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ABSTRACT 

RSAR: A LAYERED SOFTWARE ARCHITECTURE FOR CYBER-

PHYSICAL SYSTEMS 

 

Akagündüz, Erhan 

M. S., Department of Electrical and Electronics 

Supervisor: Assoc. Prof. Dr. Şenan Ece Schmidt 

Co-Advisor: Assoc. Prof. Dr. Halit Oğuztüzün 

February 2015, 63 Pages 

Cyber-physical systems integrate the computation and physical processes. Embedded 

computing systems are used to control and monitor physical processes. Development 

of software for cyber-physical systems requires deep knowledge on different 

engineering areas and physics. Embedded software for a cyber-physical system 

requires software architectures to separate works done by software developers and 

dynamic model developers. AUTOSAR is a layered software architecture to develop 

automotive systems. Main purpose of the AUTOSAR layered software architecture is 

to separate software development process from hardware details. FMI, on the other 

hand, is a tool-independent dynamic model interface standard. In this thesis, a 

layered software architecture RSAR is proposed for cyber-physical systems 

development. RSAR adheres to the layered software architecture concept of 

AUTOSAR and supports dynamic model usage with FMI standard.  

Keywords: Functional Mockup Interface; Layered Software Architecture for Cyber-

Physical Systems 
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ÖZ 

RSAR: SİBER-FİZİKSEL SİSTEMLER İÇİN KATMANLI YAZILIM 

MİMARİSİ 

 

Akagündüz, Erhan 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Şenan Ece Schmidt 

Ortak Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün 

Şubat 2015, 63 Sayfa 

Siber-fiziksel sistemler fiziksel işlemlerin kontrolünü ve gözlenmesini gerçekleştiren 

gömülü yazılım içeren sistemlerdir. Siber-fiziksel sistem geliştirmek üst seviye farklı 

mühendislik alanından bilgi ve fizik bilgisi gerektirmektedir. Siber-fiziksel sistem 

gömülü yazılımları, yazılım geliştiricileri tarafından yapılan işler ile dinamik model 

geliştiricileri tarafından yapılan işleri birbirinden ayıran yazılım mimarilerine ihtiyaç 

duymaktadır. AUTOSAR otomotiv sistemlerinin geliştirilmesinde kullanılmak üzere 

katmanlı yazılım mimarisi sunmaktadır. Bu mimarinin ana amacı yazılım geliştirme 

süreçlerini donanım detaylarından ayırmaktır.  FMI geliştirme araçlarından bağımsız 

dinamik model arayüz standartıdır. Bu tez kapsamında siber-fiziksel sistem 

yazılımları geliştirilmesinde kullanılmak üzere  RSAR  katmanlı yazılım mimarisi 

önerilmiştir. RSAR, AUTOSAR katmanlı yazılım mimarisi kavramlarını ve FMI 

standartında arayüz sunan dinamik modelleri kullanmaktadır. 

Anahtar Kelimeler: İşlevsel Model Arayüzü; Siber-fiziksel Sistemler için Katmanlı 

Yazılım Mimarisi 



vii 

OLEDGMENTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To My Family 

  



viii 

ACKNOWLEDGEMENTS 

I would like to thank my supervisor Assoc. Prof. Dr. Şenan Ece Schmidt for her 

guidance, advice, criticism, encouragements and insight throughout this research. 

I also wish to thank a lot to my co-advisor Assoc. Prof. Dr. Mehmet Halit Oğuztüzün 

for all the valuable knowledge, technical support, academic assistance, innovative 

ideas. 

I also wish to thank a lot to my manager Koray Taylan for all the valuable efforts to 

ease the procedural processes, to find financial contribution, to provide moral 

support, to enhance the quality of this thesis work. 

I would like to thank to Turkish Ministry of National Defense, Under-secretariat for 

Defense Industries which gave the team financial and moral support [Project Name: 

MOKA]. 

  



ix 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................. v 

ÖZ ............................................................................................................................... vi 

ACKNOWLEDGEMENTS ...................................................................................... viii 

TABLE OF CONTENTS ............................................................................................ ix 

LIST OF TABLES ..................................................................................................... xii 

LIST OF FIGURES .................................................................................................. xiii 

LIST OF ABBREVIATIONS .................................................................................... xv 

CHAPTERS 

1. INTRODUCTION ................................................................................................... 1 

2. BACKGROUND ..................................................................................................... 3 

 Automotive Open System Architecture (AUTOSAR) Standard ................... 3 2.1

2.1.1 History .................................................................................................... 3 

2.1.2 Definitions .............................................................................................. 4 

2.1.3 Software Architecture ............................................................................ 4 

 Functional Mock-up Interface (FMI) ............................................................ 6 2.2

2.2.1 History .................................................................................................... 7 

2.2.2 Definitions .............................................................................................. 7 

2.2.3 FMI for Co-simulation ........................................................................... 7 

3. RELATED WORKS ................................................................................................ 9 

4. RSAR: A LAYERED SOFTWARE ARCHITECTURE FOR CYBER-

PHYSICAL SYSTEMS ............................................................................................. 11 

 Aim of RSAR .............................................................................................. 11 4.1

 RSAR Layers ............................................................................................... 12 4.2

 Scheduler Design ......................................................................................... 14 4.3



x 

 Software Component Layer Design ............................................................ 16 4.4

 Run Time Environment Layer Design ......................................................... 17 4.5

 Data Abstraction Layer Design ................................................................... 18 4.6

4.6.1 UART Protocol Abstraction Layer Design .......................................... 19 

4.6.2 DIO Data Abstraction Layer Design .................................................... 23 

 Hardware Abstraction Layer Design ........................................................... 24 4.7

4.7.1 General Purpose Timer (GPT) Driver Design ...................................... 24 

4.7.2 Universal Asynchronous Receiver/Transmitter Driver Design ........... 26 

4.7.3 Digital Input/Output Driver (DIO) Driver Design ............................... 28 

 Design Overview ......................................................................................... 29 4.8

5. SYSTEM INTEGRATION PROCESS .................................................................. 31 

 System Build Steps ...................................................................................... 31 5.1

 Software Component Layer Code Generation ............................................. 32 5.2

 Run Time Environment Layer Code Generation ......................................... 36 5.3

 Data Abstraction Layer Code Generation ................................................... 38 5.4

5.4.1 UART Data Abstraction Layer Code Generation ................................ 38 

5.4.2 DIO Data Abstraction Layer Code Generation .................................... 41 

 System Builder Definition ........................................................................... 43 5.5

6. CASE STUDY AND EVALUATION ................................................................... 45 

 Case Study ................................................................................................... 45 6.1

6.1.1 Algorithm Design ................................................................................. 45 

6.1.2 Real-time Software Design .................................................................. 47 

 Evaluation .................................................................................................... 51 6.2

6.2.1 Performance Evaluation ....................................................................... 51 

6.2.2 Development Benefit Evaluation ......................................................... 55 

6.2.3 Software Development on Different Hardware ................................... 58 



xi 

7. CONCLUSION ...................................................................................................... 61 

REFERENCES ........................................................................................................... 63 

 

  



xii 

LIST OF TABLES 

TABLES 

Table 1 Algorithm Signals ......................................................................................... 46 

Table 2 Test Message 1 Attribute Content ................................................................. 52 

Table 3 Test Message 2 Attribute Content ................................................................. 53 

Table 4 Message Transmit Time Comparison ........................................................... 53 

Table 5 DIO Access Time Comparison ..................................................................... 54 

Table 6 FMU Execution Time Comparison ............................................................... 54 

Table 7 Missile Guidance Computer Exchanged Message Numbers ........................ 57 

 

  



xiii 

LIST OF FIGURES 

FIGURES 

Figure 1 Layered Software Architecture of AUTOSAR [3] ........................................ 5 

Figure 2  Divided Basic Software Layer [3] ................................................................ 6 

Figure 3  Proposed Layered Software Architecture For Cyber-Physical Systems .... 12 

Figure 4 Scheduler Relations ..................................................................................... 15 

Figure 5 addTask Method Definition ......................................................................... 16 

Figure 6 Software Component Design ....................................................................... 17 

Figure 7 UART Data Abstraction Layer Example ..................................................... 20 

Figure 8 Receiving UART Protocol Message ............................................................ 22 

Figure 9 Transmitting UART Protocol Message ....................................................... 23 

Figure 10 GPT Driver Time Base Type ..................................................................... 24 

Figure 11 GPT Driver Mode Type ............................................................................. 25 

Figure 12 GPT Driver Callback Method Type .......................................................... 25 

Figure 14 UART Driver Baud-Rate Type .................................................................. 27 

Figure 15 UART Configuration Parameter Types ..................................................... 27 

Figure 16 UART Driver Interface Methods ............................................................... 28 

Figure 17 DIO Driver Interface.................................................................................. 28 

Figure 18 DIO Driver Constructor ............................................................................. 29 

Figure 19 DIO Driver Constructor Map .................................................................... 29 

Figure 20  Example Software Design in RSAR ......................................................... 30 

Figure 21 System Build Steps .................................................................................... 31 

Figure 22 Interface Definition XML .......................................................................... 33 

Figure 23 InterfaceGenerator Script Usage................................................................ 33 

Figure 24 Generated Interface File ............................................................................ 34 



xiv 

Figure 25 Task Definition XML ................................................................................ 34 

Figure 26 AbstractTaskGenerator Usage Example .................................................... 34 

Figure 27 Generated Task Header File ...................................................................... 35 

Figure 28 FMU – Task Integration ............................................................................. 36 

Figure 29 RunTimeEnvironmentGenerator Usage Example ..................................... 37 

Figure 30 Generated RunTimeEnvironment Header File ........................................... 37 

Figure 31 ConcreteTaskGenerator Usage Example .................................................. 38 

Figure 32 Concrete Task Example ............................................................................. 38 

Figure 33 UART Protocol Task Definition ................................................................ 39 

Figure 34 Generated UART Protocol Abstraction Layer Header File ....................... 40 

Figure 35 Generated Receive Handler Method .......................................................... 40 

Figure 36 Generated Transmit Handler Method ........................................................ 41 

Figure 37 DIO Data Abstraction Layer XML ............................................................ 41 

Figure 38 DIO Data Abstraction Layer Header File .................................................. 42 

Figure 39 DIO Data Abstraction Layer CPP File ...................................................... 43 

Figure 40 System Builder XML File .......................................................................... 44 

Figure 41 Implemented Design Overview ................................................................. 45 

Figure 42 Algorithm Block Relations ........................................................................ 46 

Figure 43 Missile Computer Sequence Diagram ....................................................... 49 

Figure 44 Communication Between Missile Computer and Simulated IMU ............. 50 

Figure 45 Detailed RS232 Communication ............................................................... 50 

Figure 46 CAS Logs ................................................................................................... 51 

Figure 47 Benchmark Design ..................................................................................... 52 

Figure 48 Guidance Computer Connections .............................................................. 56 

 

  



xv 

LIST OF ABBREVIATIONS 

AUTOSAR Automotive Open System Architecture 

CAS Control Actuator System 

CPS Cyber-physical System 

DIO Digital Input Output 

ECU Electronic Control Unit 

FMI Functional Mock-up Interface 

FMU Functional Mock-up Unit 

HAL Hardware Abstraction Layer 

IMU Inertial Measurement Unit 

I2C 

MCU 

MPU 

PC 

Inter Integrated Circuit 

Microcontroller Unit 

Microprocessor Unit 

Personal Computer 

RSAR Real Time Software Architecture 

SPI Serial Peripheral Interface 

UART Universal Asynchronous Receiver/Transmitter 





1 

CHAPTER 1 

INTRODUCTION 

Cyber–physical systems (CPSs) integrate the computation and physical processes. 

The control and monitoring of the physical processes are carried out by embedded 

computing systems. There is an interaction between these physical processes and the 

computation that involve feedback loops [1]. 

Development of software for cyber-physical systems requires deep knowledge from 

different disciplines iterative processes [2]. Developing real time embedded software 

for such a system demands software architectures for separate works done by 

software developers and dynamic model developers. The complexity of software 

design increases with more features included in the cyber-physical system. To 

develop such software on a custom designed infrastructure will ease design and 

development phases of software.  

Modeling such CPSs is followed by simulations for verification of the operation and 

performance measurements. The diverse and heterogeneous components of the CPSs 

require a standardized interface for the simulation models to facilitate model 

exchange and co-simulation of dynamic models.  

The motivation of this thesis work is developing a layered software architecture 

RSAR (Real-time Software ARchitecture) for CPSs which enables the real-time 

operation of the software in embedded environments and incorporates the 

standardized simulation interfaces.  

To this end, we adopt the architecture of well-established but proprietary AUTOSAR 

standard combined with Functional Mock-up Interface (FMI) standard to construct 

RSAR. AUTOSAR offers layered software architecture standard for automotive 

systems. Its main purpose is to separate hardware details while developing software 

using standardized interfaces between layers of software. The Functional Mock-up 

Interface (FMI) is a tool-independent dynamic model interface standard. Its main 
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purpose is model reuse and interoperability between various modeling tools and 

environments throughout the systems development phases.  

RSAR aims to minimize migration costs of software development with using current 

tools used in the company and aims to break dependency on AUTOSAR tool vendors 

that would be problem to purchase tool licenses to develop real time embedded 

software for CPSs. 

The contributions of this thesis are as follows: 

The layered RSAR architecture with detailed description of the interfaces and 

components. 

The demonstration of the correctness and performance of RSAR with a case study of 

missile avionics software which was previously developed in a defense industry 

company.  

 The remaining chapters are organized as follows: 

 Chapter 2 provides related literature and background information required for 

understanding of the subsequent chapters.  

 Chapter 3 presents an overview of the related works. 

 Chapter 4 explains the details of proposed layered software architecture. 

 Chapter 5 explains code generation process in the RSAR. 

 Chapter 6 presents a case study and evaluation. 

 Finally, Chapter 7 discusses the accomplishments and draws conclusions. 
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CHAPTER 2 

BACKGROUND 

 Automotive Open System Architecture (AUTOSAR) Standard 2.1

Automotive Open System Architecture (AUTOSAR) is standardized software 

architecture developed by car manufacturers with the aim to decouple software 

development details from hardware details. 

AUTOSAR provides a common software infrastructure for automotive systems. 

AUTOSAR aims to achieve technical goals of modularity, transferability and re-

usability for software used in automotive systems. 

AUTOSAR has been formed with the goals of [3] 

 Standardization of basic software functionality of automotive ECUs 

 Scalability to different vehicle and platform variants 

 Transferability of software 

 Support of different functional domains 

 Definition of an open architecture 

 Collaboration between various partners 

 Development of highly dependable systems 

 Support of applicable automotive international standards and state-of-art 

technologies 

2.1.1 History 

AUTOSAR has been founded by three original equipment manufacturers in 2003. 

Today, 9 core partners has been involved AUTOSAR: BMW, Bosch, Continental, 

Daimler, Ford, General Motor, Peugeot, Toyota and Volkswagen. It has 50 premium 

members, about 90 associated members and about 20 development members [4]. 
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AUTOSAR is broadly used in Europe and is emerging in Asia and North America. 

AUTOSAR has 5 different specifications since 2003 which are the releases 2.0, 3.0, 

3.1, 3.2, 4.0 and 4.1. 

2.1.2 Definitions 

Virtual Function Bus (VFB) 

To separate software design process from hardware details AUTOSAR defines 

Virtual Function Bus model. The Virtual Function Bus is a software component 

interconnection model that strictly separates the domain of application design and 

implementation of software for a specific hardware. It provides generic 

communication services that can be consumed by any existing AUTOSAR software 

component. All the services of the VFB are virtual. The virtual services are 

implemented for the underlying hardware in a later phase by AUTOSAR tools [6]. 

Run Time Environment 

Run Time Environment provides the actual implementation of the VFB 

interconnection model [6] . 

2.1.3 Software Architecture 

To decouple software components from hardware AUTOSAR provides layered 

software architecture standard. AUTOSAR includes four main layers as shown in 

Figure 1. To decouple software development from hardware AUTOSAR offers 

standard interfaces for the layers of the architecture. Thanks to interfaces between the 

layers, application layer components are developed without knowing the hardware 

details. Layered architecture offers reuse of the application layer components on 

different cars, different ECUs.  
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Figure 1 Layered Software Architecture of AUTOSAR [3] 

As show in the Figure 1, Application layer contains application specific software 

components. Runtime Environment layer isolates Application layer from Basic 

Software layer which contains Service layer, ECU Abstraction layer, 

Microcontroller Abstraction layer and Complex Drivers. At the bottom 

Microcontroller layer is located. 

The layers have different responsibilities. The Basic Software layer and the Runtime 

Environment layer are responsible for the abstraction between the hardware and the 

application software. Therefore the Basic Software layer contains ECU specific 

modules as well as general AUTOSAR modules [7]. 

Basic Software layer is divided into different parts according to their functionality as 

shown in Figure 2. 
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Figure 2  Divided Basic Software Layer [3] 

The System stack, consisting of Microcontroller Drivers, Onboard Device 

Abstraction and System Services, provides standardized services and library function 

for example for timer operations and operating system functionality [4]. 

The Management stack, consisting of Memory Drivers, Memory Hardware 

Abstaction and Memory Services, provides standardized access to non-volatile 

memory [7]. 

The Communication stack, consisting of Communication Drivers, Communication 

Hardware Abstraction and Communication Services, provides standardized access to 

the vehicle network system [7]. 

The I/O stack, consisting of I/O Drivers and I/O Hardware Abstraction, provides 

standardized access to sensors, actuators and other ECU on board peripherals[7]. 

 Functional Mock-up Interface (FMI) 2.2

Functional Mock-up Interface (FMI) is a tool independent standard to support both 

model exchange and co-simulation of dynamic models using a combination of XML-

files and compiled C-code [8]. The models are independent from the tools and any 
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model can be exchanged in any simulation environment. The models can be reused 

on any modeling tool supports FMI. 

2.2.1 History 

The first version, FMI 1.0, was published in 2010. The FMI development was 

initiated by Daimler AG with the goal to improve the exchange of simulation models 

between suppliers and OEMs. As of today, development of the standard continues 

through the participation of 16 companies and research institutes [8]. 

2.2.2 Definitions 

Functional Mock-up Interface (FMI) 

Functional Mock-up Interface defines a standardized interface for simulation of 

cyber-physical systems [8]. A Cyber-physical system is an embedded system that 

controls physical entities by using software and hardware elements. Cyber-physical 

systems are used in many areas which are aerospace, automotive, energy etc. [2].  

Functional Mock-up Unit 

Functional Mock-up Unit is a software component which uses Functional Mock-up 

Interface. FMU is provided as a compressed file which includes a model description 

file and source codes, libraries and documentation. 

2.2.3 FMI for Co-simulation 

FMI for Co-simulation is a standard interface for the model that contains its solver 

inside. The user of the model does not need to know which integration methods are 

applied to solve differential equations. 

To use a given FMU three steps are needed, which are instantiation and initialization, 

running and termination.  

In the instantiation and initialization step, an instance of FMU is created and 

initialized. In this step, memory allocation needed by the FMU is done and 

parameters used in the FMU are initialized to their default values. 
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FMI defines setter, getter and execution methods to run model. Setter methods are 

used to set parameters which are used by the model execution. To solve model’s 

differential equations, doStep method is defined by the FMI. The output parameters 

generated by the model are reached by using getter methods. 

In the running step firstly, input parameters are set by calling setter methods 

(FMUSet…(…)). Then doStep() method is called to solve the model’s differential 

equations. By calling getter methods (FMUGet…(…)), output parameters of the 

solved model can be accessed by the caller. 

In the termination step, resources used by the FMU are freed. 
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CHAPTER 3 

RELATED WORKS 

In the related work [9], it is proposed that Functional Mock-up Interface standard for 

model exchange can be utilized in the context of AUTOSAR software component 

development. Automatic transformations between the XML schemas of the two 

standards are utilized to convert FMI models to AUTOSAR [9]. 

In the related work, mapping and conversion scheme between FMI and AUTOSAR 

is shown and after mapping and conversion FMI is used as AUTOSAR software 

component.  FMI and AUTOSAR use XML definitions to define models. The Altova 

MapForce  program is used to map XML schemas in the graphical user interface [9]. 

In the related work [10], a solution is proposed to use AUTOSAR and FMI together 

in the Software-in-the-loop simulations. A  powertrain co-simulation is demonstrated 

to facilitate AUTOSAR and FMI standards together. 
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CHAPTER 4 

RSAR: A LAYERED SOFTWARE ARCHITECTURE FOR CYBER-

PHYSICAL SYSTEMS 

In this chapter the proposed RSAR layered software architecture is described. The 

details of the layers defined in the architecture have been explained in detail. 

Dynamic model utilization in the architecture has been covered as well. 

 Aim of RSAR 4.1

The physical processes related with cyber-physical systems are handled by 

embedded software systems. A conventional embedded system development 

approach contains software which is particular to hardware. This tied approach 

brings some problems along. The software is dependent to the hardware and if the 

hardware changes in some time, the particular software must be changed also. To 

eliminate this problem in the domain of embedded software systems, software must 

be divided in well described layers which break the hardware dependency somehow. 

Another problem in the domain of cyber-physical systems is dynamic model 

utilization in the software. Dynamic models are generally developed tools which 

generate code from the model descriptions. There exist many dynamic modeling 

tools for different engineering branches. Thanks to FMI, usage of the models is 

standardized with a tool-independent common interface. RSAR enables dynamic 

model utilization using FMI. 

The RSAR briefly aims to 

 divide software into layers to eliminate/minimize hardware dependency 

 shorten design and development phases of the software project by  supplying 

layered software architecture and dynamic model inclusion with FMI 

 provide code re-usability between various software projects 

 break modeling tool dependency by using FMI 
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 reduce implementation errors by providing layered software models which 

contain template C/C++ classes and automatic glue code generation to these 

template models according to software system requirements 

by offering a layered software architecture which utilizes FMI for cyber-physical 

system software development. 

 RSAR Layers 4.2

The RSAR solution includes five layers as shown in Figure 3. Between all the layers, 

the communication is handled over interfaces shown in Figure 3. 

 

Figure 3  Proposed Layered Software Architecture For Cyber-Physical Systems 
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A brief introduction to the layered architecture is given here. The details of every 

layer are given in the following sections. 

Hardware Abstraction Layer (HAL) provides a standardized way to communicate 

between the peripherals of microprocessor unit. Peripherals include UART, SPI, DIO 

and GPT etc. For the Hardware Abstraction Layer, some peripheral drivers have 

been designed and implemented for the thesis proposal which are 

 Serial Peripheral Interface Driver 

 Universal Asynchronous Receiver/Transmitter (UART) Driver 

 General Purpose Timer (GPT) Driver 

 Digital Input/Output Driver (DIO) Driver 

For each of the drivers given above, an interface has been designed to standardize 

development of driver. With the standard interface, the user does not need to know 

about hardware details of peripherals. The user uses only the Application 

Programming Interface (API) given by the standardized driver interface. In 

AUTOSAR, Microcontroller Abstraction Layer is used for same purposes.  

Data Abstraction Layer is used above the HAL to convert peripherals data into 

meaningful data to be used in the Software Component Layer. Peripheral data must 

be converted to logical data that will be used in the Software Component Layer. The 

main purpose of this layer is to parse the incoming data from HAL into named signals 

and to format the named signals into appropriate outgoing data to HAL. The models 

proposed are explained in 4.6. 

The Software Component Layer components include virtual connections to get data 

or to set data which should be separated from hardware communication details. 

These virtual connections are converted into concrete connection in the Runtime 

Environment Layer. A Software Component Layer entity has no interaction with the 

hardware. It has virtual connections to reach and modify the needed signal.  A 

Software Component Layer entity can include a dynamic model which has 

Functional Mock-up Interface in the proposed solution.  By using FMI, software 
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developers and dynamic model developers will have a common interface to 

communicate each other in a standard way. The dynamic models can come from 

various domains including mechanical, hydraulics, pneumatics, thermodynamics, 

flow dynamics, electrical, software etc. 

 Scheduler Design 4.3

Real time embedded systems are assumed to work with periodic tasks. In a period, 

these systems do some tasks which should be completed by a certain time. These 

tasks are executed by a scheduler in certain times. 

In proposed design, Scheduler class has been developed to run tasks which should 

start to run a certain time in the main loop of the embedded software. Scheduler is 

responsible to run tasks using a predefined runnable model. The runnable model in 

the proposed design is Task class. All the runnable entities in the design use Task as 

base class. 

Scheduler object needs time information to run tasks. SystemTime class has been 

developed to provide necessary timing information to Scheduler. SystemTime uses a 

General Purpose Timer Driver (GPT) which resides in the HAL to get timing 

information from timer peripheral. The object of the Scheduler class uses the 

SystemTime object to run tasks periodic. Scheduler object knows Task interface and 

runs the Task objects by calling their run method. The run method is a virtual 

method which is realized by derived classes. Thanks to inheritance, all Task objects 

can do different tasks. The run method of a Task object must be called in appropriate 

time in the main loop according to embedded system requirements. To able to run 

tasks in appropriate time in the main loop, the Scheduler object needs one more timer 

to measure time in the main loop. This timer must have more resolution. In proposed 

design for this purpose, Time Base Register of e300 core is used [1]. Time Base 

Register is sampled at the beginning of the main loop and tasks are executed in the 

loop when their time comes with respect to sampled main loop time.  

The class diagram of the proposed scheduler is shown in the Figure 4. 
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Figure 4 Scheduler Relations 

The properties of the scheduler design are listed here. 

 Tick period of the SystemTime is determined according to embedded system 

requirement. This tick period determines the main loop start time of 

Scheduler. For example, Scheduler starts to execute Task objects every 2 

milliseconds. 

 Scheduler knows a number of Task objects to be executed. This number 

changes according to design of embedded system.  

 Scheduler keeps timing information for debugging purposes. Total execution 

time of Task objects are tracked by the Scheduler. Maximum and instant 

execution times of the main loop are stored inside Scheduler. Thanks to this 

information, developer can observe if total work is completed inside 

determined main loop time. 

 Task objects are executed in succession by the Scheduler. Task objects are 

introduced to the Scheduler with order of execution and time of execution 

information by the developer. Time of execution information is used by the 

Scheduler to start execution in a defined time in the main loop. When a Task 

object execution is finished, Scheduler firstly check the time of execution 
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information of next Task object in the sequence, then it starts execution or 

waits for the determined time to come. 

 Task objects keep information of their own execution time. Thanks to this 

information, developer can observe execution time of any particular Task 

object. 

Task objects are registered to Scheduler object by using the addTask  method which 

is given in Figure 5. 

 

Figure 5 addTask Method Definition 

The orderOfExecution parameter defines which order task will be executed by the 

Scheduler object. The execStartTimeInLoopInMicros parameter defines the start of 

execution time in microseconds in the main loop. 

 Software Component Layer Design 4.4

In RSAR, Software Component Layer is the top layer. A Software Layer Component 

has no dependency with hardware. It needs some input signals and by using these 

input signals produces some output signals with logic located inside. In the proposed 

design, a Software Component is an abstract class which is derived from Task class. 

These tasks are run by the Scheduler object.  

In the design process, firstly signals are determined as needed by the software 

component. Then these signals are grouped together to define an interface. To 

generate a Software Component, all the interfaces are determined by the user using 

the determined signals needed by the interface. These interfaces show that which 

data from/to Run Time Environment Layer is needed by the component. In Figure 6, 

there is a Software Component which is a Task with two interfaces.  



17 

 

Figure 6 Software Component Design 

To generate such a Software Component, firstly signals are determined. Then signals 

are grouped together to define an interface. Lastly, Software Component is derived 

from these interface classes and the base Task class. By doing that, developer is free 

to develop logic inside the Software Component without knowing where the data 

comes from and where data goes to. 

In RSAR, a Software Component can include a FMU inside. The FMU is connected 

to Software Component by using FMI methods which are getter, setter and execution. 

The inputs of the Software Component are connected to FMU and outputs of the 

FMU are connected to Software Component. 

In the RSAR, interfaces and Software Components are generated automatically from 

defined XML files. The detail of the automatic code generation process has been 

introduced in section 5.2. 

 Run Time Environment Layer Design 4.5

The Run Time Environment Layer stands between the Software Component Layer 

and the Data Abstraction Layer. It is used to connect Software Component Layer and 

Data Abstraction Layer together. 

To develop Run Time Environment Layer, a class has been determined to store data 

which is used by Software Component Layer and Data Abstraction Layer and to 
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direct data from Software Component Layer to Data Abstraction Layer or from Data 

Abstraction Layer to Software Component Layer. 

As explained in the section 4.4, Software Components have only virtual methods to 

use and modify data. These virtual methods are realized within Run Time 

Environment Layer. To realize virtual methods of a Software Component, a new 

class is derived from the Software Component class. The derived class is named with 

a prefix. The prefix word defined in the RSAR is “Concrete”. If name of a Software 

Component is “SoftwareComponent”, name of the derived class becomes 

“Concrete_SoftwareComponent”. The “Concrete_SoftwareComponent” uses the 

methods of Run Time Environment Layer class. The methods of Run Time 

Environment Layer class can 

 set the data to attributes of itself, 

 get the data from the attributes of itself, 

 direct the data to a Data Abstraction Layer component, 

 fetch the data from a Data Abstraction Layer component. 

The Run Time Environment Layer class has concrete methods to be used by the 

Software Components and by the Data Abstraction Layer components. 

In RSAR, Run Time Environment Layer class and concrete Software Components are 

generated automatically using defined XML files. The detail of code generation 

process has been introduced in 5.3. 

 Data Abstraction Layer Design 4.6

Data Abstraction Layer stands between Run Time Environment Layer and Hardware 

Abstraction Layer. The aim of this layer is to process data into appropriate format for 

upper and lower layers. To send Run Time Environment Layer data to hardware or to 

get hardware data to Run Time Environment Layer, determined data abstraction 

models within RSAR are used. In the following sections, two Data Abstraction 

Layer models have been introduced.  
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The UART Protocol Abstraction Layer is a model for asynchronous serial 

communication. The model is a reference model which can be used to design a 

model for any other serial communication hardware. The given model is a RSAR 

Task which is executed by the Scheduler to handle communication with hardware. 

The model has responsibility to connect hardware to Run Time Environment Layer. 

The details of the UART Protocol Abstraction Layer are given in 4.6.1. 

The DIO Data Abstraction Layer is a synchronous model given in detail in 4.6.2. 

The Run Time Environment Layer uses the DIO Data Abstraction Layer to make 

connection to DIOs. This process is performed by calling the methods from Software 

Component Layer. A Software Component Layer entity calls a method and over the 

Run Time Environment Layer, DIO connection is made synchronously to method call 

using DIO Data Abstraction Layer. 

4.6.1 UART Protocol Abstraction Layer Design 

UART peripherals are commonly used in embedded systems to communicate with 

each other. Generally a messaging protocol is used over UART communication. The 

message coming from UART hardware must be parsed into meaningful data to make 

process with. A protocol message generally has header, data and CRC areas. The 

header area introduces the message to receiving side with message id, message 

length etc. sub areas. The data area of the UART message consists of the raw data 

including one or more meaningful data. The CRC area is used to detect undesired 

changes in the message which is transferred. 

In RSAR, to generate and parse UART protocol messages that are used in the 

company, UART Protocol Abstraction Layer model has been designed. To 

implement this model some common classes has been designed as template to model. 

Then from the XML definition of a UART protocol message, glue code is generated 

automatically by the implemented python script. The detail of the automatic code 

generation has been introduced in the section 5.4.1. In RSAR, to send and receive 

UART protocol messages Task and Avionic classes are used as base class to derived 

automatically generated class. The automatically generated class is used as glue code 

to communicate with Run Time Environment Layer. This class converts the raw data 
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into meaningful data and sets the meaningful data to Run Time Environment Layer. 

In same way, this class gets meaningful data from Run Time Environment Layer and 

converts meaningful data into raw data. 

In RSAR, UART Protocol Abstraction Layer uses flags to control receiving and 

sending messages. A Software Component sets a flag to trigger UART message 

sending. UART Protocol Abstraction Layer controls the flag over Run Time 

Environment Layer. If a sending message flag is set, UART Protocol Abstraction 

Layer prepares the message and sends it. In same way, a Software Component can 

detect if there is new data by checking a flag. This flag is set by the UART Protocol 

Abstraction Layer over Run Time Environment Layer. 

In the Figure 7, there is an example for the abstraction layer. RTE_MC_IMU_Task 

class is generated automatically from the XML file definition. It is the glue code 

between the Run Time Environment class and the abstraction layer template class 

which is named Avionic. The Avionic and Task classes are used as base class to 

automatically generated class. The Avionic class controls the AvionicPort object to 

send and receive AvionicMessage object which is abstraction model of UART 

message in RSAR. 

 

Figure 7 UART Data Abstraction Layer Example 
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The AvionicPort has some properties to control UART protocol communication. 

Details of the properties are given below. 

 AvionicPort has a map to identify receiving UART messages. This map 

creates a relation between message identification number and message length. 

Message identification number and message number reside in the header 

section of the message. AvionicPort  receives only the messages introduced to 

itself by the message identification number – message number map. If an 

unknown message is received, it is dropped by the AvionicPort. 

 AvionicPort checks the CRC value of the incoming message. If the CRC 

value is incorrect, the message is dropped by the AvionicPort. 

 AvionicPort calculates the CRC value of the outgoing message. 

 AvionicPort has a timeout value for incoming UART messages. The message 

is dropped by the AvionicPort, if AvionicPort can’t receive message within 

timeout time. 

To understand how the design works, sequence diagrams are given in the Figure 8 

and Figure 9. 
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Figure 8 Receiving UART Protocol Message 

To receive a message, the Scheduler object calls run method of the abstraction layer 

Task object. The object firstly uses the base class methods to receive UART 

message. The rxMsgAsyncMainMethod of the AvionicPort object is used to 

communicate with UART driver which resides in HAL. If there is a completed 

UART protocol message, the receiveMessageAsync method returns true. Then the 

handleRxAvionicMessage method which is implemented in the auto-generated code 

is called. According to UART message definition which is given in the XML file, 

message is parsed and the values are set to Run Time Environment Layer. To indicate 

there is a new message, flag attribute is set. In the example, IMU_Rx_Flag is used. 
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Figure 9 Transmitting UART Protocol Message 

To send a message, firstly a Software Component Layer object should trigger the 

Data Abstraction Layer object by setting a flag which is IMU_Tx_Flag in the 

example. The flag is set by the calling method of the Run Time Environment Layer. 

Then the Scheduler object calls the run method of the Data Abstraction Layer object. 

The UART Protocol Abstraction Layer object checks if the flag is set. If the flag is 

set, the UART protocol message is prepared. By calling the sendMessageAsync 

method, the message is sent to AvionicPort. The message is sent to UART peripheral 

by the AvionicPort object with calling txMsgAsyncMethod. The AvionicPort object 

uses UART driver which resides in the HAL to send raw data. 

4.6.2 DIO Data Abstraction Layer Design 

DIO Data Abstraction Layer is used to abstract hardware details of discrete input and 

output ports. A Software Component might control or read discrete ports by using 

Boolean flags in the proposed RSAR design. If the Boolean value is true, it means 

the discrete port has a value of active state. If the Boolean value is false, it means the 

discrete port has a value of inactive state. The Run Time Environment Layer uses this 

layer to make connection with DIOs. The DIO is set as logic 0 or logic 1 according 

to defined active/inactive state in the design. The logical value read from a DIO is 
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converted to Boolean value according its defined active/inactive state in the design 

by this layer. 

 Hardware Abstraction Layer Design 4.7

In this part, the detail of the thesis study of HAL design is given. All drivers were 

developed for the Freescale MPC5200B microprocessor unit. MPC5200B is a 

PowerPC based microprocessor unit with its e300 core [11].  

For all drivers given below, an interface has been defined and using these interfaces 

the drivers have been developed for the RSAR study. A defined driver interface uses 

a C language struct which contains method pointers and defined attributes to offer a 

common way to interact with hardware. By doing that, the driver interface could be 

used for another hardware platform. 

The driver interface for the hardware peripheral defines a standard way to 

communicate with hardware. The implementation of the driver is dependent on the 

MCU/MPU hardware platform. By using a driver interface, usage of the hardware 

peripheral is standardized for different MCU/MPU hardware platforms. For the 

thesis study, GPT, UART and DIO driver interfaces have been defined. For the 

defined interfaces, drivers have been implemented for the Freescale MPC5200B 

MPU. 

4.7.1 General Purpose Timer (GPT) Driver Design 

A timer peripheral of a microcontroller/microprocessor is used to measure time or to 

count time by interrupt. In thesis work, an interface has been developed and 

MPC5200B timer driver has been implemented. 

 

Figure 10 GPT Driver Time Base Type 
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In GPT interface, a timer can be configured in two ways. First configuration value is 

GPTDRIVER_CONTINUOUS_MODE. This value is used to generate periodic 

interrupt by the timer peripheral.  GPTDRIVER_ONE_SHOT_MODE configuration 

value is used to generate interrupt only once. 

 

Figure 11 GPT Driver Mode Type 

When a timer is elapsed, an interrupt occurs and in some way user needs to know 

about that event. For this purpose, a user callback method has been defined in GPT 

interface. The GPT driver handles the interrupt and calls the user callback method to 

inform user about timer elapse event. The definition of callback method is given in 

the Figure 12. 

 

Figure 12 GPT Driver Callback Method Type 
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Figure 13 GPT Driver Interface Methods 

GPT interface consists of the methods given in the Figure 13. 

The open method is used to initialize the GPT peripheral. The startTimer method is 

used to start GPT peripheral to count. The stopTimer method is used to stop GPT 

peripheral to count. The enableNotification method is used to register user callback 

method to GPT driver. By using this method, driver learns which user callback 

method will be called. The disableNotification method is used to delete record of the 

user callback method. The close method is used to stop GPT peripheral and tells the 

driver GPT will not be used again until the open method calling. 

4.7.2 Universal Asynchronous Receiver/Transmitter Driver Design 

A Universal Asynchronous Receiver/Transmitter is a hardware which translates 

parallel data to serial form to send, and incoming serial data to parallel form. UART 

peripherals are used with external circuits to form electrical signal into standard RS-

232, RS-422, RS-485 etc. forms. 

In RSAR, an interface has been developed for UART driver and two different kind of 

UART driver has been implemented for two different peripherals which are 

MPC5200B PSC and D16950 UART IP. 

To set baud-rate of the communication UARTBaudrateType which is shown in 

Figure 14 is defined. 
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Figure 14 UART Driver Baud-Rate Type 

To set stop bit count of the UART communication UARTStopType which is shown in 

the Figure 15 is defined. 

To set bit count of a character UARTDataBitType which is shown in the Figure 15 is 

defined. 

To set parity of the UART communication UARTParityType which is shown in the 

Figure 15 is defined. 

 

Figure 15 UART Configuration Parameter Types 

The UART driver object definition is given in the Figure 16. The interface has 

methods to manage UART. The developed MPC5200B PSC and D16950 UART IP 

drivers use the same interface. 
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Figure 16 UART Driver Interface Methods 

4.7.3 Digital Input/Output Driver (DIO) Driver Design 

To set or get the value of any discrete data in the RSAR, a DIO driver interface has 

been offered.  

This simple interface defines the logic level type named DIOLevelType. 

 

Figure 17 DIO Driver Interface 
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The interface has a method pointer named “initialize” to start driver. The 

writeChannel method pointer is used to set a DIO. The readChannel method pointer 

is used to get value of a DIO. The interface definition is given in Figure 17. 

 

Figure 18 DIO Driver Constructor 

To use different kind of hardware within same interface methods, a constructor 

method map was implemented. The example constructor map implementation 

according to driver identification is shown in the Figure 19. To generate different 

DIO driver objects, a common constructor is used.   

 

Figure 19 DIO Driver Constructor Map 

 Design Overview 4.8

To understand the software architecture easily, some parts of a missile computer 

software design is given in Figure 20. The design uses the proposed layered 

architecture, the RSAR.  All the related layers with the architecture are shown in the 

figure. The design in the figure is responsible to execute auto-pilot algorithm within 

a specific time in the main loop of schedule. Required data to execute the FMU is 

received using UART Protocol Abstraction Layer over UART driver interface. This 

example is specific for communication over a UART peripheral. For different 

hardware peripherals, a new Data Abstraction Layer model is required. The detailed 

information about using different hardware peripherals are given in the section 6.2.3. 
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Figure 20  Example Software Design in RSAR 

Scheduler class is responsible to execute tasks in given order and time. Task class is 

the base class for all other Software Component Layer classes. 

The Avionic class is derived from the Task class. It is the main class for all other 

avionic classes. It is used as template class to other Avionic classes. Here the name 

Avionic is used for the avionics that communicates over UART with a protocol. All 

derived Avionic classes communicate with hardware over an interface named 

AvionicPort. AvionicPort class is responsible to check protocol details of the 

communication. The UART protocol messages have message identification number, 

message direction, message data and CRC fields. ConcreteAvionicPort implements 

the AvionicPort interface. It uses UARTDriverType interface to communicate with 

peripheral hardware. UARTDriverType interface is an actually standardized 

Hardware Abstraction Layer driver which communicates with UART peripheral. 

AutoPilot_Task class is also derived from Task class. It includes auto-pilot algorithm 

as Functional Mock-up Unit with the Functional Mock-up Interface. When the Task 

instance (here AutoPilot_Task instance) is executed by the Scheduler instance, 

AutoPilot_Task instance runs the FMU. 

SystemTime class provides time information to Scheduler class. Scheduler class uses 

SystemTime to run its tasks on their time. 
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CHAPTER 5 

SYSTEM INTEGRATION PROCESS 

In this chapter, software system integration process for the RSAR is described. The 

RSAR defines layered software architecture as introduced in the section 4.2. To 

generate these defined layers some scripts are used to generate code automatically. 

These scripts are named as the RSAR tools. Automatic code generation properties of 

the RSAR have been introduced in detail in this chapter. 

  System Build Steps 5.1

 

Figure 21 System Build Steps 

If a software developer wants to develop a software project in the RSAR, some steps 

are  required to follow. In the Figure 21, the steps of the software system generation 

are shown. To generate the RSAR software, some XML files must be created by the 

developer. The details of the XML files are given in the following sections. These 

XML file definitions are used by the RSAR tools to generate layer code 

automatically. 

First step in the design is to define interfaces of Software Component Layer entities. 

These entities communicate with Run Time Environment Layer using the defined 

interfaces. To define an interface, an XML definition is used. The detail is given in 
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the section 5.2. Software Component Layer must communicate with hardware using 

Run Time Environment Layer and Data Abstraction Layer. For this purpose, Run 

Time Environment and Data Abstraction Layer XML files are defined by the 

designer. The detail is given in the sections 5.3 and 5.4.  

After defining layer XML files, it is needed to define Task execution times. The 

Scheduler must be configured to run these Tasks. To configure Scheduler, System 

Builder XML file is defined by the developer. The detail is given in the 5.5. 

After defining all XML files, the System Builder script is executed. The layers are 

generated by calling specific scripts of that layer. The main file is also created by this 

script. The main file contains created Task and Scheduler objects and configuration 

code for the objects. Every layer in the RSAR design is generated by a script 

automatically. To generate a layer, the responsible script is called by the System 

Builder script. The RSAR tools are these scripts to generate interface and layer code. 

For Software Component Layer, Run Time Environment Layer and Data Abstraction 

Layer code generation different scripts have been implemented.  

The detail of the automatically code generation is given in the following sections. 

 Software Component Layer Code Generation 5.2

As given in the section 4.4, the Software Component Layer entities need some input 

and output signals. These signals are grouped into to define an interface. The 

interface is defined using a XML definition. This XML definition is used to generate 

interface code automatically. An example interface definition XML file is given in 

the Figure 22. As seen in the example XML file, interface name and the attribute 

types are defined.  The interface has a name which is 

AutoPilot_IMU_Input_Interface in the example file. The attribute definitions in the 

XML file are used to generate interface methods in the generated interface source 

file. 
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Figure 22 Interface Definition XML 

To generate interface source file, a python script named InterfaceGenerator has been 

developed. InterfaceGenerator script is used seen as in Figure 23. Here, five 

interfaces have been given whose names can be seen in the figure. 

 

Figure 23 InterfaceGenerator Script Usage 

The generated interface source example can be seen in the Figure 24. 
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Figure 24 Generated Interface File 

Interfaces are used by Tasks in the RSAR. An abstract Task can be derived from one 

or more interfaces. To generate abstract Software Component, an XML definition has 

been developed. In the XML file, all the interfaces needed by the component are 

written. An example XML file of abstract Task definition is given in the Figure 25. 

 

Figure 25 Task Definition XML 

To generate abstract Task source files, a python script named AbstractTaskGenerator 

has been developed. In the Figure 26, it can be seen how to use the script. 

 

Figure 26 AbstractTaskGenerator Usage Example 

The generated source file is shown in the Figure 27. As seen, task is derived from all 

the interfaces and Task class. The only method which should be implemented by the 
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user is the method named execute. All the data is needed by the execute method is 

provided by the interface methods. 

 

Figure 27 Generated Task Header File 

Inside the execute method, the software developer can get input signals and can write 

to output signals using interface methods. By doing that, logic inside the execute 

method becomes independent from the other layers. Abstract methods are realized in 

the Run Time Environment Layer. The detail of method realization in the Run Time 

Environment Layer is given in the following section. 
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Figure 28 FMU – Task Integration 

To use a FMU inside the RSAR Software Component Layer, a python script has been 

developed also. This script is used to generate code to glue FMU and Software 

Component Layer entity methods. An example code piece has been given in the 

Figure 28. Inside the code, firstly FMU inputs are set using FMI. Then the FMU is 

executed. Lastly, outputs of the FMU are set to Run Time Environment Layer by 

using interface methods of Software Component Layer. 

 Run Time Environment Layer Code Generation 5.3

The Run Time Environment Layer is generated automatically. To generate Run Time 

Environment Layer automatically, a python script has been developed. The script 

uses the interface definition XML files of software components to generate the layer. 

To use python script, it is needed to have software component XML files. In the 

example given below, AutoPilot_Task is defined. AutoPilot_Task definition XML 

file includes all the interfaces which are needed by the task. The script gets the name 
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of the Task class and opens the XML file and starts to search interface definition 

XML files. Using interface XML files, all the data needed to generate Run Time 

Environment Layer is extracted. After completion of data extraction, the layer is 

generated. 

The sample python code is given below to generate the layer. 

 

Figure 29 RunTimeEnvironmentGenerator Usage Example 

After calling the generate method RunTimeEnvironment.h and 

RunTimeEnvironment.cpp files are generated automatically. Some parts of the 

generated header file look like given below. Here, the data needed by the Run Time 

Environment Layer is generated from the task definition XML files. 

 

Figure 30 Generated RunTimeEnvironment Header File 
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In the Software Component Layer abstract Task classes are generated automatically. 

The interface methods of the abstract class must be implemented and must be 

connected to Run Time Environment Layer. This is done by the python script named 

ConcreteTaskGenerator. The usage of script is shown in the Figure 31.  

 

Figure 31 ConcreteTaskGenerator Usage Example 

The output file of the script is shown in the Figure 32. As shown, the interface 

methods are implemented and connected to Run Time Environment Layer. 

 

Figure 32 Concrete Task Example 

 Data Abstraction Layer Code Generation 5.4

In this section, detail of the Data Abstraction Layer code generation has been given. 

5.4.1 UART Data Abstraction Layer Code Generation 

The incoming data and outgoing raw data over UART peripheral must be converted 

into meaningful data. The raw data is converted into meaningful data by using an 
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XML file definition. In the following figure, there is an XML file which has the 

definition of the UART protocol messages. A message has a unique number, input 

and output parts.  Input and output data is indicated by a name, type, dimension and 

offset. To generate Task object from the XML file, it is needed to know the interface 

which is used to communicate with Run Time Environment Layer. For this purpose, 

the XML file contains interface section inside. 

 

Figure 33 UART Protocol Task Definition 

The automatically generated UART Protocol Abstraction Layer class header file is 

shown in the Figure 34. It has methods which are defined in the XML file to 

communicate with the Run Time Environment Layer. The setter and getter methods 

are generated according to XML file. 
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Figure 34 Generated UART Protocol Abstraction Layer Header File 

The generated glue code for receiving an avionic message is shown in the Figure 35. 

Messages are parsed according to their message identification number which is 

defined in the XML file. The raw data is converted into meaningful data according to 

offset definitions in the XML file. 

 

Figure 35 Generated Receive Handler Method 
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The avionic message which will be sent to UART is generated by the 

handleTxAvionicMessage method according to the XML definition of the messages. 

The generated method according to the XML file is shown in the Figure 36. 

 

Figure 36 Generated Transmit Handler Method 

5.4.2 DIO Data Abstraction Layer Code Generation 

In Figure 37, XML definition of a DIO Abstraction Layer has been given. In the 

XML structure, DIO driver and DIO definitions resides.  

 

Figure 37 DIO Data Abstraction Layer XML 



42 

 

Figure 38 DIO Data Abstraction Layer Header File 

In Figure 38, the generated header file is given. From the XML definition, the 

methods are generated. These methods are used by Run Time Environment Layer to 

make connection with Software Component Layer. 
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Figure 39 DIO Data Abstraction Layer CPP File 

In the generated CPP file, the DIO drivers used in the software design are created 

and initialized as shown in the Figure 39. 

 System Builder Definition 5.5

To generate Task objects used in the software design, an XML definition has been 

introduced in RSAR. An example of the XML file is given in Figure 40. This file is 

used by the system builder script to generate objects used in the software design. 
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Figure 40 System Builder XML File 

In the XML file, Scheduler object configuration values are given. Task object 

configuration values are also given in the XML file. Inside the given example, there 

are five Task objects to run by the Scheduler. The loop time is defined as 10 

milliseconds. 

To generate Run Time Environment Layer, name of the layer and code generation 

script is defined inside the XML file. 

As seen, Tasks are defined inside the XML file. The name of the Task and its code 

generation script is defined inside the file. Execution step and time of the Task is 

used to introduce the Task object to the Scheduler. By doing this definition, real time 

characteristic of the software system is defined by using the XML file. 
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CHAPTER 6 

CASE STUDY AND EVALUATION 

 Case Study 6.1

The overview design of the implementation project named RSAR Demonstrator is 

shown in the Figure 41. Design includes three separated hardware. Using RS232 

electrical interface, hardware connection was established. In scenario for the 

implementation, Missile Computer requests the IMU data and Simulated IMU sends 

the simulated IMU data back. Then Missile Computer calculates fin angles and sends 

them to CAS. CAS is used to log data sent by the Missile Computer. The Missile 

Computer software has been developed using the RSAR layered architecture and the 

RSAR tools. The design consists of the layers of the RSAR given in the Figure 3. 

 

 

Figure 41 Implemented Design Overview 

6.1.1 Algorithm Design 

To demonstrate thesis work a guidance algorithm has been developed. The algorithm 

is an FMU which is used within a Task object in the design. The algorithm consists 

of two blocks which are shown in the Figure 42. The figure shows us the modeling of 

the FMU. As shown in Figure 3, the Software Component Layer can include Tasks 

with FMU. This FMU is used inside the Task object in the design. 

The guidance algorithm has been developed in the environment of MATLAB 

Simulink. 
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Figure 42 Algorithm Block Relations 

Input and output signal definition of the algorithm design is described as shown in 

the Table 1. 

Table 1 Algorithm Signals 

Signal Name From To Description 

Acceleration from IMU Simulated IMU Autopilot Raw three axial acceleration data 

Euler Angles from IMU Simulated IMU Autopilot Missile attitude angles 

x_tar Simulated Seeker PN Guidance Three axial target position data 

v_tar Simulated Seeker PN Guidance Three axial target velocity data 

a_comm PN Guidance Autopilot Accleration command generated by 

guidance 

v_miss_0 Mission parameter Autopilot Missile initial velocity 

x_miss_0 Mission parameter Autopilot Missile initial position 

v_miss Autopilot PN Guidance Calculated misille velocity state 

x_miss Autopilot PN Guidance Calculated misille position state 

PN_gain Missile parameter PN Guidance PN Guidance gain parameter 

g Mission parameter PN Guidance Gravitational acceleration 

delta_fin_comm Autopilot CAS  Fin deflection command 
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The algorithm includes two blocks which are described as follows. 

6.1.1.1 AutoPilot Block 

This block estimates the position of the missile. Then for the given acceleration 

command from guidance block it calculates proper total control input for the two 

axes of the missile which are rudder and elevator. Rudder command is used to 

maneuver in yaw direction and elevator command is for pitch maneuver. Afterwards 

these total maneuver command are distributed to four different control surfaces. 

6.1.1.2 PN Guidance Block 

Purpose of this block is to calculate the acceleration command in order to maneuver 

the missile to intercept the target. To achieve this maneuver proportional guidance 

law algorithm is implemented. This algorithm calculates the commanded 

acceleration proportionally to the line of sight change between the missile and target. 

This block takes the position of missile and target from autopilot and seeker block 

and calculates the line of sight change of the target. Then, it compensates the 

gravitational acceleration. 

6.1.2 Real-time Software Design 

In the design, firstly interfaces have been defined according interaction of the 

software. Then Tasks have been defined. The Task classes used in the design are  

 RTE_MC_IMU_Task 

 Seeker_Task 

 PN_Task 

 AutoPilot_Task 

 RTE_MC_CAS_Task 

In the implementation project, Missile Computer software runs at 100 milliseconds 

interval. This information is used by the system builder script to configure Scheduler. 

The Scheduler object runs Task objects periodically according to their running time 

definition in the XML file. 
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RTE_MC_IMU_Task  object is used to communicate with Simulated IMU. It sends 

request to Simulated IMU and parse the incoming data. The parsed data is set to the 

Run Time Environment Layer. The object is called two times in the main loop. First 

call is to request IMU data. The second call is to parse incoming IMU data. This 

class is automatically generated with using the XML definition. The class generation 

operation is described in 5.4.1. 

The Seeker_Task object is used to simulate seeker data. The Concrete_Seeker_Task 

class is generated automatically using the XML definition. The steps to generate a 

concrete class are described in section 5.3.  The seeker data generated by the object is 

set to the Run Time Environment Layer. 

PN_Task and AutoPilot_Task objects include FMUs inside. Concrete_PN_Task and 

Concrete_AutoPilot_Task classes are generated automatically using the XML 

definitions. The class generation operation is described in sections 5.2 and 5.3. The 

input data is get from the Run Time Environment Layer. The FMU is executed. Then, 

the output data is set to Run Time Environment Layer. 

RTE_MC_CAS_Task object is used to send the fin angle data to CAS which is a PC 

in the RSAR Demonstrator project. It gets the data which is generated by the 

AutoPilot_Task from Run Time Environment Layer and the data is formatted to send 

over UART. The formatted data is sent by using UART driver over RS323 electrical 

interface. This class is automatically generated with using the XML definition. The 

class generation operation is described in 5.4.1. 
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Figure 43 Missile Computer Sequence Diagram 

The sequence diagram of the Missile Computer software is given in the Figure 43. In 

the scenario of RSAR Demonstrator project, the Missile Computer sends request to 

the Simulated IMU within 100 milliseconds period. Then, the Missile Computer 

waits for the response for five milliseconds. The Simulated IMU software sends the 

simulated IMU data as answer to request. In the Figure 44, the communication 

between the Missile Computer and the Simulated IMU is shown. 
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Figure 44 Communication Between Missile Computer and Simulated IMU 

 

Figure 45 Detailed RS232 Communication 

In the Figure 45, the detailed RS232 communication between Missile Computer and 

Simulated IMU is shown. Firstly, the Missile Computer sends the IMU data request 
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message and then the Simulated IMU sends the answer message which is shown in 

the oscilloscope screenshot. 

 

Figure 46 CAS Logs 

The messages sent to CAS are logged on the PC. The angle messages sent to CAS is 

shown in the Figure 46. By following the messages received on the PC side, the 

correctness of the output values are checked against simulation results and time. 

By implementing the case study, the real time operation of the RSAR has been 

shown in detail. 

 Evaluation 6.2

In this section, performance and development benefit evaluation of the RSAR 

layered software architecture has been explained. 

6.2.1 Performance Evaluation 

To evaluate the RSAR performance, some benchmark software has been developed. 

Here, the detail of the study has been given. To evaluate performance reduction 
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between layers of RSAR, three benchmark cases have been developed. First 

benchmark case is for to measure UART protocol message transmit time. Aim of the 

benchmark is to see how much more time is required to transmit a message over 

UART in the RSAR design than in a tightly coupled software-hardware design. To 

measure UART message transmit time, two test messages have been defined.  

 

Figure 47 Benchmark Design 

Table 2 Test Message 1 Attribute Content 

Attribute No Type Dimension 

1 uint8_t 1 

2 uint16_t 2 

3 uint32_t 4 

4 uint64_t 8 

5 float_t 4 

6 double_t 8 

7 uint32_t 16 

8 int8_t 1 

9 int16_t 4 

10 int32_t 3 
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Table 3 Test Message 2 Attribute Content 

Attribute No Type Dimension 

1 uint8_t 64 

2 uint32_t 12 

3 float_t 8 

4 double_t 5 

5 int32_t 4 

6 float_t 12 

7 int8_t 2 

 

The detail of the test messages are given in the Table 2 and Table 3. 

The RSAR software uses layers defined in architecture to transmit test messages over 

UART peripheral. The tightly coupled software-hardware design accesses directly to 

hardware to send messages over UART peripheral. The tightly coupled software-

hardware design converts message attributes into convenient format by doing 

memory copy operations. Then prepares message header, adds CRC of the message 

and sends it over UART peripheral. On the other side, RSAR design uses layers. The 

Software Component Layer entity sets the values of the attributes defined. The values 

are stored in the Run Time Environment Layer. The Data Abstraction Layer auto-

generated Task generates the message and sends it using RSAR template classes to 

UART peripheral. 

 

 

 

 

 

 

Table 4 Message Transmit Time Comparison 

RSAR Average Performance Tightly Coupled Software Average 

Performance 

 56 microseconds 48 microseconds 
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The result of the first benchmark case is given in the Table 4. The RSAR design 

layers are using just more 8 microseconds to transmit UART messages. 

The second benchmark case is for to measure performance of DIO usage in RSAR. 

Aim of the benchmark is to see how much more time is required to control DIOs in 

the RSAR design than in a tightly coupled software-hardware design. Eight DIOs has 

been determined for the benchmark. Three of the DIOs are used as input and five of 

the DIOs are used as output. Ten times inputs are captured and outputs are set and 

time is measured. In the RSAR design these operations are performed by using 

defined RSAR layers. On the other hand, tightly-coupled software-hardware design 

uses hardware directly to control determined DIOs. The result of the benchmark case 

has been given in the Table 5. 

Table 5 DIO Access Time Comparison 

RSAR Average Performance Tightly Coupled Software Average 

Performance 

50 microseconds 46 microseconds 

 

The third benchmark case is for to measure FMU execution performance in RSAR. 

Aim of the benchmark is to see how much more time is required to execute a FMU 

inside RSAR Task. For this purpose, the FMU which is given in section 6.1 has been 

used. The FMU has been executed inside the RSAR Task and directly by calling FMI 

methods. The execution repeated ten times and the median time measured. The result 

of the benchmark case is seen in the Table 6. 

 Table 6 FMU Execution Time Comparison 

FMU Execution Performance Inside the 

RSAR Task 

FMU Execution Performance without the 

RSAR Task 

41 microseconds 35 microseconds 
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6.2.2 Development Benefit Evaluation 

To measure design benefits of RSAR, a missile guidance computer software project 

has been studied. The missile guidance computer has communication connection 

with various avionics seen in the Figure 48. There are four kinds of avionics, one 

external world line and two telemetries in the studied project. The guidance computer 

software communicates with UARTs and DIOs. There is a potential to design this 

software project using the layers of the RSAR given in the Figure 3. 

The aim of the study is to evaluate how much percentage of source code of the 

software project could be automatically generated by using RSAR tools developed in 

the thesis work. The software project has logs which show development details in 

time. The logs kept using JTRAC application. The developer enters the development 

steps of the project into the application. By doing that, it is possible to observe how 

much time was consumed to develop a specific part of the software project. After 

finding the parts of the software project could be generated by the RSAR tools and 

the time consumed to develop this part actually, shortening of time in the project 

calendar can be found. This information shows us the benefit of the RSAR usage in a 

real software project. 
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Figure 48 Guidance Computer Connections 

Some of the properties of the studied software project are given 

 includes 136 files, 68 classes 

 have 520 methods 

 contains 16104 lines of code, 

 controls 7 DIOs including 5 outputs and 2 inputs 

 have connections with four kind of avionics, one external world line and 2 

telemetries 

o The total numbers of exchanged messages between avionics and 

external world line are 25. It can be seen in the Table 7. 
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Table 7 Missile Guidance Computer Exchanged Message Numbers 

Connected System Number Of Messages Exchanged 

Avionic Type-1 1 

Avionic Type-2 5 

Avionic Type-3 1 

External World Line  18 

 

To determine the percentage of automatically generated code possible in the studied 

project, firstly classes have grouped according to their duties in the software system. 

The groups are determined according to the RSAR content. The determined groups 

are 

 Scheduling and timing classes, 

 Message processing classes, 

 Message parsing classes, 

 DIO control classes, 

 UART control classes, 

 Algorithm execution classes, 

 Out of the RSAR scope classes. 

After classes were grouped, source code of the classes has been examined. Groups 

are examined with respect to counterpart in the RSAR. Then classes have been 

grouped again according to possibility of automatically code generation. At the end 

of the study, it has been determined that 

 25 classes in 68 classes, 5391 lines in 16104 lines of code could be generated 

automatically by the RSAR tools. 
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The first fully functional version of the studied software project was developed in 5 

months. When the development logs of the software project examined, it is seen that 

the parts could be generated automatically by the RSAR tools have been developed 

in 1.4 months. 

As a result, by using the RSAR tools 

 36.8% of the classes and 33.48% of the total lines of code could be generated 

automatically, 

 development time of the software project could be shortened by 28% at 

maximum. If automatic code generation process preparation is taken into 

account, development time of the software project could be shortened by up 

to 24 %. 

The model usage in the RSAR could reduce the development time of the software 

system. Thanks to reducing development time, the costs of the system would reduce 

also. 

6.2.3 Software Development on Different Hardware 

In this section, the software development evaluation of the RSAR has been 

introduced for different scenarios from the hardware perspective. 

To carry an existing RSAR software project on a new MPU/MCU platform, 

Hardware Abstraction Layer must be implemented for the new MPU/MCU. The 

RSAR defines HAL interfaces for some peripherals which are given in the 4.7. For 

the hardware peripherals used in the existing software project, hardware peripheral 

drivers for the new MPU/MCU platform must be implemented according to the 

defined HAL interfaces. By implementing the drivers for the new MCU/MPU 

platform, the existing RSAR software can be executed on the new MCU/MPU 

platform. As seen in the Figure 3, the layers above the HAL remain same without any 

change in this scenario. All the RSAR tools used to generate code automatically 

remain same also. 
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To use a new hardware peripheral in the RSAR, a HAL driver interface must be 

defined in a similar manner which has been illustrated for GPT, UART and DIO 

drivers in the 4.7. Then driver for the new peripheral must be implemented according 

to defined interface. The raw data manipulated by the driver must be interpreted into 

meaningful data in the Data Abstraction Layer. A data abstraction model is required 

for the new hardware peripheral. A new script must be coded to generate code 

automatically for the RSAR architecture. For this scenario, the Run Time 

Environment Layer and the Software Component Layer are designed without any 

change. 
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CHAPTER 7 

CONCLUSION 

This thesis work represents a study to develop a software infrastructure which can be 

used to develop cyber-physical systems. It has been shown how to develop layered 

software architecture for cyber-physical systems. It is offered to develop dynamic 

models as FMI to break tool dependency while developing dynamic models. Thanks 

to layered software architecture and the FMI standard, it is shown that hardware and 

software dependency can be broken. 

Automatic code generation models have been given for the layers defined in the 

RSAR.  By doing a case study, the steps required to design a real time software 

inside the RSAR has been shown. By doing performance evaluation, performance 

reduction between the RSAR layers has been evaluated. By doing development 

benefit evaluation, it has been shown that how the RSAR can shorten development 

time of a software project. 

The aims of the RSAR have been achieved. By using the layered software 

architecture solution, hardware dependency has been minimized / eliminated. By 

using automatic code generation methods in the RSAR, design and development 

phases of the software project has been shortened. The RSAR design has provided 

code re-usability between various software projects. Modeling tool dependency has 

been broken in the RSAR by using FMI. By providing layered software models 

which contain C++ classes and automatic glue code generation to these template 

models, implementation errors have been reduced. 

In future, offered layered software architecture, the RSAR, can be expanded with 

new hardware interfaces such as SPI and I2C. For these hardware interfaces Data 

Abstraction Layer models can be implemented to provide more automatic code 

generation coverage in the RSAR. 
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