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ABSTRACT

PRICING AND RISK MINIMIZING HEDGING STRATEGIES FOR MULTIPLE
LIFE UNIT LINKED INSURANCE POLICIES USING CONSTANT

PROPORTION PORTFOLIO INSURANCE APPROACH

Jafarova, Vafa

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr.̈Omer L. Gebizliŏglu

Co-Supervisor : Prof. Dr. Gerhard Wilhelm Weber

February 2015, 71 pages

A unit-linked life insurance policy (ULIP) is an agreement between an insurer and an
insured that the insurance benefits or the obligations of theinsurance company depend
on the price of some specified stocks. As opposed to the classical life insurance, the
payments to be paid at the occurrence of risk or at the end of the period of a unit linked
life insurance contract can not be known at the time the policy is sold. Therefore,
the benefits are random and unknown in advance, and based on this the obligations of
the insurance company are also random. The main purpose in such a situation is to
correctly define obligations of the insurance company, and based on these obligations
to define the proper hedging approach.

In this thesis, we consider a model which takes into consideration the uncertainty of fi-
nancial market and portfolio of insured individuals at the same time. It is assumed that
financial and the insurance portfolios are stochastically independent and considered
to be combined in a common product probability space. For theinsurance portfolio
under concern, we assume that polices are independent, but lifetimes of insureds in
each policy are dependent. For the dependency between the lifetimes of insureds, an
appropriate Pseudo-Gompertz distribution is used in the thesis. We investigate two
cases for multiple life policies, joint life status and last-survival status. Appropriate
obligation equations for both cases are derived and by the Constant Proportion Portfo-
lio Insurance (CPPI) approach optimal portfolio weights aredefined. For the solution
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of optimization problem, mean-variance hedging strategy is used as one of the mostly
applied hedging approaches in such situations. The thesis ends with a conclusion and
an outlook to future studies.

Keywords: Unit Linked Life Insurance Policies, Constant Proportion Portfolio Insur-
ance with Jump Diffusion, Multiple Life Policies, Mean Variance Hedging, Joint Life-
times Distribution
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ÖZ

ÇOKLU-HAYAT B İRİM BA ĞLANTILI S İGORTA POL̇IÇELEṘI İÇİN SABİT
ORANLI PORTFÖY ṠIGORTASI YÖNTEMİ KULLANILARAK F İYATLAMA VE

RİSK MİNİM İZASYONU

Jafarova, Vafa

Doktora, Finansal Matematik B̈olümü

Tez Yöneticisi : Prof. Dr.Ömer L. Gebizliŏglu

Ortak Tez Ÿoneticisi : Prof. Dr. Gerhard Wilhelm Weber

Şubat 2015, 71 sayfa

Birim Bağlantılı Hayat Sigortası anlaşmalarında sigorta hasarödemeleri spesifik bir
ürünün fiyatına băglı olmaktadır. Klasik hayat sigortasıürünlerinin aksine büurünlerde
hasar gerçekleştiği durumdaödenecek tutar sigorta kontratı yapıldığı aşamada belli ol-
mamaktadır. Bu sebepten dolayıdır ki, hem hasarödemeleri hem de sigorta şirketinin
yükümlülükleri belirsizlik teşkil etmektedir. Bu durumda en başlıca amaç gelecekte
oluşabilecek hasar̈odemelerini, başka bir deyişle sigortäodemeleli için bug̈unkü
yükümlülükleri dŏgru belirleyebilmek ve bu ÿukümlülükler için uygun yatırım ve risk-
ten korunma (hedge) kavramı geliştirmedir.

Tezde, hem finansal piyasalardaki hem de sigorta portföyündeki bireylerden dŏgacak
olan belirsizlĭgi kapsayacak bir modelleme yapılmıştır.̇Ilgili riskler Finansal ve
Sigorta portf̈oyleri arasında stokastik bağımsızlık d̈uş̈unülerek onları ortak olasılık
uzayında modellenmıştır. Sigorta portföyü için poliçelerin birbiri arasında bağımsız
olduğunu ama poliçeye bağlı yaşamların kendi aralarında bağımlı oldŭgu gerçĕgi
dikkate alınmıştır. Bu băgımlılık için Pseudo-Gompertz dağılımı kullanılmıştır.
Bağımlılık iki durum için incelenmiştir: ”Birlikle Săg Kalım” ve ”Son Săg Kalım”.
Finansal piyasalardan doğan belirsizlĭgi modellemek için Sıçramalı Difüzyonlu Sabit
Oranlı Portf̈oy Sigortası ÿontemi kullanılmış ve optimal ăgırlıklar belirlenmiştir.
Ağırlıkların belirlenmesi için Ortalama-Varians hedge yöntemi kullanılmıştır.
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Anahtar Kelimeler: Birim Bağlantılı Hayat Sigortası Poliçeleri, Siçramalı Difüzyonlu
Sabit Oranli Portf̈oy Sigortası, Çoklu Hayat Poliçeleri, Ortalama-VaryansRisk Mini-
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CHAPTER 1

INTRODUCTION

1.1 Historical Overview and Literature Review

In the classical life insurance agreements, an insurance company guarantees payments
to its insureds equal to the promised provisions and hence takes only the investment
risk. The company makes its investments, which is the amountof the provisions and
decides on the allocation of these provisions to different types of assets. These in-
vestment strategies are defined within certain restrictions imposed by the regulator.
Typically, the provisions are invested to a large extent in risk-free bonds which are
assumed to give rise to a return which is higher than the guaranteed return on the life
insurance products.

In unit linked life insurance contracts opposed to classical life insurance agreements
the benefit to be paid at the occurrence of risk, since survival or death of insureds,
can not be known at the time the agreement made between insurance company and the
policyholder. On such type of policies, the insurance installments paid by the insured
are invested in some funds made up by the insurer. These fundsconsist of different
type of financial assets. The amount of benefits at time of the occurrence of risk is as
much as the value the financial assets have reached, bought bythe premiums which
have been paid by the insured unit at that time. Therefore, the benefits are random.

Unit linked insurance products carry the financial and insurance risk, that is why
should be treated and analyzed from financial and actuarial points. Several papers by
Möller [67] deeply investigate life and non-life products from valuation and hedging
aspects within the financial and actuarial framework, describing in details historical
development of unit-linked life insurance agreements withan analyzes of relevant lit-
erature.

Brennan and Schwartz [19, 21, 22] and Boyle and Schwartz [18] were the first authors
who studied unit-linked insurance contracts. They used current financial mathematics
in their research and defined that for the unit-linked insurance product with guarantee
amount the payoff is equal to the payoff of an European call option with the additional
payment equaled to guaranteed amount. For removing the uncertainty related with in-
sured lives authors used results from law of large numbers and replaced them with their
expected values. Main shortcoming of this method is that it is not considering mor-
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tality risk. This approach gives to the authors facility to treat policies with guarantee
as contingent claims which carries financial uncertainty ina complete financial mar-
ket. The standard valuation and hedging techniques which were introduced recently
by Black and Scholes [13] and Merton [58] can be applied in thismarket. Harrison
and Pliska [44] and Harrison and Kreps [43] developed in their research martingale
based financial approaches which helped Delbaen [29], Bacinello and Ortu [5] and
Aase and Persson [1] during the valuation of the unit-linkedlife insurance agreements.
For insurance portfolio these authors also have chosen the same technique for unex-
pected mortality patterns and replaced mortality by its excepted values. Afterwards,
Aase and Persson [2] in their work tried to use different way and use continuous time
survival probabilities despite discrete ones which are used in previous papers. In addi-
tion to those studies, Bacinello and Ortu [6], Nielsen and Sandmann [72] and Bacinello
and Persson [7] as an addition investigated stochastic interest rates within the existing
financial models, where all previous authors preferred to use constant interest rates.

Möller [61] was the one who introduced the new approach for combined model. He
investigated and developed a new technic in which the unexpected developments of
the financial market and the portfolio of insureds are treated by not averaging the
mortality. He considered the combined model in his researchand according to this
research product probability space has been studied as two independent parts. In ad-
dition he demonstrated that uncertainty related with the insurance portfolio can turn a
complete financial market to incomplete, making riskless hedging as impossible. In
mentioned paper the risk-minimization hedging strategiesare also derived for a life
insurance agreements by taking into account a Black-Scholesfinancial market. Two
different types, such as pure endowment and term life unit linked insurance contracts
are investigated in that research. Author applied the risk-minimization hedging the-
ory improved by F̈ollmer and Sondermann [36]. Results derived from this research is
considering both financial and insurance uncertainty. Möller [61] supposes a unit pre-
mium paid at policy signing time and assumes that insurance payments are deferred.
Here, practically not considering premium payments duringthe mid-terms is not very
limiting for the pure endowment. However, since the benefitsare mainly paid just
after realization of death for life insurance policies thislimits the conditions. For in-
stance, even the annuity payments are paid with intermediate installments. That is why,
Möller [64] enlarged the scope of the risk-minimization hedging theory of contingent
claims with fixed duration introduced by Föllmer and Sondermann [36] to include the
streams of the payment. Insurance payment streams are investigated by taking into
account mid-term premium and benefit payments, in his research. In other hand, this
theory can be applied only in martingale financial markets taking into consideration
that the hedging risk can be interpreted only under the investors individual measure if
this is already a martingale measure. In his research Möller [64] furthermore includes
the risk-minimization hedging strategies and the related hedging risk for a martingale
Black-Scholes financial market and for general unit-linked life insurance agreements,
formulated in a multi-state model of Markov along with mid-term installments. In ad-
dition to the above listed articles (M̈oller [61, 64]), the study of M̈oller [65] analyses
the risk-minimization hedging of equity-linked life insurance agreements in a discrete
time framework. He applied the financial market model of Cox-Ross-Rubinstein as a
case in this analyze. Recently, Möller [66, 68, 69] introduced the indifference pricing
approaches which contain the financial variance and standard deviation basis, as an dif-
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ferent approach to the valuation and hedging of unit-linkedlife insurance agreements.
On the other hand, Dahl and M̈oller [28] utilized the risk-minimization hedging theory
for payment streams introduced by Möller [64] for the case of classical life insurance
with stochastic interest rates and a death intensity of all insureds which was influenced
by some stochastic process. The existence of the financial market is obligatory for
the treatment of the unit-linked life insurance agreements, since the units are modeled
in the financial markets. It can be said that the most of the articles analyzed above
consider a Black Scholes financial model of asset returns which follow normal distri-
bution and continuous paths which means that assets prices are following the Brownian
motion. Riesner [88] investigate in his research more general Levy-process financial
market models. He replaced the Brownian motion by Levy Jump Diffusion process.
As a result he got the models with adaptable asset return distributions and path which
follows discontinuity. In comparison with other studies, Chan’s [24] research can be
considered as a crucial investigation, since it proposes general Levy processes to fi-
nancial market modeling. Nevertheless, a jump-diffusion process has been introduced
even by Merton [58] to model asset returns. As the first part ofCont and Tankov [26]
states, Levy-process models with jumps normally fit the outcomes of solid financial
markets, that are difficult, even not possible to implement in models with diffusion.
In his valuable research Hainaut [42] has determined the optimal asset allocation of
pure endowments insurance contracts, maximizing the expected utility of a terminal
surplus under a budget constraint. The market resulting from the combination of in-
surance and financial products, is incomplete owing to the un-hedgeable mortality of
the insured population, modeled by a Poisson process. For a given equivalent measure,
the optimal wealth process is obtained by the method of Lagrange multipliers and the
investment strategy replicating at best this process is obtained either by martingale
decomposition or either by dynamic programming. They illustrated this method for
CARA and CRRA utility functions.

Some later Vandaele [96] in their research disproved the Risner [88]. He proved that
the risk-minimization hedging strategy under the proposedmartingale measure does
not fit the conditions for being the local risk-minimizing strategy under the original
measure, which was established by Riesner [88]. Eventually,the correct local risk-
minimization hedging strategy was investigated and a link among the several risky
assets which held in the suggested portfolio stated in the aforementioned paper and the
one suggested here is given.

Bi [11] considered in their research the risk-minimization hedging strategies for unit-
linked life insurance policies within a financial market in which stock price process
follows shot-noise. Taking into consideration the incompleteness of the financial mar-
ket, it is impossible to hedge the insurance claims by trading stocks and riskless assets
alone. This hedging strategy leaves the part of the risk on the insurer. After a change
of measure authors applied the theory of pseudo locally riskminimization.

For two sorts of unit linked agreements such as pure endowment and the term insurance
the risk-minimizing trading strategies are investigated and accompanied intrinsic risk
processes are established in Qian [84]. In their research they extended the model and
analysis done by Vandaele [96].
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He described the Levy process parameters which formulates the pattern of risky as-
set in the financial framework as depending on a finite state Markov chain. Here,
the state of the Markov chain can be assumed as the state of theeconomy. With
the regime switching Levy model, the authors got the local risk-minimization hedg-
ing strategies for several unit-linked life insurance contracts, among which the pure
endowment policy and the term insurance policy are well known. In Wang [97], a
general class of stochastic volatility model is consideredfor modeling risky asset. This
class of stochastic volatility model involves nearly all ofthose without jump compo-
nent which are mainly utilized in most of the researches. They obtained the minimal
martingale measure and local risk minimization hedging strategy in these models, and
employed the results to the unit-linked life insurance agreements. Moreover, they also
investigate the locally risk minimizing hedging strategy for unit-linked life insurance
agreements in a Barndorff Nielsen and Shephard stochastic volatility model. The local
risk-minimization approach was investigated by Ceci [23] for a combined financial-
insurance model, where there are restrictions on the data accessible to the insurance
company. Particularly, we assume that, at any moment, the insurance company may
observe the number of deaths from a specific portfolio of insured individuals but not
the mortality hazard rate. They considered a financial market which driven by a general
semimartingale and they aimed to hedge unit-linked life insurance agreements via the
local risk-minimization approach under partial information. The F̈ollmer-Schweizer
decomposition of the insurance claims and explicit formulas for the optimal strategy
for pure endowment and term insurance agreements are provided in terms of the pro-
jection of the survival process on the information flow. Moreover, in a Markovian
framework, they reduce the steps to solve a filtering problemwith point process obser-
vations.

Nearly all of the articles related to this topic assume as in Möller [61] that, the future
lifetimes are independent and identically distributed exponential random variables.

In this thesis we introduce dependence between future lifetimes of insureds and com-
bine it with pricing and risk minimizing strategies.

The premiums are considered to be paid as a single premium andthe benefits are
postponed to the maturity of the agreement.

In the first and second parts of the thesis, a general information was provided about the
financial instruments for risk mitigation and insurance products. Also we investigate
unit linked life insurance policies and quadratic hedging approaches, such as local risk
minimization and mean variance hedging approach.

In the third part, the model of the thesis is structured in a financial model and insur-
ance portfolio combination. Risk minimizing strategies areinvestigated for combined
obligations and hedging strategy is derived by the help of the mean-variance hedging
approaches.

In the forth part, numerical results for the constructed model are provided. Monte-
Carlo simulation method is used and calculations are pursuedby the help ofR soft-
ware.
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1.2 Summary, Contributions and Outline

The main objective of this thesis is to develop a mean-variance hedging strategy for
multiple-life unit linked insurance policies, where the unit is modeled by the constant
proportion portfolio insurance approach.

Following Möller [61, 64], we consider the financial market and the portfolio of in-
sureds are independent. As well we assume that they are joined in a common product
probability space. It gives rise to the concept of modeling the uncertain movement of
the asset price and the lives of the policyholders synchronously. For insurance portfo-
lio we do not average away survival probabilities. Which means the uncertain pattern
of insured lives is not interchanged by their anticipated developments.

Let us take a person agedx years, with future lifetime denoted byTx. So,x+ T is the
age of the person at the end of his life. The same definition forTy can be used as well.

In general, the future lifetimeT is a random variable having a probability distribution
function,

Ft = Pr(T ≤ t), t ≥ 0.

Here, the functionF (t) describes the probability with which the one will die duringt
years, at any fixedt.

We investigate two cases for multiple decrements, as joint life status and last survival
models. Joint life considers payments at the first death. Which means, if we have
multiple number of beneficiaries for the policy, benefit payment will be made at the
first death. For two lives this means,

Txy = min (Tx, Ty).

By the same method, we can define last-survival status, and cansay this is a status
where benefit payments are conditioned to the death of last beneficiary of the policy.
The expression of this formula for two lives is,

Txy = max (Tx, Ty).

Then for modeling the dependency between lifetimes we use Pseudo-Gompertz dis-
tribution developed by Ÿorübulut and Gebizlioglu [100]. The Gompertz distribution
is considered as a mostly applied probability distributionfor the lifetimes modeling.
While modeling the dependent structure of lifetimes throughbivariate distributions
Pseudo-Gompertz distribution is the most appropriate one for our case.

For financial part we use the well known Constant Proportion Portfolio Insurance ap-
proach and define stock price process in jump diffusion modality. As we know, with
this strategy investor begins with defining a floor equal to the minimum acceptable
value of the portfolio. This helps us to design a portfolio similar to the unit linked life
insurance agreement which considers minimum guarantee payment.
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Applying the above mentioned two points at the begining we introduce the filtration
for the combined portfolio as follows,

C = (Ct)0≤t≤T ,

as,
Ct = Ft ∨ It.

We assume that these two filtrations are independent and take,

C = FT ∨ IT ,

where
Ft = σ(Su, u ≤ t),

It = [σ(I(Txi
≤ t), 0 ≤ t ≤ T, i = 1, 2, ..., n) ∨ σ(I(Tyi ≤ t), 0 ≤ t ≤ T, i = 1, 2, ..., n)] .

Then we derive combined obligations for joint life status,

Hj
T = B−1

T

p
∑

i=1

g(Ti, VTxiyi
)B−1

Ti
BT1{min (Txi

,Tyi
)≤t},

and for last survival status,

H l
T = B−1

T

p
∑

i=1

g(Ti, VTxiyi
)B−1

Ti
BT1{max (Txi

,Tyi
)≤t}.

Then for the combined obligations we define the following optimization problem based
on the mean-variance hedging approach:

min
(Z0,ν)∈R×Θ

EQ

(

H̃M
t − Z0 −

∫ T

0

νudṼu

)2

. (1.1)

The following equations are obtained as the solutions for the optimal portfolio,

Z0 = EQ[H̃M
t ], νt =

σtζx(t, Vt) + ζ(t, Vt + [Vt− − Ft]mtYt)− ζ(t, Vt)Ytλtψt

σt + (Vt− − Ft)mtY 2
t λtψt

.

(1.2)

As the performance of the numerical calculations, we useR software and provide re-
sults one by one for financial portfolio, single life and multiple life for several exposure
values and other variables in our model.
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CHAPTER 2

BASIC CONCEPTS

2.1 Financial and Insurance Background

A prevailing subject in the finance and insurance areas is therisk of loss. Risk is
inherent in all parts of life due to its nature, hence, it cannot be avoided completely. For
the mitigation or removal of the risk, several risk management tools and instruments
are established.

As we know, the insurance and finance disciplines appeared asdistinct fields. At the
beginning, the theory of insurance has been generally engaged in the calculation of pre-
miums of the life insurance agreements. As the time past somecombined instruments
are established and insurance and finance is then nested.

In this section, we provide the preliminary knowledge with regard to the finance and
insurance risks.

2.1.1 Classical Insurance Contracts and Their Valuation

As mentioned in the previous paragraph, at the beginning, the main concern of the
insurance theory was about the premium calculation of life insurance agreements. In-
surance is an equitable transfer of risk in exchange for somespecific payment. The
ways of transferring or distribution of the insurance risk were expertized by Chinese
and Babylonian merchantiles already at the 3rd and 2nd millennia BC.

In general sense, insurance considers collecting premiumsfrom several insureds for
paying of the insurance benefits in case of insurance event, differently saying in case
of loss. The insureds are protected from risk, with the fee, on other words for risk pre-
mium which depends how frequent and how severe the event occurs. In other words
the risk have to fit the concrete predefined criteria in order to be considered as an insur-
able risk. An insurance company can be seen as a business enterprise whose main role
is financial intermediacy generally. Insurance company is amain segment of the indus-
try of financial services, but alternatively the different individuals also can make a self
insurance independently, via saving money for future loss possibilities. All financially
measurable risks are able to be subjected for the insurance.Some particular types of
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the risk is called perils, which can rise the claims. An insurance company should pre-
pare its policy detailed in order to clarify which types of the perils are included and
which types are excluded.

The risks in one or in multiple categories can be covered in a single policy. For in-
stance, both the property risk and the liability risk which arising from a legal claims
as a result of traffic accidents can be covered normally by a single motor insurance.
Similarly, a home insurance policy covers the sum insured for any loss of house and
also the house owners properties, sum legal claims the ownercan be met, and also a
limited sum for the insurance benefit for the health servicesof visitors if he got health
damage at that house. The insurance of the business usually has a various forms. The
most popular forms are different types of professional liability insurance, known as
professional indemnity, and the business owners policy which combined variety types
of benefit payments to which a business owners can need, in onepolicy, similarly as
home owners policy includes the benefit payment for such things that owner of the
house can need.

In actuarial theory, generally, the insurance contracts are divided into two parts as life
insurance and non-life insurance contracts. Here, we will share the information about
the valuation of classical life insurance policies becauseof the nature of our research.
We mainly use as the references Gerber, Norberg, Möller [39, 76, 63].

Let us consider a portfolio of insured persons which number is equal ton, and ages
are equal toy. At time 0 which is the beginning of policy we assume that they have
identically and independently distributed future life timesT1, T2, . . . , Tn and presume
the existence of a continuous mortality rate functionµy+t, with the following survival
probability:

tpy = P (T1 > t) = exp (−

∫ t

0

µy+udu). (2.1)

For a pure endowment agreement with sum insuredK and maturity equal toT desig-
nates that the amountK which is the benefit stemmed form the insurance agreement
should be paid at maturity timeT . For benefit payment policyholders survival is stated
as a condition. Furthermore, let us consider that there is a single premium named as
k and that the seller of the contract allocates the premiumk in several security which
considers a payment as a rate of returnδ = (δt)0≤t≤T during [0, T ]. Here, the obliga-
tion of the insurance company for theith policy-holder, can be written as in following
equation, by the present value which can be formulated as follows:

Hi = 1{(Ti > t)}Ke
∫ T

0 δtdt. (2.2)

This equation is derived by finding the present value the payment at timeT , 1(Ti>t)K,
utilizing the rate of interest denoted byδ. What the fundamental principle of equiva-
lence says is that, the premiums have to be calculated such that the discounted values
of premiums and benefits on average should be balanced. It is assumed that in addition
δ and the remaining life times are stochastically independent. Then by the help of the
principle of equivalence we can consider that the followingequality is correct:

k = E[Hi] =T pyKE[e
∫ T

0 δtdt], (2.3)
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for the single case. We know from insurance market that life insurance portfolios are
big in common, that is why that concept can be proved partially by the help of the law
of large numbers.

By the increasing of the size of the insurance portfolio, the associated number of sur-
vivals

1

n

n
∑

i=1

1{Ti>t},

converges a.s. regarding the probabilityTpy of survival toT . This is possible by
application of the strong law of large numbers. Because of lifetimesT1, T2, ..., Tn
are stocastically independent, for significant large valueof n, the factual number of
survivors

n
∑

i=1

1{Ti>t},

will be nearly same as the expected numbernTpy. Here, growing the amountnk by
rate of interest take us to

nke
∫ T

0 δtdt = nTpyKE[e
−

∫ T

0 δtdt]e
∫ T

0 δtdt ≈

n
∑

i=1

1(Ti>t)KE[e
−

∫ T

0 δtdt]e
∫ T

0 δtdt. (2.4)

Peculiarly, whenδ is deterministic, policyholders benefit payment can be calculated
as the expression on the right side of previous equality. Under the deterministic inter-
est rate, the principle of equivalence is validated by investigation of the law of large
numbers. This, actually guaranties the fact that the actualized number of survivals is
around the expected number.

The issue is getting the difficult and complicated shape in the real world whereδ is
following the stochastic process. This follows from last equation that the simple accu-
mulation of the premiumk will not in general generate the amount to be paid. That is
why, e−

∫ T

0 δtdt could have different value than its expected value. Anothermethod of
approaching that issue involves the replacement of the ”factual” rate of return process
δ in Eqn. (2.3) with deterministic rate of return processδ

′

. According to this approach
the single premiumnk grew by the real rate of returnδ is bigger thanK times ex-
pected number of survivals with a big probability values. Inthis case, the insurer
has to include that excess into the sum which will be paid to the insured person like
bonus [85, 75]. Anyhow, this method creates a question if it is meaningful to consider
the presence of any strictly positive and deterministicδ

′

which over quite huge time
period has the property that it will be higher than the actualrate of return on invest-
ments with a very high probability. Taking into the consideration of the fact of low
interest rates at the end of1990s, this matter can be seen as a critically important issue.
There can be another method to deal with matter which includes the replacement of
δ by the so named short term interest rate and in addition the replacement of the last
term in Eqn. (2.3) by the price on the financial market of a financial security, known
as a zero coupon bond, which pays one unit at maturity timeT . In [7] is derived a
general form of Thiele’s differential equation within above mentioned framework.
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2.1.2 Financial Instruments and Risk Mitigation

Cash and cash securities will continue to take relatively small part of the investment
portfolio of the long term investment institutions such as pension funds and life insur-
ance companies. In contrast to the long term investors non-life insurance companies
with their shorter term obligations, should hold a bigger part of assets in cash for being
ready for benefit payments in case of claims [14].

Deposits in risk free assets do not carry any risk of market changes and the return
earned is mainly linked to the degree of short term interest rates existing in the market.
So, while giving the protection for the capital, cash securities are not providing any
guarantee that a certain rate of return will be promised within the predefined time
horizon. That is why, cash securities can get the shape of risk-fee assets deposits or the
shape of tradeable cash securities. The duration of such tradeable assets is usually not
long, but the crucial property is the interest rates movement frequency to consider the
changes in short-term interest rates.

Cash securities suggest full capital protection from the credit risk. Based on the degree
of short term interest rates their return varies. For some inflation protection purposes
cash instruments can be used, but this is valid for long term where increase in inflation
can tend to allow to higher short term interest rates.

The fixed interest bond is an agreement which provides special predefined rights to
the borrower against to the money lender. Here, in particular, a fixed interest asset
commonly gives to the holder of the asset the several fixed coupon installments and a
principle repayment at a predetermined maturity time.

One of the well known and mostly used financial instruments for risk mitigation are
financial derivatives. Financial derivatives are investment securities whose values are
linked to the value of an underlying asset. In other words financial derivative is a
combination of investments, with same characteristics. Mainly used financial deriva-
tives which play quite important role, while institutionalfinanciers are considered, are
options, forwards, futures, and currency swaps.

The risk of investment is stemming from the situation where these investments are not
used for legitimate purposes. During the analyzing of the risk of any derivatives po-
sition, the essential point is the consideration of the riskwithin whole portfolio. All
risky strategies in derivatives can be balanced by adequateand counter risks in under-
lying assets - especially during the purchase of the derivatives with the aim of the risk
management. The “counterparty risk” is existing as a rule inevery derivative agree-
ment. Principally, the counterparty risk looks like to default risk on a corporate bond
agreement. Since, this is the risk that the intermediaries with whom the derivative
agreement has been entered into defaults and, hence, a loss is made. In order to mini-
mize the counterparty risk, plenty of the institutional arrangements were done. Those
arrangements are consisting of the utilization of the intermediaries with high credit
rating to implement the derivative deals, and the utilization of “margin accounts” to
obstacle the exposures from building up.

In next section we will discuss the structured portfolio management which is one of
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the effective risk mitigation instruments by the risk free securities and stocks.

2.2 Structured Portfolio Management

As it is well known the main goal of portfolio insurance is to control portfolio returns
from unforeseen falls which are expected in the economy. Also this allows risk man-
agers to get benefit from increases in the financial market. That is why, for insured
portfolio values at terminal date, there is a guarantee defined before and during the
market go up, the portfolio return should also increase at least at a predefined percent-
age of a determined index return [81].

For this reason, specification of guarantees and portfolio termination date is crucial in
portfolio insurance.

There are two most used portfolio insurance approaches. Oneof these approaches is
the Option Based Portfolio Insurance and the another one is the Constant Proportion
Portfolio insurance.

In the OBPI approach investor holds in the portfolio a risky assetS covered by a listed
put written on it, introduced by Leland and Rubinstein .

The CPPI was introduced by Perold [78] for fixed income instruments and Black and
Jones for equity instruments. For allocation of assets dynamically over one of the most
useful strategy is this method.

In the following two subsections, we will provide information about these strategies.
Especially, CPPI strategy will be investigated in details.

2.2.1 Option Based Portfolio Management

The OBPI, introduced by Leland and Rubinstein [52], consistedof a portfolio invested
in a risky assetS covered by a listed put written on it. Not depending on the valueS at
maturity dateT , payoff of the portfolio will be always higher than the strike priceK
of the put.

The main objective of the OBPI approach is to guarantee a fixed return at maturity
of the portfolio. Nevertheless, it is obvious that, the OBPI approach guarantees one
to receive portfolio insurance at any time. Although, it hasa disadvantage that on
the market it is not always easy to find European put with required exercise price and
terminal date. In this case for making the synthetic put one should generate dynamic
replicating portfolio which is consisting of riskless and risky asset. In this method
the manager of the portfolio is expected to make an investment in two basic assets: a
money market account in other words riskless asset, denotedbyB, and a portfolio of
traded assets such as a composite index, denoted byS, which are risky assets. The
period of time considered is[0, T ]. The strategy is self-financing.
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The value of the risk-free assetB evolved according to:

dBt = Btrdt, (2.5)

wherer is the deterministic interest rate.

The dynamics of the market value of the risky assetS are given by the standard diffu-
sion process:

dSt = St[µdt+ σdWt], (2.6)

where(Wt)t≥0 is a standard Brownian motion.

The OBPI method consists the purchase ofq shares of the assetS and q shares of
European put options onS with maturityT and exercise priceK.

Thus, the portfolio valueV OBPI is given at the terminal date by:

V OBPI
T = qST + q(K − ST )

+, (2.7)

which is also
V OBPI
T = qK + q(K − ST )

+, (2.8)

due to the Put/Call parity. This relation shows that the insured amount at maturity is
the exercise price times the quantityq: qK.

The valueV OBPI
t of this portfolio at any timet in the period[0, T ] is:

V OBPI
t = qSt + qP (t, St, K) = qKe−r(T−t) + qC(t, St, K), (2.9)

whereP (t, St, K) andC(t, St, K) are the Black-Scholes values of the European put
and call.

Without loosing of generality and for simple representation, it should be assumed,q is
normalized by setting equal to1. Then,

V OBPI
T = ST + (K − ST )

+ = K + (ST −K)+. (2.10)

With respect to the risky asset priceST at terminal date, the function above is convex
and increasing. That is why, common properties of the portfolio payoffs with guarantee
constraints is observed. With this strategy one can get positive return from upward
directions of market. In case, the price of the risky asset isoverlap the exercise price
at terminal date the payback can be represented as in following equation:

(

VT
V0

)

=

(

ST

S0

)

×

(

S0

S0 + P0(K)

)

.

With this, the percentage can be presented as in following equality: 1
1+P0(K)/S0

.
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2.2.2 Constant Proportion Portfolio Management

The CPPI approach dynamic allocation method for assets over time, introduced by
Perold. Structure of the strategy is as follows. The portfolio manager chooses the
minimum value for floor which is the smallest acceptable value of the portfolio. As a
second step he determines cushion which is the excess of the portfolio value over the
floor. Then by the predetermined scalar or in other words multiple he defines the units
which will be allocated to the risky asset. This can be done through multiplying the
cushion by a predetermined scalar. Two external variables are the floor value and mul-
tiple which are the functions of portfolio manager which areshowing the risk aversion
rate. Difference between total fund and risky asset is allocated to riskfree assets and
these assets mainlyT -bills.

Multiple shows the risk aversion of the investor and the bigger the multiple, the more
the investor is willing to invest in risky assets by increasing the share of it. On the other
hand, with the decrease in stock prices, the bigger the multiple, the faster the portfolio
will tend to drop to the floor. Exposure approaches to zero as the cushion approaches
to zero. In continuous time, this preserves the portfolio payoff from dropping under the
floor. If the portfolio manager will not has a chance to trade before the significant falls
in the market portfolio value can be fall below the floor. We refer mainly to Prigent
[81, 78].

Naturally, the CPPI approach is a managing of a dynamic portfolio with the condition
to be above a floorF at any timet. Here, the value of the floor gives the dynami-
cal insured amount. The floor is developed as a risk free asset, based on the below
equation:

dFt = Ftrdt. (2.11)

It is obvious that, the floor value at the beginningF0 is under the initial portfolio value
V CPPI
0 . The difference between these two variablesV CPPI

0 −F0 is denoted byC0 and
named thecushion, . The value of theCt at timet in [0, T ] is defined as:

Ct = V CPPI
0 − Ft. (2.12)

Total amount which is invested to the risky asset is denoted by et and defined as the
exposure. In the standard CPPI approach first step is started by setting,

et = mCt, (2.13)

in which equationm is a constant called the scalar or multiple. One of the most im-
portant points for portfolio insurance related with them > 1 is that with the convex
payoff function significant percentage of the market rise can be provided.

Assuming the risky asset price process(St)t is following the diffusion with jump:

dSt = St− [µ(t, St)dt+ σ(t, St)dWt + δ(t, St)dγ] , (2.14)

where (Wt)t is independent from the Poisson process with measure of jumps γ, a
standard Brownian motion.
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Summarizing all above stated we can say following:

- The sequence of random times(Tn)n accompanied with jumps fits the following
properties that the inter arrival timesTn+1 − Tn are independent. It is assumed that
they have the same exponential distribution with parameterλ.

- The relative jumps of the risky asset∆STn

STn
are equal toδ(Tn, STn

). They are expected
to be strictly higher than−1, in order for the priceS to be strictly positive.

The portfolio value and other important equalities will be investigated in third chapter
under the financial model.

In following part, OBPI and CPPI methods are compared and main results are stated
following the Bertrand and Prigent [82].

It is assumed that the equal amounts ofV0 is invested at initial time0. Identically, it
is assumed that the analogous guaranteeK holds at termination. The last assumption
was that the risky asset price pursues a geometric Brownian motion.

Results:

1. Payoffs of both portfolios are not exceed one another for all values of the risky asset
at the maturity. That is why, the two payoff functions overlap one another.

2. The expected values of both strategies are equalE
[

ROBPI
T

]

= E
[

RCPPI
T

]

and
this takes us to a unique value for the scalar. For any fixed guaranteed amountK, the
multiple denoted bym∗(K) satisfied the above condition. In the Black-Scholes value
of the call option, andx denotes all possible values of the risk free rate.

3. For first order stochastic dominance both strategies are in same level, in other words
neither of them stochastically dominating another at first order.

4. In a mean-variance sense, OBPI strategy dominates the CPPI approach at least for
one value ofm for any parametrization of the financial markets(S0, K, µ, σ, r).

5. OBPI approach can be observed as a general form of CPPI approach. For a model
with the geometric Brownian motion, the OBPI approach is analogous with the CPPI
approach. For holding this it is assumed that the multiple ispermitted to differ and
defined as

mOBPI(t, St) =
StN(d1(t, St))

C(t, St, K)
. (2.15)

This factor is the ratio of the delta of the callN(d1(t, St)) multiplied by the price of the
risky assetSt, which is equaled to the risk exposure divided by the cushionamount,
equaling to the call priceC(t, St, K).

14



2.3 Unit Linked Life Insurance Policies

As it is well known the fundamental principle of equivalencesays that present value
of the premiums and benefits have to be equal on average for anytype of insurance
contract. That is why classical actuarial valuation theoryfor life insurance agreements
mainly concentrated on calculation of expected values of discounted random cash-
flows. Then the corresponding premium is called theequivalence premium. Similarly,
the expected reserve is calculated as the conditional expectation of difference between
all of the discounted future benefits and premiums, with the available information,
during the insurance period. Approach to a subject is changed with introduction of the
new product, a unit-linked life insurance agreement, in which benefits depend exactly
on a specified stock index. With new contract which is quite different from classic
one, the insured will receive the highest values of the stockprice and some asset value
guarantee specified in the agreement, but other dependencies should be well defined.

2.3.1 Description and Main Concepts

The first investigations of unit-linked contracts based on financial theory belong to
Brennan and Schwartz [20, 21, 22] and Boyle and Schwartz [18]. They identified that
the terminal value of a unit-linked policy which has a predefined guarantee can be
linked to the terminal values of certain financial derivatives. By applying the option
pricing theory founded by the Black and Scholes [13] and Merton [59] authors got
valuable results.

Afterwards, Harrison and Kreps [43] and Harrison and Pliska[44] extended the the-
ory of unit-linked agreements by applying the martingale pricing theory, which is the
extension of the classical Black Scholes Merton model. Beforethe prevalent diffusion
of unit-linked agreements (Tiong [95] and Möller [61, 64]; Boyle, Kolkiewicz, and
Tan [17]; Bacinello and Persson [4]) the popularity and high preference of participat-
ing policies was because of the fact that the policyholders trusted on the traditional and
not risk lover portfolio management of life insurance companies. At the initiation unit-
linked insurance policies were considered quite risky not depending on the providing
of minimum guarantee. This perspective was the same for policyholder and insurer.
Policyholder considered without minimum guarantee product risky, while for the in-
surer with guarantee product carried the risk. Most of the insurers were not ready and
willing to give such a guarantee since they did not have any tools for hedging the risk.
A crucial milestone in this field was the option pricing theory developed by the Black
and Scholes [13] and Merton [59]. By use of this theory Brennan and Schwartz [20]
and Boyle and Schwartz [18] derived valuable results for guaranteed unit-linked prod-
ucts.

Different benefits including caps, differently saying, upper limits, have been studied in
[32, 74].

Hipp [45] considered in his research yearly minimum guarantees as an addition to a
guarantee on termination for unit-linked policies. Persson [79] studied and gave details
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for a more common unit-linked insurance agreement, which considers more than one
lives and covers disability benefits as well.

Most of the literature assumes deterministic interest rates for valuation. First who
introduced the stochastic models of interest rates was Bacinello and Ortu [5, 6], Nielsen
and Sandmann [72, 73], and Kurz [50]. As it is know in classic theory the rate of
interest applied for pricing of life insurance agreements is considered as the insurers
return on its investment portfolio. This is the same in a realworld and as it is known
this rate depends on the preferred investment strategy. This is again depends on the
company’s approach in regard to financial risk considering the legislation.

It is well known that unlike to most financial products paid bya unit premium at the
beginning of the agreement, life insurance policies are usually consider the annual pre-
miums. Delbaen [29], Bacinello and Ortu [5, 6], Nielsen and Sandmann [72, 73] and
Kurz [50] in their study analyzed and included the Black Scholes study for periodical
premiums, and periodical payments.

In the more traditional way, Aase and Persson [2] investigated periodical premiums. In
their study periodical premiums have been constructed by distributing the unit payment
over the duration where multiple premiums can be considered.

Different hedging and replicating strategies which the insurance company may use for
reduction of the financial risk related with unit linked products as in addition to pricing
for unit linked insurance agreements analyzed by Brennan andSchwartz [21], Aase
and Persson [2], Hipp [45], and M̈oller [61].

As an addition in their study Aase and Persson [2] and Möller [61] applied continuous
mortality rates and in Aase and Persson [2] a relationship among the famouns Thiele’s
differential equation of insurance theory and the celebrated equation of Black-Scholes
is improved.

Unit Link Insurance Policies(ULIP) are in common a mix of insurance and financial
portfolios. Simple saying, a part of the premium collected from insureds is used to
guarantee benefit payment to the insured while the latter is valuated in different port-
folio combinations.

The funds collected by the insurance company are used to create a portfolio which
is used to allocate in different market tools in differentiating weights. Steps are the
same as it is done for mutual funds. Based on the risk aversion level policy holders
can choose the funds where they want to invest. As it is in mutual funds, in unit-
linked agreements policy holder has units which linked to the some assets and each
unit has a net asset value. These units net asset value is declared in daily bases. The
net accumulated value is the value based on which the net rateof returns on unit-
linked agreements are calculated. The net accumulated value is different for each unit-
linked agreement based on market movements and conditions and as well based on the
portfolio returns. Opposed to the classical insurance agreements, unit-linked contracts
have several charges applicable that are deducted from the payable premium.

Most effective ones are the charges for the policy administration, premium allocation,
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fund switching, mortality, and a policy surrender or withdrawal. Sometimes the in-
surance companies also charges “Guarantee Charge” as a certain proportion of Fund
Value for built in minimum guarantee under the policies.

The policyholder need to deeply understand the risks which he undertakes and his own
risk aversion level before deciding to choose unit-linked agreements. Since, contract
returns are straightly depends on the market portfolio performance, the insured bears
whole investment risk in investment portfolio.

In unit-linked agreements, the investments are subject to risks related with the financial
markets and the insured bears this investment risk in investment portfolio. Therefore,
one have to choose the portfolio weights after considering risk aversion and needs,
while considering the potential loss which could be observed.

Another factor that should be considered is future needs forfunds. Unit-linked agree-
ments give the insured a chance to observe his/her portfolioin detail. By the way,
those agreements make it flexible to move the capital from onefund to another, with
differentiating risk-return structures.

ULIPs can be defined as the best solution especially for the people willing to stay
invested in a respectively long period.

As mentioned above unit-linked insurance agreements connect the amount of benefit
to a investment portfolio. That portfolio can be consist of several instruments, such
as stock, a stock index, a foreign currency and a riskless asset. For simplicity, let us
consider that this is a mutual fund, most generally used one.In comparison with the
classical insurance products unit-linked agreements fit the both insured and insurers
advantages. Insurance company may benefit by giving more competitive investment
products while insureds may benefit by getting better returns from upwards directions
of economy. Insured has flexibility for choosing the units inhis portfolio, by the same
flexibility he can rebalance his portfolio. That is why, he can control the financial risk
amount of his policies. In comparison with the traditional agreements, mostly known
differentiating characteristic of unit-linked agreements is the random payment amount.
The principle of equivalence, where the main concept is, theincome of the company
in other words premiums, and claims must be balanced in the long term, that classical
basis for valuation life insurance agreements, are not applicable for random benefits.
For valuation such agreements financial and actuarial theories are applied together.
This is typical approach for pricing such products. For using both theories combined
main assumption should be defined. This assumption is stochastic independence be-
tween financial and insurance portfolios and risk neutrality with respect to survivals.
For eliminating the mortality risk most useful approach is to increase the number of
identically and independently distributed policies in theportfolio.

Based on the investor’s risk aversion and on the investment objectives there are several
type of unit-linked agreements. These products mainly invest in riskless assets and that
is why carry less risk. On the other hand some type of unit-linked agreements invest
in risky assets and carry more risk. If we will summarize, as aconclusion we can say
that based on the units chosen unit-linked agreements can beclassified differently.
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2.4 Quadratic Hedging Approach

In this section we will provide some useful information about the pricing and hedging
options by means of a quadratic criterion.

For describing the financial market in continuous time framework, one has to be started
with probability space(Ω, F, P ), a filtration F = (Ft)0≤t≤T and a time periodT ∈
(0,∞) and . Intuitively,Ft defines the information available at timet. There ared+ 1
basic assets which are ready for investment with price processesSi = (Si

t)0≤t≤T for
i = 0, 1, ..., d. To simplify the presentation, assume that one asset, sayS0, has a strictly
positive price. Then one usesS0 as numeraire and immediately skip to quantities
discounted withS0. This means that security0 has price1 at all times and the other
assets prices are,̃Si = Si/S0 for i = 1, 2, ..., d. Here, unless mentioned otherwise, all
subsequently appearing quantities will be stated in discounted units [92, 36].

One of the most interesting research areas of financial mathematics is the hedging and
valuation of contingent claims investigating dynamic trading approaches utilizing̃Si.
European type of the call option defined on asseti whose maturity is defined asT and
exercise price asK is identified as the one of the most famous and widely used typeof
the contingent claims.

The net payoff at maturityT to investor is the random amount

H = max (S̃i
T −K, 0) = (S̃i

T −K)
+
. (2.16)

In simple way, contingent claim can be defined as anFT measurable random variable
H which shows the net value at maturityT of some financial asset. Although, the
contingent claims are defined as a European type which means the value time fixed
with maturity, the amount which will be paid at maturity may depend on overall history
of S̃i

t until maturityT .

Main problem here is in correct definition of price for contingent claimH at time0.

By considering the dynamic portfolio strategies with the following definitions one can
answer above asked questions.

Here,(ν, η) = (νt, ηt)0≤t≤T in whichν is an-dimensional predictable process andν is
adapted.

We can say that in so strategy,νit states for the number of units held in securityi at
any timet, andηt states for the number of riskless assets invested at timet. Then,
predictability ofν is a mathematical formula of the informational constraint thatν is
not permitted to expect the movement ofS̃i

t . For the portfolio value(νt, ηt) at any time
t following equality holds:

Vt = νtrt S̃t + ηt, (2.17)

and the cumulative gains from investment until the timet are

Gt(ν) =

∫ t

0

νsdS̃t. (2.18)
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For having the last equality well-defined, it is assumed thatS̃i
t is a semimartingale. This

property letsG(ν) to be the stochastic integral ofν with respect tõSt. The cumulative
cost until timet derived by utilizing(ν, η) are formulated as follows,

Ct = Vt −

∫ t

0

νsdS̃t = Vt −Gt(ν). (2.19)

When the cumulative cost process of the strategy is constant over time a strategy is
saidself-financing.

It is true as well for the case when if its value process fits thefollowing equation

Vt = V0 +

∫ t

0

νsdS̃t = V0 +Gt(ν), (2.20)

whereV0 = C0 is the initial outlay required for starting the strategy. Following the
time 0, this strategy can be defined as self-financing, and any fluctuations inS̃t could
be eliminated by changing the proportions forν andη for not having any future gains
or losses as a result.

Now let us define a contingent claimH, also consider there is a self-financing strat-
egy (V0, ν) which has the valueVT and which is equal toH with probability1 at the
maturity. In case of the absence of any arbitrage opportunities in the financial market,
apparently, the price of contingent claimH should be given byV0 whereν allows a
hedging strategy forH. It is the essential intuition directing to famous Black-Scholes
Option Pricing approach derived by Black/Scholes [13] and Merton [59]. They gave
the solution for this problem with the term wherẽSt is a one-dimensional geometric
Brownian motion andH = (XT − K)+ is a European call option. The mathemat-
ical construction of the issue and its relationships to the theory of martingale have
been afterwards analyzed and investigated in deep details by J. M. Harrison and D. M.
Kreps [43] and by Harrison/Pliska [44]. A contingent claimH is said to beattain-
ablewhile there is a self-financing strategy with value equal toVT = H P -a.s. at the
termination. By Eqn. (2.20), one can consider thatH can be formulated as:

H = H0 +

∫ T

0

νHs dS̃t, P − a.s.. (2.21)

In other words, this is the sum of a constantH0 and a stochastic integral̃St. If ev-
ery contingent claim is attainable we can claim that the market is complete market.
Remember the point that there is not given exact definition fora rigorous mathemati-
cal equations, it is important to be extremely conscientious regarding the integrability
conditions,H andνH has been exposed.

It is not possible by definition to find a strategy which is self-financing and which
final value is equal to theVT = H for non-attainable contingent claims. One of the
most used methods is to preserve the terminal conditionVT = H. As, η is defined
as an adapted process, this can be achieved by the selection of ηT . In other hand, this
strategies cannot be self-financing in general, and for being preferred strategy it should
have a smallcost processC.
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First who investigated and measured a riskiness of a strategy by help of quadratic hedg-
ing approach were F̈ollmer and Sondermann [36]. Following these authors Schweizer [34,
35] in his research studied the case whereX is a martingale by extending the model to
the general semi-martingale case.

This type of local risk minimization strategy could be identified by two properties:

• 1. the cost processC must be a martingale, in such a way that the strategy is not
self-financing anymore, but anyway preserves mean-self-financing property;

2 and cost processC which is a martingale, must be orthogonal to the martingale
partM of the price process̃St.

There is a local risk-minimizing strategy forH if and only ifH could be written as a
decomposition of the following form:

H = H0 +

∫ T

0

νHs dS̃s + LH
T , P − a.s., (2.22)

whereLH
T is a martingale orthogonal toM .

The decomposition Eqn. (2.22) named as the Föllmer and Schweizer decomposition
of H, and it can be accepted as a general form of the semi-martingale case of the
traditional Galtchouk Kunita Watanabe decomposition in martingale approach.

This decomposition financially has an importance because itgives chance to define the
local risk minimization strategy forH. The integrandνH gives the stock componentν
and the conditions that the cost processC have to fit toH0 + LH determinesη. It is
also important to know that the special case of Eqn. (2.21) ofan attainable claim keeps
corresponding to the not existence of the orthogonal termLH

T . One can derive more
precise constructions for the decomposition Eqn. (2.22). In case of the finite discrete
time, νH andLH could be derived repeatedly backward in time. In case of theS̃t

following a continuous path, the decomposition of Föllmer-Schweizer underP can be
derived as a decomposition of Galtchouk Kunita Watanabe, calculated by considering
theminimal martingale measurêP .

2.4.1 Mean Variance Hedging

The difficulties related with the hedging and pricing of contingent claims under the in-
completeness conditions of market gave rise to different valuation approaches. Two
famous strategies are local risk minimization and mean-variance hedging. Mean-
variance hedging strategy is well known classical one. It minimizes the expectation of
the square hedging error which is the square difference between the value of the self-
financing portfolio and the contingent claim at the maturity, among all self-financing
strategies. F̈ollmer and Sondermann [36] in their study first investigatedthis method
in martingale case.
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After Föllmer and Sondermann [36] extensions to the general semi-martingale case
were done.

Lets first discuss the mean-variance hedging approach in thesimple case wherẽSt is a
localP -martingale.

Let (Ω, F, P ∗) be a probability space, and let(Ft)0≤t≤T denote a right continuous fam-
ily of σ-algebras contained inF ; Ft is interpreted as the collection of events which
are observable up to timet. A stochastic processZ = (Zt)0≤t≤T is given by a mea-
surable functionZ onΩ × [0, T ]. Z is called adopted ifZt is Ft measurable for each
0 ≤ t ≤ T ; it is called predictable if it is measurable with respect totheσ-algebraF
onΩ× [0, T ] which is generated by the adapted processes with left-continuous paths.
The evolution of stock prices will be described by a stochastic processS = (St)0≤t≤T

which is adapted and whose paths are right-continuous with limits St− from the left.
The processY = (Yt)0≤t≤T of bond prices is fixed to beYt = 1. It is assumed thatP ∗

is a martingale measure in the sense of Harrison and Kreps [43],

E∗[S2
T ] <∞, St = E∗[ST |Ft], 0 ≤ t ≤ T, (2.23)

whereE∗[.|Ft] denotes the conditional expectation underP ∗ with respect to theσ-
algebraFt. This means thatSt is a square-integrable martingale underP ∗. Let 〈St〉 =
(〈St〉t)0≤t≤T

be the corresponding Meyer process, the unique predictableprocess with
〈X〉0 = 0 and right-continuous increasing paths such thatS2

t − 〈St〉 is a martingale.
Let us denote byP ∗

St
the finite measure on(Ω× [0, T ],F) given by

P ∗
St
[A] = E∗

[
∫ T

0

1A(t, ω)d 〈St〉t (ω)

]

, (2.24)

and byL2(PS∗

t
) the class of predictable processesZ which, viewed as aF-measurable

function onΩ×[0, T ], are square-integrable with respect toP ∗
St

. Two such processes
will be considered as equal if they coincideP ∗

St
-a.s. .

A trading strategy will be as in the following formϕ= (ξ, η), whereξ = (ξt)0≤t≤T and
η = (ηt)0≤t≤T is showing the amounts allocated into the stock and into the bond. Thus,

Vt = ξtSt + ηt (2.25)

is the value of the portfolio at timet.

As we know from literature [51],

• ϕ= (ξ, η) is defined as a strategy if,

(a) ξ is a predictable process, andξ ∈ L2(P ∗
St
),

(b) η is adapted,

(c) V = ξS + η has right continuous paths and satisfies,
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Vt ∈ L2(P ∗), (0 ≤ t ≤ T ).

Condition (a) allows to calculate the accumulated gain derived from the stock price
fluctuation up to timet as the stochastic integral:

∫ t

0

ξsdSs, 0 ≤ t ≤ T. (2.26)

For fixedt, the gain has expectationE∗
[

∫ t

0
ξsdSs

]

= 0 and variance

E∗

[

(
∫ t

0

ξsdSs

)2
]

= E∗

[
∫ t

0

ξ2sd 〈Ss〉s

]

. (2.27)

Viewed as a stochastic process, Eqn. (2.26) defines a square-integrable martingale with
right-continuous paths. The accumulated cost of the strategy up to timet can now be
defined as

Ct = Vt −

∫ t

0

ξsdSs. (2.28)

Here,V = (Vt)0≤t≤T andC = (Ct)0≤t≤T are adapted processes with right-continuous
paths; they are called thevalue processand thecost process.

• A strategyϕ= (ξ, η) is calledmean-self financingif the corresponding cost pro-
cessC = (Ct)0≤t≤T is a martingale.

Remark: [63] A strategyϕ= (ξ, η) is called mean-self financing if the cost process
has constant paths, i.e., if

Ct ≡ C0, P ∗ − a.s., 0 ≤ t ≤ T. (2.29)

Any self-financing strategy is clearly mean-self-financing. For a self-financing strat-
egy, the value process is of the form

Vt = C0 +

∫ t

0

ξsdSs, 0 ≤ t ≤ T, (2.30)

hence a square-integrable martingale. Self-financing strategy is the key toll in the anal-
ysis of option pricing in complete security markets. But in many situations, security
markets are incomplete in the sense that there may not be any self-financing strategy
which allows to realize a pre-assigned terminal valueVT = H. This is the reason why
we introduce the broader concept of a mean-self financing strategy. It is stated in the
following lemma, the value process of a mean-self financing strategy is again a mar-
tingale. but in general we cannot expect that this martingale can be represented as a
stochastic integral with respect toSt as in Eqn. (2.30).
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Lemma 2.1. [92] A strategy is mean-self-financing if and only if its value process is
a square-integrable martingale.

The intrinsic risk of contingent claims

Let us fix a contingent claimH ∈ Ψ2(P ∗). Here,H could be a call option of the form
H = (ST − C)+.

From different sources we know that, a strategy is called admissible in regard toH if
its value process has terminal value

VT = H, P ∗ − a.s.

For any admissible strategyϕ= (ξ, η), the terminal cost is given by

CT = H −

∫ T

0

ξsdSs.

In particular, the expected value,

E∗[CT ] = E∗[H], (2.31)

does not depend on the specific choice of the strategy as long as it is admissible. Lets
determine all admissible strategies which minimize the variance

E∗
[

(CT − E∗[H])2
]

; (2.32)

the second step will consist in replacing Eqn. (2.32) by a sequential procedure. In view
of Eqn. (2.32), let us write the claimH in the form

H = E∗[H] +

∫ T

0

ξ∗sdSs +H∗, (2.33)

with ξ∗ ∈ L2(P ∗
St
) whereH∗ ∈ L2(P ∗) has expectations zero and is orthogonal to

the space
{

∫ t

0
ξsdSs|ξ ∈ L2(P ∗

St
)
}

of stochastic integrals with respect toSt for the

existence and uniqueness of this representation.

Theorem 2.2. [92] An admissible strategyϕ= (ξ, η) has minimal variance

E∗
[

(CT − E∗[H])2
]

= E∗
[

(H∗)2
]

, (2.34)

if and only ifξ = ξ∗.

So far one can draw no conclusion concerning the processη = (ηt)0≤t≤T , except that
it must make the strategy admissible, i.e., to put

ηt = H − ξTST . (2.35)
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One can now show that a sharper formulation of problem Eqn. (2.32) determines a
unique admissible strategyϕ∗ = (ξ∗, η∗) which has minimal risk in a sequential sense.
Consider any strategyϕ = (ξ, η). Just before timet < T we have accumulated cost
Ct− . The strategy tells us how to proceed at and beyond timet. In particular, it fixes
the present costCt and determines the remaining costCT − Ct. Let us measure the
remaining risk by

Rϕ
t = E∗

[

(CT − Ct)
2|Ft

]

. (2.36)

In view of Eqn. (2.36), we might want to compareϕ to any other strategỹϕ which
coincide withϕ at all times< t and which leads to the same terminal valueVT . Let us
call such aϕ̃ anadmissible continuationof ϕ at timet.

Definition 2.1.

A strategyϕ is defined risk-minimizing ifϕ at any time minimizes the remaining risk,
i.e., for any0 ≤ t < T , we have

Rϕ
t ≤ Rϕ̃

t , P ∗ − a.s., (2.37)

for every admissible continuatioñϕ of ϕ at time t.

Remark:

1 Any self-financing strategyϕ can be naturally identified as risk-minimizing since
Rϕ

t ≡ 0.

2 Suppose thatϕ= (ξ, η) is a risk-minimizing strategy which is also admissible. Then
ϕ is in particular a solution of problem Eqn. (2.32). In fact, Eqn. (2.37) witht = 0
implies thatϕ minimizes

E∗
[

(CT − C0)
2] = E∗

[

(CT − E∗[CT ])
2]+ (E∗[CT − C0])

2. (2.38)

Thus,ξ minimizes the variance ofCT and this impliesξ = ξ∗. In addition, following
condition is obtained by F̈ollmer [36]:

η0 = C0 − ξ∗0S0 = E∗[H]− ξ∗0S0. (2.39)

Let us denote byV ∗ = (V ∗
t )t a right-continuous version of the square-integrable mar-

tingale

V ∗
t = E∗[H|Ft], 0 ≤ t ≤ T. (2.40)

To the representation Eqn. (2.33) of the claimH corresponds the following sequential
representation ofV ∗:
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V ∗
t = V ∗

0 +

∫ t

0

ξ∗sdSs +N∗
t , (2.41)

whereN∗
t = E∗[H∗|Ft] is a square-integrable martingale with zero expectation which

is orthogonal toX in the following sense.

Remark:

Two square-integrable martingalesM1 andM2 are defined as orthogonal if their prod-
uctM1M2 is again a martingale, and this is equivalent to the condition

〈M1,M2〉 =
1

2
(〈M1 +M2〉 − 〈M1〉 − 〈M2〉) = 0. (2.42)

The processR∗ = (R∗
t ), defined as a right continuous version of

R∗
t = E∗

[

(N∗
T −N∗

t )
2|Ft

]

= E∗ [〈N∗〉T |Ft]− 〈N∗〉t , (2.43)

will be called theintrinsic risk processof the claimH. The expectationE∗[R∗
0] coin-

cides with the minimal variance calculated in Eqn. (2.34); let us call it theintrinsic risk
of the claim.

Theorem 2.3. [92] (2) There is a unique admissible strategyϕ∗ that is risk-minimizing,
namely

ϕ∗ = (ξ∗, V ∗ − ξ∗St). (2.44)

For this strategy, the remaining risk at any timet ≤ T is given by

Rφ∗

t = R∗
t , P ∗ − a.s. (2.45)

As a special case of above theorem the following characterization of attainable contin-
gent claims is obtained.

[92] 1 The risk minimizing admissible strategyϕ∗ is self-financing.

2 The intrinsic risk of the contingent claimH is zero.

3 The contingent claimH is attainable, i.e.,

H = E∗[H] +

∫ T

0

ξ∗sdSs, P ∗ − a.s. (2.46)

Changing the Measure

In this part, we will see how the risk-minimizing strategy isaffected by an absolutely
continuous change of the underlying martingale measure. Let P be any martingale
measure which is absolutely continuous with respect toP ∗. Thus, the processSt is
again a square integrable martingale underP . Also assume that contingent claimH ∈
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L2(P ∗) is again square-integrable underP . Then, the representation Eqn. (2.41) and
the Theorem 2.21, applied toP instead ofP ∗, show that the risk-minimizing strategy
underP is given byϕ= (ξ, V − ξV ), with

Vt = E[H|Ft] = V0 +

∫ t

0

ξsdSs +Nt. (2.47)

In order to simplify the exposition is added the technical assumption

ξ∗ ∈ L2(PSt
).

WhileSt is again a martingale underP , the martingale property of(N∗
t )t in Eqn. (2.41)

may be lost. In general, we have the Doob decomposition

N∗ =M + A,

whereM = (Mt)t is a martingale underP andA = (A)t is a predictable process with
A0 = 0 and with right-continuous paths of bounded variation. Belowintroduced the
predictable processesξM andξA defined by

〈M,St〉t =

∫ t

0

ξMs d 〈Ss〉s, 0 ≤ t ≤ T, (2.48)

and
〈

MA, St

〉

t
=

∫ t

0

ξAs d 〈Ss〉s, 0 ≤ t ≤ T, (2.49)

whereMA denotes a right-continuous version of the martingale

MA
t ≡ E[AT |Ft], 0 ≤ t ≤ T. (2.50)

Theorem 2.4.The risk minimizing strategy underP is given byϕ= (ξ, V − ξV ) with

ξ = ξ∗ + ξM + ξA, Vt = V ∗
t +MA

t − At, 0 ≤ t ≤ T. (2.51)

If bothM andMA are orthogonal toSt, then we haveξ = ξ∗.

Remark:

(1) If St is a martingale with continuous paths, then〈M,St〉 can be evaluated pathwise
as a quadratic variation and coincides with〈N∗, St〉 = 0 P ∗-a.s. This impliesξM =
0 PSt

-a.s., hence
ξ = ξ∗ + ξA.

(2) If P is a martingale measure in the stricter sense that it also preserves the martingale
property ofN∗, then we haveA = 0, hence,
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ξ = ξ∗ + ξM ,

and
Vt = V ∗

t .

If St has continuous paths then we can conclude, due to remark (1),that the risk mini-
mizing strategy is completely preserved.

(3) ξ = ξ∗ may occur even if the martingale property ofN∗ is lost underP .
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2.5 Modeling Dependence with Pseudo-Gompertz Distribution

The most important element in risk modeling in the fields of finance and insurance
are the uncertainty related to the future life expectanciesand survival rates of policy
holders. Based on the future lifetime or the death of the policyholder high risk of
non-payment of loans or insurance premiums is the main risk that financial institution
carries. The death of the loan owner is a financial loss for thecredit organization. Un-
expected mortality cuts the payment stream of planned credit installments. Likewise,
the unexpected mortality of policyholder in life insuranceagreements which do pay-
ments in case of death may end up in extra loss if the death actualizes before actuarially
planned and waited time. This is true for the case when insurance payment amount at
the end of the term is over the allocated reserve amount.

Main tools in such situations for risk diversification or loss preventing are correct hedg-
ing strategies or reinsurance agreements. Most famous books which study the above
mentioned concepts of risk mitigation for finance and actuarial fields are [57, 9].

One of the key and most important risk reduction approaches in insurance theory is
accurate modeling of dependence between lifetimes of insureds. Because, in reality,
there is a dependency pattern between life times and this dependence is significant for
most of the situations.

Correct and appropriate choice of joint distribution for lifetimes have a wide research
field in literature. For modeling dependence we use Pseudo Gompertz distribution
which is the one of most preferred distributions for modeling of joint lifetimes, whose
details are given in the upcoming subsection.

2.5.1 Description and Main Functions

Among the probability distribution functions which is usedfor the modeling of life-
times the Gompertz distribution is a most preferred one. TheGompertz like distri-
butions are used for construction of life tables for human beings. One can say that,
for the interpretation of mortality rates mainly used by authors and empirically legit
parametric probability distribution is the Gompertz distribution.

For expression of the dependence betweenX andY a bivariate distribution function
F (x, y) can be used for a pair of random variables(X, Y ). WhenX or Y is related
by a real-valued functionφ(̇), then the distribution that can be derived fromF (x, y)
is a pseudo-distribution withφ(̇) which includes set of parameters. Here,φ(̇) have to
satisfy all the conditions which pseudo-distribution has to be a probability distribution.

The first researches related to a pseudo-distribution were done in60th, which consid-
ering about reformulating distinct parameters of a probability function. Garsia [38] in
his paper investigates The Wishart distribution under singularity. With dealing of the
singularity elements pseudo-Wishart distributions are derived as well.

The work of Adham [3] by investigating the bivariate Gompertz distribution is de-
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rives a Gompertz sort distribution by the help of the relatedfunctions which is linking
appropriate random variables among themselves.

A general form of the Gompertz distribution was investigated and introduced in Willemse
[98] by some parametrization. This allows to apply several survival models with empir-
ically verifiable hazard schemes. That is why, the usage of the theory and approaches
related with the Gompertz distribution was increased and different methods are inves-
tigated by adding to the literature valuable researches.

For the cases where an actual distribution cannot be used, Filus [33] analyzed and in-
vestigated in his paper another set of pseudo-distributions for linear combinations of
random variables for the statistical applications. Afterwards, another pseudo-distributions
have been investigated and proposed by the same way. Following, the pseudo distri-
butions obtained by Shahbaz [94, 93], a bivariate-Gompertzdistribution is obtained in
Yörübulut and Gebizliöglu [100], as presented below.

The Gompertz distribution with parametersλ andµ1 for a random variableX has the
following density function

fX(x;λ, µ1) = λeµ1x exp
[

− λ
µ1
(eµ1x − 1)

]

,

µ1 > 0, λ > 0, x > 0.
(2.52)

Consider that other random variableY has a Gompertz distribution with parameters
φ(x) andµ2 as well, whereφ(x) is a real valued function of the random variableX.
For the definition of the density function ofY following equation could be used:

fY |X=x(y;φ(x), µ2|x) = φ(x)eµ2y exp
[

−φ(x)
µ2

(eµ2y − 1)
]

,

µ2 > 0, φ(x) > 0, y > 0.
(2.53)

With the help of the marginal density defined in the previous two equations, the com-
pound distribution ofX andY with the following density function can be derived
which is the bivariate Pseudo Gompertz distribution,

f(x, y) = λφ(x)eµ1xeµ2y exp
[

− λ
µ1
(eµ1x − 1)− φ(x)

µ2
(eµ2y − 1)

]

,

µ1 > 0, µ2 > 0, λ> 0, φ(x) > 0, y > 0, x > 0,
(2.54)

which comes from

f(x, y) = fx(x;λ, µ1)fY |X=x(y;φ(x), µ2|x). (2.55)

From above general form of the density function several distributions can be obtained
depending on different choices ofφ(x) function. In the study of Yorubulut and Gebizli-
oglu [100] the below given form of bivariate Pseudo-Gompertz distribution is derived
by Adoptingφ(x) = eµ1x − 1:

f(x, y) = λ(eµ1x − 1)eµ1xeµ2y exp
[

−(eµ1x − 1)
(

λ
µ1

+ (eµ2y−1)
µ2

)]

,

µ1, µ2, λ, y, x > 0.
(2.56)
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The functionφ(x) could be chosen by the researchers according to the needs of model-
ing. The condition thatF (x, y) =

∫

x

∫

y
f(x, y)dydx have to have to all the properties

to be a probability distribution function.

The marginal distributions ofX andY are derived from equation Eqn. (2.54) as

f(x) = λeµ1x exp

[

−
λ

µ1

(eµ1x − 1)

]

(2.57)

and

f(y) = eµ2y
λ

µ1

(

λ

µ1

+
(eµ2y − 1)

µ2

)−2

. (2.58)

The joint distribution function corresponding toF (x, y) in Eqn. (2.54) is

F (x, y) =

∫ y

0

∫ y

0

λ(eµ1x − 1)eµ1xeµ2y exp

[

−(eµ1x − 1)

(

λ

µ1

+
(eµ2y − 1)

µ2

)]

dxdy

(2.59)

F (x, y) = λ
µ1

[

exp
(

(eµ2y−1)
µ2

−eµ1x
(

(eµ2y−1)
µ2

+ λ
µ1

)

+ λ
µ1

)

−1
]

(
(eµ2y−1)

µ2

+ λ
µ1
) +

(

1− exp
(

− λ
µ1
(eµ1x − 1)

))

.
(2.60)

The joint survival function, that follows from Eqn. (2.55) above, is

S(x, y) = 1− F1(x)− F2(y) + F (x, y), (2.61)

whereF1(x) andF2(y) are the marginal distribution function ofX andY , respectively.
This functions are derived for the bivariate Pseudo Gompertz distribution:

F1(x) = lim
y→∞

F (x, y) = 1− exp

(

−
λ

µ1

(eµ1x − 1)

)

(2.62)

and

F2(x) = lim
x→∞

F (x, y) = 1−
λµ2

µ1(eµ2y − 1) + µ2λ
. (2.63)

The appropriate joint survival function is obtained as [100] for the joint and marginal
distribution functions:
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S(x, y) =
λµ2

µ1(eµ2y − 1) + µ2λ
exp

[

(eµ2y − 1)

µ2

− eµ1x

(

(eµ2y − 1)

µ2

+
λ

µ1

)

+
λ

µ1

]

.

(2.64)
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CHAPTER 3

HEDGING STRATEGIES FOR MULTIPLE LIFE UNIT
LINKED INSURANCE POLICIES USING CPPI APPROACH

3.1 The Model

In this section the two main parts of the model, which are the financial market and a
portfolio of individuals to be insured, are introduced, starting with the financial market
and then defining the insurance portfolio. For financial portfolio we use Constant
Proportion Portfolio Insurance approach and assume that stock price process is a Levy
Jump diffusion. Then, we define our insurance portfolio for multiple life policies. We
prefer to choose joint life and last survival cases. For the financial portfolio we mainly
refer to [88, 26, 48, 46, 49, 13, 10, 51, 12, 15, 61, 83], for insurance part we refer
to [56, 80, 16, 40] and for risk minimization concept we use following references [31,
99, 92, 87].

3.1.1 The Financial Market: Constant Proportion Portfolio In surance with Jump
Diffusion

As we mentioned in the first chapter in the CPPI strategy an investor invests in a port-
folio and wants to protect the portfolio value from falling below a pre-assigned value.
The investor shifts his asset allocation over the investment period among a risk-free
asset plus a collection of risky assets [99].

Consider the jump-diffusion process withYn > −1, representing the percentage of
jump-size, i.e.,STn

= ST−

n
(1 + Yn). Between two jumps, we assume that the risky

asset model follows the Black and Scholes model. The number ofjumps up to timet
is a Poisson processesNt with intensityλt. Our model becomes

St = S0 exp

[

∫ t

0

(µs −
σ2
s

2
)ds+

∫ t

0

σsdWs +
Nt
∑

n=1

ln(1 + Yn)

]

. (3.1)

We usually assume that theln(1 + Yn) are i.i.d. with density functionfQ.

For our jump-diffusion model defined by (3.1), consider a predictableFt processψt
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such that
∫ t

0
ψtλtds <∞. Chooseθt andψt such that

µt + σtθt + Ytψtλt = rt ψt ≥ 0. (3.2)

Define,

Łt = exp

[
∫ t

0

[

(1− ψs)λs −
1

2
θ2s

]

ds+

∫ t

0

θsdWs +

∫ t

0

lnψsdNs

]

, (3.3)

for t ∈ [0, T ] and a Radon-Nikodym derivative to be

dQ

dP
= LT . (3.4)

Then,Q is a risk neutral measure or martingale measure, i.e., a measure under which

S̃t = exp
[

−
∫ t

0
rsds

]

St is a martingale.

The CPPI strategy is based on a dynamic portfolio allocation on two basic assets: a
riskless asset and a risky asset. At timet the exposureet is equal to the cushionCt

multiplied by the scalarm. The cushionCt is defined as the difference between the
portfolio valueVt and the floorFt. Here,Ft = G exp[−r(T − t)], whereG is the
floor at timeT . Because of the existence of jumps, it is possible to have the case that
the portfolio value is less than the floor. Then, the cushion will be negative, and so it
will be the exposure. That means that short-selling should be allowed. The following
proposition describes the portfolio value under this strategy.

Denote portfolio value asVt. It consists riskless assetVt −mCt and risky assetmCt,
i.e., Vt = mCt + (Vt − mCt). Let the interest rate ber and the floor at timet be
Ft = F0e

rt = FT e
−r(T−t).

Name Notation
Interest Rate r
Time t
Time Period [0, T ]
Floor at timet Ft

Portfolio Value Vt
Cushion at timet Ct

Multiple m
Exposure at timet et
Riskless asset at timet Bt

Table 3.1: General Notations.

Their relationship are as follows:

Ct = Vt − Ft,

et = mCt,
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Bt = Vt − et.

Some Useful Results[97]:

1. Result:

The CPPI portfolio value under the jump-diffusion model defined by (2.1) is

Vt = C0 exp

[
∫ t

0

(

r +m(µs − r)−
m2σ2

s

2

)

ds+

∫ t

0

mσsdWs

]

[

Nt
∏

n=1

(1 +mYn)

]

+Ft,

(3.5)
where

C0 = (V0 −Ge−rT ),

and
Ft = G exp (−r(T − t)).

The expectation and variance of the CPPI portfolio value are deduced in the following
two results. These are obviously two important values to describe the CPPI strategy in
our jump-diffusion model.

2. Result:

The expected CPPI portfolio value at timet under the jump-diffusion model is

E[Vt] = C0 exp

[
∫ t

0

(r +m(µs − r))ds

] ∞
∑

k=1

e−
∫ t

0 λsds(
∫ t

0
λsds)

k

k!
E

[

k
∏

n=1

(1 +mYn)

]

+Ft.

(3.6)

3. Result:

The variance of the CPPI portfolio value at timet under jump-diffusion model is,

var[Vt] = var[Ct]

= C2
0 exp

{

∫ t

0
2[r +m(µs − r) +m2σ2

s ]ds
}

∑∞
k=1E

[

∏k
n=1 (1 +mYn)

]2

×

×
e−

∫ t
0 λsds(

∫ t

0 λsds)k

k!
−

[

exp
{

∫ t

0
[r +m(µs − r)]

}

ds
∑∞

k=1

e−
∫ t
0 λsds(

∫ t

0 λsds)
k

k!
×

×E
[

∏k
n=1(1 +mYn)

]2

.

(3.7)

The Time Varying Multiple Case

In previous part we saw the case where the multiple is a function of time. Letmt be the
multiple at timet. The conclusion does not change substantially in comparison with
the constant case.
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4. Result:

When the multiple is a function of time at timet, the CPPI portfolio value under the
jump-diffusion model is

Vt = C0 exp

[
∫ t

0

(

r +ms(µs − r)−
m2

sσ
2
s

2

)

ds+

∫ t

0

msσsdWs

]

[

Nt
∏

n=1

(1 +mnYn)

]

+Ft,

(3.8)
wheremn is obtained frommt by the formulamn = mTn

, whereT0 = 0.

5. Result:

When the multiple is a function of time at timet, the expected CPPI portfolio value
under the jump-diffusion model is

E[Vt] = C0 exp

[

∫ t

0

(r +ms(µs − r))ds
∞
∑

k=1

e−
∫ t

0 λsds(
∫ t

0
λsds)

k

k!
E

[

k
∏

n=1

(1 +mnYn)

]]

+ Ft.(3.9)

6. Result:

When the multiple is a function of a time at timet, the variance of the CPPI portfolio
value under jump-diffusion model is,

var[Vt] = var[Ct]

= C2
0 exp

{

∫ t

0
2[r +ms(µs − r) +m2

sσ
2
s ]ds

}

∑∞
k=1E

[

∏k
n=1 (1 +mnYn)

]2 e−
∫ t
0 λsds(

∫ t

0 λsds)k

k!

−

[

exp
{

∫ t

0
[r +ms(µs − r)]

}

ds
∑∞

k=1

e−
∫ t
0 λsds(

∫ t

0 λsds)k

k!
E
[

∏k
n=1 (1 +mnYn)

]

]2

.

(3.10)

3.1.1.1 CPPI Portfolio as a Hedging Tool

CPPI Portfolio could be used for hedging purposes. Consider that η = g(ST ) is a
contingent claim that the investor is going to have at the termination date. Question
here is, if the CPPI portfolio can be converted into a synthetic derivative with terminal
value which can be specified byη = g(ST )?

Theorem 3.1. [97] If g : R → R is a sufficiently smooth function, there is a unique
self-financedg(ST ) hedging CPPI portfolioV , defined by

Vt = ν(t, St), t ∈ [0, T ], (3.11)
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whereν ∈ C1,2([0, T ] × R) is the unique solution of the following partial integro-
differential equations:

∂u

∂t
(t, s) + (µts)

∂u

∂x
(t, s) +

1

2
(sδt)

2∂u
2

∂x2
(t, s)− ru(t, s) = 0, (3.12)

sz
∂u

∂x
(t, s) = u(t, s+ sz)− u(t, s), (3.13)

u(T, s) = g(s), (t, s) ∈ [0, T ]×R, u ∈ C1,2([0, T ]×R). (3.14)

Here, ∂u
∂x

is the partial derivative to the second variable. In particular the CPPI port-
folio’s gearing factor is given by:

mt =
∂u
∂x
(t, St)St−

Vt− − Ft

, t ∈ [0, T ]. (3.15)

Theorem 3.2. [97] Under the risk neutral measureQ, the discounted CPPI portfolio’s
valueVt ∈ [0, T ],

Ṽt = e−rtVt, t ∈ [0, T ], (3.16)

is a martingale.

Given any claimη = g(VT ) which is a function of the terminal portfolio’s price, there
is a unique self-financedη = g(VT ) - hedging strategy.

Theorem 3.3. [97] Let g : R → R sufficiently smooth. There is a uniqueη = g(VT )-
hedging self financed trading strategy(U, η), defined as

Ut = u(t, Vt), ηt− =
∂u

∂x
(t, Vt), t ∈ [0, T ], (3.17)

whereu ∈ C1,2([0, T ]XR) is the solution of the following partial integro-differential
equation:

∂u

∂t
(t, ν) + rν

∂u

∂x
(t, ν) +

1

2
m2δ2t (ν − f)

∂2u

∂x2
(t, ν)− ru(t, ν) = 0, (3.18)

mz(ν − f)
∂u

∂x
(t, ν) = u(t, ν +m[ν − f ]z)− u(t, ν), (3.19)

with the final conditionu(T, ν) = g(ν).
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3.1.2 The Insurance Portfolio: Multiple Life Contracts

In this section of the thesis a model will be introduced to represent the lifetimes in
a group of policyholders. During our research we realized that all of the authors for
simplicity considered the mutually independent and identically distributed lifetimes.
(list of authors M̈oller, Riesner, Devolder, etc.) The i.i.d. assumption implies that the
policyholders are chosen among a cohort of same agex. The number of persons in the
group is denoted bylx . In particular, mathematically, this is interpreted by representing
the policyholders future lifetimes as a sequenceT1, T2, ..., Tlx of i.i.d. non-negative
random variables defined on(Ω, G,P). For getting the survival function below one
should assume that the distribution ofTi is absolutely continuous with hazard rate

function µx+t, tpx = P (Ti > t) = exp
(

−
∫ t

0
µx+τdτ

)

.Now, define a univariate
process,

N = (Nt)0≤t≤T , (3.20)

counting the number of death in the group;

Nt =
lx
∑

i=1

1Ti≤t, (3.21)

and denote by
H = (Ht)0≤t≤T (3.22)

the natural filtration generated byN , i.e.,

Ht = σ(Nu, u ≤ t). (3.23)

By definition,N is right continuous with left limits which means it is cadlag. On
the other hand since, the lifetimesTi are i.i.d., these two conditions implied that the
counting processN is anH-Markov process. Here,λ which is defined as the intensity
process of the counting processN can be defined by [61]

E[dNt|Ht− ] = (lx −Nt−)µx+tdt ≡ λtdt, (3.24)

which is the hazard rate functionµx+t times the number of individuals under exposure
just before timet. As a result the compensated counting processM presented by

Mt = Nt −

∫ t

0

λudu, (3.25)

is anH-Martingale [61].

We will define two types of dependence for insureds as given intwo following sub-
sections.

3.1.2.1 Joint Life and Last Survival Models

Consider the case of two lives with the age ofx andy and whose future lifetimes is
denoted byTx andTy. Then the joint cumulative distribution function is definedas:

FTx,Ty
(s, t) = Pr(Tx ≤ s, Ty ≤ t), (3.26)
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the joint density function is

fTx,Ty
(s, t) =

∂2FTx,Ty
(s, t)

∂s∂t
(3.27)

and the joint survival distribution function is

STx,Ty
(s, t) = Pr(Tx > s, Ty > t). (3.28)

3.1.2.2 Joint Life Model

In this type of the agreement benefit payment is considered for the first death occur-
rence. In case of the two lives representation will be as follows:

Txy = min(Tx, Ty). (3.29)

The cumulative distribution function for above case will beas follows,

FTxy
(t) =t qxy = Prmin (Tx, Ty ≤ t) = 1− Pr(Tx > t, Ty > t) = 1− STx,Ty

(t, t)
(3.30)

FTxy
(t) = 1−t pxy, (3.31)

where

tpxy = Pr(Tx > t, Ty > t) = STxy
(t) (3.32)

is the probability that both lives(x) and(y) survive aftert years. The force of mortality
is given by,

µx+t:y+t =
fTxy(t)

1− FTxy(t)

=
fTxy(t)

STxy(t)

=
fTxy(t)

tpxy
. (3.33)

The density ofTxy can be formulated as follows:

fTxy(t)=t
pxyµx+t:y+t. (3.34)

For joint life status the counting processN j
t is as follows:

N j
t =

p
∑

i=1

1min (Txi
,Tyi

)≤t =

p
∑

i=1

{1Txiyi
}, (3.35)

wherep states for the number of policies. We assume that policies are independently
and identically distributed.

We defineI = (It)0≤t≤T the natural filtration generated byN j, N j is cadlag, and,
since the policies are i.i.d., the counting processN j is anI-Markov process. Also, we
can define the expectation underI as follows:

E[dN j
t |It− ] = (p−N j

t−)µx+t:y+tdt, (3.36)
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and the compensated counting processM is defined by

M j
t = N j

t −

∫ t

0

λjudu, (3.37)

which is anI Martingale.

3.1.2.3 Last Survival Model

This model describes and states the condition where the insurance benefits are paying
in case of the death of all members and at the last death. In case of the two lives in
policy: : Txy = max(Tx, Ty).

The relationship amongTxy, Txy andTy, is given by:

Txy + Txy = Tx + Ty, (3.38)

TxyTxy = TxTy. (3.39)

For distribution ofTxy we can use the following relationship:

FTxy
(t) + FTxy

(t) = Fx(t) + Fy(t), (3.40)

STxy
(t) + STxy

(t) = Sx(t) + Sy(t), (3.41)

tpxy +t pxy =t px +t py, (3.42)

fTxy
(t) + fTxy

(t) = fx(t) + fy(t), (3.43)

and
FTxy

(t) = Fx(t) + Fy(t)− FTxy
(t) = FTxTy

(t) = FTxTy
(t, t), (3.44)

From
FTxy

(t) = Pr(Tx ≤ t ∩ Tx ≤ t) (3.45)

is follows thattpxy is the probability that both(x) and(y) will survive aftert years,
and that

tpxy is the probability that at least one of the(x) and(y)’s will survive aftert years.

Force of mortality can be stated as

µx+t:y+t =
fTxy(t)

1− FTxy(t)

=
fTxy(t)

STxy(t)

=
fTxy(t)

tpxy
. (3.46)

For last survival status the counting process that we define is as follows:

N l
t =

p
∑

i=1

1max (Txi
,Tyi

)≤t =

p
∑

i=1

1Txiyi
. (3.47)
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The filtrationI = (It)0≤t≤T could be used also forN l, and its expectation is given by

E[dN l
t |It− ] = (p−N l

t−)µx+t:y+tdt. (3.48)

For the last survival status at timet the compensated process ofN l
t is

M l
t = N l

t −

∫ t

0

λludu, (3.49)

which is anI -martingale.

3.1.3 The Combined Model

In this section we describe the combined portfolio which is defined as the combination
of the financial and the insurance portfolios. We introduce the filtrationC which is
developed by the above mentioned two portfolios,

C = (Ct)0≤t≤T , (3.50)

as
Ct = Ft ∨ It. (3.51)

We assume that these two filtrations are independent and take,

C = FT ∨ IT , (3.52)

and
Ft = σ(Su, u ≤ t), (3.53)

It = [σ(I(Txi
≤ t)) ∨ σ(I(Tyi ≤ t)), 0 ≤ t ≤ T, i = 1, 2, ..., n] . (3.54)

One of the basic insurance contracts which is the term insurance, is chosen to be an-
alyzed in this thesis. The term insurance says that the benefit payments are payable
immediately in case of the death occurrence before maturitytime T . For the contin-
gent claim for this case, a time dependent contract functiongt = g(t, Vt) is consid-
ered. According to the definition of the agreement, the amount can be paid at any
moment within[0, T ] and liabilities stemmed from such agreements can not formulate
T -claims, only by introduction of specific assumptions. In order to transform the lia-
bilities to theT -claim, it is important to consider that all payments were deferred to the
term of the agreement and were grown the riskless interest ofreturn which is equal tor.
According to the special construction, if the insured passed at timet the beneficiaries
of the policy will get the benefit amount equal tog(t, Vt)BTB

−1
t at timeT . A different

way of accumulation of the deferred payments is the utilization of some deterministic
first order interest rateδ or by making investmentg(t, Vt) as per the predefined strat-
egy. Especially for the agreements with short time periods,it can be most reasonable
to modify the agreements by deferring the payments. Howevereven if the time periods
accompanied with traditional life insurance agreements usually prolongs more, it will
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be considered the benefits are factually deferred to the insurance agreement termina-
tion date. So, the insurance companies liabilities with regard to the portfolio of term
insurance agreements with payments that are postponed and grew by the utilization of
the riskless asset are now shown with the help of the discounted generalT -claim.

For the joint-life status it will be as follows:

Hj
T = B−1

T

p
∑

i=1

g(Ti, VTxiyi
)B−1

Ti
BT1{min (Txi

,Tyi
)≤t}, (3.55)

and it can be reformulated as an integral with respect to the counting processN j by

Hj
T =

∫ T

0

g(s, Vs)B
−1
u dN j

u. (3.56)

For the last-survival status it will be

H l
T = B−1

T

p
∑

i=1

g(Ti, VTxiyi
)B−1

Ti
BT1{max (Txi

,Tyi
)≤t}, (3.57)

and it can be reformulated as an integral with respect to the counting processN l:

H l
T =

∫ T

0

g(s, Vs)B
−1
u dN l

u. (3.58)

Premium for one policy at timet = 0:

EQ[e−rT
′

g(T
′

, VT ′ )1{T
′
<T}],

whereT
′

is the (random) payment date,Vt is the CPPI portfolio value,g(t, Vt) is the
payoff function andT is the maturity of the contract. If

g(t, Vt) = Vt,

then
EQ[e−rT

′

g(T
′

, VT ′ )1{T
′
<T}] = V0P (T

′

< T ),

sincee−rtVt is a martingale underQ. So the premium is available in closed form.

Due to the gap risk, which is caused by the presence of the jumps, it may be true that
Vt < Ft for some0 < t ≤ T , whereFt denotes the floor. So, it is sensible to consider
g(t, Vt) = max(Vt, Ft) as the claim of the contract. Since,

max (Vt, Ft) = (Ft − Vt)
+ + Vt,

the premium for joint life status is

EQ[e−rT
′

g(T
′

, VT ′)1{min (Tx,Ty)≤T ′}] = EQ[e−rT
′

(FT ′−VT ′ )+1min (Tx,Ty)≤t]+V0P (T
′

< T )
(3.59)
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and, for the last survival,

E
Q[e−rT

′

g(T
′

, VT ′ )1{max (Tx,Ty)≤T
′
}] = EQ[e−rT

′

(FT
′−VT ′ )+1{max (Tx,Ty)≤t}]+V0P (T

′

< T ).
(3.60)

For the calculation of the first term, Monte-Carlo simulationis required. For a small
multiplierm, it will be close to zero.

A question related to the gap risk: What happens whenVt < Ft ? Do we allow
shortselling by settinget = m(Vt − Ft) < 0, or allocate all the investment to the
riskless asset by settinget = 0 ?

Joint Life and Last Survival

We need to calculateP (T
′

< T ). Let X, Y : be random life times of two lives
T

′

: be the time until payment given that the current ages areu and v, i.e., T
′

=
min (X − u, Y − v).

Let t denote the time of first death and we are interested in distribution ofT
′

. The cdf
FT

′ (t) = P (T
′

< t) is given by

1− P (X > u+ t, Y > v + t|X > u, Y > v) = 1−t puv, (3.61)

for joint life and

P (X < u+ t, Y < v + t)|(X > u, Y > v), (3.62)

for last survival.

Above probabilities are available in closed form. The first one is

tpuv = P (X > u+t, Y > v+t|X > u, Y > v) =
P (X > u+ t, Y > v + t)

P (X > u, Y > v)
, (3.63)

tpuv =
S(u+ t, v + t)

S(u, v)
, (3.64)

whereS(u, v) is the joint survival function. Also,

P (X < u+ t, Y < v + t|X > u, Y > v) =
P (u < X < u+ t, v < Y < v + t)

P (X > u, Y > v)
.

(3.65)
Here,

P (u < X < u+t, v < Y < v+t) = F (u+t, v+t)−F (u+t, v)−F (u, v+t)+F (u+t, v+t),
(3.66)

whereF (u, v) is the joint cdf given by Eqn. (10) in Ÿorubulut and Gebizlioglu [100].

The section is ended with the discussion of selection of martingale measure in the
combined model. It can be said that for anyI- predictable processh, such thath > −1,
represent a likelihood processI by [61]:

dIt = It−htdMt (3.67)
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and the initial conditionalI0 = 1, granted thatEp[IT ], a new probability measureQ∗

can be determined by
dQ∗

dP
= LT IT , (3.68)

whereLT is given by Eqn. (3.4). Utilizing the definition of the measureQ∗ and the
independence between financial and insurance portfolio underP we can notice thatS∗

which is determined by Eqn. (3.1) is at the same time aQ∗ martingale. Foru < t we
have

EQ∗

[S∗
t |Fu] =

E[S∗
tUTLT |Fu]

E[UTLT |Fu]
=
E[S∗

tUT |Fu]E[LT |Fu]

E[UT |Fu]E[LT |Fu]
= EQ[S∗

t |Fu] = S∗
u,

(3.69)

using thatS∗-martingale, and so eachQ∗ is an equivalent martingale measure. Be-
cause of this non-uniqueness of the equivalent martingale measure, agreements can
not generally be priced uniquely by no-arbitrage pricing theory only.

Since financial and insurance portfolios are independent underQ∗ and, according to
Girsanov theorem, the processesM jh andM lh defined by

M jh
t = N j

t −

∫ t

0

λju(1 + hu)du (3.70)

and

M lh
t = N l

t −

∫ t

0

λlu(1 + hu)du, (3.71)

for joint life and last-survival policies, respectively are (C,Q∗) martingales.

Specific martingale measureQ defined by Eqn. (3.4) is applied, which is also known
as theminimal martingale measure, Schweizer [55, 35]. This particular measure is
mainly applicable for the pricing of unit linked agreements. The reason for using this
measure is insurance companies risk neutrality with regardto mortality [?]. So, it
is assumed that the probability space(Ω, F,Q) endowed with the filtrationF . The
filtration F is equivalently created by theQ-martingalesS∗ andM̄ .

The martingale measureQ∗ could be equally applied to admissible selections ofh.
Here, an analogous result must be obtained in regard to the hazard rate functionµx+t:y+t

for joint life andµx+t:y+t for last survival replaced byµx+t:y+t(1+ht) andµx+t:y+t(1+

ht), andM j, M l replaced byM jh, M lh, respectively. Anyhow, there are martingale
measures and those measures do not keep independence among financial and insurance
portfolios, and such selections of martingale measures will surely complicate investi-
gations in the numerical part.
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3.2 Mean Variance Hedging of Combined Obligations for Term Insurance Poli-
cies

In this chapter, we mainly investigate the hedging concept with mean-variance quadratic
hedging approach. We defineHM as

HM ∈

{

Hj, if Joint life Contract
H l, if Last Survival Contract.

(3.72)

Given a contingent claimHM which is defined by Eqn. (3.78) and Eqn. (3.58) and if
the financial market models do not allow arbitrage opportunities, in a complete market,
HM is attainable, i.e., there is a self-financing strategy withfinal portfolio valueZT =
HM , P -a.s. However, when in our jump-diffusion model, the marketis not complete
and thenHM is not attainable [99]. For our contingent claim our payoff at time T is
HM . Our jump-diffusion model of the risky asset priceS is a semimartingale underP
and the discounted price processS̃ is a martingale underQ. In our case, we consider
HM as a function ofVT and denoteHM = g(VT ). For any martingale measureQ
defined in Eqn. (3.4), we have proved thatṼt = e−rtVt is aQ-martingale. Let us
denote,H̃M

t = e−rtHM . We want to consider the following optimization problem:

min
(Z0,ν)∈R×Θ

EQ

(

H̃M
t − Z0 −

∫ T

0

νudṼu

)2

. (3.73)

We extend following Proposition12.10 from Wang [97] and apply for new contin-
gent claim equations (Eqn. (3.78) and Eqn. (3.58) ) for joint-life and last-survival life
insurance contracts.

Proposition 3.4. The solution of the optimization problem(3.73)is:

Z0 = EQ[H̃M
t ], νt =

σtζx(t, Vt) + ζ(t, Vt + [Vt− − Ft]mtYt)− ζ(t, Vt)Ytλtψt

σt + (Vt− − Ft)mtY 2
t λtψt

.

(3.74)

Define, ζ(t, x) = ertEQ[H̃M |Vt = x] and ζ̃(t, x) = e−rtζ(t, x). By construction,
ζ̃(t, x) is aQ-martingale. It is deduced that

dVt = [rVt− + (Vt− − Ft)mt(µt − r)]dt+ (Vt− − Ft)mtσtdWt + (Vt− − Ft)mtYtdNt

(3.75)
and

dṼt = e−rt[(Vt− − Ft)mtσtdW
Q
t + (Vt− − Ft)mtYtdM

Q
t ]. (3.76)

Proof. Joint Life Contracts:
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We have,

Hj
T = B−1

T

p
∑

i=1

g(Ti, VTxiyi
)B−1

Ti
BT1{min (Txi

,Tyi
)≤t}, (3.77)

and

Hj
T =

∫ T

0

g(s, Vs)B
−1
u dN j

u. (3.78)

We can write expectation formula underQ as follows:

EQ
(

H̃j − Z0 −
∫ T

0
νudṼu

)2

= EQ
(

EQ[H̃j]− Z0 + H̃j − EQ[H̃j]−
∫ T

0
νudṼu

)2

= EQ

[

(

EQ[H̃j]− Z0

)2
]

+ EQ
(

H̃j − EQ[H̃j]−
∫ T

0
νudṼu

)2

.

(3.79)

The optimal value for the initial capital isZ0 = EQ[H̃j].

Defineζ(t, x) = ertEQ[H̃j|Vt = x] andζ̃(t, x) = e−rtζ(t, x). By construction,̃ζ(t, x)
is aQ-martingale. We have deduced that,

dVt = [rVt− + (Vt− − Ft)mt(µt − r)]dt+ (Vt− − Ft)mtσtdWt + (Vt− − Ft)mtYtdNt,
(3.80)

and

dṼt = e−rt
[

(Vt− − Ft)mtσtdW
Q
t + (Vt− − Ft)mtYtdM

Q
t

]

. (3.81)

Then by Ito’s formula we have

dζ̃(t, Vt) = [−re−rtζ(t, Vt) + e−rtζt(t, Vt) + (rVt− + (Vt− − Ft)mt(µt − r))e−rtζx(t, Vt)
+1

2
(Vt− − Ft)

2m2
tσ

2
t e

−rtζxx(t, Vt)]dt+ (Vt− − Ft)mtσte
−rtζx(t, Vt)dWt

+[e−rtζ(t, Vt + [Vt− − Ft]mtYt)− e−rtζ(t, Vt)]dNt

= (Vt− − Ft)mtσte
−rtζx(t, Vt)dW

Q
t

+[e−rtζ(t, Vt + [Vt− − Ft]mtYt)− e−rtζ(t, Vt)]dM
Q
t .

(3.82)

Thus we have

H̃j − EQ[H̃j]−
∫ T

0
νudṼu

= ζ̃(T, VT )− ζ̃(0, V0)−
∫ T

0
νte

−rt
[

(Vt− − Ft)mtσtdW
Q
t + (Vt− − Ft)mtYtdM

Q
t

]

= e−rt[
∫ T

0
(Vt− − Ft)mtσt(ζx(t, Vt)− νt)dW

Q
t

+
∫ T

0
(ζ(t, Vt + (Vt− − Ft)mtYt)− ζ(t, Vt)− νt(Vt− − Ft)mtYt)dM

Q
t ].

(3.83)
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By the Isometry formula, we have,

EQ
(

H̃j − EQ[H̃j]−
∫ T

0
νudṼu

)2

= e−2rt(EQ
[

∫ T

0
[(Vt− − Ft)mtσt(ζx(t, Vt)− νt)

]2

dt

+EQ
[

∫ T

0
[ζ(t, Vt + [Vt− − Ft]mtYt)− ζ(t, Vt)− νt(Vt− − Ft)mtYt]

2λrψtdt
]

).

(3.84)

This is the minimizing problem with respect toνt. Differentiating the above expression
with respect toνt and letting the first order derivative equal to0, we have

(Vt− − Ft)mtσt[ζx(t, Vt)− νt] + [ζ(t, Vt + (Vt− − Ft)mtYt)
−ζ(t, Vt)− νt(Vt− − Ft)mtYt](Vt− − Ft)mtYtλtψt = 0,

(3.85)

thus,

νt =
σtζx(t, Vt) + ζ(t, Vt + [Vt− − Ft]mtYt)− ζ(t, Vt)Ytλtψt

σt + (Vt− − Ft)mtY 2
t λtψt

. (3.86)

Last Survival Contracts: Exactly the same steps above could be applied in this case.
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CHAPTER 4

NUMERICAL IMPLEMENTATIONS

In this chapter, we show some numerical calculations for ourmodel. The Monte-Carlo
simulation method is used for illustrative purposes.

We start from simulation of stock price process which is stock price process with jump
diffusion. In Table 4.1, is provided some simulation results for stock returns. With
different negative and positive jumps returns is showing different patterns. In Table 4.2,
we introduce portfolio return results for different valuesof m. As we mentioned in
chapter1, m is a multiplier, which shows the share of the total capital allocated to
the risky security. Difference between total capital and risky asset is allocated to the
risk-free security. The multiplier is a value (typically between2 and4) which is the
representative of the investor’s risk aversion. We can consider that, the higher the
multiplier, the greater the possibility to invest in the risky asset. This multiplier based
on the risk aversion level of the investor is exogenously defined by the investor at the
start of the investment and stays unchanged during the life of the product. We can see
from our results that with the higher value form, the more the chance to fall under the
floor. Changing the weights for portfolio is based on the market movements, such that
risky asset share will increase after a rise and decrease after the fall in the market. For
continuous trading and where shortselling is allowed by setting borrowing constraint
to p > 0, we can get results which are provided in Tables 4.3 - 4.6 for a120 month
period and for different values ofm. Here,i × j stands for monthly bases values of
portfolio. For the end of the first month, the portfolio valueis 180.1, and for end of the
10th year the portfolio value is246.3, for Table 4.3.

For Contingent claim taken as put option, we simulate option on CPPI portfolio value,
with risk-neutral parameters for the Merton Jump Diffusionmodel we use mainly ref-
erences [37, 90]. Here, the model parameters are given by,σ = 0.126349, λ =
0.174814, a = −0.390078, b = 0.338796 calibrated to a set of77 mid-prices of Euro-
pean call options on theS&P500 Index at the close of the market on18 April 2002.
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Table 4.1: Return over Time for Stock Price Process with Jump Diffusion.

50



(a)m = 1 (b)m = 2

(c)m = 3 (d)m = 4

Table 4.2: Portfolio Values over time for different values of m.
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ixj
180.1 138.7 215.7 245.4 121.4 150.8 200.2 225.6 296.8
159.5 285.9 133.6 161.1 137.5 139.0 155.7 179.4 136.7
125.6 134.1 199.3 161.8 109.6 194.7 116.4 180.9 122.1
125.9 170.7 118.6 208.7 127.1 112.8 160.3 194.4 150.4
108.9 152.3 111.6 106.0 316.9 255.5 159.1 148.4 177.8
254.4 136.3 209.9 161.9 117.1 174.5 254.1 211.3 183.7
132.4 145.0 132.6 123.1 116.9 160.1 161.5 283.0 119.1
179.3 145.8 148.4 156.8 164.7 214.2 128.4 179.4 200.9
233.6 151.5 156.5 210.3 186.0 272.4 125.5 171.3 210.5
169.0 211.8 226.8 123.8 104.9 105.6 123.3 117.5 176.2
112.4 157.1 155.9 133.8 188.0 140.9 112.4 111.7 246.3

Table 4.3: Portfolio Values form = 1 .

ixj
116 132 117 159 100 99 212 165
138 192 100 161 92 182 100 68
55 230 124 465 163 97 87 235
207 99 218 100 285 179 144 230
68 186 92 194 128 245 104 31
103 295 100 126 126 189 176 98
149 36 101 539 102 115 99 110
334 193 174 251 144 289 107 95
123 334 100 98 164 117 837 101
78 103 116 105 93 95 120 104
136 106 109 436 151 92 138 95
83 100 110 390 100 598 89 207

Table 4.4: Portfolio Values form = 2 .
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ixj
121 134 161 301 111 -900 133
99 871 92 138 129 100 100
90 159 98 184 59 99 124
115 189 406 71 -287 235 339
283 762 350 103 86 100 54
321 -100 99 204 221 196 101
505 100 95 96 347 72 93
440 100 100 151 145 79 134
119 30 1,166 -116 597 102 361
141 -349 99 586 101 104 127
84 651 109 -10 88 98 152
100 -39 70 131 61 43 -26
90 634 322 182 79 128 355
102 219 153 417 77 356 83

Table 4.5: Portfolio Values form = 3 .

ixj
137 429 99 494 236 77
110 148 110 481 159 84
117 47 542 33 237 -1,418
-1,171 112 101 366 98 33
86 39 99 76 116 -107
312 281 -764 95 86 56
139 -8,543 28 50 -581 715
304 -23 124 1,696 -47 100
126 544 131 50 100 93
127 -345 264 -1,585 112 250
12 -1,010 147 1,064 57 75
113 200 156 228 862 104
94 -284 618 46 142 101
96 95 45 275 59 -748
33 68 470 416 96 66
102 101 -828 105 108 97

Table 4.6: Portfolio Values form = 4 .

Put prices based on the results derived below can be calculated as in following Ta-
ble 4.7.
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Result Error Estimate
m=1 price 0.782 0.06

nu -0.523 0.012
m=2 price 0.753 0.046

nu -0.473 0.015
m=3 price 1.007 0.133

nu -0.415 0.017
m=4 price 2.453 0.267

nu -0.486 0.013

Table 4.7: Put Prices.

Until now we have not considered the insurance portfolio forsingle or for multiple
life and just investigated financial portfolio results. Now, we can include life portfolio
part but for now just for single life. We will use Gompertz distribution which is one
of the most appropriate ones among the lifetime distributions. For its parameters we
refer to [53]. They use data for Swedish females in2010, aged35 − 100 years, and
the distribution parameters areλ = 0.0002, µ = 0.116. For given parameters the
histogram is as follows in the following Figure 4.1 :

Figure 4.1: Histogram. Swedish females in2010, aged35− 100 years, and the distri-
bution parameters areλ = 0.0002, µ = 0.116
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Figure 4.2: Density based on Pseudo Gompertz Distribution.

Figure 4.3: Density based on Pseudo Gompertz Distribution for Joint Case.

Now, we can calculate put prices based on single life contract using Gomperz distri-
bution whose outcomes are as in following Table 4.8 for different values ofm. It is
assumed Term Life Insurance policy which payments linked tothe death of the pol-
icyholder. Based on the Lenart [53] as the beginning age of thepolicyholder35 is
considered.
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Result Error Estimate
m=1 price 0 0

nu 0 0
m=2 price 0.001 0.002

nu -0.000 0.000
m=3 price 0.035 0.051

nu -0.000 0.000
m=4 price 0.089 0.094

nu 0.000 0.001

Table 4.8: Put Prices for Unit Linked Life Insurance Policy:Single Life.

For single and for multiple life policies only one policy is considered in the portfolio.
For multiple life policies as mentioned before Pseudo Gompertz Distribution is used.
The simulation results for multiple lives based on Pseudo Gompertz distribution forx
andy are presented in Table 4.9.

X Y

41.71 31.30
48.57 41.52
51.85 46.27
12.70 16.87
55.04 56.32
35.41 44.78
61.90 65.49
52.16 60.75
57.34 54.18
43.31 39.68

Table 4.9: Values forX andY simulated using Pseudo-Gompertz Distribution.

Descriptive statistics and Summary statistics for multiple life case using Pseudo Gom-
pertz distribution is as in following Tables, 4.10- 4.11.
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X Y

Min. 0.00093 Min. 0.00159
1st Qu. 44.23 1st Qu. 46.19
Median 51.73 Median 46.91
Mean 50.00 Mean 45.34
3rd Qu. 57.71 3rd Qu. 56.05
Max. 77.54 Max. 87.30

Table 4.10: Descriptive Statistics based on Pseudo Gompertz Distribution.

X Y

Mean 49.95 45.30
Variance 117.86 217.82

Correlation X Y

X 1.00 0.70
Y 0.70 1.00

Table 4.11: Summary Statistics based on Pseudo Gompertz Distribution.

Figure 4.4: Correlation betweenX andY .
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Now, we can calculate optimal values which are defined in Proposition3.4. Here,price
stands forZ0 andnu stands forν0. Calculations are done for representatively two cases,
for joint-life policies and last-survival policies and results are provided in Tables 4.12
and 4.13. Here, is considered guarantee which is equal to theinitial portfolio value.
Calculations are investigated for different values ofm.

V (0)=100,G=100 Result Error Estimate
m=1 price 16.29 0.00

nu 0.15 0.00
m=2 price 17.56 0.30

nu 0.16 0.00
m=3 price 29.89 4.50

nu 0.28 0.04
m=4 price 125.14 73.62

nu 1.24 0.74

Table 4.12: Continuous Trading with Guarantee and Shortselling for Joint Life Poli-
cies.

V (0)=100,G=100 Result Error Estimate
m=1 price 4.44 0.00

nu 0.04 0.00
m=2 price 4.89 0.24

nu 0.05 0.00
m=3 price 11.28 5.02

nu 0.11 0.05
m=4 price 99.77 124.73
m=4 price 99.77 124.73

nu 0.99 1.25

Table 4.13: Continuous Trading with Guarantee and Shortselling for Last Survival
Policies.
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CHAPTER 5

CONCLUSION

The study was set out to explore and to develop the concept of risk minimization hedg-
ing strategies for multiple-life unit linked insurance policies with help of Constant
Proportion Portfolio Insurance approach. As it is known from literature and also stated
in introduction part of this thesis a Unit-Linked Life Insurance policy is a agreement
where the insurance benefits depend on the price of some specific traded security which
carry the risk. Because of the inherent nature of the securities the returns are random
since the benefits are unknown in advance and based on these, obligations of insurance
company are also random. The main purpose in such a situationis to correctly define
obligations of company and based on obligations to define theproper hedging concept.

In the thesis, is considered a model describing the uncertainty of the financial mar-
ket and a portfolio of insured individuals simultaneously.This case investigated in
some literature as M̈oller [61], Riesner [88], etc., but all of these authors considered
that insurance portfolio are independent, lifetimes are independently and identically
distributed.

The first distinctive point of this thesis is that it is considered dependency between
lifetimes of insureds. In other words, it is assumed that policies in insurance portfolio
are independent but lifetimes in each policy are dependent.For dependency model-
ing a Pseudo-Gompertz distribution is used, which is a bivariate distribution in which
marginal distributions are Gompertz distribution.

Based on the benefit payment structure different types of schemes can be investigated.
In the thesis two different schemes are considered and analyzed. First is joint life status
which is considering the benefit payment in case of the occurrence of first death. As
opposed to joint life status in last survival status benefit payments are paid in case of
the occurrence of last death. Two beneficiaries for each policy are established and
dependence between two are modeled with Pseudo-Gompertz distribution function. In
other hand the relation between policies is considered as independent and stated that
they are independently and identically distributed.

The second distinctive point was the usage of the Constant Proportion Portfolio Insur-
ance approach with jump diffusion for financial portfolio. Standard Black and Scholes
model is used nearly in all articles. What about the Black and Scholes model with
Jump diffusion, it was firstly investigated in Riesner [88], but for single life policy.
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The third distinctive point of the thesis is that, for hedging purposes the mean-variance
hedging approach is used instead of the local risk minimization method.

In the numerical result part, tables and figures are providedwhich help us to describe
the dynamics. One can observe from return and portfolio value graphics that effect of
jumps is quite high. Here,m is a multiplier, which shows the weight of risky asset
in portfolio when the rest of the capital invested to the risk-free asset. The multiplier
shows the risk appetite of the investor. The higher the multiplier, the greater the invest-
ment in the risky asset. We can observe from tables that when the multiplier is high,
portfolio value is too low or negative when jumps occurs. In the first part of numerical
results, simulations for CPPI is investigated without considering insurance part. Then
simulation for single life and multiple lifetimes are done and provided in related tables.
Results for combined model are provided in the last two tablesof our numerical results
part. The details are as follows.

For single life policy we consider Term Life Insurance policy in which benefit pay-
ments are valid in case of the death of policyholder. As a term10 years is considered
with the beginning age of insured equal to35. For simulation only1 policy is taken.
For single life Gompertz distribution function is used.

When the initial portfolio value is equal to the guarantee given (G = V0 = 100TL) for
r = 0.05, the results for differentm (m = 1, 2, 3, 4) values are simulated.

All calculations are done for Joint Life and Last Survival Unit Linked Insurance poli-
cies.

We observed that for last survival policies the results are twice lower than for joint life
case, and this is expected outcome. Since in the second case benefit payment made in
case of both insureds death, this probability is lower than first case.

The numerical results are calculated when contingent claimis a put option. In our
tables,price stands forZ0 andnu stands forν0. So, in this case,Z0 stands for put
price.

For future research, one can investigate dependence also between policies. This depen-
dence could be modeled with the help of copulas. Also, cases of different insurance
products like pure endowment could be investigated. Since the mean-variance hedging
approach is applicable in the semi-martingale case different portfolio hedging theories
could be investigated.

Another extension could be applied to the financial part of the model by adding new
tradeable assets to the financial portfolio. Based on our study new extended financial
portfolio calculation of optimal weights for assets for multiple life unit linked policies
would be an interesting area for further research.

A more interesting but at the same time very useful extensionwould be the investi-
gation of new martingale measures which do not preserve the independence between
financial and insurance portfolios.
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[62] T. Möller, On indifference pricing of insurance contracts, Technical report, Lab-
oratory of Actuarial Mathematics, University of Copenhagen, 2000.
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[66] T. Möller, On transformation of actuarial valuation principles, Insurance: Math-
ematics and Economics, 28, pp. 281–303, 2001c.
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[100] S. Yörübulut and . L. Gebizliŏglu, Bivariate Pseudo - Gompertz Distribution
and concomitants of its order statistics, Journal of Computational and Applied
Mathematics, 247, pp. 68–83, 2013.

67



68



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name : Jafarova, Vafa

Nationality : Azerbaijanian

Date and Place of Birth : July 28, 1983, Baku

e-mail : gafarova2004@yahoo.com

ACADEMIC DEGREES

Ph.D. Department of Financial Mathematics, 2015, February
Institute of Applied Mathematics
Middle East Technical University, Ankara
Supervisor: Prof. Dr. er L. Gebizlio Cosupervisor: Prof. Dr.Gerhard Wilhelm
Weber
Thesis Title: Pricing and Risk Minimizing Hedging Strategies for Multiple Life
Unit Linked Life Insurance Policies using Constant Proportion Portfolio Insur-
ance Approach

M.Sc. Department of Financial Mathematics: Life and Pension Insurance Option,
2008, September
Institute of Applied Mathematics
Middle East Technical University, Ankara
Supervisor: Prof. Dr. er L. Gebizlio Term Project Title: RiskMinimizing Hedg-
ing Strategies for Unit Linked Life Insurance Policies

B.Sc. Department of Applied Mathematics and Economical Cybernetics, 2004, June
Baku State University, Baku, Azerbaijan

69



WORKING EXPERIENCE

2015–presentActuarial Assistant Manager, AXA Assistance Turkey, Istanbul

2014–2015Actuarial Senior Specialist, AXA Assistance Turkey, Istanbul

2012–2011Actuarial Specialist, ING Pension, Istanbul

2011–2010Actuarial Analyst, Mercer Consulting, Istanbul

2010–2013Lecturer: Statistical Models in Insurance, Pension Systems and Invest-
ment Strategies, Financial Mathematics, Graduate School of Natural and Ap-
plied Sciences, Program of Actuarial Sciences, Bahehir University, Istanbul

FOREIGN LANGUAGES

Azerbaijanian (fluent), Turkish (fluent), Russian (fluent), English (advanced), German
(basic)

COMPUTER SKILLS

Microsoft Office, MATLAB, Latex, SPSS, R, AFM Modeler, GRS

70



CERTIFICATES

1. Introduction to Consulting Program (15-16 November 2011, London, England)

2. Financial Time Series Models (via WinBUGS) (Prof. Dr. SujitK. Ghosh)

3. Asset Liability Models for Life Insurance (Prof. Dr. Angelika May April 22, 2009)

4. Actuarial Training Program of Azerbaijan, Ministry of Finance of the Republic of
Azerbaijan and the United States Agency for International Development (US-
AID ) and Azerbaijan Insurance Association (15.07.2008- 01.09.2008)

5. The Simulation Toolbox for the Financial Engineer (Prof. Dr. Ralf Korn and Dr.
Elke Korn, April 2008)

6. Capacity Building for the State Social Protection Fund of Azerbaijan Republic
United Nations Development Program (UNDP)

7. United Universal Joint-Stock Bank of Azerbaijan (practice 01.2004-07.2004)

8. Embassy of Germany in Azerbaijan, German Language Course (10.2001- 02.2002,
10.2003- 12.2003)

PRESENTATIONS

1. Aliyev R.T., Jafarova V. 2009, On the moments of the Sparre Anderson surplus
process and its average value. 13th International Congress on Insurance: Math-
ematics and Economics, 26-29 May 2009, Istanbul, Turkey, p.39

2. G.-W. Weber, V. Jafarova, N. Erbil, C.A. Gkcen and P. Taylan, Prediction of Fi-
nancial Processes Parameter Estimation in Stochastic Differential Equations by
Continuous Optimization, 4th International Summer School Achievements and
Applications of Contemporary Informatics, Mathematics andPhysics, National
University of Technology of the Ukraine, Kiev, Ukraine, August 5-16, 2009

3. G.-W. Weber, P. Taylan, K. Yildirak, E. Krm, S.Z. Alparslan-Gk, V. Jafarova and N.
Erbil, Some New Contributions of Continuous Optimization Theory in the Fi-
nancial Sector and Related Areas, Seminar on (Financial Mathematics and) Ap-
plied Mathematics in Life and Human Sciences and Economy in IAM, METU,
and YUUP Biyotip Group Bioinformatics, METU, May 19, 2009

4. G.-W. Weber, N. Erbil, C.E. Can, V. Jafarova, A. Kerimov and P. Taylan, 66 Param-
eter estimation in stochastic differential equations by continuous optimization,
14th International Congress on Computational and Applied Mathematics (IC-
CAM), Antalya, Turkey, September 29 October 2, 2009

71


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTERS
	INTRODUCTION
	Historical Overview and Literature Review
	Summary, Contributions and Outline

	BASIC CONCEPTS
	Financial and Insurance Background
	Classical Insurance Contracts and Their Valuation
	Financial Instruments and Risk Mitigation

	Structured Portfolio Management
	Option Based Portfolio Management
	Constant Proportion Portfolio Management

	Unit Linked Life Insurance Policies
	Description and Main Concepts

	Quadratic Hedging Approach
	Mean Variance Hedging

	Modeling Dependence with Pseudo-Gompertz Distribution
	Description and Main Functions


	HEDGING STRATEGIES FOR MULTIPLE LIFE UNIT LINKED INSURANCE POLICIES USING CPPI APPROACH
	The Model
	The Financial Market: Constant Proportion Portfolio Insurance with Jump Diffusion
	CPPI Portfolio as a Hedging Tool

	The Insurance Portfolio: Multiple Life Contracts
	Joint Life and Last Survival Models
	Joint Life Model
	Last Survival Model

	The Combined Model

	Mean Variance Hedging of Combined Obligations for Term Insurance Policies

	NUMERICAL IMPLEMENTATIONS
	CONCLUSION
	REFERENCES
	CURRICULUM VITAE

