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ABSTRACT

NONLINEAR GUIDANCE AND CONTROL OF LEADER-FOLLOWER UAV
FORMATIONS

KUMBASAR, SARPER

M.S., Department of Aerospace Engineering

Supervisor : Prof. Dr. Ozan Tekinalp

January 2015, 72 pages

In this thesis work, two nonlinear guidance methods are proposed to control the au-

tonomous formation flight: State Dependent Riccati Equation method and Lyapunov

function method. Leader-Follower formation scheme is chosen and a pair of fighter

aircrafts are used in simulations. One of them is chosen as the leader and it carries

out the commanded maneuvers. Other aircraft is the follower and it follows the leader

keeping the prescribed formation structure. Both aircraft models are nonlinear. In the

inner loop, a nonlinear control algorithm, State Dependent Riccati Equation method

is used to control the flight.

Keywords: Autonomous Formation Flight, SDRE, Lyapunov, Guidance, Leader-

Follower Formation
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ÖZ

İNSANSIZ HAVA ARACI LİDER-TAKİPÇİ KOL UÇUŞUNUN DOĞRUSAL
OLMAYAN GÜDÜM VE KONTROLÜ

KUMBASAR, SARPER

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ozan Tekinalp

Ocak 2015 , 72 sayfa

Bu çalışmada otonom kol uçuşu için iki tane doğrusal olmayan güdüm metodu gelişti-

rilmiştir. Bu güdüm metodları; Duruma Bağlı Riccati Denklemi ve Lyapunov fonksi-

yonudur. Lider-Takipçi yapısında kol uçuşu simülasyonunda iki adet savaş uçağı kul-

lanılmıştır. Uçaklardan biri lider olarak seçiliyor ve bu uçak verilen hız, baş açısı ve

yükseklik komutlarını takip ediyor. Diğer uçak takipçi olarak seçiliyor ve lider uçağı

belirli mesafeden takip ediyor. Kullanılan uçak modelleri doğrusal olmayan model-

lerdir. Ayrıca iki uçağın uçuş dinamikleri Duruma Bağlı Riccati Denklemi metodu ile

kontrol edilmektedir.

Anahtar Kelimeler: Otonom Kol Uçuşu, Duruma Bağlı Riccati Denklemi, Lyapunov,

Güdüm, Lider-Takipçi
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CHAPTER 1

INTRODUCTION

Usage of Unmanned Air Vehicles (UAVs) has grown in the past decade. One of the

most important reason for that increase is related with the capabilities of UAVs that

manned air vehicles do not have. With the UAVs, some missions that are not possible

or not easy to do with human pilot has been made possible. For example, it is possible

to make tight maneuvers with UAVs that high "g force" is desired but it is not possible

because of the humans’ limits. Also, UAVs can stay in air for days where it will be

quite tiring for human pilot. There are also many other benefits that UAVs offer.

One of the most popular application with UAVs is the autonomous formation flight.

Formation flight with proper formation structure can reduce the drag of the aircraft

which is affected by the vortex produced from the preceding aircraft such as flying

migratory birds in V-Shaped structure. Aerodynamic benefits of formation flight have

been known for a long time and detailed information about aerodynamic benefits of

the formation flight is given in [17]. On the other hand, aerial refuelling requires

formation flight which may be done in an autonomous flight. Moreover, flying in

formation long hours may impose extreme workload on pilots and may be alleviated

by autonomous flight as well. On the other hand, it is believed that in the future,

autonomous formation flight will be used widely for surveillance and reconnaissance

missions in military applications.

In this study autonomous formation flight is investigated. Two nonlinear guidance al-

gorithms are developed to control the formation flight in Leader-Follower approach.

These algorithms use State Dependent Riccati Equation (SDRE) and Lyapunov meth-

ods. On the other hand, a new formation kinematics is derived and used in Leader
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Fixed Frame. Moreover, flight controller is also designed with SDRE method and it

is used in leader and follower aircraft. Proposed flight control and formation control

algorithms are tested with simulations. However, the vortex effect to the follower air-

craft produced by the leader is not modelled and expected to be addressed in a future

work.

1.1 Literature Survey

In the literature, there are many different approaches to the autonomous formation

flight. One of the most common is the Leader-Follower approach. In Leader-Follower

structure, there is an aircraft which leads others and it is named as leader. Other air-

crafts in the formation, try to keep the position in the formation scheme according to

the information taken from the leader. Therefore, leader does not make any maneuver

to keep the formation structure. According to [10], Leader-Follower structure may

be separated into two modes such as Leader Mode and Front Mode, it is illustrated

in Fig. 1.1. In Leader Mode, every aircraft takes the information from leader but in

Front Mode, every aircraft takes the information from preceding one. Disadvantage

of the Front Mode is that error propagation may occur through the rear aircraft. How-

ever, because of every aircraft in the formation taking the information from the leader,

there is not error propagation problem. On the other hand, an advantage of the Front

Mode is that collision avoidance may be easier to realize since every aircraft takes

the information from preceding one. In [12], Leader-Follower approach is tested on

radio controlled aircrafts built and designed at West Virginia University. In another

study [23], micro air vehicles are used in Leader-Follower scheme.

Another method is the Behavioral Approach [11]. In this method, aircraft in the

formation cooperate with each other. In that respect, it is different from Leader-

Follower approach. For example, if one aircraft can not keep its relative position, all

other aircrafts in the formation respond together to keep formation. However, there is

not much work on this method in the literature.

In Virtual structure method, formation structure is considered as a rigid body and

there is an imaginary point in the structure which is followed by all aircraft. There-

2



Figure 1.1: Leader and Front Mode [10]

fore, every aircraft in the formation takes the same signal. In [13], this method is

tested in real flight. In the literature, other methods are also proposed. However,

in this thesis work, Leader-Follower approach is selected and guidance algorithms

are developed according to that. One of the reasons of this selection is that Leader-

Follower approach is relatively simple to implement and easier to test with a pair of

aircrafts in real tests.

There are popular guidance methods such as proportional navigation and pursuit

guidance are used in missiles pursuit problems. These methods are used to go to

a point but they are not suitable to stay at a relative position with respect to that point.

In the literature classical "PID" or "LQR" controllers are used in formation flight. Al-

though, they are successful to control the formation flight, nonlinear controllers have

some advantages since they do not need trimming, linearization and gain schedul-

ing. Also, nonlinear controllers can give better performance than linear controllers

especially in highly nonlinear systems.

In this study, SDRE method is used to design both aircraft flight and formation flight

controllers. SDRE is a nonlinear control method with growing popularity in last

decade. This method was first proposed by [18], and later extended by Wernli and

Cook [22]. Number of applications of the SDRE method in the flight control area exist

in the literature. For example, it has been applied to control the aircraft flight [19],

satellite attitude control [7], missile flight control [14], [15] and helicopter control

3



[3]. On the other hand, in [2], formation flight controller with SDRE method is also

proposed.

Other method is the Lyapunov method. In [2], formation flight is also designed with

Lyapunov method but in that work, there are singularity problems.

1.2 Contribution of the Thesis

In this thesis work, two nonlinear guidance algorithms to control the formation flight

are proposed. These algorithms are developed with SDRE and Lyapunov function.

In [2], SDRE and Lyapunov function based formation controllers were developed.

However, in that work used formation kinematics are taken from [6] and with that for-

mation kinematics, proposed formation controllers have some singularity problems.

In this thesis work, a new formation kinematics is derived which alleviates the sin-

gularity problems. On the other hand, in [2], proposed formation control algorithms

control the formation in two dimension so it does not control the altitude channel.

Yet, in this thesis work, vertical separation in formation flight is also controlled.

In this study, nonlinear aircraft models are used in the simulations with a nonlinear

flight controller, using SDRE method and it is used in the leader and the follower

aircraft.

1.3 Outline

In next section, mathematical model of the aircraft is given. In Chapter 3, flight con-

trol design with SDRE method is developed. SDRE and Lyapunov based formation

controllers are presented in Chapters 4 and 5 respectively. In Chapter 6, sensitivity

of the proposed methods are examined then, discussion and comparison between the

proposed methods are given in Chapter 7. Finally, conclusion and future work is

given.
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CHAPTER 2

MATHEMATICAL MODEL OF THE AIRCRAFT

2.1 Introduction

In this chapter, mathematical model of the aircraft is presented. Firstly, coordinate

systems used in this work are introduced. Then, nonlinear equations of motion and

used aircraft platform are given.

2.2 Coordinate Systems

There are different coordinate systems are used in aerospace. Some vectors can be

easily stated in some coordinate systems but may be hard to state in another coordi-

nate system. Therefore, different coordinate systems are used to show vectors easily

in that coordinate systems. However, when deriving equations of motion, all vec-

tors must be in the same coordinate system. Which necessitates using coordinates

transformation to transform vectors from one to another.

There are four coordinate systems are used in this work as follows,

Earth Coordinate System (ECS):

The Earth axis system is fixed to the Earth and its z axis towards the center of the

Earth. Also, x and y axis point North and East respectively.

Body Coordinate System (BCS):

The body axis system is fixed to the aircraft and its origin is at the aircraft’s center

of gravity. Its x axis towards the nose of the aircraft and y axis is pointing the right

5



Figure 2.1: Coordinate Systems [20]

wing of the aircraft. Finally, z axis is determined with right hand rule. The coordinate

system can be seen in Fig. 2.1.

Stability Coordinate System (SCS): As seen in Fig. 2.1, stability axis system is

obtained with negative ”α” (angle of attack) rotation around body y axis. This axis

system is used for analysing the effect of perturbations from steady state flight.

Wind Coordinate System (WCS):

The wind axis system is obtained with positive β (sideslip angle) rotation around the

stability z axis which aligns the wind x axis and relative wind.

2.3 Coordinate System Transformation

In this work, euler rotation method is used to transform a vector into another coor-

dinate system. Another method is quaternion and further details about both method

can be found in [20]. To transform from ECS to BCS is defined with coordinate

transformation matrix as follows:
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TBE =


cosψcosθ sinψcosθ −sinθ

cosψsinθsinφ− sinψcosφ sinψsinθsinφ+ cosψcosφ cosθsinφ

cosψsinθcosφ+ sinψsinφ sinψsinθcosφ− cosψsinφ cosθcosφ


(2.1)

Transformation matrix to transform from BCS to SCS:

TSB =


cosα 0 sinα

0 1 0

−sinα 0 cosα

 (2.2)

Transformation matrix to transform from SCS to WCS:

TWS =


cosβ sinβ 0

−sinβ cosβ 0

0 0 1

 (2.3)

2.4 Assumptions

Some simplifying assumptions are made in the simulations. First, aircraft is assumed

rigid with constant mass density. Second, thrust is assumed to act along the X body

axis and through the center of gravity. Third, earth’s curvature is ignored and earth

is assumed to be fixed in inertial space which means that its axes are inertial axes.

Morevover, control surface deflections follow a standard right-hand rule sign conven-

tion, in which the fingers curl in the direction of positive control surface deflections

when the thumb is pointed along the control surface hinge line in the direction of a

positive body axis.

2.5 Nonlinear Equations of Motion

There are twelve equations used to describe the aircraft motion in this work. First

group equations are derived according to Newton’s second law and they are given

in Eq. 2.4. The first group equations define the translational motion and they are

given as body accelerations. When they are integrated, velocity of aircraft in body

7



coordinate system is obtained.

u̇ = rv − qw − gsinθ +
q̄SCx + T

m

v̇ = pw − ru+ gcosθsinφ+
q̄SCy
m

ẇ = qu− pv + gcosθcosφ+
q̄SCz
m

(2.4)

Second group equations define the rotational motion and they are given in Eq. 2.5.

These equations are given as first derivative of body angular rates.

ṗ = (C1r + C2p)q + q̄Sb(C3Cl + C4Cn)

q̇ = C5pr − C6(p2 − r2) + q̄Sc̄C7Cm

ṙ = (C8p− C2r)q + q̄Sb(C4Cl + C9Cn)

(2.5)

Third group of equations are given in Eq. 2.6. These equations are first derivative

of euler angles. They are integrated throughout the simulation and euler angles are

obtained.

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = q cosφ− r sinφ

ψ̇ =
q sinφ+ r cosφ

cos θ

(2.6)

Last group equations give the velocity of aircraft in Earth coordinate system and they

are integrated to find the position of aircraft in the Earth coordinate system. These

equation are given in Eq. 2.7.

ẋE = u cosψ cosθ + v (cosψ sinθ sinφ− sinψ cosφ)

+ w (cosψ sinθ cosφ+ sinψ sinφ)

ẏE = u sinψ cosθ + v (sinψ sinθ sinφ+ cosψ cosφ)

+ w (sinψ sinθ cosφ− cosψ sinφ)

ḣE = u sinθ − v cosθ sinφ− w cosθ cosφ

(2.7)
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Given twelve equations can be found in [9]. Also, the coefficients C1 to C9 in 2.5

which are related with inertial terms given in same reference as follows:

C1 =
(Iyy − Izz)Izz − I2

xz

IxxIzz − I2
xz

, C2 =
(Ixx − Iyy + Izz)Ixz

IxxIzz − I2
xz

,

C3 =
Izz

IxxIzz − I2
xz

, C4 =
Ixz

IxxIzz − I2
xz

,

C5 =
(Izz − Ixx)

Iyy
, C6 =

Ixz
Iy
,

C7 =
1

Iy
, C8 =

(Ixx − Iyy)Ixx − I2
xz

IxxIzz − I2
xz

,

C9 =
Ixx

IxxIzz − I2
xz

(2.8)

2.6 Platform

In this work, the McDonnell Douglas F-4 is used to test the proposed control meth-

ods. F-4 is a two-seat all-weather fighter/bomber aircraft. Thrust is provided by

two General Electric GE-J19-17 afterburning jet engines mounted at the rear of the

fuselage. Elevator deflection limits are −21 ≤ δe ≤ 7, aileron deflection limits are

−15.5 ≤ δa ≤ 15.5, and rudder deflection limits are −30 ≤ δr ≤ 30.

Other parameters of F-4: mass is 38924 lb, IX is 24970 slug.ft2, IY is 122190 slug.ft2,

IZ is 139800 slug.ft2, IXZ is 1175 slug.ft2. Wing span is 38.4 ft, wing reference

area is 49.2 m2.

2.7 Aerodynamic Model

Aerodynamic model of F-4 aircraft is taken from [9]. Aerodynamic model is very

important part of designing SDC matrices. The model is given below for α ≤ 15◦:

CX =− 0.0434 + 2.39× 10−3α + 2.53× 10−5β2 − 1.07× 10−6αβ2

+ 9.5× 10−4δe − 8.5× 10−7δeβ
2

+

(
180qc̄

π2Vt

)
(8.73× 10−3 + 0.001α− 1.75× 10−4α2)

(2.9)
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CY =− 0.012β + 1.55× 10−3δr − 8× 10−6δrα

+

(
180b̄

π2Vt

)
(2.25× 10−3p+ 0.0117r − 3.67× 10−4rα + 1.75× 10−4rδe)

(2.10)

CZ =− 0.131− 0.0538α− 4.76× 10−3δe − 3.3× 10−5δeα− 7.5× 10−5δ2
a

+

(
180qc̄

π2Vt

)
(−0.111 + 5.17× 10−3α− 1.1× 10−3α2)

(2.11)

Cl =− 5.98× 10−4β − 2.83× 10−4αβ + 1.51× 10−5α2β

− δa(6.1× 10−4 + 2.5× 10−5α− 2.6× 10−6α2)

− δr(−2.3× 10−4 + 4.5× 10−6α)

+

(
180b̄

π2Vt

)
(−4.12× 10−3p− 5.24× 10−4pα + 4.36× 10−5pα2

+ 4.36× 10−4r + 1.05× 10−4rα + 5.24× 10−5rδe)

(2.12)

Cm =− 6.61× 10−3 − 2.67× 10−3α− 6.48× 10−5β2 − 2.65× 10−6αβ2

− 6.54× 10−3δe − 8.49× 10−5δeα + 3.74× 10−6δeβ
2

− 3.5× 10−5δ2
a +

(
180qc̄

π2Vt

)
(−0.0473− 1.57× 10−3α)

(2.13)

Cn = 2.28× 10−3β + 1.79× 10−6β3 + 1.4× 10−5δa

+ 7.0× 10−6δaα− 9.0× 10−4δr + 4.0× 10−6δrα

+

(
180b̄

π2Vt

)
(−6.63× 10−5p− 1.92× 10−5pα + 5.06× 10−6pα2

− 6.06× 10−3r − 8.73× 10−5rδe + 8.7× 10−6rδeα)

(2.14)
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CHAPTER 3

FLIGHT CONTROLLER DESIGN WITH SDRE METHOD

3.1 Introduction

As stated in [5], "State Dependent Riccati Equation (SDRE) method has emerged as a

very attractive tool for the systematic design of nonlinear controllers". Additionally,

it is stated that it’s popularity has increased within the control community over the

last decade.

When designing a linear controller, it may be obtained the system matrix A and con-

trol matrix B. These are constant matrices for some trim points and obtained after

linearization. Therefore, for other trim points these A and B matrices obtained again

and gains are calculated for that trim point. Finally, with gain scheduling, linear con-

troller can work at large flight envelope.

On the other hand, SDRE does not need linearization and gain scheduling because

in SDRE method, system matrix A and control matrix B are not constant matrices.

They are state dependent matrices and called as State Dependent Coefficient (SDC)

matrices. These SDC matrices are updated at some hertz. After designing the SDC

matrices, Linear Quadratic Regulator (LQR) and Linear Quadratic Tracking (LQT)

can be used. In [19], LQR and LQT formulation is used, after SDC matrices design.

The SDC matrices give extra design flexibility which is not seem in linear control

methods [5].
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3.2 SDRE Tracking Formulation

Given a linear dynamic system,

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)
(3.1)

where x(t) is an nth order state vector, u(t) is the rth order control vector, and y(t)

is the mth order output vector. A trajectory tracking linear quadratic optimal control

(LQT) can be formulated to control the system given in Eq. 3.1 such that the desired

output y(t) tracks the reference input z(t) as close as possible while minimizing the

following quadratic cost function [16, 1]:

J =
1

2
eT (tf )F (tf )e(tf ) +

1

2

∫ t∞

t0

{
eT (t)Q(t)e(t) + uT (t)R(t)u(t)

}
dt (3.2)

where e(t) = z(t) − y(t) is the error vector. It is assumed that F (tf ) and Q(tf ) are

m × m symmetric positive semi-definite matrices, and R(t) is an r × r symmetric

positive definite matrix. In [19], another system is given in the form:

ẋ(t) = A(t)x(t) +B(t)u(t) + f(t)

y(t) = C(t)x(t)
(3.3)

where f(t) represents the mismatch that appears as a result of the factorization of the

nonlinear system equations in the form of Eq. 3.1 provided that f(t) is a slowly vary-

ing signal that may be assumed constant at certain time intervals, and f is bounded.

If the performance index is defined by Eq. 3.13, the Hamiltonian then may be given

as[19],

H(x(t), u(t), λ(t)) = 1
2

[z(t)− C(t)x(t)]T Q(t) [z(t)− C(t)x(t)] + 1
2
uT (t)R(t)u(t)

+λT (t) [A(t)x(t) +B(t)u(t) + f(t)]

(3.4)

The optimal control is obtained from δH
δu

= 0, which giving,

u∗(t) = −R−1(t)BT (t)λ∗(t) (3.5)

The remaining equations for the states and costates can be obtained as, ẋ∗(t)

λ̇∗(t)

 =

 A(t) −E(t)

−V (t) −AT (t)

 x∗(t)

λ∗(t)

+

 0

W (t)

 z(t) +

 f(t)

0

 (3.6)
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where
E(t) = B(t)R−1(t)BT (t)

V (t) = CT (t)Q(t)C(t)

W (t) = CT (t)Q(t)

(3.7)

The boundary conditions for the state and costate equations are defined by the initial

condition on the state: x(t = t0) = x(t0) and the final condition on the costate:

λ(tf ) =
δ

δx(tf )

[
1

2
eT (tf )F (tf )e(tf )

]
= CT (tf )F (tf )C(tf )x(tf )−CT (tf )F (tf )z(tf )

(3.8)

Assuming a linear relation between the state and co-state of the following form[16]:

λ∗(t) = P (t)x∗(t)− g(t) (3.9)

where P (t) is a square matrix size n and g(t) is a vector of length n, are to be deter-

mined such that the canonical system (3.6) is satisfied. As a result it may be shown

that if P (t) can be found as solution to a matrix differential Riccati equation (3.10),

and g(t) is a solution to a vector differential equation (3.11):

Ṗ (t) = −P (t)A(t)− AT (t)P (t) + P (t)E(t)P (t)− V (t) (3.10)

ġ(t) =
[
P (t)E(t)− AT (t)

]
g(t)−W (t)z(t) + P (t)f(t) (3.11)

The optimal control is obtained in the form given by Eq. (3.12).

u∗(t) = −R−1(t)BT (t) [P (t)x∗(t)− g(t)] = −K(t)x∗(t) +R−1(t)BT (t)g(t)

(3.12)

For the infinite-horizon problem formulation, consider the system equation (3.3) but

with the system matrices being time invariant, and the performance index chosen as

lim
tf→∞

J = lim
tf→∞

1

2

∫ tf

t0

{
eT (t)Q(t)e(t) + uT (t)R(t)u(t)

}
dt (3.13)

Using the results for a finite-time case above and let tf →∞ will lead to the infinite-

time case solution. Thus, the matrix function P (t) in Eq. 3.10 will result to the

steady-state value P as the solution of the following algebraic Riccati equation:

− PA− ATP + PBR−1BTP − CTQC = 0 (3.14)

For slowly varying input signals z(t), solution of a matrix differential equation (3.11)

can be obtained by setting the derivative to zero and solving Eq. 3.11 for g(t):

g(t) =
[
PE − AT

]−1
(Wz(t) + Pf(t)) (3.15)
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where
E = BR−1BT

W = CTQ
(3.16)

Then the optimal control is:

u(t) = Kx(t) +Kzz(t) +Kff(t) (3.17)

and the corresponding controller gains are defined as:

K = −R−1BTP

Kz = R−1BT
[
PE − AT

]−1
W

Kf = −R−1BT
[
PE − AT

]−1
P

(3.18)

The nonlinear version of the optimal control may be realized using state dependent

parametrization.

Consider a system is full state observable, autonomous, nonlinear in the state, and

affine in the input, as given below[4]:

ẋ(t) = f(x) +B(x)u(t), x(0) = x0 (3.19)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and t ∈ [0,∞), functions

f : Rn → Rn,

B : Rn → Rn×m and B(x) 6= 0,∀x.

First step of SDRE control design is SDC parametrization which means that a nonlin-

ear system is being factorized into the linear-like structure containing SDC matrices

[22, 8].

Under the assumptions f(0) = 0, and f(·) ∈ C1(Rn) a continuous nonlinear matrix

valued function A(x) always exists such that

f(x) = A(x)x (3.20)

where A, the n × n matrix, is found by mathematical factorization and is nonunique

when n > 1. Hence, extended linearization of the input-affine nonlinear system

(3.19) becomes

ẋ(t) = A(x)x(t) +B(x)u(t), x(0) = x0 (3.21)

which has a linear structure with SDC matrices A(x), B(x). The application of any

linear control synthesis method to the linear-like SDC structure A(x) and B(x) are

treated as constant matrices, forms an extended linearization control method [4].
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Figure 3.1: Leader Aircraft’s General Control Layout with SDRE Method

3.3 Flight Control Design

In this study, leader and follower aircraft’s flight controllers are designed with SDRE

method. Follower has two loop structure as inner loop and outer loop. In inner

loop, SDRE based flight controller works and outer loop controls the formation flight

designed with SDRE and Lyapunov methods which are given in next sections. On the

other hand, leader does not have an outer loop, it just has a flight controller.

In Fig. 3.1, leader aircraft’s flight controller block diagram is given. According to

block diagram, speed, altitude and heading commands are given to the leader and it

carry outs the given maneuver commands. Firstly, given speed and altitude commands

are send to Ref. Signal Generator block and this block performs trimming algorithm

to generate u,w, q, θ signals. Then, these signals are send to SDRE longitudinal

block diagram. Inside of the SDRE longitudinal block diagram is shown in Fig.

3.2 and this block will generate throttle and elevator signals. Similar to longitudinal

channel, lateral channel takes heading command and it will generates aileron and

rudder signals. Inside of the SDRE lateral block is given in Fig. 3.3. In the simulation,

inner loop SDRE blocks are running at 5 hertz.
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3.3.1 Longitudinal Channel

SDRE longitudinal control block diagram is given in Fig. 3.2. According to this

figure, zlong represent the reference vector which consists of the longitudinal states

will be tracked by the aircraft:

zlong = [ucom, wcom, qcom, θcom]T (3.22)

xlong consists of the longitudinal states:

xlong = [u, w, q, θ]T (3.23)

input will be throttle and elevator:

ulong = [δth, δe]
T (3.24)

Nonlinear system for the longitudinal motion,

ẋlong = Alongxlong +Blongulong + flong (3.25)

One term due to gravity, may not be put into SDC formulation. This term is included

as an external slowly varying disturbance:

flong = [0, g cos(θ) cos(φ), 0, 0]T (3.26)

For the cost function given below:

lim
tf→∞

J = lim
tf→∞

1

2

∫ tf

t0

{
eT (t)Qe(t) + uT (t)Ru(t)

}
dt (3.27)

Where, elong = zlong − xlong and the optimal control will be:

ulong = Kxlong +Kzzlong +Kfflong (3.28)

The gains can be calculated with Eq. 3.18. The most important part of the control

design of SDRE method is to design SDC matrices and the matrices are given below.

Terms of the matrices mostly depends on the aerodynamic terms. It should be noted

that SDC matrix design is not unique and alternative designs could be generated.

Therefore, SDC matrices give extra design flexibility [5].

Along(1, 1) =
ρu

2

S

m
(−0.0434 + 2.39× 10−3α + 2.53× 10−5β2

− 1.07× 10−6αβ2)

(3.29)
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Figure 3.2: Control Block Diagram of Longitudinal Motion

Along(1, 2) = −q
2

(3.30)

Along(1, 3) =
180c̄

2πVt
(8.73× 10−3 + 0.001α− 1.75× 10−4α2)

q̄S

m
− 0.5w (3.31)

Along(1, 4) = −g sin(θ)

θ
(3.32)

Along(2, 1) = −0.131× 1

2
ρu
S

m
+ 0.5q (3.33)

Along(2, 2) = −0.0538× 180

πu
q̄
S

m
(3.34)

Along(2, 3) =
180c̄

2πVt
(−0.111 + 5.17× 10−3α− 1.1× 10−3α2)q̄

S

m
+ 0.5u (3.35)

Along(2, 4) = 0 (3.36)

Along(3, 1) =
1

2
ρuSc̄C7(−6.61× 10−3− 6.48× 10−5β2− 2.65× 10−6αβ2) (3.37)

Along(3, 2) = −2.67× 10−3 1

u

180

π
q̄Sc̄C7 (3.38)

Along(3, 3) =
180c̄

2πVt
(−0.0473− 1.57× 10−3α)q̄Sc̄C7 (3.39)

Along(3, 4) = 0 (3.40)

Along(4, 1) = 0 (3.41)

Along(4, 2) = 0 (3.42)

Along(4, 3) = cosφ (3.43)

Along(4, 4) = 0 (3.44)
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Blong =


CT

m
(9.5× 10−4 − 8.5× 10−7β2) q̄S

m

0 (−4.76× 10−3 − 3.3× 10−5α) q̄S
m

0 (−6.54× 10−3 − 8.49× 10−5α + 3.74× 10−6β2)q̄Sc̄C7

0 0


(3.45)

3.3.2 Lateral Channel

SDRE lateral control block diagram is given in Fig. 3.3. In this figure, zlat represent

the reference vector and it consists of the lateral states.

zlat = [vcom, pcom, rcom, φcom]T (3.46)

The reference vector zlat will be tracked by the aircraft. Also, state vector xlat is

given:

xlat = [v, p, r, φ]T (3.47)

And input consists of the aileron and rudder signals.

ulat = [δa, δr]
T (3.48)

Similar to Eq. 3.25, the dynamics are given for the lateral channel:

ẋlat = Alatxlat +Blatulat (3.49)

There is no mismatch between the dynamics and SDC matrices so flat is not needed.

For the same cost function given in Eq. 3.27, error signal is given as elat = zlat− xlat
and optimal control will be such that:

ulat = Kxlat +Kzzlat (3.50)

The gains in Eq. 3.50 can be calculated with Eq. 3.18. Finally, SDC matrices for

lateral channel are given:

Alat(1, 1) = −0.012
1

Vt

180

π

q̄S

m
(3.51)

Alat(1, 2) =
180b̄

2πVt
(2.25× 10−3)

q̄S

m
+ w (3.52)
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Alat(1, 3) =
180b̄

2πVt
(0.0117− 3.67× 10−4α + 1.75× 10−4δe)

q̄S

m
− u (3.53)

Alat(1, 4) =
g cos θ sinφ

φ
(3.54)

Alat(2, 1) = [(−5.98× 10−4 − 2.83× 10−4α + 1.51× 10−5α2)C3

+ (2.28× 10−3 + 1.79× 10−6β2)C4]
180

πVt
q̄Sb̄

(3.55)

Alat(2, 2) = [(−4.12× 10−3 − 5.24× 10−4α + 4.36× 10−5α2)C3

+ (−6.63× 10−5 − 1.92× 10−5α + 5.06× 10−6α2)C4]
180b̄

2πVt
q̄Sb̄

+ C2q

(3.56)

Alat(2, 3) = [(4.36× 10−4 + 1.05× 10−4α + 5.24× 10−5δe)C3

+ (−6.06× 10−3 − 8.73× 10−5δe + 8.7× 10−6δeα)C4]
180b̄

π2Vt
q̄Sb̄

+ C1q

(3.57)

Alat(2, 4) = 0 (3.58)

Alat(3, 1) = [(−5.98× 10−4 − 2.83× 10−4α + 1.51× 10−5α2)C4

+ (2.28× 10−3 + 1.79× 10−6β2)C9]q̄Sb̄
180

πVt

(3.59)

Alat(3, 2) = [(−4.12× 10−3 − 5.24× 10−4α + 4.36× 10−5α2)C4

+ (−6.63× 10−5 − 1.92× 10−5α + 5.06× 10−6α2)C9]
180b̄

2πVt
q̄Sb̄

+ C8q

(3.60)

Alat(3, 3) = [(4.36× 10−4 + 1.05× 10−4α + 5.24× 10−5δe)C4

+ (−6.06× 10−3 − 8.73× 10−5δe + 8.7× 10−6δeα)C9]
180b̄

2πVt
q̄Sb̄

− C2q

(3.61)

Alat(3, 4) = 0 (3.62)

Alat(4, 1) = 0 (3.63)

Alat(4, 2) = 1 (3.64)

Alat(4, 3) = tan θ cosφ (3.65)

Alat(4, 4) =
q tan θ sinφ

φ
(3.66)
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Figure 3.3: Control Block Diagram of Lateral Motion

Blat(1, 1) = 0 (3.67)

Blat(1, 2) = (1.55× 10−3 − 8× 10−6α)
q̄S

m
(3.68)

Blat(2, 1) = [(−6.1× 10−4 − 2.5× 10−5α + 2.6× 10−6α2)C3

+ (1.4× 10−5 + 7× 10−6α)C4]q̄Sb̄
(3.69)

Blat(2, 2) = [2.3×10−4−4.5×10−6α)C3 +(−9×10−4 +4×10−6α)C4]q̄Sb̄ (3.70)

Blat(3, 1) = [(−6.1× 10−4 − 2.5× 10−5α + 2.6× 10−6α2)C4

+ (1.4× 10−5 + 7× 10−6α)C9]q̄Sb̄
(3.71)

Blat(3, 2) = [(2.3×10−4−4.5×10−6α)C4+(−9×10−4+4×10−6α)C9]q̄Sb̄ (3.72)

Blat(4, 1) = 0 (3.73)

Blat(4, 2) = 0 (3.74)
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CHAPTER 4

FORMATION CONTROL WITH SDRE

4.1 Formation Kinematics

In this thesis work, a new formation kinematics is presented for the Leader-Follower

formation structure. In this kinematics, Leader Fixed Frame is chosen. Inertial Frame

and Leader Fixed Frame are given in Fig. 4.1. In this figure, according to the right

hand rule, z axis is through the page. On the other hand, it is important to note that

difference between the local vertical local horizontal frame, assumed to be inertial

and the Leader Fixed Frame is mainly the heading angle of the leader aircraft. Al-

though leader changes its roll and pitch angles, Leader Fixed Frame stays align with

horizontal frame. According to the Fig. 4.1, "L" represents leader aircraft and "F"

represent follower aircraft. Also, "R" represents reference point where the follower

should be on through the formation flight. The point "R" is described as longitudi-

nally "a", laterally "b" and vertically "c" distance away form the leader. Distance "c"

is not showed in figure, it is in the positive z direction. On the other hand, dlong and

dlat is given in Fig. 4.1, they are formation errors in x-y plane and there is also hR−hF
distance represents the formation error in vertical. Therefore, dlong, dlat and hR − hF
are desired to be zero. The formation equations are derived similar to reference [21].

Thus the following error vector is considered.

−→
FR = dlong~i+ dlat~j (4.1)

where,~i,~j,~k are the unit vectors attached to the leader aircraft. The derivative of
−→
FR

may be written in two ways as,

d
−→
FR

dt
= ḋlong~i+ ḋlat~j + ψ̇L~k ×

(
dlong~i+ dlat~j

)
(4.2)
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Figure 4.1: Formation Kinematics [21]

d
−→
FR

dt
=
−→
VR cos(γL)−

−→
VF cos(γF ) (4.3)

−→
VR cos(γL) is stated as:

−→
VR cos(γL) =

−→
VL cos(γL) + ψ̇L~k ×

(
−a~i+ b~j

)
(4.4)

Eq. (4.4) is substituted into Eq. (4.3). Then, because of Eq. (4.2) and (4.3) are

equivalent, following is obtained:

ḋlong~i+ ḋlat~j =
−→
VL cos(γL)−

−→
VF cos(γF ) + ψ̇L~k ×

−→
LF (4.5)

After that
−→
LF in Leader Frame is given below:

−→
LF = {(XF −XL) cos(ψL) + (YF − YL) sin(ψL)}~i

+ {− (XF −XL) sin(ψL) + (YF − YL) cos(ψL)}~j
(4.6)

Finally, the formation equations are obtained as:

ḋlong = VL cos(γL)− VF cos(γF ) cos(ψF − ψL)− ψ̇L sin(ψL) (XL −XF )

+ ψ̇L cos(ψL) (YL − YF )

ḋlat = −VF cos(γF ) sin(ψF − ψL)− ψ̇L cos(ψL) (XL −XF )

− ψ̇L sin(ψL) (YL − YF )

ḣR − ḣF = VL sin(γL)− VF sin(γF )

(4.7)
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4.2 Formation Control Design

To control the formation flight autonomously, SDRE regulator formulation is used

[19]. Thus, we define a quadratic cost function:

J(x0, u) =
1

2

∫ ∞
0

{
xT (t)Qx(t) + uT (t)Ru(t)

}
dt (4.8)

where Q(x) ∈ Rn×m is symmetric positive semidefinite, R(x) ∈ Rm×m is symmetric

positive definite matrix. The feedback gain is given:

u(x) = −K(x)x = −R−1(x)BT (x)P (x)x (4.9)

P (x) is the solution of the following Algebraic State Dependent Riccati Equation:

P (x)A(x)AT (x)P (x)− P (x)B(x)R−1(x)BT (x)P (x) +Q(x) = 0 (4.10)

WhereA(x) andB(x) are the state dependent coefficient (SDC) matrices. If there is a

mismatch term f(t) in Eq.(4.11) between the Eq. (4.7) and SDC matrices. Therefore,

feedback gain is modified as:

u(t) = Kx(t) +Kff(t) (4.11)

where K and Kf is given in Eq. (3.18). This formulation will drive dlong, dlat and

(hR − hF ) to zero. The formation equation is given below:

ẋguide = Aguidexguide +Bguideuguide + fguide (4.12)

According to the Eq. 4.12, the state vector which will be driven to zero is given:

xguide = [dlong, dlat, hr − hf ]T (4.13)

And, SDC matrices are selected as:

Aguide =


0 0 0

0 0 0

0 0 0

 (4.14)

Bguide =


− cos γF cos(ψF − ψL) 0 0

− cos γF sin(ψF−ψL)
2

−VF sin(ψF−ψL) cos γF
2(ψF−ψL)

0

− sin γF
2

0 −VF sin γF
2γF

 (4.15)
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Figure 4.2: Follower Aircraft’s Control Block Diagram with SDRE Method

Mismatch between Eq. (4.7) and SDC matrices is:

fguide =


VLcos(γL)− ψ̇L sin(ψL) (xL − xF ) + ψ̇L cos(ψL) (yL − yF )

−ψ̇L cos(ψL) (xL − xF )− ψ̇L sin(ψL) (yL − yF )

VL sin(γL)


(4.16)

Finally, input signal will be,

uguide = [VF , ψF − ψL, γF , ]T (4.17)

The output of the guidance algorithm is uguide. Here, uguide has the term ψF −ψL and

because of the ψL has known parameter, ψF can be obtained easily. Then; VF , ψF

and γF commands are fed to the inner flight control loop of the follower aircraft. The

block diagram is given in Fig 4.2. A blow up of the SDRE guidance block diagram is

given in Fig. 4.3. The SDRE guidance algorithm works at 1 hz.

However, this formulation may result in small steady state errors but this may be

alleviated by integral states. The new SDC matrices are given then:

Aguide =



0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0


(4.18)
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Figure 4.3: Sdre Guidance Block Diagram

Bguide =



0 0 0

− cos γF cos(ψF − ψL) 0 0

0 0 0

− cos γF sin(ψF−ψL)
2

−VF sin(ψF−ψL) cos γF
2(ψF−ψL)

0

− sin γF
2

0 −VF sin γF
2γF


(4.19)

And, the new state vector with integral states is

xguide =

[∫
dlong, dlong,

∫
dlat, dlat, hr − hf

]T
(4.20)

Input signal is same as before:

uguide = [VF , ψF − ψL, γF , ]T (4.21)

The mismatch, fguide vector becomes:

fguide =



0

VLcos(γL)− ψ̇L sin(ψL) (xL − xF ) + ψ̇L cos(ψL) (yL − yF )

0

−ψ̇L cos(ψL) (xL − xF )− ψ̇L sin(ψL) (yL − yF )

VL sin(γL)


(4.22)

In this formulation, it is seen that the integral states of dlong and dlat are added to the

system which will help to drive the steady state errors to zero.
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4.3 Simulation Results

In this part, designed controllers are tested. There are two different simulation scenar-
ios. In Scenario-1, designed two alternative formation controllers with integral states
and without integral states are tested. In this test, effect of added integral states on
steady states can be compared. Scenario-2 consists of more rapid maneuvers and in
this scenario, only design without integral states is used. In both scenarios, desired
formation structure is given in Fig. 4.4.

Figure 4.4: Desired Formation Structure

Scenario-1:

For the controllers and the guidance loop the weighting matrices, Q and R must be

properly chosen. These weighting matrices can be constant or they can change during

flight. In this study, after some trial and error, constant Q and R matrices are given

below:

Qlong = diag[4× 10−4, 4× 10−4, 3.65, 111.61] (4.23)

Rlong = diag[2× 10−2, 1.6× 10−3] (4.24)

Qlat = diag[5.6× 10−3, 2× 10−2, 3.65× 10−2, 1.216] (4.25)

Rlat = diag[8.3× 10−3, 2.2× 10−3] (4.26)

For the guidance loop and alternative design without integral states Qguide and Rguide

are as follows:

Qguide = diag[5× 10−2, 1× 10−5, 1× 10−5] (4.27)
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Figure 4.5: Total Speed, angle of attack, sideslip angles without using integral states
in the SDRE method, Scenario-1

Rguide = diag[1, 1, 1] (4.28)

Simulation results for the formulation without integral states are given in Fig. 4.5 -

4.11. In Fig. 4.5; speed, angle of attack and sideslip angles of leader and the follower

are given. It may be observed from the figure that leader aircraft changes its speed in

between 170s and 240s, and the follower follows it closely.

In Fig. 4.6, Euler Angles of leader and follower are given and it may be observed

from the figure that the leader changes its heading in between 170s and 240s, and

follower does the same. In Fig. 4.7, body angular rates of leader and the follower

are given. In Fig. 4.8, altitudes of the leader and the follwer are given. It may also

observed that the leader changes its altitude in between 260s and 310s, and follower

aircraft does the same.

In Fig. 4.9 and 4.10, control surface deflections of the leader and the follower are

given. It may be observed from the figure that they are realizable.

Fig. 4.11 gives the formation errors. At the beginning of the simulation follower is

not on point "R" so there are formation errors in all coordinates. When the simulation

starts, follower aircraft rapidly goes to the reference point "R" so formation errors
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Figure 4.6: Euler Angles without using integral states in the SDRE method, Scenario-
1

Figure 4.7: Body angular rates without using integral states in the SDRE method,
Scenario-1
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Figure 4.8: Altitude of the leader and the follower without using integral states in the
SDRE method, Scenario-1

Figure 4.9: Control surface deflections of the leader without using integral states in
the SDRE method, Scenario-1
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Figure 4.10: Control surface deflections of the follower without using integral states
in the SDRE Method, Scenario-1

Figure 4.11: Formation errors without using integral states in the SDRE method,
Scenario-1
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Figure 4.12: Total speed, angle of attack, sideslip angles after using integral states in
the SDRE method, Scenario-1

goes to zero. In Fig. 4.11, it may be seen that lateral error is growing after 50s and

after 150s it goes the zero again. Thus, there is a tracking error during the maneuver.

On the other hand, between 170s and 240s, there is a tracking error at the longitudinal

channel where the total speed changes. After the maneuver it also goes to zero. The

relative position errors are presented in the Fig. 4.11, shows that the algorithm is quite

successful. However, there are some tracking errors during the maneuver.

To reduce steady state errors, integral states are added. The weighting matrices em-

ployed are:

Qguide = diag[5× 10−4, 1× 10−2, 1× 10−7, 1× 10−6, 1× 10−5] (4.29)

Rguide = diag[1, 1, 1] (4.30)

The results are presented in figures 4.12 to 4.18. From these figures it may

be observed that the tracking errors are reduced when integral states are used. Fig.

4.18 shows that the relative position errors are much lower when integral states are

included.
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Figure 4.13: Euler Angles after using integral states in the SDRE method, Scenario-1

Figure 4.14: Body angular rates after using integral states in the SDRE method,
Scenario-1
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Figure 4.15: Altitude of the leader and the follower after using integral states in the
SDRE method, Scenario-1

Figure 4.16: Control surface deflections of the leader after using integral states in the
SDRE method, Scenario-1
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Figure 4.17: Control surface deflections of the follower after using integral states in
the SDRE Method, Scenario-1

Figure 4.18: Formation errors after using integral states in the SDRE method,
Scenario-1
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Scenario-2:

In this scenario the leader carries out more rapid maneuver than Scenario-1. Thus,

the commands to change speed, heading and altitude are much faster. In addition,

flight conditions such as altitude and speed are different than Scenario-1. However,

desired formation structure is same. In this scenario, SDRE guidance design without

using integral states is tested to amplify the effects of rapid maneuvers. However,

weighting matrices for both guidance and flight controllers are same with those used

in the previous scenario.

Simulation results are presented in figures 4.19 to 4.25. In Fig. 4.19; speed, angle

of attack and sideslip angles of leader and follower are given. Now, both leader and

follower starts with 120 m/s and it may be observed in the figure that leader changes

its speed in between 100s and 120s. It may be observed that the follower imitates the

leader closely.

In Fig. 4.20, Euler angles of leader and follower are given and it is seen that in the

figure leader changes its heading in between 50s and 70s, and again the follower

follows quite closely.

In Fig. 4.22, altitudes of the leader and the follower are given. It is also seen that the

leader changes its altitude in between 140s and 170s. Finally, formation errors are

given in Fig. 4.25.

In this scenario, follower aircraft is also away from the reference point "R" at the

beginning of the simulation. After the simulation starts follower goes to the point

"R" and formation error goes to zero. Thus, the tracking of the follower is quite fast.

On the other hand the control surface deflections and the throttle values are quite

reasonable (Fig. 4.24).
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Figure 4.19: Total speed, angle of attack, sideslip angles without using integral states
in the SDRE method, Scenario-2

Figure 4.20: Euler Angles without using integral states in the SDRE method,
Scenario-2
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Figure 4.21: Body angular rates without using integral states in the SDRE method,
Scenario-2

Figure 4.22: Altitude of the leader and the follower without using integral states in
the SDRE method, Scenario-2
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Figure 4.23: Control surface deflections of the leader without using integral states in
the SDRE method, Scenario-2

Figure 4.24: Control surface deflections of the follower without using integral states
in the SDRE method, Scenario-2

38



Figure 4.25: Formation errors without using integral states in the SDRE method,
Scenario-2

4.4 Controllability

In this part, controllability of the proposed formation controller developed with SDRE

method is investigated. For the design without integral states, proposed SDC matrices

were given in Eq. 4.14 and Eq. 4.15. A matrix is zero so controllability depends on

the input matrix B. If there is a singularity in the B matrix this can cause loss of

controllability. The matrix B has three different parameters: VF , ψF − ψL, γF . It

should be checked that if any combination of these parameters leads to a zero term in

the B matrix. VF is not expected to be zero so it is not included. Flight path angle γF

may be zero as well as ψF − ψL. In this case B matrix will be such that:

Bguide =


−1 0 0

0 −VF
2

0

0 0 −VF
2

 (4.31)

It is seen in the Eq. 4.31 that B matrix has still full rank. Therefore, it is controllable.

A second combination may be γF = 0 and ψF − ψL = π
2
. In this case B matrix is
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given below:

Bguide =


0 0 0

−1
2
−VF

π
0

0 0 −VF
2

 (4.32)

Unfortunately, rank of the controllability matrix becomes 2 and the controllability

is lost. However, in the formation flight ψF − ψL = π
2

case can occur for a very

short time and although controllability is lost, controller can work with the previously

generated gains. Therefore, γL = 0 and ψF − ψL = π
2

combination is not expected

to be a major problem for this guidance algorithm. Other combinations may be γF =

π/2 and ψF − ψL = 0; γF = π/2 and ψF − ψL = π
2
. However, γF = π/2 is out of

interest for the formation flight, it is not expected aircrafts climb straight up.

In the alternative design with integral states A and B matrices were given in Eq. 4.18

and Eq. 4.19. Same combinations are also valid in this design. Therefore, for first

combination with γF = 0 and ψF − ψL = 0, B matrix is given:

Bguide =



0 0 0

−1 0 0

0 0 0

0 −VF
2

0

0 0 −VF
2


(4.33)

For the given B matrix in Eq. 4.33, controllability matrix has full rank. Therefore,

controller is controllable in this case. For second combination with γF = 0 and

ψF − ψL = π
2
, B matrix is given as follows:

Bguide =



0 0 0

0 0 0

0 0 0

−1
2
−VF

π
0

0 0 −VF
2


(4.34)

For the given B matrix in Eq. 4.34, controllability matrix does not have full rank so it

is not controllable. However, as explained before, this case will occur in a very short

time.

As a result, SDRE based formation controller can only lose its controllability in case

that γF = 0 and ψF − ψL = π
2
. However, ψF − ψL = π

2
situation will happen
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in a very short time. Therefore, controller can also work in these situations with

previously used gain.

4.5 Comparison with LQR Based Formation Controller

In this part, SDRE based formation flight controller is compared with LQR based

formation controller. First, nonlinear formation equations given in 4.7 are linearized.

The trim values chosen as:

xguide = [dlong, dlat, hR − hF ] = [0, 0, 0] (4.35)

uguide = [VF , ψF − ψL, γF ] = [250, 0, 0] (4.36)

For these trim values, A and B matrices after linearization are:

A′guide =


0 0 0

0 0 0

0 0 0

 (4.37)

B′guide =


−1 0 0

0 −250 0

0 0 −250

 (4.38)

And the system equation is given:

˙̃xguide = Aguidex̃guide +Bguideũguide (4.39)

In the above equation x̃ and ũ indicates variations from trim values. For regulator

formulation, cost function is given:

J(x0, u) =
1

2

∫ ∞
0

{
xT (t)Qx(t) + uT (t)Ru(t)

}
dt (4.40)

First, weight matrices Q and R chosen as below:

Q = diag[5e− 2, 1e− 5, 1e− 5] (4.41)

R = diag[1, 1, 1] (4.42)

Then the feedback gain matrix becomes,

K = diag[0.2236, 0.0032, 0.0032] (4.43)
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For the chosen weight, first simulation test case is named as case-1. To test the con-
troller, simulation Scenario-1 is used and the results are given in Fig. 4.26.

Figure 4.26: Formation errors with LQR method, case-1

From figure 4.26 it may be observed that the lateral response is oscillatory. For that

reason, weight of dlat is reduced and weight matrices are chosen as below:

Q = diag[5e− 2, 1e− 6, 1e− 5] (4.44)

R = diag[1, 1, 1] (4.45)

Then the feedback gain matrix becomes:

K = diag[0.2236, 1e− 3, 0.0032] (4.46)

This case is named as case-2 and results are given in Fig. 4.27. According to the Fig.

4.27, oscillatory motion does not exist any more. However, the longitudinal error is

large so in test case-3 weight of dlong is increased and new weight matrices are given:

Q = diag[1e− 1, 1e− 6, 1e− 5] (4.47)

R = diag[1, 1, 1] (4.48)

The feedback gain matrix becomes:

K = diag[0.3162, 1e− 3, 0.0032] (4.49)
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Figure 4.27: Formation Errors with LQR method, case-2

Results are given in Fig. 4.28. With increased weight, longitudinal error is reduced

but it is not enough so weight is increased once more in test case-4. For the test case-4

weights are given below:

Q = diag[0.5, 1e− 6, 1e− 5] (4.50)

R = diag[1, 1, 1] (4.51)

The feedback gain matrix becomes:

K = diag[0.7071, 1e− 3, 0.0032] (4.52)

And the results are given in Fig. 4.29. The figure shows that increased weights help
to reduce longitudinal error more but at the beginning of the simulation, oscillatory
motion is present.
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Figure 4.28: Formation errors with LQR method, case-3

Figure 4.29: Formation errors with LQR method, case-4

Last test is conducted with increased dlong weight again. One more time, chosen

weights are given:

Q = diag[0.8, 1e− 6, 1e− 5] (4.53)
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R = diag[1, 1, 1] (4.54)

The feedback gain matrix becomes:

K = diag[0.8944, 1e− 3, 0.0032] (4.55)

And the results are given in Fig. 4.30. The figure shows that oscillatory motion
is increasing with dlong weight however to reduce the error it should be increased.
Therefore, it leads to a conflict. To solve this problem, gain scheduling method could
be used or weight matrices can change with time. On the other hand, SDRE based
method was solving this problem without using gain scheduling or another method.
For different maneuvers it could be hard to design these gains. Thus, SDRE based
method is better than LQR.

Figure 4.30: Formation errors with LQR method, case-5
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CHAPTER 5

LYAPUNOV FUNCTION BASED FORMATION CONTROL

5.1 Formation Control Design

In this section, Lyapunov function is used to formulate a guidance algorithm. Forma-

tion kinematics and equations derived previously are used.

The goal of the guidance is to bring the distances from the follower to the desired

reference point to zero. Thus, a positive definite Lyapunov function made of the

squares of the distances may be used. To alleviate the steady sate error problems,

the integral of longitudinal and lateral distances may also be included. Thus, the

following Lyapunov function is proposed:

V =
1

2

{
d2
long + d2

lat + (hR − hF )2 + (g11

∫
dlong)

2 + (g22

∫
dlat)

2

}
(5.1)

Note that in the above function we did not use any scaling for position errors but

added weight for the integral states. The derivative of the Lyapunov function may be

written as,

V̇ = dlong ḋlong+dlat ḋlat+(hR−hF ) (ḣR− ḣF )+g11 dlong

∫
dlong+g22 dlat

∫
dlat

(5.2)

Equating the derivative to negative definite Lyapunov function where, Dguide is a

positive definite matrix,

V̇ = −
[
dlong, dlat, hR − hF

]
Dguide


dlong

dlat

hR − hF

 (5.3)
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the following is obtained.
ḋlong + g11

∫
dlong

ḋlat + g22

∫
dlat

ḣR − ḣF

 = −Dguide


dlong

dlat

hR − hF

 (5.4)

Arranging the terms, the derivatives of the distances may be written as,
ḋlong

ḋlat

ḣR − ḣF

 = −Dguide


dlong

dlat

hR − hF

−G

∫
dlong∫
dlat

0

 (5.5)

where,

Dguide = diag[q11, q22, q33] (5.6)

G = diag[g11, g22, g33] (5.7)

Substituting ḋlong, ḋlat and ḣR − ḣF in Eq. (4.7) into Eq. (5.5) one obtains,

VF cos γF cos(ψF − ψL) = VL cos γL − ψ̇L sinψL (XL −XF )

+ ψ̇L cosψL (YL − YF ) + q11 dlong + g11

∫
dlong

(5.8)

VF cos γF sin(ψF − ψL) = − ψ̇L cosψL (XL −XF )

− ψ̇L sinψL (YL − YF ) + q22 dlat + g22

∫
dlat

(5.9)

VF sin γF = VL sinγL + q33 (hR − hF ) (5.10)

After some simplifications, the following equations for the follower’s heading, flight
path angle and velocity are obtained.

ψF = atan

(
−ψ̇L cosψL(XL −XF )− ψ̇L sinψL(YL − YF ) + q22dlat + g22

∫
dlat

VL cos γL − ψ̇L sinψL(XL −XF ) + ψ̇L cosψL(YL − YF ) + q11dlong + g11
∫
dlong

)
+ ψL

(5.11)
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γF = atan

(
{VL sin γL +Q33(hR − hF )} cos(ψF − ψL)

VL cos γL − ψ̇L sinψL(XL −XF ) + ψ̇L cosψL(YL − YF ) + q11dlong + g11
∫
dlong

)
(5.12)

VF =
VL cos γL − ψ̇L sinψL(XL −XF ) + ψ̇L cosψL(YL − YF ) + q11dlong + g11

∫
dlong

cos γF cos(ψF − ψL)
(5.13)

These generated ψF , γF , and VF , are send to the follower’s inner loop to realize the

commands. Again, follower’s inner loop works with SDRE based flight controller as

before.

5.2 Simulation Results

Proposed Lyapunov function based formation control method is tested in using the

same simulation scenarios presented in the previous section.

Scenario-1:

Desired formation structure was given in Fig. 4.4 and it is also used here. Weighting

matrices Dguide and G are chosen as:

Dguide = diag[0.3, 0.2, 0.3] (5.14)

G = diag[0.007, 0.015, 0] (5.15)

The simulation results are presented in figures 5.1 to 5.7. From these results, it may
be observed that although there are some oscillations in follower states, the follower
follows the commands closely. In Fig. 5.5 and 5.6 control surface deflections of the
leader and the follower are given. In both cases the commands are realizable for the
leader and the follower. In particular the follower’s throttle command saturates for a
short duration. The formation errors decay rapidly and tracking is good (5.7). Thus,
it may concluded that the proposed formation control method using the Lyapunov
function is quite successful.
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Figure 5.1: Total speed, angle of attack, sideslip angles for the Lyapunov Function
method, Scenario-1

Figure 5.2: Euler Angles for the Lyapunov Function method, Scenario-1
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Figure 5.3: Body angular rates for the Lyapunov Function method, Scenario-1

Figure 5.4: Altitude of the leader and the follower for the Lyapunov Function method,
Scenario-1

51



Figure 5.5: Control surface deflections of the leader for the Lyapunov Function
method, Scenario-1

Figure 5.6: Control surface deflections of the follower for the Lyapunov Function
method, Scenario-1
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Figure 5.7: Formation errors of the follower for the Lyapunov Function method,
Scenario-1

Scenario-2:

Scenario-2 has more rapid maneuvers and it is same used in previous section. Lya-

punov funciton approach is also tested against this scenario, but some modifications

are done in the weight matrices. These new weights are given below:

Dguide = diag[0.2, 0.2, 0.25] (5.16)

G = diag[0, 0, 0] (5.17)

One important observation is given that in SDRE method there was no need to update
the weight matrices between the two different simulations. However, in Lyapunov
Function method that was necessary to modify it to get better results. The simulation
results are presented in figures 5.8 to 5.14.
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Figure 5.8: Total speed, angle of attack, sideslip angles for the Lyapunov Function
method, Scenario-2

Figure 5.9: Euler Angles for the Lyapunov Function method, Scenario-2
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Figure 5.10: Body angular rates for the Lyapunov Function method, Scenario-2

Figure 5.11: Altitude of the leader and the follower for the Lyapunov Function
method, Scenario-2
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Figure 5.12: Control surface deflections of the leader for the Lyapunov Function
method, Scenario-2

Figure 5.13: Control surface deflections of the follower for the Lyapunov Function
method, Scenario-2
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Figure 5.14: Formation errors of the follower for the Lyapunov Function method,
Scenario-2

From these figures, it may be observed that the follower follows the leader quite

closely. There are some tracking errors at the maneuver times (Fig. 5.14). However,

these errors go to zero rapidly. It should be noted that the weighting matrices are

modified from scenario-1 to scenario-2. This may indicate that adaptive weighting

may be used in the guidance calculations.

5.3 Controllability

In this part, controllability of the proposed formation flight controller with Lyapunov

method is investigated. In Eq. 5.11, 5.12 and 5.13, outputs of the controller were

given. If there are singularities in these equations, this could lead a controllability

problem. In Eq. 5.11 and 5.12, there is not a singularity problem because even if

denominator of the equations are zero, atan will be resulted as π/2. On the other

hand, In Eq. 5.13, denominator has cos(γF ) and cos(γψF−ψL
) terms and if these

terms go to zero, there will be a controllability problem. Therefore, critical point is

γF = π/2 or ψF − ψL = π/2. In formation flight, γF = π/2 is not expected so it is

out of interest. However, ψF − ψL = π/2 can be a problem but this condition may
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be seen in an agile maneuver and it will be stay very short time. Therefore, various

methods can be applied to remove this problem easily.
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CHAPTER 6

SENSITIVITY ANALYSIS

In this chapter, sensitivity of the proposed formation flight controllers developed with

SDRE and Lyapunov methods is investigated against measurement errors. SDRE

and Lyapunov based formation controllers take leader’s speed, heading, heading rate,

flight path angle and positions. Therefore, if there is an error in these parameters

what would be the effect on the formation flight is investigated in this section. These

investigation is carried out using Scenario-1. On the other hand, for the SDRE based

method there were two different design. In sensitivity analysis, design with integral

states is used.

6.1 Error in the Speed of the Leader

In this section, speed of the leader aircraft is given to the follower with +20 m/s bias.

SDRE based formation control algorithm results on relative position errors are given

in Fig. 6.1. The figure shows that the follower is brought the desired relative position

in spite of the error of the observed speed of the leader. There is an overshoot and

some oscillations at the beginning when the position error is large. However, the

follower’s overall performance is acceptable.

Same scenario is used for the Lyapunov based formation controller as well and the

results are given in Fig. 6.2. Similar to the SDRE controller, there is an overshoot

initially but the follower aircraft is converges and tracks the desired relative position

as well as the case where there is no observation error on the speed. According to the

results it may be stated that both SDRE and Lyapunov based formation controllers
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Figure 6.1: Formation results for the case that +20 m/s error in leader’s speed with
the SDRE method

overcome speed observation errors.

6.2 Error in the Flight Path Angle of the Leader

In this section, flight path angle of the leader is communicated to the follower aircraft

with +2 degree bias. This case is first tested for the SDRE method and the results are

given in Fig. 6.3. Results show that when flight path angle of the leader is given to

the follower aircraft, follower can track the leader but there is an offset in the altitude

channel. However, there is no tracking error in the horizontal channels since there

are integral states in these channels. This offset could be made zero if integrators are

added to the altitude channel as well.

Similar behaviour is observed with Lyapunov based controller (Fig. 6.4). Again, re-

sults show that while there is not error in the horizontal channels, error in the altitude

channel is observable due to same reasons.
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Figure 6.2: Formation results for the case that +20 m/s error in leader’s speed with
the Lyapunov method

Figure 6.3: Formation results for the case that +2 degree error in leader’s flight path
angle with the SDRE method
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Figure 6.4: Formation results for the case that +2 degree error in leader’s flight path
angle with the Lyapunov method

6.3 Error in the Heading Rate of the Leader

In this section, heading rate of the leader is given to the follower aircraft as "0".

Formation errors are given in Fig. 6.5 for the SDRE based formation controllers.

The results show that without leader’s heading rate information, follower aircraft can

follow the leader perfectly. Same test is conducted on the Lyapunov based controller

and the results are given in Fig. 6.6 also show that follower aircraft can track the

leader perfectly. Thus, these controllers are insensitive to the yaw rate errors.

6.4 Error in the Heading of the Leader

In this section, when the heading of the leader is taken by the follower aircraft with

error is investigated. Simulation results with +5 degree bias, in the leader heading are

given in Fig. 6.7 for the SDRE based formation controller. Results show that after

some overshoot at the beginning, follower can track the leader aircraft very well.

Moreover, there is not any offset in the lateral channel because integral states of the

lateral distance handle that problem.
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Figure 6.5: Formation results for the case that follower takes the leader’s heading rate
as "0" with the SDRE method

Figure 6.6: Formation results for the case that follower takes the leader’s heading rate
as "0" with the Lyapunov method
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Figure 6.7: Formation results for the case that follower takes the leader’s heading
with +5 degree bias with the SDRE method

Same test is conducted with the Lyapunov based guidance algorithm and results are

given in Fig. 6.8. These results also show that formation controller with Lyapunov

method is robust to leader’s heading parameter. Thus, the follower can follow the

leader aircraft very well with +5 degree heading bias.

6.5 Error in the Positions of the Leader

In this section, when the positions of the leader is taken by the follower aircraft with
30 meter bias is investigated. For the SDRE based formation controller, formation
results are given in Fig. 6.9. As expected results show that the follower tracks the
leader aircraft with offset in all channel. Same test is conducted with Lyapunov
method and results are given in Fig. 6.10. Also, as expected that follower aircrafts
follows the leader with the some offset.
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Figure 6.8: Formation results for the case that follower takes the leader’s heading
with +5 degree bias with the Lyapunov method

Figure 6.9: Formation results for the case that follower takes the leader’s positions
with 30 meter bias with the SDRE method
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Figure 6.10: Formation results for the case that follower takes the leader’s positions
with 30 meters bias with the Lyapunov method
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CHAPTER 7

COMPARISON AND DISCUSSION BETWEEN THE

PROPOSED METHODS

In this study, first formation flight controller is developed with SDRE based method.

This method was tested with two different scenario. The difference in these scenarios

are flight conditions and maneuvers. Scenario-2 has more rapid maneuvers. In SDRE

based formation controller, designed SDRE weights could be used with two differ-

ent scenarios without changing the weights. However, in Lyapunov function based

formation flight controller, that was necessary to tune the weights again. Therefore,

it could be an option to design the weights which will depend on some of states for

Lyapunov based controller. Thus, the weights can change during flight and this could

increase performance of the controller.

In sensitivity analysis, it is showed that both SDRE and Lyapunov based controllers

are very robust to observed states of the leader. In simulation tests, it was showed that

although the follower took the parameters from leader with some error, it could track

the leader aircraft well.

The simulation results show that the proposed two methods can control the formation

flight autonomously and they perform very well. It is seen in the simulations that

SDRE based formation flight controller has better performance than the Lyapunov

function based controller. However, it should be noted that there are lots of parameters

that affect the performance of the controllers. Therefore, some other weight choices

may improve the performances.
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CHAPTER 8

CONCLUSION

In this thesis work, there are two formation flight controllers are proposed. These

controllers are developed with SDRE and Lyapunov methods and they are tested in

simulations. The simulation results show that proposed algorithms can control the

formation flight in Leader-Follower structure autonomously.

On the other hand, SDRE and Lyapunov function based formation flight controllers

are tested with given faulty parameters and it is showed that these two controllers are

very robust to the taken faulty signals.

Moreover, SDRE based flight controller is developed and it controls the aircraft’s

speed, heading and altitude. This controller is used in both leader and follower. There-

fore, follower aircraft has two loop structure that inner loop has SDRE based flight

controller and outer loop has two different types of formation flight controllers. It

was also showed that developed inner loops controller with SDRE method can follow

the given speed, heading and altitude commands very well.

In this thesis work, vortex model is not modelled. However, in real flight, leader

will generate vortex and it will affect the follower aircraft. To make more realistic

simulations, vortex will be modelled in future works.

On the other hand, if there are more aircraft or in particular maneuvers in the for-

mation flight, collisions may be a serious problem. Therefore, collision avoidance

algorithm shall be added in the future studies.

In this thesis work, proposed algorithms are tested in simulations. However, these
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methods should be implemented to a model aircraft and real flight test should be

conducted.
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