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ABSTRACT

GRAPH-BASED JOINT CHANNEL ESTIMATION AND DATA DETECTION
FOR LARGE-SCALE MULTIUSER MIMO-OFDM SYSTEMS

Şeref Yaşar Tekı̇n,

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Ali Özgür Yılmaz

March 2015, 52 pages

In this thesis, a graph-based soft iterative receiver for large-scale multiuser MIMO-
OFDM systems is proposed that performs joint channel estimation and data detection
over time-varying frequency selective channel. In an uplink scenario, factor graph
structures for the transmitter of users and the receiver of base-station are presented,
which provide Gaussian message passing between nodes. Instead of LLR, reliability
information of symbols are used to decrease complexity of the proposed algorithm.
Training symbols, known at the receiver, are utilized to get channel state informa-
tion at the initialization. Also a new training structure is proposed which enables
channel estimation and data detection for numerous users. Soft channel estimation
process is introduced which utilizes correlation information between channel coeffi-
cients. Transfer nodes bring reliability information of channel coefficients between
coefficient nodes to converge actual value. Message passing schedule is rearranged to
enhance performance of the graph based soft iterative receiver. Extrinsic information
exchange is applied between nodes of the repeated symbols. Soft information of the
channel coefficients and symbols are jointly refined in each iteration.

The BER performance analysis of graph based soft iterative receiver is investigated
by comparing non-iterative ML and MRC. Simulation results show that the proposed
algorithm with channel knowledge has a similar performance with MRC and outper-
forms non-iterative ML. Performance of GSIR with different training symbol spac-
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ing, number of users, number of receive antennas, code rates and constellations are
compared to provide an overview of the proposed algorithm. Also channel estimation
performance of GSIR is analyzed by comparing with perfect channel knowledge case.
A LDPC decoder is used in combination with GSIR to increase total performance.

Keywords: MIMO-OFDM, factor graph, Gaussian message passing, channel estima-
tion, iterative receiver, fading channels, BER Analysis
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ÖZ

ÇOK KULLANICILI BÜYÜK ÖLÇEKLİ MIMO-OFDM SİSTEMLER İÇİN
ÇARPAN ÇİZGE TEMELLİ BİRLEŞİK KANAL KESTİRİMİ VE VERİ TESPİTİ

Şeref Yaşar Tekı̇n,

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ali Özgür Yılmaz

Mart 2015 , 52 sayfa

Bu tezde, frekans seçici zamanla değişen kanallarda çok kullanıcılı büyük ölçekli
MIMO-OFDM sistemler için çarpan çizge temelli yinelemeli bir alıcı yapısı öne sü-
rülmüştür. Kullanıcıdan baz istasyonuna iletişim durumunda, kullanıcıların gönderi-
cisi ve baz istasyonu alcısı için sunulan çizge yapısı Gauss mesaj iletimi ile çalış-
maktadır. Sunulan algoritmanın karmaşıklığını azaltmak için LLR yerine sembollerin
güvenirlik bilgisi kullanılmıştır. Başlangıç durumunda kanal durum bilgisini elde et-
mek için alıcıda bilinen örnek semboller kullanılmıştır. Ayrıca, çok sayıda kullanıcı
için kanal kestirimi ve veri tespitine olanak sağlayan yeni bir örnek sembolleme ya-
pısı önerilmiştir. Kanal katsayıları arasındaki bağıntı bilgisini kullanan kanal kesti-
rimi süreci tanıtılmıştır. Nakil boğumları kanal katsayılarının güvenirlik bilgisini ka-
nal boğumları arasında taşıyarak kanal katsayılarına ulaşılmasını sağlar. Çarpaz çizge
temelli yinelemeli alıcının performansını arttırmak için mesaj iletimi planı yeniden
ayarlanmıştır. Harici bilgi değişimi tekrarlanmış sembol boğumları arasında uygula-
nır. Kanal katsayıları ve sembollerin bilgisi her yinelemede birlikte arıtılır.

Yinelemesiz ML ve MRC algoritmaları ile karşılaştırarak çarpan çizge temelli yine-
lemeli alıcının bit-hata-olasılığı analizi incelenmiştir. Simulasyon sonuçları sunulan
algoritmanın kanal bilgisini kullanarak MRC algoritmasına yakın bir performans ser-
gilediğini ve performansının yinelemesiz ML algoritmasını geçtiğini göstermektedir.
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GSIR’ın performansı değişik örnek sembol araklığı, kullanıcı sayısı, alıcı anten sa-
yısı, kod oranı ve kümelerde algoritmaya genel bir bakış açısı oluşturmak için in-
celenmiştir. Ayrıca kanal kestirim performansı, GSIR kanal bilgisine sahip olduğu
durumla karşılaştırılarak analiz edilmiştir. LDPC kod çözücü GSIR ile birlikte kulla-
nılarak toplam performans arttırılmıştır.

Anahtar Kelimeler: MIMO-OFDM, çarpan çizge, Gauss mesaj iletimi, kanal kesti-
rimi, yinelemeli alıcı, sönümlemeli kanallar, bit-hata-olasılığı analizi
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CHAPTER 1

INTRODUCTION

Multiple-input multiple-output (MIMO) transmission in combination with orthogonal

frequency division multiplexing (OFDM) is a key technology that satisfies the high

throughput demands of next generation wireless systems [17],[16]. Also an interest

in large-scale multiuser MIMO-OFDM systems have emerged with the increasing

number of users in a wireless communication system. The space-division multiple

access (SDMA) method using MIMO poses an alternative for multiuser systems with

ten to hundred of users [20].

Channel knowledge at the receiver is an indispensable feature for new generation

wireless systems. Channel state information (CSI), which involves channel responses,

is obtained by using training symbols in order to enable high-quality detection and

estimation. Training symbols, also called pilot signals [2], is known at the receiver

and placed into a MIMO-OFDM frame to get more reliable CSI. Accuracy of CSI

has an important role for system performance. While MIMO-OFDM provides high

spectral efficiency, complexity and training overhead increases with the number of

users. Especially the training overhead limits the number of permitted users, which

bounds the spectral efficiency.

Graphical models are very effective techniques applied in many engineering prob-

lems. Factor Graphs are graphical models utilized in many areas such as coding,

signal processing, machine learning, pattern recognition and statistics [9]. It is quite

practical to design iterative algorithms with factor graphs especially in detection and

estimation problems which involve many variables [10].
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In conventional ML and MAP estimators, complexity increases exponentially with

the modulation order and the number of users. Recently, there has been growing

interest in suboptimal iterative expectation maximization algorithms [22], [21] that

reduce receiver complexity.

Large-scale multiuser MIMO systems have attracted significant interests in recent

years [11],[14], [5]. Reducing the complexity in systems with ten to hundred receive

antennas and users has became a main issue for next generation multiuser wireless

systems [15], [20].

Iterative graph-based receivers offer a low complexity framework for joint estimation

and detection [19]. The belief propagation algorithm has been used for SISO/MIMO

detection in [6]. A receiver that performs channel estimation and data detection over

OFDM systems using belief propagation is proposed for a SISO system in [13] and for

a MIMO system in [23]. Also accounting for the correlation between channel coeffi-

cients, soft channel estimation and soft data detection are applied for MIMO-OFDM

systems [7] which we base our study. In another work [20], the authors propose

graph-based iterative data detection for large-scale multiuser MIMO-OFDM systems.

The scope of this study is different from [7] and [20]. The work in [20] deals with

complexity in large scale MIMO-OFDM systems with perfect channel knowledge at

the receiver, while this study focuses on joint channel estimation and data detection

for large scale multiuser MIMO-OFDM system without significant increase in train-

ing overhead and complexity. On the other hand, the receiver in [7] is capable of joint

channel estimation and data detection with number of transmit antennas/users that

are still limited due to training overhead and the receiver complexity is dependent on

the modulation order. However in our proposed algorithm, channel estimation is fea-

sible for numerous transmit antennas/users and high-order modulations can be used

without significant increase in complexity.

In this study, a graph-based soft iterative algorithm is proposed for large scale mul-

tiuser MIMO-OFDM systems over time-varying frequency selective-channel. New

transmitter and receiver structures are proposed for the users and the base-station in

an uplink scenario. To make the receiver complexity less dependent on the modula-

tion order, symbol estimates are utilized instead of symbol probabilities. All variables
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are approximated as complex Gaussian and using the sum-product (belief propaga-

tion) algorithm on a graph, an approximate Gaussian message-passing algorithm is

applied.

In addition, a new training structure is proposed which enable usage of a large number

of transmit antennas/users. Different from [7], the ratio of training overhead is fixed

and becomes independent of the number of users which alleviates the limitation on

spectral efficiency.

In order to enhance performance, a new message-passing schedule is also introduced

which reduces the effects of short-cycles occurring along iterations. Symbol and

channel estimates are refined in each iteration by extrinsic information exchange.

At the end of each iteration, symbol estimates are normalized with respect to the

constellation for better detection performance.

Performance of the proposed graph-based soft iterative algorithm is studied through

simulations. Channel estimation performance is investigated by comparing to the per-

fect channel state information case where channel coefficients are exactly known at

the receiver. Non-iterative ML and MRC algorithms are applied and compared with

the proposed algorithm. An LDPC encoder and decoder are added to the transmit-

ter and receiver and a cascade structure is formed to enhance the total performance.

System performance is tested over large-scale MIMO, or massive MIMO with tens to

hundreds of users and receiver antennas (e.g. 32×32). The performance of multiuser

MIMO-OFDM system with different constellations, code rates and number of users

are presented to provide an overview for the proposed algorithm.

The thesis is organized as follows. In Chapter 2, the MIMO and OFDM techniques

and the Factor Graphs are described to set up the factor graph approach for MIMO-

OFDM. In Chapter 3, a new graph-based soft iterative receiver algorithm is proposed.

Estimation, detection and message exchange algorithms are described. In Chapter 4,

simulation results are presented. Finally, Chapter 5 concludes the study.

Throughout the study, following notations are used. Lowercase italic letters (e.g., x)

denote scalars, bold lowercase letter denote vectors (e.g., x) and matrices are repre-

sented by bold uppercase letters (e.g., X). The superscripts ()∗, ()H denote conjugate

3



and Hermitian transpose and E[·] represents expectation operation. Parameters µx

and σ2
x denote mean value and variance of a given random variable x.

4



CHAPTER 2

THE FACTOR GRAPH APPROACH TO MIMO-OFDM

In this chapter, the MIMO transmission and OFDM modulation techniques are de-

scribed and their combination, namely MIMO-OFDM technique is explained. Mod-

ulation and demodulation method of OFDM are presented, advantages and disad-

vantages of OFDM are discussed. Finally, graph-based representation of a MIMO-

OFDM system is indicated.

2.1 Multiple-Input Multiple-Output Transmission

In new generation wireless technologies, multiple-input multiple-output (MIMO) trans-

mission in combination with orthogonal frequency division multiplexing (OFDM) is

used as a common way to reach high data rates. It is a fact that frequency spectrum

has become a limited resource with popularly used wireless systems and technolo-

gies. Using an assigned frequency band efficiently and increasing spectral efficiency

is one of the main goals for new wireless technologies. MIMO satisfies these needs

by providing spatial multiplexing gain and improving link reliability [1].

It is proved that different messages could be transmitted at the same time and in the

same frequency band by using multiple antennas. It utilizes the fact that signals sent

from different antennas arrive the receiver with differing channel gains. In this way,

different data streams could be transmitted over multiple antennas [18].

Although multipath is seen as a destructive factor for the wireless channel, MIMO is a

technology which benefits from the multipath propagation [3]. It has long been known
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that beamforming could be utilized to attain array gain with channel knowledge at the

transmitter. Also multiple receive antennas can be used for increasing diversity in

order to combat fading and interference. However, the term MIMO usually means

transmission of multiple data streams at the same time and frequency band to achieve

spatial multiplexing and increasing capacity [1]. Unlike multiplexing in time and

frequency domains, spectral efficiency can be increased by spatial multiplexing.

2.1.1 MIMO Channel Model

A narrowband communication system using Nt transmit and Nr receive antennas can

be seen in Fig. 2.1 . Here hn,m denotes channel coefficient between mth transmit

antenna and nth receive antenna.

Figure 2.1: MIMO channel

This system can be modelled by the following discrete time model


y1

...

yNr

 =


h1,1 . . . h1,Nt

... . . . ...

hNr,1 . . . hNr,Nt



x1

...

xNt

 +


w1

...

wNr

 (2.1)
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or, in short by

y = Hx + w (2.2)

where x represents the Nt dimensional transmitted symbol, y symbolizes Nr dimen-

sional received symbol and w is the Nr dimensional zero-mean complex gaussian

noise vector with covariance matrix σ2
nINr . The noise power at a receive antenna is

denoted by σ2
n and equals to N0B.

For a given total transmit power P , the average SNR per antenna is calculated as ρ =

P/σ2
n under unity channel gain when input symbols satisfy (2.3). In this calculation,

it is usually assumed that the terms of the channel matrix H have variance 1 and are

independent. Equivalently, trace of the input covariance matrix must be equal to P as

in (2.4)

Nt∑
i=1

E[xix
∗
i ] = P, (2.3)

Rx = E[xxT ],Tr(Rx) = P. (2.4)

2.1.2 Multiplexing Gain in MIMO

The use of multiple antennas at both the transmitter and receiver sides provides an-

other performance gain called the multiplexing gain. A MIMO channel can be decom-

posed into a number R of parallel independent channels. Data rate can be roughly in-

creased R times by multiplexing data onto these independent channels. This increase

on data rate is referred to as multiplexing gain.

Let H be an Nr × Nt MIMO channel gain matrix which is known both at the re-

ceiver and transmitter. For any matrix, its singular value decomposition (SVD) can

be obtained as

H = UΛVH (2.5)
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where U is an Nr × Nr and V is an Nt × Nt unitary matrix. Λ is an Nr × Nt

diagonal matrix which contains singular values λi of H. The number of nonzero

singular values is defined as the rank(R) of the matrix. The rank of a matrix cannot

be larger than the number of columns or rows, R ≤ min(Nr, Nt). If the channel is

rich scattering, the rank of the channel matrix is obtained by R = min(Nr, Nt) and

it is a full rank matrix.

By transmitter precoding (x = Vx̃) and receiver shaping (y = UHỹ), a MIMO

channel can be separated into independent channels. The parallel decomposition of

the matrix is obtained as [3]

ỹ = UH(Hx + w) (2.6)

= UH(UΛVHx + w) (2.7)

= UH(UΛVHVx̃ + w) (2.8)

= UHUΛVHVx̃ + UHw (2.9)

= Λx̃ + w̃ (2.10)

where w̃ and w are identically distributed vectors. Parallel channels obtained by

parallel decomposition can be seen in the Fig. 2.2.

2.2 Orthogonal Frequency Division Multiplexing

Orthogonal frequency division multiplexing (OFDM) is a multicarrier modulation

method used for encoding data onto orthogonal subchannels. Although multicarrier

modulation was invented before, computational complexity hindered its widespread

use. Improvement on low-complexity algorithms such as Fast Fourier Transform

(FFT) brought to mind that multicarrier modulation can be used with these algorithms

which are easy to implement [3]. In this way, OFDM was invented and became a

widespread technology.

OFDM increases reliability of communication system by dividing a channel into

closely spaced subchannels which are referred to as subcarriers . This adjustment

8



Figure 2.2: Parallel decomposition of MIMO channel

reduces the effect of Inter-Symbol Interference(ISI) which is one of the most corrup-

tive factor for wireless channel [18]. The effects of ISI increases with the overlapping

time of multipath signals and the desired signal. OFDM eliminates ISI by dividing

high-bandwidth channel into numerous low-bandwidth channels. Thus symbol dura-

tion is increased and the proportion of multipath signals overlapping time is reduced.

Although OFDM has a lot of advantages, it suffers from several inherent problems.

OFDM is sensitive to Doppler shift and frequency synchronization problems. Cyclic

prefix or guard interval between OFDM symbols reduces the efficiency [1]. An

OFDM transmission has a high peak-to-average-power ratio (PAPR). PAPR is in-

creased by constructive addition of independent subcarrier phases and it is a huge

problem for amplifiers at the transmitter side. Non-linearity of the amplifier can

cause intermodulation which may increase the noise floor, create inter-carrier inter-

ference(ICI) and out-of-band radiation. Operation in the non-linear region is avoided

by backing-off at the expense of reduced average transmitted power.
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2.2.1 Cyclic Prefix

Cyclic Prefix is a data block which is transmitted during guard interval time and it is

a copy of the last part of the OFDM symbol. At the receiver side, cyclic prefix allows

taking circular convolution of the received samples which eliminates the ISI between

transmitted symbols.

Cyclic prefix can be defined as (x[N − µ], . . . , x[N − 1]) where the input sequence

is x[n] = (x[0], . . . , x[N − 1]), N is the length of the sequence, µ+ 1 is the length of

channel impulse response h[n] = (h[0], . . . , h[µ]). The number of the taps µ+ 1 can

be calculated by dividing maximum delay spread(Tm) to sampling time(Ts). Output

sequence can be defined as x̃[n] = (x[N − µ], . . . x[N − 1], x[0], . . . , x[N − 1]) of

length N + µ and shown in Fig. 2.3.

Figure 2.3: Cyclic prefix of length µ

Consider a output sequence of length N + µ, the last N sample of the output can be

calculated in the absence of noise as

y[n] = x̃[n] ∗ h[n]

=

µ−1∑
k=0

h[k]x̃[n− k]

=

µ−1∑
k=0

h[k]x[n− k]N

= x[n]⊗ h[n]

(2.11)

where ⊗ denotes circular convolution which yields Y [i] = X[i]H[i] in the frequency
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domain. The input symbol can be detected by using (2.12) for a known channel

impulse response.

X[i] = Y [i]/H[i] = DFT (y[n])/DFT (h(n)) (2.12)

2.2.2 OFDM Modulation

The implementation of OFDM is shown in Fig. 2.4. The input data stream is mod-

ulated by a modulator, and complex symbol stream X[0], X[1], . . . , X[N − 1] are

obtained. These complex symbols are transformed to N parallel symbols by serial-to

parallel converter. Symbols are passed from frequency domain to time domain by the

IFFT process. After adding CP, these discrete time samples are ordered by parallel-to

serial converter and the continuous time signal is constructed using digital to analog

converters. Finally, the real and imaginary parts of the signal are upconverted to a

carrier frequency.

The inverse of the same process is applied at the receiver. First, the signal is down-

converted to baseband and filtered to remove high frequency components. The con-

tinuous time signal is transformed to discrete time samples by analog to digital con-

verters . After removing Cyclic Prefix, N parallel symbols are obtained by serial-

to parallel converters. Symbols are passed from time domain to frequency domain

by FFT process. Parallel symbol streams are converted to serial complex stream

X̃[0], X̃[1], . . . , X̃[N − 1] and demodulated to obtain desired data.

2.3 Factor Graphs

Graphical models are very effective representations with wide use in many disci-

plines. Factor Graphs are graphical models utilized in many areas such as coding,

signal processing and statistics. It is more practical to design algorithms especially in

detection and estimation problems which involve many variables [10].

A Factor-Graph is a bipartite graph that represents factorization of a function. Nodes

constituting the factor-graph, are divided into two sets. These disjoint sets are named
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Figure 2.4: Transmitter and receiver structure of OFDM

12



as set of factor nodes and set of variable nodes. Every variable node must be con-

nected to a factor node, but the connection between nodes in the same set is forbidden.

These connections are also called as edges.

Factorization of a function can be modeled as follows

f(X1, X2, . . . , Xn) =
m∏
i=1

fi(Si) (2.13)

where Xi’s are variable nodes, fi’s are factor nodes, Si ⊆ {X1, X2, . . . , Xn}, m is

the number of factor nodes and n is the number of variable nodes. A factor graph can

be represented as G(F,X,E) which is a structure consisted of factors (F ), variables

(X) and edges (E).

Figure 2.5: An example of a factor graph

Consider a function factored as follows

f(X1, X2, X3) = f1(X1)f2(X1, X2)f3(X1, X2, X3)f4(X1, X3) (2.14)

connection between f1 andX1 on a factor graph means that f1 is a function of variable

x1. The factorization in (2.14) corresponds to the factor graph in Fig. 2.5.

Using message passing algorithms like the sum-product algorithm and the max-product

algorithm, certain characteristics of a factored function can be computed through the

use of a factor graph [10]. In particular, marginal distributions of variables can be

efficiently obtained by a factor graph combined with a suitable message passing al-

gorithm.
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Figure 2.6: The factor graph of a system with two AWGN channels
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As an example, a factor graph for a system that has two AWGN channels is depicted in

Fig. 2.6. The symbol x is transmitted through two independent AWGN channels, z1

and z2 are gaussian noises, y1 and y2 are two independent observations. Factorization

of the given system and equivalents of the factors are given below.

f(x, x1, x2, z1, z2, y1, y2) =

p(x)p(z1)p(z2)f=(x, x1, x2)f+(x1, z1, y1)f+(x2, z2, y2)

f=(x, x1, x2) = δ(x− x1)δ(x− x2)

f+(x1, y1, z1) = δ(x1 + z1 − y1)

f+(x2, y2, z2) = δ(x2 + z2 − y2)

f(x, x1, x2, z1, z2, y1, y2) =

p(x)p(z1)p(z2)δ(x− x1)δ(x− x2)δ(x1 + z1 − y1)δ(x2 + z2 − y2)

(2.15)

Factor δ(x − x1)δ(x − x2) represented by = enforces vairables x1, x2 to be equal to

x and factor δ(xn + zn − yn) represented by + enforces xn + zn = yn.

2.3.1 Sum-Product Message Passing Algorithm

The sum-product message passing, also known as belief propagation, is a message

passing algorithm which provides calculation of marginal distributions on graphical

models. Belief propagation is utilized in many topics especially in information theory.

LDPC and turbo codes are the main applications on which the sum-product algorithm

is successfully applied [10].

If f(x1, x2, . . . , xn) is a global function of discrete random variables, then the marginal

function of Xk is computed by using the sum-product rule as

f(xk) =
∑
x′\xk

f(x′) (2.16)

where x′ \ xk denotes the set of discrete random variables X1, X2, . . . , Xn except Xk

and f(xk) gives the probability distribution of Xk.

15



In the factor graph given in Fig. 2.6, a posteriori probability function of X for given

observations y1, y2 can be calculated as

f(x|y1, y2) ∝ f(x, y1, y2)

= −→µX(x)←−µX(x)
(2.17)

where −→µX(x) is the message that flows in the displayed −→ direction and←−µX(x) is the

message that flows in the opposite way. Equalization for flowing messages are given

as

−→µX(x) = fX(x) (2.18)

and messages sent from variable nodes X1 and X2 are found and then combined as

←−−µX1(x1) =

∫
z1

δ(x1 + z1− y1)−→µZ1(z1)dz1 (2.19)

= −→µZ1(y1 − x1) (2.20)

= fZ1(y1 − x− 1) (2.21)

←−−µX2(x2) =

∫
z2

δ(x2 + z2− y2)−→µZ2(z2)dz2 (2.22)

= −→µZ2(y2 − x2) (2.23)

= fZ2(y2 − x2) (2.24)

←−µX(x) =

∫
x1

∫
x2

δ(x− x1)δ(x− x2)←−−µX1(x1)←−−µX2(x2)dx1dx2 (2.25)

= ←−−µX1(x)←−−µX2(x) (2.26)

= fZ1(y1 − x)fZ2(y2 − x) (2.27)

finally, probability function of X is calculated by using (2.17)

f(x|y1, y2) = fX(x)fZ1(y1 − x)fZ2(y2 − x) (2.28)

2.3.2 Factor Graphs in Coding Theory

Coding theory is one of the main areas where factor graphs are utilized. Factor graphs

offer low complexity iterative receiver structures for forward error correction codes.
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A factor graph structure for channel estimation and LDPC decoding is proposed in

[12].

Message passing over factor graph can be allowed by using the sum-product algo-

rithm [9] and soft information of the coded bits are exploited to obtain information

bits. As an example, the factor graph structure of an LDPC code is depicted in Fig.

2.7 and factor gragh of a repeat accumulate (RA) code is given in Fig. 2.8. LLR of

the bits, which provide soft information, are exchanged in each iteration.

LLRs at the check nodes represented by ⊕ are calculated as

b3 = b2 ⊕ b1

LLRb3 = 2 tanh−1(tanh(LLRb1/2) tanh(LLRb2/2))
(2.29)

and LLRs at the cloning nodes represented by = are calculated as

b3 = b2 = b1

LLRb3 = LLRb1 + LLRb2

(2.30)

Figure 2.7: Factor graph of a LDPC code
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Figure 2.8: Factor graph of a RA code

2.4 Graph-Based Representation of a MIMO-OFDM System

MIMO-OFDM is a transmission and multiplexing technique that combines advan-

tages of MIMO transmission and OFDM. After removing cyclic prefix and taking

DFT of the received samples, a MIMO-OFDM system can be modeled in frequency

domain as in (2.31), where i is the subcarrier index

Yn(i) =
M∑
m=1

Xm(i)Hn,m(i) + Zn(i). (2.31)

The factor graph structure of a 2×2 MIMO-OFDM system for a given subcarrier is il-

lustrated in Fig. 2.9 where observations Yn and channel coefficients Hn,m are known.

The probability mass function of symbol variables X1 and X2 can be calculated by

using the sum-product algorithm as in (2.17)

f(X1, X2|Hn,m, Yn) = −−→µX1(X1)←−−µX1(X1) (2.32)

(2.33)
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Figure 2.9: The factor graph structure of a 2×2 MIMO-OFDM system
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and received messages are calculated by

−−→µX1(X1) = fX1(X1) (2.34)

←−−µX1(X1)) = fX2(X2)fZ1(Y1 −
2∑
i=1

H1,iXi)fZ2(Y2 −
2∑
i=1

H2,iXi) (2.35)

(2.36)

finally we have

f(X1, X2|Hn,m, Yn) =

fX1(X1)fX2(X2)fZ1(Y1 −
2∑
i=1

H1,iXi)fZ2(Y2 −
2∑
i=1

H2,iXi)
(2.37)
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CHAPTER 3

GRAPH BASED SOFT-ITERATIVE RECEIVER

In this chapter, a channel model over which the proposed multiuser graph based soft-

iterative receiver (GSIR) operates is first defined. The transmitter structure, the re-

ceiver structure and associated factor graph are described.

3.1 Channel Model

The uplink of a multiuser MIMO-OFDM system with M users and one base-station

is considered. Each user has only one transmit antenna and the base-station has N

receiver antennas. The channel model of the system is illustrated in Fig. 3.1.

Figure 3.1: Multiuser MIMO channel model
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The MIMO-OFDM frame consists of L OFDM subcarriers and K OFDM symbols.

After OFDM demodulation, discrete time model of the channel can be formed as [7].

yn(l, k) =
M∑
i=1

hn,i(l, k)xi(l, k) + wn(l, k)

= hn,m(l, k)xm(l, k) +
M∑

i=1,i 6=m

hn,i(l, k)xi(l, k)︸ ︷︷ ︸
MAI

+wn(l, k)︸ ︷︷ ︸
AWGN

(3.1)

where l and k represent the subcarrier and symbol indexes respectively, yn is the

received signal at the nth receive antenna, xm is the transmitted signal from mth user.

hn,m denotes channel coefficient betweenmth user’s transmit antenna and nth receive

antenna. Multi-Antenna Interference (MAI) consists of (M − 1) signals from other

users. Combined with the Gaussian noise term wn, MAI corrupts the desired signal.

The total interference is called effective noise and consists of MAI and the AWGN

term and denoted by vn,m(l, k)

vn,m(l, k) =
M∑

i=1,i 6=m

hn,i(l, k)xi(l, k) + wn(l, k) (3.2)

so that

yn(l, k) = hn,m(l, k)xm(l, k) + vn,m(l, k) (3.3)

The channel coefficients are unit power, zero mean complex Gaussian variablesNC(0, 1)

and can be modeled as [4]

hn,m(l, k) = lim
Np→∞

1√
Np

Np∑
i=1

exp(j(θi + 2πfD,ikTs − 2πτilF )) (3.4)

where OFDM symbol duration and OFDM subcarrier spacing are denoted by Ts and

F . Np is the number of the multipath components and assumed to be infinite. Random

phase θi ∈ [0, 2π), Doppler frequency fD,i ∈ [−fD,max, fD,max] and propagation

delay τi ∈ [0, τmax] are the other factors that affect multipath component.
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Howbeit ,channel coefficients are correlated in the spatial domain in [4], whereas

coefficients are assumed to be uncorrelated in the spatial domain in our channel model

due to the mobility of users so that

E[h∗n,ihn,j] = 0, for all i 6= j. (3.5)

3.2 Transmitter and Receiver Structure

Transmitter structures of the users and the receiver structure of the base station are

illustrated in Fig.3.2, where Π represents the interleaver. The mapper performs the

modulation operation. The modulated symbols are repeated and then interleaved by

an interleaver known at the receiver. Then, training symbols are inserted to the frame

and OFDM modulation is applied. Finally modulated symbols of the users are trans-

mitted simultaneously over the MIMO channel.

As a channel code, repetition code is used but the only difference is instead of bits

the symbols are repeated. Thus, message-passing between symbols is enabled which

increases the performance of the receiver and decreases the complexity of the algo-

rithm.

Figure 3.2: Block diagram of transmitters and receiver

At the receiver side, time domain samples received from each antenna are first con-

verted to frequency domain by OFDM demodulation. GSIR utilizes the whole infor-

mation in the frame to jointly perform channel estimation and data detection. The
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information generated about symbols are passed to the channel decoder and extrinsic

information are fed back to the GSIR to be used in subsequent iteration. Finally, the

decoder makes a decision using the information refined throughout iterations.

Fig. 3.3 illustrates the factor graph structure of a Multiuser MIMO-OFDM system

with 2 users, 2 receive antennas at the base station and connections of coefficients

only in frequency domain. In Fig. 3.3 Cloning nodes (=), observation nodes (y),

transfer nodes (∆) are represented by rectangles and symbol nodes (x), coefficient

nodes (h) are represented by circles. The parameters µ and σ2 denote mean values

and variances of the variables which provide soft information.

Figure 3.3: Factor graph structure of the GSIR process

Connections of the coefficient nodes on the factor graph are illustrated in Fig. 3.4. In

time and frequency domain, transfer nodes enable connection between neighboring

coefficient nodes.

A GSIR process can be summarized as
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Figure 3.4: Connections of the channel coefficients on the factor graph

1. At first, channel estimation is applied so that mean values and variances of the

channel coefficients are calculated by utilizing observations, previous channel

estimates and soft information of the symbols.

2. Information exchange between coefficient nodes is utilized. Soft information of

the channel coefficients are distributed to the frame by transfer nodes according

to the message passing algorithm and coefficient nodes combine all incoming

messages to update coefficient estimates.

3. Symbol estimation is applied by recalculating mean values and variances of the

symbols with updated channel coefficient estimates.

4. Finally, updated symbol estimates are passed to the decoder for subsequent

iterations.

3.3 Training Symbols

Training symbols are transmitted signals for providing channel information to the

receiver. Training symbols of the users are independent from each other and known
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exactly at the receiver side.

Training Symbols are placed in the frame according to Fig. 3.5. Training symbols are

interspersed with period Dt in time domain and Df in frequency domain. Different

from [7], all users are transmitting their training symbols at the same positions in

the frame so that wasted usage of bandwidth is prevented. Another advantage of this

proposal is that the limitation of user or transmit antenna numbers due to the training

overhead is eliminated.

Figure 3.5: Training grid of a multiuser MIMO-OFDM system

At the training symbol positions, the receiver does not perform symbol estimation,

however, channel estimation and information exchange are utilized . Since actual val-

ues of the training symbols are known, mean values of symbols are set to the known

values and variances are taken to be zero. Initial channel estimation at a training

symbol position is given in (3.6) where xtrm denotes training symbol of mth user.
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yn = hn,mxtrm + vn,m

µhn,m = E[hn,m|xtr1 , ..., xtrM , yn] =
yn − µvn,m

xtrm

µvn,m = E[
M∑

i=1,i 6=m

hn,ixtri + wn]

µvn,m =
M∑

i=1,i 6=m

µhn,i︸︷︷︸
0

xtri + µwn︸︷︷︸
0

= 0

µhn,m =
yn
xtrm

(3.6)

At first iteration, mean values are taken to be zero and variances equal to 1 for all co-

efficients. It is sufficient for initial estimation at the training symbol position. Starting

with training symbol positions, channel estimates get more accurate in each iteration.

The choice of training symbols affects the reliability of initial channel estimation. It is

observed that training symbols which yield
∑

i xtri ≈ 0 achieve better performance.

3.4 Soft Channel Estimation

Channel estimation is a process applied in the observation nodes to calculate soft

information of the channel coefficients. Previous channel estimates, observation and

symbol estimates are exploited for the computation. All variables are assumed to be

complex Gaussian which have a mean and a variance value. This facility also reduces

the complexity of the proposed algorithm.

The mean value of the channel coefficient at a given position is approximated by
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µhn,m = E[hn,m|xm, yn] (3.7)

=
yn − µvn,m

xm
(3.8)

µvn,m =
∑
i 6=m

µhn,iµxi (3.9)

1

xm
≈

µ∗xm
|µxm|2 + σ2

xm

(3.10)

µhn,m ≈
(yn −

∑
i 6=m µhn,iµxi)µ

∗
xm

|µxm |2 + σ2
xm

(3.11)

Approximation in (3.10) is utilized to estimate 1/xm by using µxm and σ2
xm . In each

iteration, where |xm − µxm | and σ2
xm is decreasing, this approximation gets more

accurate. A Similar approximation is used to calculate the variance of the channel

coefficient in (3.17).

σ2
hn,m =

σ2
vn,m

|xm|2
(3.12)

σ2
vn,m =

∑
i 6=m

E[|hn,ixi|2]−
∑
i 6=m

|E[hn,ixi]|2 + σ2
wn (3.13)

σ2
vn,m =

∑
i 6=m

E[|hn,i|2]E[|xi|2]−
∑
i 6=m

|E[hn,i]|2|E[xi]|2 + σ2
wn (3.14)

σ2
vn,m =

∑
i 6=m

(|µhn,i|2 + σ2
hn,i

)(|µxi |2 + σ2
xi

)−
∑
i 6=m

|µhn,i|2|µxi |2 + σ2
wn (3.15)

σ2
vn,m =

∑
i 6=m

(|µhn,i|2σ2
xi

+ |µxi |2σ2
hn,i

+ σ2
hn,i

σ2
xi

) + σ2
wn (3.16)

1

|xm|2
≈ 1

|µxm|2 + σ2
xm

(3.17)

σ2
hn,m ≈

∑
i 6=m(|µhn,i|2σ2

xi
+ |µxi |2σ2

hn,i
+ σ2

hn,i
σ2
xi

) + σ2
wn

|µxm |2 + σ2
xm

(3.18)

3.5 Soft Symbol Estimation

The task of symbol estimation is to calculate the mean and variance values of the

transmitted symbols. Previous symbol estimates, updated channel estimates after

message exchange and observations are utilized for the calculation.
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In the first iteration, µx = 0 and σ2
x = 1 for all symbol estimates. Estimations are

refined in each iteration so that µxm converges ideally to the symbol transmitted from

mth user and σ2
xm converges to zero.

µxm = E[xm|hn,m, yn] (3.19)

=
yn − µvn,m
hn,m

(3.20)

1

hn,m
≈

µ∗hn,m
|µhn,m|2 + σ2

hn,m

(3.21)

µxm ≈
(yn −

∑
i 6=m µhn,iµxi)µ

∗
hn,m

|µhn,m|2 + σ2
hn,m

(3.22)

Approximations in (3.19) and (3.23) are obtained in a similar way utilized to estimate

channel coefficients.

σ2
xm =

σ2
vn,m

|hn,m|2
(3.23)

1

|hn,m|2
≈ 1

|µhn,m|2 + σ2
hn,m

(3.24)

σ2
xm ≈

∑
i 6=m(|µhn,i|2σ2

xi
+ |µxi |2σ2

hn,i
+ σ2

hn,i
σ2
xi

) + σ2
wn

|µhn,m|2 + σ2
hn,m

(3.25)

3.6 Information Exchange at Coefficient Nodes

Coefficient nodes are connected to each other for the purpose of exchanging their

information so that accuracy of channel estimation could be improved. These con-

nections are obtained by transfer nodes in time and frequency domains. Transfer

nodes convert probability information of a coefficient node to probability information

of its neighbor by using the correlation between them.

The deviation between two adjacent channel coefficients is denoted by ∆ and approx-

imated by a zero-mean complex Gaussian variable [7]. The variable h′ represents the

subsequent coefficient coming after h in a given domain so that
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∆ ∼ NC(0, σ2
∆) (3.26)

∆ = h
′ − wh, |w| = 1 (3.27)

where w is called the tuning factor [7] which refers to the expected phase shift be-

tween coefficients. The variables w and ∆ determine the correlation properties used

in message exchange. At the transfer nodes, the mean and variance values of the

adjacent coefficient h′ are calculated as

µh′ = wµh (3.28)

σ2
h′

= σ2
h + σ2

∆ (3.29)

The reliability of the information is decreased in each transfer node by adding σ2
∆ to

the variance. The variance of the transfer node and the tuning factor can be calculated

by using correlation function E[h∗h
′
] as in (3.30) [7].

σ2
∆ = E[|h′ − wh|2]

= E[|h′|2]︸ ︷︷ ︸
1

+ E[|h|2]︸ ︷︷ ︸
1

−E[w∗h∗h′]− E[whh
′∗]

= 2(1−Re(w∗E[h∗h
′
])

w = arg min
|w|=1

(σ2
∆) =

E[h∗h
′
]

|E[h∗h′ ]|

σ2
∆ = 2(1− |E[h∗h

′
]|)

(3.30)

The correlation between adjacent coefficients in frequency domain for uniformly dis-

tributed power of multipaths is given by [7]

E[h∗n,m(l, k)hn,m(l + 1, k)] = sinc(τmaxF )e−j(πτmaxF ) (3.31)

and correlation function between adjacent coefficients in time domain can be found
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by

E[h∗n,m(l, k)hn,m(l, k + 1)] = sinc(2fD,maxTs) (3.32)

By substituting (3.31) and (3.32) into (3.30), tuning factors and variances in the time

and frequency domain turn out to be

wf = e−j(πτmaxF ), σ2
∆f

= sinc(τmaxF ) (3.33)

wt = 1 , σ2
∆t

= sinc(2fD,maxTs) (3.34)

Message-passing at a coefficient node in one direction of the frequency domain can

be observed in Fig. 3.6. Message sent to a transfer node (−→µ h(l,k),
−→σ 2

h(l,k)) is obtained

by combining messages received from the observation node and the previous transfer

node as in (3.35).

Figure 3.6: Message passing at frequency domain

In [7], after completion of message passing in two direction, incoming messages

in one domain are combined. However in the proposed algorithms, all incoming

messages in both domains are combined as illustrated in Fig. 3.7. It is observed

that the performance is enhanced due to the mitigation of short cycles. Short cycles

happen if a message which leaves a node, reaches the same node after travelling a

short path. After combining messages, they are passed to the observation node and

then utilized for symbol estimation.
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Figure 3.7: Message exchange at a coefficient node

Mean value µc and variance σ2
c of a combined message are calculated as in (3.35)

,where µi and σ2
i constitute the incoming message [7]

µc =

∑
i
µi
σ2
i∑

i
1
σ2
i

, σ2
c =

1∑
i

1
σ2
i

. (3.35)

3.7 Soft Data Detection

Soft data detection is a process applied in the decoder. After symbol estimation, mes-

sages coming from different receiver antennas are combined as in (3.35) and passed

to the decoder. The task of the decoder is to feed back extrinsic information through-

out iterations and at the end make a decision by using combined messages coming

from GSIR.

Extrinsic information exchange at a cloning node is illustrated in Fig. 3.8, where

(lr, kr) denotes repeated symbol positions in the frame, t is the iteration number and

R represents the number of the repeated symbols. To calculate extrinsic information

of a node, messages from all symbol nodes except the node itself are combined as in
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Figure 3.8: Extrinsic message exchange at a cloning node

(3.36).

µt+1
x(lr,kr)

=

∑R
i=1,i 6=r

µtx(li,ki)

σ2t
x(li,ki)∑R

i=1,i 6=r
1

σ2t
x(li,ki)

, σ2t+1

x(lr,kr)
=

1∑R
i=1,i 6=r

1

σ2t
x(li,ki)

(3.36)

It may happen that the symbol estimate is out of the constellation boundary. In that

case, it is normalized in each iteration to prevent |µx| >> 1. A similar idea has been

utilized in [20]. Normalization of symbol estimates is summarized in (3.37), where

xi represents the constellation points.

µ̂x =

∑
i xie

−|µx−xi|
2

σ2x∑
i e
−|µx−xi|2

σ2x

, σ̂2
x =

∑
i |xi|2e

−|µx−xi|
2

σ2x∑
i e
−|µx−xi|2

σ2x

− |µ̂x|2 (3.37)

Finally, at the end of the last iteration, messages sent from repeated symbols are

combined and the LLR of bits contained in symbol is approximated as

LLR(bv) ≈ max
xi(bv=0)

(−|xi − µx|
2

σ2
x

)− max
xi(bv=1)

(−|xi − µx|
2

σ2
x

) (3.38)

where xi(bv = 0) denotes the symbols that vth bit is equal to zero.
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CHAPTER 4

SIMULATION RESULTS

In this chapter, BER performance of the proposed algorithm is analyzed by means

of Monte Carlo simulations for different training symbol spacing, number of users,

number of receive antennas and code rates. Accuracy of channel estimation and data

detection are examined in each iteration. GSIR with perfect channel knowledge is

applied to compare the performance of channel estimations. An LDPC encoder and

decoder are used in combination with GSIR to increase total performance.

The channel model in [4] is utilized to generate channel coefficients. Correlation

matrices between channel coefficients in time and frequency domain are found by

using (3.32) and (3.31). Channel coefficients are correlated in each domain as

h
′
= hR

1/2
h (4.1)

where h is independently generated channel coefficient vector with correlation ma-

trix I and the correlation matrix in the given domain is denoted by Rh. Normalized

fading is taken to be 0.01 which yields τmaxF = 0.01 and fD,maxTs = 0.01. Channel

model with uniformly distributed parameters fD,max and τmax is used in all simula-

tions except Fig.4.5.

System parameters subcarrier spacing, symbol duration and carrier frequency are

taken to be F = 15 kHz, Ts = 71.43µs and fc = 800 MHz. For fD,maxTs =

0.01, maximum Doppler frequency fD,max is equal to 140 Hz. By using vmax =

cfD,max/fc, maximum velocity results in vmax = 189 km/h.
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The transmitted energy per bit to noise power ratio Eb/N0 is calculated as

Eb
N0

=
Es
N0

− 10log10RQ (4.2)

whereR denotes the coding rate,Q is the modulation order andEs represents average

energy per transmitted symbol. Received energy per bit to noise power ratio can be

obtained by multiplying N with Eb/N0 value that we use in simulation results.

An universal upper bound for the power of ICI caused by Doppler spread with unit

power signal is calculated as [8]

PICI ≤
1

12
(2πfD,maxTs)

2 (4.3)

which makes the ratio of the transmitted energy per bit from one user to the energy of

ICI received from M users in the worst scenario equal to

Eb
EICI

= 34.8− 10log10MRQ (dB) (4.4)

for fD,maxTs = 0.01. Even for M=8 users, R=1/4 and Q=6 (64QAM), Eb/EICI is

equal to 24 dB which is much bigger than Eb/N0 values used in simulation results so

that ICI does not affect the system performance in our case.

In GSIR with perfect channel state information case, abbreviated as (PCSI), µh is set

to known value and σh is set to zero. Except for the channel estimation, same process

with GSIR are applied. In PCSI, receiver does not perform channel estimation, only

performs symbol estimation and data detection.

The multiuser MIMO-OFDM system withM users andN receive antennas is denoted

by M × N MIMO-OFDM. The number of subcarriers and symbols in the MIMO-

OFDM frame used in simulations are taken to be L = K = 32. Ten iterations are

performed in both GSIR and PCSI.

4.1 BER Performance of GSIR versus Non-iterative ML and MRC

The BER performance of the proposed algorithm is compared to non-iterative Maxi-

mum Likelihood (ML) and Maximum-Ratio Combining (MRC) algorithms in which
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repetition code (RC) with rate 1/4 is used as channel code for all algorithms. The

BER curves are shown in Fig. 4.1. For BPSK transmission, MRC with channel

knowledge achieves the best performance while 1×8 PCSI and 8×8 PCSI performs

as well as MRC. Despite ML is more complex than PCSI, PCSI outperforms ML

with channel knowledge by about 1 dB. Although GSIR performs additionally chan-

nel estimation, the performance degradation of GSIR w.r.t. ML is roughly 1 dB for a

training spacing of Dt = Df = 4,

Figure 4.1: BER performance of GSIR versus other algorithms

4.2 BER Performance versus Number of Iterations

The BER performance of GSIR with BPSK versus number of iterations can be seen in

Fig. 4.2. A repetition code with rate 1/4 is utilized as a channel code. For a training

spacing of Dt = Df = 4 and Eb/N0 = 0, it can be seen that BER performance of the

8×8 GSIR is improved in each iteration. After 5 iterations, BER values are roughly

the same.
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Figure 4.2: BER performance of 8×8 GSIR versus number of iterations
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4.3 Channel Estimation versus Number of Iterations

The channel estimation performance of 8×8 GSIR with BPSK versus number of it-

erations can be seen in Fig. 4.3. A repetition code with rate 1/4 is utilized as a

channel code. Mean square error(MSE) of channel coefficients are used to compare

performance where MSE is calculated through

|eh|2 = |h− µh|2 (4.5)

For a training spacing of Dt = Df = 4 and Eb/N0 = 0, it can be seen that channel

estimation of the 8×8 GSIR becomes more accurate in each iteration. It is observed

that, as in BER values, MSE values are roughly the same after 5 iterations.

Figure 4.3: Channel estimation versus number of iterations
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4.4 BER Performance of GSIR with Different Training Spacing

The BER performance of 8×8 GSIR with different training spacing can be seen in

Fig. 4.4. A repetition code with rate 1/4 is used and BPSK transmission is applied.

It can be seen that increasing training symbol spacing affects the channel estimation

negatively and decreases the performance of the GSIR. For Dt = Df = 16, training

symbols are inadequate for channel estimation and increasing the Eb/N0 does not

improve the BER performance.

Figure 4.4: BER performance of GSIR with different training spacing

4.5 BER Performance of GSIR for Different Channel Models

The BER performance of 8×8 GSIR for different channel models can be seen in Fig.

4.5. A repetition code with rate 1/4 is used and BPSK transmission is applied. Train-

ing symbol spacings are taken to be Dt = Df = 4. The Winner channel model in

[7] is utilized where exponential power delay profile in time domain and Jakes power
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spectral density in frequency domain are used. Although the channel estimation per-

formance in the Winner model is 1 dB worse than the uniform model due to the lower

correlation between coefficients, it is proved that GSIR is applicable to different chan-

nel models and differently distributed parameters both in time and frequency domain.

Figure 4.5: BER performance of GSIR for different channel modes

4.6 BER Performance of GSIR with Different Number of Users and Receive

Antennas

The BER performance of GSIR with different number of users and receive antennas

can be seen in Fig. 4.6. A repetition code with rate 1/4 is utilized and BPSK trans-

mission is applied. Training symbol spacings are taken to be Dt = Df = 4. Since

received power increases with the number of receive antennas at the same time, BER

performance improved even with high interference. On the other hand, it is observed

that channel estimation performance degrades due to the increasing number of users.

Although the performance degradation of 32×32 GSIR w.r.t. 32×32 PCSI is roughly

41



4 dB, which is worse than 8×8 and 16×16 cases, the results suggest that GSIR for

large-scale system is applicable.

Figure 4.6: BER performance of GSIR with different number of users and receive

antennas

4.7 BER performance of GSIR with Different Code Rates

The BER performance of 8×8 GSIR with different code rates can be seen in Fig.

4.7. BPSK transmission is applied and training symbol spacings are taken to be Dt =

Df = 4. Decreasing rate of the repetition code does not affect the performance but

it is observed that at least 3 repetitions are needed to perform GSIR properly. GSIR

with rate 1/2 and 1 does not work well.
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Figure 4.7: BER performance of GSIR with different code rates
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4.8 BER performance of GSIR with Different Constellations

The BER performance of 8×8 GSIR with different constellations can be seen in Fig.

4.8. A repetition code with rate 1/4 is utilized and training symbol spacings are taken

to be Dt = Df = 4. PCSI with BPSK and QPSK have the same performance as

expected but QPSK outperforms BPSK in GSIR due to the high SNR which yields

a better channel estimation. Although increasing modulation order more than QPSK

improves channel estimation at a given Eb/N0, it is observed that BER performance

is not improved. The performance degradation of GSIR w.r.t. PCSI is roughly 3 dB

in 16QAM and 6 dB in 64QAM.

Figure 4.8: BER performance of GSIR with different constellations

4.9 BER performance of GSIR with Different Number of Users

The BER performance of GSIR with different number of users can be seen in Fig.

4.9. A repetition code with rate 1/4 is utilized and training symbol spacings are taken
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to be Dt = Df = 4. The energy of effective noise is increased with the number of

users and it causes performance degradation as expected. It is seen that performance

of GSIR is affected more by high order modulations. Adding 2 users to the system

decreases the performance by 1 dB in 16QAM hence it is 2 dB in 64QAM.

Figure 4.9: BER performance of GSIR with different number of users

4.10 BER Performance of GSIR in Combination with LDPC

The BER performance of 8×8 GSIR in combination with LDPC can be seen in Fig.

4.10. A repetition code with rate 1/3 and an LDPC code with rate 3/4 is used in

cascade with an overall code rate of 1/4. Training symbol spacings are taken to

be Dt = Df = 4 and BPSK transmission is applied. While GSIR have a better

performance at low Eb/N0, GSIR with LDPC outperforms GSIR by about 1.5 dB at

BER=10−4. Also it is observed that performance degradation of GSIR with LDPC

w.r.t. PCSI with LDPC is 2.5 dB which means that channel estimation performance
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of GSIR with LDPC is 0.5 dB worse than GSIR, which is due to the lower operation

SNR.

Figure 4.10: BER performance of GSIR in combination with LDPC

4.11 BER Performance of GSIR in Combination with LDPC for Different Num-

ber of Users

The BER performance of GSIR with LDPC for different number of users can be

seen in Fig. 4.11. As a channel code RC with rate 1/3 and LDPC with rate 3/4 is

used in cascade with a total code rate of 1/4. Training symbol spacings are taken

to be Dt = Df = 4 and BPSK transmission is applied. The BER performance of

GSIR with LDPC degrades with the increasing number of users as expected but still

acceptable performance is observed.
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Figure 4.11: BER performance of GSIR in combination with LDPC for different

number of users
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

In this study, a graph-based iterative receiver is proposed for multiuser MIMO-OFDM

system over time-varying frequency selective channels. Joint channel estimation and

data detection are applied which provide flexibility to a communication system. Mes-

sages, comprising mean values and variances of estimations, are successfully gen-

erated and distributed to the whole factor graph by transfer nodes. Messages, which

transmit channel and symbol information, are efficiently refined in each iteration start-

ing with training symbols known at the receiver.

Instead of bits, symbols are repeated in a MIMO-OFDM frame and symbol probabil-

ities are utilized in message exchange so that a low-complexity receiver is obtained

especially in high order modulations. Message passing schedule in [7] is rearranged

and effects of short-cycles are mitigated which provides a better performance.

In addition, a new training structure is proposed which enables channel estimation for

large-scale MIMO. Training symbol rate remains the same with increasing number of

users which makes the receiver capable of decoding the data of numerous users at

once (e.g., 32×32).

Even though, GSIR can operate only in low code rates (max. 1/3) which decreases

the spectral efficiency, throughput can be improved by adding numerous users and us-

ing high order modulation with low-complexity provided by the proposed algorithm.

Repetition code is a basic error-correcting code, however the performance of GSIR

can be improved by using a effective FEC code such as LDPC.

Simulation results show that, PCSI has a similar performance with MRC and outper-
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forms non-iterative ML with channel knowledge. The performance of GSIR is in-

creased with the number of receive antennas. Adding more users affects the channel

estimation negatively and degrades the BER performance. High order modulations

are applicable for GSIR but the performance difference between GSIR and PCSI in-

creases with modulation order. The total performance is improved by using GSIR in

combination with LDPC.

As a future study, initial channel estimates can be improved by interpolation and fil-

tering over channel taps in time domain. This approach may help reduce the required

iteration number to reach a desired BER and the overall performance of GSIR could

come closer to the perfect channel state information case. The BER performance of

GSIR with different fD,maxTs values can be analyzed. In addition the correlation be-

tween channel coefficients in spatial domain can be taken into account, so that channel

estimation performance could be enhanced. The sensitivity of GSIR to imperfection

on correlation knowledge may be inspected.
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