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ABSTRACT

ROBUST CONTENT-BASED COPY DETECTION AND INFORMATION
THEORETIC INDEXING STRATEGIES

Saracoğlu, Ahmet

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

February 2015, 107 pages

Today, 100 hours of video is uploaded every minute to YouTube. By the end of 2015,
500 billion hours of video will be viewable from wide range of sources such as on
demand video, Internet-based television and social networks. As a result important
and unavoidable problems arise; management of the copyrights, numerous duplicates
and content discovery. Obviously these problems may generate tremendous loss for
content owners and broadcasting/hosting companies while diminishing user satisfac-
tion. Accordingly, efficient duplicate video detection can be utilized for the solution
of the aforementioned problems. Content Based Copy Detection (CBCD) emerges as
a viable choice against active duplicate detection methodology of watermarking.

In this thesis, building blocks of a content-based copy detection system are inves-
tigated. A novel spatio-temporal global representation is initially proposed that ex-
ploits visual features independent of the spatial information. This system is improved
by a local interest point-based detection pipeline and it is shown to outperform global
representation approaches through extensive simulations. On the other hand, it is ob-
served that accuracy of local feature approaches is often limited by the presence of
uninformative and redundant features extracted from the frame. Moreover, at large
scale index size and corresponding amount of memory becomes a significant bot-
tleneck. In order to decrease the index size while increasing the discriminativeness
of the reference feature database, a novel information theoretic indexing method is
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proposed and improved further by the introduced entropy estimator. This estima-
tor is shown to yield more robust results compared to naïve frequentist techniques.
Furthermore, in comprehensive experiments using the proposed method, it has been
shown that only with a fraction of the reference features same detection performance
and even for some transformations 0.00 Normalized Detection Cost Rate (NDCR) is
achieved, which was not possible previously with full indexing. Extending this foun-
dation, another method to exploit distributions of local features in a temporal volume
is also provided. With this temporal approach, for most of the transformations 31%

to 83% improvement on NDCR is observed. Finally, in order to capture the depen-
dence of multiple features in a given frame fundamentals of interaction information is
discussed and a visual phrase representation for content-based copy detection is intro-
duced. Experimental evaluations show that the proposed visual phrase representation
and multivariate feature selection approaches are competing with the state-of-the-art.

Keywords: Content-Based Copy Detection, Spatio-Temporal Global Features, Lo-
cal Features, Bag-of-Visual Words, Information Gain, Entropy Estimation, Visual
Phrases, Interaction Information
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ÖZ

İÇERİK TABANLI VİDEO KOPYA SEZİMİ VE BİLGİ TEORİSİNE DAYALI
DİZİNLEME STRATEJİLERİ

Saracoğlu, Ahmet

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Şubat 2015 , 107 sayfa

Günümüzde her bir dakikada 100 saatlik video YouTube’a yüklenmektedir. 2015’in
sonu itibariyle 500 milyar saat video, Internet televizyonculuğu, ısmarlama video ve
sosyal ağlar gibi çeşitli kaynaklardan seyredilebilir olacaktır. Bunun sonucunda da te-
lif haklarının yönetimi, sayısız kopya ve içerik keşfi gibi önemli ve kaçınılmaz sorun-
lar ortaya çıkacaktır. Elbette, bu problemler içerik sahipleri ve video içerik veritabanı
sağlayıcıları için muazzam kayıplara sebep olurken kullanıcıların memnuniyetini de
azaltacaktır. Bu bağlamda, bahsedilen bu problemlerin çözümünde etkili kopya video
seziminden yararlanılabilir. İçerik tabanlı kopya sezimi, aktif kopya sezimi yöntemi
olan gizli damgalamaya karşı geçerli bir seçenek olarak ortaya çıkmaktadır.

Bu tezde, bir içerik tabanlı kopya sezimi sisteminin yapıtaşları incelenmiştir. Önce-
likle, uzamsal bilgiden bağımsız görsel öznitelikleri kullanan özgün uzamsal-zamansal
global temsil yöntemi önerilmiştir. Bu yöntem, yerel ilgi noktaları temelli sezim yön-
temi ile geliştirilmiş ve global temsil yaklaşımlarına üstünlüğü kapsamlı benzetimler
ile gösterilmiştir. Bununla birlikte yerel öznitelik yaklaşımlarının etkinliği video içe-
risinden çıkarılan ilgisiz ve gereksiz özniteliklerden dolayı sınırlanmaktadır. Ayrıca,
büyük ölçekte dizin büyüklüğü ve denk düşen hafıza kayda değer bir darboğaz oluş-
turmaktadır. Dizin büyüklüğünün azaltılması ve bu sırada referans öznitelik veritaba-
nının ayırt ediciliğinin arttırılması için bilgi teorisine dayalı indeksleme yöntemi öne-
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rilmiştir ve sunulan entropi kestirimi ile geliştirilmiştir. Bu kestiricinin sade frekansçı
tekniklere göre daha gürbüz sonuçlar ürettiği gösterilmiştir. Ayrıca, kapsamlı deneyler
önerilen yöntemin referans özniteliklerin yalnızca bir bölümünün endekslenmesiyle
aynı kestirim başarımı ve hatta bazı değişimlerde tam indeksleme ile daha önce elde
edilemeyen 0.00 Düzgelenmiş Kestirim Maliyet Oranı (DKMO) elde edilmiştir. Bu
temel üzerinde genişletilerek, zamansal hacim içerisindeki yerel özniteliklerin dağı-
lımının kullanılması için bir yöntem geliştirilmiştir. Bu yaklaşım ile çoğu değişim
için zamansal bilginin kullanılmadığı yönteme göre DKMO’da %31 ile %83 arasında
iyileşme gözlemlenmiştir. Son olarak, bir video karesi içerisindeki birden fazla öz-
niteliğin bağımlılığının işlenebilmesi için etkileşim bilgisinin esasları tartışılmış ve
içerik tabanlı kopya sezimi için görsel öbek temsili yöntemi getirilmiştir. Deneysel
değerlendirmeler önerilen görsel öbek gösteriminin ve çok-değişkenli öznitelik se-
çimi yaklaşımlarının en gelişkin yöntemler ile rekabet edebildiğini göstermiştir.

Anahtar Kelimeler: İçerik Tabanlı Kopya Sezimi, Uzamsal-Zamansal Global Öznite-
likler, Yerel Öznitelikler, Bilgi Kazanımı, Entropi Kestirimi, Görsel Öbekler
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Research Institute for the friendly environment they created. I have always enjoyed
the energy, freedom and the creativity during the unusual times we spent together.
It has really been a great privilege to work with such an excellent team. I am also
grateful for our fruitful teamwork together with Burak Özkalaycı and Emrah Taşlı
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CHAPTER 1

INTRODUCTION

Astounding increase in data transfer rates, skyrocketing capacities in digital data stor-

age, adoption of more efficient multimedia coding standards and flooding of camera

phones into everyone’s pocket are just a few developments among the myriad techno-

logical advances in recent years that have irrevocably changed the lives of millions.

New sectors have born, some others have descended from their zenith and many oth-

ers have evolved. One such sector, in the context of this work, is the broadcasting.

"Broadcast Yourself1" might be the epitomizing line for the new face of the sector.

Mutually, a new catalyzing force has born: "video-hosting services."

At the moment YouTube, Vimeo, LiveLeak and similar services are parts of our daily

lives. As the amount of digital media in these sources increase exponentially (in

August 2006 YouTube was hosting about 6.1 million videos [1] and as of January

2015, 100 hours of video is uploaded in every minute to YouTube [2]) two crucial

and unavoidable problems arise; management of the copyrights and numerous dupli-

cates. Obviously both problems may generate tremendous loss for content owner and

equally to the hosting companies.

This said, another important issue faced today is that how viewers will find what they

desire in vast sea of content. Identically, this is also the problem of content providers.

By the end of 2015, 500 billion hours of video will be viewable [3] from wide range

of sources such as social networks, Internet-based television and on-demand video. It

is clear that it will take a sophisticated multimedia analysis capability discover and lo-

1 "Youtube – Broadcast Yourself," [Online]. Available: http://www.youtube.com [Accessed: December 21,
2013].
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cate the desired content/consumer. Although it would be an exaggeration to state that

duplicate detection is the key for meaningful video search, it is not a stretch to imagine

that with effective duplicate detection user satisfaction would improve considerably.

In this case, not only the text search results but also duplicate videos that might have

been changed in someway can be associated and presented with (or removed from)

the search results. Moreover, missing metadata of duplicate videos can be completed

by tag propagation from associated videos. Furthermore, video-hosting companies

can also optimize data storage and bandwidth by collecting duplicate videos to same

cluster of servers.

As the television landscape evolve to become smarter and more connected, discov-

ery of content turned to be vital for this domain as well. Moreover, television viewer

statistics can be easily collected and analyzed nowadays. However, associating viewer

to the content remains an important and valuable hurdle to solve. As the viewed con-

tent identified many value propositions can be offered to both viewers and content

providers. To viewers/consumers pop-up information and personalized recommenda-

tions can be provided on the other hand accurate engagement, retention and conver-

sion rate statistics can be supplied to content providers.

For the solution of the aforementioned dual problems there are two main approaches;

passive methods and active methods i.e.: watermarking. However, watermarking

has two significant limitations. First, since watermarks must be introduced into the

original content before copies/duplicates are made, it cannot be applied to content

which is already in circulation. Second, the degree of robustness is not adequate

for some of the attacks that we encounter frequently. Passive detection methods, on

the other hand, try to directly detect copyright infringements and duplicate videos

by comparing questioned data against a database. This approach can be thought as

a complementary technology to watermarking which provides a solution to the two

problems mentioned above. The primary idea of this approach can be interpreted as

the media being the watermark itself. That is, the media (image, video, audio) con-

tains enough unique information to be able to detect copies. The main difficulty of

passive detection methods is that the videos are not supposed to be identical. Bright-

ness or contrast enhancement, compression, noise, bandwidth limitation, mixing with

unrelated audio, overlay text or geometric transformations can be observed on videos
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which yield highly modified duplicate video signals. At this point it is necessary to

provide related definitions,

Definition A video Vi is a copy of another video Vj if it is generated after some

tolerable transformations on Vj which is called the reference video. Typical transfor-

mations include addition, deletion, modification (of aspect, color, contrast, encoding)

and camcording. (Figure 1.1)

(a) (b)

Figure 1.1: Example frames from copy videos with heavy re-encoding (a) and picture-

in-picture (b) transformations.

In the light of this definition, the term Content-Based Copy Detection (CBCD) is

coined in the literature to denote the passive duplicate detection. However, it should

be noted that multiple terms are referred to the same concept as CBCD. Most fre-

quently used is the Detection of Near Duplicate Video or equivalently Near Duplicate

Video Detection.

Although in this study CBCD problem domain is investigated there are related defini-

tions that can be revealing in the concept of duplicate detection such as near-duplicate

as defined in [4].

Definition A video Vi is a near duplicate of another video Vj if Vi and Vj are highly

similar content but appear differently due to acquisitions and transformations. By

acquisition, different camera, viewpoint and light conditions are meant and transfor-

mations are same as in copy definition. (Figure 1.2)
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(a) (b)

(c)

Figure 1.2: Near-duplicate example frames taken from three different YouTube videos

(a) Uploaded from TV broadcast. (b) Uploaded from camera phone with heavy en-

coding and black bars. (c) Uploaded from camera phone with better encoding condi-

tions than (b) but with text insertion and shaky capture.

It can be easily seen from this definition; near duplicate is a superset of copy def-

inition. Although near duplicate definition contains ambiguity on the similarity of

content, it has an important, however small, difference which extends the potential of

CBCD. As defined, copies must originate from the same reference video. Thus, two

videos with different capturing conditions cannot be copies but can be near duplicates.

For example, breaking news on the same scene/event taken by different broadcasting

agencies or better yet taken by the camera phones of ordinary people at the scene are

near duplicates.

Definition A video Vi is a semantically duplicate of another video Vj if Vi and Vj

are from the same semantic concept (e.g., a beach scene) with varying viewpoints,

sizes, appearances and camera motions. Matching semantic concept can occur under

different illumination, appearance, and scene settings. (Figure 1.3)
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Figure 1.3: Example frames from semantically duplicate (row-by-row) video seg-

ments.

Basharat et al. adopt this definition and propose a method to detect semantically

duplicate videos in [5]. Semantically duplicate video definition is also closely related

to semantic concept detection. However, contrary to concept detection, semantically

duplicate detection in general does not utilize a machine learning scheme explicitly;

instead a query-based detection is implemented.

It can be seen from the previous definitions that there are considerable differences

with duplicate video definitions. In the following table (Table 1.1) a summary of

these definitions with related literature cues are given.
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Table 1.1: Comparison of copy, near-duplicate and semantically duplicate definitions.

Definition Authors
Copy Videos are from the same source

but by some kind of transfor-
mations differ from each other.
Transformations may contain ad-
dition, deletion, modification (of
aspect, color, contrast, encoding)
camcording and etc.

Cherubini et al. [6],
TRECVID [6], Joly et al.
[7], Law-to et al. [8]

Near-Duplicate Videos are from the same scene
but appear differently due to
acquisitions and transformations.
Acquisition disparities contain
different camera, viewpoint and
light condi-tions. Transforma-
tions contain addition, deletion,
modification (of aspect, color,
contrast, encoding) camcording
and etc.

Jaimes et al. [9], Rossi et
al. [10], Satoh et al. [11]

Semantically
Duplicate

Videos that are from semantically
same scenes (e.g., an explosion)
varying viewpoints, sizes, appear-
ances and camera motions. The
same semantic concept can occur
under different illumination, ap-
pearance, and scene settings.

Cherubini et al. [6],
Basharat et al. [5]
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1.1 Scope of Thesis

From previous duplicate/copy definition and related discussions it is apparent that a

robust copy detection method has many important benefits. The building blocks of a

conceptual system can be seen in Figure 1.4. At the fingerprint extraction step a huge

amount of content is mapped to a lower dimensional space for effective representation

of the information conveyed. In this respect, fingerprints can be characterized as com-

pact and descriptive. The compactness of the fingerprints facilitates and accelerates

the query process and decreases the required indexing storage. The descriptiveness

of the index entails the discriminative power, which enables the discrimination be-

tween different contents and robustness under certain transformations. Indexing, on

the other hand, enables fast lookup thus accelerating the matching process. Finally

by matching the similarity of two videos/fingerprints are inspected.

Fingerprint 

Extraction
Indexing

Fingerprint 

Extraction
Matching

Fingerprint 

Database

Post-

Processing

Copy / Near-

Duplicate 

Video Results

Reference 

Videos

Query / New 

Entry

Figure 1.4: Conceptual design of a copy detection system.

In this thesis aforementioned building blocks of a content-based copy detection sys-

tem are investigated. A novel spatio-temporal global representation is proposed. Also

a local interest point-based pipeline is developed based on the literature. Furthermore,

in order to increase the discriminativenss of the feature database an information the-

oretic indexing method is proposed. Extending this foundation a method to exploit

temporal distributions of local features and multiple variables are proposed. Finally,

visual phrase representation for content-based copy detection is introduced.

7



1.2 Outline of the Thesis

Chapter 2 is devoted to the state-of-the-art approaches for content-based copy detec-

tion and in-depth analysis of related work will be given in Section 2.3. In Chapter

3, two detection methods from different approaches will be proposed for the solution

of content based copy detection. Section 3.1 will introduce a novel global spatio-

temporal approach whereas in Section 3.1.1 experimental results of this method will

be provided. Furthermore, in Section 3.2 a local interest point-based method will be

presented. Experimental analysis will be conducted and compared with related work

from the literature in 3.2.6.

In Chapter 4, an information theoretic feature selection and indexing method will be

introduced by first discussing fundamentals of feature selection. After proposing a

mutual information based algorithm, drawbacks of Naive entropy estimator will be

explained. And in Section 4.4 a method will be given in order to improve the entropy

estimate and merits of this approach will be shown on synthetically generated data

in 4.4.1. On the other hand, evaluation of information theoretic feature selection will

be conducted on TRECVID 2009 and 2010 CCD dataset in Section 4.5. Lastly, copy

detection performance will be tried to be improved by introducing a method to exploit

temporal distributions of local features.

Chapter 5 will extend mutual information definition to multiple variables. In order to

utilize this perspective a visual phrase indexing approach will be proposed in Section

5.1. Moreover, experimental evaluation of visual phrase indexing and corresponding

feature selection methods will be investigated in Section 5.2.

Finally, Chapter 6 will summarize the studies conducted in this thesis. Concluding

remarks and possible future research paths will be discussed under the light of the

contributions.
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CHAPTER 2

LITERATURE REVIEW

In this chapter related work on copy and near-duplicate detection is examined. Un-

fortunately, there are not many publications on near-duplicate detection as defined in

the Chapter 1. One such work addressing near-duplicate detection in consumer pho-

tography libraries is published by [9] and another near duplicate detection method

on news video is proposed by Satoh et al. in [11] and Takimoto in [12]. And most

recently, Revaud et al. [13] proposed an approach to retrieve videos representing the

same event. On the other hand, there are quite a number of works addressing content-

based copy detection in the literature. First section investigates different representa-

tion approaches from the copy-detection literature. Also, related work on indexing

and matching approaches is given in the subsequent section. Afterwards, in Section

2.2 detailed information on some of the works from literature is provided. Lastly, dif-

ferent evaluation schemes and publicly available datasets are summarized in Section

2.4.

2.1 Representation

Representation of reference videos and queries – practically queries can be seen as an-

other video – according to the fingerprints used can be categorized as global or local.

In global representation methods, smallest unit of a video – which is most of the time a

keyframe – is represented by a global descriptor such as ordinal measure [14, 15, 16],

color shift and centroids [17], color histograms and etc. Furthermore motion activity

of consecutive frames is also utilized for efficient representation of videos. Compar-
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ison of global descriptors of the video based on motion, color and spatio-temporal

distribution of intensity is given in [18] by Hampapur and Bolle. And combination

of different low-level representations [19] is another approach from the literature as

a global representation. In general, global features discussed in copy/near-duplicate

detection literature have simple computational complexity and robust to simple trans-

formations (e.g., brightness and gamma correction) however; they are more affected

by spatial transformations (e.g., frame resizing, insertion of pattern and picture-in-

picture) than local representation techniques.

Due to obvious limitations of global representation of a video in the domain of copy

detection most of the state-of-the-art methods employ local descriptors such as Scale

Invariant Feature Transform [20] and Speeded-up Robust Features [21]. Methods

employing local descriptors [7, 8, 22, 23, 24] have shown very high performance in

terms of recall and localization precision. Using interest points is mainly motivated

by the observation that these points provide detailed representation of a frame while

limiting the redundancy between the features. Furthermore, extracting descriptors

that are invariant to some distortions (e.g., scale and noise) around interest points

improve matching rate of the features enormously.

Since for a given frame many local features, in fact several hundreds of high dimen-

sional vectors, are extracted it is impossible to store and process them in memory

and even in disk space. Furthermore, as the number of features increase, the redun-

dancy on the features increases thus decreasing the robustness of the fingerprints.

Bag-of-features or bag-of-words model is an established method employed exactly in

the same situations for document analysis, object detection and recently on seman-

tic concept detection. With this method, descriptors are quantized into visual words

with a clustering algorithm, which is frequently the k-means. Then a frame or any

other video unit is represented by the frequency histogram of visual words obtained

by assigning each descriptor of the image to the closest visual word. This approach

is employed in [15] on both ordinal feature and SIFT descriptors effectively. Further-

more, in [24] bag-of-features is used with Hamming Embedding scheme in order to

make the distance between visual word frequency features more significant by using a

more informative/finer representation. Moreover, instead of hard voting of previously

discussed methods, each descriptor is assigned to several closest visual words in [23]
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and [25]. One drawback of this bag-of-features approach is that the visual words/-

cluster centers have to be computed offline and in order to span the feature space as

effective as possible many cluster centers are needed; e.g. 200000 cluster centers in

[23]. Furthermore, such a high number of cluster centers need a much higher number

of features from wide variety of data.

Although selection of representation technique is a very important design criterion,

there is also the decision of video units where the representation will be implemented.

This unit can be keyframes sampled uniformly, sequence of frames on a sliding win-

dow, shots and etc. Most of the methods in the literature adopt using keyframes as

the basic element of the detection methods and extract necessary features from single

frames. Of course, as the number of elements used for representation increases dis-

criminative power of the representation increases, on the other hand computational

complexity and storage demand increases accordingly. This said, besides extracting

fixed number of frames per second, keyframes around the shot boundaries are also

employed in the literature [7, 23, 26]. This way the number of frames extracted for

a fixed interval is decreased while also the redundancy between frames is decreased.

However, in the presence of strong deformations using keyframes might hinder the

quality of shots and hence the features obtained from queries. A simple solution is

to sample query videos differently from reference videos. Query video can be sam-

pled densely and uniformly while reference videos are sampled from shot boundaries

sparsely. Another strategy for frame sampling can be the selection of frames ac-

cording to their representative power. One such method has been proposed in [27].

Zhou et al. propose a shot-based near-duplicate video detection method. For each

shot, keyframe and an appropriate number of neighboring frames, which are selected

based upon similarity to the keyframe, are appointed as the most representative set of

the shot. The similarity of two frames is measured by computing the distance between

the Color Histogram Descriptors of the frames. In the next step, furthest Voronoi Di-

agram method is utilized in order to sample the frames. By using such a strategy a

diverse distribution is achieved. Finally, from the set of frames local descriptors are

extracted and pruned according to their observation frequency.

In another work, [28], authors propose an adaptive frame selection method based on

Pearson’s correlated coefficient (PCC) which measures the correlation between each
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pair of successive frames in the RGB plane. The shot is then partitioned into several

fractions at where the correlation coefficients decrease abruptly so that wide diversity

is achieved by each fraction. Then reference frame set is produced by selecting the

frames from the most representative fractions to ensure wide coverage. In addition

to these adaptive/dynamic frame selection methods Chen et al. propose selection of

most representative frame of a given interval by computing the number of Hessian

points, [29].

Until now one important aspect of video is left out from the representation discussion

that is the temporal content of the video. Generally, copy detection methods in the

literature benefit from temporal information after the matching features/frames are

done [7], [25]. Outliers from initial match set are removed and time localization is

improved with methods such as temporal shift-modeling, m-estimate of shifts or sim-

ple voting scheme. One interesting work is published by Willems et al. in [22]. A

local spatio-temporal feature extraction approach for copy detection problem is pro-

posed. Spatio-temporal features are extracted in the sense much like SURF however,

temporal dimension is also incorporated by using a 3x3 Hessian matrix and three-

dimensional box filters. Thus, robustness of local features is improved. Furthermore,

number of features extracted from unit time is decreased hence; the storage and index-

ing conditions are improved. However, authors chose to employ this method on the

segmentation result of shot detection, which might decrease the localization power

and accuracy of the method.

Another work worth mentioning that incorporates temporal information, however in-

directly, is [8] by Law-To et al. Method detects local interest points and extracts their

descriptors much like [7]. In addition to descriptor vectors, trajectories of interest

points are used in the representation. The trajectories enrich the local description

with a spatial and temporal behavior of interest points while the redundancy of lo-

cal description is reduced. Trajectories are computed by using well-known Kanade-

Lucas-Tomasi (KLT) feature tracker [30]. Low-level properties of trajectories such

as the start and end location/time are then analyzed in order to label the trajectories

into behaviors such as persistent, still, moving and etc. Finally point descriptors, low-

level properties of trajectories and the labels are used in conjunction for the match-

ing. However, trajectory labels are only incorporated by heuristic voting rules. In
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another work, Satoh et al. [11] incorporate the trajectory inconsistencies to match

near-duplicate news video shots. Trajectories are also computed from interest points

by KLT as in Law-To’s approach. However, trajectory inconsistencies are obtained

from spatio-temporal patches around initially detected point and its trajectory.

Table 2.1: Review of previously developed representation techniques for video copy
detection methods.

Category Local Global

Spatial Harris [7, 26], SIFT [31, 23],
PCA-SIFT [32], F-SIFT [33],
SURF [34]

Ordinal [16, 14], Color Shift
[17], MPEG-7 Visual De-
scriptors [35]

Spatio-temporal Harris Trajectories [8], KLT
[11], 3D-SURF [22], STIP
[36]

Multi-modal [19, 37], TIRI-
DCT [38], Ordinal [39, 40],
Motion Direction [18], NMF
[41]

2.2 Indexing and Matching

Efficient similarity search in large databases is an important issue in all content-based

retrieval schemes. Especially with the local representation approach the size and num-

ber of descriptors per frame, the cost of matching and tracking, together with the very

large number of videos scalability becomes an important challenge. In its essence, the

similarity paradigm is to find similar documents/videos by searching similar features

in a database. Generally, the distance between features is used to perform k-nearest

neighbor searches on the database. Although there are multi-dimensional index struc-

tures such as R-trees or KD-Trees, unfortunately their performance degrades consid-

erably when dimensionality increases and it has been shown [42] that for real-world

data they are not more efficient than the brute-force search. Hence, it is obvious that

indexing and retrieving of high-dimensional data is very challenging because of the

curse of dimensionality. One approach to handle this curse of dimensionality is to

employ an approximate similarity search hence trading localization quality for time.

The underlying idea in approximate similarity search is to find similar features with a

very high probability which is not 1.

Throughout the recent years, several methods have been proposed for approximate
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index searches. In that sense, Locality Sensitive Search (LSH) [43] is such an ap-

proximate high-dimensional similarity search scheme, which is able to find matches

in sub-linear time. It tries to solve the curse of dimensionality problem by hashing

the descriptors through a series of projections onto random lines and concatenating

the results into a single hash. It has been shown that the collision probability of such

hashes is much higher for vectors that are near to each other. And generally several

different hash tables are combined in order to improve the probability of finding the

correct matches. On the other hand, in [32] Ke et al. were the first to implement LSH

as an on-disk database in the context of near-duplicate image retrieval. In order to

minimize disk-access, queries are combined in batches. By sorting the query batches

and the on-disk database, single sequential scan on the database is enough per batch

as first the smallest hash value will be encountered if it exists in the database. As

a second step, matched descriptors are checked for outliers since LSH matches with

respect to L1 distance. Also Willems et al. [22] employ disk-based LSH indexing

scheme with some modifications. First modification is that they prefer p-stable LSH

indexing in order to work directly with L2 norm. Furthermore, the list of buckets in

the database is divided into fixed-size blocks and offset to each block. Thus, these

offsets are utilized instead of sequential scan in order to compute the next possible

block that could contain a matching hash.

On the other hand, Joly et al. in [26] proposed a distortion-based probabilistic similar-

ity search where the feature space is partitioned to relatively small descriptors using

a Hilbert space filling curve. It is based on the principle that two points that are close

on the Hilbert curve remain close in the original N-dimensional space. Actually, it

is a static method in which dynamic insertions or deletions are not possible. The

space-partitioning is induced by regular splits of a Hilbert curve and by a simple di-

chotomic search method the closest point to a derived key is found in the database.

When a range query overlaps strong discontinuities of the Hilbert’s curve, it is divided

in several sub-queries which are not adjacent on the curve. A local sequential scan is

then performed for each sub-query. Although the proposed scheme could handle over

40.000 hours of video, an improvement using Z-grid [44] allows for the indexing of

120.000 hours of video. Z-grid based indexing is proposed by the observation that for

probabilistic retrieval it is not required to have neighbors in the description space to
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also be neighbors in the index. Furthermore, when the partitioning depth exceeds the

dimensions of the description space, not all the cells are partitioned along the same

dimensions.

Although LSH has been implemented successfully in many applications, methods

that consider the distribution of the features such as Vocabulary Tree [45] have been

shown to outperform LSH. Consequently, in the literature clustering-based approxi-

mate search methods have been proposed with the intention of achieving substantial

improvement on both storage and computational time. For example, in [45] Vocab-

ulary Tree (VT) method has been proposed, which is based on hierarchical k-means

clustering. And VT has been employed successfully in many applications [29, 15, 14].

However, it should be noted that clustering-based method needs an offline processing

in order to compute the cluster centers. And clustering process has two limitations;

number of samples and computation time. In order to represent and cluster feature

space effectively many features are needed beforehand. Thus, recently quantization-

based approaches have been proposed in the literature [23, 25, 46] in order to handle

memory and clustering constraints. Barrios et al. [47] introduced a pivot-based index-

ing method to perform approximate nearest neighbor search for the video segments.

In the following section, detailed analysis of the related work is given.

2.3 In-depth Analysis of Related Work

Joly et al. are one of the first researchers adopted local descriptors for copy detection

in their work [7]. In their approach first a keyframe is extracted from video stream by

intensity of motion. Afterwards, Harris corner detector is employed in order to locate

interest points from previously extracted keyframes which is followed by fingerprint

computation around the interest points by second order differential decomposition of

the graylevel 2D image signal. Later, all of the descriptors are indexed with their time

code using a Hilbert space-filling curve. Thus, enabling fast k-nearest neighbor com-

putation. Finally, from the matched keyframes robust time localization is obtained by

maximum likelihood estimation. On the experimental dataset (with attacks such as

additive noise, resizing, vertical shift and gamma variation) and on real world dataset

(with attacks such as resizing, broadcast artifacts, frame encrusting) method performs
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with very minimal false alarm and very high recall rate. This is partly due to the mild

attacks and partly due to using very high number of descriptors for the data. On the

other hand Joly et al. in [26] proposed an approximate similarity search technique

in which probabilistic selection of feature space regions on the database is based on

the distribution of feature distortion instead of database distribution. By using such

an approach search time at constant precision and recall has been improved astonish-

ingly (more than 45 times) when compared to exact range queries. After candidate

video sequences are obtained by simple voting scheme spatio-temporal consistency

of matched descriptors on the sequences are analyzed. Spatio-temporal model char-

acterizes the tolerated transformations such as resize, rotation, translation in space or

time and slow/accelerated motion. Model parameters are estimated by RANSAC.

Kim et al. propose a copy-detection scheme based on the well-known ordinal measure

that is robust to the brightness, color and frame resize transformations [40]. Each

image frame is first partitioned into 2x2 by intensity averaging, and the partitioned

values are stored for indexing and spatial matching. Furthermore, temporal variation

of each block of the stream is utilized as a temporal fingerprint. Finally approach

combines spatial matching of ordinal signatures of each frame and temporal matching

of temporal signatures to detect copies.

Chiu et al. in [14] have applied bag-of-features approach to copy detection prob-

lem with both ordinal features and SIFT features while bag-of-features of query is

searched over the database by a sliding window scheme. Thus authors adopted his-

togram pruning to improve the search time. Authors further improved their approach

in [14] by incorporating a finer matching method after finding a coarse detection result

by the previous method. Fine matching scheme involves a similarity matrix computed

between every frame of query and candidate frames by computing the histogram in-

tersection of two frames. The temporal consistency is investigated by line detection

on this matrix using Canny edge detection and Hough Transform, which of course

increase the computation complexity incredibly. In [48], however, for fine matching

authors adopt a graph matching technique. On the hand in a recent work [29] same

author plugs an efficient heap manipulation method instead of histogram pruning in

order to generate each window’s min-hash signature.
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Takimoto et al. [12] proposed a robust near-duplicate news video clustering method

based on the detection of flash light patterns. The underlying assumption is that

camera flashes are often used in impressive scenes such as public speeches of political

figures thus; shots containing identical flash patterns are near-duplicates of each other.

Method first detects shots containing flash bursts and afterwards flash patterns are

compared in order to cluster the scenes. Flash bursts are identified simply by rapid

average luminosity changes. In order to decrease the false alarm of flash detection a

validation step from frames and temporal occurrences is implemented. Finally, flash

patterns are compared frame by frame by considering the temporal offsets. Authors

have examined the performance of this method in a very limited dataset with limited

content (only news footage). However, it is interesting to see a less travelled road to

be taken.

On the other hand in [11], near duplicate shot detection on news video is addressed.

Satoh et al. propose a method based on matching temporal pattern of discontinuities

obtained from trajectories of interest points. Authors start from the idea that if two

shots are taken at the same scene but from different viewpoints a certain fraction of the

shots will match with the common temporal offset. Furthermore, as far as the interest

points are on a rigid body and the object moves under shaky motion such as nodding

head, the temporal discontinuity patterns of two shots from different viewpoints will

agree. In the approach interest point extraction is done by SIFT and points are tracked

with KLT. Method is evaluated over a small dataset partly because of the difficulties to

find near-duplicate video shots. However, as expected, performance of the method is

not close to the state-of-the-art copy-detection performance on much larger datasets.

Although it is not directly related to near duplicate detection Fu et al. [49] propose

a multiview video summarization method in which, a spatio-temporal shot graph is

used for representation of videos. On the other hand, proposed method incorporates

low-level and high-level shot importance schemes which consist of computing a score

by fusing color histogram and wavelet coefficients as low-level features in addition to

faces as high-level features. Furthermore, correlation among multi-view shots con-

sidered according to temporal adjacency, visual similarity and semantic correlation.

Finally, random walk with multi-objective optimization shot clustering is performed.

Authors do not aspire to detect near duplicate videos with numerous transformations
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in a large video database, however using content correlations in multiple views are

significant. Method coupled with the experimental data is much closer to surveil-

lance applications with loose time constraints.

In another related work Chen et al. [29] proposes a mobile search application which

is centered around snapping a photo with a mobile device of a video playing on a TV

screen to automatically retrieve and stream the remainder of the video to the mobile

device. In their approach a selection method over a short temporal window around a

keyframe is employed in order to reduce the temporal redundancy and dynamically

select a feature-rich query frames. Although an interesting mobile search application

is proposed method, it does not have a smart frame selection method. Method only

selects the frame with the highest number of Hessian points in a fixed window. SURF

is employed for local feature extraction and features are stored in an inverted Vocab-

ulary Tree. The evaluation dataset contains 2000 YouTube videos and 50 queries, on

which high performance is obtained.

Douze et al. proposed a comprehensive image-based copy detection method in [23]

which addresses the problem caused by strongly deformed videos. Like most of the

recent approaches, method employs local descriptors for the representation of the

video. Specifically authors use Hessian-Affine region detector for interest point de-

tector and center symmetric local binary pattern as the descriptor. Bag-of-features

approach is used to quantize the descriptors to have a compact representation, which

is also refined further by Hamming Embedding method. Reference video represen-

tations are then stored in a structure similar to inverted file. After matching query

descriptors on the indexed reference database, a spatio-temporal model is estimated

from the matching keyframes. Experiments are conducted on TRECVID 2008 CCD

dataset.

Non-negative matrix factorization (NMF) based subspace representation is utilized in

[41] for the global visual features obtained from the video content. NMF is applied

over a sequential block of volumes which are circularly cropped out from video data.

Both basis and encoding matrices obtained from temporal video volumes are rear-

ranged and concatenated to obtain a row-based feature vectors. Final floating point

value type fingerprint is obtained by an inner product of row vectors with Gaussian
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distributed weighting vectors. Afterwards a simple median value thresholding method

is utilized to obtain a binary fingerprint. In their experiments temporal granularity of

1 second (25 frames) and a fingerprint size of 1280 bits are used. Although their

results are comparable with methods employing global representation, they cannot

compete with methods adopting local representation.

Flip-SIFT has been proposed by Zhao et al. in [33] to handle flip or flip-like transfor-

mations observed in real-world applications such as Content-based Copy Detection.

As pointed out by the authors, interest point detectors are generally flip invariant but

descriptors are not tolerant to flip-like transformations. In [33], it is first decided

whether a flip has occurred in the detected salient region and if a flip-like transforma-

tion is detected invariance is introduced by flipping the region horizontally or verti-

cally before descriptor extraction. The decision of flipping a region is based on the

flow or the dominant curl along the tangent direction. Afterwards, regions is flipped

(or not) and regular SIFT descriptor is extracted. At the indexing stage, a revised

inverted file structure is adopted in which flip decision is also retained for each de-

scriptor in the index structure. This extra information is later used for pruning false

positives at the geometric consistency checking step. Experimental analysis is car-

ried out on TRECVID 2010 CCD dataset for content-based copy problem domain

and for object detection/recognition problem PASCAL VOC 2009 dataset is utilized.

Although F-SIFT extraction is on third slower than SIFT it show promising results in

both problem domains.

In [37], Kim et al. proposed a multi-modal approach in order to improve video

copy detection which combines spatial and temporal features. Two different types

of features are employed; a spatial feature obtained from local DCT coefficients of a

keyframe and a temporal feature extracted from the temporal variances of consecu-

tive frames. Before extracting temporal and spatial features Kim first downsample the

frame to a fixed size in order to handle varying reference and query frame sizes. Fur-

thermore, to overcome flipping attacks downsampled frames are folded to half width

over itself and summed. Afterwards TIRI-DCT [38] is applied to obtain the spatial

feature. Temporal feature is obtained from a simple variance operation on overlap-

ping sub-blocks of consecutive frames. And finally features are quantized into 256

bits. Authors also propose an adaptive weighting scheme for modality fusion. Over-
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all performance of the method is extensively tested on synthetic and TRECVID 2009

CCD dataset.

2.4 Evaluation Methods and Publicly Available Datasets

When the literature on near duplicate video detection is analyzed it becomes appar-

ent that there is no agreed method of evaluating algorithms. Some researchers use

precision/recall and their variants while others use measures from information theory

and some other utilize measures based on cost functions. In addition to that there

are many different datasets used by researchers, which are in some cases publicly

available and in others totally inaccessible. Both of these reasons make it harder to

compare different approaches in the literature. Nevertheless, in this section different

evaluation techniques and publicly available datasets are analyzed for comparison.

For a more in depth review of evaluation methods reader is referred to Bailer [50].

2.4.1 Evaluation Methods

Standard recall and precision metrics are utilized in some of the copy/near-duplicate

detection methods. In most of them, query or segment based computation scheme is

adopted. In Muscle VCD benchmark [51], for example, a query based recall measure

is defined as

Rq = Ncorrect/N (2.1)

whereNcorrect is the number of correct detection andN is the total number of queries.

Since metric does not consider the localization precision another measure is intro-

duced;

qf = 1−Nmiss/Nframes (2.2)

where Nmiss is the total number of mismatched frames due to either non-detected

queries or imprecision of localization andNframes is total frame number of the queries.
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By using the preceding measures the cost of miss and false alarm are not considered

separately. In some applications even a single miss cannot be tolerated and in some

others a false alarm thus, a metric based on a cost function would be more revealing.

Secondly, with such a hit or miss approach a method that produces a cluster of scenes

is not evaluated fairly.

2.4.1.1 Average Precision

Recall and precision values are computed based on the assumption that only a single

result returned for a given query. However, a query can be successfully matched

with multiple reference videos simply because it is composed of multiple reference

videos or as a result of duplicate videos in the database. Hence most of the time a

list of detection results are obtained by the detection systems. Furthermore, while

evaluating systems that return a ranked list of results, it is important to consider the

order in which the results are presented. In the information retrieval community,

Average Precision (AP) is extensively employed in order to favor systems that return

more relevant detection results earlier. It is the average of precisions computed at

each relevant result position in the ranked list;

AP =
1

Nmax

∑
r

(P (r)× δ(r)) (2.3)

where r is the rank, Nmax is the number of relevant results, P (r) is the precision at

rank r and δ(r) is an indicator function equaling 1 if the item at rank r is a relevant re-

sult, zero otherwise. Furthermore, by setting a cut-off rank n AP@n can be computed

over a truncated list of results.

2.4.1.2 Normalized Detection Cost Rate

Normalized Detection Cost Rate (NDCR) is mainly utilized in the TRECVID Content-

Based Copy Detection (CCD) benchmark task. In the CCD task given a reference

set of videos and test queries, for each query the place, if any, that some part of

the query video occurs with possible transformations is determined. In this context,
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NDCR evaluates algorithms corresponding to different application profiles by intro-

ducing cost for false alarms CFA and misses Cmiss, additionally introducing a tar-

get false alarm rate RTarget per query duration. Application profiles can range from

no false alarm to a balanced profile by modifying these parameters. Another fac-

tor β = CFA/ (Cmiss ×RTarget) is computed which works as a normalization factor

across a range of parameters. Finally, metric is defined as

NDCR = Pmiss + βRFA (2.4)

where the probability of a miss and false alarm rate is defined as

Pmiss =
FN

NTarget

(2.5)

RFA =
FP

(Trefdata × Tquery)
(2.6)

As it can be seen from NDCR definition the accuracy of finding the exact copy in

the reference video is not considered therefore a separate measure is computed using

time precision and recall and these two numbers are combined using the F1 measure.

2.4.1.3 Normalized Mutual Information

Normalized Mutual Information (NMI) is proposed for clustering repeated takes into

scenes in [10]. The resulting set of scene clusters, D, and the set of ground-truth

scenes, D′, are interpreted as random variables and mutual information between them

is computed as;

I(D;D′) =
∑
i

∑
j

|Di ∩D′j|
N

log
|NDi ∩D′j|
|Di||D′j|

(2.7)

where |Di ∩D′j| is the number of segments shared between the scenes and N is total

number of segments. NMI is then computed by

NMI(D,D′) =
2× I(D;D′)

H(D) +H(D′)
(2.8)
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in which H(·) being the entropy of the scene clusters

H(D) = −
∑
i

|Di|
N

log
|Di|
N

(2.9)

2.4.2 Publicly Available Datasets

Most of the publicly available datasets are for copy detection. One of the first copy

detection dataset made publicly available is MUSCLE VCD [51], which contains

100 hours of reference data from different sources; web video clips, TV archives

and movies. Reference videos cover a large program types including documentaries,

movies, sports events, TV shows, cartoons etc. and videos have different bitrates, dif-

ferent resolutions and different video format. Additionally, 18 query videos generated

from reference videos with wide variety of transformations are included. Cropping,

strong re-encoding, blurring, camcording, resize and zoom are among the transforma-

tions. Furthermore, ground-truth information of queries is provided by this dataset.

In terms of query/reference videos and transformations, richer copy-detection datasets

are provided by TRECVID. In total there are 3 different sets, which are from TRECVID

2008, 2009 and 2010. Each of the dataset contain wide variety of transformations and

ample amount of reference and query videos; at least 200 hours of reference videos

and 1000 queries, which range in time from 3 seconds to 3 minutes. Each query is

created by applying one or more transformations to a randomly selected portion of

another video, which may or may not be indexed in the reference video database,

and some of the queries are padded with unrelated clips, which are not in the ref-

erence videos. Transformations are designed to imitate real life attacks and can be

in 10 different forms for video, including but not limited to color transformations,

spatial transformations, pattern insertion, re-encoding and different combinations of

these [52]. TRECVID 2007, 2008 and 2009 dataset are sourced from Netherlands

Institute for Sound and Vision and Internet Archive, which contain news magazine,

science news, news reports, documentaries, educational programming, and archival

video. On the other hand, TRECVID 2010 CCD dataset is from Internet Archive

with Creative Commons licenses in MPEG-4/H.264 with durations between 3.6 and
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4.1 minutes and contains user-generated videos, documentaries, movies and etc.

Although it is not generally used for near-duplicate another dataset from TRECVID

can be thought as, which is from TRECVID Rushes Task. Rushes are the raw material

(extra video, B-rolls footage) used to produce a video. 20 to 40 times as much material

may be shot as actually becomes part of the finished product. Rushes contain many

sequences of frames that are highly repetitive, e.g., many takes of the same scene

redone due to errors (e.g. an actor gets his lines wrong, a plane flies over, etc.), long

segments in which the camera is fixed on a given scene or barely moving and etc.

Thus it is a good candidate for being a near-duplicate dataset.

Recently Revaud et al. introduced a new dataset for event retrieval in [13]. EVVE

(Event Video) dataset is only dedicated to the retrieval of particular events. Dataset

contains 166 hours of YouTube video belonging to 13 different but particular events

such as "Presidential victory speech of Barack Obama 2008". Some of the videos are

captured by professional photographers and cameramen while some are only captured

by amateur spectators. Furthermore, a set of 100,000 distractor videos unrelated to

the events is provided.

Finally, in Table 2.2 summary of publicly available datasets are given.
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Table 2.2: Summary of publicly available datasets

Dataset Type Ref.
Video

Source Query Size Transformations

MUSCLE
VCD

Copy 100
hours

Variety of
sources

18 clips Cropping, re-
encoding, blurring,
camcording, resize,
zoom, change of
gamma.

TRECVID
2008

Copy 200
hours

Netherlands
Institute for
Sound and
Vision

2000 clips,
3 sec. to 3
min.

Camcording,
picture-in-picture,
pattern insertion,
reencoding, change
of gamma.

TRECVID
2009

Copy 400
hours

Netherlands
Institute for
Sound and
Vision

1480 clips,
3 sec. to 3
min.

Picture-in-Picture,
pattern insertion,
re-encoding, change
of gamma, crop,
shift, caption, flip,
frame dropping,
additive noise.

TRECVID
2010

Copy 400
hours

Internet
Archive

1608 clips,
3 sec. to 3
min.

Camcording,
picture-in-Picture,
pattern insertion,
re-encoding, change
of gamma, crop,
shift, caption, flip,
frame dropping,
additive noise.

TRECVID
Rushes

Near-
Duplicate

53
hours

BBC N/A N/A

EVVE Near-
Duplicate

166
hours

YouTube 13 events N/A
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CHAPTER 3

CONTENT-BASED COPY DETECTION

Conceptual block diagram of a CBCD system can be seen in Figure 3.1. There are

two major process branches, one is the generation of the reference index and the

other is the querying process. In both processes a fingerprint extraction is carried out

in which a huge amount of content is mapped to a lower dimensional space for effec-

tive representation of the information conveyed. In this respect, fingerprints can be

characterized as compact and descriptive. The compactness of the fingerprints facil-

itates and accelerates the query process and decreases the required indexing storage.

The descriptiveness of the index entails the discriminative power, which enables the

discrimination between different contents, and robustness under certain transforma-

tions. Indexing, on the other hand, enables fast lookup thus accelerating the matching

process. Finally by matching the similarity of two videos/fingerprints are inspected.

In the subsequent two sections, two different Content-Based Copy Detection ap-

proaches are discussed. In Section 3.1 a global spatio-temporal feature based ap-

proach which is published in [19] is reported and in Section 3.2 an interest point

based approach is introduced which is a culmination of a variety of different methods

from the literature.

3.1 Long-Coarse Visual Features-Based Copy Detection

In summary this approach is mainly a feature matching between query and the refer-

ence videos in which features are extracted from spatio-temporal units of the videos.

These aforementioned units are formed by a uniform grid structure, which enables
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Figure 3.1: Block Diagram of an all-around CBCD System.

spatial and temporal overlapping between separate units. Furthermore, multireso-

lution property of the whole method is introduced by incorporating downsampled

frames into the equation. Additionally, temporality is achieved by extending each

spatial grid element in time, yielding a rectangular prism. And for each prism, a fea-

ture vector is computed by a set of feature extractors that spans three fundamental

visual information sources that are color, texture and motion. In this approach the

set of feature extraction methods are derived from some of the MPEG-7 visual de-

scriptors [53] by some modifications. It should be noted that these modifications are

introduced in order to decrease the computational complexity of feature extraction

and introduce the ability of coarse representation to the descriptors. Moreover, coarse

representation is further accentuated by quantization of the feature vectors. Note that,

these pseudo-MPEG-7 features are extracted from each grid element and concate-

nated to form a single long and coarse feature vector for a single prism that extends

through time and space on the video. Finally, matching query segments are identified

by searching query features on a database that is constructed by the reference video
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features.

As the first step of describing a video by the feature vectors, video is segmented into

non-overlapping equal time intervals. For each segment, a single long feature vector

is computed thus allowing subsets of reference videos to be included and searched

in the database. Each segment is also divided by a multi-resolution grid structure in

the spatial domain. First level grid structure represents whole frame area whereas

second level structure divides frame into 5 uniform regions including a center region

overlapping with the corner regions. And the third level grid structure partitions frame

into 25 overlapping regions. Pixel values in level i and region j can be represented as

Yi,j(x, y, t), Ui,j(x, y, t), Vi,j(x, y, t), where x, y, t are the spatio-temporal coordinate

system variables and Y, U, V are the luminance and color channels of YUV color

space. For a given temporal segment, a complete feature vector fT is obtained by

concatenating and quantizing features computed from each aforementioned region.

Although low-level feature extraction methods can be tailored for specific attacks, we

have used following features; variants of Dominant Color and Structured Dominant

Color for representation of color content, Discrete Cosine Transform and simplistic

edge energy for representing texture content and finally motion activity features for

representing temporal content. Color features are computed from color histogram

(3.1) and structured color histogram (3.2). These histograms are formed from 256

bins and for other color channels, namely U and V, are computed in the same manner.

hYi,j(c) =
∑
x,y,t

δ(Yij(x, y, t)− c) (3.1)

shYi,j(c) =
∑
x,y,t

δ(Yij(x, y, t)− c)αY (x, y, t) (3.2)

In (3.2), binary parameter αY takes the value 1 when in the given video volume pixel,

neighboring values are in the range that is determined by a threshold otherwise it

takes the value 0. Moreover in our work, coarse histograms (3.3) and (3.4) are used

which are computed by using pre-determined color levels r1, r2, r3 and r4.

ĥYi,j(n) =
∑
x,y,t

δ(Ŷij(x, y, t)− rYn ) (3.3)
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ŝh
Y

i,j(n) =
∑
x,y,t

δ(Ŷij(x, y, t)− rYn )αY (x, y, t) (3.4)

In (3.3) and (3.4), Ŷi,j represents value of the closest pre-determined color value to the

actual value which is described by (3.5). For U and V channels similar computation

methods are used.

Ŷij(x, y, t) = arg min
rYm

‖Yij(x, y, t)− rYm‖ (3.5)

Edge and motion features are calculated by the help of edge energy eij(x, y, t) and

two-dimensional motion vector components mX
ij (x, y, t) and mY

ij(x, y, t). Dominant

Color Feature (3.6) is calculated as a three dimensional vector on a 3D video volume

of YUV color channels. This feature represents the most observed intensity value for

each channel in the volume.

fY,DCij = arg max
c

(hij(c)) (3.6)

Structured Dominant Color Feature (3.7) is defined as the most observed color in the

structured color histogram (3.2).

fY,SDCij = arg max
c

(shij(c)) (3.7)

Color Frequency Feature (3.8) is computed as the frequency of color values in a given

3D video volume for every color channel. It is determined around the aforementioned

pre-determined color values.

fY,CFij =



ĥYi,j(1)

ĥYi,j(2)

ĥYi,j(3)

ĥYi,j(4)


/
∑4

n=1 ĥ
Y
i,j(n) (3.8)

Structured Color Frequency Feature (3.9) is determined similar to the Color Fre-

quency Feature in which instead of traditional histogram a structured histogram is

utilized.

fY,SCFij =



ŝh
Y

i,j(1)

ŝh
Y

i,j(2)

ŝh
Y

i,j(3)

ŝh
Y

i,j(4)


/
∑4

n=1 ŝh
Y
i,j(n) (3.9)
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Discrete Cosine Transform Feature fDCTij is computed as the transform coefficients at

the lowest four frequencies which are calculated on a 3D luminance video volume.

Edge Energy Feature (3.10) is computed as the average of edge energies calculated on

the luminance of the 3D video volume by the help of the 2D spatial Sobel operator.

fEEij =

∑
x,y,t eij(x, y, t)

NxNyNt

(3.10)

Motion Activity Feature (3.11)is computed as the average of the magnitudes of the

motion vectors on a given video prism.

fMA
ij =

∑
x,y,t

√
mX
ij (x, y, t)

2 +mY
ij(x, y, t)

2

NxNyNt

(3.11)

For a given segment of a video, a feature vector fT , in other words a fingerprint is

obtained by using combinations of features presented on the 3D grid units discussed

previously. In this work, two different fingerprints that are depicted in Table 3 are

used. The feature values are quantized to four levels by Lloyd’s Method [15] resulting

with the coarse feature vector dT . The quantized features are stored in the reference

video database as a fingerprint for the given temporal range of the reference video.

The overall block diagram of the system is depicted in Figure 3.2.

Figure 3.2: Method of constructing visual feature database from reference videos.

For the detection of the query video, firstly query fingerprint, qT , is computed as

described in the previous section. Afterwards, similarities between qT and every fin-

gerprint, dT , in the reference database are computed. This comparison is achieved

by sliding qT over entire length of individual reference fingerprints. At this point,
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Table 3.1: Fingerprint dimensions and ingredients in a unit interval.

Fingerprint 1 Fingerprint 2
Dominant Color 3 Levels (93 values) -
SDC 2 Levels (18 values) -
Color Frequency - 3 Levels (372 values)
SCF - 2 Levels (72 values)
DCT 2 Levels (24 values) 2 Levels (24 values)
Edge Energy 2 Levels (6 values) 2 Levels (6 values)
Motion Activity 2 Levels (6 values) 2 Levels (6 values)
Total 147 Dimensions 480 Dimensions

unique video locations that are exceeding a predetermined similarity value are com-

bined, sorted and presented as the search result. Although similarity measures can be

tailored for specific requirements, in this study Euclidean Distance (3.12) and Cosine

of the Angle (13) between two fingerprints are used and compared as a measure.

sEUC =
1

1 +
√∑

i(dti − qti)2
(3.12)

scos =
dt · qt
‖dt‖‖qt‖

(3.13)

3.1.1 Experiments and Discussion

TRECVID 2008 CCD dataset (Section 2.4.2) is utilized for the experimental eval-

uation of the proposed spatio-temporal method. Non-overlapping temporal window

length is selected as 25 frames and a total of 720, 000 global features are extracted

from the reference dataset. Similarity measures in (3.13) and (3.12) have been com-

pared to each other. Furthermore, two different coarse fingerprints discussed in the

previous section are also tested. Detection performance is reported by the NDCR

measure in Figure 3.5 for corresponding attack types. Although proposed global

spatio-temporal representation performs better then the median of TRECVID 2008

CCD participants, when compared with the best results obtained on the same dataset

the results are not satisfactory especially for attack types like camcording, picture-

in-picture and post-production. For such attacks local features should be utilized in

order to improve the performance.
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Figure 3.3: NDCR performance of the proposed spatio-temporal global representa-

tion (Fingerpint-1) utilizing with different similarity functions.
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Figure 3.4: NDCR performance of the proposed spatio-temporal global representa-

tion (Fingerpint-2) utilizing with different similarity functions.
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Figure 3.5: Comparison of Fingerprint-1 and Fingerprint-2 in terms of NDCR perfor-

mance on TRECVID 2008 CCD Dataset.
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3.2 Interest-Point Based Copy Detection

For an interest-point based CBCD system, there are many feature extraction choices

including but not limited to Harris corner detector coupled with image gradients,

Scale Invariant Feature Transform (SIFT) and Speeded-up Robust Features (SURF).

Each one of them has been reported as successful as the next one in the CBCD lit-

erature. In this study SIFT has been selected as the feature extraction and descriptor

method, which has been implemented from scratch for this work. After extracting

features one may choose to utilize feature vectors directly, in other words in raw

format as the representation of the video segment. On the other hand, as the size

of the reference video database increases, using raw feature vectors may increase

the processing power, storage and direct access memory requirements of the system.

Thus a transformation should be considered in order to meet limitations of any setup.

It can be a vector quantization, Bag-of-Visual-Words (BoVW) and etc. but obtain-

ing an optimum representation is crucial. Subsequent to obtaining a representation

namely a visual fingerprint of the video segment a fast, efficient and light lookup

method in other words an indexing is necessary. Finally, fingerprints are matched by

using implicit distance metrics and further improvement is achieved by employing

post-processing methods forcing temporal and geometric consistencies on the results.

Details of the representation, indexing and matching methods from the literature are

discussed in Chapter 2.

As previously mentioned for feature extraction SIFT has been selected in this study.

However, in order to handle such a large amount of reference data, a shot-based refer-

ence frame selection method is employed instead of dense sampling of frames. Shot

boundary frames and a given amount of interior frames are only used for feature ex-

traction. Even using only shot boundaries for reference feature extraction a total of

67953659 vectors are obtained. This amount of vectors requires a total of 32.40 GB

of storage and memory space if they are used as it is. So another approach is neces-

sary; as pointed in our previous literature survey BoVW are among the mostly used

method in order to decrease the dimensionality and amount of the reference data.
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3.2.1 Fundamentals of Bag-of-Visual Words

BoVW is basically a sparse vector representation of occurrence counts of features

where features are transformed into the closest visual word over a preferably a large

vocabulary. This said BoVW can be interpreted as a voting of individual feature

vectors with an approximate nearest neighbor search. From this perspective, BoVW

can be unrolled to a voting scheme. Given a query frame represented by its local

features yk and a set of reference frames j represented by its local features xi,j voting

score corresponding to the frame j is computed as;

sj = αj

 ∑
k=1...m

∑
i=1...mj

f(xi,j, yk)

 (3.14)

where matching function f measures the similarity between features. αj on the other

hand is the normalization term which, for example, can be 1/mj . For a voting system

based on ε-search or k-nearest neighbor search matching function can be defined as;

fε(x, y) =

1 if d(x, y) < ε

0 otherwise
(3.15)

fkNN(x, y) =

1 if x is kNN of y

0 otherwise
(3.16)

where d is a distance function defined on the feature space. For example on SIFT

descriptor space generally Euclidean distance is employed.

On the other hand in BoVW approach, query features are quantized by a quantizer q

which is formally defined as;

q : Rd → [1, k]

x 7→ q(x)
(3.17)

In general quantizer q is obtained by performing k-means clustering on a training

set. The quantizer q(x) is the index of the closest centroid to the vector x. And two
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vectors x and y are matched if both vectors are quantized to the same centroid.

fq(x, y) = δq(x)q(y) (3.18)

sj = αj

 ∑
k=1...m

∑
i=1...mj

δq(xi,j)q(yk)

 (3.19)

Note that this score also corresponds to the inner product of two BoVW vectors ob-

tained from the query frame and the database frame. Normalization term in that case

can be either the L2 or L1 norm. For large vocabularies L2 norm of BoVW vector

is very close to the square root of the L1 norm which can be seen from the voting

approach as a compromise between measuring the number and the rate of feature

matches.

BoVW based matching combines the advantages of local representation and efficient

matching using inverted files however; the quantization reduces the discriminative

power of the local features. There is always a tradeoff between the quantization noise

and the descriptor noise while choosing the number of quantization levels i.e. the

number of centroids k. A low value of k leads to large Voronoi cells thus increasing

the probability of a noisy version of a descriptor belonging to the correct cell. But

this also increases the number of false assignments. On the other hand a large number

of centroids increase the precision however this decreases the probability of a noisy

version matching to the same cell.

3.2.2 Hamming Embedding and Product Quantization

One approach to overcome the aforementioned dilemma is to employ refining on the

quantization step. That is; after a coarse quantization of the feature vector a detail

term refining the quantized index is computed and also stored/indexed. In [24] a

binary signature, encoding the location of the vector in the Voronoi cell is extracted.

Binary signature is designed so that the Hamming distance between two vectors in
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the same cell approximates the Euclidean distance.

h(b(x), b(y)) =
∑

1≤i≤db

(
1− δbi(x)bj(y)

)
(3.20)

In the aforementioned work a random orthogonal projection matrix and a simple prin-

cipal component analysis are proposed for computing the binary signature. Addition-

ally in [46], coarse quantization error is encoded as a binary signature which is effi-

ciently obtained by employing a simple product quantization on the difference vector.

Product quantization enables to choose the components to be quantized jointly. This

also supports better quantization of feature vectors that are structured such as SIFT

descriptors, which are built as concatenated orientation histograms with fixed size.

Formally it is defined as follows;

r(y) = x− qc(x)

r1, . . . , rD∗︸ ︷︷ ︸
u1(r)

, . . . , rD−D∗+1, . . . , rD︸ ︷︷ ︸
um(r)

qp(r(y)) = q1(u1(r)) . . . qm(um(r))

(3.21)

where m is the number of sub-quantizers and D∗ = D/m is the dimension of sub-

vectors ui moreover k∗ is the number of sub-quantization levels. Finally for such

a setting total bit length of the binary signature is l = m log(k∗). In general when

compared with Llyod’s algorithm for the same bit length we would need k = (k∗)m

centroids instead of mk∗ or just k∗. From the published results best selection of m

and k∗ are selected as (8, 256) respectively which translates to 64 bit length for the

binary signature.

Coarse
Quantizer qc

Product
Quantizer qp

-Feature
Vector

Binary
Signature

y

y

)(yqc )( yr ))(( yrqp

Figure 3.6: Product Quantization based binary signature extraction.
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At this point each feature vector is represented by the coarse quantization index and

the binary signature. With this methodology overall index/database contains only the

frame identifier and the binary signature for each feature vector/descriptor in the im-

plemented inverted list. A simple inverted file indexing method incorporating product

quantization is given in Algorithm 1.

Table 3.2: Index structure and index size.

Field Length (bits)
Frame Identifier 32
Binary Signature dm log k∗e

input : Given a collection of videos V , a quantization function q
output: L, an inverted feature list of features

1 Initialize an empty heap structure, L← ∅
2 for ∀v ∈ V do
3 Select frames, Fv ← FrameSampler(v)
4 for ∀d ∈ Fv do
5 Compute local features, Fd
6 for ∀x ∈ Fd do
7 Compute w ← q(x)
8 Compute r ← ProductQuantization(x, w)
9 Append (d, r) to the list corresponding to w

10 end
11 end
12 end
13 return L

Algorithm 1: Populating inverted feature index.

3.2.3 Feature Matching

At the matching step, much like the previously discussed voting approach, a binary

decision can be made by employing a threshold, τ , on the Hamming distance be-

tween two binary signatures from the same codeword. However, actually Hamming

distances reflect the similarity/closeness of vectors and should be also incorporated

to the decision. Since smaller distances correspond to higher confidence on the sim-

ilarity of the vectors, following Gaussian function is a good choice as a weighting
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function;

w(hd) = exp

(
−h2d
σ2

)
(3.22)

Figure 3.7 shows different weighting functions obtained by varying σ2 values. After

empirical studies σ2 = 256 is selected for further experiments. At this point in order

to increase computational efficiency a binary decision can still be made by selecting a

threshold τ on Hamming distance. As it can be seen from the figure distances above

28 has very little significance so threshold is selected as τ = 28. A matching score

other than 0 is obtained only for distances smaller than τ .
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Figure 3.7: Weighting functions for different σ2 values.

This score still does not take into account the frequency of the visual words over

the entire database; which can be easily incorporated by using tf-idf weighting; rare

visual words are assumed to be more discriminative and should be assigned higher

weights. Also as pointed out in [54] squaring the inverse document frequency factor

is consistent with the computation of the L2 distance between BoVW vectors. Inverse

document frequency idf(w,D) is computed for each visual word by dividing the total
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number of frames, D, by the number of frames containing the word w. In Equation

(3.23), 1 is added to denominator not to lead a division-by-zero error.

idf(w,D) = log
|D|

1 + |{f ∈ D : w ∈ f}|
(3.23)

Finally, frame score function formally can be defined as;

fs(x, y) =

idf
2 (q(x))× w (hd(qp(r(x)), qp(r(y))) if q(x) = q(y) and hd < τ

0 otherwise
(3.24)

Consequently, the total score of a query frame on the reference frame j is computed

as follows. In Algorithm 2 matching method is described as a pseudocode in detail.

sj = αj

 ∑
k=1...m

∑
i=1...mj

fs(xi,j, yk)

 (3.25)

input : Given an inverted feature index L, a query frame features X , the
quantization function q

output: M , a list of matching frames (|M | = k)
1 Allocate accumulator Ad for each frame d ∈ L
2 Initialize Ad ← 0
3 for ∀x ∈ X do
4 Compute w ← q(x)
5 Compute r ← ProductQuantization(x, w)
6 Fetch inverted list for w, Lw ← L(w)
7 for ∀(d, y) ∈ Lw do
8 Compute Hamming Score; s← fs(x, y)
9 Set Ad ← Ad + s

10 end
11 end
12 for ∀Ad > 0 do
13 Set Sd ← Ad/α
14 end
15 Identify the k greatest values Sd values, M
16 return M

Algorithm 2: Algorithm for frame matching as discussed.
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3.2.4 Descriptor and Frame Burstiness Handling

So far, by employing squared idf weighting, unbalanced visual word distributions is

taken account for. However, idf does not improve the effects of burstiness i.e.: if a

visual word is observed in an image, it is likely to observe it in multiples. In Figure

3.8, example matching frames showing burstiness is given. As it can be seen from

figures, even utilizing a detail fingerprint does not handle it. This phenomenon is first

observed in document analysis and different methods to overcome are proposed. In

[55], Katz et al. models the in-document distribution of words or phrases using K-

mixtures and in [56] a Poisson distribution is utilized to measure the burstiness of a

term. Furthermore, Madsen [57] and He [58] have shown that accounting for bursti-

ness improves text classification and topic clustering. On the other hand, a simple

way of handling visual term burstiness is proposed in [59] by discarding ambiguous

features that occur more than 6 times in a given image. Also, in [60] different nor-

malization techniques are proposed in order to overcome detrimental effects of bursty

visual terms without discarding any features. Furthermore, not only the multiple oc-

currence of a visual element in the same image, which corresponds to intra-image

burstiness but also the inter-image burstiness i.e.: the occurrence rate of visual ele-

ments in different images is dealt with a simple penalization method in [60], which

have been adopted in this study.

In intra-image normalization, score fs(x, yj) of a query descriptor x to a reference

descriptor, yj , of frame j is updated by using (3.26) where Tj(x) is the total score of

query descriptor over the reference frame j computed as in (3.27).

f ′s(x, yj) = fs(x, yj)

√
fs(x, yj)

Tj(x)
(3.26)

Tj(x) =
∑
yj∈j

fs(x, yj) (3.27)

By applying intra-image normalization, if a single descriptor is matched to a sin-

gle descriptor on a reference frame, score is unchanged. However, if the descriptor

matches to multiple features on a reference, frame score is penalized. Inter-image nor-
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Figure 3.8: Examples showing burstiness effect with (a),(c) and without (b),(d) detail

fingerprints.
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malization, on the other hand, addresses bursts across reference images since some

visual elements can be frequent across other images. Actually this is tried to be ad-

dressed by employing idf weighting scheme. However, this approach does only ac-

count for the number of features of a given visual word in a reference feature database.

Score of a match is updated by (3.28) in which normalization factor T (x) is the sum

of matching scores of descriptor x over all reference frames.

f ′s(x, yj) = fs(x, yj)

√
fs(x, yj)

T (x)
(3.28)

T (x) =
∑
j

∑
yj∈j

fs(x, yj) (3.29)

After matching and computing scores for query features and reference features the

output of the algorithm is a set of tuples (tq, tr, r, sf ); where tq and tr are the times-

tamps of the matched query and reference frames, r is the reference video identifier

and sf is the normalized frame match score. Much like the burstiness of a single

descriptor, query frames can match well with several reference frames from the ref-

erence database increasing the false positives. In order to handle this effect, a frame

score normalization is employed. First, the sum, Tf , of all matching reference frame

scores, sf , is computed and the final frame score is obtained by (3.30). The choice of

squaring is not arbitrary and empirical analysis can be found for descriptor burstiness

in [60].

s∗f = sf

(
sf
Tf

)2

(3.30)

3.2.5 Temporal Alignment

Matching frame set of tuples, (tq, tr, r, s
∗
f ), can be transformed into a reference video

sequence in terms of temporal sequence alignment by employing dynamic program-

ming techniques such as dynamic time warping. However, sparsity of the frame

scores renders DTW infeasible for content-based copy detection problem. Instead
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a simplified approach can be used e.g.: partial alignment [61], Hough voting/trans-

form or RANSAC. Because of its simplicity and prowess to capture small temporal

shifts Hough voting is preferred in this work. The temporal Hough transform/vot-

ing is performed by computing a soft-assigned 1-D histogram hr(δt) of time shifts

δt = tr − tq for corresponding query and reference frame for reference video, r.

hr(δt) =
∑

(tr,tq)∈R

δ(tr − tq) (3.31)

Contrary to bin-voting, in [25] frame scores are also accumulated in Equation (3.31).

However, empirical studies showed that preferring only bin-voting decreased false

positive matches considerably compared to utilizing frame matching scores. A short

list of (b, δ̂t) hypothesis is obtained from the bins with the highest voting scores.

Furthermore, non-maxima suppression around the selected peaks are employed in

order to decrease the effects of soft-weighting. Finally, from the matching frame

timestamps corresponding to δ̂t, query and reference video alignment can be achieved

easily. At this point score, sb, for the detected sequence is computed as the sum of

the frame scores corresponding to the peak for video b. However, once again we may

face multiple matching results to a single query sequence so a normalization factor,

Smax, is applied which is the highes score obtained among all matching sequences.

s∗b = sb

(
sb
Smax

)2

(3.32)

3.2.6 Experiments

For the experimental setup TRECVID 2009 and 2010 CCD dataset are utilized as

previously discussed in Section 2.4. In the TRECVID 2009 dataset, there are 837

videos with total duration of 400+ hours and from these videos 1, 759, 980 frames

are selected by sampling uniformly and a total of 276, 315, 688 reference feature vec-

tors/descriptors are extracted by in-house implementation of SIFT from reference

dataset. Also in the TRECVID 2010 dataset there are 400 hours of data from 11,728

media and 1, 921, 349 frames are selected by the same sampling rate i.e.: 2 frames

per 3 seconds. And a total of 243, 000, 059 reference feature vectors/descriptors are
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extracted by in-house implementation of SIFT. On the query side, much denser frame

sampling , 5 frames per second, is employed. Such an asymmetric sampling is pre-

ferred in order to account for the relatively short length of query sequences and the

detrimental effects of transformations on feature extraction so that a higher number

of features are extracted from queries. For parameter optimizations a shortlist of 35

queries from the TRECVID 2010 CCD dataset is used as a validation set. A visual

codebook containing 100K codewords are computed for efficient coarse quantization

by utilizing kMeans++ algorithm [62] on an MPI framework from a different dataset.

Furthermore for the binary signature computation 256 centroids are used with sub-

vector dimension of 16. All codeword transformations are carried out by utilizing

FLANN [63]. Since SIFT descriptors are not invariant against flip-like transforma-

tions, queries and their flipped versions are searched in the reference database con-

currently. All things considered index size with additional structures corresponds to

a memory of 3.7GB and 3.2 GB for TRECVID 2009, TRECVID 2010 CCD datasets

respectively.

Table 3.3: Summary of experimental datasets.

2009 2010

Number of Reference Video 837 11,728
Number of Indexed Frames 1,759,980 1,921,349
Number of Indexed Features 276,315,688 243,000,059
Total Disk Space of Raw Features 52 GB 45 GB
Total Index Memory Size 3.7 GB 3.2 GB

Number of Queries 1,407 1,608
Number of Query Features 93,800,166 98,480,474

In Table 3.4, firstly, precision-recall performance of the baseline method is shown for

TRECVID 2009 CCD dataset and in Table 3.5 results are tabulated also for TRECVID

2010 CCD dataset. In Figure 3.9 performance of the baseline method with respect to

detection (NDCR) and time localization (Mean F1) in BALANCED profile is shown

for TRECVID 2009 CCD dataset. Furthermore, experimental results for TRECVID

2010 CCD dataset are depicted in Figure 3.10. In both figures results from recent

literature on the same datasets are also plotted for comparison. It should be noted that

for experiments on both datasets same set of parameters optimized in the validation
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set are used.

Table 3.4: Performance of the baseline method in terms of recall and precision at
TRECVID-2009 CCD dataset.

TRECVID2009 Proposed Method of [64]

Recall Precision Recall Precision
T1 NA NA NA NA
T2 0.985 0.964 0.731 1.000
T3 0.993 0.985 0.955 1.000
T4 0.933 0.926 0.843 0.991
T5 0.993 0.978 0.955 0.992
T6 0.978 1.000 0.985 0.992
T7 NA NA NA NA
T8 0.978 1.000 0.806 1.000
T9 NA NA NA NA
T10 0.828 0.941 0.687 1.000
Average 0.955 0.970 0.852 0.997

Table 3.5: Performance of the baseline method in terms of recall and precision at
TRECVID-2010 CCD dataset.

TRECVID2010 Proposed Method of [33]

Recall Precision Recall Precision
T1 0.716 0.800 0.403 -
T2 0.865 0.943 0.679 -
T3 0.948 0.977 0.940 -
T4 0.672 0.947 0.582 -
T5 0.925 0.954 0.948 -
T6 0.709 0.941 0.634 -
T7 NA NA NA NA
T8 0.948 0.962 0.873 -
T9 NA NA NA NA
T10 0.672 0.968 0.604 -
Average 0.807 0.936 0.708 0.719
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Figure 3.9: Detection (a) and time localization performance (b) of the baseline

method for different attack types at TRECVID 2009 CCD dataset.
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Figure 3.10: Detection (a) and time localization performance (b) of the baseline

method for different attack types at TRECVID 2010 CCD dataset.

3.2.7 Discussions

It can be seen from the results in Section 3.2.6 baseline method proposed in Section

3.2 has superior detection and time localization performance in both TRECVID 2009

and 2010 CCD datasets when compared with related work from the recent literature

and alike. In Table 3.5, results from [33] are also depicted. Although Zhao et al.

introduced Flip Invariant SIFT, their results are lower even for the transformations
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containing flip-like attacks (T8 and T10). Many details left missing in their work

such as the size of the codebook, presence and length of a detail fingerprint, which

affects a fair comparison.

When results from two datasets are compared, one can easily observe that there is a

performance loss on TRECVID 2010 CCD dataset. Main reason for this loss is be-

cause of the disparity between the quality of productions and distribution of the con-

tent in TRECVID 2010 dataset. While TRECVID 2009 CCD dataset contains mostly

professionally produced news magazine, science news, news reports, documentaries,

educational programming, and archival video from Netherlands Institute for Sound

and Vision and Internet Archive, 2010 dataset consists of unstructured user-generated

internet videos, that tend to have shorter shots, faster scene changes, computer anima-

tions and unexpected effects. Furthermore, in 2010 dataset there are videos consisting

of a single shot from a single fixed camera and even a video showing a single page

of a document for the full extend of the video. Some extremities can be seen in Fig-

ure 3.11 which also depicts corresponding queries from the dataset. Figure 3.11a-d

exemplifies a sample case in which feature extraction produces very few features.

On the other hand sample frames for a fixed camera is shown in 3.11e-h. One way to

overcome these problems might be employing a dense grid feature extraction coupled

with denser frame sampling. In this study for each frame an average of 158 and 126

features are extracted and indexed for TRECVID 2009 and 2010 dataset respectively.

As it can be seen for TRECVID 2010 considerably less features are indexed and this

causes a performance drop compared with TRECVID 2009 dataset.

Furthermore, while comparing baseline method with other approaches from the liter-

ature it is observed that most of the related local feature indexing approaches extract

higher number of features per frame e.g. 1 keyframe per 1.6 seconds with 300 fea-

ture per frame in [33] and 2 frames per second with an average of 420 features per

frame in [23]. Thus increasing the average number of features per frame can further

improve baseline performance on TRECVID 2010 dataset and even on TRECVID

2009. However, it should be noted that as the number of features in the reference

database increases necessity for false positive descriptor and frame pruning methods.

At this point one can utilize a longer detail fingerprint and even a geometric consis-

tency check to overcome the burden of growing index size.
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Although in the literature there are many approaches containing a post-processing

stage for geometric consistency check we have not applied any such method because

of the empirical findings we have observed in the validation dataset with our setup.

When a variation of weak geometric consistency as discussed in [23] is adopted, a

small improvement in detection rate for some of the attacks is observed however,

overall computational complexity increases drastically because of the need for rela-

tive locations of features and extra memory accesses. Moreover on contrary to most of

the related work, no specific method for Picture-in-Picture (PiP) is employed. There

are methods that also index downsampled versions of the reference database to handle

PiP attacks. But as it is evident from Figure 3.9 and 3.10 and Table 3.4 and 3.5 there

is no need for that too. On the other hand, for queries involving camcording attack

(Transformation-1) encountered in TRECVID 2010 CCD dataset a higher number of

features from queries are most probably necessary. On top of that, since SIFT descrip-

tors’ matching power and reproducibility decrease as the viewpoint changes, a higher

threshold, τ , in (3.24) and a wider tail (in other words higher σ2) in (3.22) for finger-

print matching should be considered. Both of these changes, of course, increases the

rate false positive descriptor matches.
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Figure 3.11: Frame samples from problematic query and reference video sequences.

Sequence (a)-(d) are from
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CHAPTER 4

INFORMATION THEORETIC FEATURE INDEXING

Considering the previously discussed approaches in Chapter 3, given a fixed refer-

ence database size, the amount of index size depends on the number of features per

video. So as the number of reference videos or the temporal and spatial sampling rate

increases the index structure grows considerably. Causing the number of collisions

surge for a fixed hash length and as a result both detection accuracy and computational

complexity suffers. One approach to remedy the database growth is to select a subset

of features to be indexed. In other words instead of ingesting all features blindly,

selecting most important and informative features could be strategically effective to

overcome the data size.

4.1 Fundamentals

Selecting a subset of features is an important pre-processing step for many applica-

tions and pattern recognition problems. Formally speaking for a given set of features

Y , let Xd be the set of all possible subsets of size d and J(X) a criterion function that

evaluates feature subsets X ∈ Xd then feature selection problem can be defined as

in Equation 4.1 assuming higher value of J indicates a better feature subset. At this

point it should be noted that feature selection can mean selecting individual dimen-

sion(s) of feature vector-space or features corresponding to a class.

X̃d = arg max
X∈Xd

J(X) (4.1)

53



Feature selection methods according to their evaluation criteria can be categorized as

filter, wrapper, embedded or hybrid. Filter methods are based on statistical, infor-

mation theoretic or distance measures calculated from subset of features. Commonly

used measures are χ2 test, Euclidean distance and information gain. On the other

hand, wrappers utilize performance score of a predefined classifier, examples include

genetic algorithms, simulated annealing and etc. Lastly in embedded methods search

for an optimal feature subset is built into the classifier itself. A very well known

example for embedded methods is the decision trees.

Furthermore, according to subset search strategies, methods can be classified as ex-

haustive, sequential or random. In exhaustive search all possible subsets are traversed

while evaluating the criterion function. Search is complete but computationally inten-

sive and most of the time intractable. Conversely in sequential approaches complete-

ness is traded for simplicity. However, many variations have shown acceptable perfor-

mance in the literature such as sequential forward feature selection and bi-directional

selection. A more complete review of the feature selection literature can be found in

[65] and [66].

4.2 Related Work

As an example problem domain, most of the methods proposed for the text document

classification problem adopts Best Individual Feature (BIF) selection approach. First

an evaluation criterion to be applied to each single word is selected. Afterwards, all

words independently evaluated and sorted according to the assigned criterion. Finally

a predefined number of words are selected as the best representing feature subset of a

document. Another example would be visual object recognition problem where Prin-

cipal Component Analysis can be employed for whitening and dimension reduction

before training and classification on visual features such as SIFT or SURF descrip-

tors.

It is evident that feature selection, whether for dimension reduction or relevant train-

ing subset determination, is exhaustively utilized in classification problems. On the

other hand feature selection approach has very few precedents in the BoVW-based
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retrieval problem domain and none in content-based copy detection. Most of the lit-

erature for visual feature selection is implemented as an application-dependent task

and the earliest approaches have been applied to geo-localization problem. Given a

dense street-view geo-tagged database, Schindler et al. [67] select informative fea-

tures, i.e. features occurring mostly in images of some specific location. Similarly,

in [68] an information content probability is obtained for each feature with respect to

their specific location. In [69] useful features are selected by an unsupervised geo-

metric verification method. At the useful feature extraction images are queried and

only the futures identified as inliers during a RANSAC-based spatial verification step

are selected. This is only applicable if object or location already exists in the image

database prior to selecting useful features.

Naikal et al. in [70] proposed an offline informative feature selection for object recog-

nition problem and suggest utilizing Sparse PCA (SPCA). To select informative visual

words corresponding to a specific category/object an empirical covariance matrix is

first computed for each object category in the database and SPCA is applied on this

category dependent covariance matrix. Authors observe that first two principal vec-

tors are enough for selecting informative features for foreground dominant objects.

So, non-zero entries in the principal vectors are selected as the informative visual

words. With this scheme in their experiments 405 visual words out of 1000 are iden-

tified as informative words in a dataset of 33 categories. In the experiments a 5%

increase in the recognition rate is observed compared with blind training of the cat-

egories. Moreover, authors only work with small vocabularies, making the solution

unsuitable for large datasets. On the other Wang et al. proposes to rank visual features

according to the tf-idf scores computed from the same class [71]. However, much in-

formation is left readers imagination. Nonetheless, all mentioned methods till now,

require multiple instances of the same object, scene, location or category.

In [72], Tolias et al. proposed to select features that display self-similarity properties

within a single image. Authors first apply self-matching methods from the literature

between an image and either itself or its reflection, where tentative feature correspon-

dences are found in the descriptor space, without quantization. As a result, repeating

patterns and local symmetries are detected and indexed. This is because of the obser-

vation that features repeating within a single image are likely to repeat across different
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views too, so repeating features are good candidates for a selection without sacrific-

ing recognition performance. The same detection performance is obtained with only a

small fraction of its index size compared to the full feature index on a building/urban

dataset. It should be noted that at feature selection step a considerable computation

overhead is introduced. Furthermore, authors’ main concern is the reproducibility of

the indexed features on the other hand in large visual datasets discriminative abilities

of index features are more important.

4.3 Informative Feature Selection

Features occurring in a reference frame that is rarely observed in other frames can be

intuitively thought as informative features. And informativeness of a visual word for a

given frame can be measured by estimating the mutual information I(fk;wi) between

the visual word wi and the frame fk. In general, mutual information is a measure of

the dependence between two random variables, in this case the frame fk and the visual

word wi. It expresses the quantity of information one has obtained on fk by observing

wi. Although Figure 4.1 depicts the relation between mutual information and entropy

of variables as an information diagram.

Figure 4.1: Mutual information diagram.

In Equation (4.3) formal definition of mutual information is given and visual words
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maximizing this mutual information can be selected as the informative features.

L = arg max
wi

I(fk;wi) (4.2)

I(fk;wi) = H(fk)−H(fk|wi) (4.3)

where H = −
∑K

i=1 pi log pi is the discrete Shannon entropy. Since in (4.3) H(fk) is

constant across all codewords we obtain;

I(fk;wi) = C −H(fk|wi)

I(fk;wi) ∝ −H(fk|wi)
(4.4)

Finally;

L = arg max
wi

I(fk;wi) ≡ arg min
wi

H(fk|wi) (4.5)

Hence for a given frame and its corresponding visual words, informative features are

the ones which minimizes the conditional entropy. From the definition of conditional

entropy equations (4.6) are obtained in which wi = 0, 1 represents absence or occur-

rence of visual word wi, respectively.

H(fk|wi) =
∑
k=0,1

P (wi = k)H(fk|wi = k)

= P (wi = 1)H(fk|wi = 1) + P (wi = 0)H(fk|wi = 0)

(4.6)

Considering the previous discussion, it can be seen that informativeness of a visual

word can be measured by a simple function. One approach is to estimate observation

probabilities and thus the conditional entropy in an offline manner after every feature

of the reference database is collected. On the other hand in Algorithm 3 a sequential

(online) method is provided in which features are selected iteratively for each frame.
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This way an inverted index can be populated online.

input : Given a frame fk and corresponding set of visual words
Wk = {wi|Ki=1 wi ∈ V }, visual vocabulary V , an entropy estimator Ĥ ,
subset size S

output: L, A list of informative codewords of fk (|L| = S)
1 L← ∅
2 while |L| < S do
3 g∗ ←MAXFLT
4 for ∀wi ∈ Wk do
5 g ← ComputeConditionalEntropy(fk, wi)
6 if g < g∗ then
7 (g∗, w∗)← (g, wi)
8 end
9 end

10 L← L ∪ w∗
11 Wk ← L \ w∗
12 end
13 return L

Algorithm 3: Information-Gain Based Sequential Feature Selection

In line 5 of the Algorithm 3, conditional entropy as in (4.6) is computed for each word

extracted from the frame fk. Since H(fk|wi) is unknown it is typically estimated

from the observed samples. The most commonly used entropy estimation method is

derived from the maximum likelihood estimates of the discrete probabilities. More

specifically each of the unknown probabilities in equations (4.6) can be estimated by

employing a frequentist approach. Consequently, (4.7) is obtained in which the total

number of features in the database is Ntotal whereas Nwi
is the number of features

belonging to codeword wi. On the other hand the number of times codeword wi

observed in frame fk is represented by Nfkwi
. And finally, Nfk is the total number of

features in frame fk.
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P̂ (wi = 1) =
Nwi

Ntotal

P̂ (wi = 0) = 1− P̂ (wi = 1)

P̂ (fk|wi = 1) =
Nfkwi

Nwi

P̂ (f ′k|wi = 1) = 1− P̂ (fk|wi = 1)

P̂ (fk|wi = 0) =
Nfk −Nfkwi

Ntotal −Nwi

P̂ (f ′k|wi = 0) = 1− P̂ (fk|wi = 0)

(4.7)

4.4 Improved Mutual Information-based Feature Selection

The method introduced in the previous section for entropy estimation is called a plug-

in estimator, where a function is evaluated on an estimated probability distribution.

Generally, when we consider the total number of observations N and the number of

occurrences of i in the ensemble be ni, then with the choice of p̂i = ni

N
we obtain the

naive estimate

Ĥ = −
K∑
i=1

p̂i log p̂i

= logN − 1

N

K∑
i=1

ni log ni

(4.8)

However, (4.8) is biased and leads to a systematic underestimation of the entropy

H [73]. A detailed computation of the expectation value of Ĥ with respect to the

multinomial distribution

p(n1, ..., nK , p1, ..., pK , N) = N !
K∏
i=1

pni
i

ni
(4.9)
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up to the second order in N was given first by Harris [74].

E[Ĥ] = H − K − 1

2N
+

1

12N2

(
1−

K∑
i=1

1

pk

)
+O(N−3) (4.10)

The first correction termO(1/N) can be evaluated fairly easily and was first obtained

by Miller [75]. On the other hand second and higher-terms of the bias depend on

the unknown true probabilities pi and can not be estimated reliably. By employing

the first term in (4.10) as a correction, we obtain the Miller-adjusted entropy estimate

ĤM = Ĥ + K−1
N

. However, when we use it to evaluate (4.6) as in (4.11) we obtain a

constant correction term on the naive estimate that effects all of the words in the same

way. So, although we may improve the entropy estimate, the Miller correction has no

effect on the selection of words.

ĤM(fk|wi) =
∑
k=0,1

P̂ (wi = k)ĤM(fk|wi = k)

= P̂ (wi = 1)ĤM(fk|wi = 1) + P̂ (wi = 0)ĤM(fk|wi = 0)

=
Nwi

Ntotal

(
Ĥ(fk|wi = 1) +

1

2Nwi

)
+
Ntotal −Nwi

Ntotal

(
Ĥ((fk|wi = 0) +

1

2(Ntotal −Nwi
)

)
=

Nwi

Ntotal

Ĥ(fk|wi = 1) +
Ntotal −Nwi

Ntotal

Ĥ((fk|wi = 0) +
1

Ntotal

= Ĥ(fk|wi) + C

(4.11)

In the literature, there are other methods proposed to improve the entropy estimate. A

detailed analysis of different estimators has been reported in Schürmann’s [73]. From

that analysis it can be seen that Grassberger estimate has a superior performance in

both of the absolute bias and the statistical error. Grassberger estimates is a family

of discrete entropy estimators derived from the assumption of Poisson distributed

frequencies. The corresponding estimator is given as;

ĤG = logN − 1

N

K∑
i=1

niG(ni) (4.12)
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where the function G(n) is given in closed-form as;

G(ni) = ψ(ni) +
1

2
(−1)ni

(
ψ(
ni + 1

2
)− ψ(

ni
2

)

)
(4.13)

In equation (4.13), the digamma function ψ(n) is the logarithmic derivative of the

Γ-function, i.e.: ψ(x) = d
dx

ln Γ(x). For large values of n (n → ∞) G(n) converges

to the logarithm. On the other hand, for small values of n G(n) behaves differently

and hence the ĤG expected to be more accurate then the naive estimate Ĥ . And this

improvement comes without an additional computational complexity. Thus line 5 in

Algorithm 3 is replaced with Grassberger entropy estimator to obtain Algorithm 4.

input : Given a frame fk and corresponding set of visual words
Wk = {wi|Ki=1 wi ∈ V }, visual vocabulary V , an entropy estimator Ĥ ,
subset size S

output: L, A list of informative codewords of fk (|L| = S)
1 L← ∅
2 while |L| < S do
3 g∗ ←MAXFLT
4 for ∀wi ∈ Wk do
5 g ← ComputeGrassbergerConditionalEntropy(fk, wi)
6 if g < g∗ then
7 (g∗, w∗)← (g, wi)
8 end
9 end

10 L← L ∪ w∗
11 Wk ← L \ w∗
12 end
13 return L

Algorithm 4: Improved feature selection algorithm by using Grassberger en-
tropy estimator.

4.4.1 Evaluation of Entropy Estimation Methods

In order to compare both estimation methods, random samples are generated from

various known distributions. From these samples, entropies are estimated and com-

pared with true entropies. Two distributions are of interest in this experiment because

of their relation with bag-of-words approach, namely binomial and Poisson distri-

butions. If we consider assignment of a feature to a particular word as a coin toss

with probability p than for n features the bag-of-words histogram follows a binomial

61



distribution, B(n, p), under the i.i.d assumptions. On the other hand binomial dis-

tribution can be accurately approximated with the Poisson distribution, Pois(λ) for

faster computation if n is large and p is sufficiently small. This can be easily seen

from probability mass functions of binomial (4.15) and Poisson distributions (4.14).

Because of this property Poisson distribution assumption is frequently made in docu-

ment analysis problems.

Pr(X = k) =
λke−λ

k!
(4.14)

Pr(X = k) =

(
n

k

)
pk(1− p)n−k (4.15)

In Figure 4.2 and Figure 4.4 entropy estimations are depicted for varying sample sizes

and distribution parameters. Furthermore, mean square error of estimators are shown

in Figure 4.3 and Figure 4.5. As it can be seen from both set of figures Grassberger

estimate is superior to the naive approach. It should be noted that true entropy as-

sociated with binomial and Poisson distributions contain closed form infinite sums.

However, there are fairly accurate approximations of these entropies [76] as given in

(4.16) and (4.17) which are employed here to obtain true entropies and correspond-

ing mean square error values. Another point worth mentioning is the behavior of

estimates when p changes for binomial distribution. It can be seen from Figure 4.2a

and Figure 4.2b that for sufficiently small p both estimators work better. Actually

this is the case for many BoVW applications when a large codebook is exploited.

Conversely, the performance of the estimators decrease as probability, p increases.

This observation is due to the fact that as p increases the Poisson approximation of

Binomial distribution worsens causing large fluctuations. Moreover, as the p value

decreases performance of the Grassberger estimate ĤG increases.

HB ∼
1

2
log(2πenp(1− p)) +O(1/n) (4.16)

HP ∼
1

2
log(2πeλ)− 1

12λ
(4.17)
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Figure 4.2: Entropy estimates of binomially distributed random variables (a)

B(200, 0.03) and (b) B(200, 0.3) for different number of samples.
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Figure 4.3: Mean square error for entropy estimates of (a) B(200, 0.03) and (b)

B(200, 0.3) for different number of samples.
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Figure 4.4: Entropy estimates of Poisson distributed random variables (a) Pois(6)

and (b) Pois(10) for different number of samples.
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Figure 4.5: Mean square error for entropy estimates of (a) Pois(6) and (b) Pois(10)

for different number of samples.
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4.5 Experimental Evaluation of Informative Feature-Based Indexing

Experimental setup is prepared much like in Section 3.2.6 with the same datasets.

Uniform sampling is performed on reference and query videos with the asymmet-

ric sampling rates, 1.5 fps and 5fps respectively. SIFT descriptor is utilized with a

codebook of 100K words for visual representation. As in 3.2.6, product quantization

is adopted with 256 codewords to obtain 64 bit detail fingerprint for each feature.

Queries are also flipped and searched in the reference database concurrently in order

to address flip-like transformations. At the indexing stage, Algorithm 3 is adopted

with different cutoff values and entropy estimation methods on TRECVID 2009 and

2010 CCD dataset. Table 4.1 and 4.2 give key points about the experiments. En-

tropy estimators introduced previously are also compared in Table 4.3-4.8 by report-

ing NDCR differences (∆) observed. The timings are given as a speedup factor w.r.t.

detection time in full index.

Table 4.1: Summary of experiments in TRECVID 2009 CCD dataset.

TRECVID2009

Raw Feature Count 276, 315, 688

Cut-off Tc = 0.5 Tc = 0.8

Entropy Est. Naïve Proposed Naïve Proposed
Feature Count 165, 341, 524 159, 970, 011 230, 535, 498 229, 408, 422

Compaction Ratio 59.84% 57.89% 83.43% 83.02%

Timings 2.40× 2.49× 1.67× 1.68×

Table References Table 4.3, 4.4, 4.5 Table 4.6, 4.7, 4.8

Table 4.2: Summary of experiments in TRECVID 2010 CCD dataset.

TRECVID2010

Raw Feature Count 243, 000, 059

Cut-off Tc = 0.5

Entropy Est. Naïve Proposed
Feature Count 141, 425, 795 138, 320, 913

Compaction Ratio 58.20% 56.92%

Timings 2.00× 2.04×

Table References Table 4.9, 4.10, 4.11

It can be seen from the results that by using less number of features same and even
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for most transformations better performance is achieved compared to full indexing.

Especially for Pattern Insertion, Change of Gamma, Decrease of Quality and Post-

Production transformations, better performance is consistently achieved for all pro-

files on both datasets by informative feature-based indexing. As expected the rele-

vance of the matching descriptors/frames is increased by using only informative fea-

tures thus the precision performance of the copy detection algorithm is improved.

This could be easily observed at Table 4.8 and 4.11 in which no-false-alarm profile

results are reported. Although when results on TRECVID 2010 CCD dataset are

examined a performance degradation is observed notably for Camcording, Heavy Re-

encoding and Picture-in-Picture transformations. As discussed in Section 3.2.7, on

the average 126 SIFT features are extracted from every frame which is considerably

low compared with related work. Unfortunately this under-representation has adverse

effects on the performance of copy detection algorithm, specifically on TRECVID

2010 CCD dataset. Since as also examined in Section 2.4 dataset has many unstruc-

tured content furthermore, mentioned transformations have severe effects on the local

feature reproducibility.

Additionally Grassberger estimate dominantly beats the Naive estimate in terms of

NDCR performances achieved. From the results it can be seen that as the number of

indexed features decrease (Tc = 0.8 vs. Tc = 0.5) performance gain of using Grass-

berger estimate is more evident. One interesting point observed is that with Grass-

berger entropy estimation always fewer features are selected as informative compared

to Naive entropy estimation. Lastly, since a fraction of features are indexed a shorter

inverted list is queried. Thus memory usage efficiency is improved and coupled with

having less distractor features, matching is achieved much faster.
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Table 4.3: Evaluation results obtained with CM = 10, CFA = 1 and Tc = 0.5 at
TRECVID 2009 CCD dataset. Total number of selected features in the case of Naive
and Grassberger entropy estimators are 165, 341, 524 and 159, 970, 011 respectively.

NDCR 2009 2009 – Tc = 0.5

Original Naïve Proposed ∆

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.062 0.140 0.160 -0.020
T3 (Pat. Ins.) 0.043 0.018 0.007 0.011
T4 (Strong Re.) 0.140 0.235 0.232 0.003
T5 (Ch. Gamma) 0.060 0.085 0.088 -0.003
T6 (Dec.Q.3) 0.015 0.018 0.000 0.018
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.065 0.060 0.050 0.010
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.255 0.347 0.344 0.003

Table 4.4: Evaluation results obtained with CM = 1, CFA = 1 and Tc = 0.5 at
TRECVID 2009 CCD dataset. Total number of selected features in the case of Naive
and Grassberger entropy estimators are 165, 341, 524 and 159, 970, 011 respectively.

NDCR 2009 2009 – Tc = 0.5

Original Naïve Proposed ∆

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.153 0.149 0.172 -0.023
T3 (Pat. Ins.) 0.052 0.022 0.007 0.015
T4 (Strong Re.) 0.373 0.459 0.343 0.116
T5 (Ch. Gamma) 0.060 0.243 0.231 0.012
T6 (Dec.Q.3) 0.015 0.037 0.000 0.037
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.161 0.112 0.112 0.000
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.418 0.519 0.526 -0.007
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Table 4.5: Evaluation results obtained with CM = 1, CFA = 1000 and Tc = 0.5 at
TRECVID 2009 CCD dataset. Total number of selected features in the case of Naive
and Grassberger entropy estimators are 165, 341, 524 and 159, 970, 011 respectively.

NDCR 2009 2009 – Tc = 0.5

Original Naïve Proposed ∆

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.224 0.149 0.172 -0.023
T3 (Pat. Ins.) 0.052 0.022 0.007 0.015
T4 (Strong Re.) 0.373 0.597 0.343 0.254
T5 (Ch. Gamma) 0.060 0.306 0.231 0.075
T6 (Dec.Q.3) 0.015 0.037 0.000 0.037
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.224 0.112 0.112 0.00
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.418 0.552 0.545 0.007

Table 4.6: Evaluation results obtained with CM = 10, CFA = 1 and Tc = 0.8 at
TRECVID 2009 CCD dataset. Total number of selected features in the case of Naive
and Grassberger entropy estimators are 230, 535, 498 and 229, 408, 422 respectively.

NDCR 2009 2009 – 80%

Original Naïve Proposed ∆

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.062 0.080 0.108 -0.028
T3 (Pat. Ins.) 0.043 0.025 0.025 0.000
T4 (Strong Re.) 0.140 0.183 0.175 0.008
T5 (Ch. Gamma) 0.060 0.037 0.047 -0.010
T6 (Dec.Q.3) 0.015 0.007 0.025 -0.018
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.065 0.037 0.055 -0.018
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.255 0.304 0.294 0.010
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Table 4.7: Evaluation results obtained with CM = 10, CFA = 1 and Tc = 0.8 at
TRECVID 2009 CCD dataset. Total number of features in the case of Naive and
Grassberger entropy estimators are 230, 535, 498 and 229, 408, 422 respectively.

NDCR 2009 2009 – 80%

Original Naïve Proposed ∆

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.153 0.209 0.220 -0.011
T3 (Pat. Ins.) 0.052 0.075 0.075 0.000
T4 (Strong Re.) 0.373 0.381 0.444 -0.063
T5 (Ch. Gamma) 0.060 0.037 0.060 -0.023
T6 (Dec.Q.3) 0.015 0.007 0.030 -0.023
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.161 0.037 0.146 -0.109
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.418 0.538 0.403 0.135

Table 4.8: Evaluation results obtained with CM = 1, CFA = 1000 and Tc = 0.8

at TRECVID 2009 CCD dataset. Total number of features in the case of Naive and
Grassberger entropy estimators are 230, 535, 498 and 229, 408, 422 respectively.

NDCR 2009 2009 – 80%

Original Naïve Proposed ∆

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.224 0.209 0.231 -0.022
T3 (Pat. Ins.) 0.052 0.075 0.075 0.000
T4 (Strong Re.) 0.373 0.381 0.522 -0.141
T5 (Ch. Gamma) 0.060 0.037 0.060 -0.023
T6 (Dec.Q.3) 0.015 0.007 0.030 -0.023
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.224 0.037 0.261 -0.224
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.418 0.552 0.403 0.149
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Table 4.9: Evaluation results obtained with CM = 10, CFA = 1 and Tc = 0.5 at
TRECVID 2010 CCD dataset. Total number of selected features in the case of Naive
and Grassberger entropy estimators are 141, 425, 795 and 138, 320, 913 respectively.

NDCR 2010 2010 - Tc = 0.5

Original Naïve Proposed ∆

T1 (Camcording) 0.518 0.778 0.792 -0.014
T2 (PiP-Type1) 0.257 0.379 0.368 0.011
T3 (Pat. Ins.) 0.126 0.099 0.077 0.022
T4 (Strong Re.) 0.270 0.430 0.435 -0.005
T5 (Ch. Gamma) 0.140 0.171 0.168 0.003
T6 (Dec.Q.3) 0.304 0.416 0.402 0.014
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.143 0.150 0.150 0.000
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.399 0.453 0.412 0.041

Table 4.10: Evaluation results obtained with CM = 1, CFA = 1 and Tc = 0.5 at
TRECVID 2010 CCD dataset. Total number of selected features in the case of Naive
and Grassberger entropy estimators are 141, 425, 795 and 138, 320, 913 respectively.

NDCR 2010 2010 - Tc = 0.5

Original Naïve Proposed ∆

T1 (Camcording) 0.846 0.933 0.921 0.012
T2 (PiP-Type1) 0.541 0.733 0.718 0.015
T3 (Pat. Ins.) 0.187 0.264 0.164 0.100
T4 (Strong Re.) 0.660 0.771 0.682 0.089
T5 (Ch. Gamma) 0.336 0.358 0.336 0.022
T6 (Dec.Q.3) 0.694 0.836 0.712 0.124
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.286 0.331 0.328 0.003
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.642 0.607 0.592 0.015
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Table 4.11: Evaluation results obtained with CM = 1, CFA = 1000 and Tc = 0.5 at
TRECVID 2010 CCD dataset. Total number of selected features in the case of Naive
and Grassberger entropy estimators are 141, 425, 795 and 138, 320, 913 respectively.

NDCR 2010 2010 - Tc = 0.5

Original Naïve Proposed ∆

T1 (Camcording) 0.866 0.933 0.933 0.000
T2 (PiP-Type1) 0.902 0.887 0.887 0.000
T3 (Pat. Ins.) 0.187 0.299 0.164 0.135
T4 (Strong Re.) 0.888 0.881 0.873 0.008
T5 (Ch. Gamma) 0.336 0.358 0.336 0.022
T6 (Dec.Q.3) 0.694 0.836 0.799 0.037
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.343 0.336 0.328 0.008
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.642 0.634 0.612 0.022
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4.6 Improving Information Theoretic Indexing by Exploitation of Temporal

Dependencies

In the previously discussed approach, frame features are selected according to their

informativeness by measuring the information gain of corresponding visual words.

However, in aforementioned method frames are considered independent from each

other. Actually it is known that most of the time i.i.d. assumption does not hold for

BoVW, especially for the collective distribution of words from consecutive frames.

Furthermore, when experiments involving random insertion of reference frames con-

ducted it has been observed that higher performance is achieved with successive frame

insertion compared to random insertion. One way to exploit this is to select features

from joint distribution of consecutive frame features in a temporal video volume.

Thus instead of finding a subset of features by (4.2), the mutual information over

consecutive frames is utilized.

LT = arg max
wi

I(fT ;wi) (4.18)

where fT = (fk, fk+1, ..., fk+T−1). In this approach for each visual word, wi dis-

criminative/informative features for a given temporal volume are selected. In a way

temporally consistent informative features over multiple frames is captured without

any additional computational overhead.

In the literature there are different approaches utilizing temporal information. Willems

et al. [22] extract spatio-temporal local features. On the other hand Kim et al. utilize

a global feature extracted from a temporal volume [37] much like [38]. Also Law-

To et al. in [8] exploit temporal information by labeling the trajectory of individual

local features. Contrary to those approaches aforementioned method utilizes tempo-

ral information according to the consistency of local features’ informativeness over a

temporal volume.
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4.6.1 Experiments and Discussions

Following experimental results are obtained on TRECVID 2009 and 2010 CCD dataset.

Informative features are selected in a temporal volume for varying temporal lengths

(TV ) and throughout the experiments compaction ratio, Tc, is fixed at 1/2. Results

are depicted in Table 4.12-4.14 for TRECVID 2009 dataset and in Table 4.15-4.17

for TRECVID 2010 dataset. As it can be seen from results for most of the trans-

formations temporal indexing does not improve performance considerably compared

to full indexing. However, when compared with informative feature indexing from

individual frames, merits of temporal indexing are obvious as depicted in Table 4.18

and 4.19. Furthermore, as the temporal window length increases the detection per-

formance improves since discriminative consistency among local features are better

captured from larger temporal volume. It should be also noted that expected detec-

tion results are not observed in TRECVID 2010 dataset. This is mostly because of the

reference video characteristics such as fast changing scenes and single shot videos.

Table 4.12: Evaluation results of informative feature selection in a temporal volume
obtained with Tc = 0.5 and TV = 2 at TRECVID 2009 CCD dataset.

NDCR 2009 2009 – Tc = 0.5 – TV = 2

Original Naïve Proposed ∆

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.062 0.085 0.113 -0.028
T3 (Pat. Ins.) 0.043 0.065 0.053 0.012
T4 (Strong Re.) 0.140 0.160 0.148 0.012
T5 (Ch. Gamma) 0.060 0.058 0.055 0.003
T6 (Dec.Q.3) 0.015 0.032 0.025 0.007
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.065 0.078 0.065 0.013
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.255 0.302 0.306 -0.004

75



Table 4.13: Evaluation results of informative feature selection in a temporal volume
obtained with Tc = 0.5 and TV = 3 at TRECVID 2009 CCD dataset.

NDCR 2009 2009 – Tc = 0.5 – TV = 3

Original Naïve Proposed ∆∆∆

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.062 0.093 0.093 0.000
T3 (Pat. Ins.) 0.043 0.058 0.065 -0.007
T4 (Strong Re.) 0.140 0.160 0.170 -0.010
T5 (Ch. Gamma) 0.060 0.045 0.045 0.000
T6 (Dec.Q.3) 0.015 0.045 0.025 0.020
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.065 0.058 0.058 0.000
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.255 0.307 0.314 -0.007

Table 4.14: Evaluation results of informative feature selection in a temporal volume
obtained with Tc = 0.5 and TV = 6 at TRECVID 2009 CCD dataset.

NDCR 2009 2009 – Tc = 0.5 – TV = 6

Original Naïve Proposed ∆∆∆

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.062 0.080 0.087 -0.007
T3 (Pat. Ins.) 0.043 0.058 0.058 0.000
T4 (Strong Re.) 0.140 0.188 0.166 0.022
T5 (Ch. Gamma) 0.060 0.058 0.058 0.000
T6 (Dec.Q.3) 0.015 0.050 0.045 0.005
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.065 0.050 0.050 0.000
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.255 0.269 0.262 0.007
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Table 4.15: Evaluation results of informative feature selection in a temporal volume
obtained with Tc = 0.5 and TV = 2 at TRECVID 2010 CCD dataset.

NDCR 2010 2010 – Tc = 0.5 – TV = 2

Original Naïve Proposed ∆

T1 (Camcording) 0.518 0.711 0.709 0.002
T2 (PiP-Type1) 0.257 0.307 0.323 -0.016
T3 (Pat. Ins.) 0.126 0.123 0.104 0.019
T4 (Strong Re.) 0.270 0.365 0.366 -0.001
T5 (Ch. Gamma) 0.140 0.191 0.216 -0.025
T6 (Dec.Q.3) 0.304 0.396 0.391 0.005
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.143 0.182 0.161 0.021
T9 (PP.50 NA NA NA NA
T10 (Rnd.5) 0.399 0.424 0.406 0.018

Table 4.16: Evaluation results of informative feature selection in a temporal volume
obtained with Tc = 0.5 and TV = 3 at TRECVID 2010 CCD dataset.

NDCR 2010 2010 – Tc = 0.5 – TV = 3

CM = 10, CFA = 1 Original Naïve Proposed ∆

T1 (Camcording) 0.518 0.713 0.709 0.004
T2 (PiP-Type1) 0.257 0.301 0.311 -0.010
T3 (Pat. Ins.) 0.126 0.123 0.133 -0.010
T4 (Strong Re.) 0.270 0.357 0.347 0.010
T5 (Ch. Gamma) 0.140 0.221 0.224 -0.003
T6 (Dec.Q.3) 0.304 0.387 0.377 0.010
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.143 0.152 0.155 -0.003
T9 (PP.50 NA NA NA NA
T10 (Rnd.5) 0.399 0.406 0.431 -0.025
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Table 4.17: Evaluation results of informative feature selection in a temporal volume
obtained with Tc = 0.5 and TV = 6 at TRECVID 2010 CCD dataset.

NDCR 2010 2010 – Tc = 0.5 – TV = 6

Original Naïve Proposed ∆

T1 (Camcording) 0.518 0.639 0.600 0.039
T2 (PiP-Type1) 0.257 0.272 0.289 -0.017
T3 (Pat. Ins.) 0.126 0.123 0.123 0.000
T4 (Strong Re.) 0.270 0.339 0.344 -0.005
T5 (Ch. Gamma) 0.140 0.206 0.209 -0.003
T6 (Dec.Q.3) 0.304 0.351 0.366 -0.015
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.143 0.160 0.161 -0.001
T9 (PP.50 NA NA NA NA
T10 (Rnd.5) 0.399 0.435 0.432 0.003

Table 4.18: Performance of temporal feature indexing on TRECVID 2009 CCD
dataset for varying TV compared with individual frame indexing while Tc = 0.5.
Proposed Grassberger entropy estimator is utilized.

Single
Frame

Volume

TV = 2 TV = 3 TV = 6

T1 (Camcording) NA NA NA NA
T2 (PiP-Type1) 0.160 0.113 0.093 0.087
T3 (Pat. Ins.) 0.007 0.053 0.065 0.058
T4 (Strong Re.) 0.232 0.148 0.170 0.166
T5 (Ch. Gamma) 0.088 0.055 0.045 0.058
T6 (Dec.Q.3) 0.000 0.025 0.025 0.045
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.050 0.065 0.058 0.050
T9 (PP.5) NA NA NA NA
T10 (Rnd.5) 0.344 0.306 0.314 0.262
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Table 4.19: Performance of temporal feature indexing on TRECVID 2010 CCD
dataset for varying TV compared with individual frame indexing while Tc = 0.5.
Proposed Grassberger entropy estimator is utilized.

NDCR Single
Frame

Volume

TV = 2 TV = 3 TV = 6

T1 (Camcording) 0.518 0.709 0.709 0.600
T2 (PiP-Type1) 0.257 0.323 0.311 0.289
T3 (Pat. Ins.) 0.126 0.104 0.133 0.123
T4 (Strong Re.) 0.270 0.366 0.347 0.344
T5 (Ch. Gamma) 0.140 0.216 0.224 0.209
T6 (Dec.Q.3) 0.304 0.391 0.377 0.366
T7 (Dec.Q.5) NA NA NA NA
T8 (PP.3) 0.143 0.161 0.155 0.161
T9 (PP.50 NA NA NA NA
T10 (Rnd.5) 0.399 0.406 0.431 0.432
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CHAPTER 5

INFORMATION AND INTERACTION AMONG FEATURES

In the chapter informative features are selected by measuring how much information

one visual word conveys about the reference frame. Basically, to effectively discrim-

inate fk, whose visual words are {wi}Ni=1, is to select most informative features by

measuring mutual information, I(fk;wi).

Generally speaking, mutual information is a multivariate measure that can easily cap-

ture the dependence of multiple variables. When two variable/codeowrd case is con-

sidered W = (wi, wj), the information diagram of Figure 5.1 suggests that there are

different ways to capture this dependence.

1. Multivariable Mutual Information: An obvious extension of single variable

case is to compute mutual information between fk and random variable W =

(wi, wj) by Equation (5.1). This solution is depicted in Figure 5.1a.

I(fk; W) = H(fk)−H(fk|W) (5.1)

2. Multivariate Mutual Information: Another way of capturing dependence of

multiple variable is to incorporate the interaction between variables wi and wj .

This is easily achieved by computing I(fk;wi;wj) as represented in Figure

5.1b. By using basic identities a recognizable form of I(fk;wi;wj) is obtained
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in Equation (5.2). This measure is also called interaction information.

I(fk;wi;wj) = I(fk;wi|wj)− I(fk;wi)

= I(fk;wi) + I(fk;wj)− I(fk;wi, wj)

= H(fk)−H(fk|wi) +H(fk)−H(fk|wj)−H(fk|wi, wj)

= H(fk) +H(fk|wi, wj)−H(fk|wi)−H(fk|wj)
(5.2)

3. Total Correlation: Lastly, there is the total correlation C(fk, wi, wj) which

describes the total amount of dependence between all variables including fk as

shown in Figure 5.1c.

C(fk, wi, wj) = H(fk) +H(wi) +H(wj)−H(fk, wi, wj) (5.3)

Interaction information can be viewed as the amount of information that is common

between all variables but not present in any subset as depicted in Figure 5.1b. Unlike

univariate mutual information it can be negative or positive but it is always symmetric

i.e.: I(fk;wi;wj) = I(fk;wj;wi). On the other hand total correlation is nonnegative

and equals to zero if and only if all variables are independent. However, it will be

nonzero if only a pair of variables are dependent. For example, if P (fk, wi, wj) =

P (fk, wi)P (wj) then total correlation will be non-zero so it can not be claimed that

there is an interaction among all three variable. But, for such a case, interaction

information will be zero.

Since both I(fk;wi|wj) and I(fk;wi) are nonnegative, I(fk;wi;wj) is positive if

I(fk;wi|wj) > I(fk;wi) and negative when the inequality is the other way. It is called

positive interaction if I(fk;wi;wj) > 0 and negative interaction if I(fk;wi;wj) < 0.

Assume that there is an uncertainty about fk, which is most of the case. But we have

information about wi and wj . So by wi we eliminate I(fk;wi) bits of uncertainty

from fk and wj also eliminates I(fk;wj) bits. But wi and wj together eliminates

I(fk;wi, wj) bits of uncertainty. Thus, if interaction information is positive we im-

prove our guess about fk On the other hand, if the interaction is negative it can be

understood that the information in wj about fk is redundant given wi. Of course what

has been done for two variables can be extended for multiple variables.
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(a) (b)

(c)

Figure 5.1: Information diagram for three variables. Diagram depicts (a) multivari-

able, (b) multivariate mutual information and (c) total correlation.

5.1 Indexing Visual Phrases for Content-based Copy Detection

In previous section, mutual information is extended to multiple variables and funda-

mentals of interaction information is discussed. It has been also shown in Section 4.5

that, it is preferable to index features which have non-redundant information about

the video frame. Actually the connection of this approach to the interaction infor-

mation is easily recognizable. Since there are multiple features to be indexed, their

interaction with each other could be utilized in order to improve the feature subset

selection.

A greedy and exhaustive approach would be to investigate every possible combina-
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tion of features/codewords in a given frame. However, this would be infeasible for

very large datasets and vocabularies. Instead, methods from previous studies extract

visual phrases or collocations consisting of multiple features. In the literature, visual

phrases are extracted from either the entire image or from local neighborhoods. In

[77], local feature co-occurrences are extracted from the entire image however an off-

line and complex method is proposed for phrase pool generation. On the other hand,

local co-occurrence based representation is adopted in [78, 79]. However, aforemen-

tioned approaches employ sophisticated phrase extraction methods. Furthermore,

these methods address object or scene recognition problem. Contrary to these do-

mains in content-based copy detection do not need a complex parts-based represen-

tation thus instead of employing a learning based phrase extraction method, a more

simplistic approach is preferred in this work. On the other hand Zhang et al. proposed

geometry preserving visual phrases by encoding quantized locations of local features

[80]. Features are indexed with quantized spatial information into an inverted file,

instead of encoding phrases jointly. And similarity of two images is computed from a

2-D Hough Voting histogram on spatial offset values between matching descriptors.

However this approach only captures the translation invariance.

5.1.1 Visual Phrase Extraction

In this work, visual phrase of length k is defined as k local features that are spatially

closest to each other in a given frame and radius. And to tolerate transformations ob-

served in CCD datasets, k-nearest-neighbors of each local feature is paired to obtain

multiple visual phrases corresponding to a feature. In Figure 5.2, extracted visual

phrases are shown for length-2, in such a way that a constellation map is obtained on

the frame.

5.1.2 Representation and Indexing

A BoVW approach is adopted for visual phrase representation. Each feature of the

visual phrase is represented with a visual word however, on contrary to disjointly

indexing, visual phrases are indexed with a single hash value obtained from the visual
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(a) (b)

Figure 5.2: Visual phrases of length-2 are extracted from (a) reference and (b) query

frames.

words by a simple function (5.4).

hN(wi, wj) = min (wi, wj) + max (wi, wj)×N, (5.4)

where N is the codebook size. This way, a much larger index size is attained with

smaller visual vocabularies. With this mapping, index size can be computed by N +

N × (N − 1)/2. For example for a visual vocabulary of size 1, 024, total index size

is 524, 800.

Also, a detail fingerprint for each feature comprising the visual phrase is computed

with Product Quantization and stored in the inverted file structure as discussed in

Section 3.2.2. At the descriptor matching step, much like the previously introduced

method, Hamming distance between fingerprints are weighted by a Gaussian func-

tion. However, since there are multiple fingerprints in a visual phrase there can be

different thresholding approaches. In a small validation set for length-2 visual phrases

following thresholding methods (5.5) with different τ values are investigated and em-

pirically hd1, hd2 ≤ τ achieved better results.

hd1, hd2 ≤ τ

hd1 + hd2 ≤ τ

h2d1 + h2d2 ≤ τ 2

(5.5)

Furthermore, intra and inter-frame normalization techniques are also applied to obtain
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frame matching score. Finally, temporal alignment is accomplished by utilizing 1-D

Hough Transform on time shifts δt = tr − tq for corresponding query and reference

frames.

5.2 Experiments and Discussions

The experiments are performed on TRECVID 2009 and 2010 CCD datasets. Uniform

sampling is performed on reference and query videos with the asymmetric sampling

rates, 1.5 fps and 5fps respectively. For the coarse representation two different code-

books of sizes 512 and 1024 codewords are compared with each other. Visual phrase

length of 2 is selected and furthermore, visual phrases are extracted with 1-NN and

2-NN for comparison. Detail fingerprints are computed by product quantization with

a codebook of 256 codewords hence, a total of 128-bit is encoded with each phrase.

It should be noted that product quantization codebooks are generated for each coarse

codebook independently.

In the first part of the experiments, visual phrase indexing performance for different

codebooks and assignments are obtained on both datasets. Table 5.1 and Table 5.3

depicts results obtained on TRECVID 2009 and 2010 CCD datasets respectively. In

the remaining parts of the experiments informative features are selected by employing

both multivariable and multivariate mutual information. For these experiments the

cutoff rate is chosen to be 0.5.
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Table 5.1: Performance evaluation of visual phrase-based indexing at TRECVID
2009 CCD dataset. Evaluation profile parameters are set as CM = 10, CFA = 1.
Total number of features in the reference database are 181, 338, 757 for 1-NN and
2-NN cases respectively.

NDCR Original VP(1,2)

(100K,256) (1024,256)
T1 (Camcording) NA NA
T2 (PiP-Type1) 0.062 0.266
T3 (Pat. Ins.) 0.043 0.015
T4 (Strong Re.) 0.140 0.385
T5 (Ch. Gamma) 0.060 0.078
T6 (Dec.Q.3) 0.015 0.007
T7 (Dec.Q.5) NA NA
T8 (PP.3) 0.065 0.030
T9 (PP.50 NA NA
T10 (Rnd.5) 0.255 0.393

Table 5.2: Performance evaluation of compressed reference feature database with
multivariate and multivariable information gain of visual phrases at TRECVID 2009
CCD dataset. Entropies are estimated by proposed Grassberger estimator. Evaluation
profile parameters are set as CM = 10, CFA = 1. Total number of features in the
compressed reference databases are 189, 299, 172 and 92, 183, 999 for 2-NN and 1-
NN cases respectively while original database has 205, 460, 930 features.

NDCR VP(1,2) VP(2,2) – Tc = 0.5 VP(2,2) – Tc = 0.5

Multivariate Multivariable

(1024,256) (1024,256) (512,256) (1024,256) (512,256)
T1 (Camcording) NA NA NA NA NA
T2 (PiP-Type1) 0.266 0.270 0.329 0.357 0.356
T3 (Pat. Ins.) 0.015 0.015 0.000 0.007 0.000
T4 (Strong Re.) 0.385 0.454 0.526 0.392 0.528
T5 (Ch. Gamma) 0.078 0.101 0.058 0.112 0.108
T6 (Dec.Q.3) 0.007 0.018 0.030 0.025 0.007
T7 (Dec.Q.5) NA NA NA NA NA
T8 (PP.3) 0.030 0.043 0.060 0.030 0.047
T9 (PP.50 NA NA NA NA NA
T10 (Rnd.5) 0.393 0.423 0.481 0.478 0.484
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Table 5.3: Performance evaluation of visual phrase-based feature indexing at
TRECVID 2010 CCD dataset. Evaluation profile parameters are set as CM = 10,
CFA = 1. Total number of features in the reference database are 181, 338, 757 and
323, 939, 569 for 1-NN and 2-NN cases respectively.

NDCR Baseline VP(2,2) VP(1,2)

(100K,256) (512,256) (1024,256) (512,256) (1024,256)
T1 (Camcording) 0.518 0.718 0.656 0.767 0.770
T2 (PiP-Type1) 0.257 0.526 0.462 0.677 0.592
T3 (Pat. Ins.) 0.126 0.114 0.142 0.107 0.111
T4 (Strong Re.) 0.270 0.530 0.499 0.606 0.615
T5 (Ch. Gamma) 0.140 0.139 0.128 0.136 0.150
T6 (Dec.Q.3) 0.304 0.552 0.489 0.605 0.578
T7 (Dec.Q.5) NA NA NA NA NA
T8 (PP.3) 0.143 0.122 0.151 0.117 0.111
T9 (PP.5) NA NA NA NA NA
T10 (Rnd.5) 0.399 0.467 0.514 0.575 0.542

Table 5.4: Performance evaluation of compressed reference feature database with
multivariate information gain of pairwise features at TRECVID 2010 CCD dataset.
Entropies are estimated by proposed Grassberger estimator. Evaluation profile pa-
rameters are set as CM = 10, CFA = 1. Total number of features in the compressed
reference databases are 166, 533, 842 and 92, 183, 999 for 2-NN and 1-NN cases re-
spectively.

NDCR VP(2,2) VP(2,2) – Tc = 0.5 VP(1,2) – Tc = 0.5

(1024,256) (1024,256) (512,256) (1024,256) (512,256)
T1 (Camcording) 0.656 0.855 0.826 0.881 0.836
T2 (PiP-Type1) 0.462 0.608 0.681 0.757 0.757
T3 (Pat. Ins.) 0.142 0.129 0.117 0.125 0.106
T4 (Strong Re.) 0.499 0.707 0.747 0.795 0.774
T5 (Ch. Gamma) 0.128 0.132 0.158 0.190 0.211
T6 (Dec.Q.3) 0.489 0.626 0.621 0.656 0.664
T7 (Dec.Q.5) NA NA NA NA NA
T8 (PP.3) 0.151 0.132 0.140 0.142 0.122
T9 (PP.50 NA NA NA NA NA
T10 (Rnd.5) 0.514 0.522 0.600 0.573 0.608
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Table 5.5: Performance evaluation of compressed reference feature database with
multivariable information gain of pairwise features at TRECVID 2010 CCD dataset.
Entropies are estimated by proposed Grassberger estimator. Evaluation profile pa-
rameters are set as CM = 10, CFA = 1. Total number of features in the compressed
reference databases are 182, 821, 730 and 100, 501, 416 for 2-NN and 1-NN cases
respectively.

NDCR VP(2,2) VP(2,2) – Tc = 0.5 VP(1,2) – Tc = 0.5

(1024,256) (1024,256) (512,256) (1024,256) (512,256)
T1 (Camcording) 0.656 0.884 0.938 0.962 0.936
T2 (PiP-Type1) 0.462 0.641 0.719 0.751 0.748
T3 (Pat. Ins.) 0.142 0.099 0.113 0.088 0.092
T4 (Strong Re.) 0.499 0.648 0.727 0.807 0.812
T5 (Ch. Gamma) 0.128 0.160 0.129 0.209 0.197
T6 (Dec.Q.3) 0.489 0.593 0.671 0.719 0.708
T7 (Dec.Q.5) NA NA NA NA NA
T8 (PP.3) 0.151 0.160 0.164 0.144 0.141
T9 (PP.50 NA NA NA NA NA
T10 (Rnd.5) 0.514 0.528 0.589 0.594 0.643
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CHAPTER 6

CONCLUSION

In the light of the previous discussions, benefits and challenges of a robust video

duplicate detection system is apparent. Although there might be different video du-

plicate notions, in this study copy video definition is adopted. Copy videos are defined

as videos from the same source but by some kind of tolerable transformations differ

from each other. Transformations may contain addition, deletion, modification (of

aspect, color, contrast, encoding) camcording and etc. In this respect, throughout

the studies building blocks of a content-based copy detection system are investigated

comprehensively. In the next section, summary and concluding remarks of this thesis

is provided. Finally, possible future research paths are discussed in Section 6.3.

6.1 Summary

After presenting the problem statement and scope of the thesis in Chapter 1, related

work from literature is analyzed for content-based copy detection problem in Chapter

2. Moreover, publicly available datasets and corresponding performance evaluation

metrics are given in the same chapter.

In Chapter 3, two different approaches are investigated for the solution of content

based copy detection. A novel global spatio-temporal approach is proposed in Sec-

tion 3.1 whereas in Section 3.1.1 experimental results of this method is provided.

Aforementioned method utilizes temporal volume of frames in a given grid structure

for fingerprint extraction in which, multiple feature extractors that spans three fun-

damental visual information sources namely color, texture and motion are employed.
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Furthermore, in Section 3.2 a local interest point-based method is presented. Exper-

imental analysis is conducted on two large datasets, TRECVID 2009 and TRECVID

2010 CCD datasets. Results are also compared with related work from the literature

in 3.2.6.

In Chapter 4, an information theoretic feature selection and indexing method is in-

troduced by first discussing fundamentals of feature selection. Afterwards a mutual

information based algorithm is proposed. And for the estimation of joint and con-

ditional probability distributions frequentist histogram based approach is adopted.

However, drawbacks of Naive estimator is shown and in Section 4.4 a better estima-

tor is given in order to improve the entropy estimate. Advantages of this approach is

first shown on synthetically generated data in terms of MSE and bias on estimates in

4.4.1. Afterwards, content-based copy detection performance of the informative fea-

ture selection-based indexing is reported in TRECVID 2009 and 2010 CCD datasets.

Also, in Section 4.6, a method to exploit temporal distributions of local features of

successive frames is introduced and experimental results are reported for the same

datasets.

In Chapter 5 mutual information definition is extended to multiple variables. And

interaction information concept is introduced for local feature selection. In order

to utilize this perspective a visual phrase indexing approach is proposed in Section

5.1. Moreover, experimental evaluation of visual phrase indexing and corresponding

feature selection methods is further investigated in Section 5.2.

6.2 Concluding Remarks

The proposed global spatio-temporal content-based copy detection approach in Sec-

tion 3.1 showed promising results experimentally when compared with other ap-

proaches from the literature. However, local interest point-based pipeline as pre-

sented in Section 3.2 performed better in terms of detection and false alarm rate on

larger datasets. Furthermore, time localization performance of interest point-based

approach is much higher when compared to proposed spatio-temporal method. When

compared with other works in the literature, presented interest-point based method
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showed superior results. For example in TRECVID 2009 CCD dataset for all transfor-

mations/attacks on the average presented method achieved 0.091 NDCR score which

is nearly a four-fold improvement compared to recently published results.

As discussed in Chapter 4, index size effects both detection accuracy and computa-

tional complexity. Furthermore, because of the increase in the number of reference

videos or the temporal/spatial sampling rate, the index structure might grow consid-

erably hence hindering the performance of the interest-point based methods. In this

thesis to remedy the database growth informative feature selection based approach

is proposed to overcome the index size. It has been shown that in content-based

copy detection datasets, by only indexing a fraction of features same and even bet-

ter detection performance is achieved by mutual information based feature selection.

Especially for Pattern Insertion, Change of Gamma, Decrease of Quality and Post-

Production transformations, better performance is consistently achieved for all pro-

files. Even 0.00 NDCR score is achieved for some transformations which was not

possible previously with full indexing. Moreover, proposed entropy estimator based

informative feature selection method, as expected, showed superior detection perfor-

mance compared to Naive entropy estimation. Finally, since a fraction of features are

indexed a shorter inverted list is queried. Thus memory usage efficiency is improved

and coupled with having less distractor features, matching is achieved at least 2.0×
much faster when half of the features are selected.

Also, from randomized informative feature indexing it has been observed that higher

detection performance is achieved with successive frame insertion compared to ran-

dom insertion. Thus, a method to exploit temporal distributions of local features of

successive frames is introduced. For most of the transformations temporal indexing

does not improve performance considerably compared to full indexing. However,

when compared with informative feature indexing from individual frames, merits of

temporal indexing are better seen. For most of the transformations 31% to 83% im-

provement on NDCR is observed. Furthermore, as the temporal window length in-

creases the detection performance improves since discriminative consistency among

local features are better captured from larger temporal volume. It should be also noted

that expected detection results are not observed in TRECVID 2010 dataset. This is

mostly because of the reference video characteristics such as fast changing scenes
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and single shot videos.

Since there are multiple features to be indexed in a frame, in order to improve the

feature subset selection it is proposed to utilize feature interactions in a given frame.

Although proposed visual phrase extraction method is not well-suited for the content-

based copy detection problem, it has been shown by the experimental analysis that

employing multivariate modeling improves feature selection performance when com-

pared with multivariable approach. That is to say, dependencies between features are

better captured by multivariate mutual information.

6.3 Future Work

In this thesis, it has been shown that local interest point based approaches are more

efficient in content-based copy detection problems. Although in the literature there

are methods employing geometric consistency filtering, in the proposed interest point

based method no geometric constraints or spatial information is utilized. Even so,

when compared with others, proposed method showed considerably better results.

However, it would be interesting to utilize spatial information in the matching.

During the investigation of the information theoretic indexing strategies, a frequentist

approach is adopted for the estimation of conditional and joint probability distribu-

tions. However, as a future work performance of the feature selection can be analyzed

for Kernel density estimation (KDE).

Throughout the studies informativeness of a feature is measured by the distribution

of codewords in the reference index and corresponding frame. As discussed in [72],

similarities and repeating patterns are revealing to find the informative/discriminative

features in a frame. Although in the proposed method feature similarities have been

somewhat captured, since feature selection is carried out after codeword transforma-

tion. In addition, context dependent feature similarities can be exploited in order to

improve feature selection strategies. Furthermore, prior information on the known

attacks and transformations can be utilized to improve the robustness of selection to

the severe transformations.
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Although the scope of this thesis is limited to the detection of copy videos, methods

introduced in this study can be further applied for near-duplicate detection. Espe-

cially, investigating local feature informativeness in a multiple viewpoint setup would

be an interesting research path. Likewise, information theoretic indexing can be ap-

plied for different visual analysis problems such as image retrieval, object recognition

and etc.

95



96



REFERENCES

[1] Lee Gomes. Will All of Us Get Our 15 Minutes On a YouTube Video?, 2006.

[2] http://www.youtube.com/yt/press/statistics.html. [On-
line; accessed 03-February-2014].

[3] S. Poehlein, V. Saxena, G.T. Willis, Jeff Fedders, and Martin Guttmann. View-
point paper: Moving media in the cloud. Technical report, Intel, 2010.

[4] Zi Huang, Heng Tao Shen, Jie Shao, Bin Cui, and Xiaofang Zhou. Practical
Online Near-Duplicate Subsequence Detection for Continuous Video Streams.
IEEE Transactions on Multimedia, 12(5):386–398, August 2010.

[5] Arslan Basharat, Yun Zhai, and Mubarak Shah. Content based video match-
ing using spatiotemporal volumes. Computer Vision and Image Understanding,
110(3):360–377, June 2008.

[6] Mauro Cherubini, Rodrigo de Oliveira, and Nuria Oliver. Understanding near-
duplicate videos. In Proceedings of the seventeen ACM international conference
on Multimedia - MM ’09, page 35, New York, New York, USA, October 2009.
ACM Press.

[7] Alexis Joly, C. Frelicot, and O. Buisson. Robust Content-Based Video Copy
Identification in a Large Reference Database. Image and Video Retrieval,
2728:511–516, 2003.

[8] J. Law-To, V. Gouet-Brunet, O. Buisson, and N. Boujemaa. Local Behaviours
Labelling for Content Based Video Copy Detection. In 18th International Con-
ference on Pattern Recognition (ICPR’06), pages 232–235. Ieee, 2006.

[9] A. Jaimes and A.C. Lou. Detection of non-identical duplicate consumer pho-
tographs. In Fourth International Conference on Information, Communications
and Signal Processing and the Fourth Pacific Rim Conference on Multimedia,
pages 16–20. IEEE, 2003.

[10] E. Rossi, S. Benini, R. Leonardi, B. Mansencal, and J. Benois-Pineau. Clus-
tering of scene repeats for essential rushes preview. In 2009 10th Workshop on
Image Analysis for Multimedia Interactive Services, pages 234–237. IEEE, May
2009.

97

http://www.youtube.com/yt/press/statistics.html


[11] Shin’ichi Satoh, Masao Takimoto, and Jun Adachi. Scene duplicate detection
from videos based on trajectories of feature points. In Proceedings of the inter-
national workshop on Workshop on multimedia information retrieval - MIR ’07,
page 237, New York, New York, USA, 2007. ACM Press.

[12] M. Takimoto and M.S. Shin’ichi Satoh. Identification and detection of the same
scene based on flash light patterns. In 2006 IEEE International Conference on
Multimedia and Expo, pages 9–12. IEEE, 2006.

[13] Jerome Revaud, Matthijs Douze, Cordelia Schmid, and Herve Jegou. Event Re-
trieval in Large Video Collections with Circulant Temporal Encoding. In 2013
IEEE Conference on Computer Vision and Pattern Recognition, pages 2459–
2466. Ieee, June 2013.

[14] Chih-Yi Chiu, Jenq-Haur Wang, and Hung-Chi Chang. Efficient Histogram-
Based Indexing for Video Copy Detection. In Ninth IEEE International Sympo-
sium on Multimedia Workshops (ISMW 2007), pages 265–270. IEEE, December
2007.

[15] Chih-Yi Chiu, Cheng-Chih Yang, and Chu-Song Chen. Efficient and Effective
Video Copy Detection Based on Spatiotemporal Analysis. In Ninth IEEE Inter-
national Symposium on Multimedia (ISM 2007), pages 202–209. IEEE, Decem-
ber 2007.

[16] D.N. Bhat and S.K. Nayar. Ordinal measures for image correspondence. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(4):415–423,
April 1998.

[17] J. Zobel. Detection of video sequences using compact signatures. ACM Trans-
actions on Information Systems, 24(1):1–50, January 2006.

[18] Arun Hampapur, Kiho Hyun, and Ruud M. Bolle. Comparison of sequence
matching techniques for video copy detection. In Proceedings of SPIE, pages
194–201. SPIE, 2001.

[19] Ahmet Saracoglu, Ersin Esen, Tugrul K. Ates, Banu Oskay Acar, Unal Zubari,
Ezgi C. Ozan, Egemen Ozalp, a. Aydin Alatan, and Tolga Ciloglu. Content
Based Copy Detection with Coarse Audio-Visual Fingerprints. 2009 Seventh In-
ternational Workshop on Content-Based Multimedia Indexing, pages 213–218,
June 2009.

[20] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60(2):91–110, November 2004.

[21] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust
Features. In Computer Vision–ECCV 2006, 2006.

98



[22] Geert Willems, Tinne Tuytelaars, and Luc Van Gool. Spatio-temporal features
for robust content-based video copy detection. In Proceeding of the 1st ACM
international conference on Multimedia information retrieval - MIR ’08, page
283, New York, New York, USA, 2008. ACM Press.

[23] Matthijs Douze, Hervé Jegou, and Cordelia Schmid. An Image-Based Ap-
proach to Video Copy Detection With Spatio-Temporal Post-Filtering. IEEE
Transactions on Multimedia, 12(4):257–266, June 2010.

[24] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Hamming embedding
and weak geometric consistency for large scale image search. In Computer
Vision–ECCV 2008, pages 304–317. Springer, 2008.

[25] Matthijs Douze, H Jégou, and C Schmid. Compact video description for copy
detection with precise temporal alignment. In Computer Vision–ECCV 2010,
2010.

[26] Alexis Joly, Olivier Buisson, and Carl Frelicot. Content-Based Copy Retrieval
Using Distortion-Based Probabilistic Similarity Search. IEEE Transactions on
Multimedia, 9(2):293–306, February 2007.

[27] Xiangmin Zhou, Xiaofang Zhou, Lei Chen, Athman Bouguettaya, Nong
Xiao, and John a. Taylor. An Efficient Near-Duplicate Video Shot Detection
Method Using Shot-Based Interest Points. IEEE Transactions on Multimedia,
11(5):879–891, August 2009.

[28] Shiyang Lu, Zhiyong Wang, Meng Wang, Max Ott, and Dagan Feng. Adaptive
reference frame selection for near-duplicate video shot detection. In 17th IEEE
International Conference on Image Processing (ICIP), pages 2341–2344, 2010.

[29] David Chen, Ngai-Man Cheung, Sam Tsai, Vijay Chandrasekhar, Gabriel
Takacs, Ramakrishna Vedantham, Radek Grzeszczuk, and Bernd Girod. Dy-
namic selection of a feature-rich query frame for mobile video retrieval. In 17th
IEEE International Conference on Image Processing, pages 1017–1020, 2010.

[30] Carlo Tomasi and T Kanade. Detection and Tracking of Point Features Techni-
cal Report CMU-CS-91-132. Technical Report 7597, 1991.

[31] TK Ates, E Esen, A Saracoglu, M Soysal, Y Turgut, O Oktay, and AA Alatan.
Content based video copy detection with local descriptors. In Signal Processing
and Communications Applications Conference (SIU), 2010 IEEE 18th, pages
49–52. IEEE, 2010.

[32] Yan Ke, Rahul Sukthankar, and Larry Huston. An efficient parts-based near-
duplicate and sub-image retrieval system. In 12th annual ACM international
conference on Multimedia - MULTIMEDIA ’04, page 869, New York, New
York, USA, October 2004. ACM Press.

99



[33] WL Zhao and CW Ngo. Flip-invariant SIFT for copy and object detection.
Image Processing, IEEE Transactions on, 22(3):980–991, 2013.

[34] Zhu Liu, Tao Liu, David C. Gibbon, and Behzad Shahraray. Effective and scal-
able video copy detection. In Proceedings of the international conference on
Multimedia information retrieval - MIR ’10, page 119, New York, New York,
USA, 2010. ACM Press.
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A. Saracoğlu, M. Tekin, E. Esen, et al., “Generalized Visual Concept Detection,” SİU
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Türkiye.

B. Oskay Acar, Ü. Zubari, E. C. Ozan, A. Saracoğlu, E. Esen and T. Çiloğlu, “Voting
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