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ABSTRACT

SKEW CONFIGURATIONS OF LINES IN REAL DEL PEZZO SURFACES

ZABUN, REMZİYE ARZU
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Sergey Finashin

September 2014, 135 pages

By blowing up P2 at n ≤ 8 points which form a generic configuration, we obtain a
del Pezzo surface X of degree d = 9 − n with a configuration of n skew lines that are
exceptional curves over the blown-up points. The anticanonical linear system maps X
to Pd, and the images of these exceptional curves form a configuration of n lines in
Pd. The subject of our research is the correspondence between the configurations of n
generic points in RP2 and the configurations of n lines in RP9−n. This correspondence
is nontrivial in the cases n = 6 and n = 7.

In the case of n = 6, there exist precisely 4 deformation classes of generic planar
configurations of 6 points, and we describe the corresponding 4 deformation classes
of configurations of 6 skew lines in RP3. In the case n = 7, there exist precisely 14
deformation classes of generic planar configurations of 7 points and we describe the
corresponding 14 deformation classes of configurations of 7 bitangents to a quartic
curve (such configurations are known in the literature as Aronhold sets).

Keywords: Planar configurations, real del Pezzo surfaces, configurations of lines on
del Pezzo surfaces of degree 2 and 3, anti-canonical models
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ÖZ

REEL DEL PEZZO UZAYLARI ÜZERİNDEKİ AYRIK DOĞRULARIN
KONFİGÜRASYONLARI

ZABUN, REMZİYE ARZU
Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Sergey Finashin

Eylül 2014 , 135 sayfa

Projektif uzaydan n ≤ 8 tane nokta alalım, öyle ki, bu noktaların kümesi dejenere
olmamış bir konfigürasyon oluştursun. O zaman, bu noktaların patlatılması ile derecesi
d = 9 − n olan bir del Pezzo uzayı X elde edilir. Patlatılan her nokta bu uzay üzerinde
bir doğruya karşılık gelir. Dolayısıyla, bu uzay üzerinde, ikişer ikişer birbirleri ile
kesişmeyen n tane doğru içeren bir konfigürasyon elde edilir. X uzayının doğal olmayan
bölenin lineer sistemi, X’ten P9−n’ye bir fonksiyon tanımlar. X üzerindeki bu özel n
tane doğrunun bu fonksiyon altındaki görüntüsü d boyutlu projektif uzayda n tane
doğrudur. Bu fonksiyonu reel zeminde ele alacağız, diğer bir deyişle, bu fonksiyon
altında, reel projektif uzayda, n noktadan oluşan konfigürasyonların, d boyutlu reel
projektif uzayda ki belirli n doğrudan oluşan konfigürasyonlara nasıl bağlı olduğunu
inceleyeceğiz. Bu bağlantı n = 6 ve n = 7 durumlarında aşikar değildir.

Eğer n = 6 ise, dejenere olmamış 6 noktadan oluşan konfigürasyonların 4 tane de-
formasyon sınıfının var olduğunu gösterildi. Yukarıda belirtilen bağlantı incelenerek,
3 boyutlu reel projektif uzayda 6 doğrudan oluşan konfigürasyonların 4 farklı de-
formasyon sınıfı tasvir edildi. Eğer n = 7 ise, dejenere olmamış 7 noktadan oluşan
konfigürasyonların 14 tane deformasyon sınıfının var olduğunu gösterildi ve böyle
7 noktadan oluşan konfigürasyonlar ile 2 boyutlu reel projektif uzayda iki noktada
dördüncü dereceden eğriye teğet olan, 7 doğrudan oluşan konfigürasyonlar tasvir edildi
(bu konfigürasyonlar literatürde Aronhold kümeleri olarak adlandırılır).
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Anahtar Kelimeler: Düzlemsel konfigürasyonlar, reel del Pezzo uzayları, doğru konfi-
gürasyonları, doğal olmayan bağlantı
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CHAPTER 1

INTRODUCTION

1.1 The subject

A (non-singular) del Pezzo surface is defined as a smooth projective surface whose

anti-canonical divisor −K is ample. The degree d of a del Pezzo surface is the self

intersection index of −K. Such degree is known to take values between 1 and 9.

It is well known that a complex del Pezzo surface of degree d is isomorphic either to

P1 × P1, or to P2 blown up at n = 9 − d points in general position where 1 ≤ d ≤ 9

(see Yu. I. Manin [Man]). In the latter case, such an isomorphism is called a blow-up

model of a del Pezzo surface.

Let p1, . . . , pn be n points of P2 in general position where n ≤ 8 and let X be the del

Pezzo surface which is the blow-up of P2 at these n points. The anti-canonical map

ψ : X → Pd defined by the linear system | − K| of the space X is an embedding for

d > 2, and by the anti-canonical model of X we mean isomorphism X → ψ(X) ⊂ Pd.

In the case d = 2, ψ is known to be a double covering over P2 ramified along a

nonsingular quartic, and by the anti-canonical model of X we mean an isomorphism

with the total space of this covering. If we denote by E1, . . . , En the exceptional curves

in X for the blow-up model, and if we let H ⊂ X denote a proper transform of a

general line in P2, then we can write −K = 3H−
∑n

i=1 Ei. The images ψ(E1), . . . , ψ(En)

form a configuration of lines in Pd, and for n < 7 these lines are skew. We call

the correspondence between the quadratically nondegenerate planar n-configurations

and the associated n-configuration of lines as mentioned above the anti-canonical

correspondence. We study this correspondence in the real setting, that is, how the
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configuration of lines ψ(E1), . . . , ψ(En) in RPd depends on the configuration of the

n blown up points in RP2. For n = 8, the question in such a form is trivial since

RPd = RP1. The case n ≤ 5 is also not interesting, since there is only one deformation

class of n-configurations. So, we restrict ourselves to studying the cases n = 6, 7.

In the case n = 6, the del Pezzo surface X has degree 3 and its anti-canonical model

X is presented as a cubic surface in P3. In the real setting, if we blow up six real

point in RP2, this cubic is an M-surface (see Section 1.3 for the definition), that is

its real locus is homeomorphic to the connected sum of 7 copies of RP2. Our task

in this case is to describe the correspondence between the deformation classes of

quadratically nondegenerate configurations of six points in RP2 and the deformation

classes of configurations of six skew lines in RP3. In particular, we give a criterion for

a configuration of six skew lines to lie on a cubic surface.

The deformation classification of configurations of ≤ 5 skew lines in RP3 is due to

Oleg Viro [VV]. F. Mazurovskii classified 6-configurations of skew lines in RP3 and

showed that there are 11 coarse deformation classes of such configurations in RP3

in [M1] (by a coarse deformation equivalence relation, we mean a composition of a

usual deformation with the projective equivalence). These results motivated us to give

an answer to the following question: which ones among these 12 coarse deformation

classes can be realized on a real nonsingular cubic M-surface? We show that there are

4 such coarse deformation classes corresponding to the four deformation classes of

6-configurations (see Figure 8.1).

In the case of n = 7, the del Pezzo surface X has degree 2, and its anti-canonical model

presents X as a double covering X → P2 ramified along a nonsingular quartic curve.

The surface X contains 56 exceptional curves (called lines on X) which are projected

into 28 lines in P2 bitangent to the ramification quartic. In the real setting, if the seven

blown up points are real, the quartic is a real curve whose real locusRC has 4 connected

components (see Theorem 2.3.5). For real M-quartics, all the 28 bitangents are real

and each bitangent is covered by two real exceptional curves in X. We show that there

are 14 deformation classes of quadratically nondegenerate 7-configurations of points

in RP2 (see Theorem 2.5.1), and that the anti-canonical correspondence associates

each quadratically nondegenerate planar 7-configuration with a real Aronhold set
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that is a configuration of 7 bitangents whose lifting are pairwise disjoint on the del

Pezzo surface (see Theorem 10.2.1). We describe the deformations of real Aronhold

sets resulting from deformations of real 7-configurations of points, and find the 14

deformation classes of real Aronhold sets corresponding to the 14 deformation classes

of 7-configurations of points in Appendix B.

1.2 The structure of the thesis and the main results

In Chapter 2, we classify quadratically nondegenerate configurations of 6 and 7

points in RP2 up to deformations. Namely, we show in Theorem 2.3.5 that there

are 4 deformation classes of quadratically nondegenerate 6-configurations and in

Theorem 2.5.1 that there are 14 deformation classes of quadratically nondegenerate

7-configurations in RP2.

In Chapter 3, we study, similarly, the linearly and quadratically nondegenerate con-

figurations of 5 points in a nonsingular real quadric M-surface (that is a one-sheeted

hyperboloid in RP3 ) up to deformations . In particular, we showed that there are

precisely four deformation classes of linearly nondegenerate 5-configurations of points

in RP1 × RP1 (see Theorem 3.3.4). The deformation classification of quadratically

nondegenerate 5-configurations of points in RP1 × RP1 will be investigated in a fur-

ther study. In addition, we introduce a notion of the coarse permutation classes, and

define their invariant, namely, coarse permutation class diagram, characterizing these

classes. Coarse permutation classes appear in three different situations: in Chapter 3

to characterize the configurations on a hyperboloid, in Chapter 5 to characterize the

join configurations and in Chapter 8 to characterize the skew configurations of 6 lines

on a real cubic surface.

In Chapter 4, we show how the deformation classes of quadratically nondegenerate

planar 6-configurations and 7-configurations in convex position change under Cremona

transformations based on some triples of points in these configurations.

Chapter 5 is a preparatory one in which we recall some results and fix some terminology

and notation (that will be used in Chapter 6) related to configurations of skew lines in

RP3.
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In Chapter 6 we associate a deformation class of quadratically nondegenerate planar

6-configurations to a given double six on a nonsingular real cubic M-surface, so we

determine the types of all 36 double sixes on any nonsingular real cubic M-surface.

We determine ellipticity and hyperbolicity (in the sense of B. Segre [Se]) of lines in

the anti-canonical model of a del Pezzo surface of degree 3 (i.e., a real cubic surface)

depending on the 6-configuration of blown up points (see Appendix A).

In Chapter 7 we give definitions and preliminary information on marked real del Pezzo

surfaces of degree 2 and 3, and on the combinatorial anti-canonical correspondence

between the deformation classes of configurations of 6 (respectively 7) points and the

deformation classes of configurations of 6 (respectively 7) lines in the corresponding

anti-canonical model.

In Chapter 8 we study the anti-canonical correspondence between 6-configurations

and marked real cubic M-surfaces. We describe the 4 deformation classes of configu-

rations of 6 skew lines in RP3 for each of the 4 deformation classes of quadratically

nondegenerate planar 6-configurations (see Theorem 8.1.1).

In Chapter 9 we introduce and discuss the combinatorial anti-canonical correspondence

for del Pezzo surfaces of degree 2. In addition, we introduce the notions of Aronhold

sets and azygetic triples, and relate them to our studies of configurations.

In Chapter 10, we study the anti-canonical model of del Pezzo surface of degree 2,

namely, we describe the 14 Aronhold sets of 7 bitangents of lines for each of the

14 deformation classes of quadratically nondegenerate planar 7-configurations (see

Theorem 10.2.1).

In Chapter 11, we present a certain application of the results of Chapters 6 and 7,

which was partially motivated by the work of S. Fiedler-Le Touzé [T2] and [T3].

1.3 Conventions

• For some n ∈ Z+, {1, . . . , î, . . . , n} means that i is omitted.

• We denote the complex projective n-space by Pn, and the real projective n-space
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by RPn.

• A complex variety (surface, curve, etc.) X is called real if X is equipped with

a real structure (i.e. an anti-holomorphic involution), and we denote by RX

the fixed point set of the real structure. A real variety X is called an M-variety

(M-surface, M-curves, etc.) if X satisfies the equality b∗(X,Z2) = b∗(RX,Z2)

where b∗(X,Z2) and b∗(RX,Z2) are the sums of all Betti numbers of X and RX

with coefficients in Z2, respectively.

• Given In = {1, 2, . . . , n} the symmetric group S n of degree n consists of all

bijections σ : In → In. Such a bijection is called a permutation of In and we

denote a permutation sending k ∈ In to ik ∈ In either by

σ =

(
1 2 · · · n − 1 n

i1 i2 · · · in−1 in

)
∈ S n,

or (abuse of the notation if it does not lead to a confusion) by (i1 i2 ... in−1 in).

We multiply permutations σ1, σ2 by composing them as maps, i.e., σ1σ2(i) =

σ1(σ2(i)).
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CHAPTER 2

CONFIGURATIONS OF POINTS IN RP2

The aim of this chapter is to classify up to deformation quadratically nonde-

generate 6 and 7-configurations. We need it to classify real marked del Pezzo

M-surfaces of degrees 3 and 2, that is, del Pezzo surfaces of degrees 3 and 2

with a maximal family of real skew lines up to deformation. The classification of

linearly non-degenerate deformation classes of 6 and 7-configurations is given in

[F], so we shall determine how many quadratically non-degenerate deformation

classes of 6 and 7-configurations exist for each of the linearly non-degenerate

deformation classes of 6 and 7-configurations.

2.1 Linearly nondegenerate configurations

By an n-configuration in a projective surface X, we mean a set of n distinct

points of X. We denote the space of all n-configurations in X by Cn(X). When

X = P2, an n-configuration in Cn(X) is called planar.

A planar n-configuration is called linearly nondegenerate if no three points

among the n points is collinear. Let L∆n denote the space of linearly degenerate

planar n-configurations (i.e., those for which three of the n points lie on a

line). Then, the space of linearly nondegenerate planar n-configurations is

Cn(RP2) r L∆n, and it is denoted by LCn. It is easy to see that the space LCn is

a Zariski open subset of the algebraic variety Cn(RP2).

An L-deformation between two n-configurationsP0,P1 ∈ LCn is a path {Pt}t∈[0,1]
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between P0 and P1 in the space LCn. Given two n-configurations P0,P1 ∈ LCn,

we say they are L-deformation equivalent, or of the same L-deformation type

if there exists an L-deformation between P0 and P1. The relation between

n-configurations in LCn of being L-deformation equivalent is an equivalence

relation since two n-configurations P0,P1 ∈ LCn are L-deformation equivalent

if they are in the same connected components of the space LCn.

It is easily seen that the space LCn is connected for n ≤ 5. The space LC6 has 4

connected components (see ([F])).

Following ([F]), for a given n-configuration P ∈ LCn for n ≥ 4, we construct

a graph embedded in RP2 whose vertices are the points of the configuration P

and whose edges are linear segments (i.e., each of which is just one of the two

segments connecting each pair of points in P), which are not crossed by any of

the lines determined by each pair of the remaining n − 2 points of P. We call

this graph the adjacency graph and denote it by Γ(P).

The adjacency graphs representing all the L-deformation classes of configura-

tions of n points in LCn for n = 5, 6 are shown in Figure 2.1.

LC5(a)

LC6
1 LC6

2 LC6
3 LC6

6
(b) (c) (d) (e)

Figure 2.1: One L-deformation class in LC5 and four L-deformation
classes in LC6.

The number of connected components (i.e, 1, 2, 3, and 6) of adjacency graphs

are complete invariants for the L-deformation classes of 6-configurations in LC6,

that is to say, this number distinguishes the four L-deformation classes. These
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L-deformation classes are denoted LC6
i , i = 1, 2, 3, 6 (see Figure 2.1).

Removing a point pi ∈ P from a 7-configuration P = {p1, . . . , p7} ∈ LC7 we

obtain a 6-configuration denoted by Pî that we call a derivative of P. We label

the point pi with an index d ∈ {1, 2, 3, 6} if Pî ∈ LC6
d, and obtain in this way a

function dP : P → {1, 2, 3, 6}. It is trivial to see that dP takes the same values

on the connected components of the adjacency graph Γ(P). The induced map

dΓ(P) on the set of these connected components is called the d-decoration of the

adjacency graph Γ(P). The adjacency graph Γ(P) together with the d-decoration,

i.e., the pair (Γ(P), dΓ(P)) is called the d-decorated adjacency graph of P.

Lemma 2.1.1. If P ∈ LC7 and pi, p j ∈ P belong to the same connected com-

ponent of the adjacency graph Γ(P), then the configurations Pî,P ĵ ∈ LC6 are

L-deformation equivalent. �

Theorem 2.1.2. [F]. The space LC7 has 11 connected components (i.e., 11

L-deformation classes). �

Adjacency graphs (cf.[F]) of 7-configurations in LC7 representing these eleven

L-deformation classes are shown in Figure 2.2. In this figure we provide these

adjacency graphs with the d-decorations.

For dP : P → {1, 2, 3, 6}, with P ∈ LC7, and a value k ∈ {1, 2, 3, 6}, we define Rk

to be the number of points in d−1
P

(k). Given a 7-configuration P ∈ LC7, we call

the quadruple R(P) = (R1,R2,R3,R6) the derivative code of P. The derivative

codes are complete invariants for the L-deformation classes of 7-configurations

in LC7, i.e., they distinguish the 11 L-deformation classes LC7
σ where σ denote

derivative codes of such configurations (see Figure 2.2).

2.2 Affine realizations

An affine realization PL of a configuration P ∈ Cn(RP2) is the restriction of P

to an affine plane R2 = RP2 \ L where L is a line in RP2 \ P.

Given an n-configuration P ∈ LCn and a line L ⊂ RP2 \ P, let FP,L denote the
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1

(a) LC7
(7,0,0,0)

1

2

(b) LC7
(3,4,0,0)

1

2

3

(c) LC7
(2,2,3,0)

1

6

2

2

3

3

(d) LC7
(1,2,2,2)

1

3

3

3

(e) LC7
(1,0,6,0)

2
2

1

(f) LC7
(1,6,0,0)

2 2

3

1

(g) LC7
(1,4,2,0)

2 2

3 3

1

(h) LC7
(1,2,4,0)

2 2

3

3

2

(i) LC7
(0,4,3,0)

2

2

3

2

(j) LC7
(0,6,1,0)

3

2

3

3
2

6

2

(k) LC7
(0,3,3,1)

Figure 2.2: The eleven L-deformation classes in LC7: 1 of the 11
deformation classes is heptagonal, 5 ones are hexagonal, and the
remaining six are pentagonal.

convex hull of P in the affine plane RP2 \ L, and |FP,L| be the number of sides

of FP,L.

We say that an n-configuration P ∈ LCn is m-gonal if m is the maximum of

|FP,L| for all lines L ⊂ RP2 \ P. In particular, an n-configuration P is n-gonal if

there exists an affine realization of P such that all of its points form a convex

n-gon FP,L for some line L in the affine plane RP2 \ P. In fact as it follows form

Lemma 2.2.1 that in the case n ≥ 5, the n-gon FP,L is unique, i.e., it does not
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depend on the choice of a line L such that points of P form an n-gon in RP2 \ L.

Hence, for an n-gonal configuration P ∈ LCn, we use the notation FP to denote

the convex hull of P and call it the principle n-gon.

The numeration of the points p1, . . . , pn of an n-gonal configuration P ∈ LCn,

n ≥ 5, is called cyclic if the vertices, i.e., p1,. . . ,pn of the principle n-gon go

in a cyclic order (clockwise or counterclockwise if we fix some orientation of

the plane) as in Figure 2.3. We say that points of an n-gonal configuration P

are cyclically numerated if they are denoted by p1, p2, . . . , pn following a cyclic

order of the vertices on the principle n-gon FP.
p1 p2

p3

p4

p5

p6

pn

pn−1

pi+1

pi

Figure 2.3: A cyclically numerated configuration P ∈ LCn

Passing to the dual plane R̂P2, an n-configuration P ∈ LCn is represented by

a configuration P̂ of n lines such that no three lines of P̂ are concurrent. We

call the configuration P̂ the dual configuration of P. We can easily see that P

is m-gonal if m is the maximal number of sides of the subdivision polygons

associated to P, i.e., the connected components of R̂P2 \P̂. It is trivial to observe

that 5 ≤ |FP,L| ≤ n for all lines L ⊂ RP2 \ P if P ∈ LCn for n ≥ 5. For instance,

for n = 7, the configuration P can be heptagonal, hexagonal or pentagonal.

For a given configuration P ∈ LC7, by the spectrum we mean the 5-tuple

S (P) = (S 3, . . . , S 7) where S τ denote the number of τ-gons in the subdivision

polygons associated to P. The spectra and derivative codes representing the

eleven L-deformation classes of 7-configurations in LC7 are shown in Table 2.1.

Lemma 2.2.1. An affine realization PL of P ∈ Cn(RP2) for some line L is

m-gonal if and only if L̂ ∈ R̂P2 lies inside a subdivision m-gon of P̂. �

Corollary 2.2.2. A heptagonal configuration in LC7 has a unique affine real-

ization up to L-deformation. Similarly, a hexagonal configuration in LC7 has a

unique affine realization.
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Table 2.1: The spectra and derivative codes for LC7-deformation
classes

P ∈ LC7 (R1,R2,R3,R6) (S 3, S 4, S 5, S 6, S 7)

Heptagonal (7, 0, 0, 0) (7, 14, 0, 0, 1)
Hexagonal (3, 4, 0, 0) (7, 13, 1, 1, 0)

(2, 2, 3, 0) (8, 11, 2, 1, 0)
(1, 2, 2, 2) (11, 5, 5, 1, 0)
(1, 0, 6, 0) (9, 9, 3, 1, 0)

Pentagonal with R1 = 1 (1, 6, 0, 0) (7, 12, 3, 0, 0)
(1, 4, 2, 0) (8, 10, 4, 0, 0)
(1, 2, 4, 0) (9, 8, 5, 0, 0)

Pentagonal with R1 = 0 (0, 4, 3, 0) (8, 10, 4, 0, 0)
(0, 6, 1, 0) (7, 12, 3, 0, 0)
(0, 3, 3, 1) (10, 6, 6, 0, 0)

Proof. The result follows from Lemma 2.2.1 since S 7 = 1 for all heptagonal

configurations P ∈ QC7, and S 6 = 1 for all hexagonal configurations P ∈ QC7

(see Table 2.1). �

For a given n-configuration P ∈ LCn where n ≥ 3, the lines passing through all

pairs of points of P divide RP2 into a finite number of polygons which are called

L-polygons associated to P. We denoted by ΛL(P) the set of all L-polygons

associated to P. The conics passing through all 5-tuples of points of P divide

these L-polygons into regions called Q-regions associated to P. We denoted by

ΛQ(P) the set of all Q-regions associated toP. IfP is an n-gonal configuration in

LCn, then an L-polygon in ΛL(P) and a Q-region in ΛQ(P) are called internal if

they are inside the principle n-gon FP of P. Otherwise, they are called external.

The dihedral group Dn acts on the vertices of the principle n-gon FP for a given

n-gonal configuration P ∈ LCn where n ≥ 3. When n = 5, 6, this action induces

actions on ΛL(P) and ΛQ(P). We denote by [M]L
n and [N]Q

n the orbits of an

L-polygon M and a Q-region N with respect to this action, respectively.

Example 2.2.3. As P, we can take, for example, a pentagonal configuration P

in LC5, and choose the cyclic numeration of points p1, . . . , p5 ∈ P. It is easily

confirmed that the quotient space of the D5-action on ΛL(P) has six distinct

D5-orbits. We shall denote by A, B, C, D, E, and F the L-polygons representing
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the six D5-orbits (see Figure 2.4).

A

B
C

D

p1

p2

p3

p4p5

E

F

Figure 2.4: Three internal L-polygons B,C,D and three external
L-polygons A, E, F representing the six D5-orbits for pentagonal
configurations in LC5.

Example 2.2.4. As P, let us take a hexagonal configuration P in LC6, and

choose the cyclic numeration of points p1, . . . , p6 ∈ P. It is easily confirmed

that the quotient space of the D6-action on ΛL(P) has ten distinct D6-orbits. We

shall denote by A, B, C, D, E, F, G, H, I, and J the L-polygons representing

the ten D6-orbits (see Figure 2.5). In particular, the L-polygon E is called the

central triangle.

Let {Pt}t∈[0,1] be an L-deformation between two n-configurations P0,P1 ∈ LCn,

and M0 be one of the L-polygons associated to P0. We denote by {Mt}t∈[0,1] the

continuous family of L-polygons associated to Pt for any t ∈ [0, 1] such that

these L-polygons are obtained from M0 by the L-deformation {Pt}t∈[0,1]. We call

this family the L-deformation of M0. Take a point p0 ∈ RP2 lying inside M0,

and let us denote by {pt}t∈[0,1] the continuous family of points lying inside the
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F

A B
C

DG

p1

p2

p3

p4

p5

p6H

E

lp1p2 lp4p5

lp3p6

O

I

J

Figure 2.5: Four internal L-polygons B,C,D, E and six external L-
polygons A, F,G,H, I, J representing the ten D6-orbits for hexagonal
configurations in LC6.

L-polygons Mt, t ∈ [0, 1], in the L-deformation of M0 such that these points

are obtained from p0 by the L-deformation {Pt}t∈[0,1]. We call this family the

L-deformation of p0.

We say that an L-polygon M associated to an n-configuration in LCn collapses

during an L-deformation in LCn if the L-deformation of M contains an L-polygon

which consists of just one point.

Given an n-gonal configuration P ∈ LCn, any permutation of Dn which acts on

the vertices of the principle n-gon FP can be realized as an L-deformation of
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P. During this L-deformation, some of the L-polygons in ΛL(P) can collapse.

If such an L-polygon M does not collapse we can extend the L-deformation to

an L-deformation of a configuration P′ = P ∪ {p} ∈ LCn+1 obtained from P by

adding one additional point p ∈ RP2 to M. We say that the configuration P′ is

obtained by the augmentation of P inside M.

Finashin gave the following statement about when an L-deformation {Pt}t∈I

between two n-gonal configurations P0,P1 ∈ LCn can be extended to an L-

deformation between some augmented configurations in LCn+1.

Proposition 2.2.5. ([F]) Let {Pt}t∈[0,1] be an L-deformation between two n-gonal

configurations P0, P1 ∈ LCn, and M0 be one of the L-polygon associated to the

configuration P0 and {pt
n+1}t∈[0,1] be the L-deformation of a point p0

n+1 ∈ RP2

lying inside M0. Assume, in addition, that the polygon M0 does not collapse

during the L-deformation {Pt}t∈[0,1]. Then {Pt ∪ {pt
n+1}}t∈[0,1] is an L-deformation

between the augmented configurations P0 ∪ {p0
n+1} and P1 ∪ {p1

n+1}. �

The next statement is immediate consequence of Proposition 2.2.5.

Corollary 2.2.6. Let P be an n-gonal configuration in LCn, and pi ∈ RP2 lies

in an L-polygon Fi associated to P where i ∈ {0, 1}. Assume, in addition, that

M0,M1 belong to the same orbit of the Dn-action on ΛL(P). Then the augmented

configuration P ∪ {p0} ∈ LCn+1 is L-deformation equivalent to the augmented

configuration P ∪ {p1} ∈ LCn+1. �

Table 2.2: The six D5-orbits in ΛL(P) for any pentagonal 5-
configuration P ∈ LC5, representing the four L-deformation classes
in LC6.

D5-orbits LC6
σ

[A]L
5 LC6

1

[B]L
5 , [E]L

5 LC6
2

[C]L
5 , [F]L

5 LC6
3

[D]L
5 LC6

6

By Proposition 2.2.5 and Corollary 2.2.6, we obtain Tables 2.2 and 2.3. These

tables show the correspondence between Dn-orbits in ΛL(P)/Dn where P ∈ LCn,
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n = 5, 6, is an n-gonal configuration and L-deformation classes of augmented

configurations in LCn+1 (i.e., each of them is obtained from P by adding just

one point of RP2 to one of the L-polygons in ΛL(P)).

Table 2.3: The ten D6-orbits in ΛL(P) for any hexagonal 5-
configuration P ∈ LC6, representing the eight L-deformation classes
of 7-configurations with R1 > 0 in LC7.

D6-orbits LC7
σ

[A]L
6 LC7

(7,0,0,0)

[B]L
6 , [I]L

6 LC7
(3,4,0,0)

[C]L
6 , [J]L

6 LC7
(2,2,3,0)

[D]L
6 LC7

(1,2,2,2)

[E]L
6 LC7

(1,0,6,0)

[F]L
6 LC7

(1,6,0,0)

[G]L
6 LC7

(1,4,2,0)

[H]L
6 LC7

(1,2,4,0)

We say that a configuration (i.e., a set) of seven lines in RP2 is linearly nonde-

generate if no three lines of the configuration is concurrent. Let us denote by

LL7 the space of linearly nondegenerate configurations of seven lines in RP2.

Two configurations of seven lines, L0,L1 ∈ LL7, are said to be L-deformation

equivalent if they can be joined by a continuous family of configurations of

seven lines, Lt ⊂ RP2, t ∈ [0, 1], and coarse L-deformation equivalent if one of

these configurations is L-deformation equivalent to the projective transformation

of the other. In other words, L0,L1 belong to the same connected component

of LL7/PGL(3,R) if they are coarse L-deformation equivalent. In fact, since

PGL(3,R) is connected there is no difference between L-deformation classes

and coarse deformation classes in LL7/PGL(3,R).

Since the space LL7 is the polar dual of the space LC7 of linearly nondegenerate

7-configurations LL7 has 11 connected components (i.e., 11 L-deformation

classes). The linearly nondegenerate configurations of 7 lines in LL7 representing

these deformation classes are as shown in Figure 2.6. It will be convenient to

use the notations LL7
σ for these deformation classes where σ are the derivative

codes for configurations in LC7.
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(a) LL7
(7,0,0,0) (b) LL7

(3,4,0,0) (c) LL7
(2,2,3,0)

(d) LL7
(1,2,2,2)

one line on ∞

(e) LL7
(1,0,6,0) (f) LL7

(1,6,0,0)

(g) LL7
(1,4,2,0) (h) LL7

(0,4,3,0) (i) LL7
(0,6,1,0)

(j) LL7
(1,2,4,0)

one line on ∞

(k) LL7
(0,3,3,1)

Figure 2.6: The eleven configurations of seven lines from the eleven
deformation classes in LL7. We shaded only triangles in their subdi-
vision polygons.
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2.3 Quadratically nondegenerate n-configurations for n ≤ 6

An n-configuration in Cn(RP2) is called quadratically nondegenerate if no tree

points lies on a line and no six points of the configuration lies on a conic. Let

Q∆n denote the space of quadratically degenerate planar n-configurations (i.e.,

those for which three of the n points lie on a line or six of the n points lie on

a conic). Then, the space of quadratically nondegenerate n-configurations is

QCn = Cn(RP2) \ (L∆n ∪ Q∆n) = LCn \ Q∆n, where L∆n is the space of linearly

degenerate planar n-configurations. Note that the space QCn is a Zariski open

subset of LCn.

A Q-deformation between two configurations P,P′ ∈ QCn is a path {Pt}t∈[0,1]

between P0 and P1 in the space QCn. We say that two n-configurations P0,P1 ∈

QCn are Q-deformation equivalent, or of the same Q-deformation class if there

exist an Q-deformation between P and P′. Notice that the relation between

configurations in QCn of being Q-deformation equivalent is an equivalence

relation since two n-configurations P,P′ ∈ QCn are Q-deformation equivalent

if they are in the same connected components of the space QCn.

It follows immediately from the definition that Q∆n = ∅ for n < 6, so we obtain

the following.

Proposition 2.3.1. If n ≤ 5, then LCn = QCn. �

Recall that the space LC6 has four L-deformation classes LC6
σ, where σ ∈

{1, 2, 3, 6} (see Figure 2.1(b)-(e)). For each σ ∈ {1, 2, 3, 6}, let QC6
σ denote the

complement LC6
σ \ Q∆6.

Lemma 2.3.2. Assume that σ ∈ {2, 3, 6}. Then, LC6
σ = QC6

σ. From this, it

follows that QC6
σ is connected for any σ ∈ {2, 3, 6}.

Proof. Any 6-configurations in Q∆6 have to be in a convex position since their

points lie on some conics, thus Q∆6 ⊂ LC6
1, and so, LC6

σ ∩ Q∆6 is empty for

σ ∈ {2, 3, 6}. �

For any n-configurations P ∈ QCn for n ≥ 5, let SP denote the set of
(

n
5

)
conics
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passing through all 5-tuples of points of P.

Given an n-configuration P ∈ QCn, the complement of a conic Q ∈ SP in RP2

has two components, one of which is homeomorphic to a disk and the other is

homeomorphic to Möbius band. The former is called the interior of the conic

Q and the latter is called the exterior of the conic Q. Each of the remaining

n − 5 points of P lies in either the interior or the exterior of the conic Q. If a

point p ∈ P lies in the interior of the conic Q, then it is called subdominant with

respect to the conic Q. Otherwise, it is called dominant with respect to the conic

Q. In particular, for P = {p1, . . . , p6} ∈ QC6, let Qi, i = 1, . . . , 6, denote the

unique conic passing through the five points p1, . . . , p̂i, . . . , p6 of P, where a hat

over a point of P shows that the point is omitted.

Proposition 2.3.3. Let P0,P1 ∈ QC6
1 (i.e., hexagonal 6-configurations), and

assume that pi
0 is a dominant point of Pi, where i ∈ {0, 1}. Then, there is a

Q-deformation {Pt}t∈[0,1] between P0 and P1 which takes p0
0 to p1

0.

Proof. Let pi
1, pi

2, pi
3, pi

4, pi
5 ∈ P

i, i = 0, 1, denote the remaining five points of

Pi different from pi
0. We assume that the points of Pi, i = 0, 1, are cyclically

numerated as it is shown on Figure 2.3. Consider conics Qi, i ∈ {0, 1}, passing

through the five points of Pi other than pi
0. There exists a real projective trans-

formation φ : RP2 → RP2 sending Q0 to Q1. Let P
1
2 = {p

1
2
0 , p

1
2
1 , p

1
2
2 , p

1
2
3 , p

1
2
4 , p

1
2
5 }

denote the image φ(P0), and p
1
2
0 denote the image φ(p0

0). Since any pair of

5-configuration whose points lie on the same conic can be obviously connected

by a Q-deformation P
1
2

0̂
= {p

1
2
1 , . . . , p

1
2
5 } and P1

0̂
= {p1

1, . . . , p1
5} are Q-deformation

equivalent. Let Pt
0̂
, t ∈ [1

2 , 1], denote a Q-deformation between P
1
2

0̂
and P1

0̂
. The

points pt
0 lie inside the shaded region F t for t ∈ [1

2 , 1] shown in Figure 2.7.

The region F t is connected and does not contract to a point as t varies, so the

deformation Pt
0̂
, t ∈ [ 1

2 , 1], can be extended to a Q-deformation Pt, t ∈ [1
2 , 1].

The composition Pt ◦φ is the required Q-deformation between P0 and P1 taking

p0 to p1. �

The next statement follows immediately from Proposition 2.3.3 and the fact

that any 6-configuration P ∈ QC6
1 has a dominant point (in fact, exactly three
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O

pi0

pi2

pi3

pi4

pi5

pi1

F i

Figure 2.7: The region F t for the dominant point pt
0 ∈ P

t ∈ QC6
1,

t ∈ [1
2 , 1].

such points).

Proposition 2.3.4. Any pair of 6-configurations in QC6
1 are Q-deformation

equivalent. That is, the space QC6
1 is connected. �

Proposition 2.3.4 shows that there is one and only one deformation class of

hexagonal configurations in the space QC6
1. Together with Proposition 2.3.2 it

gives the next result.

Theorem 2.3.5. Each of the four existing connected components LC6
1, LC6

2, LC6
3

and LC6
6 of the space LC6 contains exactly one connected component QC6

σ =

LC6
σ∩QC6 of QC6, and so, the space QC6 has four connected components QC6

1,

QC6
2, QC6

3 and QC6
6 (i.e., four Q-deformation classes). �

A υ-decoration of the adjacency graph Γ(P) for a given configuration P ∈ QC6

is the map υP from the set of vertices of Γ(P), i.e P, into the set {•, ◦} defined

by υP(p) = • if the point p ∈ P is dominant with respect to the conic Q p̂

passing through five points of P other than p and υP(p) = ◦ if the point p ∈ P

is subdominant with respect to the conic Q p̂. The pair (Γ(P), υP) is called the

υ-decorated adjacency graph of P.

The υ-decorated adjacency graphs representing the four Q-deformation classes

QC6
1, QC6

2, QC6
3 and QC6

6 in QC6 are as shown in Figure 2.8.

In the hexagonal case, to show that the colors of vertices (i.e., white and black )

are cyclically alternating (see Figure 2.8(a)), we can make the following simple
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(a) QC6
1 (b) QC6

2 (c) QC6
3 (d) QC6

6

Figure 2.8: The four Q-deformation classes in QC6. We color in black
the dominant points of configurations and in white the subdominant
ones.

observation.

Lemma 2.3.6. Let P ∈ QC6, and assume that two points of P are joined by an

edge in ΓL(P). Then, if one of the two points is subdominant then the other one

is dominant and vice versa.

Proof. It follows from analysis of the pencil of conics passing through the 4

remaining points since this pencil cannot contain a singular conic intersecting

an edge of the adjacency graph. �

2.4 Hexagonal augmentations of pentagonal configurations

Given a pentagonal configuration P ∈ QC5, the conic passing through five points

of P divides the L-polygon A (see Figure 2.4) into two Q-regions which are

denoted by A1 and A2 as shown in Figure 2.9, but it does not intersect with other

L-polygons lying in D5-orbits other than [A]L
5 . Thus, the quotient space of the

D5-action on ΛQ(P) has seven distinct D5-orbits. The Q-regions A1, A2 B, C, D,

E, and F representing the seven D5-orbits are as shown in Figure 2.9. Note that

[X]L
5 = [X]Q

5 for any X = B,C,D, E, F, and [A]L
5 = [A1]Q

5 ∪ [A2]Q
5 .

Let {Pt}t∈[0,1] be a Q-deformation between two n-configurations P0,P1 ∈ QCn,

and M0 is one of the Q-regions associated to P0. We denote by {Mt}t∈[0,1] the

continuous family of Q-regions associated to Pt for any t ∈ [0, 1] such that

these Q-regions are obtained from M0 by this deformation. We call {Mt}t∈[0,1]

the Q-deformation of M0. Take a point p0 ∈ RP2 lying inside M0, and let us

denote by {pt}t∈[0,1] the continuous family of points lying inside Q-regions Mt,
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A2

A1

B
C

D

E

F

Figure 2.9: The seven Q-regions associated to any pentagonal config-
uration in QC5.

t ∈ [0, 1], in the Q-deformation of M0 such that these points are obtained from

p0 by the Q-deformation {Pt}t∈[0,1]. We call {pt}t∈[0,1] the Q-deformation of p0.

As in the case of L-polygons, we say that a Q-region M0 associated to an n-

configuration P ∈ QCn collapses during a Q-deformation of P if {Mt}t∈[0,1]

contains a Q-region which consists of just one point. The following statement is

immediately obtained.

Lemma 2.4.1. None of the seven Q-regions A1, A2 B, C ,D, E, F associated to

any pentagonal configuration P ∈ QC5 can collapse during any Q-deformation.

�

Lemma 2.4.2. Let P ∈ QC5 be a pentagonal configuration, and assume that

Mi, i = 1, 2, is a Q-region associated to P lying in the orbit Q [Ai]5 and that we

take a point pi ∈ RP2 from the interior of Mi. Then, P ∪ {p1} is Q-deformation

equivalent to P ∪ {p2}.

Proof. By Proposition 2.3.4 and Lemma 2.4.1, P ∪ {p1} is Q-deformation

equivalent to P∪ {p2} since P∪ {p1} and P∪ {p2} are heptagonal configurations
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in QC6. �

Recall from Section 2.2 that there are six D5-orbits (those of representing to

L-deformation classes in LC6 as shown in Figure 2.2) of the D5-action on

ΛL(P) for any pentagonal configuration P ∈ LC5, and from Proposition 2.3.1

in Section 2.3 that LC5 = QC5. The seven orbits in ΛQ(P)/D5 representing the

four Q-deformation classes QC6
1, QC6

2, QC6
3 and QC6

6 in QC6 are as shown in

Table 2.4.

Table 2.4: The seven D5-orbits in ΛQ(P) for any P ∈ QC5 represent-
ing the four Q-deformation classes in QC6.

D5-orbits QC6
σ

[A1]Q
5 , [A2]Q

5 QC6
1

[B]Q
5 , [E]Q

5 QC6
2

[C]Q
5 , [F]Q

5 QC6
3

[D]Q
5 QC6

6

2.5 Quadratically nondegenerate 7-configurations: the statement of the

main theorem

Our aim in the rest of Chapter 2 is to show that the space QC7 contains 14

connected components.

Theorem 2.5.1. (see Section 2.11.) The space QC7 has 14 connected compo-

nents. More precisely, LC7
(2,2,3,0) contains three connected components of QC7,

LC7
(3,4,0,0) contains two connected components of QC7 and each of the remaining

9 connected components of LC7 contains one connected component of QC7.

For the proof of the theorem, the first step is to analyze Q-deformation classes of

heptagonal, hexagonal and pentagonal configurations in QC7 separately. Then,

we show (see Section 2.11) that the theorem is obtained as a consequence of the

results in Proposition 2.8.2, Proposition 2.9.1, Proposition 2.10.1(a) and (b).
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2.6 Heptagonal 7-configurations: dominancy indices

Combinatorial classification of heptagonal configurations (taking into account

the mutual position of their points with respect to the 21 conics passing through

all 5-tuples of them) were obtained by S. Fiedler-Le Touzé [T2]. Here we refine

this result and obtain a classification of such configurations up to Q-deformations.

In turn, we give an alternative proof of the combinatorial result of Fiedler-Le

Touzé.

Recall from Section 2.3 that we denote by SP the set of conics passing through

all 5-tuples of points of P ∈ QCn for any n ≥ 5. Let P ∈ QC7 and p ∈ P. We

define a map indp : SPp̂ → {0, 1} by indp(Q) = 1 if p is dominant with respect to

Q or indp(Q) = 0 if p is subdominant with respect to Q for any Q ∈ SP p̂ where

P p̂ = P \ {p} and Q ∈ SP p̂ . For a conic Q ∈ SPp̂ , the image indp(Q) is called the

index of the point p with respect to Q. We define the dominancy index d(p) of a

point p ∈ P to be the number of conics in S Pp̂ for which p lies in the exterior

region of RP2 or, equivalently,

d(p) =
∑

Q∈SPp̂

indp(Q).

An outer (inner) point of P is a one that lies in the exterior (interior) region with

respect to every conic in S Pp̂ . In particular, for heptagonal configurations in

QC7
(7,0,0,0) outer (inner) points are the ones with dominancy index 6 (respectively

0). Other points whose dominancy indices are neither 0 nor 6 are called non-

extremal points.

Lemma 2.6.1. A heptagonal configuration in QC7
(7,0,0,0) can not have more than

one outer and more than one inner point.

Proof. Let P be a heptagonal configuration in QC7
(7,0,0,0) and p ∈ P. We assume

that P has two outer points. After removing the point p from P we obtain a

hexagonal configuration in QC6
1, in which both outer points should be dominant.

Hence, these points should have the same parity, i.e., dominant or subdominant
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with respect to the cyclic numeration on P \ {p}. However, one can choose the

point that we remove in such a way that the parity of these two given points on

the initial heptagon becomes different on the hexagon. We get a contradiction.

The case of two inner points is similar. �

d(p)

5− d(p) 7− d(p)

d(p)
5− d(p)7− d(p)

Figure 2.10: Two possibilities for the dominancy indices of two
neighbors of a non-extremal point p of P ∈ QC7

(7,0,0,0).

For a 7-configuration P = {p1, . . . , p7} ∈ QC7, let Qi, j = Q j,i denote one of

the 21 conics passing through the five points of P other than pi, p j, where

i, j ∈ {1, . . . , 7} and i , j.

Proposition 2.6.2. Assume that P ∈ QC7
(7,0,0,0) and that p is a non-extremal

point of P. Then, one of the two neighbors of p (with respect to the cyclic order

of the heptagon vertices) has dominancy index 5 − d(p) and the other neighbor

has dominancy index 7 − d(p) (see Figure 2.10).

Proof. Let P ∈ QC7
(7,0,0,0), and choose the cyclic numeration p1, . . . , p7 of points

of P such that p1 is a non-extremal point. Here, the points p2 and p7 are two

neighbors of the point p1. We will show that

{d(p1) + d(p2), d(p1) + d(p7)} = {5, 7}.

For each i ∈ {1, 2, . . . , 7}, the dominancy index of the point pi is

d(pi) =
∑

1≤ j≤7
j,i

indpi(Qi, j).
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Then,

d(p1) + d(p2) =
∑

1≤ j≤7
j,1

indp1(Q1, j) +
∑

1≤ j≤7
j,2

indp2(Q2, j)

=
∑

1≤ j≤7
j,1,2

(
indp1(Q1, j) + indp2(Q2, j)

)
+ indp1(Q1,2) + indp2(Q1,2).

First, we shall prove the following statements:

Lemma 2.6.3. Consider P ∈ QC7
(7,0,0,0), and assume that the points p1, . . . , p7

of P are cyclically numerated. Then, the following statements holds:

(a) If pi ∈ P such that indpi(Qi, j) = 1 for some j ∈ {1, . . . , 7} − {i, i + 1},

then indpi+1(Qi+1, j) = 0. Also, if pi ∈ P such that indpi(Qi, j) = 0 for some

j ∈ {1, . . . , 7} − {i, i + 1}, then indpi+1(Qi+1, j) = 1.

(b) If pi ∈ P is non-extremal point for some i ∈ {1, . . . , 7}, then both of the

indices indpi(Qi,i+1), indpi+1(Qi,i+1) are equal to either 1 or 0.

(c) For any 3 consecutive vertices pi−1, pi, pi+1 in a heptagonal configura-

tion, such that pi is not extremal, if one edge, [pi−1 pi] is inside (i.e.,

indpi−1(Qi,i−1) = indpi(Qi,i−1) = 0) then the other one, [pi pi+1] is outside

(i.e., indpi(Qi,i+1) = indpi+1(Qi,i+1) = 1), and vice versa.

Proof of Lemma 2.6.3. The proof of the first statement of the lemma follows

from analysis of the pencil of conics passing through the four points of P other

than pi, pi+1, p j since this pencil cannot contain a singular conic intersecting an

edge of the adjacency graph. For the proof of the second statement, we assume

that indpi(Qi,i+1) = 1 and indpi+1(Qi,i+1) = 0 (the case in which indpi(Qi,i+1) = 0

and indpi+1(Qi,i+1) = 1 is similar). Since the point pi is a non-extremal point

of P there exists a conic Qi, j for some j ∈ {1, . . . , 7} \ {i, i + 1} such that

indpi(Qi, j) = 0. Looking at the mutual positions of the conic Qi,i+1 and Qi, j we

find a contradiction to Bezout’s theorem. In fact it is enough to sketch a piece of

Qi, j, and so wee see that the conics Qi,i+1 and Qi, j intersect at least one additional

point different than the four common points, namely, {p1, . . . , p7} \ {pi, pi+1, p j}.

(See Figure 2.11 in which p1 is a non-extremal point with indp1(Q1,2) = 1,

indp2(Q1,2) = 0.) Removing pi from P, we obtain a hexagonal 6-configuration

26



in which points pi−1 and pi+1 become consecutive, and thus, are connected by an

edge. Then, for the proof of the third statement, it is enough to apply Lemma

2.3.6 to this edge.

pi
pi+1

Qi,i+1

Qi,j

Figure 2.11: The arc of an ellipse Q1, j sketched on the figure contains
an extra intersection point.

�

Corollary 2.6.4. If a side of a heptagon is crossed by the conic passing through

the other 5 points (i.e., vertices) of the hexagon, then the endpoints of these edge

are extremal: one of them is outer vertex, and the other one is inner.

Proof of Corollary 2.6.4. Let P ∈ QC7
(7,0,0,0) be a heptagonal configuration, and

assume that the numeration of points p1, . . . , p7 of P is cyclic. By Lemma

2.6.3 (b), if an edge [pi, pi+1] is crossed by the conic Qi,i+1, then pi can not be

a non-extremal point of P. On the other hand, pi+1 can not be non-extremal,

because you could apply Lemma 2.6.3(b) to another numeration (in the opposite

direction). By Lemma 2.6.1, since both pi and pi+1 are extremal, then one of

them is outer and another one is inner. �

The index indp1(Q1,2) is either 1 or 0. We assume indp1(Q1,2) = 1 (the case

indp1(Q1,2) = 0 is similar). By Lemma 2.6.3(b), indp2(Q1,2) = 1, and so

indp1(Q1,2) + indp2(Q1,2) = 2. By Lemma 2.6.3(a), if indp1(Q1, j) = 1 for some

j ∈ {3, 4, 5, 6, 7}, then indp2(Q2, j) = 0, and in addition, if indp1(Q1, j) = 0 for

some j ∈ {3, 4, 5, 6, 7}, then indp2(Q2, j) = 1. Then,∑
1≤ j≤7

j,1, 2

(
indp1(Q1, j) + indp2(Q2, j)

)
= 5.

Hence, we obtain d(p1) + d(p2) = 7. Similarly, we have
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d(p1) + d(p7) =
∑

1≤ j≤7
j,1

indp1(Q1, j) +
∑

1≤ j≤7
j,7

indp7(Q7, j)

=
∑

1≤ j≤7
j,1, 7

(
indp1(Q1, j) + indp7(Q7, j)

)
+ indp1(Q1,7) + indp7(Q1,7).

If indp1(Q1,2) = 1, then indp1(Q1,7) = 0 by Lemma 2.6.3(c). Thus, by Lemma

2.6.3(b), indp7(Q1,7) = 0, and so indp1(Q1,7)+ indp7(Q1,7) = 0. By similar reasons

as given above, we get∑
1≤ j≤7

j,1, 7

(
indp1(Q1, j) + indp7(Q7, j)

)
= 5.

Thus, we obtain d(p1) + d(p7) = 5.

Therefore, we complete the proof. �

Proposition 2.6.5. The dominancy indices of points of any heptagonal configu-

rations in QC7
(7,0,0,0) go in the following cyclic order (with respect to the cyclic

numeration of vertices of the principle hexagon, see Figure 2.3): 6, 1, 4, 3, 2, 5, 0.

Proof. Let P ∈ QC7
(7,0,0,0) be a heptagonal configuration. By Lemma 2.6.1, this

configuration should have a non-extremal point, say p2, with respect to some

cyclic numeration on P. Then, d(p2) = k for some k ∈ {1, 2, 3, 4, 5}. If d(p2) = 1

then either d(p3) = 4, d(p1) = 6 or d(p3) = 6, d(p1) = 4 by Proposition 2.6.2.

Firstly, we assume that d(p3) = 4, d(p1) = 6. Applying Proposition 2.6.2

successively we get d(p4) = 3, d(p5) = 2, d(p6) = 5, and d(p7) = 0. Then,

the cyclic numeration of vertices of the principle hexagon is 6, 1, 4, 3, 2, 5, 0. If

d(p3) = 6, d(p1) = 4 we could apply Proposition 2.6.2 to another numeration (in

the opposite direction). For the other cases k = 2, 3, 4, 5, we apply Proposition

2.6.2 to another numeration. This completes the proof. �

2.7 Heptagonal augmentations of hexagonal 6-configurations

Let P ∈ QC6
1 be a hexagonal configuration, and assume that the numeration of

points p1, . . . , p6 of P is cyclic such that p6 is dominant point. The six conics Qi,
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i = 1, . . . , 6, which are passing through the five points of P other than pi divide

the L-polygon p1Op6 (see Figure 2.5) into either six Q-regions R j, j = 1, . . . , 6,

or seven Q-regions R j, j = 0, 1, . . . , 6 as it is shown in Figure 2.12.

p6

p1

p2

p3
p4

p5

Q1

Q2

Q3

Q4

Q5
R1

R2

R3

R4

R5

R6

O

Q6

(a) the case of six Q-regions

p6

p1

p2

p3
p4

p5

Q1

Q2

Q3

Q4

Q5

Q6

R1

R2

R3

R4

R5

R6

O

R0

(b) the case of seven Q-regions

Figure 2.12: The Q-region R6−i, i = 1, . . . , 5, associated to a hexag-
onal configuration in QC6

1 is the region between two conics Qi and
Qi+1 lying inside the triangle p1Op6. The Q-regions R6 and R0 are
the exterior of the conic Q1 and the interior of the conic Q6 lying
inside p1Op6, respectively.

Proposition 2.7.1. Let Pt, t ∈ [0, 1], be a Q-deformation such that Pt ∈ QC6

are hexagonal configurations for all t. Let the numeration of points p0
1, . . . , p0

6

of P0 be cyclic such that the point p0
6 is dominant, and let R0

i , i = 0, 1, . . . , 6

be Q-regions associated to P0 as above. We assume that {Rt
i}t∈[0,1] is the Q-

deformation of R0
i for some i ∈ {0, 1, . . . , 6}. Choose a point p0 ∈ RP2 from the

interior of R0
i , and assume, in addition, that {pt}t∈[0,1] is the Q-deformation of p0.

Then the heptagonal augmentation Pt ∪ {pt} (i.e., Pt ∪ {pt} ∈ QC7
(7,0,0,0) for all t)

is also Q-deformation. Moreover, the dominancy index of the point pt ∈ P̃t is

equal to the index i of the region Rt
i 3 pt.
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Proof. The proof of the first part is obvious since neither lines containing three

points of the heptagonal augmented configuration Pt ∪ {pt} nor conics passing

through six points of Pt ∪ {pt} for each t ∈ [0, 1] occurs. The proof of the second

part follows from the facts that the dominancy index of p0
0 is zero if the point

p0
0 lies inside the Q-region R0

0 (see Figure 2.12). More generally, if the point

p0
0 lies inside the Q-region R0

i , i = 1, . . . , 6, then the dominancy index of p0
0 is

increasing by i since in this case, it lies in the interior of the 6 − i number of

conics. �

Table 2.5: In this figure, "in" (respectively, "out") means that pi ∈ P,
i = 1, . . . , 7, lies in the interior (respectively, the exterior) of the
conics Qi, j for any j ∈ {1, . . . , î, . . . , 7} if p0 = p7 lies in the Q-region
Ri, i = 0, 1, . . . , 6, associated to a heptagonal 7-configuration P as
below.

Qi, j p7 in R5 p7 in R4 p7 in R3 p7 in R2 p7 in R1 p7 in R0 p7 in R6

Q1,2 p1 in, p2 out p1 , p2 out p1 , p2 out p1 , p2 out p1 , p2 out p1 , p2 out p1 , p2 in
Q1,3 p1 , p3 in p1 , p3 in p1 out, p3 in p1 out, p3 in p1 out, p3 in p1 out, p3 in p1 in, p3 out
Q1,4 p1 in, p4 out p1 in, p4 out p1 in, p4 out p1 , p4 out p1 , p4 out p1 , p4 out p1 , p4 in
Q1,5 p1, p5 in p1 , p5 in p1 , p5 in p1 ,p5 in p1 out, p5 in p1 out, p5 in p1 in, p5 out
Q1,6 p1 in, p6 out p1 in, p6 out p1 in, p6 out p1 in, p6 out p1 in, p6 out p1 , p6 out p1 , p6 in
Q1,7 p1 , p7 in p1 , p7 in p1 , p7 in p1 , p7 in p1 , p7 in p1 , p7 in p1 in, p7 out
Q2,3 p2 , p3 out p2 out, p3 in p2 , p3 in p2 , p3 in p2 , p3 in p2 , p3 in p2 , p3 out
Q2,4 p2 out, p4 in p2 , p4 out p2 , p4 out p2 in, p4 out p2 in, p4 out p2 in, p4 out p2 out, p4 in
Q2,5 p2 , p5 out p2 out, p5 in p2 out, p5 in p2 out, p5 in p2 , p5 in p2 , p5 in p2 , p5 out
Q2,6 p2 out, p6 in p2 , p6 out p2 , p6 out p2 , p6 out p2 , p6 out p2 in, p6 out p2 out, p6 in
Q2,7 p2 , p7 out p2 out, p7 in p2 out, p7 in p2 out, p7 in p2 out, p7 in p2 out, p7 in p2 , p7 out
Q3,4 p3 , p4 in p3 , p4 in p3 in, p4 out p3 , p4 out p3 , p4 out p3 , p4 out p3 , p4 in
Q3,5 p3 in, p5 out p3 in, p5 out p3 , p5 in p3 , p5 in p3 out, p5 in p3 out, p5 in p3 in, p5 out
Q3,6 p3 , p6 in p3 , p6 in p3 in, p6 out p3 in, p6 out p3 in, p6 out p3 , p6 out p3 , p6 in
Q3,7 p3 in, p7 out p3 in, p7 out p3 , p7 in p3 , p7 in p3 , p7 in p3 , p7 in p3 in, p7 out
Q4,5 p4 , p5 out p4 , p5 out p4, p5 out p4 out, p5 in p4 , p5 in p4 , p5 in p4 , p5 out
Q4,6 p4 out, p6 in p4 out, p6 in p4 out, p6 in p4 , p6 out p4 , p6 out p4 in, p6 out p4 out, p6 in
Q4,7 p4 , p7 out p4 , p7 out p4 , p7 out p4 out, p7 in p4 out, p7 in p4 out, p7 in p4 , p7 out
Q5,6 p5 , p6 in p5 , p6 in p5 , p6 in p5 , p6 in p5 in, p6 out p5 , p6 out p5 , p6 in
Q5,7 p5 in, 7out p5 in, p7 out p5 in, p7 out p5 in, p7 out p5 , p7 in p5 , p7 in p5 in, p7 out
Q6,7 p6 , p7 out p6 , p7 out p6 , p7 out p6 , p7 out p6 , p7 out p6 out, p7 in p6 , p7 out

Remark 2.7.2. Let P ∈ QC7
(7,0,0,0), and choose a cyclic numeration of the

points p1, . . . , p7 of P such that p6 is dominant with respect to the conic Q6,7

passing through five points of P other than p6 and p7. Consider the hexagonal

configuration P7̂ = P \ {p7}, and its associated Q-regions Ri, i = 0, . . . , 6,

which are the sections of the L-polygon p1Op6 divided by the six conics Qi,

i = 1, . . . , 6, which are passing through the five points of P7̂ other than pi as

shown in Figure 2.12. Notice that the point p7 have to lie inside one of these

regions. Then, by straightforward computation, we get Table 2.5, in which each
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column shows the position of each pair of points p j, pk ∈ P with respect to the

conics Q j,k, where 1 ≤ j < k ≤ 7, when the point p0 = p7 lies in the region

Ri = R0
i , 0 ≤ i ≤ 6. This table is equivalent to the table given by S. Fiedler-Le

Touzé [T2].

Making use of the results in Table 2.5, we get the following Table 2.6 whose

columns show the dominancy indices of points of P where p7 ∈ P lies in Ri,

i = 0, 1, . . . , 6.

Table 2.6: The dominancy indices of points of a 7-configuration P ∈
QC7

(7,0,0,0) as above, when p7 ∈ P lies in the regions Ri, i = 0, 1, . . . , 6.

p7 in R0 p7 in R1 p7 in R2 p7 in R3 p7 in R4 p7 in R5 p7 in R6

d(p1) 5 4 3 2 1 0 0
d(p2) 2 3 4 5 6 6 5
d(p3) 3 2 1 0 0 1 2
d(p4) 4 5 6 6 5 4 3
d(p5) 1 0 0 1 2 3 4
d(p6) 6 6 5 4 3 2 1
d(p7) 0 1 2 3 4 5 6

The outer point
of P p6 p6 p4 p4 p2 p2 p7

2.8 The Q-deformation classes of heptagonal 7-configurations

In this section we study Q-deformation classes of heptagonal 7-configurations

(that form subset QC7
(7,0,0,0)).

For a given heptagonal configuration P ∈ QC7
(7,0,0,0), we say that the cyclic

numeration of points p1, . . . , p7 of P is canonical if d(p1) = 6 and d(p7) = 0.

Proposition 2.8.1. Let P0,P1 ∈ QC7
(7,0,0,0), assume that pi

0 is the outer point of

Pi, where i ∈ {0, 1}. Then, there is a Q-deformation {Pt}t∈[0,1] between P0 and

P1 which takes p0
0 to p1

0.

Proof. We assume that the numeration of the points pi
0, pi

1, pi
2, . . . , pi

6 of Pi,

i = 0, 1, is cyclic such that pi
0 and pi

6 are outer and inner points ofPi, respectively.

Consider the hexagonal configurations Pi
0̂
∈ QC6

1, i = 0, 1, obtained from Pi by

removing pi
0. By Lemma 2.3.6, the point pi

1 ∈ P
i
0̂
, i = 0, 1, is dominant since the

point pi
6 ∈ P

i
0̂

is subdominant. By Proposition 2.3.3, there is a Q-deformation
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{Pt
0̂
}, t ∈ [0, 1], sending p0

1 to p1
1. Since pi

0, i = 0, 1, is outer point of Pi it

must lie in the Q-region Ri
6 which are the divisions of the L-polygon pi

1Oi pi
6

associated to Pi
0̂

by the conics Qi
j, j = 1, . . . , 6, passing through five points of

Pi
0̂

other than pi
j. Let {Rt

6} and {pt
0} , t ∈ [0, 1], be the Q-deformations of R0

6 and

p0
0 under the Q-deformation {Pt

0̂
}. The Q-regions Rt

6 are connected and they do

not contract to a point as t varies, so the deformation Pt
0̂

can be extended to a

Q-deformation Pt = Pt
0̂
∪ {pt

0}, t ∈ [0, 1]. �

Since any heptagonal configuration P ∈ QC7
(7,0,0,0) has a unique outer (and, a

unique inner) point by Proposition 2.6.1, we get the following statement.

Proposition 2.8.2. The space QC7
(7,0,0,0) of quadratically nondegenerate heptag-

onal configurations of seven points is connected. �

We decorate edges of the adjacency graph Γ(P) for a given heptagonal configu-

ration P ∈ QC7
(7,0,0,0) in such a way that an edge is illustrated by bold or thin if

two end points of the edge are both dominant or both subdominant with respect

to the conic passing through remaining five points of P, respectively, or by a

dotted edge with an arrow from the dominant point to the subdominant point if

one of the end points of the edge is dominant and the other is subdominant. (See

Figure 2.13). We call this decoration the e-decoration of Γ(P). The adjacency

graph Γ(P) together with the e-decoration is called the e-decorated adjacency

graph of P.

e1
e2

e3

Figure 2.13: Three types of decorations of edges in Γ(P) for P ∈
QC7

(7,0,0,0).

The cyclic numeration of points p1, . . . , p7 of a given heptagonal configuration

P ∈ QC7
(7,0,0,0) is called the canonical numeration if d(p1) = 6 and d(p7) = 0.

Proposition 2.8.3. All heptagonal configurations in QC7
(7,0,0,0) have topologi-

cally the same e-decorated adjacency graph as shown in Figure 2.14.
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Figure 2.14: The e-decorated adjacency graphs of P ∈ QC7
(7,0,0,0) in

which the direction of the arrow from the inner point to the outer
point.

Proof of Proposition 2.8.3. The uniqueness immediately follows from Proposi-

tion 2.8.2. The e-decoration of adjacency graphs for any heptagonal configura-

tions in QC7
(7,0,0,0) follows form Lemma 2.6.3 and Proposition 2.6.5. In addition,

this decoration can be also obtained by using the table 2.5. �

2.9 Hexagonal 7-configurations

Let P ∈ QC6 be a hexagonal configuration, and assume that the numeration of

points p1,. . . ,p6 of P is cyclic such that p1 is dominant with respect to the conic

Q1 passing through five points of P other than p1. The conics Qi, i = 1, . . . , 6,

divide the internal L-polygons (i.e., those of lying inside the principle hexagon

FP, see Figure 2.5) into finite number of Q-regions. It is easily seen that the

quotient space of D6-action on the internal Q-regions have six distinct D6-orbits.

We shall denote by B1, B2, C1, C2, D, and E the Q-regions representing the six

D6-orbits as shown in Figure 2.15.

For a hexagonal configuration P ∈ QC7, we say that a point p of P is h-

interior if it lies inside the principle hexagon (see Section 2.2) of the hexagonal

configuration Pp̂ = P \ {p} ∈ QC6
1. Any hexagonal configuration P ∈ QC7 has

one and only one h-interior point since S 6(P) = 1 (see Table 2.1).

Proposition 2.9.1. The following statements hold:

(a) The space LC7
(3,4,0,0) contains two connected components of QC7, and these

components are denoted by QC7
(3,4,0,0)1

and QC7
(3,4,0,0)2

(see Figure 2.19(a)

and (b)).

(b) The space LC7
(2,2,3,0) contains three connected components of QC7, and
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p1

p2

p3

p4

p5

p6

B1 B2

D
C1

C2

E

Figure 2.15: The six D6-orbits on internal Q-regions associated to a
hexagonal configuration in QC6.

these components are denoted by QC7
(2,2,3,0)i

for each i ∈ {1, 2, 3} (see

Figure 2.19(c), (d) and (e)).

(c) The spaces LC7
σ, for σ = (1, 0, 6, 0), (1, 2, 2, 2) are contained in QC7 and

thus, each of these spaces contains one connected component of QC7 (i.e.,

QC7
σ = LC7

σ see 2.19(f) and (g)).

Hence, the space of hexagonal configurations in QC7 has 7 connected compo-

nents as introduced in items (a), (b), and (c).

Proof. Let P ∈ QC7 be a hexagonal configuration, and p7 be the h-interior

point of P. Assume that the numeration of points p1, . . . , p6 of the hexagonal 6-

configuration P7̂ = P \ {p7} is cyclic such that p1 is dominant. All permutations

of D6 which preserve the colors of the six points of P7̂ (i.e., black for dominant

points and white for subdominant points) form the subgroup D3, and these

color preserving permutations induce an action on ΛQ(P7̂). We call this action

the D3-action on ΛQ(P7̂). We denote by [M]Q
3 the orbit of a Q-region M with

respect to this action. The quotient space of the D3-action on internal Q-regions

associated to P7̂ have seven distinct D3-orbits. We shall denote by B1, B2, C1,

C2, C3, D, and E the Q-regions representing the seven D3-orbits on the internal
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Q-regions as shown in Figure 2.16. Note that there is one more D3-orbit on

internal Q-regions than in the case of D6-orbits (see Figures 2.15 and 2.16).

p1

p2

p3

p4

p5

p6

B1 B2

D
C1

C2

E

C3

Figure 2.16: The seven D3-orbits on internal Q-regions associated to
a hexagonal configuration in QC7.

Recall from Section 2.1 that there are four L-deformation classes of hexagonal

7-configurations in LC7 and the adjacency graphs representing these classes are

shown in Figure 2.2(b)-(e). Table 2.3 shows which D6 orbits on L-polygons

associated to a hexagonal configuration in LC7 correspond to each L-deformation

class of hexagonal 7-configurations in LC7. By definition QC7
σ = LC7

σ \ Q∆7

(see Section 2.3). It is equivalent to say that QC7
(1,0,6,0) and QC7

(1,2,2,2) are the

subspaces of QC7 consisting of hexagonal 7-configurations whose h-interior

points lie in their associated Q-regions D and E, respectively. We denote by

QC7
(3,4,0,0)i

(i = 1, 2) and QC7
(2,2,3,0)i

(i = 1, 2, 3) the subspaces of QC7 consisting

of hexagonal 7-configurations whose h-interior points lie in their associated

Q-regions Bi and Ci, respectively.

The connectedness of PGL(3,R) implies there exits a Q-deformation of P7̂ in-

duced by a given permutation in D3. If the Q-region associated to P7̂ containing

the point p7 is not collapsing under this Q-deformation, then this deformation

can be extended to a Q-deformation of the augmented 7-configuration P.

For the continuation of this proof we need the following two lemmas.
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Lemma 2.9.2. Assume that P0 ∈ QC6 is a hexagonal configuration, and that

Pt, [0, 1], is a Q-deformation. Then, no internal Q-regions associated to P0

different from the central triangle can collapse.

Proof of Lemma 2.9.2. An internal Q-region associated to P does not collapse

if it contains a vertex of the principle hexagon ofP and some angle ∠ABC, where

A, B,C ∈ P. In addition, there can not be exist a convex hexagon with triple

intersection point of the diagonals unless they are the three big diagonals. �

The following result is the immediate consequence of Lemma 2.9.2.

Corollary 2.9.3. Assume that Pi ∈ QC7, i = 0, 1, are two hexagonal configura-

tions, and that pi
7 ∈ P

i is h-interior point which lies in an internal Q-region Mi

associated to Pi
7̂

other than central triangles. If, in addition, M0,M1 belong to

the same type D3-orbit, then P0 is Q-deformation equivalent to P1. �

Lemma 2.9.4. Assume that Pi ∈ QC6
1, i = 0, 1 are hexagonal configurations,

and that the central triangles Ei associated to Pi do not degenerate to a point

(i.e., their big diagonals are not concurrent). Then, there exists a Q-deformation

{Pt}t∈[0,1] such that central triangles Et, t ∈ [0, 1], associated to Pt do not

collapse during this Q-deformation.

Proof of Lemma 2.9.4. Assume that the numerations of points pi
0, . . . , pi

5 of Pi,

i = 0, 1, are cyclic such that p0
j , p1

j are dominant for j odd and subdominant for

j even. Without loss of generality we can assume that

(1) the lines Lpi
0 pi

3
,Lpi

1 pi
4

and Lpi
2 pi

5
containing to big diagonals of the principle

hexagons of Pi, i = 0, 1, are the same.

(2) the central triangles are the same.

We can find a projective transformation between these configurations sending

the central triangle of P0 to the central triangle of P1 such that each of these

diagonals contains same type points as shown in Figure 2.17.

For a given triangle ABC ⊂ RP2, let us denote by QC6
ABC the subspace of QC6

1

consisting of convex hexagonal 6-configurations (i.e. those of convex in RP2 \ L
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A
B C

p01 p02

p03

p04p05

p00p10

p11 p12

p13

p14p15

Figure 2.17: A pair of hexagonal 6-configurations with the same
diagonal.

for a line L) having the central triangle ABC.

The following proposition is crucial for continuation of the proof of Lemma 2.9.4.

Proposition 2.9.5. Given a triangle ABC ⊂ RP2, the space QC6
ABC is connected.

Proof of Proposition 2.9.5. Note that the central triangle of a given convex

hexagon is contained in each subpentagon of this hexagon, and so it is also

contained inside the conics passing through all 5-tuples of vertices of this

hexagon. For the proof of this proposition, we need the following lemma.

Let S ABC be the set of pairs (Q,D), where Q is a conic containing the triangle

ABC inside, and D ∈ RP2 is a point which lies in one of the three boundary

lines LAB, LAC and LBC of the triangle, and at the same time outside Q such

that it forms a convex hexagon together with an arbitrary 5-tuple from the six

intersection points of Q ∩ (LAB ∪ LAC ∪ LBC) (for example, see Figure 2.18).

Define a map α from S ABC to QC6
ABC by α(Q,D) = (p0, p1, p2, p3, p4, p5), where

p0 = D and the five other points are the intersections of Q and the three boundary

lines LAB, LAC and LBC. By definition of this map, the following lemma is trivial.

A
B C

LAB

LBC

LAC

Q

p2

p3

p4p5

p6

p1 = D

Figure 2.18
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Lemma 2.9.6. The map α : (Q,D) 7→ (p0, p1, p2, p3, p4, p5) as above estab-

lishes one-to-one correspondence between S ABC and QC6
ABC for a given triangle

ABC ⊂ RP2. �

It is trivial and well-known fact that the space of conics containing given a central

triangle ABC inside is connected since this space is homotopically equivalent to

the space of conics containing given a point. The map

S ABC → {Q : Q conics containing a given triangle ABC inside}

is a fibration with a fiber interval, so the total space of all pairs S ABC is connected.

�

By Proposition 2.9.5 the proof of Lemma 2.9.4 is completed. �

The next statement is an immediate consequence of the Lemma 2.9.4.

Corollary 2.9.7. Let Pi ∈ QC7, i = 0, 1, be two hexagonal configurations,

and assume that pi
7 ∈ P

i is h-interior point which lies in central triangles Ei

associated to Pi
7̂
. Then P0 is Q-deformation equivalent to P1. �

Form Corollaries 2.9.3 and 2.9.7, we obtain that the spaces QC7
(3,4,0,0)i

, i = 1, 2,

QC7
(2,2,3,0)i

, i = 1, 2, 3, QC7
(1,0,6,0), and QC7

(1,2,2,2) are connected. This completes

the proof of Proposition 2.9.1. �

By Proposition 2.9.1, we obtain Table 2.7. This table shows the correspondence

between D3-orbits in ΛQ(P), where P ∈ QC6 is a hexagonal configuration and

Q-deformation classes of augmented configurations in QC7 (i.e., each of them

is obtained from P by adding just one point of RP2 to one of the Q-regions in

ΛQ(P)).

Let P ∈ QC7 be a hexagonal configuration, and p7 be its h-interior point.

Assume that the numeration of six points p1, . . . , p6 of P other than p7 is cyclic

such that p1 is dominant and p7 lies inside one of the seven Q-regions associated

to P7̂ as shown in Figure 2.16. Then, by straightforward computation yields
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Table 2.7: The seven D3-orbits of Q-regions associated to a hexagonal
configuration in QC6 representing the seven Q-deformation classes
of hexagonal configurations in QC7.

D3-orbits Q-deformation classes in QC7

[B1]Q
3 QC7

(3,4,0,0)1

[B2]Q
3 QC7

(3,4,0,0)2

[C1]Q
3 QC7

(2,2,3,0)1

[C2]Q
3 QC7

(2,2,3,0)2

[C3]Q
3 QC7

(2,2,3,0)3

[D]Q
3 QC7

(1,2,2,2)

[E]Q
3 QC7

(1,0,6,0)

Table 2.8: In this figure, "in" (respectively, "out") means that pi ∈ P,
i = 1, . . . , 7 lie in the interior (respectively, the exterior) of the conics
Qi, j, where j , i and j ∈ {1, . . . , 7}, depending on the position of the
h-interior point p7 of a hexagonal configuration P ∈ QC7 as below.

Qi, j p7 ∈ B1 p7 ∈ B2 p7 ∈ C1 p7 ∈ C2 p7 ∈ C3 p7 ∈ D p7 ∈ E
Q1,2 p1 out, p2 in p1 , p2 out p1 out, p2 in p1 , p2 out p1 , p2 out p1 , p2 out p1 , p2 out
Q1,3 p1 , p3 out p1 out, p3 in p1 , p3 out p1 out, p3 in p1 in, p3 out p1 in, p3 out p1 out, p3 in
Q1,4 p1 out, p4 in p1 , p4 out p1 out, p4 in p1 , p4 out p1 , p4 in p1 , p4 in p1 , p4 out
Q1,5 p1, p5 out p1 out, p5 in p1 , p5 out p1 out,p5 in p1 out, p5 in p1 in, p5 out p1 out, p5 in
Q1,6 p1 out, p6 in p1 , p6 out p1 out, p6 in p1 , p6 out p1 , p6 out p1 , p6 out p1 , p6 in
Q1,7 p1 , p7 out p1 out, p7 in p1 , p7 out p1 out, p7 in p1 out, p7 in p1 out, p7 in p1 out, p7 in
Q2,3 p2 , p3 out p2 , p3 out p2 , p3 out p2 , p3 in p2 , p3 out p2 , p3 in p2 , p3 in
Q2,4 p2 out, p4 in p2 out, p4 in p2 out, p4 in p2 in, p4 out p2 out, p4 in p2 in, p4 out p2 in, p4 out
Q2,5 p2 , p5 out p2 , p5 out p2 , p5 out p2 , p5 out p2 , p5 out p2 , p5 out p2 , p5 out
Q2,6 p2 in, p6 out p2 in, p6 out p2 out, p6 in p2 out, p6 in p2 in, p6 out p2 out, p6 in p2 out, p6 in
Q2,7 p2 , p7 in p2 , p7 in p2 , p7 in p2 , p7 in p2 , p7 in p2 , p7 in p2 , p7 in
Q3,4 p3 , p4 in p3 , p4 in p3 , p4 out p3 , p4 out p3 , p4 out p3 , p4 in p3 , p4 out
Q3,5 p3 in, p5 out p3 in, p5 out p3 in, p5 out p3 in, p5 out p3 out, p5 in p3 in, p5 out p3 out, p5 in
Q3,6 p3 , p6 out p3 , p6 out p3 , p6 in p3 , p6 in p3 , p6 out p3 , p6 in p3 , p6 out
Q3,7 p3 out, p7 in p3 out, p7 in p3 out, p7 in p3 out, p7 in p3 out, p7 in p3 out, p7 in p3 out, p7 in
Q4,5 p4 , p5 out p4 , p5 out p4 , p5 out p4 , p5 out p4 , p5 in p4 , p5 in p4 , p5 in
Q4,6 p4 in, p6 out p4 in, p6 out p4 out, p6 in p4 out, p6 in p4 in, p6 out p4 out, p6 in p4 in, p6 out
Q4,7 p4 , p7 in p4 , p7 in p4 , p7 in p4 , p7 in p4 , p7 in p4 , p7 in p4 , p7 in
Q5,6 p5 , p6 out p5 , p6 out p5 , p6 out p5 , p6 out p5 , p6 out p5 , p6 out p5 , p6 out
Q5,7 p5 out, 7in p5 out, p7 in p5 out, p7 in p5 out, p7 in p5 out, p7 in p5 out, p7 in p5 out, p7 in
Q6,7 p6 , p7 in p6 , p7 in p6 , p7 in p6 , p7 in p6 , p7 in p6 , p7 in p6 , p7 in

Table 2.8, in which each column shows the position of each pair of points

pi, p j ∈ P with respect to the conics Qi, j, where 1 ≤ i < j ≤ 7 provided that p7

lies one of the seven Q-regions associated to P7̂.

Let P be a hexagonal configuration in QC7, and p7 is its h-interior point. The

quadruple
(
Γ(P), dP, υP7̂

, e1
P

)
is called the dev-decorated adjacency graph of P,

where dP is the d-decoration of Γ(P) (see Section 2.1, υP7̂
is the υ-decoration
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of P7̂ (see Section 2.3), and e1
P

is the induced decoration of the e-decoration of

Γ(P) on the edges of Γ(P) with labeled by 1 (see Section 2.8).

The dev-decorated adjacency graphs representing the seven Q-deformation

classes of hexagonal configurations in QC7 are shown in Figure 2.19.

1

2

(a) QC7
(3,4,0,0)1

1

2

(b) QC7
(3,4,0,0)2

1

3

2

(c) QC7
(2,2,3,0)1

1

3

2

(d) QC7
(2,2,3,0)2

1

32

(e) QC7
(2,2,3,0)3

1
2

2

3

3

6

(f) QC7
(1,2,2,2)

3

3

3

1

(g) QC7
(1,0,6,0)

Figure 2.19: The seven Q-deformation classes for hexagonal configu-
rations in QC7
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2.10 Pentagonal 7-configurations

Proposition 2.10.1. The following statements hold:

(a) QC7
σ = LC7

σ if σ ∈ {(0, 4, 3, 0), (0, 6, 1, 0), (0, 3, 3, 1)}.

(b) The space QC7
σ is connected for eachσ ∈ {(1, 6, 0, 0), (1, 4, 2, 0), (1, 2, 4, 0)}.

Hence, the space of pentagonal configurations in QC7 has 6 connected compo-

nents as introduced in items (a) and (b).

Proof. For item (a), consider the L-deformation classes LC7
σ consisting of pen-

tagonal 7-configurations with R1 = 0 for σ ∈ {(0, 4, 3, 0), (0, 6, 1, 0), (0, 3, 3, 1)}

(see Table 2.1). In these cases of σ, LC7
σ ∩ Q∆7 = ∅ since R1 = 0 (that is, there

are no 7-configurations in LC7
σ such that some six points lie on a conic). This

proves item (a).

To prove item (b), consider a pentagonal configuration P ∈ QC7. If the first entry

of the derivative codes of P (see Section 2.1) is equal to 1, i.e. R1 = 1, then

there is a point of P, say p7, such that P7̂ ∈ QC6 is a hexagonal configuration,

i.e. P7̂ ∈ QC6
1. Let us assume that the numeration of points p1, . . . , p6 of P7̂

is cyclic such that p6 is dominant. The L-polygons associated to P7̂ are as

shown in Figure 2.5. Since the configuration P is pentagonal configuration with

R1 = 1, the point p7 should lie in one of the external L-polygons representing

the L-deformation classes LC7
(1,6,0,0), LC7

(1,4,2,0), and LC7
(1,2,4,0), respectively (see

Figure 2.5 and Table 2.1).

For the continuation of this proof we need the following lemma.

Lemma 2.10.2. Assume that P ∈ QC7 is a pentagonal configuration such that

the first entry of its derivative code is equal to 1, i.e. R1 = 1, and that p7 ∈ P

is a point such that P7̂ ∈ QC6
1 is hexagonal configuration. Then, the six conics

Qi,7 passing through five points of P other than pi and p7 do not cross external

L-polygons associated to P7̂ representing the L-deformation classes LC7
(1,6,0,0),

LC7
(1,4,2,0), and LC7

(1,2,4,0) (see Table 2.3).
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Proof of Lemma 2.10.2. Let us assume that the numeration of points p1, . . . , p6

of P7̂ is cyclic such that p6 is dominant. By Figures 2.5 and 2.12, we ob-

serve that the six conics Qi,7 cross only external L-polygons representing the L-

deformation classes LC7
(3,4,0,0), LC7

(2,2,3,0) consisting of hexagonal 7-configurations

(see Table 2.3). �

The next statement is an immediate consequence of Lemma 2.10.2.

Corollary 2.10.3. The external Q-regions and external L-polygons associated

to a pentagonal configuration with R1 = 1 are the same. �

The quotient space with respect to the D3-action (i.e., the induced action of

permutations of D6 preserving colors of points of P7̂) on the external Q-regions

associated to P7̂ has five distinct D3-orbits. We denote by F1, F2, G, H1, and H2

the external Q-regions representing the five D3-orbits as shown in Figure 2.20.

We denote by QC7
(1,4,2,0) the subspace of QC7 consisting of pentagonal con-

figurations with R1 = 1, each of which has a point, after removing it from

this 7-configuration we get a hexagonal 6-configuration, lying in its associated

Q-region G. Besides, we denote by QC7
(1,2,4,0)i

and QC7
(1,6,0,0)i

, i = 1, 2, the

subspaces of QC7 consisting of pentagonal 7-configurations with R1 = 1, each

configuration having a point lying in its associated Q-regions Hi and Fi, respec-

tively. After the removal of this point from the corresponding 7-configuration

we get a hexagonal 6-configuration.

To show the connectedness of these subspace we need the following observation:

Lemma 2.10.4. Let Pi ∈ QC7, i = 0, 1, be two pentagonal configurations with

R1 = 1, and pi
7 be a point of Pi such that Pi

7̂
= Pi r {pi

7} ∈ QC6
1. Assume

that for each i = 0, 1, F i
j, j = 1, 2, are the external Q-regions associated to

Pi as introduced above. If, in addition, pi
7 lies in either F i

1 or F i
2 then P0 is

Q-deformation equivalent to P1. Besides, assume that for each i = 0, 1, Hi
j,

j = 1, 2, are the external Q-regions associated to Pi as introduced above. If, in

addition, pi
7 lies in either Hi

1 or Hi
2, then P0 is Q-deformation equivalent to P1.

Proof of Lemma 2.10.4. We assume that the numerations of six points pi
1, pi

2,
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p1

p2

p3

p4

p5

p6

F

G2

G1

H1

G1

G2

F

H2
H1

H2

Figure 2.20: The five D3-orbits on external Q-regions associated to a
pentagonal 7-configurations with R1 = 1 where the shaded external
L-polygons show that these polygons are not taken into account.

pi
3, pi

4, pi
5, pi

6 ∈ P
i, i = 0, 1, different from pi

7 are cyclic such that pi
6 are dominant

points. By Lemma 2.10.2, for each i = 0, 1, the external Q-regions Gi
j and

Hi
j, j = 1, 2, are not crossed by six conics Qi

k,7 passing through five points of

P other than pi
k and pi

7 for every k = 1, . . . , 6. This is the reason why for each

i = 0, 1, these regions can not collapse during a Q-deformation {Pt
7̂
}, t ∈ [0, 1].

Therefore, we can extend this deformation to the Q-deformation {Pt}, t ∈ [0, 1].

From Figure 2.20 the two Q-regions F i
1, F i

2 (respectively, the two Q-regions Hi
1,

Hi
2) differ by a projective transformation for each i = 0, 1. Therefore, in both

cases of the positions of p0
7 and p1

7, P0 is Q-deformation equivalent to P1. �

The following result is immediate consequence of Lemma 2.10.4.

Corollary 2.10.5. The spaces QC7
(1,2,4,0) j

, QC7
(1,6,0,0) j

, j = 1, 2 are connected.

Moreover, the space QC7
(1,2,4,0)1

(respectively, the space QC7
(1,6,0,0)1

) is equal to
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the space QC7
(1,2,4,0)2

(respectively, the space QC7
(1,6,0,0)2

). �

From now on, in both cases j = 1, 2, the spaces QC7
(1,2,4,0) j

and QC7
(1,6,0,0) j

are

denoted by just QC7
(1,2,4,0) and QC7

(1,6,0,0).

By Corollary 2.10.5, we obtain Table 2.9. This table shows the correspondence

between D3-orbits in ΛQ(P) for any pentagonal configuration P ∈ QC6 and

Q-deformation classes of the augmented configurations in QC7 (i.e., each of

them is obtained from P by adding just one point of RP2 to one of the Q-regions

in ΛQ(P)).

Table 2.9: The five D3-orbits of Q-regions associated to a hexagonal
configuration in QC6 representing the three Q-deformation classes of
pentagonal configurations with R1 = 1 in QC7.

D3-orbits Q-deformation classes in QC7

[G]Q
3 QC7

(1,4,2,0)

[H1]Q
3 , [H2]Q

3 QC7
(1,2,4,0)

[F1]Q
3 , [F2]Q

3 QC7
(1,6,0,0)

Let P be a pentagonal configuration with R1 = 1 in QC7, and assume that

P p̂ ∈ QC6
1 for some p ∈ P. The triplet

(
Γ(P), dP, υPp̂

)
is called the dv-decorated

adjacency graph of P, where dP is d-decoration of Γ(P), and υPp̂ is the υ-

decoration of Pp̂.

The dv-decorated adjacency graphs representing three Q-deformation classes of

pentagonal configurations with R1 = 1 in QC7 are shown in Figure 2.21.

1

2 2

(a) QC7
(1,6,0,0)

1

2 2

3

(b) QC7
(1,4,2,0)

3

22

3

1

(c) QC7
(1,2,4,0)

Figure 2.21: The three Q-deformation classes for pentagonal 7-
configurations with R1 = 1 in QC7.
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2.11 Proof of Theorem 2.5.1

By Proposition 2.8.2 we see that there is one Q-deformation class for hep-

tagonal configurations in QC7. By Proposition 2.9.1 we see that there are 7

Q-deformation classes for hexagonal configurations QC7. By Proposition 2.10.1

we see that there are 6 Q-deformation classes for pentagonal configurations in

QC7. Therefore, there are totally 14 Q-deformation classes in QC7.

45



46



CHAPTER 3

CONFIGURATIONS OF POINTS IN RP1 × RP1

3.1 Permutation diagrams

Let Cn be a cyclic subgroup of the permutation group S n generated by the cyclic

permutation (2 3 . . . n 1), or in other words, Cn consists of the permutations

preserving the cyclic order of the set {1, . . . , n}. We denote by Dn the dihedral

subgroup of S n formed by the permutations which preserve or reverse this order.

We consider an RL-cyclic action of the group Cn ×Cn on the symmetry group

S n defined by (a, b)σ = aσb, where σ ∈ S n and a, b ∈ Cn. We call the orbit of a

permutation σ ∈ S n under the RL-cyclic action the permutation class of σ, and

denoted it by [σ]. In addition, we consider an RL-dihedral action of the group

Dn × Dn on the group S n defined similarly. We call the orbit of a permutation

σ ∈ S n under the RL-dihedral action the coarse permutation class of σ, and

denoted it by 〈σ〉.

For example, in the case of n = 4, there are three permutation classes, namely,

[1234], [1243], and [4321] and two coarse permutation classes, namely, 〈1234〉

and 〈1243〉. We may indicate that the coarse class 〈1234〉 splits into a pair of

permutation classes [1234] and [4321].

These permutation classes, [σ], can be represented by certain diagrams Z[σ]

shown on Figure 3.1(a)-(c). Similarly, these coarse permutation classes 〈σ〉 can

be represented by diagrams Z〈σ〉 on the same Figure 3.1(d)-(e).

The following proposition is straightforward.
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Figure 3.1: The permutation class diagrams Z[σ] and coarse permuta-
tion class diagrams Z〈σ〉 for σ ∈ S 4.

(a) Z[1234] (b) Z[4321] (c) Z[1243] (d) Z〈1234〉 (e) Z〈1243〉

Proposition 3.1.1. The group S 5 has 8 permutation classes and 4 coarse permu-

tation classes. The coarse permutation classes are 〈12345〉, 〈12543〉, 〈13425〉,

and 〈13524〉. Each of them splits, respectively, into a pair of permutation

classes, namely, ([12345], [54321]), ([12354], [45321]), ([13254], [45231]), and

([13524], [42531]). �

Remark 3.1.2. One coarse permutation class 〈σ〉 for σ ∈ S n may contain

maximum 4 permutation classes [σ]. But for n = 5 or less, there may be

maximum two permutation classes [σ] in one class 〈σ〉.

The following diagrams represent the above 8 permutation classes [σ], and 4

coarse permutation classes 〈σ〉.

(f) Z[12345] (g) Z[12543] (h) Z[13425] (i) Z[13524]

(j) Z[54321] (k) Z[34521] (l) Z[52431] (m) Z[42531]

(n) Z〈12345〉 (o) Z〈12543〉 (p) Z〈13425〉 (q) Z〈13524〉

Figure 3.2: The permutation class diagrams Z[σ] and the coarse per-
mutation class diagrams Z〈σ〉 for σ ∈ S 5.
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For a given permutation σ =
(
i1 i2 · · · in

)
∈ S n, we will introduce 3 objects:

a permutation diagram Zσ, a permutation class diagram Z[σ], and a coarse

permutation class diagram Z〈σ〉. Choose n points in RP2 such that they form a

regular n-gon and numerate them with 1, . . . , n in the counterclockwise direction.

We obtain a permutation diagram with arrows by joining the vertices i1 to i2, i2 to

i3, and so on. In the last part of the construction of the permutation diagram, we

close the diagram by joining the vertices in to i1. The vertex i1 in this construction

is called the initial vertex of this diagram, and we denote the vertex in bold. As

σ, we take, for example, the permutation σ =
(
3 1 4 2

)
∈ S 4, so its permutation

diagram Zσ is homeomorphic to

12

43

Figure 3.3: The permutation diagram Z(3142) with initial vertex 3 for
permutation (3142) ∈ S 4.

If in the same diagram shown on Figure 3.3 you choose 1 as the initial point,

then it becomes a permutation diagram for permutation (1423).

The cyclic group Cn, which is generated by µ =
(
2 3 · · · n 1

)
∈ S n can be seen as

a subset of the dihedral group Dn since Dn has two generators µ =
(
2 3 · · · n 1

)
and d =

(
n n−1 · · · 1

)
with orders n and 2, respectively, such that µ·d·µ−1 = d−1.

The following two trivial propositions show the geometric meaning of the RL-

cyclic action and RL-dihedral action on permutation diagrams.

Proposition 3.1.3. Assume that Zσ, Zµσ, Zσµ are permutation diagrams where

σ ∈ S n, and µ =
(
2 3 · · · n 1

)
is the generator of the cyclic group Cn. Then:

(a) The permutation diagram Zµσ is obtained from Zσ by a rotation.

(b) The permutation diagram Zσµ is obtained from Zσ by change of its initial

point. �

Proposition 3.1.4. Assume that Zσ, Zdσ, and Zσd are permutation cycles where

σ ∈ S n, and d is the generator of Dn with order 2. Then:
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(a) The permutation diagram Zdσ is obtained from Zσ by a reflection.

(b) The permutation diagram Zσd is obtained from Zσ by reversion of its

orientation. �

By a permutation class diagram of σ ∈ S n, we mean the set of permutation

diagrams differ from the permutation diagram Zσ by a rotation, and it is denoted

by Z[σ]. By a coarse permutation class diagram of σ ∈ S n, we mean the

set of permutation diagrams differ the permutation diagram Zσ by a rotation

and a reflection, and it is denoted by Z〈σ〉 (see Figures 3.1 and 3.2). By

Propositions 3.1.3 and 3.1.4 together with the description, we have the following

corollary.

Corollary 3.1.5. The map [σ] 7→ Z[σ] establishes a one-to-one correspondence

between the set of permutation classes and that of permutation diagrams. Simi-

larly, the map 〈σ〉 7→ Z〈σ〉 establishes a one-to-one correspondence between the

set of coarse permutation classes and that of coarse permutation diagrams. �

3.2 Bi-ordering

For a given finite set X with cardinality n, an ordering on X is a one-to-one map

from X to {1, . . . , n}. The set of all orderings on X is denoted by Ord(X). We

say that the set X is ordered if it has a distinguished ordering. By a bi-ordering

on X, we mean a pair of orderings on X, ( f , g) ∈ Ord2(X).

The symmetric group S n acts freely and transitively from the right on the set

Ord(X). We consider the quotient space Cyc(X) = Ord(X)/Cn of Ord(X) by the

action of the cyclic group Cn ⊂ S n, and call the elements [ f ] ∈ Cyc(X) cyclic

orderings on X. Similarly, we consider the quotient space Dih(X) = Ord(X)/Dn

of Ord(X) by the action of the dihedral group Dn ⊂ S n, and call the elements

[ f ] ∈ Dih(X) coarse cyclic orderings on X.

A pair of cyclic orderings on X, ([ f ], [g]) ∈ Cyc2(X) is called cyclic bi-ordering

on X. We denote by Cyc2(X) = Ord(X)/Cn × Ord(X)/Cn the set of cyclic
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bi-orderings on S . Note that

Cyc2(X) = Ord(X)/Cn × Ord(X)/Cn = Ord2(X)/Cn
2,

and the correspondence

([ f ], [g]) 7→ [g ◦ f −1]

defines a map from Cyc2(X) to S n/Cn ×Cn.

A pair of coarse cyclic orderings on X, ([ f ], [g]) ∈ Dih2(X) is called coarse

cyclic bi-ordering on X. We denote by Dih2(X) = Ord(X)/Dn × Ord(X)/Dn the

set of coarse cyclic bi-orderings on S . Note that

Dih2(X) = Ord(X)/Dn × Ord(X)/Dn = Ord2(X)/Dn
2,

and the correspondence

(〈 f 〉, 〈g〉) 7→ 〈g ◦ f −1〉

defines a map from Dih2(X) to S n/Dn × Dn.

Remark 3.2.1. We can associate a permutation diagram Zg◦ f −1 to a bi-ordering

( f , g), and a permutation class Z[g◦ f −1] (respectively, a coarse permutation class

Z〈g◦ f −1〉 ) to a cyclic bi-ordering ([ f ], [g]) (respectively, a coarse cyclic bi-ordering

(〈 f 〉, 〈g〉)).

3.3 Linearly nondegenerate n-configurations on RP1 × RP1

For any field K, we say that an n-configuration P ∈ S n(KP1 × KP1) is linearly

nondegenerate if there exists no generatrix of KP1 × KP1 passing through two

points of P. We denote by LCn(KP1 ×KP1) the space of linearly nondegenerate

n-configurations in KP1 × KP1. This space is a Zariski open subset of the

algebraic variety S n(KP1 × KP1).

As in the space of planar configurations (see Section 2.1), we say that two

n-configurations in LCn(RP1 ×RP1) are L-deformation equivalent if there exists

an L-deformation between them (equivalently, they are in the same connected

components of the space LCn(RP1 × RP1)). We say that two n-configurations
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in LCn(RP1 × RP1) are coarse L-deformation equivalent if one of these config-

urations is L-deformation equivalent to the image of the other under a map in

PGL(2,R)×PGL(2,R) (equivalently, they are in the same connected component

of the quotient space LCn(RP1 × RP1)/PGL(2,R) × PGL(2,R) with respect to

the action of the group PGL(2,R) × PGL(2,R) on RP1 × RP1).

Remark 3.3.1. The group PGL(2,R) has two connected components. So, a

coarse deformation class may contain maximum 4 deformation classes. How-

ever, if n is not greater than 5, it turns out that there may be not more than two

deformation classes in one coarse deformation class. (In terms of the permuta-

tion class diagrams, there are two "reflection" operations: one can reverse the

direction of the arrows, and one can take a mirror reflection of a diagram with

respect to some line. For 5 or less vertices the results are equivalent, that is why

you may have not more than two deformation classes in one coarse class.

Any n-configuration P ∈ LCn(RP1×RP1) admits a cyclic bi-ordering as follows:

first, let π1 be the first projection from RP1 × RP1 to the first oriented line RP1
1

given by (x, y) → x, and π2 be the second projection from RP1 × RP1 to the

second oriented line RP1
2 given by (x, y)→ y. We consider the images of points

of P under π1 and π2, so we get a pair of n-tuples of points on these lines. Let

us enumerate the n points on the first line by 1, 2, . . . , n and let us assume that

the enumeration of the other n points on the second line is i1, i2, . . . , in. Then,

the cyclic orders on these lines induce two cyclic orderings f1 : P → {1, . . . , n}

and f2 : P → {1, . . . , n}, where f1(pk) = k and f2(pk) = ik for any pk ∈ P,

k = 1, . . . , n. Then, ( f1, f2) ∈ Ord2(P). We shall denote by σP = f2 ◦ f −1
1 the

permutation associated to P

(
1 2 · · · n − 1 n

i1 i2 · · · in−1 in

)
∈ S n.

This permutation depends on the point which we choose to start the enumeration.

Notice that the change of orientation of line RP1
j , j = 1, 2, is the same as the

change of the ordering f j to another one f̄ j, where f̄ j(pk) = n + 1 − f j(pk) for

any pk ∈ P, k = 1, . . . , n denotes the mirror of f j.
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It follows immediately from the definition that permutation class [σP] (respec-

tively, coarse permutation class 〈σP〉) is an invariant under L-deformations

(respectively, coarse L-deformations) of P.

For a permutation σ ∈ S n, let us denote the space of all n-configurations in

LCn(RP1 × RP1) whose permutation classes are equal to [σ] by

LCn
[σ](RP1 × RP1) = {P ∈ RP1 × RP1 : [σP] = [σ]},

and the space of all n-configurations in LCn(RP1 × RP1) whose coarse permuta-

tion classes are equal to 〈σ〉 by

LCn
〈σ〉(RP1 × RP1) = {P ∈ RP1 × RP1 : 〈σP〉 = 〈σ〉}.

Then, right from the definition we have the following proposition.

Proposition 3.3.2. The spaces LCn
[σ](RP1 × RP1) as well as their quotients

LCn
[σ](RP1 × RP1)/S L(2;R) × S L(2;R) are connected for all [σ] ∈ S n/Cn ×

Cn, and the quotient spaces LCn
〈σ〉(RP1 × RP1)/PGL(2;R) × PGL(2;R) are

connected for all 〈σ〉 in S n/Dn×Dn. Equivalently, two configurationsP andP′ ∈

LCn(RP1×RP1) are coarse L-deformation equivalent if and only if 〈σP〉 = 〈σP′〉.

And there exists a L-deformation between them if and only if [σP] = [σP′]. �

The next result is an immediate consequence of Proposition 3.3.2 and the result

in Proposition 3.1.1 (that the diagram Z<σ> determines class < σ >).

Corollary 3.3.3. The spaces LCn
[σP](RP1 × RP1) for any n-configuration P in

LCn(RP1×RP1) are in a one-to-one correspondence with the coarse permutation

class diagram Z[σP]. The spaces LCn
〈σP〉

(RP1 × RP1) for any n-configuration

P ∈ LCn(RP1 × RP1) are in a one-to-one correspondence with the coarse

permutation class diagram Z〈σP〉. �

Theorem 3.3.4. The space LC5(RP1 × RP1) has precisely eight L-deformation

classes and four coarse L-deformation classes. The coarse L-deformation

classes are LC5
〈12345〉(RP1 × RP1), LC5

〈12543〉(RP1 × RP1)), LC5
〈13425〉(RP1 × RP1)

and LC5
〈13524〉(RP1 × RP1). Each of them splits into a pair of L-deformation

classes, namely, (LC5
[12345], LC5

[54321]), (LC5
[12354], LC5

[45321]), (LC5
[13254], LC5

[45231]),

and (LC5
[13524], LC5

[42531]), respectively. (See Figure 3.2.)
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Proof. It follows from Propositions 3.3.2 and Proposition 3.1.1. �

3.4 The real bidegree of real algebraic curves in RP1 × RP1

Recall that an algebraic curve A ⊂ KP1 × KP1 (over any field K) of degree

(called also bidegree) deg(A) = (d1, d2) is defined by a polynomial F(x, y) which

is homogeneous of degree d1 with respect to x = (x0, x1) and of degree d2 with

respect to y = (y0, y1), or in other words,

F(x0, x1; y0, y1) =

d1,d2∑
i, j=1

ai jxi
0xd1−i

1 y j
0yd2− j

1 where ai j ∈ K

If K = C, then the bidegree deg(A) = (d1, d2) simply represents the homology

class [A] ∈ H2(P1 × P1) = Z × Z.

In the case of a real algebraic curve A with the real locus RA ⊂ RP1 × RP1 we

can always speak of the (mod2) real (bi)degree, which is the class

degR(A) = [RA]2 ∈ H1(RP1 × RP1;Z/2) = Z/2 × Z/2.

It is trivial (and well-known) that degR(A) = deg(A) mod 2 (congruence for

each component of the bidegrees).

In certain cases, one can always define a refinement of the real bidegree for real

algebraic curves. For instance, this is possible for rational curves, which include,

for example, curves of bidegree (1, d), or (d, 1) (more generally, one can do it

for so called curves of type I).

Namely, any choice of an orientation of RP1 gives a fundamental class [RA] ∈

H1(RP1×RP1) = Z×Z for a real rational curve A. We suppose that the orientation

of the factors of RP1×RP1 is fixed, then the possibility to change the orientation

of [RA] defines the refinement of the real bidegree of A, d̃egR(A) = [RA] as an

equivalence class of pairs (m1,m2) ∈ Z2 up to simultaneous reversion of sign,

(m1,m2) ∼ (−m1,−m2).

Proposition 3.4.1. A curve of complex bidegree (2, 1) on P1 × P1 has one of the

three real bidegree (2, 1), (0, 1), and (−2, 1).
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Proof. For a real curve A with deg(A) = (d1, d2) and d̃egR(A) = (m1,m2), the

following conditions are satisfied.

(a) mi ≡ di mod 2 for each i ∈ {1, 2}

(b) |mi| ≤ di for each i ∈ {1, 2}.

This completes the proof. �

3.5 Curves of bidegree (1, 1)

In what follows, we will need the following simple and well-known fact about

curves of bidegree (1, 1) on P1 × P1. Its proof consists in simple counting

of parameters and applying Bezout’s theorem with respect to the generatrices

P1 × {p} and {q} × P1 for some p, q ∈ P1.

Proposition 3.5.1. Let P be a 3-configuration in KP1 × KP1 where K is a field.

Then:

(a) There exists a curve of bidegree (1, 1) on KP1 ×KP1 passing through three

points of P.

(b) If no three points of P are collinear, then such a curve which is mentioned

in the item (a) is unique. In particular, if P ∈ LC3(KP1 × KP1), then the

curve is unique.

(c) A curve of bidegree (1, 1) passing through three points of P is nonsingular

if and only if P ∈ LC3(KP1 × KP1). �

By Adjunction Formula, an irreducible curve of complex bidegree (1, n) (or of

complex bidegree (n, 1)) for any nonnegative integer n is rational.

3.6 Quadratically nondegenerate n-configurations on RP1 × RP1

Let K be a field. An n-configuration P ∈ KP1 × KP1 is called quadratically

nondegenerate if there exists no generatrix of KP1 × KP1 passing through
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two points of P and there exists no curves with bidegree (1, 1) on KP1 × KP1

containing four points of P. If K = R, the space of quadratically nondegenerate

n-configurations QCn(RP1 × RP1) is a Zariski open subset of the algebraic

variety S n(RP1 × RP1). Notice that QCn(RP1 × RP1) ⊂ LCn(RP1 × RP1).

As in the space of planar configurations (see Section 2.3), we say that two

n-configurations in QCn(RP1 × RP1) are Q-deformation equivalent if there

exists an Q-deformation between them (equivalently, they are in the same

connected components of the space QCn(RP1 × RP1)). We say that two n-

configurations in QCn(RP1×RP1) are coarse Q-deformation equivalent if one of

these configurations is Q-deformation equivalent to the image of the other under

a map in PGL(2,R) × PGL(2,R) (equivalently, they are in the same connected

component of the quotient space QCn(RP1 ×RP1)/PGL(2,R)× PGL(2,R) with

respect to the action of the group PGL(2,R) × PGL(2,R) on RP1 × RP1).

3.7 Curves of bidegree (1, 2) and bidegree (2, 1)

The following simple and well-known fact gives some sufficient conditions for

the existence and uniqueness of a nonsingular curve of bidegree (1, 2), or (2, 1)

on KP1 × KP1 for any field K.

Proposition 3.7.1. Let P be a 5-configuration in KP1 × KP1 where K is a field.

Then:

(a) There exists a curve of bidegree (1, 2) (or, of bidegree (2, 1)) on KP1 ×KP1

passing through five points of P.

(b) A curve of bidegree (1, 2) (or, of bidegree (2, 1)) passing through five points

ofP is unique and it is nonsingular if and only ifP ∈ QC5(KP1×KP1). �

Form now on, for a given 5-configuration P ∈ QC5(RP1×RP1), we shall denote

by A1
P

and A2
P

the curves of complex bidegree (1, 2) and (2, 1) passing through

five points of P, respectively.

Remark 3.7.2. The blow-up of P1 × P1 at a 5-configuration P gives a non-

singular del Pezzo surface degree 3 if and only if this configuration is quadrati-
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cally nondegenerate. The 27 lines on the cubic surface (i.e., the anti-canonical

model of the del Pezzo surface) are the exceptional curves over the 5 blown-up

points, the proper transformations of the 10 generatrices passing through each of

the five points, the proper transformations of the 10 curves of complex bidegree

(1, 1) passing through each of
(

5
3

)
triples of points chosen among the given 5

points, and the proper transformations of A1
P

and A2
P

.

Proposition 3.7.3. Two nonsingular real algebraic curves of complex bidegree

(2, 1) on P1 × P1 are projectively equivalent if they have the same refinement of

real bidegree.

Proof. On a given curve A of complex bidegree (2, 1) choose any point, p =

(x1, x2), blow up it, and then blow down generatrices x1 ×P
1 and P1 × x2. P1 ×P1

will be transformed into a plane P2, and the image of curve A will be a conic

A′. The generatrix x1 × P
1 will be contracted to a point p1 ∈ P

2 \ A′, and

the generatrix P1 × x2 to a point on A′. Such triples (A′, p1, p2) are clearly

projectively equivalent over C. Over R, however, there are two options: point

p1 may lie in the interior of the ellipse A′(R), or in its exterior. The first case

corresponds to A having d̃egR(A) = (2, 1), and the second case corresponds to A

having d̃egR(A) = (0, 1). �

3.8 A further project on Q-deformation classification of configurations of

5 points in RP1 × RP1

We sketch below some incomplete project on the Q-deformation classification

of 5-configurations of points in RP1 × RP1.

Remark 3.8.1. The curve A1
P

(respectively, A2
P

) for P ∈ QC5(RP1 × RP1) is

a rational and nonsingular curve, so there is a cyclic order coming from A1
P

(respectively, from A2
P

) as follows: Case 1: Assume that d̃egR(A1
P

) = (1, 0).

We recall from Section 3.3 that P admits a cyclic bi-ordering, and that this

bi-ordering associates P with a permutation σP ∈ S 5. Let us denote by pσP(i)
i ,

i = 1, . . . , 5, the points of P. Denote by pi and pσP(i), the images π1(pσP(i)
i )

and π2(pσP(i)
i ) standing on the i-th place and the σP(i)-th place, respectively.
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The image of the real part RA1
P

under π2 is topologically circle, and the circle

contains the points pσP(i), i = 1, . . . , 5. We can continuously move these points

along this circle such that two points pσP(i1), pσP(i5) among the five points pσP(i)

for some distinct numbers i1, i5 ∈ {1, . . . , 5} lie on the circle as shown in Figure

3.4.

pσ(i5)

pσ(i1)

Figure 3.4

For the positions of the remaining points pσP(ik), k = 2, 3, 4, on this circle, there

are 8 possibilities shown in Figure 3.5 up to deformations. This is equivalent to

say that there are eight cyclic orders coming from A1
P

with d̃egR(A1
P

) = (1, 0) for

any configurations P ∈ QC5(RP1 × RP1).

pσ(j5)

pσ(j1)

pσ(j4)

pσ(j3)
pσ(j2)

(a) (12543)

pσ(j5)

pσ(j1)

pσ(j4)

pσ(j3)

pσ(j2)

(b) (12453)

pσ(j5)

pσ(j1)

pσ(j4)

pσ(j3)

pσ(j2)

(c) (13542)

pσ(j5)

pσ(j1)

pσ(j4)
pσ(j3)

pσ(j2)

(d) (14532)

pσ(j5)

pσ(j1)

pσ(j4)

pσ(j3)
pσ(j2)

(e) (13452)

pσ(j5)

pσ(j1)

pσ(j4)
pσ(j3)

pσ(j2)

(f) (12354)

pσ(j5)

pσ(j1)

pσ(j4)

pσ(j3)

pσ(j2)

(g) (12345)

pσ(j5)

pσ(j1)

pσ(j4)

pσ(j3)

pσ(j2)

(h) (15432)

Figure 3.5: The eight cyclic orders coming from A1
P

with degR(A1
P

) =

(1, 0) for any configurations P ∈ QC5(RP1 × RP1).

Case 2: Assume that d̃egR(A1
P

) = (1, 2). In this case the image of the real part

RA1
P

under π2 is a double covering over the second factor RP1. In this case, it is

not easy to understand at which point we are starting.

All the presented research may lead to the insight that the pair (d̃egR(A), [σ]) for

any [σ] in S 5/C5×C5 are invariants for the Q-deformation classes in QC5(RP1×
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RP1). Similarly, the pair (d̃egR(A), 〈σ〉) for any 〈σ〉 in S 5/D10×D10 are invariants

for the coarse Q-deformation classes in QC5(RP1 × RP1)). Although we don’t

know which [σ] (respectively, 〈σ〉) are possible for which d̃egR(A), we believe

that the space QC5(RP1 × RP1) has four coarse Q-deformation classes. Each of

them splits into a pair of Q-deformation classes among the eight. This can be

investigated in a further study.
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CHAPTER 4

CREMONA TRANSFORMATION OF PLANE

CONFIGURATIONS OF POINTS

The aim of this chapter is to understand how an n-configuration P ∈ QCn for

n = 6, 7 changes under the quadratic Cremona transformations, Cri jk, based

at a triple of points, pi, p j, pk, of the configuration P = {p1, . . . , pn}. Recall

that such transformation consists in blowing up P2 at points pi, p j, pk and then

blowing down the images of lines Li j, L jk, and Lki passing through the pairs

{pi, p j}, {p j, pk}, and {pk, pi} of points, respectively. We denote by Cri jk(P) a

new n-configuration formed by the n − 3 points different from pi, p j, pk, and

the three images of Li j, L jk, Lki, which are denoted pi j, p jk, pki, or (abuse of the

notation if it does not lead to a confusion) by pk, pi, p j, respectively.

4.1 Cremona transformations of 6-configurations

The modifications of a hexagonal configuration P ∈ QC6
1 under quadratic

Cremona transformations based at six distinct triples of points (up to the action of

the monodromy group of the hexagonal configuration which preserves dominant

and subdominant points of P) are as shown in Figure 4.1.

Theorem 4.1.1. The Q-deformation classes of all 6-configurations in QC6

are obtained from hexagonal configurations in QC6
1 by quadratic Cremona

transformations based at some triple of points of these configuration as shown

in Figure 4.1.
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Figure 4.1: The images of a configuration P ∈ QC6
1 under quadratic

Cremona transformations for any six triples. The black and white
circles show the outer and inner point, respectively.

Proof. Figure 4.1 shows the deformation classes of 6-configurations (i.e., QC6
1,

QC6
2, QC6

3, and QC6
4) obtained from a hexagonal configuration P by Cri jk after

different choices of the base points pi, p j, pk. The proof of it is a straightforward

analysis using a model [x : y : z] 7→ [yz : xz : xy] of a Cremona transformation.

�

The reason why we only consider the quadratic Cremona transformations based

at six triples of points for a given hexagonal 6-configuration shown in Figure 4.1

comes from the following observation.

Remark 4.1.2. Due to Finashin [F], the monodromy groups of 6-configurations

(i.e., the group of symmetries of 6-configurations in QC6 preserving dominant

and subdominant points) which belong to the Q-deformation classes QC6
1, or

QC6
2, or QC6

3, or QC6
6 are D3, or Z4, or D3, or the icosahedral symmetry group,

respectively. By using these results, we get the following observations:
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(a) Assume that P ∈ QC6
1, and that the numeration p1, . . . , p6 of the points

of P is cyclic. Then there are six distinct triples up to the action of D3,

namely, {p1 p2 p4}, {p1 p2 p5}, {p1 p2 p3}, {p1 p2 p6}, {p1 p3 p5}, {p2 p4 p6}.

(b) Assume that P ∈ QC6
2, and that the numeration p1, . . . , p5 of points of P

other than p6 is cyclic such that p6 is inside the Q-region B associated to

P6̂ (see Figure 2.4). Then there are six distinct triples up to the action of

Z4, namely, {p1 p2 p4}, {p1 p2 p5}, {p1 p2 p6}, {p1 p3 p5}, {p1 p3 p6}, {p1 p2 p3}.

(c) Assume that P ∈ QC6
3, and that the numeration p1, . . . , p5 of points of P

other than p6 is cyclic such that p6 is inside the Q-region C associated to

P6̂ (see Figure 2.4). Then there are six distinct triples up to the action of

D3, namely, {p1 p3 p5}, {p1 p2 p5}, {p1 p3 p4}, {p1 p3 p6}, {p1 p2 p4}, {p3 p5 p6}.

(d) Assume that P ∈ QC6
6, and that the numeration p1, . . . , p5 of points of P

other than p6 is cyclic such that p6 is inside the Q-region D associated to

P6̂ (see Figure 2.4). Then there are two distinct triples up to icosahedral

symmetry group, namely, {p1 p3 p5}, {p1 p2 p5}. �

Lemma 4.1.3. Let P = {p1, . . . , p6} be a configuration in QC6, and for all

i ∈ {1, . . . , 6}, Qi be the conics passing through five points of P other than pi.

Then:

(a) For each i , j ∈ {1, . . . , 6}, the image of the line Li j under Cri j k for some

k ∈ {1, . . . , 6} \ {i, j} is a point pi j. However, the image of a line Li j under

Crk l m for some k, l,m ∈ {1, . . . , 6} \ {i, j} is the conic passing through the

five points pi, p j, pk, pl, pm of Crk l m(P).

(b) For each i ∈ {1, . . . , 6}, the image of the conic Qi under Cr j k l for some

j, k, l ∈ {1, . . . , 6} \ {i} is the line Lnm joining remaining two points pn, pm ∈

P, where n,m ∈ {1, . . . , 6} \ {i, j, k, l}.

(c) For each i , j ∈ {1, . . . , 6}, the image of the conic Qi under Cri j k for some

j, k ∈ {1, . . . , 6} \ {i} is the conic passing through five points of Cri j k(Pî).

Proof. By the definition of quadratic Cremona transformations, the proof of the

first part of item (a) is trivial. The proof of the second part of (a) immediately

follows from item (b) since Cr2 = Cr ◦ Cr = id, i.e. Cr−1 = Cr, if XYZ , 0.
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Hence, we start to prove the part (b). Since P ∈ QC6, the conic Qi is irreducible

for each i ∈ {1, . . . , 6}. The well known fact is that any irreducible projective

conic is projectively equivalent to the conic

XY + YZ + XZ = 0 (4.1)

for some homogenous coordinates X,Y,Z. More precisely, for the irreducible

conic Qi and three points p j, pk, pl on Qi, there is a unique projective transforma-

tion mapping Qi to (4.1) and the three points to q j = [1 : 0 : 0], qk = [0 : 1 : 0]

and ql = [0 : 0 : 1], respectively. The image of the conic (4.1) under Cr j k l is a

line since

YZXZ + XZXY + YZXY = 0

XYZ(Z + X + Y) = 0

Z + X + Y = 0.

To prove item (c), it is enough to observe that we can find a unique projective

transformation sending p1, p2, p3 and p4 ∈ P to [0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0]

and [1 : 1 : 1], respectively. Thus, the conic Q1 is projectively equivalent to a

conic

Z2 + aXY + bYZ + cXZ = 0 (4.2)

for some a, b, c ∈ R. The image of the conic (4.2) under Cr1kl is a conic since

(XY)2 + aYZXZ + bXZXY + cYZXY = 0

XY(XY + aZ2 + bXZ + cYZ) = 0

XY + aZ2 + bXZ + cYZ = 0

Therefore, the proof is completed. �

The following statement shows the modification (i.e., the images) of quadrat-

ically nondegenerate 6-configurations other than hexagonal under quadratic

transformations.

Proposition 4.1.4. Let P be a 6-configuration in QC6
2, or QC6

3, or QC6
6, and

assume that the numeration p1, . . . , p5 of points of P6̂ are cyclic such that the
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point p6 ∈ P is inside the Q-region B, or C, or D, respectively (see Figure

2.4). Then the images of P under the quadratic Cremona transformations based

in triples of points of P are as shown in Figure A.1(a)-(d) in Appendix A,

respectively. �

Proof. The proof is a straightforward analysis using a model [x : y : z]→ [yz :

xz : xy] of a quadratic Cremona transformation. �

Let Mi, j, i, j = 1, 2, 3, 6, denote the number of quadratic Cremona transfor-

mations which take a 6-configuration in the Q-deformation class QC6
i to a

6-configuration in the Q-deformation class QC6
j . The next statement is an im-

mediate consequence of Lemma 4.1.2, the observation of modifications of a

hexagonal 6-configuration under Cremona transformations given in Figure 4.1,

and Propositions 4.1.4.

Corollary 4.1.5. Assume that M = {Mi, j} is a matrix whose entries Mi, j, i, j =

1, 2, 3, 6, are as introduced above. Then, the matrix is equal to

M =


3 9 7 1

6 8 6 0

8 9 3 1

10 0 10 0


�

4.2 Cremona transformations of 7-configurations

The modification of a heptagonal configuration P ∈ QC7 under quadratic Cre-

mona deformations based at fourteen distinct triples of points (up to the action

of permutations in D7, the group of symmetries of the principle heptagon, pre-

serving dominant and subdominant points of P on the set of all triples of points

of P) is as shown in Figure 4.2.

Theorem 4.2.1. The Q-deformation class of any 7-configuration in QC7 is

obtained from a heptagonal configuration in QC7
(7,0,0,0) by a quadratic Cremona
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transformation based at a triple of points of the 7-configuration (see Figure

4.2).

Proof. Let P ∈ QC7
(7,0,0,0) be a heptagonal configuration. Removing points of P

not involved into Cremona transformation one-by-one and applying Theorem

4.1.1 to analyze possible position of the points in the image. �
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Figure 4.2: The images of a configuration P ∈ QC7
(7,0,0,0) under

Cremona transformations based at fourteen distinct triples. In this
figure, the labeled points and edges with 1 show the d-decoration of
these configurations (see Section 2.1).
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CHAPTER 5

CONFIGURATIONS OF LINES IN RP3

5.1 Triple linking numbers

The linking number of a pair of oriented skew lines
−→
L1,
−→
L2 in the oriented 3-

dimensional real projective spaceRP3 is ±1
2 . We denote by lk(

−→
L1,
−→
L2) the doubled

linking number of these lines in order to make it an integer, +1, or −1. If we

change the orientation of one of these lines, then we obtain

lk(−
−→
L1,
−→
L2) = lk(

−→
L1,−

−→
L2) = −lk(

−→
L1,
−→
L2)

where the sign "-" of
−→
Li means that the orientation of the line is reversed.

Following Viro [VV], we introduce the triple linking number of (non-oriented)

lines L1, L2, and L3 by formula

lk(L1, L2, L3) = lk(
−→
L1,
−→
L2). lk(

−→
L1,
−→
L3). lk(

−→
L2,
−→
L3),

where
−→
Li is the line Li with arbitrary orientation for each i ∈ {1, 2, 3}. The

triple linking number lk(L1, L2, L3) is well-defined, i.e, it is independent of the

orientations of the lines Li and independent of the order of these lines (cf. [VV]).

By an n-configuration L = {L1, . . . , Ln} of skew lines in RP3 we mean a set of

pairwise disjoint lines, Li. For an n-configuration L of skew lines, let us denote

by lk+(L) (respectively, lk−(L)) the number of positive triple linking numbers

of any triples of lines of L (respectively, the number of negative triple linking

numbers of any triples of lines of L). By the total linking code associated to L,

we mean the pair of (lk+(L), lk−(L)).
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Two lines L0, L1 of an n-configuration of skew lines L in RP3 are said to be

internal adjacent in L if they can be connected by a continuous family of lines,

Lt, so that Lt do not intersect any remaining lines of L, for all t ∈ [0, 1]. It is

obvious from the definition that internal adjacency in L = {L1, . . . , Ln} is an

equivalence relation; we will write Li ∼ L j if lines Li and L j, of L are internal

adjacent. As it was observed in [VV], L0 is internal adjacent to L1 if there is

a one-sheeted hyperboloid in RP3 which separates the pair of lines from the

remaining lines of L.

Proposition 5.1.1. [VD]. Let L be an n-configuration of skew lines in RP3 for

n > 3, and assume that L, L′ ∈ L are internal adjacent lines. Then, all of the

triple linking numbers lk(L, L′,M) for any M ∈ L have the same value +1 or

−1. �

Corollary 5.1.2. [VD]. Let L be an n-configuration of skew lines in RP3 for

n > 3, and assume that L, L′ ∈ L are internal adjacent lines. Then, lk(L,K,M) =

lk(L′,K,M) for any K,M ∈ L other than L, L′. �

Given an n-configuration L of skew lines in RP3, we associate a sign + or − to

each adjacency class in L. By the sign of an adjacency class on L, we mean the

sign of the triple linking numbers lk(L, L′,M) where L, L′ are two lines in the

adjacency class, and M ∈ L.

5.2 Derived configuration of lines and derivative trees

Let L be an n-configuration of skew lines in RP3. A derived configuration L(1)

of L in level 1 is a configuration obtained by taking one line from each internal

adjacency class in L. If L(1) , L, then a derived configuration of L(1) in level 1

is called a derived configuration of L in level 2. It is denoted by L(2). Similarly,

if L(1) , L(2), then the derived configuration of L(2) in level 1 is called a derived

configuration of L in level 3, and it is denoted by L(3). Proceeding in this way,

the derived configuration of L in level n is the derive configuration of L(n−1) in

level 1, and denoted by L(n).
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Note that the deformation classes of the derived configurations of L in all levels

do not depend on the choice of representatives.

An n-configuration L of skew lines in RP3 is called completely decomposable

if there exists i ∈ Z+ such that L(i) is a configuration of one line. The positive

number i is called the height of the n-configuration.

To a completely decomposable n-configuration L of skew lines of height i, we

associates a tree of degree i as follows: vertices of the tree in level k are distinct

internal adjacency classes in the derived configurationL(k) for all k ∈ {1, 2, . . . , i}.

An edge between a vertex vk in level k and a vertex vk+1 in level k + 1 where

k ∈ {2, . . . , i − 1} represents a line in the internal adjacency class vk+1 taken from

the internal adjacency class vk in L(k). The branches at each vertex in level 1

stand for lines in this class. We call this tree the derivative tree of L. The vertex

in the level i is called the root vertex of the derivative tree of of L.

To draw the derivative tree of a completely decomposable n-configuration L of

skew lines of degree i, we follow two steps:

1. Determine the signs of all internal adjacency classes in L(k) for each

1 ≤ k ≤ i unless the internal adjacency classes in L(k) contains one line,

and unless there is a unique internal adjacency class in L(k) which contains

two lines.

2. Start to align the vertices horizontally in each level in which we use the

symbols, big circles, to represent these vertices, and we put signs of the

vertices in the middle of these circles.

Level 1

Level 2

+ −

(a) J〈1243〉

Level 1

Level 2

+

−

+

(b) J〈12534〉

Figure 5.1: The configurations of 4 and 5 skew lines in RP3, together
with their derivative trees of degree 2.
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Example 5.2.1. Consider the above 4-configuration and 5-configuration of lines

given in Figure 5.1(a) and (b), respectively. Their derivative trees are shown in

these figures together with these configurations.

5.3 Deformations and coarse deformations of configurations of skew lines

We say that two n-configurations L0,L1 of skew lines in RP3 are L-deformation

equivalent if they can be joined by a continuous family of n-configurations of

skew lines, Lt, for any t ∈ [0, 1], and coarse L-deformation equivalent if one of

them is L-deformation equivalent to the image of the other under a projective

transformation of RP3.

For an n-configuration L of skew lines in RP3 we denote by L its mirror image

which is defined to be the image of L under a reflection about a hyperplane in

RP3, that is, double linking number of each pair of lines of L has an opposing

sign of that of each pair of lines of L. An n-configuration of skew lines in RP3

is achiral if it is deformation equivalent to its mirror image. Otherwise, it is

chiral.

5.4 Join configurations of n ≤ 6 of skew lines

Following [M1], to a given permutation σ : {1, . . . , n} → {1, . . . , n}, we associate

an n-configuration of skew lines in RP3 as follows: let us fix two disjoint lines L

and L′ such that their linking number is −1 and let us fix an n-tuples of points

on the first line L and on the second line L′. Let us cyclically enumerate such

pair of n-tuples of points on the first line L by 1, 2, . . . , n and on the second line

L′ by σ(1), . . . , σ(n) in the direction of the orientations of these lines. Hence,

we get an n-configuration of skew lines Lk obtaining by joining k to σ(k),

k = 1, . . . , n. This configuration is called a join n-configuration, and it is denoted

by J(σ(1)σ(2) . . . σ(n)), or for short J(σ).

Proposition 5.4.1. [VV]. Any n-configuration of skew lines in RP3 for n ≤ 5 is

L-deformation equivalent to a join n-configuration. �
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5.5 Classification of 6-configurations of lines

For a permutation σ ∈ S n, we call the set of all n-configurations of skew lines

which are L-deformation equivalent to J(σ) in RP3 the L-deformation join

class, and it is denoted by J[σ]. Similarly, the set of all join n-configurations

of skew lines which are coarse L-deformation equivalent to J(σ) the coarse

L-deformation join class, and it is denoted by J〈σ〉.

Recall (see Section 3.1) that we denote by [σ] the orbit (i.e., the permutation

class) of σ under RL-cyclic action on S n, and by 〈σ〉 the orbit (i.e., the coarse

permutation class) of σ under RL-dihedral action on S n. By the construction of

J(σ) and these definitions, the following statement is trivial.

Lemma 5.5.1. The sets J[σ] for any permutation σ ∈ S n are in a one to one

correspondence with the permutation class [σ]. The sets J〈σ〉 for any permu-

tation σ ∈ S n are in a one to one correspondence with the coarse permutation

class 〈σ〉. �

Theorem 5.5.2. [M1]. A 6-configurations of skew lines in RP3 belongs to one

of the 15 L-deformation join classes, namely, J[123456], J[123465], J[123564],

J[124365], J[124635], J[125634], J[123654], J[135264], J[12453], J[654321],

J[564321], J[465321], J[563421], J[536421], J[436521], or it is L-deformation

equivalent to one of the four 6-configurations of skew lines L, M, L, M where L

and M represented the mirror image of L and M, respectively. (See Figure 5.2.)

5.6 Derivative trees of join configurations

In this section, for a given permutation σ in S n, we construct the derivative tree

of a join configuration J(σ).

Let σ ∈ S n be a permutation, and assume that {σ(i + j) : j ∈ {1, . . . , ki)} is the

set consisting of the maximal number of consecutive integers for each subset

{i + 1, . . . , i + ki} of consecutive integers in {1, . . . , n} where ki ∈ {2, . . . , n}. Then,

the set of lines {Li+1, . . . , Li+ki} is an internal adjacency class with ki element in a

71



(a) M

(b) L

Figure 5.2: Two 6-configurations of skew lines in RP3, M and L.

join n-configuration J(σ). The sign of this internal adjacency class in J(σ) is

positive if the permutation

(
i + 1 i + 2 · · · i + ki − 1 i + ki

σ(i + 1) σ(i + 2) · · · σ(i + ki − 1) σ(i + ki)

)
∈ S ki

is even. Otherwise, the sign of these equivalence class is negative. Thus, we can

sketch the derivative tree of J(σ) as introduced in Section 5.2.
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Example 5.6.1. As σ, let us take the identity permutation

σ =

(
1 2 3 4

1 2 3 4

)
∈ S 4.

Note that the image of the set {1, 2, 3, 4} consisting of consecutive integers under

σ is the set of the maximal number of consecutive integers. Therefore, there are

only one internal adjacency equivalence class in J(σ), namely, {L1, L2, L3, L4}.

The sign of this internal adjacency class is "+" since the identity permutation is

even. This implies that all triple linking numbers are +1. The derivative tree of

J(σ) together with the total linking code is as shown in Figure 5.4.

+

J(1234)

(4, 0)

Figure 5.3: The derivative tree of (1234)

Example 5.6.2. As σ, let us take(
1 2 3 4 5 6

1 2 3 6 5 4

)
∈ S 6.

Note that two subsets {1, 2, 3} and {4, 5, 6} consist of consecutive integers in

{1, 2, 3, 4, 5, 6} such that the images of these subsets under σ are also the sets of

the maximal number of consecutive integers. Therefore, there are two internal

adjacency equivalence classes in J(σ), namely, {L1, L2, L3} and {L4, L5, L6}. The

sign of the former internal adjacency class is "+" since the identity permutation

σ1 =

(
1 2 3

1 2 3

)
is even. However, the sign of the latter one is "−" since the permutation of S 3

σ2 =

(
4 5 6

6 5 4

)
is odd. Therefore, the derivative tree of J(σ) is as shown in Figure 5.4.

The following statement is an immediate consequence of Lemma 5.5.1.
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+ −

Figure 5.4: The derivative tree of (123654)

Lemma 5.6.3. Any two permutations from the same permutation class [σ] for

σ ∈ S n have topologically same derivative tree. That is, derivative trees are

topological invariants for deformation join classes J[σ]. �

For 3 ≤ n ≤ 6, the distinct L-deformation classes of n-configurations of skew

lines in RP3 are summarized in Figures 5.5 and 5.6 in terms of permutations

classes and derivative trees if they exists. From Figure 5.6, it can be seen that

not every 6-configuration of lines has a derivative tree. Of the 19 L-deformation

classes of 6-configuration of skew lines, 15 are L-deformation join classes. Of

those 12 L-deformation classes have derivative trees. The remaining 4 have no

derivative trees and are not join configurations.

+ −
n = 3

+ −
+ −

n = 4

+ −+ −

n = 5

+−

−+

+

− The deformation join class
without derivative tree:

J [13524]

(1, 0) (0, 1)

(4, 0) (0, 4)
(2, 2)

(10, 0) (0, 10) (7, 3) (3, 7)

+

−

J [12345] J [54321] J [12354] J [45321]

J [12534] J [43521]
(6, 4) (4, 6)

J [1234] J [4321]
J [1243]

J [123] J [321]

(5, 5)

Figure 5.5: The L-deformation classes of n-configurations of skew
lines, n ≤ 5.

74



+ −
+

+−

+n = 6

+ −

+ +

− +

− − −

+

− +

+

+ +

−

− −

+

− +

The three deformation join

classes without derivative trees:

The four 6-configuration of skew

lines without derivative trees and

permutations:

−

−
−

J [215364],J [135264],

(0, 20)(20, 0)
(16, 4) (4, 16)

(14, 6) (10, 10)(6, 14)

(12, 8) (8, 12)

(12, 8)(8, 12)

+ − −+ −

(10, 10)

(10, 10) (8, 12) (12, 8)

J [123456] J [654321]
J [123465] J [564321]

J [123564] J [465321] J [123654]

J [125634] J [436521]

J [124365]J [563421]

J [124653]

M,M,L, L

J [463512]

Figure 5.6: The 19 L-deformation classes of 6-configurations of skew
lines in RP3.
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CHAPTER 6

CONFIGURATIONS OF LINES ON REAL CUBIC

SURFACES

6.1 Real lines on real cubic surfaces

In this section, we shall give an answer to the question on the existence of a

nonsingular real cubic surface containing a given 6-configuration of skew lines

in the oriented projective space RP3.

A double six (L,L′) is a pair of ordered sets L and L′, each consisting of 6

skew lines in P3 where L = {a1, . . . , a6}, L′ = {b1, . . . , b6} such that ai and b j,

1 ≤ i, j ≤ 6 intersect at a point if i , j and are disjoint if i = j.

Proposition 6.1.1. The following statements hold:

(a) If there exists a line L on a cubic surface X, which intersects five skew lines

in RP3, then the five lines lie on the cubic surface X.

(b) If five skew lines in RP3 lie on a real nonsingular cubic surface X, then

there exists a line L on this surface, which intersects all these lines.

(c) Six skew lines L1, . . . , L6 lie on some cubic surface X if and only if there

exist another set of six skew lines L′1, . . . , L
′
6, such that Li, and L′j, 1 ≤ i, j ≤

6, intersect at a point if i , j and are disjoint if i = j (in other words, the

two sets of lines form a double six).

Proof. For the proof of item (a), let L1, L2, L3, L4, L5 be skew lines in RP3, and

assume that there exists a line L ⊂ RP3 which intersects the line Li, i = 1, . . . , 5,
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at a point pi. We shall choose some 19 points from the lines Li, i = 1, 2, 3, 4, 5.

The 19 points are pi, i = 1, 2, 3, 4, additional 12 distinct points being 3 points

other than pi per each line Li where i ∈ {1, . . . , 4}, and three additional points

different from p5 taken from the line L5. Counting parameters, it can be easily

observed that there is a cubic surface X ⊂ RP3 containing these 19 points. Since

the line Li contains four points of X it lies on this surface for each i ∈ {1, . . . , 4}.

Similarly, L also lies on this surface, so the cubic surface X contains the point

p5 ∈ L ∩ L5. Therefore, L5 is also lying on the cubic surface X.

To prove item (b), let us assume that five skew lines lie on a nonsingular cubic

surface X. By blowing down these lines, we get a del Pezzo surface of degree

8, i.e. it is either P1 × P1 or P2#P2 with 5 points. Firstly, assume that we

obtain P1 × P1 with five points. Notice that these points form a quadratically

nondegenerate 5-configuration on P1 × P1. Otherwise, after blowing up these

points, we get singular cubic surface. Recall (see Proposition 3.7.1) that there

exist a curve of bidegree (2, 1) (or, of bidegree (1, 2) curve) passing through

these five points. The proper transformation of this curve is the required line on

this cubic surface. Now, we assume that we obtain P2#P2 with five points. Note

that none of the five points lie on P2. Otherwise, after blowing up the five points

we get a singular cubic surface. By blowing down the exceptional curve on

P2#P2 over the blown up point, say p ∈ P2, we obtain a projective plane with five

points and p. The proper transformation of the plane conic passing through the

five points other than p is the curve whose self intersection is 4 passing through

the five points on P2#P2. The proper transformation of this curve is the required

line on X.

For the proof of item (c), firstly, we assume that the ordered sets {L1, . . . , L6}

and {L′1, . . . , L
′
6} of skew lines in RP3 form a double six, that is, Li, and L′j,

1 ≤ i, j ≤ 6, intersect at a point if i , j, and are disjoint if i = j (see Figure 6.1).

We shall choose some 19 points among the 30 intersection points of these lines.

The chosen 19 points are denoted by black points in this figure. There is a cubic

surface X ⊂ RP3 containing these 19 points. Since each of the lines L1 and L′1
contains some four points of X they lie on this surface. Thus, X contains the

intersection point of L1 ∩ L′6 and the intersection point, denoted by cross in this
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L1 L2 L3 L4 L5 L6

L′
1

L′
2

L′
3

L′
4

L′
5

L′
6

Figure 6.1: A double six (L,L′), where L = {L1, . . . , L6}, L′ =

{L′1, . . . , L
′
6} in RP3. By the black points on these lines, we show the

chosen 19 points to construct a cubic surface.

figure, of L′1 ∩ L6. Consequently, each of the lines L6 and L′6 contains some four

points of X, so they lie on this surface. Proceeding in this way, we can show

that Li, L′i lie on this cubic surface for all i ∈ {1, . . . , 6}. The converse of this

statement is a well known fact. This complete the proof. �

Although the formal definition of double six does not say directly that it should

be realizable on some cubic surface, we know from Proposition 6.1.1(b) that

this is correct.

Corollary 6.1.2. Any double six configuration in RP3 can be embedded in a

nonsingular cubic surface. �

6.2 The four types of real double sixes

Given a nonsingular real cubic M-surface X, by blowing down a suitable con-

figuration of six skew lines on X we can obtain a planar 6-configuration lying

inside one of the four Q-deformation classes QC6
σ, σ = 1, 2, 3, 6, in QC6.

We say that a double six (L,L′) on a nonsingular real cubic M-surface is
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corresponding to a Q-deformation class QC6
i , i = 1, 2, 3, 6, if the 6-configuration

of points, PL, obtained by blowing down lines of L lies in QC6
i . Let us denote

by ni the number of double sixes corresponding to the Q-deformation class QC6
i ,

where i ∈ {1, 2, 3, 6}. Due to Ludwing Schläfli, on a nonsingular cubic surface

there are 36 double sixes (see [D1]). Then, we have n1 + n2 + n3 + n6 = 36.

Theorem 6.2.1. Among 36 double sixes on a nonsingular real cubic M-surface,

10 double sixes are corresponding to QC6
1, 15 double sixes are correspond-

ing to QC6
2, 10 double sixes are corresponding to QC6

3, and 1 double six is

corresponding to QC6
6.

Proof. Let ni be the number of double sixes on a nonsingular real cubic M-

surface which are corresponding to QC6
i , i = 1, 2, 3, 6. Due to Lemma 4.1.5, we

get the following Figure 6.2.

9
6

1
10

10
1

6
9

7

7QC6
1

QC6
2

QC6
3

QC6
6

3

8

3

0

Figure 6.2: The labeled vertices represent double sixes (Li,L
′
i) cor-

responding to QC6
i , i = 1, 2, 3, 6, and the labeled arrows represent

the number of elementary Cremona transformations sending the 6-
configuration PLi ∈ QC6

i to the 6-configuration PL j ∈ QC6
j for any

i, j ∈ {1, 2, 3, 6}.

By this figure, we notice that 9n1 = 6n2, 7n1 = 7n3, n1 = 10n6, and 6n2 = 9n3.

Since n1 + n2 + n3 + n6 = 36 we get

n1 +
3
2

n1 + n1 +
1

10
n1 = 36

36
10

n1 = 36

n1 = 10

Therefore, n2 = 15, n3 = 10 and n6 = 1. �
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6.3 Elliptic and hyperbolic lines on a blow-up model

The concept of hyperbolic and elliptic lines were introduced by Segre [Se]. We

shall determine ellipticity and hyperbolicity of lines in the blowup model of a

real del Pezzo surface of degree 3 whose anti-canonical model is a real cubic

M-surface depending on the 6-configuration of blown up points.

Take a real line L on a nonsingular real cubic surface X and consider the one

parameter family of planes πt ⊂ P
3 containing this line for all t ∈ P1. Then,

we get X ∩ πt = L ∪ Ωt where Ωt are residual conics. The set {Ωt : t ∈ P1} of

residual conics is called the residual pencil associated to L. For each t ∈ P1,

Ωt ∩ L = {qt, q
′

t}. Then, we have a double covering ϕ : L → P1 such that

ϕ : {qt, q
′

t} → t. Two branch points of ϕ are called the Segre points.

Following Segre [Se], a real line L on a nonsingular real cubic surface is called

hyperbolic if the Segre points are real, and called elliptic if they are complex

conjugate to each other (see Figure 6.3).

qt0q′t0 qt1q′t1 qt2q′t2

(a) the case of hyperbolic line

q′t0q′t1q′t2 qt0qt1qt2

(b) the case of elliptic line

Figure 6.3: The points qt, q
′

t of the intersection Ωt ∩ L, t ∈ [0, 1],
where L, Ωt are as introduced above.

For a given configuration P ∈ QC6, let us denote by XP the nonsingular real del

Pezzo M-surface of degree 3 obtained from P2 blown-up the six real points of

P, and by YP the image of XP under the anti-canonical map fP : XP → P3. Note

that YP is a nonsingular cubic surface. Among the 27 real exceptional curves on

XP, the six ones are Ei corresponding to points pi, the fifteen ones are Ai j, which

are the proper transformations of the lines Li j joining two points pi, p j ∈ P, and

the remaining six ones are Q̃i, which are the proper transformations of the conics

Qi through all the points except the point pi, where 1 ≤ i < j ≤ 6.

The residual pencil {Ωt : t ∈ P1} in a blow-up model XP of del Pezzo surfaces of

degree 3 in terms of a given 6-configuration P ∈ QC6 is as follows:
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(a) The residual pencil {Ωt} associated to Ei ⊂ XP, i = 1, . . . , 6, consists of the

rational cubic curves passing through all six points of P and having a node

at pi ∈ P.

(b) The residual pencil {Ωt} associated to Ai j ⊂ XP, i, j = 1, . . . , 6, consists of

conics passing through four points of P other than pi and p j.

(c) The residual pencil {Ωt} associated to Q̃i ⊂ XP, i = 1, . . . , 6, consists of

lines passing through the point pi ∈ P.

Let A be a nodal cubic curve in RP2 with a node a point p ∈ A. Notice that

A \ {p} = O ∪ J , where the homology class [J ∪ p] is nontrivial in H1(RP2)

while the homology class [O ∪ p] is trivial. We say that O is the finite loop and

J is the infinite loop of A. Equivalently, one can define that the finite loop is the

contractible piece of A in RP2, and that the infinite loop is the uncontractible

piece of A in RP2 (for an example, see Figure 6.4).

O

J

p0

p3

p4

p2

p5 p6

p1

Figure 6.4: The finite loop O and infinite loop J of a nodal cubic A.

We reproduce the following results from Finashin and Kharlamov (see [FK3]),

in our own versions, after some modifications.

Theorem 6.3.1. For a 6-configuration P = {p1, . . . , p6} ∈ QC6, the following

statements hold:

(a) In the cases P ∈ QC6
k , k = 1, 3, if pi ∈ P is subdominant, then the real

line fP(Ei) ⊂ YP is hyperbolic while the real line fP(Q̃i) ⊂ YP is elliptic.

Otherwise, fP(Ei) is elliptic while fP(Q̃i) is hyperbolic. Furthermore, if

both of the points pi, p j ∈ P are of the same kind (i.e., dominant or

subdominant), then the real line fP(Ai j) ⊂ YP is elliptic. Otherwise, fP(Ai j)

is hyperbolic.

(b) In the case P ∈ QC6
2, if pi ∈ P is subdominant, then the real lines fP(Ei),

fP(Q̃i) ⊂ YP are both elliptic. Otherwise, the lines fP(Ei), fP(Q̃i) are both
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hyperbolic. Furthermore, if both of the points pi, p j ∈ P are of the same

kind (i.e., dominant or subdominant), then the real line fP(Ai j) ⊂ YP is

hyperbolic. Otherwise, fP(Ai j) is elliptic.

(c) In the case P ∈ QC6
6, the real lines fP(Ei), fP(Q̃i) ⊂ YP are both elliptic

while the real line fP(Ai j) ⊂ YP is hyperbolic for any 1 ≤ i < j ≤ 6.

Proof. Firstly, we shall show the ellipticity and hyperbolicity of the exceptional

curve Ei ⊂ XP, i = 1, . . . , 6 for all the cases of P ∈ QC6
k , k = 1, 2, 3, 6.

Note that the residual pencil Ci
P

associated to the exceptional curve Ei ⊂ XP,

i = 1, . . . , 6, consists of the rational cubic curves passing through all six points

of P and having a node at pi ∈ P. We see from Figure 11.4 that a nodal cubic

A ∈ Ci
P

with empty finite loop (i.e., the finite loop not containing any points

of P) occurs in the cases P ∈ QC6
1, or P ∈ QC6

3 if the point pi is subdominant,

and in the case P ∈ QC6
2 if the point pi is dominant. Since the cubic A in the

pencil Ci
P

becomes a cubic with a solitary node in this pencil as shown on Figure

6.5 the line fP(Ei) is hyperbolic. For the remaining cases on P and pi, fP(Ei)

is elliptic since we can not get a cubic with a solitary node at p j in the pencils

CP since these pencils do not contain a nodal cubic with empty finite loop (see

Figure 11.4).

pi pi pi

Figure 6.5: The degeneration of a nodal cubic with empty loop to a
cubic with a solitary node

Secondly, we shall show the ellipticity and hyperbolicity of the exceptional

curve Ai j ⊂ XP, i , j ∈ {1, . . . , 6} for all the cases P ∈ QC6
k , k = 1, 2, 3, 6.

Note that the residual pencil {Ωi j
t } associated to the exceptional curve Ai j ⊂ XP,

i , j ∈ {1, . . . , 6}, consists of the conics Qi j
t passing through four points of P

other than pi and p j. We denote by qt, q′t the intersection points Qi j
t ∩ Ai j for

each t. If pi, p j ∈ P are both the same type, i.e. dominant or subdominant, then

fP(Ai j) is hyperbolic in the cases P ∈ QC6
i , i = 2, 6, and is elliptic in the cases
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P ∈ QC6
i , i = 1, 3 since the intersection points {qt, q′t} = Qt ∩ Ai j for any t lie

in RP1 as shown in Figure 6.3(a) for the cases P ∈ QC6
i , i = 2, 6, and lie in

RP1 as shown in Figure 6.3(b) for the cases P ∈ QC6
i , i = 1, 3. Similarly, if

one of the points pi, p j is dominant and the other is subdominant, then fP(Ai j) is

hyperbolic in the cases P ∈ QC6
i , i = 1, 3, and is elliptic in the case P ∈ QC6

2.

For example, see Figure 6.6 in which P is a hexagonal configuration in QC6.

pi

pj

(a) hyperbolic
line Ai j

pj pk

(b) elliptic line A jk

pl

pi

(c) elliptic line
Ail

Figure 6.6: The examples of hyperbolic and elliptic lines on XP for
P ∈ QC6

1, which are the proper images of lines Li j, L jk, and Lil.

Finally, we shall show the ellipticity and hyperbolicity of the exceptional curve

Q̃i ⊂ XP, i = 1, . . . , 6, for all the cases P ∈ QC6
k , k = 1, 2, 3, 6.

Note that the residual pencil {Ωi
t} associated to the exceptional curve Q̃i ⊂ XP,

i = 1, . . . , 6, consists of the conics consists of lines Li
t passing through the point

pi ∈ P. We denote by qt, q′t the intersection points Li
t ∩ Qi for any t. In the cases

P ∈ QC6
i , i = 1, 2, 3, if pi ∈ P is dominant then fP(Q j) is hyperbolic since the

intersection points {qt, q′t} = Lt ∩ Q j for any t lie in RP1 as shown in Figure

6.3(a), and in the cases P ∈ QC6
i , i = 1, 2, 3, 6 if p j ∈ P is subdominant then

fP(Q j) is elliptic since the intersection points {qt, q′t} = Lt ∩ Q j for any t lie in

RP1 as shown in Figure 6.3(b). For example, see Figure 6.7 in which P is a

hexagonal configuration in QC6. This completes the proof. �

pi

Segre point Segre point

Qi

(a) hyperbolic line Q̃i

pj
Qj

(b) elliptic line Q̃ j

Figure 6.7: The examples of hyperbolic and elliptic lines on XP for
P ∈ QC6

1, which are the proper images of conics Qi, Q j.
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CHAPTER 7

REAL DEL PEZZO SURFACES

7.1 The marked real del Pezzo M-surfaces of degree 2 and 3

A marked real del Pezzo M-surface of degree d is a pair (X,L) consisting of a

real del Pezzo surface X of degree d with a maximal setL (i.e., that of containing

9 − d real skew lines on X) of real skew lines under inclusion. We call L a

marking on X. As an example, consider the pair (XP, EP), where XP is the del

Pezzo surface of degree 9 − n obtained by blowing up P2 at points of P ∈ QCn,

1 ≤ n ≤ 7, and EP is the set of exceptional curves over the blown up points.

Any marked real del Pezzo M-surface arises from a blow-up model described

in the previous paragraph (see [Man]), and a deformation of such surfaces are

obtained from deformations of configurations of points by blowing up at these

points (see [DIK], p.76-77). Thus, the next statement follows immediately from

Theorems 2.3.5 and 2.5.1.

Theorem 7.1.1. There are four deformation classes of marked real del Pezzo

M-surfaces of degree 3, and there are fourteen deformation classes of marked

real del Pezzo M-surfaces of degree 2. �

7.2 Combinatorial anti-canonical correspondence

Given P ∈ QCn, n ≤ 7, let us denote by PP the real projective space of all real

cubic curves in P2 passing through n points of P. There is a rational map from

P2 to P̂P given by x→ L̂x, where P̂P and L̂x are the polar duals of PP and the set
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of all cubics passing trough n points of P in addition a point x ∈ P2. This map

is not well-defined at the points of P, by blowing up these points, the map is

extended to fP : XP → P̂P, which is called the anti-canonical map, where XP is

the del Pezzo surface XP of degree d = 9 − n (see Figure 7.1). We shall denote

by LP the image fP(EP) where EP is the set of exceptional curves Ei ⊂ XP,

i = 1, . . . , n over the blown up points pi ∈ P.

(XP, EP)

(P2,P) (̂PP,LP)
6

-

�
�
�
�
��

π

fP ◦ π−1

fP

Figure 7.1: The commutative diagram.

Let P be a real projective space which is projectively equivalent to RP9−n. We

denote by LLn(P), or for short LLn if some projective surface P is fixed, the

space of linearly nondegenerate configurations of n real lines in P. Concerning

"linearly nondegenerate", we describe what does it mean only in the cases

n = 6, 7 (see the end of Section 2.2 and Section 5.1). For n < 6, the definition

is not clarified because this case is not considered. For the quotient space

LLn(P)/PGL(10 − n,R), we use the well-defined notation LLn/PGL(10 − n,R)

since it is independent of the choice of P � P9−n.

We shall denote by [LLn] and 〈LLn〉 for n = 6, 7 the set of all L-deformation

classes and all coarse L-deformation classes in LLn(RP9−n), respectively. In fact,

in the case of n = 7, since PGL(3,R) is connected there is no difference between

L-deformation classes and coarse deformation classes in LL7(RP2). That is,

[LL7] = 〈LL7〉. However, some of the L-deformation classes in LL6(RP3) may

consist of two connected components of the quotient space LL6/PGL(4,R) since

the group PGL(4,R) is not connected (in fact, it has two connected components).

Thus, 〈LL6〉 can be identified with the set of connected components of the

quotient space LL6/PGL(4,R). Note that these quotients do not depend on a

particular choice of a projective space P � P9−n.

For an n-configuration P ∈ QCn, it is well-known fact that the space P̂P is
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projectively equivalent to P9−n. The map fP ◦ π−1 : P2 → P̂P induces a

map φn : QCn/PGL(3,R) → LLn/PGL(10 − n,R) sending the orbit of P in

QCn/PGL(3,R) to the orbit of LP in LLn/PGL(10 − n,R). This map is called

the anti-canonical correspondence. Our research concerns the cases n = 6 and

n = 7. If n = 6, then the corresponding configurations of linesLP in LLn(̂PP) are

6-configuration of skew lines. If n = 7, then the corresponding configurations of

lines are known in literature as Aronhold sets (for details see Section 9.3).

The map φn induces another map [φn] between Q-deformation classes in QCn

and coarse L-deformation classes in LLn(̂PP), and this map is called the combina-

torial anti-canonical correspondence. (See Figure 7.2.) It will be convenient to

use the abbreviation CAC-correspondence for the combinatorial anti-canonical

correspondence [φn] : [QCn]→ 〈LLn〉.

P ∈ QCn LP ∈ LLn(̂PP)

QCn/PGL(3,R) LLn/PGL(10 − n,R)

[QCn] 〈LLn〉

fP◦π−1

φn

[φn]

Figure 7.2: The anti-canonical and the combinatorial anti-canonical
correspondences, where the vertical arrows on above stand for the
natural quotient maps.

7.3 Marking on anti-canonical models

Let X be a real del Pezzo M-surface of degree 3, and assume that (E, Ẽ) is a

double six on its anti-canonical model (i.e., a cubic M-surface in P3). Then, we

may say that E and Ẽ are two markings on X, and we call them complementary.

The planes P2 and P̃2 obtained by blowing down E and Ẽ, respectively are

called the complementary planes, and the 6-configurations P ⊂ P2 and P̃ ⊂ P̃2

obtained as the result of blowing down E and Ẽ, respectively are called the

complementary 6-configurations. So, starting from P ∈ QC6, we can blow up P

to obtain marking EP ⊂ XP, and then blow down the complementary marking
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ẼP to obtain the complementary 6-configuration P̃ on the complementary plane

P̃2.

(XP, EP ∪ E
P̃

)

(P2,P) (̃P2, P̃)

π

π̃

ξ

Figure 7.3: The correspondence between 6-configurations EP and
their complementary 6-configurations ẼP in QC6 where π and π̃

stand for the blowing up of points of P and P̃ in the planes P2 and
P̃2, respectively.

Theorem 7.3.1. Assume that P, P̃ ∈ QC6 are complementary 6-configurations

to each other. Then they belong to the same Q-deformation class (i.e., QC6
1, or

QC6
2, or QC6

3, or QC6
6).

Remark 7.3.2. The configurations P and P̃ belong to the different planes.

However, P2/PGL(3,R) = P̃2/PGL(3,R) is a canonical identification, and the

corresponding deformation classes in P2 and P̃2 are identified with the connected

components of the corresponding quotient.

Proof of Theorem 7.3.1. The proof is based on the following observation.

Lemma 7.3.3. If P ⊂ P2 and P̃ ⊂ P̃2 are complementary 6-configurations to

each other, then the composition Cr123 ◦Cr456 ◦Cr123 of elementary Cremona

transformations transforms the plane P2 into the plane P̃2, and sends P to P̃.

Proof of Lemma 7.3.3. Let P = {p1, . . . , p6} ∈ QC6, and EP = {E1, . . . , E6},

ẼP = {Q̃1, . . . , Q̃6} be the complementary markings on XP, where Ei and Q̃i,

i = 1, . . . , 6, are, respectively, the exceptional divisor over the blown up point

pi and the proper transformation of the conic Qi passing through five points of

P other than pi. Let P̃ ⊂ P̃2 be the complementary 6-configuration obtained

blowing down the exceptional curves Q̃i, i = 1, . . . , 6. Using Lemma 4.1.3, we

obtain Figure 7.4 which shows the transformations of the exceptional curves

E1, . . . , E6 ⊂ XP in each step of Cr123 ◦ Cr456 ◦ Cr123. In particular, it shows

that the marking {E1, . . . , E6} are interchanged with the complementary marking

{Q̃1, . . . , Q̃6}. �
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˜
Q3

E1 A23
˜
Q1

E2 A13
˜
Q2

E3 A12

E4 E4 A56
˜
Q4

E5 E5 A46
˜
Q5

E6 E6 A45
˜
Q6

Cr123 Cr123Cr456 ˜
Q1
˜
Q2
˜
Q3

Figure 7.4: The modifications of the exceptional curves Ei, Q̃i ⊂ XP,
i ∈ {1, . . . , 6}, under Cr123 ◦Cr456 ◦Cr123, in which Ai j ⊂ XP are the
proper transformation of lines Li j joining two points pi and p j of a
given configuration P ∈ QC6.

To complete the proof of this theorem, note that the image of any configuration

P ∈ QC6 under Cr123 ◦Cr456 ◦Cr123 is Q-deformation equivalent to P, that is,

they belong to the same Q-deformation class in QC6 as illustrated in Figure 7.5.

p5

p6 p4

p1

p2
p3

Cr123

p5

p6p4

p1

p2
p3

Cr456

p1

p2

p3

p4

p5

p6

Cr123

p5

p6
p4

p1
p2

p3

p1

p2

p3

p4p5

p6
Cr123

p5
p6

p4

p1

p2

p3

Cr456

p5

p6

p4

p1
p2

p3

Cr123

p1

p2

p3

p4p5

p6

p1

p2

p3

p4p5

p6 Cr123

p1

p2

p3

p4

p5

p6
Cr456

p5

p6p4
p1

p2

p3

Cr123 p1

p2

p3p4

p5 p6

p1

p2

p3

p4p5

p6
Cr123 Cr123Cr456p2

p5

p6

p4 p5

p6 p4

p1 p2

p3

p1

p2
p3

p4p5

p6p1

p3

Figure 7.5: The modification of a 6-configuration from each of the
classes QC6

i , i = 1, 2, 3, 6, under Cr123 ◦Cr456 ◦Cr123.

�
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CHAPTER 8

ANTI-CANONICAL CORRESPONDENCE FOR REAL

CUBIC SURFACES

8.1 CAC-correspondence for cubic surfaces

In the Theorem 2.3.5, we show that there are exactly four Q-deformation classes

in QC6, namely, QC6
1,QC6

2,QC6
3 and QC6

6. The following theorem answers to the

question about the corresponding four L-deformation classes of configurations

of six skew lines in RP3 (among the 19 classes mentioned in Theorem 5.5.2).

J〈123456〉

J〈123654〉

J〈214365〉

M

+

+ −

+

− − −

No

derivative

tree

Derivative
tree

P ∈ QC6

LP LPof
µ ∈ S5

µ = 〈12345〉

µ = 〈12354〉

µ = 〈21435〉

µ = 〈13524〉

A 6-configuration of lines
associated to P LP6̂

associated
Pentagrams of

to

(See [VD])

Figure 8.1: The CAC-correspondence between Q-deformation
classes in QC6 and L-deformation classes of 6-configuration of skew
lines in RP3.
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Theorem 8.1.1. The CAC-correspondence [φ6] sends the Q-deformation classes

QC6
1, QC6

2, QC6
3, and QC6

6, respectively to the coarse L-deformation classes

J 〈123456〉, J 〈123654〉, J 〈214365〉, and M (see Figure 8.1).

Proof. Let us take a 6-configuration P = {p1, . . . , p6} ∈ QC6 with the corre-

sponding marked cubic surface (YP,LP) where Li ∈ LP, i = 1, . . . , 6, is the

line fP(Ei) represented by the exceptional curve Ei over pi. We denote by

L̃P = {L̃1, . . . , L̃6} and P̃ = { p̃1, . . . , p̃6} the complementary marking on YP and

the complementary configuration in P̃2, respectively. Consider any quadruple of

distinct exceptional curves from LP, without loss of generality we can choose

L1, L2, L3, L4. The four exceptional curves L1, L2, L3, L4 together with two

curves L̃5, L̃6 from the complementary marking L̃P induce a join configuration

J(σ) for some σ ∈ S 4 (see Figure 8.2).

˜
L5

˜
L6

Figure 8.2: The join configuration J(σ) for some σ ∈ S 4.

To find this permutation, we shall analyze in which order the points p̃1, p̃2, p̃3, p̃4

of P̃ lie on the curves π̃( f −1
P

(L̃5)), π̃( f −1
P

(L̃6)), where π̃ : XP → P̃2 is the blow-up

of P̃2. This will allow us to compare the sign of lk(Li, L j, Lk), 1 ≤ i, j, k ≤ 4.

The proof is based on the following observations.

Lemma 8.1.2. All triple linking numbers lk(Li, L j, Lk) of lines Li, L j, Lk ∈ LP

for any hexagonal configuration P ∈ QC6
1 and for any 1 ≤ i < j < k ≤ 6 have

the same value +1 or −1.

Proof of Lemma 8.1.2. Assume that P = {p1, . . . , p6} is a hexagonal configura-

tion, and that the numeration of the points of P is cyclic. Let (YP,LP) be the

corresponding marked cubic surface where Li ∈ LP, i = 1, . . . , 6, is the line

fP(Ei) represented by the exceptional curve Ei over pi. Let L̃P = {L̃1, . . . , L̃6}

and P̃ = { p̃1, . . . , p̃6} be the complementary marking on YP and the comple-

mentary configuration in P̃2, respectively. Consider the quadruple of distinct
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exceptional curves L1, L2, L3, L4 from LP, and take two curves L̃5, L̃6 from L̃P.

The images π( f −1
P

(L̃k)), k = 5, 6, is the conic Q̃k passing through five points of

P̃ other than p̃k. The points p̃1, p̃2, p̃3, p̃4 appear on the conics Q̃5 and Q̃6 in

consecutive orders. For a certain orientation of RP3 we get lk(Li, L j, Lk) = +1

for any 1 ≤ i < j < k ≤ 4 since these two orders induce an identity permutation( 1 2 3 4
1 2 3 4

)
∈ S 4 (see Example 5.3). We can pass from any quadruple of lines on

YP to any other quadruple of lines on YP in several steps, by changing just one

line in each step. So, the signs of all triple linking numbers should be the same.

Therefore, the total linking codes, i.e. the pair (lk+, lk−) is (20, 0) (or, (0, 20) for

another choice of orientation of RP3). �

The next statement follows from Lemma 8.1.2 and Figure 5.6.

Corollary 8.1.3. For each P ∈ QC6
1, LP ∈ J〈123456〉. �

Lemma 8.1.4. Let P ∈ QC6
6, and assume that the numeration p1, . . . , p5 of

points of P other than p6 is cyclic such that the point p6 is inside the Q-region

D as shown in Figure 2.4. Then, for some orientation of RP3 the triple linking

numbers lk(Li, L j, Lk) of lines Li, L j, Lk ∈ LP on YP (namely, for the orientation

lk(L1, L2, L3) = +1) are like indicated in the table shown in Figure 8.3.

lk(L1, L2, L4) = −1

lk(L1, L2, L5) = +1 lk(L1, L2, L6) = −1

lk(L1, L3, L4) = −1

lk(L1, L3, L5) = −1

lk(L1, L3, L6) = +1

lk(L1, L4, L5) = +1

lk(L1, L4, L6) = +1 lk(L1, L5, L6) = −1

lk(L2, L3, L4) = +1 lk(L2, L3, L5) = −1

lk(L2, L3, L6) = −1

lk(L2, L4, L5) = −1

lk(L2, L4, L6) = +1

lk(L2, L5, L6) = +1

lk(L3, L4, L6) = −1lk(L3, L4, L5) = +1

lk(L3, L5, L6) = +1 lk(L4, L5, L6) = −1

lk(L1, L2, L3) = +1

Figure 8.3: Triple linking numbers of lines of LP for P ∈ QC6
6

satisfying the conditions in Lemma 8.1.4.

Proof of Lemma 8.1.4. Assume that (YP,LP) is the corresponding marked cu-

bic surface where Li ∈ LP, i = 1, . . . , 6, is the line fP(Ei) represented by the

exceptional curve Ei over pi. Let L̃P = {L̃1, . . . , L̃6} and P̃2 = { p̃1, . . . , p̃6}
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be the complementary marking on YP and the complementary configuration

in P̃2, respectively. Consider the quadruple of distinct lines L1, L2, L3, L4 in

YP from LP, and take two curves L̃5, L̃6 from L̃P. The images π( f −1
P

(L̃k)),

k = 5, 6, are the conics Q̃k passing through five points of the complementary

configuration P̃ other than p̃k. The points p̃1, p̃2, p̃3, p̃4 appear on the conics

Q̃5 and Q̃6 in these orders p̃2, p̃3, p̃1, p̃4 and p̃1, p̃2, p̃3, p̃4, respectively. For

a certain orientation of RP3 we get lk(L1, L2, L3) = lk(L2, L3, L4) = +1 and

lk(L1, L2, L4) = lk(L1, L3, L4) = −1 since these two orders induce the permu-

tation
( 2 3 1 4

1 2 3 4
)
∈ S 4. Let us consider the quadruple of distinct skew lines L1,

L2, L3, L5 in YP and two lines L̃4, L̃6 from L̃P. The points p̃1, p̃2, p̃3, p̃5 ap-

pear on the conics Q̃4 and Q̃6 in these orders p̃1, p̃2, p̃5, p̃3 and p̃1, p̃2, p̃5, p̃3,

respectively. If we respect to the previous chosen orientation of RP3 and the

triple linking number of the lines L1, L2, L3 as found in the previous line, then

we get lk(L1, L2, L5) = lk(L2, L3, L5) = lk(L1, L3, L5) = +1 since the induced

permutation is
( 1 2 5 3

1 2 5 3
)
. Note that after relabeling the points p̃1, p̃2, p̃3, p̃5 we

see that the permutation is an identity permutation in S 4. We can pass from any

quadruple of lines on YP to any other quadruple of lines on YP in several steps,

by changing just one line in each step. By proceeding the same way, we shall

get the table shown in Figure 8.3. �

The proofs of the next two results are analogous to the one Lemma 8.1.4, and

so we omit them.

Lemma 8.1.5. Let P ∈ QC6
2, and assume that the numeration p1, . . . , p5 of

points of P other than p6 is cyclic such that the point p6 is inside the Q-region B

as shown in Figure 2.4. Then, for some orientation of RP3 the linking numbers

of lines Li, L j, Lk ∈ LP on YP (namely, for the orientation lk(L1, L2, L3) = +1)

are like indicated in the table shown in Figure 8.4. �

Lemma 8.1.6. Let P ∈ QC6
3, and assume that the numeration p1, . . . , p5 of

points of P other than p6 is cyclic such that the point p6 is inside the Q-region C

as shown in Figure 2.4. Then, for some orientation of RP3 the linking numbers

of lines Li, L j, Lk ∈ LP on YP (namely, for the orientation lk(L1, L2, L3) = +1)

are like indicated in the table shown in Figure 8.5. �
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lk(L1, L2, L4) = +1

lk(L1, L2, L5) = +1

lk(L1, L2, L6) = +1

lk(L1, L3, L4) = +1

lk(L1, L3, L5) = +1

lk(L1, L3, L6) = +1

lk(L1, L4, L5) = −1

lk(L1, L4, L6) = −1

lk(L1, L5, L6) = −1

lk(L2, L3, L4) = +1

lk(L2, L3, L5) = +1

lk(L2, L3, L6) = +1

lk(L2, L4, L5) = −1

lk(L2, L4, L6) = −1

lk(L2, L5, L6) = −1

lk(L3, L4, L6) = −1

lk(L3, L4, L5) = −1

lk(L3, L5, L6) = −1

lk(L4, L5, L6) = −1

lk(L1, L2, L3) = +1

Figure 8.4: Triple linking numbers of lines of LP for P ∈ QC6
2

satisfying the conditions in Lemma 8.1.5.

lk(L1, L2, L4) = −1

lk(L1, L2, L5) = +1 lk(L1, L2, L6) = −1

lk(L1, L3, L4) = −1lk(L1, L3, L5) = +1

lk(L1, L3, L6) = −1lk(L1, L4, L5) = +1

lk(L1, L4, L6) = +1

lk(L1, L5, L6) = +1

lk(L2, L3, L4) = +1

lk(L2, L3, L5) = +1

lk(L2, L3, L6) = +1

lk(L2, L4, L5) = −1

lk(L2, L4, L6) = +1

lk(L2, L5, L6) = −1

lk(L3, L4, L6) = +1

lk(L3, L4, L5) = −1

lk(L3, L5, L6) = −1

lk(L4, L5, L6) = +1

lk(L1, L2, L3) = +1

Figure 8.5: Triple linking numbers of lines of LP for P ∈ QC6
3

satisfying the conditions in Lemma 8.1.6.

By Lemmas 8.1.4, 8.1.5 and 8.1.6, we see that if P ∈ QC6
6, or P ∈ QC6

2,

or P ∈ QC6
3 then the total linking codes are (10, 10), (12, 8) (or, (8, 12) for

another choice of orientation of RP3), (10,10), respectively. However, we see

from Figure 5.6 that, among 19 L-deformation classes, the five L-deformation

classes that consist of 6-configurations of skew lines with the total linking

codes (10, 10), namely, J(123654), J(124653), J(135264), M, and M, the four

L-deformation classes that consist of 6-configurations of lines with the total

linking codes (12, 8), namely, J(125634), J(124365), J(124635), L, and the four

L-deformation classes that consist of 6-configurations of skew lines with the

total linking codes (8, 12), namely, J(436521), J(564321), J(536421), L.
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Fix an orientation of RP3 and consider a 6-configuration of skew lines in RP3,

L = {L1, . . . , L6}. We denote by Lî, i = 1, . . . , 6, the 5-configuration of skew

lines in RP3 obtained from L by removing the line Li. The set

d(L) =
{(

lk+(L1̂), lk−(L1̂)
)
, . . . ,

(
lk+(L6̂), lk−(L6̂)

)}
is called the derivative linking code of L. Note that if we change the orientation

of RP3, then the first and second entries of all pair (lk+(Lî), lk−(Lî)
)

are changed

simultaneously.

Remark 8.1.7. We say that an n-configuration of skew lines L = {L1, . . . , Ln} in

RP3 is symmetric if all Lî are L-deformation equivalent to each other. It can be

easily shown that any 6-configuration of skew lines in each of the L-deformation

classes J[123456], J[125634], M, M, L, L among the 19 deformation classes

(see Theorem 5.5.2) is symmetric.

Straightforward analysis gives the following derivative linking codes, which

allows to figure out which ones correspond to the 6-configuration LP for P ∈

QC6
i , i = 2, 3, 6.

Table 8.1: The derivative codes of 6-configurations of skew lines in
RP3 with total linking code (10, 10).

d(J(123654)) = {(3, 7), (3, 7), (3, 7), (7, 3), (7, 3), (7, 3)}
d(J(124653)) = {(4, 6), (4, 6), (6, 4), (3, 7), (6, 4), (6, 4)}
d(J(135264)) = {(4, 6), (6, 4), (5, 5), (6, 4), (4, 6), (5, 5)}
d(M) = d(M) = {(5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5)}

Table 8.2: The derivative codes of 6-configurations of skew lines in
RP3 with total linking code (12, 8).

d(J(125634)) = {(6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4)}
d(J(124365)) = {(4, 6), (4, 6), (7, 3), (7, 3), (7, 3), (7, 3)}
d(J(124635)) = {(5, 5), (5, 5), (7, 3), (6, 4), (6, 4), (7, 3)}

d(L) = {(4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6)}

Table 8.3: The derivative codes of 6-configurations of skew lines in
RP3 with the total linking code (8, 12).

d(J(436521)) = {(4, 6), (4, 6), (4, 6), (4, 6), (4, 6)}
d(J(563421)) = {(6, 4), (6, 4), (3, 7), (3, 7), (3, 7), (3, 7)}
d(J(536421)) = {(5, 5), (5, 5), (3, 7), (4, 6), (4, 6), (3, 7)}

d(L) = {(6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4)}
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Using the tables given Figures 8.3, 8.4 and 8.5, we easily calculate all pairs(
lk+(LP î), lk−(LP î)

)
for P ∈ QC6

j , j = 2, 3, 6 as shown in Table 8.4.

Table 8.4: Total triple number and the derivative linking code of LP
for any P ∈ QC6.

P ∈ QC6 Total triple numbers The derivative linking codes of LP
P ∈ QC6

2 (10,10) d(LP) = {(6, 4), (6, 4), (6, 4), (6, 4), (6, 4), (6, 4)}
P ∈ QC6

3 (12,8) or (8,12) d(LP) = {(4, 6), (4, 6), (7, 3), (7, 3), (7, 3), (7, 3)}
P ∈ QC6

6 (10,10) d(LP) = {(5, 5), (5, 5), (7, 3), (6, 4), (6, 4), (7, 3)}

By comparing the results in Tables 8.1, 8.2, 8.3 with the ones in Table 8.4,

we observe that LP is coarse L-deformation equivalent to J(125634), J(124365)

and M if P ∈ QC6
2, P ∈ QC6

3, and P ∈ QC6
6, respectively. Together with the

result in Corollary 8.1.3, this completes the proof of Theorem 8.1.1. �

The next statement is an immediate consequence of this theorem.

Corollary 8.1.8. A 6-configuration L of skew lines in RP3 is L-deformation

equivalent (or, coarse L-deformation equivalent) to a 6-configuration of skew

lines on some cubic surface if and only if L belongs to one of the L-deformation

classes J[123456], J[654321], J[123654], J[214365], J[125634], M, M (or,

to one of the coarse L-deformation classes J〈123456〉, J〈123654〉, J〈214365〉,

M). �
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CHAPTER 9

ANTI-CANONICAL MODELS OF REAL DEL PEZZO

SURFACES OF DEGREE 2

9.1 CAC-correspondence for del Pezzo surfaces of degree 2

Throughout the rest of this chapter, by a cubic curve based at P, we mean a

plane cubic curve passing trough n points of a given planar n-configuration P.

We recall (see Section 7.2) that for a given 7-configuration P ∈ QC7, we denote

by P̂P the polar dual of the space formed by cubic curves based at P, and by

fP : XP → P̂P the anticanonical map defined by the anticanonical divisor of the

del Pezzo surface XP.

Remark 9.1.1. The following properties (see, e.g. [H]) can be easily verified:

(a) The space PP of cubic curves based at any planar 7-configuration P is a

plane provided that no five points of P are collinear.

(b) The rational map fP : XP → P̂P is (generically) two-to-one if no 4 points of

P are collinear and all 7 points of P do not lie on a conic. More precisely,

under the two assumptions the map fP : XP → P̂P is a double covering

branched along a quartic curve C.

(c) P ∈ QC7 if and only if the quartic curve C mentioned in part (b) is non-

singular.

Recall that we denote by [φ7] the combinatorial anti-canonical correspondence

(i.e., for short CAC-correspondence) between Q-deformation classes in QC7 and
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coarse L-deformation classes in LL7(̂PP), see Section 7.2. The next statement

which claims about the independence of the CAC-correspondence under the

choice of configuration P (that is, if you choose a Q-deformation equivalent

configuration then this map will give the same value) follows from Lemmas

9.1.3 and 9.1.5.

Proposition 9.1.2. The CAC-correspondence [φ7] : [QC7] → [LL7] is well-

defined. �

Let P = {p1, . . . , p7} ∈ QC7 be a 7-configuration. We denote by Ai, i = 1, . . . , 7,

the cubic curve based at P with a node at the point pi. The set AP formed

by these cubics Ai is a 7-configuration in PP. The well-know fact is that the

anti-canonical map fP : XP → P̂P maps both the exceptional curve Ei ⊂ XP (i.e.,

over blown up point pi) and the proper image Ãi ⊂ XP of the nodal cubic Ai to

the same bitangent line Li to a nonsingular quartic C in P̂P for each i ∈ {1, . . . , 7}.

We denote by LP = {L1, . . . , L7} the 7-configuration of bitangent lines.

Proposition 9.1.3. The set LP for any configuration P ∈ QC7 is a polar dual

toAP in PP. That is, LP = ÂP for any P ∈ QC7.

Proof. Let y be a point in P̂P, and {x, g(x)} be the inverse image of this point

under the anti-canonical map fP : XP → P̂P, where g is a Geiser involution.

The pencil of plane cubics passing through p1, . . . , p7, x, g(x) is a line in PP. We

denote this line by Lx. Let Ly ⊂ PP be the dual line of the point y.

The proof of this proposition is based on the following simple observation.

Lemma 9.1.4. For any i = 1, . . . , 7, the following three conditions are equiva-

lent:

(a) Ai ∈ Ly.

(b) The pencil Lx ⊂ PP contains Ai.

(c) y ∈ Li = fP ◦ π−1(Ai). �

For each i ∈ {1, . . . , 7}, the set of cubics passing through the eight points

L̂1, . . . , L̂7, and Ai is a pencil in PP. Let Bi be the ninth base point of the pencil.
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Note that the two plane cubics Ai and Bi passing through p1, . . . , p7 ∈ P induce

a pencil in P2, and assume that two additional based points of the pencil are x

and g(x). Let us denote by Lx this pencil, and by y ∈ P̂P the image of x and

g(x) under fP ◦ π−1. Since Lx contains Ai, by Lemma 9.1.4 we have Ai ∈ Ly and

y ∈ Li = fP ◦ π−1(Ai), where Ly ⊂ PP is the polar dual of the point y.

This completes the proof of this proposition. �

Lemma 9.1.5. If P ∈ QC7, thenAP ∈ LC7(PP).

Proof. Let P = {p1, . . . , p7}, and assume that AP < LC7(PP). Then, there is a

line L ⊂ PP containing three points Ai, A j, Ak ofAP for some 1 ≤ i < j < k ≤ 7.

Let us denote by Âi, Â j, Âk the lines in P̂P which are the polar duals of Ai, A j,

Ak, respectively, and by Ãi, Ã j, Ãk the proper images of the nodal cubics Ai, A j,

Ak ∈ P
2, respectively. Then, we have

fP(Ei) = Âi = fP(Ãi), fP(E j) = Â j = fP(Ǎi), fP(Ek) = Âk = fP(Ãi)

where Ei, i = 1, . . . , 7, are the exceptional lines over the blown up points pi ∈ P.

Since Ai, A j, Ak ∈ AP are collinear their polar duals Âi, Â j, Âk are concurrent.

However, Ei, E j, Ek are skew, and the map fP is two-to-one, so Âi, Â j, Âk are

not concurrent (otherwise, Ei, E j, Ek are not skew). However, this yields the

contradiction that the surface XP is singular. �

9.2 Lifting the bitangents to del Pezzo surfaces

Recall that given a del Pezzo surface of degree 2, X, the anti-canonical map

f : X → P2 is a double covering branched over a nonsingular quartic C ⊂ P2.

Conversely, the double covering of P2 branched over a nonsingular quartic C

is a del Pezzo surface of degree 2. We denote this surface by XC, and the

anti-canonical map defined by the anti-canonical divisor of XC by fC : XC → P
2.

In this section, our aim is to construct a one-to-one correspondence between

the set of decorated bitangent lines to the real locus RC of C and the set of the

decorated lines on the real locus RXC of the del Pezzo surface XC.
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Proposition 9.2.1. Assume that X is a real del Pezzo surface of degree 2, and

f : X → P2 is its anti-canonical map, that is, a double covering branched over

some real quartic C ⊂ P2. Assume also that X is M-surface, i.e., its real locus

RX is homeomorphic to RP2#7RP2. Then:

(a) The quartic C is M-curve, i.e., its real locus RC has four connected

components (ovals).

(b) The image W = f (RX) is the complement in RP2 of the four topological

discs bounded by the four ovals of RC.

(c) The restriction f |RX of the projection f is a trivial double covering over the

interior of W. In particular, RX is homeomorphic to the double WA ∪WB

of W. Here WA and WB are two copies of W, identified with it by the

projection f , and having common boundary ∂WA = ∂WB.

Proof. The first and second statements follow from evaluation of the Euler class

−6 = χ(RP2#7RP2) = χ(X(R)) = 2χ(W),

since χ(W) = −3 is only possible in the case described there. The final statement

follows from a more general fact, which concerns real double coverings X → P2

branched along curves of degree 2m: the corresponding "real double covering"

RX → W = f (RX) is trivial provided m is even (which follows for instance

from evaluation of the corresponding Stiefel-Whitney class w1). �

There are 28 bitangents to a nonsingular quartic C ⊂ P2, and in the case of

quartic M-curves all these bitangents are real. Each bitangent line, L, to C in P2

is covered by two lines L1, L2 ⊂ XC which are conjugate under Geiser involution

of the double covering fC : XC → P
2 (see [DO]), so, in particular, we have 56

real lines in a real del Pezzo M-surface.

The lines L1, L2 intersect in XC at q1 and q2, which are projected by fC into

the tangency points {p1, p2} = L ∩ C. To distinguish L1 from L2, we use the

presentation RXC = WA ∪WB given in Proposition 9.2.1 (here indices A and B

are assigned to the two copies of W in an arbitrary way). Each segment of L1

and L2 between q1 and q2 goes either inside region WA, or inside WB. At points
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q1 and q2 these lines change the region in which they are passing. For example,

see Figure 9.1.

Lq1 q2

p1 p2
f−1
C (L)A A

A

B
B

B

L1

L2

Figure 9.1: A decoration of the preimage of a bitangent line.

We decorate one of the segments of L between p1 and p2 with letter A and

the other segment by B. This indicates the region (respectively, WA or WB)

containing the corresponding segment of the lifted line. So, each bitangent L can

be decorated in two ways corresponding to its lifting to L1 and L2. A bitangent

to a quartic C with one fixed decoration is called a decorated bitangent.

L

L′
A A

A

B

B

B

A
B

p

Figure 9.2: Two decorated bitangents to a quartic C whose corre-
sponding liftings in XC are skew lines.

Given two decorated bitangents, L and L′, the corresponding two lines in XC are

skew (i.e., do not intersect) if and only if the segments of L and L′ containing

the intersection point p = L ∩ L′ are marked by different letters (one segment by

letter A and another by letter B), see Figure 9.2.

9.3 Azygetic triples and Aronhold sets

There are two kind of triples of bitangent lines, L1, L2, L3, to a nonsingular

quartic C, which differ by the way they can be lifted to the double covering

XC → P
2 branched along the quartic C. For the first kind of triples, called the
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syzygetic triples there exist liftings L̃i of Li, i = 1, 2, 3, such that each pair of

them intersect at a point. For the second kind of triples, called the azygetic triples,

there exist liftings forming a skew triple of lines L̃i in XC (i.e., no pair of them

intersects). In fact, for arbitrary choice of liftings, the number of intersecting

pairs of lines L̃i is odd for azygetic triples and even for syzygetic triples.

Remark 9.3.1. According to a more classical definition, a triple of bitangent

lines to a nonsingular quartic is syzygetic if the six bitangency points on them

lie on one conic, see [PSV]. It is not difficult to show that the both definitions

are equivalent.

A set of seven bitangents, L = {L1, . . . , L7}, to a nonsingular quartic C is called

an Aronhold set if these bitangents can be lifted to a disjoint set of lines in XC.

It is well known (and not difficult to see) that L is an Aronhold set if and only if

each triple of its bitangents is azygetic.

In the real setting, there exists another characterization of syzygetic and azygetic

triples. Namely, a triple of real bitangents to a real nonsingular quartic C divides

RP2 into 4 triangles, and it is trivial to observe that the number of tangency

points on the sides of the triangles must have the same parity: either even for

every triangle, or odd for every triangle. In the first case, the triple of bitangents

turns out to be syzygetic, and in the second case, azygetic (see Figure 9.3).

(a) syzygetic triples (b) azygetic triples

Figure 9.3: An example of the syzygetic and azygetic triples

We prove such characterization of real azygetic triples of bitangents in a some-

what more general setting, in the case of an arbitrary number of real bitangents.

Proposition 9.3.2. Assume that L = {L1, . . . , Ln} is an Aronhold set. Consider
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any of the polygons, into which the plane RP2 is divided by these n lines. Then

the number of tangency points on the boundary of this polygon have the same

parity as the number of its sides.

Proof. Let C ⊂ P2 be a nonsingular quartic to which the lines L1, . . . , Ln are

bitangent, and assume that XC is the double covering branched over C, and

fC : XC → P
2 is the anti-canonical map. Let P be a k-gon one of these polygons

where 3 ≤ k ≤ n. Let us cyclically relabel the bitangent lines L1, . . . , Lk of

L which form the edges of this k-gon, and numerate cyclically the vertices

v1, . . . , vk of the k-gon as shown in Figure 9.4.

L1

L2

L3

L4

L5
Lk

Lk−1

v2

v3

v4

v5

vk

vk−1

v1

Figure 9.4: The k-gon whose edges are formed by the bitangent lines
L1,. . . ,Lk.

We denote by [̃v1v2],. . . ,[̃vkv1] ⊂ XC the liftings of edges [v1v2],. . . ,[vkv1] of this

k-gon, respectively and by ṽi, i = 1, . . . , k, the lifting of the vertex vi, which

is lying on the line segment ˜[vivi+1]. The point ṽi+1 is on the same half (WA or

WB, where RXC = WA ∪WB and WA = WB = fC(RXC)) as ṽi if there exist even

number of tangency points on the edges [vivi+1]. On the other hand the points ṽi,

ṽi+1 are on the opposite half if there exist odd number of tangency points on the

edges [vivi+1]. �
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CHAPTER 10

ANTI-CANONICAL CORRESPONDENCE FOR REAL

DEL PEZZO SURFACES OF DEGREE 2

10.1 Complementary 7-configurations

For a 7-configuration P = {p1, . . . , p7} ∈ QC7 we can define the complementary

one (like it was done in Section 7.3 for 6-configurations). Namely, the del

Pezzo surface XP, obtained by blowing up P2 at the points of P, contains

the marking {E1, . . . , E7} formed by the exceptional divisors, as well as its

complementary marking, {Ẽ1, . . . , Ẽ7}, in which the exceptional curve Ẽi, i =

1, . . . , 7, is represented in the P2 by a nodal cubic based at the points of P, with

a node at pi ∈ P. Since the lines Ẽi are disjoint, we can blow down them

to obtain the complementary plane P̃2 with the complementary configuration

P̃ = {p̃1, . . . , p̃7}, where the point p̃i is the result of blowing down Ẽi.

(XP, EP ∪ ẼP) (XP, EP ∪ ẼP)

(P2,P) (̃P2, P̃)

g

π π̃

ξ

Figure 10.1: The correspondence between EP and ẼP for a given
7-configuration P ∈ QC7. In this diagram, g is the Geiser involution
(i.e., the deck transformation of the double covering fP : XP → P2),
sending EP to ẼP, and π, π̃ stand for the blow-ups.

Proposition 10.1.1. If P, P̃ ∈ QC7 are complementary to each other, then they

are projectively equivalent.
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Proof. The regular map ξ : P2 → P̃2 defined by ξ(x) = (̃π ◦ g ◦ π−1)(x) for any

x ∈ P2 is the required projective transformation sending P to P̃ (see the table

shown in Figure 10.1). �

The following result is an immediate consequence of Proposition 10.1.1 and the

fact that the group PGL(3,R) is connected.

Corollary 10.1.2. If P̃, P ∈ QC7 are complementary to each other, then they

belong to the same Q-deformation class in QC7. �

10.2 The 14 real Aronhold sets representing the 14 Q-deformation classes

of planar 7-configurations

For a given 7-configuration P ∈ QC7, the image LP = fP(EP) is an Aronhold

set (i.e., seven bitangent lines whose liftings are pairwise disjoint on XP) in P̂P.

Conversely, for a given Aronhold set, in which the seven lines are bitangent

to a nonsingular M-quartic C ⊂ RP2, by the definition the inverse image of

the Aronhold set under fC : XC → P
2 is a 7-configuration of pairwise disjoint

exceptional curves on RXC. By blowing down the exceptional curves, we obtain

a 7-configurations in QC7.

In the Theorem 2.5.1, we show that there are exactly fourteen Q-deformation

classes in QC7. The following theorem answers the question about the anti-

canonical corresponding fourteen deformation classes of Aronhold sets in RP2,

c f . the definition of the anti-canonical correspondence on page 87.

Theorem 10.2.1. (see Section 10.3.) The relative positions of Aronhold sets of

bitangent lines and the ovals of a real M-quartic that are associated under the

anti-canonical correspondence φ7 to the 14 Q-deformation classes QC7
σ are as

shown in Figure B.1(a)-(n) in Appendix B.

The first step in the proof will be to find the corresponding Aronhold set for a

heptagonal configuration, and it is done in Proposition 10.2.2.
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L7

L6

L5

L4

L3
L2

L1

A

A

A

A A

A

A

A

A

AA

AAA

p1

p2

p4p5

p6

p7

p3

Figure 10.2: The CAC-correspondence between the Aronhold set
and the heptagonal configuration in QC7.

Proposition 10.2.2. The 7 decorated bitangent lines shown in Figure 10.2

form an Aronhold set that is under anti-canonical correspondence with the

heptagonal configuration in QC7. The numeration of these bitangent lines gives

the canonical numeration of the points of the heptagonal 7-configuration (that

is, the lines L1 and L7 on this figure represent, respectively, the outer point p1

and the inner point p7 of the heptagonal 7-configuration.)

Proof Proposition 10.2.2. Let C be the real nonsingular quartic M-curve shown

in Figure 10.2, and assume that XC is the double covering of P2 branched over C

and fC : XC → P
2 is its anti-canonical map. It can be easily seen that the seven

decorated bitangents lines shown in this figure is an Aronhold set since their

lifting under this map are pairwise disjoint lines on RXC.

For the continuation of the proof of this proposition we need the following

lemmas.

Lemma 10.2.3. Let L ⊂ P2 be a real line which does not intersect any of the

four ovals of the real quartic M-curve C, but intersects the segments of the seven

bitangents, which are decorated by the letter A as shown in Figure 10.3. We

denote by L1, L2 ⊂ XC the inverse images of the line L under fC : XC → P
2,
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t1

t2
L

L1

L2

L3

L4

L5

L6

L7 A

A

A

A

A

A

A

A

A
A

A

A

A
A

Figure 10.3

and by {LA
1 , . . . , L

A
7 } the set of skew lines in XC, where LA

i ∈ f −1
P

(Li) for any

i ∈ {1, . . . , 7}. For each i = 1, 2, if Li is intersected by even (or, respectively, odd)

number of LA
1 , . . . , L

A
7 , then the image π(Li) ⊂ RP2 is one-sided (or, respectively,

two-sided). In other words, for each i = 1, 2, if Li is intersected by even (or,

respectively, odd) number of LA
1 , . . . , L

A
7 , then π(Li) is the J-component (or,

respectively, the oval) of the cubic π( f −1
C (L)).

Proof of Lemma 10.2.3. Each of the liftings L1, L2, which are real components

of an elliptic curve is one-sided curve on RXC, and is intersected by even or odd

number of LA
1 , . . . , L

A
7 since L1, L2 intersect together L1,. . . , L7 at seven points.

Without loss of generality we can assume that L1 intersects with even number

of lines LA
i ⊂ XC. Then the other lifting L2 must be intersect with odd number

of these lines. Each blow-down increases the self intersection of a curve on XC

by 1, and so after blowing down LA
1 , . . . , L

A
7 , the image of the real line L1 ⊂ XP

under blow-up π : XC → P
2 is a one-sided curve in P2 while the image of the real

line L2 is a two-sided curve. Since the image π( f −1
C (L)) is a plane cubic curve

passing through the points p1, . . . , p7 which are the blowing down LA
1 , . . . , L

A
7 ,

respectively, the two-sided curve π(L2) must be the oval of the cubic π( f −1
C (L)),

and the one-sided curve π(L1) must be the J-component of this cubic. �

The following result is an immediate consequence of Lemma 10.2.3.
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Corollary 10.2.4. Let C, L, Li and LA
i , i = 1, . . . , 7 as in Lemma 10.2.3, and

assume that L ⊂ P2 is a real line which does not intersect any of the four ovals

of the quartic M-curve C, but intersects the segments of the seven bitangents Li,

which are decorated by the letter A as shown in Figure 10.3. Then, π( f −1
C (L)) is

homeomorphic to the plane cubic curve as shown in Figure 10.4. �

p1
p2

p3

p4

p5p6

p7

Figure 10.4: The image π( f −1
C (L)), where L is the line as shown in

Figure 10.3. We denote by pi, i = 1, . . . , 7 the point which is obtained
by blowing down the exceptional curve LA

i in XC.

Lemma 10.2.5. Let C, L, Li and LA
i , i = 1, . . . , 7 as in Lemma 10.2.3, and as-

sume that p1, . . . , p7 are points obtained by blowing down the exceptional curves

LA
1 , . . . , L

A
7 in XC, respectively, and [t1t2] ⊂ L1 is the line segment illustrated by

bold in Figure 10.3. Then, the image π( f −1
C ([t1t2])) is a finite loop of the nodal

cubic π( f −1
C (L1)) based at p1, . . . , p7 with a node at p1.

Proof of Lemma 10.2.5. The finite loop of a nodal cubic in RP2 intersects with

J-component of any plane cubic curve at even number of points while the infinite

loop of the nodal cubic intersects with J-component of any plane cubic curve at

odd number of points. By Corollary 10.2.4 none of the points p1, . . . , p7 lie on

the J-component of π( f −1
C (L)). The line segment [t1t2], which intersects these

six bitangent lines Li, 2 ≤ i ≤ 7 does not intersect L, so the loop (i.e., finite or

infinite) of the nodal cubic A1 with a node at p1 that represents the segment [t1t2]

does not intersect this J-component. Thus, it represents the finite loop of the

cubic A1 containing all the seven points. �

By Lemma 10.2.5, we observe that all the points p1, . . . , p7 lie in the finite loop

of the nodal cubic A1 = π(LA
1 ). That is to say that, these points are in convex

position. This implies that the 7-configuration P = {p1, . . . , p7} is heptagonal.
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By the similar analysis, we observe that the points p1, . . . , p7 lie on the nodal

cubics Ai, which are obtained by blowing down the exceptional curves LA
i in XC,

i = 1, . . . , 7, shown in Figure 10.5.

p1

p2

p3
p4p5

p6

p7

(a) A1

p1
p2

p3

p4p5

p6

p7

(b) A2

p1

p2

p3

p4p5

p6

p7

(c) A3

p1

p2

p3
p4p5

p6

p7

(d) A4

p1

p2

p3
p4p5

p6

p7

(e) A5

p1

p2

p3

p4p5

p6

p7

(f) A6

p1

p2

p3
p4p5

p6

p7

(g) A7

Figure 10.5: The orders of the points p1, . . . , p7 on the nodal cubics
Ai, i = 1, . . . , 7, where pi = π(LA

i ), i = 1, . . . , 7 (see Figure 10.3).

Note that the point p1 can not lie inside the conic Q1, j for each i = 1, . . . , 7.

Otherwise, looking at the mutual positions of the conic Q1, j and the nodal cubic

A1, we get a contradiction to Bezout’s theorem. In fact it is enough to sketch a

piece of Q1, j, and so wee see that Q1, j and A1 intersect at least two additional

point different than the five common points, namely, p2, . . . , p ĵ, . . . , p7. (See

Figure 10.6.) Therefore, p1 is the outer point.

p1

p2

p3

p4p5

p6

p7

Q1,j

Figure 10.6: The arc of an ellipse Q1, j sketched on the figure contains
two extra intersection points.

In order to prove that p7 is the inner point, it is enough to show that indp2(Q1,2) =

1 since the dominancy indices of points of any heptagonal configurations in

QC7
(7,0,0,0) go in the following cyclic order: 6, 1, 4, 3, 2, 5, 0, see Proposition 2.6.5.

Assume that indp2(Q1,2) = 0. Since p1 is the outer point, we have indp1(Q1,2) = 1.

Looking at the mutual positions of the conic Q1,2 and the nodal cubic A2, we

also get a contradiction to Bezout’s theorem (see Figure 10.7).

The converse of the proof of Proposition 10.2.2 immediately follows from

the fact that there is one and only one heptagonal configuration in QC7 up to

Q-deformation. �
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p1

p2

p3

p4p5

p6

p7
Q1,2

Figure 10.7: The arc of an ellipse Q1,2 sketched on the figure contains
two extra intersection points.

10.3 Proof of Theorem 10.2.1

The quadratic Cremona transformations base at some triples of points of a given

heptagonal 7-configuration in QC7 produce 7-configurations which belong to

the all Q-deformation classes (see Figure 4.2), and that in the configurations of

bitangent lines such as these transformations change the three corresponding

bitangents on Figure B.1(a) by other three bitangents.

The L-deformation classes of Aronhold sets in LL7 are obtained from the Aron-

hold set corresponding to the heptagonal configurations by the quadratic Cre-

mona transformations as shown in Figure B.1.

Corollary 10.3.1. The CAC-correspondence [φ7] associates the fourteen Q-

deformation classes in QC7 to the eleven L-deformation classes on LL7 (see

Theorem 2.5.1 and Figure 2.6).

Proof. The result is obtained by forgetting the quartic curves in the Aronholds

sets of bitangents shown on Figure B.1. �

Remark 10.3.2. A point l of the polar dual P̂P of the space PP is a line in PP,

where P ∈ QC7 is a 7-configuration. A line in PP is a pencil of cubics which in

addition of the seven points of P has 2 other points x, y ∈ P2. We have a map

f from P̂P to the polar dual P̂2 of the initial plane, in which the points of P lie,

given by f (l) = Lxy, where Lxy is a line joining the points x and y. The map

l 7→ Lxy establishes a one-to-one correspondence between PP and P2. For more

information about this correspondence, see [D2].
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CHAPTER 11

APPLICATIONS: COMBINATORIAL PENCILS OF REAL

RATIONAL CUBIC CURVES PASSING THROUGH SIX

POINTS

For a given quadratically nondegenerate configuration of six real points S.

Fiedler-Le Touzé determined topological types of cubics in the pencil of rational

cubic curves passing through the six points, one of these points being the node of

the cubics and she classified combinatorial pencils, that is, the cyclic sequence

of five topological types of such cubics (see [T3]). In this case, we obtained

the same result independently (see Theorem 11.2.3). By using the combinato-

rial anti-canonical correspondence mentioned in Theorem 10.2.1, we find an

alternative, perhaps a somewhat different, way to prove the results of S. Fiedler-

Le Touzé about the list of such cubics through quadratically nondegenerate

configurations of seven real points (see [T3]).

11.1 Partitioned orders

Let P be a planar n-configuration, and p ∈ P. By a (P, p)-based nodal cubic we

mean a nodal cubic passing through points of P, with a node at the point p.

Let P = {p1, . . . , pn} ∈ QCn, and assume that A is a (P, p)-based nodal cubic

such that p is equal to pi for some i ∈ {1, . . . , n}. The finite and infinite loop of A

(see Section 6.3) describe linear orders on P f in and Pin f , in which the points of P

lie on the nodal cubic A with respect to some orientation of A. By a partitioned
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order on Pî we mean the pair of the linear ordered subsets P f in and Pin f . More

precisely, this partitioned order can be presented by an array with 2 rows and

1 column: in the upper row, we list all points of P f in and in the lower row we

list all points of Pin f with respect to the order of these points. If we change

orientation of the nodal cubic A, then we get another partitioned order on Pî

which is called the oppositely partitioned order.

As a matter of convenience, in the presentation of a partition order on Pî, we

list only the indices of the points. For example, as P, we take the configuration

{p1, . . . , p7} ∈ QC7. If the (P, p7)-based nodal cubic A7 is as shown in Figure

6.4 in which p = p7, then the partitioned order on {1, . . . , 6} defined by the nodal

cubic A is either
( 1435

26
)

or
( 5341

62
)
.

11.2 Combinatorial pencils of rational cubics passing through 6 points

Let P = {p1 . . . , p6} be a 6-configuration in QC6. For any i ∈ {1, . . . , 6}, the

pencil of (P, pi)-based nodal cubics contains 5 reducible cubics: C j
i = Li j ∪ Q j,

where Q j are the conics passing through five points of P other than p j, and Li j

are the lines joining the points pi and p j of P, i , j ∈ {1, . . . , 6}. Note that

partitioned orders on P = {p1, . . . , p6} \ {pi} for any i ∈ {1, . . . , 6} which are

defined by the reducible rational cubics C j
i are deformation invariants for the

deformation classes of these reducible rational cubics in P2.

Remark 11.2.1. Recall that equisingular deformation of a curve is homotopic

deformation of the curve, preserving the types of its singularities. A deformation

of a rational cubic with "empty" finite loop (that is, with a finite loop contain-

ing no base points of the pencil of rational cubics passing through six points,

having a node at one of the points) is not equisingular only if the rational cubic

degenerates a cuspidal cubic under this deformation. Equivalently, if the first

row of a partitioned order on P for some i ∈ {1, . . . , 6} is not "empty", then any

deformation of P is equisingular.

Let P ∈ QC6
j , j = 1, 2, 3, 6, and choose a point p ∈ P such that p = pi for some

i ∈ {1, . . . , 6}. The five reduced (P, p)-based nodal cubics, Ci
j, are cyclically
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ordered if we orient the pencil of (P, p)-based nodal cubics (changing of the

orientation reverses the cyclic order). The pair of opposite cyclic orders on the

set consisting of the five reduced (P, p)-based nodal cubics is called a cyclic

semiorder. The semiordered set of the five (P, p)-based nodal cubics is called

a combinatorial pencil associated to the pair (QC6
j , t(p)), where P ∈ QC6

j , and

t(p) stands for the type of the point p, i.e. dominant or subdominant. In other

words, if p is dominant (or respectively, subdominant) t(p) = • (or, respectively

t(p) = ◦). We denote this combinatorial pencil by CP•j if p is dominant, and by

CP◦j if p is subdominant.

Example 11.2.2. Let P be a hexagonal 6-configuration in QC6
1, and assume

that the numeration p1, . . . , p6 of points of P is cyclic such that p1 is subdom-

inant with respect to the conic Q1. Then, the combinatorial pencil CP◦1 is

{
(
−

23456
)
,
( 3456

2
)
,
( 23

456
)
,
( 56

234
)
,
( 2345

6
)
} (see Figure 11.1). Similarly, in the case that

p1 is dominant with respect to the conic Q1, the combinatorial pencil CP•1 is

{
( 23456
−

)
,
( 2

3456
)
,
( 456

23
)
,
( 234

56
)
,
( 6

2345
)
}. The remaining five combinatorial pencils

CP◦2, CP•2, CP◦3, CP•3 and CP◦6 are shown in Figure 11.2.

Figure 11.1: The combinatorial pencil CP◦1. This figure shows the
case, where P ∈ QC6

1, and p1 ∈ P is subdominant.

Let P ∈ QC6
j , j = 1, 2, 3, 6, and choose a point p ∈ P such that p = pi for some

i ∈ {1, . . . , 6}. There are two cyclic orders on the five points of Pî. One of the

cyclic orders comes from the conic Qi passing through five points of P other
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Figure 11.2: Let P ∈ QC6
i , i = 1, 2, 3, 6, as shown inside each circle,

and p ∈ P, we denote by CP•i (respectively, CP◦i ) the combinatorial
pencils associated to QC6

i and the type of p, i.e. dominant or subdom-
inant. In this figure, if p = p1, we denote by C j

1, j = 2, 3, 4, 5, 6 the
five reduced cubics L1 j ∪ Q j with a node at p1 in each combinatorial
pencil. In addition, a labeled ray between two reduced cubics stands
for a partitioned order on P1̂.

than pi, and we denote this order by [ f ]. The other order comes from the pencil

of lines base at the point p, and we denote the order by [g]. The pair ([ f ], [g]) is

a cyclic bi-ordering on Pî. Due to Section 3.2, we associate a permutation class

diagram Z[g◦ f −1] to this bi-ordering. Notice that these classes are topological
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invariants for combinatorial pencils associated to the pair (QC6
j , t(p)) where t(p)

stands for the type of the point p. (See Figure 11.3.) In dependently, Fiedler-Le

Touzé find the same diagrams (see [T3]) to classify combinatorial pencils.

Theorem 11.2.3. There are exactly 4 distinct combinatorial pencils associated

to (QC6
i , t(p)) for any 6-configuration P ∈ QC6

i and any point p ∈ P (see

Figure 11.3).

Proof. The configuration P can be in the one of the four deformation classes

QC6
1, QC6

2, QC6
3, and QC6

6. A configuration in the first three deformation classes

contain two types of points, subdominant and dominant. However, a configu-

ration in QC6
6 contains only subdominant points. There are 7 possible combi-

natorial pencils as shown in Figure 11.2. The bi-cyclic orderings associated to

these combinatorial pencils are
( 23456

23456
)
,
( 23456

23456
)
,
( 23456

36542
)
,
( 23456

23654
)
,
( 23456

65324
)
,
( 23456

46532
)
,

and
( 23456

42536
)
, respectively. By looking at their permutation class diagram, we see

that there are four different combinatorial pencils (see Figure 11.3). �

CP •
1 ,CP ◦

1 CP •
2 , CP ◦

2 CP •
3CP ◦

3 , CP ◦
6

Figure 11.3: The associated graphs for the seven combinatorial pen-
cils for all 6-configurations P ∈ QC6. In this table, the notation CP•i
(respectively, CP◦i ) denotes a combinatorial pencil associated to QC6

i

such that P ∈ QC6
i and the type of a point p ∈ P (i.e., dominant or

subdominant), where i ∈ {1, 2, 3, 6}.

Each column of the following table shown in Figure 11.4 shows the number

of points of a given 6-configuration P ∈ QC6
i , i = 1, 2, 3, 6, on the finite loops

of the five combinatorial (P, p)-based nodal cubics depending on dominant or

subdominant point p ∈ P, separately.
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Figure 11.4: The number of points of P ∈ QC6
i , i = 1, 2, 3, 6, on the

finite loops of five combinatorial (P, p)-based nodal cubics depending
on dominant or subdominant point p ∈ P, separately. In particular,
the number 0 in this table indicates existence of a (P, p)-based nodal
cubic with an empty finite loop. For the order of the numeration of
points, see Figure 11.2.
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APPENDIX A

THE MODIFICATIONS OF ELLIPTIC AND

HYPERBOLIC LINES UNDER CREMONA

TRASFORMATIONS

In all of the following figures, � and ◦ show the corresponding hyperbolic and

elliptic lines, respectively. The colors black and white of squares and circles

show the dominant and subdominant points, respectively.

A.1 Elliptic and hyperbolic lines corresponding to a 6-configuration in

QC6

Figure A.1
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(a) The modifications of types of lines corresponding to a 6-
configuration in QC6

6 .
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configuration in QC6
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(c) The modifications of types of lines corresponding to a 6-configuration
in QC6

2 .

122



p2

p3

p4
p5

p6

p1

p2 p3

p5

p4

p6p1

p1

p3

p2

p4

p6

p5

p2

p4

p1

p6

p5

p3

p1

p5

p6

p2

p3

p4

Cr123Cr124
p2

p4

p1

p6

p5

p3

Cr126

Cr236 Cr345

Cr356

p2
p3

p4

p5

p6
p1

(d) The modifications of types of lines corresponding to a 6-configuration
in QC6

3 .

123



124



APPENDIX B

ANTI-CANONICAL CORRESPONDENCE BETWEEN

CONFIGURATIONS IN QC7 AND ARONHOLD SETS

In the following figure, we indicate the colors of points in some cases, and do

not do it in the other cases. (We do it if there is a hexagonal subconfiguration.

And if there are several subconfigurations, then you take the principal one.)

B.1 Aronhold sets obtained by Cremona transformations based at triple

of bitangent lines of the heptagonal Aronhold set

Figure B.1
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(a) The CAC-correspondence for the Q-deformation class QC7
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