

SPARKS: A LANGUAGE FOR TEST PROCESS SCRIPTING FOR

INSTRUMENTATION SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MAHDI SAEEDI NIKOO

IN PARTIAL FULFILLMENT OF REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

APRIL 2015

Approval of the thesis:

SPARKS: A LANGUAGE FOR TEST SCRIPTING FOR

INSTRUMENTATION SYSTEMS

submitted by MAHDI SAEEDI NIKOO in partial fulfillment of the requirements

for the degree of Master of Science in Computer Engineering Department,

Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver

Dean, Graduate School of Natural and Applied Sciences _______________

Prof. Dr. Adnan Yazıcı

Head of Department, Computer Engineering _______________

Assoc. Prof. Dr. Halit Oğuztüzün

Supervisor, Computer Engineering Dept., METU _______________

Examining Committee Members:

Prof. Dr. Ali Hikmet Doğru

Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Halit Oğuztüzün

Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Murat Manguoğlu

Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Uluç Saranlı

Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Umut Sezen

Electrical and Electronics Engineering Dept., Hacettepe U. _____________________

 Date: 28.04.2015

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name: Mahdi Saeedi Nikoo

Signature :

v

ABSTRACT

SPARKS: A LANGUAGE FOR TEST PROCESS SCRIPTING FOR

INSTRUMENTATION SYSTEMS

Saeedi Nikoo, Mahdi

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün

April 2015, 133 Pages

Calibration of test and measurement equipment is an important requirement in

industry to ensure that the measurements they perform are reliable. Developing

automated calibration procedures with existing tools requires considerable

programming expertise. In this thesis, we introduce the initial version of SparkS, a

domain specific language that aims to make development and maintenance of

automated calibration procedures much easier for workers in the field of calibration.

We present the design and implementation of SparkS, and demonstrate its use on an

example test process. The SparkS interpreter runs on Metrology.NET, a new

generation platform for calibration automation, developed by Cal Lab Solutions, Inc.,

Aurora, CO, USA.

Keywords: calibration, test and measurement equipment, domain specific language

vi

ÖZ

SPARKS: ENSTRÜMANTASYON SİSTEMLERİNİN TEST SÜREÇ

BETİKLERİ İÇİN BİR DİL

Saeedi Nikoo, Mahdi

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün

Nisan 2015, 133 Sayfa

Test ve ölçüm ekipmanlarının kalibrasyonu, endüstride yapılan ölçümlerin güvenilir

olduğundan emin olmak için önemli bir gerekliliktir. Mevcut araçlar ile otomatik

kalibrasyon prosedürleri geliştirmek önemli ölçüde programlama uzmanlığı

gerektirir. Bu tezde, otomatik kalibrasyon prosedürlerinin geliştirilmesini ve

bakımını kolaylaştırmayı amaçlayan, alana özel bir dil olan SparkS’ın ilk sürümü

sunulmaktadır. Bu tezde SparkS’ın tasarım ve gerçekleştirimi anlatılmakta ve

kullanımı örnek bir test süreci üzerinde gösterilmektedir. SparkS yorumcusu,

Metrology.NET üzerinde çalışmaktadır; bu Cal Lab Solutions, Inc. (Aurora, CO,

ABD) tarafından geliştirilen kalibrasyon otomasyonu için yeni nesil bir platformdur.

Anahtar Kelimeler: Kalibrasyon, test ve ölçüm ekipmanı, alana özel dil

vii

OLEDGMENTS

To My Mother

viii

ACKNOWLEDGEMENTS

I would firstly like to express my sincere appreciation to my supervisor Assoc. Prof.

Dr. Halit Oğuztüzün for his indispensable support, encouragement and constant

guidance throughout the whole study. Besides my advisor, I would also like to thank

my thesis committee members: Prof. Dr. Ali Hikmet Doğru, Assoc. Prof. Dr. Murat

Manguoğlu, Assoc. Prof. Dr. Uluç Saranlı, and Assoc. Prof. Dr. Umut Sezen, for

their encouragements and insightful comments.

My special thanks go to the great team at Spark Calibration Services, specifically to

Gülsün Tünay Ergin, Onur Çetiner, Görkem Tünay and Özet Öztürk for all their

technical and moral support and to the Cal Lab Solutions team, specifically to

Michael L. Schwartz, David Zajac and Patrick O'Malley for their excellent assistance

along my work.

I would also like to thank my very dear friends, Alperen Eroğlu and Muhammed

Çağrı Kaya for their being exceptional friends during my graduate study.

Finally, yet the most importantly, nothing is adequate to express my heartfelt feelings

to my beloved family forever. None of this would have been even possible without

the love and patience of them.

This work was supported by TÜBİTAK-TEYDEB under the project no. 7140501.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS .. xv

CHAPTERS

1 INTRODUCTION..... ... 1

1.1 Aim and Scope of the Work ... 1

1.2 Organization of the Thesis ... 3

2 DOMAIN CONCEPTS..... .. 5

2.1 Metrology Domain Concepts ... 5

2.2 Metrology.NET .. 9

2.3 Metrology.NET Test Process Software Hierarchy ... 16

2.4 Domain Specific Languages ... 19

3 SPARKS LANGUAGE DESIGN..... .. 21

3.1 SparkS Grammar in EBNF .. 21

3.2 Syntax .. 24

3.3 Arithmetic and Boolean expressions ... 25

3.4 SparkS Statements ... 26

3.4.1 The require Statement ... 26

3.4.2 The bind Statement .. 26

x

3.4.3 The testProcess Statement ... 27

3.4.4 The testPoint Statement ... 27

3.4.5 The testGroup Statement ... 28

3.4.6 Function Call .. 29

3.4.7 The constant Declaration ... 29

3.4.8 The set Statement ... 30

3.4.9 The for each Statement .. 32

3.4.10 The if-then-else Statement .. 33

3.5 Lexical Elements .. 34

3.5.1 Operators .. 36

3.5.2 Reserved Words ... 36

3.5.3 Paired keywords ... 37

3.5.4 Helper Functions .. 37

3.6 Mapping of Domain Concepts .. 37

4 LANGUAGE IMPLEMENTATION..... ... 41

4.1 SparkS Front-End .. 43

4.1.1 Interpretation vs Compilation ... 44

4.1.2 Communication Mechanism in Metrology.NET 45

4.2 SparkS Back-End ... 48

4.2.1 Return Type .. 49

4.2.2 Bindings ... 49

4.2.3 The require Statement .. 50

4.2.4 The bind Statement ... 51

4.2.5 The testPoint Declaration .. 53

4.2.6 The testGroup Statement ... 54

4.2.7 The set Statement ... 55

xi

4.2.8 The constant Declaration ... 61

4.2.9 The Function Call Statement ... 62

4.2.10 The for each Loop .. 63

4.2.11 The if-then-else Statement ... 66

5 SPARKS IN USE..... ... 69

5.1 Calibration process based on Metrology.NET ... 69

5.2 Programming Editor ... 79

5.3 Case Study .. 81

6 CONCLUSION AND FUTURE WORK..... .. 87

6.1 Contributions .. 87

6.2 Future Work ... 88

REFERENCES ... 91

APPENDICES

SAMPLE SCRIPTS WRITTEN IN SPARKS ... 101

METROLOGY.NET SYSTEM DATA DICTIONARY ... 109

METROLOGY.NET SYSTEM CONCEPTUAL MODEL 117

LIST OF SPARKS LANGUAGE KEYWORDS AND PREDEFINED WORDS .. 121

HELPER FUNCTIONS ... 123

COMPARISON OF A SAMPLE SPARKS SCRIPT WITH ITS EQUIVALENT ON

METROLOGY.NET PLATFORM ... 125

xii

LIST OF TABLES

TABLES

Table 1.1 - Comparison of Product Features .. 3

Table 2.1 – Test Points for Frequency Readout Accuracy Performance Test [14] 6

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Frequency Readout Accuracy Performance Test Configuration ……….. 7

Figure 2.2 Metrology.NET System Overview…………………………………….. 13

Figure 2.3 Metrology.NET data handling overview ………………………….…... 14

Figure 2.4 Metrology.NET work order concept overview …………………….... 15

Figure 2.5 How SparkS interpreter embeds into Metrology.NET …………….... 16

Figure 2.6 Metrology.NET Calibration Software Layers ……..………………….. 18

Figure 4.1 Embedding SparkS interpreter into Metrology.NET system………….. 42

Figure 4.2 An example parse tree generated by the front-end………………...…... 43

Figure 4.3 Metrology.NET and SparkS interpreter…………………………..…… 47

Figure 4.4 SparkS Interpreter position in the Metrology.NET software

hierarchy………………………………………………………………………....… 48

Figure 4.5 require statement type-1 parse tree………………………………...….. 50

Figure 4.6 require statement type-2 parse tree……………………………………. 50

Figure 4.7 bind statement type-1 parse tree…………………………………….…. 52

Figure 4.8 bind statement type-2 parse tree…………………………………….…. 52

Figure 4.9 testPoint statement parse tree…………………………………..……… 53

Figure 4.10 testGroup statement parse tree…………………………...................... 54

Figure 4.11 set statement parse tree type-1………………………………...…...… 55

Figure 4.12 set statement parse tree type-2…………………………………....….. 57

Figure 4.13 set statement parse tree type-3……………………………………..… 59

xiv

Figure 4.14 set statement parse tree type-4…………………...…………………… 61

Figure 4.15 constant statement parse tree……………………...………………….. 61

Figure 4.16 function call statement parse tree…………………………………….. 62

Figure 4.17 testPointLoop construct parse tree…………………..……..……….… 64

Figure 4.18 rangeLoop construct parse tree………………………………………. 65

Figure 4.19 if-then-else statement parse tree……………………………………… 67

Figure 5.1 Adding a test point using Metrology.NET web interface……………… 70

Figure 5.2 An example Excel sheet showing partially a sample test group 71

Figure 5.3 Our upload tool for selective test group uploading……………..………71

Figure 5.4 A screenshot of Metrology.NET agent service ………………….…... 72

Figure 5.5 Register an agent in Metrology.NET……………………………….….. 74

Figure 5.6 A screenshot from Metrology.NET web interface showing open work

orders…………………………………………………………………….……….… 75

Figure 5.7 Create test package and work order………………………………….… 76

Figure 5.8 Start a work order and run a test ………………………………….…... 77

Figure 5. 9 Overall calibration process based on Metrology.NET……………..….. 79

Figure 5.10 A snapshot of a SparkS script written in Geany………………....…... 80

xv

LIST OF ABBREVIATIONS

AJAX Asynchronous JavaScript And XML

ANSI American Standard Code for Information Interchange

ANTLR Another Tool For Language Recognition

API Application Programming Interface

CSS Cascading Style Sheets

CMS Calibration Management Software

CVI C for Virtual Instrumentation

CW Synthesized Sweeper

DLL Dynamic Link Library

DSL Domain Specific Language

DUT Device Under Test

EBNF Extended Backus–Naur Form

ETE Electronic Test Equipment

GPIB General Purpose Interface Bus

HP Hewlett-Packard

HTML HyperText Markup Language

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

MSB Metrology Service Bus

NI National Instruments

PC Personal Computer

QA Quality Assurance

REST Representational State Transfer

RF Radio Frequency

xvi

SCPI Standard Commands for Programmable Instruments

SDE Software Development Environment

SQL Structured Query Language

TME Test Management Environment

UoM Unit of Measure

UUT Unit Under Test

VB Visual Basic

VI Virtual Instrument

VEE Visual Engineering Environment

XML Extensible Markup Language

1

CHAPTER 1

1 INTRODUCTION.....

This chapter introduces the motivation and scope of the work, summarizes the related

works and further outlines the organization of the thesis.

1.1 Aim and Scope of the Work

Electronic Test Equipment such as signal and power generators, signal and power

analyzers, and oscilloscopes, are to be tested in predefined time intervals or for the

purpose of repair. Testing and calibration is important in that these instruments play

a critical role in product testing and development in industry.

Calibration [6] [8] for such instruments is done either manually or through

automation software. Manual testing, being time and energy consuming, error prone,

and tedious, is a costly option. On the other hand, the same task can be performed

automatically through a client computer connected to the instrument that needs to be

calibrated.

There are several software systems available in the market to be used to perform

testing and calibration for testing equipment. Some of these software systems such as

Agilent TME [11][26] are automation systems to be used in the labs directly by

technicians to run the preloaded tests on equipment while others such as Agilent

VEE [4] and NI(National Instruments) LabView [9] allow domain experts to write

and add their own test modules. These tools all have their own pros and cons but the

main downside that they all have in common is the difficulty of developing test

scripts for technicians and even experts in the domain who do not have a

programming background.

2

In this thesis, we present a Domain Specific Language (DSL) that is aiming to fill up

this gap between test manuals that are quite understandable for their readers who are

usually technicians at labs who are in charge of the calibration tasks, and the

developed test scripts executable by computers. Test manuals, such as [10], are

calibration manuals for a specific instrument or a family of instruments, along with

their options, that cover all the steps (with variations) to be taken by a technician for

a manual calibration.

The proposed DSL, named SparkS, is aimed to sit on top of an automated calibration

platform. The language syntax and semantics are designed to be independent of any

underlying platform while the interpreter, that is the backend of the language

processor, will be based on the platform on which to run the tests, namely

Metrology.NET, a new platform for calibration automation developed by Cal Lab

Solutions, Inc., Aurora, CO, USA [12]. There also is not any dependency of the

language and its processor to any equipment, whether it be Device Under Test

(DUT) or Electronic Test Equipment (ETE). Besides the ease of writing the language

provides, test script reading and tracking program flow is also an important

capability that our language provides for especially technicians and QA (Quality

Assurance) people who need to understand and audit a test script.

As a comparison, you can see in table 1.1, at one side, the two main competitors,

Agilent VEE and NI LabView, and at the other side, the composition of the

Metrology.NET system and our language SparkS. The main effect of SparkS appears

in the features number 1, 2 and 8. For the feature number 1, the language provides

transparency to the end user to read/write and inspect test procedures in an easier

way. In the two mentioned graphical development environments, as experience

shows, as the size of a program gets bigger, complexity level increases which lowers

the readability. Also, as it is obvious from the feature number 8, we have complete

customization on our system to adapt it to our needs. A complete description for each

of the features will be given in the next chapters.

3

Table 1.1 - Comparison of Product Features

No Product features
Agilent VEE /

LabVIEW

Metrology.NET

+ SparkS

1

Transparent, meaning it is easy to read,

understand, and inspect the automated

process by non-programmers

No Yes

2
Complexity level as program size gets

bigger
High Low

3
Usage of multiple functions of units for

different purposes for a better efficiency
No Yes

4
Optimization of test setups through

client/server relationship
No Yes

5
Remote User Interface of test process over

the internet by smart phones or laptops
No Yes

6
Taking advantage of service-oriented

architecture
No Yes

7 Uncertainty calculation tools No Yes

8 Customization ability for our needs No Yes

9
Aids the operator when selecting the best

reference to use for a calibration
No Yes

1.2 Organization of the Thesis

The remaining chapters in this study will be as follows:

 Chapter 2 will cover the related domain concepts that will help

readers have a background on the related metrology domain concepts,

a brief introduction to Domain Specific Languages and the related

works that have already been done in the domain. In this section,

Metrology.NET, the underlying platform for our language

implementation will also be discussed.

 Chapter 3 will discuss the language requirements and SparkS

language syntax (grammar, lexical conventions) while the complete

presentation of the grammar used for parsing is in Appendix A.

 In chapter 4, language implementation issues, including the front-end

and back-end, use of the visitor pattern in the interpreter and how the

interpreter binds to the underlying platform, Metrology.NET will be

discussed.

4

 Chapter 5 covers a case study with a sample script and a detailed

account of how it runs to show the language in use.

 Chapter 6 will conclude the study, what has been achieved, and what

else is being planned as future work.

5

CHAPTER 2

2 DOMAIN CONCEPTS.....

In this chapter, we summarize the Metrology domain concepts, platform-related

concepts and the domain-specific language approach used in our work.

2.1 Metrology Domain Concepts

Metrology, the science of measurement, is an extensive domain both in research and

industry [8] [13]. In this work, our focus is over measuring instruments used in

electrical and electronic systems. Signal Generators, Signal Analyzers, Frequency

Generators, Frequency Analyzers, Network analyzers, Spectrum Analyzers are some

examples of the types of these instruments. Uncertainty analysis [29] is delegated to

the underlying platform; thus, it is outside the scope of this work. Below come the

main concepts that we will be dealing with throughout our study:

Electronic Test Equipment or Standard

In every test configuration we have a UUT on one side and Electronic Test

Equipment (ETE) or standard on the other side. Depending on what the UUT is, we

will have appropriate ETE(s) to perform a test. In order to test if our instrument

functions accurately, we need to test it against some ETE(s) that we are sure of their

performance accuracy. So this way we can make sure that the device fulfills its job

appropriately as expected. In the figure shown above the Synthesized Sweeper takes

an ETE role to test the Spectrum Analyzer’s performance.

Device/Unit Under Test

Device Under Test (DUT) or Unit Under test (UUT) is the manufactured equipment

that is supposed to undergo tests. In Figure 2.1 the Spectrum Analyzer is our UUT on

which tests are performed.

6

Performance Test

Performance Tests are performed to test the electrical performance of the device and

make sure the Unit Under Test (UUT) fulfills the expected functions. All the

required equipment to perform a test and all the details including test configuration

are described in this part for customers who want to perform the tests. These tests are

mostly done by calibration laboratories which have the required tools and equipment

and standard and high quality settings for this purpose.

Test Point

A performance test is typically comprised of cycles in which a series of parameters

for both the UUT and ETE change. Each cycle in a test refers to a test point in test

manual. In the following table you can see the test points for Frequency Readout

Accuracy Performance Test of Agilent PSA Series Spectrum Analyzers as an

example:

Table 2.1 – Test Points for Frequency Readout Accuracy Performance Test [14]

Synthesized Sweeper

CW Frequency

(MHz)

Analyzer Span

(MHz)

Analyzer Center

Frequency

(GHz)

Measured

Frequency

517.59 1.98 517.59

832.50 1.98 832.50

1505 2000 1505

1505 127.2 1505

1505 54.1 1505

1505 7.95 1505

1505 0.106 1505

Each row in the table is a test point to be tested. The rightmost column is left to be

filled after the test is applied. The first column contains the parameter values for the

ETE used in this test configuration (Synthesized Sweeper) while the second and the

third columns are for the UUT.

7

Test Manual

Test manual, calibration guide or calibration procedure is the document that is

provided by the manufacturer of an instrument. The guide usually contains all the

required information about the instrument for customers, including safety

information, equipment required for performance tests and calibration, specifications,

performance test procedures, basic maintenance, and some other material.

Test Configuration

In order to perform a correct measurement, most performance tests require specific

connections to be made before the test is started. This information is provided in each

test which often involves a graphical figure as the one shown below:

Figure 2.1 Frequency Readout Accuracy Performance Test Configuration [14]

The configuration shown in Figure 2.1 is for the Frequency Readout Accuracy

Performance Test of Agilent PSA Series Spectrum Analyzers [14].

Test Procedure

Test Procedure is the set of steps that need to be done either manually or

automatically for both UUT and ETE(s) in order to perform a test. The procedures in

test manuals are arranged for manual testing on the instruments involved. The

8

counterpart SCPI commands are also provided in the Command Reference of UUT

for programmers to control the equipment remotely through a computer.

Command Reference

Manufacturers also provide another document named Command Reference that

includes all the commands (SCPI Commands [14]) that one needs to control

equipment through a computer. In calibration automation these commands are used

to communicate with the instrument. One step in a Test Procedure is equivalent to

one or several commands in the Command Reference.

Testing Terminal

In manual testing, the technician who performs a calibration goes through Test

Procedures one by one as indicated in instrument’s test manual. But if we want to

automate the calibration process, we have two options. Either available automation

tools are used or appropriate test scripts are written to perform the same task as

manual calibration. In either case this is done through a terminal computer that

connects to all the equipment that are involved in a test and controls them by sending

and receiving commands.

GPIB/IEEE-488

IEEE-488 is a digital communication bus specification [16]. IEEE-488 was created

as HP-IB (Hewlett-Packard Interface Bus) but is commonly called GPIB (General

Purpose Interface Bus). GPIB is the standard bus that is mostly used in calibration

labs for communication between instruments. A very useful feature provided by this

bus is the ability to connect several instruments to each other to form a network of

equipment.

SCPI/IEEE488.2

Standard Commands for Programmable Instruments (SCPI), which is mostly

pronounced as “skippy”, is standard that defines syntax and commands to be used in

controlling programmable test and measurement devices. It was defined in

IEEE488.2 specification [14]. The language was defined to be a standard among all

9

instruments but later was customized by different vendors. It is still the dominant

instrument language used for programming instruments.

Metrology Technician

The person at a calibration lab, who gets work orders and is responsible for running

tests on UUTs and does adjustments and fixes if necessary and finally produces

reports for customers.

Metrology Engineer

The person who is usually responsible for developing calibration automation

programs to be used at calibration labs by technicians.

2.2 Metrology.NET

The Metrology.NET automated calibration system, produced by Cal Lab Solutions,

Inc., Aurora, CO, USA [12], touted as the new generation platform for the testing

and calibration process. The main features of the Metrology.NET™ framework are

highlighted below [20].

The system is in a client/server configuration. The main server hosts the

Metrology.NET application service. Each client workstation will be configured as

Calibration Agents. Technicians will interact with the calibration agents using the

local workstation or remotely using Metrology.NET Application Services. The

Metrology.NET automated calibration system is designed using an open standard

Service Oriented Architecture. It is built on REST communications [17] using

AJAX calls [18] to securely exchange data between system agents.

 Metrology.NET views a calibration job as a set of test points related to a specific

instrument. The calibration process is abstractly viewed as the process of obtaining

and collecting the results for all the required test points. Once all the test points have

been completed the calibration job will be considered complete and the calibration

10

activity can then review the data and certify the instrument by generating reports that

comply to ISO 17025 and ISO 900x standards.

Collection of the data can be accomplished in a number of ways. Metrology.NET

will allow for manual data collection, fully automated data collection and several

hybrid methods of data collection between manual and fully automated. The overall

goals of Metrology.NET are to simplify the process of data collection, storage, data

analysis and reporting in to a single calibration system.

For many labs fully automated calibration procedures will increase productivity,

accuracy and repeatability. Metrology.NET offers flexibility with regard to

automation. Every calibration task can be broken down into smaller reusable test

modules to test specific sections of a UUT (Unit Under Test) using specified ETE

configurations. Automated calibration can be accomplished by passing a subset of

test points to an autonomous test module. As the test module completes the test

point(s) it will send the test results to the Metrology.NET application service.

Technicians are allowed a level of autonomy with executing a calibration

procedure. Metrology.NET allows them to select what test groups to perform, in

what order and on what test stations they will be performed. They will be able to

start, stop, and retest each section of the procedures as needed. Metrology.NET

allows the technicians to halt a calibration process and restart it overnight or for

weeks later after it has been repaired.

Additionally, Metrology.NET stores important data about the calibration process at

every test result. Common elements like as-found, as-left along with the measured

value and the uncertainty are stored. Furthermore, Metrology.NET also stores

information like technicians, calibration work station used, standards used, time

stamps, and other customized parameter data. Such information is stored at every test

result record to enhance repeatability.

11

Once the calibration is complete, Metrology.NET provides a report of the calibration

data meeting the industry standards and requirements, such as ISO 17025 and ISO

900x.

A distinguishing functionality offered by the Metrology.NET is the use of multiple

functions of units for different purposes for better efficiency. Typically, calibration

automation systems limit the usage of equipment functions to specific brands or

models and this does not allow users to use other equipment they might have at hand

instead of the one supported by the tool.

Remote User Interface of testing process over the internet is another distinguishing

feature that is provided by the Metrology.NET. The user is able to initiate the test

and follow the process through the end so that when there is a need for the user to

interfere physically, s/he could come in and configure the testing setup appropriately

or if there is no need for a physical reconfiguration, s/he could do the right action

remotely through his/her PC or smart phone to move forward the process. This

feature will be very useful and time saving for the technicians because they do not

need to stay in the lab for long periods of time to follow the testing process.

The web based user interface is designed in such a way that enables the technician to

manually upload the test points to the server. After all the data for a test package is

ready, the technician is able to create work orders in which s/he can choose which

tests to put into the work order. A work order is equivalent to a calibration task that

is supposed to be done by a technician on the customer’s equipment. It includes all

the tests that are supposed to be performed on a UUT.

A useful feature of the server side of Metrology.NET is that it can be placed in

different locations. As it is considered, in most cases there will be a local version of

the server for a lab to work with the testing agents in the same lab. The testing agents

are like worker bees that do the calibration process in a collaborative manner that are

all controlled by the local server. Another option is a remote server which does the

same thing as the local one. If we ignore the distance, security or other issues that

might be caused by a remote server instead of a local one, it might still have some

12

advantages. We envision the metrology server as a centralized source to keep all the

calibration related data and a place to have shared jobs and communications among

different labs. Another choice for the Metrology.NET server is a cloud based

database which is close in concept to the remote server while it also will take

advantage of the cloud computing benefits.

Metrology.NET has been designed in an extendible way based on the driver-based

approach. There are some preloaded drivers for some instruments to do their testing

and calibration while it is open for any third party drivers to be added onto the

platform to be used accordingly. This is done by the API that is provided by the

Metrology.NET to the end users. So as long as a new driver matches the provided

interface, it will be ready to go on and run the test.

In the following section some modeling for the Metrology.NET is presented which

gives an overview for understanding of the main concepts and functionalities that are

dealt with in the system. Figure 2.2 shows an overview of the whole system and how

the interactions occur among the system components. The Metrology engineer will

be the one in charge of the server control. The Testing Agent is the computer in the

lab that connects directly to the customer and standard equipment and performs the

test. The complete conceptual model (class diagram) for the Metrology.NET system

can be found in Appendix D. Also, a data dictionary for the Metrology.NET platform

is given in Appendix C.

13

Figure 2.2 Metrology.NET System Overview

Equipment are connected to each other and to the agent that runs the test through

General Purpose Interface Bus (GPIB) [16] which is the most commonly used port

type in such settings. Test Processes which include the test scripts can be written in

any Microsoft .NET language, such as VB or C#.

The system functionalities are elaborated by three major steps which will be shown

below.

Step 1: Create a test package and put it in the library.

The test package Library is the source in which to keep all the data needed for tests

to be done. Test package, test group and test point form the hierarchy in which Test

package is the container to keep the other two, and the test group is the container to

keep test points. A test package corresponds to one or a family of equipment with

14

different models and options. A test group comes down to a single test and a test

point includes the data needed for one iteration of the related Test Process.

Metrology.NET is designed in such a way to allow users to choose from a test

process list the one that best fits their purpose. This can be applied for any test group

in the library. Test process link inside the test package Library in Figure 2.3 shows

this connection.

Figure 2.3 Metrology.NET data handling overview

Step 2: Create a work order using the test package library and assign it to a specific

piece of test equipment.

Work orders are test plans that are initiated by the technicians at the lab. After all the

data are put together and uploaded to the server (this could also be done manually

through the web based interface for the server), work orders get created after which a

calibration job can be started. In creating a test package, the user enters all the data

which could be for a family of instruments with different options, while in creating

work orders a subset of a test package is extracted and cloned to be passed to the

appropriate Test Process which is chosen by the technician through the

15

Metrology.NET web based service bus. Figure 2.4 helps to show the work order

concept visually. “Test process link” and “test equipment link” in Figure 2.4 show

the concept that a test group can be configured to be run with a chosen test process

and test equipment out of a list each.

Figure 2.4 Metrology.NET work order concept overview

Step 3: Use an IDE with the Metrology Specific Language (in our case SparkS) to

develop test process software modules.

This is the place where SparkS takes the role. The SparkS language will be used by

the end users (typically domain engineers) to develop test scripts. Instead of using a

programming language based on the Microsoft.NET platform, they will use SparkS

scripting language, a high level language that consists of metrology terms that is

quite friendly for the target developers. The overall process is sketched in Figure 2.5.

16

Figure 2.5 How SparkS interpreter embeds into Metrology.NET

2.3 Metrology.NET Test Process Software Hierarchy

Metrology.NET has separated the Unit Under Test (UUT) and Electronic Test

Equipment (ETE) control mechanisms. The UUT controls are mainly done through

the parsing of commands that are provided in test points as parameters. The UUT

command parameters can be added as test package or as test group parameters,

depending on the availability preferences. If the parameters are at test package level,

then all the test groups of that test package can see those parameters, while if you put

them in test group level, only that specific test group will be able to see them.

17

As can be seen in figure 2.6, Metrology.NET separates instrument calibration logic

into several abstract layers. A calibration procedure developed on Metrology.NET is

not tied to follow the architecture proposed, since it is also possible for a function at

the top layer in the hierarchy to directly call functions from each of the lower layers.

For example, you can directly send commands to a device from a test process class

(MSB layer). However, if a calibration procedure complies with this hierarchy, it will

lead to several reusable layers that will help in lowering the calibration procedure

development costs.

At the highest level of the abstraction layers is the Metrology Service Bus (MSB)

layer or Interchangeable Driver Interface. It is both language and platform

independent. It is a layer for driver interchangeability that basically deals with a set

of test points (a test group) at a time and passes down the test points with their

parameters one by one to the underlying layer, the Measurement Process Driver

layer. This layer is responsible for the measurements for ETEs. By getting the

parameters for a test point at a time, this layer calls the services provided by its

underlying layer. All the calls are based on string parameters to omit direct calls and

increase flexibility. Since the calls are string-based, there is no need for a code

modification for a change in the lower layer, as long as the same service names are

provided.

18

Figure 2.6 Metrology.NET Calibration Software Layers [19]

The underlying layer, Command Based Driver, is where the instrument control string

commands or IEEE SCPI (Standard Commands for Programmable Instruments)

commands reside. This layer is completely dependent on and specific to an

instrument. The string commands that are sent to the instrument are analyzed by the

firmware inside it which then it uses the corresponding function calls internally to

perform that operation. A simple example is “*RST” SCPI command that leads to a

Reset() function call, which does a reset on the equipment. Finally the function calls

would internally do low level reads and writes to set up the equipment.

In developing a test procedure based on the mentioned software abstraction layering,

the three top layers can be seen and accessed for a developer. Below comes a general

description for each of these layers:

1) Interchangeable Driver Interface or Test Process Drivers are designed to

process test points controlling both the UUT and all the standards (ETEs). They are

designed to be the worker bees of the calibration lab. They pull test points from a

service, execute them and save the results back to the service.

19

2) Measurement Process Drivers are designed to perform specific measurement

tasks. They receive commands through a message, perform the task and then return

the results to the calling tool via message. Each driver is designed to perform high

level metrology functions, controlling one or more standards.

3) Command Drivers are the low level drivers that interact directly with the

hardware. They are implemented with command messaging and operate similar to

the measurement drivers.

2.4 Domain Specific Languages

The world of programming languages possesses great variety. From one point of

view, there are two types of programming languages. One is general purpose

languages like C++ and Java, which are aimed to target a wide range of application

domains, and the other is Domain Specific Languages (DSLs), which include

language constructs designed to be used within a specific application domain, so they

are focused to address problems of that domain. DSLs have been around for a long

time and they are extensively used in many different fields. DSLs do not have to be

programming languages in the sense of being computationally universal. Some very

popular examples include HTML, SQL, XML, and CSS [1].

DSLs generally fall into two groups, so called external and internal (Embedded)

DSLs. External DSLs have their own custom syntax instead of being built on top of

an existing language. Thus, the language implementer needs to write a full interpreter

that interprets the language or a compiler that translates the source language to

another one that is interpretable or executable. Moreover, all the tools such as

editors, debuggers and those others that come handy in developing programs should

be developed specifically for that language.

Internal DSLs on the other hand are not stand-alone languages. Here, we tweak a

host language to make it feel like a different language for the application

programmer. This means that we are able to take advantage of all the tools and

services available for the host language, while we are limiting the programmer to the

20

syntax of the host language. If the host language is DSL-friendly, i.e. extensible and

flexible, language, DSL implementation will be smooth [1] [2].

21

CHAPTER 3

3 SPARKS LANGUAGE DESIGN.....

In this chapter, language design issues including the language grammar in EBNF,

language components, the constructs used in the language and lexical characteristics

will be discussed. The complete ANTLR grammar for the language can be found in

Appendix A.

In our language design, simplicity was an overriding concern in all design decisions.

Particularly in this initial version of the language we aimed at the essentials needed

for test procedures to be run. As will be discussed in this chapter, dynamic typing

and dynamic type checking were included in the language design to provide a more

flexible language. Another point considered in the language design was the

independence concept, and that the language should be independent from any

instrument and any particular test process.

3.1 SparkS Grammar in EBNF

The SparkS grammar is produced using the standard EBNF notation [29].

program
 = 'testProcess', ID,
 {header,}
 body,
 'testProcess', ID,
 EOF
 ;
header
 = require {, require}
 | bind {, bind}
 | testPoint {, testPoint}
 | testGroup {, testGroup}
 ;
body
 = stmt {, stmt}
 ;
require
 = 'require', ID, 'as', 'linkerType', externalDesignator, ['testType',
externalDesignator]

22

 ;
externalDesignator
 = externalName
 | 'prompt'
 ;
externalName
 = STRINGLITERAL
 ;
bind
 = 'bind', ID, 'to', externalDesignator
 ;
testPoint
 = 'testPoint', tpId
 'provide',
 paramID
 {paramID},
 'measure', ID,
 END, tpId
 ;
tpId
 = ID
 ;
paramID
 = ID
 ;
testGroup
 ='testGroup', ID, 'testPoint', tpId
 ;
//the possible statements
stmt
 = for_stmt
 | ifThenElseStmt
 | set_stmt
 | const
 | functionCall
 | error
 ;
functionCall
 = ID, '.', ID, ['(', [STRINGLITERAL, {',', STRINGLITERAL}], ')']
 ;
const
 = 'constant', ID, '=', constVal
 ;
constVal
 = (INT | DOUBLELITERAL)
 | ID
 ;
//a subset of the possible statements
sub_stmt
 = for_stmt
 | ifThenElseStmt
 | set_stmt
 | functionCall
 | error
 ;
//if-then-else structure

23

ifThenElseStmt
 = 'if', condition_block, {'else if', condition_block}, ['else',
stat_block], 'end if'
 ;
condition_block
 = boolExpr, 'then',
 stat_block
 ;
stat_block
 = [block]
 ;
//block
block
 = sub_stmt, {sub_stmt}
 ;
//bool expression rules
boolExpr
 = 'not', boolExprSub
 | boolExprSub, 'and', boolExprSub
 | boolExprSub, 'or', boolExprSub
 | boolExprSub, 'xor', boolExprSub
 | boolExprSub1
 ;
boolExprSub
 = '(', boolExpr, ')'
 | boolExprSub1
 ;
boolExprSub1
 = arithExpr, ('<=' | '>=' | '<' | '>'| '=' | '/='), arithExpr
 | ('TRUE' | 'FALSE')
 ;
//arithmetic expression rules
arithExpr
 = arithExprSub, ('*' | '/'), arithExprSub
 | arithExprSub, ('+' | '-'), arithExprSub
 | arithExprSub1
 ;
arithExprSub
 = '(', arithExpr, ')'
 | arithExprSub1
 ;
arithExprSub1
 = (INT | DOUBLELITERAL)
 | ID
 ;
//for loop variations
for_stmt
 = 'for', 'each', ID, 'in', ID, 'do',
 [block]
 'end', 'for',

 | 'for', 'each', ID, 'in', '[', limitVar, ',', limitVar, ']',
'do',
 [block]
 'end', 'for'
 ;

24

limitVar
 = ID
 | INT
 ;
//set statement
set_stmt
 = 'set', ID, 'to', setExpr
 | 'set', ID, '.', ID, 'to', setExpr
 | 'set', 'UNCERTAINTY', 'to', setExpr
 ;
setExpr
 = arithExpr
 | STRINGLITERAL
 | ID, '.', ID
 ;
error
 = 'error', STRINGLITERAL
 ;

// LEXER TOKENS //

INT = ? a signed integer value with scientific E support ?
DOUBLELITERAL = ? a signed double value with scientific E support ?
STRINGLITERAL = ? anything inside quotation marks("") except for new
line character ?
ID = ? it starts with an English alphabetic character and a sequence
containing digits, English alphabetic characters and underscore ?

3.2 Syntax

A script written in SparkS basically consists of two parts. The header section that

comes first and a body section which follows the header part. Roughly speaking, the

header prepares the stage and the body does the acting.

For the interpreter to operate, some properties such as the resources that are involved

in testing, and some test specific features are supposed to be set first. All these come

in the header part. Header part is actually providing the binding of the interpreter to

the underlying platform, presently Metrology.NET. One important aspect of SparkS

scripts is the push based mechanism for data handling, instead of a pull based

mechanism. This means that, instead of declaring the specific data to be pulled at

runtime, the data type is declared and at runtime, the user chooses what data (test

group) they want the test procedure to operate on. This is basically the mechanism

used in the underlying platform, Metrology.NET.

25

After the binding is done, the execution of the test process begins. All the

communications or send/receives and calculations take place inside the body. After

the processing for the test is done, the result is sent back to the server.

The language grammar for parsing is developed using ANTLR 4 [5] [7]. For this,

AntlrWorks [21] a NetBeans [3] based standalone editor and ANTLR’s IntelliJ IDEA

plugin were used that also support live syntax diagrams. Both Parser Rules and

Lexical Tokens are put in the same file as comes in Appendix A.

3.3 Arithmetic and Boolean expressions

For the expressions, outermost parentheses will not exist in a main expression, but a

sub-expression with a binary operator must be parenthesized. This provides a forced

precedence that ought to be applied by the programmer. There are no precedence and

association rules for arithmetic and Boolean operators in SparkS. An arithmetic sub-

expression of a logical expression (including comparisons) will be regarded as a

main expression (after all, it is not a part of an arithmetic expression) so will not be

parenthesized. So, the following expressions are well-formed:

a + b

-(a + b)

a + (b * c)

Also,

if a + b > c + d then ...

if a + b > c + d or a + (b * d) > 0 then …

But not the following ones:

(a+b)

((a+b)*c)

26

3.4 SparkS Statements

Below is an informal presentation of SparkS constructs and statements with

examples and the description for each construct or statement.

3.4.1 The require Statement

The require statement declares the general type of equipment that can be used in the

test. For example, a family of equipment could be declared as the type. The general

format is as below:

require identifier as linkerType resourceType testType resourceInterface

example:

require ete as linkerType “Measure.Device” testType “iSpectrumAnalyzer”

3.4.2 The bind Statement

There are some fixed attributes that belong to every test script, which include test

name, test type, description, unit of measure, etc. The bind statement is used to

define these properties. The prompt keyword that is used in bind statements is used

to assist late binding, so that the user can choose at runtime the appropriate value for

the parameter. Below come some examples:

bind property to ExternalName

bind property to prompt

example:

bind TestName to ”TestProcess.Measure.Harmonics (Agilent_E44xxA)”

bind TestType to prompt

27

3.4.3 The testProcess Statement

The testProcess construct is used to mark the textual beginning and end points of a

script, in which both identifiers must be the same. So in fact the script goes between

these two lines. Following is the overall structure and an example to clarify:

testProcess identifier

//statements

end identifier

example:

testProcess measureHarmonics

//statements

end measureHarmonics

3.4.4 The testPoint Statement

For the test script to be compatible with variable data types that come in at runtime, a

testPoint structure is defined, in which the parameters that may be available in the

data with the to-be-measured parameter are listed. For the coming data, its type is

checked with the one defined in here to make sure if it meets the test requirements.

The ordering of the parameters to be provided is not important. At the end of the test,

the value that is set to measure parameter is counted as the test result and uploaded

back to the server for more processing. Below comes the overall structure followed

by an example:

28

testPoint identifier

 provide

 parameter1

 parameter2

 …

 measure

 parameter

end identifier

example:

testPoint tp

 provide

 Frequency

 Power

 ReferenceSource

 HarmonicToMeasure

 NumberOfHarmonics

 measure

 harmonics

end tp

3.4.5 The testGroup Statement

The testGroup keyword refers to a group of test points for a performance test, with

some additional parameters that belong to the group. After the test point type is

declared, we need an identifier to refer to the collection of test points (identifier1) that

come from the server as a part of work order. The testGroup structure does this by

binding an identifier to the test point type declared already (identifier2). This way we

could have several test point types and different test group identifiers which would

allow us to bind a test group identifier to each of the defined test point types to

support a better data variation.

The important point here is the data handling mechanism used in the Metrology.NET

and SparkS accordingly. They use a push-based approach for the data to be used in

test procedures. So, instead of pulling data from the test procedure by providing a

29

reference to it, the data is pushed into the process through the Metrology.NET

service bus, the web based user interface. The testGroup statement is used to provide

a global identifier in the script to refer to the incoming data.

The overall structure of the statement and an example follow:

testGroup identifier1 testPoint identifier2

example:

testGroup tgCollection testPoint tp

3.4.6 Function Call

Since drivers for the equipment used in testing also include functions to call, we need

a structure to support this. Basically, most of the functions in drivers get a list of

parameters belonging to the test point which operation is done. This is done by the

interpreter if needed. For a function to be recognized, the equipment identifier must

be present in the statement as in the following example:

identifier.functionName

identifier.functionName(param1, param2, …)

example:

uut.reset

Dialog.ConnectionPicture(“ImageName”, “Message”)

3.4.7 The constant Declaration

There are cases we want to keep the value set for a variable fixed along the program

execution. For example, we might set and fix the uncertainty value for a test and

based on the different results that may be produced as the program proceeds, just use

it to embed into the final measurement result. The constant keyword is used for such

a variable declaration. The overall statement structure and a simple example follow:

constant identifier = value

example:

constant UNC = 3.0

30

3.4.8 The set Statement

For assignment, set keyword is used which provides a strong structure for different

types of assignments. Each type of the possible assignments and an example for each

is presented below:

In the first following set statements, the first identifier can be either an already

defined identifier or one that is implicitly defined for the first time in this statement,

which from this point can be used anywhere in the code.

Here in this set statement, identifier2 must be already defined, as it has a value to set

to identifier1.

set identifier1 to identifier2

example:

set Harmonics to MeasureVal

In the statement below, as it is obvious from the name, the result of an arithmetic

expression is set to the identifier.

set identifier to arithmeticExpr

example:

set Harmonics to max + 1

In this statement, stringLiteral refers to a quoted string as also shown in the example

which may contain a numeric or a string value based on the usage type.

set identifier to stringLiteral

example:

set Power to "100"

In this statement, in the to part of the assignment, identifier2 depends on identifier1.

Identifier1 can be a test point or an instrument identifier. If it is a test point identifier,

then the identifier2 must refer to a parameter in the test point. While, if identifier1 is

31

an instrument identifier, then identifier2 must refer to a function or a property in the

regarding instrument driver.

set identifier1 to identifier2.identifier3

example:

set MaxFrequency to ete.MaxFrequency

In the next four types of set statements, in the set part of the assignment, identifier2

depends on identifier1. Identifier1 can be a test point or an instrument identifier. If it

is a test point identifier, then identifier2 must refer to a parameter in the test point.

While, if identifier1 is an instrument identifier, then identifier2 must refer to a

property in the regarding instrument driver.

set identifier1.identifier2 to identifier3

example:

set ete.frequency to Freq

As the name suggests, the value from the to part comes from the result of the

evaluation of the arithmetic expression in the statement.

set identifier1.identifier2 to arithmeticExpr

example:

set ete.frequency to 100 + index

In this statement, stringLiteral refers to a quoted string as also shown in the example

which may contain a numeric or a string value based on the usage type.

set identifier1.identifier2 to stringLiteral

example:

set ete.frequency to "100"

32

In this statement, also, in the to part of the assignment, identifier2 depends on

identifier1. Identifier1 can be a test point or an instrument identifier. If it is a test

point identifier, then identifier2 must refer to a parameter in the test point. While, if

identifier1 is an instrument identifier, then identifier2 must refer to a function or a

property in the regarding instrument driver.

set identifier1.identifier2 to identifier3.identifier4

example:

set uut.frequency to tp1.Frequency

3.4.9 The for each Statement

Looping is one of the important control structures that is needed in almost every test

procedure. The for construct provides the Iterator design pattern [23] [34]. We came

across two general types of looping structures that were needed to be supported by

our language. A looping that would go through an ordered collection of items, which

in our case is mostly a collection of test points. There is also a looping structure that

goes through a defined range, from the lower limit up to the upper limit in the range.

The first looping structure as comes below is designed looping through a collection

of test points. The identifier1 is the loop variable that refers to the current test point

along looping, which is used inside the structure to recognize which parameter we

are referring to.

for each identifier1 in identifier2 do

 //statements

end for

example:

for each tp1 in tgCollection do

 //statements

end for

33

The second type of looping structure as described above supports a range of values

defined with lowerLimit and upperLimit inside brackets. The limits can be either a

number or an identifier. The overall structure and an example follow:

for each identifier in [lowerLimit, upperLimit] do

 //statements

end for

example:

for each index in [2, NumHarm] do

 //statements

end for

3.4.10 The if-then-else Statement

Another essential control structure in SparkS was a conditional structure. It follows

almost the same structure used in the Visual Basic. The overall structure and an

example follow:

if booleanExpr then

 //statements

else if booleanExpr then

 //statements

else

 //statements

end if

example1:

if Frequency < MinFrequency or Frequency > MaxFrequency then

 set ete.CenterFrequency to Frequency

end if

example2:

if Frequency < 2.2e3 then

set ete.Span to 10

set ete.ResolutionBandwidth to 100

else if Frequency < 2.2e6 then

set ete.Span to 500

34

set ete.ResolutionBandwidth to 50

else

set ete.Span to 500e3

set ete.ResolutionBandwidth to 10e3

end if

3.5 Lexical Elements

Whitespace:

Any number of spaces or non-visible characters and comments are considered as

whitespace and will be ignored by the parser.

Comments:

For single line comments // is used. The rest of the line is considered as comment.

Example:

set a to b //this is a comment

set b to c

For single line or multiline comments /*…*/ is used.

example1:

set a to b /*this is a comment*/

example2:

set a to b /*this is

a comment

and ends here*/

Variable Names:

Variable Names must start with a letter, and may contain nothing but underscores,

letters and digits. Variable names are not case sensitive.

35

Valid variable names:

frequency

Power50

unir_of_measure

Invalid variable names:

0frequency

_frequency

Frequency#

External Name:

The names that belong to outside resources, known by the underlying testing

platform, Metrology.NET, to be used as a reference along test process.

Examples:

iSpectrumAnalyzer

iOscilloscope

iPowerMeter

Measure.Device

Integers:

Any sequence of digits of 0 to 9.

Floating point numbers:

Any sequence of digits of 0 to 9 and containing a decimal point or a scientific

notation symbol (“e” or “E”). In scientific notation, the exponent must start with a +

or – sign followed by one or more digits.

Statement Terminator:

36

We do not use a semicolon or any printable character as a statement terminator. As in

VB, carriage return is the statement terminator.

3.5.1 Operators

Operator Definition

(Open function parameter list and subexpression designation operator

) Close function parameter list and subexpression designation operator

+ Addition or positive sign operator

- Subtraction or negative sign operator

* Multiplication operator

/ Integer or floating point division operator

. Identifier after ‘.’ refers to a member of the identifier before ‘.’

and Logical AND operator

or Logical (inclusive) OR operator

xor Logical exclusive OR operator

not Logical negation operator

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

= Equals

/= Does not equal

3.5.2 Reserved Words

All keywords consist mostly of lowercase letters; uppercase is used only for

separation for two-word keywords. The full list of keywords is given in Appendix E.

37

3.5.3 Paired keywords

The keywords that go together are listed below:

No Keyword

1 as linkerType

2 for each

3 else if

4 end if

5 end for

These pairs are treated effectively as a single keyword.

3.5.4 Helper Functions

There are times you want to communicate with the user along a test run. For

example, you want to show an image representing the test setup to the user and that

how the equipment must be connected to each other before the test is run. Or you

might need to ask for some input data from the user. For this purpose, helper

functions were developed to support user interaction. The complete list of helper

functions appear in Appendix F.

3.6 Mapping of Domain Concepts

Any DSL must address domain concepts at a satisfactory level [31]. In fact, there are

at least two domains (or technical spaces) to be concerned with. One is the domain of

application (a.k.a. problem space), which is Metrology, in particular, test and

calibration, in our case. The other one is the domain of execution platform (a.k.a

solution space), Metrology.NET, in our case. The DSL is situated between these two

domains or spaces and connects them.

Below comes the traceability matrix that provides links to the concepts that are dealt

with in the metrology, specifically calibration domain, the features provided by the

underlying platform, Metrology.NET, and their equivalent language

constructs/features in SparkS language.

38

Metrology

Domain

Concept

SparkS Language Construct/feature

platform

(Metrology.NET)

property/ feature/

functionality

testing machine
A developed SparkS script resides on an

agent/machine for a test to be run

testing

agent/machine

Unit Under Test

(UUT)

The UUT is defined using the require statement.

This is declared in the header section of a

SparkS script.

Unit Under Test

(UUT)

Electronic Test

Equipment

(ETE) or

Standard

The ETE is defined using the require statement.

This is declared in the header section of a

SparkS script.

Electronic Test

Equipment (ETE)

or Standard

model family

A SparkS script is written in a generic way,

which may cover several models for a family of

instruments.

model group

model

A SparkS script is written in a generic way,

which may cover several models for a family of

instruments.

model

model option

As there are different test procedures for

different options for an instrument, there can be

different SparkS scripts developed for them.

model option

measure device

An instrument declared using the require

statement in a script, can be either a measure

device or a source device.

measure device

SparkS scripts are single flat files for its first

version. For the next version, it is supposed to

support script calls from within scripts. This

way, we could provide a better script reusability.

measure driver

source device

An instrument declared using the require

statement in a script, can be either a measure

device or a source device.

source device

SparkS scripts are single flat files for its first

version. For the next version, it is supposed to

support script calls from within scripts. This

way, we could provide a better script reusability.

source driver

measurement

result

The measure section for a testPoint statement

defines the variable for the measurement result.
measurement result

39

test manual data
A SparkS script includes a single test among the

several tests in a test manual.
test package

a group of test

points

The test group, on which a test script performs

actions, is referred through the variable declared

in the testGroup statement.

A SparkS script works on a single test group at a

time.

For looping through the test points of a test

group, for loop construct is used.

test group

test point

A test point type is declared using testPoint

struct. The list of parameters to come with test

points are listed in the provide section, and the

parameter to be measured is declared in the

measure section.

test point

work order

The test group that is fed into a SparkS script

comes from a work order already created by the

user. The work order concept, however, is not

directly supported by SparkS.

work order

test procedure

A test script developed in SparkS is intended to

execute a test procedure for a performance test.

The identity for a test procedure is declared in

the header section of a SparkS script.

test process

The test type defines the generic type for a

written SparkS script. It is declared using the

bind statement.

test type

uncertainty
Uncertainty is defined as a predefined word in

SparkS.

uncertainty

computation library

unit of measure
This is declared in the header section of a

SparkS script using the bind statement.
unit of measure

instrument

setting

All the settings (send/receive commands) for

instruments are handled through the set

construct.

instrument setting

All the interactions with the user are handled

through the Dialog library.
user interaction

 This is hidden in the SparkS interpreter.

Post Office

mechanism (for

inter-object

communication)

40

41

CHAPTER 4

4 LANGUAGE IMPLEMENTATION.....

In this chapter, the language implementation issues including the front-end, back-

end, and a detailed description of all the steps taken in developing the language will

be covered.

Before elaborating on the implementation details, an overall picture showing the

major parts of the language implementation and the overall view of the language

processor is shown in figure 4.1. As can be seen in figure 4.1, it shows that after a

script is developed in SparkS, how ANTLR tool handles the front-end issues and

where the parse tree is generated for the back-end. You can see the language

interpreter embedded into the Metrology.NET, and the two passes used in the

interpretation of the provided parse tree from the front-end. It also shows the

interaction done between the agent on which the interpreter operates and the

Metrology.NET server that holds the data for running tests. The test equipment

involved in a calibration and their communications with the system is shown as well.

For traversing the parse tree from the front-end, two passes (tree visits) were added

to the interpreter. In the first pass, an error checking is done for the semantics of the

language. As an example, for the designed loop construct that iterates through a

range of numbers, in the first pass, it is checked to make sure if the lower limit and

upper limit are in the right order. In the second pass, we focus on the logics and

execution of the desired operation for the language constructs.

42

F
ig

u
re

 4
.1

 E
m

b
ed

d
in

g
 S

p
ar

k
S

 i
n
te

rp
re

te
r

in
to

 M
et

ro
lo

g
y
.N

E
T

 s
y
st

em

43

4.1 SparkS Front-End

For our language development, ANTLR (ANother Tool for Language Recognition)

tool was considered to be used along the whole process [5]. ANTLR is a powerful

parser generator that is used for reading, processing, executing, or translating

structured text. It's widely used to build languages, tools, and frameworks. From the

grammar given as input, ANTLR generates a parser and also parse tree listeners

which are used for walking the generated parse tree. The lexicon used in ANTLR

tool is similar to C with some extensions to support grammatical descriptions.

ANTLR-generated parsers build a data structure called parse tree or syntax tree

which is also called as internal representation. An example parse tree and how it is

created from the input is shown in figure 4.2. The front-end development of the

language which is generating a parser is handled by the ANTLR tool. The back-end

which embodies the semantics behind grammar rules can be developed using two

different approaches in ANTLR, either by using Listener or by Visitor patterns.

 Figure 4.2 An example parse tree generated by the front-end

Listeners and visitors are useful in that they keep application-specific code out of

grammars, making grammars easier to read and preventing them from being coupled

44

with a particular application. The biggest difference between the listener and visitor

approaches is that listener methods are called independently by a tree walker

provided by the ANTLR, whereas visitor methods must walk their children with

explicit visit calls. Forgetting to invoke visitor methods on a node’s children, means

that those subtrees will not be visited.

Since Visitor pattern provides a better control on the generated parse tree over the

listener pattern, we chose this mechanism. With the Visitor pattern, you get separate

functions for each of the rules and labels in your grammar. The function provides the

language implementer with the context parameter that allows him to access the

parser and lexer rules of the current rule.

4.1.1 Interpretation vs Compilation

For the implementation of the language, basically there are two approaches, one is to

develop a compiler and the other is to develop an interpreter. A compiler for a

language translates the source code into the target machine which then will be used

by the computer to run the machine code. On the other side, using interpretation, the

source code is not run directly by the target machine, but a program called interpreter

reads and executes the source code. There are some advantages and disadvantages

for either of these approaches [22].

 Compiled code has higher running speed compared to interpreters because the

code can be optimized for the target platform and there is no interpretation

overhead.

 Interpreters tend to be more portable than compilers.

 Interpreted implementations of a language usually are easier to develop than

compilers.

For SparkS, we chose to develop an interpreter for the language. Also, in calibration

automation, computer systems are always interacting with equipment along a test,

and this leads to a shared work load between the computer and equipment. Therefore,

speed gained by compilation is not required in our targeted application area.

45

4.1.2 Communication Mechanism in Metrology.NET

Based on loosely-coupled software architecture, Metrology.NET relies on a

mechanism called PostOffice. The Metrology.NET PostOffice System serves a role

in Metrology.NET that is very similar to the role that the Windows Message Pump

and Windows Messages serve in the Microsoft Windows Operating System [24]. The

PostOffice system is intended to simplify the implementation of the Reactive

Programming Model [25]. The PostOffice system sends messages in the form of

PostOffice.Mail objects to PostOffice.Box objects [32]. A PostOffice.Box object will

direct incoming Mail messages to a list of standard events as well as custom

definable events that the box can define and subscribe to.

For every object that is instantiated, a thread is created, so objects resides on

different threads at runtime, and as the job with an object is done, its thread exits at

that point. For the communication between two objects, there is no direct call from

one object to the other. Instead, the PostOffice mechanism is used. The PostOffice

system, on its basic form provides calls of the following form:

PostOffice.Send(SenderAddress, RecieverAddress, MessageType, Message)

In which the first parameter refers to the sender’s PostBox address, the second is for

the receiver’s PostBox address, the third parameter shows the message type that is

defined by the user and the message itself.

Metrology.NET offers a wrapper mechanism called MessageLinker to cover the

PostOffice system, which leads to an easier to use programming interface for the

objects to be called. Different operations that can be done on the target class are put

into the wrapper to provide Intellisence for the programmer. As an example, the

following code can be used to call different functions through the same interface

provided by the wrapper, sending the function name as the parameter. Here Analyzer

has the reference to the target class MessageLinker object. MarkerAmplitude is the

function to be called.

46

Dim Measured As Double = Analyzer.FunctionCall("MarkerAmplitude")

Based on the architectural choices of Metrology.NET such as the fact that the

communication among objects takes place through the use of PostOffice system or

the wrapper for it, MessageLinker mechanism, we decided to embed our interpreter

into the platform as shown in figure 4.3. Basically, the main logic for the

interpretation resides inside the implemented visitor class which is shown in red in

the diagram. The green boxes represent the MessageLinker classes used by different

system resources to communicate. The gray box at the top shows the SparkS script

loaded by the TestProcessScript which will be used in the visitor class. The blue box

shows the agent class that is actually the main class on an agent to manage

calibration tasks on the agent.

Testing agent, the executable that sits on the terminal and runs the tests knows has

interface only with the TestProcess class and initiates the process through this class.

So, all the pretest settings and configurations are done before this call and the data

(test group) for the chosen test inside the work order comes into the called test

process as a parameter. Our visitor class or SparkS script engine uses the

messageLinker of TestProcessScript class to talk to other resources in the platform as

indicated in figure 4.3. TestProcessScript itself inherits TestProcess base class that is

known by the agent.

47

Figure 4.3 Metrology.NET and SparkS interpreter

ANTLR tool, reading the supplied grammar, if chosen, also generates a baseVisitor

class as a result, beside the lexer and parser classes. The generated visitor class

provides a tree walker mechanism for the parse tree generated by the tool. Based on

how you want to implement a rule in your grammar, you may override the regarding

visit method in the baseVisitor class. If you do not put any implementation for the

rules in grammar, the tree will be walked with no specific result at the end. SparkS

Visitor shown in figure 4.3 refers to the class that is extending the baseVisitor

generated by the tool.

48

4.2 SparkS Back-End

In this section a detailed description of the language processor back-end or in our

case the interpreter and its parts will be discussed. Basically, the interpretation job is

done through the use of a visitor class that is supplied by the ANTLR tool. For each

of the rules in the SparkS grammar a regarding visit method is generated that can be

overridden. Depending on how complicated a rule might get, there may be several

choices to be made with the parser. For each of the choices for a rule, you can add

labels to the grammar to access to sub-rules.

As we had discussed in 2.3, Metrology.NET follows a specific software hierarchy.

Figure 4.4 shows how SparkS interpreter replaces the two topmost layers. In SparkS

we merge the two layers, MSB layer (Test Process layer) and Measurement Process

Driver, and this is basically because we had a significant reduction in the amount of

code needed to be written for a test procedure. Having a single layer seems to work

well, but extending the interpreter to support a modular structure should be

considered as a future plan too.

Figure 4.4 SparkS Interpreter position in the Metrology.NET software hierarchy

49

4.2.1 Return Type

The first step to take in implementing the visitor class is defining the global return

type for your methods which goes in the header of the class definition. By this

definition, all the visit methods must return values of the specified type.

Since there were different types that could be returned back by different rules, for

handling the return values uniquely we designed the Value class to be our return type

that plays as a wrapper for the different types such as String, Double and Boolean

used in our grammar. This way, methods return values wrapped with this type and

the caller method, using the casting functions provided inside the Value class,

converts the received value into the appropriate type based on the context that is

used. In the following code sample you can see how this is done:

Value left = this.Visit(context.boolExprSub(0));
Value right = this.Visit(context.boolExprSub(1));
return new Value(left.asBoolean() || right.asBoolean());

As can be seen in the first two lines, the result of visiting the two sub expressions

result in left and right values that also are of Value type. The variables are then

converted into the appropriate type, which is Boolean in this case, and after the

calculation is done, then again the result is wrapped by the Value type to be returned

to the calling method.

4.2.2 Bindings

For a test to run, there are some preparation steps that must be taken in order to be

able to initiate the test. For example, the equipment on which test will be run or

UUT, and all the other equipment that play role in evaluating the performance of

UUT, namely ETE(s), the test point type to be used in the test, and the test group that

will be used as the data for the test process. For this purpose, we defined a header

section for SparkS scripts that covers these preparations.

50

4.2.3 The require Statement

The require statement is the starting point for a header. It will include the list of all

the equipment that will be used along the test as resources. By providing the two

parameters in this statement, Metrology.NET provides us with the messageLinker

reference to use to talk to that resource.

It has two forms in general. One including the linker type and test type, whose parse

tree can be seen in figure 4.5. Resource type is a conventional name used by

Metrology.NET to classify its resources. The test type contains the interface

implemented by the driver of that resource.

Figure 4.5 require statement type-1 parse tree

The second type of require statement only includes the linker type as shown in figure

4.6. This is used to define the UUT. By this, we can get the reference to the UUT

resource we want to communicate with through the Metrology.NET platform.

Figure 4.6 require statement type-2 parse tree

51

In the code block provided below, you can see how a list of different member types,

namely methods, functions and properties, for the interface types provided in the

script header as resources are created. In the code below, the list is created for the

iSpectrumAnalyzer interface.

eteCallableMembers = new List<KeyValuePair<string, string>>();

List<string> interfaceList = new List<string>();
var driver = typeof(Driver);

Type[] list = driver.GetInterfaces();
foreach (Type t in list)
{
 if(t.FullName.Contains("CLS_V1")&&
t.Name.Equals("iSpectrumAnalyzer"))
 interfaceList.Add(t.AssemblyQualifiedName);
}

foreach (string interf in interfaceList)
{
 //add the method list
 foreach(var m in
Type.GetType(interf).GetMethods(BindingFlags.Instance |
BindingFlags.Static | BindingFlags.Public |
BindingFlags.NonPublic).Where(m => !m.IsSpecialName))
 {
 if(m.ReturnType.Name == "Void")
 eteCallableMembers.Add(new
KeyValuePair<string,string>(m.Name, "method"));
 else
 eteCallableMembers.Add(new
KeyValuePair<string,string>(m.Name, "function"));
 }

 //add the property lis
 foreach (var m in Type.GetType(interf).GetProperties())
 {
 eteCallableMembers.Add(new KeyValuePair<string, string>(m.Name,
"property"));
 }
}

4.2.4 The bind Statement

The bind statement is used to assign test specific properties and make a binding to

the Metrology.NET. The binding can be done either to a string literal, statically, or to

prompt, dynamically. In the case of prompt, the binding is delayed to runtime to be

52

selected or entered by the user. Figure 4.7 shows the general format for the parse tree

of a bind statement using prompt keyword.

Figure 4.7 bind statement type-1 parse tree

The other form of binding is done with a string literal as shown in figure 4.8.

Figure 4.8 bind statement type-2 parse tree

TestProcessScript class has all the properties, such as test name, test type, unit of

measure, etc. for each script to be assigned. For each script an object of

TestProcessScript class is instantiated, whose properties are assigned according to

the ones provided in the script.

53

4.2.5 The testPoint Declaration

A test point contains all the data needed for a cycle of test to be done. The

parameters that are needed for both UUT and ETE along the test are put into a test

point. This means that for running a test, there must be a match between the test

point as input data and the test process that includes the test procedure for a test.

Based on this fact, we designed a structure as test point type. A test point type

structure consists of two parts: One is the provide part that contains the parameters

that are expected to come in test points. The other is the measure part that contains

the only parameter that the test will measure. The provide ids are compared against

the ones in the provided test points as they come from the Metrology.NET server and

then added to the memory for later access. In the parse tree shown in figure 4.9, you

can see the three parameters in the provide section and the one resultParam in the

measure part.

Figure 4.9 testPoint statement parse tree

Below, you can see some code snippet from the implementations done for this

construct. As can be seen in Figure 4.9, tpId identifiers refers to the begin/end

identifiers that comes in the type declaration. They’re checked at the first pass to

make sure they match. Also, in the first tree visit, the type checking of the coming

test points against the ones in the provide section in the declared test point type is

done. In the second pass, since the checks are already done, it is now safe to add the

provided variables into the memory as shown below:

54

string beginID = context.tpId(0).ID().GetText();
string endID = context.tpId(1).ID().GetText();

int paramIDCount = context.paramID().Length;

string[] provIDlist = new string[paramIDCount];

for (int i = 0; i < (paramIDCount); i++)
{
 provIDlist[i] = context.paramID(i).ID().GetText();
}

//add the 'provide' data to memory
tPointProvide.Add(beginID, provIDlist);

//add the 'measure' data to memory
string measureID = context.ID().GetText();
tPointMeasure.Add(beginID, measureID);

4.2.6 The testGroup Statement

After the test point type is declared, we can define test group variables with different

test point types. These variables are used in the looping for test points to access the

test points in the collection. In the parse tree in figure 4.10, tgCollection refers to a

list of test points of type defined by tp. The testGroup keyword in this context has the

meaning of a test group concept in Metrology.NET.

Figure 4.10 testGroup statement parse tree

In the code block given below, it is shown that after the regarding identifiers are

extracted from the input script, they are added to the memory, in a way that they can

be accessed at other parts of the interpreter. For the testGroup construct, the testPoint

type identifier is checked to make sure it has been declared already.

55

string tGroupID = context.ID().GetText();
string tPointTypeID = context.tpId().ID().GetText();

//add the test group, test point ID to memory
tGroup_tPointType.Add(tGroupID, tPointTypeID);

//add the test group, test point array list to memory
tGroup_tPoints.Add(tGroupID, tpArray);

4.2.7 The set Statement

The Set statement is one of the most variant structures in SparkS, since it can support

different forms of assignments. Figure 4.11 shows an example set statement of the

following form:

set id to value

Where, id is an identifier that might not exist which gets defined here. The value is

set from a string value or from an arithmetic expression.

Figure 4.11 set statement parse tree type-1

The value to be set in set statements are defined as a sub-rule in the grammar. You

can find the complete grammar in Appendix A. In the code below, you can see that

56

after visiting the sub-rule setExpr, its returned value is set to a local variable. The ID

refers to the only id in the rest of the statement.

//extract value form the setExpr
Value value = this.Visit(context.setExpr());

//extract the ID name
String id = context.ID().GetText();

Since the test result is also set through the use of set statement, we should check that

in the rule implementation. The unit of measure is checked in the first tree visit for its

existence. Here in the second visit, after the parameter for the measure section of the

test point type is extracted, it is checked against the identifier in the set statement. If

they match, the measurement result for the current test point is sent back to the

server.

//check if you're inside a test point loop
if (testPointLoopVar.Key != string.Empty && testPointLoopVar.Key !=
null)
{
 //read the top of stack to find tpCollectionID
 string tpCollectionID = testPointLoopVar.Value;

 //using tpCollectionID, get test point type ID
 string tpTypeID = tGroup_tPointType[tpCollectionID];

 //using test point type ID, get its 'measure' var
 string tpMeasure = tPointMeasure[tpTypeID];

 //compare the ID name with 'measure' param to see if it's the test
result
 //if they're the same, save the test result back to the server
 if (id.Equals(tpMeasure))
 {
 MeasurementResult measResult = new
MeasurementResult(value.asDouble(), UnitOfMeasure, uncertainty);

 result.Measured = measResult.Value;

 //upload the result to the server
 tProcess.SaveTestResults(result);
 }
}

57

In the code block given below, you can see that how the identifier is looked for

inside the global memory. If it does not exist in the memory, it is implicitly defined

here and added to the memory.

//if variable exist in memory
if (memory.ContainsKey(id))
{
 //put the value
 memory[id] = value;
}
else // if variable not exist in memory, implicit declaration
{
 //add the id with the value
 memory.Add(id, value);
}

Another form of set statement is of the form:

set id.member to value

Where id can refer to an equipment variable that is used in the test as a resource. The

value is set from a string value or from an arithmetic expression.

Figure 4.12 set statement parse tree type-2

58

Based on what user defines in the require statement in the script header as the

required resources for the test, a list of members for that resource is generated, so

that in the assignments it is checked against this list to find out to which category the

member in the set statement belongs. The member in this type of statement can only

be a property of that resource. This is checked in the first pass in the interpreter. The

code snippet given below shows the action that takes place in the second pass:

//extract value form the setExpr
Value value = this.Visit(context.setExpr());

// ID(0) must be an instrument value, since the value for a test point
can not be set.

String id = context.ID(0).GetText();

//set the value that comes from setExpr to ID.ID in the rule

string attrName = context.ID(1).GetText();

bool wasSet = Analyzer.SetProperty(attrName, value.asString());

//if the property was not set
if (!wasSet)
 throw new Exception("property was not set!");

Another form of set statement is of the form:

set id1 to id2.member

Where, the id1 is an identifier that might not exist which then gets defined here. The

id2 can be either a test point variable, which then the interpreter will check for its

parameters, or may be an id belonging to a resource. In this case, the member is

either a property or a function in the resource driver. The interpreter gets lists of

functions, methods and properties for the driver of all the resources at the beginning

of the execution. This is done through the use of Reflection [35] and reading the

interface that is provided in the testType filed of the require keyword for every

resource that is added to the test script. The lists are used here to check to which list

the member in the statement belongs to. If it belongs to none of them, then it gives an

error.

59

Figure 4.13 set statement parse tree type-3

In the code block below, it is checked to see if the id2 is the test point identifier in the

for loop statement. If that is the case, then it is checked for the member in the test

point parameters. If the parameter is found, its value is set as indicated in the last if

statement.

//ID(1) can be a test point or an equipment attribute
string attrName = context.ID(1).GetText();

//check if ID(0) is a test point
string IDName = context.ID(0).GetText();

string idValue = null;
//if ID(0) is equal to the test point loop ID
if (testPointLoopVar.Key != string.Empty && testPointLoopVar.Key !=
null)
{
 if (testPointLoopVar.Key.Equals(IDName))
 {
 //check if ID(1) is a test point parameter
 if (tPoint != null)
 {
 foreach (Parameter p in tPoint.ParameterArray)
 {
 if (attrName.Equals(p.Name))
 {
 //get the value from the test point parameter
 idValue = p.Value;
 break;
 }
 }
 }
 }
}

60

It is also possible for the id2 in the set statement to be an instrument property or

function. Here again, as can be seen in the code block given below both of the

property and function categories in the memory for the resource are checked to see

which one is the right match.

//define variables
string propertyValue = null;
string funcValue = null;

//check if ID(1) is an ETE property
if (eteCallableMembers.Contains(new KeyValuePair<string,
string>(attrName, "property")))
{
 propertyValue = Analyzer.GetProperty(attrName);
}
//check if ID(1) is an ETE function
else if (eteCallableMembers.Contains(new KeyValuePair<string,
string>(attrName, "function")))
{
 funcValue = Analyzer.FunctionCall(attrName);
}

The last form for the set statement is as follows:

set id1.member to id2.member

The general form of how a parse tree for this statement looks like is shown in figure

4.14. Both of the parts in this statement type were explained in the other set

statement types.

61

Figure 4.14 set statement parse tree type-4

4.2.8 The constant Declaration

The concept of constant variables seemed to be useful in the context of test

procedures, since you always encounter variables that you want to keep their values

fixed along the test process, so it was added to the language. The main task is to put

the variable that comes in the statement into memory for later access, but with the

difference that it won’t be allowed in set statements. The general form of how a parse

tree for this statement looks like is shown in figure 4.15.

Figure 4.15 constant statement parse tree

62

Below, you can see how a constant variable is defined and added to the memory.

Also, you can see the return type here, which is used for those rules that there is no

expecting return value for them.

string ID = context.ID().GetText();
Value constValue = this.Visit(context.constVal());

//add the value to the list
constList.Add(ID, constValue);

//return base.VisitConst(context);
return Value.VOID;

4.2.9 The Function Call Statement

Function calls are usually done for either UUT or ETE in a test. Since the driver for

UUT has pushed the variation into test points, that’s why there are fixed number of

operations to call from a UUT driver. The general form of how a parse tree for this

statement looks like is shown in figure 4.16.

Figure 4.16 function call statement parse tree

As explained already, at the beginning of the interpretation we prepare a list of

members for instrument drivers. Since a function call can be either of type function

or method, the string that comes in the script as a function is checked against these

lists to find a match. The code snippet below shows this.

63

if (eteCallableMembers.Contains(new KeyValuePair<string,
string>(attrName, "function")))
{
 //treat ID(1) as an ete function call
 string returnValue = Analyzer.FunctionCall(attrName);
}
else if (eteCallableMembers.Contains(new KeyValuePair<string,
string>(attrName, "method")))
{
 //treat ID(1) as an ete method call
 bool wasCalled = Analyzer.MethodCall(attrName);
}

Also, as explained, we have a fixed number of functions for UUT to call as shown

below:

//check to see if ID(1) is a uut call
if (attrName.ToUpper().Equals("reset".ToUpper()))
 msg = UUT_Source.Reset();
else if (attrName.ToUpper().Equals("enable".ToUpper()))
 msg = UUT_Source.Enable();
else if (attrName.ToUpper().Equals("disable".ToUpper()))
 msg = UUT_Source.Disable();

4.2.10 The for each Loop

4.2.10.1 The testPointLoop Statement

We have looping for two different data types: One is to support looping on the

collection of test points of a test group, and the other is to support looping in a range

from a lower to an upper limit which is shown in the next statement. Since we do not

support nested looping for test points, we keep a single global memory to store loop

variables which comes in a keyValuePair. There are times user wants to halt the test

execution through the Metrology.NET user interface, so we have to frequently check

for the halt flag from the TestProcess class to make sure if it is ok to continue the

process. The general form of how a parse tree for this statement looks like is shown

in figure 4.17.

64

Figure 4.17 testPointLoop construct parse tree

As can be seen in the code given below, first the identifiers are extracted from the

loop statement. The test point collection must have already been declared, which

otherwise we would’ve encountered an error in the first visit of the parse tree. Here

in the second visit, the foreach loop goes through all the test points in the list

registered with the defined test point collection. For the result to be created for a test

point, we must define a TestResult object passing the test point reference to it. After

that, UUT setup is completed here by passing the test point object to it. There, inside

the UUT driver, all the related parameters for the received test point are extracted

and sent to the defined UUT. The last line in the if construct is used to ask the visitor

class to process that rule.

//get the ID(0), the variable of the loop
string tpID = context.ID(0).GetText();

//check that the test-point-collection has value
string tpCollectionID = context.ID(1).GetText();

//set the test point Loop variable
testPointLoopVar = new KeyValuePair<string, string>(tpID, tpCollectionID);

foreach (TestPoint tp in tGroup_tPoints[tpCollectionID])
{
 if (tProcess.HaltFlag == false)
 {
 //set the global test point to the current tp
 this.tPoint = tp;

 iTestPoint itp = tp;
 result = new TestResult(ref itp);

 //set up the UUT

65

 if (tProcess.HaltFlag == false)
 {
 UUT_Source.Setup(tp);
 }

 // evaluate the code block
 this.Visit(context.block());
 }
}

//empty the testpointLoopVar when done.
testPointLoopVar =new KeyValuePair<string,string>(string.Empty,

string.Empty);

4.2.10.2 The rangeLoop Statement

Looping on ranges follows almost the same structure as looping on test points,

except the fact that here, instead of using a collection of test points to loop through,

there is a range defined as [lowerLimit, upperLimit] that goes from the lower to the

upperLimit inclusively. A general form of this looping construct is shown in figure

4.18.

Figure 4.18 rangeLoop construct parse tree

As can be seen in the code block given below, after the looping variables are

extracted from the script, the loop index is added to the global memory so that it can

be accessed to, from the statements inside the loop block. Inside the loop, the index

gets updated in the memory as index moves from the defined lower to upper limit.

66

Then the statement block for the loop is processed by visiting the block sub-rule.

Before this pass of the interpretation, in the check pass, the limits have been checked

to see if the lower and upper limits are in the right order.

//extract loop index
string index = context.ID().GetText();
//get the lower limit for range
Value lowerLimit = this.Visit(context.limitVar(0));
//get the upper limit for range
Value upperLimit = this.Visit(context.limitVar(1));

int lowerLimitValue = lowerLimit.asInt();
int upperLimitValue = upperLimit.asInt();

//add loop index into memory
memory.Add(index, lowerLimit);

for (int i = lowerLimitValue ; i <= upperLimitValue ; i++)
{
 //update for index in the memory
 memory[index] = new Value(i);

 this.Visit(context.block());

}

//remove the for loop value from the memory when done.
memory.Remove(index);

4.2.11 The if-then-else Statement

For the conditional if statement, the conditions for if clause and each of the else if

clause(s) are checked and if one meets, its statement block will be run. At the end, a

control is done to see if any condition before the else clause resulted in true. If there

was none and there exist an else clause, then its statement block is called. You can

see a general form of an if statement with no statements in the clauses in figure 4.19.

67

Figure 4.19 if-then-else statement parse tree

And below comes the code snippet implemented for the if construct.

SparkS_v1Parser.Condition_blockContext[] conditions =
context.condition_block();

bool evaluatedBlock = false;

foreach(SparkS_v1Parser.Condition_blockContext condition in conditions)
{

 Value evaluated = this.Visit(condition.boolExpr());

 if(evaluated.asBoolean()) {
 evaluatedBlock = true;
 // evaluate this block whose expr==true
 this.Visit(condition.stat_block());
 break;
 }
}

if(!evaluatedBlock && context.stat_block() != null) {
 // evaluate the else-stat_block (if not null)
 this.Visit(context.stat_block());
}

For the Boolean operators, the below code is used for processing the two operands

that exist in the statement. Since, the operator has been checked in the first

68

interpretation pass, it is then assumed to be one of the cases mentioned in the if

statement.

Value left = this.Visit(context.arithExpr(0));
Value right = this.Visit(context.arithExpr(1));

string op = context.op.Text;

if (op.Equals("<"))
{
 return new Value(left.asDouble() < right.asDouble());
}
else if (op.Equals("<="))
{
 return new Value(left.asDouble() <= right.asDouble());
}
else if (op.Equals(">"))
{
 return new Value(left.asDouble() > right.asDouble());
}
else if (op.Equals(">="))
{
 return new Value(left.asDouble() >= right.asDouble());
}
else if (op.Equals("="))
{
 return new Value(left.asDouble() == right.asDouble());
}
else if (op.Equals("/="))
{
 return new Value(left.asDouble() != right.asDouble());
}

And for the four arithmetic operators supported by the language, the code below

shows how the processing for addition and subtraction operators is handled. The

same logic is used for the multiplication and division operators.

Value left = this.Visit(context.arithExprSub(0));
Value right = this.Visit(context.arithExprSub(1));

string op = context.op.Text;

if (op.StartsWith("+"))
{
 return new Value(left.asDouble() + right.asDouble());
}
else if (op.StartsWith("-"))
{
 return new Value(left.asDouble() - right.asDouble());
}

69

CHAPTER 5

5 SPARKS IN USE.....

This chapter is dedicated to the discussion of the calibration process based on the

Metrology.NET platform, using SparkS. First, it will be shown how data for a test is

added to the Metrology.NET server. We also will present our tool for data uploading

to the server which is much more efficient. Then, we will discuss how the developed

test processes are used at the agent side and how an agent registers itself at the server

with the list of test processes it can perform. After that, operations involving work

order creation and start and how tests are run will be demonstrated. We will have a

brief discussion on a programming editor for SparkS with a reference to the Geany

editor. At the end, a detailed case analysis of a sample script written in SparkS will

be presented.

5.1 Calibration process based on Metrology.NET

From one point of view we can look at a calibration automation process take place in

two phases: One is procedure development and data gathering for a test. The other is

running the test and producing report for customer. On the manuals that accompany

testing equipment, all the performance tests for the product are listed. Basically,

these manuals are prepared for a manual testing of the product. They include all the

data to be used during testing of these equipment in the provided procedures. They

also include the testing procedure to be applied by technician to run the test.

First of all, the data needed for a test is added to the Metrology.NET server. This can

be done through the web based user interface provided by Metrology.NET to support

data manipulation and test control. As can be seen in Figure 5.1, you have to insert

test points one by one to the database.

70

Figure 5.1 Adding a test point using Metrology.NET web interface

Test groups that consist of the data for a test may have hundreds of test points to be

tested and manual adding of data to the system in the way offered by the

Metrology.NET has a big time cost for the calibration personnel. To overcome this

problem, a tool was developed that reads calibration data from Excel sheets and

uploads to the server. A single Excel file is created for all the test groups for different

tests for a test package, with separate sheets for each test group that contain test

points for that test group. After the data is prepared in the format we have defined in

Excel files, the tool is able to read all the data and upload it to the server which leads

to a big time save for the user. A sample data sheet is shown partially in figure 5.2

that was filled based on the FM Accuracy performance test of the Agilent 8648X

series [33].

71

Figure 5.2 An example Excel sheet showing partially a sample test group

Figure 5.3 shows a screenshot from the upload tool we developed in which it is

shown that some of the test groups for a test package are chosen to be uploaded into

the server whose identification is given in the lower part of the window.

Figure 5.3 Our upload tool for selective test group uploading

72

After the test points got prepared and uploaded to the server, then test procedures

should be prepared, which will use these data to run. Test procedures are developed

based on Microsoft.Net framework in which test manuals are again used to extract

the required steps to put into procedure. After the test procedures are programmed,

they are compiled into class libraries to be used inside agents.

For each equipment or possibly a family of equipment, we will have separate class

libraries that we put inside the agent machine on which tests will be run.

Metrology.NET has an agent side executable that can read these libraries. A

screenshot of the agent service interface is shown in figure 5.4. The user can choose

the type of tests that are needed to be done and adds to the agent. The user then

connects agent to the server. All the selected libraries for the agent are registered in

the server so the server has knowledge about which tests an agent can run.

Figure 5.4 A screenshot of Metrology.NET agent service

As explained in 2.3, Metrology.NET follows a layered software hierarchy which

basically consists of the three layers: Test process, measurement driver, and

instrument driver. Each of these layers are independent from one another and they

can be added separately through the Metrology.NET agent interface, as shown in

figure 5.4. This is how developed test procedures operate in at the agent side of the

73

Metrology.NET. After the desired instances from different layers are added to the

agent, they get registered each into the Metrology.NET server with that agent ID.

This makes the server aware of the capabilities of the agent.

 In the case of using SparkS on Metrology.NET, we have a single generic test

process to be seen in this list, instead of different test instances from different layers.

The variation is pushed into written scripts, so different scripts are developed for

different testing purposes and are fed into the generic test process. A detailed

scenario of how an agent is registered on the server is shown in figure 5.5.

74

Figure 5.5 Register an agent in Metrology.NET

After the agent is registered on the server with its functionalities, it starts waiting for

incoming job requests from the server. At the server side, using the service bus, user

creates a work order out of the uploaded data for equipment. The user can choose

which models and options he/she wants to include for testing. He/she then chooses

the agent on which to run the test(s). There might be several different

implementations for a test. The user can choose from a list of possible choices. A

screenshot of open work orders screen shows performance test list created from HP

8648X series that can be seen in figure 5.6. By the ASSIGN button, the user is able

75

to assign the test process type that can be used to run this test. RUN button is used to

start the test and the PARAMS button to show the parameter list for the selected test.

Figure 5.6 A screenshot from Metrology.NET web interface showing open work

orders

Figure 5.7 shows the overall steps taken to create the data and work order for a test

package.

76

Figure 5.7 Create test package and work order

After all these are set, the user starts the calibration. At this point, server starts

sending the required test points for that test to the agent. The agent then directs the

coming test points to the target test process that will run the test. The test process will

process the test points, sending the appropriate commands to the equipment involved

in testing. The results coming back from the equipment are processed and the final

result for a test point is sent back to the server as the test result for that test point. For

the results received from the agent, the server decides if a test point passes or fails

and records it into the database. The user can choose to produce a calibration report

after all the test points are done testing. Figure 5.8 shows the sequence diagram that

gives a detailed scenario of how a work order is started and a test is run.

77

Figure 5.8 Start a work order and run a test

The overall picture with the steps taken in each phase is represented in figure 5.9.

78

79

Figure 5.9 Overall calibration process based on Metrology.NET

5.2 Programming Editor

For providing a more convenient experience in programming in SparkS, Geany text

editor was used to add support for our language syntax. Geany is a free, lightweight,

cross-platform and fast text editor using the GTK2 toolkit (the GIMP Toolkit) [30]

that has many of the basic features for an IDE (Integrated Development

Environment) including syntax highlighting, code folding, symbol name auto-

completion, construct completion/snippets, code navigation and build system to

compile and execute your code.

Some of the features mentioned were added for SparkS in Geany. The editor now

supports SparkS file extension (.ss). With the help of fileType mechanism you can

define your language features in a configuration file that enables you to customize

the settings such as styling, keywords for highlighting, indentation, etc. for your

language. Also, code snippet support was added for SparkS, so that by entering a

keyword, you can get the whole statement produced for you to reduce programming

effort. Figure 5.10 shows a screenshot of the Geany editor with a sample script in it.

80

Figure 5.10 A snapshot of a SparkS script written in Geany

81

5.3 Case Study

In this section, a step by step discussion on an example script written in SparkS is

presented to show a real world application for it. The test script is developed based

on the Frequency Test for the Agilent E44xx ESG Signal Generator [14].

Every SparkS script starts and ends with the testProcess keyword and an identifier

for the script. This was a design decision for language extensibility. If we think of a

document similar to that of a test manual (calibration guide) such as [14] with several

SparkS scripts here and there, then, there would be a need to mark the script blocks

in the text.

testProcess measureFrequency

The require keyword is a part of the header. It is used to reference to the resources

that will be used along the test. To get a reference to a resource we need two

properties of that resource to be specified. These are its message linker type

(linkerType) and its test type (testType). Message linker type specifies the type of

resource based on the equipment that is used. As an example, a Signal Generator is

classified as a source type and a Spectrum Analyzer is classified as a measure type

which is based on the functionality of the equipment. The test type specifies the

generic type that is used as an indicator of a family of instruments that can be used

for this specific test script.

For this performance test, two resources are used, one for the ETE and another for

the UUT. The names uut and ete here are names for the identifiers and can be

anything.

require ete as linkerType "Measure.Device" testType "iSpectrumAnalyzer"

require uut as linkerType "Source.Device" testType "iSignalGenerator"

The bind keyword is a part of the header. Every script is supposed to have a test

name and an optional description field. We must also set the unit of measure used in

the test, for the value measured to be used in the test result.

bind TestName to "TestProcess.Measure.Frequency (Agilent_E44xxA)"

82

bind Description to "Measures the Frequency of a signal using an Agilent PSA

(E44xxA)"

bind UnitOfMeasure to "Hz"

The TestType is a generic property assigned for a test script. For a single test type,

there may be several implementations. This is to supply with the user who does

calibration, to choose from a list of different implementations for a test type at

runtime. The prompt keyword allows the property to be assigned at runtime.

bind TestType to prompt

Here we define a test point type which is similar to a data type in how it is applied.

The tp is the identifier that will be used to refer to this type. We declare the

parameter list that is expected to be provided in incoming test points, but these are

not mandatory to exist among parameters. In the measure part, we have one

parameter, that is measuredFrequency, the parameter to which the measurement

result must be assigned.

testPoint tp

provide
 Frequency

 Power

measure
 measuredFrequency

end tp

The tgCollection is a test group identifier that is bound to the test point type declared

already using the tp identifier. In the script we can have access to the input test point

array through the use of tgCollection.

testGroup tgCollection testPoint tp

The following line will call the reset function on the declared UUT device.

uut.Reset

The following line will call the reset function on the ETE device.

ete.Reset

The following line will create a constant variable named UNC and assign it the value

of 0.5. The value of UNC cannot be changed anywhere in the code.

83

constant UNC = 0.5

At this point, before taking any action, the test setup must be arranged by the user for

the current test to run. This line of code will pop up a window on the Metrology.NET

web interface, showing the user an image (with the name given in the parameter) as a

guide on how to make the appropriate connections for the equipment involved in the

test.

Dialog.ConnectionPicture("PSA_TO_UUT_RFIN")

The following two lines show a looping statement for test points. tgCollection refers

to the test point list that is sent from the server to the agent, based on the selected test

group out of a work order. The tp1 will keep reference to the current test point as

looping continues.

for each tp1 in tgCollection do

end for

All the following statements go into the for loop just discussed. This statement sends

the OutputOn command to the UUT, enabling the equipment to send output to the

ETE.

uut.Enable

In the following statement, the Frequency variable (shown in green) shows an

implicit variable declaration. It holds the value for the Frequency parameter of tp1.

set Frequency to tp1.Frequency

In the following statement, MaxFrequency variable shows an implicit variable

declaration. It will hold the value for the MaxFrequency parameter extracted from

the ETE driver. The same is about the MinFrequency variable.

set MaxFrequency to ete.MaxFrequency

set MinFrequency to ete.MinFrequency

In the following if statement, the local Frequency variable is checked against the

local MinFrequency and MaxFrequency variable. If the condition is true, an error is

given. This is an important check to be sure if the incoming frequency parameter

falls within the predefined limits of the specified resource driver.

84

if Frequency < MinFrequency or Frequency > MaxFrequency then

 error "Frequency Out of Range"

end if

In the following set statement, the Coupling property of the ETE is set to DC.

Coupling provides a mechanism to prevent or allow DC signals into the spectreum

analyzer.

set ete.Coupling to "DC"

In this line, the ReferenceLevel property of the ETE is set to 10.

set ete.ReferenceLevel to 10

In this statement, the CenterFrequency parameter of ETE is set to the local variable

Frequency. It refers to the center position on the horizontal line of the display.

set ete.CenterFrequency to Frequency

The if-then-else statement will execute based on the value of local variable

Frequency. If it is less than 2.2e3 the first code block will be run, setting the Span

and ResolutionBandwith of the ETE to 10 and 100 respectively. Another condition is

for when the value is not less than 2.2e3 but less than 2.2e6. If none of the conditions

are met, the else block will be run. Here, Span defines the frequency range which is

subject to the measurement, and ResolutionBandwidth specifies the resolution (detail

level) of the sweep. The less the ResolutionBandwidth, the higher the resolution.

if Frequency < 2.2e3 then

 set ete.Span to 10

 set ete.ResolutionBandwidth to 100

else if Frequency < 2.2e6 then

set ete.Span to 500

 set ete.ResolutionBandwidth to 50

else
set ete.Span to 500e3

set ete.ResolutionBandwidth to 10e3

end if

85

In the following statement, the value for the AverageSweep parameter for the ETE is

set to 1. AverageSweep is the average value for the average sweep number of

spectrum analyzer sweeps.

set ete.AverageSweep to 1

The TakeSweep function of the ETE driver will be called two times by the following

two statements. Taking a sweep consists of all the measurement through the

spectrum analyzer span (the frequency range between the start and stop frequency)

ete.TakeSweep

ete.TakeSweep

The MarkerPeakHi function of the ETE driver will be called. Here, MarkerPeakHi,

puts the display marker of the spectrum analyzer to the highest point of the signal.

ete.MarkerPeakHi

In the following line, the local variable RefMarker is defined implicitly and set to the

value that comes as the return value from the MarkerAmplitude function of the ETE.

MarkerAmplitude refers to the y coordinate of the marker (power level of the

marker).

set RefLevel to ete.MarkerAmplitude

The following statement shows a simple conditional if statement. The value of the

variable RefLevel is supposed not to be less than -40, and if that’s the case, it is set to

-40.

if RefLevel < -40 then

set RefLevel to -40

end if

In the following statement, the ReferenceLevel parameter of the ETE is set to the local

variable RefLevel.

set ete.ReferenceLevel to RefLevel

In this statement, local variable Sum is defined and set to 0.

86

set Sum to 0

The for loop statement that will loop through 1 to 5, keeping the current value in the

index variable each time along the loop. Inside the loop, the value of the

MarkerFrequencyCount parameter of the ETE is added to the last value of the Sum

variable. Here, the MarkerFrequencyCount refers to the x coordinate of the marker

(frequency value of the marker).

for each index in [1, 5] do

 set Sum to Sum + ete.MarkerFrequencyCount

end for

In this statement, the value for Sum is divided by 5 and put into the local variable

MeasureVal.

set MeasureVal to Sum / 5

In the following statement, the value for the predefined variable UNCERTAINTY is

set to the constant variable UNC. This value is used beside the measured value for a

test point.

set UNCERTAINTY to UNC

In this statement, the measured value as the test result is set to the

measuredFrequency parameter declared in the measure section of the test point type.

Reading this, the interpreter will upload the result to up to the server for finalization.

set measuredFrequency to MeasureVal

In this statement, the OutputOff command for the UUT is set, which causes the

output for the UUT to be disabled.

uut.Disable

And finally, the following line shows the end of the script.

end measureFrequency

The complete code for this sample script and another sample can be found in the

Appendix B.

87

CHAPTER 6

6 CONCLUSION AND FUTURE WORK.....

6.1 Contributions

In this thesis, we designed and implemented the initial version of a domain specific

language, named SparkS, for developing calibration procedures for test and

measurement equipment. The motivation behind this study was to propose a

language to be used by domain workers who have a little programming knowledge.

The SparkS grammar was developed using ANTLR tool which produced the parser

in C#, which is the front-end of the language processor. We had an elaborated

discussion on the language constructs and presented a complete case study that was

developed in SparkS. We developed an interpreter using the Visitor pattern for the

implementation of the back-end. The interpreter was embedded into the

Metrology.NET platform, the next generation of calibration automation systems

developed by Cal Lab Solutions, Inc.

For adding test points, the data for running tests, into the database on the server, an

upload tool was developed that reads test points in the format we defined, from Excel

sheets, and uploads to the server. The developed tool offers a much higher speed

compared to the ordinary way of adding test points one by one through the

Metrology.NET web based interface, which resulted in a big time save in adding test

points into the server.

For showing how a written SparkS script compares to a test procedure developed on

Metrology.NET, a comparison matrix is presented for a complete test written both in

SparkS and VB.Net. The table can be found in Appendix G.

88

6.2 Future Work

SparkS IDE

For a better programming experience, we are planning to add features to the Geany

editor. Features such as code folding, and a stronger code completion (Intellisense)

support will be added to the editor.

There are several language features that were postponed for the next version of

SparkS. The following paragraphs elaborate on these features.

Multi-line Bind

In the current version of the language, we are using single line sets and binds. For the

next version, the mentioned keywords will be factored out to make a block of

statements with these common keywords.

For example use:

bind

 a to b

 b to c

end bind

instead of:

bind a to b

bind b to c

Space-delimited Strings

For the string literals used in some statements, the quotation marks can be ignored if

there is no space character within the string (white space delimited string). This

should make the writing of the external names cleaner.

For example use:

set ete to spectrumAnalyzer

89

instead of:

set ete to “spectrumAnalyzer”

Then-if ladder

For the conditional statement, we’re planning to introduce the following structure

that leads to cleaner code:

if a>b

 then if b>c

 then if c>d then
 //statement…

end if

Instead of :

if a>b then

 if b>c then

 if c>d then
 //statement…
 end if

 end if

end if

More specific ordered collections

We are planning to extend the for loop structure, so that the ordered collection can be

specified in more detail by setting the limits and also ordering for the collection in

the statement. The example below shows how it would look like:

for each tp1 in tgCollection

where Frequency< ete.Maxfrequeny and Frequency > ete.MinFrequency

order by Frequency inccreasing , power decreasing)
// loop body

90

Interval notation

Another feature that we would like to have in our feature set is to take advantage of

ranges in other statements. The example below shows a sample use:

if not Frequency in [MinFrequency,MaxFrequency] then
 //statements…
end if

Test Point Parameters

For the initial version of SparkS, we assumed the test point parameters to be all

optional. Basically, there are parameters that are optional, but also parameters that

must be present in a test point for a test to be run. The mandatory parameters will be

added to the language as another feature.

Error Handling

For the first version of SparkS, a light exception handling was added. To make the

language interpreter robust, a complete exception handling is supposed to be done for

the next version of SparkS. Also, a better error handling for user input is considered

to be added to the language.

Some other features, such as adding Proceed statement, for forward jump, Goto

statement, for jumping over points in a script, and dynamic type checking

mechanism are also considered to be added in the next version of SparkS.

91

REFERENCES

[1] A. Kleppe, Software Language Engineering: Creating Domain-Specific

Languages Using Metamodels, 1st edition, Boston, USA: Addison-Wesley

Professional, December 19, 2008

[2] M. Fowler, Domain-Specific Languages (Addison-Wesley Signature Series

(Fowler)), 1st edition, Boston, USA:Addison-Wesley Professional, October

3, 2010

[3] T. Boudreau, J. Glick, S. Greene, Jack J. Woehr, V. Spurlin, NetBeans: The

Definitive Guide, First edition, USA: O'Reilly Media. October 15, 2002

[4] S. Greenbaum, S. Jefferson, "A Compiler for HP VEE", Hewlett-Packard

Journal, Vol. 49, Issue 2, p98 , May 1998

[5] ANTLR, parser generator. [Online]. Available: http://www.antlr.org/,

Accessed on: April 25, 2015.

[6] International vocabulary of metrology - Basic and general concepts and

associated terms (VIM), 3
rd

 edition, Joint Committee for Guides in Metrology

(JCGM), Paris, 2008.

[7] T. Parr , The Definitive ANTLR 4 Reference, second edition , USA: Pragmatic

Bookshelf, January 25, 2013

[8] J. L. Bucher, The Metrology Handbook, 2
nd

 edition, USA: ASQ Quality

Press, May 10, 2012.

[9] J. Travis, J. Kring, LabVIEW for Everyone: Graphical Programming Made

Easy and Fun, 3rd Edition, USA: Prentice Hall, July 27, 2006

[10] International Standard ISO/IEC, ISO/IEC 14977, 1996

[11] Test Management Environment (TME) Software. [Online]. Available:

http://cal.software.keysight.com/, Accessed on: April 25, 2015.

[12] Cal Lab Solutions, Inc. [online] Available: http://www.callabsolutions.com/,

Accessed on: April 25, 2015.

[13] P. Howarth, F. Redgrave, METROLOGY – IN SHORT, 3rd edition, Schultz

Grafisk, DK 2620 Albertslund, July 2008, [Online]. Available:

http://www.hpl.hp.com/hpjournal/98may/may98a13.pdf

92

http://www.npl.co.uk/upload/pdf/metrologyinshort.pdf, Accessed on: April

25, 2015.

[14] “Calibration Guide, PSA Spectrum Analyzers, E444xA series, 3 Hz to 50

GHz”, © Keysight Technologies, Inc., Reproduced with Permission,

Courtesy of Keysight Technologies, Manufacturing Part Number: E4440-

900XX, August 2004.

[15] International Standard IEC, IEC 60488-2, 2004

[16] International Standard IEC, IEC 60488-1, 2004

[17] R. T. Fielding, "Architectural Styles and the Design of Network-based

Software Architectures" Ph.D. dissertation, Dept. Information and Computer

Science, University of California, Irvine, 2000.

[18] J. J. Garrett, "Ajax: A New Approach to Web Applications", Adaptive Path,

San Francisco, CA 9410, February 18, 2005.

http://www.adaptivepath.com/publications/essays/archives/000385print.php,

Accessed on: April 25, 2015.

[19] M. L. Schwartz, “Calibrating a UUT on a Remote Computer Using Fluke

MET/CAL®”, Measurement Science Conference (MSC), Long Beach,

California, Vol. 21:4, March 14, 2014.

[20] Metrology.NET software system. [Online]. Available:

http://www.metrology.net, Accessed on: April 25, 2015.

[21] Antlrworks Project. [Online]. Available: http://tunnelvisionlabs.com/

products/demo/antlrworks, Accessed on: April 25, 2015.

[22] R. Mak, Writing Compilers and Interpreters: A Software Engineering

Approach, 3rd edition, USA:WILEY, September 2009

[23] E. Gamma, R. Helm, R. Johnson, J. Vlissides (The "Gang of Four"), Design

Patterns: Elements of Reusable Object-Oriented Software, USA: Addison-

Wesley, 1994

[24] P. DiLascia. “Meandering Through the Maze of MFC Message and

Command Routing”, Microsoft Systems Journal, Vol. 10, No. 7, July 1995.

[25] E. Bainomugisha, A. L. Carreton, T.V. Cutsem, S. M., and W. de Meuter, “A

survey on reactive programming”, ACM Computing Surveys (CSUR), Vol.

45, No. 52, August 2013.

http://www.metrology.net/

93

[26] “The TME Tutorial”, Agilent Technologies, Inc. Santa Rosa, CA 95403,

[online]. Available:

http://www.keysight.com/upload/cmc_upload/All/TMETutorial_E_02_11.pdf

, Accessed on: April 25, 2015.

[27] M. L. Schwartz, “An Enterprise Resource View of Metrology Software

Systems”, NCSLI Workshop & Symposium, Orlando, FL, July 30, 2014

[28] T. Parr, Language Implementation Patterns: Create Your Own Domain-

Specific and General Programming Languages, 1st edition, USA: Pragmatic

Bookshelf, December 31, 2009

[29] O. Çetiner, “Calculation of Measurement Uncertainties of High Frequency

Device Calibration Setups and Development of Calibration Software”, M.S.

thesis, Dept. Electric and Electronic Eng., Hacettepe Univ., Ankara, Turkey,

2013.

[30] A. Krause, Foundations of GTK+ Development (Expert's Voice in Open

Source), 1st Edition, USA: Apress, April 1, 2008

[31] N. A. Reshef, B. T. Nolan, J. Rubin, Y. S. Gafni, “Model traceability”, IBM

SYSTEMS JOURNAL, VOL 45, NO 3, 2006.

[32] W. D Clinger, "Foundations of Actor Semantics", Ph.D. dissertation, Dept.

Math. and Computer Science, MIT, USA, May 1981.

[33] “Calibration Guide, HP 8648A/B/C/D Signal Generator”, © Keysight

Technologies, Inc., HP Part No. 08648-90048, Santa Rosa, CA 95403-1799,

USA, November 1998.

[34] E. Freeman, E. Robson, B. Bates, K. Sierra, Head First Design Patterns,

USA: O'Reilly Media, October 2004

[35] B. C. Smith, "Procedural reflection in programming languages", Ph.D.

dissertation, Dept. Electrical Eng. and Computer Science, MIT, USA, Feb

1982.

94

95

APPENDIX A

ANTLR GRAMMAR FOR SPARKS

grammar SparkS_v1;

options
{
 language = 'CSharp';
}

//////////////////
// PARSER RULES //
//////////////////

//starting rule
program
 : NEWLINE*
 TESTPROCESS ID
 NEWLINE+

 header*
 body

 NEWLINE*
 TESTPROCESS ID
 NEWLINE* EOF
 ;

header
 : require+
 | bind+
 | testPoint+
 | testGroup+
 ;

body
 :
 stmt (NEWLINE+ stmt)*
 ;

//======================= header rules ========================
require
 : REQUIRE ID AS LINKERTYPE externalDesignator (TESTTYPE
externalDesignator)? NEWLINE+
 ;

externalDesignator
 : externalName
 | PROMPT

96

 ;

externalName
 : STRINGLITERAL
 ;

bind
 : BIND ID TO externalDesignator NEWLINE+
 ;

testPoint
 : TESTPOINT tpId NEWLINE+
 PROVIDE NEWLINE+
 (paramID NEWLINE+)+
 MEASURE NEWLINE* ID NEWLINE+
 END tpId NEWLINE+
 ;

tpId
 : ID
 ;

paramID
 : ID
 ;

testGroup
 : TESTGROUP ID TESTPOINT tpId NEWLINE+
 ;

//the possible statements
stmt
 : for_stmt
 | ifThenElseStmt
 | set_stmt
 | const
 | functionCall
 | error
 ;

functionCall
 : ID DOT ID (LPAREN (STRINGLITERAL (COMMA STRINGLITERAL)*)? RPAREN)?
 ;

const
 : CONST ID EQ constVal NEWLINE+
 ;
constVal
 : (INT | DOUBLELITERAL) #numberConst
 | ID #idConst
 ;

//a subset of the possible statements
sub_stmt
 : for_stmt
 | ifThenElseStmt

97

 | set_stmt
 | functionCall
 | error
 ;

//if-then-else structure
ifThenElseStmt
 : IF condition_block (ELSEIF condition_block)* (ELSE NEWLINE+
stat_block)? END_IF
 ;

condition_block
 : boolExpr THEN NEWLINE+
 stat_block
 ;

stat_block
 :
 (block NEWLINE*)?
 ;

//block
block
 : sub_stmt (NEWLINE+ sub_stmt)*
 ;

//bool expression rules
boolExpr
 : NOT boolExprSub #notExpr
 | boolExprSub AND boolExprSub #andExpr
 | boolExprSub OR boolExprSub #orExpr
 | boolExprSub XOR boolExprSub #xorExpr
 | boolExprSub1 #boolSub1Expr1
 ;

boolExprSub
 : LPAREN boolExpr RPAREN #boolExprParen
 | boolExprSub1 #boolSub1Expr2
 ;

boolExprSub1
 : arithExpr op=(LTEQ | GTEQ | LT | GT| EQ | NEQ) arithExpr
#arithmeticExpr
 | (TRUE | FALSE)
#boolAtom
 ;

//arithmetic expression rules
arithExpr
 : arithExprSub op=(MULT | DIV) arithExprSub #multiplicationExpr
 | arithExprSub op=(PLUS | MINUS) arithExprSub #additiveExpr
 | arithExprSub1 #arithsub1Expr1
 ;

arithExprSub
 : LPAREN arithExpr RPAREN #arithExprParen

98

 | arithExprSub1 #arithsub1Expr2
 ;
arithExprSub1
 : (INT | DOUBLELITERAL) #numberAtom
 | ID #idAtom
 ;

//for loop variations
for_stmt
 : FOR EACH ID IN ID DO NEWLINE+
 (block NEWLINE*)?
 END FOR #tPointLoop

 | FOR EACH ID IN O_BRAC limitVar COMMA limitVar C_BRAC DO
NEWLINE+
 (block NEWLINE*)?
 END FOR #rangeLoop

 ;

limitVar
 : ID #varID
 | INT #varINT
 ;

//set statement
set_stmt
 : SET ID TO setExpr #setVar
 | SET ID DOT ID TO setExpr #setAttr
 | SET UNC TO setExpr #setUNC
 ;

setExpr
 : arithExpr #setExprArith
 | STRINGLITERAL #setExprString
 | ID DOT ID #setExprAttr
 ;

error
 : ERROR STRINGLITERAL NEWLINE+
 ;

//////////////////
// LEXER TOKENS //
//////////////////

NEWLINE : '\r'? '\n';
WS : [\t] -> skip;

REQUIRE :'require';
LINKERTYPE :'linkerType';
TESTTYPE :'testType';
BIND :'bind';
TESTPROCESS :'testProcess';
TESTPOINT :'testPoint';
TESTGROUP :'testGroup';

99

PROMPT :'prompt';
AS :'as';
DO :'do';
END :'end';
IF :'if';
ELSE :'else';
FOR :'for';
EACH :'each';
IN :'in';
SET :'set';
TO :'to';
THEN :'then';
COMMA :',';
DOT :'.';
IS :'IS';
NULL :'NULL';
END_IF :'end if';
ELSEIF :'else if';
MEASURE :'measure';
PROVIDE :'provide';
ERROR :'error';
CONST :'constant';

TRUE: 'TRUE';
FALSE: 'FALSE';

// Control Chars
LPAREN : '(';
RPAREN : ')';
O_BRAC : '[';
C_BRAC : ']';

// Binary Arithmetic Operators
MULT : '*';
DIV : '/';
PLUS : '+';
MINUS : '-';

// Comparison Operators
EQ : '=';
NEQ : '/=';
GTEQ : '>=';
LTEQ : '<=';
GT : '>';
LT : '<';

// Logical Operators
NOT : 'not';
AND : 'and';
OR : 'or';
XOR : 'xor';

// Literals and Identifiers
fragment DIGIT : [0-9];
fragment LETTER : [A-Za-z];
fragment CHARACTER : DIGIT | LETTER | '_';

100

INT: (PLUS|MINUS)? DIGIT+ (('e' | 'E') INT)*;
DOUBLELITERAL : (PLUS|MINUS)? DIGIT* '.' DIGIT+ (('e' | 'E')
(PLUS|MINUS)? ('0'..'9')+)*;
STRINGLITERAL : '"' (~["\r\n])* '"';

ID: LETTER CHARACTER*;

//Comments
COMMENT
 : '/*' .*? '*/' -> skip // match anything between /* and */
 ;
LINE_COMMENT
 : '//' ~[\r\n]* '\r'? '\n' -> skip
 ;

101

APPENDIX B

SAMPLE SCRIPTS WRITTEN IN SPARKS

1. Sample 1

Frequency performance test for signal generators family.

testProcess measureFrequency

//==================== header ======================

//required types to be used in the test

require ete as linkerType "Measure.Device" testType "iSpectrumAnalyzer"

require uut as linkerType "Source.Device" testType "iSignalGenerator"

//set the test specific parameters

bind TestName to "TestProcess.Measure.Frequency (Agilent_E44xxA)"

bind Description to "Measures the Frequency of a signal using an Agilent PSA (E44xx)"

bind UnitOfMeasure to "Hz"

//value for some parameters can be assigned at runtime (using prompt keyword)

bind TestType to prompt

/*

test point type, including the expected parameters from test points (inside a test group)

and the to-be-measured parameter. test result will be assigned to this parameter at the end

of the test.

*/

testPoint tp

provide
 Frequency

 Power

measure
 measuredFrequency

end tp

//defining test group variable and binding it to the test point variable declared already.

testGroup tgCollection testPoint tp

//==================== body =======================

uut.Reset

ete.Reset

constant UNC = 0.5

//using the Dialog library, show the picture with the name given

Dialog.ConnectionPicture("PSA_TO_UUT_RFIN")

102

//loop through test points inside the provided test group

for each tp1 in tgCollection do

//send the OutputOn command

uut.Enable

//implicit declaration of the local variable Frequency

set Frequency to tp1.Frequency

//implicit declaration of the local variable MaxFrequency

 set MaxFrequency to ete.MaxFrequency

 set MinFrequency to ete.MinFrequency

 //check the Frequency Range of the Spectrum Analyzer

 if Frequency < MinFrequency or Frequency > MaxFrequency then

 error "Frequency Out of Range"

 end if

//Set the Coupling

set ete.Coupling to "DC"

set ete.ReferenceLevel to 10

set ete.CenterFrequency to Frequency

//set the Span and Filters

if Frequency < 2.2e3 then

 set ete.Span to 10

 set ete.ResolutionBandwidth to 100

else if Frequency < 2.2e6 then

 set ete.Span to 500

 set ete.ResolutionBandwidth to 50

else
 set ete.Span to 500e3

 set ete.ResolutionBandwidth to 10e3

end if

set ete.AverageSweep to 1

//take a couple of sweeps

ete.TakeSweep

ete.TakeSweep

//get the ref marker

ete.MarkerPeakHi

set RefLevel to ete.MarkerAmplitude

if RefLevel < -40 then

 //adjust the refLevel

 set RefLevel to -40

103

 end if

 set ete.ReferenceLevel to RefLevel

 set Sum to 0

 for each index in [1, 5] do

 set Sum to Sum + ete.MarkerFrequencyCount

 end for

 set MeasureVal to Sum / 5

 set UNCERTAINTY to UNC

 //set the measured value as test result

 set measuredFrequency to MeasureVal

//send the OutputOff command

 uut.Disable

end for

end measureFrequency

104

2. Sample 2

Harmonics performance test for signal generators family.

testProcess measureHarmonics

//==================== header =========================

//required types to be used in the test

require ete as linkerType "Measure.Device" testType "iSpectrumAnalyzer"

require uut as linkerType "Source.Device" testType "iSignalGenerator"

//set the test specific parameters

bind TestName to "TestProcess.Measure.Harmonics (Agilent N9030A) "

bind Description to "Measures the Harminics of a signal using an Agilent PXA (N9030A)

Spectrum Analyzer"

bind UnitOfMeasure to "dBc"

//value for some parameters can be assigned at runtime (using prompt keyword)

bind TestType to "Measure.Harmonics"

/*

test point type, including the expected parameters from test points (inside a test group)

and the to-be-measured parameter. test result will be assigned to this parameter at the end

of the test.

*/

testPoint tp

provide
 Frequency

 Power

 ReferenceSource

 HarmonicToMeasure

 NumberOfHarmonics

measure
 Harmonics

end tp

//defining test group variable and binding it to the test point variable declared already.

testGroup tgCollection testPoint tp

//=================== body ==========================

uut.Reset

ete.Reset

constant UNC = 3.0

//using the Dialog library, show the picture with the name given

Dialog.ConnectionPicture("PXA_TO_UUT_RFIN")

//loop through test points inside the provided test group

for each tp1 in tgCollection do

//send the OutputOn command

105

uut.enable

//implicit declaration of the local variable Frequency

set Frequency to tp1.Frequency

//implicit declaration of the local variable MaxFrequency

 set MinFrequency to ete.MinFrequency

 set MaxFrequency to ete.MaxFrequency

 //check the Frequency Range of the Spectrum Analyzer

 if Frequency < MinFrequency or Frequency > MaxFrequency then

 error "Frequency Out of Range"

 end if

 //get the Power Level

set Power to tp1.Power

//get the Harmonic to Measure

set HarmToMeas to tp1.HarmonicToMeasure

//get the number of Harmonics to Measure

set NumHarm to tp1.NumberOfHarmonics

//error check the values

if HarmToMeas = 0 and NumHarm = 0 then

 error "Must Specify 'HarmonicToMeasure' or 'NumberOfHarmonics'"

end if

//error check the range of measurements

if Frequency * 2 > MaxFrequency then

 error "Harmonic Frequecy Out of Range!"

end if

//Set the Coupling

set ete.Coupling to "DC"

set ete.ReferenceLevel to Power + 5

set ete.CenterFrequency to Frequency

//set the Span and Filters

if Frequency < 500 then

 set ete.Span to 10

 set ete.ResolutionBandwidth to 10

else if Frequency < 2.2e3 then

 set ete.Span to 100

 set ete.ResolutionBandwidth to 10

else if Frequency < 2.2e6 then

 set ete.Span to 2e3

 set ete.ResolutionBandwidth to 50

else
 set ete.Span to 2e6

106

 set ete.ResolutionBandwidth to 20e3

end if

//take a couple of sweeps

ete.TakeSweep

ete.TakeSweep

//get the ref marker

ete.MarkerPeakHi

set RefMarker to ete.MarkerAmplitude

if HarmToMeas > 0 then

 //measure a single harmonic

 set ete.CenterFrequency to Frequency * HarmToMeas

//take a couple of sweeps

 ete.TakeSweep

 ete.TakeSweep

 ete.MarkerPeakHi

 set Measured to ete.MarkerAmplitude

 set MeasureVal to Measured - RefMarker

 set UNCERTAINTY to UNC

//set the measured value as test result

 set Harmonics to MeasureVal

 else

 //measure the harmonics

 set Max to -999

 for each index in [2, NumHarm] do

 if Frequency * index < Maxfrequency then

 //measure a single harmonic

 ete.CenterFrequency to Frequency*index

 //take a couple of Sweeps

 ete.TakeSweep

 ete.TakeSweep

 ete.MarkerPeakHi

 set Measured to ete.MarkerAmplitude

 if Measured > Max then

 set Max to Measured

 end if

 end if

 end for

 set MeasureVal to Max - RefMarker

107

 set UNCERTAINTY to UNC

 //set the measured value as test result

 set Harmonics to MeasureVal

//send the OutputOff command

 uut.disable

end for

end measureHarmonics

108

109

APPENDIX C

METROLOGY.NET SYSTEM DATA DICTIONARY

Name Type Definition

Agent Class

An object of this class keeps data about a testing agent.

Testing agent is the client that connects directly to the

equipment and runs test processes.

AgentID String The unique ID given to a testing agent

Name String The name associated with an agent

OperatingSystem String The operating system running on the agent

Server_URL String

The address of the machine on which the

Meteology.NET server resides. It may be local, on a

server.

State String
The current state of the agent is kept here, whether it is

running or stopped.

SystemLocation String The physical location of the agent

Asset Class
An object of this class keeps the data about the asset that

is under test, namely Unit Under Test.

assetID String The unique ID given to an asset

CalDate Date The date on which calibration is done

CalDue Date The due date for calibration

Manufacturer String The manufacturer of the asset

Model String The specific model associated with the asset

Options String[] All the options included in the asset

Serial number String The unique serial number of the asset

measureDriver Class

All classes in the measure level of the test process

hierarchy inherit from this class. The measure() method

in this class does the measurements through device

driver.

measureDeviceInstIO Class
This class is a part of the test driver hierarchy that is used

in measuring equipment.

measurementResult Class

An object of this class keeps the measured value and the

uncertainty value to be output as the return value for a

test point.

ErrorFlag Boolean
If an error occurs along a test process run, this flag is set

to true.

ErrorMessage String
If an error occurs along a test process run, this is set with

the appropriate error message.

Uncertainty Double
The uncertainty value to be applied onto the measured

value from a test result.

UofM String The unit in which the measurement is performed

Value Double The value achieved as a result of the measurement

Model Class An object of this class keeps data about an equipment

110

model associated with an asset.

Deleted Boolean Marks the entity as deleted to be applied later

Description String A description provided for a specific model

ModelID String The unique ID associated with a model

Name String The model name

OptionGroupID String The ID of the option group that belongs to this model

ProductLineID String The product line to which this model belongs

ModelGroup class
An object of this class keeps data about the models

included in an equipment model family.

AutoUpdateOnAdd Boolean
If this option is true then every change applied to the

object will be uploaded to the server

Delete Boolean Marks the object as deleted to be applied later

GroupName String The name of a model group

ModelGroupID String The unique ID associated with a model group

ModelIDs String[] The list of all model IDs in this group

Models String[] The list of all the models in a model group

ModelOption class
An object of this class keeps data about a specific option

for equipment.

Deleted Boolean Marks the object as deleted to be applied later

Description String A description for an option

ModelOptionID String The unique ID for an option

Opt String Option name

ModelOptionGroup class
An object of this class keeps the relationship between a

model and its associated options.

Deleted Boolean Marks the object as deleted to be applied later

ModelID String The model ID

ModelOptionID String The option ID

Parameter Class

An object of this class keeps different types of data about

other entities. For example, a parameter for a test point

could tell to what model it applies.

Deleted Boolean Marks the object as deleted to be applied later

Editable Boolean Shows if this parameter is editable or not

eParentType
eParentType

s

Shows to what object it belongs: TestGroup,

TestGroupLib, TestPkg, TestPkgLib, TestPoint,

TestPointLib, TestProcess, TestResult, UserInterface, or

WorkOrder

Format String The textual format of a parameter

Group String Parameter group

isLocalOnly Boolean If the parameter is used only as a local copy

LimitedToList Boolean
Shows if we should only consider the items defined in

the list of a parameter

List String[] The list of items that belong to a parameter

ListValues String The list of item values that belong to a parameter

Max Double The max value to be put into a parameter

Min Double The min value to be put into a parameter

Name String Name of a parameter

parameterID String The unique ID associated with a parameter

ParentID String The parent object ID to which this parameter belongs

111

ParentType String Parent type of a parameter

Sequence Integer The sequence of a parameter among several parameters

Type String The type of a parameter

Value String The value of a parameter

ProductLine class
An object of this class keeps data about the manufacturer

of equipment.

Deleted Boolean Marks the object as deleted to be applied later

Name String The name of a manufacturer

ProductLineID String The unique ID associated with a manufacturer

SourceDriver Class
This class is a part of the test driver hierarchy that is used

in source equipment.

SourceDeviceInstIO Class
This class is a part of the test driver hierarchy that is used

in source equipment.

SourceTpControler Class
This class is a part of the test driver hierarchy that is used

in source equipment.

TestPoint class An object of this class keeps the data about a test point.

AutoUpdateOnAdd Boolean
If this option is true then every change applied to the

object will be transferred to the server

Deleted Boolean Marks the object as deleted to be applied later

Description String A description for a test point

Format String
The format of the data, e.g. #0.00 which has a 2 digit

precision after the decimal point

isLocalOnly Boolean If this is used only as a local copy

LowerLimit Double
The lower limit of the accepted range in which the

measured value to appear

Modifier String
Things that we want to appear on the reports for a

specific test point

Nominal Double The median value between the lower and upper limit

ParameterArray Parameter[] The list containing test point parameters

ParameterList ArrayList The list containing test point parameters

Parameters
List<Parame

ter>
The list containing test point parameters

Prefix String
The prefix used for a unit of measure. For example: K

for KHz

Resolution Integer The resolution of the value for a test point

RunCount Integer The number of times this test point to be run for a test

Sequence Integer
The sequence of a test point among test points of a test

group

StepNum String The sequence of a test point in a calibration guide

TestGroupID String
The unique ID of the test group to which this test point

belongs

TestPkgID String
The unique ID of the test package to which this test point

belongs

TestPointID String The unique ID of a test point

TestProcessID String
The ID of the process on which this test point will be

used

TestProcessIDs String[]
The ID of the processes on which this test point will be

used

112

TestType String Either of BelowLimit, AboveLimit or WithinLimits

TestTypeVal Integer The numeric value for the test type.

UnitOfMeasure String Unit of measure for this test point

UoMID Integer The ID associate with a unit of measure

UpperLimit Double
The upper limit of the accepted range in which the

measured value to appear

TestGroup Class An object of this class keeps the data about a test group.

AutoUpdateOnAdd Boolean
If this option is true then every change applied to the

object will be transferred to the server.

Deleted Boolean Marks the object as deleted to be applied later

Description String A description for a test group

isLocalOnly Boolean If the parameter is used as local only

Name String The name of a test group

ParameterArray Parameter[] The list containing test group parameters

Parameters
List<Parame

ter>
The list containing test group parameters

Sequence Integer
The sequence of the test group among other test groups

specific to a test package

TestGroupID String The unique ID specific to a test group

TestPkgID String
The unique ID of the test package to which a test group

belongs

TestPoints ArrayList The list of the test points belonging to a test group

TestProcessID String
The ID of the process on which this test group will be

used

TestType String

Showing the conventional type for a test group. E.g.:

“Measure.Harmonics” for a test group used for a

harmonics test.

TestPkg class
An object of this class keeps the data about a test

package.

AssetTypeID String
The unique ID associated with the type of assets used in

calibration

AutoUpdateOnAdd Boolean
If this option is true then every change applied to the

object will be transferred to the server.

Deleted Boolean Marks the object as deleted to be applied later

Description String A description for a test package

isLocalOnly Boolean If the parameter is used as local only

Name String The name assigned to a test package

Notes String optional notes about a test package

ParameterArray Parameter[] The list of parameters for a test package

ParameterArrayList ArrayList The list of parameters for a test package

ParameterCollection Dictionary The list of parameters for a test package

Parameters
List<Parame

ter>
The list of parameters for a test package

TestGroups ArrayList The test groups contained in this test package

TestPkgID String The unique ID assigned to the test package

Version Double The current version of a test package

TestProcess Class
This class is a part of the test driver hierarchy.

An object of this class keeps the data about a test

113

process.

This is a class of high level of abstraction that is used as

the base class for every test process to be implemented.

RunFlag Object The flag showing if a test process is running

SortOrder Parameter[]
This is to get or set the sort order for the parameters of a

test process

TestGroup TestGroup
The Test Group to be fed into this test process as the data

to be processed.

TestPkg TestPkg
The test package from which the corresponding test

group was chosen

TestPoints
List<TestPoi

nt>
The test points of the corresponding test group

WorkOrder WorkOrder
The work order to which this test process object is

assigned

UI

UserInteracti

on.Message

Linker

The object that is used for communication with the user

running a test, through the web based interface for the

server

_WorkOrder WorkOrder The work order from which the data for this test comes

TestProcessScript Class

This is the class that was added to the Metrology.NET to

support SparkS scripts. It extends TestProcess class with

some additional members to be used by the SparkS

interpreter, such as script loading and unloading

functions.

Description String A description for the test process for scripts

ScriptDescription String A description for the loaded script

ScriptDir String The directory from which the script is loaded

ScriptTestName String The name of a written script

ScriptTestType String
The conventional test type used for test processes. E.g.:

“TestProcess.Measure.Harmonics (Agilent_E44xxA)”

ScriptUofM String The unit of measure used in a script

TestResult Class
An object of this class keeps the data about a test result

from a measurement.

AsFound Boolean The test result before calibration

AsLeft Boolean The test result after calibration is done

LowerLimit Double
If available, the lower limit value for the test result to be

considered as passed

Measured Double The measured value from an asset for a test point.

Nominal Double
The median value between the lower and upper limit

values for a test point

Note String Some optional notes about a test result

ParameterArray Parameter[]
The variable number of parameters assigned for a test

result to keep meta data about it.

ParameterArrayList ArrayList
The variable number of parameters assigned for a test

result to keep meta data about it.

ParameterCollection Dictionary
The variable number of parameters assigned for a test

result to keep meta data about it.

Pass Integer
The value to show if the test has passed or failed at a test

point

114

Run Integer Number of times the test was run

RunDate Date The date on which the calibration was done

Sequence Integer Sequence of the test result

StandardIDs ArrayList The ID’s of the standards (ETEs) used in a test setup

Status String The current status for a test result

TestPointID String The ID of the test point to which this test result belongs

TestProcessID String The ID of the test process by which the test was done

TestResultID String The ID assigned to this test result

Uncertainty Double The uncertainty value for a test result

UncType String

The uncertainty type used in the test result. It has two

types: type A or type B. Type A is based on repeated

measured values, while type B is based on already

available data.

UpperLimit Double
The upper limit for a result to be in. if the measured

value passes this limit it is counted as failed

UserID Integer
The ID of the user who did the calibration for this test

point

TProcess Class
An object of this class keeps the data about an activated

and running test process.

ActivatedProcess Object The test process that is active now in an agent

AgentID String The ID for the testing agent

CreatedByID String The ID of the user who created the test process

DarwinLocation String The Metrology.NET server address

Description String The description of the test process

Name String Name of the test process

Revision String Current revision of the test process

State String Current state of the test process

TestProcessID String The ID for the active test process

TestProcessRegID String

The registration ID assigned for the test process. This ID

is used for binding two objects which need to

communicate with each other.

TestProcessType String The type used in the test process

UnitOfMeasure String Unit of Measure used in the test process

Uncertainty Class
An object of this class keeps the data about the measured

uncertainty value.

ParameterArray Parameter[]
The variable number of parameters assigned for an

uncertainty to keep meta data about it.

Parameters Double
The variable number of parameters assigned for an

uncertainty to keep meta data about it.

Uncertainty Double The calculated uncertainty value

UncertaintyID Double The unique ID assigned to an uncertainty value

Version Double The current version for the calculated uncertainty value

UnitOfMeasure Class
An object of this class keeps the data about the unit of

measure used in a test.

User Class

An object of this class keeps data about a user who runs

calibration processes through the Metrology.NET service

bus.

FirstName String First name of a user

115

ID String the unique ID to be assigned to a user

Password String The password to be chosen by a user

Roles String[]
The roles which are assigned to a user. A user can be

chosen to be a technician, engineer, admin, QA, etc.

SurName String Surname of the user

UserName String The user name to be chosen by a user

WorkOrder Class An object of this class keeps data about a work order.

AgentID String The unique ID for the agent that initiates the work order

CreatedBy String Who created the work order

DueDate Date The due date to finish the work order

Notes String Some notes about the work order if there is any

ParameterArray Parameter[]
The variable number of parameters assigned to a work

order to keep some meta data about it.

ParameterArrayList ArrayList
The variable number of parameters assigned to a work

order to keep some meta data about it.

ParameterCollection Dictionary
The variable number of parameters assigned to a work

order to keep some meta data about it.

Parameters
List<Parame

ter>

The variable number of parameters assigned to a work

order to keep some meta data about it.

RunBy String The user who runs the work order

RunDuration String The duration of the test

RunStart Date The date on which a work order was run

RunStop Date The date on which a work order was done

State Integer
One of the several states a work order can be in: Start,

Stop, Continue, and Close

TestPkgID String
The unique ID of the test package from which the

required data (Test Points) are pulled out

UutID String
The unique ID of the UUT on which the work order will

be run

WorkOrderID String The unique ID assigned to the work order

WorkOrderNumber String The number used to be seen and refer to a work order

TestProcessIdentity Class
An object of this class keeps the data about a test process

identity.

CreatedBy String Who created the test process

Description String Some description about the test process

Name String The name of the test process

OptionalParameters
List<Parame

ter>
Optional parameters

RequiredParameters
List<Parame

ter>
Required parameters

Revision String The revision of the test process

TestProcessID String The unique ID given to the test process

TestProcessRegID String

The registration ID assigned for the test process. This ID

is used for binding two objects which need to

communicate with each other.

TestType String

Showing the conventional type for a test group. E.g.:

“Measure.Harmonics” for a test group used for a

harmonics test.

116

UnitOfMeasure String
The unit of measure to be used in doing the

measurements by the test process

InstrBase Class
This is a class in the test process software hierarchy to

keep data about some basic parameters of an instrument.

VISA_Resource String
Reference to the GPIB address used to talk to an

instrument

OptionalParameters
List<Parame

ter>
Optional parameters

RequiredParameters
List<Parame

ter>
Required parameters

117

APPENDIX D

METROLOGY.NET SYSTEM CONCEPTUAL MODEL

118

119

120

121

APPENDIX E

LIST OF SPARKS LANGUAGE KEYWORDS AND

PREDEFINED WORDS

No Keyword

1 and

2 as

3 bind

4 constant

5 do

6 each

7 else

8 end

9 for

10 if

11 in

12 measure

13 or

14 prompt

15 provide

16 require

17 set

18 testGroup

19 testPoint

20 testProcess

21 then

22 to

23 linkerType

24 testType

25 use

26 xor

No Predefined words

1 Description

2 TestName

3 TestType

4 UNCERTAINTY

5 UnitOfMeasure

122

123

APPENDIX F

HELPER FUNCTIONS

Function Name

Dialog.ConnectionPicture(“ImageName”, “Message”)

This function uses the web interface of Metrology.NET.

Shows a Pop-up message box containing the image and the message provided.

Dialog.ConnectionMessage(“Message”)

This function uses the web interface of Metrology.NET.

Shows a Pop-up message box containing the message to be shown.

Dialog.EnterNumber(“Instructions”)

This function uses the web interface of Metrology.NET.

Shows a Pop-up message box containing a message and an input box for the user to enter

a number.

Dialog.EnterText(“Instructions”)

This function uses the web interface of Metrology.NET.

Shows a Pop-up message box containing a message and an input box for the user to enter

a string.

Dialog.MultipleChoice(“Questions”, “option1”, “option2”, …)

This function uses the web interface of Metrology.NET.

Shows a Pop-up message box containing the message to be shown.

Dialog.YesNo(“Question”)

This function uses the web interface of Metrology.NET.

Shows a Pop-up message box containing the question and Yes/No buttons to be shown.

124

125

APPENDIX G

COMPARISON OF A SAMPLE SPARKS SCRIPT WITH ITS

EQUIVALENT ON METROLOGY.NET PLATFORM

 SparkS Script Metrology.NET Code
1
2

3

4
5

6

7
8

9

10
11

12

13
14

15
16

17

18

19

20

21
22

23

24
25

26

27
28

29

30
31

32

33
34

35

36
37

38

39
40

41

42
43

44

45
46

The highest level class in the
Metrology.NET abstract software

model controlling an ETE

(Electronic Test Equipment)

Test Process Class

 Region "Header Information"

Handled by the interpreter Public Overrides ReadOnly Property TestID As String

 Get

 Return "85B1282D-48D0-4CD1-A30C-C61B40B9D282"
 End Get

End Property

bind TestType to

"TestProcess.Measure.Frequency"

Public Overrides ReadOnly Property TestType As String

 Get

 Return "TestProcess.Measure.Frequency"
 End Get

End Property

bind TestName to

"TestProcess.Measure.Frequency

(Agilent E44xxA)"

Public Overrides ReadOnly Property TestName As String
 Get

 Return "TestProcess.Measure.Frequency (Agilent E44xxA)"

 End Get
End Property

bind Description to "Measures the

Frequency of a CW signal using an
Agilent PSA (E44xx) Spectrum

Analyzer"

Public Overrides ReadOnly Property Description As String

 Get
 Return "Measures the Frequency of a CW signal using an Agilent PSA

(E44xx) Spectrum Analyzer"

 End Get
End Property

Handled by the interpreter Public Overrides ReadOnly Property Revision As String

 Get

 Return

System.Reflection.Assembly.GetExecutingAssembly().GetName().Version.ToS

tring
 End Get

End Property

bind UnitOfMeasure to "Hz"

Public Overrides ReadOnly Property UofM As String

 Get
 Return "Hz"

 End Get

End Property

Handled by the interpreter Public Overrides ReadOnly Property CreatedBy As String

 Get

 Return "9A42AF06-7467-4098-9607-476241D4CE11"
 End Get

End Property

126

47

48

49
50

51

52
53

54

55
56

57

58
59

60
61

62

63
64

65

66
67

68

69
70

71

72
73

74

75
76

77

78
79

80

81
82

83

84
85

86

87
88

89

90
91

92

93
94

95

96

97

98

99
100

101

102
103

104

105
106

107

108
109

110

111
112

113
114

115

116
117

testPoint tp

provide
 Frequency
 Power

 ReferenceSource

measure
 measuredFrequency

end tp

Public Overrides ReadOnly Property RequiredParameters As List(Of Parameter)

 Get

 Dim Params As New List(Of Parameter)
 Dim NewParam As Parameter

 NewParam = Parameter.NewParameter("Frequency", "")
 Params.Add(NewParam)

 NewParam = Parameter.NewParameter("Power", "")
 Params.Add(NewParam)

 Return Params
 End Get

End Property

Public Overrides ReadOnly Property OptionalParameters As List(Of Parameter)

 Get
 Dim Params As New List(Of Parameter)

 Dim NewParam As Parameter

 NewParam = Parameter.NewParameter("ReferenceSource", "")

 NewParam.LimitedToList = True

 NewParam.List = {"External", "Internal"}
 Params.Add(NewParam)

 Return Params
 End Get

End Property

 Region "Properties"

require ete as linkerType

"Measure.Driver" testType

"Agilent_PSA.MeasureFrequency"

Private MeasFreq As MeasureDriver.MessageLinker

Private _MeasFreqID As String
<TestTypeConfigParameter(TestType:="Agilent_PSA.MeasureFrequency")>

Public Property MeasFreqID As String

 Get
 Return _MeasFreqID

 End Get

 Set(value As String)
 ' Need to Link this to the Mail Box of the Driver

 MeasFreq = MeasureHarmonics.MessageLinker.GetLinker(value)

 _MeasFreqID = value
 End Set

End Property

require uut as linkerType
"Source.Driver" testType

"UUT_Command.SourceTpControl

erDynamicUUT"

Private UUT_Source As SourceTpControler.MessageLinker
Private _SourceID As String

<TestTypeConfigParameter(TestType:="UUT_Command.SourceTpControlerD
ynamicUUT")>

Public Property SG_DriverID As String

 Get
 Return _SourceID

 End Get

 Set(value As String)
 UUT_Source = SourceTpControler.MessageLinker.GetLinker(value)

 _SourceID = value
 End Set

End Property

Handled by the interpreter Public Overrides Function Run() As Boolean
 Try

 ' Set the UUT Information

 Me.UUT_Source.SetTestGroup(TestGroup)
 ' Me.UUT_Source.SetModel (MTestGroup)

ete.Reset ' Reset the System

 If Me.HaltFlag = False Then Me.MeasFreq.Reset()

uut.Reset

 If Me.HaltFlag = False Then Me.UUT_Source.Reset()

Dialog.ConnectionPicture("PSA_T

O_UUT_RFIN", "Connect both the

UUT and PSA to the 10MHz Ref.")

 ' Connect the UUT

Me.UI.ConnectionPicture(Me.GetEmbeddedPic("PSA_TO_UUT_RFIN.png"),

"Connect both the UUT and PSA to the 10MHz Ref.")

127

118

119

120
121

122

123
124

125

126
127

128

129
130

131
132

133

134
135

136

137
138

139

140
141

142

143
144

145

146
147

148

149
150

151

152
153

154

155
156

157

158
159

160

161
162

163

164
165

166

167

168

169

170
171

172

173
174

175

176
177

178

179
180

181

182
183

184
185

186

187

testGroup tgCollection testPoint tp

for each tp1 in tgCollection do

 For Each Tp As TestPoint In Me.TestPoints

Handled by the interpreter If Me.HaltFlag = False Then

 Try

 Tp.LoadParameters()

 Dim TestResult As New TestResult(Tp)

 TestResult.AsFound = True
 TestResult.AsLeft = True

 If Me.HaltFlag = False Then ' Check the Flag Again
 Me.UUT_Source.Setup(Tp)

uut.Enable Me.UUT_Source.Enable(Tp.ParameterArray)

Handled by the interpreter 'Need to Pause Here

 Dim Result As MeasurementResult =
Me.MeasFreq.Measure(Tp.ParameterArray)

 If Result.ErrorFlag = False Then

 TestResult.Measured = Result.Value
 Else

Not included in the interpreter TestResult.AddParameter(Parameter.NewParameter("Error",

Result.ErrorMessage))
 End If

 End If

Handled by the interpreter Me.SaveTestResults(TestResult)

Handled by the interpreter Catch ex As HaltExecution
 Me.Halt()

 Catch ex As Exception

 Try
 Me.UUT_Source.Disable(Me.TestGroup.ParameterArray)

 Finally

 End Try

 Me.LogError(ex.Message)

 Me.UI.ConnectionMessage("Error Running Test Process! Please See the

Error Logs")
End Try

End If

Next

uut.disable

Me.UUT_Source.Disable(Me.TestGroup.ParameterArray)

Handled by the interpreter Return True

 Catch ex As Exception
 LogError(ex)

 Me.UI.ConnectionMessage("Error Running Test Process! Please See the

Error Logs")
 Throw (ex)

 End Try

End Function

The middle level class in the

Metrology.NET abstract software

model for controlling an ETE

Measure Driver

 Region "Header Information"

Since we have a single file SparkS

script, a single header section is
used for both a test process and

measure driver.

Public Overrides ReadOnly Property TestID As String

 Get
 Return "BEE96ADD-C927-4215-BA57-23D67741A410"

 End Get

End Property

Public Overrides ReadOnly Property TestType As String

 Get
 Return "Measure.Frequency"

 End Get

End Property

Public Overrides ReadOnly Property TestName As String

 Get

 Return "Measure.Frequency (Agilent E44xxA)"

 End Get

End Property

128

188

189

190
191

192

193
194

195

196
197

198

199
200

201
202

203

204
205

206

207
208

209

210
211

212

213
214

215

216
217

218

219
220

221

222
223

224

225
226

227

228
229

230

231
232

233

234
235

236

237

238

239

240
241

242

243
244

245

246
247

248

249
250

251

252
253

254
255

256

257

Public Overrides ReadOnly Property Description As String

 Get
 Return "Measures the Frequency of a CW signal using an Agilent PSA

(E44xx) Spectrum Analyzer"

 End Get
End Property

Public Overrides ReadOnly Property Revision As String
 Get

 Return

System.Reflection.Assembly.GetExecutingAssembly().GetName().Version.ToS
tring

 End Get
End Property

Public Overrides ReadOnly Property UofM As String
 Get

 Return "Hz"

 End Get
End Property

Public Overrides ReadOnly Property CreatedBy As String
 Get

 Return "9A42AF06-7467-4098-9607-476241D4CE11"

 End Get
End Property

 Region "Parameters"

Already handled by the following

statement:
require ete as linkerType

"Measure.Device" testType

"iSpectrumAnalyzer"

Private _SA_InstanceID As String

Dim Analyzer As InstrBase.MessageLinker
<TestTypeConfigParameter(TestType:="Agilent_PSA.Driver")>

Public Property SA_InstanceID As String

 Get
 Return _SA_InstanceID

 End Get

 Set(value As String)
 Analyzer = InstrBase.MessageLinker.GetLinker(value,

"iSpectrumAnalyzer")

 _SA_InstanceID = value
 End Set

End Property

 Region "Measurment Process"

ete.Reset

Public Overrides Function Reset(Optional ByVal Parameters() As Parameter =
Nothing) As MetrologyNet.System.Interface.iStatusMsg

 Try

 Analyzer.MethodCall("Reset", Parameters)

 Return StatusMsg.SuccessMsg

 Catch ex As Exception
 LogError(ex)

 Throw (ex)

 End Try
End Function

ete.Setup

Public Overloads Overrides Function Setup(Parameters() As

MetrologyNet.Parameter) As MetrologyNet.System.Interface.iStatusMsg
 Try

 Analyzer.MethodCall("SelfCal", Parameters)

 Return StatusMsg.SuccessMsg
 Catch ex As Exception

 LogError(ex)

 Throw (ex)
 End Try

End Function

Handled by the interpreter Public Overloads Overrides Function Measure(Parameters() As

MetrologyNet.Parameter) As
MetrologyNet.System.Interface.iMeasurementResult

 Try
 Dim Frequency As Double

 Dim RefLevel As Double

 Dim MeasureVal As Double

129

258

259

260
261

262

263
264

265

266
267

268

269
270

271
272

273

274
275

276

277
278

279

280
281

282

283
284

285

286
287

288

289
290

291

292
293

294

295
296

297

298
299

300

301
302

303

304
305

306

307

308

309

310
311

312

313
314

315

316
317

318

319
320

321

322
323

324
325

326

327

Set Frequency To tp1.Frequency ' Get the Frequency

 If Parameter.Contans("Frequency", Parameters) = True Then

 Frequency = Parameter.GetParameterValue("Frequency", Parameters)
 Else

 Throw New Exception("Frequency Not Provided")

 End If

set MaxFrequency to

ete.MaxFrequency

 ' Check the Frequency Range of the Spectrum Analyzer
 Dim MaxFrequency As Double =

Val(Analyzer.GetProperty("MaxFrequency"))

set MinFrequency to

ete.MinFrequency

 ' Check the Frequency Range of the Spectrum Analyzer
 Dim MinFrequency As Double =

Val(Analyzer.GetProperty("MinFrequency"))

if Frequency < MinFrequency or

Frequency > MaxFrequency then

 error "Frequency Out of

Range"

end if

 If Frequency < MinFrequency Or _

 Frequency > MaxFrequency Then

 Return MeasurementResult.MeasurementError("Frequency Out of

Range")

 End If

set ete.Coupling to “DC”

 ' Set the Coupliing

 Analyzer.SetProperty("Coupling", "DC")

set ete.ReferenceLevel to 10

 'Find the Fundimental
 Analyzer.SetProperty("ReferenceLevel", 10)

set ete.CenterFrequency to

Frequency

 Analyzer.SetProperty("CenterFrequency", Frequency)

if Frequency < 2.2e3 then

set ete.Span to 10

set ete.ResolutionBandwidth to 100

else if Frequency < 2.2e6 then

set ete.Span to 500

set ete.ResolutionBandwidth to 50

else
set ete.Span to 500e3
set ete.ResolutionBandwidth to

10e3

end if

 ' Set the Span and Filters

 If Frequency < Val("2.2e3") Then

 Analyzer.SetProperty("Span", 10)
 Analyzer.SetProperty("ResolutionBandwidth", 100)

 ElseIf Frequency < Val("2.2e6") Then

 Analyzer.SetProperty("Span", 500)

 Analyzer.SetProperty("ResolutionBandwidth", 50)

 Else

 Analyzer.SetProperty("Span", Val("500e3"))
 Analyzer.SetProperty("ResolutionBandwidth", Val("10e3"))

 End If

set ete.AverageSweep to 1 Analyzer.SetProperty("AverageSweep", 1)

ete.TakeSweep
ete.TakeSweep

 ' Take A couple Sweeps
 Analyzer.MethodCall("TakeSweep")

 Analyzer.MethodCall("TakeSweep")

ete.MarkerPeakHi

 'Adjust the Level

 Analyzer.MethodCall("MarkerPeakHi")

set RefLevel to

ete.MarkerAmplitude

 RefLevel = Analyzer.FunctionCall("MarkerAmplitude")

if RefLevel < -40 then

//measure a single harmonic

set RefLevel to -40

end if

 If RefLevel < -40 Then RefLevel = -40

set ete.ReferenceLevel to RefLevel Analyzer.SetProperty("ReferenceLevel", RefLevel)

set Sum to 0

for each index in [1, 5] do

 set Sum to Sum +

ete.MarkerFrequencyCount

end for

 Dim Sum As Double

 For i As Integer = 1 To 5

 Sum = Sum + Analyzer.FunctionCall("MarkerFrequencyCount")
 Next

set MeasureVal to Sum / 5 MeasureVal = Sum / 5

set UNCERTAINTY to UNC

//set the measured value as test

result

 Dim Result As MeasurementResult = New

MeasurementResult(MeasureVal, "Hz", "0.5")

130

328

329

330
331

332

333
334

335

336
337

338

339
340

341
342

343

344
345

346

347
348

349

350
351

352

353
354

355

356
357

358

359
360

361

362
363

364

365
366

367

368
369

370

371
372

373

374
375

376

377

378

379

380
381

382

383
384

385

386
387

set measuredFrequency to

MeasureVal

Handled by the interpreter Return Result

 Catch ex As Exception
 LogError(ex)

 Throw (ex)

 End Try
End Function

This is the main class that handles

UUT settings. UUT parameters are

passed through the test points upon
a test run.

UUT Driver

 Region "Test Process Identity"

UUT driver is embedded as-is into
the interpreter

Public Overrides ReadOnly Property testID As String
 Get

 Return "B9A9401A-E142-4EC3-A65A-84B1B2212EF7"

 End Get
End Property

Public Overrides ReadOnly Property TestName As String
 Get

 Return "CLS.ParaCommand.Source"

 End Get
End Property

Public Overrides ReadOnly Property TestType As String
 Get

 Return "Source"

 End Get
End Property

Public Overrides ReadOnly Property UofM As String
 Get

 Return "N/A"

 End Get
End Property

Public Overrides ReadOnly Property Description As String
 Get

 Return "Generic Parameter based Driver for Sources"

 End Get
End Property

Public Overrides ReadOnly Property CreatedBy As String
 Get

 Return "9A42AF06-7467-4098-9607-476241D4CE11"

 End Get
End Property

Public Overrides ReadOnly Property Revision As String
 Get

 Return

(System.Reflection.Assembly.GetExecutingAssembly().GetName().Version.To
String)

 End Get

End Property

Region "Properties"

131

388

389

390
391

392

393
394

395

396
397

398

399
400

401
402

403

404
405

406

407
408

409

410
411

412

413
414

415

416
417

418

419
420

421

422
423

424

425
426

427

428
429

430

431
432

433

434
435

436

437

438

439

440

Private Commands As New Dictionary(Of String, Parameter)

Private Sub UpdateCommands(ByVal Parameters() As Parameter)
 ' Update the Command Paramaters

 If Parameters.Count > 0 Then
 For Each Param As Parameter In Parameters

 If Param.Name.StartsWith("Command:") Then

 Dim Key As String = Param.Name.Replace("Command:", "")
 If Commands.ContainsKey(Key) Then

 Commands(Key) = Param

 Else
 Commands.Add(Key, Param)

 End If
 End If

 Next

 End If
End Sub

Public Overrides Function SetTestGroup(TestGroup As TestGroup) As Boolean
 Try

 TestGroup.LoadParameters()

 MyBase.SetTestGroup(TestGroup)

 Dim TPkg As TestPkg = TestPkg.GetByTestPkgID(TestGroup.TestPkgID)

 TPkg.LoadParameters()

 ' Build the Command library

 Me.UpdateCommands(TPkg.ParameterArray)
 Me.UpdateCommands(TestGroup.ParameterArray)

 Return True
 Catch ex As Exception

 Return False

 End Try
End Function

 Region "Source Operations"

uut.Reset

Public Overrides Function Reset(Optional ByVal Parameters() As Parameter =

Nothing) As iStatusMsg
 Try

 ' Update my Command list

 Me.UpdateCommands(Parameters)

 If Me.Commands.Keys.Contains("Reset") = True Then

 Me.Write(Me.Commands.Item("Reset").Value)
 Else

 Me.Write("*RST")

 End If
 Return StatusMsg.SuccessMsg

 Catch ex As Exception

 Return StatusMsg.FailedMsg(-1, ex.Message)
 End Try

End Function

132

441

442

443
444

445

446
447

448

449
450

451

452
453

454
455

456

457
458

459

460
461

462

463
464

465

466
467

468

469
470

471

472
473

474

475
476

477

478
479

480

481
482

483

484
485

486

487
488

489

490

491

492

493
494

495

496
497

498

499
500

501

502
503

504

505
506

507
508

509

510
511

This code is used by the interpreter Protected ReplacementValues() As String = {"[value]",
"[Value]", "[VALUE]", "<value>", "<Value>", "<VALUE>"}

Public Overloads Overrides Function Setup(Parameters() As Parameter) As

iStatusMsg
 Try

 ' Update my Command list
 Me.UpdateCommands(Parameters)

 'Process the Set Params
 For Each Param As Parameter In Parameters

 For seq As Integer = 0 To 1000

 If Param.Sequence = seq Then
 If Commands.ContainsKey(Param.Name) Then

 Dim Command As String =

Commands.Item(Param.Name).Value
 For Each theToken As String In ReplacementValues

 If Command.Contains(theToken) Then

 Command = Command.Replace(theToken, Param.Value)
 End If

 Next

 Me.Write(Command)

 End If
 End If

 Next

 Next

 Return StatusMsg.SuccessMsg

 Catch ex As Exception
 Return StatusMsg.FailedMsg(-1, ex.Message)

 End Try

End Function

Public Overrides Function SetupTestPoint(TestPoint As
MetrologyNet.TestPoint) As MetrologyNet.StatusMsg

 Return Setup(TestPoint.ParameterArray)

End Function

uut.Disable

Public Overrides Function Disable(Optional Parameters() As

MetrologyNet.Parameter = Nothing) As

MetrologyNet.System.Interface.iStatusMsg
 Try

 Console.WriteLine("UUT disabled")

 If Me.Commands.Keys.Contains("OutputOff") = True Then
 Me.Write(Me.Commands.Item("OutputOff").Value)

 End If

 Return StatusMsg.SuccessMsg
 Catch ex As Exception

 Return StatusMsg.FailedMsg(-1, ex.Message)

 End Try
End Function

uut.Enable

Public Overloads Overrides Function Enable(Optional Parameters() As

MetrologyNet.Parameter = Nothing) As
MetrologyNet.System.Interface.iStatusMsg

 Try

 Console.WriteLine("UUT enabled")
 If Me.Commands.Keys.Contains("OutputOn") = True Then

 Me.Write(Me.Commands.Item("OutputOn").Value)

 End If
 Return StatusMsg.SuccessMsg

 Catch ex As Exception

 Return StatusMsg.FailedMsg(-1, ex.Message)
 End Try

End Function

This code is used by the interpreter Public Function Output(Enabled As Boolean, Optional ByVal Parameters() As

Parameter = Nothing) As iStatusMsg
 Try

 If Enabled = True Then

 If Me.OperatingParam.Keys.Contains("Command:OutputOn") = True
Then

133

512

513

514
515

516

517
518

519

520
521

522

523
524

525
526

527

528
529

530

531
532

533

 VisaMsg.Send(Me.TestProcessID, Me.VISA_Resource,

Me.OperatingParam.Item("Command:OutputOn").Value)

 End If
 Else

 If Me.OperatingParam.Keys.Contains("Command:OutputOff") = True

Then
 VisaMsg.Send(Me.TestProcessID, Me.VISA_Resource,

Me.OperatingParam.Item("Command:OutputOff").Value)

 End If
 End If

 Return StatusMsg.SuccessMsg

 Catch ex As Exception
 Return StatusMsg.FailedMsg(-1, ex.Message)

 End Try
End Function

This code is used by the interpreter Public Overrides Sub TearDown(Parameters() As Parameter)

 Try

 Me.Reset()
 Me.Output(False)

 Catch ex As Exception

 End Try
End Sub

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION.....
	1.1 Aim and Scope of the Work
	1.2 Organization of the Thesis

	2 DOMAIN CONCEPTS.....
	1
	2
	2.1 Metrology Domain Concepts
	2.2 Metrology.NET
	2.3 Metrology.NET Test Process Software Hierarchy
	2.4 Domain Specific Languages

	3 SPARKS LANGUAGE DESIGN.....
	3.1 SparkS Grammar in EBNF
	3.2 Syntax
	3.3 Arithmetic and Boolean expressions
	3.4 SparkS Statements
	3.4.1 The require Statement
	3.4.2 The bind Statement
	3.4.3 The testProcess Statement
	3.4.4 The testPoint Statement
	3.4.5 The testGroup Statement
	3.4.6 Function Call
	3.4.7 The constant Declaration
	3.4.8 The set Statement
	3.4.9 The for each Statement
	3.4.10 The if-then-else Statement

	3.5 Lexical Elements
	3.5.1 Operators
	3.5.2 Reserved Words
	3.5.3 Paired keywords
	3.5.4 Helper Functions

	3.6 Mapping of Domain Concepts

	4 LANGUAGE IMPLEMENTATION.....
	4.1 SparkS Front-End
	4.1.1 Interpretation vs Compilation
	4.1.2 Communication Mechanism in Metrology.NET

	4.2 SparkS Back-End
	4.2.1 Return Type
	4.2.2 Bindings
	4.2.3 The require Statement
	4.2.4 The bind Statement
	4.2.5 The testPoint Declaration
	4.2.6 The testGroup Statement
	4.2.7 The set Statement
	4.2.8 The constant Declaration
	4.2.9 The Function Call Statement
	4.2.10 The for each Loop
	4.2.10.1 The testPointLoop Statement
	4.2.10.2 The rangeLoop Statement

	4.2.11 The if-then-else Statement

	5 SPARKS IN USE.....
	5.1 Calibration process based on Metrology.NET
	5.2 Programming Editor
	5.3 Case Study

	6 CONCLUSION AND FUTURE WORK.....
	6.1 Contributions
	6.2 Future Work

	5
	REFERENCES
	SAMPLE SCRIPTS WRITTEN IN SPARKS
	METROLOGY.NET SYSTEM DATA DICTIONARY
	METROLOGY.NET SYSTEM CONCEPTUAL MODEL
	LIST OF SPARKS LANGUAGE KEYWORDS AND PREDEFINED WORDS
	HELPER FUNCTIONS
	COMPARISON OF A SAMPLE SPARKS SCRIPT WITH ITS EQUIVALENT ON METROLOGY.NET PLATFORM

