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ABSTRACT

FORWARD PROBLEM OF ELECTROCARDIOGRAPHY IN TERMS OF 3D
TRANSMEMBRANE POTENTIALS USING COMSOL

Bedir, Gizem
M.S., Department of Biomedical Engineering

Supervisor : Assoc. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz

Co-Supervisor : Assist. Prof. Dr. Barbaros Çetin

January 2015, 54 pages

Computation of body surface potentials from equivalent cardiac sources is called as
forward problem of electrocardiography (ECG). There exist different solution meth-
ods for solving the forward ECG problem. These solution methods depend on the
choice of the equivalent cardiac sources. In this study, bidomain model based trans-
membrane potential (TMP) distribution is used as equivalent cardiac source to exam-
ine the cellular electrophysiology macroscopically. With this type of source defini-
tion, the TMP values are linearly related to the body surface potentials, and this linear
relationship is modeled by a forward transfer matrix, T. Then the forward problem of
ECG is solved in order to obtain T, using finite element method (FEM).

In the first part of this study, both the heart and torso are assumed as two concentric
spheres and electrically isotropic regions. First forward problem of ECG is solved
both analytically and numerically, and then a transfer matrix that relates the TMPs
to the body surface potentials is constructed. Accuracy of the transfer matrix is ver-
ified by the analytical solution. Numerical solutions are done using COMSOL Mul-
tiphysics Software which provides easy mesh generation by discretizing the solution
domain with FEM. Flexibility of arranging both mesh element sizes and numbers in
the solution domain makes COMSOL preferable for this study. In the second part of
the study, a spherical heart is placed inside a realistic torso geometry and the forward
problem is solved again to obtain the transfer matrix.
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ÖZ

3 BOYUTLU TRANSMEMBRAN POTANSİYELLERİ CİNSİNDEN COMSOL
KULLANARAK ELEKTROKARDİYOGRAFİDE İLERİ PROBLEM

Bedir, Gizem
Yüksek Lisans, Biyomedikal Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Yeşim Serinağaoğlu Doğrusöz

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Barbaros Çetin

Ocak 2015 , 54 sayfa

Kalpteki eşdeğer elektriksel kaynaklardan gövde yüzeyindeki potansiyellerin hesap-
lanması elektrokardiyografide (EKG) ileri problem olarak adlandırılır. EKG ileri prob-
lemini çözmek için birçok farklı çözüm yöntemi vardır. Bu çözüm yöntemleri seçilen
eşdeğer kalp kaynaklarına göre değişir. Bu çalışmada hücresel elektrofizyolojiyi mak-
roskopik olarak inceleyebilmek için bidomain modele dayanan transmembran potan-
siyel dağılımı eşdeğer kaynak olarak kullanılmıştır. Bu kaynak tanımıyla, transmemb-
ran potansiyel değerleri kalp yüzeyindeki potansiyellerle doğrusal olarak ilişkilendi-
rilmiştir ve bu ilişkilendirme ileri problem transfer matrisi T ile modellenmiştir. Daha
sonra, T matrisini elde edebilmek için kalpte ileri problem çözülmüştür. Bu problemi
çözmek için sonlu elemanlar metodu kullanılmıştır.

Bu çalışmanın ilk kısmında hem kalp hem de gövde iki adet eş merkezli ve elekt-
riksel olarak eş yönlü küresel bölgelerle temsil edilmektedir. İlk olarak, kalpte ileri
problem analitik ve sayısal olarak çözülmüştür, daha sonra transmembran potansi-
yellerini vücut yüzeyi potansiyelleriyle ilişkilendiren T matrisi oluşturulmuştur. Bu
matrisin doğruluğu analitik çözümlerle kanıtlanmıştır. Sayısal çözümler sonlu ele-
manlar yöntemini kullanarak çözüm alanını sonlu elemanlara bölen COMSOL Mul-
tiphysics Software programıyla yapılmıştır. COMSOL programı sonlu elemanların
boyutunu ve sayısını ayarlamada sağladığı kolaylıktan dolayı tercih edilmiştir. Çalış-
manın ikinci aşamasında ise küre ile temsil edilen kalp gerçekçi gövde geometrisinin
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içine yerleştirilmiş ve ileri problem çözümüyle tekrar T matrisi elde edilmiştir.

Anahtar Kelimeler: Elektrokardiyogram, İleri Problem, Transfer Matris, Sonlu Ele-
manlar Metodu, COMSOL, Analitik Çözüm
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CHAPTER 1

INTRODUCTION

In today’s world, heart diseases are one of the most widespread causes of mortality.

According to World Health Organization (WHO) reports, each year approximately 17

million people die due to cardiovascular diseases all over the world [2]. Therefore,

understanding the functioning of the heart becomes more important issue for scien-

tists to be able to develop effective diagnostic tools and therapies for people suffering

from heart diseases.

Electrocardiogram (ECG) is the recording of the heart’s electrical activity from the

body surface as electric potential [3]. Each change in the electrical activity within the

heart reflects a variation on the resultant ECG. That is why ECG is a major tool to

interpret the functioning of the heart and diagnose the heart diseases.

The relation between the heart’s electrical activity and the resultant ECG can be stud-

ied under two major problems; these are the forward and inverse problems of ECG.

Obtaining electrical potentials from the equivalent heart sources is called as the for-

ward problem of ECG and reconstruction of the equivalent cardiac sources by using

the measured ECG from the body surface is called as the inverse problem of ECG.

Inverse problem is very important to understand the electrical activity of the cardiac

tissue. It enables noninvasive diagnosis for the heart diseases by providing distri-

bution of cardiac sources within the heart only using measurements from the body

surface.

According to the selected equivalent cardiac sources, the problem can be either linear

or nonlinear. In this study, transmembrane potential (TMP) distribution is selected
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as equivalent cardiac source and the problem becomes linear. By using this linearity,

forward transfer matrix which contains information about the electrical conductivity

and geometry of a volume conductor that is specific to each patient is obtained and

inverse problem is solved [4].

As long as there is no change at electrical conductivity and geometry of a volume

conductor, there is no need to construct transfer matrix again and again. Because,

the forward transfer matrix carries only static information about volume conductor

of each patient. Therefore, if the volume conductor is same, it is unnecessary to

construct a new transfer matrix for different TMP distributions within the heart.

1.1 Scope of the Thesis

Depending on the equivalent cardiac sources, there exist different solution methods

for the ECG forward problem. In this study, bidomain model based transmembrane

potential (TMP) distribution is used as equivalent cardiac source in order to examine

the cellular electrophysiology macroscopically. With this type of source definition,

the TMP values are linearly related to the body surface potentials, and this linear

relationship is modeled by a forward transfer matrix, T as indicated in the previous

section. Then the forward problem of ECG is solved to construct T. In the first part

of the study, both the heart and torso are assumed as two concentric spheres and elec-

trically isotropic regions. First, the forward problem of ECG is solved analytically

and numerically. For numerical solutions, finite element method (FEM) is used. Sec-

ondly, TMP based transfer matrix, T is constructed by using point cloud modeling.

Then the accuracy of T is verified by direct forward solutions. In the second part of

the study, a spherical heart is placed inside of a realistic torso to show the applicability

of the point cloud modeling to any irregular geometry. By this purpose, the forward

problem is solved and T is constructed again.

In this study, numerical solutions are carried out in COMSOL Multiphysics Software,

which provides easy mesh generation by discretizing the solution domain using FEM.

Flexibility of arranging both mesh element sizes and numbers in the solution domain

makes COMSOL preferable for this study.
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1.2 Contribution of the Thesis

In this thesis, T matrix which directly relates TMPs within the heart to the body

surface potentials is constructed by point cloud modeling. Although the idea of point

cloud modeling comes from another study [5], this thesis makes contribution to the

literature by verifying the results of the point cloud modeling with analytical solution

that is also derived by us. Although COMSOL is used for mesh generation, MATLAB

code for point cloud modeling is written to construct T by using MATLAB Livelink

of COMSOL. In addition to these, the results of analytical solution and point cloud

modeling are analyzed according to mesh sensitivity and the density of the nodes in

the point cloud modelling respectively.

1.3 Outline of the Thesis

Second chapter gives background information about the anatomy and electrophysiol-

ogy of the heart and discusses related studies in the literature. Finally, formulation of

the forward problem is introduced.

Third chapter starts with theoritical explanation of the forward problem and contin-

ues with related analytical and numerically done point cloud modeling solutions by

discussing their results.

Fourth chapter shows applicability of point cloud modeling to any irregular geometry

by using realistic torso with spherical heart.

Chapter five summarizes the study done in the thesis and discusses future work.
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CHAPTER 2

BACKGROUND INFORMATION

This chapter gives background information about the anatomy and electrophysiology

of the heart. Then the equivalent cardiac sources and numerical solution methods for

the forward problem of electrocardiography (ECG) are discussed. Finally, formula-

tion of the forward problem is introduced.

2.1 Anatomy of the Heart

The heart is one of the most important organs and the most powerful muscle in the

human body. It behaves like a strong electromechanical pump, which has contrac-

tion feature by its own accord. The main duty of this pump is to provide oxygen and

nutrition rich blood throughout the entire body. Removing metabolic wastes, regulat-

ing body temperature and protecting acid-base balance of the body are some of other

important functions of the heart [6].

Heart is found at the center of the chest and is composed of three layers of muscle

tissue. Heart muscles are called as endocardium, myocardium and epicardium from

inside to outside (Figure 2.1) [7]. In humans and other mammals, cardiac muscle is

divided into four chambers: the upper part of the cardiac muscle contains right and

left atria and the lower part contains right and left ventricles. Heart chambers have

some vital roles during heart contraction. In addition to the chambers of the heart,

there are also valves between the chambers, which allow blood flow in or out [8].

In general, upper chambers receive incoming blood; right atrium receives oxygen
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Figure 2.1: Cardiac Muscle [9]

poor blood from the superior and inferior vena cava, which are large diameter veins.

These veins carry this de-oxygenated blood from the upper and lower parts of the

body respectively. After receiving de-oxygenated blood, right atrium pumps it to the

right ventricle. Left atrium, on the other hand, receives oxygen rich blood from the

lungs by pulmonary veins and then pumps it to the left ventricle. In contrast to the

upper chambers, lower chambers pump blood out of the heart; right ventricle pumps

oxygen poor blood to the lungs by pulmonary artery and left ventricle pumps oxygen

rich blood throughout the body by aorta [6]. The four chambers of the heart and the

main arteries which carry blood can be seen better from Figure 2.2.

2.2 Electrical Activity of the Heart

This section gives brief background information about the electrical activity of the

heart starting from cellular electrophysiological level and continuing with the elec-

trocardiography.
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Figure 2.2: Anatomy of the Heart [3]

2.2.1 Action Potential Generation

There are two types of cells in the cardiac muscle: the cardiac pacemaker cells and

cardiomyocytes [7]. Electrical activation within the heart is initiated by cardiac pace-

maker cells. These cells are responsible for generation and transmission of electrical

impulses. The cardiomyocytes, on the other hand, are the cells that form cardiac mus-

cle and they provide the necessary contraction for the heart beat after electrical stim-

ulation by cardiac pacemaker cells. Electrical activation in cardiac cells is generated

as a result of the ionic movements across the cell membrane. This movement causes

a potential difference between the intracellular and the extracellular space called as

transmembrane potential [10]:

φm = φi − φe (2.1)

At resting state, these cells have a transmembrane potential around -80 mV. The in-

7



flow of sodium ions from cell membrane causes depolarization of these cells and the

resting potential immediately changes from -80 to +20 mV and action potential is

generated. Cardiac depolarization is followed by a plateau phase due to the inflow

of calcium and outflow of potassium ions. This phase determines the duration of the

action potential and this duration shows variance at different regions of the cardiac

tissue. As a consequence of the outflow of potassium ions, plateau phase is followed

by repolarization phase and TMP of the cell changes back to its resting potential,

-80 mV [10]. Figure 2.3 shows typical action potential waveform of ventricular car-

diomyocyte.

Figure 2.3: Action Potential of Standard Cardiomyocyte [11]

2.2.2 Conduction System of the Heart

Heart has a natural pacemaker called as sino-atrial (SA) node or sinus node where

the impulse generation starts initially [3]. This pacemaker is composed of a group

of specialized cells called as cardiac pacemaker cells that are briefly explained in the

previous section. This specialized group of cells are located at the upper part of the

right atrium.

After the impulse generation in the SA node, electrical conduction propagates through-

out the other parts of the cardiac muscle by following a special conduction path. The

8



action potential is firstly spread to the right atrium and the left atrium by Bahmann’s

bundle. Since there is no direct electrical connection between the atria and the ventri-

cles, the action potential propagates from the atria to the ventricles by atrio-ventricular

(AV) node. Then, the activation in the AV node is transmitted to the ventricles by spe-

cialized conduction system namely bundle of His and Purkinje fibers [3].

Each region in cardiac muscle has different excitatory feature. That means the action

potential generated throughout the conduction pathway between the SA node and the

ventricles shows different waveform characteristic. Since action potential generation

first starts in the SA node and then propagates to the ventricles, there must be a de-

lay between the excitation times of each region. Fig. 2.4 shows this varying action

potential waveform at different regions of the heart.

Figure 2.4: Electrical Conduction System of the Heart [3]

2.2.3 Electrocardiography

Noninvasive recording of the heart’s electrical activity from the body surface is called

as electrocardiography (ECG or EKG) and the resultant record is defined as electro-

cardiogram. The additive sum of the all action potentials generated at different re-
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gions of the cardiac tissue forms the electrocardiogram (Figure 2.4). During normal

record, there occur P, Q, R, S, and T waves in ECG [3].

P wave is generated as a result of the atrial depolarization. After atrial depolarization,

excitation wave front moves to the ventricles and leaves the atria that causes atria

to repolarize. The repolarization of atria and depolarization of ventricles form QRS

complex of the ECG. Finally, repolarization of ventricles constitutes T wave. Any

abnormalities in the electrical activity of the heart affect the waveform of the resultant

ECG.

The term ECG was first introduced by Willem Einthoven in 1903 and with this in-

vention he received the Nobel Prize in Medicine [12]. Nowadays, the most widely

used ECG is 12-lead ECG. 12 lead ECG shown in Figure 2.5 is composed of two

groups of leads which are limb leads and precordial leads. Limb leads are composed

of standard limb leads and augmented limb leads. The standard limb leads I, II and

III are generated from the electrodes located on the right arm (RA), left arm (LA) and

the left leg (LL). The augmented limb leads aV R, aV L and aV F are also derived from

the same electrode locations where the standard limb leads are generated from [13].

However, in contrast to the standard limb leads, the augmented limb leads provide

the view of the heart’s electrical activity from different angles but with a very small

signal. Therefore, the signals coming from these leads are augmented as the name

implies. Precordial leads from V1 to V6 are horizontally located on the chest. Since

they are close enough to the heart, there is no need for augmentation. All signals

coming from each of these 12 leads from a healthy subject are shown in Figure 2.6.

In addition to this standard 12 Lead ECG, some researchers use body surface potential

mapping (BSPM). BSPM uses extended measurement points from both anterior and

posterior parts of the body surface (Figure 2.7) [5]. Generally, the number of elec-

trodes located on these measurement points is selected between 32 and 352. BSPM

provides more detailed examination on heart’s electrical activity. By using this map-

ping, the effects of small heart rhythm variations can also be detected easily from the

body surface.

10



Figure 2.5: Limb Leads and Precordial Leads [14]

Figure 2.6: 12 Lead Electrocardiography from a Healthy Subject [15]

Figure 2.7: 352 sites of BSPM recording [5]
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2.3 Problems of Electrocardiography

Computation of the body surface potentials from equivalent heart sources by using the

theory of electromagnetism is called as the forward problem of electrocardiography

(ECG) and the inverse problem of ECG restores the electrical activity within the heart

from a given set of body surface potentials obtained by the forward problem [16].

The main application areas of the forward problem are (i) obtaining transfer matrix

for the inverse problem, (ii) exploring the effects of electrophysiological properties

(electrical conductivity, anisotropy, geometry etc) of the heart on the resultant ECG,

and (iii) electrode location optimization for ECG recording [5].

Solution of the forward problem of ECG is composed of basically two main stages

which are defining electrical activity of the heart in terms of equivalent sources and

numerical solution of the problem.

2.3.1 Electrical Activity of the Heart in terms of Equivalent Sources

The electrical activity of the heart can be represented as either equivalent current

dipoles or known potentials on the surface of the heart (epicardium, endocardium)

or within the heart (transmembrane potentials). There are four types of equivalent

dipole sources: fixed dipole, moving dipole, multiple dipole and multipole [17]. All

of these equivalent cardiac sources have both advantages and disadvantages. In this

study, TMP distributions are used as equivalent cardiac sources for their convenience

with bidomain model (a heart tissue model) and for their significant advantages which

will be given later.

Dipole source is composed of two equal in magnitude and opposite in sign point

charges (monopoles) separated by a small distance. Since dipole is a vector, direction

of a current dipole is from current sink to source. Fixed dipole source has a fixed loca-

tion, but varying magnitude and orientation. There are three independent variables in

a fixed dipole source due to the variation in magnitude thereby in orientation. Adding

varying location feature to a fixed dipole makes it a moving dipole. Combination of

several fixed dipoles at different locations of the heart is called as multiple dipoles.

As described above, dipole source is formed by, two equal in magnitude and oppo-

12



site in sign monopoles. If dipole sources are used instead of monopoles, multipole

is formed. Multipoles are very important, because any source can be represented by

combining multipoles [3].

The electrical activity of the heart can be represented by using any of these equiva-

lent dipole sources described above. Use of a fixed dipole source or a moving dipole

source may not be enough to represent the electrical activity at each region of the

heart. Therefore multiple dipole source or multipole source is used for better repre-

sentation of this electrical activity and accuracy of the model increases. However, due

to the complexity of these dipoles, there may occur some computational difficulties

during problem solution.

In addition to point-like dipole sources, there are also distributed surface source mod-

els such as uniform double layer (UDL) model, equivalent double layer (EDL) model,

epicardial and endocardial potential (EP) models [17]. Uniform double layer model

is the representation of the ventricular depolarization. This model reflects activation

wave front on ventricles by elementary current dipole sources that are oriented in the

normal direction within the myocardium. Since it is really hard to obtain the electri-

cal activity within the heart, it is more convenient to use a representative model for a

surface, which encloses the myocardium. Therefore, equivalent double layer (EDL)

model is introduced. This model exemplifies the electrical activity during ventricular

depolarization on the epicardium and endocardium layer of the cardiac muscle and

is equal to UDL model based on the solid angle theory. Although equivalent double

layer model provides better representation than point like models, it gives no infor-

mation about repolarization and recovery periods of the electrical activity of the heart

[18]. Use of epicardial and endocardial potentials (EP) compensates this shortcom-

ing of the EDL model by recovering the potential on the heart surface at any location

during any instant of the cardiac cycle. EPs can also be measured from the heart sur-

face invasively and this capability provides the verification of the inverse solutions.

Another important advantages of using EPs are uniqueness of the solution and linear-

ity of the problem. Neglecting blood masses within the myocardium is also another

benefit of the EP model, because complexity of the problem decreases. However, EP

model has some disadvantages such as problem becomes highly ill-posed due to the

effects of smoothing and discretization on the surface potentials passing through the
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torso [19]. Another disadvantage of the EP model is that it shows high sensitivity to

errors on the introduced geometry [18].

As previously explained in section 2.2.1, TMPs are formed as a result of the potential

differences between the intracellular and extracellular spaces within the myocardium

due to generated moving action potentials. All other surface models: UDL, EDL

and EP can be obtained from TMPs, since the TMP is the first potential distribution

generated within the heart [17]. One of the most important advantages of using TMP

distribution is that problem becomes linear and this linearity provides easiness for

the solutions. Another benefit of TMP based formulation of the forward problem is

the ability to obtain diseases in the heart by considering the distribution and shape of

the TMPs as a result of the inverse problem solutions. Nevertheless, there are some

limitations of the TMP based solutions such as the inverse solution is non-unique and

therefore meaningless, but by using some additional constraints it is also possible to

remove the non-uniqueness of the problem. Another disadvantage is the impossibility

of measuring real TMPs within the myocardium, so the inverse problem solutions

can not be verified. Therefore, some ionic current and flux models are introduced to

represent the equivalent TMP distributions within the myocardium. These models can

also be used for direct forward problem calculations. Since the first aim of this study

is constructing transfer matrix for the inverse problem, these ionic current models,

which mimic the real equivalent TMP distributions will not be discussed here.

2.4 Numerical Solution of the Forward Problem

Due to irregular geometry of heart and torso, analytical solution of the forward prob-

lem is not possible. Therefore, an appropriate numerical solution algorithm is needed.

There are mainly two approaches for numerical solution of the problem, namely sur-

face and volume methods [20].

Surface methods are capable of solving the regions, which have isotropic conductivi-

ties. In these methods, only the boundaries between different regions of the solution

domain are being taken into consideration. Therefore, these methods are usually

known as boundary element methods (BEM) [21, 22, 23]. If there are regions with
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anisotropic conductivities in the solution domain, then forward calculations are done

by getting an average isotropic conductivity of the regions. That means instead of

anisotropic conductivities, their approximately equivalent average isotropic conduc-

tivities are used. Solution of the surface methods is based on integral equations [20],

which are formulated form of linear partial differential equations. Volume methods,

on the other hand, provide a solution for both isotropic and anisotropic regions. In

volume methods, there is a three dimensional representation of the solution domain

and all of the regions inside the torso are modeled entirely by contrast to BEM [24].

Surface methods seem to have less number of elements, since they only discretize the

boundaries between different regions in a solution domain. However, surface methods

combine the potential at each element to the other. Therefore, the resultant matrix is

fully populated, but small. On the other hand, volume methods are expected to have

much more elements, because they discretize the entire volume. This means, there

must be more potentials to be determined in volume methods. Nevertheless, volume

methods couple each potential at every element only to its nearest neighbor and this

makes the resultant matrix sparse, but still large [20].

Use of BEM for numerical solution of ECG problems has been very popular for more

than four decades [21, 22, 23, 25]. The popularity of BEM mainly comes from the

easiness of setting the problem and sufficiency for solving inhomogeneous regions of

the torso. Although BEM provides quick and easy set up for numerical computations

by using only two dimensional surface elements compared to volume methods which

include three dimensional volume elements, it is not able to model cardiac anisotropy

which has high effects on the resultant ECG with BEM. If the solution domain con-

tains varying anisotropy and complexity, then volume methods are usually preferred

for the numerical computation.

There are three types of volume methods namely finite difference method (FDM),

finite element method (FEM), and finite volume method (FVM) [26, 20, 24, 25]. All

of these methods have both merits and restrictions, which will be shortly explained

below.

FDM uses regularly spaced three-dimensional array of nodes, which are connected to

each other with resistors that represent torso resistances. For each connected node,
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Kirchhoff’s current law is used. As a result, large set of equations is formed to relate

the potentials at neighboring nodes to each other. The accuracy of the solution is

directly dependent on the node spacing and resistors that represent torso. Like other

volume methods, FDM is also capable of solving anisotropic regions in a solution

domain. The main disadvantage of FDM is its slow convergence [26].

FEM is another widely used volume method. It uses three-dimensional tetrahedral

or hexahedral elements to subdivide the solution domain into simpler parts called as

finite elements [20]. The main advantages of using finite elements are their ability

to represent complex geometries such as geometries with irregular boundaries and

dissimilar properties of materials in the solution domain accurately [26, 20, 24, 25].

However, there are also some disadvantages of FEM. FEM has element dependent

solution that means the choice of shape quality and density of elements affect the

solution. Therefore, during modeling with FEM, these parameters should be consid-

ered carefully. Also, due to the entire volume modeling, element number increases

and thus complexity in computation rises. By using some adaptive solution methods,

this handicap can be removed. A solution domain may include regions that need ei-

ther fine or coarse solution. Hence, while fine solution needed region is modeled with

high number of elements, coarse solution needed region can be modeled with less

number of elements. Therefore, computational cost can be reduced [24].

FEM uses both element and node information in order to construct the shape functions

needed for the solution. There is also another type of FEM, which uses only node and

boundary information. This type of FEM is called as meshless FEM [27]. As the

name implies, meshless FEM does not require meshing the solution domain, which is

a time-consuming process. Recent studies have showed that meshless FEM has better

convergence and less relative error than traditional FEM at the same node distribu-

tion. However, modeling inhomogeneous and anisotropic regions is not straightfor-

ward with meshless FEM. Also, computational load of meshless FEM is heavier than

traditional FEM, because meshless FEM is not able to express shape functions [28].

The small volume surrounding each node in a discretized geometry is represented by

FVM. FVM is based on integral equations and similar to FDM and FEM in terms of

calculating the values at discrete mesh locations. In FVM, like other volume methods
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the accuracy is dependent on density of the discretization. As a result of applying

FVM, there occur many equations to represent the potentials at the centre of all vol-

ume elements [29].

2.4.1 Related Studies of the Forward Problem in Literature

In ECG problems, according to equivalent source definition and conductivity proper-

ties of the solution domain, either surface methods, volume methods or both surface

and volume methods are applied. Surface method BEM is quite common solution

method for ECG problems [30, 31, 32]. The main reasons which make BEM prefer-

able are both its sufficiency to model the solution domain with small number of sur-

face elements and its applicability to the regions with major inhomojenities in torso

[21]. Also, use of small number of elements makes computational time with BEM

modeling faster than the volume methods [33]. However, BEM is unable to deal with

the anisotropic electrical conductivity of the interstitial space within the cardiac tis-

sue, therefore researchers neglect anisotropy of both intra and extracellular spaces

or only extracellular space [21]. Another disadvantage of BEM is its large amount

of memory requirements [34]. EP, EDL models and dipole source representation of

TMPs within the myocardium are the cardiac sources which are generally used for

ECG forward problem studies with BEM [35, 36]. Since EP and EDL represent the

electrical activity on the surface of the cardiac tissue, the anisotropy within the my-

ocardium can be neglected. However, at some studies where dipole source represen-

tation is used, the inhomogeneous intracellular anisotropy is taken into consideration

by using oblique dipole model [37].

For ECG forward problem studies, volume methods have recently gained importance

for their convenience with anisotropic modeling. Solution of ECG forward problems

by using FDM was first introduced by Walker and Kilpatrick in 1987 [20], but due to

its slow convergence rate, FDM is used seldomly by the researchers [38, 26]. Another

volume method, FVM was first applied to bioelectric problems in 1994 by Abboud

et al. [20] and is similar to FEM. In literature, there are some applications of FVM

to ECG problems[39]. Among volume methods, FEM is the most widely used one.

Several groups utilize FEM in ECG problems with the availability of large amount
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of FEM packages [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. Since the anisotropic

modeling of the cardiac tissue has very significant effects on the forward ECG prob-

lems, FEM modeling of the myocardium with its anisotropic electrical conductivity

properties is very important [51]. A forward ECG study performed by Pilkington et

al. in 1985 has showed that the accuracy of the ECG signal is higher and the solution

is less sensitive when FEM is applied [52]. Another significant advantage of FEM in

contrast to BEM, TMP distribution within the myocardium can be taken as equivalent

cardiac source and other equivalent cardiac sources such as EP, EDL and equivalent

dipole sources can be obtained from the equivalent TMP distributions within the my-

ocardium.

In order to reduce computational complexity, some researchers apply surface and vol-

ume methods together. While anisotropic regions in the solution domain are modeled

with FEM, isotropic regions are modeled with BEM. This approach was first applied

to ECG problems by Stanley and Pilkington (1989) [20]. There are also other heart

torso coupling studies with different numerical methods [53].

Nowadays, TMP has become a widely studied source model for both forward and

inverse ECG studies [54, 55, 56, 57, 58, 59, 60]. Since TMP is the main source of

cardiac action potential generation, compared to other source models TMP gives more

detailed information about the electrical activity within the myocardium. Therefore,

for inverse ECG studies TMP based transfer matrices have gained importance. An-

other significant advantage of using TMP is the linear representation of the problem.

However, it has a very serious limitation, the solution is non-unique so the obtained

solution may not be physiologically meaningful unless additional constraints are used

[54]. Also the increase in problem size is a serious disadvantage which increases the

computational cost.

2.5 Formulation of the Forward Problem

The problem of electrocardiography is governed by Maxwell’s equations [1] :

∇× E +
∂B

∂t
= 0 (2.2)
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∇×H − ∂D

∂t
= J (2.3)

In equations 2.2 and 2.3, E represents the electric field intensity, B represents the

magnetic induction, H represents the magnetic field intensity, D represents the elec-

tric displacement and J represents the current density [1].

Since the measured electrocardiogram (ECG) from a patient does not contain fre-

quencies above 1kHz, the impedance of the torso can be approximated as purely

resistive and phase shift due to bioelectric field is ignored. Also, inductive, capacitive

and propagation effects of biological tissues are neglected when their properties are

considered.Therefore, problem becomes quasi-stationary that means torso is approx-

imated as a passive volume conductor [5].

By taking quasi-static assumptions into account, the following time dependent terms

of the equations 2.2 and 2.3 are neglected:

∂B

∂t
= 0

∂D

∂t
= 0 (2.4)

The current density J is equal to the sum of any impressed source current density Ji

and any conductive currents σE:

J = σE + Ji (2.5)

By taking divergence of both sides in Equation 2.5 and using J is solenoidal, Equation

2.6 is written:

∇ · J = ∇ · (σE + Ji) = 0 (2.6)

By applying quasi-static assumptions Equation 2.2 becomes:

∇× E = 0 (2.7)
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Since electric field E is conservative, E in equation 2.7 can be written as:

E = −∇φ (2.8)

φ is electric potential scalar that satisfies equation 2.7.

Finally, if equation 2.8 is substituted into equation 2.6, Poisson equation in an inho-

mogeneous body is obtained:

∇.(σ∇φ) = ∇.Ji = −Is,v (2.9)

Is,v is the current source in that volume conductor.

2.5.1 Bidomain Model

Bidomain model is an approximation that helps to examine cellular electrophysiology

of the cardiac tissue which is composed of intra- and extracellular domains macro-

scopically [3]. Each of these domains possesses its own conductivity tensor and po-

tential distribution. The following equations 2.10 and 2.11 represent the features of

the intra- and extracellular domains [5] :

∇ · (σi∇φi) = βIm (2.10)

∇ · (σe∇φe) = −βIm (2.11)

where σi-φi and σe-φe are the conductivities-potentials of the intracellular and extra-

cellular domains, respectively. β is the membrane surface to volume ratio and Im is

the transmembrane current density [5]. Since there is anisotropy in the cardiac tissue,

the conductivities are in tensor forms as shown in the following equations 2.12 and
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2.13.

σi =


σi,l 0 0

0 σi,t 0

0 0 σi,t

 (2.12)

σe =


σe,l 0 0

0 σe,t 0

0 0 σe,t

 (2.13)

where σi,l-σe,l denotes intracellular and extracellular longitudinal conductivities (along

the fiber direction) and σi,t-σe,t denotes intracellular and extracellular transversal con-

ductivities (perpendicular to the fiber direction). In order to obtain the Poisson’s equa-

tion which represents the cardiac sources and the torso potentials in a macroscopic

cellular electrophysiological level, we add equations 2.10 and 2.11 by considering

φi = φe + φm and get the following equation [5]:

∇ · ((σi + σe)∇φe) = −∇ · (σi∇φm) (2.14)
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CHAPTER 3

MODELING OF THE FORWARD PROBLEM

3.1 Governing Equations and Boundary Conditions

The electrical activity between the myocardium and the body surface is modeled by

the following equations [1]:

∇ · ((σi + σe)∇φe) = −∇ · (σi∇φm) in ΩH (3.1)

∇ · (σo∇φo) = 0 in ΩT (3.2)

Equation 3.1 is the bidomain model based Poisson equation and gives the relation

between the cardiac sources generated by the TMPs (φm where φm = φi − φe) and

the extracellular potentials (φe) within the heart. As described previously, bidomain

model represents groups of cells within the myocardium as discrete points by taking

a continuous approach. Equation 3.2 is the reduced form of the Equation 3.1 for the

regions where there is no source is defined. In this equation φo represents extracel-

lular potential distribution within the torso. ΩH and ΩT represent finite volume of

the volume conductor for heart and torso respectively (see Figure 3.1). This volume

conductor consists of two boundaries; ΓH represents heart surface and ΓT represents

torso surface. Electrical conductivity of torso which surrounds the volume conductor

that represents the heart is denoted by σo and electrical conductivities of intracellular

and extracellular domains in the heart are represented as σi and σe. Torso is sur-

rounded by air which has σ = 0. Considering Figure 3.1 these two equations can be

explained better with the following boundary conditions [29]:
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Figure 3.1: Simple heart and torso model in 2D

φe = φo on ΓH (3.3)

σi
∂φi

∂n
+ σe

∂φe

∂n
= σo

∂φo

∂n
on ΓH (3.4)

σi
∂φi

∂n
= 0 on ΓH (3.5)

σo
∂φo

∂n
= 0 on ΓT (3.6)

Equation 3.3 and 3.4 denotes continuity of intracellular potentials and total current

within the heart across the heart-torso interface (ΓH), and Equation 3.5 ensures that

intracellular current can not exceed heart-torso interface (ΓH). The last boundary

condition given by Equation 3.6 specifies that extracellular current inside the torso

vanishes at torso-air interface (ΓT ).

3.2 Transfer Matrix for Transmembrane Potentials

Solution of the forward problem yields a transfer matrix which contains information

about electrical conductivity and geometry of a volume conductor. Depending on the

choice of equivalent cardiac sources, there exist different solution methods for the

transfer matrix computation [5]. In this study, equivalent cardiac sources are taken as

TMPs. Since there is a linear relationship between the TMPs within the heart and the
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corresponding extracellular potentials, Equations 3.1 and 3.2 can be reduced into the

following matrix equation form:

Tφm = φe (3.7)

In Equation 3.7, φm is directly linked to the φe and transfer matrix is defined as T. In

this equation, it is important to note that φm and φe represent potentials in a discrete

manner instead of continuous approach.

3.2.1 Point Cloud Modeling

In reality, there are thousands of cardiac cells and each of them has its own TMP. Since

it is impossible to model the real case, transfer matrix is obtained by investigating

cardiac tissue at macroscopic level (bidomain model). By this way, TMP distribution

on the cardiac tissue can be modeled as specific number of points and then transfer

matrix could be obtained.

Following the method in [5], each of the TMPs on the cardiac tissue is set to unity in

sequence and TMPs of the remaining cells to zeros. Each time that one of the TMPs

from point cloud is set to unity, measuring the extracellular potentials on the torso

from fixed coordinates will give each column of the transfer matrix, T. By repeating

this procedure for all of the points that represent the TMPs on the cardiac tissue, T can

be computed entirely. In order to explain this approach in a better way, by assuming

nine cardiac cells within the heart the following Equations 3.8, 3.9 and 3.10 can be

written:


φ1
e

φ2
e

φ3
e


3×1

=


...

... · · · ...

t1 t2 · · · t9
...

... · · · ...


3×9


φm(1)

φm(2)
...

φm(9)


9×1

(3.8)
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
φ1
e

φ2
e

φ3
e

 = φm(1)


...

t1
...

 + φm(2)


...

t2
...

 + . . .+ φm(9)


...

t9
...

 (3.9)

If φm(1) = 1 and for i = 2 : 9 φm(i) = 0, then;


φ1
e

φ2
e

φ3
e

 =


...

t1
...

 (3.10)

From these Equations, it can easily be observed that for each φm set to unity, one of

the columns of the transfer matrix T is obtained.

3.3 Test Problem

In order to understand the behavior of the electrocardiographic problems, analytical

solutions to mathematical problems have been used. Although numerical solution

methods are better to use for complex real world problems, they contain some mod-

eling errors [61]. Therefore, it is necessary to verify the results of these numerical

solutions with analytical solutions.

Although numerical solutions are defined in cartesian coordinate system, the analyt-

ical solution for the problem set up in Figure 3.2 is derived in spherical polar coor-

dinate system with coordinates (r, θ, ζ). Here, θ represents the circumferential angle

with 0 ≤ θ ≤ 2π and ζ represents the azimuthal angle with 0 ≤ ζ ≤ π.

3.3.1 Analytical Solution

The electrical activity inside of the inner sphere which represents the myocardium

is modeled by the Poisson Equation which is described previously. Since there is no

current source coming externally to the region outside of the heart (the region between

the inner and the outer spheres in Figure 3.2), the Poisson equation (Equation 3.11)

26



reduces to a generalized Laplace’s Equation (Equation 3.12).

Figure 3.2 is a simple concentric sphere set up for analytical solution of this prob-

lem. In this set up, σi and σe are the intracellular and extracellular conductivities of

the inner sphere respectively and σ is the passive conductivity of the outer sphere.

Extracellular potential within the heart is given by φin
e and the extracellular potential

within the torso is defined between the inner and outer spheres with radii R1 and R2

respectively is given by φout
e .

Figure 3.2: Schematic of bidomain problem set up with inner sphere of radius R1

and outer sphere of radius R2 [1]

∇ · ((σi + σe)∇φin
e ) = −∇ · (σi∇φm) in 0 < r ≤ R1 (3.11)

∇ · (σ∇φout
e ) = 0 in R1 < r ≤ R2 (3.12)

Both Equations 3.11 and 3.12 define a boundary value problem, together with the

following boundary conditions:
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φout
e = φin

e at r = R1 (3.13)

(σi + σe)
∂φin

e

∂r
= (σ)

∂φout
e

∂r
at r = R1 (3.14)

∂φout
e

∂r
= 0 at r = R2 (3.15)

φout
e = 0 at r = R2, ζ = 0, θ = 0 (3.16)

As specified by first and second boundary conditions, equivalence of the extracellular

potentials (φin
e and φout

e ) and continuity of current across the boundary between the

inner and the outer spheres are given by Equations 3.13 and 3.14 respectively. The

third boundary condition given by 3.15 ensures that there is electrical insulation for

φout
e on heart torso surface. Additionally, Equation 3.16 shows the reference potential

boundary condition.

For the region inside of the inner sphere which represents the heart domain (Figure

3.2), Equation 3.11 can be written in the following Laplace’s equation form when

inner region is assumed to be homogeneous and isotropic:

∇2(φin
e +

σi
σi + σe

φm) = 0 (3.17)

The general analytical solution to Laplace’s equation in spherical coordinates is given

by Equation 3.18. In this equation P n
m(cos ζ) is the associate Legendre Polynomial.

Due to the orthogonality of spherical harmonic functions, mn terms only contain 00,

01 and 11 coefficients [1].

φ =
∞∑
n=0

n∑
m=0

(Amn cos(mθ) +Bmn sin(mθ))(Cmnr
n +

Dmn

rn+1
)Pm

n (cos ζ) (3.18)

If there are more than one solution to Laplace’s equations in the related problem,

Equation 3.18 can also be written with different coefficients:

φ =
∞∑
n=0

n∑
m=0

(Emn cos(mθ) + Fmn sin(mθ))(Gmnr
n +

Hmn

rn+1
)Pm

n (cos ζ) (3.19)
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By defining φm as the potential field generated by a centric current dipole source

and considering electrical insulation on the surface of the inner sphere, the following

analytical TMP equation in spherical polar coordinate system is derived [1]:

φm(r, θ, ζ) =
(R3

1 + 2r3)

(R3
1r

2)
(px cos θ sin ζ + py sin θ sin ζ + pz cos ζ) (3.20)

Note that, centric dipole is defined in the cartesian coordinate system with a moment

of p = (px, py, pz) inside a sphere of radius R1.

If φm is a solution of Laplace’s equation 3.17, then the analytic derivation of φin
e

which satisfies Equation 3.17 can also be obtained:

φin
e (r, θ, ζ) = (A11 cos θ +B11 sin θ)(C11r +

D11

r2
) sin ζ + (C1r +

D1

r2
) cos ζ

+C0 +
D0

r
− σi
σi + σe

φm(r, θ, ζ)

(3.21)

By interpreting 3.12 and applying the same procedure described above, the following

analytical solution for φout
e is written as:

φout
e (r, θ, ζ) = (E11 cos θ + F11 sin θ)(G11r +

H11

r2
) sin ζ + (G1r +

H1

r2
) cos ζ

+G0 +
H0

r
(3.22)

In order to find solutions to these analytical extracellular potentials for a given specific

dipole source, first of all the coefficients in the Equations 3.21 and 3.22 must be

calculated.

If Equations 3.21 and 3.22 are equated to each other by taking into account the con-

tinuity of potentials across the surface of the inner sphere implied by the boundary

condition 3.13, the following equations which show the relations between the coeffi-

cients are derived :

G0 +
H0

R1

= C0 +
D0

R1

(3.23)
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E11(G11R1 +
H11

R2
1

) = A11(C11R1 +
D11

R2
1

)− 3σi
R2

1(σi + σe)
px (3.24)

F11(G11R1 +
H11

R2
1

) = B11(C11R1 +
D11

R2
1

)− 3σi
R2

1(σi + σe)
py (3.25)

G1R1 +
H1

R2
1

= C1R1 +
D1

R2
1

− 3σi
R2

1(σi + σe)
pz (3.26)

Continuity of current across the surface of the inner surface is defined by the bound-

ary condition 3.14. By taking derivatives of both φin
e and φout

e with respect to r and

equating them to each other by using Equation 3.14, the following equations are ob-

tained:

σ
H0

R2
1

= (σi + σe)
D0

R2
1

(3.27)

σE11(G11 −
2H11

R3
1

) = (σi + σe)A11(C11 −
2D11

R3
1

) (3.28)

σF11(G11 −
2H11

R3
1

) = (σi + σe)B11(C11 −
2D11

R3
1

) (3.29)

σ(G1 −
2H1

R3
1

) = (σi + σe)(C1 −
2D1

R3
1

) (3.30)

Substituting φout
e into Equation 3.15 which is a no-flux boundary condition across the

outer surface gives the following equation set:

G11 −
2H11

R3
2

= 0 (3.31)

G1 −
2H1

R3
2

= 0 (3.32)
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−H0

R2
2

= 0 (3.33)

Finally, Equation 3.34 is obtained by considering reference potential boundary condi-

tion given by Equation 3.16 and defining reference potential at coordinates (R2, θ, 0):

φref = G1R2 +
H1

R2
2

+G0 +
H0

R2
2

(3.34)

There are 12 Equations from Equations 3.23 to 3.34 and 16 unknowns (coefficients

from A11 to H11 and coefficients C0, C1, D0, D1, G0, G1, H0, H1). Since the number

of unknowns is more than the number of equations, the problem is underdetermined.

In order to solve this problem, 4 coefficients must be fixed. To kill the singularity at

the origin, the fixed coefficients must be chosen as p = (A11D11, B11D11, D1). That

means coefficients D11 and H11 can be chosen as 1 or any positive integer and D1 is

fixed as given dipole moment in z direction. According to the selected D11 and H11

coefficients, A11 and B11 are also determined.

A particular solution for Equations 3.21 and 3.22 can be done by a specific dipole

source with moment of p = (1, 2, 1) (A.m) and conductivities σi = 2 (S/m), σi = 2

(S/m), σ = 2 (S/m) with radiuses R1 = 1 (m) and R2 = 3 (m) for the set up in

Figure 3.2.

The fixed coefficients are:

D11 = 1 H11 = 1 D1 = 1 (3.35)

Therefore, other coefficients are calculated as:

A11 = 0.3333 H0 = 0 D0 = 0 (3.36)

B11 = 0.6667 D11 = 1 E11 = 0.3885 F11 = 0.7770 G11 = 0.0741

(3.37)
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C0 = −0.1295 D1 = 0.3333 G0 = −0.1295 G1 = 0.0288 H1 = 0.3885

(3.38)

3.3.2 COMSOL Modeling with Dipole

In this study, numerical simulation environment is provided by COMSOL Multi-

physics program which can automatically discretize the solution domain by using

finite element method (FEM) [2]. First of all, the set up in Figure 3.2 with its gov-

erning equations and conductivity parameters is created and simulated in COMSOL,

then the results of analytical solutions are compared with the results of numerical

solutions.

The governing Equations 3.11 and 3.12 are derived in COMSOL by using Electric

Currents Module which includes the following equations:

∇ · J = Qj (3.39)

E = −∇.φ (3.40)

J = σE + Je (3.41)

In COMSOL simulation environment, 2 Studies and 2 Electric Currents Modules are

added into the solution domain. In Study 1, Electric Currents 1 is simulated and in

Study 2, Electric Currents 2 is simulated. Since there is no time dependency in the

problem, both Study 1 and Study 2 are selected as stationary.

In Study 1, a dipole source with moment of p = (1, 2, 1) is defined at the center of the

inner sphere. This dipole source constitutes the current source Qj given by Equation

3.39. Since there is no externally added current density Je in the solution domain,

the current density J due to the current source Qj and by this way the electric field
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E is calculated. Then, by using Equation 3.40, the potential distribution φ which is

assumed to be the TMP distribution (φm) for this problem is obtained.

In Study 2, the current density J generated by φm is defined as source and called as

external current density Je from Study 1. Then, by applying same steps described in

Study 1, extracellular potentials φin
e and φout

e located on both the inner and the outer

spheres are calculated.

In COMSOL, The continuity of potential across the surface of the inner sphere is

provided by finite elements and electrical insulation is defined by n.J = 0 that means

the normal component of the current density is equal to zero on the surface of the

outer sphere.

3.3.3 COMSOL Modeling with Point Cloud

As previously described, transfer matrix T is obtained by point cloud modeling. In

COMSOL, point cloud modeling first starts by generating mesh in the solution do-

main. The nodes of this generated mesh is assumed as cardiac cells. Therefore,

coordinates of these mesh nodes are extracted from COMSOL and used to describe

the locations of the TMPs. The number of points in this model is specified by the

mesh element size. Increase in the mesh element size means decrease in the number

of nodes or vice versa.

After obtaining coordinates of the mesh nodes, point objects at these coordinates are

builded inside of the inner sphere in COMSOL. Note that, the nodes on the surface of

the sphere are extracted, because this region is assumed as epicardium and electrically

inactive. Then, the procedure described in COMSOL Modeling with Dipole section

is applied, but this time TMP distribution is directly used instead of generating from

dipole source. Since the purpose of the point cloud modeling is to construct transfer

matrix T, TMP distribution is composed of only unity and zeros. Detailed explanation

about this method can be found in the previously explained Point Cloud Modeling

section.

Although cardiac tissue is examined at macroscopic level in this study, there are still a

lot of points to be builded in COMSOL for TMP representation. Therefore, it is very
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difficult to make this geometrical modeling by using graphical user interface (GUI).

Also, each time a point is set to unity while others zero, simulation including Study 1

and Study 2 must be repeated manually. In order to overcome these drawbacks of the

point cloud modeling, COMSOL with MATLAB is preferred instead of GUI.

3.3.4 Verification

In this section, first of all numerical solution carried by COMSOL is verified with the

analytical solution for transmembrane potentials (TMPs). Secondly, COMSOL point

cloud modeling is compared with the analytical solution for extracellular potential φe

in order to understand the accuracy of the constructed transfer matrix, T. To prevent

confusion between the terms while presenting the results, analytical solutions are

represented as φA
m and φA

e and numerical solutions are represented as φN
m for TMPs

and φP
e for extracellular potentials obtained by point cloud modeling.

As previously explained, COMSOL uses finite element method (FEM). In FEM,

changing mesh element size may have significant effect on the results. Therefore,

mesh sensitivity analysis must firstly be done during numerical analysis by changing

the mesh element size. Generally, numerical solution error is expected to become less

by decreasing the size of the mesh elements (refinement of mesh).

In this study, mesh sensitivity analyses are done with five different mesh element

sizes. Table 3.1 shows used maximum mesh element sizes (hmax) at spheres with

radius R1 and R2. From this table it can be seen that both total mesh element number

and degrees of freedom (DOF) increase by decreasing the mesh element size.

Table 3.1: Mesh properties with different mesh element sizes

Mesh Properties Mesh 1 Mesh 2 Mesh 3
R2 hmax (m) 0.4 0.4 0.2

R1 hmax (m) 0.3 0.06 0.06

# of elements 14.2× 104 43.6× 104 62.9× 104

DOF 192K 585K 847K

In order to understand how φN
m change with different mesh sizes, four symmetrically

located points are selected from the set up created in COMSOL (Table 3.2) and their

potentials are compared with analytical solutions by calculating percentage relative
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error between them. The percentage relative error metric is given by Equation 3.42

where TV stands for True Value and AV stands for Approximate Value.

E =
|TV − AV |
|TV |

× 100 (3.42)

Table 3.2: Coordinates of the points in cartesian system

Points x y z
Pt 1 0.5 0 0
Pt 2 0 0.5 0
Pt 3 -0.5 0 0
Pt 4 0 -0.5 0

Table 3.3 shows mesh sensitivity analysis for φN
m created by the dipole source at four

different points located on the inner sphere. As can be observed from the table, with

the refinement of mesh, numerical solution starts to converge and the relative error

between φA
m and φN

m starts to become less. The converged plots of φN
m with φA

m for

different θ and ζ combinations in the radial direction is shown in Figure 3.3 and the

inner sphere volume distribution of φN
m generated by the dipole source in COMSOL

is indicated by Figure 3.4.

Table 3.3: φN
m (V) Mesh Sensitivity Sudy

COMSOL COMSOL COMSOL
Mesh 1 Mesh 2 Mesh 3

Points φA
m(V ) φN

m(V ) E(%) φN
m(V ) E(%) φN

m(V ) E(%)

1 5 5.756 15.1 4.913 1.7 4.995 0.1
2 10 10.746 7.5 9.912 0.9 9.995 0.1
3 -5 -4.199 16.0 -5.087 1.7 -5.005 0.1
4 -10 -9.124 8.8 -10.086 0.9 -10.004 0.0

Secondly, the accuracy of transfer matrix T is analyzed. First of all, four cartesian

point cloud combinations are generated with four different step sizes given by Ta-

ble 3.4. Here, step sizes represent distances between the nodes in the point clouds.

Therefore, decreasing step size causes an increase in the node numbers. After point

cloud generation, T is constructed at mesh element sizes where numerical solution is

converged (Table 3.1). Here, attention was paid to select the mesh element size of

the inner sphere with R1 where points are located so that it will divide the distance

between the nodes to at least five. Number of nodes and mesh element size are main

35



0.1 0.5 1
100

101

102

103

 

 

e=0, c=0
e=0, c=//2

e=0, c=//4

e=//4, c=//2

e=//2, c=//2
e=//2, c=//4

R (m)

φA
m (V)

φm (V)

o φN
m (V)

Figure 3.3: φA
m (V) and converged φN

m (V) plots for different θ and ζ combinations in

the radial direction.

Figure 3.4: φN
m (V) distribution inside of the inner sphere with radius R1 (m) in

COMSOL. The arrow represents the polarization of the dipole source p = (1, 2, 1)

(A.m)
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factors affecting the computational costs. Therefore, for the studies where results

show convergence at very small mesh element sizes with high number of nodes, it is

really difficult to obtain T with today’s computer technology.

Table 3.4: # of Nodes Generated with Different Step Sizes

Step Size (m) Node #
0.4 87
0.3 145

0.25 250
0.2 460

Column numbers of T are identified by the number of nodes in the point cloud and

row numbers of T are identified by the fixed potential measurement locations on the

surface of the outer sphere. In this study, T is constructed from 76 fixed measurement

points located on the outer sphere surface for four point cloud combinations given by

Table 3.4. Then by using Equation 3.7, [φP
e ] values are obtained by multiplying the

constructed T for each point cloud with [φA
m] calculated at corresponding point cloud

coordinates. The following equations gives [φP
e ] values for each point cloud :

[T ]76×87[φ
A
m]87×1 = [φP

e ]76×1 (3.43)

[T ]76×145[φ
A
m]145×1 = [φP

e ]76×1 (3.44)

[T ]76×250[φ
A
m]250×1 = [φP

e ]76×1 (3.45)

[T ]76×460[φ
A
m]460×1 = [φP

e ]76×1 (3.46)

Table 3.5 gives the accuracy of constructed T by comparing [φP
e ]76×1 and [φA

e ]76×1

according to point cloud combinations with average relative error between them. T

is constructed at four different point clouds and each φP
e obtained from each T is

compared with φA
e .
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Table 3.5: Error between [φP
e ]76×1 and [φA

e ]76×1 at different point clouds

# of Nodes Error%
87 38

145 27
250 19
460 0.4

From Table 3.5, it can easily be observed that with an increase in node numbers of

point cloud, the relative error between [φP
e ]76×1 and [φA

e ]76×1 decreases or vice versa.

Therefore, it can be said that constructed T with 460 points has the minimum error

value while T with 87 points has the maximum.

Figure 3.5 and Figure 3.6 shows the worst and the best case scenarios of Table 3.5 by

comparing [φP
e ]76×1 and [φA

e ]76×1 values measured from 76 different locations on the

surface of the outer sphere (R2) with varying θ and ζ angles. Results has showed con-

vergence at extracellular potentials φe obtained from T constructed with 460 nodes.

That means point cloud generated with 460 nodes is the lowest limit to define φm

distribution generated by dipole source exactly. If node numbers are taken higher

than 460 nodes by decreasing step size, the new results are expected to be same with

the analytical solution. However, here the important point is to construct new T with

an appropriate mesh to get the most accurate interpolation of TMPs. That means,

as explained before highest mesh element size must be selected at mesh size where

numerical solution is mesh independent anymore. Also, the selected mesh size of the

inner sphere with R1 must divide the distance between the nodes to at least five mesh

elements. Note that decrease in mesh element size with an increased number of nodes

in a point cloud will cause a rise in computational cost.
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clouds
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CHAPTER 4

POINT CLOUD MODELING OF SPHERICAL HEART WITH

IRREGULAR TORSO

In this chapter, COMSOL point cloud modeling has been applied to irregular torso

geometry with spherical heart as shown in Figure 4.1. Due to lack of realistic TMP

data for generic heart model, simulations are done by using sphere instead of heart

and dipole source for TMP generation. The purpose of this chapter is to show the

applicability of point cloud modeling to any irregular geometry.

Figure 4.1: Realistic torso with spherical heart of R=40 mm.

As explained in Chapter 2, ECG QRS waveform is generated during the epicardial

depolarization and repolarization of the ventricles. Since there is no TMP data to

represent each time instants of real ECG waveform, simulations are done by using

a dipole source which mimics epicardial potential distribution during ventricular de-
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polarization. To show the accuracy of transfer matrix T constructed by point cloud

modeling, body surface potential values coming from direct forward simulation are

compared with body surface potentials obtained by T. Torso potential measurement

locations are selected as in Figure 4.2. RA, LA, LL are the potential locations in

which traditional limb leads (lead I, lead II, lead III) are derived from and V1-V6 are

unipolar chest leads on horizontal torso plane. G stands for ground.

Figure 4.2: Body surface potential measurement locations.

An electric dipole source with moment of p = (−0.02, 0.02, 0.02) (A.m) is located

at the center of the sphere and conductivities are selected as σi=200 (S/m), σe=300

(S/m), σ=200 (S/m). The x, y and z coordinates of dipole moment is selected experi-

mentally in a way that will mimic the ventricular depolarization. Note that the TMP

distribution generated by this dipole source does not reflect the realistic distribution.

First of all, mesh sensitivity analysis are done for both φN
m and φN

e with five different

mesh element sizes given in Table 4.1. For φN
m, four symmetrically located points

are specified inside of the sphere in Figure 4.3 and change in their potentials are

examined for each different mesh sizes. In Table 4.3, the change in φN
m values with

the refinement of mesh from Mesh 1 to Mesh 4 can be examined better. While there

is a difference between the φN
m values at Mesh 1 and Mesh 2, the potential values start
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to show stability at Mesh 3 and Mesh 4 with very small changes between each other.

That means the solution for φN
m starts to converge at Mesh 3.

Table 4.1: Different Mesh Properties

Mesh hmax (mm) # of Elements
Mesh 1 40 2.1× 103

Mesh 2 20 2.2× 103

Mesh 3 15 2.3× 103

Mesh 4 8 3.6× 103

Figure 4.3: Point locations for φN
m calculation inside of sphere with R=40 mm.

Table 4.2: Coordinates of the points given in Figure 4.3 in cartesian system

Points x y z
Pt 1 0 20 270
Pt 2 0 20 230
Pt 3 -20 20 250
Pt 4 20 20 250

Table 4.3: φN
m Mesh Sensitivity Sudy

φN
m (mV )

Points Mesh 1 Mesh 2 Mesh 3 Mesh 4
1 16.38 26.93 23.81 24.16
2 -59.99 -33.79 -26.90 -25.22
3 51.89 21.42 23.87 24.45
4 -29.78 -26.05 -24.61 -25.58

Secondly, mesh sensitivity analysis are done for φN
e from the body surface measure-

ment locations based on 12 Lead ECG system (Figure 4.2). By using this measure-

ment locations, the aim is to show that point cloud modeling gives the same poten-
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tial distribution with the direct forward simulations at the critical points where ECG

waveform is generated from. In Table 4.4, φN
e values from Mesh 1 to Mesh 4 are

given. Since the torso measurement points are not located nearly to the source com-

ing from the sphere, φN
e values does not show significant changes with the refinement

of mesh. This means the φN
e values at these locations show convergence at higher

mesh element sizes. Figure 4.4 shows φN
e distribution on torso during complete de-

polarization of both ventricles at converged solution for φN
e (Mesh 3).

Table 4.4: φN
e Mesh Sensitivity Sudy

φN
e (mV )

Points Mesh 1 Mesh 2 Mesh 3 Mesh 4
RA -1.06 -1.06 -1.06 -1.06
LA -0.13 -0.13 -0.12 -0.12
LL 0.89 0.89 0.89 0.89
V1 0.50 0.48 0.49 0.49
V2 1.74 1.75 1.75 1.75
V3 2.65 2.63 2.63 2.63
V4 2.99 2.96 2.96 2.96
V5 2.65 2.65 2.64 2.64
V6 1.91 1.91 1.90 1.90

Point cloud generation of this chapter differs from Chapter 3. In this chapter, first of

all a coarse mesh is generated on the geometry which represents the heart. Then, node

coordinates of this mesh is extracted and T matrix is constructed. While generating

coarse mesh on sphere with radiusR = 40(mm), the following three point clouds are

generated by taking different mesh element sizes (Table 4.5):

Table 4.5: # of Nodes generated with different mesh element sizes

hmax (mm) Node #
15 131
13 259
12 497

As a result of the mesh sensitivity analysis for φN
m and φN

e and the study coming from

Chapter 3 point cloud analysis, while constructing T maximum mesh element size

must be selected as at least equal or smaller than element size of the converged mesh.

Since Mesh 3 is the lower limit in which φN
m and φN

e are mesh independent anymore,

it can be selected for T construction. However, here the important thing is that Mesh
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Figure 4.4: Torso φN
e potential distribution during epicardial ventricular

depolarization. Color bar in (mV ).

3 can not be applied on the geometry where nodes of the point clouds are defined.

For this region, mesh must be selected in a manner so that it will divide the distance

between the nodes to at least five. Therefore, by considering mesh element sizes given

on Table 4.5, if hmax is selected as 12(mm) to create point cloud, mesh size for T

construction must be selected at least 2.4(mm).

As explained in Chapter 3, column numbers of T are identified by the number of

nodes in the point cloud and row numbers of T are identified by the fixed potential

measurement locations. In this study, T is constructed from 9 fixed measurement

locations critical for ECG signal interpretation on the surface of torso (see Figure 4.2)

for three point cloud combinations given by Table 4.5. Then by using Equation 3.7,

[φP
e ] values are obtained by multiplying the constructed T for each point cloud with

converged [φN
m] values calculated at corresponding node coordinates. The following

equations gives [φP
e ] values for each point cloud :

[T ]9×131[φ
N
m]131×1 = [φP

e ]9×1 (4.1)
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[T ]9×259[φ
N
m]259×1 = [φP

e ]9×1 (4.2)

[T ]9×497[φ
N
m]497×1 = [φP

e ]9×1 (4.3)

As in the case explained in Chapter 3, point cloud modeling results approach to con-

verged solution by increasing number of nodes in the point clouds. Table 4.6 gives

[φP
e ]9×1 value obtained by using 497 nodes with converged solution [φD

e ]9×1 and Fig-

ure 4.5 shows plots of the potential values at this table.

Table 4.6: Comparison of [φP
e ]9×1 value of 497 nodes with converged solution [φD

e ]9×1

Measurement Locations [φD
e ]9×1 (mV) [φP

e ]9×1 (mV)
RA -1.06 -1.07
LA -0.12 -0.11
LL 0.89 0.91
V1 0.49 0.51
V2 1.75 1.79
V3 2.63 2.67
V4 2.96 3.00
V5 2.64 2.68
V6 1.90 1.94
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Figure 4.5: Plots of [φP
e ]9×1 value of 497 nodes with converged solution [φD

e ]9×1

46



CHAPTER 5

CONCLUDING REMARKS

In this study, bidomain model based transmembrane potential (TMP) distribution was

used as equivalent cardiac source in order to examine the cellular electrophysiology

macroscopically. Equivalent TMP distribution was generated by using a centric cur-

rent dipole source and does not reflect the realistic TMP distribution within the heart.

The main purpose of this study was to construct forward transfer matrix T and verify

its accuracy by analytical solution. Therefore, in the first part of the study, both heart

and torso were assumed as two concentric spheres and electrically isotropic regions.

First, the forward problem of ECG was solved analytically. Then, TMP based transfer

matrix, T was constructed by using point cloud modeling and the accuracy of T was

verified by analytical solutions. In the second part of the study, a sphere representing

heart was placed inside of a realistic torso to show the applicability of the point cloud

modeling to any irregular geometry. By this purpose, the forward problem was solved

and T is constructed again.

Although the idea of point cloud modeling comes from another study, this thesis made

contribution to the literature by verifying the results of the point cloud modeling with

analytical solution. Although COMSOL is used for finite element mesh generation,

MATLAB code for point cloud modeling is written to construct T by using MATLAB

Livelink of COMSOL. Then, numerical solution with point cloud modeling was ana-

lyzed according to both mesh sensitivity and intensity of the nodes in the point cloud.

As a result of this study, it is suggested to take the distance between the nodes as

uniform for point cloud generation. Here, the thing to be careful is to select the mesh

element size of the geometry where points are located as if it will divide the distance
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between the nodes to at least five mesh elements. Also, it is important to note that

selected mesh element size for both geometries that represent heart and torso must be

chosen as at least equal or smaller than the mesh element size of converged solution.

Since the number of nodes and mesh element size are the main factors affecting the

computational costs, for the studies where results show convergence at very small

mesh element sizes with high number of nodes, it may be really difficult to obtain T

with today’s computer technology.

Another important inference of this study is that as long as there is no change at elec-

trical conductivity and geometry of a volume conductor, there is no need to construct

transfer matrix again and again. Because, the forward transfer matrix carries only

static information about volume conductor of each patient. Therefore, if the volume

conductor is same, it is unnecessary to construct a new transfer matrix for different

TMP distributions within the heart.

As future work, the main purpose is to apply point cloud modeling to a generic heart

model placed inside of a torso with more realistic equivalent TMP sources varying

with time. By this way, the main objective is to observe the ECG signal accurately.

Secondly, same study will be repeated by including fiber orientation of the cardiac

muscle and thereby anisotropy into the solution domain. On the other hand, analytical

solution can be derived again for different dipole and reference potential locations. By

following the same steps in this study, new analytical solution can be compared with

the results of point cloud modeling.
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