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Sustainable development relying on sustainable and renewable energy systems is 

becoming one of the major policies of many countries. This forces the policy makers 

to establish many reforms and revolutions, which evolve electricity markets into a 

more competitive form.  The competitive environment results in surging electricity 

demand and supply that brings in a critical challenge: uncertainty. In this thesis, the 

uncertainties with respect to prices and demand in the market are explored by using 

stochastic portfolio optimization and robust optimization techniques.  

A stochastic optimization model is developed to maximize the overall expected profit 

in the electricity market by generating possible stochastic electricity supply and 

demand curves. Stochastic electricity supply curves of prices are generated by using 

Ornstein-Uhlenbeck mean-reverting process and running Monte-Carlo simulations. 

In order to overcome the drawbacks of this model, a second model is developed by 

using robust optimization techniques. This model handles uncertainties both in 

supply-demand balance of electricity and in renewable energy resources. The supply-

demand balance of electricity is explored by using a novel hybrid approach: 

Wavelet-Multivariate Adaptive Regression Splines (in short: W~MARS). This 

method forecasts day-ahead electricity prices by considering the challenges such as 

high volatility, high frequency, nonstationarity and multiple seasonality.  Then, we 
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refine W~MARS by a novel robust optimization model, called Robust W~MARS (in 

short: R~W~MARS), which ensures sustainability and renewability by projecting 

ellipsoidal uncertainty. The models developed in the thesis are tested by using real 

electricity market data. Concluding remarks on the models and an outlook to future 

studies are presented at the end of the thesis. 

 

 

Keywords: Electricity market; stochastic portfolio optimization; Ornstein-Uhlenbeck 

mean-reverting process; electricity price modeling, wavelet transform, Multivariate 

Adaptive Regression Splines, robust optimization, ellipsoidal uncertainty, 

W~MARS, R~W~MARS 
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Sürdürülebilir ve yenilenebilir enerji sistemlerine dayanan sürdürülebilir gelişme 

birçok ülkenin esas politikalarından biri haline gelmektedir.  Bu durum politikacıları, 

elektrik piyasalarını daha rekabetçi bir hale getiren reformlar ve köklü değişiklikler 

yapmaya zorlamaktadır. Rekabetçi ortam ise dalgalı elektrik arz ve talebine neden 

olmakta, bu da belirsizlik gibi kritik bir zorluğu beraberinde getirmektedir.  Bu tezde, 

piyasadaki belirsizlikler rastsal portföy optimizasyonu ve gürbüz optimizasyon 

yöntemleri kullanılarak incelenmiştir.   

Olası rastsal elektrik arz ve talep eğrileri oluşturarak elektrik piyasasındaki kârı 

maksimize eden bir rastsal optimizasyon modeli geliştirilmiştir.  Rastsal elektrik 

talep eğrileri Ornstein-Uhlenbeck ortalama gerileme süreci ve Monte-Carlo 

benzetimi kullanılarak oluşturulmuştur.  Bu modeldeki eksiklikleri gidermek için 

gürbüz optimizasyon teknikleri kullanılarak ikinci bir model geliştirilmiştir.  Bu 

model hem arz-talep dengesindeki hem de yenilenebilir enerji kaynaklarındaki 

belirsizlikleri ele almaktadır.  Elektrik arz-talep dengesi, yeni hybrid bir yaklaşım 

olan Dalgacık-Çok değişkenli Uyarlanabilir Regresyon Uzanımları (kısaca 

W~MARS) kullanılarak incelenmiştir.  Bu yöntem, yüksek dalgalanma, yüksek 

frekans, durağan olmama ve çok mevsimsellik gibi  zorlukları göz önünde 

bulundurarak bir sonraki günün elektrik fiyatlarını tahmin etmektedir.  W~MARS, 



 x 

eliptik belirsizliklerin izdüşümünü alarak sürdürülebilirliği ve yenilenebilirliği temin 

eden, Gürbüz W~MARS (kısaca R~W~MARS) olarak adlandırılan yeni bir gürbüz 

optimizasyon modeliyle iyileştirilmiştir.  Tezde geliştirilen modeler gerçek elektrik 

piysası verileri kullanılarak test edilmiştir. Tez sonunda modeller ile ilgili tespitler ve 

gelecek çalışmalar ile ilgili öngörüler sunulmuştur. 
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CHAPTER 1 
 

 

 

INTRODUCTION 
 

 

 

1.1 Scope and Motivation 

A typical energy system is a complicated structure comprising of production of 

electricity (i.e., conversion of energy resources to electricity), distribution of 

electricity across a grid structure, transport of energy resources, and all other 

interactions with the external world, namely the policy makers, end users, 

environment, and the energy sources. Figure 1.1 depicts these interactions.  

Regarding an energy system, sustainability and renewability are the main concerns of 

the policy makers in many countries.  However, especially two factors – dependency 

on fossil fuels (mainly oil) and contribution to global warming through emission of 

greenhouse gases (GHG) – are restraining the countries to achieve a sustainable and 

renewable energy system.  The contemporary approach in reducing the dependency 

on fossil fuels and emission of GHGs, thus achieving a sustainable energy system, is 

to utilize renewable electricity generation technologies.  

To propose solutions for this major problem in energy systems, researches, policy 

makers, and other partners mainly focus on managing the energy resources under 

certain constraints and assisting these efforts through improving energy policies and 

strategies. 

On the other hand, regarding to the complexity of the system (cf. Figure 1.1), it can 

be deduced that a single global method to handle the entire system may be infeasible.  

Accordingly, a reasonable approach is to develop solutions for the subsystems, which 

may be integrated to give a comprehensive solution.  

One of the major components of an energy system is the electricity market, which 

deals with the production and the pricing of electricity. Therefore, the main objective 

is to optimize the electricity market to determine the production portfolio subject to 

supply and demand constraints.  

These constraints are often highly volatile in electricity markets. In most of the 

electricity markets, many reforms and revolutions have been established by policy 

makers to solve this surging in electricity demands and supply. As a consequence, 

uncertainty appears as the main challenge in an electricity market optimization 

problem. One of the main sources of this uncertainty in demand and supply is the 



 2 

competitive market structure. Moreover, in practice, it is often difficult to handle 

uncertainties without huge data sets, distributional assumptions, lengthy 

computational time, and excessive computational efforts.  

Thus, advanced mathematical methods and computationally efficient approaches are 

needed to handle these uncertainties. In the scope of this study, the uncertainties in 

the electricity market are explored and modeled by using stochastic and robust 

optimization techniques. The study especially focuses on novel computationally 

efficient approaches.  

 

 

Figure 1.1: Energy system and its interaction with external world (source: [77]). 

 

1.2 Objectives and Contributions of the Thesis  

Traditionally, electricity markets are analyzed using optimization models and 

forecasting models.  However, the uncertainties, especially in supply and demand, 

makes it difficult not only to optimize the diversity of the energy resources and 

power generation but also to determine electricity prices especially in the short-term.  

In addition, probability models of uncertainty and computations of multidimensional 

integrals related to expectations and probabilities are needed to be considered.  Since 

chance constrained models are non-convex and generally intractable, the main 

objective of the thesis is defined as 

 Developing a dynamic and robust model for electricity markets under 

uncertainties. 

As the first step to achieve this objective, a stochastic model is developed.  This 

stochastic model assumes a distribution based on the scenarios generated for supply 

and demand.  On the other hand, we observed that the computational effort is high 

since the model requires the generation of a vast number of scenarios.   
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Robust optimization is proposed as an alternative to figure out this problem. Noting 

that robust optimization should involve an effective method to forecast the 

parameters involved, a hybrid method merging wavelet transform and multivariate 

adaptive regression splines (W~MARS
1
) is developed, which does not require any 

distribution assumption.  On the other hand, the uncertainties in a system may be 

correlated or uncorrelated; mono-type or hybrid; single or multiple; interval, 

polyhedral, or ellipsoidal, etc. In our robust optimization model we propose an 

efficient method for modeling ellipsoidal, single/multiple, correlated/uncorrelated 

types of uncertainties. This approach is combined with W~MARS to give Robust 

W~MARS (R~W~MARS), which is capable of handling time-dependent 

uncertainties.  

We foresee that the robust optimization model developed in this study has the 

potential to be an integral part of a comprehensive energy system model. However, 

this requires that the robust optimization model yields sustainable results. To assess 

the sustainability of the results, it should be examined whether the model ensures 

security of energy demand and supply. To establish a background for this analysis, a 

study on energy security indicators is conducted at European Commission Joint 

Research Center Institute for Energy and Transport in the Netherlands. 

1.3 Organization of the Thesis 

The thesis is organized as follows:  

 Chapter 2 presents a review of existing approaches in electricity market 

optimization. 

 Chapter 3 presents the models developed. Stochastic portfolio optimization 

model and robust optimization model, R~W~MARS, are explained.  

Stochastic optimization model requires generation of possible electricity 

supply curves and demand curves.  Stochastic electricity supply curves 

thereby are modeled by Ornstein-Uhlenbeck mean-reverting process and 

running Monte-Carlo simulations.  

In R~W~MARS, a robust approach for handling the uncertainties is 

considered. As a part of R~W~MARS, W~MARS is used for estimating the 

electricity prices. 

 In Chapter 4, applications of the models described in Chapter 3 are presented. 

Both models are demonstrated using a descriptive data set. Data and the 

results are also presented in this chapter. 

                                                 

1
 In order to distinguish the abbreviation style of our method from the given notations of W-

RMARS, W-RCMARS, etc., which stand for Weak RMARS, Weak RCMARS, respectively 

[113], here, we use a “~”, which is an icon of a “wave”. Therefore, we abbreviate to W~MARS, 

R~W~MARS, etc., in this thesis.  
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 Chapter 5 concludes the thesis by presenting a summary of the overall 

outputs and an outlook to future research.   
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CHAPTER 2 
 

 

 

REVIEW OF ELECTRICITY MARKET OPTIMIZATION 

METHODS 
 

 

 

Electricity market optimization models mainly aim to optimize the electricity 

generation portfolio, generally by maximizing the profit, while considering different 

parameters such as generator capacities, demand, supply and price.  

The parameters included in electricity market optimization problem are typically 

interrelated. Among these parameters, considering a spot market, electricity price is 

extremely important since the balance between the price and demand should be set 

on the day before. Therefore, forecasting of the next-day electricity price is critical 

for spot markets.  

This chapter is mainly dedicated to a review of existing methods in electricity market 

optimization and electricity price forecasting as a part of market optimization. On the 

other hand, considering electricity market as a major component of an energy 

system, we also find it useful to provide a brief review of energy system models in 

this chapter. 

The chapter is organized to present reviews of existing energy system models, 

electricity market optimization models, and forecasting models for next-day 

electricity markets respectively in the following sections. 

2.1 Energy System Models 

Energy systems are tremendously large structures that include exploration and 

mining of energy resources, conversion into useful forms, generation, transmission 

and distribution of electricity, production of heat, and conversion of resources into 

useful energy. Table 2.1 shows types of energy models considering different aspects. 

The ability to manage and control energy systems, which is very challenging 

especially when the geographical area is large, has both economical and 

environmental aspects. From oil crisis in 1970s to 2000s, many energy models were 

constructed regarding these concepts. Among these, Brookhaven Energy System 

Optimization Model (BESOM) is formulated as a linear programming model, whose 

objective can be defined as the minimization of system costs, the minimization of 

consumed resources or the minimization of emissions [36]. Although the model can 

be employed for regional systems, it is a static model, i.e., it comprises just one 
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period. Another model, which is Time-stepped Energy System Optimization Model 

(TESOM), is a multi-period model and is based on BESOM [93]. However, TESOM 

does not include multi-regional or inter-regional issues. Energy Technology 

Assessment (ETA) is developed for the integration of energy and economic aspects. 

ETA minimizes overall energy system costs with multi-period perspective, but 

cannot be employed for multi-regional form. ETA-MACRO is derived from ETA in 

order to calculate energy consumption and investment. Market Allocation Model 

(MARKAL) is another model that integrates energy and economy and is developed 

by International Energy Agency (IEA). MARKAL is a dynamic linear model that 

minimizes overall system costs [4,128]. A variety of different versions of MARKAL, 

such as stochastic, multi-region, emissions trading and macroeconomic version, are 

developed. Stanford Research Institute (SRI) and Generalized Equilibrium Modeling 

System (GEMS), which include an economic equilibrium between energy demand 

and supply, are network and equilibrium models, respectively. Energy Flow 

Optimization Model (EFOM) is the basic model that is developed in and for Europe 

[42,67]. EFOM, which minimizes system costs and energy balances, can be utilized 

for calculating the investment for infrastructure. EFOM can cover single or multiple 

regions and its time span can be modified as static or dynamic. However, there is no 

integration between economical aspects and the energy system in EFOM. EFOM is 

modified as EFOM-ENV to analyze environmental issues. However, this new 

version does not consider economical aspects [21]. PRIMES is a modular model that 

is developed for European Union (EU) countries [48]. This model can be used for 

forecasting of one period, because it is a static network model. MESSAGE is a 

different type of energy system model developed by International Institute of 

Applied Systems Analysis (IIASA) [20]. MESSAGE involves sub-modules for 

investment analysis and energy consumptions and minimizes the total energy related 

costs for fifty years planning horizon. The main disadvantage of this model is that 

sub-modules cannot work simultaneously.  

 

Table 2.1: Types of energy models [21]. 

General Purposes of Energy Models Specific Purposes of Energy Models 

To predict or forecast the future 

To explore the future (scenario analysis) 

To look back from the future to the present 

(“backcasting”) 

Energy Demand Models 

Energy Supply Models 

Impact Models 

Appraisal Models 

Analytical Approach Geographical Coverage Sectoral Coverage 

Top-Down Models 

Bottom-Up Models 

Global 

Regional 

Single-sectoral models 

Multi-sectoral models 

 

Several authors have evaluated main renewable energy technologies by taking 

sustainability indicators into account. For instance, the paper [49] compares wind 

power, hydropower, photovoltaic and geothermal energy considering the price of 
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generated electricity, greenhouse gas emissions, availability of renewable energy 

resources, efficiency of energy conversion, land requirements, water consumption, 

and social impacts. The article [98] proposes strategies for a renewable and 

sustainable energy system considering technological improvements. The work [146] 

suggests a new perspective for a renewable and sustainable energy system. The 

authors conclude that wind and small hydroelectricity power plants are the most 

sustainable sources for the electricity generation.  

Constructing renewable and sustainable energy systems requires high investment 

costs. Therefore, a long-term planning of the investment strategies is very important. 

The article [34] proposes a community-scale renewable energy system’s model and 

solves the mathematical model by using interval linear programming, chance-

constrained programming, and mixed integer-linear programming (MIP). The work 

[89] proposes a modified EFOM model to find optimal capacities of power plants 

and volumes of emissions trading with minimum cost and maximum robustness. The 

paper [125] utilizes MIP and three artificial intelligence techniques for network 

planning under the carbon emission trading program. The work [91] uses multi-

criteria decision making for assessing sustainability of renewable energy scenarios. 

The paper [105] proposes a multi-objective optimization model to choose the most 

cost-effective mix of renewable system by maximizing the contribution to the peak 

load and minimizing the combined intermittence. The article [41] proposes a 

modified EFOM model to analyze the policies for using renewable energy resources. 

There are also studies considering Turkish energy system. Starting of these efforts on 

modeling Turkish energy system date back to three decades ago. However, the 

models developed cannot describe Turkish energy system’s current structure. As a 

consequence, energy policies and strategies cannot be developed based on a model. 

The first energy model for Turkey, which was constructed by Kavrakoğlu et al. [85], 

is an MIP-based model and handles the country as a single bulk region. Modified 

version of ETA was implemented for Turkey by [16]. ETA-MACRO model was later 

implemented in Turkey as described in the paper [71]. In the second half of 1990s, 

energy-environment interaction [92], energy-environment-economy interactions are 

modeled [16,92]. In this progress, renewable and sustainable energy strategies and 

policies are not imposed on models. The analyses are made for political and strategic 

issues without taking mathematical planning and optimization into account. Most of 

the studies made until now show that only strategic aspects have been considered to 

analyze the conversion of clean energy. For instance, the article [86] proposes the 

renewable energy policies for Turkey and explains the role of political organizations 

that shape these policies. There also exists review studies for Turkish energy sector 

[112]. The article [83] proposes sustainable energy policies and utilization of the 

renewable energy sources for Turkey. It is also known that improving renewable 

energy technologies not only solves several energy related environmental problems 

but also helps sustaining the development. The optimization algorithms can be 

preferred as suitable tools for approaching complex renewable energy systems [19]. 

However, Turkish energy planning system is still lacking of an optimization 

algorithm for sustainable and renewable structure.  
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2.2 Electricity Market Optimization Models 

Many electricity markets have been evolving into spot markets only since the last 

decade. Therefore, there is not many integral electricity market optimization model 

considering all aspects of the market.  

Electricity market optimization studies in the literature utilize different approaches. 

In the papers [18,109] multi-stage stochastic portfolio optimization models under 

demand uncertainty are presented. However, in these works the authors did not cover 

uncertainties in production costs and their effects to electricity prices. The article 

[135] proposes a mixed-integer stochastic programming approach for the selection of 

power generation technology. However the method generates limited number of 

scenarios, which in turn affects the final results. The work [52] combines the 

management of electricity portfolios with financial risk factors. In another work, 

expected profit is maximized under uncertainties in inflow of hydropower plants and 

price [68]. However, the work excludes different types of generators. The model in 

the article [129] involves a multi-stage stochastic program, which considers different 

types of generation costs, investments, and the effect of gas market. The paper [162] 

develops a two-stage method, which optimizes both portfolio selection and 

conditional value at risk. The reader may refer to [104,149] for extensive reviews on 

stochastic programming of electricity and energy markets.  

In addition to these studies, there exist approaches regarding electricity markets 

based on game theory. These approaches are especially used for wholesale markets 

where the power generation companies directly sell electricity to customers. Here, 

companies can join and stay in a market individually (non-cooperative) or 

collaboratively (cooperative) in order to gain more profits [82,103,172]. These 

approaches are also extended to dynamic games, stochastic games, games with 

emission restrictions and combinations of these. For instance, behaviors of the 

collaborative market participant are analyzed for uncertain coalition values in [5,6]. 

Moreover, a new dynamic game theory model is presented by [97]. This study 

considers emission restrictions with collaborative market participants. Therefore, one 

model has been developed and called as the Kyoto game. Games with Kyoto 

restrictions are also discussed in [151]. The time-discrete dynamic structure of Kyoto 

game and its theoretic background are highlighted in [154,156]. The reader may refer 

to [33,45] for an extensive survey on these game-theory based approaches. 

Traditional methods like multistage stochastic programming for electricity planning 

models under dynamic and uncertain conditions result in computationally intractable 

models. These methods can also yield infeasible solutions even if small perturbations 

occur. Particularly this case can be observed in many energy planning models, since 

the majority of the literature assumes certain parameters for these models [17]. One 

of the major concerns for electricity planning is sustainability, which is directly 

related with scenario analyses. Robust and stochastic optimization approaches 

improve the capability of scenario analyses, because of the uncertainty sets defined 

for the input parameters. For instance, when the green-house gases (GHG) emission 

is desired to be projected through 40 years, an uncertainty set can be defined for 
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corresponding input parameters. The most important advantage of using robust 

optimization is to guarantee a feasible solution even when input parameters change 

from scenario to scenario. There are limited number of studies that use robust 

optimization in this field [17,89]. None of these studies involves multiple 

uncertainties in their model.  

2.3 Forecasting Models for Next-Day Electricity Market  

In this section, existing techniques are reviewed based on the classification shown in 

Figure 2.1.  Although these methods are commonly used for price forecasting, they 

can also be utilized to forecast demand.  The methods are classified mainly as time-

series based methods and game theory based methods.  Time-series based methods 

are further classified based on the existence of explanatory variables in the model.  

Comprehensive reviews on electricity price forecasting are available in the literature 

[33–35]. Among these, especially the papers [33,34] focus on short-term forecasting. 

However, there is no substantial review work specific to next day’s electricity price 

forecasting.   

 

 

Figure 2.1: Categorization of the methods used in next day’s electricity price 

forecasting. 

 

2.3.1 Time-Series Models 

Time-series models are especially useful in handling common characteristics of next 

day’s electricity price data, which are seasonality and high volatility, outliers, high 

rate of recurrence, and non-constant mean and variance [37].  Among time-series 

based models, based on the existence of explanatory variables, neural networks 

(NN), support vector machines (SVM), data mining, generalized autoregressive 
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conditional heteroskedasticity (GARCH), and dynamic regression (DR) are the 

methods with explanatory variables. On the other hand, wavelet transforms (WT) in 

frequency domain, autoregressive (AR) models, integrated (I) models, moving 

average (MA) models and their combinations (ARIMA, ARMA, ARMAX, etc.) in 

time domain are the methods without explanatory variables. Mathematical 

formulations of some of these models are given in Table A.1 for reference purposes.  

2.3.1.1 Time-Series Models with Explanatory Variables  

Time-series models with explanatory variables consider the factors such as electricity 

demand, fuel price, available generator capacities, temperature, and humidity, and 

identify their effects on the electricity prices.  These methods are categorized as 

artificial intelligence (AI) and regression-based methods.  

AI methods mimic human brain in order to train future prices by using electricity 

price history and the factors affecting the prices. Figure 2.2 schematically represents 

this process.  

 

 

Figure 2.2: Basic representation of a Neural Network. 

 

NN and its variations are the most commonly used methods among time-series based 

methods with explanatory variables.  NN is used in the papers [59,150] to forecasts 

next day’s electricity price, with a focus on the weekends and public holidays in the 

latter work.  Artificial NN (ANN) is used in the articles [30,102,121,123,141,144] to 

forecasts electricity prices.  An ANN-based approach - Input-Output Hidden Markov 

Model (IOHMM) – is used in the paper [65] to forecast next day’s electricity price. 

Cascaded NN, which involves a chain of NN engines, is proposed in [11]. Fuzzy NN 

used in the work [7] is another method derived from NNs. NN yields smaller errors 

compared to DR, ARIMA, and transfer functions.  
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It is known that if there are no spikes in the prices, ANN gives better results.  

However, in case of spikes an enhanced probability neural network (EPNN) yields 

accurate results [95]. EPNN adds a new layer, summation, and a new process, 

orthogonal experimental design, to the network in order to decrease the forecast 

error.  

There are hybrid approaches that use AI philosophy. Support vector machines 

(SVM) and evolutionary algorithms (EA) are also used to forecast next day’s 

electricity market. The article [56] uses a SVM algorithm with particle swarm 

optimization (PSO) for several electricity markets. Other combinations are made by 

[51] and [126]. In [126], the parameters of SVM are optimized by a genetic 

algorithm and results are obtained with acceptable accuracy. On the other hand, [51] 

uses a self-organized map network (SOM) to group the input data set as an 

unsupervised learning mechanism and SVM to fit the training data as a supervised 

learning mechanism. NN and evolutionary algorithms with an iterative parameter 

search process are combined in article [10]. SVM, PSO and SOM are used together 

to forecast electricity prices in the article [107]. 

The forecasting methods based on regression model the relationship between 

electricity prices and the factors that affect the prices. Thus, electricity price can be 

estimated by using exogenous variables like demand. Dynamic regression and 

generalized autoregressive conditionally heteroskedastic (GARCH) method are the 

most common techniques in this category. However, in most studies, dynamic 

regression is used to compare the prediction performances. For instance, in [108], 

dynamic regression and transfer function methods are applied. The relationship 

between fundamental factors (such as demand, demand slope and curvature, demand 

volatility, excess of generation capacity, scarcity, price volatility, etc.) and their 

effects over time via several versions of regression are modeled in [84]. In [60], 

multivariate regression is used to analyze the effect of renewable energy to electricity 

prices. Forecasting is made by using GARCH method in [57]. GARCH seasonal 

dynamic factor analysis (GARCH-SeaDFA) [58] is a specific approach for the 

structure of electricity price data. The forecasting performance of GARCH models is 

especially better when volatility is included. Because of this fact, [70,72] use 

GARCH models for their analyses. 

Generalized additive models (GAM) are used to maximize quality of prediction via 

involving nonlinear effects [74,140]. The paper [130] uses generalized additive 

models via location, scale and shape estimation of specific time instances. The 

estimated parameters are used as an input for dynamically changing prices. Another 

approach is proposed in [116] by using the logic given in [63,64]. In [116], GAM 

generates an initial model of next day’s price which is improved by a robust 

optimization technique. 

2.3.1.2 Time-Series Models without Explanatory Variables  

Electricity prices can be predicted by the models that do not involve explanatory 

variables. A classification of these models can be made based on whether time 

domain or frequency domain is used. AR, ARIMA, and ARMA are the most 
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frequently used time-based models. On the other hand, wavelet transform (WT) 

enlarges the time space to the time-frequency space. For instance, [9] applies WT as 

preprocessor in order to make this expansion and then to forecast prices with a better 

performance via combination of NN and EA. One of the main advantages of WT is 

that the method can decompose time-series in time and frequency. By considering 

this advantage, [22] proposes a WT with multi-resolution decomposition. The 

method performs better than single resolution forms. 

In liberal markets, electricity price data generally have a high frequency, non-

constant mean and variance, and multiple seasonality. Thus, AR, ARIMA and 

ARMA are very suitable methods for this kind of data. The ARIMA model proposed 

by [39] gives reasonable prediction errors for. In some studies, models without 

explanatory variables are combined with models with explanatory variables. For 

instance, [136] suggests a model by using ARMA extended by GARCH. Similarly, 

[38] proposes a WT-based model combined with ARIMA, and [137] presents a WT-

based model combined with ARIMA and GARCH. ARIMA and its variations are 

used in [32]. AR models with nonparametric extensions proposed in [159]. In [84], 

regression and AR are equipped with time-varying parameter effects. AR and 

regression models give better results when they include time-varying coefficients. 

2.3.2 Simulation and Game Theory  

Game-theory and simulation-based methods are generally devoted to improve 

strategies for market participants. These methods are developed for predicting market 

operators’ buying and selling bids. Moreover, simulation models try to imitate the 

real market and its conditions directly. For instance, [27] develops a market 

simulator for the Spanish market. The algorithm includes the following steps: (i) 

calculation of intersection of supply, demand and market clearing price for each hour 

in a day, (ii) assignment of selling bid, (iii) assignment of buying bid, (iv) acceptance 

of the bids if the maximum variation of the unit output between two consecutive 

hours is between the required limits, (v) verification of bids for non-divisible quantity 

rule, (vi) verification of minimum revenue rule. The algorithm used in [27] 

guarantees a feasible result. 

Game theory is generally used to determine bidding strategies. A generation of 

companies’ bidding strategies under operational constraints is investigated in [31]. A 

static game theory and a cost-minimization unit-commitment algorithm are 

developed for generating companies. Thus, the companies can analyze bidding 

strategies in the market. 

There are also combined versions of game theory and simulation in order to use the 

advantages of both methods. For example, [69] proposes a multi-agent based 

simulation model for physical power exchange markets. Stochastic control theory is 

used by [61], where a Cournot competition model is considered for bidding 

strategies. In addition, simulations are made to see long-term optimal strategies. 
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2.3.3 Other Approaches 

Forecasting next day’s price is a challenging problem since the prices can be affected 

by many factors. As a consequence, different approaches are developed to tackle 

these issues and to suppress the disadvantages of classical methods. For instance, in 

[175], the market price is investigated for New York Independent System Operator 

day-ahead market with different demand values. Satisfactory predictions can be 

made for the Spanish electricity market by using weighted nearest neighbors [96]. A 

forecasting system with multi-component, which consists of a fuzzy inference 

system, an intelligent system, and least-squares estimation is developed by [94]. 

Designing the input vectors of electricity prices is an important issue that affects the 

forecasting performance. A hybrid NN model is proposed by [8] with a relief 

algorithm. This algorithm is used to select the features of the input vector. In order to 

handle daily seasonality, [147] uses a functional nonparametric model. Here, the 

electricity price is considered as the discrete-time realization of a continuous-time 

stochastic process. 

Forecasting of spikes in the prices is another issue in day-ahead electricity markets. 

In [13], a specific method that consists of a probabilistic NN and a hybrid neuro 

evolutionary system is developed. Another hybrid neuro-evolutionary system is 

developed in [12] to improve forecasting accuracy. A hybrid nonlinear chaotic 

dynamic and evolutionary strategy-based approach is developed in [143]. The article 

[15] uses autoregressive-moving-average model with exogenous inputs (ARMAX), 

where fuzzy logic is employed. A hybrid wavelet-ARIMA and radial basis function 

neural model is proposed in [131] to obtain an improved accuracy with less input 

data. Stochastic programming is also applied in price forecasting, especially, for 

bidding strategies. For instance, a quadratic mixed-integer stochastic programming 

model is proposed in [40] for optimal-4qbid strategies. In [53], a stochastic mixed-

integer linear programming model is used for the bidding problem. 

Among next-day electricity price forecasting methods, NN-based ones are the most 

common. Errors ranges involved in these NN-based methods and traditional methods 

such as AR, ARIMA, GARCH, linear regression (LR), and multiple regression (MR) 

are presented in Tables A.2 and A.3 for reference purposes.  

In some electricity markets, the explanatory variables (e.g., electricity demand, fuel 

price, available generator capacities, temperature, humidity) are highly affective. 

Especially in such systems, traditional methods yield significant errors. The most 

critical factors affecting these systems are price history and electricity demand. Other 

common factors include resource prices, generator capacities, climate effects, and 

time slot. Factors affecting the prices are tabulated in Table A.4. These factors vary 

with respect to the market of concern. Among the electricity markets, mainly 

European markets - especially, the Spanish - are studied, which is triggered by the 

early revolution into a competitive market structure (cf. Table A.5). For a detailed 

review of the models presented here, the reader may refer to [167]. 
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CHAPTER 3 
 

 

 

MODELS DEVELOPED FOR ELECTRICITY MARKET 

OPTIMIZATION 
 

 

 

This chapter mainly describes two electricity market optimization models, stochastic 

optimization model and robust optimization model, developed in this thesis.   

The stochastic optimization model is based on the generation of supply and demand 

scenarios for a given set of market data.  In this model, Ornstein-Uhlenbeck mean-

reverting process and Monte-Carlo simulations are used to model stochastic supply 

curves.  

As a part of robust optimization model, we developed a hybrid model merging 

wavelet transform and multivariate adaptive regression splines (W~MARS) to 

forecast the parameters involved in the system. This model is combined with an 

efficient method for modeling uncertainties in the system to give the robust 

counterpart of W~MARS (called R~W~MARS). 

Stochastic optimization model and robust optimization model, including a detailed 

explanation of W~MARS and R~W~MARS, are presented, respectively, in the 

following sections. 

3.1 Stochastic Optimization Model 

Countries aim to create economically efficient electricity portfolios considering two 

basic energy security indicators - affordability and availability - while preventing any 

energy shortage.  However, due to uncertainties both in supply and demand, 

stochastic optimization techniques are often required in creating the portfolio.   

Here, a novel stochastic and simulation based method, which utilized Ornstein-

Uhlenbeck mean-reverting process and Monte-Carlo simulations, is described.  The 

methodology involves generation of stochastic supply curves for different scenarios 

by considering the power-generation techniques. These scenarios are incorporated in 

a stochastic mixed-integer portfolio optimization model to maximize the profit and to 

obtain the most economic diversity of energy resources.  

Figure 3.1 illustrates the approach used in the stochastic optimization model.  Inputs 

of the model include the supply curves, demand scenarios, and the power plant 

capacities.  This optimization model maximizes the expected profit under specified 

constraints to give optimal market prices and quantities.  
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The main contribution of the method presented here is in modeling of the electricity 

supply curves and their integration into a stochastic mixed-integer optimization 

model. The supply curves are constructed as piecewise linear functions and market 

prices are determined by considering electricity production costs, electricity demand, 

natural gas prices, exchange rates, and generator types. Modeling of the supply and 

the demand curves and the stochastic portfolio optimization model are described in 

the following subsections. 

 

 
Figure 3.1: Approach in the stochastic electricity market optimization model.  

 

3.1.1 Modeling the Supply and the Demand Curves 

The supply and the demand curves especially determine the optimal market outcome, 

i.e., the price and quantity for a good [120,145].  

A merit-order curve is usually employed to represent the total electricity supply 

when defining the market. Such a curve presents the marginal costs and capacities of 

all generators and ranges from the least expensive to the most expensive unit. The 

generation technology and the fuel used are the main causes for the marginal costs. 

For instance, usually gas power plants have higher production costs compared to 

hydropower and nuclear power plants. Figure 3.2 illustrates such a merit-order curve, 

where solar electricity generators have the least production cost and oil-based 

electricity generators have the highest production cost. In this figure, the intersection 

of the supply curve defined by the merit-order curve and the demand determines the 

optimal market outcome. Energy companies, whose production costs are lower than 

the market price, produce as much as possible, considering their available capacities. 

Since the production costs among the plants are different, any producer with the 

lowest production cost earns relatively more than any other producer with relatively 
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higher production cost. Accordingly, for the demand scenario in Figure 3.2, producer 

5 stands just at the breakeven point whereas producers 1-4 generate profit. Therefore, 

the remaining plants should not operate for the market to make a total profit. When 

the demand becomes low, power plants with higher operating costs standstill, which 

results in lower total production costs, hence, in a lower electricity price. On the 

contrary, when there is an increase in demand, the power plants with higher costs are 

needed to satisfy the demand; this results in a higher electricity price. However, the 

electricity production and demand are also affected by uncertainties. Therefore, 

different stochastic scenarios for the supply and demand curves are modeled instead 

of a deterministic approach to generate different possible optimal market outcomes 

and profits. 

 

 

Figure 3.2: Integrated electricity supply and demand. 

 

3.1.1.1 Modeling the Supply Curve 

Considering common resources for electricity generation (cf. Figure 3.2), natural gas 

is especially important. Worldwide, natural gas is traded in USD and the prices are 

generally set by the Henry Hub, which is an important distribution hub on natural gas 

pipeline in the USA. However, natural gas prices are highly volatile [66]. Therefore, 

since gas-fired power plants have high production costs, the supply curve must be 

considered as a stochastic parameter, especially, for the markets, which are highly 

dependent on gas-fired power plants.  

For a generic electricity market, the electricity consumption may be billed in a 

currency different than USD. Therefore, stochastic foreign exchange rates between 

USD and the local currency must also be considered when determining the supply 

curve. In order to obtain production cost and supply curve scenarios for each 

electricity producer, Monte-Carlo simulation technique is used to obtain consistent 

and unbiased estimators [90,111]. Each scenario is generated by considering the 

effect of stochasticity in natural gas prices and exchange rates. For this purpose, 
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well-known Ornstein-Uhlenbeck mean-reverting process is used since commodities 

like oil and gas, and the exchange rates mostly exhibit mean reversion [142]. This 

implies that they tend to return to a long-term mean over time. The Ornstein-

Uhlenbeck mean-reverting process is defined as  

  ,t t t tdS L S d dW     (3.1) 

where σ > 0 and α > 0. Here,  
0t t

S


 is the price process of a risky asset, namely, 

 
0t t

W


 is a standard Brownian motion, and σ is a constant volatility. L is the long-

term mean of the process St, to which it reverts over time, and α “measures” the 

“speed” of mean-reversion. The explicit solution of this process is [62] 
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Here, S0 denotes the initial price at time 0t  . Through a regression analysis, the 

parameter α can be estimated. Similarly, if a mean-reversion process is assumed, the 

volatility σ may be estimated from historical data. For a detailed analysis and 

discussion about parameter estimation of the Ornstein-Uhlenbeck mean-reverting 

process, readers may refer to [157,158]. 

Instead of constructing scenario trees for each parameter separately, a two-

dimensional scenario tree is constructed (cf. Figure 3.3) to have a computationally 

efficient scenario generation procedure. Natural gas prices and exchange rates are 

generated simultaneously for each time step. By running and combining scenarios for 

the natural gas prices and exchange rates, k m n   scenarios are generated at each 

time step. Here, k is the number of gas price scenarios, m is the number of exchange 

rate scenarios, and n is the total number of scenarios per time step. Kolmogorov-

Smirnov (uniform) distance is used while generating scenarios [47,75,119]. 

For each simulated gas price and exchange scenario, discrete supply curves are 

modeled as piecewise linear functions between each producer. The intersection of the 

supply curves with the demand curves resulted in different optimum market 

outcomes and profits. One illustrative piecewise linear power supply curve is shown 

in Figure 3.4(a). For this particular case, the intersection of the mean demand 

scenario and the supply curve resulted in a market price indicated by the dash lines in 

Figure 3.4, meaning that power producers 1-4 can provide all of their available 

capacities and power producer 5 only one part of his capacity. For this scenario, total 

profit is found by calculating the area between the dash line and the piecewise linear 

supply curves. By using this approach, a total number of k m  supply scenarios are 

generated for each time period. Figure 3.4(b) presents illustrative piecewise supply 

curves for all scenarios. 
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Figure 3.3: Two-dimensional scenario tree. 

 

 

Figure 3.4: Illustrative piecewise supply curves; (a) for a particular scenario,  

(b) for all scenarios.  
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3.1.1.2 Modeling the Demand Curve 

The electricity demand typically consists of a base load, a middle load and a peak 

load. The base load is defined as the permanently demanded power during 24 hours 

and 365 days per year, whereas the middle load is the power which is additionally 

demanded to the base load during some hours per day. Finally, the peak load 

represents the power which is demanded only in few hours and/or days per year. 

Typically the peak loads occur at 12 p.m. and 6 p.m. daily.  In summary, there is high 

variation in the electricity demand between peak times (day) and off-peak times 

(night); and between the seasons (winter and summer). Daily variation is basically 

caused by the decrease in the need for electricity consumption by most of the 

companies and households. Hence, the electricity demand is the lowest in mid-night.  

On the other hand, seasonal variation is caused by the use of electric heaters or air 

conditioners during very hot or very cold periods of the year. For most of the 

consumers, the elasticity of the demand is very low. This is because of the lack of 

substitutes for energy and the costumers overrating the product.   

Overall electricity consumption is modeled for each time period.  To have the mean 

deterministic demand forecast, a growth factor is determined by using the geometric 

mean formula and multiplying it with the demand of the previous period. To include 

the variability of this forecast, the approximate standard deviations from this mean 

demand scenario are calculated and included. As a result, one deterministic demand, 

one high-demand and one low-demand scenario are obtained. Figure 3.5 presents an 

illustrative example showing deterministic, low- and high-demand scenarios. 

 

 

Figure 3.5: Deterministic, low-, and high-demand scenarios. 

 

The inputs used in modeling the supply and demand scenarios are listed below for 

reference purposes: 
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 Periodic (e.g., monthly) energy consumption data for modeling demand 

scenarios. 

 Production data of existing power plants to determine yearly effective 

production mean.  

 Production costs of each power plant per generation type to derive the supply 

curves.  

 Periodic Henry Hub natural gas spot prices to simulate production costs through 

a stochastic price process.  

 Averages of periodic exchange rates to simulate production costs through a 

stochastic price process. 

Normally, since the standard error is proportional to 1/ sample size  in Monte-Carlo 

simulation [43], number of demand and supply scenarios should be kept high to 

minimize the error. However, this considerably increases the computational time. 

Here, reduced number of scenarios can be randomly selected to decrease the 

computational time. Referring to the Central Limit Theorem, the required number of 

scenarios can be determined by using 

2
z S

n
x





 
   

, where S shows the sample 

standard deviation, zδ represents the confidence level and ε is the percentage error 

[63].  

3.1.2 Optimization Model 

The electricity demand and supply, along with the generation capacities serve as 

limiting constraints for the expected profit maximization model [99]. A mixed-

integer stochastic model is given below in Equations (3.3)-(3.8) for any given supply 

scenario k and any demand scenario l: 

maximize 
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     1,..., , ti i

t
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   (3.7) 

   0,  0,1      1,..., ;  1,..., .ti ix y t T i P     (3.8) 

Here, 1, ,t T  is the index for time period, T is the number of time periods (e.g., 

12T   if the period is monthly), 1, ,i P  is the index for power plants, P is the 

number of power plants, k is the index for scenarios, 1,2,3l   is the index for 

demand scenarios (deterministic, low, or high), k

ti  is the market price of electricity 

supplied, k

tic  is the variable electricity production cost, fı is the fixed operating and 

maintenance cost, l

td  is the total electricity demand at time t, k

is  is the total capacity 

of plant i, prob
k
 is the probability for occurrence of each scenario k, and M is a 

sufficiently large positive number. Occurrence of each scenario is assumed to be 

uniformly distributed. The decision variable xti represents the amount of electricity 

that can be supplied by plant i in period t. The binary decision variable yi shows 

whether the plant i is dispatched or not. 

The total capacity of the plants may exceed the total load demand, and excess supply 

cannot be stored. Thus, Constraints (2.4) imply that all the demand can be supplied 

by using equality constraints. On the other hand, Constraints (2.5) imply that the total 

amount of electricity cannot exceed the total capacity of plants. Constraints (2.6) and 

(2.7) guarantee that at most P number of plants can be dispatched and if they are 

dispatched, then they should produce electricity. Constraints (2.8) show non-

negativity conditions of decision variables. Specific technical parameters of the 

plants (i.e., ramp up and ramp down rate, shut down und start up costs of the power 

plants, etc.) are neglected due to the lack of data. Transmission costs are also 

excluded since the current conditions refer to an incomplete type market [122].  

The mixed-integer stochastic model is solved for each of 3 demand scenarios and k 

number of supply scenarios. At each run, price and variable electricity cost, demand, 

and supply values are changed according to the outputs of scenario trees.  

3.2 Robust Optimization Model 

Many constraints involved in an electricity market are often highly volatile. A robust 

optimization model is developed as efficient method for modeling ellipsoidal, 

single/multiple, correlated/uncorrelated types of uncertainties. This model also 

requires forecasting of the parameters, such as price. Considering high volatility of 

the market, these parameters need to be forecasted precisely in short term. The robust 

optimization model developed in this study, makes use of a hybrid method merging 

wavelet transform and multivariate adaptive regression splines (W~MARS) for 

forecasting the parameters involved. This section explains W~MARS and the robust 

counterpart model, of W~MARS, called as R~W~MARS, in closer detail. 
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3.2.1 Wavelet – Multivariate Adaptive Regression Splines (W~MARS) 

The forecasting methods reviewed in Chapter 2 have their own strengths and 

weaknesses. Therefore, researchers have developed hybrid methods to merge the 

strength of different methods. The article [173] combines ARIMA with NN. The 

article [9] combines WT-EGARCH-chaotic least squares support vector machines 

(LSSVM). The article [174] recommends WT-ARIMA-LSSVM-practical swarm 

optimization (PSO) combination. The article [137] combines WT with ARIMA and 

GARCH.  

MARS models [55] and their variations [113–115,139,152] are not used very 

commonly in electricity price forecasting. As the first application, MARS model is 

applied for Ontario’s electricity prices [171]. In [132], MARS is only used for initial 

parameter selection and then seasonal autoregressive integrated moving average 

(SARIMA) model, a SARIMA model with GARCH (SARIMA–GARCH) and its 

combination with regression model are presented. A nonlinear autoregressive model 

with exogenous inputs (NARX) is compared with MARS and wavelet NN by [14]. 

Two variations of MARS, namely Conic MARS (CMARS) presented in [153] and 

Robust Conic MARS (RCMARS) developed by [114], are used in [116] to forecast 

Turkish electricity prices.  

W~MARS is a substantial alternative to classical time-series methods, NN, MARS 

models and all these methods’ variations. The main motivations to combine these 

two methods for electricity price forecasting can be summarized as follows [55,118]:  

 WT decomposes series from ill-behaved form to a more stable one. At the 

same time, WT traces frequency and time dimension of the data 

simultaneously. These properties directly serve for a nonstationary and 

volatile structure of electricity prices.  

 Processing and computation of WT is very fast even when level of series is 

very high. For this purpose, pyramid and inverse pyramid algorithms are 

used.   

 In WT, the level of constitutive series can be controlled according to the 

forecasting performance.   

 MARS models complex nonlinear relationship between variables without 

assumptions and can handle multiple inputs easily.  

 The relative importance of the dependent variables can be identified.  

 The model can be trained and long training procedure is not required even for 

the large data sets.  

 Outputs of MARS can easily be interpreted. Like WT, MARS is also 

implemented very easily and gives results very fast. 

 Both methods are assumption free. 
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In summary, specifically WT captures multiple seasonality, unusual behaviors and 

volatility, whereas MARS eliminates the selection of explanatory variables problem, 

thus a combined method can handle the challenges introduced by the electricity 

market problem. 

In order to comprehend W~MARS method in detail, multivariate adaptive regression 

splines and wavelet transform must be covered.  The following subsections describe 

the multivariate adaptive regression splines (MARS) and the wavelet transform.  

3.2.1.1 Multivariate Adaptive Regression Splines (MARS) 

MARS was first introduced by Friedman in 1991 [55].  It is defined as an extension 

of linear models to model the interactions and non-linearities automatically. A two-

stage (i.e., forward stage and backward stage) additive model is generated by the 

model [55].  MARS determines basis functions (BFs) and adds them to the model to 

construct a sufficiently large model, which usually overfits the data set, in the 

forward stage until maximum number of basis functions is reached, which is 

specified by the user.  However, since the model is large and overfitting the data set, 

it is overcomplicated and possibly including many incorrect terms.  The overfit 

model is trimmed to reduce the complexity of the model while regarding the fit to the 

data in the backward stage.  BFs contributing less in the residual sum of squares 

(RSS) are pruned at the backward stage.  As a result, an optimally estimated model is 

produced [73]. 

The form of piecewise linear one-dimensional BFs created by the data set are as 

follows [73]: 

,   if    ,   if   
[ ]   ,      [ ] .

0,       otherwise 0,       otherwise 

x x x x
x x

   
  

    
    

 
 (3.9) 

Here,   is a univariate knot obtained from the data set. Functions given in Equation 

(3.15) are called truncated linear functions. Truncated linear functions, with a knot at 

the value  , both together are termed as a reflected pair. It is aimed to construct 

reflected pairs for each input   1,2, ,jX j p  with p-dimensional knots  

   
T

,1 ,2 ,, , ,   1,2, ,i i i i p i N       at each observed value 
 i jx  of that input i = 

1,2,…,N. As a result, collection of BFs is obtained, which can be stated as a set S: 

1 2: {[ ]  , [ ]  |   { , ,..., },  = 1,2,3,..., }.j j j j NjS X X x x x j p        (3.10) 

Here, N and p denotes the number of observations and the dimension of the input 

space respectively. If the input values are all distinct, then there are 2Np BFs. The 

model in the forward stage is generated by using the BFs in the set S through their 

possible products. As a result, the generated model, applied at a candidate input 

vector x, is of the form 

0
1

( ) + ,
M

m m
m

Y    


  x  (3.11) 

http://en.wikipedia.org/wiki/Linear_model
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where 1 2( , ,..., ) .T

px x xx =  Here,  20,N   is a random noise term, which is 

supposed to have a normal distribution with zero mean and finite variance 2
, M is 

the cardinality of the set of BFs in the current model, ( )m x  are BFs, and  are the 

unknown coefficients for the constant 1 (m = 0) or for the mth BF. Given the 

observation ( ,  ) (  1,2,..., )i iy i Nx , the form of the mth multivariate BF is as follows 

[73]: 

( , )

1

( ) = [ .( )] ,
mK

m km v j m jm

j

s x  



x  (3.12) 

where mK  is the number of truncated linear functions multiplied in the mth BF, 

( , )v j mx  is the input variable corresponding to the jth truncated linear function in the 

mth BF, 
jm  is the knot value corresponding to the variable 

( , )v j mx  and 1jms   . 

In forward stage, MARS starts with the constant function 0( ) 1 x  to estimate 0 , 

considering all functions in the set S as candidate. Possible forms of the BFs ( )m x  

are 1, kx , [ ]k ix   , k lx x , [ ]k i lx x   and [ ] [ ]k i l jx x    . 

Input variables cannot be the same for each BF. Therefore, the BFs use different 

input variables, and  ,k lx x  and their corresponding knots, and  i j  . At each stage, 

with one of the reflected pair in the set S, all products of a function ( )m x  in the 

model set are regarded as a new function pair and added to the model set. The term 

producing the largest decrease in training error has the form: 

1 2( ) [ ] ( ) [ ] .M k j M k jX X            x x  (3.13) 

Here, 1M   and 2M   are the coefficients and are estimated by least square, like all 

other M +1 coefficient appearing in the model. These products are stepwise added to 

the model in forward stage.  The forward stage stops when a user-specified number 

of terms is reached. The model generated at the end of the forward stage typically 

overfits the data.  Therefore, a backward stage is run to prune the model. 

The terms contributing less in the residual squared error are stepwise removed from 

the model. The iterations continue until the final models includes an optimal number 

of effective terms [55]. Therefore, an estimated best model f̂  of each number of 

terms   is produced at the end of this process. Generalized cross-validation (GCV) 

is used to find the optimal number of terms  . GCV also shows the lack of fit when 

using the MARS model. The GCV is defined as [55]: 
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where ( )M   is the effective number of parameters in the model, and N is the number 

of sample observations [73]. 

3.2.1.2 Filter Theory and Wavelet Transform 

Fourier analysis, which localizes just frequency domain, has a remarkable impact on 

applied mathematics. As an improvement of Fourier analysis, wavelet method can 

efficiently describe the functions both in frequency domain and time domain. This 

time-frequency localization is one of the most important advantages in comparison to 

standard methods like kernel smoothers and orthogonal series [110]. Besides, even 

for a large data set and sharp spikes, wavelets provide a simple form with its fast 

algorithms in order to find a statistically significant representations [110]. Here, only 

discrete wavelet transform (DWT) is considered, since N electricity prices are 

observed at discrete time points 0,1, , 1t N  .  Let Xt represent the electricity 

price at time t and X represents its corresponding N-dimensional column vector. Let 

Dt represent the electricity demand at time t and D represents its corresponding N-

dimensional column vector. Here, the length of X is restricted to : 2 .JN   To handle 

this restriction in W~MARS method; a simple modification is made before the 

transformation and is explained in the following section. Let Ωn represent the nth 

DWT coefficient ( 0,1, , 1n N  ), W be the corresponding column vector of length 

: 2 ,JN   and Ω be an N N  real-valued matrix that ensures T I  . A wavelet 

transform of X is an orthonormal transform and can be written as W X , where 
N N  and NW . Here, Ω and W form time and scale coefficients, which 

means a multiresolution analysis of X in terms of DWT coefficients. However, in the 

transformation progress, boundary effects arise and cannot be eliminated [118]. 

Therefore, an efficient algorithm called pyramid algorithm of order ( )O N  that is 

faster than fast Fourier transform is used to calculate wavelet coefficients [101]. The 

algorithm initially takes the original data set X and forms low-pass and high-pass 

parts by using filtering operations. Here, N N  is obtained by convolutions of 

the wavelet filter.  

Let   0,1, , 1lh l L   be wavelet filter and   0,1, , 1lg l L   be associated 

scaling filter with respect to some 2L . In order to have an orthogonal wavelet 

matrix Ω,   0,1, , 1lh l L   must have the following properties: 
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where 0lh   for all 0, 1\[ ]l L  . These properties respectively mean that the sum 

of the wavelet filters is zero; the wavelet filter has unit energy and it is orthogonal to 

even shifts. Especially, the last two properties show the orthonormality property of 

wavelet filter. The scaling filter is the quadrature mirror filter of wavelet filter and 

defined as  
1

11
l

l L lg h


   , where 0,1, , 1l L  , and 0lg   for 0, 1\[ ]l L  . 

Let ( )H   be the transfer function for 
lh  and ( )H  be the associated squared gain 

function. These functions are given by  
1

2

0

L
i fl

l

l

H f h e 






  and, hence,  
2

H fH . 

Orthonormality of wavelet filters can also be defined in terms of squared gain 

functions as  
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Similarly, if  G f  is the transfer function for lg  and  
2

: G fG  is the associated 

squared gain function, then: 
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and 

 
1

2,    for all  .
2

G f G f f
 

    
 

 (3.20) 

Hence, 

    2,    for all ,H f G f f    (3.21) 

which shows that if one of the filter is high-pass, then the other is a low-pass filter. 

The reader may refer to [118] for details on filter theory.  

In this study, whole Daubechies (D) filter family is used in order to compare the 

performance of the method according to the filter types. This family includes Haar 

wavelet filter, Daubechies 4 (D4), D6, D8, D10, D12, D14, D16, D18, and D20 [44]. 

As an example, Haar and D4 filters are given in Table 3.1. Here, it should be noted 

that wavelet filters are high-pass filters and scaling filters are low-pass filters. The 

reader may also refer to [100] for the other filters’ numerical values.  

Implementation of wavelet transform with Daubechies filter family was done by 

Mallat’s pyramid and inverse pyramid algorithms for decomposition and 

reconstruction, respectively [101]. The pyramid algorithm gives decomposed data 

series in J iterations. At the initial step, all input data, i.e., price and demand, are 

separately decomposed into high-pass (W1) and low-pass (V1) parts by using lh  and 

lg , respectively. This also means that W1 forms N/2 wavelet coefficients and V1 
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forms N/2 scaling coefficients. Here, V1 is used as an input of next iteration and a 

second decomposition is made to calculate W2 and V2. At each iteration, scaling 

coefficients are subsampled and decomposed to form new wavelet and scaling 

coefficients. Hence, at each step, rougher (i.e., for high-pass) and smoother (i.e., for 

low-pass) frequencies are obtained. At the end of the algorithm, low-pass and high-

pass parts are obtained where time information for both sides is still kept. In this 

study, keeping both time and frequency information is one of most important reason 

to use wavelet transform. 

 

Table 3.1: Numerical values of Haar and Daubechies 4 wavelet and  

scaling filters [100]. 

 Wavelet Filters Scaling Filters 

Haar 0

1

2
h   

1

1

2
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0
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2
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2
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D4 
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1 3
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4 2
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In order to demonstrate pyramid algorithm mathematically, let us have time-series 

 :  0,1, , 1tX X t N    and 0,t tX V . Thus, at the jth step, 

 1,  0,1, , 1j t jV t N    and : 2 j

jN N  for 1,2, ,j J . Let further 

  0,1, , 1lh l L   be wavelet filters. Then, the jth wavelet and scaling coefficients 

are defined by  
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and 

1

1

, 1,2 1  mod  

0

: ,
j

L

j t l j t l N

l

V g V




  



  (3.23) 

respectively. The results for all t are 

  
T

, ,0 ,1 ,2 , 1: , , , ,
jj j t j j j j Nt

W W W W 
  
 

W W  (3.24) 
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Finally, a combination of all steps of pyramid algorithm yields  
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or  
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    Χ Ω W W W Ψ V   (3.27) 

where the vector W is partitioned into sub-vectors and the matrix Ω is formed by 

convolution of filters and partitioned into sub-matrices. Hence, W and Ω are given by  

1 1

2 2

 and  ,

J J

J J

   
   
   
    
   
   
   
   

W Ω
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V Ψ
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where Ωj is a ( / 2 )jN N  matrix, ΩJ and ΨJ are 1×N matrices, Wj is a ( / 2 ) 1jN   

column vector, and VJ is the last element of W. Since the WT localizes both time and 

frequency dimensions, wavelet and scale coefficients refer to these localizations on 

time and scale dimensions, respectively.  

Similarly, reconstructions of the series are implemented by using inverse pyramid 

algorithm [118]. In this case, up-sampling is applied by using the following formula 

at each j:  
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for 10,1, , 1jt N   , where  

1

,
1 1

,
2

0,                0,2,..., 2,

: ,          1,3,..., 1,

j

j t
t j

j

t N

V V t N




 

 


   


 (3.30) 

and  
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The reader may refer to [118] for the pseudo code of pyramid and inverse pyramid 

algorithms. 

3.2.1.3 Implementation of W~MARS 

W~MARS method, which is illustrated in Figure 3.6, is implemented in three main 

steps. The input data for W~MARS include historical time data  1 1, ,...,t t t NX X X    

in order to forecast 1tX  .  

 

 

Figure 3.6: Schematic representation of W~MARS.  

 

Step 1: This step constitutes the decomposition of the data. By using Mallat’s 

pyramid algorithm [101], time series X of length N=2
J
 are transformed into N/2 

wavelet and scale coefficients, as illustrated in Figure 3.7. Here, the length of series 

must be the power of 2 so that the data can be decomposed into two halves, Wj and 

Vj, at each iteration. Therefore, the initial data set is broken to have a set of length 

N=2
J
, as denoted in [118].  

At the end of this step, J-1 transformations, whose jth transformation results in Wj 

and Vj, are made in order to discretize the data into low-pass and high-pass parts. 

Hence, spikes in the data are extracted from the series and their impact is processed 

separately.  

Discretization processes are made by symmetric and asymmetric wavelet filters like 

Daubechies (D4, D6, D8, D10, D12, D14, D16, D18, and D20) and Haar, 

respectively. Since these filters are used for orthogonal transform of Ω, the wavelet 

filter lh  has a real-valued sequence.  

Unlike the articles [38] and [106], which employ only D4 and Haar filters, 

respectively, here an appropriate filter that yields the best performance is selected by 

the method automatically. Haar and nine different Daubechies wavelet filters are 

employed to transform the time series. In total, 10 different low-pass and high-pass 
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parts are obtained for each input variable of this step. MATLAB 2012b is used for 

implementation of this step. 

 

 

Figure 3.7: Decomposition of electricity prices at the first step of W~MARS. 

 

Step 2: After decomposing the data into its low-pass and high-pass parts, the model 

is built by MARS algorithm. In the first phase of MARS, basis functions are added 

iteratively such that the largest reduction of training error is obtained. This phase of 

MARS algorithm is called as forward selection. Since the constructed model is large 

and it overfits the data, the second phase of the MARS, backward deletion, is 

applied. Here, the basis functions are deleted according to generalized cross 

validation (GCV). Both phases of MARS are applied for each low-pass and high-pass 

parts. The models with lowest GCVs are selected and the model is used for the 

testing procedure of MARS model. Finally, significant variables, their interactions 

and degree of interactions are determined and value at time t+1 is predicted. This 

step is implemented using ARESLab [80]. 

Step 3: Since the predicted values in Step 2 are in the decomposed form, this step 

comprises reconstruction of the series. Here, Step 1 is reversed using the same filters. 

Figure 3.8 illustrates this procedure, where VJ* and Wj* indicate predicted low-pass 

and high-pass parts, and X
*
 represents the predicted values. This step is implemented 

by using MATLAB R2012b. 

 



 32 

 

Figure 3.8: Reconstruction of predicted electricity prices. 

 

3.2.2 Robust Wavelet – Multivariate Adaptive Regression Splines 

(R~W~MARS) 

Data used in many energy planning models include random fluctuations. For 

instance, the demand, supply, investment and emission parameters are not known 

properly. Some of these parameters can be estimated, hence, they include estimation 

errors. Demand and supply are generally forecasted and they include forecasting 

errors as well. On the other hand, some of the parameters may not be possible to 

estimate (e.g., emission quotas in Turkey). In this case, the parameters are subject to 

subjective assessment noises, defining uncertainty sets of the parameters.  

Here we develop a tractable robust electricity market optimization model. The 

uncertainties in the parameters, represented by uncertainty regions, are modeled by 

using W~MARS. The tractability property of the robust model increases the 

complexity. To reduce the complexity and trace time-dependent uncertainty, an 

efficient method utilizing a projection of uncertainties is employed.  

The proposed model, which handles uncertainties in the data and tracks their 

dynamics, also considers renewability and sustainability of the electricity market. 

Renewable and sustainable electricity market model consists of two types of 

uncertainties. One of these uncertainties is related to the electricity demand since the 

demand has an adaptive structure and changes according to electricity price, 

temperature, etc. The other type is related to emissions since the model aims to give 

sustainable results. The model is illustrated in Figure 3.9. 

To account for the uncertainties in the system, modeling uncertainties should be 

comprehended clearly. The following section presents a background for modeling of 

uncertainties. 
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Figure 3.9: Schematic representation of robust electricity market optimization model. 

 

3.2.2.1 Modeling Uncertainties 

Modeling and optimization of real-world problems generally involves uncertain 

parameters because of various changing situations. Let us define a general 

optimization problem under uncertainty as stated below: 

Tmaximize  

subject to  

 ( , ) 0  ( ),

,

i if i I

X

 



c x

x D

x

 (3.32) 

where ( , ) ( )i if i Ix D  are given functions, X  is a given set and  ( )i i ID  are 

vectors of random coefficients. This problem can be reformulated by using a vector 

of expected values, 0

iD  and a random parameter vector 
iD . In order to handle the 

feasibility problem, a chance-constrained model is formulated as follows, referring to 

a probability measure P over the event space:  

 

Tmaximize  

subject to 

P ( , ) 0 1   ( ),

.

i i if i I

X

   



c x

x D

x

 (3.33) 

However, chance-constrained models are non-convex and generally intractable [28]. 

They encounter numerical difficulties, especially, during the solution progress. 

Besides, they need probability models of uncertainty and computations of 

multidimensional integrals related with expectations and probabilities. Thus, the 

following robust optimization problem is proposed by [24]: 
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Tmaximize  

subject to 

min  ( , ) 0   ( ),
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i i
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where  ( )iU i I  are uncertainty sets. The selection of the uncertainty is one of the 

most critical issue in robust optimization problems. Three main concerns should be 

considered in selecting the uncertainty regions [26]: 

 The uncertainty region should be consistent with the uncertain parameter and 

its data set.  

 The uncertainty region should be statistically meaningful.  

 The uncertainty region should provide a tractable robust counterpart problem. 

In this study, the most important decision criterion is the computational tractability. 

If the original form of the model can be solved in polynomial time, then the robust 

problem should also be solved in polynomial time. The other criterion is to guarantee 

the feasibility of the model within the limits of uncertainties. The decision criterion 

for feasibility depends on the problem type and the uncertainty type used for the 

problem. The most common problem and uncertainty types are given in Table 3.2 

with their robust counterparts [28].  

 

Table 3.2: The most common problem and uncertainty types. 

Model/Problem 

Type 

Uncertainty 

Region 
Constraint 

Robust 

Counterpart 

LP model Polyhedron T ba x  LP 

LP model Ellipsoidal T ba x  CQP 

QCQP model Polyhedron 
2

T

2
0c  Ax b x  - 

QCQP model Ellipsoidal 
2

T

2
0c  Ax b x  SDP 

SOCP model Ellipsoidal 
T

2
d  Ax b c x  SDP 

SDP model Ellipsoidal 
1

n

j jj
x


 A B  - 

LP: Linear programming model, QCQP: Quadratic constrained quadratic 

programming model, CQP: Conic quadratic programming, SDP: Semi-definite 

programming model. 
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Table 3.3: Types of uncertainty region. 

Uncertainty 

Region 

Mathematical 

Representation 
Robust Counterpart Tractability 

Box 1

p  T T

1
 a x B x  

Linear 

Program 

Ball 
2

1p  T T

2
 a x B x  

Conic 

Quadratic 

Program 

Polyhedral 0 Cp d  

T T

T T

0

 

 



a x d y

C y B x

y

 
Linear 

Program 

Cone  

(closed, 

convex, 

pointed) 

K Cp d  

T T

T T

*K

 

 



a x d y

C y B x

y

 
Conic 

Optimization 

Separable 

functions 
 ( ) 0,  1,...,i ii

f L   p  
 

T *

T

( )

 ( 1,..., )

i
ii

i i

s
f

s i m

 


 

 



 


0

a x

b x   



 

Convex 

Optimization 

 

In Table 3.2, , , , , ,  and     A B a b c d  are uncertain parameters in the corresponding 

models. Tractability of the robust counterpart problems of the form 

 T ˆminimize   ,  U  c x Ax b A  given in Table 3.3 [26]. 

In Table 3.3,  nx  is the decision variable, 
nc  and b  are known 

parameters, nA  is a matrix with uncertain parameters and Û  is the (estimated) 

uncertainty region. 

When a single constraint of robust counterpart is defined, it should be in the 

following form:   

T( ) ,   ,U   a Bp x p  (3.35) 

where 
nx  is the design vector, 

na , n mB  and n  are known 

parameters, mp  is the uncertain parameter and Û  is the uncertainty region for 

p . If this region is a box or a ball, then a worst-case solution can be acquired by 

solving the optimization problem maximize T T
p B x  subject to Up . If the region 

is polyhedral or a cone, then the duality theorem can be used to obtain a solution. 

Here, if we define the uncertainty region as K, then we have: 

   T T T T T *max   min   ,  .K y y y K     p B x Cp d d C B x  (3.36) 
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Here, *K  denotes the dual cone of K  and has non-empty interior. 

Uncertainty Sets in terms of Norms 

Let us define uncertainty in the electricity demand as follows:  

,Nom j j

j N

Z


  D D D  (3.37) 

where NomD  is the nominal value of the data. Furthermore,  ( )j j N D  are 

directions of the perturbation,  ( )jZ j N are independent and identically distributed 

random variables, and N is a set of finite vectors over . The nominal value of the 

electricity demand is generally assumed to be 
NomE    D D . In this case, the 

uncertainty set U  is defined as  

    :  
N

Nom j j

j N

U u , ,


 
       
 

D u D D D u  (3.38) 

where the tolerance parameter   guarantees feasibility. Here, T

1 2( , , , )
N

u u uu  

and u  is called as the absolute norm, which is introduced and described in the 

paper [28].  

 

In general, the following norms are used in the robust optimization [28]: 

 the polynomial norm:  ( 1,2,..., )kl k   ; 

 the norm 2l l  to model bounded and symmetrically distributed random 

data:  2
max ,  ,  for some 0 


u u ; 

 the norm 1l l  to model bounded and symmetrically distributed random 

data; here, we use that the robust counterpart of a linear model is still a linear 

model. We refer to 
1

1
max ,  ,  for some 0

 

 
 

 
u u .  

The set of efficiently computable convex inequalities shows computational 

tractability [25]. If the uncertainty set U  is restricted to an ellipsoidal form, then the 

set will be the intersection of finitely many ellipsoids. Thus, the set will be 

 
2

( , ) ( )  .U    Q u Qu  (3.39) 

Here, ( )u u  is an affine embedding of L  into m n and M LQ . This type 

of uncertainty can be obtained by convex quadratic inequalities that form polytopes. 

Hence, the final model will be a conic quadratic model constrained as follows: 
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T

2
       ( 1,2, , ),

i i i i
i = ... M  a x B x b  (3.40) 

where ai and bi are vectors, Bi is a matrix and αi is real number. In this case, we have 

0 T

1

 1 ,
k

j

j

j

U u


 
    
 

A P P u u  (3.41) 

where  ( 0,1,..., )j j kP  are m n  matrices.  

The simplest case of ellipsoidal uncertainty is obtained when the uncertainty is 

constraint-wise, e.g., every constraint uncertainty set Ui being an ellipsoid, and we 

define the uncertainty set in the form 1

M

i iU U .  

Relaxation of Normal Distribution Assumption 

The distributional assumption for uncertainties is another important issue for robust 

optimization problems. Since the uncertainties are generally taken as forecasting 

errors, it is assumed that they are normally distributed. There also exists many other 

distributions that are studied on this issue, e.g., bivariate or multivariate normal 

distributions [1,29], uniform, Poisson, binomial [79], etc. In addition, moments 

[46,88], kernel densities [35,161], empirical distribution and histograms [29] are 

used to solve for distributional assumptions.  

In the papers [78,79], an uncertain mixed-integer program is proposed. Uncertainty is 

described as a known distribution function. Here, the corresponding deterministic 

model is given as follows: 

 

T Tminimize / maximize  

subject to 

,

,

,

0,  1  .k

e

p

x x

y k



 

 

 

 

c x d y

Ex Fy

Ax By

x

 (3.42) 

In this model, nominal parameters are defined as ,   and lm lk la b p , and ,   and lm lk la b p  

are the values that uncertainty imposed on them. Here, l represents an uncertain 

inequality, m represents the index of the continuous terms, k is the index of the 

binary terms. Thus, the following inequality is obtained:  

.lm m lk k l

m k

a x b y p    (3.43) 

For each inequality l, uncertainties are evaluated by random perturbations as given 

below: 
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(1 ) ,

(1 ) ,

(1 ) ,

lm lm lm

lk lk lk

l l l

a a

b b

p p







 

 

 

 (3.44) 

where ,  and lm lk l    are independent random variables and 0   is an uncertainty 

level. For the values of the feasible vectors of x and y, the probability of violation of 

the inequalities should be at most of some prescribed level  0,1  :   

 max 1, ,lm lm lk lk l l

m k

P a x b y p p 
 

    
 
   (3.45) 

where δ > 0 is feasibility tolerance. Here, the counterpart of the strict inequality can 

be rewritten as follows: 

 max 1, .lm lm lk lk l

m k

a x b y p p     (3.46) 

After substituting the deterministic parameters with perturbed parameters, we obtain 

 (1 ) (1 ) (1 ) max 1, .lm lm m lk lk k l l l

m k

a x b y p p           (3.47) 

After rearrangement of the inequality, we get 

 max 1, .
l l

lm m lk k l lm lm m lk lk lk l l l

m k m M k K

a x b y p a x b y p p    
 

 
      

 
     (3.48) 

Here, Ml and Kl denote the uncertainties for alm and blk, respectively. Finally, the 

probability of constraint violation is found as follows:  

 max 1, .
l l

lm m lk k l lm lm m lk lk lk l l l

m k m M k K

P a x b y p a x b y p p     
 

  
         

  
   

 (3.49) 

When the probability distributions of the sum of random variables are known, then 

the following sum can be used for the model in order to find an uncertain term in the 

inequalities: 

: .
l l

lm lm m lk lk lk l l

m M k K

a x b y p   
 

     (3.50) 

This transformation is used for uniform, normal, difference of normal, binomial, 

Poisson and a general discrete distribution in [79]. In our study, all the uncertainty 

regions are defined via W~MARS method, where the distribution assumption is 

relaxed as well. 
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3.2.2.2 Robust Counterpart of Electricity Market Model 

If the uncertainties are ignored, the system can normally be modeled using a 

Dynamic-Deterministic Electricity Planning Model (DDEPM), which is formulated 

as follows: 

Indices: 

i: Plant type, 

j: Sector type, 

t: Time periods. 

Parameters: 

dj,t: Electricity demand from sector type j, 

Pi,t: Electricity price of plant i in period t, 

FCi,t: Fixed cost of plant type i in period t, 

VCi,t: Variable cost of plant type i in period t, 

Ii,t: Investment cost of plant type i in period t, 

Capi,t: Installed capacity of plant type i in period t, 

MaxCapi: Maximum capacity of plant i, 

Ei,t: Emission rate of green house gases (GHG) from plant type i in period t, 

L: Coefficient of transmission and distribution losses, 

Qi: Maximum GHG emission of plant type i. 

Decision Variables: 

Xi,t: Amount of electricity generated in plant i in period t, 

Yi,t: Capacity extension for plant i in period t. 

 

Herewith, the optimization problem is given as follows: 

    , , , , , , ,

1 1

maximize  
N T

i t i t i t i t i t i t i t

i t

P VC L X Y I Y FC
 

     (3.51) 

subject to 

, ,

1

 , ,
N

i t j t

i

X d t j


   (3.52) 
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, ,

1

 ,
T

i t i t

t

X Cap i


   (3.53) 

, ,  , ,i t i t iCap Y MaxCap i t    (3.54) 

, ,

1

 ,
T

i t i t i

t

E X Q i


   (3.55) 

, 0  , ,i tX i t   (3.56) 

, 0  , .i tY i t   (3.57) 

The first constraint set guarantees that the total electricity produced cannot be lower 

than the electricity demand. The second constraint set guarantees that the total 

electricity produced in the plants cannot be greater than the plants’ capacities. The 

third constraint set guarantees that new capacity expansions cannot be greater than 

the maximum capacity that can be installed a plant. The fourth constraint set restricts 

the GHG emission. Finally, sign restrictions are defined. The objective function 

represents the profit to be maximized. 

On the other hand, our renewable and sustainable electricity market model includes 

the uncertainties in the electricity demand the emissions. Therefore, the model above 

must be modified by considering uncertainties.  

The robust counterpart of our electricity planning model is constructed with single 

uncertainty case for each parameter. By this approach, we aim to obtain 

 A computationally more tractable model, 

 A model, which compensates for the price of robustness, 

 A model driven by the uncertainty sets, and 

 A computationally efficient dynamic robust optimization model.  

Let us assume that the emission rate is uncertain: 

   , , , , ,
ˆ ,    1,1 ,i t i t i t i t i tE E E       (3.58) 

where m  is the uncertainty factor. Under ellipsoidal uncertainty, a generating or 

prototype-kind of uncertainty set is  2
:     , whereas under polyhedral 

(e.g., an axes-parallel box-shaped) uncertainty, that set is  :  


   . Here, 

 is an immunization factor. If its value is increased, then the uncertainty set is 

increased as well as the worst case of the uncertain parameters. The emission 

constraint under the polyhedral uncertainty is  
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 , , , ,

1

ˆ ,    .
T

i t i t i t i t

t

E E X Q i


    (3.59) 

Thus, dimension of the uncertainty factors is still linear and model complexity of the 

robust counterpart does not change. The robust-ellipsoid equivalent of this constraint 

is 

 , , , ,

1 1 2

ˆ ,    ,
T T

i t i t i t i t

t t

E X Q i
 

    E X  (3.60) 

which can be regarded as a conic quadratic constraint. In this case, the model 

complexity increases from linear to quadratic. The next uncertain parameter implied 

in the model is the demand. Similarly, it can be defined as 

   , , , , ,
ˆ: ,    1,1 .j t j t j t j t j td d d       (3.61) 

Since the demand is not multiplied by a decision variable, the demand constraint 

remains linear. A second alternative for uncertain demand has the following form 

[23]: 

, , ,,  .j t j t j td d d       (3.62) 

Let us also assume that electricity price is uncertain. It can be defined for polyhedral 

uncertainty as 

   , , , , ,
ˆ: ,    1,1i t i t i t i t i tP P P       (3.63) 

or 

, , , , ,, ,i t i t i t i t i tP P P       (3.64) 

respectively and for ellipsoidal uncertainty  ,i tP  , where  2
:     . 

If uncertain demand, emission and price sets are substituted with the deterministic 

sets, the entire model will be in the following form under polyhedral uncertainty: 

     , , , , , , , , ,

1 1

ˆmaximize  
N T

i t i t i t i t i t i t i t i t i t

i t

P P VC L X Y I Y FC
 

       (3.65) 

subject to 

 , , , , ,

1

ˆ  and 1,1    , , 
N

i t j t j t j t j t

i

X d d t j 


      (3.66) 

, ,

1

 ,
T

i t i t

t

X Cap i


   (3.67) 

, ,  , ,i t i t iCap Y MaxCap i t    (3.68) 
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 , , , ,

1

ˆ ,  ,
T

i t i t i t i t

t

E E X Q i


    (3.69) 

, 0  , ,i tX i t   (3.70) 

, 0  , .i tY i t   (3.71) 

The same model is stated below based on ellipsoidal uncertainty:  

    , , , , , , ,

1 1

maximize  
N T

i t i t i t i t i t i t i t

i t

P VC L X Y I Y FC
 

     (3.72) 

subject to 

,
2

1

ˆ   ,
N

i t t t

i

X d t


   d  (3.73) 

, ,

1

  ,
T

i t i t

t

X Cap i


   (3.74) 

, ,   , ,i t i t iCap Y MaxCap i t    (3.75) 

 , , , ,

1 1 2

ˆ ,    ,
T T

i t i t i t i t

t t

E X Q i
 

    E X  (3.76) 

, 0   , ,i tX i t   (3.77) 

, 0   , .i tY i t   (3.78) 

Modeling Ellipsoidal Uncertainty 

Robust counterparts of the optimization models with specified uncertainties 

guarantee feasibility under constraint violations. In general, uncertainty sets are 

determined by using probability distributions and statistical estimates. However, data 

from energy markets may not fit to a specific probability distribution. On the other 

hand, uncertainty can be handled easily when it has a specific shape, like polyhedral 

and ellipsoidal [50]. Although ellipsoidal uncertainty increases the complexity of the 

model, it relatively yields more robust results [127]. Therefore, ellipsoidal 

uncertainty is used and a new algorithm, R~W~MARS, is developed to overcome the 

increase in model complexity.  

Let us define an ellipsoid  ,ε q Q  in n , where q and Q represent the center and 

shape matrix, respectively. Thus, the ellipsoid takes the form  

   T 1,   ( ) ( ) 1 ,nε     q Q x x q Q x q  (3.79) 

where TQ Q  and 
T 0x Qx  for all nonzero 

nx . Since shape matrix has to be 

of the form TQ Q  and 
T 0, 0  x Qx x  (i.e., Q is positive definite), the ellipsoid 



 43 

could not be formed when Q is singular. Therefore, our ellipsoid is modeled in new 

form:  

    1/2
T T T,   ,  ,n nε      q Q x l x l q l Ql l  (3.80) 

where TQ Q  and 
T 0x Qx  for all 

nx  (i.e., Q is positive semidefinite) and we 

define 

   T : sup ,
x

ρ


 l  l x  (3.81) 

where n , in particular,  

   
1/2

T T  ( , ) : .ρ ε  l q Q l q l Ql  (3.82) 

Here, the distance from  ,ε q Q  to a fixed point x is  

      T T

1/2
T T T T

1 1
max | , max .ρ ε

 
   

l l l l

l x l q Q l x l q l Ql  (3.83) 

Hence,  

 if the distance   , , 0ε q Q x , then the point x will be the outside of the 

ellipsoid; 

 if the distance   , , 0ε q Q x , then the point x will be on the boundary of 

the ellipsoid; 

 if the distance   , , 0ε q Q x , then the point x will be inside of the ellipsoid. 

On the other hand, introducing ellipsoidal uncertainty increases the complexity of the 

model because of the parameters involved in modeling the uncertainty. To handle 

this complexity we propose a new method. Figure 3.10 demonstrates the geometric 

representation of our method. Here, let us assume that the ellipsoid represents the 

bounds of emission constraints’ uncertainty. According to Average Projected Area 

Theorem [134], average projected area of a convex solid body is one quarter of the 

surface area. Therefore, if we project the ellipsoid on x-y and y-z planes, we obtain 

two ellipses with a total area equal to one half of the surface area of the ellipsoid. 

Hence, we can reduce the area, where we have to search for the feasible results. This 

approach, in turn, decreases the computational complexity. By utilizing this 

approach, exact values of the uncertainty in x and z axes, and corresponding interval 

in y axis can be obtained. Figure 3.11 illustrates the process of obtaining the ellipsoid 

by using the uncertain parameters and projection of the ellipsoid on principle planes. 
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Figure 3.10: Geometric representation of the uncertainty modeling with 

R~W~MARS. 

 

As a result, our R~W~MARS algorithm is constructed as follows: 

Repeat for time 1,2, ,t T : 

Step 1: Generate uncertainty region by using W~MARS, 

Step 2: Set initial ellipsoid 0ε  related to the uncertain parameters, 

Step 3: Project the region and update uncertainty region 1 projε ε   

(cf. Figure 3.11), 

Step 4: Generate uncertain parameter and run the optimization model, 

Step 5: 1t t  . 

The algorithm is implemented on two platforms; MATLAB for the ellipsoidal 

uncertainty and GAMS for the optimization problem. 

Applications of both stochastic optimization model and robust optimization model 

are demonstrated in the next chapter.  

 



 45 

 

Figure 3.11: Projection of uncertainties. 
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CHAPTER 4 
 

 

 

APPLICATION OF THE MODELS 
 

 

 

The models presented in Chapter 3 are validated individually using real market data. 

The stochastic optimization model is implemented for Nigerian electricity market.  

Nigerian electricity market is selected since it is one of the largest energy markets in 

the world.  This is especially true due to its high population (162.5 million people) 

and huge energy resources (37.20 billion barrels oil and 5154 billion m
3
 natural gas 

reserves).  Although the country owns various extensive energy resources, it is 

seriously suffering from supply of electricity.   

Electricity market data for Nigeria are available for the period between 2001 and 

2007.  The data include production costs and supply of each power plant, the 

demand, and electricity price on a monthly basis. By implementing the model, we 

optimized the monthly production portfolio for the year 2008.  The data and the 

results are summarized in Appendix B.  The results show that, for the given market 

conditions, only four plants out of six produce electricity on profit.  This indicates 

that, to have a more profitable market, low-cost electricity generation techniques, 

which are mainly dependent on renewable sources, need to be implemented.  Details 

of this study are presented in the working paper [164] and the conference proceeding 

[165].  

The next optimization model that we develop in this study is the robust optimization 

model, R~W~MARS.  Before implementing R~W~MARS, we test W~MARS, 

which is a sub-model to estimate uncertain parameters of the robust optimization 

model.  An application of W~MARS is provided by utilizing the model to estimate 

the next-day electricity price in Spanish market.  For this application, the Spanish 

electricity market is specifically selected since it is one of most commonly studied 

electricity market in the world, thus the results of the model can be compared with 

the results reported in the literature.  Besides, the Spanish electricity market is one of 

the oldest electricity markets, which has evolved into a spot market.  Spanish market 

data includes hourly electricity prices for the year 2002.  The data and the results are 

summarized in Appendix C.  The results show that W~MARS has a similar 

prediction error compared to existing models in terms of weekly forecasting errors. 

Details of the study are presented in the book chapter [167], conference proceedings 

[116,155,163], and the working paper [168]. 
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After validating W~MARS, R~W~MARS is implemented using market data of 

Marmara Region of Turkey.  Marmara Region is selected as the target because of 

both (i) considering the need for an electricity market model in Turkey, and (ii) 

Marmara Region has the highest density of population and industry in Turkey.  The 

data for the Marmara Region includes electricity demand, price, generation costs, 

capacities, and emissions.  The results show that for the planning horizon between 

2011 and 2020 share of natural gas can be reduced while increasing the share of 

hydroelectric and renewable energies.  It is shown that use of renewable energy 

sources can be increased from 30% to 56% when wind and solar energy resources 

are considered.  The data and the results are presented in Appendix D.  The details of 

the study are presented in conference proceedings [166,169,170]. 

Although, these applications prove the use of models with real market data 

individually, they do not provide information required for comparing the stochastic 

optimization model and robust optimization model. Therefore, for comparison and 

demonstration purposes, both models are applied using the same data for the United 

Kingdom (UK) electricity market.  

This chapter presents the comparison of the models based on an application using the 

UK market data. The following sections describe the market data, results obtained 

using our stochastic optimization model, the results obtained from our robust 

optimization model, and a discussion on the results, respectively. 

4.1 Data Structure 

There are 10 groups of power suppliers in UK electricity market. These groups 

include natural gas burning power plants, hydroelectricity plants, open cycle gas 

turbine (OCGT) power plants, nuclear power plants, pumped storage hydroelectricity 

plants, wind power plants, biomass burning power plants, coal burning power plants, 

oil burning power plants, and interconnectors.  These groups of plants are as follows: 

 Plant#1: Natural gas burning power plants, 

 Plant#2: Hydroelectricity plants, 

 Plant#3: OCGT power plants, 

 Plant#4: Nuclear power plants, 

 Plant#5: Pumped storage hydroelectricity plants, 

 Plant#6: Wind power plants, 

 Plant#7: Biomass burning power plants, 

 Plant#8: Coal burning power plants, 

 Plant#9: Interconnectors, 
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 Plant#10: Oil burning power plants. 

For ease of reference we used the term “plant” to indicate the groups of suppliers. 

Although interconnectors do not actively participate in power generation, since they 

are supplying electricity into the market, they are also classified as “plant”. 

UK data is available on half-hour basis.  Half-hourly data includes the price, demand, 

supplied electricity and GHG emission by each power plant. Table 4.1 presents a 

representative half-hourly data for UK electricity market.  In addition to these, 

capacities, investments costs, and generation costs of each power plant are also 

available (cf. Table 4.2). 

 

Table 4.1: United Kingdom (UK) electricity market data per half-hourly basis [176].  

Representative data for the first two hours of 1 April 2012 are presented. 

Date 01-Apr-12 

Settlement period 00.00 - 00.30 00.30 - 01.00 01.00 - 01.30 01.30 - 02.00 

Price (£/MWh) 41.82 42.35 43.99 44.51 

Demand 

(MW per half hour) 
28762.92 28431.74 28796.4 29151.46 

S
u

p
p

ly
  

(M
W

 p
er

 h
a

lf
 h

o
u

r)
 

Gas 4637 4401 4557 4807 

Coal 15343 15374 15277 15248 

Nuclear 6309 6305 6304 6307 

Hydro 155 155 152 152 

Net Pumped 0 0 0 0 

Wind 258 269 290 296 

OCGT 0 0 0 0 

Oil 0 0 0 0 

Biomass 44 44 44 44 

Interconnector 1566 1564 1566 1566 

E
m

is
si

o
n

  

(k
g

C
O

2
eq

) 

Gas 1136065 1078245 1116465 1177715 

Coal 6290630 6303340 6263570 6251680 

Nuclear 37854 37830 37824 37842 

Hydro 1860 1860 1824 1824 

Net Pumped 0 0 0 0 

Wind 1419 1479.5 1595 1628 

OCGT 0 0 0 0 

Oil 0 0 0 0 

Biomass 10780 10780 10780 10780 
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Table 4.2: Capacities, generation costs and investment costs of main generation 

technologies in UK electricity market [176,177]. 

  
Capacity 

(MW) 

Generation cost  

(£/MWh) 

Investment cost 

(£/MWh) 

Gas 15950.96 80.30 12.40 

Coal 24588.83 104.50 33.40 

Nuclear 9108.33 99.00 77.30 

Hydro 841.42 83.20 74.20 

Net Pumped 128.13 45.20 74.20 

Wind 4446.25 93.90 79.20 

OCGT 86.88 90.50 7.10 

Oil 254.67 148.00 91.30 

Biomass 809.67 93.20 46.10 

Interconnector 2921.92 93.09 55.02 

 

Using this data, optimization models are used to determine the generation portfolio 

and the profit in the market for May 2012. Here, data for April 2012 are used for 

testing purposes. 

 

4.2 Application of the Stochastic Optimization Model 

The most important aspect in an electricity market optimization problem is the 

uncertainty of the future returns. Here, the analysis of the electricity market is 

considered in terms of portfolio management and optimization. Future returns and 

other related variables are determined by using the portfolio management modules 

stated below: 

 A module describing the random quantities of the model and their evolution 

(scenario generator), 

 An optimization module for given objective function and evolution of 

variables. 

Before starting with the first module, considering that one of the disadvantages with 

the stochastic optimization model is the low computational efficiency, we convert the 

data from a half-hourly to a daily basis to reduce the CPU time. 

In the first module, Monte-Carlo simulation is used for £-USD exchange rates and 

natural gas prices dictated by the Henry Hub. Through simulating different price 

paths for the natural gas prices and the exchange rates we can build up a two-

dimensional scenario tree.  This scenario tree serves as input for generating different 

piecewise linear supply curves (cf. Figure 4.1). Here, these parameters are optimized 

through Ornstein-Uhlenbeck mean-reverting process (cf. Table 4.3). Each scenario 
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creates new slopes of the piecewise linear supply curves, which serve as a stochastic 

input variable of the optimization model. 

 

Table 4.3: Parameters of price process for natural gas prices and exchange rates. 

    S0 (May 1, 2012) L  

Natural Gas Prices 1.31 2.92% 24.8% 2.29 3.92 

Exchange Rates 5.74 0.38% 3.0% 0.61 0.64 

 

In the second module, together with the demand scenarios (cf. Figure 4.2) and the 

power plant capacities, they represent the inputs for the stochastic portfolio 

optimization model. The model outputs optimal quantities as well as distribution for 

the profits and risk measures by maximizing the overall profit. Here, MS Excel and 

GAMS are used for the first and the second modules, respectively.  

 

 

Figure 4.1: Piecewise linear supply curves for 100 scenarios in May 2012. 
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Figure 4.2: Deterministic, low-, and high-demand scenarios in May 2012. 

 

Figures 4.3-4.5 represent the share of the total profit among the plant types in May 

2012 computed by referring to deterministic, low, and high demand scenarios 

respectively.  The results show that the plants 9 and 10, which are biomass burning 

power plants and interconnectors respectively, are not involved in power generation. 

This is simply because the production costs of these plants are high compared to that 

of the other plant types.   

The results also show that plant 8, which represents coal burning power plants, is 

dominating the share of profit in all demand scenarios.  The reason for this is that 

coal burning power plants have the highest capacity in the market while having the 

least generation cost.  On the other hand, this specific output shows that the 

stochastic optimization model, which mainly considers the generation costs, does not 

account for the renewability and the sustainability of the market.  

Comparing the effects of the demand scenarios, we can deduce that the loss is 

comparably high in the low demand scenario.  This is caused by the high-capacity 

and low-generation-cost plants (mainly the plant 8, which is coal burning) producing 

electricity at loss.   

As an obvious outcome, it can be seen that the overall profit in the market increases 

with increasing demand (cf. Figure 4.6). 
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Figure 4.3: Share of total profit among 8 power plants in deterministic demand 

scenario. 
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Figure 4.4: Share of total profit among 8 power plants in low-demand scenario. 
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Figure 4.5: Share of total profit among 8 power plants in high-demand scenario. 
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Figure 4.6: Total profits in deterministic, low- and high-demand scenarios. 

 

4.3 Application of the Robust Optimization Model 

As the first step in application of the robust optimization model, half-hourly price 

and demand are estimated by using W~MARS (cf. Figures 4.7 and 4.8) to determine 

the uncertainties in price and demand.  On the other hand, price and demand are not 

the only uncertain parameters in the market.  GHG emissions are also uncertain. 

However, since GHG emission depends on the amount of electricity generated, it 

cannot be possible to estimate emissions by using W~MARS.   

As stated in Section 4.1, the data for UK market are available per half-hourly basis. 

This property makes the data relatively smoother. Hence, the spikes in price and 

demand data within a day are moderate (cf. Figures 4.9 and 4.10).  As a result the 

errors in forecasting price and demand are significantly low. 

In forecasting price and demand, we use different wavelet filters to investigate their 

effects.  It is observed that there is no significant difference between the results 

obtained by different wavelet filters (cf. Figures 4.9 and 4.10).  Mean absolute 

percentage errors (MAPE) for price and demand estimation are approximately found 

as %4 and %3, respectively (cf. Tables 4.4 and 4.5). 
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Figure 4.7: Forecasted electricity prices using different filters compared to actual 

prices in May 2012. 

 

 

Figure 4.8: Forecasted demand using different filters compared to actual demand in 

May 2012. 
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Figure 4.9: Effect of the filters on electricity price (£/MWh) forecasting. Full lines 

and dash lines represent actual price and forecasted price in the first two days of May 

2012 with half-hour periods. Filters DB2, DB4, DB6, DB8, DB10, DB12, DB14, 

DB16, DB18, and DB20 are used in (a)-(j), respectively. 
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Figure 4.10: Effect of the filters demand (MWh) forecasting. Full lines and dash lines 

represent actual demand and forecasted demand in the first two days of May 2012 

with half-hour periods. Filters DB2, DB4, DB6, DB8, DB10, DB12, DB14, DB16, 

DB18, and DB20 are used in (a)-(j), respectively. 
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Table 4.4: Errors in price estimation by using different wavelet filters.  

MAPE: Mean absolute percentage error, MAD: Mean absolute deviation,  

RMSE: Root mean square error. 

  DB2 DB4 DB6 DB8 DB10 DB12 DB14 DB16 DB18 DB20 

MAPE 0.0423 0.0404 0.0414 0.0404 0.0407 0.0404 0.0408 0.0409 0.0406 0.0407 

MAD 1.8476 1.7637 1.8129 1.7631 1.7734 1.7622 1.7809 1.7871 1.7718 1.7778 

RMSE 2.3591 2.2377 2.3251 2.2359 2.2422 2.2296 2.2578 2.2656 2.2459 2.2623 

 

Table 4.5: Errors in demand estimation by using different wavelet filters.  

MAPE: Mean absolute percentage error, MAD: Mean absolute deviation,  

RMSE: Root mean square error. 

  DB2 DB4 DB6 DB8 DB10 DB12 DB14 DB16 DB18 DB20 

MAPE 0.0290 0.0288 0.0288 0.0287 0.0281 0.0281 0.0285 0.0282 0.0281 0.0285 

MAD 969.3 963.0 956.7 958.0 936.4 935.6 948.3 939.4 937.0 950.2 

RMSE 1173.9 1176.2 1166.1 1153.7 1136.4 1136.4 1145.4 1138.1 1139.0 1154.4 

 

After forecasting price and demand by using W~MARS and determining the 

uncertainties accordingly, our robust optimization model is run to find the electricity 

generation portfolio. Figures 4.11-4.13 represents the portfolio results based on price 

and demand forecasted by using different wavelet filters.  The results show that the 

wavelet filter used in W~MARS does not make any considerable difference in 

electricity the generation portfolio.  

It can be observed that the distribution of the portfolio among different types of 

plants is relatively balanced.  Besides, the results also show that the renewables 

(plants 2, 5, and 6, which are hydroelectricity power plants, net pumped storage 

hydroelectricity power plants, and wind power plants respectively) appear in the 

portfolio.  These results verify the renewability and sustainability of R~W~MARS.  

4.4 Comparison of the Models 

Electricity generators in general operate by considering mainly the electricity 

generation costs, with low or no emphasis on renewability or sustainability.  Actual 

generation portfolio presented in Figure 4.14(a) indicates this behavior, where the 

plants with low production costs tend to generate as much as possible to increase 

their profits while meeting the demand. 

Stochastic portfolio optimization model mimics this behavior by making use of the 

merit-order curve (cf. Figure 3.2).  Accordingly, the plants with low production costs 

are allowed to generate at their full capacities until the demand is met.  For this 

reason, our stochastic optimization model better predicts the actual generation 

portfolio (cf. Figure 4.14(b)).   
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Different from the stochastic optimization model, R~W~MARS considers not only 

the profitability but also renewability and sustainability of the market.  Renewability 

and sustainability is achieved by limiting GHG emissions for each plant.  This 

approach results in a generation portfolio with more emphasis on renewable 

resources (cf. Figure 4.14(c)).  On the other hand, R~W~MARS yields a less 

profitable market (computed as approximately £ 90 million in May 2012), since it 

does not consider the merit-order curve.  The profitability may be improved by 

implementing the merit-order curve in R~W~MARS.  This approach would yield a 

more realistic portfolio at the expense of reduced renewability and sustainability.  

Apart from the performance of the models considering sustainability, renewability 

and profitability aspects, both models can meet the demand. 

 

 

Figure 4.11: Electricity generation portfolio in May 2012, determined by 

R~W~MARS based on price and demand forecasted by using (a) DB2 and (b) DB4 

filters. 
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Figure 4.12: Electricity generation portfolio in May 2012, determined by 

R~W~MARS based on price and demand forecasted by using (a) DB6, (b) DB8,  

(c) DB10 and (d) DB12 filters. 
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Figure 4.13: Electricity generation portfolio in May 2012, determined by 

R~W~MARS based on price and demand forecasted by using (a) DB14, (b) DB16, 

(c) DB18 and (d) DB20 filters. 
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Figure 4.14: Comparison of the electricity generation portfolios, computed by using 

the stochastic optimization model and R~W~MARS, with the actual generation in 

UK in May 2012. 
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CHAPTER 5 
 

 

 

CONCLUDING REMARKS AND  

OUTLOOK AT FUTURE WORKS 
 

 

 

In this thesis work, various models are developed using stochastic portfolio 

optimization and robust optimization techniques to handle uncertainties in electricity 

markets. Stochastic optimization model is implemented for Nigerian electricity 

market, whereas W~MARS and R~W~MARS are implemented for Spanish and 

Turkish electricity markets, respectively. Although, these applications prove the use 

of models with real market data individually, they do not provide information 

required for comparing the stochastic optimization model and the robust optimization 

model. Therefore, for comparison and demonstration purposes, both models are 

applied using the same data for the English electricity market. Brief descriptions of 

the models developed in the thesis and the properties of these models are provided 

subsequently. 

1. Stochastic Portfolio Optimization Model: A novel statistical and 

simulation-based method is developed for portfolio optimization of electricity 

markets to maximize the profit and to obtain the most economic diversity of 

energy resources.  The method involves generation of stochastic supply 

curves and scenario trees for different power-generation techniques.  The 

method utilizes Ornstein-Uhlenbeck mean-reverting process and Monte-Carlo 

simulations to generate stochastic electricity supply curves.  The method is 

implemented using UK electricity market data to determine the power 

generator portfolio for base-, low-, and high-demand scenarios.  

2. W~MARS: A novel method, which is a combination of wavelet transform 

and multivariate adaptive regression splines, is developed.  The hybrid 

method merges the strengths of both methods.  WT captures multiple 

seasonality, unusual behaviors and volatility, whereas MARS eliminates the 

selection of explanatory variables problem.  The method is demonstrated 

applied on UK electricity market data to forecast next-day electricity prices.  

3. Renewable and Sustainable Electricity Market Model under 

Uncertainties: A novel dynamic, region-specific and sustainable robust 

optimization model, which is capable of handling uncertainties, is developed 

and implemented for the UK electricity market. Here, uncertain parameters 

are determined by the use of R~W~MARS method.  
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The studies in the literature show that energy systems comprise not only production, 

conversion and distribution of energy sources, but also its interactions with the 

external world (cf. Figure 1.1) [77].  Therefore, security of energy supply (SES) and 

energy security indicators are studied. Both composite and simple forms of indicators 

are analyzed with their impacts to energy models.  Energy security concept is defined 

by different authorities considering its different aspects and perspectives. For 

instance, International Energy Agency (IEA) defines energy security as “the 

uninterrupted physical availability at a price which is affordable, while respecting 

environment concerns” [81].  Various definitions of SES are reviewed in [160].  

These definitions refer to availability, accessibility, affordability, technology 

development, sustainability, regulation, energy and economic efficiency, and 

environmental management as the factors affecting energy security.  Regarding the 

sustainability of the market, energy indicators are defined in the paper [117].  These 

indicators are listed in Table E.1 for reference purposes.   

The objective of the study has been defined as developing a dynamic and robust 

model for electricity markets under uncertainties at the beginning of the thesis.  

Considering the achievements mentioned above, it can be concluded that the 

objective of the thesis became satisfied.  However, there are still some issues to be 

improved.  These potentials and challenges are listed below.  

1. Stochastic portfolio optimization model developed in the first stage of the 

thesis does not involve yet an evaluation of the sensitivity of the portfolios, 

which may be quite important in policy making.  In article [64], Malliavin 

calculus is used in portfolio optimization problems to evaluate sensitivity. 

Therefore, the methods presented in [32,33] can be applied for a sensitivity 

analysis on portfolios in the electricity market.  

2. In our stochastic portfolio optimization, UK electricity market is considered.  

This market is being expanded new market participants. The effects of 

expansion should be considered and an integrated scenario-generation 

mechanism can be utilized to include new market participants. 

3. W~MARS method developed in the second stage of the thesis is used to 

forecast next day electricity price and demand in UK electricity market.  

However, the results indicate that W~MARS needs further improvement in 

tracing the sharp spikes. To improve the method, performances of least 

asymmetric filters, best localized filters, coiflet filters can be compared and 

their effects on spikes can be determined and optimized.  

4. Electricity market model that we proposed is described by the demand and 

the electricity prices. The model can be expanded to include other effects 

such as temperature, humidity, natural gas price, etc., as listed in Table A.4. 

5. There exist optimization-supported variations of MARS, namely, CMARS; 

and their robust counterparts RCMARS and RMARS [98–102]. Further 

hybrid methods, namely, W~CMARS, R~W~CMARS and R~W~MARS, can 

be developed, especially, to handle further ill-behaved data. Besides, 



 67 

R~W~MARS can be modified as a multi-objective portfolio optimization 

model [54]. 

6. In W~MARS method, discrete wavelet transform (DWT) is utilized.  

However, DWT restricts the sample size by 2
J
 since low-pass and high-pass 

parts are decomposed into half sets in each iteration.  This drawback can be 

overcome by utilizing a maximally overlapping discrete wavelet transform. 

7. Complexity in handling elliptic uncertainties in the robust optimization model 

can be reduced by analyzing the contours of the ellipsoid.  In order to have 

the contours, the ellipsoid can be divided into two parts, as shown in Figure 

5.1. In this case, we again have a feasible region in two dimensions.  

 

 

Figure 5.1: Contour plot of half-ellipsoid. 

 

8. In our robust optimization model, the uncertainties are assumed to be 

independent from each other.  As an extension, the model may be improved 

to examine the effects of intersecting uncertainties.  

9. When we have more than one uncertainty in our model at the same time, e.g., 

price, demand, and emission, then the geometric shape of our uncertainty 

bound takes the form as shown in Figure 5.2.  Multiple correlated 

uncertainties may be determined for emission, demand, and price.   
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Figure 5.2: Geometric representation of the uncertainty modeling in multiple form 

with R~W~MARS. 

 

10. Energy security indicators can be used for scenario generation and policy 

making. For instance, the article [133] integrates indicators with market 

allocation model (MARKAL) in order to elaborate future.  The model 

developed in this thesis can be further enhanced by integrating energy 

security indicators.  As a result, a comprehensive model for the entire market 

may be obtained. 

11. Energy systems always include risk factors.  Risks are especially encountered 

because of the uncertainty in electricity pricing and generation.  Therefore, 

risk factors may be analyzed from the perspective of uncertainty by utilizing 

value at risk (V@R) and conditional value at risk (CV@R) [124]. 

Models and methods developed in this study along with the outlook presented above 

are believed to accelerate the studies for modeling of electricity spot markets.   
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FORECASTING MODELS 
 

 

 

Table A.1: Mathematical equations for time-series based forecasting models [167]. 
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Table A.2: NN-based studies and their corresponding errors [167]. 

Ref. No Method Error Type Accuracy 

[37] ARIMA, DR, TF, NN, and WT FMSE, DE 1-23% 

[150] NN DMAPE 8.93-12.19% 

[59] NN PE Error less than 

€0.01 in 85% 

of the cases 

[144] ANN MAE, MAPE 1-9% 

[102] ANN APE 1-25% 

[11] Cascaded NN MAPE, WMAPE 4-7% 

[7] Fuzzy NN WMAPE 7.5% 

[96] Weighted NN MRE, MAE, 

MMRE 

5-14% 

[121] ANN MAPE 3-10% 

[123] ANN MAE, RMSE 0.5-9% 

[95] Enhanced Probability NN RMSE, MAPE, 

MAE 

1-8% 

[30] ANN RMSE, MAPE, 

MAE 

0.7-11% 

[141] NN MAPE 11-33% 

[9] WT-Hybrid forecast method (NN 

and EA) 

WME, WPE 4-26% 

[8] Modified relief algorithm and 

hybrid NN 

WMAPE, 

WMAE 

4-9% 

[13] FST-probabilistic NN-HNES MAE, MAPE 5-47% 

[131] WT-ARIMA-RBFNN WFE 4-7% 

MAE: mean absolute error, APE: absolute percentage error, MAPE: mean APE, 

MPE: mean percentage error, MSE: mean square error, RMSE: root mean square 

error, FMSE: forecast MSE, RMSFE: root mean square forecasting error, PE: 

prediction error, DE: daily error, DMAPE: daily MAPE, WMAPE: weekly 

MAPE, WMAE: weekly MAE, MRE: mean relative error, MMRE: mean error 

relative to mean price, WME: weekly mean error, WPE: weekly peak error, WFE: 

weekly forecast error. 
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Table A.3: Studies based on time-series methods without explanatory variables and 

their corresponding errors [167]. 

Ref. No Method Error Type Accuracy 

[108] DR-TFM FMSE 2-8% 

[84] AR, LR RMSE, MAE, MAPE, 

Max APE 

0-13% 

[60] MR - - 

[57] GARCH FMSE 1-43% 

[58] GARCH-SeaDFA MAPE 5-9% 

[70] GARCH MFE, MAFE, RMSFE 1-53% 

[72] GARCH - - 

[130] GAM MWE 6-23% 

[9] WT-Hybrid NN and EA WME, WPE 4-26% 

[22] Hybrid WT APE, MAPE, RMSE 2-44% 

[39] ARIMA FMSE, WME 4-21% 

[136] ARMA-GARCH MAE-MAPE 4-13% 

[38] WT-ARIMA MAPE 5-11% 

[137] WT-ARIMA and GARCH MAPE 0-2% 

[32] ARIMA, ARIMA-

EGARCH, and ARIMA-

EGARCH-M 

RMSE, MAPE, MAE 10-96% 

[159] AR and its extension WME 2-50% 
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Table A.4: Factors affecting electricity price [167]. 

Ref. No Factors Affecting Price 

[7, 13, 32, 38, 73, 97, 

133, 138, 139, 145, 

146, 150] 

Historical prices 

[8, 10–12, 22, 37, 51, 

57, 58, 95, 103, 108, 

109, 118, 123, 132] 

Historical prices, demand 

[60] Demand, composition of electricity production by each 

energy resource (renewables, cogeneration, hydro, 

nuclear, combined cycle, fuel and natural gas), net 

electricity exports, pumping and distribution losses 

[56] Fuel price, market concentration index, reserve margin 

[39] Historical prices (demand and available daily production 

of hydro units in with explanatory variable case) 

[59] Historical prices, day and month type 

[150] Historical prices, demand, settlement period 

[9] Historical prices, demand, available generation 

[123] Historical prices, demand, change in demand, time slot 

of the day, day of week 

[30] Historical prices, demand, change in demand, time slot 

of the day, day of week 

[84] Historical prices, demand, demand volatility, demand 

slope and curvature, scarcity, spread, diurnal and weekly 

effects, seasonality, trend, excess in generation capacity 

[65] Historical prices, demand, hydro generation, nuclear 

generation, thermal generation 

[15] Historical prices, demand, imports 

[159] Historical prices, demand, temperature 

[126] Historical prices, demand, temperature, humidity, crude 

oil prices, wind speed 

[70] Historical prices, natural gas prices 

[95] Historical prices, system load and temperature 

[141] Weekly variation data of electricity price and demand 
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Table A.5: Paper distribution with respect to electricity market [167]. 

Market  Number of 

Papers 

Ref. No 

Spanish electricity 

market  

21 [56–58, 61, 64, 67, 69, 71–73, 

83, 85, 86, 89, 91, 94, 99, 100, 

102, 103, 105]  

PJM (Pennsylvania, New 

Jersey, Maryland) 

11 [51, 54, 60, 63, 67, 68, 81, 86, 

95, 98, 99] 

Italian electricity market  4 [55, 64, 77, 96] 

New England  4 [64, 66, 96, 100] 

New York  4 [64, 74, 75, 93] 

National Electricity 

Market-Victoria New 

South Wales  

3 [56, 65, 82] 

Nord Pool  3 [88, 92, 104] 

United Kingdom  2 [52, 70] 

European Energy 

Exchange  

2 [53, 84] 

Ontario  2 [96, 101] 

Iran electricity market  1 [30] 

Turkish electricity 

market  

1 [116] 

Five hubs of the Midwest 

Independent System 

Operator 

1 [32] 
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APPENDIX B 
 

 

 

STOCHASTIC OPTIMIZATION MODEL APPLICATION ON 

NIGERIAN ELECTRICITY MARKET 
 

 

 

Table B.1: Structure of the data for the Nigerian electricity market. The figures are 

representative. 

 

Year 2007 

 
Month Jan Feb Mar Apr 

 
Demand (MWh) 1609305398 1497207856 1264121511 1229518408 

    
Capacity (MW) 

Generation cost 

(NGN/MWh) 

p
la

n
ts

 i
n

 t
h

e 
o

rd
er

 o
f 

in
cr

ea
si

n
g

  

g
en

er
a

ti
o

n
 c

o
st

 

Hydro-1 540 2416 

Hydro-2 450 3355 

Hydro-3 540 4026 

Steam turbine-1 880 5636 

Steam turbine-2 350 6710 

Gas (Combined cycle) 450 6978 

Gas turbine-1 518 8052 

Gas turbine-2 413 8320 

Gas turbine-3 270 8723 

Gas turbine-4 100 9394 

Gas turbine-5 80 9797 

Diesel-1 10 11407 

Diesel-2 15 12078 

Diesel-3 15 12749 
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Figure B.1: Piecewise supply curves for all scenarios in January 2008. 

 

 

Figure B.2: Demand scenarios for the year 2008. 
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Figure B.3: Electricity price when demand is (a) deterministic, (b) low, and (c) high. 
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Figure B.4: Electricity production cost of when demand is (a) deterministic, (b) low, 

and (c) high. 
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Figure B.5: Electricity generation portfolio and corresponding profits for different 

demand scenarios computed using the stochastic optimization model. 

 

 

Figure B.6: Box plots of scenarios; (a) price of electricity when demand is 

deterministic (P1), low (P2), and high (P3); (b) production costs of electricity when 

demand is deterministic (C1), low (C2), and high (C3); (c) demand of electricity 

when demand is deterministic (D1), low (D2), and high (D3); (d) variations in all 

scenarios for production costs. 
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Table B.2: Number of scenarios required for 95% confidence level and 10% error 

(price of electricity when demand is deterministic (P1), low (P2), and high (P3); 

production costs of electricity when demand is deterministic (C1), low (C2), and 

high (C3)). 

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN 

P1 1.8 4.4 3.3 5.0 6.9 14.2 4.0 4.8 24.2 25.8 27.9 25.1 1.8 

P2 1.9 4.5 0.0 0.3 0.6 6.6 0.0 0.4 10.8 12.1 7.3 5.2 1.9 

P3 1.8 4.4 7.1 11.8 12.8 20.4 8.6 11.6 34.7 36.3 43.4 41.6 1.8 

C1 1.1 2.6 2.0 3.0 2.9 4.2 2.6 3.3 6.5 6.6 7.7 8.2 1.1 

C2 0.8 2.0 3.6 5.7 5.4 7.8 4.7 6.2 12.3 12.4 14.5 15.5 0.8 

C3 1.7 4.0 7.2 11.4 11.1 15.7 9.3 12.2 25.0 25.0 29.4 31.8 1.7 
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APPENDIX C 
 

 

 

W~MARS APPLICATION ON SPANISH ELECTRICITY 

MARKET 
 

 

 

Table C.1: Representative hourly data for the Spanish electricity market. 

Date Time Price (€/MWh) Demand (MWh) 

01-Jan-02 

00:00-01:00 4.52 20419.00 

01:00-02:00 3.13 19574.00 

02:00-03:00 2.27 18973.00 

03:00-04:00 2.09 18079.00 

 

Table C.2: Training and Testing Periods. 

Season Training Period Test Period 

Winter 1 Jan -17 Feb 2002 18 - 24 Feb 2002 

Spring 2 Apr -19 May 2002 20 - 26 May 2002 

Summer 2 July -18 Aug 2002 19 - 25 Aug 2002 

Fall 1 Oct -17 Nov 2002 18 - 24 Nov 2002 

 

Table C.3: Weekly Forecasting Errors (%). 

Seasons Wavelet-

ARIMA 

[38] 

Wavelet-

ARIMA-

GARCH 

[137] 

CNN 

[11] 

MIT-

CNEA 

[10] 

NES 

[12] 

MARS CMARS W~MARS 

Winter 4.78 0.63 4.32 4.88 4.28 6.52 5.90 4.18 

Spring 5.69 0.65 4.31 4.65 4.39 3.32 2.94 4.79 

Summer 10.70 1.19 6.37 5.79 6.53 5.42 - 6.88 

Fall 11.27 2.18 6.22 5.96 5.37 5.24 - 11.37 

 

Table C.4: Weekly Forecasting Error Variances. 

Seasons Wavelet-

ARIMA 

[38] 

Wavelet-

ARIMA-

GARCH [137] 

CNN 

[11] 

MIT-

CNEA 

[10] 

NES  

[12] 

W~MARS 

Winter 0.0019 0.0002 0.0020 0.0036 0.0013 0.0019 

Spring 0.0025 0.0002 0.0025 0.0027 0.0015 0.0030 

Summer 0.0108 0.0009 0.0049 0.0043 0.0033 0.0077 

Fall 0.0103 0.0008 0.0048 0.0039 0.0022 0.0091 
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Figure C.1: Hourly electricity price forecast by using W~MARS for (a) winter, (b) 

spring, (c) summer, and (d) autumn. 
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Table C.5: Significant coefficients used in electricity price forecasting. 

Variable 
February May 

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun 

Dt √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Pt √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Pt-1   
  

√ √ √ √   √ 
 

√ √ √   

Pt-2 √ √ √ 
   

    √ √ √ 
  

√ 

Pt-3 √ √ 
    

  √ √ 
  

√ √   

Pt-4 √ √ √ √ √ 
 

√   √ √ 
 

√ 
 

√ 

Pt-5 √ 
   

√ 
 

    √ 
  

√ √ √ 

Pt-6 √ √ √ √ √ √   √ √ √ √ √ 
 

√ 

Pt-7 √ √ √ 
 

√ 
 

√ √ 
 

√ √ √ √ √ 

Pt-8 √ √ √ √ 
 

√ √   √ √ √ 
 

√   

Pt-9 √ 
 

√ √ √ √ √   
 

√ 
 

√ √ √ 

Pt-10       √   √ √ √     √ √     

Adj R2 0.96 0.95 0.95 0.96 0.94 0.95 0.98 0.95 0.94 0.94 0.93 0.95 0.90 0.92 

RMSE 5.06 5.09 5.01 5.61 6.66 4.01 2.14 1.87 1.58 1.71 1.72 1.33 1.96 1.35 

Variable 
August November 

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun 

Dt √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Pt √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Pt-1 √ √ 
  

√ 
 

√ √ √ √ 
   

  

Pt-2   √ √ √ √ √   √ √ √ √ √ √ √ 

Pt-3 √ √ √ √ 
 

√ √   √ √ √ √ √ √ 

Pt-4   
  

√ √ 
 

√ √ √ √ √ 
 

√   

Pt-5   
 

√ √ 
  

    
 

√ √ √ √ √ 

Pt-6   
  

√ 
 

√ √   √ 
  

√ 
 

√ 

Pt-7 √ √ √ √ √ √   √ √ √ √ √ √ √ 

Pt-8   
    

√ √   
 

√ 
   

√ 

Pt-9 √ √ √ 
  

√ √ √ √ 
 

√ 
  

  

Pt-10 √ √ √   √ √       √ √ √ √ √ 

Adj R2 0.97 0.96 0.95 0.96 0.93 0.94 0.94 0.96 0.95 0.96 0.95 0.95 0.92 0.96 

RMSE 2.55 2.88 3.21 3.09 3.75 2.55 2.34 2.55 2.38 2.36 2.54 2.30 1.93 2.31 

Dt :  Demand at time t, Pt :  Price at time t, Adj R
2
: Adjusted R

2
, RMSE: Root Mean Square Error 
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APPENDIX D 
 

 

 

R~W~MARS APPLICATION ON TURKISH ELECTRICITY 

MARKET IN MARMARA REGION 
 

 

 

Table D.1: Structure of the data for the electricity market in Marmara Region.  

(The figures are representative.) 

Year 1997 1998 1999 2000 

Demand (MWh) 33806019 33942891 35072520 39085268 

Price (TL/MWh) 33 34 40 48 

  
Capacity  

(MW) 

Generation cost  

(TL/MWh) 

Emission  

(kgCO2eq/MWh) 

Gas 105376.58 53.71 67 

Lignite 4790.37 125.60 1100 

Coal 20542.77 113.24 17.5 

Biomass 538.74 95.94 1400 

Hydro 3727.75 153.14 610 

Wind 29005.14 138.59 19 

Geothermal 70.00 72.93 38 

 

 

Figure D.1: Electricity generation portfolio computed by using R~W~MARS.  

Wind resources are included. 
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Figure D.2: Electricity generation portfolio computed by using R~W~MARS.  

Wind and solar resources are included. 
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APPENDIX E 
 

 

 

ENERGY SECURITY INDICATORS 
 

 

 

Table E.1: Security indicators related to sustainability. 

SES Indicators Competitive Energy Market 

Indicators 

Environmental Protection 

Indicators 

- Dependence on imports - Energy intensity - Percentage of renewable 

energy sources in the primary 

energy production  

- Dependence on imports of 

solid fuel 

- Efficiency of energy 

conversion 

- Percentage of renewable 

energy sources in the electrical 

energy production 

- Dependence on oil imports - Efficiency of electrical energy 

production 

- Indicators of intensity of 

emitted CO2 

- Dependence on natural gas 

imports 

- Transformation of energy 

sector 

- Emitted CO2 per GDP 

- Differentiation of primary fuel - Independent energy regulator - Emitted CO2 per Gross 

Domestic - Energy 

Consumption 

- Differentiation of fuel of 

electrical energy production 

- Private participation - Emitted CO2 per capita 

- Differentiation of energy fuel - Dividing of public enterprise - Emitted CO2 per electricity 

and steam production 

- Strategic oil supplies - Energy law for the reforming 

and privatization of energy 

enterprises 

- Application of Kyoto Protocol 

 - Adjustment of energy pricelist  

 - Level of competition  

 - Per capita energy consumption  

 - Per capita electrical energy 

consumption 
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