

RSAR: A LAYERED SOFTWARE ARCHITECTURE FOR CYBER-PHYSICAL

SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERHAN AKAGÜNDÜZ

IN PARTIAL FULFILLMENT OF REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2015

Approval of the thesis:

RSAR: A LAYERED SOFTWARE ARCHITECTURE FOR CYBER-

PHYSICAL SYSTEMS

submitted by ERHAN AKAGÜNDÜZ in partial fulfillment of the requirements for

the degree of Master of Science in Electrical and Electronics Engineering

Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver

Dean, Graduate School of Natural and Applied Sciences _____________

Prof. Dr. Gönül Turhan Sayan

Head of Department, Electrical and Electronics Engineering _____________

Assoc. Prof. Dr. Şenan Ece Schmidt

Supervisor, Electrical and Electronics Engineering Dept., METU _____________

Assoc. Prof. Dr. Halit Oğuztüzün

Co-supervisor, Computer Engineering Dept., METU _____________

Examining Committee Members:

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

Electrical and Electronics Engineering Dept., METU _____________

Assoc. Prof. Dr. Şenan Ece Schmidt

Electrical and Electronics Engineering Dept., METU _____________

Prof. Dr. Ali Doğru

Computer Engineering Dept., METU _____________

Prof. Dr. Semih Bilgen

Computer Engineering Dept., Yeditepe University _____________

M. Sc. Koray Taylan

Embedded Software Systems Dept., Roketsan Missiles Inc. _____________

 Date: 13.02.2015

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name: Erhan Akagündüz

Signature :

v

ABSTRACT

RSAR: A LAYERED SOFTWARE ARCHITECTURE FOR CYBER-

PHYSICAL SYSTEMS

Akagündüz, Erhan

M. S., Department of Electrical and Electronics

Supervisor: Assoc. Prof. Dr. Şenan Ece Schmidt

Co-Advisor: Assoc. Prof. Dr. Halit Oğuztüzün

February 2015, 63 Pages

Cyber-physical systems integrate the computation and physical processes. Embedded

computing systems are used to control and monitor physical processes. Development

of software for cyber-physical systems requires deep knowledge on different

engineering areas and physics. Embedded software for a cyber-physical system

requires software architectures to separate works done by software developers and

dynamic model developers. AUTOSAR is a layered software architecture to develop

automotive systems. Main purpose of the AUTOSAR layered software architecture is

to separate software development process from hardware details. FMI, on the other

hand, is a tool-independent dynamic model interface standard. In this thesis, a

layered software architecture RSAR is proposed for cyber-physical systems

development. RSAR adheres to the layered software architecture concept of

AUTOSAR and supports dynamic model usage with FMI standard.

Keywords: Functional Mockup Interface; Layered Software Architecture for Cyber-

Physical Systems

vi

ÖZ

RSAR: SİBER-FİZİKSEL SİSTEMLER İÇİN KATMANLI YAZILIM

MİMARİSİ

Akagündüz, Erhan

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Şenan Ece Schmidt

Ortak Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün

Şubat 2015, 63 Sayfa

Siber-fiziksel sistemler fiziksel işlemlerin kontrolünü ve gözlenmesini gerçekleştiren

gömülü yazılım içeren sistemlerdir. Siber-fiziksel sistem geliştirmek üst seviye farklı

mühendislik alanından bilgi ve fizik bilgisi gerektirmektedir. Siber-fiziksel sistem

gömülü yazılımları, yazılım geliştiricileri tarafından yapılan işler ile dinamik model

geliştiricileri tarafından yapılan işleri birbirinden ayıran yazılım mimarilerine ihtiyaç

duymaktadır. AUTOSAR otomotiv sistemlerinin geliştirilmesinde kullanılmak üzere

katmanlı yazılım mimarisi sunmaktadır. Bu mimarinin ana amacı yazılım geliştirme

süreçlerini donanım detaylarından ayırmaktır. FMI geliştirme araçlarından bağımsız

dinamik model arayüz standartıdır. Bu tez kapsamında siber-fiziksel sistem

yazılımları geliştirilmesinde kullanılmak üzere RSAR katmanlı yazılım mimarisi

önerilmiştir. RSAR, AUTOSAR katmanlı yazılım mimarisi kavramlarını ve FMI

standartında arayüz sunan dinamik modelleri kullanmaktadır.

Anahtar Kelimeler: İşlevsel Model Arayüzü; Siber-fiziksel Sistemler için Katmanlı

Yazılım Mimarisi

vii

OLEDGMENTS

To My Family

viii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Şenan Ece Schmidt for her

guidance, advice, criticism, encouragements and insight throughout this research.

I also wish to thank a lot to my co-advisor Assoc. Prof. Dr. Mehmet Halit Oğuztüzün

for all the valuable knowledge, technical support, academic assistance, innovative

ideas.

I also wish to thank a lot to my manager Koray Taylan for all the valuable efforts to

ease the procedural processes, to find financial contribution, to provide moral

support, to enhance the quality of this thesis work.

I would like to thank to Turkish Ministry of National Defense, Under-secretariat for

Defense Industries which gave the team financial and moral support [Project Name:

MOKA].

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS .. xv

CHAPTERS

1. INTRODUCTION ... 1

2. BACKGROUND ... 3

 Automotive Open System Architecture (AUTOSAR) Standard 3 2.1

2.1.1 History .. 3

2.1.2 Definitions .. 4

2.1.3 Software Architecture .. 4

 Functional Mock-up Interface (FMI) .. 6 2.2

2.2.1 History .. 7

2.2.2 Definitions .. 7

2.2.3 FMI for Co-simulation ... 7

3. RELATED WORKS .. 9

4. RSAR: A LAYERED SOFTWARE ARCHITECTURE FOR CYBER-

PHYSICAL SYSTEMS ... 11

 Aim of RSAR .. 11 4.1

 RSAR Layers ... 12 4.2

 Scheduler Design ... 14 4.3

x

 Software Component Layer Design .. 16 4.4

 Run Time Environment Layer Design ... 17 4.5

 Data Abstraction Layer Design ... 18 4.6

4.6.1 UART Protocol Abstraction Layer Design .. 19

4.6.2 DIO Data Abstraction Layer Design .. 23

 Hardware Abstraction Layer Design ... 24 4.7

4.7.1 General Purpose Timer (GPT) Driver Design 24

4.7.2 Universal Asynchronous Receiver/Transmitter Driver Design 26

4.7.3 Digital Input/Output Driver (DIO) Driver Design 28

 Design Overview ... 29 4.8

5. SYSTEM INTEGRATION PROCESS .. 31

 System Build Steps .. 31 5.1

 Software Component Layer Code Generation ... 32 5.2

 Run Time Environment Layer Code Generation ... 36 5.3

 Data Abstraction Layer Code Generation ... 38 5.4

5.4.1 UART Data Abstraction Layer Code Generation 38

5.4.2 DIO Data Abstraction Layer Code Generation 41

 System Builder Definition ... 43 5.5

6. CASE STUDY AND EVALUATION ... 45

 Case Study ... 45 6.1

6.1.1 Algorithm Design ... 45

6.1.2 Real-time Software Design .. 47

 Evaluation .. 51 6.2

6.2.1 Performance Evaluation ... 51

6.2.2 Development Benefit Evaluation ... 55

6.2.3 Software Development on Different Hardware 58

xi

7. CONCLUSION .. 61

REFERENCES ... 63

xii

LIST OF TABLES

TABLES

Table 1 Algorithm Signals ... 46

Table 2 Test Message 1 Attribute Content ... 52

Table 3 Test Message 2 Attribute Content ... 53

Table 4 Message Transmit Time Comparison ... 53

Table 5 DIO Access Time Comparison ... 54

Table 6 FMU Execution Time Comparison ... 54

Table 7 Missile Guidance Computer Exchanged Message Numbers 57

xiii

LIST OF FIGURES

FIGURES

Figure 1 Layered Software Architecture of AUTOSAR [3] .. 5

Figure 2 Divided Basic Software Layer [3] .. 6

Figure 3 Proposed Layered Software Architecture For Cyber-Physical Systems 12

Figure 4 Scheduler Relations ... 15

Figure 5 addTask Method Definition ... 16

Figure 6 Software Component Design ... 17

Figure 7 UART Data Abstraction Layer Example ... 20

Figure 8 Receiving UART Protocol Message .. 22

Figure 9 Transmitting UART Protocol Message ... 23

Figure 10 GPT Driver Time Base Type ... 24

Figure 11 GPT Driver Mode Type ... 25

Figure 12 GPT Driver Callback Method Type .. 25

Figure 14 UART Driver Baud-Rate Type .. 27

Figure 15 UART Configuration Parameter Types ... 27

Figure 16 UART Driver Interface Methods ... 28

Figure 17 DIO Driver Interface.. 28

Figure 18 DIO Driver Constructor ... 29

Figure 19 DIO Driver Constructor Map .. 29

Figure 20 Example Software Design in RSAR ... 30

Figure 21 System Build Steps .. 31

Figure 22 Interface Definition XML .. 33

Figure 23 InterfaceGenerator Script Usage.. 33

Figure 24 Generated Interface File .. 34

xiv

Figure 25 Task Definition XML .. 34

Figure 26 AbstractTaskGenerator Usage Example .. 34

Figure 27 Generated Task Header File .. 35

Figure 28 FMU – Task Integration ... 36

Figure 29 RunTimeEnvironmentGenerator Usage Example 37

Figure 30 Generated RunTimeEnvironment Header File ... 37

Figure 31 ConcreteTaskGenerator Usage Example .. 38

Figure 32 Concrete Task Example ... 38

Figure 33 UART Protocol Task Definition .. 39

Figure 34 Generated UART Protocol Abstraction Layer Header File 40

Figure 35 Generated Receive Handler Method .. 40

Figure 36 Generated Transmit Handler Method .. 41

Figure 37 DIO Data Abstraction Layer XML .. 41

Figure 38 DIO Data Abstraction Layer Header File .. 42

Figure 39 DIO Data Abstraction Layer CPP File .. 43

Figure 40 System Builder XML File .. 44

Figure 41 Implemented Design Overview ... 45

Figure 42 Algorithm Block Relations .. 46

Figure 43 Missile Computer Sequence Diagram ... 49

Figure 44 Communication Between Missile Computer and Simulated IMU 50

Figure 45 Detailed RS232 Communication ... 50

Figure 46 CAS Logs ... 51

Figure 47 Benchmark Design ... 52

Figure 48 Guidance Computer Connections .. 56

xv

LIST OF ABBREVIATIONS

AUTOSAR Automotive Open System Architecture

CAS Control Actuator System

CPS Cyber-physical System

DIO Digital Input Output

ECU Electronic Control Unit

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

HAL Hardware Abstraction Layer

IMU Inertial Measurement Unit

I2C

MCU

MPU

PC

Inter Integrated Circuit

Microcontroller Unit

Microprocessor Unit

Personal Computer

RSAR Real Time Software Architecture

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

1

CHAPTER 1

INTRODUCTION

Cyber–physical systems (CPSs) integrate the computation and physical processes.

The control and monitoring of the physical processes are carried out by embedded

computing systems. There is an interaction between these physical processes and the

computation that involve feedback loops [1].

Development of software for cyber-physical systems requires deep knowledge from

different disciplines iterative processes [2]. Developing real time embedded software

for such a system demands software architectures for separate works done by

software developers and dynamic model developers. The complexity of software

design increases with more features included in the cyber-physical system. To

develop such software on a custom designed infrastructure will ease design and

development phases of software.

Modeling such CPSs is followed by simulations for verification of the operation and

performance measurements. The diverse and heterogeneous components of the CPSs

require a standardized interface for the simulation models to facilitate model

exchange and co-simulation of dynamic models.

The motivation of this thesis work is developing a layered software architecture

RSAR (Real-time Software ARchitecture) for CPSs which enables the real-time

operation of the software in embedded environments and incorporates the

standardized simulation interfaces.

To this end, we adopt the architecture of well-established but proprietary AUTOSAR

standard combined with Functional Mock-up Interface (FMI) standard to construct

RSAR. AUTOSAR offers layered software architecture standard for automotive

systems. Its main purpose is to separate hardware details while developing software

using standardized interfaces between layers of software. The Functional Mock-up

Interface (FMI) is a tool-independent dynamic model interface standard. Its main

2

purpose is model reuse and interoperability between various modeling tools and

environments throughout the systems development phases.

RSAR aims to minimize migration costs of software development with using current

tools used in the company and aims to break dependency on AUTOSAR tool vendors

that would be problem to purchase tool licenses to develop real time embedded

software for CPSs.

The contributions of this thesis are as follows:

The layered RSAR architecture with detailed description of the interfaces and

components.

The demonstration of the correctness and performance of RSAR with a case study of

missile avionics software which was previously developed in a defense industry

company.

 The remaining chapters are organized as follows:

 Chapter 2 provides related literature and background information required for

understanding of the subsequent chapters.

 Chapter 3 presents an overview of the related works.

 Chapter 4 explains the details of proposed layered software architecture.

 Chapter 5 explains code generation process in the RSAR.

 Chapter 6 presents a case study and evaluation.

 Finally, Chapter 7 discusses the accomplishments and draws conclusions.

3

CHAPTER 2

BACKGROUND

 Automotive Open System Architecture (AUTOSAR) Standard 2.1

Automotive Open System Architecture (AUTOSAR) is standardized software

architecture developed by car manufacturers with the aim to decouple software

development details from hardware details.

AUTOSAR provides a common software infrastructure for automotive systems.

AUTOSAR aims to achieve technical goals of modularity, transferability and re-

usability for software used in automotive systems.

AUTOSAR has been formed with the goals of [3]

 Standardization of basic software functionality of automotive ECUs

 Scalability to different vehicle and platform variants

 Transferability of software

 Support of different functional domains

 Definition of an open architecture

 Collaboration between various partners

 Development of highly dependable systems

 Support of applicable automotive international standards and state-of-art

technologies

2.1.1 History

AUTOSAR has been founded by three original equipment manufacturers in 2003.

Today, 9 core partners has been involved AUTOSAR: BMW, Bosch, Continental,

Daimler, Ford, General Motor, Peugeot, Toyota and Volkswagen. It has 50 premium

members, about 90 associated members and about 20 development members [4].

4

AUTOSAR is broadly used in Europe and is emerging in Asia and North America.

AUTOSAR has 5 different specifications since 2003 which are the releases 2.0, 3.0,

3.1, 3.2, 4.0 and 4.1.

2.1.2 Definitions

Virtual Function Bus (VFB)

To separate software design process from hardware details AUTOSAR defines

Virtual Function Bus model. The Virtual Function Bus is a software component

interconnection model that strictly separates the domain of application design and

implementation of software for a specific hardware. It provides generic

communication services that can be consumed by any existing AUTOSAR software

component. All the services of the VFB are virtual. The virtual services are

implemented for the underlying hardware in a later phase by AUTOSAR tools [6].

Run Time Environment

Run Time Environment provides the actual implementation of the VFB

interconnection model [6] .

2.1.3 Software Architecture

To decouple software components from hardware AUTOSAR provides layered

software architecture standard. AUTOSAR includes four main layers as shown in

Figure 1. To decouple software development from hardware AUTOSAR offers

standard interfaces for the layers of the architecture. Thanks to interfaces between the

layers, application layer components are developed without knowing the hardware

details. Layered architecture offers reuse of the application layer components on

different cars, different ECUs.

5

Figure 1 Layered Software Architecture of AUTOSAR [3]

As show in the Figure 1, Application layer contains application specific software

components. Runtime Environment layer isolates Application layer from Basic

Software layer which contains Service layer, ECU Abstraction layer,

Microcontroller Abstraction layer and Complex Drivers. At the bottom

Microcontroller layer is located.

The layers have different responsibilities. The Basic Software layer and the Runtime

Environment layer are responsible for the abstraction between the hardware and the

application software. Therefore the Basic Software layer contains ECU specific

modules as well as general AUTOSAR modules [7].

Basic Software layer is divided into different parts according to their functionality as

shown in Figure 2.

6

Figure 2 Divided Basic Software Layer [3]

The System stack, consisting of Microcontroller Drivers, Onboard Device

Abstraction and System Services, provides standardized services and library function

for example for timer operations and operating system functionality [4].

The Management stack, consisting of Memory Drivers, Memory Hardware

Abstaction and Memory Services, provides standardized access to non-volatile

memory [7].

The Communication stack, consisting of Communication Drivers, Communication

Hardware Abstraction and Communication Services, provides standardized access to

the vehicle network system [7].

The I/O stack, consisting of I/O Drivers and I/O Hardware Abstraction, provides

standardized access to sensors, actuators and other ECU on board peripherals[7].

 Functional Mock-up Interface (FMI) 2.2

Functional Mock-up Interface (FMI) is a tool independent standard to support both

model exchange and co-simulation of dynamic models using a combination of XML-

files and compiled C-code [8]. The models are independent from the tools and any

7

model can be exchanged in any simulation environment. The models can be reused

on any modeling tool supports FMI.

2.2.1 History

The first version, FMI 1.0, was published in 2010. The FMI development was

initiated by Daimler AG with the goal to improve the exchange of simulation models

between suppliers and OEMs. As of today, development of the standard continues

through the participation of 16 companies and research institutes [8].

2.2.2 Definitions

Functional Mock-up Interface (FMI)

Functional Mock-up Interface defines a standardized interface for simulation of

cyber-physical systems [8]. A Cyber-physical system is an embedded system that

controls physical entities by using software and hardware elements. Cyber-physical

systems are used in many areas which are aerospace, automotive, energy etc. [2].

Functional Mock-up Unit

Functional Mock-up Unit is a software component which uses Functional Mock-up

Interface. FMU is provided as a compressed file which includes a model description

file and source codes, libraries and documentation.

2.2.3 FMI for Co-simulation

FMI for Co-simulation is a standard interface for the model that contains its solver

inside. The user of the model does not need to know which integration methods are

applied to solve differential equations.

To use a given FMU three steps are needed, which are instantiation and initialization,

running and termination.

In the instantiation and initialization step, an instance of FMU is created and

initialized. In this step, memory allocation needed by the FMU is done and

parameters used in the FMU are initialized to their default values.

8

FMI defines setter, getter and execution methods to run model. Setter methods are

used to set parameters which are used by the model execution. To solve model’s

differential equations, doStep method is defined by the FMI. The output parameters

generated by the model are reached by using getter methods.

In the running step firstly, input parameters are set by calling setter methods

(FMUSet…(…)). Then doStep() method is called to solve the model’s differential

equations. By calling getter methods (FMUGet…(…)), output parameters of the

solved model can be accessed by the caller.

In the termination step, resources used by the FMU are freed.

9

CHAPTER 3

RELATED WORKS

In the related work [9], it is proposed that Functional Mock-up Interface standard for

model exchange can be utilized in the context of AUTOSAR software component

development. Automatic transformations between the XML schemas of the two

standards are utilized to convert FMI models to AUTOSAR [9].

In the related work, mapping and conversion scheme between FMI and AUTOSAR

is shown and after mapping and conversion FMI is used as AUTOSAR software

component. FMI and AUTOSAR use XML definitions to define models. The Altova

MapForce program is used to map XML schemas in the graphical user interface [9].

In the related work [10], a solution is proposed to use AUTOSAR and FMI together

in the Software-in-the-loop simulations. A powertrain co-simulation is demonstrated

to facilitate AUTOSAR and FMI standards together.

10

11

CHAPTER 4

RSAR: A LAYERED SOFTWARE ARCHITECTURE FOR CYBER-

PHYSICAL SYSTEMS

In this chapter the proposed RSAR layered software architecture is described. The

details of the layers defined in the architecture have been explained in detail.

Dynamic model utilization in the architecture has been covered as well.

 Aim of RSAR 4.1

The physical processes related with cyber-physical systems are handled by

embedded software systems. A conventional embedded system development

approach contains software which is particular to hardware. This tied approach

brings some problems along. The software is dependent to the hardware and if the

hardware changes in some time, the particular software must be changed also. To

eliminate this problem in the domain of embedded software systems, software must

be divided in well described layers which break the hardware dependency somehow.

Another problem in the domain of cyber-physical systems is dynamic model

utilization in the software. Dynamic models are generally developed tools which

generate code from the model descriptions. There exist many dynamic modeling

tools for different engineering branches. Thanks to FMI, usage of the models is

standardized with a tool-independent common interface. RSAR enables dynamic

model utilization using FMI.

The RSAR briefly aims to

 divide software into layers to eliminate/minimize hardware dependency

 shorten design and development phases of the software project by supplying

layered software architecture and dynamic model inclusion with FMI

 provide code re-usability between various software projects

 break modeling tool dependency by using FMI

12

 reduce implementation errors by providing layered software models which

contain template C/C++ classes and automatic glue code generation to these

template models according to software system requirements

by offering a layered software architecture which utilizes FMI for cyber-physical

system software development.

 RSAR Layers 4.2

The RSAR solution includes five layers as shown in Figure 3. Between all the layers,

the communication is handled over interfaces shown in Figure 3.

Figure 3 Proposed Layered Software Architecture For Cyber-Physical Systems

13

A brief introduction to the layered architecture is given here. The details of every

layer are given in the following sections.

Hardware Abstraction Layer (HAL) provides a standardized way to communicate

between the peripherals of microprocessor unit. Peripherals include UART, SPI, DIO

and GPT etc. For the Hardware Abstraction Layer, some peripheral drivers have

been designed and implemented for the thesis proposal which are

 Serial Peripheral Interface Driver

 Universal Asynchronous Receiver/Transmitter (UART) Driver

 General Purpose Timer (GPT) Driver

 Digital Input/Output Driver (DIO) Driver

For each of the drivers given above, an interface has been designed to standardize

development of driver. With the standard interface, the user does not need to know

about hardware details of peripherals. The user uses only the Application

Programming Interface (API) given by the standardized driver interface. In

AUTOSAR, Microcontroller Abstraction Layer is used for same purposes.

Data Abstraction Layer is used above the HAL to convert peripherals data into

meaningful data to be used in the Software Component Layer. Peripheral data must

be converted to logical data that will be used in the Software Component Layer. The

main purpose of this layer is to parse the incoming data from HAL into named signals

and to format the named signals into appropriate outgoing data to HAL. The models

proposed are explained in 4.6.

The Software Component Layer components include virtual connections to get data

or to set data which should be separated from hardware communication details.

These virtual connections are converted into concrete connection in the Runtime

Environment Layer. A Software Component Layer entity has no interaction with the

hardware. It has virtual connections to reach and modify the needed signal. A

Software Component Layer entity can include a dynamic model which has

Functional Mock-up Interface in the proposed solution. By using FMI, software

14

developers and dynamic model developers will have a common interface to

communicate each other in a standard way. The dynamic models can come from

various domains including mechanical, hydraulics, pneumatics, thermodynamics,

flow dynamics, electrical, software etc.

 Scheduler Design 4.3

Real time embedded systems are assumed to work with periodic tasks. In a period,

these systems do some tasks which should be completed by a certain time. These

tasks are executed by a scheduler in certain times.

In proposed design, Scheduler class has been developed to run tasks which should

start to run a certain time in the main loop of the embedded software. Scheduler is

responsible to run tasks using a predefined runnable model. The runnable model in

the proposed design is Task class. All the runnable entities in the design use Task as

base class.

Scheduler object needs time information to run tasks. SystemTime class has been

developed to provide necessary timing information to Scheduler. SystemTime uses a

General Purpose Timer Driver (GPT) which resides in the HAL to get timing

information from timer peripheral. The object of the Scheduler class uses the

SystemTime object to run tasks periodic. Scheduler object knows Task interface and

runs the Task objects by calling their run method. The run method is a virtual

method which is realized by derived classes. Thanks to inheritance, all Task objects

can do different tasks. The run method of a Task object must be called in appropriate

time in the main loop according to embedded system requirements. To able to run

tasks in appropriate time in the main loop, the Scheduler object needs one more timer

to measure time in the main loop. This timer must have more resolution. In proposed

design for this purpose, Time Base Register of e300 core is used [1]. Time Base

Register is sampled at the beginning of the main loop and tasks are executed in the

loop when their time comes with respect to sampled main loop time.

The class diagram of the proposed scheduler is shown in the Figure 4.

15

Figure 4 Scheduler Relations

The properties of the scheduler design are listed here.

 Tick period of the SystemTime is determined according to embedded system

requirement. This tick period determines the main loop start time of

Scheduler. For example, Scheduler starts to execute Task objects every 2

milliseconds.

 Scheduler knows a number of Task objects to be executed. This number

changes according to design of embedded system.

 Scheduler keeps timing information for debugging purposes. Total execution

time of Task objects are tracked by the Scheduler. Maximum and instant

execution times of the main loop are stored inside Scheduler. Thanks to this

information, developer can observe if total work is completed inside

determined main loop time.

 Task objects are executed in succession by the Scheduler. Task objects are

introduced to the Scheduler with order of execution and time of execution

information by the developer. Time of execution information is used by the

Scheduler to start execution in a defined time in the main loop. When a Task

object execution is finished, Scheduler firstly check the time of execution

16

information of next Task object in the sequence, then it starts execution or

waits for the determined time to come.

 Task objects keep information of their own execution time. Thanks to this

information, developer can observe execution time of any particular Task

object.

Task objects are registered to Scheduler object by using the addTask method which

is given in Figure 5.

Figure 5 addTask Method Definition

The orderOfExecution parameter defines which order task will be executed by the

Scheduler object. The execStartTimeInLoopInMicros parameter defines the start of

execution time in microseconds in the main loop.

 Software Component Layer Design 4.4

In RSAR, Software Component Layer is the top layer. A Software Layer Component

has no dependency with hardware. It needs some input signals and by using these

input signals produces some output signals with logic located inside. In the proposed

design, a Software Component is an abstract class which is derived from Task class.

These tasks are run by the Scheduler object.

In the design process, firstly signals are determined as needed by the software

component. Then these signals are grouped together to define an interface. To

generate a Software Component, all the interfaces are determined by the user using

the determined signals needed by the interface. These interfaces show that which

data from/to Run Time Environment Layer is needed by the component. In Figure 6,

there is a Software Component which is a Task with two interfaces.

17

Figure 6 Software Component Design

To generate such a Software Component, firstly signals are determined. Then signals

are grouped together to define an interface. Lastly, Software Component is derived

from these interface classes and the base Task class. By doing that, developer is free

to develop logic inside the Software Component without knowing where the data

comes from and where data goes to.

In RSAR, a Software Component can include a FMU inside. The FMU is connected

to Software Component by using FMI methods which are getter, setter and execution.

The inputs of the Software Component are connected to FMU and outputs of the

FMU are connected to Software Component.

In the RSAR, interfaces and Software Components are generated automatically from

defined XML files. The detail of the automatic code generation process has been

introduced in section 5.2.

 Run Time Environment Layer Design 4.5

The Run Time Environment Layer stands between the Software Component Layer

and the Data Abstraction Layer. It is used to connect Software Component Layer and

Data Abstraction Layer together.

To develop Run Time Environment Layer, a class has been determined to store data

which is used by Software Component Layer and Data Abstraction Layer and to

18

direct data from Software Component Layer to Data Abstraction Layer or from Data

Abstraction Layer to Software Component Layer.

As explained in the section 4.4, Software Components have only virtual methods to

use and modify data. These virtual methods are realized within Run Time

Environment Layer. To realize virtual methods of a Software Component, a new

class is derived from the Software Component class. The derived class is named with

a prefix. The prefix word defined in the RSAR is “Concrete”. If name of a Software

Component is “SoftwareComponent”, name of the derived class becomes

“Concrete_SoftwareComponent”. The “Concrete_SoftwareComponent” uses the

methods of Run Time Environment Layer class. The methods of Run Time

Environment Layer class can

 set the data to attributes of itself,

 get the data from the attributes of itself,

 direct the data to a Data Abstraction Layer component,

 fetch the data from a Data Abstraction Layer component.

The Run Time Environment Layer class has concrete methods to be used by the

Software Components and by the Data Abstraction Layer components.

In RSAR, Run Time Environment Layer class and concrete Software Components are

generated automatically using defined XML files. The detail of code generation

process has been introduced in 5.3.

 Data Abstraction Layer Design 4.6

Data Abstraction Layer stands between Run Time Environment Layer and Hardware

Abstraction Layer. The aim of this layer is to process data into appropriate format for

upper and lower layers. To send Run Time Environment Layer data to hardware or to

get hardware data to Run Time Environment Layer, determined data abstraction

models within RSAR are used. In the following sections, two Data Abstraction

Layer models have been introduced.

19

The UART Protocol Abstraction Layer is a model for asynchronous serial

communication. The model is a reference model which can be used to design a

model for any other serial communication hardware. The given model is a RSAR

Task which is executed by the Scheduler to handle communication with hardware.

The model has responsibility to connect hardware to Run Time Environment Layer.

The details of the UART Protocol Abstraction Layer are given in 4.6.1.

The DIO Data Abstraction Layer is a synchronous model given in detail in 4.6.2.

The Run Time Environment Layer uses the DIO Data Abstraction Layer to make

connection to DIOs. This process is performed by calling the methods from Software

Component Layer. A Software Component Layer entity calls a method and over the

Run Time Environment Layer, DIO connection is made synchronously to method call

using DIO Data Abstraction Layer.

4.6.1 UART Protocol Abstraction Layer Design

UART peripherals are commonly used in embedded systems to communicate with

each other. Generally a messaging protocol is used over UART communication. The

message coming from UART hardware must be parsed into meaningful data to make

process with. A protocol message generally has header, data and CRC areas. The

header area introduces the message to receiving side with message id, message

length etc. sub areas. The data area of the UART message consists of the raw data

including one or more meaningful data. The CRC area is used to detect undesired

changes in the message which is transferred.

In RSAR, to generate and parse UART protocol messages that are used in the

company, UART Protocol Abstraction Layer model has been designed. To

implement this model some common classes has been designed as template to model.

Then from the XML definition of a UART protocol message, glue code is generated

automatically by the implemented python script. The detail of the automatic code

generation has been introduced in the section 5.4.1. In RSAR, to send and receive

UART protocol messages Task and Avionic classes are used as base class to derived

automatically generated class. The automatically generated class is used as glue code

to communicate with Run Time Environment Layer. This class converts the raw data

20

into meaningful data and sets the meaningful data to Run Time Environment Layer.

In same way, this class gets meaningful data from Run Time Environment Layer and

converts meaningful data into raw data.

In RSAR, UART Protocol Abstraction Layer uses flags to control receiving and

sending messages. A Software Component sets a flag to trigger UART message

sending. UART Protocol Abstraction Layer controls the flag over Run Time

Environment Layer. If a sending message flag is set, UART Protocol Abstraction

Layer prepares the message and sends it. In same way, a Software Component can

detect if there is new data by checking a flag. This flag is set by the UART Protocol

Abstraction Layer over Run Time Environment Layer.

In the Figure 7, there is an example for the abstraction layer. RTE_MC_IMU_Task

class is generated automatically from the XML file definition. It is the glue code

between the Run Time Environment class and the abstraction layer template class

which is named Avionic. The Avionic and Task classes are used as base class to

automatically generated class. The Avionic class controls the AvionicPort object to

send and receive AvionicMessage object which is abstraction model of UART

message in RSAR.

Figure 7 UART Data Abstraction Layer Example

21

The AvionicPort has some properties to control UART protocol communication.

Details of the properties are given below.

 AvionicPort has a map to identify receiving UART messages. This map

creates a relation between message identification number and message length.

Message identification number and message number reside in the header

section of the message. AvionicPort receives only the messages introduced to

itself by the message identification number – message number map. If an

unknown message is received, it is dropped by the AvionicPort.

 AvionicPort checks the CRC value of the incoming message. If the CRC

value is incorrect, the message is dropped by the AvionicPort.

 AvionicPort calculates the CRC value of the outgoing message.

 AvionicPort has a timeout value for incoming UART messages. The message

is dropped by the AvionicPort, if AvionicPort can’t receive message within

timeout time.

To understand how the design works, sequence diagrams are given in the Figure 8

and Figure 9.

22

Figure 8 Receiving UART Protocol Message

To receive a message, the Scheduler object calls run method of the abstraction layer

Task object. The object firstly uses the base class methods to receive UART

message. The rxMsgAsyncMainMethod of the AvionicPort object is used to

communicate with UART driver which resides in HAL. If there is a completed

UART protocol message, the receiveMessageAsync method returns true. Then the

handleRxAvionicMessage method which is implemented in the auto-generated code

is called. According to UART message definition which is given in the XML file,

message is parsed and the values are set to Run Time Environment Layer. To indicate

there is a new message, flag attribute is set. In the example, IMU_Rx_Flag is used.

23

Figure 9 Transmitting UART Protocol Message

To send a message, firstly a Software Component Layer object should trigger the

Data Abstraction Layer object by setting a flag which is IMU_Tx_Flag in the

example. The flag is set by the calling method of the Run Time Environment Layer.

Then the Scheduler object calls the run method of the Data Abstraction Layer object.

The UART Protocol Abstraction Layer object checks if the flag is set. If the flag is

set, the UART protocol message is prepared. By calling the sendMessageAsync

method, the message is sent to AvionicPort. The message is sent to UART peripheral

by the AvionicPort object with calling txMsgAsyncMethod. The AvionicPort object

uses UART driver which resides in the HAL to send raw data.

4.6.2 DIO Data Abstraction Layer Design

DIO Data Abstraction Layer is used to abstract hardware details of discrete input and

output ports. A Software Component might control or read discrete ports by using

Boolean flags in the proposed RSAR design. If the Boolean value is true, it means

the discrete port has a value of active state. If the Boolean value is false, it means the

discrete port has a value of inactive state. The Run Time Environment Layer uses this

layer to make connection with DIOs. The DIO is set as logic 0 or logic 1 according

to defined active/inactive state in the design. The logical value read from a DIO is

24

converted to Boolean value according its defined active/inactive state in the design

by this layer.

 Hardware Abstraction Layer Design 4.7

In this part, the detail of the thesis study of HAL design is given. All drivers were

developed for the Freescale MPC5200B microprocessor unit. MPC5200B is a

PowerPC based microprocessor unit with its e300 core [11].

For all drivers given below, an interface has been defined and using these interfaces

the drivers have been developed for the RSAR study. A defined driver interface uses

a C language struct which contains method pointers and defined attributes to offer a

common way to interact with hardware. By doing that, the driver interface could be

used for another hardware platform.

The driver interface for the hardware peripheral defines a standard way to

communicate with hardware. The implementation of the driver is dependent on the

MCU/MPU hardware platform. By using a driver interface, usage of the hardware

peripheral is standardized for different MCU/MPU hardware platforms. For the

thesis study, GPT, UART and DIO driver interfaces have been defined. For the

defined interfaces, drivers have been implemented for the Freescale MPC5200B

MPU.

4.7.1 General Purpose Timer (GPT) Driver Design

A timer peripheral of a microcontroller/microprocessor is used to measure time or to

count time by interrupt. In thesis work, an interface has been developed and

MPC5200B timer driver has been implemented.

Figure 10 GPT Driver Time Base Type

25

In GPT interface, a timer can be configured in two ways. First configuration value is

GPTDRIVER_CONTINUOUS_MODE. This value is used to generate periodic

interrupt by the timer peripheral. GPTDRIVER_ONE_SHOT_MODE configuration

value is used to generate interrupt only once.

Figure 11 GPT Driver Mode Type

When a timer is elapsed, an interrupt occurs and in some way user needs to know

about that event. For this purpose, a user callback method has been defined in GPT

interface. The GPT driver handles the interrupt and calls the user callback method to

inform user about timer elapse event. The definition of callback method is given in

the Figure 12.

Figure 12 GPT Driver Callback Method Type

26

Figure 13 GPT Driver Interface Methods

GPT interface consists of the methods given in the Figure 13.

The open method is used to initialize the GPT peripheral. The startTimer method is

used to start GPT peripheral to count. The stopTimer method is used to stop GPT

peripheral to count. The enableNotification method is used to register user callback

method to GPT driver. By using this method, driver learns which user callback

method will be called. The disableNotification method is used to delete record of the

user callback method. The close method is used to stop GPT peripheral and tells the

driver GPT will not be used again until the open method calling.

4.7.2 Universal Asynchronous Receiver/Transmitter Driver Design

A Universal Asynchronous Receiver/Transmitter is a hardware which translates

parallel data to serial form to send, and incoming serial data to parallel form. UART

peripherals are used with external circuits to form electrical signal into standard RS-

232, RS-422, RS-485 etc. forms.

In RSAR, an interface has been developed for UART driver and two different kind of

UART driver has been implemented for two different peripherals which are

MPC5200B PSC and D16950 UART IP.

To set baud-rate of the communication UARTBaudrateType which is shown in

Figure 14 is defined.

27

Figure 14 UART Driver Baud-Rate Type

To set stop bit count of the UART communication UARTStopType which is shown in

the Figure 15 is defined.

To set bit count of a character UARTDataBitType which is shown in the Figure 15 is

defined.

To set parity of the UART communication UARTParityType which is shown in the

Figure 15 is defined.

Figure 15 UART Configuration Parameter Types

The UART driver object definition is given in the Figure 16. The interface has

methods to manage UART. The developed MPC5200B PSC and D16950 UART IP

drivers use the same interface.

28

Figure 16 UART Driver Interface Methods

4.7.3 Digital Input/Output Driver (DIO) Driver Design

To set or get the value of any discrete data in the RSAR, a DIO driver interface has

been offered.

This simple interface defines the logic level type named DIOLevelType.

Figure 17 DIO Driver Interface

29

The interface has a method pointer named “initialize” to start driver. The

writeChannel method pointer is used to set a DIO. The readChannel method pointer

is used to get value of a DIO. The interface definition is given in Figure 17.

Figure 18 DIO Driver Constructor

To use different kind of hardware within same interface methods, a constructor

method map was implemented. The example constructor map implementation

according to driver identification is shown in the Figure 19. To generate different

DIO driver objects, a common constructor is used.

Figure 19 DIO Driver Constructor Map

 Design Overview 4.8

To understand the software architecture easily, some parts of a missile computer

software design is given in Figure 20. The design uses the proposed layered

architecture, the RSAR. All the related layers with the architecture are shown in the

figure. The design in the figure is responsible to execute auto-pilot algorithm within

a specific time in the main loop of schedule. Required data to execute the FMU is

received using UART Protocol Abstraction Layer over UART driver interface. This

example is specific for communication over a UART peripheral. For different

hardware peripherals, a new Data Abstraction Layer model is required. The detailed

information about using different hardware peripherals are given in the section 6.2.3.

30

Figure 20 Example Software Design in RSAR

Scheduler class is responsible to execute tasks in given order and time. Task class is

the base class for all other Software Component Layer classes.

The Avionic class is derived from the Task class. It is the main class for all other

avionic classes. It is used as template class to other Avionic classes. Here the name

Avionic is used for the avionics that communicates over UART with a protocol. All

derived Avionic classes communicate with hardware over an interface named

AvionicPort. AvionicPort class is responsible to check protocol details of the

communication. The UART protocol messages have message identification number,

message direction, message data and CRC fields. ConcreteAvionicPort implements

the AvionicPort interface. It uses UARTDriverType interface to communicate with

peripheral hardware. UARTDriverType interface is an actually standardized

Hardware Abstraction Layer driver which communicates with UART peripheral.

AutoPilot_Task class is also derived from Task class. It includes auto-pilot algorithm

as Functional Mock-up Unit with the Functional Mock-up Interface. When the Task

instance (here AutoPilot_Task instance) is executed by the Scheduler instance,

AutoPilot_Task instance runs the FMU.

SystemTime class provides time information to Scheduler class. Scheduler class uses

SystemTime to run its tasks on their time.

31

CHAPTER 5

SYSTEM INTEGRATION PROCESS

In this chapter, software system integration process for the RSAR is described. The

RSAR defines layered software architecture as introduced in the section 4.2. To

generate these defined layers some scripts are used to generate code automatically.

These scripts are named as the RSAR tools. Automatic code generation properties of

the RSAR have been introduced in detail in this chapter.

 System Build Steps 5.1

Figure 21 System Build Steps

If a software developer wants to develop a software project in the RSAR, some steps

are required to follow. In the Figure 21, the steps of the software system generation

are shown. To generate the RSAR software, some XML files must be created by the

developer. The details of the XML files are given in the following sections. These

XML file definitions are used by the RSAR tools to generate layer code

automatically.

First step in the design is to define interfaces of Software Component Layer entities.

These entities communicate with Run Time Environment Layer using the defined

interfaces. To define an interface, an XML definition is used. The detail is given in

32

the section 5.2. Software Component Layer must communicate with hardware using

Run Time Environment Layer and Data Abstraction Layer. For this purpose, Run

Time Environment and Data Abstraction Layer XML files are defined by the

designer. The detail is given in the sections 5.3 and 5.4.

After defining layer XML files, it is needed to define Task execution times. The

Scheduler must be configured to run these Tasks. To configure Scheduler, System

Builder XML file is defined by the developer. The detail is given in the 5.5.

After defining all XML files, the System Builder script is executed. The layers are

generated by calling specific scripts of that layer. The main file is also created by this

script. The main file contains created Task and Scheduler objects and configuration

code for the objects. Every layer in the RSAR design is generated by a script

automatically. To generate a layer, the responsible script is called by the System

Builder script. The RSAR tools are these scripts to generate interface and layer code.

For Software Component Layer, Run Time Environment Layer and Data Abstraction

Layer code generation different scripts have been implemented.

The detail of the automatically code generation is given in the following sections.

 Software Component Layer Code Generation 5.2

As given in the section 4.4, the Software Component Layer entities need some input

and output signals. These signals are grouped into to define an interface. The

interface is defined using a XML definition. This XML definition is used to generate

interface code automatically. An example interface definition XML file is given in

the Figure 22. As seen in the example XML file, interface name and the attribute

types are defined. The interface has a name which is

AutoPilot_IMU_Input_Interface in the example file. The attribute definitions in the

XML file are used to generate interface methods in the generated interface source

file.

33

Figure 22 Interface Definition XML

To generate interface source file, a python script named InterfaceGenerator has been

developed. InterfaceGenerator script is used seen as in Figure 23. Here, five

interfaces have been given whose names can be seen in the figure.

Figure 23 InterfaceGenerator Script Usage

The generated interface source example can be seen in the Figure 24.

34

Figure 24 Generated Interface File

Interfaces are used by Tasks in the RSAR. An abstract Task can be derived from one

or more interfaces. To generate abstract Software Component, an XML definition has

been developed. In the XML file, all the interfaces needed by the component are

written. An example XML file of abstract Task definition is given in the Figure 25.

Figure 25 Task Definition XML

To generate abstract Task source files, a python script named AbstractTaskGenerator

has been developed. In the Figure 26, it can be seen how to use the script.

Figure 26 AbstractTaskGenerator Usage Example

The generated source file is shown in the Figure 27. As seen, task is derived from all

the interfaces and Task class. The only method which should be implemented by the

35

user is the method named execute. All the data is needed by the execute method is

provided by the interface methods.

Figure 27 Generated Task Header File

Inside the execute method, the software developer can get input signals and can write

to output signals using interface methods. By doing that, logic inside the execute

method becomes independent from the other layers. Abstract methods are realized in

the Run Time Environment Layer. The detail of method realization in the Run Time

Environment Layer is given in the following section.

36

Figure 28 FMU – Task Integration

To use a FMU inside the RSAR Software Component Layer, a python script has been

developed also. This script is used to generate code to glue FMU and Software

Component Layer entity methods. An example code piece has been given in the

Figure 28. Inside the code, firstly FMU inputs are set using FMI. Then the FMU is

executed. Lastly, outputs of the FMU are set to Run Time Environment Layer by

using interface methods of Software Component Layer.

 Run Time Environment Layer Code Generation 5.3

The Run Time Environment Layer is generated automatically. To generate Run Time

Environment Layer automatically, a python script has been developed. The script

uses the interface definition XML files of software components to generate the layer.

To use python script, it is needed to have software component XML files. In the

example given below, AutoPilot_Task is defined. AutoPilot_Task definition XML

file includes all the interfaces which are needed by the task. The script gets the name

37

of the Task class and opens the XML file and starts to search interface definition

XML files. Using interface XML files, all the data needed to generate Run Time

Environment Layer is extracted. After completion of data extraction, the layer is

generated.

The sample python code is given below to generate the layer.

Figure 29 RunTimeEnvironmentGenerator Usage Example

After calling the generate method RunTimeEnvironment.h and

RunTimeEnvironment.cpp files are generated automatically. Some parts of the

generated header file look like given below. Here, the data needed by the Run Time

Environment Layer is generated from the task definition XML files.

Figure 30 Generated RunTimeEnvironment Header File

38

In the Software Component Layer abstract Task classes are generated automatically.

The interface methods of the abstract class must be implemented and must be

connected to Run Time Environment Layer. This is done by the python script named

ConcreteTaskGenerator. The usage of script is shown in the Figure 31.

Figure 31 ConcreteTaskGenerator Usage Example

The output file of the script is shown in the Figure 32. As shown, the interface

methods are implemented and connected to Run Time Environment Layer.

Figure 32 Concrete Task Example

 Data Abstraction Layer Code Generation 5.4

In this section, detail of the Data Abstraction Layer code generation has been given.

5.4.1 UART Data Abstraction Layer Code Generation

The incoming data and outgoing raw data over UART peripheral must be converted

into meaningful data. The raw data is converted into meaningful data by using an

39

XML file definition. In the following figure, there is an XML file which has the

definition of the UART protocol messages. A message has a unique number, input

and output parts. Input and output data is indicated by a name, type, dimension and

offset. To generate Task object from the XML file, it is needed to know the interface

which is used to communicate with Run Time Environment Layer. For this purpose,

the XML file contains interface section inside.

Figure 33 UART Protocol Task Definition

The automatically generated UART Protocol Abstraction Layer class header file is

shown in the Figure 34. It has methods which are defined in the XML file to

communicate with the Run Time Environment Layer. The setter and getter methods

are generated according to XML file.

40

Figure 34 Generated UART Protocol Abstraction Layer Header File

The generated glue code for receiving an avionic message is shown in the Figure 35.

Messages are parsed according to their message identification number which is

defined in the XML file. The raw data is converted into meaningful data according to

offset definitions in the XML file.

Figure 35 Generated Receive Handler Method

41

The avionic message which will be sent to UART is generated by the

handleTxAvionicMessage method according to the XML definition of the messages.

The generated method according to the XML file is shown in the Figure 36.

Figure 36 Generated Transmit Handler Method

5.4.2 DIO Data Abstraction Layer Code Generation

In Figure 37, XML definition of a DIO Abstraction Layer has been given. In the

XML structure, DIO driver and DIO definitions resides.

Figure 37 DIO Data Abstraction Layer XML

42

Figure 38 DIO Data Abstraction Layer Header File

In Figure 38, the generated header file is given. From the XML definition, the

methods are generated. These methods are used by Run Time Environment Layer to

make connection with Software Component Layer.

43

Figure 39 DIO Data Abstraction Layer CPP File

In the generated CPP file, the DIO drivers used in the software design are created

and initialized as shown in the Figure 39.

 System Builder Definition 5.5

To generate Task objects used in the software design, an XML definition has been

introduced in RSAR. An example of the XML file is given in Figure 40. This file is

used by the system builder script to generate objects used in the software design.

44

Figure 40 System Builder XML File

In the XML file, Scheduler object configuration values are given. Task object

configuration values are also given in the XML file. Inside the given example, there

are five Task objects to run by the Scheduler. The loop time is defined as 10

milliseconds.

To generate Run Time Environment Layer, name of the layer and code generation

script is defined inside the XML file.

As seen, Tasks are defined inside the XML file. The name of the Task and its code

generation script is defined inside the file. Execution step and time of the Task is

used to introduce the Task object to the Scheduler. By doing this definition, real time

characteristic of the software system is defined by using the XML file.

45

CHAPTER 6

CASE STUDY AND EVALUATION

 Case Study 6.1

The overview design of the implementation project named RSAR Demonstrator is

shown in the Figure 41. Design includes three separated hardware. Using RS232

electrical interface, hardware connection was established. In scenario for the

implementation, Missile Computer requests the IMU data and Simulated IMU sends

the simulated IMU data back. Then Missile Computer calculates fin angles and sends

them to CAS. CAS is used to log data sent by the Missile Computer. The Missile

Computer software has been developed using the RSAR layered architecture and the

RSAR tools. The design consists of the layers of the RSAR given in the Figure 3.

Figure 41 Implemented Design Overview

6.1.1 Algorithm Design

To demonstrate thesis work a guidance algorithm has been developed. The algorithm

is an FMU which is used within a Task object in the design. The algorithm consists

of two blocks which are shown in the Figure 42. The figure shows us the modeling of

the FMU. As shown in Figure 3, the Software Component Layer can include Tasks

with FMU. This FMU is used inside the Task object in the design.

The guidance algorithm has been developed in the environment of MATLAB

Simulink.

46

Figure 42 Algorithm Block Relations

Input and output signal definition of the algorithm design is described as shown in

the Table 1.

Table 1 Algorithm Signals

Signal Name From To Description

Acceleration from IMU Simulated IMU Autopilot Raw three axial acceleration data

Euler Angles from IMU Simulated IMU Autopilot Missile attitude angles

x_tar Simulated Seeker PN Guidance Three axial target position data

v_tar Simulated Seeker PN Guidance Three axial target velocity data

a_comm PN Guidance Autopilot Accleration command generated by

guidance

v_miss_0 Mission parameter Autopilot Missile initial velocity

x_miss_0 Mission parameter Autopilot Missile initial position

v_miss Autopilot PN Guidance Calculated misille velocity state

x_miss Autopilot PN Guidance Calculated misille position state

PN_gain Missile parameter PN Guidance PN Guidance gain parameter

g Mission parameter PN Guidance Gravitational acceleration

delta_fin_comm Autopilot CAS Fin deflection command

47

The algorithm includes two blocks which are described as follows.

6.1.1.1 AutoPilot Block

This block estimates the position of the missile. Then for the given acceleration

command from guidance block it calculates proper total control input for the two

axes of the missile which are rudder and elevator. Rudder command is used to

maneuver in yaw direction and elevator command is for pitch maneuver. Afterwards

these total maneuver command are distributed to four different control surfaces.

6.1.1.2 PN Guidance Block

Purpose of this block is to calculate the acceleration command in order to maneuver

the missile to intercept the target. To achieve this maneuver proportional guidance

law algorithm is implemented. This algorithm calculates the commanded

acceleration proportionally to the line of sight change between the missile and target.

This block takes the position of missile and target from autopilot and seeker block

and calculates the line of sight change of the target. Then, it compensates the

gravitational acceleration.

6.1.2 Real-time Software Design

In the design, firstly interfaces have been defined according interaction of the

software. Then Tasks have been defined. The Task classes used in the design are

 RTE_MC_IMU_Task

 Seeker_Task

 PN_Task

 AutoPilot_Task

 RTE_MC_CAS_Task

In the implementation project, Missile Computer software runs at 100 milliseconds

interval. This information is used by the system builder script to configure Scheduler.

The Scheduler object runs Task objects periodically according to their running time

definition in the XML file.

48

RTE_MC_IMU_Task object is used to communicate with Simulated IMU. It sends

request to Simulated IMU and parse the incoming data. The parsed data is set to the

Run Time Environment Layer. The object is called two times in the main loop. First

call is to request IMU data. The second call is to parse incoming IMU data. This

class is automatically generated with using the XML definition. The class generation

operation is described in 5.4.1.

The Seeker_Task object is used to simulate seeker data. The Concrete_Seeker_Task

class is generated automatically using the XML definition. The steps to generate a

concrete class are described in section 5.3. The seeker data generated by the object is

set to the Run Time Environment Layer.

PN_Task and AutoPilot_Task objects include FMUs inside. Concrete_PN_Task and

Concrete_AutoPilot_Task classes are generated automatically using the XML

definitions. The class generation operation is described in sections 5.2 and 5.3. The

input data is get from the Run Time Environment Layer. The FMU is executed. Then,

the output data is set to Run Time Environment Layer.

RTE_MC_CAS_Task object is used to send the fin angle data to CAS which is a PC

in the RSAR Demonstrator project. It gets the data which is generated by the

AutoPilot_Task from Run Time Environment Layer and the data is formatted to send

over UART. The formatted data is sent by using UART driver over RS323 electrical

interface. This class is automatically generated with using the XML definition. The

class generation operation is described in 5.4.1.

49

Figure 43 Missile Computer Sequence Diagram

The sequence diagram of the Missile Computer software is given in the Figure 43. In

the scenario of RSAR Demonstrator project, the Missile Computer sends request to

the Simulated IMU within 100 milliseconds period. Then, the Missile Computer

waits for the response for five milliseconds. The Simulated IMU software sends the

simulated IMU data as answer to request. In the Figure 44, the communication

between the Missile Computer and the Simulated IMU is shown.

50

Figure 44 Communication Between Missile Computer and Simulated IMU

Figure 45 Detailed RS232 Communication

In the Figure 45, the detailed RS232 communication between Missile Computer and

Simulated IMU is shown. Firstly, the Missile Computer sends the IMU data request

51

message and then the Simulated IMU sends the answer message which is shown in

the oscilloscope screenshot.

Figure 46 CAS Logs

The messages sent to CAS are logged on the PC. The angle messages sent to CAS is

shown in the Figure 46. By following the messages received on the PC side, the

correctness of the output values are checked against simulation results and time.

By implementing the case study, the real time operation of the RSAR has been

shown in detail.

 Evaluation 6.2

In this section, performance and development benefit evaluation of the RSAR

layered software architecture has been explained.

6.2.1 Performance Evaluation

To evaluate the RSAR performance, some benchmark software has been developed.

Here, the detail of the study has been given. To evaluate performance reduction

52

between layers of RSAR, three benchmark cases have been developed. First

benchmark case is for to measure UART protocol message transmit time. Aim of the

benchmark is to see how much more time is required to transmit a message over

UART in the RSAR design than in a tightly coupled software-hardware design. To

measure UART message transmit time, two test messages have been defined.

Figure 47 Benchmark Design

Table 2 Test Message 1 Attribute Content

Attribute No Type Dimension

1 uint8_t 1

2 uint16_t 2

3 uint32_t 4

4 uint64_t 8

5 float_t 4

6 double_t 8

7 uint32_t 16

8 int8_t 1

9 int16_t 4

10 int32_t 3

53

Table 3 Test Message 2 Attribute Content

Attribute No Type Dimension

1 uint8_t 64

2 uint32_t 12

3 float_t 8

4 double_t 5

5 int32_t 4

6 float_t 12

7 int8_t 2

The detail of the test messages are given in the Table 2 and Table 3.

The RSAR software uses layers defined in architecture to transmit test messages over

UART peripheral. The tightly coupled software-hardware design accesses directly to

hardware to send messages over UART peripheral. The tightly coupled software-

hardware design converts message attributes into convenient format by doing

memory copy operations. Then prepares message header, adds CRC of the message

and sends it over UART peripheral. On the other side, RSAR design uses layers. The

Software Component Layer entity sets the values of the attributes defined. The values

are stored in the Run Time Environment Layer. The Data Abstraction Layer auto-

generated Task generates the message and sends it using RSAR template classes to

UART peripheral.

Table 4 Message Transmit Time Comparison

RSAR Average Performance Tightly Coupled Software Average

Performance

 56 microseconds 48 microseconds

54

The result of the first benchmark case is given in the Table 4. The RSAR design

layers are using just more 8 microseconds to transmit UART messages.

The second benchmark case is for to measure performance of DIO usage in RSAR.

Aim of the benchmark is to see how much more time is required to control DIOs in

the RSAR design than in a tightly coupled software-hardware design. Eight DIOs has

been determined for the benchmark. Three of the DIOs are used as input and five of

the DIOs are used as output. Ten times inputs are captured and outputs are set and

time is measured. In the RSAR design these operations are performed by using

defined RSAR layers. On the other hand, tightly-coupled software-hardware design

uses hardware directly to control determined DIOs. The result of the benchmark case

has been given in the Table 5.

Table 5 DIO Access Time Comparison

RSAR Average Performance Tightly Coupled Software Average

Performance

50 microseconds 46 microseconds

The third benchmark case is for to measure FMU execution performance in RSAR.

Aim of the benchmark is to see how much more time is required to execute a FMU

inside RSAR Task. For this purpose, the FMU which is given in section 6.1 has been

used. The FMU has been executed inside the RSAR Task and directly by calling FMI

methods. The execution repeated ten times and the median time measured. The result

of the benchmark case is seen in the Table 6.

 Table 6 FMU Execution Time Comparison

FMU Execution Performance Inside the

RSAR Task

FMU Execution Performance without the

RSAR Task

41 microseconds 35 microseconds

55

6.2.2 Development Benefit Evaluation

To measure design benefits of RSAR, a missile guidance computer software project

has been studied. The missile guidance computer has communication connection

with various avionics seen in the Figure 48. There are four kinds of avionics, one

external world line and two telemetries in the studied project. The guidance computer

software communicates with UARTs and DIOs. There is a potential to design this

software project using the layers of the RSAR given in the Figure 3.

The aim of the study is to evaluate how much percentage of source code of the

software project could be automatically generated by using RSAR tools developed in

the thesis work. The software project has logs which show development details in

time. The logs kept using JTRAC application. The developer enters the development

steps of the project into the application. By doing that, it is possible to observe how

much time was consumed to develop a specific part of the software project. After

finding the parts of the software project could be generated by the RSAR tools and

the time consumed to develop this part actually, shortening of time in the project

calendar can be found. This information shows us the benefit of the RSAR usage in a

real software project.

56

Figure 48 Guidance Computer Connections

Some of the properties of the studied software project are given

 includes 136 files, 68 classes

 have 520 methods

 contains 16104 lines of code,

 controls 7 DIOs including 5 outputs and 2 inputs

 have connections with four kind of avionics, one external world line and 2

telemetries

o The total numbers of exchanged messages between avionics and

external world line are 25. It can be seen in the Table 7.

57

Table 7 Missile Guidance Computer Exchanged Message Numbers

Connected System Number Of Messages Exchanged

Avionic Type-1 1

Avionic Type-2 5

Avionic Type-3 1

External World Line 18

To determine the percentage of automatically generated code possible in the studied

project, firstly classes have grouped according to their duties in the software system.

The groups are determined according to the RSAR content. The determined groups

are

 Scheduling and timing classes,

 Message processing classes,

 Message parsing classes,

 DIO control classes,

 UART control classes,

 Algorithm execution classes,

 Out of the RSAR scope classes.

After classes were grouped, source code of the classes has been examined. Groups

are examined with respect to counterpart in the RSAR. Then classes have been

grouped again according to possibility of automatically code generation. At the end

of the study, it has been determined that

 25 classes in 68 classes, 5391 lines in 16104 lines of code could be generated

automatically by the RSAR tools.

58

The first fully functional version of the studied software project was developed in 5

months. When the development logs of the software project examined, it is seen that

the parts could be generated automatically by the RSAR tools have been developed

in 1.4 months.

As a result, by using the RSAR tools

 36.8% of the classes and 33.48% of the total lines of code could be generated

automatically,

 development time of the software project could be shortened by 28% at

maximum. If automatic code generation process preparation is taken into

account, development time of the software project could be shortened by up

to 24 %.

The model usage in the RSAR could reduce the development time of the software

system. Thanks to reducing development time, the costs of the system would reduce

also.

6.2.3 Software Development on Different Hardware

In this section, the software development evaluation of the RSAR has been

introduced for different scenarios from the hardware perspective.

To carry an existing RSAR software project on a new MPU/MCU platform,

Hardware Abstraction Layer must be implemented for the new MPU/MCU. The

RSAR defines HAL interfaces for some peripherals which are given in the 4.7. For

the hardware peripherals used in the existing software project, hardware peripheral

drivers for the new MPU/MCU platform must be implemented according to the

defined HAL interfaces. By implementing the drivers for the new MCU/MPU

platform, the existing RSAR software can be executed on the new MCU/MPU

platform. As seen in the Figure 3, the layers above the HAL remain same without any

change in this scenario. All the RSAR tools used to generate code automatically

remain same also.

59

To use a new hardware peripheral in the RSAR, a HAL driver interface must be

defined in a similar manner which has been illustrated for GPT, UART and DIO

drivers in the 4.7. Then driver for the new peripheral must be implemented according

to defined interface. The raw data manipulated by the driver must be interpreted into

meaningful data in the Data Abstraction Layer. A data abstraction model is required

for the new hardware peripheral. A new script must be coded to generate code

automatically for the RSAR architecture. For this scenario, the Run Time

Environment Layer and the Software Component Layer are designed without any

change.

60

61

CHAPTER 7

CONCLUSION

This thesis work represents a study to develop a software infrastructure which can be

used to develop cyber-physical systems. It has been shown how to develop layered

software architecture for cyber-physical systems. It is offered to develop dynamic

models as FMI to break tool dependency while developing dynamic models. Thanks

to layered software architecture and the FMI standard, it is shown that hardware and

software dependency can be broken.

Automatic code generation models have been given for the layers defined in the

RSAR. By doing a case study, the steps required to design a real time software

inside the RSAR has been shown. By doing performance evaluation, performance

reduction between the RSAR layers has been evaluated. By doing development

benefit evaluation, it has been shown that how the RSAR can shorten development

time of a software project.

The aims of the RSAR have been achieved. By using the layered software

architecture solution, hardware dependency has been minimized / eliminated. By

using automatic code generation methods in the RSAR, design and development

phases of the software project has been shortened. The RSAR design has provided

code re-usability between various software projects. Modeling tool dependency has

been broken in the RSAR by using FMI. By providing layered software models

which contain C++ classes and automatic glue code generation to these template

models, implementation errors have been reduced.

In future, offered layered software architecture, the RSAR, can be expanded with

new hardware interfaces such as SPI and I2C. For these hardware interfaces Data

Abstraction Layer models can be implemented to provide more automatic code

generation coverage in the RSAR.

62

63

REFERENCES

[1] Modeling Cyber–Physical Systems, Derler, P.; Lee, E.A.; Vincentelli, A.S.,

Proceedings of the IEEE , vol.100, no.1, pp.13,28, Jan. 2012

[2] Systems Engineering for Cyber-Physical Products, Bernard Clark, Dassault

Systems, Feb. 2012

[3] Applying AUTOSAR in Practice, Jesper Melin, Daniel Boström, 2011

[4] AUTOSAR Basics – autosar.org/about/basics/, Dec. 2014

[5] AUTOSAR Technical Overview – autosar.org/about/technical_overview/,

Dec. 2014

[6] AUTOSAR Runtime Environment and Virtual Function Bus – Nico Nauman

– Department for System Analysis and Modeling Hasso-Plattner Institute for

IT-Systems Engineering, Prof. Dr. Helmert Str. 2-3, D-14482 Potsdam, 2009

[7] AUTOSAR Software Architecture – Robert Warschofsky – Hasso-Plattner-

Institute für Softwaresystemtechnik, 2009

[8] FMI Basics – fmi-standard.org, Dec. 2014

[9] Using the Functional Mockup Interface as an Intermediate Format in

AUTOSAR Software Component Development – Bernhard Thiele, Dan

Henriksson, German Aerospace Centre (DLR), Institute for Robotics and

Mechatronics, Germany, Mar. 2011

[10] Powertrain Co-Simulation using AUTOSAR and the Functional Mockup

Interface Standard – Christoph Stoermer, Ghizlane Tibba, ETAS GmbH,

Stuttgart, Germany, Jun. 2014

[11] MPC5200B User’s Manual, Rev. 3, Freescale Semiconductor, May 2010

[12] PowerPC Microprocessor Family: The Programming Environments for 32-

Bit Microprocessors, 02/21/2000, IBM

