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ABSTRACT

THE RELATIVISTIC BURGERS EQUATION ON A
FRIEDMANN–LEMAÎTRE–ROBERTSON–WALKER (FLRW) BACKGROUND

AND ITS FINITE VOLUME APPROXIMATION

Ceylan, Tuba

Ph.D., Department of Mathematics

Supervisor : Assist. Prof. Dr. Baver Okutmuştur

Co-Supervisor : Prof. Dr. Philippe G. LeFloch

February 2015, 75 pages

The inviscid Burgers equation is an important model in computational fluid dynamics,
and represents one of the simplest example for a nonlinear hyperbolic conservation
law. Recently, several relativistic and non-relativistic generalizations of the classical
Burgers equation have been introduced by LeFloch and collaborators, by identifying
a hyperbolic balance law by the Euler equations of relativistic compressible fluids.
Both the model and the classical Burgers equations are obtained from derivation of
the Euler system of relativistic compressible fluids by considering vanishing pressure
on a curved background. The relativistic generalization of the model is considered
on different curved spacetimes, in particular on Minkowski (flat) and Schwarzshild
spacetimes. In this thesis we consider the Friedmann–Lemaître–Robertson–Walker
(FLRW) background. Since both Schwarzshild and FLRW metric are the solutions of
Einstein field equations, this common property inspired us to derive a relativistic ver-
sion of Burgers equation on FLRW background as it is done on Schwarzshild space-
time. The relativistic Burgers equation on this spacetime is obtained from the Euler
system of relativistic compressible fluids. Firstly, Christoffel symbols and tensors for
perfect fluids on FLRW background are calculated. Then, by using divergence of the
tensors, the Euler equations are obtained. Next, we impose the pressure to be zero on
this Euler system as it is carried out in the flat and Schwarzshild spacetimes. Finally,
by combining the equations derived by the Euler system, we obtain the desired rela-
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tivistic Burgers equation on FLRW background. A particular case of the concerning
equation gives exactly the classical Burgers equation which is a common property
shared by relativistic equations. Different from the flat and Schwarzshild spacetimes
cases, some special types of solutions which are spatially homogeneous are found for
the concerning equation, which provides an originality to this study. Next, the limit-
ing properties of the relativistic Burgers equation on FLRW background and spatially
homogeneous solutions are examined. For the numerical experiments we construct
a Godunov type of scheme which solves the Riemann problem on each grid cell. In
addition, a well-balanced scheme is constructed for investigating the limiting proper-
ties of the homogeneous solutions in detail. The numerical schemes are developed by
using the finite volume methodology which are formulated for curved spacetimes in
[2], [37] and [38]. These numerical schemes allow to capture discontinuous solutions
containing shock waves for the relativistic Burgers equation. Finally, we observe that
the proposed scheme is well-balanced, in the sense that it preserves all spatially ho-
mogeneous solutions and the numerical experiments illustrate the convergence of the
scheme on a FLRW background.

Keywords: the relativistic Burgers equations, the Euler equations, FLRW metric,
compressible fluids, finite volume method, well-balanced scheme
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ÖZ

FRIEDMANN–LEMAÎTRE–ROBERTSON–WALKER (FLRW)
UZAYZAMANINDA RÖLATİVİSTİK BURGERS DENKLEMİ VE SONLU

HACİM METODLARI

Ceylan, Tuba

Doktora, Matematik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Baver Okutmuştur

Ortak Tez Yöneticisi : Prof. Dr. Philippe G. LeFloch

Şubat 2015 , 75 sayfa

Klasik Burgers denklemi hesaplanılabilir sıvılar dinamiğinde önemli bir modeldir ve
hiperbolik korunum kanunlarına en basit örneklerden biri olarak gösterilebilir. Yakın
zamanda LeFloch ve meslektaşları tarafından, sıkıştırılabilir rölativistik Euler denk-
lemleri kullanılarak hiperbolik denge kanununa uyan rölativistik ve rölativistik olma-
yan Burgers denklemleri olarak adlandırılan yeni modeller elde edilmiştir. Bu mo-
dellerin ve klasik Burgers denkleminin, kıvrık uzayzamanlarında basınç sıfır alınarak
sıkıştırılabilir rölativistik Euler denklemlerinden elde edilebilir olduğu da gösterilmiş-
tir. Ayrıca bu modellerin rölativistik genellemeleri, değişik kıvrık uzayzamanlarında
(Minkowski ve Schwarzshild uzayzamanlarında) ele alınmıştır. Bu tezde uzayzamanı
olarak Friedmann–Lemaître–Robertson–Walker (FLRW) ele alındı. Schwarzshild ve
FLRW metriklerinin, Einstein alan denklemlerinin çözümü olmaları, Schwarzshild
uzayzamanında olduğu gibi FLRW uzayzamanında da Burgers denklemini elde et-
memize ilham kaynağı oldu. Benzer tekniklerin izlenmesi sonucunda FLRW uzay-
zamanında Burgers denklemi, sıkıştırılabilir sıvılar için Euler sistemleri kullanılarak
elde edildi. Bu sebeple ilk olarak Christoffel semboller, sıkıştırılabilir sıvılar için ten-
sörler hesaplandı ve böylece tensörlerin ıraksaması kullanılarak Euler denklemlerine
ulaşıldı. Bunu takiben, daha önceki uzayzamanlarında (Minkowski ve Schwarzshild)
olduğu gibi Euler sistemi üzerinde basınç sıfır olarak kabul edildi. Son olarak, ba-
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sıncın sıfır olduğu kabul edilerek elde edilen bu iki denklemin ortak çözümünden
FLRW uzayzamanında rölativistik Burgers denklemi elde edildi. Bütün rölativistik
denklemlerde olduğu gibi, söz konusu denklemin de özel bir durumu kullanılarak
denklemin rölativistik olmayan durumuna yani klasik Burgers denklemine ulaşıldı ve
daha önceki çalışmalardan farklı olarak, FLRW uzayzamanında Burgers denklemine
ait, uzay koordinatına bağlı olmayan çözümler elde edildi. FLRW uzayzamanında
Burgers denkleminin uzay koordinatına bağlı olmayan çözümlerinin bulunması, bu
çalışmayı diğer uzayzamalarında yapılan çalışmalardan ayıran orijinal bir özelliktir.
Daha sonra, FLRW uzayzamanında Burgers denkleminin ve uzay koordinatına bağlı
olmayan çözümlerinin limit özellikleri değerlendirildi. Nümerik deneylerde kullanıl-
mak üzere, her bir uzay aralığı için Riemann problemini çözen Godunov tipi bir şema
oluşturuldu. Buna ek olarak, FLRW uzayzamanında Burgers denkleminin ve uzay
koordinatına bağlı olmayan çözümlerinin limit özelliklerini detaylı olarak incelemek
üzere ’well-balans’ Godunov tipi şemalar oluşturuldu. Bu modelin nümerik şemaları
için sonlu hacim metodlar kullanılarak kıvrık uzayzamanlarında [2], [37] ve [38]’de
formalize edilen şemalar geliştirildi. Bu şemaların, rölativistik Burgers denkleminin
şok dalgaları barındıran sürekli olmayan çözümlerini içerdiği gösterildi. Ayrıca nü-
merik hesaplamalar neticesinde, önerilen şemaların yakınsadığı ve uzay koordinatına
bağlı olmayan çözümleri koruduğu gözlemlendi.

Anahtar Kelimeler: rölativistik Burgers denklemleri, Euler denklemleri, FLRW met-
riği, sıkıştırılabilir sıvılar, sonlu hacim metodları, ’well-balans’ şemalar
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CHAPTER 1

INTRODUCTION

The development of the mathematical theory of shock wave solutions to scalar con-

servation laws defined on manifolds is arised with the progress in compressible fluid

dynamics. The shallow water equations of fluid dynamics and the Euler equations in

general relativity are important examples where the partial differential equations of in-

terest are posed on a curved spacetime. Scalar conservation laws are simplified math-

ematical models for nonlinear aspects of shock wave propagation on spacetimes. The

theory for nonlinear hyperbolic conservation laws on curved manifolds is established

by Artzi and LeFloch [3], and LeFloch and Okutmustur [36], [37], which can be con-

sidered as a generalization of fundamental works by Kruzkov [30], Kuznetsov [31],

and DiPerna [20] who dealed with equations on the flat Euclidian space. LeFloch

and his collaborators developed this idea by generalizing the technique introduced in

[14, 18] by Cockburn, Coquel and LeFloch for the Euclidean setting, it is extended to

Riemannian manifolds in [1] by Amorim, Artzi, LeFloch and to Lorentzian manifolds

in [2] by Amorim, LeFloch and Okutmustur. A generalization of the formulation and

convergence of the finite volume method for general conservation law is established

in [37] by LeFloch and Okutmustur. Moreover, related results and a comprehensive

analysis about the convergence techniques for hyperbolic problems are referred in

the articles by Tadmor [54] and Tadmor, Rascle, and Bagneiri [55]. For higher-order

schemes, we cite Kröner, Noelle, and Rokyta [29].

Recently, by identifying a hyperbolic balance law via the Euler equations of rela-

tivistic compressible fluids, several relativistic and non-relativistic generalizations of

the classical Burgers equation have been introduced in [38] by LeFloch, Makhlof
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and Okutmustur, where a geometric formulation of the finite volume method is con-

structed. The general formulation of nonlinear hyperbolic balance law is introduced

by

div(T (v)) = S(v), (1.1)

on n+ 1 dimensional curved spacetime M with boundary where div(·) represents the

divergence operator, v : M → R is the unknown function which is a scalar field,

T = T (v) is a flux vector field on M and S = S(v) is a scalar field on M . The

manifold M is assumed to be foliated by hypersurfaces

M =
⋃
t≥0

Ht, (1.2)

such that each slice Ht is an n dimensional spacelike manifold and H0 is the initial

slice. Hence, the class of equations (1.1)–(1.2) provides a scalar model so that one can

analyze numerical methods of approximations. In [38] LeFloch and his collaborators

derived several models so called the relativistic Burgers equations by considering M

to be a curved spcetime and many finite volume approximations are provided for the

given models. In the concerning article, the manifold M is taken to be particularly

as Minkowski (flat) and Schwarzshild spacetimes. For further details, one can check

[38].

In this thesis, we apply the technique used in [38] to derive a new model for the

Friedmann–Lemaître–Robertson–Walker (FLRW) background. We proved that the

equation (1.1) is constructed to be the desired model so called the relativistic Burgers

equation

a vt +
(
1− kr2

)1/2
∂r

(v2
2

)
+ v
(

1− v2

c2

)
at = 0,

on M where M is a FLRW spacetime, a = a(t) > 0 is a scale function, k ∈
{−1, 0, 1} is a discrete parameter, and c is the light speed.

The formulation of finite volume method and numerical experiments are implemented

based on this model.
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1.1 Structure of the thesis

The thesis consists of five chapters and it is organized as follows:

Chapter 1, is introductory and we give brief information about the whole thesis in this

part. Chapter 2 contains a summary of literature review about hyperbolic conservation

laws, finite volume methods and spacetimes. In Chapter 3, the main contribution of

the thesis is presented. Mainly, we derive the relativistic Burgers equation on FLRW

background and examine the limiting properties of the concerning equation in details.

In Chapter 4 several numerical experiments about the relativistic Burgers equation on

FLRW background are illustrated. A conclusion of theoretical part (Chapter 3) and

numerical part (Chapter 4) is presented in Chapter 5.

In the following, we state the content of each chapter.

Chapter 1 is devoted to recent works about the theory of hyperbolic conservation laws,

finite volume methods for hyperbolic conservation laws on manifolds and the rela-

tivistic Burgers equations on curved spacetimes. References for these recent studies

about the theory and numerical constructions are given for further details. Moreover,

the organization of the whole thesis is included in this chapter.

The main objective of Chapter 2 is to give literature review of the theory for nonlinear

hyperbolic systems of conservation laws, finite volume methods and spacetimes. In

the first part, we start by giving definitions of hyperbolicity, conservation laws, weak

solutions and shock speeds. In addition, a general formulation of finite volume meth-

ods for hyperbolic conservation and balance laws are mentioned. Next, we introduce

the Godunov method for numerical experiments in order to solve Riemann problem

for our main equation on each grid cell. In the second part of this chapter, we provide

some preliminaries for spacetimes. Firstly, we give some basic features for space-

times, such as events and spacetime intervals which are crucial notions to apprehend

the structure of the spacetimes. In addition, in order to clarify the components of the

Einstein field equations, definitions of Christoffel symbols and some types of tensors

are handled. Finally, we consider basic features of Lorentzian manifold and three

particular cases of this manifold; Minkovski, Schwarzschild and FLRW spacetime.
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Chapter 3, which is the main part of this thesis, is devoted to obtain the relativistic

Burgers equation on FLRW background. A relativistic generalization of the Burgers

equations was proposed by LeFloch, Makhlof and Okutmustur [38] and investigated

on a flat and Schwarzschild background. The relativistic and classical Burgers equa-

tions were obtained from derivation of the Euler system of relativistic compressible

fluids by considering vanishing pressure on a curved background. This methodol-

ogy yields a geometric relativistic Burgers equation on the background spacetime

under consideration. Since both FLRW and Schwarzshild metrics are solutions for

the Einstein field equations, this common property motivated us to derive a relativis-

tic version of the Burgers equation on FLRW background as it is done on flat and

Schwarzshild spacetime. Therefore, we extend their analysis to FLRW background

by using the same methodology in [38]. The concerning equation on this spacetime is

obtained from the Euler system of relativistic compressible fluids. Firstly, Christoffel

symbols and tensors for perfect fluids on FLRW background are calculated. Next, by

using divergence of the tensors, the Euler equations are obtained and we take the pres-

sure to be zero on this Euler system. Finally, by combining these two equations we

obtain the Burgers equation on FLRW background. The proposed relativistic Burgers

equation on FLRW background retains several important features of the relativistic

Euler equations. The unknown v of our equation lies in the interval (−c, c) limited by

the light speed parameter c, same as the velocity component in the Euler system. In

the Euler system by sending the light speed to infinity one recovers the classical (non-

relativistic) model. Similarly, for a particular case of our relativistic model (a(t) = 1

and k = 0), we obtain the classical model as c tends to infinity. In addition, we arrive

to the classical Burgers equation, by using the special case of the concerning equation

(a(t) = 1 and k = 0) without sending c to infinity. Obtaining the classical (inviscid)

Burgers equation in this study is an expected result since the non-relativistic equation

is derived from the relativistic one. After deriving the relativistic Burgers model un-

der consideration, we determine its spatially homogeneous solutions. This equation is

more challenging due to the existence of non-trivial spatially homogeneous solutions

which distinguishes our study from the previous works. In addition, we investigate

the limiting properties of the concerning equation and spatially homogeneous solu-

tions in details. Finally, a finite volume methodology which is formulated for curved

spacetimes in [37] and [38] is developed for FLRW background spacetime.
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In Chapter 4, numerical techniques for solving the Burgers equation on FLRW back-

ground is presented. Due to having an extra term named scale factor which depends

on time, applying numerical experiments to the concerning equation is harder com-

pared to the Burgers equation on Schwarzshild background. This scale factor appears

in the FLRW metric, in the model and in the scheme corresponding to this model. In

order to solve Riemann problem between each grid cell, a Godunov type of scheme

is constructed for the given model. A parameter, namely k, exists both in the metric

and in the model which results exactly three equations to this model. Therefore, nu-

merical experiments are applied for these three equations, separately. The scale factor

produces some singularities in the scheme for each particular cases. In addition, the

speed term of the concerning equation results some singularities in the scheme for

k = 1. These drawbacks are solved by making transformations on time and do-

main. Numerical experiments demonstrate the efficiency of the proposed method to

find solutions that may contain shock waves. The solution curves corresponding to

the Burgers equation on FLRW background with initial shocks and rarefactions con-

verge for three particular cases. This result shows the efficiency and robustness of

our scheme. Moreover, the behaviors of spatially homogeneous solutions and the

average of the numerical solutions on space are investigated. In order to make a com-

parison between spatially homogeneous solutions and numerical solutions for well-

balanced schemes, we consider L1 norm and a proportion of homogeneous solutions

and numerical solutions. We observed that the solution curves converge to spatially

homogeneous solutions as t tends to infinity. Furthermore, limiting properties of the

concerning equation which are revealed in Chapter 3 are also observed by numerical

experiments. To sum up, our numerical scheme is based on a finite volume tech-

nique, which is well-preserving in the sense that all spatially homogeneous solutions

are preserved at the discrete level of approximation.

In Chapter 5, we summarize the results of this thesis theorically and numerically.

We derive the relativistic Burgers equation on FLRW background spacetime which

satisfies certain properties shared by all relativistic equations, such as starting with

the Euler equations and arriving to the classical equations. In addition, we attain

the corresponding homogeneous solutions to the concerning equation. The solution

curves corresponding to all particular cases of the concerning equation with differ-

5



ent initial functions converges, which means that our scheme is efficient, stable and

robust. The constructed Godunov scheme is consistent with the conservative form

of our model. Therefore, the scheme gives accurate calculations for weak solutions

containing shock waves. The concerning scheme is well-balanced, since it preserves

all spatially homogeneous solutions which is clearly illustrated in numerical experi-

ments. As a perspective, following the technique used in this work, several versions

of the relativistic Burgers equations can be attained for other spacetime backgrounds.
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CHAPTER 2

PRELIMINARIES FOR HYPERBOLIC SYSTEMS OF

CONSERVATION LAWS, FINITE VOLUME METHODS AND

SPACETIMES

The main objective of this chapter is to provide a brief presentation for nonlinear hy-

perbolic systems of first-order partial differential equations in divergence form which

is also called hyperbolic systems of conservation laws (Part I) and basic terms for

spacetimes related to this thesis (Part II).

2.1 Part I: Hyperbolic Systems of Conservation Laws, Finite Volume Methods

2.1.1 Hyperbolicity and entropies

To begin with, we consider the systems of n conservation laws in one-space dimen-

sion,

∂tv + ∂xf(v) = 0, v(x, t) ∈ V , x ∈ R, t > 0, (2.1)

where f : V → Rn is the flux-function which is a smooth mapping and V is an open

and convex subset of Rn. In (2.1) the dependent variable v is called the conservative

quantity and the independent variables x and t are the spatial and time coordinates,

respectively. In order to state the Cauchy problem of (2.1), we assign an initial con-

dition for the conservative quantity,

v(x, 0) = v0(x), x ∈ R where v0(x) : R→ V . (2.2)
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One can also observe that (2.1) is in divergence form. Integrating (2.1) over an inter-

val [x1, x2] yields

d

dt

∫ x2

x1

v(x, t)dx =

∫ x2

x1

vt(x, t)dx = −
∫ x2

x1

f(v(x, t))xdx, (2.3)

which is equal to

f(v(x1, t))− f(v(x2, t)) = [inflow at x1]− [outflow at x2]. (2.4)

Each component of the vector v represents a quantity which is neither created nor

destroyed, i.e. it is conserved. The total amount inside any given interval [x1, x2] can

change only because of the flow across the boundary points. The next definition takes

into account the hyperbolic systems.

Definition 2.1.1 ([34]) A system defined by (2.1) is called a first-order, hyperbolic

system of partial differential equations if the corresponding Jacobian matrix J(v) :=

Df(v) has n real eigenvalues with the following property

λ1(v) ≤ λ2(v) ≤ ... ≤ λn(v), v ∈ V ,

where the basis of right-eigenvectors is {rj(v)}1≤j≤n.

We call the eigenvalues as wave speeds or characteristic speeds related with (2.1).

Moreover, this system is said to be strictly hyperbolic if all of the eigenvalues are

distinct,

λ1(v) < λ2(v) < ... < λn(v), v ∈ V .

Definition implies thatDf(v)rj(v) = λj(v)rj(v) where (λj, rj) is the j-characteristic

field. In addition, v 7→ λj(v)rj(v) is a smooth mapping. In strictly hyperbolic sys-

tems we have

li(v)rj(v) ≡ δij,

where δij is Kronecker’s delta function and {lj(v)}1≤j≤n is a basis of left-eigenvectors.

For n = 1, there exists only one eigenvalue λ1(v) = f ′(v) and r1 = l1 = 1.

Definition 2.1.2 ([34]) A j-characteristic field of (2.1) is genuinely nonlinear if the

characteristic field satisfies the following condition

∇λj(v).rj(v) 6= 0, v ∈ V ,
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and it is linearly degenerate if

∇λj(v).rj(v) ≡ 0, v ∈ V ,

for j = 1, ..., n.

In this definition, the equation (2.1) is genuinely nonlinear if and only if f ′′(v) 6= 0

for all v. In addition, it is linearly degenerate if and only if f ′′(v) = 0 for all v.

Definition 2.1.3 ([34]) If a differentiable solution of (2.1) admits the additional con-

servation law

∂tV (v) + ∂xF (v) = 0,

the continuously differentiable function (V, F ) : V → R2 is named as an entropy

pair. The function V is the entropy and the function F is the corresponding entropy-

flux.

(V, F ) is an entropy pair for (2.1) if and only if

∇F (v)T = ∇U(v)TDf(v) = 0, v ∈ V .

After differentiation with respect to v, we attain

D2 F (v) = D2 V (v)Df(v) +∇V (v)TD2f(u).

The matrices D2 F (v) and ∇V (v)TD2f(u) are symmetric and this means that the

matrix D2 V (v)Df(v) has to be also symmetric. This fact yields a useful criterion

for the existence of an entropy, given in the following theorem which gives an identi-

fication for mathematical entropies.

Theorem 2.1.1 ([34]) A continuously differentiable function V is called an entropy

if and only if

D2 V (v)Df(v) is an n× n and symmetric matrix,

which gives a second order linear system of n(n−1)/2 partial differential equations.
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We define an entropy pair

V (v) = vj, F (v) = fj(v), v ∈ V ,

where v = (v1, v2, ..., vn)T and f(v) = (f1(v), ..., fn(v))T for all j ∈ {1, ..., n}.
D2 V (v) is a positive definite symmetric matrix for the strictly convex entropies

which results to the following identity

V (v)− V (u)−∇V (u).(v − u) > 0, v 6= u in V .

We consider a particular case for (2.1); strictly hyperbolic scalar equations in one

space dimension (n = 1). The following definition states the structure of scalar

conservation laws.

Definition 2.1.4 The partial differential equation

∂tv + ∂xf(v) = 0, (2.5)

is a scalar conservation law with the initial condition,

v(x, 0) = v0(x), x ∈ R,

where v0 : R→ V is given.

Example 2.1.1 For a particular case of (2.1) with the flux function f(v) = v2/2 and

n = 1, we have the inviscid (classical) Burgers equation

∂tv + ∂x(v
2/2) = 0, (2.6)

where v = v(t, x), t > 0 and x ∈ R.

The classical Burgers equation is one of the simplest example for nonlinear conserva-

tion laws. In general, a scalar conservation law defined in (2.5), that is a conservation

law in one variable is always hyperbolic. The classical Burgers equation is a funda-

mental partial differential equation in fluid mechanics and arises in various areas of

applied mathematics, such as modeling of gas dynamics and traffic flow. One can

easily observe that the wave speed in (2.6), f ′(v) = v directly depends on v. Another

observation is that (2.6) is also a basic example for genuinely nonlinear equations.
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Definition 2.1.5 Hyperbolic systems of balance laws under consideration reads

∂tv + ∂xf(v) = S(x, v), v(x, t) ∈ V , x ∈ R, t > 0, (2.7)

where f : V → Rn is the flux-function which is a smooth mapping and V is an

open and convex subset of Rn. In (2.7) S(x, v) is the source term resulting from

geometrical and physical effects and the independent variables x and t are the space

and time coordinates, respectively. As in the definition of hyperbolic systems (2.1.1)

the Jacobian matrix J(v) := Df(v) admits n real eigenvalues

λ1(v) ≤ λ2(v) ≤ ... ≤ λn(v), v ∈ V ,

and the system is said to be strictly hyperbolic if its eigenvalues are distinct,

λ1(v) < λ2(v) < ... < λn(v), v ∈ V .

In the rest of this part, we investigate the properties of weak solutions for the systems

of conservation laws.

2.1.2 Weak solutions and shock speeds

In this subsection, we give the notion of a solution v to a partial differential equation,

where v may not even be a differentiable function. This type of solutions are known

as weak solutions for partial differential equations. A strong solution does not always

exist, or the solutions may not be differentiable, or even continuous. In the following

definition, we explicitly give the concept of weak solutions.

Definition 2.1.6 ([34]) v ∈ L∞(R×R+,V) is a weak solution for the Cauchy prob-

lem (2.1) and (2.2) if the following condition∫ ∞
0

∫
R
(v∂tθ + f(v)∂xθ)dxdt+

∫
R
θ(0)v0dx = 0, (2.8)

is satisfied for every function θ ∈ C∞c (R×[0,∞)) with the initial data v0 ∈ L∞(R,V).

The function θ is a member of the vector space of real-valued, infinitely differentiable,

compactly supported functions.
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Weak solutions satisfy both the differential equation where the solution is smooth and

the jump conditions at discontinuities. We notice that if v is a strong solution of (2.1)

and (2.2), then v is a weak solution of (2.1) and (2.2) but the reverse is obviously

not true. It is a known fact that weak solutions for conservation laws are generally

not unique. As we noted before, the notion of weak solution permits solutions which

even need not be continuous. Nonetheless, weak solutions have some constraints

depending on the sort of discontinuities. For instance, assume that v is a weak solution

such that it is discontinuous across some curve x = ξ(t), but smooth on both side of

this curve. Let v−(x, t) be the limit of v approaching (x, t) from the left-hand side

and let v+(x, t) be the limit of v approaching (x, t) from the right-hand side. We

assert that the curve x = ξ(t) is not random, but there is a relation between x = ξ(t),

v− and v+. The following theorem explains this phenomena.

Theorem 2.1.2 (Rankine-Hugoniot jump condition) A solution v which is discon-

tinuous across the curve x = ξ(t) but smooth on either side of x = ξ(t) satisfies the

condition
f(v−)− f(v+)

v− − v+
= ξ′(t), (2.9)

across the curve of discontinuity, where v−(x, t) is the limit of v approaching (x, t)

from the left-hand side and v+(x, t) is the limit of v approaching (x, t) from the right-

hand side.

It is concluded that a discontinuity in the weak solutions satisfies the property

[f(v)] = s[v], (2.10)

where s = ξ′(t) is the speed of the discontinuity along a curve x = ξ(t) and

[f(v)] = f(v−)− f(v+), [v] = v− − v+

are the jumps of f(v) and v across the curve x = ξ(t), respectively. The relation

f ′(v−) > s > f ′(v+) is called the entropy condition where f ′(v) = dx/dt is the

speed of a solution v. We say that a curve of discontinuity is a shock curve for a

solution v if the curve satisfies the Rankine-Hugoniot jump condition and the en-

tropy condition for that solution v. Moreover, if a weak solution satisfies the entropy

condition on each discontinuity, then the solution is called admissible.
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Now, it is time to consider the Riemann problem which is an important Cauchy

problem of (2.1) and (2.2) with the piecewisely defined initial function,

v(x, 0) = v0(x) =

vl, x < 0,

vr, x > 0,
(2.11)

where vl, vr ∈ V are given constants. It is a known fact that a rarefaction or shock

wave will be generated. For a scalar convex equation with f ′(v) is increasing, the

solution of the Riemann problem between vl and vr is a shock with the speed s if

vl > vr or a rarefaction if vl < vr which is bounded by f ′(vl) on the left-hand side and

by f ′(vr) on the right-hand side. The solution along x
t

= 0 is either vl a rarefaction

or shock moving entirely to right or vr a rarefaction or shock moving entirely to left.

The solution has a different value if vl < vs < vr where vs is the point satisfying

f ′(vs) = 0. We call this point as the sonic point.

2.2 General formulation of finite volume methods for hyperbolic conservation

laws

The finite volume method is based on splitting the spatial domain into finite volumes

and preserving an approximation to the integral of v, the dependent variable of the

system (2.1), over each of these volumes. In every time step these approximated

values are updated by using approximations of the flux in the endpoints of the grid

cells. The value V n
i is the approximation of v(xi, t

n) at time tn,

V n
i ≈

1

∆x

∫ xi+1/2

xi−1/2

v(x, tn)dx ≡ 1

∆x

∫
Ci

v(x, tn)dx, (2.12)

where Ci = (xi−1/2, xi+1/2) is the i′th grid cell and ∆x = xi+1/2−xi−1/2. We obtain

the integral form of the conservation law (2.1) as

d

dt

∫
Ci

v(x, t)dx = f(v(xi−1/2, t))− f(v(xi+1/2, t)). (2.13)

We object to find V n+1
i by given V n

i , which is the cell averages at time tn. After

integrating (2.13) we obtain∫
Ci

v(x, tn+1)dx−
∫
Ci

v(x, tn)dx =

∫ tn+1

tn
f(v(xi−1/2, t))dt−

∫ tn+1

tn
f(v(xi+1/2, t))dt.

(2.14)
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Dividing (2.14) by ∆x and organizing the terms yields

1

∆x

∫
Ci

v(x, tn+1)dx =
1

∆x

∫
Ci

v(x, tn)dx

− 1

∆x

(∫ tn+1

tn
f(v(xi+1/2, t))dt−

∫ tn+1

tn
f(v(xi−1/2, t))dt

)
.

(2.15)

This is the formulation of updating v in each time step. After introducing the approx-

imation for the flux along x = xi+1/2,

F n
i+1/2 ≈

1

∆t

∫ tn+1

tn
f(v(xi+1/2, t))dt, (2.16)

we obtain the following numerical approximation

V n+1
i = V n

i −
∆t

∆x
(F(V n

i , V
n
i+1)−F(V n

i−1, V
n
i )), (2.17)

where

F n
i+1/2 = F(V n

i , V
n
i+1). (2.18)

The particular method depends on the formulation of F and in this method V n+1
i is

obtained by using V n
i−1, V n

i and V n
i+1 from the previous time level. In addition, it can

be clearly observed that the method (2.17) is in conservation form, since it comes

from the property (2.15) of the exact solution.

2.3 General formulation of finite volume methods for hyperbolic balance laws

Following (2.17), we construct a finite volume formulation by

V n+1
i = V n

i −
∆t

∆x
(F(V n

i , V
n
i+1)−F(V n

i−1, V
n
i )) + ∆tSni , (2.19)

for the hyperbolic balance law (2.7) that is obtained in a similar way to the previous

section. In the method (2.19) the term Sni is an approximation for the source term

Sni ≈
1

∆t∆x

∫
[tn,tn+1]×Ci

S(x, v)dtdx, (2.20)

where Ci = (xi−1/2, xi+1/2) is the i′th grid cell.
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In Chapter (3), the main part of this thesis, we will deal with a more challenging finite

volume approximation for curved spacetimes and in Chapter (4), a Godunov type of

scheme will be used for numerical experiments. Hence, in the following we introduce

briefly the Godunov method.

2.4 Godunov method

Godunov method helps to solve the Riemann problem forward in time for each grid

cell. Solutions of Riemann problem give important details about the characteristic

structure and yield conservative methods since they are themselves exact solutions of

the conservation laws. In this method, we use the numerical solution in order to define

a piecewise function ṽ(x, tn) with the value V n
i on the grid cell Ci = (xi−1/2, xi+1/2).

The equation (2.1) is solved exactly over the small time interval tn ≤ t ≤ tn+1 and

since the initial data ṽ(x, tn) is piecewisely constant we obtain a sequence of Rie-

mann problems. The exact solution is attained by simply connecting these Riemann

solutions. We define the approximate solution V n+1
i at time tn+1 by averaging the

exact solution at time tn+1,

V n+1
i =

1

∆x

∫
Ci

ṽ(x, tn+1)dx. (2.21)

We repeat this process in order to find the new piecewise constant data ṽn+1(x, tn+1)

by using (2.21). Since ṽn is considered as an exact weak solution it satisfies (2.14)

and we have∫
Ci

ṽn(x, tn+1)dx =

∫
Ci

ṽn(x, tn)dx+

∫ tn+1

tn
f(ṽn(xi−1/2, t))dt

−
∫ tn+1

tn
f(ṽn(xi+1/2, t))dt.

(2.22)

By dividing this equation with ∆x and using (2.21) we attain

V n+1
i = V n

i −
∆t

∆x
(F(V n

i , V
n
i+1)−F(V n

i−1, V
n
i )), (2.23)

where ṽn(x, tn) ≡ V n
i over the cell Ci. The flux function F in (2.23) is given as

F(V n
i−1, V

n
i ) =

1

∆x

∫ tn+1

tn
f(ṽn(xi−1/2, t))dt. (2.24)
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The integral in (2.24) is easy to compute since ṽn is constant at the point xi+1/2 over

the time interval tn ≤ t ≤ tn+1. This constant value of ṽn along x = xi+1/2 depends

on both V n
i and V n

i+1 for this Riemann problem. In a different notation, the method

(2.23) can be written as

V n+1
i = V n

i −
∆t

∆x
(f(u∗(V n

i , V
n
i+1))− f(u∗(V n

i−1, V
n
i ))) (2.25)

where the flux reduces to

F(V n
i−1, V

n
i ) = f(v∗(V n

i−1, V
n
i )). (2.26)

If V n
i = V n

i+1 = v then v∗(V n
i , V

n
i+1) = v and this property yields that the flux (2.26)

is consistent with f .

In general for the convex case, the choice of v∗(vl, vr) is formulated by the following

• if f ′(vl), f ′(vr) ≥ 0 then v∗(vl, vr) = vl,

• if f ′(vl), f ′(vr) ≤ 0 then v∗(vl, vr) = vr,

• if f ′(vl) ≥ 0 ≥ f ′(vr), and [f ]/[v] > 0 then v∗(vl, vr) = vl,

• if f ′(vl) ≥ 0 ≥ f ′(vr), and [f ]/[v] < 0 then v∗(vl, vr) = vr,

• if f ′(vl) < 0 < f ′(vr) then v∗(vl, vr) = vs where vs is the sonic point.

Finally, in order to satisfy the stability condition in the method, we require the fol-

lowing condition ∣∣∣∣∆t∆x
λj(V

n
i )

∣∣∣∣ ≤ 1, (2.27)

for any eigenvalue λj of each V n
i . The greatest value of this quantity over all the

values of v occurring in a particular problem is named as Cournat Friedrichs Levy

(CFL) condition.
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2.5 Part II: Spacetimes

The notion of spacetime gets together ’space’ and ’time’ to a single abstract universe.

In general, an n+1 dimensional spacetime requires n space dimensions and one time

dimension. An event in a spacetime does not sign just points in space, time is added

as another dimension by which one can understand where and when the events occur.

In spacetimes, different from usual spatial coordinates there exist restrictions in how

measurements are made spatially and temporally. These restrictions yield a special

model that differs from the Euclidean space in its evident symmetry.

2.5.1 Basic Concepts

In the following two definitions, we focus on a particular case of n + 1 dimensional

spacetime, that is n = 3.

Definition 2.5.1 An individual moment in 3 + 1 dimensional spacetime, is described

as an event which is uniquely determined by (t, r, θ, ϕ) where t and (r, θ, ϕ) are time

and spatial coordinates, respectively.

Compared with the Euclidean space, it is not easy to sketch an event in n + 1 di-

mensional spacetime for (n ≥ 3). However, in 2 + 1 dimension, the structure of

spacetime and the sketch of an event to a spacetime is simpler for this case. Figure

(2.1) illustrates a simple sketch for an event.

Definition 2.5.2 In 3 + 1 dimension, a spacetime interval between two events is de-

fined as

ds2 = −c2dt2 + dr2 + dθ2 + dϕ2,

where c is a fixed velocity term between space and time, t and (r, θ, ϕ) are again time

and spatial coordinates, respectively. In our later discussion c will be turn into to the

light speed, and this speed is invariant under change of coordinates.
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Figure 2.1: A simple sketch of an event on 2 + 1 dimensional spacetime

2.6 Lorentzian Manifolds

Since our objective is to obtain the relativistic Burgers equation on a special curved

spacetime, we need some basic features from general relativity. The spacetime under

consideration is a Lorentzian manifold. To distinguish Lorentzian manifolds from n

dimensional Euclidean space, we introduce n + 1 dimensional (n refers space and 1

refers time) time-oriented, Lorentzian manifold (M, g) where g is a metric with the

sign (−,+, ...,+) and we recall that tangent vectors X ∈ TpM at a point p ∈ M can

be sorted as


timelike vectors, g(X,X) < 0,

null vectors, g(X,X) = 0,

spacelike vectors, g(X,X) > 0.

(2.28)

A simple sketch of these vectors are illustrated in Figure (2.2).

In the following, we consider three particular cases of Lorentzian manifolds with n+1

dimension, namely Minkowski, Schwarzschild and FLRW backgrounds.
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Figure 2.2: Timelike, null and spacelike vectors.

2.6.1 Minkowski Spacetime

A 3+1 dimensional Minkowski spacetime is nondegenerate and symmetric manifold

endowed with a flat metric. The elements of this background are ’events’ which are

defined as in (2.5.1) and are thought as actual or physically possible point-events. This

spacetime is also called as ’flat’ spacetime. There exists a special coordinate system

containing the whole manifold where the metric is diagonal. The special coordinate

system is named as Minkowski coordinate system and is given by

xa = (x0, x1, x2, x3) = (t, x, y, z).

The coordinates (x0, x1, x2) = (x, y, z) and (x0) = (t) are spatial and time com-

ponents, respectively, which are supplied by the observer who directs the reference

frame.

The line element (metric of Minkowski spacetime) is given as

g = −c2dt2 + dx2 + dy2 + dz2,
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and in the matrix representation

g = gijdx
idxj = (dt dx dy dz)


−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




dt

dx

dy

dz

 ,

where c is the light speed. Furthermore, in usual spherical coordinates the length

element of Minkowski metric is given as

g = −c2dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2.

2.6.2 Schwarzschild geometry

The Schwarzschild background spacetime describes the gravitational field of the Earth

and defines a spherically symmetric black hole solution to the Einstein equations in

suitably chosen coordinates (ct, r, θ, ϕ). This spacetime background is represented by

Schwarzschild metric

g = −
(

1− 2m

r

)
c2dt2 +

(
1− 2m

r

)−1
dr2 + r2(dθ2 + sin2 θdϕ2),

for t > 0, c is the light speed, r > 2m and m > 0 is the mass parameter. Here

r, θ, ϕ are the usual spherical coordinates. In addition, the metric in matrix form to

this background is represented in 3 + 1 dimension as

g = gijdx
idxj = (dt dr dθ dϕ)


−
(

1− 2m
r

)
c2 0 0 0

0
(

1− 2m
r

)−1
0 0

0 0 r2 0

0 0 0 r2 sin2 θ




dt

dr

dθ

dϕ

 .

The solution holds for this background outside the body of mass m. There exists a

singularity at r = 2m and we can get rid of this singularity by using the Eddington

Finkelstein coordinates. It can be clearly observed that, for the case m = 0, the

Schwarzschild metric reduces to the Minkowski metric. In addition, as r → ∞
Schwarzschild background approaches Minkowski spacetime.
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2.6.3 Friedmann–Lemaître–Robertson–Walker background

Friedmann–Lemaitre–Robertson–Walker (FLRW) model is one of the most investi-

gated cosmological model in physics and mathematics. In this model, the metric can

be written as

g = −c2dt2 + a(t)2
( dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
, (2.29)

where t is the time, c is the light speed, k is the curvature, a(t) is the cosmic expansion

factor and (r, θ, ϕ) are the spherical coordinates. The constant parameter k which

takes exactly three values {−1, 0, 1}, determines the curvature of the spacetime as

follows

• k = −1, space geometry at constant time is a negatively curved, 3-dimensional

”pseudo-sphere”; the space is infinite.

• k = 0, space geometry at constant time is Euclidean,”flat space”; the space is

infinite.

• k = 1, space geometry at constant time is a 3-sphere, which is positively

curved; the total volume of the universe is finite.

The matrix form of this metric for 3 + 1 dimensional background is given as

g = gijdx
idxj = (dt dr dθ dϕ)


−c2 0 0 0

0
a2

1− kr2
0 0

0 0 a2r2 0

0 0 0 a2r2 sin2 θ




dt

dr

dθ

dϕ

 .

As a remark, FLRW metric is a solution for the Einstein equations. If the Einstein

equations are solved for the FLRW metric given by (2.29), the system of equations

reduces to a double equation, called Friedmann equations( ȧ(t)

a(t)

)2
=

8πG

3
ρ+

Λ

3
− k

a(t)2
,( ä(t)

a(t)

)2
=

4πG

3
(ρ+ 3p),

(2.30)
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where G is the gravitational constant, ρ is the density, Λ is the cosmological constant,

k is the curvature and p is the pressure. In these equations ȧ(t) and ä(t) are the first

and second derivatives of the cosmic expansion factor a(t). The first equation of

(2.30) is related with the expansion rate ȧ/a and the second one is related with the

acceleration ä/a.

In the rest of this chapter, we give some basic definitions in order to clarify the terms

of the Einstein field equations.

Definition 2.6.1 The Christoffel symbols for a given metric are defined by

Γµαβ =
1

2
gµν(−∂νgαβ + ∂βgαν + ∂αgβν), α, β, µ, ν ∈ {0, 1, 2, 3}, (2.31)

where gµν is the matrix inverse of the inverse metric gµν .

The Christoffel symbols play a great role in differential geometry by explaining how

to define parallelism between neighboring points.

Definition 2.6.2 The Riemann curvature tensor is defined by

Rα
βµν = ∂µΓαβν − ∂νΓαβµ + ΓγβνΓ

α
γµ − ΓγβµΓαγν , (2.32)

where Γαβν is the Christoffel symbols computed by the help of (2.31).

The Riemann curvature tensor plays a crucial role in specifying the geometrical fea-

tures of a spacetime. It is observed that Riemann curvature tensor is antisymmetric

with respect to interchange of the last two lower indices,

Rα
βµν = Rα

βνµ. (2.33)

Moreover, it is easy to prove that the Riemann curvature tensor satisfies the following

property

Rα
βµν +Rα

νβµ +Rα
µνβ = 0. (2.34)

Definition 2.6.3 The Ricci tensor is defined by

Rαβ = Rγ
αγβ, (2.35)
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where Rγ
αγβ is described in (2.32). Furthermore, by using (2.35) the formulation of

Ricci scalar can be given as

R = gαβRαβ. (2.36)

The Ricci scalar and the Ricci tensor is prevalently used in cosmology and general

relativity.

Definition 2.6.4 The Einstein tensor is defined as

Gαβ = Rαβ −
1

2
gαβR, (2.37)

where Rαβ is the Ricci tensor and R is the Ricci scalar defined in (2.35) and (2.36),

respectively.

The following definition is about the energy momentum tensors of perfect fluids. Per-

fect fluid is a fluid that has no viscosity or heat conduction. It is fully parameterized

by its density ρ and the pressure p.

Definition 2.6.5 The energy momentum tensors of perfect fluids are calculated by

the formula

Tαβ = (ρc2 + p)uα uβ + p gαβ, α, β ∈ {0, 1, 2, 3}, (2.38)

where ρ is density, p is pressure, (uα) = (u0(x, t), u1(x, t), u2(x, t), u3(x, t)) is a unit

vector, c is the light speed, and gαβ is determined through the metric.

Finally, we end up this chapter by the definition of the Einstein field equations.

Definition 2.6.6 The Einstein field equations is given by the relation

Gαβ = Rαβ −
1

2
gαβR, (2.39)

where Gαβ is the Einstein tensor, Rαβ is the Ricci tensor and R is the Ricci scalar

which are calculated by the help of the formulas (2.37), (2.35) and (2.36), respec-

tively.
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CHAPTER 3

THE RELATIVISTIC BURGERS EQUATION ON A

FRIEDMANN–LEMAÎTRE–ROBERTSON–WALKER (FLRW)

BACKGROUND

3.1 Introduction

The inviscid Burgers equation is an important model in computational fluid dynam-

ics, and represents the simplest (yet challenging) example of a nonlinear hyperbolic

conservation law. Recently, several relativistic and non-relativistic generalizations

of the classical Burgers equation have been introduced by LeFloch and collabora-

tors [2, 36, 37, 38], which also take into account geometrical effects. In particular,

the fundamental relativistic Burgers equation was derived by identifying a hyperbolic

balance law which satisfies the same Lorentz invariance property as the one satisfied

by the Euler equations of relativistic compressible fluids. The relativistic general-

ization of this model was studied on both a flat background and a Schwarzschild

background. A numerical scheme was developed by using the finite volume method-

ology and allowed to capture discontinuous solutions containing shock waves for the

relativistic Burgers equation.

Specifically, we will work on Friedmann–Lemaître–Robertson–Walker (FLRW) back-

ground, which is an important solution to Einstein field equations relevant to cosmol-

ogy. (See for instance [27] for background material.) The main purpose of the thesis

is to discuss the relativistic Burgers equation on a FLRW background and to design a

finite volume scheme for its approximation by closely following LeFloch, Makhlof,

and Okutmustur [38].
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In the present study, we continue this analysis and introduce the class of relativistic

Burgers equation on a curved background, derived as follows. We start from the

relativistic Euler equations on a curved background (M, g) (that is, a smooth, time-

oriented Lorentzian manifold), which read

∇αT
αβ = 0,

Tαβ = (ρc2 + p)uαuβ + p gαβ,
(3.1)

where Tαβ is the so-called energy-momentum tensor for perfect fluids. Here, ρ ≥ 0

denotes the mass-energy density of the fluid, while the future-oriented, unit timelike

vector field u = (uα) represents the velocity of the fluid and gαβ uαuβ = −1.

As usual, the model (3.1) must be supplemented with an equation of state for the

pressure p = p(ρ). In the present work, we assume that the fluid is pressureless, that

is, p ≡ 0, so that the Euler system takes the simpler form

∇α

(
ρ uαuβ

)
= 0. (3.2)

Provided ρ > 0 and ρ, u are sufficiently regular and observing that gαβ∇αu
αuβ = 0

(that is, u is orthogonal to∇u), we arrive at

ρ∇αu
αuβ + ρuα∇αu

β + uαuβ∇αρ = 0.

By contracting this equation with the covector uβ , we get

uα∇αρ = −ρ∇αu
α,

which gives us

ρuβ∇αu
α + ρ(uα∇αu

β − uβ∇αu
α) = 0.

Provided ρ > 0, it thus follows that

uα∇αu
β = 0, (3.3)

which is the geometric relativistic Burgers equation, that is the focus of this thesis.

3.1.1 The relativistic Burgers equations on curved backgrounds

Let us first summarize the results obtained by LeFloch, Makhlof, and Okutmustur

[38] for Minkowski (flat) and Schwarzshild spacetimes. The inviscid Burgers equa-

tion is one of the simplest example of nonlinear hyperbolic conservation laws, and
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reads

∂tv + ∂x(v
2/2) = 0, (3.4)

where v = v(t, x), t > 0 and x ∈ R. This equation can be formally deduced from the

Euler system of compressible fluids

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p(ρ)) = 0,

where ρ ≥ 0 denotes the density, v the velocity, and p(ρ) the pressure of the fluid.

By taking p(ρ) ≡ 0 and keeping a suitable combination of the two equations, we find

(3.4).

The relativistic Burgers equation on flat spacetime can be derived in several ways,

either by imposing the Lorentz invariance property or formally from the Euler system

on a curved background. As discussed in [38], the relativistic Burgers equation on

flat background is

∂tv + ∂r
(
1/ε2

(
− 1 +

√
1 + ε2v2

))
= 0, (3.5)

where ε is the inverse of the light speed parameter and the length element of Minkowski

metric in spherical coordinates (t, r, θ, ϕ), is given by

g = −c2dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2,

where c is the light speed. On the other hand, starting from the Euler system for rela-

tivistic compressible fluids and imposing vanishing pressure, we arrive at the follow-

ing version of the non-relativistic and relativistic Burgers equations on Schwarzshild

spacetime:

∂t(r
2v) + ∂r

(
r(r − 2m)

v2

2

)
= rv2 −mc2, (3.6)

∂t(r
2v) + ∂r

(
r(r − 2m)

(
− 1 +

√
1 + v2

))
= 0, (3.7)

where the Schwarzshild metric in coordinates (t, r, θ, ϕ) is defined by

g = −
(

1− 2m

r

)
c2dt2 +

(
1− 2m

r

)−1
dr2 + r2(dθ2 + sin2 dϕ2),

so that m > 0 is the mass parameter, r is the Schwarzshild radius and r > 2m. We

refer the reader to [38] for further details. In the present thesis, our main objective is

the discussion of yet another generalization, that is the relativistic Burgers equation

on a FLRW spacetime.

27



3.2 FLRW background spacetimes

3.2.1 Motivations from cosmology

Cosmology is based on Einstein’s theory of gravity and certain classes of explicit so-

lutions are often considered. (See for instance [27] for the notions in this section.)

Recall first that Einstein himself introduced in his field equation the so-called cosmo-

logical constant Λ, in order to ensure that static solutions representing a static universe

exist. Next, without requiring this cosmological constant, Friedmann discovered so-

lutions to Einstein equations describing an expanding universe. At the same time,

Lemaître proposed the “Big Bang model", which describes an expanding universe

from a singular state and derived the “distance redshift" relation. This circle of ideas,

together with further works by Robertson and Walker, led to a theory based on a fam-

ily of solutions, now referred as the FLRW spacetimes describing the whole universe

evolution.

In short, the cosmological principle states that the universe is homogeneous (has

spatial translation symmetry) and isotropic (has spatial rotation symmetry). Accord-

ing to this principle, the universe may evolve in time, in either a contracting or an

expanding direction. Observations indicate that the universe is expanding; whereas

galaxies, quasars and galaxy clusters evolve with redshift, and the temperature of the

cosmic microwave background (a uniform background of radio waves which fill the

universe) is decreasing. An important feature in cosmology works is that studies are

always done in comoving coordinates which expand with the universe. Furthermore,

three topologies (positive, negative, or vanishing curvature) are possible and the uni-

verse is referred to be closed, open, or flat, respectively.

3.2.2 Expression of the FLRW metric

We will work here with the FLRW metric describing a spatially homogeneous and

isotropic three-dimensional space. In term of the proper time t measured by a co-

moving observer, and by introducing radial r and angular (θ and ϕ) coordinates in the

comoving frame, we can express the metric of such a 3 + 1-dimensional spacetime in
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the form

g = −c2dt2 + a(t)2
( dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
, (3.8)

where k = 0,±1 and c is the light speed. The variable t is the proper time experienced

by comoving observers, who remain at rest in comoving coordinates dr = dθ =

dϕ = 0. The time variable t appearing in the FLRW metric is the time that would be

measured by an observer who sees uniform expansion of the surrounding universe; it

is named as the cosmological proper time or cosmic time.

The function a = a(t) reads

a(t) = a0

( t
t0

)α
, (3.9)

where, for the FLRW metric, α = 2
3
, t0 is the age of the universe (which is a ‘large’

number) and a0 = 1 refers to ‘today’. In addition, the parameter k, a constant in time

and space, is related to the spacetime curvature K by the equation,

k = a(t)2K.

We can distinguish between three cases:

k =


1, sphere (of positive curvature),

0, (flat) Euclidean space,

−1, hyperboloid (of negative curvature).

(3.10)

The FLRW metric can also be used to express the line element for homogeneous,

isotropic spacetime in matrix form (for c = 1) as

g = gijdx
idxj = (dt dr dθ dϕ)


−1 0 0 0

0 a2

1−kr2 0 0

0 0 a2r2 0

0 0 0 a2r2 sin2 θ




dt

dr

dθ

dϕ

 .

Thus, the FLRW metric is diagonal with

g00 = −1, g11 =
a2

1− kr2
, g22 = a2r2, g33 = a2r2 sin2 θ, (3.11)

as its non-zero covariant (diagonal entries of the matrix) components, and the corre-

sponding contravariant components are

g00 = −1, g11 =
1− kr2

a2
, g22 =

1

a2r2
, g33 =

1

a2r2 sin2 θ
, (3.12)
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with

gikgkj = δij,

where δij is the Kronecker’s delta function. The coordinates (r, θ, ϕ) of the metric

are comoving coordinates. In the FLRW metric, as the universe expands the galaxies

keep the same coordinates (r, θ, ϕ) and only the scale factor a(t) changes with time.

3.2.3 Christoffel symbols for FLRW background

We need first to calculate the Christoffel symbols Γµαβ . The metric tensors tell us how

to define distance between neighboring points and the connection coefficients tell us

how to define parallelism between neighboring points. We calculate the Christoffel

symbols by using (3.11) and (3.12) with

Γµαβ =
1

2
gµν(−∂νgαβ + ∂βgαν + ∂αgβν), (3.13)

where α, β, µ, ν ∈ {0, 1, 2, 3}. To begin with, we calculate two typical coefficients

by using (3.11) and (3.12), as follows:

Γ0
00 =

1

2
g00(−∂0g00 + ∂0g00 + ∂0g00) =

1

2
(−1)(0) = 0,

and

Γ0
11 =

1

2
g00(−∂0g11 + ∂1g10 + ∂0g10)

=
1

2
(−1)

(
− ∂0(

a2

(1− kr2)
)
)

=
aȧ

c(1− kr2)
.

Similarly, we obtain the other non-vanishing Christoffel symbols as:

Γ0
11 =

aȧ

c(1− kr2)
, Γ0

22 =
aȧr2

c
, Γ0

33 =
aȧr2 sin2 θ

c
,

Γ1
11 =

kr

1− kr2
, Γ1

22 = −r(1− kr2), Γ1
33 = −r(1− kr2) sin2 θ,

Γ2
33 = − sin θ cos θ, Γ3

23 = Γ3
32 = cot θ,

Γ2
12 = Γ2

21 = Γ3
31 = Γ3

13 =
1

r
,

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
30 = Γ3

03 =
ȧ

ca
.

(3.14)
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Moreover, the zero terms of the Christoffel symbols are calculated as:

Γ0
00 = Γ0

01 = Γ0
02 = Γ0

03 = Γ0
10 = Γ0

12 = Γ0
13 = Γ0

20 = Γ0
21 = Γ0

23

= Γ0
30 = Γ0

31 = Γ0
32 = Γ1

00 = Γ1
02 = Γ1

03 = Γ1
12 = Γ1

13 = Γ1
20

= Γ1
21 = Γ1

23 = Γ1
30 = Γ1

31 = Γ1
32 = Γ2

00 = Γ2
01 = Γ2

03 = Γ2
10

= Γ2
11 = Γ2

13 = Γ2
22 = Γ2

23 = Γ2
30 = Γ2

31 = Γ2
32 = Γ3

00 = Γ3
01

= Γ3
02 = Γ3

10 = Γ3
11 = Γ3

12 = Γ3
20 = Γ3

21 = Γ3
22 = Γ3

33 = 0.

3.3 From the Euler system to the relativistic Burgers equation

3.3.1 The energy-momentum tensor for perfect fluids

We assume that solutions to the Euler equations depend only on the time variable t

and the radial variable r, and that the non-radial components of the velocity vanish,

that is, (uα) = (u0(t, r), u1(t, r), 0, 0). Since u is unit vector, we have uαuα = −1

and we can write

uαuα = u0u0 + u1u1 = g00(u
0)(u0) + g11(u

1)(u1),

which gives us

− 1 = g00(u
0)2 + g11(u

1)2. (3.15)

Plugging the covariant components into this equation, it follows that

− 1 = −(u0)2 +
a(t)2

1− kr2
(u1)2. (3.16)

By considering the formula for the fluid velocity, which is the proportion of the proper

distance of the hypersurface to the elapsed time, it is convenient to introduce the

velocity component v. The coordinates are taken to be

(x0, x1, x2, x3) = (ct, r, 0, 0).

In order to obtain a relation between u1 and u0, we use the identity

uα =
dxα

dτ
=
dxα

dt

dt

dτ
,

u0 =
dx0

dτ
= c

dt

dτ
,
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u1 =
dx1

dτ
=
dx1

dt

dt

dτ
=

1

c
v1u0,

which gives u1/u0 = v1/c, since dx1/dt = v1.

Next, we introduce the velocity component v as the fraction of the proper distance of

the hypersurface and the elapsed time

v :=
ca(t)

(1− kr2)1/2
u1

u0
. (3.17)

By using (3.16) and (3.17) with a simple algebraic manipulation, we obtain the fol-

lowing identities

(u0)2 =
c2

(c2 − v2)
, (u1)2 =

v2(1− kr2)
a2(c2 − v2)

. (3.18)

Then, in order to calculate the tensor components, we need to recall the energy mo-

mentum tensor of perfect fluids formula,

Tαβ = (ρc2 + p)uα uβ + p gαβ. (3.19)

By inserting the terms from the relation (3.18) and the contravariant components

(3.12) into the formula (3.19), we calculate all the energy momentum tensor com-

ponents for α, β ∈ {0, 1, 2, 3}. For example, the first tensor T 00 can be obtained

as

T 00 = (ρc2 + p)u0u0 + pg00 =
c2

c2 − v2
(ρc2 + p)− p =

ρc4 + pv2

c2 − v2
.

In the same way the other components are found to be

T 01 = T 10 =
cv(1− kr2)1/2(ρc2 + p)

a(c2 − v2)
, T 11 =

c2(1− kr2)(v2ρ+ p)

a2(c2 − v2)
,

T 22 =
p

a2r2
, T 33 =

p

a2r2 sin2 θ
,

while the remaining terms vanish, as shown below

T 02 = T 03 = T 12 = T 13 = T 20 = T 21 = T 23 = T 30 = T 31 = T 32 = 0.

3.3.2 The pressureless Euler system on FLRW background

In the previous section, Christoffel symbols and energy momentum tensors for perfect

fluids were derived. In this section, we are in a position to derive the Euler system
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on a FLRW spacetime. We recall the Euler equations ∇αT
αβ = 0, which can be

rewritten as

∂αT
αβ + ΓααγT

γβ + ΓβαγT
αγ = 0. (3.20)

There are two sets of equations depending on β. Firstly taking β = 0 in (3.20) yields

∂αT
α0 + ΓααγT

γ0 + Γ0
αγT

αγ = 0,

which is equivalent to

∂0T
00 + Γ0

0γT
γ0 + Γ0

γ0T
γ0 + ∂1T

10 + Γ1
1γT

γ0 + Γ0
1γT

1γ + ∂2T
20 + Γ2

2γT
γ0

+ Γ0
2γT

2γ + ∂3T
30 + Γ3

3γT
γ0 + Γ0

3γT
3γ = 0.

Writing this equation in more detail results to the following equation

∂0T
00 + Γ0

00T
00 + Γ0

00T
00 + Γ0

01T
10 + Γ0

01T
01 + Γ0

02T
20 + Γ0

02T
02

+ Γ0
03T

30 + Γ0
03T

03 + ∂1T
10 + Γ1

10T
00 + Γ0

10T
10 + Γ1

11T
10 + Γ0

11T
11

+ Γ1
12T

20 + Γ0
12T

12 + Γ1
13T

30 + Γ0
13T

13 + ∂2T
20 + Γ2

20T
00 + Γ0

20T
20

+ Γ2
21T

10 + Γ0
21T

21 + Γ2
22T

20 + Γ0
22T

22 + Γ2
23T

30 + Γ0
23T

23 + ∂3T
30

+ Γ3
30T

00 + Γ0
30T

30 + Γ3
31T

10 + Γ0
31T

31 + Γ3
32T

20 + Γ0
32T

32

+ Γ3
33T

30 + Γ0
33T

33 = 0.

We next consider the exponent β = 1:

∂αT
α1 + ΓααγT

γ1 + Γ1
αγT

αγ = 0,

which gives us

∂0T
01 + Γ0

0γT
γ1 + Γ0

0γT
0γ + ∂1T

11 + Γ1
1γT

γ1 + Γ1
1γT

1γ + ∂2T
21 + Γ2

2γT
γ1

+ Γ1
2γT

2γ + ∂3T
31 + Γ3

3γT
γ1 + Γ1

3γT
3γ = 0.

Again by writing this equation in a detailed form, we attain the following equation

∂0T
01 + Γ0

00T
01 + Γ1

00T
00 + Γ0

01T
11 + Γ1

01T
01 + Γ0

02T
21 + Γ1

02T
02

+ Γ0
03T

31 + Γ1
03T

03 + ∂1T
11 + Γ1

10T
01 + Γ1

10T
10 + Γ1

11T
11 + Γ1

11T
11

+ Γ1
12T

21 + Γ1
12T

12 + Γ1
13T

31 + Γ1
13T

13 + ∂2T
21 + Γ2

20T
01 + Γ1

20T
20

+ Γ2
21T

11 + Γ1
21T

21 + Γ2
22T

21 + Γ1
22T

22 + Γ2
23T

31 + Γ1
23T

23 + ∂3T
31

+ Γ3
30T

01 + Γ1
30T

30 + Γ3
31T

11 + Γ1
31T

31 + Γ3
32T

21 + Γ1
32T

32

+ Γ3
33T

31 + Γ1
33T

33 = 0.
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Next, by substituting the expression of the Christoffel symbols in the Euler system on

a FLRW background, we obtain the simplified system

∂0T
00 + ∂1T

10 +
3ȧ

ca
T 00 +

kr

1− kr2
T 10 +

aȧ

c(1− kr2)
T 11

+
2

r
T 10 +

r2aȧ

c
T 22 +

aȧr2 sin2 θ

c
T 33 = 0,

∂0T
01 + ∂1T

11 +
4ȧ

ca
T 01 +

ȧ

ca
T 10 +

2kr

(1− kr2)
T 11

+
1

r
T 11 − r(1− kr2)T 22 − r(1− kr2) sin2 θT 33 = 0.

(3.21)

Finally, using the expressions for perfect fluids into (3.21) and assuming that the

pressure p vanishes identically, we obtain the Euler system on a FLRW background:

∂0

(
ρc2

c2 − v2

)
+ ∂1

(
ρcv(1− kr2)1/2

a(c2 − v2)

)
+

3ȧρc

a(c2 − v2)
+

2ρcv(1− kr2)1/2

ra(c2 − v2)

+
krρcv

a(c2 − v2)(1− kr2)1/2
+

ȧv2ρ

ca(c2 − v2)
= 0,

∂0

(
c2ρv(1− kr2)1/2

a(c2 − v2)

)
+ ∂1

(
cv2ρ(1− kr2)
a2(c2 − v2)

)
+

5ȧρvc(1− kr2)1/2

a2(c2 − v2)

+
2krcv2ρ

a2(c2 − v2)
+

2cv2ρ(1− kr2)
ra2(c2 − v2)

= 0.

(3.22)

3.4 The relativistic Burgers equation on a FLRW background

3.4.1 The derivation of the relativistic Burgers equation

It remains now to write the relativistic Burgers equation with the help of the equations

(3.22). Namely, we combine the two equations in (3.22) and reduce it to a single

equation, that is,

a2∂t(
v

a
(1−kr2)1/2)+∂r((

v2

2
)(1−kr2))+v(1−kr2)1/2at(2−

v2

c2
)+rkv2 = 0. (3.23)

If we take the partial derivatives of the first and the second terms in (3.23), this be-

comes

(avt−vat)(1−kr2)1/2+(1−kr2)∂r(
v2

2
)−rkv2+v(1−kr2)1/2at(2−

v2

c2
)+rkv2 = 0,
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after further elementary simplifications, we obtain

avt(1− kr2)1/2 + (1− kr2)∂r(
v2

2
) + v

(
1− kr2

)1/2
at(1−

v2

c2
) = 0.

Finally, we arrive at the following definition.

Definition 3.4.1 The relativistic Burgers equation on a FLRW background is

a vt +
(
1− kr2

)1/2
∂r

(v2
2

)
+ v
(

1− v2

c2

)
at = 0, (3.24)

in which a = a(t) > 0 is a given function, k ∈
{
− 1, 0, 1

}
is a discrete parameter,

and the light speed c is a positive parameter.

Writing this equation explicitly for the particular cases depending on the constant

parameter k yields

Case 1 : k = −1

a vt +
(
1 + r2

)1/2
∂r

(v2
2

)
+ v
(

1− v2

c2

)
at = 0, (3.25)

Case 2 : k = 0

a vt + ∂r

(v2
2

)
+ v
(

1− v2

c2

)
at = 0, (3.26)

Case 3 : k = 1

a vt +
(
1− r2

)1/2
∂r

(v2
2

)
+ v
(

1− v2

c2

)
at = 0. (3.27)

In the limiting case c→ +∞, the equation (3.24) can be rewritten as

∂t

( a(t)v

(1− kr2)1/2
)

+ ∂r

(v2
2

)
= 0, (3.28)

which is a conservation law. Here, we are able to obtain classical model as c tends

to infinity with a particular case of our relativistic model (a(t) = 1 and k = 0).

Derivation of the classical (inviscid) Burgers equation from the relativistic one is an

expected result since it is a property shared all by relativistic equations.

In order to obtain an analogous equation for (3.28) for finite values c, we propose to

rewrite (3.24) as

∂t

( a(t)v

(1− kr2)1/2
)
− v3

c2
∂t

( a(t)

(1− kr2)1/2
)

+ ∂r

(v2
2

)
= 0. (3.29)
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Furthermore, in the special case a(t) ≡ 1, this latter equation is also a conservation

law

∂t

( v

(1− kr2)1/2
)

+ ∂r

(v2
2

)
= 0. (3.30)

3.4.2 The initial value problem

The equation (3.24) is a nonlinear hyperbolic equation with time- and space-dependent

coefficients. The solutions admit jump discontinuities which propagate in time. This

equation fits in the general theory of entropy weak solutions to such equations by

Kruzkov [30]. The notion of entropy solutions relies on the use of the so-called con-

vex entropy pairs, defined as follows.

Definition 3.4.2 A pair of Lipschitz continuous functions V, F is a convex entropy-

entropy flux pair if V = V (v) is strictly convex and F ′ := vV ′ hold almost every-

where. A function v ∈ L∞(R+ × R+) is called an entropy solution of (3.24), if for

every convex entropy-entropy flux pair (V, F )

avt + (1− kr2)1/2∂r
(v2

2

)
+ v
(
1− v2

c2
)
at = 0,

aV (v)t + (1− kr2)1/2∂rF (v) + vV ′(v)
(
1− v2

c2
)
at ≤ 0,

(3.31)

hold in the sense of distributions.

In view of the general theory in [30], we obtain the following result.

Theorem 3.4.1 The equation (3.24) admits an entropy weak solution v ∈ L∞(R+ ×
R+) satisfying the conditions (3.31) in the sense of Kruzkov’s theory.

Note in passing that, in the particular case a(t) ≡ 1 and k ≡ 0, we obtain the classical

Burgers equation and the approximate solution of this equation satisfies the additional

estimate

inf
x
v(0, x) ≤ inf

x
v(t, x) ≤ sup

x
v(t, x) ≤ sup

x
v(0, x).

This is of course not true in general, and the lack of such properties in one of the

challenges in order to numerically cope with discontinuous solutions to (3.31).
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3.5 Special solutions and non-relativistic limit

3.5.1 Spatially homogeneous solutions

We look for special classes of explicit solutions to the Burgers equation on a FLRW

background (3.24), which involves the variable coefficients a(t) and at(t). Due to this

t-dependency, it is easily checked that for all three values of k, there does not exist

any static solution (except v ≡ 0).

On the other hand, in order to find spatially homogeneous solutions of (3.24), we

assume that v depends only on t so that the term ∂r(
v2

2
) vanishes identically, which

means

avt + v(1− v2

c2
)at = 0. (3.32)

By changing the notation vt to v′, and at to a′, we write

v′

v(1− v2

c2
)

= −a
′

a
,

which is equivalent to (1

v
+

v
c2

1− v2

c2

)
v′ = −(log a)′.

It follows that
±v√

1− v2/c2
=
w

a
, where w is a constant.

Equivalently, we have
a2

w2
v2 = 1− v2

c2
.

Thus the spatially homogeneous homogeneous solutions can be described by the ex-

plicit formula

v(t) =
±c√

1 + a2(t)c2

w2

, (3.33)

where w is a constant parameter. This is obviously true for all k ∈ {−1, 0, 1}.

Proposition 3.5.1 The spatially homogeneous solutions to the relativistic Burgers

equation on a FLRW background

v(t) =
w√

a(t)2 + w2

c2

∈ (−c, c) (3.34)

are parameterized by a real parameter w (where c is the light speed).
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In the relativistic Burgers equation on FLRW background the ’main dependence’ is

in t rather than r.

3.5.2 Some limit properties of the relativistic Burgers equation

Next, let us consider some limit properties of the equation (3.24) when, for definite-

ness, a(t) = a0
(
t
t0

)α. Observe in passing that (3.24) is not linear in terms of the

coefficient a(t) (since the second term in the equation does not include a(t) or a′(t)).

Recall that the following parameters are relevant:



k the curvature constant , k ∈ [−1, 1]

c the light speed , c ∈ (0,∞)

a0 the constant in a(t), a0 ∈ (0,∞)

α the exponent in a(t), α ∈ (0,∞).

Two typical ranges of the time variables are relevant here, since shock wave solutions

to nonlinear hyperbolic equations are only defined in a forward time directions: since

at t = 0 the equation is singular, we can treat the range t ∈ [1,∞) or the range

t ∈ [−1, 0). For t ∈ [1,∞) we normalize a0 = 1 and for t ∈ [−1, 0) we set a0 = −1.

In the case t > 1, if we consider the limit t → +∞, the equation is expanding

toward the future time directions, while in the case t < 0 when t→ 0, the equation is

contracting in the future time directions.

3.5.2.1 Recovering the standard Burgers equation

The special case a0 = 1, t0 = 1, α = 0 (which means a(t) = 1), with the particular

case k = 0 for the equation (3.24) leads us to

∂tv + ∂r(
v2

2
) = 0, (3.35)

which is the classical Burgers equation.
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3.5.2.2 The non-relativistic limit

Taking the limit c→ +∞ in the equation (3.24), we obtain

∂t(av) + (1− kr2)1/2∂r(
v2

2
) = 0. (3.36)

We can also determine directly the limiting behavior of the spatially homogeneous

solutions to (3.24): in view of (3.33), we obtain

v(t) =
1√

1
c2

+ a2(t)
w2

, (3.37)

where w is a constant parameter. Here we have made the following observations:

• For spatially homogeneous solutions, we have |v| < c.

• In the expanding direction t→ +∞, we have v → 0.

• In the contraction direction t→ 0, we have v → c since a(t)→ 0.

• We have v → w
a(t)

as c→ +∞.

3.6 A shock-capturing, well-balanced, finite volume scheme

3.6.1 Finite volume methodology for geometric balance laws

In this section, we are motivated by the earlier works [48, 49] for nonlinear hyperbolic

problems without the relativistic features and [38] concerning the relativistic Burgers

equations. In the Burgers equation on a FLRW background, the variable coefficients

depend upon the time variable t, due to the terms a(t), a′(t) and k ∈ {−1, 0, 1}.
Hence, the numerical approximation of solutions to the Burgers equation on a FLRW

background leads to a new challenge, in comparison with flat or Schwarzschild back-

grounds.

As explained earlier, the spacetime of interest is described by a single chart and some

coordinates denoted by (t, r). For the discretization, we denote the (constant) time

length by ∆t and we set tn = n∆t, and we introduce equally spaced cells Ij =
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[rj−1/2, rj+1/2] with (constant) spatial length denoted by ∆r = rj+1/2 − rj−1/2. The

finite volume method is based on an averaging of the balance law

∂t(T
0(t, r)) + ∂r(T

1(t, r)) = S(t, r), (3.38)

over each grid cell [tn, tn+1] × Ij , where Tα(v) = Tα(t, r) and S(t, r) are the flux

and source terms, respectively. We thus write the identity∫ rj+1/2

rj−1/2

(T 0(tn+1, r)− T 0(tn, r)) dr

+

∫ tn+1

tn

(T 1(t, rj+1/2)− T 1(t, rj−1/2)) dt =

∫
[tn,tn+1]×Ij

S(t, r) dt dr,

or, by rearranging the terms,∫ rj+1/2

rj−1/2

T 0(tn+1, r) dr =

∫ rj+1/2

rj−1/2

T 0(tn, r)dr +

∫
[tn,tn+1]×Ij

S(t, r) dt dr

−
∫ tn+1

tn

(T 1(t, rj+1/2)− T 1(t, rj−1/2)) dt.

(3.39)

We introduce the following approximations

1

∆r

∫ rj+1/2

rj−1/2

T 0(tn, r) dr ' T
n

j ,

1

∆t

∫ tn+1

tn

T 1(t, rj±1/2) dt ' Q
n

j±1/2,

1

∆t∆r

∫
[tn,tn+1]×Ij

S(t, r) dt dr ' S
n

j .

so that our scheme take the following finite volume form

T
n+1

j = T
n

j −
∆t

∆r
(Q

n

j+1/2 −Q
n

j−1/2) + ∆tS
n

j . (3.40)

Keeping in mind the practical implementation of the scheme, we write also T
n

j =

T (vnj ), where T = T 0(v) is the (invertible) map determined by the equation. The

piecewise constant approximations (vnj ) at the “next” time level are thus given by the

formula

vn+1
j = T

−1
(
T (vnj )− ∆t

∆r
(Q

n

j+1/2 −Q
n

j−1/2) + ∆tS
n

j

)
. (3.41)

For the scheme to be fully specified, we need of course to select a numerical flux and

an approximation of the source term.
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3.6.2 Well-balanced scheme for the Burgers equation on FLRW spacetime

We now apply the above methodology to the Burgers equation on a FLRW spacetime

(3.24). We start from the discrete version (3.40). Since the essential dependence of

the source term is with respect to the time variable only, we approximate the source-

term in the form

S
n

j =
1

∆Ṽ

∫ tn+1

tn

SdVg̃, (3.42)

where g̃ is the induced metric on a timelike slice. That is, we have

g = g̃ + a(t)2
dr2

1− kr2

and we write

g̃ = −c2dt2 = −gtdt2, (3.43)

while dVg̃ is the induced volume form on a timelike slice. Thus, we have

dVg̃ := c2dt, ∆Ṽ := c2∆t. (3.44)

Hence, there is no geometrical effect to be taken into account, as far as an integration

in time is concerned.

Now, let us write our equation (3.24) as a balance law (with a source term) and obtain

the following equation

∂tv + ∂r

(
(1− kr2)1/2 v2

2a(t)

)
= −

( krv2
2a(t)

(1− kr2)−1/2 + v(1− v2)at(t)
a(t)

)
. (3.45)

This is the formulation that we are going to discretize, since it has the advantage that

the left-hand side is in a conservative form. In the applications, the dependence in

time may be stiff, especially in the contracting directions of the spacetime. For this

reason, we built the scheme in order to preserve as much as possible the spatially

homogeneous solutions.

The flux terms will be approximated by the Godunov flux defined by solving Riemann

problems at each interface. The main difficulty is thus the approximation of the source

term in a well balanced way.

We focus first on a solution v ' v(t) which is supposed to be nearly spatially ho-

mogeneous so that the r-derivative can be neglected. We integrate (3.45) in time and
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obtain the following expression for the source term:∫ tn+1

tn

√
gtv(t) dt =

∫ tn+1

tn

−
(krv(t)2

2a(t)
(1− kr2)−1/2 + v(1− v(t)2)

at(t)

a(t)

)√
gtdt

' ∆Ṽ S
n

j .

(3.46)

Consequently, in view of (3.43), (3.44) and (3.46), we find

S
n

j '
1

∆Ṽ

∫ tn+1

tn

√
gt v(t) dt =

1

c∆t

∫ tn+1

tn

v(t) dt ' v(tn+1/2),

where tn+1/2 = tn + ∆t/2 and we used the trapezoid rule in order to evaluate the

latter integral. Here, the function v = v(t) denotes a locally-defined, spatially homo-

geneous approximation, as defined in Proposition 3.5.1, that is,

v(t) =
w√

a(t)2 + w2

c2

,

where the value w = wnj is defined in each cell from the current state value vnj by the

formula

vnj =
wnj√

a(tn)2 + (wj
n)2

c2

,

In other words, we define the approximation of the source term as

S
n

j = v
n+1/2
j =

wnj√
a(tn+1/2)2 +

(wn
j )

2

c2

=
vnj a(tn)√

(a(tn+1/2))2 +
(vnj )

2

c2

(
(a(tn))2 − (a(tn+1/2))2

) . (3.47)

This formula takes the time variation of the coefficient a into account, and is expected

to be robust when approaching the crushing singularity.

In any given computational cell, the left-hand and right-hand numerical flux terms are

obtained by Godunov flux formulas, which we write in the abstract form

Qn
j+1/2 = Q(T

n

j+1/2−, T
n

j+1/2+), Qn
j−1/2 = Q(T

n

j−1/2−, T
n

j−1/2+),

in which the geometry is taken into account by setting

T
n

j+1/2± = bnj+1/2v
n
j+1/2, T

n

j−1/2± = bnj−1/2v
n
j−1/2,

and

bnj+1/2 = (1− k(rnj+1/2)
2)1/2, bnj−1/2 = (1− k(rnj−1/2)

2)1/2.
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The numerical tests for this chapter, is conducted in the following chapter. To this

aim, a Godunov type of scheme is constructed. In addition, in order to investigate and

compare the spatially homogeneous solutions with numerical solutions, we apply a

well-balanced Godunov type of scheme.
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CHAPTER 4

NUMERICAL EXPERIMENTS

4.1 Introduction

In this chapter we construct a Godunov scheme for the Burgers equation on Friedmann–

Lemaître–Robertson–Walker background. First, we apply initial shocks and rarefac-

tions to the concerning model. Next, several numerical tests about the well-balanced

scheme and homogeneous solutions are illustrated. Numerical results verify that our

well-balanced Godunov scheme preserves homogeneous solutions of the concerning

equation.

4.2 Numerical experiments

4.2.1 Godunov scheme for the Burgers equation on a FLRW background

In this section, numerical experiments are illustrated for the model derived on a

FLRW spacetime based on the Godunov scheme. Firstly, the behaviors of initial sin-

gle shocks and rarefactions are examined in the numerical tests depending on three

particular cases of constant k. Whereas, in the second part, we investigate the conver-

gence of well-balanced scheme to the homogeneous solution. Analogously, depend-

ing on the parameter k in the main equation, we have several illustrations.

We analyze the given model with a single shock and rarefaction for an initial function

considering the Godunov scheme with a local Riemann problem for each grid cell.

In the experiments for test functions, we choose a(t) = t2 and r ∈ [0, 1]. Since our
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scheme has singularities at t = 0 stemming from the function a(t), we start by taking

t > 1 for all cases of k = −1, 0, 1. In Riemann problem both shocks and rarefaction

waves are produced, thus we look for the fastest wave at each grid cell. For the fluxes

at the boundary we choose the functions f0(u, v) and f1(u, v) for r = 0 and r = 1,

respectively.

After normalization (taking c = 1) in the equation (3.24), we obtain the following

model

vt +
(
1− kr2

)1/2 1

a(t)
∂r

(v2
2

)
+ v(1− v2) at(t)

a(t)
= 0. (4.1)

In order to define this equation in a better form, we rewrite it by

∂tv + ∂r

(
(1− kr2)1/2 v2

2a(t)

)
= −

( krv2
2a(t)

(1− kr2)−1/2 + v(1− v2)at(t)
a(t)

)
, (4.2)

and the corresponding finite volume scheme can be written as

vn+1
j = vnj −

∆t

∆r
(bnj+1/2g

n
j+1/2 − bnj−1/2gnj−1/2) + ∆tSnj , (4.3)

where

Snj = −
(k(rnj )(vnj )2

2an
(1− k(rnj )2)−1/2 + (vnj )(1− (vnj )2)

ant
an

)
,

and
bnj+1/2 = (1− k(rnj+1/2)

2)1/2,

gnj−1/2 = f(vnj−1, v
n
j ),

gnj+1/2 = f(vnj , v
n
j+1),

with f(u, v) is defined as follows

f(u, v) =



u2

2
, if u > v and u+ v > 0,

v2

2
, if u > v and u+ v < 0,

u2

2
, if u ≤ v and u > 0,

v2

2
, if u ≤ v and v < 0,

0, if u ≤ v and u ≤ 0 ≤ v.

We use the notation J to indicate the total number of grid cells in space so that vn+1
J

reads as the velocity on the right hand side boundary r = 1. It follows that

vn+1
J = vnJ −

∆t

∆r
(bnJ+1/2 g

n
J+1/2 − bnJ−1/2 gnJ−1/2) + ∆tSnJ ,
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gnJ−1/2 = f(vnJ−1, v
n
J ),

gnJ+1/2 = f1(v
n
J , v

n
J+1),

where

f1(u, v) =
1

2

(
max

(
0, u
))2

,

is the flux function computed at the right hand side boundary r = 1.

Next, we use the notation vn+1
1 indicating the velocity on the left hand side boundary

r = 0. It follows that

vn+1
1 = vn1 −

∆t

∆r
(bn3/2 g

n
3/2 − bn1/2 gn1/2) + ∆tSn1 ,

gn1/2 = f0(v
n
0 , v

n
1 ),

gn3/2 = f(vn1 , v
n
2 ),

where

f0(u, v) =
1

2

(
max

(
0,−v

))2
,

is the flux function computed at the boundary r = 0. In order the stability condition

in the scheme to be satisfied, we choose ∆t and ∆r, so that

∆t

∆r
max
j

∣∣∣(1− k(rnj )2)1/2vnj
an

∣∣∣ ≤ 1,

where ((1− k(rnj )2)1/2vnj
an

)
,

is the speed term.

In Figures (4.1) and (4.2), we compare the particular cases k = 0 and k = −1 for

shocks and rarefactions. In addition, in Figure (4.3) we perform a similar comparison

by using the initial function

v0(x) = 0.5 + 0.1 sin(24πx),

for our scheme. From these graphs we observe that the numerical solution for the

particular case k = −1 which is represented by the red line moves faster than the

particular case k = 0 represented by the green line. This result can also be verified by

plugging k = −1, 0 into the speed term given above. We also observe that, for two

particular cases of k = −1 and k = 0, the solution curves converge to zero which

shows the efficiency and robustness of the scheme.
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4.2.2 Transformation for the particular case k = 1

The source term for the particular case k = 1 is

Snj = −
(rnj (vnj )2

2an
(1− (rnj )2)−1/2 + (vnj )(1− (vnj )2)

ant
an

)
which produces singularities in the scheme. In order to get rid of this handicap, we

modify our scheme by changing the variable ξ(r) = arcsin(r) so that

(1− r2)1/2 ∂
∂r

=:
∂

∂ξ
, dξ =

dr

(1− r2)1/2
, (4.4)

which allows us transform the compact domain [−1, 1] to another compact domain

[−π
2
, π
2
]. According to this change of variable, our main equation (3.24) can be written

in the related coordinate system as

∂t(v) + ∂ξ
( v2

2a

)
− v(1− v2)at

a
= 0. (4.5)

In the scheme we use a flux function on the boundaries ξ = 0 and ξ = π
2

which is

similar as the flux used in the previous part for the particular cases k = −1, 0. In

addition, for stability of the scheme, ∆t and ∆ξ satisfies

∆t

∆ξ
max
j

∣∣∣vnj
an

∣∣∣ ≤ 1,

where vnj /a
n is the speed.

Figures (4.4) and (4.5) represent the numerical solutions for particular case k = 1

after the transformation

ξ(r) = arcsin(r),

with shocks and rarefactions, respectively. Moreover, in Figure (4.6) we apply the

initial function

v0(x) = 0.5 + 0.1 sin(24πx),

to our scheme. One can observe that the numerical scheme is efficient and robust as

the solution curves converge to zero.
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4.2.3 Numerical experiments for homogeneous solutions and well-balanced scheme

In this part we investigate the convergence of the well-balanced Godunov scheme.

We consider the following quantity∫ 1

0

∣∣∣κ− v(t, x)

vh(t)

∣∣∣dx, (4.6)

where v(t, x) is the numerical solution given by the well-balanced Godunov scheme

for three particular cases of k, vh(t) is the homogeneous solution and κ is a constant

close to 1. For the numerical scheme we take the initial function as

v0(x) = 0.5 + 0.1 sin(24πx),

and the homogeneous solution is

vh(t) =
1√

1 + a2(t)
w2

,

with w = 0.57 which is compatible with our initial function. In addition, we choose

a(t) = t5 where t > 1.

In Figures (4.7), (4.8) and (4.9), the green curve represents the quantity defined in

(4.6). One can observe that the numerical solution for the well-balanced Godunov

scheme reaches to the homogeneous solution since the curve tends to zero whenever

t→∞. In other words, as

v(t, x)/vh(t)→ κ with κ ≈ 1,

it follows that the numerical solution v(t, x) converges to the homogenous solution

vh(t). As a conclusion, our scheme is well-balanced in the sense that it preserves

homogeneous solutions.

On the other hand, in Figures (4.10), (4.11) and (4.12), we compare the homogeneous

solution vh(t) (represented by the green line) and the quantity∫ 1

0

|v(t, x)− vh(t)|dx

(represented by the red line) where v(t, x) is the numerical solution given by the well-

balanced Godunov scheme for the particular cases k = −1, 0, 1. In these figures a(t),

w and the initial function v0(x) are chosen to be the same as the choice for the Figures
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Figure 4.1: The numerical solutions given by the Godunov scheme with a shock for
the particular cases k = 0 and k = −1.
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Figure 4.2: The numerical solutions given by the Godunov scheme with a rarefaction
for the particular cases k = 0 and k = −1.
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Figure 4.3: The numerical solutions given by the Godunov scheme with the initial
function 0.5 + 0.1 sin(24πx) for the particular case k = 0 and k = −1.
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Figure 4.4: The numerical solutions given by the Godunov scheme with a shock for
the particular case k = 1 with the transformation ξ(r) = arcsin(r).
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Figure 4.5: The numerical solutions given by the Godunov scheme with a rarefaction
for the particular case k = 1 with the transformation ξ(r) = arcsin(r).
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(4.7), (4.8) and (4.9). From these graphs one can notice that the numerical solutions

converge toward to the homogenous solution by which it can be concluded that the

scheme is found to be efficient and well-preserving.

Moreover, in Figures (4.16), (4.17) and (4.18), the green curve represents the quantity∫ 1

0

∣∣∣κ− v∗(t)

vh(t)

∣∣∣dx, (4.7)

where v∗(t) is defined as follows

v∗(t) =

∫ 1

0

|v(t, x)|dx. (4.8)

The quantity (4.8) is the average of the numerical solution v(t, x) given by the well-

balanced Godunov scheme on space and this quantity reaches to zero as time goes to

infinity (Figure (4.13), (4.14)and (4.15)). In Figures (4.16), (4.17) and (4.18) again

vh(t) is the homogeneous solution and κ is a constant close to 1. One can observe

that the average of numerical solution for the well-balanced Godunov scheme on

space reaches to the homogeneous solution since the curve tends to zero whenever

t→∞. In other words, as

v∗(t)/vh(t)→ κ and κ ≈ 1,

it follows that the average of the numerical solution on space v∗(t), converges to the

homogenous solution vh(t). To sum up, our scheme is well-balanced in the sense that

it preserves homogeneous solutions.

In Figures (4.19), (4.20) and (4.21), we compare the homogeneous solution vh(t)

(represented by the green line) and the quantity∫ 1

0

|v∗(t)− vh(t)|dx,

(represented by the red line) where v∗(t) is the average of numerical solution given by

the well-balanced Godunov scheme on space. In these figures a(t), w and the initial

function v0(x) are chosen to be the same as the choice for the Figures (4.7), (4.8)

and (4.9). In these graphs it is observed that the average of the numerical solutions

on space converge toward to the homogenous solution which means the scheme is

efficient and well-preserving.
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Figure 4.6: The numerical solutions given by the Godunov scheme with the initial
function 0.5 + 0.1 sin(24πx) for the particular case k = 1 with the transformation
ξ(r) = arcsin(r).
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Figure 4.7: The graph of
∫ 1

0
|κ− v(t,x)

vh(t)
|dx, (κ ≈ 1) for the particular case k = −1.

Figure 4.8: The graph of
∫ 1

0
|κ− v(t,x)

vh(t)
|dx, (κ ≈ 1) for the particular case k = 0.

Figure 4.9: The graph of
∫ 1

0
|κ− v(t,x)

vh(t)
|dx, (κ ≈ 1) for the particular case k = 1.
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Figure 4.10: The comparison of the homogenous solution and
∫ 1

0
|v(t, x) − vh(t)|dx

for the particular case k = −1.

Figure 4.11: The comparison of the homogenous solution and
∫ 1

0
|v(t, x) − vh(t)|dx

for the particular case k = 0.

Figure 4.12: The comparison of the homogenous solution and
∫ 1

0
|v(t, x) − vh(t)|dx

for the particular case k = 1.
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Figure 4.13: The quantity
∫ 1

0
|v(t, x)|dx for the particular case k = −1.

Figure 4.14: The quantity
∫ 1

0
|v(t, x)|dx for the particular case k = 0.

Figure 4.15: The quantity
∫ 1

0
|v(t, x)|dx for the particular case k = 1.
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Figure 4.16: The graph of
∫ 1

0
|κ− v∗(x)

vh(t)
|dx, (κ ≈ 1) for the particular case k = −1.

Figure 4.17: The graph of
∫ 1

0
|κ− v∗(x)

vh(t)
|dx, (κ ≈ 1) for the particular case k = 0.

Figure 4.18: The graph of
∫ 1

0
|κ− v∗(x)

vh(t)
|dx, (κ ≈ 1) for the particular case k = 1.
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Figure 4.19: The comparison of the homogenous solution and
∫ 1

0
|v∗(x) − vh(t)|dx

for the particular case k = −1.

Figure 4.20: The comparison of the homogeneous solution and
∫ 1

0
|v∗(x)− vh(t)|dx

for the particular case k = 0.

Figure 4.21: The comparison of the homogeneous solution and
∫ 1

0
|v∗(x)− vh(t)|dx

for the particular case k = 1.
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CHAPTER 5

CONCLUSION

Concluding remarks and perspectives

In this thesis, we have derived a new nonlinear hyperbolic model which describes the

propagation and interactions of shock waves on a Friedmann–Lemaître–Robertson–

Walker background spacetime. We started from the relativistic Euler equations on

a curved background and we imposed a vanishing pressure in the expression of the

energy–momentum tensor for perfect fluids. This led us to a geometric relativistic

Burgers equation (see (3.3)) on the background spacetime under consideration. On a

FLRW spacetime, the equation (3.3) yields the model (3.24) of interest in the present

work. The model involves a scale factor a = a(t) which depends on the so-called

’cosmic time’ and a constant coefficient k, which can be normalized to take the val-

ues ±1 or 0. We observe that the proposed relativistic Burgers equation on FLRW

background shares several important features with the relativistic Euler equations.

The unknown v of the model is in the interval (−c, c) limited by the light speed pa-

rameter, same as the velocity component in the Euler system. In the Euler system,

one recovers the classical (non relativistic) model by sending the light speed to infin-

ity. Analogously, the classical Burgers equation is obtained with the particular case

of our relativistic model (a(t) = 1 and k = 0) whenever c tends to infinity. With

the particular case a(t) = 1 and vanishing k, the standard Burgers equation is again

recovered without sending c to infinity. We have then established various mathemat-

ical properties concerning the hyperbolicity, genuine nonlinearity, shock waves, and

rarefaction waves, and we studied the class of spatially homogeneous solutions. In

the relativistic Burgers equation on a FLRW background, the main dependence is in
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time rather than space.

We have investigated shock wave solutions to our model for the three possible values

of the coefficient k.

• In the case k = 1, the source term of the model contains a singularity and we

have found it advantageous to introduce a transformation which removes this

drawback. Our numerical results demonstrate the convergence of the scheme

to shock wave solutions to the model, and we observed the asymptotic property

v → 0 as t→ +∞ (Figures (4.4) and (4.5) ).

• In addition, we compared numerical solutions for the cases k = −1 and k = 0,

and we found that the solution curve corresponding to k = −1 converges faster

(to 0) than the solution curve corresponding to k = 0 (Figures (4.1) and (4.2)).

This can be explained from (3.24) by observing that the characteristic speed(
1− kr2

)1/2 is increased by decreasing k.

Moreover, we compared the numerical solutions of the well-balanced scheme and

the spatially homogeneous solution. It is observed by the curve corresponding to the

quantity defined in (4.6) that the well-balanced scheme converges to the homogeneous

solution (Figure (4.7), (4.8), (4.9), (4.10), (4.11), and (4.12)). Furthermore, in Figures

(4.16), (4.17), (4.18), (4.19), (4.20) and (4.21) the average of the numerical solutions

on space for all particular cases is compared with homogeneous solution. In these

numerical tests the curve which represents the quantity (4.7) proves that our well-

balanced Godunov scheme converges to the homogeneous solution.

Our analysis relies on a proposed numerical discretization scheme which applies to

discontinuous solutions and is based on the finite volume technique.

• Our scheme is consistent with the conservative form of (the principal part of)

our model and therefore correctly compute weak solutions containing shock

waves.

• Importantly, the proposed scheme is well-balanced, in the sense that it preserves

(at the discrete level of approximation) all spatially homogeneous solutions.
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• Our numerical experiments illustrate the convergence of the proposed scheme

on a FLRW background.

As a perspective, we emphasize that the proposed methodology leading to a geomet-

ric relativistic balance law may be used to derive other relativistic versions of Burgers

equations on various classes of spacetimes. The advantages of such simplified non-

linear hyperbolic models is that they allow one to develop and test numerical methods

for shock capturing and to reach definite conclusions concerning their convergence,

efficiency, etc. Future work may include more singular backgrounds. Depending

upon the particular background geometry, different techniques may be required in or-

der to guarantee that certain classes of solutions of particular interest be preserved by

the scheme, as we achieved it for time-dependent solutions.
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