is composed of sessions of users, where each session has a number of accesses

corresponds to the web page requests, the users send to the server. The extracted pat-

terns are web usage patterns that reveal valuable information about users’ navigation

behaviors.

The proposed framework is hybrid in the sense that it combines clustering with a new

pattern extraction algorithm. Pattern extraction process uses an evaluation function

that can be defined according to the preferences or needs of the users. The role of

3

clustering in the framework is as follows; considering different behavioral patterns,

it may not be very useful to construct access paths directly from all the sessions, re-

sulting in a one general and cumulated profile of the users. Therefore, the solution

first discovers different navigation behaviors through clustering user sessions. After

related session groups in terms of the navigation behavior are identified, the system

utilizes the search-based pattern extraction algorithm so as to construct access pat-

terns. The solution can be used in any problem domain where the resulting web

access patterns can be utilized, such as adaptive web, web page recommendation,

next page prediction, ad recommendation, and user-behavior analysis. In addition, it

can be applied to any other sequence data, as well. Similar to our first solution, we

perform a detailed experimental evaluation of our second solution under well-known

datasets from literature. Evaluation phase includes experiments for determining the

efficiency of the technique under different values of the system parameters and the

comparison of the proposed framework with a well-known sequential pattern mining

algorithm, PrefixSpan [46].

1.2 Contributions

The primary goal in this thesis is to propose solutions in response to limitations and

challenges of the existing sequential pattern mining approaches. For this aim, we

developed two solutions. In our first solution, we propose efficient data structures, a

tight upper bound for candidate elimination before generation and a new algorithm,

HuspExt, for high utility sequential pattern mining. In our second solution, we present

a hybrid framework for user evaluation score based extraction of patterns and this

solution is applied to web usage data. The contributions of the thesis, therefore,

can be grouped into two parts, where each part corresponds to one of the proposed

solutions.

The contributions of the first solution can be summarized as follows:

1. Important concepts and components of high utility sequential pattern mining

problem are formalized. Especially, we formally introduce the ordering con-

cept which is important for high utility sequential pattern mining problem, since

4

it is very effective on the performance of the solution.

2. A PBCG strategy is proposed which is based on CRoM. With this pruning

strategy, a tight upper bound on the utility of the candidate patterns can be

defined.

3. The algorithm, HuspExt, is proposed in order to lower the time and space re-

quirements of the solution. Different from the existing techniques, a new data

structure for the nodes of the pattern tree is used in order to apply CRoM based

pruning.

4. Both real and synthetic datasets are used in the evaluation phase. Real datasets

are from different domains and synthetic datasets have different characteristics

so as to make a comprehensive evaluation of the solution. The performance of

the proposed technique with the state-of-the-art high utility sequential pattern

mining algorithms are compared.

The contributions of the second solution can be summarized as follows:

1. A hybrid approach is proposed for extracting web access patterns which com-

bines clustering with a new pattern extraction algorithm. Clustering enables

the solution to reduce the search space, and as shown by the experiments, it in-

creases the accuracy of the solution through focusing on more relevant session

groups.

2. Proposed pattern extraction algorithm utilizes a user-defined evaluation func-

tion which reflects the preferences of users in terms of the properties of the

extracted patterns. Pattern values are calculated from any data provided to the

solution, and different from existing utility-based techniques, this evaluation

does not necessarily depend on individual web page utilities.

3. Proposed solution introduces the BF parameter, which gives a control over the

size of the search space and enables the solution to generate high valued pat-

terns even for cases where the state of art techniques cannot respond.

4. We demonstrate the proposed approach on an example user-defined path eval-

uation function. The evaluation function examined in the experiments is ap-

5

plicable in web domain and it produced useful results for facilitating user’s

navigation as shown by the experiments.

5. Comprehensive evaluation of the solution is performed on four real datasets.

The performance of the proposed framework is compared with a well-known

sequential pattern mining algorithm from the literature and the results are dis-

cussed.

1.3 Organization of the Thesis

This thesis work presents two solutions to sequential pattern mining problem from

two different perspectives. The first approach presents a solution to utility-based se-

quential pattern mining. The second approach, on the other hand, is a new framework

for user defined scoring based sequential pattern extraction, which is applied to web

log data.

Chapter 2 covers our understanding of mining of sequential patterns and web usage

mining. It presents the definitions of the problems that are explored in this thesis

work, and it discusses the main challenges of the areas of research. Further the mech-

anisms to handle these limitations are introduced that also forms the problem defi-

nition. In addition, the chapter discusses the importance of value based sequential

pattern mining.

Chapter 3 covers the comprehensive literature survey of algorithms for sequential pat-

tern mining and web usage mining. Different approaches to sequential pattern mining

including, frequency-based sequence mining, constraint-based techniques and utility-

based solutions have been studied for their characteristics. Limitations and main

challenges of these algorithms have been discussed. In addition, existing solutions

to web usage mining are presented. This detailed survey has identified the limitations

and main problems of the existing algorithms, and mentions the contributions of the

proposed solutions in this thesis work, to the literature.

Chapter 4 describes the proposed solution to utility-based sequential pattern mining

problem, which is a generic framework for high utility sequential pattern extraction.

6

The solution introduces a tight upper bound, CRoM based upper bound, that is used

for eliminating candidate patterns before generation and HuspExt algorithm that uti-

lizes efficient data structures during utility calculations.

Chapter 5 describes a hybrid framework which combines clustering with a new pat-

tern extraction algorithm. The pattern extraction process uses an evaluation function

that can be defined according to the preferences or needs of the users. The solution

presents a new technique to overcome the limitations of existing sequential pattern

mining solutions by both proposing a novel value based pattern extraction framework

and a new parameter, BF, for controlling the huge search space of sequential pattern

mining problem for especially big and sparse datasets.

Chapter 6 presents the detailed experimental evaluation of the proposed techniques.

The datasets that are used in the experiments, the evaluation methodology and met-

rics conducted during experimentation, and the results of the evaluation phase are

presented. Discussion of the results and comparison with the existing state of art

techniques are provided in this chapter.

Chapter 7 concludes this thesis by providing a brief summary of what has been done

in the thesis work. The limitations of this study together with the future research

directions are also suggested in this chapter.

7

8

CHAPTER 2

BACKGROUND

There is a huge growth of data sources in the world every day and together with this

growth, it becomes vital to process and analyze data, extract the important knowl-

edge from it, understand it, and use it for further purposes. Statistical methods have

been used for analysis of data for a long time; however, they are applicable for simple

applications. There is a requirement for advanced techniques in order to perform in-

telligent data analysis to provide competitive advantage. Data Mining or Knowledge

Discovery has been emerged as a research field in order to provide solutions in this

area [22].

Data mining can be defined as the computational process of discovering patterns in

large datasets that uses methods from different disciplines including artificial intel-

ligence, machine learning, statistics, and database systems. The motivation behind

data mining research is to extract implicit, previously unknown and potentially useful

information from data through utilizing automatic or semi-automatic techniques in

order to discover meaningful patterns. The overall goal of the data mining process is

to extract information from a dataset and transform it into an understandable struc-

ture for further use. The extracted information that is of interest to the target user

is referred as knowledge. A pattern, on the other hand, is defined as a collection of

records in the database that have same attribute values. Both empirical and knowl-

edge based techniques are required in order to extract useful patterns from huge and

complex databases.

Generally speaking, there are two classes of data mining tasks, namely, descriptive

and prescriptive [15]. Descriptive mining summarizes or characterizes the general

9

properties of data, while prescriptive mining performs inference on the current data

to make predictions. Among the various descriptive data mining processes, frequent

pattern mining is one of the most commonly employed task to facilitate business

development, which is detailed in the next subsection.

2.1 Frequent Pattern Mining

Mining frequent set of items that occur together in transaction databases is a fun-

damental task for several forms of knowledge discovery such as association rules,

sequential patterns, and classification [29]. Here, transactions are in the form of a

set of items and recent research has focused on determining which groups of items,

called itemsets, frequently appear together in transactions.

In order to perform this, support measure is utilized, which is used to determine the

importance of an itemset in the transaction database. It is calculated as the percent-

age of all transactions that contain the itemset [29]. Using this measure, an item-

set is determined as frequent, if its support is not less than a given threshold value.

This threshold is called the minimum support threshold. Frequent itemset mining is

generally adopted to generate association rules and applied heavily to market-basket

analysis.

The classical framework of frequent pattern mining solutions generally uses the min-

imum support framework to discover complete set of frequent patterns. Minimum

support threshold controls the minimum number of transactions a pattern must cover

in a database, and the solutions in this area uses this information to prune the huge

search space. More specifically, they are based on the DCP (Downward Closure

Property) [2], which states that all non-empty subsets of a frequent pattern must also

be frequent. Therefore, DCP plays a fundamental role for varieties of frequent pattern

mining algorithms, since it holds the key for effectively pruning the search space.

10

2.2 Sequential Pattern Mining

Sequential pattern mining is similar to frequent pattern mining, with an important dif-

ference of having the events being linked by time [15]. Sequential patterns indicate

the correlation between transactions, while association rule represents intra transac-

tion relationships [54]. In other words, the extracted patterns from association rule

mining are based on items that are purchased together frequently and that belong to

same transaction. Patterns extracted by sequential pattern mining, on the other hand,

are based on items that are brought in a certain order by the same customer; however,

they can be from different transactions. This thesis work presents two new approaches

to sequential pattern mining from two different perspectives.

Sequential pattern mining problem was first addressed by Agrawal and Srikant [54]

and was defined as follows: "Given a database of sequences, where each sequence

consists of a list of transactions ordered by transaction time and each transaction is

a set of items, sequential pattern mining is to discover all sequential patterns with

a user-specified minimum support, where the support of a pattern is the number of

data-sequences that contain the pattern."

2.2.1 Definitions

Before formally defining the problem of mining sequential patterns, important defi-

nitions related to this research are given below.

Any sequential pattern mining framework is built upon the following components;

item, itemset, sequence and sequence database. Let I = {i1, i2, ..., im} be a finite set

of distinct items and SD = {S1, S2, ..., Sn} be a sequence database of n sequences.

Definition 2.2.1. An itemset is defined as a nonempty unordered collection of items.

Items in an itemset can be listed in any order, and without loss of generality, we

assume that they are listed alphabetically.

Definition 2.2.2. A sequence S ∈ SD, is defined as an ordered list of itemsets.

Definition 2.2.3. The size of an itemset is defined as the number of the items in it.

11

For the exemplification of the ideas, a sequence database is provided in Table 2.1.

For this example database, size of the first and second itemsets of S1 are 1 and 2,

respectively.

Definition 2.2.4. The size of a sequence is the number of the itemsets in that sequence.

For instance, for the example database, size of the sequences S1, S2 and S3 are 4, 5,

and 2, respectively.

Definition 2.2.5. The length of a sequence is defined as the number of items in that

sequence.

For instance, length of the sequences S1, S2 and S3 are 5, 6, and 3, respectively.

Definition 2.2.6. Given itemsets ISa = {ia1 , ia2 , ..., ian} and ISb = {ib1 , ib2 , ..., ibm};
ISa contains ISb if and only if there exists positive integers k, j, z such that; for

n ≥ m, k ≥ 1, j > k, z > j, j, z ≤ n, ib1 = iak , ib2 = iaj ,..,ibm = iaz .

For instance, itemset (a, c) contains itemsets (a), and (a, c), but it does not contain

itemsets (e) and (a, e).

Definition 2.2.7. Given two sequences Sa =< ISa1 , ISa2 , ..., ISan >, Sb =< ISb1 ,

ISb2 , ..., ISbm >; Sa contains Sb if and only if there exists positive integers i, j, z such

that for n ≥ m, i ≥ 1, j > i, z > j, j, z ≤ n, ISai contains ISb1 , ISaj contains

ISb2 ,....., ISaz contains ISbm .

For instance, sequence < (h)(c, d)(b) > contains the sequence < (h, d) > but does

not contain the sequence < (h, d)(a) >.

We discriminate between the terms sequence and pattern so as to clarify the defini-

tions. In the paper, sequence refers to the database transactions and pattern refers to

the extracted subsequences from these transactions. For instance, the database pro-

vided in Table 2.1 has three sequences, and < (c)(d) > is a pattern that exists in

sequences S2 and S3.

12

Table 2.1: Sequence Database

SID Sequence

S1 < (d)(c, e)(b)(a) >

S2 < (b)(c, d)(b)(d)(e)] >

S3 < (b, c)(d) >

2.2.2 Formalization of the Sequential Pattern Mining Problem

Considering the concepts defined above, the problem of sequential pattern mining

can be formally defined as follows: Given a sequence database SD, the support or

frequency of a pattern is defined as the number of sequences in SD that contain this

pattern. The task of any sequential pattern mining solution is to find all frequent

patterns from SD whose support is greater than or equal to a user-supplied minimum

support threshold. This constitutes the problem definition for all sequence mining

algorithms whose data are located in a transaction database or in transaction datasets

[45].

2.3 Utility-Based Sequential Pattern Mining

Frequent pattern mining solutions, including sequential pattern mining techniques,

does not reflect the impact of any other factor except frequency, that is, the presence

or the absence of an item or itemset. However, for some cases, frequency may only

contribute a small portion of the overall profit, and non-frequent items and itemsets

may contribute a large portion of the profit. For instance, a retail business may be

interested in identifying its customers who buy full priced items, high margin items,

or gourmet items, which may be absent from a large number of transactions, because

most customers do not buy these items. In a traditional frequency based approach,

these transactions may be left out due to their low support values. For instance, {milk,

bread} may be a frequent itemset with support higher than the minimum support

threshold. However, such an itemset may contribute a very low portion of the total

profit. {birthday cake, birthday card}, on the other hand, may be a non-frequent

itemset with a low support value that is lower than the threshold; however, marketing

13

professionals must be more interested in promoting such itemsets. These itemsets are

missed by a classical frequency based mining technique [37].

Another example can be given from the web mining domain where the sequence

of web pages visited by a user constitutes a sequence database, and user sessions

constitute the itemsets. Since the number of visits to a web page and the time spent

on that web page differs for different users, the total time spent on a web page may

determine the utility of the items. Based on this formulation, the website designers

can catch the interests of the customers by looking at the utilities of the different

page combinations, and therefore may consider re-organizing the link structure of the

website to better suit to the preference of the users. For such a real-life scenario,

frequency is not sufficient to provide a solution. In other words, support may not

always define the interestingness of the patterns. Target users may even prefer to

work on high-profit rare patterns, which may be more useful than frequent patterns

for their applications. This necessity leads to the emergence of high utility pattern

mining [59].

In high utility pattern mining, the meaning of utility refers to the interestingness, im-

portance, or profitability of the patterns, and the aim is to extract patterns with utility

greater than or equal to a minimum utility threshold. High utility itemset mining is the

utility-based counterpart of frequent itemset mining, where the database transactions

are itemsets, not the sequences of itemsets, as it is the case for utility based sequential

pattern mining. In the following subsections, first, the important definitions related to

this research are given. Next, the challenges of utility based sequential pattern mining

research are presented.

2.3.1 Definitions

In this section, we describe the main terms of high utility sequential pattern mining

and give formal definitions of important concepts, some of which have not been for-

malized before. We used the same utility function definitions as in the literature for

the sake of compatibility and comparability with the existing techniques [59]. In addi-

tion, some terms are defined in the same way as they are defined in frequent sequential

pattern mining framework. These definitions are repeated in this section also, but they

14

Table 2.2: Sequence Database

SID Sequence

S1 < (d, 1); [(c, 1)(e, 3)]; (b, 7); (a, 2) >

S2 < (b, 2); [(c, 1)(d, 3)]; [(b, 1)(d, 2)(e, 4)] >

S3 < [(a, 2)(c, 4)]; (b, 3) >

S4 < (b, 1); (b, 6); (a, 1); (a, 2); (c, 3) >

S5 < [(a, 1)(c, 2)]; (b, 2); (d, 1); (b, 1) >

S6 < [(b, 4)(c, 3)]; (d, 2) >

Table 2.3: External Utility Table

item a b c d e

eu 2 2 4 1 3

are not separated in distinct definition headings. However, the definitions that differ

in utility based sequence mining framework in comparison to frequent pattern mining

are given below under distinct definition headings.

Similar to frequent sequential pattern mining framework, the framework of utility

based sequential pattern mining is built upon the following components; item, item-

set, sequence, sequence database, and pattern. Let I = {i1, i2, ..., im} be a finite set

of distinct items and SD = {S1, S2, ..., Sn} be a sequence database of n sequences.

Each sequence S ∈ SD, is an ordered list of itemsets, where each itemset is an

unordered list of items. An itemset is formally represented as IS = {i1, i2, ..., ip},
and defined as a set of p distinct items, where ij ∈ I for 1 ≤ j ≤ p. Itemsets

are surrounded with brackets if it has more than one item, however, for brevity, they

are omitted if it has one item. Items in an itemset can be listed in any order, and

without loss of generality, we assume that they are listed alphabetically. Each se-

quence S in the sequence database SD is an ordered list of itemsets which is denoted

as S =< IS1, IS2, ..., ISk >. Sequence database, SD is provided as input to the

pattern extraction algorithm.

In the framework, every component is associated with a utility.

Definition 2.3.1. The utility of an item i in an itemset IS of a sequence S can depend

on S or IS, in addition to some external factors independent of the database. The

15

former is commonly represented with internal utility, denoted as iu(i, IS, S), and the

latter external utility, denoted as eu(i) [59].

Generally, external utilities are specified within an external utility table, and internal

utilities are provided within the database sequences. For the exemplification of the

ideas, a toy sequence database together with the corresponding external utility table

is provided in Tables 2.2 and 2.3 respectively, that will be used throughout this thesis.

In Table 2.2, each item is shown together with its iu value. For the sake of readability,

itemsets are separated by ";" and itemsets longer than of length 2 are shown in square-

brackets.

The size of an itemset IS of a sequence S, denoted as size(IS, S), represents the num-

ber of the items in IS. For the example provided, size(IS2, S2) = 2 and size(IS2, S4) =

1. The size of a sequence S, denoted as size(S), represents the number of the item-

sets in S. For our running example, size(S4) = 5 and size(S6) = 2. The length of a

sequence S, denoted as len(S), represents the number of items in the sequence. For

example, len(S1) = 5, len(S2) = 6 and len(S6) = 3.

Definition 2.3.2. Given itemsets ISa = {ia1 , ia2 , ..., ian} of a sequence Sc1 and

ISb = {ib1 , ib2 , ..., ibm} of a sequence Sc2; ISa contains ISb if and only if there

exists positive integers k, j, z such that; for n ≥ m, k ≥ 1, j > k, z > j,

j, z ≤ n, ib1 = iak , iu(ib1 , ISb, Sc2) = iu(iak , ISa, Sc1), ib2 = iaj , iu(ib2 , ISb, Sc2) =

iu(iaj , ISa, Sc1),.....,ibm = iaz , iu(ibm , ISb, Sc2) = iu(iaz , ISa, Sc1).

For instance, itemset [(a, 4)(a, 1)(c, 2)] contains itemsets (a, 4), and [(a, 4)(c, 2)], but

it does not contain itemsets [(a, 4)(c, 4)] and [(e, 1)].

Definition 2.3.3. Given two sequences Sa =< ISa1 , ISa2 , ..., ISan >, Sb =< ISb1 ,

ISb2 , ..., ISbm >; Sa contains Sb if and only if there exists positive integers i, j, z such

that for n ≥ m, i ≥ 1, j > i, z > j, j, z ≤ n, ISai contains ISb1 , ISaj contains

ISb2 ,....., ISaz contains ISbm .

For instance, sequence < (h, 5); [(c, 2)(d, 1)] > contains < (h, 5); (d, 1) > but does

not contain the sequence < (h, 5); (d, 1); (a, 4) >.

16

2.3.2 Utility Calculations

All the components of the high utility sequence mining problem are associated with

a utility. In this section, the way the utility calculations are performed in utility based

sequential pattern mining framework are defined and formalized.

In a generic framework, the utility of an item and itemset is defined as a function of

internal and external utilities of the items [61]. However, in the literature, generally

the utility of an item and utility of an itemset are used as given below. In the process-

ing, once the calculated utilities of the items are stored, external utility table is not

looked up anymore.

Definition 2.3.4. The utility of an item is defined as the product of internal and exter-

nal utilities, u(i, IS, S) = iu(i, IS, S)× eu(i).

Definition 2.3.5. The utility of an itemset is defined as the sum of the utilities of all

the items in it.

Definition 2.3.6. The sequence utility is calculated by summing the utilities of the

itemsets in it.

Definition 2.3.7. Sequence database utility is defined as the sum of the utilities of all

the sequences it contains.

Considering the example database, note that

S2 is < (b, 2); [(c, 1)(d, 3)]; [(b, 1)(d, 2)(e, 4)] >.

IS2 of S2 is [(c, 1)(d, 3)].

S5 is < [(a, 1)(c, 2)]; (b, 2); (d, 1); (b, 1) >.

IS1 of S5 is [(a, 1)(c, 2)].

External utilities of items a, b, c, d, e are 2, 2, 4, 1 and 3, respectively.

Then, u(d, IS2, S2) = 3, u(IS2, S2) = 7, u(IS1, S5) = 10, u(S2) = 27, u(S5) = 17

and u(SD) = 156.

The minimum utility threshold, minutil, refers to a specific percentage of the se-

quence database utility. In other words, the minimum utility threshold is given by

17

the percentage of the sequence database utility calculated using ε, which specifies the

fraction of the total utility of the sequence database. Therefore,minutil = ε×u(SD).

Considering the example database, since u(SD) = 156, if ε is 0.1, then the minimum

utility threshold is, minutil = 0.1× 156 = 15.6.

Pattern utilities should be defined with respect to the database sequences. A pattern

can be contained in a sequence more than once due to different ordered lists of item-

sets, which should be counted in the definition of pattern utility. This results in a

pattern to have a set of utility values with respect to a sequence, which adds further

complexity to the high utility sequential pattern mining problem. We formalized this

property in the definitions below, before formulating the pattern utility.

Definition 2.3.8. Let P =< p1, ..., pk > be a pattern of k itemsets and S be a

sequence. An ordering of P in S is defined as an ordered list of k itemsets, <

ISa, ISb, ..., ISz > of S such that, a < b < ... < z, the first itemset of P is con-

tained in ISa, the second itemset of P is contained in ISb, ..., and the kth itemset of

P is contained in ISz.

For instance, consider the pattern < bd > and the example database. The pat-

tern is contained twice in S2 with two orderings O1 =< IS1, IS2 >, and O2 =<

IS1, IS3 >.

Orderings of a pattern in a sequence are ordered among themselves, which is formal-

ized below.

Definition 2.3.9. For any two orderings,Oi =< ISi1 , ..., ISik > andOj =< ISj1 , ...,

ISjk > of a k-sized pattern P in S, Oi precedes Oj in S, denoted as Oi < Oj , if ISik

and ISjk are the same itemsets or ISik precedes ISjk in S.

For instance, for the pattern < bd > and the orderings O1 and O2, O1 < O2 since IS2

precedes IS3.

Using these definitions, we formalize the calculation of the pattern utility as given

below.

Definition 2.3.10. The utility of a pattern P in a sequence S with respect to an order-

ing O is denoted as u(P,S,O), and defined as the sum of the utilities of the items in the

18

itemsets included in the corresponding ordering.

As an example, note that S2 is< (b, 2); [(c, 1)(d, 3)]; [(b, 1)(d, 2)(e, 4)] > and external

utilities of b and d are 2 and 1, respectively. Then, for the pattern < bd > and the two

orderings O1 and O2 in S2, u(< bd >, S2, O1) = 7 and u(< bd >, S2, O2) = 6.

Definition 2.3.11. The utility of a pattern P that has m orderings in a sequence S is

denoted as u(P,S), and defined as in Equation 2.1.

max{u(P, S,Ok) : k = 1, . . . ,m} (2.1)

For < bd >, u(< bd >, S2) is therefore 7.

Definition 2.3.12. The utility of a pattern P with respect to a sequence database SD

of n sequences is defined as in Equation 2.2.

u(P) =
n∑

d=1

u(P, Sd) (2.2)

For instance, considering the example database, < bd > is contained in S2, S5 and

S6, where u(< bd >, S2) = 7 and u(< bd >, S5) = 5 and u(< bd >, S6) = 10.

Therefore u(< bd >) = 22.

2.3.3 Formalization the Problem of High Utility Sequential Pattern Mining

Considering all the concepts defined above, the problem of high utility sequential

pattern mining is formalized as follows: Given a utility sequence database SD and a

minimum utility threshold minutil, high utility sequential pattern mining aims to ex-

tract all high utility sequences in SD that has utility greater than or equal to minutil.

Considering the example database, if minutil is 15.6, < bd > is a high utility pattern

since u(< bd >) = 22, which is greater than 15.6. Considering pattern < (cd) >,

which is contained in only S2 with a single ordering, u(< (cd) >) = 7. Therefore,

< (cd) > is not considered as a high utility sequential pattern.

19

2.3.4 Research Challenges

Mining high utility sequential patterns is a more complex task in comparison to fre-

quent pattern mining and high utility itemset mining due to two main challenges.

First of all, compared to frequent pattern mining, Downward Closure Property does

not hold, when utilities is of concern [59]. In addition, sequencing between item-

sets results in a huge combinatorial search space, which leads to high computational

complexity. In order to tackle with the first challenge, existing studies [61, 36] in-

corporate the concept of TWU (Transaction Weighted Utilization) [36]. TWU of a

candidate pattern is defined as the sum of the utilities of all the transactions con-

taining that pattern. Here, the utility of a transaction is calculated as the sum of the

utilities of all the items in it. A pattern is considered as a candidate or potential high

utility pattern, if its TWU is not less than a minimum utility threshold. However, the

main problem of TWU-based pruning is that, it results in a large number of candi-

dates, since the utilities of all the items, even known to be not included in the parent

pattern, are counted in the calculation of the upper bound. This results in calculating

overestimated utilities, which in turn results in a degraded mining performance.

The success of any high utility sequential pattern mining solution depends on its

power to restrict the number of the candidates and simplify the computation for cal-

culating the utility [36]. A tighter upper bound on the utility of candidate patterns

may result in pruning the search space better. In addition, the phase of the solutions

at which the pruning mechanism is used, effects the performance of the algorithms.

Pruning the search space can be performed either prior to or after candidate gener-

ation, which are referred to as Pruning Before Candidate Generation (PBCG) and

Pruning After Candidate Generation (PACG), respectively. In comparison to PACG,

PBCG saves more space and time, since candidates are eliminated before they are

generated and tested. Moreover, most of the computational complexity of pattern ex-

traction lies in the calculation of the utilities, and to lower this complexity, efficient

data structures should be utilized.

Although utility-based sequential pattern mining provides a solution for the limita-

tions of frequent sequential pattern mining, it does not cover all real-life scenarios. In

other words, existing utility-based pattern mining techniques calculate pattern utilities

20

based on the utility of the individual items. However, a pattern’s value cannot always

be calculated from the distinct item utilities. Instead, they should be calculated for

each extracted pattern on its own. In addition, common to both frequency-based and

utility-based techniques, one important challenge is that, there exists a huge number

of possible patterns and a complete algorithm should find the set of all patterns, when

possible, satisfying the minimum support or the minimum utility threshold. However,

it is not possible to extract patterns under high threshold values, and for low utilities,

the existing algorithms fail to respond especially for huge and sparse datasets.

2.4 Web Usage Mining

The second solution proposed in the thesis work aims to extract sequential patterns

by utilizing user-defined scoring function. Although the proposed solution can be

adapted to work with any sequential pattern mining data, for the sake of experiment-

ing with the developed framework, in the proposed version, web usage mining domain

is used and therefore, the solution is adapted to work with web logs.

Web log data is the file or several files that are automatically created and maintained

by a server. Web logs keep the information of a history of page requests. Each request

comes from a user and requests from the same user are divided into sessions based

on the IP and duration of the requests.

A Web server log file contains requests made to the web server, recorded in a chrono-

logical order. Therefore, it is a sequential data, in which the items are page requests

that are ordered by time they are sent to the web server. The most popular log file

formats are the Common Log Format1 and an extended version of the Common Log

Format, Combined Log Format. A line in the extended version of the Common Log

Format contains the following information:

• client’s host name or IP address,

• user login if exists,

• date and time of the request,
1 http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

21

• operation type like GET, POST, HEAD, etc.,

• requested resource name,

• status,

• requested page size,

• user agent which is a string identifying the browser and the operating system

used,

• referrer of the request which is the URL of the Web page containing the link

that the user followed to get to the current page.

Web Usage Mining process includes three main steps: preprocessing, pattern discov-

ery and pattern analysis [17]. The preprocessing task is very important for effective

pattern discovery from web log data, since, the web usage data generally includes a

lot of noise and missing data. The preprocessing task involves cleaning and struc-

turing the data to prepare it for the pattern discovery task. In order to perform this,

all irrelevant and noisy data should be eliminated from the log files. This usually in-

cludes removing the requests for images and multimedia files as well as web robots’

sessions. When requesting a web page containing additional web resources like im-

ages or script files, several implicit requests will be generated by the web browser.

If these requests are not removed before the data mining step, uninteresting patterns

may be found, making the pattern analysis step more complex. For instance, con-

sidering web robots, they usually have a predefined and programmed behavior such

that, the analysts are not interested in mining these requests. Therefore, such requests

should also be cleared in addition to erroneous accesses and implicit requests.

After the cleaning process is completed, the resulting data should be structured for

pattern discovery. In order to achieve this, requests from the raw log file are grouped

by user, user session, page view, visit and episode depending on the needs of the

developed application. Grouping requests by user, also called user identification,

depends on the web site policies. For instance, if the web site whose log files are

examined, requests registration, the user identification task is straightforward and

guaranteed to be correct. However, for all other methods, such as identifying users

by using the IP address, the accuracy of the user identification is not guaranteed.

22

The user session contains all the requests of a user, made from the same IP address

and having the same user agent. The page view identification is important, since it

results in selecting the explicit requests from the web access log file. The page view is

the response of the web browser to the user click. Usually, the web browser generates

several implicit requests for each explicit web request such as images, multimedia

files or other HTML files. At the end of the page view identification process, only

one request per page view has to be kept, which is the explicit request made by the

user. Visits and episodes identification depend on the purpose of the analysis. For

some analysis, grouping the requests in user sessions and keeping one request per

page view is enough and there is no need to further split the user session. However,

one user session may span over several months, and in such a case, the requests

will not be related. Therefore, it is better to group the requested pages in episodes

according to their content and analyze them separately.

When the raw web server log files have been preprocessed, data mining techniques

can be applied on the dataset to discover new patterns. There have been many studies

in order to extract patterns from web log data which are briefly mentioned in Chapter

3. These techniques include, but are not limited to association rule mining, sequential

pattern mining and clustering. The scope of this thesis is sequential pattern mining

and the developed solution aims to discover patterns from web server log files satis-

fying a user-defined evaluation function.

After pattern discovery, pattern analysis step aims at helping the user to analyze the

results by providing a visualization and request tool, which is beyond the scope of

this thesis.

From the sequential pattern mining point of view, web usage data is also a sequence

data such that, requests made by the user in a session are ordered by the time they

are made. In addition, distinct user sessions are also ordered among each other. In

order to map the web server log files for utility-based and user-scoring based pattern

extraction process, two different mappings can be performed. First, each session can

be considered as a distinct sequence and all the itemsets in a sequence contain a single

item. Second, all the sessions of a user can be treated as a transaction and each of the

distinct sessions of a user can be treated as an itemset. Here, in this second mapping,

23

the sequencing information between web pages in the same session is lost.

The first proposed solution is a technique developed for utility-based pattern extrac-

tion where in the evaluation phase, datasets from different domains have been uti-

lized. The second solution, however, is adapted to web domain and evaluated using

web server log files. Therefore, the details about how the data cleaning and data

structuring steps for the log files is performed in the proposed solution is described in

Chapter 5.

24

CHAPTER 3

RELATED WORK

This section provides an overview of recent studies in an attempt to outline the ap-

proaches and main findings in sequential pattern mining, utility based mining and

web usage mining research so as to both understand and analyze the literature and

better outline the main contributions of the thesis work by comparing it with the state

of art techniques from related domains.

3.1 Sequential Pattern Mining

Sequential pattern mining is an important data mining problem with broad applica-

tion areas including telecommunication industry, retail industry to analyze the sales

data, medical applications and stock market analysis. The sequential pattern mining

solutions aims to find the complete set of frequent subsequences given a sequence

database and support threshold. The challenges related to sequential pattern mining

can be stated as follows. First, a huge number of possible sequential patterns are

hidden in databases and a mining algorithm should find the complete set of patterns,

when possible, satisfying the minimum support threshold. Second, the patterns can

be formed using single items as well as itemsets, therefore, the possible number of

sequences are large in comparison to itemset mining. Third, the sequential pattern

mining solutions should be highly efficient, scalable, involving only a small number

of database scans and they should be able to incorporate various kinds of user-specific

constraints if needed [28].

There has been many different approaches [54, 2, 40, 64, 65, 12] proposed for se-

25

quential pattern mining problem. The solutions differ in the way by which candidate

sequences are created and stored in memory, the support value is calculated and how

the candidate sequences are tested by using this support value. Based on these cri-

teria, sequential pattern mining solutions can be classified into two groups, namely,

Apriori Based Approaches and Pattern Growth Based Approaches [38].

3.1.1 Apriori-Based Approaches

The Apriori-based approaches are extensions of the Apriori-based frequent pattern

mining algorithm [1] to sequential pattern analysis. The Apriori and AprioriAll al-

gorithms form the basis for this group of sequential pattern mining algorithms that

depends largely on the Apriori Property to generate the candidate sequences. The

Apriori Property of sequences states that, if a sequence S is not frequent, then none

of the super-sequences of S can be frequent. This property is also referred to as the

Downward Closure Property. These algorithms identify the frequent itemsets in the

database and extend them to a larger itemset as those itemsets appear frequently in

the database.

From the sequential pattern mining point of view, a sequence database can be repre-

sented in two data formats: a horizontal data format and a vertical data format. The

former uses the natural representation of the dataset as a sequence of objects, whereas

the latter uses the vertical representation of the sequence database in the form of ob-

jects such that for each object it keeps the sequence id it exists in, together with its

order information within the sequence. Based on the way the data is represented,

the Apriori-based algorithms are divided into two sub groups; horizontal data format

based sequential pattern mining algorithms and vertical data format based sequential

pattern mining algorithms.

GSP (Generalized Sequential Pattern) is a horizontal data format based sequential

pattern mining algorithm developed by the authors of [54]. It is an extension of

frequent itemset mining algorithm, Apriori [1]. The algorithm adopts a multiple-pass,

candidate generation and test approach based on the DCP of a sequential pattern. GSP

is outlined as follows. First, the database is scanned in order to find all the frequent

items, which form the set of frequent sequences of single items. Each subsequent

26

scan starts with a set of sequential patterns, which is the set of patterns found in the

previous pass. This set is used to generate new potential patterns, called candidate

sequences. Each candidate sequence contains one more item than the set of sequential

patterns from the previous pass, where each element in the pattern may contain one

or multiple items. All the candidate patterns in a pass have same length and the scan

of the database in one pass finds the support for each of the candidate patterns. The

candidates whose support is not less than the minimum support threshold form the

set of the newly found sequential patterns for the next pass. The algorithm terminates

when no new sequential pattern is found, or no candidate pattern can be generated.

The main drawbacks of the GSP algorithm include the generation of a huge set of

candidate patterns, and performing multiple scans of the database. Therefore, the

algorithm is inefficient for mining long sequential patterns, as it needs to generate a

large number of small candidates in terms of pattern length.

In [65], a vertical data format based sequential pattern mining algorithm, SPADE

(Sequential PAttern Discovery using Equivalent classes), is proposed that takes a dif-

ferent approach than Apriori and GSP for the discovery of sequential patterns. Instead

of assuming a horizontal database, SPADE assumes a vertical database, where each

item is associated with a sequence id and an ordering. The support of each of the k-

sequences is determined by the temporal join of k-1 sequences that share a common

suffix. SPADE reduces the number of database scans, since the information required

to construct longer sequences are localized to the related items, and subsequences are

represented by their associated sequence and ordering identifiers. However, the ba-

sic search methodology of SPADE is similar to GSP, which is based on breadth-first

search and Apriori-based pruning. Therefore, similar to GSP, SPADE has to generate

a large set of candidates in breadth-first manner in order to grow longer subsequences.

SPAM (Sequential Pattern Mining) [12] is another solution to sequential pattern min-

ing problem which uses a vertical bitmap data structure representation of database

that is similar to the data representation of SPADE. One important property of SPAM

is that, it is the first sequential pattern mining method that utilizes a depth-first search

approach to explore the search space. SPAM combines depth-first search strategy

with an effective pruning technique, which reduces the number of candidates effi-

27

ciently. From this perspective, the algorithm is particularly suitable for long sequen-

tial patterns. However, SPAM requires the whole database to be stored in the memory,

which is the main drawback of the algorithm.

3.1.2 Pattern-Growth Based Approaches

Pattern-growth is a method of frequent pattern mining that does not require candi-

date generation [29]. The technique originated in the FP-growth algorithm [30] for

transaction databases and the general idea of pattern-growth based sequential pattern

mining is as follows: First, frequent single items are found and this information is

compressed into a frequent-pattern tree, or FP-tree. The FP-tree is then used to gen-

erate a set of projected databases, such that, each database is associated with one

frequent item. These databases are mined separately and prefix patterns are built by

concatenating them with suffix patterns to construct frequent patterns, avoiding can-

didate generation.

FreeSpan (Frequent Pattern Projected Sequential Pattern Mining) [30] is an algo-

rithm introduced for the reduction of candidate generation and testing through level-

wise sequential pattern mining. The algorithm uses the frequent items to recursively

project sequence database into a set of smaller projected databases. Thus, the exe-

cution time of the algorithm is improved, because each projected database is smaller

and easier to treat.

In [47], authors propose a pattern-growth based technique for sequential pattern min-

ing, called PrefixSpan, that deviates from the standard ways of generating candi-

dates and testing, as it is the case for GSP and SPADE. The proposed algorithm

is projection-based, such that, the sequence database is iteratively projected into

smaller projected databases. PrefixSpan grows patterns sequentially in the projected

databases by investigating only locally frequent segments. Specifically, in a database

scan, the frequent patterns above a certain support are recorded. For each frequent

pattern, its ending location is used as the beginning location of the new scan. Fre-

quent patterns are then discovered and appended to the frequent patterns discovered

in the previous scan.

28

One of the computational costs of PrefixSpan is the creation of the projected databases.

In [47], authors propose pseudoprojection as a way to reduce the number and size of

the projected databases, where the index of the sequence and the starting position of

the projected suffix are recorded, instead of performing a physical projection.

A variation of PrefixScan, namely, CloSpan, is proposed in [58] which detects closed

subsequences. A closed sequential pattern is one for which there is no superset se-

quence with the same support than contains the pattern.

WAP-mine is a pattern-growth and tree structure mining technique with its WAP-tree

structure [52]. The algorithm scans the sequence database twice to build the WAP-

tree from frequent sequences along with their support. A header table is maintained to

point at the first occurrence for each item in a frequent itemset, which is later tracked

in a threaded way to mine the tree for frequent sequences. The algorithm is reported

to have better scalability than GSP and to outperform it by a margin. Although WAP-

mine scans the database only twice and can avoid the problem of generating explosive

candidates as it is the case for Apriori-based methods, it suffers from the memory

consumption problem, as it recursively reconstructs numerous intermediate WAP-

trees during mining.

Although numerous scalable methods have been developed for mining frequent se-

quences, these solutions often generate a huge number of frequent patterns. However,

the target users would like to see or use only the interesting patterns whose value is

based on some other factors in addition to frequency. Many recent studies have con-

tributed to mining interesting patterns or rules, including constraint-based mining,

and utility-based mining which will be covered in the following subsections.

3.2 Constraint-Based Sequential Pattern Mining

The frequency-based mining solutions generally return a huge number of patterns,

many of which could be uninteresting to users. In addition, these algorithms often

takes substantial computational time and space for mining the complete set of se-

quential patterns in a large sequence database. To prevent these problems, users can

use constraint-based sequential pattern mining for focused mining of desired patterns.

29

Constraints could be antimonotone, monotone, succinct, convertible or inconvertible

[45]. Anti-monotonicity means that if an itemset does not satisfy the rule constraint,

then none of its supersets satisfy. Monotonicity, on the other hand, refers to the fol-

lowing; if an itemset satisfies the rule constraint, then all of its supersets satisfy that

rule constraint. Succinctness means that, all and only those patterns guaranteed to

satisfy the rule can be enumerated. Convertible constraints are those, which are not

antimonotonic, monotonic, or succinct, but can be made anti-monotonic or mono-

tonic by changing order of elements in the set. Inconvertible constraints, on the other

hand, are the ones which are not convertible.

In the context of constraint-based sequential pattern mining, the scope of the Apriori-

based sequential pattern mining is generalized to include time constraints, sliding

time windows, and user-defined taxonomy [54]. Since episodes are essentially con-

straints on events in the form of acyclic graphs, mining frequent episodes in a se-

quence of events [39] can also be viewed as a constrained mining problem. The

classical framework on frequent and sequential pattern mining is based on the anti-

monotonic Apriori property of frequent patterns. A breadth-first, level-by-level search

can be conducted to find the complete set of patterns. Performance of conventional

constraint-based sequential pattern mining algorithms dramatically degrades in the

case of mining long sequential patterns in dense databases or when using low mini-

mum supports. Weight constraints are used in order to reduce the number of unim-

portant patterns in [63], where during the mining process, not only the supports but

also the weights of patterns are considered.

User-defined tough aggregate constraints are incorporated in [16], so that, the discov-

ered knowledge better meets user needs. A novel algorithm, namely, PTAC (sequen-

tial frequent Patterns mining with Tough Aggregate Constraints) is proposed in order

to reduce the cost of using tough aggregate constraints by incorporating effective

strategies.

In [41], GTC (Graph for Time Constraints) technique is presented for mining time

constraint-based patterns in very large databases. The solution is based on the idea

that, handling time constraints in the earlier stage of the data mining process can be

highly beneficial. One of the most significant new features of this approach is that,

30

handling of time constraints can be easily taken into account in traditional level-wise

approaches, since it is carried out prior to and separately from the counting step of a

data sequence.

Approximate structural patterns from a genetic sequences database is examined in

[57]. The described technique allows the users to specify the desired form of patterns

as sequences of consecutive symbols separated by variable length don’t cares, in addi-

tion to a lower bound on the length of the discovered patterns, and an upper bound on

the edit distance allowed between a mined pattern and the data sequence that contains

it. A random sample of the input sequences to build a main memory data structure is

used, which is called the generalized suffix tree. This tree is then used to obtain an

initial set of candidate pattern segments and screen out candidates that are unlikely to

be frequent based on their occurrence counts in the sample.

In [25], regular expressions are used as constraints for sequential pattern mining and

the authors developed a family of SPIRIT (Sequential Pattern Mining with Regular

Expression Constraints) algorithms. Members in the family achieve various degrees

of constraint enforcement. The algorithms use relaxed constraints with properties like

anti-monotonicity to filter out some unpromising candidates in their early stage.

The main limitation of the constraint-based solutions is that, the users may be inter-

ested in high-valued patterns and the value definition cannot always be handled by

filtering patterns based on specified constraints, which is solved by the utility-based

mining techniques.

3.3 Utility-Based Mining

The limitations of frequency-based and constraint-based pattern mining solutions mo-

tivated researchers to conceive a utility-based mining approach, which allows a user

to express his or her perspectives concerning the usefulness of patterns as utility val-

ues, and then find patterns with utility values not less than a specified minimum utility

threshold. In high utility pattern mining, the meaning of utility refers to the interest-

ingness, importance, or profitability of the patterns. Studies in this area generally

focus on mining high utility itemsets from transactional databases [59, 36, 6, 55],

31

and high utility sequential pattern mining from sequence databases [61, 60, 50, 3].

3.3.1 Utility-Based Itemset Mining

Mining high utility itemsets from databases was first introduced in [59]. Utility of

items in a transaction database generally considered to include two main aspects:

first, the importance of distinct items, which is called as external utility, and second,

the importance of the items in transactions, which is referred to as internal utility.

Utility of an item is then defined as the product of its external and internal utilities

[59]. The itemset utility is defined as the sum of the utilities of all the items in it.

An itemset is considered as a high utility itemset if its utility is no less than a user-

specified minimum utility threshold.

Several algorithms are proposed for high utility itemset mining including UMining

[60], IHUP [6], and UP-Growth [55]. UMining is a well known efficient algorithm

for mining high utility itemsets from large transaction databases, however, it cannot

extract the complete set of patterns.

In order to extract high utility patterns more efficiently, Transaction-Weighted Down-

ward Closure (TWDC) property was introduced in [36]. TWDC uses Transaction

Weighted Utilization (TWU) of the patterns in order to prune the search space. Most

of the following studies also adapt TWU in their solutions. A tree-based algorithm,

IHUP [6] is proposed by Ahmed et al. to avoid scanning database too many times.

IHUP uses IHUP-Tree to maintain information about itemsets and their utilities. UP-

Growth, on the other hand, also uses a tree structure, to mine high utility patterns;

and it is reported as a more efficient solution than IHUP, since it further reduces the

number of promising patterns, which cannot be pruned in IHUP. UP-Growth and UP-

Growth+, described in [56], outperforms other algorithms in terms of execution time,

especially when databases contain lots of long transactions or when low minimum

utility threshold values are set.

32

3.3.2 Utility-Based Sequence Mining

The main shortcoming of high utility itemset mining solutions is that, although they

perform well in many applications, they cannot answer the needs in domains where

the ordering between itemsets is important. The addition of ordering information in

high utility sequential pattern mining makes the pattern mining problem fundamen-

tally different and much more challenging than mining high utility itemsets. The

integration of utility and sequential pattern mining has been attracting attention re-

cently and not many solutions exist in this area [61, 50, 3, 4, 62]. In [50], UMSP

algorithm is proposed for mining high utility mobile sequential patterns in mobile en-

vironments. In UMSP, the utility of a mobile sequential pattern is defined as a single

value such that, it relates each itemset in a sequence with a location identifier. UMSP

searches for patterns using an efficient structure, called MTS-Tree. However, the main

limitation of this solution is that, it can handle only the sequences of single items and

single utility value per item is permitted.

In [3], an algorithm for extracting high utility sequential patterns from web log se-

quences is proposed. As opposed to UMSP, the utility of a pattern can have multiple

values, and in such a case, the proposed technique selects utility with the maximal

value. The utilities are represented with two tree structures, UWAS-tree and IUWAS-

tree. However, the study does not support the sequencing of the itemsets. In [4],

the Sequence-Weighted Utility (SWU) measure is defined which is used to satisfy the

Downward Closure Property for mining high utility sequential patterns. In SWU, the

idea behind is very similar to that of TWU such that, SWU is also defined as the sum

of the utilities of all the transactions containing the pattern. In other words, SWU

is the sequence-weighted counterpart of TWU. In addition, in [4], authors proposed

UtilityLevel (UL) and UtilitySpan (US) algorithms. UL algorithm follows a candidate

generation approach, and the US algorithm performs high utility sequential pattern

mining with a pattern-growth approach. However, the problem definition is rather

specific and no generic framework is proposed.

A projection-based approach for mining high utility sequential patterns with the maxi-

mum utility measure and a sequence-utility upper-bound (SUUB) model are proposed

in [34]. The main concept of the proposed method is extended from the PrefixSpan

33

algorithm [46]. In [62], a different problem is addressed in the area of high utility

sequential pattern extraction, where the authors aim to identify the top-k high utility

sequential patterns without minimum utility. The top-k pattern extraction is espe-

cially useful when it is difficult to set a minimum utility threshold in some domains

and when the pattern users are sure about the number of extracted patterns that they

will investigate. However, for the datasets where the patterns are stacked around a

utility threshold, it will not be appropriate to choose top k of them when there exists

many patterns with very similar utilities.

Considering the pruning mechanisms, existing studies [61, 36] for high utility se-

quential pattern mining use TWU-based upper bounds during PBCG. In [61], a gen-

eral framework for mining sequential patterns from utility-based sequence databases

is described. In order to extract patterns, they propose USpan algorithm which uses

SWU as defined in [4] and Sequence Weighted Downward Closure (SDCP). SDCP

utilizes SWU to select candidate items during pattern generation as follows. Based

on SWU of a pattern, an item is called promising if adding it to a candidate pattern

results in a new pattern whose SWU is greater than or equal to the minimum utility

threshold. In such a case, this candidate pattern is generated and it appears in the re-

sulting pattern tree. In USpan, PBCG is based on SDCP and the algorithm performs

depth pruning which is a PACG mechanism.

Although SDCP correctly eliminates candidate items, a tighter upper bound may

eliminate more promising items, and performing such a pruning prior to candidate

generation may reduce the required time and space, which is the main motivation of

our study. To achieve this, we propose CRoM, and use it in the pruning of the candi-

dates. We show that, CRoM correctly eliminates promising items. In comparison to

the existing solutions mentioned for utility-based sequential pattern mining, our pro-

posed pruning technique is used prior to candidate generation and defines a tighter

upper bound than TWU-based pruning before generation of the candidate patterns.

Moreover, we propose data structures to perform both the pruning and the candidate

generation processes efficiently. We realized our solution with a new algorithm, Hus-

pExt, which is based on a generic framework that provides solution for any kind of

data from any domain. The utilities of items, itemsets, and sequences are considered

as functions that can be defined and specified by the domain experts according to the

34

needs of the application.

3.4 Web Usage Mining

There is a huge growth of information sources on the Internet and together with this

growth, the user base also grows. In such a situation, it is very important and neces-

sary to facilitate users’ navigation in the web. Web logs are valuable resources to learn

about navigation behaviors. Analysis of web log files to extract useful patterns is stud-

ied under web usage mining [35], which uses various techniques including clustering,

association rule mining, classification and sequential pattern mining [43]. The ex-

tracted patterns are web access patterns that are pursued by the web users frequently.

Web access patterns are generally used for recommendation, next page prediction and

web site improvement purposes [26], [10], [7], [8].

Web usage mining has been studied by various researchers and different techniques

[42], [27], [33] have been applied to process click-stream data. In 1996, O. Etzioni

[21] explored the question of whether effective web mining is feasible in practice. He

believed that the web is too unstructured for web mining to succeed. In the recent

years, however, there has been an increase in the number of studies on web usage

mining to examine the users’ web navigation behavior for improving the quality of

the web services offered to the web users [51, 66, 53, 32, 68]. The main motivation of

these studies is to get a better understanding of the reactions and motivations during

web navigation and to help the users in their interaction with the web site.

Learning users’ navigation behaviors for web page recommendation has been stud-

ied by the researchers and various attempts have been exploited to achieve web page

access prediction [42, 27, 33, 19]. Web data clustering has also been studied by differ-

ent researchers and solutions in this area are generally grouped into (i) sessions-based

[13], [24] and (ii) link-based [20, 23]. The former aims to group users’ navigation

sessions having similar characteristics. The latter, however, treats the web site as a

directed graph and the goal is to cluster the web pages with similar content.

Sequential pattern mining solutions are also applied to web access pattern discovery

[49, 14]. However, these solutions cannot respond to cases where different web pages

35

have different significance values. To handle this problem, utility-based web access

pattern mining techniques have been proposed [67, 5, 3]. In [67], authors adopted

the definitions of utility from the high utility pattern mining model. The browsing

time of a web user constitutes the internal utility of a web page. By doing so, more

interesting web traversal patterns can be discovered in comparison to the classical

frequency based solutions.

Existing utility-based web access pattern mining techniques calculate pattern utilities

based on the utility of the web pages. However, a pattern’s value cannot always be

calculated from the distinct web page utilities. For instance, user may be interested

in patterns that exist in at least for a number of distinct users’ sessions in the dataset.

Similarly, the value of a pattern may depend on the average income of the users that

traverse that pattern. Such values cannot be calculated from the web page utilities and

should be recalculated for each extracted pattern on its own.

Motivated by these real-life scenarios, in the thesis work, we present a new approach

to the problem of extracting web access patterns. Different from the existing tech-

niques in literature, the proposed solution combines clustering with a search-based

pattern extraction algorithm which uses an evaluation function that can be defined

according to the preferences or needs of the users. Different from the existing tech-

niques in this area, pattern extraction process in the proposed solution is not based on

clustering. Instead, clustering is utilized so as to improve the efficiency and the ac-

curacy of the pattern extraction algorithms by identifying different behavioral pattern

groups.

36

CHAPTER 4

IMPROVING EFFICIENCY OF HIGH UTILITY

SEQUENTIAL PATTERN EXTRACTION

In this chapter, proposed solution for high utility sequential pattern extraction is de-

scribed by giving details about the structure of the database sequences and patterns,

construction of the pattern tree, pruning strategy that uses CRoM based upper bound,

and the HuspExt algorithm [11].

4.1 Structure of the Database Sequences

In the proposed solution, each database sequence is stored as a data matrix S. Figure

4.1 presents the data representation in HuspExt for the example database given in

Tables 2.2 and 2.3.

The columns of the matrix are the itemsets and the rows are the items in the database.

Each cell S(i, j) of the data matrix for a sequence S keeps the utility information

about item i in the ISj of the sequence S. The utility information is kept as a triple

(u,ru,is), which is used by HuspExt in the pruning process. u is the utility of the item,

that is, u(i, ISj , S). Su(i, j) equals to 0 if item i does not exist in ISj of S. Sru(i, j)

is the sum of the utilities of the rest of the items in the sequence including the utility

of the item itself, if Su(i, j) is greater than 0. If it is 0, then Sru(i, j) equals to the ru

value of the item i in the first following itemset that it exists. This itemset information

is kept in Sis(i, j). Therefore, if Su(i, j) is 0, then Sis(i, j) keeps the first itemset that

has item i. If the item is not contained in any of the following itemsets, then both ru

and is are equal to 0.

37

Figure 4.1: Structure of the Database for the example in Table 2.2.

38

In order to clarify the idea, consider S2 in the example database. Figure 4.1 clearly

shows the structure of S2. Item b exists in IS1; therefore Su
2 (b, 1) is 4 and Sis

2 (b, 1) is

1. Moreover, Sru
2 (b, 1) keeps sum of the utilities of the rest of the items following it,

including item b, which is 27. Furthermore, Su
2 (d, 1) is 0, since item d does not exist

in IS1; and Sru
2 (d, 1) equals to the ru of the first occurrence of the item d in the rest

of the sequence, that is Sru
2 (d, 2), which is 19. Since d exists in IS2, Sis

2 (d, 1) is 2.

ru, u and is are equal to 0, when an item neither exists in the corresponding itemset

nor in the rest of the sequence following this itemset.

The calculations of ru and is are done in a single scan of the database. HuspExt starts

calculation from the last itemset of each item, and it keeps for each item the last ru

value and the corresponding is to assign it, if u equals to 0. The ru and is values are

used in the pruning process.

4.2 Structure of the Patterns

In the proposed solution, every pattern P is represented by a 3-tuple< ps, u, CSeq >.

ps denotes the pattern string and u denotes the utility of the pattern in the database.

CSeq is the information about the sequences that contain the pattern. For each or-

dering Ok of a pattern P in a sequence S, CSeq(S, k) keeps a pair, (last_IS, u).

CSeqlast_ISP (S, k) is the itemset of S that matches the last itemset of P in the order-

ing Ok, and CSequP (S, k) is the utility of that ordering.

To illustrate the structure, consider the pattern < bd > in the example database,

whose structure is provided in Table 4.1. The pattern exists in S2 with two orderings;

< IS1, IS2 >, and < IS1, IS3 >, that has utilities 7 and 6, respectively. Therefore,

u(< bd >, S2) = 7. Considering S5, < IS2, IS3 > is the only ordering with utility

5, therefore, u(< bd >, S5) = 5. Finally, for S6, there exists a single ordering,

< IS1, IS2 >, which has utility 10. Therefore, u(< bd >) = 7 + 5 + 10 = 22.

39

Table 4.1: Pattern Structure for < bd >

ps < bd >

u 22
CSeq

Sequence Ordering last_IS u

S2 1 2 7
S2 2 3 6
S5 1 3 5
S6 1 2 10

4.3 Construction of the Pattern Tree

We use the lexicographic approach [12] during the construction of our pattern tree

such that, nodes in the tree are arranged according to their lexicographic order of

the pattern string ps similar to the way it is used in [61, 36]. However, different

from existing solutions, we included ordering information and used CSeq structure

in order to apply CRoM based pruning in HuspExt to efficiently prune the tree and

extract sequential patterns.

Pattern tree keeps the patterns that are built throughout the execution of HuspExt. At

each level k of the tree, HuspExt generates child nodes to be potentially added to level

k+1 by using item-based expansion or itemset-based expansion. Each expansion is

performed by adding a single item to the parent pattern. The item-based expansion

generates a child node whose pattern is created by adding an item into the last itemset

of the parent’s pattern. For instance, if the parent pattern is < (bd) >, then the item-

based expansion of the parent-pattern with the item e results in the child pattern<

(bde) >. Therefore, item-based expansion results in a pattern whose size is the same

as the parent’s, however whose length is one item longer than that of the parent’s.

The itemset-based expansion, on the other hand, generates a new node whose pattern

contains a new itemset consisting of a single item added to the end of its parent’s

pattern. This expansion increases the length and size of the child pattern with respect

to the parent pattern by one. For instance, considering parent pattern < (bd) >,

itemset-based expansion with item e results in < (bd)e >.

40

Figure 4.2: Pattern Tree for the example in Table 2.2.

41

Figure 4.2 shows a sample pattern tree. In this figure, columns of CSeq keeps the

sequence, the corresponding ordering, last_IS, and u values respectively. For in-

stance, first row of the CSeq of pattern < a > is < S1, 1, 4, 4 >, which refers to

CSeq(S1, 1) = (4, 4). In other words, it tells that, the first ordering of pattern < a >

in S1 ends in IS4, and this ordering has utility 4.

The root node, (ps:<>, u:0, CSeq: {}) is an empty pattern, while the leaves are the

nodes that cannot grow any more or that are not allowed to grow due to pruning strate-

gies applied. Item-based expanded nodes precede the itemset-based expanded nodes.

For the same expansion technique, however, nodes are arranged in lexicographic or-

der. The minimum utility threshold parameter, minutil, is used to prune the search

space, and if it is set to 0, the complete search space is covered.

4.4 Calculating the Utilities of Child Nodes

The utilities of the child nodes are calculated by using the CSeq of the parent. Ex-

pansion with an item results in a new node whose pattern structure is a revised ver-

sion of that of the parent’s. While utilizing CSeq, instead of traversing the whole

database, only the sequences in CSeq are examined for expansion. In addition, us-

ing the last_IS field, the essential subsequences of these transactions are examined

instead of examining each sequence as a whole.

For item-based expansion, potential items to be added to the last itemset of the parent

are the ones that are following the last item of the last itemset of the pattern lexi-

cographically. In addition, from this set, only the items that follow the last item of

the pattern which exist in the last_IS of the sequences of CSeq are considered. We

illustrate this by an example. Consider the pattern < bd >, the structure of which is

given in Table 4.1. The pattern’s last (and the only) itemset is (bd) and the last item is

d in this itemset. For item-based expansion, the only possible item that can be added

to the last itemset is {e}. For each ordering in CSeq, only item {e} in the itemset

last_IS of the corresponding sequences are examined. Therefore, for the first order-

ing of S2 in CSeq, S2(e, 2), and for the second ordering, S2(e, 3) are examined. For

the orderings of S5 and S6, S5(e, 3) and S6(e, 2) are examined. HuspExt considers

42

Table 4.2: Pattern Structure for < b(de) >

ps < b(de) >

u 18
CSeq

Sequence Ordering last_IS u

S2 1 3 18

only the ones that have u value greater than 0 for expansion, which is, S2(e, 3) for

this case. Therefore, HuspExt has a single promising item for expansion and before

candidate generation, it checks whether this item is really promising by running the

pruning process. As seen in Figure 4.1, S2(e, 3) is (u:12, ru:12, is:3). Currently, as-

sume that, item e is promising. The item-based expansion of < bd > with e results in

pattern < b(de) > whose utility is calculated using Equation 2. The resulting pattern

structure for < b(de) > is displayed in Table 4.2. Here, the sum and max functions

are application dependent, and the solution supports any other function definition as

well, which makes it a generic framework for high utility sequential pattern mining.

For itemset-based expansion, all items should be considered for expansion. For each

sequence in CSeq, only the items in itemsets following the last_IS are the possible

candidates. We illustrate the itemset-based expansion again for < bd >. For the

first ordering of S2 in CSeq, itemsets following last_IS, which is IS3, is examined.

Considering the data matrix of S2, items S2(b, 3), S2(d, 3) and S2(e, 3) have u values

greater than 0. So possible items for expansion from this ordering are b, d, and e.

Similar discussions hold for the other orderings. The utility calculation of candidate

patterns is performed in the same manner with item-based expansion, after possible

items for expansion are discovered.

4.5 Pruning Strategies

As described in the previous subsection, solution selects a subset of items for ex-

pansion using the CSeq structure and the properties of the expansions. To further

avoid selecting unpromising items, we propose a PBCG strategy, which is based on

CRoM. Below, we provide the necessary definitions and the theorems before formal-

43

izing CRoM.

Definition 4.5.1. RMUB (Rest of Match Based Upper Bound): Given a sequence

S, RMUB(P, S, i) is an upper bound on the utility of the candidate patterns with

respect to S, created either by item-based or itemset-based expansion of a pattern P

with item i, which is formulated as follows.

For item-based expansion, if Sru(i,m) is greater than 0, then,

RMUB(P, S, i) = u(P, S) + Sru(i,m) (4.1)

otherwise RMUB(P, S, i) = 0.

For itemset-based expansion,

RMUB(P, S, i) = u(P, S) + Sru(i,m+ 1) (4.2)

where m = CSeqlast_ISP (S, 1).

Theorem 1. Let I be a set of items, i ∈ I be a candidate item for expansion, P be

a pattern to be expanded, and S be a sequence from sequence database SD. For

any pattern P ′ that is generated by item-based or itemset-based expansion of P with

a single item i, has utility no more than RMUB(P, S, i) in S, that is, u(P ′, S) ≤
RMUB(P, S, i).

Proof. Let k and k’ be the number of orderings of P and P ′ in S such that k ≥ k′.

Then,
u(P ′, S) = max{u(P ′, S, Om) : m = 1, . . . , k′}

= max{u(P, S,Oj) + u(i, IS, S) : j = 1, . . . , k}
(4.3)

where, in Equation (4.3), u(i, IS, S) stands for the utilities of i in the itemsets follow-

ing the last itemset of any of the orderings Oj of P, such that, adding IS to Oj results

in one of the orderings Om of P’.

Since Sru(i, IS) ≥ u(i, IS, S), we can rewrite Equation (4.3) as follows.

u(P ′, S) ≤ max{u(P, S,Oj) + Sru(i, IS) : j = 1, . . . , k} (4.4)

By definition, ru value of any item in the last_IS of the first ordering of P is always

greater than any other ordering’s, that is, Sru(i, IS) ≤ Sru(i,m) where m is the

44

last_IS of the first ordering of P in S. This is due to the fact that, first ordering

always ends in an itemset prior to any other ordering, therefore counts more items in

its ru value. Therefore, for item-based expansion,

u(P ′, S) ≤ max{u(P, S,Oj) + Sru(i,m) : j = 1, . . . , k} (4.5)

and for itemset-based expansion,

u(P ′, S) ≤ max{u(P, S,Oj) + Sru(i,m+ 1) : j = 1, . . . , k} (4.6)

since Sru(i,m) is independent of j, we can rewrite Equation (4.5) as follows.

u(P ′, S) ≤ max{u(P, S,Oj) : j = 1, . . . , k}+ Sru(i,m)

= u(P, S) + Sru(i,m) = RMUB(P, S, i).
(4.7)

So we conclude that,

u(P ′, S) ≤ RMUB(P, S, i) (4.8)

Similar steps are taken for itemset-based expansion after Equation (4.6). Thus, the

theorem holds.

In order to clarify the idea, consider for the pattern < bd >. Assume that, HuspExt is

at a step in which it tries to find out an upper bound on the utility of the patterns that

will be generated by expanding the pattern < bd > with a single item e with respect

to only sequence S2. As it is defined in Theorem 1, RMUB(< bd >, S2, e) is an

upper bound on the utility of these candidate patterns. For item-based expansion of

< bd > with item e, m = CSeqlast_IS<bd> (S2, 1)=2. From Figure 4.1, Sru
2 (e, IS2) = 12.

Therefore, RMUB(< bd >, S2, e) = 7 + 12 = 19.

For itemset-based expansion of < bd > with item e;

RMUB(< bd >, S2, e) =u(< bd >, S2)+

Sru
2 (e, CSeqlast_IS<bd> (S2, 1) + 1)

(4.9)

In Equation (4.9), CSeqlast_IS<bd> (S2, 1) + 1 = 3. Using Figure 4.1, Sru
2 (e, IS3) = 12.

Therefore, RMUB(< bd >, S2, e) = 7 + 12 = 19.

For any expansion technique, a RMUB value of 0 for a pattern P , item i and se-

quence S means that, the pattern generated by expanding P with i is not contained in

sequence S. Therefore, the pattern does not have utility from that sequence.

45

Theorem 2. Let I be a set of items, i ∈ I be a candidate item for expansion, P be a

pattern to be expanded, and S be a sequence from sequence database SD. Let P ′ be

the generated pattern resulted from item-based or itemset-based expansion of P with

i. Then the utilities of P ′ and its offsprings are no more than RMUB(P, S, i) in S.

Proof. The theorem has two parts that needs to be proved. First part is; the utility of

P ′ is no more than RMUB(P, S, i) in S, that is, u(P ′, S) ≤ RMUB(P, S, i). This

statement is already proved by Theorem 1, since Theorem 1 states that single-item

expansion of a pattern P results in a pattern P ′ whose utility is less than or equal to

RMUB(P, S, i).

The second part of the theorem states that the utilities of none of the offsprings of P ′

has utility more than RMUB(P ′, S, i) in S. We will prove this by induction on the

number of expansions, call it x, that are performed to get an offspring from P ′. Using

Theorem 1, the statement holds for x = 1.

Assume the statement holds for x = d, that is, all patterns generated by d number

of expansions from P ′ (call the set of these patterns as SP”), have utility less than

or equal to RMUB(P, S, i) in S. All offsprings produced by d + 1 number of ex-

pansions from P ′ are generated by a single item expansion from the patterns in SP ′′.

Since, by induction hypothesis, we know that all SP ′′ have utility less than or equal

to RMUB(P, S, i), one item expansion of patterns in SP ′′ should also have utility

less than or equal to RMUB(P, S, i) by Theorem 1. Therefore, the statement also

holds for x = d+ 1 and the proof of the induction step is complete.

In order to better understand the statement behind Theorem 2, consider the expansion

of pattern < bd > with item e with respect to sequence S2. As we calculated above,

RMUB(< bd >, S2, e) is 19 for both item-based and itemset-based expansions. With

Theorem 2, we can conclude that, the utility of patterns< b(de) >,< bde > and none

of their offsprings can be greater than 19 with respect to S2. Considering the RMUB

value of the itemset-based expansion of < bd > with item e, which is 19, we can

conclude that, the upper bound on the utility value of pattern < bde > and any of the

patterns generated from it cannot exceed 19.

Definition 4.5.2. CRoM (Cumulated Rest of Match) Based Upper Bound: CRoM(P, i)

46

defines an upper bound on the utility of the pattern created by expanding P with i,

which is formulated as

CRoM(P, i) =
∑

S∈SD
RMUB(P, S, i) (4.10)

Theorem 3. Let I be a set of items, i ∈ I be a candidate item for expansion, P be

a pattern to be expanded, and SD be a utility based sequence database from I . Let

P ′ be the generated pattern resulted from item-based or itemset-based expansion of

P with i. Then the utilities of P ′ and its offsprings are no more than CRoM(P, i).

Proof. Let P” be any pattern generated by a number of expansions from P . Using

Theorem 2,
u(P ′′) =

∑
S∈SD

u(P ′′, S)

≤
∑

S∈SD
RMUB(P, S, i) = CRoM(P, i)

(4.11)

Therefore, CRoM defines an upper bound on the utilities of all the patterns generated

from P ′, including P ′ itself.

In order to exemplify the calculation of CRoM and the idea behind, consider again

the expansion of pattern < bd > with item e.

CRoM(< bd >, e) =
∑

S∈SD
RMUB(< bd >, S, e) (4.12)

Since the CSeq of < bd > includes entries for S2, S5 and S6,

CRoM(< bd >, e) =RMUB(< bd >, S2, e)+

RMUB(< bd >, S5, e)+

RMUB(< bd >, S6, e)

(4.13)

For both types of expansions, RMUB(< bd >, S5, e) and RMUB(< bd >, S6, e)

are equal to 0, and therefore, CRoM(< bd >, e) equals to 19. Therefore, for this

example, we can conclude that, utilities of < b(de) >, < bde > and none of their

offsprings can exceed 19.

CRoM is used to eliminate promising items prior to candidate generation. More

specifically, an item i is selected to be used in expansion of pattern P , if the CRoM

47

of the resulting pattern for that item is greater than or equal to the utility threshold.

Considering the calculation complexity, to test whether an item is promising, HuspExt

simply adds already calculated utility of the pattern u(P, S) with ru values, which are

calculated only once during the construction of data matrices of sequences. Therefore,

the calculation process simply scans the sequences that exist in CSeq only once.

We claim that, with CRoM, we can eliminate more promising items prior to pattern

generation, in comparison with the utilization of SDCP. We prove our claim with

Theorem 4.

Theorem 4. Given a utility based sequence database SD, and a pattern P for ex-

pansion, the number of promising items eliminated by SDCP is less than or equal to

the number of items eliminated by CRoM.

Proof. We will prove the theorem by contradiction. Suppose that the number of items

eliminated by SDCP is greater than the number of items eliminated by CRoM. Then,

for a candidate pattern P , there should at least be one item i such that, expansion of

P with i results in P ′ for which SWU(P ′) < CRoM(P ′, i) holds.

Let SD′ be the set of sequences from SD that contains P ′. For any S ∈ SD′ ,

let R(S, i) be the right subsequence of S following item i, including i itself, for the

ordering that has maximum utility value for P ′ in S. Then,

SWU(P ′) =
∑

S∈SD′
u(S)

≥
∑

S∈SD′
(u(P, S) + u(R(S, i))

=
∑

S∈SD′
(u(P, S) + Sru(i, IS))

(4.14)

where IS is the itemset of S that contains the newly added item i, if i is to be used in

item-based expansion; otherwise, IS is the following itemset. Therefore,

SWU(P ′) ≥
∑

S∈SD′
RMUB(P, S, i)

= CRoM(P, i)

(4.15)

For instance, consider the pattern < bde >, which exists only in S2 of the example

database. u(< bde >) was calculated as 19 and we have evaluatedCRoM(< bd >, e)

48

as 19 also. From the definition of SWU [61], SWU(< bde >) equals to the utility of

S2. Using Table 2.2 and 2.3, SWU(< bde >)=27, which is higher than CRoM(<

bde >). We can conclude that, for any utility threshold value minutil > 19, CRoM

will eliminate < bde >. However, < bde > cannot be eliminated by SWU for

minutil ≤ 27. For instance, for the scenario where minutil is set to 20, < bde > is

not a high utility sequential pattern, since u(< bde >) = 19 which is smaller than 20.

CRoM can correctly eliminate < bde >. However, since SWU value of the pattern is

27, < bde > is a potential candidate for SWU based technique, therefore, it cannot

be eliminated.

The prediction using CRoM becomes more accurate as the lengths of the patterns in-

crease. This is due to the fact, both CRoM and SDCP overestimate the utility of the

patterns however, overestimation using CRoM decreases as the lengths of the patterns

increase. Moreover, overestimation stays the same for SDCP at each step of the algo-

rithm and at each level of the pattern tree. In addition, considering different datasets,

the prediction using SDCP overestimates more, as the lengths of the extracted patterns

decrease and the dataset contains sequences with longer lengths.

4.6 HuspExt Algorithm

The HuspExt algorithm is given in Algorithm 1. It includes two procedures. First

procedure, HuspExtMain, is the entrance point of the solution (Lines 1-3) which

takes a utility based sequence database SD and a minimum utility threshold minutil

as input. Initially, utility values are calculated using external utilities in the external

utility table and internal utilities in the initial sequence database. SD includes these

calculated utilities. It outputs all the high utility sequential patterns. HuspExtMain

creates the root node with zero utility and empty parent string (Line 2). Then, it calls

the second procedure ExpandNodes to extract all high utility sequential patterns

(Line 3).

ExpandNodes (Lines 4-16) handles the construction of the pattern tree. The input

to the procedure is a parent pattern, parentP . As the first step, if parentP ’s utility is

not less than the utility threshold, it is outputted as a high utility pattern (Lines 5-6).

49

Algorithm 1 HuspExt Algorithm
1: procedure HUSPEXTMAIN(SD,minutil)

Input: utility-based sequence database SD, minimum utility minutil.

Output: all sequential patterns p that have u ≥ minutil.

2: root← create new pattern (pattern string:<>, utility:0, CSeq:{})

3: EXPANDNODE(root)

4: procedure EXPANDNODE(parentP, SD,minutil)

Input: pattern parentP, utility-based sequence database SD, min.utility minutil.

Output: all sequential patterns p that have u ≥ minutil.

5: if parentP.utility ≥ minutil then

6: output parentP as high utility pattern

7: iList← promising items for item-based expansion from parentP

8: for all i ∈ iList do

9: if CRoM(parentP, i) ≥ minutil then

10: childP ← create new pattern by item-based expanding parentP with i

11: EXPANDNODE(childP)

12: itList← promising items for itemset-based expansion from parentP

13: for all i ∈ itList do

14: if CRoM(parentP, i) ≥ minutil then

15: childP ← new pattern by item-based expanding p with i

16: EXPANDNODE(childP)

50

Lines 7-11 and 12-16 are the item-based and itemset-based expansions of parentP ,

respectively. For each expansion technique, first the promising items are collected

that are suitable for each type of expansion (Lines 7, 12) as described in Section 4.

Collected items are pruned before candidate generation using the CRoM values with

respect to parentP as calculated by Equation (12) (Lines 9, 14). If the CRoM values

are greater than or equal to minutil, then child patterns of the parentP are formed

with the proper structure using the structure of parentP . ExpandNodes recursively

invokes itself with the newly created child nodes to go deeper in the pattern tree (Lines

11, 16).

When the computational complexity is considered, a single scan of the database is

performed for each call of both of the procedures so as to find promising items and

calculate the CRoM values. More specifically, only HuspExtMain performs a

whole database scan. ExpandNodes, for each call, scans only the sequences in

CSeq of parent pattern, and it scans only the itemsets following the last itemset of the

corresponding sequence that match parentP , including the last itemset. At a single

scan, it finds all promising items, and calculate the CRoM values. Since for each

item i, CRoM is the cumulated Sru(i,m + 1), where m is the last itemset of each

sequence S in CSeq of parentP , its overhead is just a direct access of a data matrix,

which is constant O(1).

For the memory consumption, it is important to note that, we use conventional sparse

matrix solutions for database sequences, such that, we do not use extra memory stor-

age for the items that do not exist in a sequence. As for the patterns, CSeq has the

highest memory consumption. It contains information about observed orderings, and

the number of orderings generally decreases as the length of the patterns increases.

We can give a general upper bound for memory consumption as O(n × k!) for n

sequences each with maximum k itemsets. However, this is a highly overestimated

upper bound since considering the real datasets, having all k! occurrences of a pattern

in a sequence is not practically observed.

51

52

CHAPTER 5

SEQUENTIAL PATTERN EXTRACTION UNDER

USER-DEFINED PATTERN SCORING

In this chapter, proposed solution for sequential pattern extraction under user-defined

pattern scoring is described. The solution is designed as a generic framework, and in

this framework, user provides a function for pattern evaluation such that, this function

can be considered as a module which can be replaced with another function in order

to satify another user-defined scoring.

The current version of the technique is evaluated in the web usage domain, where a

web access pattern evaluation function is designed. The initial version of the solu-

tion is presented in [9], which is enhanced by a new pattern extraction approach and

extensive evaluation of the framework by well-known datasets from literature in the

current solution. The proposed solution is a hybrid framework in the sense that it

combines clustering with a search-based pattern extraction algorithm. The solution

is based on a two-step process for extracting patterns. In the first step, the database

sequences are clustered. Next, in the second step, patterns are extracted from each

cluster by using a new algorithm, WaPUPS.

In the following subsections, the solution is presented by giving details about the data

preparation and clustering phases, and the proposed algorithm WaPUPS for scoring

based sequential pattern extraction.

53

5.1 Data preparation

The current version of the solution is adapted to work on the web usage data. How-

ever, it should be mentioned that, the developed framework can work with any other

sequence data, as well.

Data preparation is the initial step and a critical point for every web usage mining

solution. The tasks completed in this phase include data cleaning, user identification,

session identification, visit duration calculation, and session elimination. In the ex-

perimental part of this research which is described in Chapter 6, we have used five

different datasets. For the data sets which have not been already cleaned and session-

ized, the same preprocessing steps are applied.

In the data cleaning part, the irrelevant log entries such as erroneous accesses, requests

with the filename suffixes including gif, jpeg, and jpg are eliminated. In addition,

there are web pages that are represented by syntactically different URLs in the log

files. Such URLs are determined and normalized.

Several heuristics exist for identifying users and sessions from the web log data[18].

In our solution, we use a heuristic method that identifies a user by using the IP address

and the browser information. For the session identification, a new session is created

when a new user is encountered or if the page visit duration exceeds 30 minutes for the

same user [17]. During the pattern extraction step, we consider each user’s session as

a sequence and the aim of our solution is to extract patterns satisfying a user-defined

evaluation criteria.

Page visit duration, which is defined as the time difference between consecutive page

requests, is used in the pattern extraction phase while evaluating the patterns. The

calculation of the visit duration is straightforward for accesses except the last page

in a session. For the last page, visit duration is set to the mean of the times for that

page taken across all the sessions in which it is not the last page request. As the last

step of the page visit duration calculation, the times are normalized across the visiting

durations of the pages in the same session, such that, the normalized time has a value

between 1 and 10. This normalization process captures the relative importance of a

page to a user in a session.

54

The last step that is performed before pattern extraction is the session elimination,

in which sessions that have length less than 5 are removed in order to eliminate the

effect of random accesses to the web site.

5.2 Clustering Sequences

In order to discover distinct behavior groups, sequences are first clustered into groups

of similar interests. Partitioning based clustering techniques, specifically, k-means

algorithm, have been proven to be efficient for identifying the intrinsic common at-

tributes in web log data [44], and it is efficient on large datasets due to its linear time

complexity. Hence, k-means clustering is utilized at this step.

Clustering is performed on session-access matrix, where each column is an access

and each row is a session of any user represented as a vector. The matrix values are

the frequency of the corresponding web page’s visits within that session.

5.3 WaPUPS algorithm

Each user session in a cluster is a sequence of web pages visited by a single user. For

each cluster, access patterns are built by using a search oriented approach. Different

from previous web usage mining techniques, usage patterns are discovered by con-

sidering the evaluation criteria defined dynamically to select the most representative

page access and to include it into the pattern. In order to realize this, we have devised

the WaPUPS algorithm.

WaPUPS algorithm constructs patterns in a recursive manner. The algorithm can be

considered as the construction of a tree where at each recursive call, one level of the

tree is built, which corresponds to adding a new access to the parent pattern. At each

level of the tree, at most Branching Factor (BF) number of nodes exists.

The algorithm is presented in Algorithm 2. WaPUPS takes a list of BF number of

parents and cluster number from which the patterns are extracted, as input. The output

of the algorithm is the set of extracted patterns of that cluster. For each recursive call,

55

Algorithm 2 WaPUPS Algorithm
Input:

parent_list: list of parent states that will create children at the next

iteration, has BF elements

cl_no: cluster whose sessions are used during building patterns

Output:

WAPList: extracted web access patterns

1: Access_List←list of all possible accesses in the dataset

2: child_array ← create an empty array that has BF elements, sorted in descending

order of value

3: for each parent_pattern ∈ parent_list do

4: for each access ∈ acccess_list do

5: new_pattern← EXTEND(parent_pattern, access)

6: new_pattern.value← EVALUATE(new_pattern, cl_no)

7: if new_pattern.value > 0 then

8: add new_pattern to child_array

9: increment parent_pattern.child_count

10: for each parent_pattern ∈ parent_list do

11: if parent_pattern.child_count = 0 then

12: add parent_pattern to WAPList

13: if child_array is not empty then

14: WAPUPS(child_array, cl_no)

56

the parent_list keeps the patterns that have been constructed up to the current call.

These are the best BF patterns of the previous call which are kept in the child_array.

Therefore, child_array always keeps BF patterns with the highest evaluation values

that will be the parent nodes of the next recursive call.

The construction of the child_array, which will become the parameter of the next

recursive call is completed with the first for-loop in Algorithm 2, when all the par-

ent nodes are checked with all possible requests to get enhanced with a new access

(Lines 3-9). As mentioned before, in the second for-loop (Lines 10-12), if any of the

parent nodes in the parent_list cannot grow, it is outputted as a pattern for that cluster.

Finally, if the child_array contains at least one member, the function is recursively

called with the child_array as the parent_list for that cluster (Lines 13-14).

5.4 Evaluation Function

The Evaluate function examines a pattern and assigns a value to it. In this work, in

order to demonstrate the proposed solution and the evaluation function, we consider

access patterns as paths that will be recommended to web users for faster web site

traversals and we design a sample evaluation function accordingly. We aim to assign

values to patterns considering the degree they are assumed to facilitate the users’

navigation in the web sites. In this sample evaluation function, the value of a pattern

depends on the following factors:

1. the number of sequences in cluster cl_no in which the pattern exists;

2. the number of distinct users that traverse the pattern in their sessions;

3. the total duration of the pattern in sequences (calculated as the sum of the page

visit durations of all the accesses from the start access of the pattern to the final

access).

We assume that, the value of a pattern increases as the number of sessions it exists

in increases. However, it is possible that these sessions belong to a small number of

users who access the web page frequently. Therefore, our assumption is based on the

57

Algorithm 3 Evaluation Function Used in WaPUPS Algorithm
Input:

new_pattern: pattern to be evaluated,

cl_no: cluster number for which web access patterns will be constructed.

Output:

value: value of the pattern.

1: NumberOfSeq ← number of sequences in cluster cl_no

2: NumberOfContSeq ← number of sequences in cluster cl_no that contains

new_pattern

3: TotalDistinctUsers ← number of distinct users that own sequences in cluster

cl_no

4: Distinct_User_List ← distinct users’ list that followed new_pattern in se-

quences

5: containing_sequences← GetAllSequences(new_pattern, cl_no) . get all

sequences in cl_no that contains new_pattern

6: duration← 0

7: for each sequence ∈ containing_sequences do

8: user ← sequence.user

9: if user /∈ Distinct_User_List then

10: ADDUSER(Distinct_User_List, user)

11: duration← duration+ time to traverse new_pattern in sequence

12: value←
(NumberOfContSeq/NumberOfSeq)× w_session_count+

(Distinct_User_List.size/TotalDistinctUsers)× w_user_count+

(duration/NumberOfSeq)× w_duration

58

idea that, a pattern that claims to shorten long access sequences of web users should

be useful for as many users as possible. Hence it should exist in many distinct users’

access sequences. In addition, the aim is to shorten long access sequences, therefore,

the value of a pattern increases as the length of the path it shortens increases. The

evaluation algorithm that realizes these ideas is given in Algorithm 3. Although the

current evaluation function uses these values, it can be modified to depend on other

factors as well.

As it is shown in Algorithm 3, the algorithm finds all the dataset sequences that con-

tain the pattern to be evaluated (Line 5). These sequences are examined in order to

find out how many distinct users own them and the total duration of the pattern in them

(Lines 7-11). The value of the pattern is finally evaluated by normalizing these three

values and weighting them with the three parameters of the solution: wsessioncount,

wusercount and wduration (Line 12). We have evaluated different values of the

weight parameters in this formula, however, it should be mentioned that, the weights

can be adjusted for different web site configurations, and the formula can be modified

so as to take any information available to the web site into account.

In order to better understand the idea of the evaluation, consider the following simple

example: assume that we have a pattern (A, B, C) to evaluate, and 3 user sessions

where this pattern exists {user1,(D-F-A-H-J-H-I-B-F-C-P)}, {user2,(A-B-F-U-C)},

and {user1,(T-A-F-H-B-C-A-D)}. Assume further that, page visit duration for each

access in all of the sessions is 1, to keep the example simple. Then the number of

sessions that this pattern exists in is 3. The number of distinct users that covers this

pattern in their access sequences is 2, and the total duration of this path in sessions is

18, due to the sum 8 (A-H-J-H-I-B-F-C) + 5 (A-B-F-U-C) + 5 (A-F-H-B-C). We then

calculate the value of this pattern using the formula given in line 12 of Algorithm

3. As it is shown in Chapter 6, we have evaluated different values of the weight

parameters in this formula, however, it should be mentioned that, the weights can

be adjusted for different datasets, and the formula can be modified so as to take any

information available to the target users into account.

59

60

CHAPTER 6

EVALUATION OF THE PROPOSED SOLUTIONS

In this chapter, details of the experimental evaluation of the proposed solutions are

described. For both of the solutions, the properties of the evaluation environment, the

datasets used during the experiments, evaluation methodology and results are given.

Discussion of the results and comparison with the state of art techniques are provided.

6.1 Evaluation of the Proposed Solution for High Utility Sequential Pattern

Mining

In this section, evaluation of the HuspExt algorithm that uses CRoM based pruning

is presented. HuspExt was implemented in Java and developed in Oracle JDeveloper.

All the experiments were performed on a 3.3 GHz Intel Processor with 8 GB main

memory on Windows 7 operating system. In order to evaluate the proposed solution

in an exhaustive manner, we made experiments for determining the strength of the

solution from different aspects including time and memory requirements as well as

the number of patterns that are generated during execution. Additively, experiments

are performed under datasets from different domains so as to understand the behavior

of the solution under different dataset characteristics.

In order to evaluate the pruning power of HuspExt, which is based on CRoM, an SWU

based algorithm, called SWU is implemented using the same development environ-

ment and data structures as in HuspExt. This enables us to make fair comparison of

the pruning strategies. During implementation of SWU, we modified HuspExt such

that, it keeps the sum of the utilities of all the items in a sequence, that is the se-

61

Table 6.1: Evaluation Phases

Phase Purpose Datasets Methods

Phase 1

Determine the charac-

teristics of the datasets

in terms of the number

of patterns, the length

of the patterns, the

feasible minimum util-

ity thresholds that Hus-

pExt and compared so-

lutions can produce re-

sults

CENG, Foodmart,

Brightkite, DS3, Chain-

Store, D100kT3S6N1k,

D100kT6S4N10k

HuspExt, SWU,

USPAN

Phase 2

Performance Compari-

son with Existing Stud-

ies

CENG, Foodmart,

Brightkite, DS3,

D100kT3S6N1k,

D100kT6S4N10k

HuspExt, US-

PAN

Phase 3
Evaluation of the pro-

posed PBCG strategy

CENG, Foodmart,

Brightkite, DS3,

D100kT3S6N1k,

D100kT6S4N10k

HuspExt, SWU

Phase 4

Evaluation of the scal-

ability of the solution

under varying dataset

sizes

D50kT3S6NXk,

DXkT3S6N1k, Chain-

Store

HuspExt, SWU

quence utility, in ru field of an item in a sequence instead of the rest of the sum of the

utilities following the corresponding item. In addition, for PBCG, SWU checks the

SWU value of a pattern instead of RMUB. Using the same development environment

enables us to make fair comparison of the pruning strategies.

In addition, we made experiments with the USpan algorithm. The authors of [61]

62

provided the executable file of their solution together with the dataset, named DS3,

that was mentioned in the paper. The solution produces a result file which includes the

time and space consumption of the algorithm. We have used DS3 in our experiments

which is a real world dataset. Our evaluation phase can be divided into four phases,

details of which are provided in Table 6.1.

Table 6.2: Properties of Real World Datasets

Dataset Domain #Seq. Avg.Seq.Len. #Items

CENG
Web ac-

cess
5032 18.215 1500

Foodmart
marketing

5581 15.559 1560

Brightkite

location-

based

social

net-

working

20,878 5.608 1500

DS3
shopping

59,477 5 811

Chain-Store
shopping

1,112,949 7.3 46,086

6.1.1 DataSets

Both real and synthetic datasets are used during evaluation. CENG, Foodmart, Brightkite,

DS3 and Chain-Store are the real world datasets. CENG dataset1 is from the Com-

puter Engineering (CENG) Department of Middle East Technical University. The

dataset contains web server logs from 03.09.2011 to 13.11.2011. After preprocess-

ing, there remains 852,771 accesses, 5032 users and 9876 sessions. For the web

domain, we adapted the following configuration; pageviews correspond to items, ses-

sions correspond to itemsets and ordered sessions of host corresponds to a sequence.

1 www.ceng.metu.edu.tr

63

For the experiments, we worked with the top 1500 accessed page views.

Foodmart is acquired from Microsoft foodmart 2000 database, and we use foodmart

data of Sales Fact 1998. The dataset already includes external and internal utilities. In

the dataset, every sale is associated with a product, customer, time, cost and unit. In

the experimental configuration, products correspond to items, and utilities are eval-

uated by multiplying cost and unit values. The sales of a customer correspond to

a sequence which is composed of an ordered list of itemsets that are grouped and

ordered by the time of the customer’s sales. Brightkite dataset2is a location-based

social networking data set, where users shared their locations by checking-in. There

is a total of 4,491,143 checkins of these users over the period of Apr. 2008 - Oct.

2010 from 58,228 distinct users. We used the time and location information of the

users. For this dataset, locations correspond to items. Each user’s locations in a day

constructs an itemset of the sequence. For the experiments, we worked with the top

1500 checked-in locations.

Table 6.3: Parameter Settings of Synthetic Data Sets

Parameter Description Default

|D| Number of sequences 100k

|T | Average items per itemset 2.5

|S| Average itemsets in maxi-

mum sequences

10

|N | Number of distinct items 10k

DS3 is a real dataset consisting of online shopping transactions of customers. The

dataset we delivered includes utilities. There are 811 distinct products, 350,241 trans-

actions and 59,477 customers in the dataset.

Chain-Store is a real dataset consisting of shopping transactions obtained from NU-

MineBench 2.0 [48]. The dataset contains unit profits and purchased quantities that

are used to find item utilities. Each customer transaction is regarded as a database

sequence. Chain-Store is a sparse dataset with many distinct items and it is therefore

used in the scalability evaluation of the proposed solution. The properties of the real

2 http://snap.stanford.edu/data/loc-brightkite.html

64

world datasets are summarized in Table 6.2.

Table 6.4: Real Dataset Characteristics

ε #Patterns Avg. Pat. Len. Max.Pat. Len.

CENG Dataset

0.00041 1200276 12.131 20
0.00043 802777 11.874 20
0.00045 553304 11.428 20
0.00047 399284 10.852 20
0.00049 305269 10.265 20

Foodmart

0.00001 2394784 6.082 17
0.00003 2176764 6.404 17
0.00005 1708211 7.072 17
0.00007 1159796 7.873 17
0.00009 659933 8.710 17

Brightkite
0.0001 136035 5.777 14
0.0003 135473 5.792 14
0.0005 133913 5.830 14
0.0007 130508 5.912 14
0.0009 125070 6.035 14

DS3

0.00034 192357 28.894 36
0.00035 7819 1.948 5
0.00036 7285 1.935 5
0.00037 6878 1.930 3
0.00038 6448 1.926 3

Chain-Store

0.00004 170313 9.046 18
0.00006 18561 4.907 18
0.00008 8050 2.101 15
0.00010 5522 1.911 10
0.00012 4120 1.870 5

Synthetic datasets are generated using IBM data generator [65]. D100kT3S6N1k,

and D100kT6S4N10k are the two generated datasets that are used in the evaluation of

the performance of the pruning strategies and the solution. The names of the datasets

65

describe their properties in terms of the parameters, such that, each parameter has the

value that follows it. The parameters correspond to the following values; D is the

number of sequences, T is the average transaction length, S is the average length of

a maximal pattern, and N is the number of items. In addition, ten more datasets are

generated for the evaluation of the scalability of the solution under varying database

volumes. For the datasets named DXkT3S6N1k, all parameters are the same except

the number of transactions, X, which is gradually increased from 200 to 400 by 50.

For the datasets, D50kT3S6NXk, only the number of items is changed from 2k to

10k, increased by 2k. Parameter descriptions and their default values are shown in

Table 6.3.

Table 6.5: Synthetic Dataset Characteristics

ε #Patterns Avg. Pat. Len. Max.Pat. Len.

D100kT3S6N1k

0.0002 288276 6.646 16
0.0003 56479 6.312 15
0.0004 12104 5.800 14
0.0005 3004 4.333 12
0.0006 976 2.906 11

D100kT6S4N10k

0.00013 35731 6.730 63
0.00014 29996 3.384 10
0.00015 26987 3.376 10
0.00016 24329 3.371 10
0.00017 21935 3.369 9

6.1.2 Phase 1: Dataset Characteristics

In this phase, we aim to discover the characteristics of the datasets and determine the

proper utility threshold values that will be used in the following phases. For all of

the experiments, thresholds are chosen in an unbiased manner such that, both the pro-

posed algorithm and the compared techniques can respond within the computational

limits of the evaluation environment. In all of the datasets, except for the Foodmart,

utilities of the items are generated between 0.1 and 10 by using a log-normal distri-

66

0.00041 0.00043 0.00045 0.00047 0.00049
0

10

20

30

40

50

60

70

80

90

100

Minimum Utility Threshold ε

T
im

e(
se

c)

HuspExt
USpan

(a) CENG

0.00001 0.00003 0.00005 0.00007 0.00009
0

20

40

60

80

100

120

140

Minimum Utility Threshold ε

T
im

e(
se

c)

HuspExt
USpan

(b) Foodmart

0.0001 0.0003 0.0005 0.0007 0.0009
0

5

10

15

20

25

30

35

40

Minimum Utility Threshold ε

T
im

e(
se

c)

HuspExt
USpan

(c) Brightkite

0.00034 0.00035 0.00036 0.00037 0.00038
0

20

40

60

80

100

120

Minimum Utility Threshold ε

T
im

e(
se

c)

HuspExt
USpan

(d) DS3

0.0002 0.0003 0.0004 0.0005 0.0006
0

100

200

300

400

500

600

700

Minimum Utility Threshold ε

T
im

e(
se

c)

HuspExt
USpan

(e) D100kT3S6N1k

0.00013 0.00014 0.00015 0.00016 0.00017
10

20

30

40

50

60

70

80

90

100

Minimum Utility Threshold ε

T
im

e(
se

c)

HuspExt
USpan

(f) D100kT6S4N10k

Figure 6.1: Performance comparison on real and synthetic datasets in terms of Time
Complexity

67

bution. In Tables 6.4 and 6.5, properties of the real and synthetic datasets are given,

respectively. In these tables, first column lists the ε values, which are the minimum

utility thresholds corresponding to a relative percentage of the utility of the sequence

database, as described in Chapter 2.

6.1.3 Phase 2: Performance Evaluation

In this phase of the evaluation, we compare the performance of HuspExt with USpan,

in terms of time and memory consumption. The experiments include the evaluation

of the compared solutions under the thresholds given in Table 6.4. Figures 6.1 and

6.2 show the results. For all the datasets, the time consumed by HuspExt and USpan

decreases as the threshold increases. Although the difference between the total run-

time of USpan and HuspExt is large, small decrements cannot be seen in the figure

when both of the solutions results are shown in the same graph.

The decrease in total runtime with increasing threshold can be explained by the fact

that, with smaller threshold values, a deeper and wider search can be performed which

results in identifying more patterns with longer lengths. This can also be observed in

Table 6.4 where the maximum length of patterns and the number of extracted patterns

increase as thresholds decrease. However, the increase in the total runtime for Hus-

pExt is not as much as that of USpan. This can be explained by the characteristics of

the dataset and the pruning performed by the algorithms. First of all, if the dataset has

a significant number of patterns that have utility around some specific value, call it

minutil1, then the algorithm may respond for utility thresholds minutil > minutil1

in short time. When minutil ≤ minutil1, there will be a sharp increase in response

time due to a significant expansion in the search space, since for thresholds around

minutil1, there will be many patterns that can not be eliminated by a smaller thresh-

old value. This observation can be supported by Table 6.4 and Figure 6.1 together.

When we analyze number of extracted patterns in Table 6.4, DS3 and D100kT3S6N1k

are the two datasets that have a sharp increase in the number of extracted patterns af-

ter the threshold values 0.00034 and 0.0002 respectively. USpan’s total runtime has

a sharp increase for these two thresholds as well. HuspExt gets effected from these

thresholds less than USpan, since it uses a tighter upper bound for the pruning pro-

68

0.00041 0.00043 0.00045 0.00047 0.00049
60

80

100

120

140

160

180

200

220

240

Minimum Utility Threshold ε

M
em

or
y(

M
B

)

HuspExt
USpan

(a) CENG

0.00001 0.00003 0.00005 0.00007 0.00009
150

200

250

300

350

400

450

500

550

600

Minimum Utility Threshold ε

M
em

or
y(

M
B

)

HuspExt
USpan

(b) Foodmart

0.0001 0.0003 0.0005 0.0007 0.0009
36

38

40

42

44

46

48

50

52

Minimum Utility Threshold ε

M
em

or
y(

M
B

)

HuspExt
USpan

(c) Brightkite

0.00034 0.00035 0.00036 0.00037 0.00038
100

150

200

250

300

350

Minimum Utility Threshold ε

M
em

or
y(

M
B

)

HuspExt
USpan

(d) DS3

0.0002 0.0003 0.0004 0.0005 0.0006
150

200

250

300

350

400

450

500

550

600

Minimum Utility Threshold ε

M
em

or
y(

M
B

)

HuspExt
USpan

(e) D100kT3S6N1k

0.00013 0.00014 0.00015 0.00016 0.00017
80

100

120

140

160

180

200

220

Minimum Utility Threshold ε

M
em

or
y(

M
B

)

HuspExt
USpan

(f) D100kT6S4N10k

Figure 6.2: Performance comparison on real and synthetic datasets in terms of Mem-
ory Consumption

69

cess. Therefore, for instance, even for minutil ≤ minutil1, it can still eliminate

unpromising candidates.

In addition to the above discussions, it can be observed that for all of the datasets,

HuspExt has a significantly lower execution time and memory requirement than US-

pan. Especially for lower threshold values, the performance difference is higher since,

HuspExt uses a tighter upper bound on the utilities of candidate patterns which results

in generating less candidates, that leads to lower running times and memory consump-

tion values.

6.1.4 Phase 3: Evaluation of the Proposed Pruning Strategy

The main contribution of the proposed solution is the CRoM based pruning technique

that is utilized for PBCG. With the pruning strategy developed, our aim is to eliminate

more candidate patterns by using a tighter upper bound, in comparison with the state

of art SWU based solution. To evaluate our pruning strategy, we compare our solu-

tion with SWU, in terms of the number of generated candidate patterns under varying

minimum utility thresholds. Results of this evalution phase for different data sets are

displayed in Figure 6.3. As seen in the figure, for all the datasets, HuspExt outper-

forms SWU. The difference between the number of the generated candidates is more

for lower utility threshold values. This is due to the fact that, for higher threshold

values, it becomes harder to eliminate candidates for both of the solutions.

70

0.00041 0.00043 0.00045 0.00047 0.00049
0

20

40

60

80

100

120

Minimum Utility Threshold ε

#G
en

er
at

ed
 N

od
es

(M
ill

io
n)

HuspExt
SWU

(a) CENG

0.00001 0.00003 0.00005 0.00007 0.00009
2

3

4

5

6

7

8

9

10

11

12

Minimum Utility Threshold ε

#G
en

er
at

ed
 N

od
es

(M
ill

io
n)

HuspExt
SWU

(b) Foodmart

0.0001 0.0003 0.0005 0.0007 0.0009
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Minimum Utility Threshold ε

#G
en

er
at

ed
 N

od
es

(M
ill

io
n)

HuspExt
SWU

(c) Brightkite

0.00034 0.00035 0.00036 0.00037 0.00038
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Minimum Utility Threshold ε

#G
en

er
at

ed
 N

od
es

(M
ill

io
n)

HuspExt
SWU

(d) DS3

0.0002 0.0003 0.0004 0.0005 0.0006
0

5

10

15

20

25

Minimum Utility Threshold ε

#G
en

er
at

ed
 N

od
es

(M
ill

io
n)

HuspExt
SWU

(e) D100kT3S6N1k

0.00013 0.00014 0.00015 0.00016 0.00017
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum Utility Threshold ε

#G
en

er
at

ed
 N

od
es

(M
ill

io
n)

HuspExt
SWU

(f) D100kT6S4N10k

Figure 6.3: Number of Candidates Generated During Execution

71

200 250 300 350 400
250

300

350

400

450

500

550

600

650

700

Number of Sequences(k)

T
im

e(
se

c)

(a) Total Runtime

200 250 300 350 400
500

550

600

650

700

750

800

850

Number of Sequences(k)

M
em

or
y

U
sa

ge
(M

B
)

(b) Memory Usage

Figure 6.4: Performance Analysis under changing Database Sizes (DXkT3S6N1k)

2 4 6 8 10
15

20

25

30

35

40

45

50

Number of Items(k)

T
im

e(
se

c)

(a) Total Runtime

2 4 6 8 10
37

38

39

40

41

42

43

44

45

46

Number of Items(k)

M
em

or
y

U
sa

ge
(M

B
)

(b) Memory Usage

Figure 6.5: Performance Analysis under changing Number of Distinct Items
(D50kT3S6NXk)

6.1.5 Phase 4: Scalability of the Proposed Solution

We conduct scalability evaluation for the proposed solution under varying database

sizes and distinct number of items. In addition, in this phase, we performed tests with

a sparse dataset, Chain-Store, which is a real dataset with high number of transactions

and distinct items.

For the evaluation of the solution under different data characteristics, we generated

10 synthetic datasets, abbreviated as D100kT3S6N1k and D100kT6S4N10k and set

72

utility threshold to 0.0001. Figures 6.4 and 6.5 display the results of the experiments

in terms of execution time and memory usage. As it can be observed, both the running

time and memory consumption of the solution increase as the size of the dataset and

the number of distinct items increase. This increase is nearly linear with the increase

in the number of sequences and items. As the number of database sequences increase,

HuspExt has to traverse more sequences which increases the total runtime. In addi-

tion, HuspExt stores the whole dataset which increases the memory requirement also.

Similarly, more distinct items in the database results in increase in the number of

promising items, and hence the number of candidate patterns. This increases both the

total runtime of HuspExt, and the memory it needs to store the candidates.

Table 6.6: Scalability Evaluation with Chain-Store Dataset

ε Time(hour) Memory(MB) #Cand. #Prun.

HuspExt

0.00004 1.882 987 0.752 196.395
0.00006 1.868 960 0.304 140.015
0.00008 1.847 958 0.162 111.248
0.00010 1.829 958 0.107 93.613
0.00012 1.827 957 0.077 81.536

SWU

0.00004 No Resp. in 2.5h
0.00006 No Resp. in 2.5h
0.00008 2.394 973 0.536 128.649
0.00010 2.349 971 0.271 107.410
0.00012 2.290 970 0.175 92.975

The results of the evaluation with the Chain-Store dataset is provided in Table 6.6. In

this table, last two columns display the number of generated and pruned candidates

respectively in millions. We have made experiments with HuspExt and SWU. SWU

cannot respond in 2.5 hours for threshold values 0.00004 and 0.00006. HuspExt

outperforms SWU for the threshold values 0.00008-0.00012. The time and mem-

ory consumption together with the number of generated candidates and the pruned

nodes increase as the minimum utility threshold decreases, which is an expected re-

sult. However, the important point to emphasize here is that, the proposed solution

can respond even for very small thresholds such as 0.00004 without running out of

73

memory for such a sparse dataset. The memory consumption and execution time is

more than other datasets, however, it is still feasible under the test environment and

the nature of the data.

6.2 Evaluation of the Proposed Solution for Sequential Pattern Extraction Un-

der User-Defined Pattern Scoring

In this section, details of the evaluation of our second solution to sequential pattern

extraction, which uses user-defined pattern scoring in order to extract patterns, is

presented. For the experiments, an Intel Core i5, 2.67 GHz computer with a 4GB

main memory running Microsoft Windows 7 is used and the programs are coded in

Java, in Oracle JDeveloper framework.

Table 6.7: Dataset characteristics

Dataset #Accesses #Sessions
#Distinct
Re-
quests

#Users

NASA 737148 90707 2459 6406
SASKA 288727 40784 2285 16664
MSNBC 264120 46020 17 17824
CTI 14490 13745 683 485
CENG 1752771 304567 210026 9671

6.2.1 DataSets

In the experiments, we use five different datasets, namely, NASA, SASKA, MSNBC,

CTI and CENG datasets, whose basic specifications are given in Table 6.7.

The NASA dataset is from the NASA Kennedy Space Center server from July 1995 to

August 19953. It originally contains 3,461,612 page requests. After the data prepa-

ration phase, we have 737,148 accesses, 90,707 sessions, 2459 distinct requests, and

6406 distinct users.

3 http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

74

The second dataset, SASKA, is from the University of Saskatchewan’s WWW server4.

This server log was collected from June 1995 through to December 1995. The dataset

originally contains 2,408,625 requests. After preprocessing, 288727 accesses, 40784

sessions, 2285 distinct requests, and 16664 distinct users are left.

The MSNBC dataset5 includes the page visits of users who visited msnbc.com on

28.09.1999. The visits are recorded at the level of URL category (for example sports,

news, etc.) and it includes visits to 17 categories. Therefore, 17 distinct accesses

exists. Number of users in the dataset after preprocessing is 17824 and the number of

URLs per category changes between 10 and 5000.

The CTI dataset6 includes the sessionized data for the main DePaul CTI web server

based on a random sample of users visiting the site for a two-week period during April

2002. The dataset includes 683 distinct accesses and 13745 distinct user sessions.

The CENG dataset is from the Computer Engineering (CENG) Department of Middle

East Technical University (METU)7. The dataset consists of many sub-web sites in-

cluding web pages of individuals (i.e., students, teachers), newsgroups, and courses.

The web server logs are from 03.07.2011 to 13.11.2011, and the dataset originally

contains 7,041,032 accesses. After preprocessing, there remains 1,752,771 accesses

and 304,567 distinct sessions.

Datasets used in the evaluation are selected based on the fact that, they have different

characteristics in terms of web site context and number of pageviews. In addition,

NASA, SASKA, MSNBC, and CTI datasets are well-known public datasets. Specifi-

cally, both NASA and MSNBC datasets include visits to big portals, which essentially

translate to a high number of sessions with very long paths, whereas the CTI, SASKA

and CENG datasets refers to academic web sites. MSNBC dataset, on the other hand,

has the characteristic of very few pageviews, since the visits are recorded at the level

of web page categories.

4 http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html
5 http://kdd.ics.uci.edu/databases/msnbc/msnbc.html
6 http://maya.cs.depaul.edu/ classes/ect584/data/cti-data.zip
7 http://www.ceng.metu.edu.tr

75

6.2.2 Evaluation Methodology and Metrics

To evaluate the presented solution, a case study has been designed so as to clearly

demonstrate the performance of the system under a real-world scenario and a possi-

ble application of the technique to an existing problem. In the case study, extracted

patterns are considered as paths that can be recommended to users so as to assist their

navigation in the web sites. For the experiments, we perform 5-fold cross-validation

for each dataset. In each of the five iterations, each dataset is divided into training

(70%) and evaluation (30%) datasets. We form the clusters from the training set, and

we extract paths for each cluster. Evaluation of the extracted patterns for each test

session is performed in four steps:

1. assigning test session to a cluster,

2. finding the patterns that match the test session,

3. forming a list of all matching paths,

4. checking whether the paths in the list are successful.

The first step assigns each test session to a cluster by comparing the session and the

cluster means. A test session is composed of two parts. The first 70% of the accesses

is used to match a path and the rest 30% is used for finding out whether the path is

successful. In the second step, each path in the assigned cluster is checked to find out

whether the first 70% of the accesses in the test session contains the path except for

its last access. If it is the case, that path is added to the list. We consider a path in

the list to be successful if its last access exists in 30% of the second part of the test

session. Metrics are calculated considering this evaluation process.

For measuring the performance of the system, we used coverage and accuracy met-

rics. The following parameters are used in the formulation of them:

• p_exc_l: path except its last access

• session_count: total number of sessions

• session_count_p: number of sessions that any of p_exc_l exists

76

• session_count_p_succ: number of sessions that any of the paths becomes suc-

cessful

Coverage concerns the degree to which the extracted patterns cover the set of test

sessions. To achieve this, the number of the test sessions that any of the path (except

its last access) exists in, is found. Coverage is calculated as shown in Equation 6.1.

Coverage = session_count_p/session_count (6.1)

Accuracy measures the degree to which the extracted patterns successfully summarize

the data. Considering our system, we look at each test session and find out whether

any of the path except its last access (sp_exc_l) exist in that session. If exists, the rest

of the session is examined to find whether the last access of our path exists in the rest

of the session. Accuracy is calculated as shown in Equation 6.2.

Accuracy = session_count_p_succ/session_count_p (6.2)

In addition to the above metrics, we calculated the average number of patterns ex-

tracted for a test session and reported in the results.

6.2.3 Results

For the evaluation of the proposed technique, we have made experiments on the so-

lution parameters so as to find out the effect of changing the size of the search space,

number of clusters and weight parameters on the efficiency of the solution under

datasets of different volumes and domains. In addition, in order to test the value

difference between the patterns identified by our solution and that the patterns iden-

tified purely by frequent sequential pattern mining, we have made experiments with

PrefixSpan algorithm. For all of the experiments, parameter values are chosen in an

unbiased manner such that, the proposed algorithm can respond within the computa-

tional limits of the evaluation environment.

77

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

BF

A
cc

ur
ac

y

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(a) NASA

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

BF

A
cc

ur
ac

y

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(b) SASKA

10 20 30 40 50 60 70 80 90 100
75

80

85

90

95

100

BF

A
cc

ur
ac

y

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(c) MSNBC

10 20 30 40 50 60 70 80 90 100
60

65

70

75

80

85

90

95

100

BF

A
cc

ur
ac

y

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(d) CTI

10 20 30 40 50 60 70 80 90 100
65

70

75

80

BF

A
cc

ur
ac

y

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(e) CENG

Figure 6.6: Accuracy results for different datasets

78

10 20 30 40 50 60 70 80 90 100
60

65

70

75

80

85

90

95

100

BF

C
ov

er
ag

e

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(a) NASA

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

BF

C
ov

er
ag

e

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(b) SASKA

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

BF

C
ov

er
ag

e

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(c) MSNBC

10 20 30 40 50 60 70 80 90 100
68

70

72

74

76

78

80

82

84

BF

C
ov

er
ag

e

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(d) CTI

10 20 30 40 50 60 70 80 90 100
48

50

52

54

56

58

60

62

64

66

68

BF

C
ov

er
ag

e

CL05
CL10
CL15
CL20
CL25
CL30
CL_NOC

(e) CENG

Figure 6.7: Coverage results for different datasets

79

Table 6.8: Average number of extracted patterns versus BF

NASA

BF NO_CL CL05 CL10 CL15 CL20 CL25 CL30

8 1.16 3.25 4.61 4.68 5.43 6.85 5.94

10 1.71 3.95 5.59 5.54 5.96 7.33 6.76

15 1.88 3.75 6.78 7.46 7.53 7.89 8.37

20 2.10 4.25 8.34 9.23 7.39 9.44 8.94

25 2.10 4.89 7.92 7.83 8.06 11.23 9.43

30 2.59 5.30 8.28 8.33 8.61 1.26 9.83

40 2.94 6.92 8.72 9.12 7.81 12.01 10.58

50 3.39 7.42 9.84 10.05 9.05 12.21 11.46

100 4.78 9.78 11.03 10.30 10.04 12.79 11.90

CENG

BF NO_CL CL05 CL10 CL15 CL20 CL25 CL30

8 0.51 0.60 0.69 0.71 0.92 0.93 1.23

10 0.54 0.61 0.79 0.82 1.00 1.19 1.49

15 0.57 0.69 0.96 1.07 1.35 1.54 1.87

20 0.63 0.75 1.18 1.28 1.67 1.92 2.35

25 0.78 0.88 1.59 1.71 2.05 2.29 2.69

30 0.98 1.14 1.72 1.92 2.53 3.87 2.74

40 1.41 1.42 1.97 2.32 3.08 4.89 3.47

50 1.59 1.69 6 2.20 4.22 3.32 7.88 4.78

100 2.35 2.01 2.64 5.61 4.65 9.61 5.91

80

6.2.3.1 Experiments on BF and the Cluster Count

We perform tests with different number of clusters ranging from 5 to 30 and BF for

values {8, 10, 15, 20, 25, 30, 40, 50, 100}. In order to find the effect of clustering, we

conduct experiments when clustering is not performed. The results of these exper-

iments are obtained by fixing w_session_count, w_user_count, and w_duration

parameters to 0.33, 0.33 and 0.34, respectively.

Figures 6.6 and 6.7 plot the accuracy and coverage results, respectively. In these

figures, CL05 corresponds to the configuration of the system where 5 clusters is used,

and the others are labeled in the same way.

For all of the datasets, when no clustering is performed, the performance of the system

is lower than all other configurations independent of the number of clusters used. This

result is valuable for us to see how clustering increases both the coverage and the

accuracy of the solution. Clustering enables the system to extract more patterns where

these patterns better reveal the users’ interests. In addition, when we examine the

effect of the number of clusters on the accuracy of the system, for the NASA dataset,

for BF smaller than or equal to 15, accuracy increases as the number of clusters

increases for more than 80% of the cases. For the SASKA dataset, the behavior of

the accuracy is similar. For 30 clusters, the system always receives best performance

for all BF values. Similarly, for the CTI dataset, highest accuracy results are achieved

with 30 clusters for all BF values greater than 8. For the MSNBC dataset, clustering

the data to 5 groups gives best performance for all BF values. Finally with 20 clusters,

CENG dataset achieved best accuracy for all BF values.

From these results, we observe that the proper number of clusters to use in the system

depends on the nature of the dataset. Large websites with many possible requests re-

sults in identifying many different usage behaviors by clustering. NASA and SASKA

are examples of such datasets. However, MSNBC has a smaller number of possible

navigation paths in comparison to NASA and SASKA, which results in less number

of usage characteristic groups. In addition,when coverage results are examined, it is

observed that coverage increases in parallel with the accuracy for different cluster

counts. Considering these results, we can conclude that, clustering effects the perfor-

81

0 0.2 0.4 0.6 0.8 1
60

62

64

66

68

70

72

74

76

78

Weight

A
cc

ur
ac

y

W
S
C

W
U

C

W
D

(a) NASA

0 0.2 0.4 0.6 0.8 1
65

70

75

80

85

90

Weight

C
ov

er
ag

e

W
S
C

W
U

C

W
D

(b) CENG

Figure 6.8: Accuracy versus weight parameters for different datasets

mance of the system and its affect depends on the nature of the web site in terms of

distinct usage characteristics. If we cluster the dataset such that it is not partitioned

adequately to reflect coherent groups, the performance decreases. As the number of

distinct usage groups of a web site increases, the number of clusters should increase

in order to better reflect user’s interests.

When we examine the effect of BF on the accuracy and coverage, we observe that,

in more than 80% of the cases, both accuracy and coverage increase as the number

of child nodes kept at each level increases. This results from the fact that, as BF

increases, more patterns can be constructed. In other words, the algorithm gives

more chance to patterns that have lower evaluation values than its siblings at the same

level, but have higher evaluation values than its siblings at lower levels. However, one

other effect of the increased coverage is the increased number of estimations, which

decreases the accuracy at some of the cases.

In order to have an idea about the number of patterns the system extracts, we have

displayed the average number of extracted patterns for the NASA and CENG datasets

in Table 6.8. Considering the same parameter settings for BF and number of clusters,

for the NASA dataset, which is a comprehensive web portal, the average number of

extracted patterns is greater than the CENG dataset, which is rather a smaller web site.

In addition, as BF increases, number of extracted patterns also increases. This con-

firms with the previous discussions. As more child nodes are kept during WaPUPS,

82

more patterns are extracted.

6.2.3.2 Experiments on the Evaluation Function Parameters

In order to find the effect of evaluation function parameters, namely,w_session_count

(W_SC), w_user_count (W_UC) and w_duration (W_D), we conducted exper-

iments using WaPUPS for all of the five datasets. We included only the results for

NASA and CENG datasets, since for the other datasets, results are similar and the

conclusions we reach are the same when the effect of the weight parameters on the

system’s accuracy is concerned.

The parameters are tested for the values {0, 0.2, 0.4, 0.6, 0.8, 1}. The sum of these

parameters are always 1 in the system. Results of these experiments are obtained by

fixing the number of clusters and BF to 10. Figure 6.8 displays the accuracy of the

proposed approach as we change the weight parameters for the NASA and the CENG

datasets.

For both of the datasets, the behavior of the weight parameters is similar. Asw_session

_count and w_user_count increase, accuracy increases. However, as the weight of

the duration increases, accuracy decreases. In addition, covering more distinct user

sessions increases the performance of the solution. The results, however, show an in-

verse relationship between the accuracy of the system and w_duration. Considering

these, we can conclude that the best setting for the parameters should assign higher

values to w_session_count and w_user_count in comparison with w_duration.

However, since the solution is based on user defined evaluation criteria, we believe

that, the construction of the evaluation function itself, and therefore, the best setting

for the weight parameters should be performed in cooperation with the pattern users.

6.2.3.3 Comparison with Frequent Pattern Mining

We made experiments with PrefixSpan algorithm 8 so as to compare our solution with

frequent sequential pattern mining. In order to achieve this, we have made two sets

8 We used Prefixspan implementation given in http://www.philippe-fournier-viger.com/spmf/

83

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

Top # Patterns

S
um

 U
til

ity
 o

f T
op

 #
 P

at
te

rn
s

PrefixSpan
WAPFind

(a)

2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Length of Pattern
A

ve
ra

ge
 V

al
ue

 p
er

 P
at

te
rn

PrefixSpan
WAPFind

(b)

Figure 6.9: Comparison of value results of WaPUPS and PrefixSpan for the NASA

dataset

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

Top # Patterns

S
um

 U
til

ity
 o

f T
op

 #
 P

at
te

rn
s

PrefixSpan
WAPFind

(a)

2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Length of Pattern

A
ve

ra
ge

 V
al

ue
 p

er
 P

at
te

rn

PrefixSpan
WAPFind

(b)

Figure 6.10: Comparison of value results of WaPUPS and PrefixSpan for the CENG

dataset

84

of experiments. In the first set, the values of the patterns extracted by WaPUPS and

by frequent sequential pattern mining are compared. In the second set, we aim to

measure the performance of our method as to what is the hit ratio of high valued

patterns.

Results of the first set of experiments where the extracted pattern scores of WaPUPS

and PrefixSpan compared are displayed in Figures 6.9 and 6.10 for NASA and CENG

datasets, respectively. In these figures, for the graphs in the first column, x-axis refers

to the top n number of patterns extracted by PrefixSpan and WaPUPS. On the other

hand, y-axis represents the sum of the scores of the top n extracted patterns. In ad-

dition, the graphs in the second column display the average values of the extracted

patterns with respect to different pattern lengths, where x-axis refers to the lengths

of patterns and y-axis shows the average values per pattern. When these figures are

examined, it can be concluded that the proposed solution can identify higher valued

patterns when both cumulated sum of the top valued patterns and average value of the

extracted patterns with respect to different pattern lengths are concerned. Although,

the amount of pattern scores accumulated by the proposed algorithm is always higher

than that of PrefixSpan for both the sum and average cases, the rate of change in the

pattern scores is not same for NASA and CENG datasets. The behaviour is not steady,

but on the overall there is an increase and the rate of change may vary depending on

the dataset.

There exists two motivations behind the second set of experiments. First of all, our

proposed algorithm is not a complete algorithm since it is based on the heuristic that

the best BF patterns at each level leads to the extraction of high valued patterns in

terms of user’s evaluation scoring. Therefore, we aim to find out the hit ratio of high

valued patterns considering all possible sequential patterns that can be extracted from

the datasets under consideration. Second, although BF results in an algorithm that

is not complete, it allows managing the size of the search space and extract highest

valued patterns among all the extracted patterns which is a solution to one of the main

challenges of sequential pattern mining research.

In this experiment, we aim to extract all exiting patterns, i.e., sequential patterns

having non-zero support. However, practically this is not feasible. Instead, we low-

85

ered support threshold as much as possible and aimed to extract all the sequence

patterns we could. We found user’s evaluation score for each pattern and consider

this set in the experiment. We applied this procedure to all datasets; however, we

cannot take response from PrefixSpan for the datasets under consideration, since it

cannot complete processing for low support values due to memory limitations of the

experimental environment. For the support values that PrefixSpan can complete its

processing, it cannot generate any patterns. One important observation to point out

here is that, for those datasets, WaPUPS can extract patterns by controlling the size of

the search space using the BF parameter. In addition, it extracts patterns with highest

scores among all the extracted patterns. Therefore, for this experiment, we used only

the 73.7% and 78.2% of the NASA and CENG datasets where we eliminated ses-

sions that has accesses greater than 40 and 25, respectively. We used support values

0.015 for NASA and 0.007 for CENG dataset. For WaPUPS, number of clusters, BF,

w_session_count, w_user_count and w_duration parameters are set to 20, 100,

0.33, 0.33 and 0.34, respectively.

0 200 400 600 800 1000 1200 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Top Patterns of PrefixSpan (in terms of user−based evaluation score)

#P
at

te
rn

s
of

 W
aP

U
P

S

NASA

(a)

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

Top Patterns of PrefixSpan (in terms of user−based evaluation score)

#P
at

te
rn

s
of

 W
aP

U
P

S

CENG

(b)

Figure 6.11: Comparison of number of patterns extracted by WaPUPS and PrefixSpan

In this second set of experiments, we compare the top k patterns extracted by WaPUPS

and PrefixSpan in terms of user based evaluation score. In Figure 6.11 we present the

hit ratio in top k patterns. For the graphs in this figure, we divide the set of patterns

extracted by PrefixSpan into value intervals represented in x-axis. Y-axis displays the

total number of patterns extracted by WaPUPS that fall into these value intervals. First

of all, extracted patterns of WaPUPS almost uniformly fall into the value intervals

86

defined by the top valued patterns of PrefixSpan. Totally, WaPUPS extracted 8503

and 2880 patterns from NASA and CENG datasets, respectively. In addition 274 and

129 of the patterns extracted by WaPUPS have scores greater than the highest valued

pattern of PrefixSpan for NASA and CENG datasets, respectively. The ratio of the

value of the maximum valued pattern of WAPUPS to that of the PrefixSpan are 1.348

for NASA and 13.402 for CENG dataset. When all these results are considered, it can

be concluded that, patterns extracted by WaPUPS have significantly higher evaluation

values than the patterns extracted by PrefixSpan. In addition, with BF, solution can

always generate patterns by controlling the size of the search space. Overall, it can

be concluded that, the proposed solution can generate better patterns in terms of the

evaluation criteria set by the users.

87

88

CHAPTER 7

CONCLUSION

Sequential pattern mining is one of the fundamental research areas of data mining that

has a wide range of application areas including bioinformatics, customer behaviour

analysis and marketing applications. Sequence data on its own is generally big and

for some domains very sparse, therefore, the efficiency of the proposed solutions

are extremely important. More specifically, how effectively the solutions prune the

search space and therefore lower the time and memory requirements are important

considerations. In addition to this, most of the solutions proposed for sequential

pattern extraction based their value analysis of the patterns on the support measure.

However, in many application domains, frequency is not the only desired property.

Even in some scenarious, users may be interested in rare patterns. An example to such

a real life scenario can be given from the medical domain. For instance, doctors may

be interested in extracting patterns that are rare in the data which will give them clue

about rare symptoms. Therefore, the main challenges and limitations of sequential

pattern mining are related to; first the efficiency of the proposed approaches, and

second, the limitation of the existing frequency based techniques.

In this thesis work, we propose two solutions to sequential pattern extraction. The

first solution is a new framework in the area of utility-based sequential pattern mining,

which is one of the solutions proposed by the researchers in order to extract patterns

based on the utility instead of frequency. In utility-based sequential pattern mining,

a new value definition for the patterns is introduced, which is called utility. In this

research problem, the aim is to extract patterns that have utility value higher than or

equal to a user defined minimum utility threshold. The proposed solution in this area

89

is a generic framework for high utility sequential pattern extraction and the solution

defines and formalizes CRoM, which is a tighter upper bound on the utility of the

candidate patterns in comparison with the state of the art TWU-based upper bound.

As proved formally, CRoM correctly eliminates candidate items. The proposed ideas

are realized by HuspExt algorithm, in which CRoM is utilized for filtering out of the

unpromising items prior to candidate generation. Substantial experiments on both

synthetic and real datasets have shown that, HuspExt can extract a complete set of

patterns in lower time and memory requirements even in largescale data with the

utilization of low utility threshold values. By adopting a tighter upper bound and

efficient data structures to realize the pruning method, we can decrease the number of

candidate items and enhance the performance of the utility based sequential pattern

mining framework.

Although utility-based sequential pattern mining presents a solution for the cases

where the value of a pattern is not limited to its frequency, utility framework is not

always adequate for defining the value of a pattern. More specifically, in some real

life cases, the value of a pattern does not depend on distinct item utilities as it is de-

fined in classical utility-based framework. For example, the demographic information

about the users of the patterns can define the value of the extracted patterns. In ad-

dition, common to both frequency-based and utility-based techniques, one important

challenge is that, there exists a huge number of possible patterns that are hidden in

databases and the mining algorithm should find the set of patterns, when possible, sat-

isfying the minimum support or the minimum utility threshold. For especially huge

and sparse datasets, however, it is not possible to extract patterns under high threshold

values. On the other hand, even state of the art algorithms may fail to respond under

even very low threshold values.

In order to handle these limitations, in this thesis work, a new solution is defined for

extracting sequential patterns based on user defined pattern scoring. The solution de-

fines an evaluation function which determines the value of the patterns. This function

can be defined based on any factors that are important for the end-users considering

the value of the extracted patterns. In addition, we control the size of the search space

by defining a new parameter, BF (Branching Factor), which enables the solution to

extract high-valued patterns even in the cases for which existing frequency-based

90

techniques and utility-based techniques cannot generate any pattern.

The current version of the solution is evaluated in the web usage domain, therefore it

is adapted to work with web server log files. However, it should be mentioned that,

the proposed technique can work with any other sequence data, as well. The solution

is based on a novel approach that combines clustering with a new pattern extraction

algorithm. The role of clustering in the framework is to group user sessions on the

basis of similar navigational behaviours that increase the accuracy of the system as

shown by the experiments. For the pattern extraction phase, the core of the proposed

algorithm is evaluation function which captures the user’s definition for the value of a

pattern. We propose WaPUPS algorithm to traverse the search space for high-valued

patterns. In addition, in order to examine how the systems performance changes

when more patterns are allowed to grow, we implemented and tested another version

of WaPUPS. In that version, child nodes of each parent are considered separately and

best BF children of each parent are allowed to proceed to the next level. This increases

the search space at each level from BF to BF times the number of nodes that exist in

the previous level. However, from the results of the experiments we made with that

version, we examine that, this enhancement does not improve the performance of the

solution; therefore it is not included in the thesis work.

Experimental results taken from this solution have shown that proposed approach is

capable of effectively discovering user access patterns and revealing the underlying

value defined by the evaluation function. In addition, using the BF parameter to

control the size of the search space, it can generate high scored patterns even for the

cases where the state of art techniques cannot extract any pattern.

Future work for the thesis study will focus on both of the proposed solutions. First of

all, for the first solution, our plan is to adapt the solution to work with cases where the

utility of the patterns can be negative. In addition, we will work on performance issues

in terms of both time and space. We are planning to work on different techniques so

as to lower both the time and memory requirements of the proposed solution.

For the second solution, the future work will focus on adapting the system to work

on other domains as well. Therefore, we are planning to evaluate the proposed solu-

tion under datasets from different domains and perform experiments over sequence

91

datasets other than the web log data, as well.

As another future direction, the ideas from the two proposed solutions can be inte-

grated. One possible way of integration is to apply the BF parameter to utility based

sequence mining so as to improve efficiency and to be able to respond under low

utility thresholds. In addition, it is possible to investigate the integration of both of

the solutions with conventional frequency based filtering in order to extract the high

frequency patterns having high utility.

92

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-
ciation rules in large databases. In Proceedings of the 20th International Con-
ference on Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In
Proceedings of the Eleventh International Conference on Data Engineering,
ICDE ’95, pages 3–14, Washington, DC, USA, 1995. IEEE Computer Society.

[3] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, and Byeong-Soo
Jeong. Mining high utility web access sequences in dynamic web log data.
In Proceedings of the 2010 11th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Com-
puting, SNPD ’10, pages 76–81, Washington, DC, USA, 2010. IEEE Computer
Society.

[4] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, and Byeong-Soo
Jeong. A novel approach for mining high-utility sequential patterns in sequence
databases. 2010 ETRI Journal, 32:676–686, 2010.

[5] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong,
and Young-Koo Lee. Efficient mining of utility-based web path traversal pat-
terns. In Advanced Communication Technology, 2009. ICACT 2009. 11th Inter-
national Conference on, volume 03, pages 2215–2218, Feb 2009.

[6] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong,
and Young-Koo Lee. Efficient tree structures for high utility pattern mining
in incremental databases. IEEE Trans. Knowl. Data Eng., 21(12):1708–1721,
2009.

[7] Oznur Kirmemis Alkan and Pinar Senkul. Intweb: An ai-based approach for
adaptive web. In Proceedings of the 9th Workshop on Intelligent Techniques for
Web Personalization, 2011.

[8] Oznur Kirmemis Alkan and Pinar Senkul. Assisting web site navigation through
web usage patterns. In Recent Trends in Applied Artificial Intelligence, 26th
International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, IEA/AIE 2013, Amsterdam, The Netherlands, June
17-21, 2013. Proceedings, pages 161–170, 2013.

93

[9] Oznur Kirmemis Alkan and Pinar Senkul. Extracting sequential patterns based
on user defined criteria. In Hybrid Artificial Intelligent Systems - 8th Inter-
national Conference, HAIS 2013, Salamanca, Spain, September 11-13, 2013.
Proceedings, pages 181–190, 2013.

[10] Oznur Kirmemis Alkan and Pinar Senkul. New techniques for adapting web site
topology and ontology to user behavior. In Erol Gelenbe and Ricardo Lent, edi-
tors, Computer and Information Sciences III, pages 419–427. Springer London,
2013.

[11] Oznur Kirmemis Alkan and Pinar Senkul. Crom and huspext: Improving effi-
ciency of high utility sequential pattern extraction. Knowledge and Data Engi-
neering, IEEE Transactions on, PP(99):1–1, 2015.

[12] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential pat-
tern mining using a bitmap representation. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’02, pages 429–435, New York, NY, USA, 2002. ACM.

[13] Arindam Banerjee and Joydeep Ghosh. Clickstream clustering using weighted
longest common subsequences. In In Proceedings of the Web Mining Workshop
at the 1st SIAM Conference on Data Mining, pages 33–40, 2001.

[14] Mostafa Haghir Chehreghani. Efficiently mining unordered trees. In Data Min-
ing (ICDM), 2011 IEEE 11th International Conference on, pages 111–120, Dec
2011.

[15] Kiran Chelluri and Vijay Kumar. Data classification and management in very
large data warehouses. In Third International Workshop on Advanced Issues
of E-Commerce and Web-Based Information Systems (WECWIS ’01), San Jose,
California, USA, June 21-22, 2001, pages 52–57, 2001.

[16] Enhong Chen, Huanhuan Cao, Qing Li, and Tieyun Qian. Efficient strategies
for tough aggregate constraint-based sequential pattern mining. Information
Sciences, 178(6):1498 – 1518, 2008.

[17] Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. Web mining: Infor-
mation and pattern discovery on the world wide web. In ICTAI ’97: Proceed-
ings of the 9th International Conference on Tools with Artificial Intelligence,
page 558, Washington, DC, USA, 1997. IEEE Computer Society.

[18] Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. Data preparation
for mining world wide web browsing patterns. Knowledge and Information
Systems, 1(1):5–32, 1999.

[19] Mariam Daoud, Lynda-Tamine Lechani, and Mohand Boughanem. Towards
a graph-based user profile modeling for a session-based personalized search.
Knowledge and Information Systems, 21(3):365–398, 2009.

94

[20] Nadav Eiron and Kevin S. McCurley. Untangling compound documents on the
web. In Proceedings of the Fourteenth ACM Conference on Hypertext and Hy-
permedia, HYPERTEXT ’03, pages 85–94, New York, NY, USA, 2003. ACM.

[21] Oren Etzioni. The world-wide web: Quagmire or gold mine? Commun. ACM,
39(11):65–68, November 1996.

[22] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Advances
in knowledge discovery and data mining. chapter From Data Mining to Knowl-
edge Discovery: An Overview, pages 1–34. American Association for Artificial
Intelligence, Menlo Park, CA, USA, 1996.

[23] Gary William Flake, Steve Lawrence, C.Lee Giles, and Frans.M. Coetzee. Self-
organization and identification of web communities. Computer, 35(3):66–70,
Mar 2002.

[24] Yongjian Fu, Kanwalpreet Sandhu, and Ming-Yi Shih. Clustering of web users
based on access patterns. In In Proceedings of the 1999 KDD Workshop on Web
Mining. Springer-Verlag, 1999.

[25] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Spirit: Sequential
pattern mining with regular expression constraints. In Proceedings of the 25th
International Conference on Very Large Data Bases, VLDB ’99, pages 223–
234, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[26] Mathias Géry and Hatem Haddad. Evaluation of web usage mining approaches
for user’s next request prediction. In Proceedings of the 5th ACM International
Workshop on Web Information and Data Management, WIDM ’03, pages 74–
81, New York, NY, USA, 2003. ACM.

[27] Abdelghani Guerbas, Omar Addam, Omar Zarour, Mohamad Nagi, Ahmad El-
hajj, Mick J. Ridley, and Reda Alhajj. Effective web log mining and online
navigational pattern prediction. Knowl.-Based Syst., 49:50–62, 2013.

[28] J. Han, J. Pei, and X. Yan. Sequential pattern mining by pattern-growth: Princi-
ples and extensions*. In Wesley Chu and Tsau Young Lin, editors, Foundations
and Advances in Data Mining, volume 180 of Studies in Fuzziness and Soft
Computing, pages 183–220. Springer Berlin Heidelberg, 2005.

[29] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

[30] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal,
and Mei-Chun Hsu. Freespan: Frequent pattern-projected sequential pattern
mining. In Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’00, pages 355–359, New
York, NY, USA, 2000. ACM.

95

[31] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without can-
didate generation. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’00, pages 1–12, New York,
NY, USA, 2000. ACM.

[32] Birgit Hay, Geert Wets, and Koen Vanhoof. Mining navigation patterns using
a sequence alignment method. Knowledge and Information Systems, 6(2):150–
163, 2004.

[33] Yin-Fu Huang and Jhao-Min Hsu. Mining web logs to improve hit ratios of
prefetching and caching. Know.-Based Syst., 21(1):62–69, February 2008.

[34] Guo-Cheng Lan, Tzung-Pei Hong, Vincent S. Tseng, and Shyue-Liang Wang.
Applying the maximum utility measure in high utility sequential pattern mining.
Expert Systems with Applications, 41(11):5071 – 5081, 2014.

[35] Yuefeng Li and Ning Zhong. Web mining model and its applications for in-
formation gathering. Knowledge-Based Systems, 17:207 – 217, 2004. Special
Issue: Web Intelligence.

[36] Ying Liu, Wei Keng Liao, and Alok N. Choudhary. A two-phase algorithm for
fast discovery of high utility itemsets. In Tu Bao Ho, David Wai-Lok Cheung,
and Huan Liu, editors, PAKDD, volume 3518 of Lecture Notes in Computer
Science, pages 689–695. Springer, 2005.

[37] Ying Liu, Wei-keng Liao, and Alok Choudhary. A fast high utility itemsets
mining algorithm. In Proceedings of the 1st International Workshop on Utility-
based Data Mining, UBDM ’05, pages 90–99, New York, NY, USA, 2005.
ACM.

[38] Nizar R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining
algorithms. ACM Comput. Surv., 43(1):3:1–3:41, December 2010.

[39] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of fre-
quent episodes in event sequences. Data Mining and Knowledge Discovery,
1(3):259–289, 1997.

[40] F. Masseglia, F. Cathala, and P. Poncelet. The psp approach for mining sequen-
tial patterns. In JanM. Zytkow and Mohamed Quafafou, editors, Principles of
Data Mining and Knowledge Discovery, volume 1510 of Lecture Notes in Com-
puter Science, pages 176–184. Springer Berlin Heidelberg, 1998.

[41] Florent Masseglia, Pascal Poncelet, and Maguelonne Teisseire. Efficient mining
of sequential patterns with time constraints: Reducing the combinations. Expert
Systems with Applications, 36(2, Part 2):2677 – 2690, 2009.

[42] Stephen G. Matthews, Mario A. Gongora, Adrian A. Hopgood, and Samad Ah-
madi. Web usage mining with evolutionary extraction of temporal fuzzy asso-
ciation rules. Knowledge-Based Systems, 54(0):66 – 72, 2013.

96

[43] Bamshad Mobasher. Data mining for web personalization. In Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web,
volume 4321 of Lecture Notes in Computer Science, pages 90–135. Springer
Berlin Heidelberg, 2007.

[44] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. Discovery
and evaluation of aggregate usage profiles for web personalization. Data Mining
and Knowledge Discovery, 6:61–82, 2002.

[45] Carl H. Mooney and John F. Roddick. Sequential pattern mining – approaches
and algorithms. ACM Comput. Surv., 45(2):19:1–19:39, March 2013.

[46] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Meichun Hsu. Prefixspan: Mining sequential patterns
by prefix-projected growth. In Proceedings of the 17th International Confer-
ence on Data Engineering, pages 215–224, Washington, DC, USA, 2001. IEEE
Computer Society.

[47] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qim-
ing Chen, Umeshwar Dayal, and Mei-Chun Hsu. Mining sequential patterns by
pattern-growth: The prefixspan approach. IEEE Trans. on Knowl. and Data
Eng., 16(11):1424–1440, November 2004.

[48] Jay Pisharath, Jing Liu, Berkin Ozisikyilmaz, Ramanathan Narayanan, Wei-
keng Liao, Alok Choudhary, and Gokhan Memik. Nu-minebench version 2.0
data set and technical report.

[49] Jia-Dong Ren, Yin-Bo Cheng, and Liang-Liang Yang. An algorithm for mining
generalized sequential patterns. In Machine Learning and Cybernetics, 2004.
Proceedings of 2004 International Conference on, volume 2, pages 1288–1292
vol.2, Aug 2004.

[50] Bai-En Shie, Hui-Fang Hsiao, Vincent S. Tseng, and Philip S. Yu. Mining
high utility mobile sequential patterns in mobile commerce environments. In
Proceedings of the 16th International Conference on Database Systems for Ad-
vanced Applications - Volume Part I, DASFAA’11, pages 224–238, Berlin, Hei-
delberg, 2011. Springer-Verlag.

[51] Hou Sizu and Zhang Xianfei. Alarms association rules based on sequential
pattern mining algorithm. In Fuzzy Systems and Knowledge Discovery, 2008.
FSKD ’08. Fifth International Conference on, volume 2, pages 556–560, Oct
2008.

[52] Myra Spiliopoulou. Web usage mining for web site evaluation. Commun. ACM,
43(8):127–134, August 2000.

97

[53] Myra Spiliopoulou, Lukas C. Faulstich, and Karsten Winkler. A data miner
analyzing the navigational behaviour of web users. In In Proc. of the Workshop
on Machine Learning in User Modelling of the ACAI99, 1999.

[54] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In Proceedings of the 5th Interna-
tional Conference on Extending Database Technology: Advances in Database
Technology, EDBT ’96, pages 3–17, London, UK, UK, 1996. Springer-Verlag.

[55] Vincent S. Tseng, Bai-En Shie, Cheng-Wei Wu, and Philip S. Yu. Efficient
algorithms for mining high utility itemsets from transactional databases. IEEE
Transactions on Knowledge and Data Engineering, 25(8):1772–1786, 2013.

[56] Vincent S. Tseng, Bai-En Shie, Cheng-Wei Wu, and Philip S. Yu. Efficient
algorithms for mining high utility itemsets from transactional databases. IEEE
Trans. on Knowl. and Data Eng., 25(8):1772–1786, August 2013.

[57] Jason Tsong-Li Wang, Gung-Wei Chirn, Thomas G. Marr, Bruce Shapiro, Den-
nis Shasha, and Kaizhong Zhang. Combinatorial pattern discovery for scientific
data: Some preliminary results. In Proceedings of the 1994 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’94, pages 115–125,
New York, NY, USA, 1994. ACM.

[58] Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan: Mining closed sequential
patterns in large datasets. In In SDM, pages 166–177, 2003.

[59] Hong Yao, Howard J. Hamilton, and Cory J. Butz. A foundational approach to
mining itemset utilities from databases. In Michael W. Berry, Umeshwar Dayal,
Chandrika Kamath, and David B. Skillicorn, editors, SDM. SIAM, 2004.

[60] Hong Yao, Howard J. Hamilton, and Liqiang Geng. A unified framework for
utility-based measures for mining itemsets. in proc. of acm sigkdd 2nd work-
shop on utility-based data mining. In Second International Workshop on Utility-
Based Data Mining, 2006.

[61] Junfu Yin, Zhigang Zheng, and Longbing Cao. Uspan: An efficient algorithm
for mining high utility sequential patterns. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’12, pages 660–668, New York, NY, USA, 2012. ACM.

[62] Junfu Yin, Zhigang Zheng, Longbing Cao, Yin Song, and Wei Wei. Efficiently
mining top-k high utility sequential patterns. In Data Mining (ICDM), 2013
IEEE 13th International Conference on, pages 1259–1264, Dec 2013.

[63] Unil Yun. A new framework for detecting weighted sequential patterns in large
sequence databases. Knowledge-Based Systems, 21(2):110 – 122, 2008.

98

[64] Mohammed J. Zaki. Efficient enumeration of frequent sequences. In Proceed-
ings of the Seventh International Conference on Information and Knowledge
Management, CIKM ’98, pages 68–75, New York, NY, USA, 1998. ACM.

[65] Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent se-
quences. Mach. Learn., 42(1-2):31–60, January 2001.

[66] Baoyao Zhou, Siu Cheung Hui, and Kuiyu Chang. An intelligent recommender
system using sequential web access patterns. In Cybernetics and Intelligent
Systems, 2004 IEEE Conference on, volume 1, pages 393–398 vol.1, Dec 2004.

[67] Lin Zhou, Ying Liu, Jing Wang, and Yong Shi. Utility-based web path traver-
sal pattern mining. In Data Mining Workshops, 2007. ICDM Workshops 2007.
Seventh IEEE International Conference on, pages 373–380, Oct 2007.

[68] Jianhan Zhu, Jun Hong, and John G. Hughes. Using markov chains for link
prediction in adaptive web sites. In In Proc. of ACM SIGWEB Hypertext, pages
60–73. Springer, 2002.

99

100

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Alkan Kirmemis, Oznur

Nationality: Turkish (TC)

Date and Place of Birth: 10.04.1982, Samsun

Marital Status: Married

Phone: 0 535 2447485

EDUCATION

Degree Institution Year of Graduation

Ph.D. Dept. of Computer Engineering, METU 2015

M.S. Dept. of Computer Engineering, METU 2008

B.S. Dept. of Computer Engineering, METU 2004

High School Atatürk High School, Ankara 1999

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2014- Dept. of Computer Engineering, YBU Instructor

2010-2014 Republic of Turkey Prime Ministry Computer Engineer

2006-2010 Siemens EC, Ankara Computer Engineer

2004-2006 KoçSistem, Ankara Software Specialist

101

PUBLICATIONS

International Journal Publications

1. O. Kirmemis Alkan, P. Karagoz (Under Review), WaPUPS: Web Access Pat-

tern Extraction Under User-Defined Pattern Scoring, Submitted to Journal of

Information Science on 10.04.2015.

1. O. Kirmemis Alkan, P. Karagoz, CRoM and HuspExt: Improving Efficiency of

High Utility Sequential Pattern Extraction, IEEE Transactions on Knowledge

and Data Engineering, 2015 (10.1109/TKDE.2015.2420557).

International Conference Publications

1. O. Kirmemis Alkan, P. Karagoz, Extracting Sequential Patterns Based on User

Defined Criteria, International Conference on Hybrid Artificial Intelligence

Systems (HAIS), Salamanca, Spain, September 2013.

2. O. Kirmemis Alkan, P. Karagoz , Assisting Web Site Navigation Through Web

Usage Patterns, IEA/AIE 2013, pp.161-170, Amsterdam, Holland, June 2013.

3. O. Kirmemis, P. Senkul, New Techniques for Adapting Web Site Topology and

Ontology to User Behavior", ISCIS 2012, Paris, France, October 2012.

4. O. Kirmemis Alan, P. Senkul , IntWEB: An AI-Based Approach for Adaptive

Web, IJCAI 9th Workshop on Intelligent Techniques for Web Personalization,

July 2011.

5. O. Kirmemis, A.Birturk, A Content-Based User Model Generation and Op-

timization Approach for Movie Recommendation, In 6th Workshop on Intel-

ligent Techniques for Web Personalization and Recommender Systems at the

Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08), 13-17

July 2008, Chicago, Illinois.

6. O. Kirmemis, A.Birturk, A User Controlled Content Based Movie Recom-

mender with Explanation and Negative Feedback, In 4th International Confer-

102

ence on Web Information Systems and Technologies (WEBIST ’08), 4-7 May

2008, Funchal, Portugal.

7. O. Kirmemis, A.Birturk, A Content Based Movie Recommendation System,

in Expanding the Knowledge Economy: Issues, Applications, Case Studies,

Paul Cunningham and Miriam Cunningham(Eds), IOS Press, 2007 Amsterdam,

ISBN 978-1-58603-801-4; eChallenges 2007, 24-26 October 2007, The Hague,

The Netherlands.

AWARD AND SCHOLARSHIP

• Ph.D. Fellowship by TUBITAK (2010-2015)

103

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Contributions
	Organization of the Thesis

	BACKGROUND
	Frequent Pattern Mining
	Sequential Pattern Mining
	Definitions
	Formalization of the Sequential Pattern Mining Problem

	Utility-Based Sequential Pattern Mining
	Definitions
	Utility Calculations
	Formalization the Problem of High Utility Sequential Pattern Mining
	Research Challenges

	Web Usage Mining

	RELATED WORK
	Sequential Pattern Mining
	Apriori-Based Approaches
	Pattern-Growth Based Approaches

	Constraint-Based Sequential Pattern Mining
	Utility-Based Mining
	Utility-Based Itemset Mining
	Utility-Based Sequence Mining

	Web Usage Mining

	IMPROVING EFFICIENCY OF HIGH UTILITY SEQUENTIAL PATTERN EXTRACTION
	Structure of the Database Sequences
	Structure of the Patterns
	Construction of the Pattern Tree
	Calculating the Utilities of Child Nodes
	Pruning Strategies
	HuspExt Algorithm

	SEQUENTIAL PATTERN EXTRACTION UNDER USER-DEFINED PATTERN SCORING
	Data preparation
	Clustering Sequences
	WaPUPS algorithm
	Evaluation Function

	EVALUATION OF THE PROPOSED SOLUTIONS
	Evaluation of the Proposed Solution for High Utility Sequential Pattern Mining
	DataSets
	Phase 1: Dataset Characteristics
	Phase 2: Performance Evaluation
	Phase 3: Evaluation of the Proposed Pruning Strategy
	Phase 4: Scalability of the Proposed Solution

	Evaluation of the Proposed Solution for Sequential Pattern Extraction Under User-Defined Pattern Scoring
	DataSets
	Evaluation Methodology and Metrics
	Results
	Experiments on BF and the Cluster Count
	Experiments on the Evaluation Function Parameters
	Comparison with Frequent Pattern Mining

	CONCLUSION
	REFERENCES
	CURRICULUM VITAE

