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ABSTRACT 

 

 

ROBUST QUALITY METRICS FOR ASSESSING MULTIMODAL DATA 

 

Konuk, Barış 

Ph. D., Department of Electrical and Electronics Engineering 

 

Supervisor: Prof. Dr. Gözde Bozdağı Akar 

 

March 2015, 124 pages 

 

In this thesis work; a novel, robust, objective, no-reference video quality assessment 

(VQA) metric, namely Spatio-Temporal Network aware Video Quality Metric (STN-

VQM), has been proposed for estimating perceived video quality under compression 

and transmission distortions. STN-VQM uses parameters reflecting the 

spatiotemporal characteristics of the video such as spatial complexity and motion. 

STN-VQM also utilizes parameters representing distortions due to compression and 

transmission such as bit rate and packet loss ratio. STN-VQM has been trained on the 

Laboratory of Image and Video Engineering (LIVE) VQA database, owned by 

University of Texas at Austin, and evaluated on LIVE, Ecole Politechnique Federale 

de Lausanne (EPFL)- Politecnico di Milano (PoliMI) and Instituto de 

Telecomunicacoes, Instituto Superior Tecnico (IT-IST) VQA databases and also on 

video streams in University of Plymouth audiovisual quality assessment (AVQA) 

database. STN-VQM is proven to predict perceived video quality accurately on these 

databases, which span a wide range of video contents, video codecs, spatial 

resolutions, bit rates, frame rates, packet losses etc. Comparison to the existing state-

of-the-art VQA metrics indicates that the STN-VQM provides promising results. 

Moreover, a novel, objective, no-reference audio quality assessment (AQA) metric 

has been introduced in order to predict perceived audio quality under compression 

and transmission distortions. Proposed AQA metric appraises perceived audio 

quality based on parameters such as sampling frequency, bit rate and packet loss 
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ratio. Proposed AQA metric has been trained and evaluated on two different AQA 

databases. The AQA metric is shown to appraise perceived audio quality reliably on 

these AQA databases, which have different audio encoding types. Finally, an 

objective, no-reference AVQA metric (namely, Direct AudioVisual Quality 

Assessment – DAVQA) has been obtained by applying the classical approach in the 

literature, i.e., by combining perceived video quality estimate, perceived audio 

quality estimate and their product. Moreover, a novel video classification method 

which classifies videos according to their spatio-temporal characteristics has been 

developed. Using this spatio-temporal based video classification method, a novel, 

content-dependent AVQA algorithm (namely Content Dependent AudioVisual 

Quality Assessment – CDAVQA) has been designed. The CDAVQA model is shown 

to be more accurate than the DAVQA model on the audiovisual data in the 

University of Plymouth AVQA database. 

 

Keywords: Quality of Experience, No-reference objective video quality assessment, 

No-reference objective audio quality assessment, Spatio-temporal 

characteristics based video classification, No-reference objective 

audiovisual quality assessment  
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ÖZ 

 

 

ÇOK KĐPLĐ VERĐ DEĞERLENDĐRME ĐÇĐN DAYANIKLI NĐTELĐK 

ÖLÇÜTLERĐ 

 

Konuk, Barış 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

 

  Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar 

 

Mart 2015, 124 sayfa 

 

Bu tez çalışmasında; kodlama ve iletim tabanlı bozulmalar karşısında algılanan video 

kalitesini kestirmek için yeni, gürbüz, nesnel referanssız, “Uzam-Zamansal Ağ 

farkında Video Kalite Metriği” (UZA-VKM) isimli bir video kalite değerlendirme 

(VKD) metriği önerilmiştir. UZA-VKM, uzamsal karmaşıklık ve hareket gibi 

videonun uzam-zamansal karakteristiğini yansıtan parametreler kullanır. UZA-VKM, 

aynı zamanda bit hızı ve paket kayıp oranı gibi kodlama ve iletim tabanlı bozulmaları 

temsil eden parametreler kullanır. UZA-VKM, Austin’deki Texas Üniversitesi’ne ait 

Görüntü ve Video Mühendisliği Laboratuarı (LIVE) VKD veri tabanında eğitilmiştir. 

UZA-VKM; LIVE, Ecole Politechnique Federale de Lausanne (EPFL)- Politecnico 

di Milano (PoliMI) ve Instituto de Telecomunicacoes, Instituto Superior Tecnico (IT-

IST) VKD veri tabanları ile Plymouth Üniversitesi Odyovizüel kalite değerlendirme 

(OVKD) veri tabanındaki videolarda değerlendirilmiştir. UZA-VKM’nin algılanan 

video kalitesini; çeşitli video içeriği, video kodlayıcı, uzamsal çözünürlük, bit hızı, 

çerçeve hızı, paket kaybı vb. içeren bu veri tabanlarında doğrulukla tahmin ettiği 

kanıtlanmıştır. Mevcut en gelişkin VKD metriklerle karşılaştırma, UZA-VKM’nin 

umut verici sonuçlar sağladığını işaret etmektedir. Buna ek olarak; kodlama ve iletim 

tabanlı bozulmalar karşısında algılanan ses kalitesini tahmin etmek amacıyla yeni, 

nesnel referanssız ses kalite değerlendirme (SKD) metriği geliştirilmiştir. Önerilen 

SKD metriği, algılanan ses kalitesine örnekleme frekansı, bit hızı ve paket kayıp 
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oranı gibi parametrelere dayanarak değer biçer. Önerilen SKD metriği iki farklı SKD 

veri tabanında eğitilmiş ve değerlendirilmiştir. SKD metriğin, farklı ses kodlama 

çeşitlerine sahip bu SKD veri tabanlarında algılanan ses kalitesine güvenilir bir 

şekilde değer biçtiği gösterilmiştir. Son olarak, literatürdeki klasik yaklaşımı 

uygulayarak (algılanan video kalite kestirimi, algılanan ses kalite kestirimi ve bu 

ifadelerin çarpımlarını birleştirerek) nesnel referanssız, “Doğrudan OdyoVizüel 

Kalite Değerlendirme” (DOVKD) isimli bir OVKD metrik elde edilmiştir. Ayrıca, 

videoları uzam-zamansal karakteristiklerine göre sınıflandıran yeni bir video 

sınıflandırma yöntemi tanıtılmıştır. Bu uzam-zamansal tabanlı video sınıflandırma 

yöntemi kullanılarak, “Đçerik Bağımlı OdyoVizüel Kalite Değerlendirme” 

(ĐBOVKD) isimli yeni, içerik-bağımlı bir OVKD algoritması tasarlanmıştır. 

Plymouth Üniversitesi OVKD veri tabanındaki odyovizüel veri için, ĐBOVKD 

modelinin DOVKD modelinden daha doğru olduğu gösterilmiştir. 

 

Anahtar Kelimeler: Deneyimleme kalitesi, Referanssız nesnel video kalitesi 

değerlendirme, Referanssız nesnel ses kalitesi değerlendirme, 

Uzam-zamansal karakteristik tabanlı video sınıflandırma, 

Referanssız nesnel odyovizüel kalite değerlendirme  
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CHAPTER 1 

1.           INTRODUCTION 

 

 

 

For media delivery industry, guarantee of user experience is among the most targeted 

factors for many media service presented to consumers. Therefore instead of Quality 

of Service (QoS), the concept of Quality of Experience (QoE) has been the focused 

concern for media delivery industry. QoE refers to “the overall acceptability of an 

application or service, as perceived subjectively by the end user” [1]. Media delivery 

industry considers end-user QoE monitoring as either “critical” or “very important” 

to their video initiatives, and meanwhile the top issue reported from industry is that 

current QoE assessment solutions deployed today are not accurate enough and too 

costly to measure end user experience. 

 

As mentioned, end user experience has become a popular research area with the 

increasing demand in delivery of multimedia over wired and/or wireless networks. 

This increasing demand along with the advent of more efficient video technologies 

resulted in a requirement for methods for assessing perceived video quality, which 

refers to end user experience for video. This requirement for the development of 

VQA models has become obvious after realizing that well-known and widely-used 

metrics such as peak signal-to-noise ratio (PSNR) has only an approximate 

relationship with the perceived video quality. This approximate relationship is a 

result of the fact that PSNR performs only a pixel-by-pixel comparison without 

considering what these pixels represent to human visual system (HVS). Moreover, 

full-reference VQA metrics such as PSNR require the reference video to be available 

in unimpaired and uncompressed form in order to appraise the video quality. 

Obviously, this requirement limits the application area of full-reference metrics in 

practical scenarios like video streaming. The difficulty in obtaining an objective, 

reference free video quality metric should be clear considering the fact that the 

designed metric has to take possible distortions occurring both in compression and 

transmission phases; including blur, motion jerkiness, blockiness, green block, frame 
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freeze, packet loss, re-buffering; into account. After a comprehensive survey of 

available video quality metrics, we started to design an objective, no-reference video 

quality assessment (VQA) model, which aims accurate estimation of perceived video 

quality considering distortions in both compression and transmission phases. 

 

The term perceived audiovisual quality refers to end user experience for videos with 

audio. In fact, audio accompanying video is known to have an important impact on 

the perceived audiovisual quality. Hence, perceived audio quality should also be 

considered while estimating perceived audiovisual quality. There are many audio 

quality assessment (AQA) algorithms trying to estimate perceived audio quality. 

Among standardized AQA methods, Perceptual Evaluation of Speech Quality 

(PESQ) is known to produce inaccurate perceived audio quality estimates under 

special circumstances. Similarly, another well-known standard, Perceptual 

Evaluation of Audio Quality (PEAQ), which has been developed to appraise 

wideband audio signal’s perceived quality, may fail to estimate perceived audio 

quality accurately in some conditions. Actually, it is said that some signal 

degradations may not affect audibility. Noting that the mentioned AQA methods 

require the reference audio signal to be available in order to decide the perceived 

audio quality, it should be obvious that designing a no-reference objective audio 

quality assessment model is a challenging task. 

 

The general approach in appraising perceived audiovisual quality is predicting video 

quality and audio quality separately and then combining these quality terms with a 

linear combination of them and their product. However, the impacts of video quality 

and audio quality on perceived audiovisual quality may differ in different video 

contents. To illustrate, video quality may be more dominant in a soccer video 

whereas audio quality may be more dominant in a news video. Hence, estimating 

audiovisual quality even in the case that perceived audio and video quality terms are 

known is also a challenging task. 

 

In addition to designing an objective, no-reference VQA model, we also tried to 

propose a solution for both of these challenging tasks, namely developing an 
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objective, no-reference AQA model and predicting perceived audiovisual quality 

based on video and audio quality estimations. 

 

1.1. Major Contribution of the Thesis 

 

In this thesis, a novel, objective no-reference VQA algorithm has been proposed. The 

proposed algorithm is structured on spatiotemporal characteristics of the video being 

analyzed, bit rate, and packet loss information. The proposed metric has been trained 

on the LIVE VQA database and evaluated on LIVE, EPFL-PoliMI and IT-IST VQA 

databases. These VQA databases contain a wide range of video contents, spatial 

resolutions, bit rates, frame rates and packet losses. The proposed VQA algorithm is 

proven to estimate perceived video quality in a robust and accurate way. 

 

In addition, an objective no-reference AQA metric based on sampling frequency, 

encoding bit rate, signal-to-noise ratio and packet loss has been proposed. This 

metric has been trained and evaluated on two different AQA databases with different 

audio encoding types. The AQA metric provides promising results on these AQA 

databases. 

 

Finally, objective no-reference VQA and AQA models are combined in order to 

obtain the perceived audiovisual quality estimate. There are two approaches followed 

while estimating the perceived audiovisual quality. In the first approach, the 

audiovisual quality is directly obtained by using video quality estimate, audio quality 

estimate and their product, as in the literature. The second approach focuses on 

spatiotemporal characteristics of the video and classifies audiovisual data according 

to these characteristics. For that purpose, a new classification method which is robust 

to distortions in both compression and transmission is proposed. Since the second 

approach considers video characteristics while estimating perceived audiovisual 

quality, it provides more accurate results than the first approach. 
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1.2. Scope of the Thesis 

 

This thesis is organized as follows: 

 

In Chapter 2, an overview of QoE concept is introduced. In addition, the 

classification of visual quality metrics according to the availability of the reference 

and employed methodologies are discussed. Moreover, challenges in the VQA model 

design are introduced. Furthermore, approaches in the full-reference and no-

reference AQA are presented. Finally, existing audiovisual quality assessment 

(AVQA) models in the literature are described. 

 

In Chapter 3, the proposed VQA model, namely Spatio-Temporal Network aware 

Video Quality Metric (STN-VQM), is presented. Moreover, the proposed AQA 

model is described. Finally, the direct and content dependent AVQA algorithms are 

presented. 

 

In Chapter 4, evaluation of the quality assessment models has been described. In 

addition, results of the designed VQA algorithm on different VQA databases are 

provided. Furthermore, results of the proposed AQA model on two AQA databases 

are given. Finally, results of the direct and content dependent AVQA models are 

presented. 

 

In Chapter 5, we present a brief summary of the thesis. Moreover, we conclude the 

thesis and we also mention some of the future works to be done in order to improve 

the performance of the proposed AVQA model. 
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CHAPTER 2 

2. AUDIOVISUAL QUALITY ASSESSMENT 

 

 

2.1. Video Quality Assessment 

2.1.1. Perceptual-based Video Quality Metrics 

 

Accurate prediction of perceptual video quality is getting more important with the 

advances in multimedia applications. With these advances, multimedia services are 

desired to be offered to the end users in a way that the perceived quality of 

multimedia services satisfies end users. Hence, the new notion Quality of Experience 

(QoE) has started to be the focus instead of traditional Quality of Service criteria. As 

the name implies, QoE is driven by end user experience such as expectation and 

preferences of the end user [1]. 

 

QoE has started to be used in order to characterize the application- and user-oriented 

quality of video and multimedia services. QoE consists of many different aspects, 

among which the video quality is expected to be the most important [2]. 

Nevertheless, impacts of these aspects make QoE a rather complicated concept. 

Some of the factors affecting QoE and the ways these factors contribute are listed 

below [2]–[4]: 

 

• Individual preferences of the viewer on programs he desires to watch 

determine the attention level. 

• Quality expectations of the viewer are different in different display devices’ 

properties such as size, resolution, brightness (small/large screen CRT/LCD 

televisions, cinema or mobile devices). 

• Technical knowledge of the viewer determines the focus of attention and 

quality expectations. 

• Viewing environment and interaction with the display device directly affects 

QoE. 
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• If the quality and synchronization of the accompanying audio is not 

satisfactory, QoE diminishes significantly. 

 

As it is seen, these factors form a multidimensional problem space in which some of 

these factors are very subjective. Hence, the accurate estimation of quality of digital 

video systems is a very complicated problem. Moreover, optimization of the 

perceived quality cannot be accomplished unless the perceived quality is accurately 

predicted. Most of the VQA models try to take a small subset of the factors above 

into account. They mainly try to measure the visual fidelity of the video in terms of 

the compression and transmission degradations. Even in this well-defined case, there 

are challenging issues: 

 

• Modeling all possible distortions in video systems is a very complex problem. 

There are many components in video systems such as capture and display 

devices, codecs, streamers, routers, switches and lots of different algorithms 

inserted in various devices. All of these components somehow process the 

video. Hence, they may have an impact on the video quality. It may also be 

difficult to minimize and isolate influences of external factors, such as 

viewing environment, individual preferences and video content, which are not 

easily modeled in the metrics. 

• Modeling visual perception is even more complex. This is due to the fact that, 

we perceive video quality after processing video in HVS, which is not 

identified clearly. In fact, only a small part of processing visual stimuli and 

generating visual perception in brain have been well understood. This fact 

indicates that perceived quality prediction requires multi disciplinary 

collaboration not limited to but including signal processing, cognition, and 

psychology. However, even well understood parts of this process are not 

perfectly modeled. This is because; VQA metrics focus only on some simple 

psychophysical mechanisms which can be modeled in a computable approach 

easily. To illustrate, the contrast sensitivity function which is widely used is 

based on spatiotemporal frequency. Nevertheless, the contrast sensitivity of 

human vision can be affected by many more factors including eye movement, 

which is the visual attention mechanism. Visual attention mechanism, which 
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controls the vision behavior while perceiving, is known to be an important 

part of the perception system. Current VQA models usually utilize a simple 

combination of attention map obtained with computable attention models and 

quality map produced in VQA metrics in order to obtain the attention-based 

visual quality. Hence, deep understanding of visual attention mechanism 

should be integrated to VQA models to be developed [5]. 

 

Moreover, designing a VQA model which can appraise a wide range of visual stimuli 

is even harder. To illustrate, a VQA metric designed for standard definition video 

signals may not be that successful in estimating perceived quality of high definition 

video signals. Most importantly, with the advances in multimedia applications, VQA 

metrics’ aim is becoming satisfaction of different users instead of providing the 

content itself. 

 

The most reliable and most accurate solution to this complex problem is performing 

subjective VQA tests in which the ground truth values are obtained by human 

subjects. International Telecommunication Union (ITU) has standardized a lot of 

subjective VQA methodologies for different application scenarios [6]. Although it is 

stated that the subjective VQA is the best solution, it is always time- and money-

consuming and can only be used as an offline solution. These disadvantages in 

subjective VQA methods led to a lot of research efforts for developing reliable 

objective VQA metrics that can automatically appraise perceived quality reliably and 

in a short time [7]. Objective VQA metrics aim estimating the perceived quality as 

much as possible correlatively with the ground truth values, which are subjective 

quality results in this case. 

 

Objective VQA models can be classified into three categories according to 

availability of the reference video. These categories are full-reference (FR), reduced-

reference (RR) and no-reference (NR) approaches. As the name implies, FR VQA 

metrics have full access to the reference video, whereas, the RR VQA metrics do 

have access to a bunch of features extracted from the reference video. These features 

are expected to represent the quality characteristics of the reference signal. 

Obviously, these features are assumed not to be distorted while transferring them. 
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The same quality features are extracted from the distorted signal at the receiver side. 

Then the RR VQA metrics decide on quality using features extracted from the 

reference signal and the distorted signal. Some RR metrics also propose a solution to 

the problem that the quality features extracted from the reference signal may be 

distorted during transmission. A solution to this problem is based on embedding 

pseudo watermark into the signal and measuring the transmission distortion on the 

embedded watermark assuming that the distortion on the watermark can approximate 

the signal distortion. NR VQA metric is known to be the most complicated VQA 

type, since there is no information about the reference signal, i.e, neither the 

reference signal nor the quality features extracted from the reference signal. 

Therefore, NR VQA metrics usually try to appraise the quality degradation caused by 

compression and transmission distortions. For example, they may focus on 

blockiness which commonly appears in block-based compression schemes and 

transmission in error prone networks. They may also detect blurring artifacts 

occurring due to lossy quantization [8]. NR VQA metrics are generally trained based 

on subjective tests, since quality estimates of NR VQA metrics may be very difficult 

to interpret due to unavailability of the reference signal, which may be used as a 

benchmark of the highest quality. Machine learning algorithms have been widely 

used in order to train NR VQA models. 

 

RR and NR VQA metrics have a much wider application area in real life 

applications, since they do not require the reference video, which is not available in 

most of the applications. However, it should be obvious that RR and NR VQA 

metrics have a significant disadvantage since they do not have access to the reference 

video, which is available in FR VQA metrics even in unimpaired and uncompressed 

form in some cases. Although RR VQA metrics can access some features extracted 

from the reference video and transferred by a secure channel, NR VQA models do 

not have any information about the reference video. Hence, it should be clear that 

designing reliable NR VQA metrics is the most challenging one among VQA model 

designs. Moreover, it is usually expected that NR metrics perform worse than both 

FR and RR metrics, since they have the least prior information. Thus, the 

development of reliable NR VQA models requires much more research effort than 

that of RR and FR VQA models. 
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As stated, FR metrics decide on perceived quality by comparing the perceived 

difference between the reference video and the distorted video. In order to do this 

comparison, these metrics try to model HVS. Upto now, researchers focused mostly 

on FR metrics and a lot of advanced FR VQA models have been introduced. Some of 

these FR VQA metrics are even standardized by VQEG and ITU [9]. Two well-

known and widely used FR VQA metrics are mean square error (MSE) and peak 

signal-to-noise ratio (PSNR). However, these metrics are known not to estimate 

perceived visual quality correlatively with the subjective tests. The reason is that 

these metrics do not consider video as a visual data and the attributes of the HVS are 

not considered in their design [10]. Figure 2-1 illustrates two images with different 

perceived quality and identical PSNR values. It should be clear that the influences of 

distortion type and visual content on perceived visual quality must be considered 

while estimating perceived quality [11]. Therefore, there are many VQA metrics 

which perform better than both MSE and PSNR [7], since these VQA metrics are 

trying to simulate the viewers’ visual perception mechanism. Nevertheless, HVS is 

not sufficiently understood as stated. Hence, simulating HVS is a very challenging 

task and has not been perfectly accomplished. As a result, current VQA metrics are 

still long away from being widely accepted and universally recognized. 

 

 

 

 

Figure 2-1: Images with different perceived quality and identical PSNR [11]. 
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Additionally, VQA metrics can also be classified into two categories based on the 

utilized methodologies. These categories are psychophysical and engineering 

approaches. In psychophysical approach, psychological quality perception process in 

the human brain is tried to be simulated in order to assess the perceived visual 

quality. For example, contrast sensitivity is a commonly utilized perceptive 

characteristic in order to model the visual sensitivities to various spatial and temporal 

frequencies along with the attentive information [12]. There are also other important 

factors contributing to visual quality perception such as masking effect and color 

perception. The strategies to imitate HVS result in the fact that psychophysical 

approach based VQA metrics provide high correlation with subjective tests. 

However, the same strategy causes these VQA models to be computationally 

complex. Due to the computational complexity of psychological methods, there are 

also engineering approaches which are based on the extraction of certain features 

and/or artifacts. Engineering approach based VQA methods try to estimate perceived 

quality based on extracted features and detected artifacts. These VQA metrics may 

also take the HVS into account. However, they are mainly based on visual content 

and degradation analysis rather than fundamental principles of HVS [13]. 

 

2.1.2. Objective Video Quality Assessment Literature 

 

In literature, even though several FR and RR metrics are developed to measure video 

quality, the studies on the NR metrics are rather limited. There are basically two 

different non-hybrid approaches used for the NR quality metrics: artifact and 

network quality based. In the artifact based methods, quality is described as a 

function of artifacts such as blurriness, blockiness, jerkiness etc. Various methods are 

used to parameterize these artifacts in this metric type. In the network quality based 

metric type, the quality is related with parameters of compression, transmission etc.  

 

Blocking and blurriness were used as video quality degradation metrics in early 

video quality researches, and also they are still used in some of recent researches. In 

order to acquire a score that would reflect the opinion score, the values acquired from 
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blocking and blurriness metrics are generally pooled and weighted using different 

weighting or voting algorithms. The NR metric proposed in [14] extracts blurring, 

blockiness, and noisiness artifacts from videos with different bit rates and computes 

their weighted sum as the quality score whereas the work proposed in [15] uses a 

different weighting policy depending on the region of interest (ROI) found by 

analyzing the motion characteristics of the given video. In [16] and [17], the basic 

principle is to extract feature maps and to feed the features extracted from the feature 

maps to a neural network. In [16], the feature maps are found by analyzing the DCT 

coefficients and kurtosis, smoothness, sharpness, and blockiness are extracted as 

features and temporally pooled. In [17], the image has been decomposed by 

Laplacian pyramids and entropy ratio, energy ratio, kurtosis ratio, MSSIM, and 

smoothness are taken as features. 

 

There are also some NR VQA metrics that try to find a quality score by estimating an 

FR VQA metric. This FR VQA metric is generally Peak Signal to Noise Ratio 

(PSNR) [18], [19], [20], and in some cases it is Mean Square Error (MSE) [21], [22]. 

In [18], Eden proposed an NR metric that estimates the PSNR values for the 

Advanced Video Coding (H.264/AVC) encoded video sequences using Laplace 

density function. Even though good PSNR results can be observed for the I-frames, 

the same is not applicable for the P and B-frames in this study. Brandao proposed a 

similar work estimating PSNR and also Mean Opinion Score (MOS) values by the 

local errors in the Discrete Cosine Transform (DCT) coefficients [19], and extended 

that work by evaluating the developed VQA metric in a set of subjective tests [20]. 

The assessment results present that the developed NR metric outperforms the 

previous works which also rely on PSNR estimates. In [21], Naccari et al. proposed 

an NR VQA metric (NORM) that estimates the MSE at the Macroblock (MB) level 

from the packet loss ratio and utilizes that estimate in a reduced reference SSIM to 

obtain quality scores. Valenzise et al. extended that metric by estimating the used 

parameters, motion vector, prediction residual and lost MBs, without the access to 

the bitstream [22]. However, these two metrics lack good correlation with the 

subjective results and Human Visual System (HVS) due to the use of the MSE in the 

VQA. 
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Finding visibility of packet losses has also been a different endeavor for NR VQA 

metric research. In [23], Staelens et al. used the classification of the visibility of the 

packet losses based on decision tree classification for the video quality estimation. In 

[24], Argyropoulos et al. proposed an NR metric that considers the effect of the 

visibility of the packet losses in the Standard Definition (SD) and High Definition 

(HD) H.264/AVC sequences utilizing Support Vector Machine (SVM) classifier. 

This work is extended by changing the calculation scheme to Support Vector 

Regression (SVR) [25]. In addition to that, [21] and [22] can also be considered to 

find visibility of packet losses due to their calculations of lost MBs. An FR metric 

considering Packet Loss Rate (PLR) is utilized to develop an NR metric by training 

and optimization in [26]. The proposed NR metric considers PLR as well as interval 

between Instantaneous Decoder Refreshment (IDR) frames. As the authors suggest 

the proposed metric can be improved considering more parameters for the quality 

evaluation. 

 

Bitstream based NR VQA metrics generally use different parameters such as bit 

count, quantization parameter (QP), motion vector (MV) information, frame types 

etc. In [27], Keimel et al. proposed an NR metric that does not require decoding the 

bitstream, instead it extracts features such as its per slice, average Quantization 

Parameter (QP) per slice, etc to estimate video quality. A subjective test is conducted 

and comparison with MOS scores has been made in this work. In [24] and [25], 

similar features are used such as number of impaired pictures, MV data, MSE 

estimates, and lost MB counts. Lin et al. also utilized features such as QP, MV data, 

and bit allocation parameters for the NR VQA metric proposed in [28]. 

 

Considering the studies discussed above, it can be clearly stated that the NR metrics 

reported in the literature mostly consider the visual distortion parameters such as 

blurring, blocking, etc. in the VQA. Moreover, the temporal relationship between 

frames has seldom been addressed in these metrics. In addition, only packet loss 

network quality parameter is utilized. A few studies focusing on using hybrid 

approaches for the quality estimation also exist in literature. In [29], 42 different 

video quality parameters are extracted from the video bit stream and Symbolic 

Regression, which is a machine learning technique, is exploited to determine the 
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most important ones among these parameters while devising an NR metric for 

estimating video quality of the HD H.264/AVC video sequences. The performance 

evaluation results point out that only a few video properties have influence on the 

VQA. Liu et al. proposed an NR real-time video quality monitoring metric which is 

called as G.1070E, which enhances the ITU-T Recommendation G.1070 [30]. The 

original metric G.1070 [31] uses three parameters of a video bitstream; namely bit 

rate, frame rate, and packet loss rate, and this metric is offline. The enhanced metric 

G.1070E extracts those parameters in an N frame window and also normalizes bit 

rate by the frame complexity and supplies those parameters to the trained G.1070 

metric. Implementing a windowed approach, G.1070E can estimate quality in a real-

time and online manner. In [32], Zhao et al. proposed a hybrid NR video quality 

indication framework for video transmission of H.264 encoded bitstreams over LTE 

networks. This method extracts key features at different levels (packet/frame/image 

level) in LTE networks after obtaining PCAP file from an LTE network node as 

input. Some of these key features are packet loss and packet size (packet level); 

frame error and frame duration (frame level); and blockiness and blur (image level). 

They claim that the same method is also applicable in wireline packet based video 

transmission networks. Even though hybrid methods provide better results compared 

to the non-hybrid ones, the performance results of these algorithms are shown on a 

limited data set. 

 

2.2.  Audio Quality Assessment 

 

Until 1990’s researchers preferred performing subjective tests in a well-controlled 

listening environment, such as Recommendation ITU-R BS.1116 [33], in order to 

assess the quality in speech and audio communications. Although subjective tests are 

known to reflect the perceived quality very well, they are expensive and time-

consuming. Therefore, the development of objective audio quality assessment 

algorithms became necessary. 
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2.2.1. Objective Audio Quality Assessment 

 

In the beginning, objective AQA metrics such as Signal-to-Noise-Ratio and Total-

Harmonic-Distortion are used in order to assess the perceived audio quality. 

However, these metrics are shown to be unsuccessful in assessing the perceived 

quality. These metrics are especially unsuccessful when assessing the performance of 

non-linear and non-stationary modern codec [34]. The requirement for developing 

objective AQA algorithms estimating perceived quality consistent with subjective 

evaluations has led to several ITU standards. Among these standards, BS.1387 - 

Perceptual Evaluation of Audio Quality (PEAQ) is the ITU standard for audio 

quality [35]. PEAQ has been the only available standardized AQA model [36]. 

Similarly, ITU-T P.862 - Perceptual Evaluation of Speech Quality (PESQ) [37] is the 

corresponding speech quality assessment model. PESQ is known to estimate quality 

of narrow-band speech subject to various signal degradation types such as coding 

distortions, environmental noise and packet losses. However, PESQ is known to have 

certain limitations. To elaborate some of these limitations, PESQ cannot estimate the 

perceived quality of the speech degraded by talker echo, conversation delay, side 

tone and noise suppression algorithms. Due to these drawbacks, researchers proposed 

objective AQA models based on the classic model of PEAQ and improved by better 

psychoacoustic models or cognitive algorithms. Nonetheless PEAQ also has certain 

limitations. As a consequence, more practical and accurate objective AQA models 

have been proposed. 

 

Objective AQA algorithms can be divided into two categories as full-reference AQA 

algorithms and no-reference AQA algorithms. As the name applies, full-reference 

AQA algorithms have access to the reference signal. They usually try to extract some 

key features from both the reference signal and the degraded signal and they measure 

the distortion between the reference signal and degraded version. As it is in the video 

case, the reference signal may, and actually will, not always be available. Hence, 

there is an obvious need for the development of no-reference AQA algorithms. No-

reference AQA models can be further divided into two categories as signal-based 

models and parametric models. Signal-based no-reference AQA models try to 

estimate the perceived audio quality based on processing the degraded audio signal. 
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Parametric models, on the other hand, try to estimate the perceived quality by using 

the underlying transport and terminal properties including noise, speech levels and 

echo [38], VoIP network characteristics [39] [40], or cellular radio receptions [41]. 

Moreover, parametric no-reference AQA models are utilized as a network planning 

tool in order to estimate the perceived quality based on tabulated values of bit rate, 

codec type and packet loss statistics [42]. It is here worth noting that no no-reference 

AQA algorithm has yet been standardized by the ITU although some no-reference 

speech quality assessment algorithms such as ITU P.563 [43] have been developed. 

Hence, the study on no-reference AQA has been an open research area. 

 

2.2.1.1. Full-reference Objective Audio Quality Assessment 

 

Objective AQA models have some limitations. To elaborate these limitations, these 

models have been trained on subjective data covering only a set of distortion 

conditions. Moreover, voting errors in subjective test directly affect the success of 

the developed objective AQA model. In spite of these limitations, researchers have 

been trying to develop objective AQA algorithms for many years. In 1979, Schroeder 

et al [44] proposed the noise loudness concept and used a simple masking method to 

estimate the audibility of coding noise in a speech coder. By applying perceptual 

methods to speech codecs, he optimized codecs in terms of minimum audibility 

instead of mean squared error [34]. In 1987, Brandenburg [45] introduced Noise to 

Mask Ratio (NMR) concept, which added a simple perceptual masking model in 

order to measure the coding noise level with the reference signal. It is worth noting 

that it was the first real-time hardware implementation among the audio quality 

methods [35]. Although, there are other methods based on waveform difference 

measure [46] [47], they are not successful in estimating perceived quality. The 

reason is that large waveform differences such as waveform inversion or phase 

distortion may correspond to a little or no audible distortion. In 1985, Karjalainen 

proposed Auditory Spectral Difference (ASD) model [48]. In this model, there is a 

transformation from the time domain to a time frequency domain based on 

psychophysical frequency and loudness. This approach has become very successful 

and used in ITU-R BS.1387, ITU-T P.861 and ITU-T P.862. In the early 1990s, 
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Wang et al [49] proposed Bark spectral distance (BSD), a similar approach to the 

ASD. This model is based on calculating the mean squared Euclidean distance on a 

Sone scale in the Bark bands. Nonetheless, temporal masking has not been taken into 

account in this model.  

 

Several models designed at the beginning of 1990s were submitted to a contest 

organized by ITU-R. Among these AQA algorithms, Beerends and Stemerdink’s 

(1992) Perceptual Audio Quality Measure (PAQM) was very successful [50]. To 

increase the accuracy in estimations of PAQM in perceived quality, PAQM was 

integrated with NMR and the other submitted models. Then it was adapted into an 

AQA model for speech coder evaluation known as Perceptual Speech Quality 

Measure (PSQM), later adopted as PESQ. PSQM focused on noise during speech 

rather than noise in silent periods. It also used asymmetry weighting which models 

the increase in disturbance when uncorrelated, new time frequency components are 

added to the signal rather than attenuating or deleting components. In 1998, six 

candidates were received to publish the document ITU-R BS.1387, with audited 

revision ITU-R BS.1387-1 (PEAQ). Nevertheless, PEAQ seemed to be insufficient 

when the correlation between subjective and objective scores was computed. This 

fact was more obvious when PEAQ is applied in case of signals with large 

impairment resulting from low bitrate coding [51] and maximum of two channels 

[52]. It is noted that advanced version of PEAQ was not good at estimating the low 

bitrate scalable audio quality. Creusere et al. proposed the addition of the Energy 

Equalization parameter in the Advanced ITU metric and showed that the resulting 

performance is better than both the basic ITU metric and the Energy Equalization 

Approach [53]. 

 

For audio, Charles D. Creusere estimated the audio quality as a function of time. He 

assessed the audio quality based on a subset of PEAQ features, the structural 

similarity measure and the segmental SNR [54]. He also studied dynamic subjective 

testing methodology due to lack of suitable temporal subjective scores. Another 

AQA model [55] utilized fuzzy logic and it has been implemented with 

modifications in the cognitive stage of PEAQ. 
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2.2.1.2. No-reference Objective Audio Quality Assessment 

 

Liang and Kubichek proposed the first no-reference signal-based AQA model [56] in 

1994. The idea behind this approach was estimating the dissimilarity between the 

degraded signal and some ideal speech signals space. In this model, they first trained 

reference centroids from the perceptual linear prediction (PLP) coefficients [57] of 

undistorted speech signals. Then they used the time-averaged Euclidean distance 

between degraded PLP coefficients and the nearest reference centroid as a speech 

quality distortion. Talwar et al. introduced a Hidden Markov Model based approach 

[58]. Recently, Falk et al. introduced the idea to determine the deviation of distorted 

speech from the statistical model obtained via training undistorted speech. In this 

algorithm, PLP feature vectors for undistorted speech are modeled by Gaussian 

mixture models. Degraded speech signals were also utilized to acquire the 

multivariate adaptive regression splines to map the Gaussian mixture model output to 

absolute category rating listening quality [59] [60]. 

 

It was also assumed that biological human speech production systems cannot 

produce most speech quality distortions caused by telecommunication networks’ 

speech processing systems because the human vocal tract has a limited motor 

mechanism. Gray devised a model in which a vocal tract model sensitive to 

distortions in telecommunication networks is parameterized [61]. Hekstra and 

Beerends introduced a model to estimate the speech quality. This model was 

obtained by integrating the PESQ model and a speech production model in order to 

exploit signal segments that can’t be output of human vocal tracts [62]. Kim 

proposed a no-reference AQA algorithm, namely auditory model for nonintrusive 

quality estimation (ANIQUE), in which he did not use the speech production model 

directly [63]. In this approach, both peripheral and central levels of auditory signal 

processing are modeled to extract the perceptual modulation spectrum. Then this 

perceptual modulation spectrum is related to the speech production systems’ 

mechanical limitation in order to measure the naturalness level in speech signals 

[64]. 
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From 2002 to 2004, ITU-T organized a competition to standardize a no-reference 

signal-based AQA model. The scope of the model contained subjective tests 

including acoustic inputs with a wider range, broader noise types, people talking in 

noisy environments and network measurements. It can be said that the scope was 

slightly broader than ITU-T P.862 in terms of network conditions. One of the two 

proposals submitted was the ANIQUE model [63]. The other proposal, namely 

single-ended assessment model (SEAM), was a combined model based on three 

previous models proposed by Gray [61] and Hekstra and Beerends [62]. ANIQUE 

was narrowly beaten by SEAM, which was adopted as ITU-T P.563 in 2004 [43] 

[65]. ITU-T P.563 measures unnaturalness of speech and vocal tract, additive noise, 

time clipping, mutes and interruptions. Using these measurements, the intermediate 

speech quality estimate is computed for each degradation class. Then these 

intermediate speech qualities are linearly combined with 11 additional features to 

obtain the perceived speech quality estimate. 

 

The conversational quality in traditional telecommunications networks subject to 

coding distortions (especially networks employing µ-law or A-law coding at 64 

kbps) or minimal channel errors is mostly determined by round-trip delay, noise, 

talker echo from analog connections and changes to the speech level. There are two 

standardized models utilizing these features in order to estimate conversational 

quality; namely the call clarity index [38] and the E-model [42]. 

 

The E-model tries to estimate the conversational quality based on distortions due to 

low bit rate encoding, background noise, loudness, and network parameters such as 

packet loss and delay regarding their effect on the conversational quality. In other 

words, the E-model focuses on three main impairments: impairments which occur 

almost at the same time with the voice signal, impairments caused by delay and 

impairments caused by low bit rate codec and errors such as packet losses. The E-

model is based on several simplifying assumptions such as order independence and 

linearity. Nonetheless, these assumptions are invalid in certain conditions. Hence, it 

is suggested that the E-model is used as a network planning tool rather than a 

perceived conversational quality estimation tool. 
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2.3. Audiovisual Quality Assessment 

 

Audiovisual quality assessment (AVQA) is a relatively new and under-explored 

research area. As expected, many subjective tests have been performed in order to 

assess perceived audiovisual quality according to listening and viewing conditions 

defined in ITU-T Rec. P.800 [67], P.910 [6] and ITU-R BT-500 [66]. In addition to 

performed subjective tests, there are also studies investigating the impact of factors 

such as number of subjects, individual differences, environmental conditions and 

also the effect of distortion variations over time on subjective tests. Borowiak et al. 

[68] performed subjective tests and investigated the relation between perceived 

quality and degradation variations over time. They presented a long-term subjective 

methodology for AVQA of long duration content. By doing so, they tried to obtain 

an understanding of AVQA of long duration audiovisual content, which they claim to 

be very useful for real-life applications. Pinson et al. [69] tried to find the most 

suitable way to perform wide-range subjective testing for AVQA. In this study, six 

laboratories from 4 countries conducted a systematic audiovisual subjective testing, 

in which the wide range audiovisual data and the scale were kept constant. The only 

variable in these subjective tests were the test environments. They noted that the 

number of subjects and individual differences were important. They also added that 

other environmental factors do not have significant effect on perceived audiovisual 

quality. Finally, they conclude with the claim their laboratory environments represent 

user environment quite well. 

 

Based on subjective tests, there are many AVQA models utilizing independently 

computed video quality and audio quality terms. Most of these AVQA models in the 

literature appraise audiovisual quality as a linear combination of video quality, audio 

quality and their product. In [70], audiovisual quality at very low bit rates is 

investigated. For this purpose, Winkler et al. conducted subjective tests based on the 

audiovisual data content and encoding parameters, which are typically used in 

mobile applications. They analyzed subjective tests’ results thoroughly and 

considered audio-video bit budget allocation. Moreover, they proposed AVQA 

models based on the linear combination of video quality, audio quality and their 

product. Based on subjective tests, they concluded that both video quality and the 



20 

 

audio quality have significant impact on audiovisual quality. Nevertheless, product 

term is said to be more correlated to the audiovisual quality. Pinson et al. [71] also 

performed subjective tests and inspected many subjective test based AVQA models 

[72]-[81] obtained as a linear combination of video quality, audio quality and their 

product. They claim that the most significant contribution to overall audiovisual 

quality comes from the product term. They also note that audiovisual 

synchronization errors such as lip synchronization should be considered in AVQA 

models. 

 

There are also research efforts modeling audiovisual quality as a function of video 

quality, audio quality and their product while considering the content of the 

audiovisual material. Thang et al. performed subjective test and obtained a graph-

based formulated AVQA model using these subjective tests [82]. In their model, they 

tried to consider not only video quality and audio quality, but also the contribution of 

the relation between them. They applied multiple regressions for three different 

video contents and they claim that they take contextual factors such as usage 

conditions and user preferences into account. Yaodu et al. [83] conducted subjective 

tests in order to develop an AVQA model. Their AVQA model uses linear 

combination of video quality, audio quality and their product. However, utilized 

coefficients are different for different video contents. The results indicate both spatial 

and temporal impairments degrade the audio and video quality. Moreover, it is 

shown that the distortion type has no impact on the quality integration with 

interaction. However, the cross model interaction depends on the distortion type and 

the audiovisual content. You et al. [84] described a relative multimodal complexity 

analysis to compute the fusion parameter to be used in objective AVQA algorithms. 

They utilized Video Quality Metric (VQM) [13] as an objective full-reference VQA 

model and they used Perceived Evaluation of Audio Quality (PEAQ) [35] as an 

objective full-reference AQA metric. Based on experimental results, they conclude 

with the claim that content adaptive fusion parameter can result in more accurate 

AVQA model than the fusion parameter obtained based on subjective tests. Ries et 

al. [85] proposed an objective full-reference AVQA model, in which the audio 

content is considered, for low bit rate videos. The VQA model is based on gain and 

loss in the spatial activity and the change in the orientation of the spatial activity. 
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They divided AQA into two categories, namely speech quality and music quality. 

For speech quality, codec dependent auditory distance is employed. Integrated 

frequency distance and two other disturbance indicators have been used in order to 

evaluate music quality. Finally, they estimated audiovisual quality based on a 

second-order polynomial of two variables, namely video quality and audio quality. 

The coefficients of the mentioned polynomial are selected accordingly for three 

different contents. 

 

There are also some studies, in which audiovisual quality is modeled in different 

ways. In [86], a second-degree polynomial, whose variables are video quality and 

audio quality, are proposed in order to assess audiovisual quality. Peregudov et al. 

performed subjective tests and they claimed that video quality can be expressed by 

an exponential curve, where the variable is video bit rate. Similarly, they claimed 

that the perceived audio quality may be computed by exponential curve, where the 

variable is audio bit rate. Having obtained the coefficients of the second-degree 

polynomial, they add that their model may be utilized in order to allocate bit rate 

efficiently in portable and mobile multimedia services. In [87], subjective tests are 

performed in order to see the impact of video quality and audio quality on 

audiovisual quality. Results indicate that both video quality and audio quality 

contribute to audiovisual quality. Goudarzi et al. claimed that the sum of video 

quality and audio quality has high correlation with the audiovisual quality. In 

addition, they proposed an objective AVQA algorithm based on packet error rate and 

frame rate. Moreover, they evaluated the performance of the AVQA method based 

on full-reference objective VQA metric Peak Signal to Noise Ratio (PSNR) and full-

reference objective AQA metric Perceptual Evaluation of Speech quality (PESQ) and 

additional network/application parameters. In [88], Ries et al. conducted subjective 

tests in which the audiovisual material is selected from three different content types 

(soccer, video call and video clip). They proposed a no-reference objective AVQA 

model utilizing ensemble based model, whose inputs are five video features and two 

audio features. The proposed AVQA metric is said to be content adaptive since 

audiovisual materials are treated differently according to the content of the audio 

part, that is, the audio is speech or non-speech audio. 
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Finally, there are two standardized no-reference objective AVQA models, one for 

low resolution applications and the other one for high resolution applications. ITU - 

Telecommunication Standardization Sector Study Group 12 has studied the 

parametric non-intrusive assessment of audiovisual media streaming quality 

(P.NAMS) for lower resolution application area and the P.NAMS was standardized 

as ITU-T Recommendation P.1201.1 in October 2012 [89]. The P.1201.1 model can 

be utilized to predict audio, video, and audiovisual quality for mobile audiovisual 

media streaming services employing packet headers. The VQA part of the model is 

based on parameters such as video codec type, video resolution, bit rate, frame rate, 

packet-loss events and number of re-buffering events. The AQA part of the models 

considers parameters such as audio codec, bit rate, packet loss and re-buffering 

events. Then audiovisual quality is obtained by a relatively complex model, in which 

video quality and audio quality are utilized. Nevertheless, audiovisual data content is 

not considered while obtaining audiovisual quality from video quality and audio 

quality. The study in [90] is the winner model of the P.NAMS competition for the 

higher resolution application area. Garcia et al. conducted subjective tests covering 

degradations such as video and audio compression artifacts, packet loss resulting in 

audio frame loss, slicing and freezing (with frame skipping). They claim that the 

model can cope with random and burst packet losses. AQA part of the model 

considers degradations due to both compression and transmission. VQA part of the 

model takes both compression and transmission distortions along with the video 

content complexity into account. They obtained all coefficients utilized in the model 

by least-square curve fitting process. Finally, they obtained audiovisual quality as a 

linear combination of compression and transmission degradations of both video and 

audio and their product without considering audiovisual content. 
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CHAPTER 3 

3.  PROPOSED AUDIOVISUAL QUALITY ASSESSMENT MODEL 

 

 

 

There are many factors affecting end user quality [91], [94], [70], [85] such as 

mutual interaction between video quality and audio quality [79], [92], audiovisual 

content, compression and transmission distortions [93]. This mutual interaction is 

more obvious in some cases. To illustrate, the video may freeze when an anchorman 

continues speaking. Most probably, this will not significantly disturb viewers, since 

the speech of the anchorman, which is the most important component for this 

particular audiovisual content, will still be available. Moreover, perceived 

audiovisual quality of a video clip is significantly different when the scene freezes 

but the song continues and when the scene freezes and there is no song involved. In 

consequence, video and audio not only form the multimedia stream, but they together 

determine the perceived audiovisual quality. In other words, perceived audiovisual 

quality is a combination of perceived video quality and perceived audio quality [91], 

[94], [85], [95]. This mutual interaction results in perceived audiovisual quality 

differences for audiovisual material with a dominant voice such as news, 

teleconference and eventually video clips [85], [91]. Finally, AVQA models 

considering audiovisual content are known to perform better than general AVQA 

models [70], [91]. Therefore, we focus on the design of an AVQA model taking 

audiovisual content into account by considering video content features. 

 

3.1. Video Quality Assessment Model 

 

The perceptual video quality is a very subjective concept for each unique observer. 

The perception of a viewer is based on the HVS, and there are different artifacts 

affecting perceived video quality related to the HVS. It is known that the perceived 

video quality is affected by the high frequency spatial and temporal characteristics of 

the presented image or video when it is considered in the HVS. Therefore, having an 
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understanding of the spatial and temporal complexity of the given video may be a 

good starting point in order to estimate perceived quality. Another factor affecting 

perceived video quality can be considered as the network. Effects of network 

disturbances are most commonly modeled by bit rate and packet loss ratio. The bit 

rate is responsible for reflecting distortions introduced during the compression, 

whereas, the packet loss ratio reflects distortions caused by the transmission. In order 

to take quality loss due to network disturbances into account, we find the bit rate and 

the packet loss ratio after determining spatiotemporal characteristics of the given 

video. 

 

The block diagram of the proposed VQA model, namely Spatio-Temporal Network 

aware Video Quality Metric (STN-VQM), is depicted in Figure 3-1. STN-VQM 

consists of three main blocks; namely the feature extractor block, the feature 

integrator block and the quality estimator block. 

 

 

 

 

Figure 3-1: Block diagram of the proposed VQA model, STN-VQM. 

 

 

3.1.1. Feature Extractor Block 

 

The first block in the STN-VQM is the feature extractor block. The input of this 

block is the video bitstream whose perceived quality is desired to be assessed. This 

block is responsible for extracting five features as shown in Figure 3-2. These 
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features, which are detailed in the following subsections, are related to the 

spatiotemporal complexity and network disturbances. 

 

 

 

 

Figure 3-2: The feature extractor block. 

 

 

3.1.1.1. Spatial Complexity Analysis 

 

Although there are different methods in order to compute spatial complexity, we 

employed spatial perceptual information measurement (SI) index, endorsed by 

International Telecommunication Union (ITU) Recommendation P.910 [6] as a 

measure of the spatial complexity. SI is defined as the maximum value of the 

standard deviation in spatial extent of Sobel-filtered frames at time n, {Fn}: 

 

 �� =  ����	
� �
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This definition may hinder SI value to correctly represent the spatial complexity of a 

video sequence, because peaks that may occur due to a scene cut and/or an erroneous 

frame may be the maximum value of the standard deviations over all video frames. 

Therefore, we replace SI with Modified Spatial Information (MSI), which we define 

as the average value of the standard deviation in spatial extent of Sobel filtered 

frames at time n, {Fn}: 
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The plot of subjective DMOS against Modified Spatial Information (MSI) is shown 

in Figure 3-3. As the compression amount in video increases, blocking and other 

artifacts increase. The increase in spatial distortion results in a decrease in perceived 

video quality. Hence, as subjective DMOS increases, MSI slightly decreases for all 

video contents. 

 

 

 

 

Figure 3-3: Scatter plot of subjective DMOS against Modified Spatial Information. 

 

 

3.1.1.2. Temporal Complexity Analysis 

 

Having obtained a parameter giving idea about the spatial complexity of a given 

video, the next step is finding parameters providing information about the temporal 

complexity. Hence, we focus on motion features of the video sequences. Actually, 

Temporal Perceptual Information (TI) may have been used while obtaining temporal 

complexity [6]. However, we consider that utilizing motion vectors (MV) as the 
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fundamental structuring element is more appropriate due to the fact that humans 

perceive video through segments and objects, not through pixels. 

 

The first temporal complexity related feature is Zero MV Ratio (Z), which is defined 

as the percentage of zero MVs between two consecutive frames averaged over all 

frames in the video. Zero MV ratio for frame n, Zn, is calculated as the percentage of 

MVs with the value 0 to all MVs in the frame n: 

 

 "� =   #�$%����& = 0�
#�$%����&�  

(3-3) 

 

where countn (MV=0) represents the number of 4x4 macroblocks (MB) for which the 

corresponding MV equals 0 in frame n, whereas countn (MV) represents the total 

number of 4x4 MBs in frame n. In the H.264 standard, the MBs can have different 

sizes between 16x16 and 4x4. In order to avoid the unequal weighting due to the 

different size of MBs, all MBs other than 4x4 MBs are divided into 4x4 MBs by 

copying their MV displacement values to the corresponding 4x4 MBs. On the other 

hand, this operation is not performed on MPEG-2 encoded videos, since all MPEG-2 

MBs are of equal size (16x16) and this situation does not change the result in (3-3) 

due to the division operation. Then Z is obtained by averaging Zn values over all 

frames: 
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(3-4) 

 

where N is the total number of the frames in the given video. 

 

The plot of subjective DMOS against Zero Motion Vector Ratio (Z) is provided in 

Figure 3-4. As the compression amount in video increases, new distortions such as 

blocking are introduced. Therefore, the motion cannot be estimated as accurate as 

before and Z starts to increase. The increase in temporal distortion results in a 

decrease in perceived video quality. As a result, as the compression amount 

increases, both subjective DMOS and Z increase for all video contents. 
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Figure 3-4: Scatter plot of subjective DMOS against Zero Motion Vector Ratio (Z). 

 

 

Z helps us in estimating the proportion of the still regions in the video pictures [88]. 

High Z values indicate that the video is a very static sequence in which some small 

local movements may exist. In this case, viewer attention is expected to be on these 

small local movements. On the other hand, small Z values indicate uniform global 

movement. This global movement may be accompanied by lots of local movements. 

In this case, it may be hard to guess where viewers focus since it may be different for 

different videos. This particular MV feature makes it possible for discriminating 

between still sequences and frames with high amount of motion. Nonetheless, it does 

not distinguish between slowly and rapidly changing video sequences. In order to 

make this distinction, we utilize Mean MV magnitude, M, as the second temporal 

complexity related feature. Mean MV magnitude for frame n, Mn, is calculated by 

averaging normalized non-zero MV magnitudes: 
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(3-5) 

 

where Kn represents the number of non-zero MVs in frame n and w and h are the 

width and height of the screen in pixels, respectively. The division in (3-5) is a 

normalization procedure to avoid erroneous results that would arise due to different 

video resolutions. Then M is found by averaging Mn values over all frames, N, as 

shown below: 

 

 � = 1
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+

	,-
 

(3-6) 

 

Since both Z and M are MV based features, we had to decode videos and extract MV 

of encoded videos. This is accomplished by modifying The Joint Model 12.3 (JM) 

reference software [96] for the H.264 coding standard and MPEG-2 reference 

software [97] for the MPEG-2 coding standard. 

 

The plot of subjective DMOS against Mean Motion Vector Magnitude (M) is given 

in Figure 3-5. As illustrated in the figure, M is almost constant for all video contents 

and it is also independent from the compression amount. As a consequence, M is 

used in order to classify videos with different level of distortions according to the 

video content. The decrease in M in River Bed and Pedestrian area video contents is 

due to the fact that small local movements in these video contents cannot be 

accurately estimated as the compression amount increases. 
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Figure 3-5: Scatter plot of subjective DMOS against Mean Motion Vector Magnitude 

(M). 

 

 

3.1.1.3. Compression and Transmission Degradation Analysis 

 

Compression amount and packet losses occurring in transmission are said to be 

significant factors affecting loss in perceived quality. Compression amount can be 

inferred from average bit rate parameter, BR, since bit rate is usually used as a limit 

during compression. Furthermore, higher bit rate values are expected to result in 

higher perceived quality avoiding different artifacts such as blurriness, blockiness, 

jerkiness etc. that may occur when lower bit rate values are utilized during 

compression. It is here worth noting that decrease in bit rate results in different 

perceived quality losses for different videos, since the videos have different 

spatiotemporal complexities. BR is calculated by dividing the video payload to the 

video duration as follows: 
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(3-7) 

 

The plot of subjective DMOS against Bit Rate (BR) is given in Figure 3-6. As 

expected, reduction in bit rate results in new spatiotemporal artifacts which cause 

perceived quality to decrease. Hence, DMOS increases when bit rate decreases as 

illustrated in the figure. 

 

 

 

 

Figure 3-6: Scatter plot of subjective DMOS against Bit Rate (BR). 

 

 

Having considered effects of compression amount on perceived quality, the next step 

is taking packet losses into account. Although there are different error concealment 

algorithms providing solutions to packet losses, packet losses are still important 

factors affecting perceived quality. Hence, packet losses should not be ignored in an 

accurate VQA model. We define the last feature of STN-VQM, the packet loss ratio 

0 100 200 300 400
30

35

40

45

50

55

60

65

70

75

80

Bit Rate (BR)

S
u
b
je

c
ti
v
e
 D

M
O

S

Subjective DMOS vs Bit Rate

 

 

BlueSky

Mobile & Calendar

Pedestrian area

Park run

River Bed

Rush hour

Sunflower

Shields

Station

Tractor



32 

 

(PLR), β, as the percentage of the number of lost Real-Time Transfer Protocol (RTP) 

packets to the total number of RTP packets as: 

 

 = =   )$���1 �> ��
� 9?: :�#@��

)$���1 �> ����� 9?: :�#@��
 ∗ 100 

(3-8) 

 

These five features, MSI, Z, M, BR and β, are the outputs of the feature extractor 

block. They are also inputs of the feature integrator block, which will be detailed 

below. 

 

3.1.2. Feature Integrator Block 

 

The second block in STN-VQM, namely the feature integrator block, is responsible 

for determining the parameters that are used in the quality estimator block. The 

outputs of this block are spatial distortion S, temporal distortion T and packet loss 

ratio β as illustrated in Figure 3-7. 

 

 

 

 

Figure 3-7: The feature integrator block. 

 

 

First output of the feature integrator block, S, is computed as the ratio of MSI to BR 

as follows: 
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In order to understand why S represents spatial distortion, consider K videos v1, v2, 

v3, …, vK encoded with the same average bit rate. Further assume that these videos 

have similar motion characteristics. Without loss of generality, let v1 have the highest 

spatial complexity value MSI1 and let vK have the lowest MSI value MSIK. Then v1 

has the highest S value and vK has the lowest S value, since MSI1>MSIK and all 

videos are encoded with the same average bit rate. Among these videos encoded with 

the same average bit rate, v1 is expected to be the most spatially distorted video, 

since it carries relatively more spatial information. Similarly, vK is expected to be the 

least spatially distorted video, since it carries relatively less spatial information. 

Hence, S represents the spatial distortion amount in this case. 

 

Consider again K videos v1, v2, v3, …, vK. This time, assume that these videos have 

identical spatial complexity values and similar motion characteristics. Without loss 

of generality, let v1 be encoded with the highest average bit rate BR1 and let vK be 

encoded with the lowest average bit rate BRK. Then v1 has the lowest S value and vK 

has the highest S value, since BR1>BRK and all videos have the same spatial 

complexity. Among these videos having identical spatial complexities, v1 is expected 

to be the least spatially distorted video, since it is encoded with the highest bit rate 

Similarly, vK is expected to be the highest spatially distorted video, since it is 

encoded with the lowest bit rate. Hence, S represents the spatial distortion amount 

also in this case. 

 

The plot of subjective DMOS against Spatial Distortion (S) is given in Figure 3-8. It 

is clear in the figure that as S increases DMOS increases for all video contents. 

Hence, S is proven to be a distortion term for perceived video quality by 

experimental data. 
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Figure 3-8: Scatter plot of subjective DMOS against Spatial Distortion (S). 

 

 

Similar to the definition of spatial distortion, we define the temporal distortion, T, 

which is the second output of the feature integrator block, as the ratio of the amount 

of motion, represented by the multiplicative term (1-Z)*M, to average bit rate, BR: 

 

 ? =   �1 − "� ∗ �
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(3-10) 

 

The term in the numerator can be considered as the amount of motion, since (1-Z) is 

the moving region proportion in a frame and M is the mean MV magnitude of this 

moving region. Hence the product of (1-Z) and M in (3-10) represents the amount of 

motion. Therefore, the multiplicative term in the numerator represent the temporal 

complexity of the video being analyzed. 
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Similar arguments why S represents spatial distortion also apply for the 

representation of the temporal distortion by T. As a result, T given in (3-10) is used 

as the temporal distortion. 

 

The plot of subjective DMOS against Temporal Distortion (T) is given in Figure 3-9. 

As seen in Figure 3-9, DMOS increases as the temporal distortion increases for all 

video contents. However, the rate of increases in DMOS is different for different 

video contents.  

 

 

 

 

Figure 3-9: Scatter plot of subjective DMOS against Temporal Distortion (T). 

 

 

It is here worth noting that the variance of T is much larger than that of S in all 

natural videos. Therefore, we define a dynamic upper limit for T which is computed 

based on the value of S as follows: 
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 ? =  A?                        , 2> ? < �100 ∗ ��100 ∗ �            , 2> ? ≥ �100 ∗ ��E (3-11) 

 

Finally, the last output of the feature integrator block is β, which is also input of the 

same block, i.e., it is left unchanged. 

 

3.1.3. Video Quality Estimator Block 

 

The final block in STN-VQM is the video quality estimator block. This block, as the 

name implies, is responsible for estimating the perceived video quality based on S, T 

and β, which are inputs of this block as depicted in Figure 3-10. 

 

 

 

 

Figure 3-10: The video quality estimator block. 

 

 

We have employed the Laboratory of Image and Video Engineering (LIVE) VQA 

database in order to obtain the functional form of STN-VQM. The LIVE VQA 

database is a publicly available VQA database owned by University of Texas at 

Austin [98], [99]. In LIVE VQA database, there are 10 different reference videos 

with various video contents (one frame for each video content is illustrated in Figure 

3-11) and 15 distorted videos for each of these reference videos. Therefore, there are 

150 distorted videos, which are distorted by 4 different distortion processes; namely, 

H.264 compression, MPEG-2 compression and simulated transmission of H.264 

compressed bitstreams through error prone IP and wireless networks. 

 

 

Video 

Quality 
Estimator

Video Quality Estimate

Spatial Distortion (S)

Packet Loss Ratio (ß)

Temporal Distortion (T)
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Figure 3-11: One frame from each of the 10 video contents. a) Pedestrian Area, b) 

River Bed, c) Rush Hour, d) Tractor, e) Station, f) Sunflower, g) Blue Sky, h) Shield, 

i) Park Run, j) Mobile & Calendar [99]. 

 

 

Blue sky video has duration of 8.68 seconds, whereas remaining 9 videos have 

duration of 10 seconds. Park Run, Shields and Mobile & Calendar have a frame rate 

of 50 frames per second and the remaining seven videos have a frame rate of 25 

frames per second. Brief information about these video contents is given in Table 

3-1: 
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Table 3-1: Brief information about 10 video contents in LIVE VQA database 

 

Video Name Camera Motion Video Content 

Blue Sky Circular camera 
motion 

Trees and blue sky 

River Bed No camera motion River bed with some pebbles and 
wavy water 

Pedestrian Area No camera motion People walking and cycling at a 
street intersection 

Tractor Camera pan A green tractor moving across 
Fields 

Sunflower No camera motion A bee flying over a sunflower 
closely 

Rush Hour No camera motion Rush hour traffic 

Station No camera motion A railway track, a train, and people 
walking across the track 

Park Run Camera pan A person running across a park 

Shields First camera pan, 
then still camera, 

then zoom in 

A person with headphone moving 
across a display while pointing at it 

Mobile & 
Calendar 

Camera pan A horizontally moving toy train 
with a vertically moving calendar 

in the background 

 

 

We strongly believe that distortions introduced in compression and distortions 

resulting from during transmission do not affect each other, i.e., they are considered 

to be independent. As a result, these distortions are treated separately. 

 

First, we focused on obtaining an expression which tries to estimate the perceived 

quality reduction caused by compression distortions only. This expression totally 

ignores packet losses occurring during transmission and treats all videos as if there is 

no packet loss. In order to obtain this expression, we randomly selected 10 H.264 

compressed videos in the LIVE VQA as the training videos. Using these training 

videos and the Curve Fitting Toolbox of Matlab, we fit a second degree polynomial 

function whose inputs are the spatial distortion, S, and temporal distortion, T. The 
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output of the mentioned polynomial is the DMOS estimate of the particular video 

bitstream, denoted by DMOSinitial: 

 

 <�F�	�	�	�G��, ?� =  � + �� + #? + ��I + ��? + >?I (3-12) 

 

 

Table 3-2: Coefficients for compression distortion 

 

Coefficient Name Value 

a 45.6 

b 8.2x103 

c -590 

d 3.97 x105 

e -5.04 x104 

f 4.2x103 

 

 

The coefficients of the expression in (3-12) are provided in Table 3-2. The initial 

functional form of STN-VQM given in (3-12) does not correctly express perceived 

quality reduction caused by compression distortions. The reason is that the 

expression in (3-12) is a quadratic equation in both S and T. In order to elaborate the 

problem originating from the quadratic structure of (3-12), assume there are K 

different videos (v1, v2, …, vK) with identical spatial distortion values (S = So) and 

with different temporal distortion values (T1, T2, …; TK). Without loss of generality, 

further assume that T1 < T2 < … < TK-1 < TK. It should be clear that, v1 is expected to 

have the smallest DMOS estimate since these K videos have the same spatial 

distortion So and v1 has the smallest temporal distortion T1. Consequently, v1 is 

expected to be perceived as the highest quality among these K videos. We can 

replace S by So in (3-12) since each video v1, v2, …, vK is assumed to have the same 

S value, So. Then the expression (3-12) simplifies to: 

 

 <�F�	�	�	�G��J , ?� = >?I + K��J�? + L��J� (3-13) 
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where γ (So) and λ (So) are given in (3-14) and (3-15), respectively: 

 

 K��J� = # + ��J (3-14) 

 

 L��J� = � + ��J + ��JI (3-15) 

 

Clearly, expression in (3-13) can be replaced with (3-16): 

 

 <�F�	�	�	�G��J, ?�
=  MN>? + K��J�

2N> P
I

+ ML��J� − K��J�I
4> P 

(3-16) 

 

Obviously, the expression in (3-16) is minimum when: 

 

 ? = ?RST��J� = −K��J�
2> = − # + ��J2>  

(3-17) 

 

Reconsider the videos v1, v2, …, vK. Now assume that vi (1 < i ≤ K) has a temporal 

distortion value Ti ≤ Tmin. Since T1 < Ti, T1 < Tmin. Therefore, we know that v1 has 

identical spatial distortion with vi and it has less temporal distortion than vi. Then, 

DMOSinitial estimate of v1 should be lower than that of vi, since v1 has less distortion 

than vi and v1 is expected to be perceived as higher quality. Nonetheless, if the 

expression in (3-12) is used without any modification, DMOSinitial estimate of v1 

becomes higher than that of vi. The reason is that the expression in (3-12) suffers 

from its quadratic structure and it should be corrected. This is depicted in Figure 

3-12. 
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Figure 3-12: The characteristics of DMOSinitial with respect to spatial and temporal 

distortion in three dimensions. 

 

 

It may be easier to visualize the mentioned problem in two dimensions. Figure 3-13 

shows the characteristics of DMOSinitial when the upper limit in (4-11) is not applied 

to T. Figure 3-14 illustrates the two-dimensional projection of Figure 3-12. 
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Figure 3-13: The characteristics of DMOSinitial with respect to spatial and temporal 

distortion in two dimensions when T is not upper limited as in (3-11) 

 

 

 

 

Figure 3-14: The characteristics of DMOSinitial with respect to spatial and temporal 

distortion in two dimensions. 
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In order to correct the misevaluation detailed above, we first insert Tmin in (3-12) 

instead of T1. Nevertheless, this is not enough, since DMOSinitial estimate of v1 and vi 

become equal. However, we know that v1 is less distorted than vi. Hence, DMOSinitial 

of v1 should be less than that of vi. This is accomplished by multiplying DMOSinitial 

estimate with a correction function, hCRF(T, Tmin), satisfying the following 

conditions: 

 

 2. ℎVWX�?, ?
	�� = 1     , 2> ? = ?
	� (3-18) 

 

 22. 0 ≤ ℎVWXZ?[ , ?
	�\ < ℎVWX�?
, ?
	�� < 1  , 2> 0 ≤ ?[
< ?
 < ?
	�  

(3-19) 

 

Conditions above state that the correction function, hCRF(T, Tmin), should be a 

monotonic decreasing function when T < Tmin. It is clear that the expression in (3-20) 

satisfies both conditions when α > 0: 

 

 ℎVWX�?, ?
	�� = ] ?
?
	�^_

 
(3-20) 

 

We have observed the correction function gives best results when α = 0.05. The plot 

of the correction function is shown in Figure 3-15. 
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Figure 3-15: Plot of the correction function hCRF(T, Tmin). 

 

 

It is here worth noting that S has a much smaller variance than T. Therefore, there is 

no need to define a similar correction function for S. 

 

Then the DMOS estimate of H.264 compressed bitstreams can be found as: 

 

 <�F�`Iab��, ?�
=  c<�F�	�	�	�G��, ?�,                                                 , 2> ? > ?RST���

<�F�	�	�	�G��, ?
	����� ∗ ℎVWXZ?, ?
	����\, 2> ? ≤ ?RST��� E 
(3-21) 

 

The problem originating from the quadratic structure of (3-12) has been solved in (3-

21) as depicted in Figure 3-16 and Figure 3-17. 
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Figure 3-16: The characteristics of DMOSH264 with respect to spatial and temporal 

distortion in three dimensions. 

 

 

 

 

Figure 3-17: The characteristics of DMOSH264 with respect to spatial and temporal 

distortion in two dimensions. 
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We have observed that DMOS estimates obtained by using the expression in (3-21) 

along with the coefficients in Table 3-2 resulted in an offset for MPEG-2 compressed 

videos. In order to remove this offset in DMOS estimates of MPEG-2 compressed 

videos, a second training step has been performed. In this second training step, we 

randomly selected 10 MPEG-2 compressed videos in the LIVE VQA database. After 

training, we have inserted a first order polynomial multiplicative term to DMOSH264 

in order to have DMOScomp expression, which is the final functional form of STN-

VQM regarding only compression distortions. After inserting this multiplicative 

term, we obtained the VQA metric estimating DMOS accurately for videos with Z 

values below 0.01, which is the case for MPEG-2 compressed videos in the LIVE 

VQA database. The functional form of DMOScomp is computed as follows: 

 

 <�F��J
���, ?�
=  A0.97 ∗ <�F�`Iab��, ?� − 5.18, 2> " < 0.01 <�F�`Iab ��, ?�                          , 2> " ≥ 0.01 E 

(3-22) 

 

Having determined DMOScomp, we have completely modeled STN-VQM for 

compression distortions. In order to take transmission distortions into consideration, 

we concentrated on finding an expression reflecting the perceived quality reduction 

due to transmission distortions. As it is seen from the block diagram of the video 

quality estimator block (Figure 3-10), the packet loss ratio parameter, β, is the 

parameter utilized to model transmission distortions’ effect on perceived quality. 

 

As mentioned before, compression and transmission distortions are considered to be 

independent. Therefore, the final form of STN-VQM, DMOS, is modeled as a 

multiplication of two independent functions, one of which considers only 

compression distortions (DMOScomp) and the other one considers only transmission 

distortions (hTR) as shown below: 

 

 <�F���, ?, =� =  <�F��J
���, ?� ∗ ℎiW�=� (3-23) 
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In order to finalize the design of STN-VQM, we have to obtain the functional form 

of hTR(β). To accomplish this, a third training step has been performed. In this third 

training step, 10 IP and 10 wireless network distorted videos have been utilized. 

Since IP and wireless networks have different network characteristics, IP and 

wireless network distorted videos have been treated separately. In this training step, 

we extracted the relation between the ratio of subjective DMOS to DMOScomp(S, T) 

and the packet loss ratio, β. This relation is illustrated in Figure 3-18.  

 

 

 

 

Figure 3-18: The relation between the ratio of subjective DMOS to DMOScomp and 

the packet loss ratio, β, for IP network distorted training videos in LIVE VQA 

database. 

 

 

We have observed that there is no scene cut in reference and distorted video 

sequences of all video contents in LIVE VQA database. As a result, we ignored the 

locations of network losses (whether the packet loss is in I or P frames/slices) while 

estimating perceived quality for videos in LIVE VQA database since we expect all 

packet losses to have a similar effect on perceived quality. However, this assumption 

may be objected because the frame type in which the packet loss occurred is 
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expected to be significant in the perceived quality. Particularly, we consider that the 

location of network distortion is critical for estimating perceived quality of videos 

having scene cuts, which is not the case for videos in LIVE VQA database.  

 

We utilized the Curve Fitting Toolbox of Matlab in order to obtain hTR(β). The 

functional form of the expression modeling the effect of distortions occurring during 

transmission, hTR, to the expression modeling the effect of compression distortions 

while considering the video content, DMOScomp, is the same for both IP and wireless 

network distorted videos. However, the coefficients of hTR in (3-24), given in Table 

3-3, are different for the IP and wireless network distorted bitstreams since these 

networks have different characteristics. Hence, appropriate coefficients should be 

used while evaluating hTR according to the employed network type (IP or wireless). 

Finally, it is here worth noting that hTR will be equal to unity for all videos which are 

transmitted without packet loss. Obviously, this statement also covers the H.264 and 

MPEG-2 compressed videos in LIVE VQA Database, since their packet loss ratio is 

zero. 

 

 ℎiW�=� =  A� ∗ ��j�% ∗ =�, 2> = > 01                          , 2> = = 0E (3-24) 

 

Hence, the final functional form of the STN-VQM, considering both compression 

and transmission distortions has been obtained.  

 

 

Table 3-3: Coefficients for transmission distortion 

 

Distortion Type Coefficient Name Value 

IP Network m 1.38 

IP Network n 0.05 

Wireless Network m 1.08 

Wireless Network n 0.09 
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3.2. Audio Quality Assessment Model 

 

No-reference audio quality assessment model is a research area that has not been 

studied much. Most of the researchers working in this area concentrate on developing 

full-reference AQA models. In full-reference AQA models, encoding bit rate and 

sampling frequency are two important parameters that have been used either directly 

or indirectly in the literature. 

 

We first concentrated on these two parameters and inspected the relationship 

between the perceived audio quality and these parameters. We employed the AQA 

database detailed in [70]. The audio contents in the AQA database are given in Table 

3-4. 

 

 

Table 3-4: Audio content in the AQA database 

 

Name Audio Content Duration 

(seconds) 

Building Orchestral background music 7.48 

Conversation Male and female voices 8.36 

Football Crowd cheering and chanting; female commentator 7.60 

Music video Rock music with vocals 8.08 

Trailer 1 Theme music and voice-over 8.84 

Trailer 2 Theme music and voice-over 8.08 

 

 

Figure 3-19 shows the scatter plots of perceived audio quality against the sampling 

frequency of the corresponding audio signal. It is seen from Figure 3-19 that the 

perceived audio quality increases as the sampling frequency of the audio signal 

increases. However, the perceived quality starts to saturate after a certain value of the 

sampling frequency. 
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Figure 3-19: Perceived audio quality against sampling frequency. 

 

 

Figure 3-20 shows the scatter plots of perceived audio quality against the encoding 

bitrate of the corresponding audio signal. It is depicted in Figure 3-20 that the 

perceived audio quality increases as the encoding bit rate of the audio signal 

increases. 

 

Based on these observations, we decided to use the sampling frequency and the 

encoding bit rate in our AQA model. We also added another parameter signal-to-

noise ratio, which is commonly used in full-reference AQA models. Using these 

three parameters, we obtained the functional form of the AQA metric (considering 

compression distortions only), MOSaudio,comp, by performing a curve-fitting procedure 

on Matlab. It is worth noting that the AQA metric whose functional form is given 

below discards distortions occurring in the transmission: 

 

 �F��kl	J,�J
�=  �� ∗ ��� ∗ >���� + �� ∗ �� ∗ 89 + >�
∗ �! ∗ �)9 + ℎ� 

(3-25) 
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Figure 3-20: Perceived audio quality against encoding bit rate. 

 

 

where fs, BR and SNR represent the sampling rate in kHz, encoding bit rate in kbps 

and the signal-to-noise ratio of the audio signal in dB, respectively. 

 

The coefficients of the expression in (3-25) are provided in Table 3-5: 

 

 

Table 3-5: Coefficients for compression distortion 

 

Coefficient Name Value 

a -1325 

b 15.63 

c -1.10 

d 9.04 

e 0.005 

f 0.86 

g 0.003 

h 0.8 
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As mentioned, the AQA metric in (3-25) does not consider packet losses that may 

occur during transmission. The reason is that the employed AQA database in [70] 

does not contain packet losses. In order to take packet losses into account, we had to 

train the AQA metric on audio data of the AVQA database provided by University of 

Plymouth [87]. Audio files in this database are encoded with G.711µlaw voice codec. 

There are packet losses which occur in the wireless segment of the network using a 

Gilbert-Elliot model with packet error rates, 0.01, 0.05, 0.1, 0.15 and 0.20. 

 

Network trunks and low-power edge devices are known to carry very large number 

of active calls. Therefore, real-time speech quality monitoring models are trying to 

compute degradation amount from RTP transport instead of processing each speech 

waveform [34]. We followed a similar procedure and we investigated the 

relationship between the perceived audio quality and packet loss rate obtained from 

RTP transport as illustrated in Figure 3-21. 

 

 

 
 

Figure 3-21: Perceived audio quality against packet loss ratio. 
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As expected, subjective MOS decreases as the packet loss ratio increases. Similar to 

the VQA case, we inserted a multiplicative exponential term in order to consider 

transmission distortions. The inserted function, gTR(β), is given below: 

 

 !iW�=� =  A0.66 ∗ ��j�−0.026 ∗ =�, 2> = > 01                                          , 2> = = 0E (3-26) 

 

Plot of gTR against packet loss rate is depicted in Figure 3-22. 

 

 

 
 

Figure 3-22: The multiplicative exponential term, gTR(β) 

 

 

Hence, the final form of the AQA metric is obtained as: 

 

 �F��kl	J =  �F��kl	J,�J
� ∗ !iW�=� (3-27) 
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as Direct Audiovisual Quality Assessment (DAVQA) Model, to the studies in the 

literature. In this approach, which is detailed in 3.3.1, we have not considered video 

and audio characteristics while assessing audiovisual quality. However, it is stated in 

[88] that video content is very important for perceived audiovisual quality. For 

certain audiovisual contents such as news and video call, the dominance of audio 

quality on audiovisual quality is observed. Moreover, as the picture content of the 

video gets more complex and/or the motion in the video increases, video quality is 

said to have more effect on perceived audiovisual quality. Inferring from these 

observations, we proposed a second approach, which we named as Content 

Dependent Audiovisual Quality Assessment (CDAVQA) Model, based on estimating 

audiovisual quality according to the video content. Details of CDAVQA are provided 

in 3.3.2. 

 

It is here worth mentioning about the AVQA database used in this study. We utilized 

the AVQA database of University of Plymouth. This AVQA database consists of 60 

audiovisual samples with 6 different video contents. These 6 video contents are 

representative of video call conditions with different spatial complexities and low 

motion at QCIF spatial resolution (176x144). Figure 3-23 and Table 3-6 illustrate the 

content of the audiovisual material in the AVQA database. Audiovisual data in the 

AVQA database are 7 to 14 seconds long. The source audio material was 16-bit PCM 

mono sampled at 8 kHz. Video files are encoded with H.263 with frame rates either 8 

or 15 and audio files are encoded with G.711µlaw voice codec as mentioned. These 

encoders are said to be selected because of their low complexity and popularity 

among video-conferencing applications and SIP clients such as x-lite and IMS-

communicator. There are packet losses which occur in the wireless segment of the 

network using a Gilbert-Elliot model with packet error rates, 0.01, 0.05, 0.1, 0.15 and 

0.20 [87]. 
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Table 3-6: Audiovisual data content in University of Plymouth AVQA database [87] 

 

Video Name Video Audio 

Lecture Male speaker, head and shoulder, light 
background 

Normal male voice 

Job Interview Female speaker, head and shoulder, 
light background 

High-pitched female 
voice 

CBS News News speaker, colored background Normal female voice 

Newspart TV presenter, hand movements, 
colored background 

Fast speaking male 
voice 

Gold Lecturer behind a desk, reading from a 
note 

Normal male voice 

Conversation A male and a female in front of 
camera, male speaking, hand 

movement 

Normal male voice 

 

 

 

 

Figure 3-23: One frame from each of the 6 video contents. 
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Plots of subjective audiovisual MOS with respect to subjective video MOS and 

subjective audio MOS in the AVQA database of University of Plymouth are given in 

Figure 3-24 and Figure 3-25. 

 

 

 

 

Figure 3-24: Subjective audiovisual quality against subjective video quality. 

 

 

 

 

Figure 3-25: Subjective audiovisual quality against subjective audio quality. 
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As seen from the figures above, audiovisual quality increases as video quality 

increases. Although there is a similar tendency in the audiovisual quality with respect 

to audio quality, this tendency is less clear in this case. In other words, there are more 

outliers in the audiovisual quality versus audio quality graph, meaning that audio 

quality is less dominant than video quality in determining audiovisual quality. 

 

3.3.1. Direct Audiovisual Quality Assessment (DAVQA) Model 

 

In this approach, we modeled audiovisual quality estimate, MOSAV, as a linear 

combination of video quality estimate, MOSV, and audio quality estimate, MOSA, 

and their product, MOSV.MOSA as shown below: 

 

 �F�no =  � + � ∗ �F�o + # ∗ �F�n + � ∗ �F�o ∗ �F�n (3-28) 

 

where video quality estimate, MOSV, is obtained via subtracting DMOSV from 100 to 

convert DMOS to MOS and then normalizing to quality range 0-8 as below: 

 

�F�o =  0.08 ∗ �100 − <�F�p� (3-29) 

 

In order to obtain coefficients given in (3-28), we performed training using both 

subjective video MOS with subjective audio MOS and objective video MOS with 

objective audio MOS along with the subjective audiovisual MOS. The coefficients of 

the expression in (3-28) obtained using subjective video MOS with subjective audio 

MOS are provided in Table 3-7. The coefficients of the same expression obtained 

using objective video MOS with objective audio MOS are given in Table 3-8. 
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Table 3-7: Coefficients for DAVQA when subjective video MOS and subjective 

audio MOS are utilized 

 

Coefficient Name a b b d 

Value 1.1111 0.4156 0.3109 0 

 

 

Table 3-8: Coefficients for DAVQA when objective video MOS and objective audio 

MOS are utilized 

 

Coefficient Name a b b d 

Value 2.216 0.4965 0 0.1358 

 

 

Having obtained coefficients, we checked whether these coefficients are meaningful 

by checking audiovisual MOS estimates for different video and audio MOS values. 

Figure 3-26 illustrates the audiovisual MOS estimates for various video and audio 

MOS values when the coefficients in Table 3-7 are utilized. Similarly, Figure 3-27 

illustrates the audiovisual MOS estimates for various video and audio MOS values 

when the coefficients in Table 3-8 are utilized. 

 

As seen from figures below, as video MOS increases, audiovisual MOS increases in 

constant audio MOS case. Similarly, as audio MOS increases, audiovisual MOS 

increases in constant video MOS case. These results indicate that (3-28) along with 

coefficients given in both Table 3-7 and Table 3-8 provide reasonable audiovisual 

quality estimates. 
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Figure 3-26: Reasonability check for coefficients in Table 3-7. 

 

 

 

 

Figure 3-27: Reasonability check for coefficients in Table 3-8. 
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3.3.2. Content Dependent Audiovisual Quality Assessment (CDAVQA) 

Model 

 

In this approach, we also use (3-28) and (3-29). However, we use multiple 

coefficient sets instead of a single coefficient set. As a starting point, we classify 

audiovisual data in the database so that videos with similar characteristics are in the 

same class. Then we train each class in order to determine the most appropriate 

coefficient set for each class. Obviously, each video with the same content should be 

classified as a member of the same class. Therefore, each class can be composed of a 

single video content. However, it is better to classify videos with similar 

characteristics in the same class in order to decrease the number of total classes, 

especially in real life applications. It has been stated that, the dominance of video 

quality and audio quality on audiovisual quality are different for different video 

contents. In this approach, coefficient sets for each class can be selected 

independently in order to estimate audiovisual quality in a more accurate way based 

on the video characteristics. 

 

Videos in VQA and AVQA databases are subject to various compression and 

transmission distortions. Features that will be utilized to classify videos should be 

robust to these distortions. In other words, selected features should not change 

significantly with distortion amount. We considered to group videos according to 

their spatiotemporal characteristics. Having inspected features detailed in 3.1.1, we 

decided to use MSI and M for the mentioned classification. Figure 3-28 shows MSI 

with respect to M for H.264 compressed videos in the LIVE VQA database 

belonging to 10 different video contents. 
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Figure 3-28: Scatter plot of Mean Motion Vector Magnitude against Modified Spatial 

Information in the LIVE VQA Database. 

 

 

As it is seen from the figure above, distorted videos of same content are very near to 

each other in the MSI-M plane. Hence, MSI and M seem to be good at reflecting the 

spatiotemporal characteristics of videos. However, it must be noted that videos of 

same content in the LIVE VQA database have identical frame rates. Since we 

develop an AVQA model that can assess audiovisual quality of audiovisual data 

which have videos with various frame rates, we should take the frame rate into 

account. Therefore, we define Mean Motion Vector Magnitude per second (Mps) as 

follows: 

 

�j
 =  � ∗ >1 (3-30) 

 

where fr represent the frame rate in frame per seconds. 
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Figure 3-29: Scatter plot of Mean Motion Vector Magnitude per second against 

Modified Spatial Information in the LIVE VQA Database. 

 

 

Figure 3-29 illustrates MSI with respect to Mps for the same videos in Figure 3-28. 

Then we checked whether MSI and Mps can classify 6 different video contents in the 

AVQA database of University of Plymouth. This AVQA database includes videos of 

same video content with different frame rates. It also contains videos with 

transmission distortions. Figure 3-29 and Figure 3-30 prove that MSI and Mps can 

successfully group videos of same video content with different frame rates, distorted 

by compression and/or transmission. 
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Figure 3-30: Scatter plot of Mean Motion Vector Magnitude per second with respect 

to Modified Spatial Information in the University of Plymouth AVQA Database. 

 

 

Having classified videos in the University of Plymouth AVQA database according to 

their spatiotemporal characteristics, we use (3-28) and (3-29). We divide audiovisual 

data in the database, whose spatiotemporal characteristics are given in Figure 3-30, 

into 4 classes. Class 1 consists of “Lecture”, Class 2 contains “Job Interview”, Class 

3 includes “Gold”, “Cbs News” and “Conversation” and Class 4 contains 

“Newspart” audiovisual data. The classification of the audiovisual data according to 

spatiotemporal characteristics is illustrated in Figure 3-31. For each class, we 

performed training and obtained 4 coefficient sets (that is a, b, c and d in 3-28) for 

both subjective video MOS with subjective audio MOS and objective video MOS 

with objective audio MOS. For each class, the coefficients of the expression in (3-28) 

obtained using subjective video MOS with subjective audio MOS are provided in 

Table 3-9. For each class, the coefficients of the same expression obtained using 

objective video MOS with objective audio MOS are given in Table 3-10. 

(Coefficients for class 1 and class 2 are identical in this case). 
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Figure 3-31: Classification of the audiovisual data according to spatiotemporal 

characteristics in the University of Plymouth AVQA database. 

 

 

Table 3-9: Coefficients for all classes in CDAVQA for audiovisual data when 

subjective video MOS and subjective audio MOS are utilized. 

 

Class a b c d 

Class 1 1.221 0.260 0.419 0 

Class 2 1.279 0.416 0 5.91 x10-2 

Class 3 1.286 0.390 0.294 6.18 x10-3 

Class 4 1.178 0.406 0.285 0 

 

 

Table 3-10: Coefficients for all classes in CDAVQA for audiovisual data when 

objective video MOS and objective audio MOS are utilized 

 

Class a b c d 

Class 1 
2.367 0.343 0 0.040 

Class 2 

Class 3 2.273 0.534 8.24 x10-5 4.79 x10-5 

Class 4 1.75 0.532 1.79 x10-5 0.028 
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CHAPTER 4 

4. EVALUATION OF THE PROPOSED QUALITY ASSESSMENT 

MODELS 

 

 

4.1. Evaluation of the Quality Assessment Models 

 

Quality assessment (QA) models should be thoroughly analyzed and tested in order 

to discover potential improvements and identify specific failure cases so that the 

developed QA models will eventually reach to robust performance. Insufficient 

evaluation of QA metrics may cause false performance claims and unavoidable 

failure of the QA metric. All QA metrics had better been evaluated as described in 

the following subsections. 

 

4.1.1. Assumption and Operation Verification 

 

Assumptions made throughout the development of the QA model should be either 

verified or refuted. If a QA metric is developed in order to detect signal model 

violations, it should be evaluated on a wide range of undistorted inputs. Similarly, if 

a QA metric is designed in order to detect a particular artifact, it should not 

accidentally measure other artifacts [100]. Moreover, it should not detect that 

particular artifact in undistorted inputs. Individual measurements’ monotonicity is 

another critical issue that must be verified. To illustrate, blockiness is expected to 

increase with increase in quantization amount. The pooling step should also be tested 

in order to validate proper operation in case of multiple artifacts. NR QA metrics 

relying on restricted inputs such as only test video or only bitstream parameters 

should be evaluated in order to see how the performance is limited by input 

constraints. 

 

QA metrics may also be evaluated under synthetic inputs. Synthetic inputs enable us 

to test QA metrics under specific conditions. While composing synthetic inputs, new 
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artifacts can be added, current artifacts may be temporally and spatially distributed, 

or amplified. Inputs violating or exactly matching the assumed statistical signal 

models in the design can clearly indicate whether the quality metric predicts desired 

statistical quantities sufficiently. 

 

4.1.2. Classical Numerical Measures 

 

There are classical measures in order to evaluate the performance of QA metrics. 

Almost all of these measures first try to quantify differences between the subjective 

quality (Qsubj) and the predicted objective quality (Qobj). There should be no doubt 

that the ground truth data utilized in training the QA metrics should be excluded in 

the test set. Pearson Correlation Coefficient (PCC), outlier ratio, and root mean 

square error (RMSE) measure the performance of the QA metrics based on how well 

the metric estimates individual subjective quality on an absolute scale (prediction 

accuracy and prediction consistency). Spearman Rank Order Correlation Coefficient 

(SROCC), on the other hand, measures how well the QA metric maintains the scores’ 

relative ranking (prediction monotonicity). These four measures are the most widely 

utilized quantities [101]. In order to determine specific failure cases of the designed 

QA metric, these measures can also be calculated on special subsets (subsets 

with/without specific artifacts) of the test set. 

 

4.1.3. Resolving Power and Classification Errors 

 

A QA metric’s accuracy can also be measured in terms of subjective quality 

difference between pairs v1 and v2, ∆Qsubj = Qsubj(v1) – Qsubj(v2). Assuming that 

subjective quality, Qsubj(.), and objective quality, Qobj(.), are in the same scale, Brill 

et al. [102] introduced the resolving power of a QA metric, which measures a 

confidence in the predicted quality difference between pairs v1 and v2, ∆Qobj = 

Qobj(v1) – Qobj(v2). The resolving power gives an understanding of whether ∆Qobj is 

reasonable. It is worth here noting that the resolving power depends on subjective 

data. Hence, a QA metric may have different resolving powers on different datasets. 
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Classification errors take place if subjective quality difference, ∆Qsubj, and estimated 

quality difference, ∆Qobj, disagree for two different sources, in one of following ways 

[102], [103]: 

 

• when |∆Qsubj| > ∆ but |∆Qobj| < ∆ (false tie) 

• when |∆Qsubj| < ∆ but |∆Qobj| > ∆ (false difference) 

• when Qsubj(v1) > Qsubj(v2) but Qobj(v1) < Qobj(v2) (false ranking) 

 

where the threshold ∆ may depend on application. ∆ can also be associated with the 

minimum desired quality difference, which is usually the Just Noticeable Difference. 

 

4.1.4. Application-specific Evaluation 

 

Finally, the QA model should be tested in the specific application it was developed 

for. To illustrate, a model developed for optimization of an algorithm should be 

inserted in the loop of the real algorithm in order to validate that the algorithm 

generates better outputs in this case than outputs produced when the model is not in 

the loop. Similarly, a model developed for troubleshooting should be evaluated with 

a multi-component system prototype where different components’ failures are 

possible. Obviously, these verifications need a subjective testing. 

 

Throughout this thesis, performance evaluation of the proposed QA models have 

been performed using PCC and SROCC, mentioned in 4.1.2. The reason why outlier 

ratio and RMSE are not utilized is that most of the QA models to which we compare 

our QA models do provide only PCC and SROCC. Therefore, providing outlier ratio 

and RMSE does not give any idea about the performance of the proposed QA models 

since it is not possible to compare to other QA models. 

 

4.2. Results of the Video Quality Assessment Model 

 

Three different VQA databases, LIVE [98], [99], EPFL-PoliMI [104], [105], and IT-

IST [106], are selected to compare the performance of STN-VQM with the existing 
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VQA metrics. These VQA databases have been selected for comparison because they 

are publicly available, widely accepted and consist of videos with different properties 

such as content, spatial resolution, bit rate, frame rate, packet loss etc. Therefore, we 

are strongly convinced that these VQA databases provide us a thorough test 

environment. 

 

Among these databases, we used only LIVE VQA database for training purpose. The 

remaining databases are utilized only for the evaluation of STN-VQM. The results of 

STN-VQM on these VQA databases are compared with those of the well-known FR 

and NR VQA metrics. While comparing STN-VQM to other VQA metrics, 

numerical measures, PCC and SROCC are employed in order to calculate the 

correlation between the subjective Mean Opinion Scores (MOS) and the perceived 

quality estimates of STN-VQM. 

 

The advantages and performance of the STN-VQM over the other VQA algorithms 

will be described separately in the following subsections. It is here worth noting that 

STN-VQM considers spatial resolution, temporal information, bit rate, and PLR 

which are believed to be very significant for the perceived quality of a video 

sequence. 

 

4.2.1. Results on LIVE VQA Database 

 

As mentioned, we trained STN-VQM on the LIVE VQA database. To remember, the 

LIVE VQA database consists of 10 video contents distorted by 4 different processes. 

These processes are H.264 compression (4 videos), MPEG-2 compression (4 videos), 

ethernet packet losses (4 videos) and wireless bit losses (3 videos). The LIVE VQA 

database covers a large number of videos of the whole video space due to the variety 

in both video characteristics and distortion types [99]. 

 

The experimental setup is designed according ITU-T Recommendations ITU-R BT-

500 [66]. During subjective tests, discrete 5-point scale (1 refers to “bad” and 5 

refers to “excellent”), is employed. 38 students at the University of Texas at Austin 
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participated in the subjective test. 9 out of the 38 subjects were rejected due to their 

consistently pessimistic or optimistic quality judgments. In the subjective evaluation, 

Single Stimulus method, in which the test video is presented alone without being 

paired with the reference video, is adopted. A short training session, in which 

subjects familiarized with the user interface and the range of visual quality they 

could expect in the study, preceded the actual test. Videos in the training session are 

different from the videos in the study. Nevertheless, they have the same distortion 

types with the videos in the study. 

 

The testing method on LIVE VQA database is cross-validation. We randomly 

selected 10 videos from each distortions type for the training process. Since there are 

4 different distortion processes, we utilized 40 distorted video bitstreams for training 

among 150 distorted bitstreams. Remaining bitstreams are used in the evaluation 

step. Figure 4-1 shows the scatter plots of the subjective DMOS (y-axis) against the 

DMOS estimates of the STN-VQM (x-axis) on LIVE VQA database.  

 

 

 

 

Figure 4-1: Scatter plot of subjective DMOS against predicted DMOS by the STN-

VQM. 
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We compare the performance of the STN-VQM, to the FR metrics such as PSNR, 

VSNR, SW-SSIM, MS-SSIM, VQM and MOVIE. The comparison of STN-VQM to 

mentioned FR VQA metrics on both the H.264 compressed bitstreams and all 

bitstreams of the LIVE VQA database are presented in Table 4-1. We also compare 

the performance of the STN-VQM to the NR metrics such as MLSP moj, C-VQA, 

LapPyr, DVQPM, Zero-shot prediction, and Video-BLIINDS. The performance 

results of STN-VQM and mentioned NR VQA metrics on both the H.264 

compressed and all bitstreams of the LIVE VQA database are presented in Table 4-2. 

It is worth noting that MLSP moj, C-VQA, LapPyr, and DVQPM are designed to be 

used only on H.264 compressed bitstreams. 

 

 

Table 4-1: Comparison of STN-VQM to FR VQA metrics on LIVE video quality 

database 

 

Method Type H.264 All data H.264 All data 

  PCC SROCC 

PSNR FR 0.4385 0.4035 0.4296 0.3684 

VSNR [107] FR 0.6216 0.6896 0.646 0.6755 

SW-SSIM [108] FR 0.7206 0.5962 0.7086 0.5849 

MS-SSIM [109] FR 0.6919 0.7441 0.7051 0.7361 

VQM [13] FR 0.6459 0.7236 0.652 0.7026 

MOVIE [110] FR 0.7902 0.8116 0.7664 0.789 

STN-VQM NR 0.8122 0.6730 0.8026 0.6697 
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Table 4-2: Comparison of STN-VQM to NR VQA metrics on LIVE video quality 

database 

 

Method Type H.264 All data H.264 All data 

  PCC SROCC 

MLSP moj [111] NR 0.524 - 0.563 - 

C-VQA [112] NR 0.7927 - 0.7720 - 

LapPyr [17] NR 0.911 - 0.940 - 

DVQPM [113] NR 0.967 - 0.963 - 

Zero-shot Pred. [114] NR 0.778 0.62 0.777 0.604 

Video-BLIINDS [115] NR 0.893 0.881 0.839 0.759 

STN-VQM NR 0.8122 0.6730 0.8026 0.6697 

 

 

We analyze the results given in Table 4-1 and Table 4-2 in two different cases, 

considering only H.264 compressed bitstreams and considering all bitstreams in the 

LIVE VQA database. 

 

In the H.264 compressed bitstreams case, STN-VQM outperforms all FR VQA 

metrics as seen from Table 4-1. STN-VQM also performs better than MLSP moj, C-

VQA and Zero-shot prediction NR metrics as shown in Table 4-2. Although LapPyr 

and DVQPM seem to be more accurate, these algorithms utilize leave-one-out 

strategy while evaluating their algorithm. In the leave-one-out strategy, all videos 

except a test video are used for training and validation; the remaining sequence is 

used for the testing. This procedure is repeated for all videos and the obtained results 

are averaged over all videos. Hence, the performance results of the VQA models 

obtained via the leave-one-out strategy usually yield higher scores. Similarly, Video-

BLIINDS yields higher correlation results; nevertheless, the results of Video-

BLIINDS algorithm are obtained using all possible combinations of %80 train and 

%20 test splits. In addition, Video-BLIINDS does not consider bit rate and PLR 

features together with the spatiotemporal information of a video sequence while 

estimating perceived quality. Actually, it only uses spatial and temporal features of a 

video sequence in the DCT domain. However, STN-VQM appraises the quality in a 

hybrid way by combining the spatiotemporal information, bit-rate, and PLR, which 
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are all important parameters for the HVS judgment of a video sequence. To sum up, 

comparing STN-VQM to LapPyr, DVQPM, and Video-BLIINDS is not fair since 

our testing procedure uses only 40 of 150 distorted bitstream for training and the 

remaining videos are used for testing. 

 

When all bitstreams in the LIVE VQA database considered, STN-VQM provides 

competitive results even though the MOVIE and Video-BLIINDS outperform all 

algorithms in FR and NR cases, respectively. The arguments above regarding the 

difference in test procedure and features considered for the Video-BLIINDS are also 

valid in this case. Noting that MOVIE is an FR algorithm, STN-VQM gives quite 

promising results since most of the NR metrics in Table 4-2 are designed to estimate 

only the perceived quality of H.264 compressed bitstreams. In order to ease to 

interpret Table 4-1 and Table 4-2, correlation results of VQA models in Table 4-2 

tables are shaded with light gray if the corresponding VQA model has a higher 

correlation than STN-VQM. Similarly, correlation results of VQA models in both 

tables are shaded with dark gray if the corresponding VQA model has a lower 

correlation than STN-VQM. 

 

4.2.2. Results on PoliMI-EPFL VQA Database 

 

We utilized the subjective data collected at two universities in different countries: 

Politecnico di Milano (PoliMI) – Italy, and Ecole Politechnique Federale de 

Lausanne (EPFL) – Switzerland. This publicly available VQA database includes 

subjective scores, relative to quality assessment of 156 video streams encoded with 

H.264/AVC and corrupted by simulating packet losses over an error-prone network. 

The video Group of Picture (GOP) structure in this database is IBBP. 

 

78 of these 156 video streams are at Common Intermediate Format (CIF) spatial 

resolution (352x288 pixels). There are 6 different video contents, namely Foreman, 

Hall, Mobile, Mother, News and Paris, at 6 different packet loss rates, ranging from 

0.1% to 10% (One frame for all video contents is depicted in Figure 4-2). The 6 
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packet loss free sequences were also included in the test material, thus finally 78 

sequences were rated by each subject. 

 

 

 

Figure 4-2: One frame from each of the 6 video contents at CIF resolution. a) 

Foreman, b) Hall, c) Mobile, d) Mother, e) News, f) Paris [116]. 

 

 

Remaining 78 video streams are at 4CIF spatial resolution (704x576 pixels). 

Similarly, there are six different video sequences corresponding to 6 different video 

contents, namely Ice, Harbour, Soccer, CrowdRun, DucksTakeoff and ParkJoy, at 

different packet loss rates [0.1%, 0.4%, 1%, 3%, 5%, 10%]. One frame for all video 

contents is depicted in  Figure 4-3 . 
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Figure 4-3: One frame from each of the 6 video contents at 4CIF spatial resolution. 

a) CrowdRun, b) DucksTakeoff, c) Harbour, d) Ice, e) ParkJoy, f) Soccer [116]. 

 

 

These sequences at both CIF and 4CIF spatial resolution are said to be selected since 

they are claimed to be representative of different levels of spatial and temporal 

complexity, as computed by means of the Spatial Information (SI) and Temporal 

Information (TI) indexes (Figure 4-4). 

 

 

 

 

Figure 4-4: Spatial Information (SI) and Temporal Information (TI) indexes 

computed on the luminance component of the CIF and 4CIF video sequences [105]. 
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The compressed bitstreams were obtained using the H.264/AVC High Profile with 

the encoding parameters below: 

 

 

Table 4-3: H.264/AVC encoding parameters in PoliMI-EPFL VQA database [116] 

 

Reference Software JM 14.2 

Profile High 

Number of frames 298 

Chroma format 4:2:0 

GOP size 16 

GOP structure IBBPBBPBBPBBPBB ... 

Number of reference frames 5 

Slice Mode Fixed number of MBs 

Rate Control Disabled, fixed quantization parameter 

MB partitioning for motion 
estimation 

Enabled 

Motion estimation algorithm Enhanced Predictive Zonal Search  

Early skip detection Enabled 

Selective intra mod decision Enabled 

 

 

It is worth noting that each frame is split in 18 slices and each slice consists of a full 

row of MBs. In the NAL, the bitstreams were formatted for IP networks. Each packet 

just contains the single slice information. Hence, a packet loss means a loss of a full 

slice. The error concealment method employed in EPFL-PoliMI VQA database is 

frame-copy error concealment method. At first all videos in this database were 

utilized in the evaluation of STN-VQM, i.e., none of these 156 video streams have 

been used for training. Then we also performed training on EPFL-PoliMI VQA 

database. 

 

The experimental setup is designed according to ITU-T Recommendations ITU-R 

BT-500 [66]. During subjective tests, 5-point ITU continuous scale ([0-1] refers to 
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“bad” and (4-5] refers to “excellent”), is employed. The number of subjects 

participating in the test was as follows: 23 for CIF and 21 for 4CIF at PoliMI and 17 

for CIF and 19 for 4CIF at EPFL. Subjects’ ages range from 24 to 40 years. Some of 

the subjects were familiar with image and video processing. In the subjective 

evaluation, Single Stimulus method, in which the test video is presented alone 

without being paired with the reference video, is adopted. First, written instructions 

detailing the procedure were provided to subjects. Then a short training session, in 

which subjects familiarized with the user interface and assessment procedure, 

preceded the actual test. 

 

 

 

 

Figure 4-5: Scatter plot of subjective MOS against predicted DMOS by the STN-

VQM for video streams at CIF spatial resolution without training. 
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Figure 4-6: Scatter plot of subjective MOS against predicted DMOS by the STN-

VQM for video streams at 4CIF spatial resolution without training. 

 

 

Figure 4-5 shows the scatter plots of the subjective MOS against the DMOS 

estimates of STN-VQM on the PoliMI-EPFL VQA database at CIF spatial resolution 

without training. Figure 4-6 shows the scatter plots of the subjective MOS against the 

DMOS estimates of STN-VQM on the PoliMI-EPFL VQA database at 4CIF spatial 

resolution without training. 
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Table 4-4 tables are shaded with dark gray if the corresponding VQA model has a 

lower correlation than STN-VQM. 

 

As can be seen in Table 4-4, STN-VQM is validated on EPFL-PoliMI VQA 

databases at two different spatial resolutions. In general, the FR metrics are expected 

to perform better than the NR VQA models since they have full access to the 

reference video. Considering the FR methods, STN-VQM outperforms the VQA 

metrics such as PSNR, VQM, SSIM and VIF even though it is an NR metric. 

Nevertheless, MS-SSIM and MOVIE perform better than the STN-VQM. 

 

 

Table 4-4: Comparison of STN-VQM to FR VQA metrics on PoliMI-EPFL video 

quality database without training. 

 

Method Type PCC SROCC 

PSNR FR 0.793 0.800 

VSNR [107] FR 0.894 0.895 

MS-SSIM [109] FR 0.915 0.922 

VQM [13] FR 0.843 0.838 

SSIM FR 0.678 0.677 

VIF FR 0.749 0.740 

MOVIE [110] FR 0.930 0.920 

STN-VQM NR 0.848 0.906 
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Table 4-5: Comparison of STN-VQM to NR VQA metrics on PoliMI-EPFL video 

quality database without training. 

 

Method Type PCC SROCC 

GP metric [29] NR 0.882 0.883 

Video-BLIINDS [115] NR 0.752 0.807 

G.1070 [31] NR 0.910 0.890 

G.1070E [30] NR 0.930 0.920 

STN-VQM NR 0.848 0.906 

 

 

Considering the NR VQA metrics, STN-VQM has similar accuracy with the GP 

metric as shown in Table 4-5. This result is impressive noting that the GP metric uses 

%60 of all videos in EPFL-PoliMI VQA database for training and STN-VQM uses 

all videos in the same database for testing. Since there are limited number of NR 

VQA metrics utilizing the EPFL-PoliMI VQA database, Table 4-5 consists of the 

results of the Video-BLIINDS, G.1070 and G.1070E. Similar to the difference in 

testing procedure on LIVE VQA database, the testing procedure of Video-BLIINDS 

is based on averaging all possible combinations of %80 train and %20 test splits of 

only 4CIF videos in the EPFL-PoliMI VQA database. G.1070 and G.1070E VQA 

models also use only 4CIF videos in the EPFL-PoliMI VQA database. Moreover, the 

training procedures of these methods are not stated clearly. Although it may not be 

fair to compare STN-VQM with these algorithms due to these differences, we feel it 

is necessary to include them in Table 4-5. 

 

We also performed training in EPFL-PoliMI VQA database. Since the main 

distortion in this database is network distortion, the focus of the training step was 

finding better coefficients for m and n in hTR in (4-24). This time, we directly trained 

according to MOS instead of DMOS and obtained MOS estimates in 0-5 range. 

 

Table 4-6 shows the new coefficients for transmission distortion after training video 

streams in EPFL-PoliMI VQA database at CIF spatial resolution. Figure 4-7 depicts 

the scatter plot of subjective MOS against predicted MOS by the STN-VQM after 
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training video streams in EPFL-PoliMI VQA database at CIF spatial resolution. The 

resulting PCC and SROCC are 0.94 and 0.92, respectively. These correlation 

coefficients are higher than those obtained in the same database without training, as 

expected. 

 

 

Table 4-6: New coefficients for transmission distortion after training video streams in 

EPFL-PoliMI VQA database at CIF spatial resolution 

 

Coefficient Name Value 

m 0.14 

n -0,27 

 

 

 

 

Figure 4-7: Scatter plot of subjective MOS against predicted MOS by the STN-VQM 

after training video streams in EPFL-PoliMI VQA database at CIF spatial resolution. 
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the scatter plot of subjective MOS against predicted MOS by the STN-VQM after 

training video streams in EPFL-PoliMI VQA database at 4CIF spatial resolution. The 

resulting PCC and SROCC are 0.93 and 0.92, respectively. These correlation 

coefficients are also higher than those obtained in the same database without training, 

as expected. 

 

 

Table 4-7: New coefficients for transmission distortion after training video streams in 

EPFL-PoliMI VQA database at 4CIF spatial resolution. 

 

Coefficient Name Value 

m 0.14 

n -0.24 

 

 

 

 

Figure 4-8: Scatter plot of subjective MOS against predicted MOS by the STN-VQM 

after training video streams in EPFL-PoliMI VQA database at 4CIF spatial 

resolution. 
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4.2.3. Results on IT-IST VQA Database 

 

We also evaluated STN-VQM on subjective data collected by the Image Group of 

Instituto de Telecomunicacoes, Instituto Superior Tecnico (IT-IST) [106]. There are 

video streams with various video contents at CIF spatial resolution with 

corresponding subjective scores in IT-IST VQA database (One frame of all video 

content is illustrated in Figure 4-9). These video streams are encoded with 

H.264/AVC at various bit rates ranging from 32 to 2048 kbit/s (see Table 4-8). There 

is no packet loss in the utilized IT-IST VQA database. The videos in the IT-IST 

VQA database have a GOP structure IBBP.  

 

 

 

 

Figure 4-9: One frame from each of the video contents in IT-IST VQA database 

[117]. 

 

 

The experimental setup is designed according to ITU-T Recommendations ITU-R 

BT-500 [66]. During subjective tests, discrete 5-point scale (1 refers to “very 
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annoying” and 5 refers to “imperceptible”), is employed. 22 subjects, most of whom 

were students, participated in the subjective test. In the subjective evaluation, Double 

Stimulus Impairment Scale method, in which the test video is presented to subjects 

after presenting the reference video, is adopted. Before subjective tests, Snellen Eye 

Chart and Ishihara’s plates are utilized in order to screen subjects for visual acuity 

and color blindness. 

 

 
Table 4-8: Encoding bit rates of the vdeo streams using H.264/AVC 

 

Video Sequence Encoding Bit Rates (kbps) 

City 128, 200, 256, 612 

Costguard 64, 100, 128, 200, 256, 512 

Container 64, 128, 256, 512 

Crew 128, 200, 400, 1024 

Football 256; 400, 512, 750, 1024, 2048 

Foreman 64, 128, 256, 512 

Mobile 64, 128, 200, 256, 400, 512 

Silent 64, 200, 400, 1024 

Stephan 128, 200, 256, 400, 512, 1024 

Table 64, 128, 256, 512 

Tempete 128, 200, 400, 750 

 

 

At first, none of the videos in this database are employed for training, i.e., all videos 

in this database are used to test the STN-VQM. Then we also performed training in 

IT-IST VQA database. 
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Figure 4-10: Scatter plot of subjective MOS against predicted DMOS by the STN-

VQM for video streams in IT-IST VQA database without training. 

 

 

Figure 4-10 depicts the scatter plot of the subjective MOS against the DMOS 

estimates of STN-VQM on the IT-IST VQA database without training. The 

performance of STN-VQM is compared to two NR VQA algorithms, namely the 

ITU-T Recommendation G.1070 [31] and enhanced G.1070 system, referred as 

G.1070E [30]. Comparison of the results of the STN-VQM on the IT-IST VQA 

database with the results of the G.1070 and G.1070E on the same database is 

provided in Table 4-9. 

 

 

Table 4-9: Comparison of STN-VQM to NR VQA metrics on IT-IST VQA database 

 

Method PCC SROCC 

G.1070 [31] 0.71 0.81 

G.1070E [30] 0.91 0.94 

STN-VQM 0.87 0.90 
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Results on Table 4-9 states that STN-VQM is also validated on the IT-IST VQA 

database. Clearly, STN-VQM outperforms the ITU-T Recommendation G.1070. 

STN-VQM and G.1070E seem to have similar accuracy. It is here worth restating 

that videos in IT-IST VQA database are used only for testing, i.e., none of the video 

streams in this database are used for training. Furthermore, the G.1070 and G.1070E 

models do not consider spatial resolution feature which can yield blurring artifact 

influencing the HVS while evaluating the quality of a video sequence. However, 

STN-VQM uses the spatial resolution, temporal information, bit rate, and PLR 

parameters which are all important for the quality assessment in a hybrid manner. 

 

We also performed training in IT-IST VQA database. Since the main distortion in 

this database is compression distortion, the focus of the training step was finding 

better coefficients for a through f in DMOSinitial(S, T) in (3-12). This time, we 

directly trained according to MOS instead of DMOS and obtained MOS estimates in 

0-5 range. 

 

Table 4-10 shows the new coefficients for compression distortion after training video 

streams in IT-IST VQA database. Figure 4-11 depicts the scatter plot of subjective 

MOS against predicted MOS by the STN-VQM after training video streams in IT-

IST VQA database. The resulting PCC and SROCC was 0.89 and 0.88 respectively. 

We obtained higher prediction accuracy (indicated by higher value of PCC) after 

training as expected. In terms of prediction monotonicity, the performance is almost 

the same. 
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Table 4-10: New coefficients for compression distortion after training video streams 

in IT-IST VQA database 

 

Coefficient Name Value 

a 5.65 

b -17.6 

c -480.6 

d 57.7 

e -914.1 

f 3.23x104 

 

 

 

 

Figure 4-11: Scatter plot of subjective MOS against predicted MOS by the STN-

VQM after training video streams in IT-IST VQA database. 

 

 

4.3. Audio Quality Assessment Results 
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“recommended” sampling rate for each target bit rate. Audio test conditions are 

detailed in Table 4-11 [70]. The audio source material was 16-bit PCM stereo 

sampled at 48 kHz. The audio sampling rate reduction was carried out internally by 

the encoder. 

 

The experimental setup is designed according to ITU-T Recommendations P.911 

[118]. Absolute Category Rating, where the test clips are viewed one at a time and 

evaluated independently on a discrete 11-level scale (0 refers to “bad” and 10 refers 

to “excellent”), is employed in subjective testing. Six female and 18 male subjects, 

whose ages range from 25 to 36 years, participated in the test. One of the subjects 

was familiar with the audio processing. High-quality headphones (Sennheiser HD 

600) were connected to an external digital-to-analog converter (Emagic EMI A26) 

for the audio playback. First, written instructions detailing the procedure were 

provided to subjects. Then a short training session, in which subjects adjusted 

headphone volumes, preceded the actual test. 

 

 

Table 4-11: Test conditions of the audio quality assessment database  

 

Condition Channels Sampling Rate (kHz) Bit Rate (kbps) 

1 Mono 8 8 
2 Mono 16 16 
3 Mono 22 24 
4 Mono 32 32 
5 Mono 22 32 
6 Stereo 22 32 
7 Stereo 16 32 

 

 

Figure 4-12 shows the scatter plots of the subjective MOS against the MOS estimates 

of the proposed AQA metric on the AQA database. Proposed AQA metric has a PCC 

value of 0.978 and SROCC value of 0.912. Noting the fact that proposed AQA 

model is a NR model, these results are quite promising. 
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Figure 4-12: Scatter plot of subjective MOS against predicted MOS by the proposed 

AQA metric. 

 

 

4.4. Audiovisual Quality Assessment Results 

 

First, we evaluated STN-VQM on video data in the AVQA database provided by 

University of Plymouth [87]. This AVQA database consists of 60 audiovisual 

samples. There are 6 different video contents and video files are encoded with H.263 

with frame rates either 8 or 15. It is here worth restating that there are packet losses 

which occur in the wireless segment of the network using a Gilbert-Elliot model with 

packet error rates, 0.01, 0.05, 0.1, 0.15 and 0.20. 

 

The experimental setup is designed according to ITU-T Recommendations P.910 [6], 

P.911 [118] and P.800 [67]. Absolute Category Rating, where the test clips are 
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and 9 male and 7 female participated in audiovisual part. Subjects were either staff or 

student at the University of Plymouth. Subjective tests are conducted through a 

website, where the samples are presented to subjects and their corresponding scores 

are acquired. Full instructions detailing the test procedure were given in the website. 

It is here worth noting that a warm-up page is presented at the preceding the actual 

test. 

 

Figure 4-13 shows the scatter plots of the video MOS against the video MOS 

estimates of the STN-VQM on Plymouth AVQA database. STN-VQM has a PCC 

value of -0.81 and SROCC value of -0.81. Negative correlations are due to the fact 

that STN-VQM outputs DMOS values instead of MOS values. It is here worth 

stating that none of the videos in this database are employed for training, i.e., all 

videos in this database are used to test the STN-VQM. 

 

 

 

 

Figure 4-13: Scatter plot of subjective video MOS against predicted video DMOS by 

the STN-VQM for video streams in Plymouth AVQA database. 
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Figure 4-14 shows the scatter plots of the subjective audio MOS against the audio 

MOS estimates of the proposed AQA metric on Plymouth AVQA database. 

Proposed AQA metric has a PCC value of 0.74 and SROCC value of 0.74. Keeping 

in mind that proposed AQA model is a NR model, these results are said to be quite 

satisfactory. 

 

 

 

 

Figure 4-14: Scatter plot of subjective audio MOS against predicted audio MOS by 

the AQA algorithm for audio streams in Plymouth AVQA database. 

 

 

4.4.1. Results of DAVQA Model 

 

Figure 4-15 shows the scatter plots of the audiovisual MOS against the audiovisual 

MOS computed by DAVQA model using subjective video MOS and subjective 

audio MOS in Plymouth AVQA database. 
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Figure 4-15: Scatter plot of subjective audiovisual MOS against audiovisual MOS 

obtained by DAVQA model using subjective video MOS and subjective audio MOS 

in Plymouth AVQA database. 

 

 

Figure 4-16 shows the scatter plots of the audiovisual MOS against the predicted 

audiovisual MOS obtained by DAVQA model using objective video DMOS 

estimated with STN-VQM and objective audio MOS estimated with the proposed 

AQA algorithm in Plymouth AVQA database. 

 

Figure 4-15 and Figure 4-16 show that audiovisual MOS obtained by DAVQA model 

provides high correlation with subjective audiovisual MOS.  
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Figure 4-16: Scatter plot of subjective audiovisual MOS against predicted 

audiovisual MOS by DAVQA model in Plymouth AVQA database. 

 

 

4.4.2. Results of CDAVQA Model 

 

Figure 4-17 shows the scatter plots of the audiovisual MOS against the audiovisual 

MOS computed by CDAVQA model using subjective video MOS and subjective 

audio MOS in Plymouth AVQA database. 
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Figure 4-17: Scatter plot of subjective audiovisual MOS against audiovisual MOS 

obtained by CDAVQA model using subjective video MOS and subjective audio 

MOS in Plymouth AVQA database. 

 

 

Table 4-12: Performance comparison of DAVQA and CDAVQA models when 

subjective video and subjective audio scores are utilized 

 

Model Audiovisual Data PCC SROCC 

DAVQA Subjective video MOS / Subjective Audio MOS 0.775 0.781 

CDAVQA Subjective video MOS / Subjective Audio MOS 0.813 0.802 
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Figure 4-18: Scatter plot of subjective audiovisual MOS against audiovisual MOS 

obtained by CDAVQA model using subjective video MOS and subjective audio 

MOS for videos classified as Class 1 in Plymouth AVQA database. 

 

 

 

 

Figure 4-19: Scatter plot of subjective audiovisual MOS against audiovisual MOS 

obtained by CDAVQA model using subjective video MOS and subjective audio 

MOS for videos classified as Class 2 in Plymouth AVQA database. 
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Figure 4-20: Scatter plot of subjective audiovisual MOS against audiovisual MOS 

obtained by CDAVQA model using subjective video MOS and subjective audio 

MOS for videos classified as Class 3 in Plymouth AVQA database. 

 

 

 

 

Figure 4-21: Scatter plot of subjective audiovisual MOS against audiovisual MOS 

obtained by CDAVQA model using subjective video MOS and subjective audio 

MOS for videos classified as Class 4 in Plymouth AVQA database. 
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Table 4-13: Performance of CDAVQA model for each class when subjective video 

and subjective audio scores are utilized 

 

Class Audiovisual Data PCC SROCC 

Class 1 Subjective video MOS / Subjective Audio MOS 0.883 0.812 

Class 2 Subjective video MOS / Subjective Audio MOS 0.786 0.794 

Class 3 Subjective video MOS / Subjective Audio MOS 0.774 0.807 

Class 4 Subjective video MOS / Subjective Audio MOS 0.859 0.830 

 

 

Figure 4-22 shows the scatter plots of the audiovisual MOS against the predicted 

audiovisual MOS obtained by CDAVQA model using objective video DMOS 

estimated with STN-VQM and objective audio MOS estimated with the proposed 

AQA algorithm in Plymouth AVQA database. 

 

 

 

 

Figure 4-22: Scatter plot of subjective audiovisual MOS against predicted 

audiovisual MOS by CDAVQA model in Plymouth AVQA database. 
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Moreover, we investigated the performance of DAVQA and CDAVQA models when 

objective scores obtained by STN-VQM and our AQA model are utilized. We also 

compared their performance to full-reference objective VQA metric, PSNR, and full-

reference objective AQA metric, PESQ, and their combination on the University of 

Plymouth AVQA database. 

 

 
Table 4-14: Performance comparison of DAVQA and CDAVQA models when 

objective video and objective audio scores are utilized 

 

Model Audiovisual Data PCC 

PESQ Objective Audio MOS 0.679 

PSNR Objective Video MOS 0.678 

PESQ + PSNR Objective Video/Audio MOS 0.814 

PESQ.PSNR Objective Video/Audio MOS 0.789 

PESQ + PSNR + PESQ.PSNR Objective Video/Audio MOS 0.788 

DAVQA Objective Video/Audio MOS  0.802 

CDAVQA Objective Video/Audio MOS 0.829 

 

 

As can be observed from the results in Table 4-14, it is impressive that CDAVQA 

outperforms other models in the same table. Moreover, both PSNR and PESQ are 

full-reference metrics and have full-access to the reference audiovisual data whereas 

CDAVQA is a no-reference AVQA model. 

 

Figure 4-23, Figure 4-24, Figure 4-25 and Figure 4-26 illustrate the correlation of 

each class when objective video DMOS estimated with STN-VQM and objective 

audio MOS estimated with the proposed AQA algorithm are employed. The 

correlation coefficients for each class are presented in Table 4-15. 
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Figure 4-23: Scatter plot of subjective audiovisual MOS against predicted 

audiovisual MOS by CDAVQA model for videos classified as Class 1 in Plymouth 

AVQA database. 

 

 

 

 

Figure 4-24: Scatter plot of subjective audiovisual MOS against predicted 

audiovisual MOS by CDAVQA model for videos classified as Class 2 in Plymouth 

AVQA database. 
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Figure 4-25: Scatter plot of subjective audiovisual MOS against predicted 

audiovisual MOS by CDAVQA model for videos classified as Class 3 in Plymouth 

AVQA database. 

 

 

 

 

Figure 4-26: Scatter plot of subjective audiovisual MOS against predicted 

audiovisual MOS by CDAVQA model for videos classified as Class 4 in Plymouth 

AVQA database. 
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Table 4-15: Performance of CDAVQA model for each class when objective video 

and objective audio scores are utilized 

 

Class Audiovisual Data PCC SROCC 

Class 1 Objective video MOS / Objective Audio MOS 0.895 0.891 

Class 2 Objective video MOS / Objective Audio MOS 0.901 0.939 

Class 3 Objective video MOS / Objective Audio MOS 0.768 0.762 

Class 4 Objective video MOS / Objective Audio MOS 0.800 0.770 

 

 

As it can be seen in Table 4-15, correlation coefficients of Class 1 and Class 2 are 

higher than correlation coefficients of Class 3 and Class 4. However, the correlation 

coefficients of Class 3, which contains three video contents, are quite satisfactory. 

Moreover, it can be deduced that if we had classified video contents into more than 4 

classes, the performance of CDAVQA would have been higher. 
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CHAPTER 5 

5. CONCLUSIONS AND FUTURE WORK 

 

 

5.1. Summary of the Thesis 

 

In this thesis, a novel, spatiotemporal, bit rate, and packet loss structured, objective 

NR VQA metric, STN-VQM, has been proposed. STN-VQM is designed to predict 

perceived video quality degraded by compression and transmission distortions. STN-

VQM is developed for videos of various contents with different spatial resolutions, 

bit rates, frame rates etc. assuming that if there is a packet loss, it occurs randomly. 

STN-VQM has been trained on the LIVE VQA database and evaluated on LIVE, 

EPFL-PoliMI and IT-IST VQA databases. STN-VQM has also been evaluated on 

University of Plymouth AVQA database. STN-VQM is shown to produce robust and 

accurate estimates for DMOS on these VQA databases, which span a wide range of 

video contents, spatial resolutions, bit rates, frame rates, packet losses etc. 

Comparison to the existing state-of-the-art FR and NR VQA metrics indicates that 

the STN-VQM provides promising results. 

 

In addition, a novel sampling rate, bit rate and packet loss structured, objective NR 

AQA metric has been introduced. This AQA metric is developed for audio signals 

with different sampling rates, bit rates etc. assuming that if there is a packet loss, it 

occurs randomly. This AQA metric has been trained and evaluated on two different 

AQA databases. The AQA metric provides accurate estimates on these AQA 

databases, which have different audio encoding types. 

 

Moreover, designing an objective NR AVQA metric to be used in order to predict 

audiovisual quality degradations due to compression and transmission distortions in 

multimedia streaming applications is aimed. This AVQA metric is expected to be 

robust to changes in video characteristics such as video content, codec, bit rate, 

frame rate, spatial resolution etc. It is also expected to be robust to changes in audio 
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codec, sampling rate and bit rate. Two different approaches are followed in order to 

obtain the AVQA model. First, we followed the classical approach in the literature, 

which we name as DAVQA, and obtained audiovisual quality as a combination of 

perceived video quality estimate, perceived audio quality estimate and their product. 

In the second approach (which we propose and name as CDAVQA), we again 

obtained perceived audiovisual quality estimate as a linear combination of perceived 

video quality estimate, perceived audio quality estimate and their product. However, 

we used different coefficient set for each class, which is obtained by a video 

spatiotemporal characteristics based classification algorithm proposed by us. This 

classification algorithm is shown to classify videos subject to compression and/or 

transmission distortions successfully. Results of DAVQA and CDAVQA are 

compared using both subjective and objective video and audio MOS on University of 

Plymouth AVQA database. Based on this comparison, CDAVDA is proven to be 

more accurate than DAVQA. 

 

Nevertheless, there are some issues not addressed in our AVQA model, CDAVQA. 

To begin with, although STN-VQM, proposed AQA model and CDAVQA are 

evaluated on many different quality assessment databases, they are still based on 

limited data. Proposed quality assessment models provide promising results for 

various content audiovisual materials with different video characteristics such as 

video content, spatial resolution, bit rate, frame rate, packet loss ratio etc. and with 

different audio characteristics such as audio content, sampling rate, bit rate and 

packet loss ratio. Although mentioned audiovisual characteristics cover a wide range 

of audiovisual material, it may not span the audiovisual material space, i.e., there 

may be some other factors contributing to the perceived audiovisual quality. 

 

In addition, burst packet losses are not addressed in the proposed quality assessment 

models. Moreover, effects of freezing and re-buffering on perceived audiovisual 

quality have not been considered in the proposed AVQA model. Another important 

quality degrading factor is the synchronization problems in the video and 

accompanying audio. This factor also has not been taken into account in the 

proposed AVQA model. The proposed AVQA model may also fail in assessing the 

audiovisual quality of some specific synthetic audiovisual material. To illustrate, 
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assume that a synthetic audiovisual data is obtained by combining a high quality 

video and a high quality audio, which belongs to another video content. Although, 

this content mismatch may significantly disturb viewers, the proposed AVQA model 

will most probably decide the audiovisual data as high quality since it does not check 

whether video and audio contents are compatible. This fact indicates that perceived 

audiovisual quality estimation is still an open research are in both subjective and 

objective domains. 

 

5.2. Conclusions 

 

With the advances in multimedia applications, end user satisfaction becomes an 

important issue. Among many subjective and objective factors, perceived video 

quality is believed to be the most important factor contributing to end user 

satisfaction. Hence, there is an obvious need in accurate perceived quality prediction. 

However, it is not trivial to estimate perceived video quality since there are many 

different components in video systems contributing to perceived quality such as 

capture and display devices, codecs, routers etc. Moreover, modeling human visual 

system (HVS) is very complicated. The best solution to VQA is conducting 

subjective tests. However, subjective tests are time- and cost-expensive, therefore, 

they are not applicable in online applications. Classical approaches such as PSNR 

and MSE are known to fail in appraising perceived quality since these methods treat 

data without considering what the data represent visually. As a result, development 

of accurate VQA models is necessary. Preferably, these models should not need the 

reference video signal in order to be used in multimedia streaming applications. 

 

In order to assess video quality accurately, perceived video quality degradation 

sources such as compression and transmission should be analyzed. Compression is 

known to result in spatial and temporal distortion, whereas the most disturbing 

transmission distortion is believed to be packet losses. Moreover, compression and 

transmission distortions are expected to affect perceived video quality in a different 

way for different video contents. Since HVS is not perfectly explored, it is not 

possible to perfectly imitate HVS. In this thesis, we show that STN-VQM is an 



104 

 

accurate VQA model capable of estimating spatial and temporal degradations caused 

by compression and transmission distortions. 

 

It is known that perceived audio quality also contributes to the perceived audiovisual 

quality. Hence, in order to assess audiovisual quality, audio quality should also be 

accurately estimated. Similar to the video case, perceived audio quality is subject to 

distortions occurring in compression and transmission. In this thesis, we show that 

sampling rate and bit rate are strong indicators of compression distortion. Moreover, 

we show that packet loss ratio can be used in order to model the impact of 

transmission distortions on perceived audio quality. 

 

Finally, perceived audiovisual quality is generally predicted using perceived video 

and audio quality estimates. The most common approach is using linear combination 

of video quality, audio quality and their product. Although, this approach is proven 

to produce audiovisual quality estimates correlated with subjective tests, there is a 

strong consensus on the fact that audiovisual content should be considered while 

evaluating perceived audiovisual quality estimate. The reason is that the dominance 

of video quality on audiovisual quality is known to depend on the content. It is 

evident that the audio quality is more important in multimedia applications such as 

video call, news, interview etc. In this thesis, we proposed a video spatiotemporal 

characteristics based content classification algorithm which is shown to be robust to 

both compression and transmission distortions. We also proved that audiovisual 

quality estimates become more accurate when the audiovisual content classification 

is taken into account.  

 

CDAVQA model can be used in different ways. To illustrate, results of CDAVQA 

model can be used in order to control audiovisual data transfer rate in multimedia 

streaming applications. To illustrate, assume that a highly compressed audiovisual 

data is transferred over a network with certain bandwidth. In this case, packet losses 

may seldom occur since the size of the audiovisual data is relatively low due to high 

compression. However, when the compression amount decreases, the frequency of 

packet losses may increase since the size of the audiovisual data to be transferred 

increases. This increase in packet loss ratio may result in lower perceived quality. As 
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it is seen, even higher compression may cause higher perceived audiovisual quality 

when the network characteristics are not considered. In such situations, if the packet 

loss ratios may somehow be accurately estimated before transferring different 

amount of audiovisual data over the same network, the optimum compression 

amount resulting in the highest audiovisual perceived quality may be selected. 

 

Another scenario in which CDAVQA is employed may be the following. Results of 

CDAVQA model can also be used in order to decide optimal tradeoff between video 

and audio bit rate budget allocation for audiovisual material transfer over a network 

with certain bandwidth to achieve the maximum perceived audiovisual quality. Some 

studies indicate that for complex video contents, an increase in audio bit rate should 

be preferred to the same amount of increase in video bit rate for higher perceived 

audiovisual quality [70]. This may not seem reasonable at first. Nonetheless, the 

reason is that an increase in video bit rate may improve perceived video quality 

negligibly whereas the same amount of increase in audio bit rate improves perceived 

audio quality significantly. 

 

5.3. Future Work 

 

As a future work, STN-VQM and the proposed AQA model may be improved by 

means of adding new features in order to cope with packet losses which are not 

random. Furthermore, freezing, re-buffering and video-audio synchronization are 

important issues that must be considered. Moreover, algorithms capable of deciding 

whether video and audio contents are compatible may be inserted into the CDAVQA 

model. Obviously, the effect of these distortion types on the multimodal quality is 

required to be examined. For this purpose, subjective tests investigating the impact of 

mentioned factors on perceived audiovisual quality may be conducted. In addition, 

performance of CDAVQA may be improved by extending video content 

classification algorithm by adding specific audio characteristics.  
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