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ABSTRACT 

WAVE DRAG OPTIMIZATION OF HIGH SPEED AIRCRAFT 

 

 

Çıtak, Can 

M.S.,Department of Aerospace Engineering 

Supervisor: Prof. Dr. Serkan Özgen 

January 2015, 97 pages 

 

Supersonic flight has been the subject of the last half century. Both military and civil 

projects have been running on to design aircraft that will fly faster than the speed of sound. 

Developing technology and increasing experience leads to faster, more fuel – efficient, 

longer ranged aircraft designs. These vehicles have the advantage of shortening travelling 

times in the civilian role and performing missions with greater success in the military role. 

Aerodynamic design is the main argument of high speed aircraft improvement. Having 

less supersonic drag force, which is greater than double of the subsonic case for 

conventional aircraft, is the ultimate goal of the aircraft designers for supersonic design. 

Optimizing aerodynamic characteristics of supersonic air vehicles by reducing wave drag 

is the main purpose of this thesis. A computational tool using computational fluid 

dynamics, analytical and numerical methods is developed in order to meet this goal. 

Firstly, wave drag coefficient solver algorithm is generated on a MATLAB interface. 

Then, the solver is validated with different geometries by using computational fluid 

dynamics simulations at various speeds. ANSYS Fluent is used for flow simulations. 

Next, gradient-based constrained optimization algorithm is employed to minimize the 

wave drag coefficient of a supersonic aircraft design. In addition, test cases are selected 

to observe the success of the wave drag coefficient optimization program for different 

situations. Finally, fighter aircraft geometry is optimized with respect to engine size 

constraints.  
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Keywords: wave drag coefficient, optimization, aerodynamics, supersonic flight, 

compressible flow, supersonic area rule. 
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ÖZ 

YÜKSEK HIZDA UÇAN HAVA ARACININ DALGA SÜRÜKLEME 

KUVVETİNİN ENİYİLEŞTİRİLMESİ 

 

 

Çıtak, Can 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Serkan Özgen 

Ocak 2015, 97 sayfa 

 

Sesüstü hızlarda uçuş son yarım yüzyılın araştırma konularından olup, sesüstü hızlarda 

uçabilen uçakların tasarımı için hem askeri hem de sivil projeler yürütülmüştür. Tasarım 

konusunda gelişen teknoloji ve artan yetenekler sayesinde daha hızlı yakıt verimliliği 

yüksek ve daha uzun menzile sahip uçaklar tasarlanabilir duruma gelmiştir. Bu araçlar 

sayesinde seyahat süreleri azalmakta ve askeri görevler daha güçlü hava araçları ile daha 

yüksek başarımla yerine getirilmektedir. Şüphesiz ki aerodinamik tasarım bu gelişmeleri 

sağlayan en önemli faktörlerden biridir. Daha düşük sesüstü sürükleme kuvveti 

katsayısına sahip (standart bir hava aracının sesüstü sürükleme kuvveti katsayısı, sesaltı 

hızdakine göre iki kat daha fazladır) uçaklar, tasarımcıların nihai hedefi olmuştur. Hava 

aracının aerodinamik karakteristiklerinin dalga sürüklenmesinin azaltılması ile 

eniyilemesi ana hedefleridir.  Bu çalışmanın amacı hesaplamalı akışkanlar dinamiği, 

analitik yöntemler ve sayısal yöntemleri kullanarak yüksek hızlarda uçması için 

tasarlanan uçakların dalga sürükleme katsayısının eniyileştirilmesini yapabilen bir 

hesaplama aracı geliştirmektir. İlk olarak, dalga sürükleme katsayısı çözücüsü MATLAB 

arayüzü kullanılarak oluşturulmuştur. Daha sonra, kullanılan akış çözücüsünün farklı 

geometriler ve hızlar için hesaplamalı akışkanlar dinamiği (HAD) yöntemi kullanılarak 

doğrulama yapılmıştır. Burada akış çözücüsü olarak ANSYS Fluent kullanılmıştır. 

Ardından, düğüm tabanlı kısıtlı eniyileme yöntemi kullanılarak ses üstü hızda uçabilen 

hava aracının dalga sürükleme kuvveti en aza indirilmeye çalışılmıştır. Buna ek olarak, 



viii 

 

farklı durumlar için dalga sürükleme katsayısı optimizasyon programının başarımı 

gözlemlenmiştir. Son olarak, bir savaş uçağı geometrisi, motor boyutlandırma 

kısıtlamalarına göre eniyileştirilmiştir. 

 

Anahtar Kelimeler: Dalga sürükleme kuvveti katsayısı, eniyileme, aerodinamik, sesüstü 

uçuş, sıkıştırılabilir akış, sesüstü alan kuralı. 

  



ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Hatice İnci 

  



x 

 

ACKNOWLEDGEMENTS 

 

 

 

I would like to express my deepest appreciation to my advisor Prof. Dr. Serkan Özgen for 

his guidance, encouragement, and support. Moreover, his contribution to push abilities 

and widening my scientific perspective were the wings flying to perfection. I must also 

thank to Prof. Gerhard Wilhelm Weber for his effort to provide precious information. 

I would like to thank Meral Ceren Bilgen for supporting me throughout this study. I would 

like to thank my friends Emre, Hakan, Özgür, Mustafa, and Onur for their help and 

encouragement. 

Finally, I would like to express my gratitude to my family for their support and 

encouragement throughout my life.  



xi 

 

TABLE OF CONTENTS 

 

 

 

ABSTRACT ...................................................................................................................... v 

ÖZ ................................................................................................................................... vii 

ACKNOWLEDGEMENTS .............................................................................................. x 

TABLE OF CONTENTS ................................................................................................. xi 

LIST OF TABLES ......................................................................................................... xiv 

LIST OF FIGURES ........................................................................................................ xv 

LIST OF ABBREVIATIONS ...................................................................................... xviii 

CHAPTERS 

1.INTRODUCTION ......................................................................................................... 1 

1.1 Supersonic Flight ................................................................................................. 1 

1.2 Wave Drag Force ................................................................................................. 3 

1.3 The Review of Methods for Wave Drag Calculation .......................................... 7 

1.4 Optimization Methods Review ............................................................................ 9 

1.5 Aim of the Study ................................................................................................ 10 

2.THEORY ..................................................................................................................... 13 

2.1 Wave Drag Calculation Methods ....................................................................... 13 

2.1.1 Computational Fluid Dynamics (CFD) ...................................................... 13 

2.1.2 Far–Field Theory ........................................................................................ 14 

2.1.3 Fourier Transformation .............................................................................. 16 

2.2 Optimization Method ......................................................................................... 18 

2.2.1 Theory of Lagrange Multipliers ................................................................. 19 



xii 

 

3.NUMERICAL METHODS ......................................................................................... 23 

3.1 General Algorithm of the Program .................................................................... 23 

3.2 Wave Drag Calculation Methodology ............................................................... 25 

3.3 Numerical Applications ..................................................................................... 27 

3.3.1 Discretization of the Geometry ................................................................... 27 

3.3.2 Sine Transformation.................................................................................... 28 

3.3.3 Area Calculation ......................................................................................... 30 

3.3.4 Optimization Procedure .............................................................................. 31 

3.3.5 Point Update................................................................................................ 38 

4.RESULTS AND DISCUSSION .................................................................................. 43 

4.1 Validation of the Solver with CFD Analysis ..................................................... 43 

4.1.1 Sears–Haack Slender Body ......................................................................... 43 

4.1.2 F–16 Case.................................................................................................... 49 

4.2 Validation of the Solver ..................................................................................... 55 

4.2.1 Sears-Haack Slender Body ......................................................................... 56 

4.2.2 Von-Karman Ogive ..................................................................................... 57 

4.2.3 Cahn and Olstad Geometries ...................................................................... 58 

4.2.4 Representative Fighter Aircraft Geometry.................................................. 60 

4.2.5 F-16 Geometry ............................................................................................ 61 

4.3 Test Case Descriptions and Optimization Results ............................................. 62 

4.3.1 Configuration 1 ........................................................................................... 63 

4.3.2 Configuration 2 ........................................................................................... 65 

4.3.3 Configuration 3 ........................................................................................... 68 

4.3.4 Configuration 4 ........................................................................................... 71 

4.3.5 Configuration 5 ........................................................................................... 73 

4.4 Discussion about the Optimization Results ....................................................... 77 

4.5 Fighter Aircraft Geometry with Different Engines ........................................... 79 



xiii 

 

4.5.1 Fighter Aircraft Configuration with GE F110 ........................................... 80 

4.5.2 Fighter Aircraft Configuration with 2x GE F414 ...................................... 82 

5.CONCLUSION & FUTURE WORK .......................................................................... 87 

5.1 Conclusion ......................................................................................................... 87 

5.2 Future Work ....................................................................................................... 88 

REFERENCES ................................................................................................................ 90 

APPENDICES 

A.FIGURES .................................................................................................................... 95 

 

  



xiv 

 

LIST OF TABLES 

 

 

 

TABLES 

Table 1–Geometric Parameters of S–H Slender Body .................................................... 44 

Table 2–Wave Drag Coefficient and Total Drag Force Variation ................................... 49 

Table 3–Comparison of the Results ................................................................................. 49 

Table 4–Comparison of the Results ................................................................................. 51 

Table 5 - Wave Drag Coefficient Results of Sears-Haack Slender Body........................ 57 

Table 6-Wave Drag Coefficient Results of Von-Karman Ogive ..................................... 58 

Table 7-Wave Drag Coefficient Results of Cahn-Olstad Geometries ............................. 59 

Table 8-Wave Drag Results of Representative Fighter Aircraft Geometry ..................... 60 

Table 9-Wave Drag Coefficient Results of F-16 for Mach=2 ......................................... 61 

Table 10-Specification of Configuration 1-Wing ............................................................ 63 

Table 11-Specification of Configuration 1-Fuselage ....................................................... 63 

Table 12-Specification of Configuration 2-Tail .............................................................. 65 

Table 13-Specification of Configuration 2-Fuselage ....................................................... 66 

Table 14-Specification of Configuration 3-Wing ............................................................ 68 

Table 15-Specification of Configuration 3-Tail .............................................................. 68 

Table 16-Specification of Configuration 3-Fuselage ....................................................... 68 

Table 17-Specification of Configuration 4-Wing ............................................................ 71 

Table 18-Specification of Configuration 4-Tail .............................................................. 71 

Table 19-Specification of Configuration 4-Fuselage ....................................................... 71 

Table 20-Specification of Configuration 5-Wing ............................................................ 73 

Table 21-Specification of Configuration 5-Tail .............................................................. 74 

Table 22-Specification of Configuration 5-Fuselage ....................................................... 74 

Table 23–Wave Drag Coefficient Results of Configurations .......................................... 76 

Table 24-Wing Specifications of Fighter Aircraft ........................................................... 79 

Table 25-Vertical Tail Specifications of Fighter Aircraft ................................................ 79 

Table 26-Horizontal Tail Specifications of Fighter Aircraft ........................................... 80 

 

  



xv 

 

LIST OF FIGURES 

 

 

 

FIGURES 

Figure 1–Concorde 3 view (Top, front, and side views) [2] ............................................. 2 

Figure 2–Boeing 747-400 3 view [3] ................................................................................ 3 

Figure 3–Drag classification [4]........................................................................................ 4 

Figure 4–Drag variation with Mach number [5] ............................................................... 5 

Figure 5-Re-design of F-102 [35] ..................................................................................... 6 

Figure 6 – Control Volume Representation .................................................................... 14 

Figure 7-Flowchart of the Program ................................................................................. 24 

Figure 8 – Configuration 4 .............................................................................................. 28 

Figure 9–Arbitrary shaped cross–section ........................................................................ 31 

Figure 10–Point Update Presentation.............................................................................. 40 

Figure 11–Sears–Haack Slender Body [8] ...................................................................... 44 

Figure 12–S–H Slender Body Static Pressure Distribution at Mach=2 [Pa] .................. 45 

Figure 13-S–H Slender Body Mach Contours at Mach=2 .............................................. 45 

Figure 14-S–H Slender Body Density Contours at Mach =2 [𝑘𝑔/𝑚3] .......................... 46 

Figure 15–S-H Slender Body Static Pressure Contours at Mach=1 [Pa] ........................ 46 

Figure 16–S–H Slender Body Mach contours at Mach=1 .............................................. 47 

Figure 17–S–H Slender Body Density Contours at Mach=1 [𝑘𝑔/𝑚3] .......................... 47 

Figure 18–Wave Drag Coefficient Variation with Mach Number.................................. 48 

Figure 19–Zero–Lift Drag Coefficient Increment Variation .......................................... 48 

Figure 20–Mesh Volume Representation ....................................................................... 50 

Figure 21–Mesh Presentation .......................................................................................... 51 

Figure 22–Contours of Temperature [K] ........................................................................ 52 

Figure 23–Contours of Static Pressure [Pa] .................................................................... 52 

Figure 24–Contours of Mach Number ............................................................................ 53 

Figure 25–Contours of Static Temperature on the Symmetry Plane [K] ........................ 53 

Figure 26–Contours of Static Pressure on the Symmetry Plane [Pa] ............................. 54 

Figure 27–Contours of Mach number on the Symmetry Plane....................................... 54 

Figure 28–Contours of Density on the Symmetry Plane [𝑘𝑔/𝑚3] ................................ 55 

Figure 29-Area Distribution of Sears-Haack Slender Body [21] .................................... 56 

Figure 30-Area Distribution of Von-Karman Ogive [21] ............................................... 58 

Figure 31-Area Distribution of Cahn-Olstad Geometries [22] ....................................... 59 

file:///C:/Users/user/Desktop/15.docx%23_Toc412467021


xvi 

 

Figure 32-Area Distribution of Representative Fighter Aircraft [22] .............................. 60 

Figure 33-Intercepted Area Distribution of F-16 for Mach 2 [8] .................................... 61 

Figure 34-Sensitivity Analysis for Number of Cross Sections ........................................ 62 

Figure 35–Initial Form of Configuration 1 ...................................................................... 64 

Figure 36-Optimal Form of Configuration 1 ................................................................... 64 

Figure 37-Comparison of Initial and Optimal Fuselage Area Distribution (Configuration 

1) ...................................................................................................................................... 65 

Figure 38–Initial Form of Configuration 2 ...................................................................... 66 

Figure 39–Optimal Form of Configuration 2................................................................... 67 

Figure 40-Comparison of Initial and Optimal Fuselage Area Distribution (Configuration 

2) ...................................................................................................................................... 67 

Figure 41–Initial Form of Configuration 3 ...................................................................... 69 

Figure 42–Optimal Form of Configuration 3................................................................... 70 

Figure 43-Comparison of Initial and Optimal Fuselage Area Distribution (Configuration 

3) ...................................................................................................................................... 70 

Figure 44–Initial Form of Configuration 4 ...................................................................... 72 

Figure 45–Optimal Form of Configuration 4................................................................... 72 

Figure 46-Comparison of Initial and Optimal Fuselage Area Distribution (Configuration 

4) ...................................................................................................................................... 73 

Figure 47–Initial Form of Configuration 5 ...................................................................... 74 

Figure 48–Optimal Form of Configuration 5................................................................... 75 

Figure 49-Comparison of Initial and Optimal Fuselage Area Distribution ..................... 75 

Figure 50–The Residual History of the Configurations ................................................... 76 

Figure 51–Hepperle’s conceptual aircraft [23] ................................................................ 78 

Figure 52–Area Distribution of Hepperle’s conceptual aircraft [23] ............................... 78 

Figure 53-Initial (bottom) and Final (top) Configuration of Fighter Aircraft with GE F110 

Engine–Isometric ............................................................................................................. 80 

Figure 54-Initial (left) and Final (right) Configuration of Fighter Aircraft with GE F110 

Engine–Top ...................................................................................................................... 81 

Figure 55-Initial (bottom) and Final (top) Configuration of Fighter Aircraft with GE F110 

Engine–Side ..................................................................................................................... 81 

Figure 56-Comparison of Initial and Optimal Fuselage Area Distribution (Fighter Aircraft 

configuration with GE F110) ........................................................................................... 82 

Figure 57-Initial (top) and Final (bottom) Configuration of Fighter Aircraft with 2x GE 

F414 engines–Isometric ................................................................................................... 83 

Figure 58-Initial (left) and Final (right) Configuration of Fighter Aircraft with 2x GE F414 

Engines–Top .................................................................................................................... 83 

Figure 59-Initial (bottom) and Final (top) Configuration of Fighter Aircraft with GE F414 

Engine–Side ..................................................................................................................... 84 



xvii 

 

Figure 60-Comparison of Initial and Optimal Fuselage Area Distribution (Fighter Aircraft 

configuration with GE F414 x 2) .................................................................................... 84 

Figure 61–Configuration 1 (OpenVSP view) .................................................................. 95 

Figure 62–Configuration 2 (OpenVSP view) .................................................................. 95 

Figure 63–Configuration 3 (OpenVSP view) .................................................................. 96 

Figure 64–Configuration 4 (OpenVSP view) .................................................................. 96 

Figure 65–Configuration 5 (OpenVSP view) .................................................................. 97 

  



xviii 

 

LIST OF ABBREVIATIONS 

 

 

 

HSRP: High Speed Research Program 

SBJ: Supersonic Business Jet 

EFD: Experimental Fluid Dynamics 

CPU: Central Processing Unit 

GUI: Graphical User Interface 

VSP: Vehicle Sketch Program 

BFGS: Broyden–Fletcher–Goldfarb–Shanno 

S-H: Sears–Haack 

ICAS: International Council of Air Shows 



1 

 

CHAPTER 1 

INTRODUCTION 

 

INTRODUCTION 

 

 

 

1.1 Supersonic Flight 

Designing an aircraft with the ability of flying faster than the speed of sound was the 

purpose of most aircraft designers in the past decades. Unlike the subsonic design, the 

supersonic design has obstacles to deal with in order to reach this aim. The major part 

of this problem is about the huge drag force occurring when compared to subsonic 

speed. Thus, aircraft designers aware of these drawbacks were in the need of making 

modifications and improvements to their designs. 

Many aircraft, both military and commercial have been designed after the first 

supersonic flight of “Bell X-1”.  Most of the supersonic aircraft are military aircraft 

except for two which were able to go beyond the drawing board; Concorde and 

Tupolev Tu-144. The reasons behind the design and utilization of these aircraft were 

commercial benefits, which mainly included the attainability of lower fuel 

consumption as the first issue. Thus, aircraft mentioned above are no longer in service 

due to the fact that they have high fuel consumption because of the supersonic drag 

requiring more engine power to overcome. Although only two of such airplanes flew, 

important projects were pursued in the recent years. High – Speed Research (HSR) 

Program undertaken by NASA was the most important of these. The aim of the 

program was to design a supersonic aircraft with the capacity of 300 passengers, which 

could fly twice the speed of sound for the high cruise range mission. The program was 

cancelled due to funding reasons. Despite the fact that the aircraft would fly across the 

Pacific Ocean in half the time the aircraft of equivalent eligibility could achieve, the 

ticket price was predicted to be comparable to other airliners [1]. Moreover, supersonic 
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civil aircraft projects still proceed. Aerion SBJ, Tupolev Tu–444, Spike S-512 are some 

of the supersonic business jet projects which offer long flights in shorter time.    

Unlike commercial aviation, the main object of military aviation is performance. In 

other words, the aircraft has to complete the mission in the shortest time possible, 

which brings out the aerodynamic design trade-off challenge. In order to increase 

aircraft speed, more power is needed from the engine, which means more amount of 

fuel. However, any additional fuel weight increases the total weight of the aircraft 

which also reduces the maximum speed and acceleration of the aircraft. Thus, 

supersonic aircraft design is a challenge, which involves many difficulties and 

necessitates trade-off studies for designers.  

Aerodynamic design principles of these aircraft are different from the subsonic aircraft 

due to the fact that the drag of an aircraft at supersonic speeds increases sharply. For 

example, two aircraft can be compared in order to observe the differences between 

supersonic and the subsonic aircraft design; namely, Concorde and Boeing 747-400.  

Boeing 747-400 has a moderately swept wing and a thick airfoil; while Concorde has 

a high swept wings and a thin airfoil. In addition, Concorde has a sharp nose and a 

slender fuselage; on the other hand, Boeing 747-400 has a blunt nose and a wide blunt 

body. Figure 1 and Figure 2 shows 3 views of Concorde and Boeing 747. 

 

Figure 1–Concorde 3 view (Top, front, and side views) [2] 
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Figure 2–Boeing 747-400 3 view [3] 

The reason why the shapes of these aircraft presented above are different is the 

minimization of total drag force and optimization of other aerodynamic parameters. 

Since flow behavior at supersonic and subsonic flight are different, shapes having 

minimum drag force in different flow regimes are not the same.  

1.2 Wave Drag Force 

Drag can be described as the force resisting aircraft motion. It depends on the velocity 

of the aircraft, wing area, air density and drag coefficient which are related to the 

complete aircraft configuration. The main purpose in an aircraft design is generally to 

reduce drag to a minimum. On the other hand, drag force is beneficial for some cases; 

such as the utilization of complex flap mechanisms or drag parachutes to shorten 

landing distances. 

Drag is mainly classified as drag due to lift and zero–lift drag. Figure 3 presents the 

types of drag. The work presented in this thesis mainly concentrates on the wave drag, 
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which is a zero-lift drag constituent. Induced wave drag is outside the scope of this 

thesis.  

 

Figure 3–Drag classification [4] 

Temperature, pressure, aircraft velocity and the geometry of the configuration affects 

the magnitude of the wave drag. When supersonic freestream flow reaches an obstacle, 

shock waves occur, which increase the density and pressure of the flow. In other 

words, the freestream Mach number, which must be greater than one for shock wave 

to occur, decreases below Mach 1 downstream of the normal shock formation. The 

shock wave results in increase in entropy and reduction in total pressure. If the shock 

wave is inevitable, the efficiency of the shock formation can be increased in order to 

reduce the increase in entropy. A swept wing and/or fuselage shaping can be used for 

this purpose. This study aims at minimizing the wave drag coefficient without 

changing the aerodynamic characteristics of the lifting surfaces, hence without altering 

the total lift. The tail surfaces are also not altered in any way. Thus, the area 

distribution and the volume of the fuselage are modified to reach the minimum value 

of the objective function. 
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Figure 4–Drag variation with Mach number [5] 

As seen in Figure 4, the supersonic drag of an aircraft increases 3 - 4 times compared 

to the subsonic value in a poorly designed aircraft, so the drag optimization of 

supersonic aircraft is the main criterion of the aerodynamic design process. 

Nevertheless, the theoretical optimal shape of aircraft are not being implemented to 

the base design due to manufacturing and sub-component constraints which give rise 

to additional drag. Small changes in supersonic drag could be critical. To illustrate 

this, on the Concorde, it can be stated that one count drag increase (∆𝐶𝐷 = 0.0001) 

requires two passengers, out of the 90-100 passenger capacity, be taken off the North 

Atlantic run [6].   Additional drag components at supersonic speed are wave drag due 

to lift and wave drag due to volume. Wave drag due to lift vanishes as Mach number 

approaches one or aspect ratio approaches zero and will not be elaborated in this study 

[32]. On the other hand, wave drag due to volume is investigated in the current study. 

The behavior of the volume wave drag at various Mach numbers and different 

geometries are observed. 

Kulfan et al. [7] investigated different methods for the calculation of the supersonic 

drag on a variety of aircraft design. Kulfan separated high speed civil transport aircraft 

design into sub–topics according to the optimal design considerations.  Firstly, the 

fuselage must be optimized with respect to the area rule. As the area magnitudes and 

the locations of control and lifting surfaces are kept constant, the fuselage area 
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distribution must be reshaped to obtain the optimum wave drag coefficient. Then, the 

optimal geometry of the leading edge emerges as blunt at inboard, sharp at outboard. 

Nacelles are also shaped to have efficient shock formation. According to wave drag 

theory, the cross sectional area of the engine must be subtracted from the area 

distribution while calculating the wave drag coefficient. Furthermore, wing planform 

is shaped to satisfy high lift requirements, and supersonic cruise specifications. 

Moreover, flow separation over the aircraft at high speed could be huge complexity to 

aircraft stability. Thus, the transition of aircraft geometry components must be smooth. 

The importance of the wave drag is observed drastically on the Convair F-102.  First 

prototype, YF-102A was lost due to the fact that wave drag force was higher than 

expected. (Thus, requirements related to overcome drag force is below limits [35]. 

Area distribution of the aircraft, thereby, shape of the geometry was later modified 

with respect to the area rule [36]). Figure 5 illustrates the re-design of the F-102. With 

this modification the F102-A was able to exceed the speed of sound comfortably. 

 

Figure 5-Re-design of F-102 [35] 
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1.3 The Review of Methods for Wave Drag Calculation 

There are three methods to calculate the supersonic drag in the literature. Namely; 

experimental fluid dynamics (EFD), computational fluid dynamics (CFD) and 

linearized fluid dynamics. EFD is the most accurate method for analyzing the behavior 

of the flow over the aircraft. However, there are several disadvantages when 

comparing with other methods written above. First of all, EFD is not preferable during 

the conceptual design process due to the cost of a supersonic experimental setup. 

Massive workload is required since more than one experiments ought to be conducted 

for various speeds and different geometries. CFD is another successful method to 

investigate the flow behavior numerically, which takes far more time than the 

linearized method. The motivation of this work is to develop an accurate, but yet 

simple, user-friendly wave drag coefficient optimization tool for the conceptual 

aircraft design process. The tool also has to be comprehensive enough not to observe 

the physical basis. 

Although aircraft design is more and more dominated by CFD, linearized methods are 

still in use for fast predictions. Some advantages and disadvantages of linearized 

methods can be mentioned. Main reason behind the advantages of linearized theory is 

the speed of operation. Linearized theory can be easily used for optimization process 

due to its direct formulation. Linearized theory is also used for trade-off studies since 

it is fast when compared to other methods. On the other hand, it cannot estimate the 

viscous effects on drag. In cases, such as incompressible subsonic flow, where the 

majority of the drag contribution is coming from viscous drag, linearized theory could 

be inappropriate.  For the same reason, without considering the surface roughness, it 

under-estimates the pressure distribution over the aircraft.  

CFD has superiority over linearized methods when analyzing the flow fields of 

complex geometries. Firstly, linearized theory is limited to a certain Mach number 

interval. However, CFD is used for any Mach number by choosing the appropriate 

solution method and the numerical scheme. Effect of the aircraft geometry details, 

such as wing body intersection, surface roughness, and shock formation over the body 
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on flow dynamics could be observed by using CFD. Nevertheless, although the 

accuracy in this case is higher than in linearized theory, computational time and effort 

are greater. If CFD was used for optimization, computational time because of CPU 

usage therefore would become larger. However, the accuracy of linearized theory 

proves satisfactory for conceptual aircraft design. Furthermore, when speed of CFD 

and linearized theory are compared, linearized theory is much faster than CFD. Since 

the shape of the aircraft changes many times during the design process, using fast 

methods like linearized theory is beneficial for designers instead of using CFD.  

The most well-known linearized theory code in literature is Harris Wave Drag 

Program which has been used for more than 50 years in High Speed Civil Transport 

program and various academic researches. Rallabhandi et al. [8] investigated wave 

drag calculation with their own program and compared their results with those 

obtained from the Harris wave drag code. The program in the study was more complex 

and therefore slower than Harris wave drag program written in FORTRAN [24]. In 

addition, Delaunay triangulation program was created as well to analyze the aircraft 

geometry with different methods [9]. 

Near–field and far–field wave drag theories can be used for the calculation of 

supersonic wave drag force for conceptual design of high speed aircraft. The far–field 

wave drag theory computes the zero lift wave drag of an aircraft by means of the 

supersonic area rule, assuming the lift generated by the aircraft is zero. The method 

states that the wave drag of an aircraft is the same as the wave drag of an equivalent 

body of revolution having the same cross–sectional area distribution. In other words, 

the contribution of the cross –section shape is zero. Flow separation over the aircraft 

geometry is not taken into account for the wave drag calculation due to cross–section 

shape. Second, the near–field wave drag theory computes zero–lift thickness pressure 

distributions for the entire aircraft configuration of aircraft. Then, the pressure 

distribution is integrated over the cross–sectional area of the aircraft in order to 

calculate the wave drag coefficient. Accurate presentation of an aircraft depends on 

the cross–sectional area distribution in both approaches. Two difficulties that must be 

avoided during the computation; round-off error and missing the geometry changes of 
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aircraft.  First and second derivatives of cross–sectional area distribution of an aircraft 

are used for both theories to obtain the wave drag coefficient. Thus, using a high 

number of cross-sections yields the round–off error, which gives inaccurate results.  

On the other hand, using less number of cross–sections causes deficient representation 

of the aircraft geometry [25]. Small changes in cross–sectional area magnitude might 

result in massive increase in drag. Being aware of these difficulties, sensitivity analysis 

must be done to obtain the accurate aircraft representation.  In other words, the 

derivatives must be continuous in order to calculate the drag force correctly. Thus, 

transforming cross-sectional area distribution to higher order polynomial functions is 

beneficial to obtain wave drag coefficient accurately. 

1.4 Optimization Methods Review 

The optimization of the aircraft geometry is one of the main parts of aircraft design. 

While optimizing one design goal, another one could be worsened. For example; in 

order to minimize wave drag coefficient, the area distribution of the aircraft could be 

changed unrealistically. However, the effect of the change in area distribution must be 

considered for other design goals, such as the center of gravity location which is 

important for the stability of the aircraft [30, 31]. Determining constraints is also 

critical for the optimization process. The objective function may transform the initial 

aircraft geometry to a shape which is not possible to produce. To illustrate; the 

magnitude of the cross-sectional area at engine location must be kept above a certain 

magnitude due to the fact that parts used to connect between the wing and the engine 

need volume to be placed [27]. If engine is placed at the rear fuselage, the program 

gives optimal cross-sectional area magnitude at this location as zero which is 

infeasible considering the arrangement of the aircraft.  

Two different mathematical optimization methods that can be used for minimization 

are, genetic algorithm and gradient based optimization methods. Evolutionary 

algorithms use more CPU time due to the fact that the way they optimize the objective 

function is by trial and error. They make a high number of function evaluations. 

Despite using more CPU time, mathematical formulation is simpler than the gradient 
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based optimization methods. On the contrary, search direction is found by calculating 

the gradients of the objective function in the gradient based optimization. For 

advanced methods, Hessian matrix needs to be calculated to obtain the gradients, 

which requires a large amount of CPU usage thereby take more time.  

Hutchison used a gradient based algorithm for multidisciplinary design optimization 

[10]. He calculates the gradients by approximating the function using first order Taylor 

series expansion. It is a fast but accurate methodology for improvements relying on 

the computational power of today’s world. Likewise, gradient based optimization 

method is used in the present work.  

Convenience in use is an important parameter for aircraft design computational tools. 

Controlling the settings of the tool easily, visual interface for observing the geometry 

and simplicity for end users are the features which make the program user friendly. 

Graphical user interface (GUI) development satisfies the features explained above. 

End users could avoid the complicated input files to control program settings by using 

GUI. Furthermore, the interaction between input and output and the ease of the direct 

manipulation of the program are established so that the time spent for aircraft design 

decreases.  

1.5 Aim of the Study 

The motivation of this study is to create a computational tool for wave drag coefficient 

optimization of high speed aircraft. Harris wave drag code is investigated to 

understand the methodology behind wave drag calculations of arbitrary shapes. The 

developed tool uses only the cross sectional area distribution of an aircraft. Thus, the 

mesh of the three dimensional aircraft geometry is exported from an open source 

program OpenVSP [11] and then, the cross-sectional area distribution is calculated. 

This distribution is input to the program after Fourier sine transformation to smooth 

the distribution curve. Then, the mesh is updated at each optimization iteration by 

keeping the position of each cross-section on the longitudinal axis constant. Moreover, 

CFD analysis are completed in order to validate the wave drag coefficient results of 

the code. The main program interface used is created by MATLAB [12]. CFD analyse 
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are done by using ANSYS FLUENT [13]. Tecplot [14] is used for post–processing 

operations. 

Brief information about wave drag calculation methods used in the designed tool and 

in literature, Fourier transformation, and optimization method can be found in Chapter 

2. The solution procedure, numerical applications needed for initiating the tool, 

mathematical models created for the representation and optimization of the aircraft 

geometry are presented in Chapter 3. Next, validation of the wave drag coefficient 

solver with two different geometries, optimization test cases, and optimization of the 

fighter aircraft geometry results are reported in Chapter 4. Finally, conclusion, 

summary, and discussion  of the thesis are outlined in Chapter 5. 
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CHAPTER 2 

2. THEORY 

THEORY 

 

 

 

Wave drag coefficient optimization can be defined under two main headings: (i) 

calculating the wave drag coefficient using relevant theories and (ii) the optimization 

methods. Wave drag of an aircraft can be obtained by using of far–field & near–field 

wave drag theories or computational fluid dynamics. Aim of this chapter is to give 

brief information about linearized theories and optimization methods; i.e., 

evolutionary and gradient based algorithms used in order to minimize the wave drag 

coefficient. The information given in this chapter is available in aerodynamics and 

optimization text books in greater detail [15]. 

2.1 Wave Drag Calculation Methods 

2.1.1 Computational Fluid Dynamics (CFD) 

Solution of Navier Stokes equations is a powerful method to analyze flow dynamics. 

However, wave drag cannot be calculated by CFD alone since the method does not 

separate inviscid drag into its components. However, it is assumed that 90% of the 

inviscid drag is the wave drag of the configuration [5]. Equations used in CFD tools 

are given as: 

Continuity equation: 

 .( ) 0.v
t





 


  (2.1) 

x –momentum equation: 

 
( ) 1

.( ) .
Re

xyxx xzu p
uv

t x x y z

 


   
      

     
  (2.2) 
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y –momentum equation: 

 
( ) 1

.( ) .
Re

xy yy yzv p
vv

t y x y z

  


    
      

     
  (2.3) 

z –momentum equation: 

 
( ) 1

.( ) .
Re

xz xz zzw p
wv

t z x y z

  


    
      

     
  (2.4) 

Energy equation: 

     
( E)

. . .k k E

k

E p v k T h J v S
t


 

  
          

   (2.5) 

 

2.1.2 Far–Field Theory 

 

Figure 6 – Control Volume Representation 

Total momentum change in streamwise direction of a control volume is equal to the 

drag of the aircraft.  Inlet region (S1 in Figure 6) is the only undisturbed flow passing 

through the aircraft geometry, which becomes two dimensional because of the 
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pressure effects. Thus, the momentum change between the inlet and outlet regions 

(streamwise momentum change) is the sum of all the drag contributions. In addition, 

subsonic flow becomes parallel at the outlet if the control volume is large enough. On 

the other hand, mass flows in and out from the sides of the cylinder at supersonic 

speeds due to shock and expansion wave formations. Total change in momentum as a 

result of mass flow in and out is defined as wave drag. Moreover, since the shock 

formation varies with the angle of attack, wave drag can change with the angle of 

attack as well. Therefore, the total wave drag is the sum of wave drag due to volume 

and wave drag due to lift. The drag equation is given in Equation (2.6): 

    
3 21 3 1

2 2

3 3 21 .x x x Misc

S S S

r

S S

p pD dS U dS U dS D         

 

           (2.6) 

If the control volume boundaries are located far enough, flow becomes two 

dimensional, the streamwise perturbation velocity (∅𝑥) is zero. Thus the second 

integral in the general drag formula becomes zero: 

  
3 1

2

3
1 ,0

x x

S S

U dS  
 



    (2.7) 

and the gauge pressure is formulated as: 

  2 2 21
.

2
y z

p p U  
  

      (2.8) 

 

As the viscosity effects are neglected, total inviscid drag equation can be written as 

follows: 

  
2 2

2 2 2 2

2 3

1

2
.

x r y z

S S

D U dS U dS     
   

       (2.9) 

Wave drag can be calculated directly from the mass flow rate change at the side surface 

of the control volume. Perturbation velocities in the first integral give the velocity 
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change in side direction, which is the velocity difference at the incremental side 

surface of the control volume. As these are multiplied with the density and the square 

of free stream velocity, the total wave drag could be obtained. Hence, wave drag 

formula is obtained from in Equation (2.10): 

 

2

2

2
.

w x r

S

D U dS  
 

     (2.10) 

The perturbation velocities are directly related to the slope of the discretized aircraft 

geometry. Thus, Equation (2.10) can be written in terms of geometric parameters by 

using linear source distribution as [32]: 

 

1 1

0 0

1
"( ) "( ) log .

2
w

D S x S y x y dxdy


      (2.11) 

Far–field linear theory has positive and negative aspects. First, it is simply used for 

calculations. In addition, singularities can be overcome without sophisticated 

numerical methods; i.e., pressure calculations at leading edge. As shown in Equation 

(2.10), induced drag can be separated from wave drag by using far–field linear theory, 

which provides pure wave drag calculation. Thus, it is useful for area rule optimization 

with respect to wave drag coefficient. Since the volume of the aircraft is the only 

contributor to drag formula, aircraft geometry can be directly related to the wave drag 

coefficient. Hence, aircraft area distribution can be modified in order to minimize 

wave drag coefficient. On the other hand, the theory does not reflect physics of the 

flow completely. Therefore, aircraft design could be validated with other methods to 

ensure the behavior of the flow over aircraft surface.  

2.1.3 Fourier Transformation 

The Fourier transformation methodology is defined as fitting to a data set or any 

polynomial sinusoidal function(s). General formulation for the polynomial curve 

fitting is written as: 

 
2

0 1 2
... .

n

m
y a a x a x a x       (2.12) 
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The residual is calculated as: 

  
2

2

0 1 2

1

... ,
n

n

r i m

i

S y a a x a x a x


        (2.13) 

Where 𝑦𝑖 is the exact value of the data set corresponding to x. When the curve is fit 

accurately the residual “𝑆𝑟” is minimized. Thus, gradients of the residual is zero when 

the curve fitting presents the data set successfully. The gradients are given by: 

  2
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a 
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
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
   (2.17) 

The coefficients are obtained by equating and solving the gradient equations: 
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Same approach can be used for the Fourier transformation. The polynomial function 

can be changed into a sinusoidal function in order to fit the Fourier transformation to 

the data set.  Equation (2.19) shown below presents the first order Fourier model. 

Application of the transformation is explained in Chapter 3. 

 0 1 1
cos( ) sin( ).y A A t B t      (2.19) 

The residual of the model is given as: 

  
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1

cos( ) sin( ) ,
n

r i

i

S y A A t B t 


      (2.20) 

gradients of the residual “𝑆𝑟” are presented as: 
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The necessary condition for success of the curve fitting operation is that the gradient 

equations are equal to zero. Then, the unknown coefficients are obtained from the 

solutions of the set of equations.  

2.2 Optimization Method 

Several methods have been used for minimizing the wave drag coefficient. The choice 

of the method, whether it is gradient or non–gradient based algorithms is decided by 

considering the overall configuration of the optimization problem. Depending on the 

complexity of the aircraft geometry, and the theory being used for solver of the wave 

drag phenomenon optimization method is chosen. More information can be found 
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about the optimization methods used in this study for minimizing wave drag 

coefficient in the literature [16, 32]. 

2.2.1 Theory of Lagrange Multipliers 

The methodology of Lagrange multiplier is employed for the constrained 

optimization. This part presents the method used for minimization of wave drag 

coefficient. A general formulation can be presented as: 

 min 𝑓(𝑥)    subject to
( ) 0,

( ) 0,

i

i

c x

c x





 
𝑖 ∈ 𝜀
𝑖 ∈ 𝛪

 (2.24) 

where the both the objective function and the constraints are smooth, real–valued 

functions. 𝑖 ∈ 𝜀 are the equality constraints, 𝑖 ∈ 𝛪 are the inequality constraints [18]. 

There is more than one local solution for an objective function both for constrained 

and unconstrained cases. Smoothness of the objective functions and constraints is 

critical for global convergence. Furthermore, sharp gradients of these functions might 

mislead the search direction. To avoid that, the functions having sharp edges could be 

characterized with a collection of smooth functions. Simply, Lagrangian function for 

one (equality) constraint is shown as: 

 𝐿(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆1𝑐1(𝑥), (2.25) 

where 𝑓(𝑥) is the objective and 𝑐1(𝑥) is the constraint function. The optimality 

condition is given by: 

  ∇𝑥𝐿(𝑥∗, 𝜆1
∗ ) = 0,      for some 𝜆1

∗ ≥ 0 (2.26) 

Despite the fact that equation shown above is necessary for optimal solution, it is not 

sufficient. It is also required that:   

 𝜆1
∗ 𝑐1(𝑥∗) = 0.                                         (2.27) 

Generally, Lagrangian function for the constrained optimization problem is defined 

as: 
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𝐿(𝑥, 𝜆) = 𝑓(𝑥) − ∑ 𝜆𝑖𝑐𝑖(𝑥).

𝑖𝜖𝜀∪𝐼

  (2.28) 

The active set 𝐴(𝑥) at any feasible 𝑥 is the union of the set 𝜀 with the indices of the 

active inequality constraints [15]. Next, it can be said that the linear independence 

constraint qualification (LICQ) holds if the set of active constraint gradients is linearly 

independent. Finally, open form of the first–order necessary conditions is written as: 

 ∇𝑥𝐿(𝑥∗, 𝜆∗) = 0 ,                                                 (2.29) 

𝑐𝑖(𝑥∗) = 0,    for all  𝑖 ∈ 𝜀,                                   (2.30) 

𝑐𝑖(𝑥∗) ≥ 0    for all  𝑖 ∈ 𝐼,                                   (2.31) 

𝜆𝑖
∗ ≥ 0         for all  𝑖 ∈ 𝐼,                                 (2.32) 

    𝜆𝑖
∗𝑐𝑖(𝑥∗) = 0,    for all  𝑖 ∈ 𝜀 ∪ 𝐼.                          (2.33) 

The multi–constrained (equality) optimization method is employed for this study. 

Theory of Lagrange multiplier for related subjects are explained in detail. Considering 

the case of objective function 𝑓(𝑥, 𝑦, 𝑧) to be minimized with respect to constraints 

𝑐1(𝑥, 𝑦, 𝑧) and 𝑐2(𝑥, 𝑦, 𝑧), Lagrangian function is written as: 

 
1 2 1 1 2 2

( , , , , ) ( , , ) ( , , ) c ( , , ).L x y z f x y z c x y z x y z                   (2.34) 

where 𝜆1 and 𝜆1 are Lagrange multipliers, ‘*’ denotes the optimal condition. The 

optimality condition is reached when 

 
* * * * * * * * *

1 1 2 2
( , , ) ( , , ) ( , , ).f x y z c x y z c x y z        (2.35) 

Open form of the equations are presented as: 

        * * * * * * * * * * * *

1 2 1 1 2 20 , , , , , , , , , , ,
x xx xL x y z f x y z c x y z c x y z         (2.36) 

        * * * * * * * * * * * *

1 2 1 1 2 20 , , , , , , , , , , ,
y yy yL x y z f x y z c x y z c x y z         (2.37) 



21 

 

        * * * * * * * * * * * *

1 2 1 1 2 20 , , , , , , , , , , ,
z zz zL x y z f x y z c x y z c x y z         (2.38) 

    
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* * * * * *

1 2 1
0 , , , , , , ,L x y z c x y z      (2.39) 

    
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1 2 2
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22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

CHAPTER 3 

3. NUMERICAL METHODSS 

NUMERICAL METHODS 

 

 

 

This chapter presents the methods used methodologies in the thesis to optimize the 

wave drag coefficient of high speed aircraft. In this chapter, detailed explanation of 

the wave drag coefficient calculation, the optimization mid–steps including the 

constraint definition and the transformation of the objective function from the original 

formula, three dimensional geometry discretization and filtering methods, arbitrary 

shaped area calculation, aircraft geometry update as a result of the wave drag 

coefficient minimization can be found.  

3.1 General Algorithm of the Program 

The developed program is used for minimizing the wave drag coefficient of a high 

speed aircraft. The entire process is initialized by inputting the aircraft geometry to the 

program. Then, the geometry is discretized section by section. The area distribution of 

the aircraft geometry is filtered out to simplify the procedure and to eliminate the 

relatively higher CPU cost. In other words, the points representing the aircraft 

geometry are updated with respect to the optimization result indirectly. The 

smoothness of the distribution is one of the most important parameters for wave drag 

calculation. Thus, the curve representing the cross–sectional area distribution is 

transformed to a Fourier sine function. Optimization loop is entered after initializing 

the necessary parameters which are explained above. The final step of the program is 

to update the geometry of the aircraft. Since the optimal area distribution is achieved 

with respect to the wave drag coefficient, the initial area distribution can be updated 

by using final (optimal) area distribution. The methodology behind the updating 

process is that the ratio of the final to the initial area distribution decides how much 

the final aircraft geometry enlarges or narrows down. Then, the whole configuration 
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is updated based on this decision with the exceptions for control and lifting surfaces. 

Figure 7 presents the flowchart of the program. 

 

                                                                           

                                                                            Initial configuration                              

                                                 

                                                                      3D geometry discretization 

                                                                          

                                                                          Fourier transformation 

                Update geometry                         

                                                                    Objective function evaluation 

 

                                                                           Gradient calculation 

 

                                         No 

                                                                  Optimality condition satisfied?                                                                                                                                                                                                                                                                                     

                                                      

                                                                               Yes 

                                                                                                                                   

                                                                            Final configuration 

Figure 7-Flowchart of the Program 



25 

 

3.2 Wave Drag Calculation Methodology 

Conventional form of the wave drag is given by [32]: 

 

1 1

0 0

1
"( ) "( ) log .

2
w

D S x S y x y dxdy


      (3.1) 

Two problems arise in the calculation of the formula given above. Firstly, singularity 

occurs where the longitudinal locations of the integral become identical, i.e. 𝑥 = 𝑦. 

Secondly, numerical precision strongly depends on the differentiation method used 

and the degree of accuracy. Thus, sensitivity analysis is made for the calculation of 

wave drag coefficient.  

Two conditions must be satisfied for the method used to obtain wave drag coefficient: 

 The first derivative of the area distribution is continuous along longitudinal 

direction of aircraft. 

 The first derivatives of the area distribution at nose and rear regions are equal 

to zero: 

 '(0) '(1) 0,S S    (3.2) 

since the length is non-dimensionalized, ‘1’ in Equation (3.2) presents the length of an 

aircraft. When the conditions explained above are satisfied, the first derivative of the 

area distribution can be transformed into Fourier sine series as: 

 
1

(1 cos ),
2

x     (3.3) 

where  𝜃 can be written as a function of longitudinal distance:  

 1
cos (1 2 ),x 

    (3.4) 

where 𝜃 varies between 0 and 𝜋. Equations (3.3) and (3.4) are implicitly referred. Then 

the first derivative distribution is given by: 
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

  ,      0≤ 𝑥 ≤ 1,  (3.5) 

where the coefficients are written as: 
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The area distribution of the aircraft is obtained by integrating Equation (3.6): 
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Equation (3.5) is integrated and substituted into Equation (3.8) by using the derivative 

of Equation (3.3): 
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By using Equation (3.9), the second derivative of the area distribution is obtained and 

inserted into Equation (3.1) as: 
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                                            2
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ra
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    

Gradient based optimization method is used in order to obtain the area distribution 

which has minimum wave drag coefficient. Since the accuracy of the gradient 

calculation strictly depends on the smoothness of the objective function and 

constraints, analytical functions presenting aircraft geometry give more stable results 

than the non-analytical ones [21]. 

3.3 Numerical Applications 

Additional workload to the main optimization algorithm; namely, discretization, sine 

transformation, area calculation and point update are necessary to complete the 

minimization process of the wave drag coefficient. These secondary efforts are 

essential in order to transfer the three dimensional geometry from sketching program 

to the optimization process, fitting the cross–sectional area distribution as input to the 

program, calculating both for cross sectional and lateral areas, and updating the results 

of each optimization step to visualize the geometrical effects of the minimization. The 

subjects mentioned above are annotated in the following headings. 

3.3.1 Discretization of the Geometry  

The initial configuration of the aircraft is obtained from OpenVSP [11]. It is an open 

source vehicle sketch pad since 2012. Most aerodynamic characteristics affecting the 

aircraft design process are used in the program parametrically.  
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Figure 8 – Configuration 4 

Figure 8 presents the OpenVSP [11] view of one of the configurations studied in this 

thesis. 

3.3.2 Sine Transformation 

In this section, first derivative of the cross–sectional area distribution is transformed 

into a Fourier sine function. The reason of this process is that the first derivative of 

cross–sectional area distribution must be continuous according to the wave drag 

calculation methodology. Equation (3.11) presents the open form of the sine function. 

In addition, smoothness is one of the most important criteria for minimization 

procedure. Thus, representation of real cross–sectional area distribution must be 

accurate enough. Furthermore, value of the error function shown in Equation (3.12), 

does not reduce linearly. Therefore, to keep CPU at a certain level and to obtain an 

accurate representation, fourth order sine functions are chosen. 

 
0 1 1 2 2

3 3 4 4

cos( ) sin( ) cos(2 ) sin(2 )

cos(3 ) sin(3 ) cos(4 ) sin(4 ).

y a a x b x a x b x

a x b x a x b x

    

   
                               (3.10) 

Function ‘𝑆𝑟
′’ gives the difference between discrete data and the approximated 

function.  
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Thus, this fit of the curve accuracy has to be optimized. Thus, gradients of the residual 

is zero when the curve fitting presents the data set successfully. The gradients are given 

by: 
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  (3.12) 

Open form of the gradients are defined as: 

 
'

0 1 1 2 2

3 3 4 4

cos( ) sin( ) cos(2 ) sin(2 )
2 0,

cos(3 ) sin(3 ) cos(4 ) sin(4 )

r
i

o

a a x b x a x b xS
y

a x b x a x b xa

       
    

     

  (3.13) 

  
0 1 1 2'

2 3 3

1

4 4

cos( ) sin( ) cos(2 )

2 sin(2 ) cos(3 ) sin(3 ) cos(x) 0,

cos(4 ) sin(4 )

r
i

a a x b x a x
S

y b x a x b x
a

a x b x

     
   

             

  (3.14) 

  
0 1 1 2'

2 3 3

2

4 4

cos( ) sin( ) cos(2 )

2 sin(2 ) cos(3 ) sin(3 ) cos(2 x) 0,

cos(4 ) sin(4 )

r
i

a a x b x a x
S

y b x a x b x
a

a x b x

     
   

             

  (3.15) 

  
0 1 1 2'

2 3 3

3

4 4

cos( ) sin( ) cos(2 )

2 sin(2 ) cos(3 ) sin(3 ) cos(3x) 0,

cos(4 ) sin(4 )

r
i

a a x b x a x
S

y b x a x b x
a

a x b x

     
   

             

  (3.16) 

  
0 1 1 2'

2 3 3

4

4 4

cos( ) sin( ) cos(2 )

2 sin(2 ) cos(3 ) sin(3 ) cos(4 ) 0,

cos(4 ) sin(4 )

r
i

a a x b x a x
S

y b x a x b x x
a

a x b x

     
   

             

  (3.17) 

  
0 1 1 2'

2 3 3

1

4 4

cos( ) sin( ) cos(2 )

2 sin(2 ) cos(3 ) sin(3 ) sin(x) 0,

cos(4 ) sin(4 )

r
i

a a x b x a x
S

y b x a x b x
b

a x b x

     
   

             

  (3.18) 



30 

 

  
0 1 1 2'

2 3 3

2

4 4

cos( ) sin( ) cos(2 )

2 sin(2 ) cos(3 ) sin(3 ) sin(2 x) 0,

cos(4 ) sin(4 )

r
i

a a x b x a x
S

y b x a x b x
b

a x b x

     
   

             

  (3.19) 

  
0 1 1 2'

2 3 3

3

4 4

cos( ) sin( ) cos(2 )

2 sin(2 ) cos(3 ) sin(3 ) sin(3x) 0,

cos(4 ) sin(4 )

r
i

a a x b x a x
S

y b x a x b x
b

a x b x

     
   

             

  (3.20) 

  
0 1 1 2'

2 3 3

4

4 4

cos( ) sin( ) cos(2 )

2 sin(2 ) cos(3 ) sin(3 ) sin(4 x) 0.

cos(4 ) sin(4 )

r
i

a a x b x a x
S

y b x a x b x
b

a x b x

     
   

             

  (3.21) 

3.3.3 Area Calculation 

Green’s theorem is used for the calculation of cross–sectional area [20]. The 

incremental area dA is defined as: 

 ,dA dxdy   (3.22) 

 It states that area A of a closed region 𝐷 can be presented as: 

 .
D

A dA    (3.23) 

M and L are functions having continuous partial derivatives defined by the boundaries 

of D. 

 1,
M L

x y

 
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 
  (3.24) 

where 𝑀 and 𝐿 are functions having continuous partial derivatives defined by the 

boundaries of 𝐷. The area A is given by: 

 ( ).
C

A Ldx Mdy    (3.25) 
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The final form of the area formula can be written as: 

 
1

( ).
2 C

A ydx xdy     (3.26) 

Area computation for each cross–section is necessary as being inputs to the solver, 

since the shape of the cross–sections are arbitrary with variable number of points. 

Equation (3.28) is used to calculate this area. Figure 9 indicates an arbitrary shaped 

cross section. 
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Figure 9–Arbitrary shaped cross–section 

3.3.4 Optimization Procedure 

Since the area distribution is defined in two different sine functions, which are linearly 

independent, wave drag formula is transformed into Equation (3.29) (𝑎0 presents the 

nose area which is equal to zero): 
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The coefficients ‘𝑎𝑛’ and ‘𝑏𝑛’ above are the parameters in the Fourier transformation. 

The permanent constraint function which defines the total volume of the aircraft is 

defined as: 
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where y represents the Fourier transformation of the area distribution. The volume 

function is created by using the simple trapezoid rule. Second constraint function is 

generated for keeping the 𝑖th cross – sectional area constant. Equation (3.31) shows 

the constraint function of the area: 
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In open form, Equation (3.29) and (3.30) are written as: 
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Lagrangian functions are given by: 
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Partial derivatives of the objective function and the constraint functions are given in 

Equations (3.44), (3.45), and (3.46) as: 
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  (3.45) 

Equation (3.47) is solved iteratively to obtain optimum values by using partial 

derivatives presented above. In order to reach the optimality conditions, search 
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direction is utilized to update the iteration algorithm. The search direction is obtained 

from: 

1 2 3 4 1 2 3 4 1 2 1 1 1 2 3 4 1 2 3 4

2 2 1 2 3 4 1 2 3 4

(a , a , a , a , b , b , b , b , , ) (a , a , a , a , b , b , b , b )

(a , a , a , a , b , b , b , b ).

f C

C

  



 


  (3.46) 

The convergence criterion is satisfied as soon as ‖∇𝐿‖2 ≤ 𝜀 at the regarded point, for 

some given 𝜀 > 0. 

It can be emphasized that, the objective function is strictly convex, guaranteeing that 

the candidate solution is a real solution. Theoretically, the upper bound of the 

summation term in wave drag formula, Equation (3.10), is infinite to simulate aircraft 

geometry by using Fourier transformation without losing accuracy. On the other hand, 

it is impossible to represent an aircraft geometry with a very large number of Fourier 

coefficients due to round-off error, thereby, CPU usage becomes unnecessarily huge. 

Practically, representation with two to four coefficients which leads to ten linearly 

independent set of equations to be solved is accurate enough to represent a continuous 

(both area and the first derivative of the area distribution) aircraft geometry. For this 

reason, convexity of the objective function is examined for definite number of 

coefficients. Let D ⊆ 𝑅𝑛 be open and convex, and let 𝑓: 𝐶 → 𝑅 have continuous first 

partial derivatives on D. Then any critical point of 𝑓(𝑥) in D is a global minimizer of 

𝑓(𝑥) on D. Related theorem for the objective function used in this study with respect 

to correlation explained above is that if Hessian H 𝑓(𝑥) is positive definite on an 

interval D, then 𝑓(𝑥) is strictly convex on D [28]. The objective function is analyzed 

in order to analyze the strictly convexity for three different upper bounds. It explains 

the generic formation of the solution of the objective function is real minimizer. The 

objective function is given by: 
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The formation of the objective function for upper bound equal to one is written as: 
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Partial derivative and Hessian are obtained as: 
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The formation of the objective function for upper bound equal to two is written as: 

  
2

2 2 2

1 2

1

2 .
4 4

w r

r

D ra a a
 



     (3.51) 

Partial derivatives are obtained as: 
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Hessian 𝐻 𝐷𝑤 is written as: 
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The formation of the objective function for upper bound equal to three is written as: 
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Partial derivatives and Hessian are given by: 
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Hessian 𝐻 𝐷𝑤 is written as: 
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The domain of the objective function D must have continuous area and first derivative 

of area distribution due to linearized far-field theory. For three different cases (upper 

bound equal to 1, 2, and 3), Hessian H is positive definite on D. Then, it can be said 

that the objective function, 𝐷𝑤 is strictly convex.         

3.3.5 Point Update 

Updating the points after the optimization step is the final step of the program. Simple 

methodology is used for this work. Initial cross–sectional area magnitude at 𝑖th 

location 𝑆𝑖𝑛𝑖𝑡𝑖
 is calculated as explained in the previous section. Then, optimal cross–
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sectional area magnitude 𝑆𝑜𝑝𝑡𝑖
  is obtained after the optimization process. Ratio 𝑅𝑖 is 

defined as: 

 ,
i iopt init i

S S S     (3.62) 
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S
R

S
   (3.63) 

Initial x and y locations, 𝑗thorder of 𝑖thsection; 𝑃𝑋𝑖𝑗𝑖𝑛𝑖𝑡
 and 𝑃𝑌𝑖𝑗𝑖𝑛𝑖𝑡

 are updated as 

follows: 

 ,
opt initij i ij

Px R Px    (3.64) 

 .
opt initij i ij

Py R Py    (3.65) 

All cross–sections except for the stabilizing and the lifting surfaces are updated as 

explained above. The idea behind the use of ratio 𝑅𝑖 is that the slope of the points 

belonging to the same cross–section is kept constant. The slopes of 𝑃𝑖𝑗𝑖𝑛𝑖𝑡
 and 𝑃𝑖𝑗𝑜𝑝𝑡

 

can be written as: 
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
  (3.67) 

To illustrate, Figure 10 presents the methodology for the point update. Assuming that 

the final cross–sectional area is less than the initial area; then, the slope of the point 

can be kept constant, and updated with respect to ratio of optimal and initial cross–

sectional area. Thus, the shape of the geometry is protected which means that the initial 

conceptual design criteria is kept. 
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Figure 10–Point Update Presentation 

Furthermore, some additional steps must be investigated for non–symmetric cases. 

The center of the cross section must be found. Theoretically, 𝑥𝑐 and 𝑦𝑐 are the 

coordinates of the centroids of the  𝑗th cross-section: 
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The slopes of each point in the non–symmetric cross–section are: 
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since the slope is kept constant, two unknowns and two equations arise: 
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x x y y R x x y y          (3.72) 

The coordinates of the optimal form of the cross–sectional area distribution can be 

obtained by solving Equation (3.72) and (3.73). This approach allows the analysis of 

more realistic configurations. 
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CHAPTER 4 

4. RESULTS AND DISCUSSION 

RESULTS AND DISCUSSION 

 

 

 

In this chapter, results are examined in four sub-subjects. First, the validation of the 

solver is completed by analyzing two different shapes whose wave drag coefficients 

are known. Sears–Haack slender body and F-16 [29] area distributions are analyzed 

with computational fluid dynamics methods and compared with values acquired from 

the literature. Then, test cases are defined and input to the program since the solver is 

validated with satisfactory results. Finally, the optimal forms of the configurations are 

presented and compared. 

4.1 Validation of the Solver with CFD Analysis 

Solver used for the calculation of the wave drag force and coefficient is validated with 

CFD results. First, Sears–Haack slender body is analyzed with 8 different velocities 

ranging from Mach 0.85 to Mach 2. Secondly, the wave drag coefficient of the F-16 

at Mach 2 is obtained for comparison with Rallabhandi’s result [8]. The main reason 

of conducting CFD simulations is to compare results of the previous studies with those 

of the present study. Mesh independency for all simulations are obtained by trying 

different mesh resolutions. 

4.1.1 Sears–Haack Slender Body 

Despite the fact that the wave drag coefficient of the S-H slender body is independent 

of Mach number theoretically, results obtained from CFD analysis show that wave 

drag coefficient increases approaching to Mach 1. Figure 11 presents the shape of the 

S–H slender body which is known as the body having the smallest wave drag 

coefficient for a given length and volume. 
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Figure 11–Sears–Haack Slender Body [8] 

Geometric parameters of the body that are studied in the present thesis are given in 

Table 1. 

Table 1–Geometric Parameters of S–H Slender Body 

volume 100𝑚3 

length 30 m 

ref. area 5.65 𝑚2 

 

Results presented below belongs to Mach 1 and 2. Main difference between the cases 

are the characteristics of compressibility effects on the S–H slender body. It is 

expected that wave drag coefficient increases as Mach number increases, at subsonic 

speed up to Mach number equal to 1. At supersonic speed, a reduction is expected.  

Figures 12, 13, and 14 show the static pressure, Mach number and density contour 

plots of the S–H slender body at Mach=2. 
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Figure 12–S–H Slender Body Static Pressure Distribution at Mach=2 [Pa] 

 

Figure 13-S–H Slender Body Mach Contours at Mach=2 
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Figure 14-S–H Slender Body Density Contours at Mach =2 [𝑘𝑔/𝑚3] 

The contours of static pressure, Mach number and density are given in Figures 15, 16, 

and 17. 

 

Figure 15–S-H Slender Body Static Pressure Contours at Mach=1 [Pa] 
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Figure 16–S–H Slender Body Mach contours at Mach=1 

 

Figure 17–S–H Slender Body Density Contours at Mach=1 [𝑘𝑔/𝑚3] 

The wave drag coefficient variation between Mach 1 and Mach 2 is shown in Figure 

18. It is seen that it has peak at Mach 1 as expected. In addition, total drag coefficient 

increases to values 2 to 3 times greater than the values in the subsonic region. 



48 

 

 

Figure 18–Wave Drag Coefficient Variation with Mach Number 

Figure 19 shows the zero–lift drag coefficient increment variation. Drag coefficient at 

Mach=0.85 is the starting region of shock formation taken as base to observe the 

change with Mach number. It is observed that drag coefficient of the S–H slender body 

increases up to Mach=1 and decreases 50% approaching to Mach=2. 

 

Figure 19–Zero–Lift Drag Coefficient Increment Variation  
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Table 2 shows the supersonic drag force and wave drag coefficient variation with 

Mach number. It is observed that drag coefficient increases as Mach increases, and a 

peak is observed at Mach 1. Then, for supersonic speeds, it decreases with increasing 

Mach number. However, drag force increases continuously as this is proportional to 

the square of the velocity. 

Table 2–Wave Drag Coefficient and Total Drag Force Variation  

Mach number Drag Force [N] 𝑪𝑫𝒘
 

2.00 132000 0.083 

1.80 120854 0.093 

1.60 101000 0.099 

1.40 81380 0.104 

1.20 63584 0.108 

1.00 46340 0.110 

0.90 16279 0.051 

0.85 13700 0.048 

 

The comparison of the present results and Rallabhandi’s results is given in Table 3. 

Due to the disadvantages of linearized supersonic theory explained above the drag 

force is calculated less than the actual. Change in flow behavior over the aircraft 

surface due to shock formation results in an underestimation of the pressure over 

surface. 

Table 3–Comparison of the Results 

Mach Rallabhandi’s result  

𝑪𝑫𝒘
 [8] 

Present 

𝑪𝑫𝒘
 

1.00 0.089 0.110 
2.00 0.081 0.083 

 

4.1.2 F–16 Case 

Figure 20 shows the mesh volume representation. Mesh volume is prepared according 

to aerodynamic CFD analysis considerations as upstream and far stream are created as 
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10 times of aircraft length and 5 times for the upper and lower boundaries of mesh 

volume. k-ε turbulence model is used for flow simulation. 

 

Figure 20–Mesh Volume Representation 

Half of the whole configuration is solved for the purpose of efficient use of CPU, since 

aircraft is symmetric with respect to the longitudinal axis. 6.7 million elements are 

created for the half aircraft. Figure 21 presents the mesh elements on aircraft surface 

and symmetry plane. Inviscid drag force is necessary in order to obtain the wave drag 

force from CFD analysis.  Thus, inviscid force observed from CFD simulation is 

inserted into the wave drag coefficient calculation. (Wave drag is assumed 90% of the 

inviscid drag.) 
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Figure 21–Mesh Presentation 

CFD simulation results of the present study is compared with Rallabhandi et al’s result 

[8]. CFD analysis of F 16 is completed at Mach=2 for comparison of the results which 

are shown in Table 4. It can be seen that 5.7% difference between the wave drag 

coefficients predictions exist. 

Table 4–Comparison of the Results 

Mach Rallabhandi’s result  
𝑪𝑫𝒘

 [8] 

Present study 

𝑪𝑫𝒘
 

2.00 0.0357 0.0330 

 

Figures 22,23, and 24 present the temperature, static pressure and Mach number 

contours of  F 16 at Mach=2. It is observed that more than one shock and expansion 

wave occurs on the aircraft geometry which directly relates the wave drag force. To 

observe better, same types of contours are taken on the symmetry plane. Figures 25, 

26, 27 and 28 show the temperature, static pressure and Mach contours on the 

symmetry plane. 
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Figure 22–Contours of Temperature [K] 

 

Figure 23–Contours of Static Pressure [Pa] 
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Figure 24–Contours of Mach Number 

 

Figure 25–Contours of Static Temperature on the Symmetry Plane [K] 
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Figure 26–Contours of Static Pressure on the Symmetry Plane [Pa] 

 

Figure 27–Contours of Mach number on the Symmetry Plane 
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Figure 28–Contours of Density on the Symmetry Plane [𝑘𝑔/𝑚3] 

The validation of the wave drag coefficient results of the F-16 is more challenging. 

Mesh dependency of the simulation, accurate computational fluid dynamics 

simulation modelling, and the second derivative of cross sectional area distribution are 

the parameters that could alter the results. Unlike conceptual designs, F-16 has 

discontinuities in area distribution; thus, the stability of number of cross sections 

becomes vital when compared to Sears–Haack slender body. (S–H slender body has 

continuous first derivative of cross sectional area distribution; thereby, sufficient 

number of sections could yield accurate results)  

4.2 Validation of the Solver  

The stability of the method was investigated by Çıtak and Özgen in [21]. Three 

analytical geometries, representative fighter aircraft geometry and the F-16 geometry 

were examined in order to bring out stability and accuracy of the program. Figures 29, 

30 and 31 present the analytical geometries, Figure 32 presents the representative 

fighter aircraft geometry and Figure 33 presents the intercepted area distribution of F–

16 for Mach 2.  
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4.2.1 Sears-Haack Slender Body 

 

Figure 29-Area Distribution of Sears-Haack Slender Body [21] 

Figure 29 presents the Sears-Haack slender body with a volume of 100, and length of 

30. Area distribution of the S-H body is given by: 
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Wave drag force and coefficient of the Sears-Haack slender body can be calculated 

analytically. Equations (3.75) and (3.76) define these as: 
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where V is the volume, l is the length, 𝜌 is the freestream density, and U is the 

freestream velocity. Wave drag coefficient results of S-H slender body are shown in 

Table 5. As can be seen,the present method agress with the analytical value with an 

error of less than 10%. (99 points are used to create the geometry.) 
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Table 5 - Wave Drag Coefficient Results of Sears-Haack Slender Body 

Present Study Analytic Result Difference (%) 

0.0813 0.0888 -8.4 

 

4.2.2 Von-Karman Ogive 

Figure 30 shows the area distribution of Von-Karman Ogive with an area of 30, and 

length of 10. Area distribution of the body is defined as: 
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where S(l) is the maximum cross-sectional area (corresponds to x=l). Analytical 

formulas of the wave drag coefficient and force are written in as: 
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Figure 30-Area Distribution of Von-Karman Ogive [21] 

Wave drag coefficients results of Von-Karman Ogive are presented in Table 6 (99 

points are used to create the geometry.) 

Table 6-Wave Drag Coefficient Results of Von-Karman Ogive 

Present Study Analytic Result Difference (%) 

0.3528 0.3820 -7.6 

 

4.2.3 Cahn and Olstad Geometries 

Figure 31 displays the Cahn and Olstad geometries with four different configurations. 

Results of these configurations are obtained both analytically and numerically. 
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Figure 31-Area Distribution of Cahn-Olstad Geometries [22] 

The area distribution of Cahn-Olstad Geometries are created by using 1000 cross-

sections. Thus, sensitivity of the number of cross-sections is not considered since the 

analytical function is used. Table 7 presents the wave drag coefficient results of Cahn-

Olstad geometries. As can be seen, the agreement of the results are very good, less 

than 3% for all cases considered. 

Table 7-Wave Drag Coefficient Results of Cahn-Olstad Geometries 

Geometry 
Present 

Study (𝑹/𝒍)𝟐 

Analytic 

Result (𝑹/𝒍)𝟐 

Error 

(%) 

Numeric 

Result (𝑹/𝒍)𝟐 

Error 

(%) 

Config. 1 42.66 42.52 +0.32 42.65 +0.02 

Config. 2 329.67 329.23 +0.13 325.81 +1.19 

Config. 3 304.34 303.25 +0.36 296.84 +2.53 

Config. 4 643.43 642.43 +0.16 645.94 -0.39 
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4.2.4 Representative Fighter Aircraft Geometry 

Figure 32 shows the area distribution of representative aircraft geometry. This 

geometry is typical of 1970s design. Area distribution of the geometry is given by 

 6 5 4 3 2
( ) 400 1176 1257 588 108 .S x x x x x x       (3.79) 

 

Figure 32-Area Distribution of Representative Fighter Aircraft [22] 

Table 8 presents the wave drag results of representative fighter aircraft geometry. As 

can be seen, the agreement of current results with numerical and analytical results in 

the literature are very good, with an error of less than 1%. 

Table 8-Wave Drag Results of Representative Fighter Aircraft Geometry 

Present 

Study 

Analytic 

Result 

Difference 

(%) 

Numeric 

Result 

Difference 

(%) 

126.9871 127.9606 -0.76 127.6451 -0.51 
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4.2.5 F-16 Geometry 

Figure 33 shows the intercepted area distribution of F-16 for Mach=2. 

 

Figure 33-Intercepted Area Distribution of F-16 for Mach 2 [8] 

Wave drag coefficient results of F-16 for Mach 2 are presented in Table 9. Here, the 

error is higher due to the reasons explained below. 

Table 9-Wave Drag Coefficient Results of F-16 for Mach=2 

Present Study Numeric Result Difference (%) 

0.0373 0.0357 +4.5 

 

Increase in number of points for analytical geometries improves the accuracy of the 

method continuously. On the other hand, this approach for non–analytical geometries 

does not yield the same result due to the fact that non–analytical geometries could not 

be represented by functions having continuous first derivative. The effect of peaks and 

bases between measurement points could not be taken into account during wave drag 

coefficient calculation which yields incorrect values. Figure 34 shows the sensitivity 

analysis for the number of cross sections of non-analytical geometry (F-16). It can be 
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seen that change of wave drag coefficient with respect to number of cross section is 

unpredictable. Therefore, limit for change of the wave drag coefficient must be placed 

properly in order to decide the optimal number of cross sections if non-analytical 

approach is employed. 

 

Figure 34-Sensitivity Analysis for Number of Cross Sections 

Furthermore, linearized theory requires that the first derivatives of cross sectional area 

distributions at nose and end are equal to zero as mentioned before. Thus, it is 

recommended for aircraft being designed for supersonic speeds to be in accordance 

with this requirement to minimize the wave drag coefficient.  

4.3 Test Case Descriptions and Optimization Results 

Five different test cases are introduced in order to prove that the solver has the ability 

to converge to the optimal shape. The methodology of the case matrix is to obtain the 

success of the numerical method for each aerodynamic configuration. Airfoil shape, 

chord length, span, sweep and dihedral angle of the aircraft are shown for each 

configuration [19]. Lifting and control surfaces are not modified during optimization 

in order not to alter aerodynamic characteristics of the aircraft. In addition, theoretical 

validation is the most important argument. Despite the fact that optimal shape of the 

conceptual aircraft design is not the best choice for manufacturability, theoretical 
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aspect of these cases brings out the optimal shape with respect to the objective 

function. (Feet and degrees are used for lengths and angles units for all test cases.) 

4.3.1 Configuration 1 

Table 10 and 11 show the specifications of configuration 1, which is wing-body 

combination. Figure 35 presents the initial form of configuration 1. 

Table 10-Specification of Configuration 1-Wing 

 Wing 

airfoil NACA 63A304 

chord 2-24 

span 18.55 

sweep 35.7 

dihedral 0 

 

Table 11-Specification of Configuration 1-Fuselage 

 Fuselage 

length 72.75 

volume 713.7 

maximum diameter 4.00 
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Figure 35–Initial Form of Configuration 1 

Figure 36 presents the optimal form of the configuration 1. 

 

Figure 36-Optimal Form of Configuration 1 
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Figure 37 presents the optimal and the initial fuselage area distribution. 

 

Figure 37-Comparison of Initial and Optimal Fuselage Area Distribution 

(Configuration 1) 

As can be seen, in order to smoothen the area distribution, thereby reducing the wave 

drag, the locations the fuselage thinned down where the wing cross-section increases 

the cross-sectional area distribution. As a result of this, the wave drag of the 

configuration decreases from 0.1053 to 0.0787. However, such a geometry may not 

the practical as it will prevent engine and system installment very difficult if not 

impossible.  

4.3.2 Configuration 2 

Table 12, and 13 show the specifications of configuration 2. Figure 38 presents the 

initial form of configuration 2. 

Table 12-Specification of Configuration 2-Tail 

 Tail 

airfoil 4% BICONVEX 

sweep angle 50 

dihedral angle 12.3 

span 31.7 

 



66 

 

Table 13-Specification of Configuration 2-Fuselage 

 Fuselage 

length 72.75 

volume 713.7 

maximum diameter 4.00 

 

 

Figure 38–Initial Form of Configuration 2 

Figure 39 shows the optimal form of configuration 2. 
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Figure 39–Optimal Form of Configuration 2 

Figure 40 shows the optimal and the initial fuselage area distribution. 

 

Figure 40-Comparison of Initial and Optimal Fuselage Area Distribution 

(Configuration 2) 

Again, the fuselage has been narrowed down to accommodate the extra area brought 

in by tail surfaces. Wave drag of the configuration is decreased from 0.0937 to 0.0634. 
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4.3.3 Configuration 3 

Table 14, 15, and 16 show the specifications of configuration 3. This is a combined 

wing-body-tail configuration and is presented to demonstrate the capabilities of the 

computational tool for optimizing more than one location on the geometry.  Figure 41 

presents the initial form of configuration 3. 

Table 14-Specification of Configuration 3-Wing 

 Wing 

airfoil NACA 63A304 

chord 2-24 

span 18.55 

sweep 35.7 

dihedral 0 

 

Table 15-Specification of Configuration 3-Tail 

 Tail 

area 103.2 

sweep 45 

dihedral 12.3 

airfoil 4% BICONVEX 

span 31.7 

 

Table 16-Specification of Configuration 3-Fuselage 

 Fuselage 

length 72.75 

volume 713.7 

maximum diameter 4.00 
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Figure 41–Initial Form of Configuration 3 

Figure 42 presents the optimal form of the configuration 3. As expected, the fuselage 

is narrowed down in order to negate the extra areas brought in by the wing and the tail 

in order to obtain a smooth area distribution. Wave drag of the configuration is reduced 

from 0.1349 to 0.0831. 
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Figure 42–Optimal Form of Configuration 3 

Figure 43 presents the optimal and the initial fuselage area distribution. 

 

Figure 43-Comparison of Initial and Optimal Fuselage Area Distribution 

(Configuration 3) 
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4.3.4 Configuration 4 

Table 17, 18, and 19 show the specifications of configuration 4. This is a swept wing 

configuration where the contribution of the wing tip sections is beyond the wing 

attachment portion on the fuselage. Figure 44 presents the initial form of configuration 

4. 

Table 17-Specification of Configuration 4-Wing 

 Wing 

airfoil   NACA 63A304 

chord 2-24 

span 18.55 

sweep 45 

dihedral 0 
 

Table 18-Specification of Configuration 4-Tail 

 Tail 

area 103.2 

sweep 45 

dihedral 0 

airfoil 4% BICONVEX 

span 31.7 

 

Table 19-Specification of Configuration 4-Fuselage 

 Fuselage 

length 72.75 

volume 713.7 

maximum diameter 4.00 
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Figure 44–Initial Form of Configuration 4 

Figure 45 shows the optimal form of the configuration 4. 

 

Figure 45–Optimal Form of Configuration 4 
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Figure 46 shows the optimal and the initial fuselage area distribution. 

 

Figure 46-Comparison of Initial and Optimal Fuselage Area Distribution 

(Configuration 4) 

As can be seen, the computational tool can optimize geometries where the area 

distribution do not necessarily come from the parts of the wing or tail where they are 

directly attached to the fuselage. Wave drag of the configuration is reduced from 

0.1142 to 0.0819. 

4.3.5 Configuration 5 

Table 20, 21, and 22 show the specifications of configuration 5. Figure 47 presents the 

initial form of configuration 5. This is a roughly similar configuration to the previous 

cases, except that wing has negative dihedral. 

Table 20-Specification of Configuration 5-Wing 

 Wing 

airfoil NACA 63A304 

chord 2-24 

span 18.55 

sweep 45 

dihedral 0 
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Table 21-Specification of Configuration 5-Tail 

 Tail 

area 103.2 

sweep 45 

dihedral 12.3 

airfoil 4% BICONVEX 

span 31.7 

 

Table 22-Specification of Configuration 5-Fuselage 

 Fuselage 

length 72.75 

volume 713.7 

maximum diameter 4.00 

 

 

Figure 47–Initial Form of Configuration 5 
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Figure 48 presents the optimal form of the configuration 5. 

 

Figure 48–Optimal Form of Configuration 5 

Figure 49 presents the optimal and the initial fuselage area distribution. 

 

Figure 49-Comparison of Initial and Optimal Fuselage Area Distribution  
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Table 23 displays the wave drag coefficient results of the original and optimum 

configurations. 

Table 23–Wave Drag Coefficient Results of Configurations 

 
Initial 

Cdw 

Optimal 

Cdw 
Reduction (%) 

Equivalent S-H 

𝐂𝐝𝐰 

Configuration 1 0.1053 0.0787 25.3 0.0787 

Configuration 2 0.0937 0.0634 32.3 0.0633 

Configuration 3 0.1349 0.0831 38.4 0.0830 

Configuration 4 0.1142 0.0819 28.3 0.0810 

Configuration 5 0.1388 0.0831 40.1 0.0830 

 

Table 23 shows the initial and optimal wave drag coefficients. In addition, comparison 

of optimal results with equivalent S-H values can be obtained table shown above. 

Figure 50 presents the residual history of the configurations. 

 

Figure 50–The Residual History of the Configurations 
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4.4 Discussion about the Optimization Results 

The optimal forms of the configurations are presented in this section. Non–lifting 

components (fuselage) are modified during the optimization loop in order not to 

change the aerodynamic characteristics of the configurations. In other words, fuselage 

is reshaped to minimize the wave drag coefficient.  

Mach cuts plays an important role on calculating wave drag force and coefficient for 

an arbitrary shaped aircraft. Equation (3.81) presents the Mach angle which is used for 

calculating intercepted area distribution without using the Mach cone approach.  

                                                 
1 1

sin .
Mach

   
  

 
                                            (3.80) 

The aerodynamic characteristics of an aircraft must remain unchanged during 

optimization. Therefore, lifting and control surfaces and related cross–sections are 

excluded from the optimization algorithm. Furthermore, the total volume of the 

aircraft is calculated by summing all parts including the lifting and control surfaces. 

In other words, non-lifting surfaces are modified with respect to the objective function. 

Second, the intercepted cross–sectional area distribution for various Mach number is 

obtained by neglecting the small changes due to Mach cone method. It can be stated 

that non-lifting surfaces of high speed aircraft must be as smooth as possible due to 

avoiding the flow separation and shock formation. For this reason, non–lifting surfaces 

such as fuselages do not have sharp geometry changes which brings out the intercepted 

area distribution for various Mach number could be obtained with Mach angle 

methodology only. 

Despite the fact that Mach number seems influential on the optimization process, the 

optimal cross sectional area distribution is independent from Mach number. Mach 

number only affects the intercepted area distribution only. Thus, Sears–Haack slender 

body has the minimum wave drag coefficient for a given volume and length. However, 

the intercepted area distribution and wave drag coefficient of it change with respect to 

Mach number. To have the minimum value of wave drag coefficient for an aircraft, 



78 

 

the change of first derivative of cross sectional area distribution of the entire aircraft 

has to be minimum for a given volume and length. The methodology explained above 

is commonly used for high subsonic and supersonic aircraft design development. 

Hepperle [23] utilizes the same method to optimize the supersonic transport aircraft. 

The configuration of his aircraft design is presented in Figure 51. 

 

Figure 51–Hepperle’s conceptual aircraft [23] 

The cross sectional area distribution of Hepperle’s conceptual aircraft is presented in 

Figure 52. 

 

Figure 52–Area Distribution of Hepperle’s conceptual aircraft [23]  

It is clearly seen that the aircraft does not have the optimum area distribution. Many 

reasons could explain this. First of all, the aerodynamic efficiency is not the only 

consideration for aircraft designers. In other words, structural capabilities and stability 

enhancement are other important applications to be take care of as well as 
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aerodynamics [23]. Also systems integration like the engine, radar etc. have a strong 

influence on the geometry, which may often contradict with aerodynamic 

requirements. 

4.5 Fighter Aircraft Geometry with Different Engines 

Test cases presented above are analyzed to validate the optimization algorithm. A 

fighter aircraft geometry is used in order to test the developed computational tool 

against a more realistic aspect. As can be seen, the optimized geometry reduces the 

wave drag by 32.9% in average. Also worth mentioning is that the final geometries 

yield a wave drag coefficient very close to the (Sears-Haack body), underlining the 

success of the optimization process. The cross-sectional area of air intakes are 

subtracted from the aircraft geometry in this analysis. Specifications of non–

symmetric fuselage, wings and tails for different sections fighter aircraft geometry are 

presented in Table 24, 25, and 26. Reference area of the wing is 384.07 𝑓𝑡2. 

Table 24-Wing Specifications of Fighter Aircraft 

 Section 1 Section 2 
span 5.13 12.59 

tip chord 12.73 4.26 

root chord 20.43 12.73 

sweep 52 28 

dihedral  0 0 

 

Table 25-Vertical Tail Specifications of Fighter Aircraft 

 Section 1 Section 2 
span 1.77 7.36 

tip chord 8.05 2.30 

root chord 8.05 8.05 

sweep 0 50 

dihedral  0 60 
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Table 26-Horizontal Tail Specifications of Fighter Aircraft 

 Section 1 Section 2 
span 2.84 7.53 

tip chord 6.99 2.37 

root chord 3.76 6.99 

sweep 29.52 29.52 

dihedral  0 0 

 

Fighter aircraft geometry is investigated with the two different engine configurations; 

namely, GE F414 [33] and GE F110 [34]. Thus, the constraints related to cross–

sectional area dimensions are decided with respect to the dimensions of the engines. 

4.5.1 Fighter Aircraft Configuration with GE F110 

Figure 53-55 present the comparison between the optimal and initial form of the three 

dimensional fighter aircraft configuration with GE F110 engine. 

 

Figure 53-Initial (bottom) and Final (top) Configuration of Fighter Aircraft with GE 

F110 Engine–Isometric 
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Figure 54-Initial (left) and Final (right) Configuration of Fighter Aircraft with GE 

F110 Engine–Top 

 

Figure 55-Initial (bottom) and Final (top) Configuration of Fighter Aircraft with GE 

F110 Engine–Side 

The diameter and length of GE F110 are 3.96 𝑓𝑡 and 15.18 𝑓𝑡 [33]. According to these 

dimensions, minimum cross–sectional area for the engine region is 15.4 𝑓𝑡2 

(minimum cross–sectional area is calculated by multiplying the area of the engine with 

1.20 to account for cooling space and installation, accessories, etc.). Thus, the 

locations presenting engine location are fixed to this value and provides a geometric 
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constraint. Figure 56 presents the initial and the optimal fuselage area distribution of 

the fighter aircraft geometry with GE F110 engine. 

 

Figure 56-Comparison of Initial and Optimal Fuselage Area Distribution (Fighter 

Aircraft configuration with GE F110) 

The wave drag coefficient of the fighter aircraft is reduced from 0.185 to 0.171 with 

the constraints explained above.  

4.5.2 Fighter Aircraft Configuration with 2x GE F414  

Figure 57-59 present the comparison between optimal and final form of three 

dimensional fighter aircraft configuration with 2xGE F414 engine. 
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Figure 57-Initial (top) and Final (bottom) Configuration of Fighter Aircraft with 2x 

GE F414 engines–Isometric 

 

Figure 58-Initial (left) and Final (right) Configuration of Fighter Aircraft with 2x GE 

F414 Engines–Top 
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Figure 59-Initial (bottom) and Final (top) Configuration of Fighter Aircraft with GE 

F414 Engine–Side 

The diameter and length of GE F414 are 2.90 𝑓𝑡 and 12.89 𝑓𝑡 [33]. According to these 

dimensions, minimum cross–sectional area for the engine region is 19.12 𝑓𝑡2 

(minimum cross–sectional area is calculated by multiplying the area of the engine with 

1.20). Thus, the locations representing engine location are fixed to this value. Figure 

60 presents the initial and the optimal fuselage area distribution of the fighter aircraft 

geometry with GE F414. 

 

Figure 60-Comparison of Initial and Optimal Fuselage Area Distribution (Fighter 

Aircraft configuration with GE F414 x 2) 
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The wave drag coefficient of the fighter aircraft is reduced from 0.204 to 0.192 with 

the constraints explained above. Total volume of the aircraft is not kept constant in 

this optimization run. Keeping total volume constant often yields unrealistic 

geometries. Further work is required to tackle this issue, as total volume of an aircraft 

may be important design requirement especially for such aircraft. The magnitude of 

the areas related to engine section are fixed by employing simple area calculation 

which is less than the initial cross-sectional area magnitudes. Thus, volume 

participants at the front region of the aircraft increases to keep volume constant which 

results in unrealistic geometries. To avoid this, constraints of engine is used for 

optimization only. Lower part of the fuselage must have a place for landing gear, 

weapons bay and other components. Thus, area reduction is applied for upper part of 

the fuselage only. 
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CHAPTER 5 

5. CONCLUSION & FUTURE WORK 

CONCLUSION & FUTURE WORK 

 

 

 

5.1 Conclusion 

In this thesis, the numerical optimization of the wave drag coefficient for supersonic 

geometries is performed. In the early stages of research a literature survey is completed 

on methods about wave drag calculation, and optimization. The wave drag for high 

speed aircraft has major role on supersonic flight regime. Despite the fact that many 

other drag components play important roles in the calculation of the overall drag, wave 

drag coefficient governs the performance of aircraft high speeds. Secondly, the solver 

is verified by using two different geometries, the wave drag coefficients of which are 

obtained from literature. It is seen that the difference between the results of the actual 

study and the literature results are sufficiently in close agreement so as to implement 

the optimization algorithm. Results are obtained from computational fluid dynamics 

simulations with a variety of supersonic flow speeds. In detail, two different shapes; 

namely, Sears–Haack slender body and F-16 are analyzed and the obtained results 

yield an error that is smaller than 8%.  

Next, test cases are introduced with respect to the aerodynamic parameters. Case 

matrix is generated to analyze the effect of each aerodynamic parameter such as 

dihedral angle and area of the control surfaces. It is verified that various types of 

aircraft could be optimized by using the algorithm. Although the optimal shape of each 

configuration has the smallest wave drag coefficient for the given volume and length, 

the manufacturability of these aircraft geometries is questionable.  

Finally, it is seen that the program has the ability to optimize the entire configuration. 

However, parts having no effect on the aerodynamic characteristics are enforced to 
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body shape change. Main reason behind this is preventing an additional aerodynamic 

trade-off analysis while generating the final configuration of the designed aircraft. 

Shape optimization is completed with respect to wave drag coefficient, thus, viscous 

effects are not included in calculations in this study.   

For the test cases considered, it can be said that the developed computational tool is 

capable of optimizing aircraft geometries to yield significant reductions in the wave 

drag coefficient. Such a tool can be used as is or be developed further to be used in the 

conceptual design phase, where a high number of configurations need to be analyzed 

in a short time. 

5.2 Future Work 

Although the discretization and geometry transfer abilities between OpenVSP and the 

program are appropriate in the conceptual level for this level of design, various aircraft 

components like pods, weapons, etc. may not be drawn and analyzed by the program. 

As a future aim, the output of the program is aimed to input to the OpenVSP to prepare 

computational fluid dynamics simulations which enable to prove the reduction in wave 

drag coefficient. Furthermore, this will also empower the direct connection among the 

design program “OpenVSP”, the optimization program and computational fluid 

dynamics simulation. More complex geometries and constraints for the cross sectional 

shape of the fuselage will also be added to approach real aircraft geometry [11, 26] 

For example, an internal weapon bay and a radar dimensions can be related to 

constraints. 

Next, additional objective functions can be combined with the program. Maximization 

of lift will be complementary for the optimization problem of the complete aircraft 

post-design. There may be proposed two ways to achieve this aim: (i) using simple 

inviscid methods in the optimization loop like panel method or (ii) response surface 

(indirect) optimization combined with computational fluid dynamics simulation. 

Another objective function may be the minimization of the radar cross section, which 

is a strong function of the geometry. 
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Investigating multidisciplinary design optimization for aircraft geometry, embedding 

additional solvers into the main program to analyze the flow dynamics over the aircraft 

in more detail may be part of the future steps of the work. Moreover, complete 

conceptual design of a high speed aircraft including sizing, trade–off studies, and 

optimization for different design goals can be planned for oncoming research subjects. 
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FIGURES 

 

 

 

 

Figure 61–Configuration 1 (OpenVSP view) 

 

Figure 62–Configuration 2 (OpenVSP view) 
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Figure 63–Configuration 3 (OpenVSP view) 

 

Figure 64–Configuration 4 (OpenVSP view) 
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Figure 65–Configuration 5 (OpenVSP view) 

 

 


