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ABSTRACT

APPLICATION OF IMAGE ENHANCEMENT ALGORITHMS TO IMPROVE
THE VISIBILITY AND CLASSIFICATION OF MICROCALCIFICATIONS IN

MAMMOGRAMS

Cansu Akbay,

M.S., Department of Biomedical Engineering

Supervisor : Prof. Dr. Nevzat Güneri Gençer

Co-Supervisor : Dr. Gülay Gençer

January 2015, 98 pages

Breast cancer is the second leading cause of cancer deaths for women. Mammog-
raphy is the most effective technology presently available for breast cancer screen-
ing, despite the fact that there are still some limitations of the imaging technique,
such as insufficient resolution, low local contrast and noise combined with the subtle
nature of the usual radiographic findings. One of the most important radiographic
findings associated to the existence of breast cancer is the clustered microcalcifica-
tions. Especially, it has been shown that some characteristics concerning the clus-
tering parameters of microcalcifications are of great diagnostic value. However, the
mentioned limitations of mammography make the detection and interpretation of mi-
crocalcifications a complicated task. The main purpose of this thesis is to develop
Computer Aided Diagnosis (CAD) system in order to increase the efficiency of the
mammographic screening process. The system may provide automated detection of
microcalcification clusters leading a considerable decrease in misdiagnosis rates. To
make microcalcifications more visible than their surrounding tissues, image enhance-
ment on mammograms is required. There are many contrast enhancement algorithms
that can be employed for the same purpose. However, by contrast enhancement it is
expected to reduce overlap between tonal values that belongs to microcalcifications
and their surrounding tissues instead of stretching the histogram of an image. The
algorithms based on multiresolution analysis such as wavelet transform, contourlet
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transform and the detail enhancement on local frequency algorithms are considered
to achieve this purpose. In this study, these algorithms have been implemented on
clinical data and their performances are compared by using quantitative methods and
evaluated under supervision of radiologists. To observe the efficiency of enhancement
on classification of microcalcification clusters, selected regions from original images
and images enhanced by using 2 enhancement methods chosen by a radiologist are
used. To classify microcalcification clusters as benign and suspicious, features are
extracted by using texture analysis. For classification the Support Vector Machine
(SVM) is employed. As a result, best classification is obtained by features obtained
from Gabor filter banks and enhanced images with a detail enhancement method with
using mean and standart deviation by 77 % truth rate .(the area under the ROC curve
is 0.81) .

Keywords: Computer aided diagnosis, microcalcification clusters, image enhance-
ment, detail enhancement, multiresolution analysis, feature extraction, Support Vec-
tor Machine
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ÖZ

MİKROKALSİFİKASYON KÜMELERİNİN MAMOGRAFİ GÖRÜNTÜLERİ
ÜZERİNDE GÖRÜNÜRLÜĞÜNÜN ARTTIRILMASI VE SINIFLANDIRILMASI

İÇİN GÖRÜNTÜ İŞLEME ALGORİTMALARININ UYGULANMASI

Cansu Akbay,

Yüksek Lisans, Biyomedikal Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Nevzat Güneri Gençer

Ortak Tez Yöneticisi : Dr. Gülay Gençer

Ocak 2015 , 98 sayfa

Meme kanseri, kadınlarda akciğer kanserinden sonra en çok ölümle sonuçlanan ikinci
kanser türüdür. Günümüzde meme kanserinin teşhisinde en etkin görüntüleme yön-
temi mamografidir. Yetersiz çözünürlük, düşük sınırlı kontrast ve ihmal edilemeyecek
boyutta gürültü gibi kısıtlamaların olması tanı koymada mamografinin etkinliğini
azaltmaktadır. Meme kanserinin varlığının saptanmasına yönelik en önemli radyolo-
jik bulgulardan birisi, kümelenmiş mikrokalsifikasyonlardır. Mamografide bahsi ge-
çen kısıtlamalar, mikrokalsifikasyonların tespit edilmesi ve yorumlanması açısından
sorun oluşturmaktadır. Tezin temel amacı, bilgisayar destekli tanı sistemi geliştire-
rek, mamografik görüntüleme işleminin etkinliğini arttırmaktır. Sistem, mikrokalsi-
fikasyon kümelerinin otomatik olarak belirlenmesiyle, yanlış tanı oranında önemli
azalmayı sağlayabilir. Mikrokalsifikasyonların, etraflarındaki dokulara göre daha gö-
rünür hale gelmesi için, mamografi görüntüleri üzerinde görüntü iyileştirme yapılması
gereklidir. Bu amaçla bir çok kontrast iyileştirme algoritması vardır. Ancak, kontrast
iyileştirme yöntemleriyle, görüntüye ait histogramın genişletilmesi yerine mikrokal-
sifikasyonlara ait gri seviye değerleri ile etrafındaki dokulara ait gri seviye değer-
leri arasındaki çakışma azaltılmaktır. Bu çalışmada, bu amacı sağlayan algoritmalar
klinik veriler üzerine uygulanmış ve performansları yeni nicel yöntemler kullanıla-
rak karşılaştırılmıştır, aynı zamanda radyologlar tarafından değerlendirilmiştir. Yapı-
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lan görüntü iyileştirmenin mikrokalsikasyon kümelerinin sınıflandırılmasında etkisini
gözlemlemek amacıyla orjinal görüntüler ve radyolog tarafından seçilen 2 methot ile
iyileştirilen görüntüler kulllanılmıştır. Mikrokalsifikasyon kümelerinin ‘iyi huylu’ ve
‘şüpheli’ olarak sınıflandırılması için, doku analizi ile özellik çıkarımı gerçekleştiril-
miştir. Sınıflandırma için destek vektör makinesi (DVM) kullanılmıştır. Sonuç olarak
ortalama ve standartma sapma kullanılarak yapılan detay iyileştirme metodundan elde
edilen görüntülere Gabor filtrelerinin uygulanmasıyla elde edilen özniteliklerin, diğer
özniteliklere göre sınıflandırma için daha iyi performans gösterdiği gözlemlenmiştir.
Gabor filterinden elde edilen özniteliklere DVM uygulanmasıyla mikrokalsikasyon
kümeleri yüzde 77 doğruluk oranıyla iyi huylu ve kötü huylu olarak sınıflandırılmış-
tır (ROC’un altında kalan alan 0.81 olarak bulunmuştur.).

Anahtar Kelimeler: Bilgisayar destekli tanı, mikrokalsifikasyon kümeleri, görüntü
iyileştirme, detay iyileştirme, çoklu çözünürlük analizi, öznitelik çıkarma, destek vek-
tör makinesi
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To those who suffered from breast cancer
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CHAPTER 1

INTRODUCTION

Breast cancer is a cancer type which developed in breast tissue. Early diagnosis of

breast cancer is important for its treatment. Breast cancer can be explored by self ex-

amination, clinical breast examination and breast screening via medical imaging such

as mammography, ultrasound (US), magnetic resonance imaging (MRI), and scinti-

mammography. Among these imaging techniques, mammography is more crucial to

diagnose breast cancer in the early stages. However there are limitations of mammog-

raphy to detect abnormalities related to breast cancer. These limitations are mainly

due to low contrast in the mammogram images, i.e., the small differences between X

ray attenuation of normal and cancerous tissues, in dense breasts.

1.1 Scope of the Thesis

The main goal of this thesis is to develop a Computer Aided Diagnosis (CAD) soft-

ware to make microcalcification clusters more identifiable on mammogram images

and to generate features used to classify benign and suspicious clusters of microcal-

cifications. For this purpose, several image enhancement algorithms on both spatial

domain (histogram modeling, morphological operators) and frequency domain (detail

enhancement based on frequency, multiresoltion analysis etc.) are implemented on re-

gion of interest (ROI) of real mammogram images which include microcalcification

clusters. To evaluate the performance of the enhancement algorithms, quantitative

measures are implemented and assessment of radiologists is considered. According

to assessment of the radiologist, 2 suitable enhancement methods are chosen to ob-
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Figure 1.1: The 10 Most Commonly Diagnosed Cancers, World, 2012 Estimates [2]

serve efficiency of enhancement on classification .

Feature extraction is applied to depict properties of microcalcification clusters for

classification. In this thesis, features are extracted from texture.

Following feature extraction, a classification process is employed and performance

of the classification algorithm is evaluated. To decide which features best describe

microcalcifications as benign or suspicious, necessary proceedings are applied.

Finally the results of CAD is compared with the existing biopsy reports that belong

to patients whose mammogram images are used in thesis.

All applications are implemented on MATLAB.

There are a number of studies in the literature which aimed to develop CAD for de-

tection and classification of microcalcifications. They are mentioned in section 2.5.

Apart from these studies, it is considered that mammogram images are similar to

the infrared (IR) images according to their gray levels and visual appearance. The

contrast and detail enhancement methods used for the IR images are applied on real
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mammogram images obtained from radiology departments of hospitals and radiolog-

ical diagnosis is compared with the pathological diagnosis.

1.2 Databases Used in Thesis

List of databases used in CAD studies are given Table 1.1. Among these databases

Digital Databases Screening Mammography (DDSM) and Mini-MIAS (Mammographic

Image Analysis Society ) are available on websites in [11] and [12].

Table 1.1: List of Databases for used in several CAD Studies [1]

DDSM consists of digitalized film screen mammograms that belong to 2620 patients.

There are 4 views (right MLO, left MLO, right CC, left CC) for each patient. DDSM

includes ground truth and other information such as, age of the patient, digitalization

information, etc. It has been prepared for the researchers in the CAD field. To access

these database, a permission is required and to read the images, special software tools

are used [13].

Mini-MIAS database consists of 322 digitalized mammogram images in MLO (Media
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Lateral Oblique). Size of these images is 1024 × 1024 pixels. The format of images

is ’.pgm’, they are 8 bit grayscale images. Images are labeled as B (benign) and M

(malignant) acording to the radiological findings by the experts. Information about

lesions such as mass are also available. 33 images which include calcifications from

mini-MIAS data set are used in this thesis for an experiment.

In this thesis 70 CR images obtained from the radiology department of Yıldırım

Beyazıt Eğitim ve Araştırma Hastanesi and 8 CR images obtained from Radiology

department of Sincan Devlet Hastanesi are used. All images are in DICOM format

and 16 bit gray scale images. Totaly 70 regions are selected for processing.

1.3 Thesis Organization

This thesis consists of 7 chapters. It is organized as follows :

In chapter 2, brief information about breast cancer is provided. The abnormalities

that can be visible on mammograms, advantages and limitations of mammography

to detect breast cancer are discussed. Definition of computer aided diagnosis and

benefits of using it for breast cancer diagnosis are discussed.

Chapter 3 deals with the existing image enhancement methods that needs for making

microcalcifications more visible compared to their surrounding tissues. The methods

chosen for this purpose are explained and the results of their implementations are

given.

Chapter 4 intends to give quantitative image enhancement performance measures.

The results for the chosen enhancement method are shown.

Chapter 5, the methods used for feature extraction, dimension reduction of feature

vector, classification with Support Vector Machines(SVM) are presented.

Chapter 6 consists of the results of classification with SVM by using different types

of features.

Chapter 7 consists of the conclusion of this study and presents prospective future

works.
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CHAPTER 2

BACKGROUND

2.1 Mammography

Mammography is a special type of X ray imaging for breast that uses low amplitude

and high current X ray . The breast is compressed between two plates.The bottom

plate is film plate and the upper plate is subjected to X ray source. Figure 2.1 illus-

trates basis part of typical mammography device and screening of right breast.

Figure 2.1: Mammography Screening [3]

There are two mammographic views according to position of plates and angle of X

ray:medio lateral oblique (MLO) and cranio caudal(CC). In the CC view, the breast

is compressed from the top to the bottom. X ray tube is located on the top. In the

MLO view, the breast compressed between plates with an angle (standard angle is 90

degree).
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Quality of a medical image is important for efficiency of diagnosis. In mammogra-

phy, it is important to catch small details like microcalcifications, which may be first

sign of the breast cancer. To identify them, images with a high spatial resolution is

necessary. As the difference between X-ray attenuation of normal and cancerous tis-

sues are quite small, it is difficult to detect microcalcification clusters in some cases.

The breasts of younger woman contains more glands and ligaments resulting in dense

breast tissue. In heterogeneously dense breast, it is difficult to detect cancerous tissue

on mammogram, since the fibrograndular tissue may hide the abnormalities. With

aging, the breast tissue become fattier and has fewer glands. In this case, it is more

easier to detect cancer related tissues on mammogram images.

Figure 2.2: Left:Heteregenously dense breast tissue Right:Fatty breast Tissue

2.2 Important Findings in Mammography

Important findings for breast cancer are listed below:( [14])

a-) Masses

b) Calcifications

c-) Architectural Distortion

d-) Asymmetries (asymmetry, global asymmetry, focal asymmetry, developing asym-

metry)

e-) Intramammary lymph node

f-) Skin lesion
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g-) Solitary dilated duct

Among these abnormalities, intramammary lymph node, skin lesion and solitary di-

lated duct are rarely significant.

2.3 Breast Imaging Reporting and Data System (BI-RADS)

BI-RADS is a tool published by American College of Radiology to define mammo-

gram findings and results.

Table 2.1: BI-RADS categories and their indications.

2.4 Microcalcifications (MCs)

Calcifications are small calcium deposits. Although most of calcifications are be-

nign, they can be earlier sign of the breast cancer. Non palpable ductal carcinoma

in situ (DCIS) and infiltrating carcinoma are diagnosed based on microcalcification

clusters. Microcalcifications that have higher probability of malignancy depends on

their cluster distribution, size, shape and association with other abnormalities, such

as mass and architectural distortion. In some cases they occur in the lesion (tumor or

parenchymal distortion). If they are found suspicious by radiologist, generally biopsy

is required.
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Figure 2.3: Mammogram image in MLO view and clustered microcalcification in
ROI

Very coarse calcifications are often considered as benign. The more smaller calcifica-

tions are suspicious for malignancy. Most malignant microcalcifications are less than

0.5 mm. Pleomorphic, microcalcifications with irregular shape, linearly branching,

punctate and amorphous calcifications tend to be malignant. Generally, 5 or more

microcalcifications within 1 cm2 area are suspicious. However, microcalcifications

less than five in a group can be malignant rarely.

2.5 Computer Aided Diagnosis (CAD) for Microcalcifications

CAD is a computer based set of image processing and pattern recognition algorithms

that provides information about existence of suspicious findings and/or their proba-

bility of being benign or malignant.

General CAD models for mammogram images starts with preprocessing step to ob-

tain better visual appearance and make the interested regions more detectable. Prepro-

cessing includes noise reduction or contrast enhancement. As the size of microcalci-

fications is small, it is difficult to distinguish them from noises. For microcalcification

detection, noise reduction is not prepared if there is no significant noise.

As a second step of CAD, image segmentation algorithms are implemented. Local
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Figure 2.4: Mammography images of benign calcifications:(from left to right) vas-
cular, lucent centered, popcorn, skin, round, suture, large-rod like, eggshell, dys-
thropic [4]

Figure 2.5: Mammography images of malignant calcifications: [4]
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thresholding is a primitive segmentation method which works well if and only if the

contrast between microcalcifications and other breast regions is quite high. Other

common approach is region growing. Bankman et al proposed an active contours

models for segmentation of microcalcifications [15]. Shanmugavadivu et al. devel-

oped a segmentation algorithm based on Grab Cut segmentation unified with k means

clustering for segmentation of a lesion with microcalcifications [16]. Jumaat et al im-

plemented several Snakes algorithms and compared them for boundary segmentation

of microcalcifications [17]. Duarte et al. used mathematical morphology operators

and Otsu’s method for segmentation [18]. All studies mentioned for segmentation of

microcalcifications are not a part of the CAD for microcalcification detection. They

only aimed to provide detection of microcalcifications automatically. There is no

segmentation stage in CAD developed in this thesis.

Feature extraction is the following step for detection and/or classification of MCs.

For feature extraction, some of existing features are textural based features ( [19]),

wavelet or multiresolution based features [20], [21], shape related features( [22]).

Soltanian Zadeh et al used genetic algorithm (GA) to compare different types of tex-

ture features and impacts on classification of MCs. [23]

Final step for CAD is detection or classification of MCs. Studies ( [24], [23], [25],

[26], [27], [28], [21], [29], [30], [31], [32]) aimed to develop CAD for microcalcifi-

cations on mammogram are listed in Table 2.2. Used databases, number of data and

feature types are various and affect the performance of the detection or/and classifi-

cation.

To evaluate performance of detection or/and classification, the receiving operational

curve (ROC) is used. A ROC curve is a plot of the true positive rate (sensitivity)

versus true negative rate versus false positive rate (1-specificity). The true positive

rate is the probability of successful diagnosis of all malignant microcalcifications.

The false positive rate is the probability of diagnosis of benign microcalcifications as

malignant. In CAD, ROC is used to compare the first diagnostic findings about illness

obtained from imaging systems and final diagnosis after biopsy. ROC is used for

evaluation of the performance of classification operations. The area under the ROC,

Az shows the performance of classification operation and the value of its changes

10



between 0 and 1. When it equals to 1, it means that the ideal classification is achieved.

[33]

Desired CADx for this thesis is given Figure 2.6

Figure 2.6: Schematic Distribution of a CAD System
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Table 2.2: Previous CAD Studies for Detection / Classification Of Microcalcifications

 

Study CAD Method Features Database # of 
samples 

Az Value 

H.K Fu et al 
(2005) 

Detection& 
Classification 

GRNN 
vs 

SVM 

61 features 
(textural(44), spatial(15)& 

spectral domains(2)) 
After SFS  , 11 features for 
SVM  25 features for GRNN 

Nijmegen 
dataset 

 

7531 
features 

6234 
normal 
tissue 

1117 MCs 

0.98 for SVM 
0.978 for 

GRNN 

Zhang et al. 
(2012) 

Detection MIL 5 features 
Area, mean intensity, 
ecentricity, major axis 

length, degree 

DDSM 40 MCa 
990 

normal 

0.8618 Bag-
KI_SVM 

 

Nikita et al 
(2011) 

Classification SVM 23 features (top ranked 
features) 

BIRADS, GLCM 

DDSM 1715 
882 

benign 
833 

malignant 

0.82 

Jasmine et 
al(2012) 

Classification SVM 100 features(after dimension 
reduction) 

NSCT _energy 

Mini_MIAS  ? 0.90 

Soltanian 
Zadeh et al 

(2004) 

Classification Genetic 
algorithm 

Multiwavelet /wavelet 
features 

Haralick features(GLCM) 
Shape features 

Nijmegen 
database 

 

103 MC 
cluster 

29 bening 
74 

malignant 

0.84-0.89 

P.Kuş,İ.Karagöz 
(2013) 

Detection SVM 5 features 
Kurtosis, Skewness, Entropy, 

Energy 

Mini_MIAS 57 ROI 
21 

malignant 
11 benign 
25 normal 

0.94 

Nayakama et 
al. (2004) 

Classification The Bayes 
Theorem 

5 histological features ? 58 
35 

malignant 
23 benign 

0.96 

Manoharan et 
al.(2010) 

Classification SVM Jacobi Momments 
‘S’ features 

? 16 benign 
19 

malignant 

0.84 

Hadjiski (2006) 
Et al 

Classification Both LDA & 
SVM 

64 GLCM 
20 morphological 

20 run length statistics(RLS) 
Average of 7 features for 

SVM 

Specific data 
for them 

175 
51 

malignat 
124 

benign 

0.82+_0.03 
for SVM 

0.83±0.03 for 
LDA 

Arikidis et 
al.(2006) 

Detection& 
Classification 

FLDA Eigen image features in the 
wavelet domain(36 features) 

DDSM 54 regions 
46 

malignat 8 
benign 

TP=0.69 

Yu et al.(2006) Classification Back 
projection 

NN vs 
Bayesian 
Classifier 

Wavelet  coefficients  & 
Markov Random Field 

Mini_MIAS 20 images 
containing 
25 areas 
of MCs 

Sensitvity 
0.92 

Fp/image 
0.75 

12



CHAPTER 3

IMAGE ENHANCEMENT METHODS

The main idea of image enhancement is to provide better visual perception in a sub-

jective way. The expectations from image enhancement are to eliminate noise, to en-

hance weak edges or features in an image while remaining strong edges or features.

To make microcalcification clusters more visible than their surrounding tissues, im-

age enhancement is required. The existing image enhancement methods considered

for this purpose are shown in Figure 3.1 and the methods chosen for our study are

discussed.

Figure 3.1: Distribution of some existing image enhancement methods
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3.1 Thresholding

Thresholding is easy to implement in both spatial domain and frequency domain. It is

applied accompanied by other image processing applications for different purposes.

Image thresholding can be defined as a primitive image segmentation method. If

the gray level intensity of the region of interest is separable from its background,

image thresholding can be applied to segment and to obtain the preferred features.

However, since mammography image has low contrast, it is difficult to identify gray

levels that belong to pixels which represent microcalcifications. Another application

of thresholding is noise attenuation. In both spatial domain and frequency domain,

noises are detectable by thresholding. The values lower than the assigned threshold

value T are considered as noise. The best example for using thresholding in noise

attenuation is multilevel thresholding in the frequency domain [34].

g(x, y) =


0, f(x, y) ≤ T

f(x, y), f(x, y) ≥ T
(3.1)

In this thesis, thresholding is used for image enhancement integrated with other im-

age enhancement methods. Thresholding is also used in quality performance metrics

explained in Chapter 4.

3.2 Histogram Modeling

Histogram of an image with gray levels in range [1 L-1] represents number of pixels

for each gray level. By looking histogram of an image, information about contrast of

an image and noise information (such as salt and pepper noise) are obtained. Con-

trast enhancement methods based on histogram modeling are implemented on spatial

domain, so they have less computational cost compared to frequency domain appli-

cations. They provide high contrast image with a wide dynamic range of the intensity

scale. In this section, contrast enhancement methods based on histogram modeling

are discussed. Histogram modeling methods are not eligible for our study, since the

frequency of gray levels that belongs to large objects and background become higher,
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small details disappear.

3.2.1 Histogram Equalization

Histogram equalization [HE] is a nonlinear operation that makes the number of gray

levels to reach approximately equal and obtain a uniform histogram. It provides an

increase on dynamic range of gray levels. Local histogram equalization is more ef-

fective than global histogram equation. However, the drawback of local histogram

equalization is the blocking effect.

Pixel frequency serves how many times a gray level is seen in the image and it is

denoted as ’probability density function (pdf )’. The pdf is calculated by equation

(3.2). In this equation pk denotes how many times a gray level k is seen in an image

with depth m, and p denotes the total number of pixels in the image.

pdf(k)
pk
p
, 0 6 k 6 2m − 1 (3.2)

Histogram equalization uses a transform function k′ to make the probability of each

pixel value same.

cdf(k) =
k∑
i=1

pdf(k) (3.3)

k′ = (2n − 1)cdf(k) (3.4)

where cdf denotes the cumulative density function. In some cases histogram equal-

ization brings about over increase on dynamic range that causes unnatural appearance

and visual artifacts occur [35].

3.2.2 Histogram Matching

Histogram matching is another histogram based contrast enhancement method which

maps gray levels of original image into desirable level. Each gray intensity value of

input image is denoted by k and those of the desirable output image denotes by z.

Histogram matching is processed by the following steps [36]:
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Figure 3.2: Contrast Enhancement by Using Histogram Equalization:(a) A ROI of
DICOM Image,(b) Result of enhancement with HE

• Probability density function (pdf) and cumulative density function (cdf) of the

input image is calculated to define a transform function T :

pdfinput(k) =
pk
p
, 0 6 k 6 2m − 1 (3.5)

cdfinput(k) =
k∑
i=1

pdf(k), 0 6 k 6 2m − 1 (3.6)

• The transformation function T for the input image is calculated by using the

cdf of the input images:

T (k) = (2m−1cdfinput(k)) (3.7)

• pdf and cdf is calculated for the desirable intensity values of the output image:

pdfoutput(z) =
pz
p
, 0 6 z 6 2n − 1 (3.8)

cdfoutput(k) =
z∑
i=1

pdf(k), 0 6 z 6 2n − 1 (3.9)

• The transformation function G for the input image is calculated by using the

cdf of input images:

G(z) = (2n−1cdfoutput(z)) (3.10)

• Finally, to obtain the output image, inverse transform of G function is applied

on transform function T .

z = G
′
(T (k)) (3.11)
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Figure 3.3 shows implementation of histogram matching on interested region of im-

age mdb219 from mini-MIAS database. The brightness of the output image is quite

high that may cause a loss in clinical findings.

Figure 3.3: Contrast Enhancement by Using HM:(a) A ROI of MIAS Image mdb219,
(b) Result of enhancement with AM.

Figure 3.4: Contrast Enhancement by Using HM:(a) Histogram of a ROI of MIAS
Image mdb219. (b) Desired gray level density distribution. (c) Gray level distribution
of the transform function. (d) Histogram of enhanced image by HM.
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3.2.3 Adaptively Modified Histogram Equalization

Adaptively Modified Histogram Equalization (AMHE) is based on modification of

pdf before equalization of histogram [5].

Figure 3.5: Left:Original PDF, Right:Modified PDF [5].

pdfAMHE(k) =


pdfmid + α (pdf(k)−pdfmid)2

pdfmax−pdfmid
, pdf(k)>pdfmid

pdfmid + α (pdfmid−pdf(k))2
pdfmid−pdfmin

, Otherwise
(3.12)

where pdfmid is the average of the maximum pdf value pdfmax and minimum pdf

value pdfmin and α is the contrast enhancement rate. Calculation of α is follows:

• The image is divided into 2 sub images:upper and lower according to pdf

• The brightness of each sub images (Xup and Xlow ) are calculated:

Xlow =

∑Xm
k=0 kpdf(k)∑L−1
Xm+1 pdf(k)

(3.13)

Xup =

∑L−1
Xm+1 kpdf(k)∑L−1
Xm+1 pdf(k)

(3.14)

whereXm is the mean brightness of the whole image.

• α is calculated according to these brightness:

α =


Xm−Xlow
Xup−Xlow

, if0 ≤ k ≤ Xm

Xup−Xm
Xup−Xlow

, ifXm ≤ k ≤ (L− 1)

(3.15)
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cdfAMHE(k) =
k∑
i=1

pdfAMHE(k) (3.16)

The value of pdfAMHE should be positive. It is set to 0 in case its value is negative.

The new value of each gray level intensity k is modified by calculating the cdf ac-

cording to new pdf:

cdfAMHE(k) =
k∑
i=1

pdfAMHE(i) (3.17)

cdfAMHE(k) =
cdfAMHE(k)

cdfAMHE(L− 1)
(L− 1) (3.18)

where L is the maximum intensity value.

Results of implementation AMHE for contrast enhancement of a mammogram image

is given in Figure 3.6. AMHE causes painting effect on the output image and small

details, such as microcalcifications, are invisible.

Figure 3.6: Contrast Enhancement by Using AMHE:(a) A ROI of MIAS Image
mdb238, (b) Result of enhancement with AMHE.
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Figure 3.7: Change in Histogram:(a) Histogram of the ROI of MIAS Image mdb238,
(b) Histogram of Enhanced Image by AMHE.

3.2.4 Contrast Limited Adaptive Histogram Equalization

The methods for contrast enhancement mentioned before are direct methods which

means that they try to find a mapping function obtained from histogram of the im-

age and to scale the histogram according to it. As they do not use specific regions

on image to improve the contrast, over enhancement occurs and details on bright and

darker regions are lost. To eliminate this problem, contrast limited adaptive histogram

equalization can be preferred. The algorithm of CLAHE is clipping the pixel frequen-

cies on histogram which are greater than defined threshold value. As shown in Figure

3.8, the excess part of the histogram pdf, the part over the threshold, is redistributed

among all histogram bins [37].

3.3 Gradient Operators

In this section, the gradient operators used in this thesis are explained. These oper-

ators are not sufficient for image enhancement individually. Their implementation

with the other methods is expressed in the related parts of the thesis.
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Figure 3.8: CLAHE threshold and redistribution of excess bins.

Figure 3.9: Contrast Enhancement by Using CLAHE:(a) A ROI of MIAS Image
mdb219,(b) Result of enhacement with CLAHE.

Figure 3.10: Change in Histogram:(a) Histogram of the ROI of MIAS Image mdb219,
(b) Histogram of Enhanced Image by CLAHE.
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3.3.1 Unsharp Masking

The unsharp filter, by definition, is a simple sharpening operator which enhances

edges and other high frequency components in an image via a procedure that sub-

tracts an unsharp or smoothed version from the original image. The implementation

of unsharp masking starts with convolution of the original image with unsharp mask

kernels. These kernels consist of 8 edge directional kernels defined as sharpening fil-

ter given Figure 3.11. After convolution with these kernels, the resultant image which

has low frequency response is subtracted from the original image. Thus high pass fil-

tered image is obtained. This high pass filtered image is amplified by production with

an adaptively selected weight value. Finally the result of this production is added to

the original image. These sequential operations contribute to reduce low frequency

information and amplify high frequency details [38]. In this thesis unsharp masking

was used with DWT to make more sharply reconstructed images from the selected

wavelet coefficients. More details about this image enhancement application is given

section 3.5.1.

Figure 3.11: Unsharp Masks

3.3.2 Prewitt Operator

Prewitt operator is one of the edge detection algorithms which detects both horizontal

and vertical edges. It uses 2 convolution kernels given Figure 3.13. It is expected,

from an image enhancement process, to improve the detectability of important im-

age details or objects by human or computer. Prewitt operator provides boundaries
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Figure 3.12: Unsharp Masking Procedures.

of these details or objects that contribute to an enhanced image with better visual

characteristics when it is used with image enhancement applications [39].

Figure 3.13: Masks Used By Prewitt Operator.

In this thesis, Prewitt filter is implemented in image enhancement together with Non-

subsampled Contourlet Transform (NSCT) explained in section 3.5.3.
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Figure 3.14: (a) Image of yellow fish (b) Edge detected image obtained by applying
the Prewitt operator.

3.4 Morphological Operators

Morphological operators are cited in image processing applications such as target

detection. It is based on structural analysis of an image and consist of dilation and

erosion operations. Dilation operation increases bright regions while decreasing dark

regions. Erosion operation is similarly increases dark regions and decreases bright

regions. To implement these operations, two parameters are required: an image and a

predefined processing operator, structural element (B) which is smaller than an image.

The results of morphological operations are changed with size and shape of SE.

Top hot operation is a very successful and effective method for detection of dim tar-

gets in the infrared images [40]. It is based on opening and closing operations which

are the combination of erosion operation represented by (f 	 B) and dilation opera-

tion represented by (f ⊕B).

(f ⊕B)(x, y) = maxi,j(f(x− i, y − j) +B(i, j) (3.19)

(f 	B)(x, y) = mini,j(f(x+ i, y + j)−B(i, j) (3.20)

Figure 3.15 illustrates how opening operation works. Suppose that A is a object in the

image and B is a structural element which has a ball shape. B is transverses edge of
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the object. First, it is placed inside the object, the object shrinks. Then, it transverses

the outside of the resulting object. The object grows, but small branches removed

in the last step will not be removed. Formulation of the opening operation is given

equation 3.21.

Figure 3.15: Opening Operation.

(f ◦B)(x, y) = (f 	B)⊕B (3.21)

Figure 3.16 visualizes the closing operation. In the closing operation, a dilation of

an object grows the object and fill the gaps. If we erode the result after dilation

with the rotated structure element, the objects will keep their structure and form,

but small holes filled by dilation will not appear. Objects merged by the dilation

will not be separated again. This operation can close gaps between two structures

without growing the size of the structures like that dilation. Formulation of the closing

operation is given equation 3.22.

Figure 3.16: Closing Operation.
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(f •B)(x, y) = (f ⊕B)	B (3.22)

Accordingly, while opening operation smooths bright small regions of the image,

closing operation eliminates dark small regions.

THT processes in 2 ways: white top hat (WTH) transformation and black top hat

(BTH) transformation.The WTH transformation is defined as the difference between

the input image and its opening by a structuring element. The BTH transformation is

defined as the difference between the closing and the input image. WTH transforma-

tion finds out bright regions. As microcalcifications have brighter than other tissues

in the breast, WHT is considered for the detection of microcalcifications.

WTH(x, y) = f(x, y)− (f ◦B)(x, y) (3.23)

BTH(x, y) = (f •B)(x, y)− f(x, y) (3.24)

The results of application of WHT with different sizes of the structural elements are

given in Figures 3.17 and 3.18. In Figure 3.17, microcalcifications are in the lesion.

When the size of disk is small the microcalcifications are visible but the lesion disap-

pears. By increasing the size of structural element, there is approximately no change

between the original and transformed image. Although WHT makes dim targets more

visible, there is a clinical finding loss, so it is not preferred for image enhancement in

this study.

3.5 Detail Enhancement Methods

Detail enhancement is based on increasing the contrast between the target and its

background. To determine target region and its background, clustering operation

based on the frequency characteristics is used. It is believed that the frequency char-

acteristics of microcalcification clusters are different from their surrounding tissues in

view of their sharp edges. The algorithm of detail enhancement starts with division of

an image of sizeM×N into blocks of sizeB1 ×B2. Then, the discrete Fourier trans-
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Figure 3.17: (a) ROI of DICOM Image. (b) Application of THT disk=5. (c) Applica-
tion Of THT disk=50. (d) Application Of THT disk=100.
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Figure 3.18: (a) ROI of DICOM Image (b) Application Of THT disk=5. (c) Applica-
tion Of THT disk=50. (d)Application Of THT disk=100.
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form (DFT) of each block is computed to obtain frequency information. To decrease

the cost of the DFT operation, the length of data is diminished by half, B1B2/2.

Fi(u, v) =
1

B1B2

B1−1∑
x=0

B2−1∑
y=0

Ii(x, y)e−2jπ(ux/B1)+(uy/B2). (3.25)

The results of the DFT operation, Fi , is used in cluster tree operation to label each

block as target or background. Before clustering operation Fi which is 2D data is

converted to 1D data, Vi, achieved using the zigzag scanning. By converting 2D data

to 1D, the zero frequency component is shifted to the center of spectrum [36]. The

clustering operation begins with calculating the distance d between each block,Vi

d2ab = (Va − Vb)(Va − Vb)T (3.26)

In equation 3.20, Va represents block a and Vb represents block b and d2ab represents

Euclidean distance between block a and block b. If the distance d is very small be-

tween the 2 blocks, these blocks are grouped in same clusters. In the next step, cluster

centers are obtained by averaging the blocksVi which belong to the same cluster. To

make cluster (Cj(n)) normalized ((CCj(n))), median filtering and the energy of each

cluster(TEj) are used. The window size for median filtering is chosen as 3.

TEj =

B1B2/2∑
n=1

[CCj(n)]2 (3.27)

(CCj(n)) =
[CCj(n− 1)]2 + [CCj(n)]2 + [CCj(n+ 1)]2

TEj
(3.28)

In the following step, the weights of each cluster center are calculated as given in

equation 3.28.

wj =

B1B2/2∑
n=1

(CCj(n))n (3.29)

The weight value of each cluster is used to determine the target and the background

regions. If the cluster has high cluster center weight, the blocks in the cluster are

considered as target region. If the cluster has a low cluster center weight, the blocks
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in the cluster are considered as background region. Up to now, the labeling of target

and background regions is performed. For enhancement the high frequency and mid-

frequency coefficients of the blocks are multiplied by gain value which is computed

by using weight value of the corresponding blocks. The matrix that consists of these

gain values is called the gain matrix. Each gain value is construct by computation of

the distance between a single pixel of the block and all block centers. The distance

equation is given in equation 3.31. xc, yc are the center coordinates of the block cen-

ters. BWk represents the weight value of the kth block. The total number of blocks is

b.

BW (k) = wj, kthblock ∈ clusterj (3.30)

Dk(x, y) =
1√

(BWk(xc)− x)2 + (BWk(yc)− y)2+ ∈
(3.31)

G(x, y) =
b∑

k=1

Dk(x, y)∑b
l=1Dl(x, y)

(3.32)

There are two gain matrices: one of them is for mid frequency image, Gmid and the

other one is for high frequency image, Ghigh. Calculation of Gmid and Ghigh is given

in equations (3.33) and (3.34), respectively. Gmin and Gmax represents the minimum

and maximum values of the gain matrix. αmid, αhigh, βmid and βhigh are constants.

βmid and βhigh avoid enhanced image from being saturated [41].

Gmid(x, y) =
(G(x, y)−Gmin)αmid

(Gmax −Gmin)
+ βmid (3.33)

Ghigh(x, y) =
(G(x, y)−Gmin)αhigh

(Gmax −Gmin)
+ βhigh (3.34)

In the final step, the enhanced image is reconstructed by using the gain matrices and

low frequency, midfrequency and high frequency components of the original image.

To obtain the low frequency image Ilow, 25 × 25 averaging filter is applied on the

original image. Similarly, the high frequency image Ihigh is obtained by applying
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5 × 5 averaging filter on the original image. The midfrequency image is subtraction

of high frequency image and low frequency image from the original image.

Ienh(x, y) = Ilow(x, y) +Gmid(x, y)Imid(x, y) +Ghigh(x, y)Ihigh(x, y) (3.35)

As it is explained above, detail enhancement uses frequency information and cluster-

ing operation to label target and background regions. To get frequency information,

DFT of the image blocks are calculated. The clustering operation is implemented

on these Fourier coefficients. The gain values which are used to reconstruct the en-

hanced image are obtained according to the clustering operation. The complexity of

these operations are quite high. A.E.Turan has made some modifications on these im-

age enhancement methods to reduce these complexity and increase the performance

in his master thesis [36]. These modifications and their implementations on our study

is discussed in the following parts of the thesis.

3.5.1 Modifications on Using FFT

The first modification is based on using mean and standard deviation of each block

instead of the Fourier coefficients. Computation of mean and standard deviation is

less complex than the FFT. To calculate the distance matrix, the distance between

mean and the standard deviation of each blocks is used. The computation of the gain

matrix is changed due to the fact that the length of distance matrix is decreased to 2.

The new equations for calculating the gain matrix are given below:

TEj =
2∑

n=1

[CCj(n)]2 (3.36)

(CCj(n)) =
[CCj(n)]2

TEj
(3.37)

wj =
2∑

n=1

(CCj(n))n (3.38)

31



The other modification is to use the wavelet transform coefficients of each blocks in-

stead of the DFT coefficients. 2D discrete wavelet transform is explained in Section

3.5.1. The usage of the DWT does not provide less complexity. However, when it is

compared to FFT, the DWT gives directional frequency information. It is considered

that the frequency distribution on each direction (horizontal, vertical and diagonal)

increases the performance of clustering. Microcalcifications have point like appear-

ances. They have different frequency characteristics in whole directions compared to

their surrounding tissues.

3.5.2 Modifications on Using Clustering Tree Operations

This modification is based on the use of k-means clustering instead of hierarchical

cluster tree operation. K-Means algorithm is an unsupervised clustering algorithm

that classifies the input data points into multiple classes based on their distance from

each other. One of the applications of it is image segmentation.

The procedure of the k-means clustering is given as follows [42] :

1. Assign the cluster centers vi, i = 1, 2..., c by selecting c blocks among whole

blocks randomly.

vi =
1

|Ai|
∑
zk∈Ai

zk (3.39)

where Ai is the number of blocks corresponding to the ith cluster, zk is the data point

2. Assign uik, i = 1, 2, ..c and k=1,2,...N by using equation (3.40)

U = uik


1, if ‖zk − vi‖2 ≤ |zk − vj‖2

0, Otherwise
(3.40)

where ‖zk − vi‖2 is a distance measure between (?) zk and the cluster center vi

3. Compute the function J given equation 3.41.

J(z, u, v) =
c∑
i=1

N∑
k=1

µik|zk − vi‖2 (3.41)

Clustering is ended in case J has merged .

4. Update the cluster center vi by using equation (3.33), return to step 2.
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In our study c is chosen 3 to cluster the region except breast (black background), mi-

crocalcification region and other tissues. Enhancement by using detail enhancement

and its modifications are implemented by dividing the input image into 16 blocks.

Chosen αmid, αhigh, βmid and βhigh coefficients for MIAS and DICOM Images are

given in Table 3.1. The results of these enhancement for MIAS image mdb 223 is

given Figure 3.20.

Table 3.1: Chosen Coefficients of Detail Enhancement Methods for MIAS and DI-
COM images

Coefficients For MIAS For DICOM

αmid 0.5 2
αhigh 4 4
βmid 0.5 0.1
βhigh 0.5 0.1

Figure 3.19: (a) A ROI of DICOM Image. (b) Clustering Distribution.

3.6 Multiresolution Analysis

Most of the existing image enhancement methods use frequency information of an

image to distinguish noise, weak and strong edges. However it is difficult to identify

noises, since they correspond to similar frequency information with weak edges. The

property of noises that they do not have any geometrical information can be used to
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Figure 3.20: Output Images of Enhancement Methods:(a) A ROI of MIAS Image mdb
223 (b) Enhanced image with FFT (c) Enhanced image with mean and standart devi-
ation (d) Enhanced image with discrete wavelet transform (e) Enhanced Image with
k means clustering (f) Enhanced Image with k means clustering and mean /standart
deviation.

distinguish weak edges from noises. In this thesis, there is no denoising approach

since microcalcifications are small in size. To identify the background which corre-

sponds to weak edges and microcalcifications which corresponds to strong edges, ge-

ometrical information is obtained by multiresolution analysis. Multiresolution analy-

sis, which was discovered with wavelet transform in 1980s maps a signal or an image

into a set of coefficients.

3.6.1 Discrete Wavelet Transform

The wavelet transform is a mathematical microscope that points out image details

[21]. Firstly, an input image is decomposed into low and high frequency compo-

nents by convolution and downsampling operations. These operations are performed

by using high pass filters H0 and low pass filter H1. These filters with downsam-

pling operators are called quadrature mirror filters (QMFs). The result of low pass

filter is called approximation (LL) and results of high pass filter gives detail coeffi-
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cients LH, HL, HH. Decomposition process is iterated only on approximation and

detail coefficients are remained. Decomposition of image into second level produces

a shrinkage on the size of the approximation (LL).This means that quarter of original

image size pixels are not contained in the approximation band [43]. It is considered

that microcalcifications correspond to the highest frequencies. The detection of mi-

crocalcifications is accomplished by setting the wavelet coefficient LL in last level

of decomposition to zero in order to eliminate the image background information be-

fore the reconstruction of the image. The reconstructed mammogram is expected to

contain only high-frequency components, including the microcalcifications [44]. To

create more shaper image, after reconstruction of wavelet coefficients by eliminat-

ing low frequency band of last level of decomposition, unsharp masking is applied.

The drawback of the unsharp masking is that it creates a white frame surrounding the

image.

Figure 3.21: Schematic distribution of enhancement by using DWT and Unsharp
Masking.

3.6.2 Contourlet Transform

The contourlet transform (CT) which was proposed by Do and Vetterli [45] provides

directional multiresolution image presentation. For multiresolution it employs Lapla-

cian pyramids (LP) which is an alternative method to the wavelet decomposition. The

process of LP is listed below:

1.Extraction of coarse approximation of the image by low pass filtering and down-
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Figure 3.22: Contrast Enhancement by Using DWT:(a) A ROI of MIAS Image
mdb209. (b) Result of enhacement with DWT.

Figure 3.23: Contrast Enhancement by Using DWT:(a )A ROI of MIAS Image
mdb241. (b) Result of image enhacement with DWT.
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sampling,

2.Prediction of the image by upsampling and high pass filtering,

3. Calculation of the prediction error by subtracting the predicted image from the

original image. This process is iterated on the coarse version [6].

Figure 3.24: Schematic Distribution Of the Laplacian Pyramid (a) Analysis: The out-
put c is a coarse aproximation and the output d is the difference between the original
image x and the prediction p (b) Synthesis [6].

Directional decomposition of an image is based on decomposing image into sub-

bands. These subbands give directional information or energy along each dimension.

Thus, directional decomposition is used in many image processing applications such

as target detection, denoising, enhancement, texture analysis, etc. To attain direc-

tional decomposition, directional filter bank (DFB) is applied on each pyramidal level

obtained from LP. The combination of DFB with LP is called pyramidal directional

filter bank which is shown in Figure 3.26 (PDFB) [46].

Figure 3.25: Directional Filter Bank Spectrum Partition (a) l=1 provides 2 subbands.
(b) l=2 provides 4 subbands. (c) l=3 provides 8 subbands [7].
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Figure 3.26: Analysis Part of Contourlet Transform By Using Four Directional Filter
Bank.

3.6.3 Image Enhancement by Using NSCT

As there is no downsampling and upsampling operations in NSCT, it is shift invariant

which means that each pixel of the subbands obtained from NSCT corresponds to

that of the original image in the same location [47]. Nonsubsampled pyramids are

employed for multiscale decomposition in NSCT. The nonsubsampled pyramids con-

sists of two channel filter bank: one of them is high pass filter and the other one is

low pass filter. There is no downsampling and upsampling operations used with these

filters. Thus, the nonsubsampled filters are not similar to LP [47].

The frequency response of the building block of nonsubsampled pyramid is shown in

Figure 3.27. To iterate multiscale decomposition the nonsubsampled filter banks are

applied following upsampling operation by 2.

For directional decomposition in NSCT, the nonsubsampled directional filter banks

are employed. NSDFB consists of 2 channel filter banks without any sampling oper-

ation.

In Figure 3.29 , yi,j represents each subband, where i denotes the decomposition level

and j denotes the direction. NSCT is used to create a function f for subbands which
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Figure 3.27: Frequency response of the building block of nonsubsampled pyramid.

Figure 3.28: Frequency response of the building block of the nonsubsampled direc-
tional filter bank.

Figure 3.29: Decomposition levels and directions in the frequency domain.
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indicates the features of interest. This f function creates enhanced subbands y’ to

reconstruct an enhanced image.

y′i,j = f(yi,j) (3.42)

The f function used for enhancement of the directional subbands is given in equation

(3.36). W1 andW2 are the weight factors to enhance directional subbands correspond-

ing the surrounding tissue of microcalcification and microcalcifications, respectively.

bi,j denotes a binary image which holds edges of the subbands. (n1, n2) are the co-

ordinates of the pixels. By implementation of edge detection methods bi,j can be

obtained. In our study a Prewitt operator that explained in Section 3.3.2 was chosen

to get bi,j and a threshold Ti,j is calculated for each subbands. The appropriate value

for Ti,j is chosen 3σi,j for both MIAS data and DICOM images in our study. σi,j is

the standard deviation of the related subband yi,j . The weight factor W1 is assigned

3σi,j for MIAS images and 6σi,j for DICOM images, while the weight factor W2 is

assigned 4σi,j for MIAS images and 12σi,j for DICOM images. W1 should be smaller

than W2 since multiplication of W2 and each subband corresponding to microcalcifi-

cations makes microcalcifications more visible. After enhancement of subbands, the

enhanced image is reconstructed from enhanced subbands y’ [48].

f(yi,j) =


W1yi,j(n1, n2), if bi,j(n1, n2) = 0

W2yi,j(n1, n2), if bi,j(n1, n2) = 1
(3.43)

To implement NSCT for decomposion of the image into subbands Nonsubsampled

Contourlet Toolbox [49] in MATLAB is used.

The results of enhancement using NSCT is given below.
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Figure 3.30: Contrast Enhancement by using NSCT: (a) A ROI of MIAS Image
mdb209. (b) Result of enhacement with NSCT.

Figure 3.31: Contrast Enhancement by using NSCT: (a) A ROI of MIAS Image
mdb241. (b) Result of enhancement with NSCT
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Figure 3.32: Contrast Enhancement by using NSCT: (a) A ROI of DICOM Image (b)
Result of enhancement with NSCT.

Figure 3.33: Contrast Enhancement by using NSCT: (a) A ROI of DICOM Image.
(b) Result of enhancement with NSCT.
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CHAPTER 4

PERFORMANCE EVALUATION FOR IMAGE

ENHANCEMENT

After image enhancement operation, the visual appearance of image will be changed.

This change is remarkable by human vision, but decision of whether the perfor-

mance of enhancement is satisfactory or not is critical, especially for medical im-

ages, to avoid misdiagnosis. Subjective evaluation varies from person to person,

therefore quantitative measures must be used for evaluation. The change in the orig-

inal image is observed by looking at the change in histogram. However, since it

is unclear which gray level intensity belongs to target and its background, change

in histogram does not give meaningful information about the enhancement perfor-

mance. Classical measures used to measure the quality of the image mean square er-

ror (MSE), signal-to-noise-ratio (SNR) and peak-signal-to-noise-ratio (PSNR). They

are not completely enough for evaluation without visual perception. Absolute mean

brightness error (AMBE) and the measure of enhancement (EME) are other quantita-

tive measures [50]. AMBE evaluates changes in brightness of the image by calculat-

ing the absolute difference between input and output images. These measures are not

suitable for our study. Several measures used for image quality descriptions are given

in the following sections of this chapter.

4.1 Metrics of Mammogram Contrast Enhancement

Singh and Bovis introduced three metrics to evaluate the quality of contrast between

target (microcalcifications in our study) and the background (surrounding tissues in
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our study). These metrics measure how the distribution of gray levels that belongs

to target and background regions are separated after image enhancement operations.

The image statistics, such as mean, standard deviation and entropy of the distribution

of each gray level, are used in the calculation of these metrics, and are explained in

the following sections [8].

4.1.1 Distribution Separation Measure(DSM)

As the mammogram images have low contrast, the density of gray levels that belongs

to microcalcifications overlaps with that of their surrounding tissues. It is expected,

from a good enhancement method, to reduce this overlap as shown in Figure 4.1.

DSM is a quantitative metric which shows separation of distributions of gray levels

on both original and enhanced mammogram images. DSM is formulated by equation

(4.1). µucalE and µucalO represent the mean of microcalcifications on the enhanced

and original images, respectively. In the same way, µutissueE and µutissueO represent

the mean of the surrounding tissues of the original and enhances images, respectively.

DSM value should be greater than 0 and the highest DSM value indicates the best

enhancement.

Figure 4.1: Distribution overlap between the background B and target T before and
after enhancement [8].

DSM = |µucalE − µutissueE| − |µucalO − µutissueO| (4.1)
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4.1.2 Target to Background Contrast Enhancement Measure (TBC)

A good enhancement maximizes the difference between the mean gray levels that

correspond to microcalcifications and their surrounding tissues. The homogeneity of

each microcalcification is increased, since their boundaries and localizations become

more clear. Target to Background Contrast Enhancement Measure (TBC) is a quality

metric based on the ratio of the mean and standard deviation values of microcalcifi-

cations and other regions, on both original and enhanced images. Standard deviation

is a measure of homogeneity. TBC is defined as:

TBC =

µucalE
µutissueE

− µcalO
µutissueO

σucalE
σucalO

(4.2)

TBC value should be grater than zero for an expected image enhancement.

4.1.3 Target to Background Contrast Enhancement Measure Based on En-

tropy(TBCE)

TBCE compares the homogeneity of distributions of gray levels that uses the ratio

of entropy instead of standard deviation. Equation (4.3) defines TBCE. In that ex-

pression, εucalE and εucalO indicate the entropy of the enhanced and original images,

respectively.

TBCE =

µucalE
µutissueE

− µcalO
µutissueO

εucalE
εucalO

(4.3)

By combination of these three measures , a single quantitative value D is obtained to

evaluate the performance of the image enhancement methods. To calculate D , the

measures are normalized between 0 and 1. Following , D is calculated by :

D =
√

(1−DSM)2 + (1− TBC)2 + (1− TBCE)2 (4.4)

The smallest value of D denotes the best enhancement method.
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4.2 Relative Entropy Analysis

Entropy is a statistical measure of randomness of the intensity of pixels in image. It

is defined as follows:

Entropy = −
K∑
i=1

pdf(i)log2(pdf(i)) (4.5)

where pdf(i) represents the probability density function of ith gray level and K is the

maximum intensity value in the image. When the pdf of each intensity values are

equal, in other words if an image has uniform gray level distribution, the maximum

entropy value is obtained [51].

Entropy does not give information about the performance of enhancement method.

It just shows a change in the gray level distribution of the image. To compare the

probability distributions of input and enhanced images, relative entropy function is

introduced:

Relative Entropy =
K∑
i=1

pdforg(i)log2(
pdforg(i)

pdfenh(i)
) (4.6)

It is approximately equal to 0, when the distributions of the original and enhanced

images are similar. When the probability density functions are replaced the value of

the relative entropy will change [52].

4.3 Mutual Information Analysis

Mutual information is an image quality measure, alternative to the relative entropy

function, based on the relationship between the entropy of the original and enhanced

images. The relative entropy is a non symmetric function, whereas mutual informa-

tion analysis provides a symmetric function. It is formulated by

I(x : y) =
∑
x,y

pdfx(x)log2(
pdfxy(x, y)

pdfxpdfy
) (4.7)

where pdfxy represents joint distribution of two images [52].
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4.4 Intensity Contrast Calculated with GLCM

Intensity contrast was proposed by Chen to estimate the difference between the local

contrast of the original and enhanced images [53]. Contrast is a measure of intensity

contrast between a pixel and its adjacent pixels and it is defined as:

Con =
K∑
i=1

|i− j|2pij (4.8)

In this equation, K represents the maximum intensity value and pij represents the

gray level co-occurance matrix (GLCM). GLCM is 2D matrix that shows how often

a pixel with the intensity (gray-level) value i occurs in a specific spatial relationship

to a pixel with the value j and it is calculated as

pi,j =
M−1∑
i=0

N−1∑
j=0


1, if I(x, y) = i and I((x+ ∆x), (y + ∆y)) = j

0, Otherwise
(4.9)

A higher contrast value is desired for good enhancement.

4.5 Discrete Entropy Calculated with GLCM

Another image quality metrics proposed by Chen is discrete entropy calculation using

GLCM instead of using pdf. Entropy measures the impermanence of elements of the

GLCM.

Entropy = −
k∑
i=1

pijlog2(pij), 0 ≤ (j) ≤ (k) (4.10)

The highest value for discrete entropy indicates a best enhancement.

4.6 Structural Similarity Image Quality Index(SSIM)

The structural similarity is a state of art method to compare similarity between two

images [54]. The SSIM measurement system is based on three independent com-

parisons between input image x and output image y: luminance (L(x, y)), contrast

(c(x, y)), and structural (s(x, y)). Similarity measure (S) is a function luminance,
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contrast and structure comparisons:

S(x, y) = f((l(x, y), c(x, y), s(x, y) (4.11)

S is symmetric, i.e., (S(x, y) = S(y, x)), and its value is less than or equal to 1. It is

equal to 1 when x = y.

The luminance comparison is obtained using the following expression:

L(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(4.12)

whereµx µy denote the mean values of the input image x and output image y, respec-

tively. C1 is a constant that inhibits division by 0, in case, µ2
x + µ2

y = 0:

C1 = (K1L)2, K1 6 (1), L = maximum intensity value (4.13)

The contrast comparison is similar to the luminance comparison. It uses standard

deviations of x and y instead of mean values:

C(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(4.14)

C2 is a constant and is calculated as follows:

C2 = (K2L)2, K2 6 (1), L = maximum intensity value (4.15)

The structural comparison s(x, y) is defined as:

s(x, y) =
σxy + C3

σxσy + C3
(4.16)

Here, σxy is a correlation coefficient that corresponds to the cosine angle between

x− µx and y − µy and it is defined as:

σxy =
1

n− 1

∑
i

∑
j

(Ix(i, j)− µx)(Iy(i, j)− µy) (4.17)

The constant C3 is chosen half of C2, i.e.,

C3 =
C2

2
(4.18)

After calculating these three comparison values, SSIM is calculated by their combina-

tion. α, β and γ are constants with positive values that are used to set the importance
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of the comparison components. In this study, they are set to 1. The SSIM is defined

as follows:

SSIM(x, y) = [I(x, y)]α[C(x, y)]β[S(x, y)]γ (4.19)

Normalized with respect to pixel sizes, SSIM can be written as:

SSIM(x, y) =
1

MN

M∑
x=0

N∑
y=0

SSIM(x, y) (4.20)

When the constants C1 and C2 are set to 0, the similarity matrix is called the "univer-

sal quality index" and is defined as

UIQI =
σxy
σxσy

2µxµy
µ2
x + µ2

y

2σxσy

σ2
x + σ2

y

(4.21)

where µx, σx, σx,y parameters used in the calculation of SSIM are the local statistics.

A window with a predetermined size is shifted on each image and these parameters

are calculated in the window. To obtain the final value of SSIM , the average of these

local values are calculated. Equation (4.21) represents a final equation for evaluating

the overall image quality.

SSIM(x, y) =
1

M

M∑
j

SSIM(xjyj) (4.22)

While M denotes the number of windows, xj and yj denote the jth local window.

The quality metrics are calculated for enhanced images with detail enhancement

methods, DWT and NSCT.

4.7 Image Enhancement Results and Their Comparison By Using Quality Met-

ric

To calculate the mammogram contrast enhancement metrics, special processes are

required. Firstly, the ROI with microcalcification clusters is chosen. Then to obtain a

list of coordinates for each pixel that belongs a microcalcification, binary segmenta-

tion is performed by thresholding. Figure 4.2 depicts binary segmentation by thresh-

olding of ROI MIAS image mdb 209. Mean and standard deviation of all pixels in

the ROI (except the pixels in the list of pixels of microcalcification), and for all pixels
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Figure 4.2: Binary Segmentation By Tresholding.

in the list of microcalcification are calculated. These mean and standard deviations

are used to obtain the quality metrics: DSM, TBC, and TBCE.

For this study, detail enhancement methods and enhancement methods based on mul-

tiresolution analysis are preferred. Both types of enhancement methods are based

on identification of the region with microcalcification cluster and determining the

specific coefficients to amplify them. Detail enhancement methods are local enhance-

ment methods and enhancement methods based on multiresolution analysis are global

methods. It is considered that local enhancement methods provides better enhance-

ment results compared to global approaches. Among detail enhancement methods,

DWT provides geometrical information compared to DFT. Wavelet coefficients ob-

tained by DWT achieve to detect point-like objects such as microcalcifications.

The abbreviations of used enhancement methods and their explanations are:

EWFFT——->Detail enhancement by using FFT and hierarchical clustering

EWMStd——>Detail enhancement by using mean/standard deviation and hierarchi-

cal clustering

EWDWT——->Detail enhancement by using DWT and hierarchical clustering

EWKM——–>Detail enhancement by using FFT and k means clustering

EWMStdKM—->Detail enhancement by using mean/standard deviation and k means

clustering

EWDWTUM—–>Enhancement by using DWT and unsharp masking
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EWNSCT——>Enhancement by using NSCT.

Figures 4.3-4.4 show the results of image enhancement methods on MIAS images

mdb252 and mdb241, respectively. Figures 4.5-4.6 show the results of image en-

hancement methods on 2 DICOM images. Tables 4.2- 4.3 present the mean and

standard deviations of quality measures calculated for each enhanced MIAS images

and 30 of 70 DICOM images, respectively. The best mean values of enhancement

methods are highlighted by pink and minimum standard deviations are highlighted

by blue. High values of standard deviations are related to density of breast tissue and

distribution of microcalcification . For fatty breasts, the differences between inten-

sity values of microcalcifications and their surrounding tissues is higher than those of

dense breasts. Calculated quality measures also varies from grouped microcalcifica-

tions to diffused microcalcifications. It is observed that, detail enhancement by using

k means clustering(EWKM) outperforms to other enhancement methods which are

compared with the given quality measures for MIAS images. For DICOM images,

quality measures calculated for enhancement method by using NSCT gives the best

results compared to other enhancement methods.
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Figure 4.3: Output Images of Enhancement Methods: (a) Original Image (mdb252),
(b) Enhanced Image with EWFFT (c) Enhanced Image with EWMStd, (d) Enhanced
Image with EWDWT, (e) Enhanced Image with EWKM, (f) Enhanced Image with
EWKMMStd, (g) Enhanced Image with EWDWTUM, (h) Enhanced Image with
EWNSCT.

Figure 4.4: Output Images of Enhancement Methods: (a) Original Image (mdb241),
(b) Enhanced Image with EWFFT (c) Enhanced Image with EWMStd, (d) Enhanced
Image with EWDWT, (e) Enhanced Image with EWKM, (f) Enhanced Image with
EWKMMStd, (g) Enhanced Image with EWDWTUM, (h) Enhanced Image with
EWNSCT.
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Figure 4.5: Output Images of Enhancement Methods: (a) Original Image (DICOM),
(b) Enhanced Image with EWDFT (c) Enhanced Image with EWMStd, (d) Enhanced
Image with EWDWT, (e) Enhanced Image with EWKM, (f) Enhanced Image with
EWMStdKM, (g) Enhanced Image with EWDWTUM, (h) Enhanced Image with
EWNSCT.

Figure 4.6: Output Images of Enhancement Methods: (a) Original Image (DICOM),
(b) Enhanced Image with EWDFT (c) Enhanced Image with EWMStd, (d) Enhanced
Image with EWDWT, (e) Enhanced Image with EWKM, (f) Enhanced Image with
EWKMMStd, (g) Enhanced Image with EWDWTUM, (h) Enhanced Image with
EWNSCT.
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Even the quality measures provides information about the performance of enhance-

ment methods, it is important that the enhanced image is meaningful for diagnosis.

In this study, the enhanced images were evaluated by a radiologist to chose enhance-

ment method which provides clinically significant images. Following this, two meth-

ods were chosen for classification step. Tables 4.4-4.5 shows the evaluation of en-

hancement method by a radiologist for MIAS and DICOM images, respectively. The

preferred enhancement for each image is labeled with + . For MIAS Images , EWM-

Std and EWDWT were chosen . For DICOM images , EWMStd and EWNSCT were

chosen.

The comparison of the results of the quantitative measures and evaluation of the ra-

diologist provides us how quantitative measures are effective to evaluate the perfor-

mance of the enhancement methods. For MIAS images EWKM outperforms the

other enhancement methods according to quality measures. However, a radiologist

found the images which are enhanced by EWKM over enhanced . While the micro-

calcifications are more brighter and visible than their surrounding tissues, the pattern

of the surrounding tissues changes too much. For DICOM images, it can be said

that the results of quality metrics match with the assessment of the radiologist. In

DICOM images, microcalcifications are carried by middle frequencies if the breast

tissue is dense or microcalcifications are in a lesion. For these types of breast tissues,

EWNSCT outperforms the detail enhancement methods by looking at quantitative

measures .For a radiologist EWNSCT is more preferable, since microcalcifications

are more detectable compared to other methods. For fatty tissues detail enhancement

methods, EWFFT, EWMStd and EWDWT are preferable according to the assess-

ment of the radiologist. Among these three enhancement methods EWMStd is more

preferable than others. While EWFFT and EWDWT uses the frequency information

for clustering, EWMStd uses the mean and standard deviation which is less complex

than obtaining frequency information.
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Table 4.3: Evaluation of Enhancement Methods for MIAS Images By a Radiologist

Image DFT MStd DWT KM MStdKM DWTUM NSCT

mdb01 +
mdb021 +
mdb027 + +
mdb079
mdb090
mdb110 + +
mdb128 +
mdb133 +
mdb137 +
mdb138 + +
mdb141 + + +
mdb166 +
mdb186 +
mdb188 + + +
mdb209 +
mdb211 + + +
mdb213 + + +
mdb218 +
mdb219 +
mdb222 +
mdb223 + + +
mdb226 + +
mdb227 + +
mdb231 + +
mdb236 + +
mdb238 + +
mdb239 + +
mdb241 + +
mdb245 + + +
mdb247 +
mdb249 + +
mdb252 + + +
mdb253 +
mdb294 +
mdb314 + + +
TOTAL: 15 19 27
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Table 4.4: Evaluation of Enhancement Methods for DICOM Images By a Radiologist

Image: DFT MStd DWT KM MStd_KM DWT_UM NSCT

1 +
2 +
3 + +
4 +
5 +
6 +
7 +
8 +
9 +
10 +
11 +
12 + +
13 +
14 + +
15 + + +
16
17 +
18
19
20 +
21 +
22 +
23 +
24 +
25 +
26 +
27 +
28 +
29 +
30 +

TOTAL: 6 11 4 10
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CHAPTER 5

FEATURE EXTRACTION AND CLASSIFICATION OF

MICROCALCIFICATIONS

Feature extraction is needed for classification of microcalcification clusters as benign

and suspicious for malignancy. The existing feature extraction methods based on

statistical approaches, multichannel filtering, multiresolution analysis and filtering

with special kernels. In this chapter , the feature extraction methods proposed for our

study are expressed.

5.1 First Order Statistics (FOS)

First Order Statistics (FOS) shows the characteristics of the histogram of the enhanced

ROI of the mammogram images. The drawback of FOS is that it does not give any

information about relationship between the positions of each pixel. In some cases,

noise is unidentified from the histogram, and has an effect on the calculation of FOS

[55]. The FOS used in this thesis is given below:

Mean =
1

MN

M∑
i

N∑
j

p(i, j) (5.1)

Sigma =

√√√√ 1

MN

M∑
i

N∑
j

(p(i, j)− µ)2 (5.2)

Skewness =
K∑
i

(pdf(i)− µ)3/K

σ3
(5.3)

Kurtosis =
K∑
i

(pdf(i)− µ)4/K

σ4
(5.4)
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Energy =
∑
i,j

p(i, j)2 (5.5)

Entropy =
∑
i,j

pi,jLog2(pi,j)) (5.6)

In these expressions:

i-) M and N denote the sizes of the image.

ii-) p(i, j) is the intensity value of pixel in the ith row and jth column.

iii-) pdf(i) is the probability density function of gray level i.

iv-) K is the maximum gray level in the image.

v-) σ is the standard deviation of the image.

vi-) µ is the mean of the image.

Among these equations, skewness and kurtosis are related to the histogram of the

image. Skewness is a measure based on symmetry. If the left and right of the center

point of the histogram are similar, the histogram is symmetric. If the value of skew-

ness is negative, it means that the frequencies of gray levels near black is greater than

those near white. Similarly, if the value of skewness is positive, it means that the fre-

quencies of gray levels near white is greater than those near black. For mammogram

images which are enriched with microcalcifications, it is expected that skewness has

a positive value. On the other hand, kurtosis is a measure whether the distribution

of the histogram is peaked or flat. Positive kurtosis value denotes a ’peaked ’ distri-

bution while negative kurtosis value denotes ’flat’ distribution [56]. Entropy is used

in many parts of this thesis, especially in the evaluation of the performance of image

enhancement methods. It’s a measure of non-uniformity of the pixel values of the

image. The entropy with a low value indicates high structural variance, and higher

probability of microcalcifications on the image [57].

5.2 Second Order Image Statistics

The features extracted from the gray level co-occurance matrix is known as second

order image statistics or Haralicks features. GLCM depicts how frequently two pixels

with gray-levels i, j appear in the window separated by a distance d in direction Q

[58]. The equations required for the calculation of GLCM for angles 0◦, 45◦, 90◦, and
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135◦, and for a distance d between the pixels are given below:

p0◦,d(i, j) =


[(k, l)(m,n)] ∈ D :

k −m = 0, |l −m| = d

I(k, l) = i, I(m,n) = j

(5.7)

p45◦,d(i, j) =



[(k, l)(m,n)] ∈ D :

(k −m = d, |l −m| = −d)

(k −m = −d, |l −m| = d)

I(k, l) = i, I(m,n) = j

(5.8)

p90◦,d(i, j) =


[(k, l)(m,n)] ∈ D :

k −m = d, |l −m| = 0

I(k, l) = i, I(m,n) = j

(5.9)

p135◦,d(i, j) =



[(k, l)(m,n)] ∈ D :

(k −m = d, |l −m| = d)

(k −m = −d, |l −m| = −d)

I(k, l) = i, I(m,n) = j

(5.10)

where I(k, l) and I(m,n) denote the intensities at pixel position (k, l) and (k, l),

respectively.

For feature extraction, the contrast, correlation energy, and homogeneity values are

calculated from each GLCM. The length of the feature vector is 16. Contrast is a

measure of the differences between intensity of a pixel and its adjacent pixels on the

whole image. Its value equals to 0 when the GLCM is constant and its maximum

value for contrast is (K − 1)2 where K is the maximum intensity value in the image.

Correlation is a measure of connection with a pixel and its neighbor on the whole

image. It takes values between [-1,1] and it is undefined when the standard deviations
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Figure 5.1: Example image with 4 gray levels [9].

Figure 5.2: GLCM with angles 0◦, 45◦, 90◦, and 135◦ and d = 1.
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σi and σj are equal to 0. Homogeneity is a measure of the spatial affinity of the

distribution of GLCM. When GLCM is a diagonal matrix, it is equal to 1 which is the

maximum value [51].

Contrast =
K∑
i,j

|i− j|2p(i, j) (5.11)

Correlation =
K∑
i,j

(i− µi)(j − µj)p(i, j)
σiσj

(5.12)

Energy =
∑
i,j

p(i, j)2 (5.13)

Homogenity =
∑
i,j

p(i, j)

1 + |i− j|
(5.14)

5.3 Feature Extraction by using Laws Texture Energy Measures

Another approach for feature extraction is to calculate the Laws texture energy mea-

sures which consist of 25 local kernels proposed by Laws [59]. These kernels are

computed from the vectors given in Table 5.2. The name of the vectors are mnemon-

ics of their purposes. For instance, E5 is a vector of size 5 and used for detection

of edges. There are 25 kernel obtained from these vectors. 23 of these kernels are

high pass filters. For texture extraction, an image is convolved with masks. The

information obtained from convolution of the same kernels is given in Table 5.1.

Table 5.1: 1D Laws Kernels.
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Table 5.2: Same 5× 5 Laws Kernels Used for Texture Analysis

For feature extraction mean, standard variation, skewness and kurtosis values are cal-

culated from Laws texture energy mask filtered images. The length of the feature

vector is 100. The features are normalized between 0 and 1 for classification.

5.4 Feature Extraction by using Gabor Filter Bank

The 2D Gabor filter bank decomposes an image into components corresponding to

different scales and orientation. It can be said that feature extraction by using Ga-

bor filter is a good choice since it provides visual properties like spatial localization,

spatial frequency and orientation selectivity [60]. For feature extraction, an image is

convolved with 2D Gabor filter mask as given in equation (5.15). This 2D filter con-

sists of a complex exponential centered at a given frequency f and and modulated by
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Figure 5.3: A ROI DICOM Image.

Gaussian envelop. f denotes central frequency of the sinusoidal plane wave. θ is the

rotation angle of both the Gaussian major axis and the plane wave in interval [0,π). γ

and η are parameters for sharpness along the major axis and the minor axis [61].

g(x, y) =
f 2

πγη
e
(− f

2

γ2
x̃2+ f2

η2
ỹ2)
ej2πfx̃ (5.15)

x̃ = xCos(θ) + ySin(θ) (5.16)

ỹ = −xSin(θ) + yCos(θ) (5.17)

A Gabor filter bank consists of Gabor filters which are set by individual parameters.

These parameters are central frequency, scales and orientation [62]. In general, num-

ber of scales is chosen as 5, while the number of orientations is chosen as 8. In this

study, 5 scales and 8 orientations are used. This means that Gabor filter bank consists

of 40 Gabor filters. The orientations are calculated by equation (5.18). The initial

orientation is adjusted as 0◦.

orientation(i) =
(i− 1)π

8
; i = 1, 2, ...8 (5.18)
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Figure 5.4: Results of Convolution with Laws Texture Energy masks.
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The frequencies are adjusted by equation (5.19) and the initial maximum frequency

(fmax) is chosen as 0.25.

frequencies(i) =
fmax

(
√

2)i−1
; i = 1, 2, ..5 (5.19)

Since Gabor filter consists of complex exponential, it has both real and imaginary

parts. Real part of the Gabor filter bank with 5 scale and 8 orientations are shown in

Figure 5.5, the corresponding magnitude images are are given in Figure 5.6.

The ROI of mammogram image from MIAS dataset is depicted in Figure 5.7. The

image convolved with this Gabor filter bank and the results of this convolution are

given in Figure 5.8 and Fig.5.9. The features used for classification are obtained from

the magnitude of the Gabor filters.

Figure 5.5: Real Parts of the Gabor filters (5 scales and 8 Orientation).

In our study, the Gabor filter bank is convolved with subregions instead of the whole
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Figure 5.6: Magnitudes of the Gabor filters (5 scales and 8 Orientation).

Figure 5.7: ROI of the mammogram image mdb209 from the MIAS database.
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Figure 5.8: Real Parts of the Gabor filtered Image mdb209 (5 scales and 8 Orienta-
tion).

Figure 5.9: Magnitudes of the Gabor Filtered Image mdb209 (5 scales and 8 Orien-
tation).
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ROI of mammogram image. The dimension of the ROI of each mammogram image

is 512× 512. This whole ROI is divided into blocks with size 128× 128. Totally 16

blocks are obtained. Then subregions are created by 4 adjacent blocks. 9 subregions

are obtained, totally. Illustration of acquisition of these subregions is shown in Figure

5.10. Each area covered with colorful squares represents a subregion. For example

last subregion consists of 11th, 12th , 15th and 16th blocks and covered with a yellow

square.

Figure 5.10: Illustration of subregion acquisition.

For feature extraction, each subregion is convolved by Gabor filter. Mean, standard

deviation, skewness and kurtosis values are obtained from magnitudes of the Gabor

filtered subregions. For each subregion, 40 Gabor filtered sub-images are obtained

(totally 360). For each sub-images, 4 features are obtained. Length of feature vector

for an image is 1440.

5.5 Feature Extraction Based on NSCT

As mentioned in the multi resolution analysis section, the directional decomposition

of images provides directional information or energy along a specific direction. Be-

sides image enhancement and image coding, multi resolution analysis is used for

70



texture analysis due to this property. The method chosen for feature extraction is

based on decomposition of the image into directional sub-bands at each scales and

calculation of the energy of each subband. For this purpose, firstly the enhanced ROI

is decomposed by NSCT at 3 scales. For scale 2, 2 direction is chosen while for scales

3 and 4, 8 directions are chosen. After obtaining subbands by the NSCT decomposi-

tion, the energy of each sub-band is calculated. The length of the feature vector that

consists of these energy values is 18. The feature vector is normalized between 0 and

1 for classification [26].

5.6 Dimension Reduction Of Features

Dimension reduction is representation of multidimensional data by projecting it on

lower dimensions. We need dimension reduction to visualize our data to decide

which classifier is suitable for classification, and to reduce the computational cost

of the classification operation. For dimension reduction, Fisher Linear Discriminant

Analysis(FLDA) is employed in our study. In case, the number of samples is less than

the dimension of the feature vector, FLDA will overfit. Principal component analysis

(PCA) is applied before FLDA to reduce the dimension of the feature vector to the

number of samples-1. Using the PCA before FLDA provides a sort of regularization

and prevents overfitting.

FLDA can be used for linear classification. It can also be used for dimension reduc-

tion for the feature space. Similar to PCA, it projects high dimensional data onto

lower dimension, but it aims to show how the classes are separated from each other.

Note that, PCA does not provide class information of the data. It is expected that

the distance between the means of the data that belong to each class is as large as

possible. In other words, it tries to make class distribution separable.

For data with 2 classes (C1 and C2), the mean values of the classes are calculated as

follows:

M1 =
1

N1

∑
xεC1

x (5.20)
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Figure 5.11: Results of the FLDA with the worst projection and the best projections
[10].

M2 =
1

N2

∑
xεC2

x (5.21)

where N1 and N2 are the number of data in class C1 and C2, respectively.

The means of projected data on W that belongs to class C1 and C2 are:

M ′
1 =

1

N1

∑
xεC1

W Tx (5.22)

M ′
2 =

1

N2

∑
xεC2

W Tx (5.23)

The distance between the means of the projected classes is obtained by:

|M ′
1 −M ′

2|2 = |W TM1 −W TM2|2 (5.24)

It is expected that the data points from the same class are very close to each other.

There is a measure to show the variability within the class after it is projected on the

W space, which is called class scatter or variance in the scatter. It is represented by

S2
i for class Ci.

S2
i =

∑
xεCi

(W Tx−Mi)
2 (5.25)

Sum of S2
1 and S2

2 measures the variability within the 2 classes after the projection.
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FLDA tries to find W space that optimize the cost function J which is denoted by

J(W ) =
|M ′

1 −M ′2|2

S2
1 + S2

1

J(W ) =
(W TM1 −W TM2)

2

W T (S1 + S2W
(5.26)

Function J(W ) can be modified as:

J(W ) =
(W TSBW )

W TSWW
(5.27)

where SB is the between class scatter matrix and SW is the within class scatter matrix.

The derivative of J(W ) is equal to 0 when W is maximum. The equation obtained

from the derivative of J(W) is:

S−1W SBW − J(W )W = 0 (5.28)

S−1W SBW = λWwhereλ = J(W ) (5.29)

W ∗ = arg max
W

J(W ) = arg max
W

W tSWW

W tSWW
= SW−1(M1 −M2) (5.30)

By projecting the feature data on W ∗ one obtains a low dimensional data with a

separable class.

5.7 Classification with Support Vector Machines (SVM)

SVM is the most powerful supervised learning technique that can be used as both

linear and non-linear classifier. Hyperplane is the decision surface for classification.

SVM attempts to find a hyperplane with a maximum margin. Margin is the distance

between the hyperplane and half spaces that are the nearest labeled vectors [63].

The hyperplane f(x) is formulated by:

f(x) = Wx+ b = 0 (5.31)
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where W is the normal vector, X is the training data and b is the offset. The half

spaces are determined according to this hyperplane. The optimum hyperplane can be

found by minimizing the following cost function J .

J(W ) = ‖W‖2/2 (5.32)

subject to

W Txi + b ≥ 1, for yi = 1 (5.33)

W Txi + b ≥ −1, for yi = −1 ; i = 1, 2, ..., n (5.34)

yi(W
Txi + b) ≥ 1; i = 1, 2, ..l. (5.35)

where ‖W‖ is the length of the weight vector and yi is the label of classes that can get

value -1 or 1. l is the number of training sample. To eliminate the misclassification

non zero slack variable vector ξ that consists of slack variables ξi is added to equation

(5.35):

yi(W
Txi + b) ≥ 1− ξi; ξi ≥ 0; i = 1, 2, ..l. (5.36)

The cost function will change according to ξi:

J(W, ξ) =
‖W‖2

2
+ C

l∑
i

ξi (5.37)

where C is positive regularization parameter that is assigned by the user. It is called

as soft margin.

If the data in Rd is non separable, the feature spaces are taken to be the non-linear

projection of the input data to the higher dimensional space by a kernel function. φ

denote the non-linear operator to map the input data xi into the higher dimensional

space.

The hyperplane for non-linear cases is formulated as:

f(x) = W Tφ(x) + b (5.38)

where φ(x) is the transformed data. The cost function to decide hyperplane is differ-

ent from that of the linearly separable cases is:

minJ(w, ξ) =
‖W‖2

2
+ C

L∑
i=1

ξi (5.39)
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Figure 5.12: Non-linear mapping: The 2D input space is projected on 3D space by
the φ transform

subject to

yi(W
Tφ(Xi) + b) ≥ (1− ξi) ξi ≥ 0; i = 1, 2, ...l (5.40)

To minimize the cost function J(w, ξ) Langrange multipliers are used. According to

this, the weight vector W is formulated by :

W =
l∑

i=1

αiyiφ(xi) (5.41)

where αi ≥ 0, i=1,2..,l are the Lagrange multipliers. The equation for the hyperplane

can be rewritten as

f(x) =
l∑

i=1

αiyiφ
T (xi)φ(xi) + b (5.42)

In this equation, φT (xi)φ(xi) is replaced with K(xi, x) .

K(x, z) = φT (x)φ(z) (5.43)

The Lagrange multipliers αi are calculated by :

maxW (α1, α2, .., αl) =
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj) (5.44)

subject to
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l∑
i=1

αiyi = 0 (5.45)

In the formulas above, W (α1, α2, .., αl) is the cost function corresponding αi.

Finding αi are interpreted in 3 ways:

Firstly, if αi equals to 0, it indicates that yif(xi) is grater than 1. The data point

xi is outside the decision margin of the hyperplane. This means that xi is classified

correctly.

Secondly, if αi takes a value between 0 and C, it indicates that yif(xi) is equal to 1.

These shows that the data point xi is on the decision margin of hyperplane. For this

case, xi is called as the ’support vector’.

Finally, if αi is equal to C, it indicates that yif(xi) is less than 1. The data point xi

is inside the decision margin. It is not certain that xi is classified correctly. For this

case, xi is called as ’error’. To simplify the hyperplane function, the support vectors

are represented with sj and non zero Lagrange multipliers are represented with α∗i .

The resultant formula of hyperplane is given as follows:

Figure 5.13: SVM Classification Demonstration.
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f(x) =
ls∑
j=1

α∗i yiφ
T (xi)φ(xi) + b (5.46)

f(x) =
ls∑
j=1

α∗i yiK(sj, x) + b (5.47)

In this study, as the dimension of feature vector is greater than 2, we are incapable of

visualizing the distribution of benign and malignant microcalcification clusters. For

this reason we do not know if our data is separable or non separable. In this case, to

use the non linear SVM classifiers is suitable. For the non-linear SVM classifiers, the

input space is projected into a space with higher dimension by kernel function K de-

rived from non mapping function φ as it mentioned previously. We choose Gaussian

radial basis kernel function (rbf) as a kernel. For this kernel, a new feature space is a

Hilbert space of infinite dimensions. Rbf kernel is defined as:

K(x, y) = e(−
‖x−y‖2

2σ2
) (5.48)

where σ is the kernel width and always takes positive value. Sometimes 1
2σ2 is re-

placed by γ.

K(x, y) = e−‖x−y‖
2γ (5.49)

The success of classification by using SVM depends on the selection of γ and soft

margin C. The optimum γ and C parameters can be find by grid search by assigning

exponentially growing values γ and C parameters. Generally range of C parameter

values are chosen between 2−5 and 215, while the range of γ values are between 2−15

and 23. Implementation of SVM with the features mentioned before and its results is

discussed Chapter 6.
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CHAPTER 6

EXPERIMENTAL RESULTS OF CLASSIFICATION WITH

SVM

To observe the effect of enhancement operation on classification of microcalcifica-

tion, classification is applied on ROI of original images and enhanced images by

chosen 2 enhancement methods by a radiologist. Before using database consists of

DICOM images obtained from hospitals, the feature extraction and classification op-

erations are applied on mini-MIAS database. 33 images with microcalcification clus-

ters and other types of calcifications from these database are selected. The size of ROI

of these images is chosen 256×256. 14 images from these selected images are labeled

as ’benign’ and the rest of them are labeled as ’suspicious’ under the supervision of

a radiologist. Some of selected regions with benign and suspicious calcifications for

malignancy are shown in Figure 6.1 and Figure 6.2, respectively.

Figure 6.1: Several Images Labelled as Benign

For classification by using all feature types,10 percent of both benign and suspicious

samples are chosen for training set and the rest of them are chosen for test set. These
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Figure 6.2: Several Images Labelled as Malignant

training and test sets consists of randomly selected samples. The classification opera-

tion is iterated 15 times. The average of area under the ROC curve (AUC) is calculated

for 15 iterations respect to defined γ and C parameters. Additionally, the average of

truth rate( rate of correctly classified samples) is calculated for 15 iterations.

The results of classification with considered features extracted from original images,

enhanced images by EWMStd and EWDWT which are chosen by a radiologist are

given Figures 6.3-6.8.

Figure 6.3: Results of classification with FOS : Left: For original images maximum
average AUC is 0.65 . Middle: For enhanced images by EWMStd maximum average
AUC is 0.77 . Right: For enhanced images by EWDWT maximum average AUC is
0.64.

Following this experiment by using images from mini-MIAS data set, classification

of DICOM images with different types of feature set is performed. Totaly 70 regions

with microcalcifications and punctate calcifications are used. The size of ROI of these

images is chosen 512 × 512. These samples are labeled according to radiological

reports belongs to them. The samples which are diagnosed with BI-RADS 3 are
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Figure 6.4: Results of classification with FOS : Left: For original Images maximum
average truth rate is 0.58. Middle: For enhanced images by EWMStd maximum
average truth rate is 0.77. Right: For enhanced images by EWDWT maximum truth
rate is 0.67

Figure 6.5: Results of classification with GLCM : Left: For original images maximum
average AUC is 0.60. Middle: For enhanced images by EWMStd maximum average
AUC is 0.56. Right: For enhanced Images by EWDWT maximum average AUC is
0.68

labeled as 0 (benign) and those which are diagnosed with BI-RADS 4 are labeled

as 1 (suspicious). There are 29 images labeled as benign and 41 images as labeled

malignant.

For classification by using all feature types, 50 percent of both benign and malignant

samples are chosen for training set and the rest of them are chosen for test set. These

training and test sets consists of randomly selected samples. The classification opera-

tion is iterated 30 times. The average of area under the ROC curve (AUC) is calculated

for 30 iterations respect to defined γ and C parameters. Additionally, the average of

truth rate( rate of correctly classified samples) is calculated for 30 iterations.

First classification is performed with features obtained from FOS. Since the dimen-

sion of feature vector is less than number of samples, it does not need to reduce the
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Figure 6.6: Results of classification with GLCM : Left: For original images maximum
average truth rate is 0.56. Middle: For enhanced images by EWMStd maximum
average truth rate is 0.63. Right: For enhanced images by EWDWT maximum truth
rate is 0.60

Figure 6.7: Results of classification with energy of NSCT coefficients : Left: For
original images maximum average AUC is 0.75 . Middle: For enhanced images by
EWMStd maximum average AUC is 0.79. Right: For enhanced images by EWDWT
maximum average AUC is 0.61.

dimension of feature vector. The left plot given in Figure 6.9 shows the average of

areas under the ROC for 30 iterations for original images, the middle plot hows the

average of areas under the ROC for 30 iterations for enhanced images by EWMStd,

and the right plot shows the average of areas under the ROC for 30 iterations for

enhanced images by EWNSCT, respectively .

The results of classification with using GLCM are given Figures 6.12-6.13.

The results of classification with using Laws texture features are given Figures 6.13-

6.14. The number of features are reduced to 7, since it is believed that for a best

classification number of samples should be 10 times greater than number of features.

To do this, FLDA is applied on training data, the test data is projected on W obtained

from FLDA.
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Figure 6.8: Results of classification with energy of NSCT coefficients : Left: For
original images maximum average truth rate is 0.65. Middle: For enhanced images
by EWMStd maximum average truth rate is 0.68. Right: For enhanced images by
EWDWT maximum truth rate is 0.61

Figure 6.9: Results of classification with FOS : Left: For original images maximum
average AUC is 0.53. Middle: For enhanced images by EWMStd maximum average
AUC is 0.59. Right: For enhanced images by EWNSCT maximum average AUC is
0.61

The results of classification with using energy of NSCT coefficients are given Figures

6.15-6.16 .

Finally classification is performed with features obtained from Gabor filter bank. The

dimension reduction of features to 7 same as classification with using Laws Texture

features is applied. Results of classification by using Gabor filter bank is given in

Figures 6.17-6.18.

According to these results, it is observed that best classification is obtained by features

obtained from Gabor filter banks and enhanced images with EWMStd by 77 percent

truth rate (the area under the ROC curve is 0.81) . However there is no dramatic

change the performance of classification compared to classification by using ROI of

the original images.
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Figure 6.10: Results of classification with FOS : Left: For original images maximum
average truth rate is 0.56. Middle: For enhanced images by EWMStd maximum
average truth rate is 0.57. Right: For enhanced images by EWNSCT maximum truth
rate is 0.59

Figure 6.11: Results of classification with GLCM : Left: For original images max-
imum average AUC is 0.69. Middle: For enhanced images by EWMStd maximum
average AUC is 0.69. Right: For enhanced images by EWNSCT maximum average
AUC is 0.69

Figure 6.12: Results of classification with GLCM : Left: For original Images maxi-
mum average truth rate is 0.65. Middle: For enhanced Images by EWMStd maximum
average truth rate is 0.68. Right: For enhanced Images by EWNSCT maximum truth
rate is 0.61
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Figure 6.13: Results of classification with Laws texture features : Left: For original
images maximum average AUC is 0.72. Middle: For enhanced images by EWMStd
maximum average AUC is 0.74. Right: For enhanced images by EWNSCT maximum
average AUC is 0.78

Figure 6.14: Results of classification with Laws texture features: Left: For original
images maximum average truth rate is 0.65. Middle: For enhanced images by EWM-
Std maximum average truth rate is 0.68. Right: For enhanced images by EWNSCT
maximum truth rate is 0.71

Figure 6.15: Results of classification with energy of NSCT coefficients : Left: For
original images maximum average truth rate is 0.64 . Middle: For enhanced images
by EWMStd maximum average truth rate is 0.65 . Right: For enhanced images by
EWNSCT maximum truth rate is 0.58
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Figure 6.16: Results of classification with energy of NSCT coefficients : Left: For
original images maximum average truth rate is 0.72. Middle: For enhanced images
by EWMStd maximum average truth rate is 0.74. Right: For enhanced images by
EWNSCT maximum average truth rate is 0.78

Figure 6.17: Results of classification with Gabor Filter Bank : Left: For original
Images maximum average AUC is 0.79. Middle: For enhanced Images by EWMStd
maximum average AUC is 0.81. Right: For enhanced Images by EWNSCT maximum
average AUC is 0.76

Figure 6.18: Results of classification with Gabor Filter Bank: Left: For original Im-
ages maximum average truth rate is 0.77. Middle: For enhanced Images by EWMStd
maximum average truth rate is 0.77. Right: For enhanced Images by EWNSCT max-
imum truth rate is 0.74
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To compare feature extraction by Gabor Filter Banks and the other feature extraction

methods, features are obtained from Gabor filter bank locally.
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CHAPTER 7

CONCLUSION AND FEATURE WORK

Breast cancer is the second leading cause of cancer deaths for women. Early diag-

nosis of breast cancer is important for treatment of it. Mammography is the most

effective technology presently available for breast cancer screening, despite the fact

that there are still some limitations of the imaging technique. It is also important to

catch small details like microcalcifications, which may be first sign of breast cancer.

To identify them, a high spatial resolution is necessary. As the difference between X-

ray attenuation of normal and cancerous tissues are quite small, it is difficult to detect

microcalcification clusters in some cases. The breasts of younger woman contains

more glands and ligaments resulting in dense breast tissue. In heterogeneously dense

breast, it is difficult to detect cancerous tissue on mammogram, since the fibrograndu-

lar tissue may hides the abnormalities. With aging, the breast tissue become fattier

and has fewer glands. In this case, it is more easier to detect cancer related tissues

on mammogram images. Insufficient resolution, low local contrast and noise com-

bined with the subtle nature of the usual radiographic findings are other limitations of

mammography.

In this study, it is aimed to develop computer aided diagnosis (CAD) system in order

to increase the efficiency of the mammographic screening processing order to provide

automated detection of microcalcification clusters leading a considerable decrease in

misdiagnosis rates.

For this purpose, several image enhancement algorithms on both spatial domain (his-

togram modeling, morphological operators) and frequency domain( detail enhance-

ment based on frequency, multiresolution analysis etc. ) have been implemented on
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region of interest (ROI) of real mammogram images which include microcalcifica-

tion clusters. Among this methods, detail enhancement methods and enhancement

methods based on multiresolution analysis are preferred. Both types of enhance-

ment methods are based on identification of the region with microcalcification cluster

and determining the specific coefficients to amplify them. Detail enhancement meth-

ods are local enhancement methods and enhancement methods based on multiresolu-

tion analysis are global methods. It was considered that local enhancement methods

provides better enhancement results compared to global approaches. Among detail

enhancement methods, DWT provides geometrical information compared to DFT.

Wavelet coefficients obtained by DWT achieve to detect point-like objects such as

microcalcifications.

To evaluate the performance of enhancement algorithms, quantitative measures have

been implemented and assessment of radiologists was considered, since the enhanced

image should be meaningful for diagnosis. Two enhancement methods chosen by a

radiologist were preferred to observe efficiency of enhancement for classification.

Following enhancement operation, textural features have been extracted from ROI

original images and enhanced images by chosen enhancement methods. Different

types of textural features are extracted As a next step classification by using SVM

were performed. To achieve best classification the different variables of parameters

of SVM γ and C which defined by user were selected.For DICOM images, classi-

fication operation was iterated 30 times. For each iteration 50 percent of each data

was selected as an training set and the rest of it was selected as test set. The samples

are labeled as 0 for images diagnosed with BIRADS 3 and 1 for images diagnosed

by BIRADS 4. Before classification first PCA and then FLDA were applied to re-

duce dimension of feature vector, since for number of some features are greater than

number of samples and this could cause overfitting.

To evaluate performance of classification with different features, under the area of

ROC and truth rate were considered. The average of these values obtained from 30

iterations are calculated.

According to performance of classifications, it is observed that best classification is

obtained by features obtained from Gabor filter banks and enhanced images with
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EWMStd by 77 percent truth rate (the area under the ROC curve is 0.81). For clas-

sifications on all feature types and enhanced images with EWMStd the performance

of classification was generally increased. However, there is no dramatic change(2-3

%) the performance of classification compared to classification by using ROI of the

original images. To compare feature extraction by other feature extraction methods,

features are obtained from Gabor filter bank locally. The chosen ROI was chosen

512×512 which may include more background information for grouped microcalci-

fications in small area. Decrease in size of ROI causes less spatial resolution.

Shape could be a significant feature for decide type of microcalcification cluster.

However, shape analysis is unable for individual microcalcifications because of their

small size.

The classification operation could be more effective if it is performed for fatty breast

tissues and dense breast tissues individually. Since the number of samples are quite

less in comparison with other studies in literature, it could not be implemented on this

thesis. As a future work by increasing number of samples, it is believed that perfor-

mance of classification is found accurately. Novel quasi supervised learning methods

based on Bayesian approaches are not preferred for this study .If the number of data

reaches 1000 at least, these methods can be tried for classification of microcalcifica-

tion and they can be modified.

In this study, CAD was developed for only detection and classification of microcal-

cifications. However, there are more breast abnormalities such as mass, architectural

distortion that can be a first sign of breast cancer. Similar CAD would be proposed

for automatic detection of these abnormalities and combination of them could be

profitable for radiologist to first diagnosis of breast cancer and eliminate unnecessary

biopsy operations.

Other future work for this study could be a design of a user interface. As the display

range of MATLAB is under the gray level of DICOM images, it needs some adjust-

ments. These adjustments are not enough to display images for best diagnosis. For

this reason the user interface conjugated with DICOM viewer could be develop by

other programming languages such as IMAGE J framework of JAVA.
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