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ABSTRACT

PRICING AND RISK MINIMIZING HEDGING STRATEGIES FOR MULTIPLE
LIFE UNIT LINKED INSURANCE POLICIES USING CONSTANT
PROPORTION PORTFOLIO INSURANCE APPROACH

Jafarova, Vafa
Ph.D., Department of Financial Mathematics

Supervisor : Prof. DrOmer L. Gebizligjlu
Co-Supervisor : Prof. Dr. Gerhard Wilhelm Weber

February 2019,771 pages

A unit-linked life insurance policy (ULIP) is an agreememttleen an insurer and an
insured that the insurance benefits or the obligations ahth@ance company depend
on the price of some specified stocks. As opposed to the ctddge insurance, the
payments to be paid at the occurrence of risk or at the endegiehiod of a unit linked
life insurance contract can not be known at the time the pa$icsold. Therefore,
the benefits are random and unknown in advance, and base dhelobligations of
the insurance company are also random. The main purposelmnassituation is to
correctly define obligations of the insurance company, as®d on these obligations
to define the proper hedging approach.

In this thesis, we consider a model which takes into conatasr the uncertainty of fi-
nancial market and portfolio of insured individuals at taeng time. It is assumed that
financial and the insurance portfolios are stochasticaltiependent and considered
to be combined in a common product probability space. Foirthgrance portfolio
under concern, we assume that polices are independenifdiumés of insureds in
each policy are dependent. For the dependency betweerdtnds of insureds, an
appropriate Pseudo-Gompertz distribution is used in tkesish We investigate two
cases for multiple life policies, joint life status and kssirvival status. Appropriate
obligation equations for both cases are derived and by thst@onProportion Portfo-
lio Insurance (CPPI) approach optimal portfolio weights@eéned. For the solution
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of optimization problem, mean-variance hedging strategysed as one of the mostly
applied hedging approaches in such situations. The thedswith a conclusion and
an outlook to future studies.

Keywords Unit Linked Life Insurance Policies, Constant Proportiantflio Insur-
ance with Jump Diffusion, Multiple Life Policies, Mean Varice Hedging, Joint Life-
times Distribution
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COKLU-HAYAT B IRIM BA GLANTILI SIGORTA POLICELERI ICIN SABIT
ORANLI PORTFOY SIGORTASI YONTEMI KULLANILARAK F IYATLAMA VE
RISK MINIMIZASYONU

Jafarova, Vafa
Doktora, Finansal Matematik@imi

Tez Yoneticisi : Prof. Dr.Omer L. Gebizliglu
Ortak Tez Yoneticisi : Prof. Dr. Gerhard Wilhelm Weber

Subat 2014, 71 sayfa

Birim Baglantili Hayat Sigortasi anlasmalarinda sigorta hasimeleri spesifik bir
ariintin fiyatina bgli olmaktadir. Klasik hayat sigortaiiinlerinin aksine buirtinlerde
hasar gerceklegti durumdaddenecek tutar sigorta kontrati yapgdasamada belli ol-
mamaktadir. Bu sebepten dolayidir ki, hem ha@shemeleri hem de sigorta sirketinin
yukiimlultkleri belirsizlik teskil etmektedir. Bu durumda en bagliamag gelecekte
olusabilecek hasaddemelerini, baska bir deyisle sigortalemeleli i¢in bugnku
yukimlulukleri dogru belirleyebilmek ve buykimlulikler icin uygun yatirim ve risk-
ten korunma (hedge) kavrami gelistirmedir.

Tezde, hem finansal piyasalardaki hem de sigorta gyrtfdeki bireylerden dgacak
olan belirsizlgi kapsayacak bir modelleme yapilmistiilgili riskler Finansal ve
Sigorta portbyleri arasinda stokastik §amsizlik disinilerek onlari ortak olasilik
uzayinda modellenmigtir. Sigorta pdnttl icin poligelerin birbiri arasinda Igamsiz
oldugunu ama policeye gy yasamlarin kendi aralarinda doenhi oldugu gerc@i
dikkate alinmistir.  Bu b@mlihk icin Pseudo-Gompertz dgdimi kullaniimistir.
Bagimlihk iki durum icin incelenmistir: "Birlikle S& Kalim” ve "Son Sg§ Kalim”.
Finansal piyasalardan gan belirsizl§i modellemek icin Sigramali Oizyonlu Sabit
Oranh Portby Sigortasi ¥ntemi kullaniimis ve optimal @arliklar belirlenmistir.
Agirhiklarin belirlenmesi icin Ortalama-Varians hedgayemi kullaniimistir.
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Anahtar Kelimeler Birim Baglantili Hayat Sigortasi Poligeleri, Sicramal Diyonlu
Sabit Oranli Poriby Sigortasi, Coklu Hayat Policeleri, Ortalama-Vary&isk Mini-
mizasyon Yontemi, Ortak YasamiBeleri Dayilhimlari
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CHAPTER 1

INTRODUCTION

1.1 Historical Overview and Literature Review

In the classical life insurance agreements, an insuranog@any guarantees payments
to its insureds equal to the promised provisions and herkes tanly the investment
risk. The company makes its investments, which is the amoiutite provisions and
decides on the allocation of these provisions to differgpes of assets. These in-
vestment strategies are defined within certain restristiomposed by the regulator.
Typically, the provisions are invested to a large extentisk-free bonds which are
assumed to give rise to a return which is higher than the gteed return on the life
insurance products.

In unit linked life insurance contracts opposed to claddif@insurance agreements
the benefit to be paid at the occurrence of risk, since surewaeath of insureds,

can not be known at the time the agreement made betweenmegurampany and the
policyholder. On such type of policies, the insurance iivseents paid by the insured
are invested in some funds made up by the insurer. These tomdsst of different

type of financial assets. The amount of benefits at time of tisaroence of risk is as
much as the value the financial assets have reached, bough¢ lpyemiums which

have been paid by the insured unit at that time. Therefoeshémefits are random.

Unit linked insurance products carry the financial and iasae risk, that is why

should be treated and analyzed from financial and actuasiatg Several papers by
Moller [67] deeply investigate life and non-life producterr valuation and hedging
aspects within the financial and actuarial framework, desyy in details historical

development of unit-linked life insurance agreements waithanalyzes of relevant lit-
erature.

Brennan and Schwartz [1119,]21,/22] and Boyle and Schwiariz [18} e first authors
who studied unit-linked insurance contracts. They useteatifinancial mathematics
in their research and defined that for the unit-linked insoegproduct with guarantee
amount the payoff is equal to the payoff of an European calbawith the additional
payment equaled to guaranteed amount. For removing thetamtg related with in-
sured lives authors used results from law of large numbetsepiaced them with their
expected values. Main shortcoming of this method is that itat considering mor-
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tality risk. This approach gives to the authors facility teat policies with guarantee
as contingent claims which carries financial uncertaintg tomplete financial mar-
ket. The standard valuation and hedging techniques whick wéroduced recently
by Black and Scholes [13] and Mertdn [58] can be applied in thésket. Harrison

and Pliskal[44] and Harrison and Kreps_|[43] developed inrttesearch martingale
based financial approaches which helped Delbaen [29], Béxiaed Ortu [5] and

Aase and Persson|[1] during the valuation of the unit-linkednsurance agreements.
For insurance portfolio these authors also have chosenatine sechnique for unex-
pected mortality patterns and replaced mortality by itsepxed values. Afterwards,
Aase and Persson![2] in their work tried to use different wag ase continuous time
survival probabilities despite discrete ones which are us@revious papers. In addi-
tion to those studies, Bacinello and Oritu [6], Nielsen andd&zann [72] and Bacinello
and Persson [7] as an addition investigated stochastiestteates within the existing
financial models, where all previous authors preferred éoaomstant interest rates.

Moller [61] was the one who introduced the new approach fortioed model. He
investigated and developed a new technic in which the uréegdedevelopments of
the financial market and the portfolio of insureds are tikditg not averaging the
mortality. He considered the combined model in his researahaccording to this
research product probability space has been studied aswtepéndent parts. In ad-
dition he demonstrated that uncertainty related with tiseriance portfolio can turn a
complete financial market to incomplete, making risklesdgiveg as impossible. In
mentioned paper the risk-minimization hedging strategiesalso derived for a life
insurance agreements by taking into account a Black-Scliokascial market. Two
different types, such as pure endowment and term life umkell insurance contracts
are investigated in that research. Author applied the mgkimization hedging the-
ory improved by Bllmer and Sondermanh [36]. Results derived from this rebeiar
considering both financial and insurance uncertaintglid [61] supposes a unit pre-
mium paid at policy signing time and assumes that insuraagenpnts are deferred.
Here, practically not considering premium payments dutimgmid-terms is not very
limiting for the pure endowment. However, since the benefits mainly paid just
after realization of death for life insurance policies tlsits the conditions. For in-
stance, even the annuity payments are paid with intermesistallments. That is why,
Moller [64] enlarged the scope of the risk-minimization hiedgheory of contingent
claims with fixed duration introduced byol#mer and Sondermanh [36] to include the
streams of the payment. Insurance payment streams ardigated by taking into
account mid-term premium and benefit payments, in his reeedn other hand, this
theory can be applied only in martingale financial markekstainto consideration
that the hedging risk can be interpreted only under the tovesndividual measure if
this is already a martingale measure. In his researohe¥[64] furthermore includes
the risk-minimization hedging strategies and the relatadjing risk for a martingale
Black-Scholes financial market and for general unit-linkézlihsurance agreements,
formulated in a multi-state model of Markov along with metn installments. In ad-
dition to the above listed articles @Her [61,[64]), the study of Mller [65] analyses
the risk-minimization hedging of equity-linked life insunce agreements in a discrete
time framework. He applied the financial market model of Cox$Bubinstein as a
case in this analyze. RecentlydNer [66,/68]69] introduced the indifference pricing
approaches which contain the financial variance and stdmgaiation basis, as an dif-
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ferent approach to the valuation and hedging of unit-linlifednsurance agreements.
On the other hand, Dahl anddMer [28] utilized the risk-minimization hedging theory
for payment streams introduced byoNer [64] for the case of classical life insurance
with stochastic interest rates and a death intensity ohallieds which was influenced
by some stochastic process. The existence of the financidemniz obligatory for
the treatment of the unit-linked life insurance agreemesitee the units are modeled
in the financial markets. It can be said that the most of thelastanalyzed above
consider a Black Scholes financial model of asset returnshwibitow normal distri-
bution and continuous paths which means that assets prieéslawing the Brownian
motion. Riesner[88] investigate in his research more gémesa/-process financial
market models. He replaced the Brownian motion by Levy Junffu§lon process.
As a result he got the models with adaptable asset retumbdibns and path which
follows discontinuity. In comparison with other studies,adls [24] research can be
considered as a crucial investigation, since it proposesrge Levy processes to fi-
nancial market modeling. Nevertheless, a jump-diffusimtpss has been introduced
even by Merton[[58] to model asset returns. As the first pa@ait and Tankov [26]
states, Levy-process models with jumps normally fit the @uies of solid financial
markets, that are difficult, even not possible to implementibdels with diffusion.
In his valuable research Hainalit [42] has determined thienaptasset allocation of
pure endowments insurance contracts, maximizing the éxgedility of a terminal
surplus under a budget constraint. The market resulting fite combination of in-
surance and financial products, is incomplete owing to thedygeable mortality of
the insured population, modeled by a Poisson process. Feea gquivalent measure,
the optimal wealth process is obtained by the method of lagranultipliers and the
investment strategy replicating at best this process iaiodd either by martingale
decomposition or either by dynamic programming. They itlated this method for
CARA and CRRA utility functions.

Some later Vandaelé [96] in their research disproved theeRi@&]. He proved that
the risk-minimization hedging strategy under the propasedtingale measure does
not fit the conditions for being the local risk-minimizingategy under the original
measure, which was established by Riesher [88]. Eventuhkycorrect local risk-
minimization hedging strategy was investigated and a limomag the several risky
assets which held in the suggested portfolio stated in threafentioned paper and the
one suggested here is given.

Bi [11] considered in their research the risk-minimizati@ubing strategies for unit-
linked life insurance policies within a financial market ifnieh stock price process
follows shot-noise. Taking into consideration the incoat@hess of the financial mar-
ket, it is impossible to hedge the insurance claims by tgadincks and riskless assets
alone. This hedging strategy leaves the part of the risk enrtsurer. After a change
of measure authors applied the theory of pseudo locallymiskmization.

For two sorts of unit linked agreements such as pure endownanelthe term insurance
the risk-minimizing trading strategies are investigatad accompanied intrinsic risk
processes are established in Qian [84]. In their reseasshektended the model and
analysis done by Vandaele [96].



He described the Levy process parameters which formulbeepdttern of risky as-
set in the financial framework as depending on a finite statekiWachain. Here,
the state of the Markov chain can be assumed as the state ectdmmy. With
the regime switching Levy model, the authors got the locK-minimization hedg-
ing strategies for several unit-linked life insurance cacts, among which the pure
endowment policy and the term insurance policy are well kmown Wang [97], a
general class of stochastic volatility model is considdéoganodeling risky asset. This
class of stochastic volatility model involves nearly alltbbse without jump compo-
nent which are mainly utilized in most of the researches.yTdig#ained the minimal
martingale measure and local risk minimization hedgingtegy in these models, and
employed the results to the unit-linked life insurance agrents. Moreover, they also
investigate the locally risk minimizing hedging strategy @init-linked life insurance
agreements in a Barndorff Nielsen and Shephard stochaditivg model. The local
risk-minimization approach was investigated by Céci [23]docombined financial-
insurance model, where there are restrictions on the da&ssible to the insurance
company. Particularly, we assume that, at any moment, gweance company may
observe the number of deaths from a specific portfolio ofiedundividuals but not
the mortality hazard rate. They considered a financial ntavkech driven by a general
semimartingale and they aimed to hedge unit-linked lifeliaace agreements via the
local risk-minimization approach under partial inforneati The Bllmer-Schweizer
decomposition of the insurance claims and explicit forradta the optimal strategy
for pure endowment and term insurance agreements are prbiriderms of the pro-
jection of the survival process on the information flow. Muwmrer, in a Markovian
framework, they reduce the steps to solve a filtering prolatm point process obser-
vations.

Nearly all of the articles related to this topic assume as @giléd [61] that, the future
lifetimes are independent and identically distributedanential random variables.

In this thesis we introduce dependence between futuréniést of insureds and com-
bine it with pricing and risk minimizing strategies.

The premiums are considered to be paid as a single premiunthendenefits are
postponed to the maturity of the agreement.

In the first and second parts of the thesis, a general infeomatas provided about the

financial instruments for risk mitigation and insurancedurcts. Also we investigate

unit linked life insurance policies and quadratic hedgipgraaches, such as local risk
minimization and mean variance hedging approach.

In the third part, the model of the thesis is structured in arfoial model and insur-
ance portfolio combination. Risk minimizing strategies iareestigated for combined
obligations and hedging strategy is derived by the help entlean-variance hedging
approaches.

In the forth part, numerical results for the constructed el@te provided. Monte-
Carlo simulation method is used and calculations are purbydte help ofR soft-
ware.



1.2 Summary, Contributions and Outline

The main objective of this thesis is to develop a mean-vagdredging strategy for
multiple-life unit linked insurance policies, where thatus modeled by the constant
proportion portfolio insurance approach.

Following Moller [61,(64], we consider the financial market and the pdidfof in-
sureds are independent. As well we assume that they arajoireecommon product
probability space. It gives rise to the concept of modellmg wncertain movement of
the asset price and the lives of the policyholders synchusigoFor insurance portfo-
lio we do not average away survival probabilities. Which nseloe uncertain pattern
of insured lives is not interchanged by their anticipatecettgoments.

Let us take a person agedyears, with future lifetime denoted ;. So,x + T'is the
age of the person at the end of his life. The same definitioff fman be used as well.

In general, the future lifetim@’ is a random variable having a probability distribution
function,

F,=Pr(T<t),t>0.

Here, the functiorF'(¢) describes the probability with which the one will die durihg
years, at any fixed

We investigate two cases for multiple decrements, as jdsstatus and last survival
models. Joint life considers payments at the first death. Wiieans, if we have
multiple number of beneficiaries for the policy, benefit paymwill be made at the
first death. For two lives this means,

Ty = min (T, T,).

By the same method, we can define last-survival status, andasathis is a status
where benefit payments are conditioned to the death of lasfioeary of the policy.
The expression of this formula for two lives is,

T = max (15, T,).

Then for modeling the dependency between lifetimes we usad®sGompertz dis-
tribution developed by ¥ribulut and Gebizlioglu [100]. The Gompertz distribution
is considered as a mostly applied probability distributionthe lifetimes modeling.
While modeling the dependent structure of lifetimes throbgfariate distributions
Pseudo-Gompertz distribution is the most appropriate onedr case.

For financial part we use the well known Constant Proportiomnfélm Insurance ap-
proach and define stock price process in jump diffusion mtydahs we know, with
this strategy investor begins with defining a floor equal ® thinimum acceptable
value of the portfolio. This helps us to design a portfolimiar to the unit linked life
insurance agreement which considers minimum guaranteagiay
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Applying the above mentioned two points at the begining wsduce the filtration
for the combined portfolio as follows,

C= (Ct)OStSTa

as,
Ct - Ft V It.

We assume that these two filtrations are independent and take
C — FT V [T,

where
F, = o0(Sy,u <t),

L=[o(I(T, <t), 0<t<T, i=12..n)Vo(I(T, <t), 0<t<T,i=1,2,..

Then we derive combined obligations for joint life status,

p
Hj. = Bp' > g(T:, Vi, ) By Brlimin (1, 1)<t}

i=1

and for last survival status,

P
Hj = B;' Z 9(T;, VTriyi)B’j_“ilBT]-{max (Tw; Ty, )<t}

i=1

Then for the combined obligations we define the followingmptation problem based
on the mean-variance hedging approach:

T 2
min EY (HtM — Zy — / yudf/u) . (1.1)
0

(Zo,v)ERXO

The following equations are obtained as the solutions ferwijbtimal portfolio,

_ QM _ oG (t, Vi) + (&, Vi + [Vie — FilmuYy) — (¢, Vi) YAy
Ho=b [Ht ]7 . o+ (Vi — Ft)tht2)\t¢t .
(1.2)

As the performance of the numerical calculations, we Rs®oftware and provide re-
sults one by one for financial portfolio, single life and nmlk life for several exposure
values and other variables in our model.



CHAPTER 2

BASIC CONCEPTS

2.1 Financial and Insurance Background

A prevailing subject in the finance and insurance areas igitkeof loss. Risk is
inherent in all parts of life due to its nature, hence, it aaribe avoided completely. For
the mitigation or removal of the risk, several risk managenteols and instruments
are established.

As we know, the insurance and finance disciplines appearddstsct fields. At the
beginning, the theory of insurance has been generally enlyaghe calculation of pre-
miums of the life insurance agreements. As the time past sombdined instruments
are established and insurance and finance is then nested.

In this section, we provide the preliminary knowledge witlgard to the finance and
insurance risks.

2.1.1 Classical Insurance Contracts and Their Valuation

As mentioned in the previous paragraph, at the beginnirgnhin concern of the

insurance theory was about the premium calculation of tisarance agreements. In-
surance is an equitable transfer of risk in exchange for sgpeeific payment. The

ways of transferring or distribution of the insurance ris&revexpertized by Chinese
and Babylonian merchantiles already at the 3rd and 2nd mikeBC.

In general sense, insurance considers collecting premitons several insureds for
paying of the insurance benefits in case of insurance evdiaremtly saying in case
of loss. The insureds are protected from risk, with the feegther words for risk pre-
mium which depends how frequent and how severe the eventsocbuother words
the risk have to fit the concrete predefined criteria in ordéxetconsidered as an insur-
able risk. An insurance company can be seen as a businegsresg@vhose main role
is financial intermediacy generally. Insurance companynsan segment of the indus-
try of financial services, but alternatively the differemtlividuals also can make a self
insurance independently, via saving money for future lassibilities. All financially
measurable risks are able to be subjected for the insur&@wee particular types of
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the risk is called perils, which can rise the claims. An iaswwe company should pre-
pare its policy detailed in order to clarify which types oétperils are included and
which types are excluded.

The risks in one or in multiple categories can be covered im@gles policy. For in-
stance, both the property risk and the liability risk whiatsimg from a legal claims
as a result of traffic accidents can be covered normally byglesimotor insurance.
Similarly, a home insurance policy covers the sum insuredfty loss of house and
also the house owners properties, sum legal claims the ovamebe met, and also a
limited sum for the insurance benefit for the health servafessitors if he got health
damage at that house. The insurance of the business usaallyVarious forms. The
most popular forms are different types of professionaliliighinsurance, known as
professional indemnity, and the business owners policglwbombined variety types
of benefit payments to which a business owners can need, ipaioy, similarly as
home owners policy includes the benefit payment for suchgghthat owner of the
house can need.

In actuarial theory, generally, the insurance contractdanded into two parts as life
insurance and non-life insurance contracts. Here, we hdte the information about
the valuation of classical life insurance policies becafdbe nature of our research.
We mainly use as the references Gerber, Norberi|ev[39,[76)63].

Let us consider a portfolio of insured persons which numbergual ton, and ages
are equal tg;. At time 0 which is the beginning of policy we assume that they have
identically and independently distributed future life &é8¥7, 75, ..., 7,, and presume
the existence of a continuous mortality rate functign,, with the following survival
probability:

t
oy = P(Th >t) = exp (—/ Loytudir). (2.1)
0

For a pure endowment agreement with sum insuteaind maturity equal td’ desig-
nates that the amourt which is the benefit stemmed form the insurance agreement
should be paid at maturity timE. For benefit payment policyholders survival is stated
as a condition. Furthermore, let us consider that there isgdespremium named as

k and that the seller of the contract allocates the prenkumseveral security which
considers a payment as a rate of retdira (0;)o<:<7 during [0, 7]. Here, the obliga-
tion of the insurance company for thig policy-holder, can be written as in following
equation, by the present value which can be formulated &sisi

H; = 1((T; > t)}Kelo 0, (2.2)

This equation is derived by finding the present value the gatrat timel’, 11, K,
utilizing the rate of interest denoted by What the fundamental principle of equiva-
lence says is that, the premiums have to be calculated satthéndiscounted values
of premiums and benefits on average should be balanced skusreed that in addition
0 and the remaining life times are stochastically indepethdEmen by the help of the
principle of equivalence we can consider that the followaggality is correct:

k = E[H) =1 p,KEleh %), (2.3)

8



for the single case. We know from insurance market that tiguiance portfolios are
big in common, that is why that concept can be proved partislithe help of the law
of large numbers.

By the increasing of the size of the insurance portfolio, th&oaiated number of sur-

vivals
1 n
- Z; Lirisay,

converges a.s. regarding the probability, of survival to7. This is possible by
application of the strong law of large numbers. Because efitifesT}, 75, ..., T},
are stocastically independent, for significant large valtie, the factual number of

survivors
n
> Ligsa,
=1

will be nearly same as the expected numbep,. Here, growing the amount% by
rate of interest take us to

nkelo % — npp, KE[e™ I 0ol 0 371 g KE[em Io 0t)el 2t (2.4)

i=1

Peculiarly, when is deterministic, policyholders benefit payment can beutated
as the expression on the right side of previous equality.edtfte deterministic inter-
est rate, the principle of equivalence is validated by itigason of the law of large
numbers. This, actually guaranties the fact that the azechihumber of survivals is
around the expected number.

The issue is getting the difficult and complicated shape énrdal world where is
following the stochastic process. This follows from lasti&tpn that the simple accu-
mulation of the premiun will not in general generate the amount to be paid. That is

why, e~ Jo %4t could have different value than its expected value. Anothethod of
approaching that issue involves the replacement of theu#ditrate of return process
§ in Egn. [2.3) with deterministic rate of return procéssAccording to this approach
the single premiummk grew by the real rate of returdis bigger thank times ex-
pected number of survivals with a big probability values. this case, the insurer
has to include that excess into the sum which will be paid #oitisured person like
bonus[[85] 75]. Anyhow, this method creates a question $f iheaningful to consider
the presence of any strictly positive and deterministievhich over quite huge time
period has the property that it will be higher than the actat of return on invest-
ments with a very high probability. Taking into the consatesn of the fact of low
interest rates at the end t90s, this matter can be seen as a critically important issue.
There can be another method to deal with matter which incldlkde replacement of
0 by the so named short term interest rate and in addition fhlaacdement of the last
term in Eqn. [(2.B) by the price on the financial market of a fai@nsecurity, known
as a zero coupon bond, which pays one unit at maturity fimén [7] is derived a
general form of Thiele’s differential equation within algomentioned framework.
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2.1.2 Financial Instruments and Risk Mitigation

Cash and cash securities will continue to take relativelyllspzait of the investment

portfolio of the long term investment institutions such asgon funds and life insur-
ance companies. In contrast to the long term investors if®mkurance companies
with their shorter term obligations, should hold a biggeat padassets in cash for being
ready for benefit payments in case of claims [14].

Deposits in risk free assets do not carry any risk of markengks and the return
earned is mainly linked to the degree of short term intewstrexisting in the market.
So, while giving the protection for the capital, cash sd@siare not providing any
guarantee that a certain rate of return will be promised iwithe predefined time
horizon. That is why, cash securities can get the shapelefesassets deposits or the
shape of tradeable cash securities. The duration of sudbabde assets is usually not
long, but the crucial property is the interest rates moverfrequency to consider the
changes in short-term interest rates.

Cash securities suggest full capital protection from thditresk. Based on the degree
of short term interest rates their return varies. For sorflatian protection purposes
cash instruments can be used, but this is valid for long teh@revincrease in inflation
can tend to allow to higher short term interest rates.

The fixed interest bond is an agreement which provides dpe@defined rights to
the borrower against to the money lender. Here, in particaldixed interest asset
commonly gives to the holder of the asset the several fixegaoinstallments and a
principle repayment at a predetermined maturity time.

One of the well known and mostly used financial instrumentgigk mitigation are
financial derivatives. Financial derivatives are invesitreecurities whose values are
linked to the value of an underlying asset. In other wordsnioieel derivative is a
combination of investments, with same characteristicsinMaised financial deriva-
tives which play quite important role, while institutiorfalanciers are considered, are
options, forwards, futures, and currency swaps.

The risk of investment is stemming from the situation whése investments are not
used for legitimate purposes. During the analyzing of tek af any derivatives po-
sition, the essential point is the consideration of the witkin whole portfolio. All
risky strategies in derivatives can be balanced by adeguateounter risks in under-
lying assets - especially during the purchase of the dérastvith the aim of the risk
management. The “counterparty risk” is existing as a ruleviery derivative agree-
ment. Principally, the counterparty risk looks like to ddfaisk on a corporate bond
agreement. Since, this is the risk that the intermediarigls whom the derivative
agreement has been entered into defaults and, hence, a losslée. In order to mini-
mize the counterparty risk, plenty of the institutionaleangements were done. Those
arrangements are consisting of the utilization of the mesdiaries with high credit
rating to implement the derivative deals, and the util@matof “margin accounts” to
obstacle the exposures from building up.

In next section we will discuss the structured portfolio mg@ment which is one of
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the effective risk mitigation instruments by the risk freegrities and stocks.

2.2 Structured Portfolio Management

As it is well known the main goal of portfolio insurance is tontrol portfolio returns
from unforeseen falls which are expected in the economyo #iss allows risk man-
agers to get benefit from increases in the financial markeat iBhwhy, for insured
portfolio values at terminal date, there is a guarantee @éfbefore and during the
market go up, the portfolio return should also increaseastlat a predefined percent-
age of a determined index retufn [81].

For this reason, specification of guarantees and portfefimination date is crucial in
portfolio insurance.

There are two most used portfolio insurance approaches.oDinese approaches is
the Option Based Portfolio Insurance and the another oneei€tmnstant Proportion
Portfolio insurance.

In the OBPI approach investor holds in the portfolio a riskyed§' covered by a listed
put written on it, introduced by Leland and Rubinstein .

The CPPI was introduced by Perold [78] for fixed income instota and Black and
Jones for equity instruments. For allocation of assetsmhycely over one of the most
useful strategy is this method.

In the following two subsections, we will provide informai about these strategies.
Especially, CPPI strategy will be investigated in details.

2.2.1 Option Based Portfolio Management

The OBPI, introduced by Leland and Rubinstéinl [52], consisfeadportfolio invested
in a risky asseb covered by a listed put written on it. Not depending on the®4l at
maturity datel’, payoff of the portfolio will be always higher than the stigrice K
of the put.

The main objective of the OBPI approach is to guarantee a figedmrr at maturity
of the portfolio. Nevertheless, it is obvious that, the OBppr@ach guarantees one
to receive portfolio insurance at any time. Although, it lsadisadvantage that on
the market it is not always easy to find European put with meguéxercise price and
terminal date. In this case for making the synthetic put drakl generate dynamic
replicating portfolio which is consisting of riskless andky asset. In this method
the manager of the portfolio is expected to make an investmeamwo basic assets: a
money market account in other words riskless asset, dethgtét] and a portfolio of
traded assets such as a composite index, denotef] thich are risky assets. The
period of time considered {8, T']. The strategy is self-financing.
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The value of the risk-free assBtevolved according to:

dBt = Bt’r’dt, (25)

wherer is the deterministic interest rate.

The dynamics of the market value of the risky assate given by the standard diffu-
sion process:
dSt = St [/Jdt + O'th], (26)

where(1;);>¢ is a standard Brownian motion.

The OBPI method consists the purchase;ahares of the assét and ¢ shares of
European put options ot with maturity 7" and exercise pric&’.

Thus, the portfolio valug¢ ©?”! is given at the terminal date by:

VTOBPI = QST + q(K — ST)+, (27)
which is also
VOBP! = ¢K + (K — Sy)*, (2.8)

due to the Put/Call parity. This relation shows that the iedulamount at maturity is
the exercise price times the quantjtyg K .

The valueV,%P*! of this portfolio at any time in the period0, T is:

V;OBPI — qSt + q.P(t, St,K) _ qu—T(T—t) + qO(t’ St7 K), (29)

whereP(t, S;, K) andC(t, S;, K) are the Black-Scholes values of the European put
and call.

Without loosing of generality and for simple representatibshould be assumedljs
normalized by setting equal to Then,

VEBPL = Sp 4+ (K — Sp)"™ = K + (Sp — K)™. (2.10)

With respect to the risky asset prig at terminal date, the function above is convex
and increasing. That is why, common properties of the plotfmyoffs with guarantee
constraints is observed. With this strategy one can getipeseturn from upward
directions of market. In case, the price of the risky assevelap the exercise price
at terminal date the payback can be represented as in folljpgquation:

()= (5) (s hm)

With this, the percentage can be presented as in followingléy: m.
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2.2.2 Constant Proportion Portfolio Management

The CPPI approach dynamic allocation method for assets owet introduced by
Perold. Structure of the strategy is as follows. The padfahanager chooses the
minimum value for floor which is the smallest acceptable galtithe portfolio. As a
second step he determines cushion which is the excess obttieljp value over the
floor. Then by the predetermined scalar or in other wordsiplalhe defines the units
which will be allocated to the risky asset. This can be domeufph multiplying the
cushion by a predetermined scalar. Two external variabtetha floor value and mul-
tiple which are the functions of portfolio manager which sihewing the risk aversion
rate. Difference between total fund and risky asset is atkxt to riskfree assets and
these assets mainiy-bills.

Multiple shows the risk aversion of the investor and the brghe multiple, the more
the investor is willing to invest in risky assets by increasihe share of it. On the other
hand, with the decrease in stock prices, the bigger the pheilthe faster the portfolio
will tend to drop to the floor. Exposure approaches to zertv@stishion approaches
to zero. In continuous time, this preserves the portfolipgiifrom dropping under the
floor. If the portfolio manager will not has a chance to tradébe the significant falls
in the market portfolio value can be fall below the floor. Wéeremainly to Prigent

[81,[78].

Naturally, the CPPI approach is a managing of a dynamic darthath the condition

to be above a flooF’ at any timet. Here, the value of the floor gives the dynami-
cal insured amount. The floor is developed as a risk free ,asaséd on the below
equation:

It is obvious that, the floor value at the beginnifgis under the initial portfolio value
VEPPL The difference between these two variadlgs™ ! — F; is denoted by’ and
named theushion . The value of the&”, at timet in [0, T is defined as:

C, = VPP — R, (2.12)
Total amount which is invested to the risky asset is denoyee land defined as the
exposureIn the standard CPPI approach first step is started by setting
€ — mCt, (213)

in which equationn is a constant called the scalar or multiple. One of the most im
portant points for portfolio insurance related with the> 1 is that with the convex
payoff function significant percentage of the market rise loa provided.

Assuming the risky asset price procéss); is following the diffusion with jump:
dSy = Si- [u(t, Sp)dt + o(t, S )dWy + 6(¢, Sp)dv] (2.14)

where (1V,), is independent from the Poisson process with measure ofgumpa
standard Brownian motion.
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Summarizing all above stated we can say following:

- The sequence of random timé%,,),, accompanied with jumps fits the following
properties that the inter arrival timds,,, — 7,, are independent. It is assumed that
they have the same exponential distribution with parameter

- The relative jumps of the risky ass‘%f& are equal ta (7, St, ). They are expected
to be strictly higher than-1, in order for the priceS to be strictly positive.

The portfolio value and other important equalities will beastigated in third chapter
under the financial model.

In following part, OBPI and CPPI methods are compared and nesiults are stated
following the Bertrand and Prigenit [82].

It is assumed that the equal amountdpfis invested at initial time). Identically, it
Is assumed that the analogous guaraifdeolds at termination. The last assumption
was that the risky asset price pursues a geometric Brownidiomo

Results:

1. Payoffs of both portfolios are not exceed one anotherlfoafues of the risky asset
at the maturity. That is why, the two payoff functions overtane another.

2. The expected values of both strategies are efuat?”"/] = E [RZPP!] and
this takes us to a unique value for the scalar. For any fixedagis@ed amounk, the
multiple denoted byn*(K) satisfied the above condition. In the Black-Scholes value
of the call option, and: denotes all possible values of the risk free rate.

3. For first order stochastic dominance both strategiesxagame level, in other words
neither of them stochastically dominating another at firdea

4. In a mean-variance sense, OBPI strategy dominates the @pRlaagh at least for
one value ofn for any parametrization of the financial markéts, K, i, o, r).

5. OBPI approach can be observed as a general form of CPPI appiiéar a model
with the geometric Brownian motion, the OBPI approach is ag@als with the CPPI
approach. For holding this it is assumed that the multiplpeisnitted to differ and
defined as

SN (dy(t,St))

OBPI
t f—
mEE ) C(t, S, K)

(2.15)

This factor is the ratio of the delta of the call(d, (¢, S;)) multiplied by the price of the
risky assetS;, which is equaled to the risk exposure divided by the cushimount,
equaling to the call pricé€'(t, S;, K).
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2.3 Unit Linked Life Insurance Policies

As it is well known the fundamental principle of equivalersagys that present value
of the premiums and benefits have to be equal on average faypayof insurance
contract. That is why classical actuarial valuation thdonyfife insurance agreements
mainly concentrated on calculation of expected values s¢alinted random cash-
flows. Then the corresponding premium is calledeljeivalence premiunSimilarly,
the expected reserve is calculated as the conditional eatpmtof difference between
all of the discounted future benefits and premiums, with telable information,
during the insurance period. Approach to a subject is chémggd introduction of the
new product, a unit-linked life insurance agreement, incwtbenefits depend exactly
on a specified stock index. With new contract which is quitéedgnt from classic
one, the insured will receive the highest values of the spride and some asset value
guarantee specified in the agreement, but other dependetmald be well defined.

2.3.1 Description and Main Concepts

The first investigations of unit-linked contracts based owricial theory belong to
Brennan and Schwartz [20,]121,] 22] and Boyle and Schwariz [183y Tdentified that
the terminal value of a unit-linked policy which has a prededfi guarantee can be
linked to the terminal values of certain financial deriveiv By applying the option
pricing theory founded by the Black and Scholes [13] and Me{8] authors got
valuable results.

Afterwards, Harrison and Kreps [43] and Harrison and PIigl extended the the-
ory of unit-linked agreements by applying the martingaleipg theory, which is the
extension of the classical Black Scholes Merton model. Bafagrevalent diffusion
of unit-linked agreements (Tion@ [95] anddWfer [61,(64]; Boyle, Kolkiewicz, and
Tan [17]; Bacinello and Persson [4]) the popularity and higifegrence of participat-
ing policies was because of the fact that the policyholderged on the traditional and
not risk lover portfolio management of life insurance compa. At the initiation unit-
linked insurance policies were considered quite risky rutethding on the providing
of minimum guarantee. This perspective was the same focydwider and insurer.
Policyholder considered without minimum guarantee prodis&y, while for the in-
surer with guarantee product carried the risk. Most of tlseiiers were not ready and
willing to give such a guarantee since they did not have aolstior hedging the risk.
A crucial milestone in this field was the option pricing thedeveloped by the Black
and Scholed [13] and Merton [59]. By use of this theory Brennah $chwartz[[20]
and Boyle and Schwartz [118] derived valuable results for git@ed unit-linked prod-
ucts.

Different benefits including caps, differently saying, eppmits, have been studied in

[32,[74].

Hipp [45] considered in his research yearly minimum guaestas an addition to a
guarantee on termination for unit-linked policies. Pend3@] studied and gave details

15



for a more common unit-linked insurance agreement, whictsickers more than one
lives and covers disability benefits as well.

Most of the literature assumes deterministic interestsréoe valuation. First who
introduced the stochastic models of interest rates was Blaigind Ortu([5] 6], Nielsen
and Sandmann_[72, 73], and Kuiz [50]. As it is know in claskieary the rate of
interest applied for pricing of life insurance agreementsansidered as the insurers
return on its investment portfolio. This is the same in a vealld and as it is known
this rate depends on the preferred investment strategys i$tagain depends on the
company’s approach in regard to financial risk considetegiégislation.

It is well known that unlike to most financial products paiddwnit premium at the
beginning of the agreement, life insurance policies aralisaonsider the annual pre-
miums. Delbaen [29], Bacinello and Orfu [5, 6], Nielsen andd®aann[[72, 73] and
Kurz [50] in their study analyzed and included the Black Sebdtudy for periodical
premiums, and periodical payments.

In the more traditional way, Aase and Perssan [2] investidjaeriodical premiums. In
their study periodical premiums have been constructeddiyiloliting the unit payment
over the duration where multiple premiums can be considered

Different hedging and replicating strategies which theiraace company may use for
reduction of the financial risk related with unit linked prmds as in addition to pricing
for unit linked insurance agreements analyzed by BrennanSahevartz [2]1], Aase
and Persson [2], Hipp [45], and ®Her [61].

As an addition in their study Aase and Persson [2] aridiéd [61] applied continuous

mortality rates and in Aase and Pers<an [2] a relationshipnanthe famouns Thiele’s
differential equation of insurance theory and the celearaguation of Black-Scholes
Is improved.

Unit Link Insurance PoliciegULIP) are in common a mix of insurance and financial
portfolios. Simple saying, a part of the premium collecteshf insureds is used to
guarantee benefit payment to the insured while the lattealisated in different port-
folio combinations.

The funds collected by the insurance company are used ttecaeportfolio which
is used to allocate in different market tools in differetitig weights. Steps are the
same as it is done for mutual funds. Based on the risk aversiai policy holders
can choose the funds where they want to invest. As it is in aldtunds, in unit-
linked agreements policy holder has units which linked ® sbme assets and each
unit has a net asset value. These units net asset value &etkah daily bases. The
net accumulated value is the value based on which the nebfatturns on unit-
linked agreements are calculated. The net accumulated istlifferent for each unit-
linked agreement based on market movements and conditiaiassavell based on the
portfolio returns. Opposed to the classical insuranceeagests, unit-linked contracts
have several charges applicable that are deducted fromagfable premium.

Most effective ones are the charges for the policy admatisin, premium allocation,
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fund switching, mortality, and a policy surrender or witadial. Sometimes the in-
surance companies also charges “Guarantee Charge” as ia pedportion of Fund
Value for built in minimum guarantee under the policies.

The policyholder need to deeply understand the risks whedlntdertakes and his own
risk aversion level before deciding to choose unit-linkgdeaments. Since, contract
returns are straightly depends on the market portfolioguarance, the insured bears
whole investment risk in investment portfolio.

In unit-linked agreements, the investments are subjedis related with the financial
markets and the insured bears this investment risk in imest portfolio. Therefore,

one have to choose the portfolio weights after considerisig aversion and needs,
while considering the potential loss which could be obsgrve

Another factor that should be considered is future needtufads. Unit-linked agree-
ments give the insured a chance to observe his/her porifoldetail. By the way,
those agreements make it flexible to move the capital fromfoné to another, with
differentiating risk-return structures.

ULIPs can be defined as the best solution especially for tloplpewilling to stay
invested in a respectively long period.

As mentioned above unit-linked insurance agreements cbiine amount of benefit
to a investment portfolio. That portfolio can be consist evexal instruments, such
as stock, a stock index, a foreign currency and a risklesst.absr simplicity, let us
consider that this is a mutual fund, most generally used émeomparison with the
classical insurance products unit-linked agreementsditoiith insured and insurers
advantages. Insurance company may benefit by giving mor@etiae investment
products while insureds may benefit by getting better raténam upwards directions
of economy. Insured has flexibility for choosing the unitfis portfolio, by the same
flexibility he can rebalance his portfolio. That is why, h@@@ntrol the financial risk
amount of his policies. In comparison with the traditiongteements, mostly known
differentiating characteristic of unit-linked agreengistthe random payment amount.
The principle of equivalence, where the main concept isjiibeme of the company
in other words premiums, and claims must be balanced in tigetlerm, that classical
basis for valuation life insurance agreements, are notiggipé for random benefits.
For valuation such agreements financial and actuarial ®a@re applied together.
This is typical approach for pricing such products. For ggioth theories combined
main assumption should be defined. This assumption is sstchadependence be-
tween financial and insurance portfolios and risk neugralith respect to survivals.
For eliminating the mortality risk most useful approachasricrease the number of
identically and independently distributed policies in goatfolio.

Based on the investor’s risk aversion and on the investmgeties there are several
type of unit-linked agreements. These products mainlystiveriskless assets and that
is why carry less risk. On the other hand some type of uniielihagreements invest
in risky assets and carry more risk. If we will summarize, asmaclusion we can say

that based on the units chosen unit-linked agreements celagsafied differently.
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2.4 Quadratic Hedging Approach

In this section we will provide some useful information abthe pricing and hedging
options by means of a quadratic criterion.

For describing the financial market in continuous time frenordx, one has to be started
with probability space(2, F, P), a filtrationF = (F})o<:<r and a time period” €
(0,00) and . Intuitively,F; defines the information available at timeThere arel + 1
basic assets which are ready for investment with price peEsS’ = (5})o<;<r for

i =0,1,...,d. To simplify the presentation, assume that one assetj'§ayas a strictly
positive price. Then one use® as numeraire and immediately skip to quantities
discounted withS°. This means that securityhas pricel at all times and the other
assets prices ar€? = S'/S%fori = 1,2, ...,d. Here, unless mentioned otherwise, all
subsequently appearing quantities will be stated in distmlunits[[92, 36].

One of the most interesting research areas of financial mettes is the hedging and
valuation of contingent claims investigating dynamic tradapproaches utilizing".
European type of the call option defined on agsethose maturity is defined & and
exercise price a& is identified as the one of the most famous and widely useddf/pe
the contingent claims.

The net payoff at maturit§’ to investor is the random amount

H = max (Sh — K,0) = (55 — K) "

(2.16)

In simple way, contingent claim can be defined ag'ameasurable random variable
H which shows the net value at maturify of some financial asset. Although, the
contingent claims are defined as a European type which mbaangtue time fixed
with maturity, the amount which will be paid at maturity magpeénd on overall history
of S! until maturity 7'.

Main problem here is in correct definition of price for comggmt claimH at timeo.

By considering the dynamic portfolio strategies with thédwing definitions one can
answer above asked questions.

Here,(v,n) = (v, n:)o<t<r IN Which v is an-dimensional predictable process ani
adapted.

We can say that in so strategy, states for the number of units held in securitst
any timet, andr, states for the number of riskless assets invested attimiéhen,
predictability ofv is a mathematical formula of the informational constraatt is
not permitted to expect the movement%f For the portfolio valuév;, ;) at any time
t following equality holds: B

Vi =v{"Si +m, (2.17)

and the cumulative gains from investment until the tinaese

Gi(v) = /0 t vydS,. (2.18)
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For having the last equality well-defined, it is assumed fiég a semimartingale. This

property letsG(v) to be the stochastic integral ofwith respect toS;. The cumulative
cost until timet derived by utilizing(v, n) are formulated as follows,

t
qzw—/uﬁizm—gm. (2.19)
0

When the cumulative cost process of the strategy is constemnttone a strategy is
saidself-financing

It is true as well for the case when if its value process fitdohlewing equation
t
w:%f/wﬁ:%+@m, (2.20)
0

whereV;, = (j is the initial outlay required for starting the strategy.ll&wing the
time 0, this strategy can be defined as self-financing, and any #tiotws in.S; could
be eliminated by changing the proportions foandr for not having any future gains
or losses as a result.

Now let us define a contingent claifd, also consider there is a self-financing strat-
egy (Vo, v) which has the valu&; and which is equal td/ with probability 1 at the
maturity. In case of the absence of any arbitrage opporésnit the financial market,
apparently, the price of contingent claifh should be given by, wherer allows a
hedging strategy fof. It is the essential intuition directing to famous Black-8igs
Option Pricing approach derived by Black/Scholes [13] andtde[59]. They gave
the solution for this problem with the term whefgis a one-dimensional geometric
Brownian motion and? = (X; — K)™ is a European call option. The mathemat-
ical construction of the issue and its relationships to tieoty of martingale have
been afterwards analyzed and investigated in deep deyaillsM. Harrison and D. M.
Kreps [43] and by Harrison/Pliska [44]. A contingent clafihis said to beattain-
ablewhile there is a self-financing strategy with value equal’to= H P-a.s. at the
termination. By Eqn.[(Z.20), one can consider tHatan be formulated as:

T
H:%+/ym@ P —a.s.. (2.21)
0

In other words, this is the sum of a constdiiif and a stochastic integrélt. If ev-
ery contingent claim is attainable we can claim that the miaikcomplete market
Remember the point that there is not given exact definitiormfogorous mathemati-
cal equations, it is important to be extremely consciersti@garding the integrability
conditions,” andv!’ has been exposed.

It is not possible by definition to find a strategy which is deiincing and which
final value is equal to th&; = H for non-attainable contingent claims. One of the
most used methods is to preserve the terminal conditien= H. As, n is defined
as an adapted process, this can be achieved by the seletctjpnla other hand, this
strategies cannot be self-financing in general, and forggeieferred strategy it should
have a smaltost proces€.
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First who investigated and measured a riskiness of a syraiegelp of quadratic hedg-
ing approach weredlmer and Sondermanhn [B6]. Following these authors ScrevéB4,
135] in his research studied the case wh&ri&s a martingale by extending the model to
the general semi-martingale case.

This type of local risk minimization strategy could be idé&at by two properties:

e 1.the cost procesS must be a martingale, in such a way that the strategy is not
self-financing anymore, but anyway preserves mean-safdimg property;

2 and cost process which is a martingale, must be orthogonal to the martingale
part M of the price process;.

There is a local risk-minimizing strategy féf if and only if 4 could be written as a
decomposition of the following form:

T
H = Hy + / viaS, + L, P—as., (2.22)
0

whereL# is a martingale orthogonal tbr.

The decomposition Eqn_(Z22) named as tinker and Schweizer decomposition
of H, and it can be accepted as a general form of the semi-madingse of the
traditional Galtchouk Kunita Watanabe decomposition imtigale approach.

This decomposition financially has an importance becaugeas chance to define the
local risk minimization strategy fok . The integrand” gives the stock component
and the conditions that the cost procésave to fit toH, + L determines;. It is
also important to know that the special case of Egn. {2.2ahafttainable claim keeps
corresponding to the not existence of the orthogonal t&ffn One can derive more
precise constructions for the decomposition EQn. (2.22)calse of the finite discrete
time, 7 and L* could be derived repeatedly backward in time. In case ofSthe
following a continuous path, the decomposition oflmer-Schweizer undeP can be
derived as a decomposition of Galtchouk Kunita Watanaleulzded by considering

theminimal martingale measurg.

2.4.1 Mean Variance Hedging

The difficulties related with the hedging and pricing of angént claims under the in-
completeness conditions of market gave rise to differehtateon approaches. Two
famous strategies are local risk minimization and mearamae hedging. Mean-
variance hedging strategy is well known classical one. fimizes the expectation of
the square hedging error which is the square differencedmivhe value of the self-
financing portfolio and the contingent claim at the matyryong all self-financing
strategies. Bllmer and Sondermanh [B6] in their study first investigatdd method
in martingale case.
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After Follmer and Sondermani_[B6] extensions to the general sartinmgale case
were done.

Lets first discuss the mean-variance hedging approach sirtigle case whers, is a
local P-martingale.

Let (2, F, P*) be a probability space, and gt} )o<;<r denote a right continuous fam-
ily of o-algebras contained if’; F; is interpreted as the collection of events which
are observable up to time A stochastic procesg8 = (Z;)o<:<7 iS given by a mea-
surable functiorZ on) x [0,7]. Z is called adopted i, is F;, measurable for each
0 <t < T,;itis called predictable if it is measurable with respecthite s-algebraF

on 2 x [0, 7] which is generated by the adapted processes with leftiuamiis paths.
The evolution of stock prices will be described by a stodbgsbcessS = (S;)o<i<r
which is adapted and whose paths are right-continuous waitits| S,- from the left.
The proces§” = (Y;)o<t<r Of bond prices is fixed to b¥, = 1. It is assumed thak*

is a martingale measure in the sense of Harrison and [43

E*[SF] < o0, Si=E*[Sr|F], 0<t<T, (2.23)

where E*[.|F};] denotes the conditional expectation und&r with respect to ther-
algebraF;. This means tha$, is a square-integrable martingale und®r Let (S;) =
((St);)o<<1 b€ the corresponding Meyer process, the unique predigabtess with

(X), = 0 and right-continuous increasing paths such fat- (S;) is a martingale.
Let us denote by’ the finite measure off2 x [0, T, F) given by

Pg [A] = E” {/0 1a(t,w)d (Se), (w)] , (2.24)

and byLQ(PS;) the class of predictable processesvhich, viewed as &-measurable
function on2x[0, T, are square-integrable with respect/ty. Two such processes
will be considered as equal if they coincid®, -a.s. .

A trading strategy will be as in the following forp= (&, n), whereé = (&)o<:<r and
n = (m)o<t<r IS Showing the amounts allocated into the stock and into ¢imelbThus,

Vi = &S+ (2.25)

is the value of the portfolio at time
As we know from literature [51],
e o= ({,n)is defined as a strategy if,
(@) ¢ isapredictable process, and € L*(Pg,),

(b) n isadapted,
(c) V =£&S+ 1 hasright continuous paths and satisfies
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V, e L*(P*), (0<t<T).

Condition (a) allows to calculate the accumulated gain derived from tbeksprice
fluctuation up to time as the stochastic integral:

t
/ €dSs, 0<t<T. (2.26)
0

For fixedt, the gain has expectatidii* [fot fsdss} = (0 and variance

)

Viewed as a stochastic process, Eqn. (2.26) defines a siuiageable martingale with
right-continuous paths. The accumulated cost of the gjyaip to timet can now be
defined as

E* = B Ut §§d<SS>S] : (2.27)
0

t
C, =V, —/ ¢,dS;. (2.28)
0

Here,V = (V})o<:<r andC' = (C})o<:<r are adapted processes with right-continuous
paths; they are called th@&lue procesand thecost process

e A strategyp= (¢, n) is calledmean-self financing the corresponding cost pro-
cessC = (Cy)o<i<r IS @ martingale.

Remark: [63] A strategyy= (&, n) is called mean-self financing if the cost process
has constant paths, i.e., if

C;=Cy, P'—as, 0<t<T. (2.29)

Any self-financing strategy is clearly mean-self-financifi@r a self-financing strat-
egy, the value process is of the form

t
Vi = Cp+ / €dS, 0<t<T (2.30)
0

hence a square-integrable martingale. Self-financintestyas the key toll in the anal-
ysis of option pricing in complete security markets. But innyaituations, security
markets are incomplete in the sense that there may not bee#frynsincing strategy
which allows to realize a pre-assigned terminal vdlige= H. This is the reason why
we introduce the broader concept of a mean-self financirdesfy. It is stated in the
following lemma, the value process of a mean-self financtrategy is again a mar-
tingale. but in general we cannot expect that this martengah be represented as a
stochastic integral with respect £ as in Eqn.[(Z2.30).
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Lemma 2.1. [92] A strategy is mean-self-financing if and only if its valprocess is
a square-integrable martingale.

The intrinsic risk of contingent claims

Let us fix a contingent claini/ € W?(P*). Here,H could be a call option of the form
H=(Sr—CO)*.

From different sources we know that, a strategy is calledissibie in regard td7 if
its value process has terminal value

VT = H, P* —a.s.
For any admissible strategy= (¢, n), the terminal cost is given by

T
Cr = H—/ ¢,dS,.
0

In particular, the expected value,
E*[Cyr] = E*[H], (2.31)

does not depend on the specific choice of the strategy as ®itgsaadmissible. Lets
determine all admissible strategies which minimize théavene

E* [(Cr — E*[H]))*] ; (2.32)

the second step will consist in replacing Eqn. (2.32) by aisetial procedure. In view
of Egn. [2.32), let us write the claiff in the form

T
H = E*[H] +/ &:dSs + H™, (2.33)
0

with &* € L*(Pg) where H* € L*(P*) has expectations zero and is orthogonal to

the space{ fot £sdSs|€ € LQ(Pgt)} of stochastic integrals with respect & for the
existence and uniqueness of this representation.

Theorem 2.2. [92] An admissible strategy= (£, ) has minimal variance
E* [(Cr — E*[H])*] = E* [(H")], (2.34)

if and only if¢ = &*.

So far one can draw no conclusion concerning the progess; )o<:<7, except that
it must make the strategy admissible, i.e., to put

ne=H — &St (2.35)
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One can now show that a sharper formulation of problem HqgB2j2etermines a
unique admissible strategy = (£*, n*) which has minimal risk in a sequential sense.
Consider any strategy = (£, 7). Just before time < 7" we have accumulated cost
C;-. The strategy tells us how to proceed at and beyond tinte particular, it fixes
the present cost; and determines the remaining c@st — C;. Let us measure the
remaining risk by

Rf = E* [(Cr — C)*|F] . (2.36)

In view of Eqn. [2.36), we might want to compageto any other strategy which
coincide withy at all times< ¢ and which leads to the same terminal valge Let us
call such ap anadmissible continuationf ¢ at timet.

Definition 2.1.

A strategyy is defined risk-minimizing ifp at any time minimizes the remaining risk,
i.e., forany0 <t < T, we have

Rf < R?, P*—a.s., (2.37)

for every admissible continuatighof ¢ at time t.

Remark:

1 Any self-financing strategy can be naturally identified as risk-minimizing since
R} = 0.

2 Suppose thap= (¢, n) is a risk-minimizing strategy which is also admissible. ithe

¢ is in particular a solution of problem Eqh._(2132). In facqrE (Z.3T) witht = 0
implies thatp minimizes

B [(Cr — Co)?] = B* [(Cr — E*[C4))?] + (B*[Cr — Co))2. (2.38)

Thus,¢ minimizes the variance af'; and this implieg = ¢*. In addition, following
condition is obtained by &Imer [36]:

o = Co — &S0 = E*[H] = & So. (2.39)

Let us denote by * = (V}*),; a right-continuous version of the square-integrable mar-
tingale

V= E'H|IF], 0<t<T. (2.40)

To the representation Eqi. (2133) of the claifrcorresponds the following sequential
representation o *:
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t
Vi=Vy+ / £,dSs + N/, (2.41)
0

whereN; = E*[H*|F,] is a square-integrable martingale with zero expectatioichvh
is orthogonal taX in the following sense.

Remark:

Two square-integrable martingalgés and M, are defined as orthogonal if their prod-
uct M, M, is again a martingale, and this is equivalent to the conditio

(M, My) = = ((My + My) — (M) — (M3)) = 0. (2.42)

DN | —

The proces$* = (R;), defined as a right continuous version of

Ry = E* [(N} = N7’|F] = BT [(N") ¢ Fi] = (N"),, (2.43)

will be called theintrinsic risk procesf the claimH. The expectatio?*[R] coin-
cides with the minimal variance calculated in Eqn. (2.3d)uks call it thentrinsic risk
of the claim.

Theorem 2.3. [92] (2) There is a unique admissible strategithat is risk-minimizing,
namely
"= (VT =5, (2.44)

For this strategy, the remaining risk at any time< 7' is given by

R =R, P"—a.s. (2.45)
As a special case of above theorem the following charaett#oiz of attainable contin-
gent claims is obtained.
[92] 1 The risk minimizing admissible strategy is self-financing.
2 The intrinsic risk of the contingent claiff is zero.

3 The contingent clain#{ is attainable, i.e.,

T
H = E*[H] +/ ¢ds,, P —a.s. (2.46)
0

Changing the Measure

In this part, we will see how the risk-minimizing strategyaffected by an absolutely
continuous change of the underlying martingale measuré. PLie any martingale
measure which is absolutely continuous with respedPto Thus, the process; is
again a square integrable martingale unBeAlso assume that contingent claibh €
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L*(P*) is again square-integrable und@r Then, the representation Eqn.(2.41) and
the Theorem 2.21, applied 1 instead ofP*, show that the risk-minimizing strategy
underP is given byp= (£, V — £V), with

t
V, = E[H|F] =V, +/ £,dSs + Ny. (2.47)
0
In order to simplify the exposition is added the technicauasption

& € L*(Ps,).

While S; is again a martingale undé¥, the martingale property ¢fV;"); in Eqn. [2.41)
may be lost. In general, we have the Doob decomposition

N*= M+ A,
whereM = (M,;); is a martingale unde and A = (A), is a predictable process with

Ay = 0 and with right-continuous paths of bounded variation. Beiotnoduced the
predictable processed’ and¢4 defined by

(M, Sy), = /Otgst<5;>s, 0<t<T, (2.48)

and
(M4, 5,), /gAd ., 0<t<T, (2.49)

whereM 4 denotes a right-continuous version of the martingale

MA = E[Ar|F)], 0<t<T. (2.50)
Theorem 2.4. The risk minimizing strategy undét is given byp= (¢, V — £V') with
E=+M+ A Vi= Vi M- A, 0<t<T. (2.51)

If both A/ and M4 are orthogonal t&;, then we have = &£*.
Remark:

(1) If S; is a martingale with continuous paths, th@i, S;) can be evaluated pathwise
as a quadratic variation and coincides wifi*, S;) = 0 P*-a.s. This implieg" =
0 Ps,-a.s., hence

E=¢+¢

(2) If Pisamartingale measure in the stricter sense that it alsepres the martingale
property of N*, then we havel = 0, hence,
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E=¢+¢",

and
Vo=V

If S; has continuous paths then we can conclude, due to remartk@t}he risk mini-
mizing strategy is completely preserved.

(3) ¢ = £&* may occur even if the martingale property8@f is lost underP.
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2.5 Modeling Dependence with Pseudo-Gompertz Distribution

The most important element in risk modeling in the fields oafice and insurance
are the uncertainty related to the future life expectanaresb survival rates of policy
holders. Based on the future lifetime or the death of the pbbtder high risk of
non-payment of loans or insurance premiums is the main hizkftnancial institution
carries. The death of the loan owner is a financial loss foctldit organization. Un-
expected mortality cuts the payment stream of planned tarestallments. Likewise,
the unexpected mortality of policyholder in life insuraragreements which do pay-
ments in case of death may end up in extra loss if the deathlasts before actuarially
planned and waited time. This is true for the case when ins@rgayment amount at
the end of the term is over the allocated reserve amount.

Main tools in such situations for risk diversification orégeeventing are correct hedg-
ing strategies or reinsurance agreements. Most famousshebich study the above
mentioned concepts of risk mitigation for finance and acalifields are[[57] 9].

One of the key and most important risk reduction approachessurance theory is
accurate modeling of dependence between lifetimes of @asurBecause, in reality,
there is a dependency pattern between life times and thesndiemce is significant for
most of the situations.

Correct and appropriate choice of joint distribution foetifnes have a wide research
field in literature. For modeling dependence we use Pseudop8dz distribution
which is the one of most preferred distributions for modglaf joint lifetimes, whose
details are given in the upcoming subsection.

2.5.1 Description and Main Functions

Among the probability distribution functions which is uskxdt the modeling of life-
times the Gompertz distribution is a most preferred one. Gbenpertz like distri-
butions are used for construction of life tables for humaimdgie One can say that,
for the interpretation of mortality rates mainly used byraus and empirically legit
parametric probability distribution is the Gompertz disition.

For expression of the dependence betw&eandY” a bivariate distribution function
F(z,y) can be used for a pair of random variab(éS V). WhenX or Y is related
by a real-valued function(), then the distribution that can be derived frdniz, y)
is a pseudo-distribution with()) which includes set of parameters. Hep¢) have to
satisfy all the conditions which pseudo-distribution habé a probability distribution.

The first researches related to a pseudo-distribution wamne th60th, which consid-
ering about reformulating distinct parameters of a praitgfunction. Garsial[38] in
his paper investigates The Wishart distribution underdengty. With dealing of the
singularity elements pseudo-Wishart distributions amevdd as well.

The work of Adham|[[3] by investigating the bivariate Gompedistribution is de-
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rives a Gompertz sort distribution by the help of the reldtegttions which is linking
appropriate random variables among themselves.

A general form of the Gompertz distribution was investigatad introduced in Willemse
[98] by some parametrization. This allows to apply sevaraligal models with empir-
ically verifiable hazard schemes. That is why, the usageeoftthory and approaches
related with the Gompertz distribution was increased affdrént methods are inves-
tigated by adding to the literature valuable researches.

For the cases where an actual distribution cannot be usied, [BB] analyzed and in-
vestigated in his paper another set of pseudo-distribsitionlinear combinations of
random variables for the statistical applications. Aftargds, another pseudo-distributions
have been investigated and proposed by the same way. Fofjpthie pseudo distri-
butions obtained by Shahbaz [94] 93], a bivariate-Gomplstzibution is obtained in

Y orlibulut and Gebizliglu [100], as presented below.

The Gompertz distribution with parameterand; for a random variabl& has the
following density function

fX(IQ )\7N1> = \ef1® exp [_,%(emw - 1) ) (2.52)
pur >0, A>0, x>0.

Consider that other random variallfehas a Gompertz distribution with parameters
¢(x) anduy as well, wherep(z) is a real valued function of the random varialie
For the definition of the density function &f following equation could be used:

fyix=2(y; 9(2), pa|z) = d(x)et?¥ exp [_%@my -1, (2.53)
pe >0, o(x) >0, y>0.

With the help of the marginal density defined in the previaus équations, the com-
pound distribution ofX andY with the following density function can be derived
which is the bivariate Pseudo Gompertz distribution,

Jla.y) = Mo(@)ermeorvesp | =2 (ens 1) = S — 1), o

p1 >0, pe >0, A>0, ¢(x)>0, y>0, x>0,

which comes from

f(x,y) = folz; N, pa) fyx=(y; (), p2| ). (2.55)

From above general form of the density function severatibigions can be obtained
depending on different choices ofx) function. In the study of Yorubulut and Gebizli-
oglu [100] the below given form of bivariate Pseudo-Gompéistribution is derived
by Adopting¢(z) = e”® — 1:

_ T T o T A (er2v—1)
f(z,y) = A(eM™ — 1)et1Tet2Y exp [ (eM® —1) <u1 + )],

(2.56)
M1, M2, >\7 Yy, > 0.
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The functionp(z) could be chosen by the researchers according to the needslef-m
ing. The condition that'(z,y) = [ fy f(z,y)dydx have to have to all the properties
to be a probability distribution function.

The marginal distributions ok andY” are derived from equation Eqil. (2154) as

f(z) = Xet*exp [—%(e‘“r - 1)} (2.57)
and
fly) = e (i + w) - (2.58)
M1\ M1 K2

The joint distribution function corresponding &z, ) in Eqn. [2.54) is

Y Y x T T A (euzy B 1)
F(z,y) = A(eM® —1)eM%et exp |—(eM® — 1) | — + —— | |dady
o Jo Ha K2
(2.59)
ex (6H2y71>7e“1z (eu21/71)4rA +2 )1
Fay) = 2o i) )
(g (2.60)
+ﬁ) + (1 — exp (—ﬁ(e“”’ - 1))) :
The joint survival function, that follows from Eqri._(2]/5%)ave, is

whereF (x) andF»(y) are the marginal distribution function &f andY’, respectively.
This functions are derived for the bivariate Pseudo Gorapistribution:

Fi(x) = lim F(z,y) =1 —exp <—i(e‘“r - 1)) (2.62)
Yy—r00 l’[/l
and
At

Fy(z) = lim F(z,y) =1—

: 2.
=00 pa(er2y — 1) + pip A (2.63)

The appropriate joint survival function is obtained [as [[Lf@® the joint and marginal
distribution functions:
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S(z,y) =

Afdo (er¥ —1) gt <(€“29 - 1) N A ) N A ]

exp Al
pa(er2y — 1) + pigA 12 fho f

Ha
(2.64)
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CHAPTER 3

HEDGING STRATEGIES FOR MULTIPLE LIFE UNIT
LINKED INSURANCE POLICIES USING CPPI APPROACH

3.1 The Model

In this section the two main parts of the model, which are tharitial market and a
portfolio of individuals to be insured, are introduced 8ty with the financial market
and then defining the insurance portfolio. For financial fotid we use Constant
Proportion Portfolio Insurance approach and assume thek grice process is a Levy
Jump diffusion. Then, we define our insurance portfolio fadtiple life policies. We
prefer to choose joint life and last survival cases. For thacial portfolio we mainly
refer to [88,[26] 48, 46, 49, 138, 110,/51,112] 15] 61, 83], fourasce part we refer
to [56,/80/ 16/ 40] and for risk minimization concept we uséofeing references [31,
99,[92]87].

3.1.1 The Financial Market: Constant Proportion Portfolio In surance with Jump
Diffusion

As we mentioned in the first chapter in the CPPI strategy arstovenvests in a port-

folio and wants to protect the portfolio value from fallinglbw a pre-assigned value.
The investor shifts his asset allocation over the investrpenod among a risk-free
asset plus a collection of risky assets|[99].

Consider the jump-diffusion process witfy > —1, representing the percentage of
jump-size, i.e..S7, = S;-(1 +Y,). Between two jumps, we assume that the risky
asset model follows the Black and Scholes model. The numbengds up to time

is a Poisson processés with intensity \;. Our model becomes

t 2 t Ni
Sy = Spexp [/ (s — %)ds + / o, dW, + Zln(l +Y,)| - (3.1)
0 0 n=1

We usually assume that the(1 + Y;,) are i.i.d. with density functiorfy,.

For our jump-diffusion model defined bl (8.1), consider admtablelF; processy,
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such thatf; v, \:ds < co. Choosed; andy), such that
pe + o0y + Yy =1 by > 0. (3.2)
Define,
t 1 t t
L, =exp [/ {(1 — Ps) s — 505} ds +/ 0, dW, —I—/ In deNS} , (3.3)
0 0 0
for t € [0,7] and a Radon-Nikodym derivative to be
4Q _
dP
Then,( is a risk neutral measure or martingale measure, i.e., aureeasder which
S, = exp [— IN rsds} S, is a martingale.

L. (3.4)

The CPPI strategy is based on a dynamic portfolio allocatiotmm basic assets: a
riskless asset and a risky asset. At timthe exposure; is equal to the cushiot,
multiplied by the scalam. The cushionC; is defined as the difference between the
portfolio valueV; and the floorF;. Here, F; = Gexp[—r(T — t)], whereG is the
floor at timeT'. Because of the existence of jumps, it is possible to havedbe that
the portfolio value is less than the floor. Then, the cushidhb& negative, and so it
will be the exposure. That means that short-selling shoeldllowed. The following
proposition describes the portfolio value under this stygt

Denote portfolio value aB;. It consists riskless asset — mC,; and risky assetn(C},
e, V; = mCy + (V;, — mC,). Let the interest rate be and the floor at time be
F, = Fye't = Fre (T,

Name Notation
Interest Rate r

Time t

Time Period 0,7
Floor at timet F;
Portfolio Value 74
Cushion at time Cy
Multiple m
Exposure at time e
Riskless asset at time| B,

Table 3.1: General Notations.

Their relationship are as follows:
Ct - W - Fta

e; = mCy,
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Bt:‘/t—et.

Some Useful Result§97]:
1. Result:

The CPPI portfolio value under the jump-diffusion model deditby (2.1) is

t m202 t N
Vi = Chexp [/ (7‘ +m(ps — 1) — 5 S) ds —|—/ manWS] H(l +mY,) | +Fy,
0 0 n=1
(3.5)
where
Co= (Vo —Ge™),
and

Fy = Gexp (—r(T —1)).

The expectation and variance of the CPPI portfolio value atkided in the following
two results. These are obviously two important values temes the CPPI strategy in
our jump-diffusion model.

2. Result:

The expected CPPI portfolio value at tihander the jump-diffusion model is

t 00— [y Asds( [t \ods)F k
E[V;] = Cyexp {/o (r+m(ps — T))d8:| Z ‘ l(c‘fo s) E H (14+mY,)|+F..
k=1 ’ n=1
(3.6)

3. Result:
The variance of the CPPI portfolio value at tinender jump-diffusion model is,

var[Vy] = var[C}]

2

:Q@w“ﬁV+MM—H+WﬁM%Z&Ehﬁﬁﬂ+mn)x

e—fgksds t \ods)F ‘ . e—fg)\sds t Nods)¥
X k(!fo > _ {exp {fo [+ m(ps — T)]}dszk:1 k(!fo )"«

< [T a+mnﬂ3

n=1

(3.7)
The Time Varying Multiple Case

In previous part we saw the case where the multiple is a fondf time. Letn, be the
multiple at timet. The conclusion does not change substantially in comparsth
the constant case.
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4. Result;

When the multiple is a function of time at tintethe CPPI portfolio value under the
jump-diffusion model is

¢
Vi, = Cyexp {/ (7“+m5(,us—r)_
0

t Ni
) ds + msadeS} [H (1+m,Y,) | +F,
0

wherem,, is obtained frommn, by the formulam,, = mr,, wherely = 0.

5. Result:

When the multiple is a function of time at tintethe expected CPPI portfolio value
under the jump-diffusion model is

f As ds )\ Cl
e Jo S
f + F.(3.9)

E[V;] = Cyexp [/0 (r 4+ mg(ps — T))dsz

k=1

k
E [T +m.Y.)
n=1

6. Result:

When the multiple is a function of a time at timethe variance of the CPPI portfolio
value under jump-diffusion model is,

var|[Vy] = var[C]

2 e~ ‘/'t Asds t s
= CZ exp {fg 2[r + ms(ps — 1) + miag]ds} S FE [H’;:l (1+ mnYn):| 0 k(!fo Xeds)*

2

_ {GXP {fo T+ ms( s >]}d$ Zk 1 -t ASdsk(!fg )\SdS)kE [HZ:l (1 + mnY”>H
(3.10)

3.1.1.1 CPPI Portfolio as a Hedging Tool

CPPI Portfolio could be used for hedging purposes. Considgmth= g(Sr) is a
contingent claim that the investor is going to have at thenteation date. Question
here is, if the CPPI portfolio can be converted into a synthagrivative with terminal
value which can be specified lgy= ¢(S57)?

Theorem 3.1. [97] If ¢ : R — R is a sufficiently smooth function, there is a unique
self-financed;(S) hedging CPPI portfolid/, defined by

Vi=v(t,S), tel0,T], (3.11)
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wherev € C*2([0,T] x R) is the unique solution of the following partial integro-
differential equations:

%(t, s) + (uts)%(t, s) + %(3(5,5)2%(@ s) —ru(t,s) =0, (3.12)
ou
sza—x(t, s) =u(t,s + sz) —u(t,s), (3.13)
u(T,s) =g(s), (t,8)€[0,T] xR, wuecC"*[0,7]x R). (3.14)

Here,% is the partial derivative to the second variable. In partexuthe CPPI port-
folio’s gearing factor is given by:

g_z;(ta St)St*

t e 0,7]. 3.15
e tef0] (3.15)

my =

Theorem 3.2. [97] Under the risk neutral measur@, the discounted CPPI portfolio’s
valueV; € [0, 77,

‘Zﬁ - e—rt‘/;, te [07 T]a (316)
is a martingale.
Given any clainy = g(Vr) which is a function of the terminal portfolio’s price, there
is a unique self-financeg = ¢(Vr) - hedging strategy.

Theorem 3.3. [97] Let g : R — R sufficiently smooth. There is a unigge= g(Vr)-
hedging self financed trading strategfy, ), defined as

0
Ui =u(t, V), me =5 (6 V), te0.T], (3.17)

whereu € C*2([0, T]X R) is the solution of the following partial integro-differeati
equation:

ou ou 0?u
E(t, l/) + TV@(t, V) + %m2(5t2(y — f)@(t, V) - TU(t, l/) = O, (318)
ou
mz(v — f)ﬁ_x(t’ v) =u(t,v+mlv — fl]z) —u(t,v), (3.19)

with the final condition:(7,v) = g(v).
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3.1.2 The Insurance Portfolio: Multiple Life Contracts

In this section of the thesis a model will be introduced torespnt the lifetimes in
a group of policyholders. During our research we realized #tl of the authors for
simplicity considered the mutually independent and idedlly distributed lifetimes.
(list of authors Mller, Riesner, Devolder, etc.) The i.i.d. assumption ieplkhat the
policyholders are chosen among a cohort of sameragée number of persons in the
group is denoted bj, . In particular, mathematically, this is interpreted byregenting
the policyholders future lifetimes as a sequefi¢€eTls, ..., 7;, of i.i.d. non-negative
random variables defined g, G, P). For getting the survival function below one
should assume that the distribution ‘Bf is absolutely continuous with hazard rate

function p, ¢, 1. = P(T; > t) = exp (— f(f uxJ,TdT) .Now, define a univariate
process,
N = (Ny)o<i<r, (3.20)

counting the number of death in the group;

Ny = Z 17«4, (3.21)
=1
and denote by
H - (Ht)OStST (322)
the natural filtration generated by, i.e.,
Hy =0(N,u<t). (3.23)

By definition, N is right continuous with left limits which means it is cadla@n
the other hand since, the lifetimé&s are i.i.d., these two conditions implied that the
counting proces®/’ is an H-Markov process. Here, which is defined as the intensity
process of the counting procedscan be defined by [61]

EldNi|Hi-] = (ly — Ni= ) o ydt = \edt, (3.24)

which is the hazard rate functiqn., ; times the number of individuals under exposure
just before time. As a result the compensated counting prodgsgresented by

t
M, = N, — / Audu, (3.25)
0

is an H-Martingale [61].

We will define two types of dependence for insureds as givamwanfollowing sub-
sections.

3.1.2.1 Joint Life and Last Survival Models

Consider the case of two lives with the agexodndy and whose future lifetimes is
denoted byl andT,. Then the joint cumulative distribution function is definasi

Fr,m,(s,t) = Pr(T, <s,T, <t), (3.26)
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the joint density function is
82FTZ Ty (S, If)

t) = 3.27
and the joint survival distribution function is
St,1,(s,t) = Pr(T, > s,T, > 1). (3.28)

3.1.2.2 Joint Life Model
In this type of the agreement benefit payment is consideneth&first death occur-
rence. In case of the two lives representation will be agwt

T, = min(7,,T,). (3.29)
The cumulative distribution function for above case willdsefollows,

Frp,,(t) =t @y = Prmin (T,,,T, <t) =1— Pr(T, >t,T,>t) =1— Sp, 1,(t,t)

(3.30)
Fsz (t) =1 -t p:}cyv (331)

where
tDay = Pr(T, > t,T, > t) = S, (t) (3.32)

is the probability that both livegr) and(y) survive aftert years. The force of mortality
IS given by,

Jroy fro,0 1w
atty+t — = = = = s 3.33
Hztty+t 1= Fr.o STw(t) Doy ( )
The density ofl,, can be formulated as follows:

szy(t)ztp:cyﬂx—&-t:y-i-t- (334)

For joint life status the counting procea¥ is as follows:
N = i, < = Y {1, } (3.35)

i=1 i=1

wherep states for the number of policies. We assume that policiesnalependently
and identically distributed.

We definel = (I;)o<:<r the natural filtration generated by’, N7 is cadlag, and,
since the policies are i.i.d., the counting proc#8ds an/-Markov process. Also, we
can define the expectation undeas follows:

E[dN}|1,-] = (p = N ) oty 4edlt, (3.36)
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and the compensated counting procgésss defined by
t
Aﬁ:w—/Awm (3.37)
0

which is an/ Martingale.

3.1.2.3 Last Survival Model

This model describes and states the condition where theanse benefits are paying
in case of the death of all members and at the last death. &nafake two lives in
policy: : Tz = max(1,, T}).

The relationship among,,,, 1% and7,, is given by:

Ty + Ty = To + T, (3.38)
Ty Tey = T, T, (3.39)

For distribution ofl%; we can use the following relationship:

Fr,, (t) 4+ Fr(t) = Fu(t) + F,(1), (3.40)
St,, (1) + St (1) = Se(t) + 5y (1), (3.41)
tPzy +t Pzy =t Pz +¢ Py, (342)
foy (t) + fTﬁ(t) = fa:(t) + fy(t)v (343)
and

Fsz (t) — Fx(t> —|— Fy(t> - Fsz (t) — FTITy (t) — FTzTy (t, t), (344)

From
Fr_(t) = Pr(T, <tNT, <1) (3.45)

is follows that;p,, is the probability that botfiz) and(y) will survive aftert years,
and that

+pz7 IS the probability that at least one of the) and(y)’s will survive aftert years.
Force of mortality can be stated as

" _ Jrey _ 0 _ frey(t)
TR~ Frogy Styw a

(3.46)

For last survival status the counting process that we dedias follows:
Z 1iax (Tz;, Ty, )<t — Z Ty (347)
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The filtration = (I;)o<;<7 could be used also fa¥', and its expectation is given by

E[dN{|I;-] = (p — N ) paragredt. (3.48)
For the last survival status at timeéhe compensated process/éf is
t
M! = N} — / A, du, (3.49)
0

which is an/ -martingale.

3.1.3 The Combined Model

In this section we describe the combined portfolio whichaBrted as the combination
of the financial and the insurance portfolios. We introdue filtration C' which is
developed by the above mentioned two portfolios,

C = (Ct)o<i<r, (3.50)

as
Ot - Ft \/ ]t' (351)

We assume that these two filtrations are independent and take

C=FrVlr, (3.52)

and
Fy = U(Suau < t)a (353)
L=[oc(I(T,, <t)Vo(I(T, <t), 0<t<T, i=1,2..,n. (3.54)

One of the basic insurance contracts which is the term inseras chosen to be an-
alyzed in this thesis. The term insurance says that the lbgragfinents are payable
immediately in case of the death occurrence before mattinity 7°. For the contin-
gent claim for this case, a time dependent contract fungtioa ¢(¢,V;) is consid-
ered. According to the definition of the agreement, the arhoan be paid at any
moment within0, 7] and liabilities stemmed from such agreements can not fataul
T-claims, only by introduction of specific assumptions. Idearto transform the lia-
bilities to theT-claim, it is important to consider that all payments werieded to the
term of the agreement and were grown the riskless interestuin which is equal to.
According to the special construction, if the insured pdsgdimet the beneficiaries
of the policy will get the benefit amount equalgt, V;) Br B, * at timeT'. A different
way of accumulation of the deferred payments is the utilrabf some deterministic
first order interest raté or by making investmeny(t, V;) as per the predefined strat-
egy. Especially for the agreements with short time periddssn be most reasonable
to modify the agreements by deferring the payments. Howaxen if the time periods
accompanied with traditional life insurance agreementsllg prolongs more, it will
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be considered the benefits are factually deferred to theanse agreement termina-
tion date. So, the insurance companies liabilities withardgo the portfolio of term
insurance agreements with payments that are postponedandy the utilization of
the riskless asset are now shown with the help of the diseduygneral’-claim.

For the joint-life status it will be as follows:

p
H’% = BEl Z g(ﬂ7 VTziyi )Bil BT]‘{min (Twivai)St}’ (355)

=1
and it can be reformulated as an integral with respect togheting procesV’ by

T
= [ gl VB, N (3.56)
0

For the last-survival status it will be

p
Hy = Bp' > g(T:, Vi, ) By, Brlmax (., 1,)<t} (3.57)

=1
and it can be reformulated as an integral with respect togheting processv':
T
= [ gl VB, N (3.58)
0
Premium for one policy at time= 0:
E° [e—rT g(T/, VT/)]-{T/<T}]7

whereT" is the (random) payment date, is the CPPI portfolio valuey(t, V;) is the
payoff function andl” is the maturity of the contract. If

g(t, Vi) =V,

then /
ECle™" g(T V)l oyl = VoP(T' < 1),

sincee "'V, is a martingale undep. So the premium is available in closed form.

Due to the gap risk, which is caused by the presence of theguinmay be true that
V; < F; forsome0 < t < T, whereF; denotes the floor. So, it is sensible to consider
g(t,V;) = max(V,, I;) as the claim of the contract. Since,

maX(WJFt):<Ft_W)++‘/;J

the premium for joint life status is

ECle™™" g(T", Vi) L in (<) = E2le™ (B =V ) Linin (Tx,ﬂ,)gt]‘i“/()P(‘(??;g? T)
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and, for the last survival,

E°e™ g(T" Vi ) e 127y} = ECLe ™™ (Fpr =V ) Lma (Tz,Ty><t}]+Vgég <T).

For the calculation of the first term, Monte-Carlo simulatismequired. For a small
multiplier m, it will be close to zero.

A question related to the gap risk: What happens when< F;, ? Do we allow
shortselling by setting, = m(V;, — F;) < 0, or allocate all the investment to the
riskless asset by setting = 0 ?

Joint Life and Last Survival

We need to calculaté®(T" < T). Let X,Y : be random life times of two lives
T': be the time until payment given that the current ageswaend v, i.e., 7' =
min (X —u,Y —v).

Let ¢ denote the time of first death and we are interested in disioibb of 7. The cdf
E.(t) = P(T" < t)is given by

1-PX>u+t,Y >o+tX >u,Y >0v) =1~ pu, (3.61)

for joint life and
PX <u+tY <v+t)[(X >u,Y >v), (3.62)

for last survival.

Above probabilities are available in closed form. The firs¢ s
PX>u+tY >v+t)

= P(X Y X Y = .
Puv (X >u+t,Y > v+t|X > u,Y > v) PX>uy >0 (3.63)
S(u+t,v+1t)
— 3.64
tpuv S(u”[}) ( )

whereS(u, v) is the joint survival function. Also,

Plu<X<u+tv<Y <v+t)

PX <u+tY <v+tX>uY >v)= P(X >u,Y > )

(3.65)
Here,

Plu< X <utt,v <Y <v+t) = F(utt,v+t)—F (utt,v)—F(u, v+t)+F (u+t, v+t),
(3.66)
whereF'(u, v) is the joint cdf given by Eqn. (10) in &tubulut and Gebizlioglu [100].

The section is ended with the discussion of selection of ingate measure in the
combined model. It can be said that for ainypredictable proceds such that, > —1,
represent a likelihood procegsy [61]:

d]t - Itfhtht (367)
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and the initial conditional, = 1, granted tha?[Ir], a new probability measui@*
can be determined by
dQ*

dP
where L7 is given by Eqn.[(3}4). Utilizing the definition of the meas@* and the
independence between financial and insurance portfolieruRdve can notice that™
which is determined by Eqr.(3.1) is at the same tin@g*anartingale. Fou < ¢t we
have

— Lply, (3.68)

* ElS ULy ) E[S:Ur| FyE|Ly|F]
EQ * F = L = t — EQ * F — *
15217 E[UrLy|F,] E[Ur|F,E[Ly|F,] [SelFd = S
(3.69)

using thatS*-martingale, and so eaah* is an equivalent martingale measure. Be-
cause of this non-uniqueness of the equivalent martinga&asore, agreements can
not generally be priced uniquely by no-arbitrage pricingotty only.

Since financial and insurance portfolios are independedén@* and, according to
Girsanov theorem, the processesg" and " defined by

. . t .
M" = N} — / N (14 hy)du (3.70)
0

and .
M = N! — / AL(1+ hy)du, (3.71)
0

for joint life and last-survival policies, respectivelyediC, Q*) martingales.

Specific martingale measuég defined by Eqn.[(314) is applied, which is also known
as theminimal martingale measuyeschweizer([55, 35]. This particular measure is
mainly applicable for the pricing of unit linked agreemeri&e reason for using this
measure is insurance companies risk neutrality with reg@anchortality [?]. So, it

is assumed that the probability spaée F, Q) endowed with the filtratiorF’. The
filtration £ is equivalently created by th@-martingalesS* and M.

The martingale measur@* could be equally applied to admissible selectiong: of
Here, an analogous result must be obtained in regard to #aedheate functiom, 1., 4+

for joint life and ;- for last survival replaced by, 1 1., (1+h:) andpz 75 (1 +
h:), and M7, M' replaced byM7", M, respectively. Anyhow, there are martingale
measures and those measures do not keep independence araanmfiand insurance
portfolios, and such selections of martingale measurdssuiely complicate investi-
gations in the numerical part.
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3.2 Mean Variance Hedging of Combined Obligations for Term Irsurance Poli-
cies

In this chapter, we mainly investigate the hedging conceégbtnvean-variance quadratic
hedging approach. We defidé as

oM {Hﬂ', if Joint life Contract

H', if Last Survival Contract (3.72)

Given a contingent claint/™ which is defined by Eqn[{3.78) and Egh.(3.58) and if
the financial market models do not allow arbitrage oppotiesiiin a complete market,
HM is attainable, i.e., there is a self-financing strategy ¥iital portfolio valueZ; =
HM, P-a.s. However, when in our jump-diffusion model, the maiketot complete
and then/ /™ is not attainable[[99]. For our contingent claim our paydffime 7" is
H™ . Our jump-diffusion model of the risky asset prigés a semimartingale undét
and the discounted price processs a martingale unde®. In our case, we consider
HM as a function ofi; and denotei = ¢(V7). For any martingale measuftg
defined in Eqn.[(3]4), we have proved that= e "'V, is a Q-martingale. Let us
denote HM = e~ HM . We want to consider the following optimization problem:

2

~ T ~
min B9 (HMt — 7y — / Vuqu> . (3.73)
(ZO,V)GRX@ 0

We extend following Proposition2.10 from Wang [97] and apply for new contin-
gent claim equations (Eqr. (3]78) and Edn. (B.58) ) for jifatand last-survival life
insurance contracts.

Proposition 3.4. The solution of the optimization proble@.73)is:

O-th(ta VD + C(tv V;f + [V;* - Ft]mtn) - C(tv V;f)}/t)‘tfwt

Zy = EQ[HM =
0 HT, v or + (Vi- = F)mi Y2 My

(3.74)

Define, ((t, ) = e EQ[HM|V, = z] and((t,z) = e "((t,x). By construction,
((t, x) is a@-martingale. It is deduced that

dVv, = [Tth + (V;r - Ft)mt(,ut - T)]dt + (V;, - Ft)mtatth + (V;t* - Ft)ththt

(3.75)
and

AV, = e " (V;- — FE)muodWE + (Vi- — F)m,Y,dMF). (3.76)

Proof. Joint Life Contracts:
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We have,

p
Hj = B:' > g(Ti, Vi, ) By Brljmin (1, 1, )<t} (3.77)
=1
and
. T .
= [ gls. VB an] (3.78)
0

We can write expectation formula undgras follows:

foid <ﬁf — Zy— [T uudf/u>2 = B9 (EQ (Hi) — Zy + Hi — EQ[HI) — [ uudf/u>2
— E@ [(EQ[}?J’] - Z())Z] + B (ﬁj — B9[S — [T yudf/u>2.
(3.79)
The optimal value for the initial capital i, = E?[H7].

Define((t,z) = e" EQ[HI|V, = 2] and((t, z) = e " (¢, z). By construction (¢, z)
is a@-martingale. We have deduced that,

dV, = [TVt* + (V;* - Ft)mt(ﬂt - T)]dt + (Vt* - Ft)thtth + (V;f* - Ft)ththu
(3.80)
and

dV; = e [(Vie = F)muoidW@ + (Ve = F)ymYidM?| . (3.81)
Then by Ito’s formula we have

d¢(t, V;) = [—re " ((¢, Vt) +e*’“tct(t Vi) + (rVie + (Vie — F)my(pe — 1))e "G (8, Ve)
%(V — Fy)*miote " (t, V)]dt + (Vi- — Fy)myore " (¢, Vi)dW,
+e (L, Vi 4+ [Vie — FilmyYy) — e 7 ((t, Vi) ]d N,
= (V- — E))myose " Co(t, V,)dWE
e (Vi + [Vie — FmyYy) — e "¢(t, Vi) dMP.
(3.82)

Thus we have

Hi — EQ[HI] — [/ vudV,
= é(T, VT) - 5(0 ‘/0 fOT Vte_” [(‘/t— - Ft)mtatdWQ + (‘/;— - Ft)ththtQ
= " [fy (Vi = F)muo(Gu(t, Vi) — vi)dWy?

+ [y (Vi + (Ve = F)mYs) = (6 Ve) — mi(Vie — F)mgY,)dMP).
(3.83)
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By the Isometry formula, we have,

B9 (5 B9 - [ vl

= (B [ [T (G~ Fymion (1. Vi) — )| di
+E9 [foT K(t> Vi+ [V;t* - Ft]thi) - C(@ V;t) - Vt(vif - Ft)tht]%wtdt} )
(3.84)

This is the minimizing problem with respectitp Differentiating the above expression
with respect ta,, and letting the first order derivative equaltowe have

(Vi- — F)myoi[Ge(t, Vi) — vi] + [C(t, Vi + (Vi- — Fy)myYr)

—(t,Vh) — (Ve — F)ymY3|(Vi- — F)mi Yo\, = 0, (3.85)

thus,

O-th(tu Vt) + Q(t, Vi + [V;, - Ft]mtyt) - g(t ‘/;)Y;)\tlbt

3.86
ot (Ve — F)m YA (3.89)

vy =

Last Survival Contracts: Exactly the same steps above could be applied in this case.

]
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CHAPTER 4

NUMERICAL IMPLEMENTATIONS

In this chapter, we show some numerical calculations fomeodel. The Monte-Carlo
simulation method is used for illustrative purposes.

We start from simulation of stock price process which iskjaice process with jump
diffusion. In Table 4.1, is provided some simulation restitir stock returns. With
different negative and positive jumps returns is showirfignt patterns. In Table 4.2,
we introduce portfolio return results for different valuglsm. As we mentioned in
chapterl, m is a multiplier, which shows the share of the total capitédadted to
the risky security. Difference between total capital arsttyiasset is allocated to the
risk-free security. The multiplier is a value (typicallytbeen2 and4) which is the
representative of the investor’s risk aversion. We can idenghat, the higher the
multiplier, the greater the possibility to invest in thekgisasset. This multiplier based
on the risk aversion level of the investor is exogenouslynaefiby the investor at the
start of the investment and stays unchanged during thefltfeegproduct. We can see
from our results that with the higher value far, the more the chance to fall under the
floor. Changing the weights for portfolio is based on the miamk@vements, such that
risky asset share will increase after a rise and decreasetladt fall in the market. For
continuous trading and where shortselling is allowed byirggborrowing constraint
to p > 0, we can get results which are provided in Tables] 4[33 4.6 ftGamonth
period and for different values of.. Here,i x ;5 stands for monthly bases values of
portfolio. For the end of the first month, the portfolio vaige80.1, and for end of the
10th year the portfolio value i846.3, for Table[4.B.

For Contingent claim taken as put option, we simulate optio€BPI portfolio value,
with risk-neutral parameters for the Merton Jump Diffusinadel we use mainly ref-
erences [[37, 90]. Here, the model parameters are given by, 0.126349, A =
0.174814, a = —0.390078, b = 0.338796 calibrated to a set df7 mid-prices of Euro-
pean call options on th&& P500 Index at the close of the market @& April 2002.
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Table 4.1: Return over Time for Stock Price Process with Jumffp$ion.
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Table 4.2: Portfolio Values over time for different valué¢so
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IX]

180.1
159.5
125.6
125.9
108.9
254.4
132.4
179.3
233.6
169.0
112.4

138.7
285.9
134.1
170.7
152.3
136.3
145.0
145.8
151.5
211.8
157.1

215.7
133.6
199.3
118.6
111.6
209.9
132.6
148.4
156.5
226.8
155.9

245.4
161.1
161.8
208.7
106.0
161.9
123.1
156.8
210.3
123.8
133.8

121.4
137.5
109.6
127.1
316.9
117.1
116.9
164.7
186.0
104.9
188.0

150.8
139.0
194.7
112.8
255.5
174.5
160.1
214.2
272.4
105.6
140.9

200.2
155.7
116.4
160.3
159.1
254.1
161.5
128.4
125.5
123.3
112.4

225.6
179.4
180.9
194.4
148.4
211.3
283.0
179.4
171.3
117.5
111.7

296.8
136.7
122.1
150.4
177.8
183.7
119.1
200.9
210.5
176.2
246.3

Table 4.3: Portfolio Values fomn = 1.

iX]

116
138
55
207
68
103
149
334
123
78
136
83

132
192
230
99

186
295
36

193
334
103
106
100

117
100
124
218
92

100
101
174
100
116
109
110

159
161
465
100
194
126
539
251
98

105
436
390

100
92

163
285
128
126
102
144
164
93

151
100

99
182
97
179
245
189
115
289
117
95
92
598

212
100
87

144
104
176
99

107
837
120
138
89

165
68
235
230
31
98
110
95
101
104
95
207

Table 4.4: Portfolio Values fom = 2 .
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iXj
121|134 | 161 | 301 | 111 | -900| 133
99 |871 | 92 138 | 129 | 100 | 100
90 | 159 | 98 184 | 59 99 124
115|189 | 406 |71 -287| 235 | 339
283 | 762 | 350 | 103 |86 | 100 |54
321 | -100| 99 204 | 221 | 196 | 101
505 | 100 | 95 96 347 | 72 93
440 | 100 | 100 | 151 | 145 | 79 134
119 | 30 1,166 | -116 | 597 | 102 | 361
141 | -349 | 99 586 | 101 | 104 | 127
84 |651 |109 |-10 |88 98 152
100| -39 | 70 131 | 61 43 -26
90 [ 634 | 322 |182 |79 128 | 355
102 | 219 | 153 | 417 | 77 356 | 83

Table 4.5: Portfolio Values fomn = 3 .

iX]
137 429 99 494 236 | 77
110 148 110 | 481 159 | 84
117 47 542 | 33 237 | -1,418
-1,171 )| 112 101 | 366 98 33

86 39 99 76 116 | -107
312 281 -764 | 95 86 56
139 -8,543| 28 50 -581 | 715
304 -23 124 | 1,696 | -47 | 100
126 544 131 | 50 100 | 93
127 -345 | 264 | -1,585| 112 | 250

12 -1,010| 147 | 1,064 | 57 |75
113 200 156 | 228 862 | 104
94 -284 | 618 | 46 142 | 101

96 95 45 | 275 59 | -748
33 68 470 | 416 96 | 66
102 101 -828 | 105 108 | 97

Table 4.6: Portfolio Values fomn = 4 .

Put prices based on the results derived below can be caduéet in following Ta-
ble[4.7.
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] \ Result\ Error Estimate

m=1 | price | 0.782 | 0.06
nu -0.523 | 0.012
m=2 | price | 0.753 | 0.046
nu -0.473 | 0.015
m=3 | price | 1.007 | 0.133
nu -0.415 | 0.017
m=4 | price | 2.453 | 0.267
nu -0.486 | 0.013

Table 4.7: Put Prices.

Until now we have not considered the insurance portfoliodimigle or for multiple
life and just investigated financial portfolio results. Nave can include life portfolio
part but for now just for single life. We will use Gompertz tilsution which is one
of the most appropriate ones among the lifetime distrilmgtioFor its parameters we
refer to [53]. They use data for Swedish femaleg0im0, aged35 — 100 years, and
the distribution parameters ave = 0.0002,x = 0.116. For given parameters the
histogram is as follows in the following Figure 4.1 :

Frequency
1000 1500 2000

500
1

L

rgompertz(10000, shape = 0.116, rate = 2e-04)

T T T 1
0 20 40 60

Figure 4.1: Histogram. Swedish female=i 0, aged35 — 100 years, and the distri-
bution parameters ave= 0.0002, 4 = 0.116
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Figure 4.2: Density based on Pseudo Gompertz Distribution.
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Figure 4.3: Density based on Pseudo Gompertz Distributoddint Case.

Now, we can calculate put prices based on single life contrsiag Gomperz distri-
bution whose outcomes are as in following Tablg 4.8 for dsffe values ofn. It is
assumed Term Life Insurance policy which payments linkethéodeath of the pol-
icyholder. Based on the Lenalt [53] as the beginning age optiieyholder35 is
considered.
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] | Result | Error Estimate
m=1 | price | O 0

nu 0 0

m=2 | price | 0.001 | 0.002

nu -0.000 | 0.000

m=3 | price | 0.035 | 0.051

nu -0.000 | 0.000

m=4 | price | 0.089 | 0.094

nu 0.000 | 0.001

Table 4.8: Put Prices for Unit Linked Life Insurance Poli§mgle Life.

For single and for multiple life policies only one policy isrtsidered in the portfolio.
For multiple life policies as mentioned before Pseudo Gatzg®istribution is used.
The simulation results for multiple lives based on Pseudmartz distribution for:
andy are presented in Talle 4.9.

| X Y |
41.71| 31.30
48.57 || 41.52
51.85| 46.27
12.70|| 16.87
55.04 || 56.32
35.41|| 44.78
61.90| 65.49
52.16|| 60.75
57.34| 54.18
43.31| 39.68

Table 4.9: Values foX andY simulated using Pseudo-Gompertz Distribution.

Descriptive statistics and Summary statistics for mutige case using Pseudo Gom-
pertz distribution is as in following Table§, 4110-4.11.
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| X | Y |
Min. 0.00093| Min. 0.00159
1st Qu. | 44.23 1st Qu. | 46.19
Median | 51.73 Median | 46.91
Mean | 50.00 Mean | 45.34
3rd Qu.| 57.71 3rd Qu. | 56.05
Max. 77.54 Max. 87.30

Table 4.10: Descriptive Statistics based on Pseudo Gompestribution.

| X Y ]
Mean 49.95 | 45.30
Variance| 117.86| 217.82

| Correlation| X [Y |

X 1.00| 0.70
Y 0.70| 1.00

Table 4.11: Summary Statistics based on Pseudo GompettidbDin.

80

60
l

40

20
l

Figure 4.4: Correlation betweexi andY'.
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Now, we can calculate optimal values which are defined in &sijpn3.4. Here,price
stands fotZ, andnu stands for,,. Calculations are done for representatively two cases,
for joint-life policies and last-survival policies and tdis are provided in Tablés 4]12
and [4.18. Here, is considered guarantee which is equal timitied portfolio value.
Calculations are investigated for different valuesrof

| V(0)=100,G=100] Result | Error Estimate |

m=1 | price 16.29 | 0.00
nu 0.15 0.00
m=2 | price 17.56 | 0.30
nu 0.16 0.00
m=3 | price 29.89 | 4.50
nu 0.28 0.04
m=4 | price 125.14| 73.62
nu 1.24 |0.74

Table 4.12: Continuous Trading with Guarantee and Sharigdibr Joint Life Poli-
cies.

| V(0)=100,G=100] Result | Error Estimate |

m=1 | price 4.44 0.00
nu 0.04 | 0.00
m=2 | price 489 |0.24
nu 0.05 |0.00
m=3 | price 11.28 | 5.02
nu 0.11 | 0.05
m=4 | price 99.77 | 124.73
m=4 | price 99.77 | 124.73
nu 0.99 1.25

Table 4.13: Continuous Trading with Guarantee and Sharigelbr Last Survival
Policies.
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CHAPTER 5

CONCLUSION

The study was set out to explore and to develop the concekafinimization hedg-
ing strategies for multiple-life unit linked insurance s with help of Constant
Proportion Portfolio Insurance approach. As it is knowmrriterature and also stated
in introduction part of this thesis a Unit-Linked Life Insurce policy is a agreement
where the insurance benefits depend on the price of somdispeaded security which
carry the risk. Because of the inherent nature of the seesritie returns are random
since the benefits are unknown in advance and based on théigations of insurance
company are also random. The main purpose in such a situatiorcorrectly define
obligations of company and based on obligations to definpribiger hedging concept.

In the thesis, is considered a model describing the unogytaif the financial mar-
ket and a portfolio of insured individuals simultaneouslyhis case investigated in
some literature as Mler [61], Riesner([88], etc., but all of these authors cdased
that insurance portfolio are independent, lifetimes adependently and identically
distributed.

The first distinctive point of this thesis is that it is corsidd dependency between
lifetimes of insureds. In other words, it is assumed thaicpes in insurance portfolio
are independent but lifetimes in each policy are dependeot.dependency model-
ing a Pseudo-Gompertz distribution is used, which is a Etadistribution in which
marginal distributions are Gompertz distribution.

Based on the benefit payment structure different types ofsebean be investigated.
In the thesis two different schemes are considered andzsthlyirst is joint life status
which is considering the benefit payment in case of the oeoge of first death. As
opposed to joint life status in last survival status benefitrpents are paid in case of
the occurrence of last death. Two beneficiaries for eacltyale established and
dependence between two are modeled with Pseudo-Gompstribution function. In
other hand the relation between policies is considereddependent and stated that
they are independently and identically distributed.

The second distinctive point was the usage of the ConstapoRron Portfolio Insur-
ance approach with jump diffusion for financial portfolidaBdard Black and Scholes
model is used nearly in all articles. What about the Black antb®s model with
Jump diffusion, it was firstly investigated in Riesnler![88]t bor single life policy.
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The third distinctive point of the thesis is that, for hedgpurposes the mean-variance
hedging approach is used instead of the local risk mininaeanhethod.

In the numerical result part, tables and figures are prowdadh help us to describe
the dynamics. One can observe from return and portfolioevghaphics that effect of
jumps is quite high. Herepn is a multiplier, which shows the weight of risky asset
in portfolio when the rest of the capital invested to the ffide asset. The multiplier
shows the risk appetite of the investor. The higher the ipliéti, the greater the invest-
ment in the risky asset. We can observe from tables that wieemultiplier is high,
portfolio value is too low or negative when jumps occurs.he first part of numerical
results, simulations for CPPI is investigated without cdaeng insurance part. Then
simulation for single life and multiple lifetimes are doredgprovided in related tables.
Results for combined model are provided in the last two tadfiesir numerical results
part. The details are as follows.

For single life policy we consider Term Life Insurance pglia which benefit pay-
ments are valid in case of the death of policyholder. As a tHiryears is considered
with the beginning age of insured equal3® For simulation onlyl policy is taken.

For single life Gompertz distribution function is used.

When the initial portfolio value is equal to the guaranteeegi{G = 1, = 1007'L) for
r = 0.05, the results for differentn (m = 1, 2, 3, 4) values are simulated.

All calculations are done for Joint Life and Last Survivalitininked Insurance poli-
cies.

We observed that for last survival policies the results ared lower than for joint life
case, and this is expected outcome. Since in the second easBtipayment made in
case of both insureds death, this probability is lower tha ¢ase.

The numerical results are calculated when contingent claimput option. In our
tables,price stands forZ, andnu stands for,. So, in this caseZ, stands for put
price.

For future research, one can investigate dependence digedryepolicies. This depen-
dence could be modeled with the help of copulas. Also, cakddferent insurance
products like pure endowment could be investigated. Sime@tean-variance hedging
approach is applicable in the semi-martingale case diftgrertfolio hedging theories
could be investigated.

Another extension could be applied to the financial part efrtfodel by adding new
tradeable assets to the financial portfolio. Based on ouysied extended financial
portfolio calculation of optimal weights for assets for tiple life unit linked policies
would be an interesting area for further research.

A more interesting but at the same time very useful extengioald be the investi-
gation of new martingale measures which do not preserventtependence between
financial and insurance portfolios.
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