
DIGITAL MODELLING OF GUITAR AUDIO EFFECTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ENGIN ZEKI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2015

techno.3
Typewritten Text
.

techno.3
Typewritten Text

techno.3
Typewritten Text

techno.3
Typewritten Text

techno.3
Typewritten Text

techno.3
Typewritten Text
.

techno.3
Typewritten Text

techno.3
Typewritten Text





Approval of the thesis:

DIGITAL MODELLING OF GUITAR AUDIO EFFECTS

submitted by ENGIN ZEKI in partial fulfillment of the requirements for the degree of
Master of Science in Electrical and Electronics Engineering Department, Middle
East Technical University by,

Prof. Dr. M. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Tolga Çiloğlu
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ABSTRACT

DIGITAL MODELLING OF GUITAR AUDIO EFFECTS

Zeki, Engin

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Tolga Çiloğlu

January 2015, 126 pages

Digital audio effects are used by many electric guitar players. These effects help
players to find their desired tones and sounds. Digital audio workstations (DAW) and
Virtual studio technologies (VST) advance the development of guitar audio effects
softwares. The aim of this thesis is to implement main linear guitar effects (delay,
reverb, wah-wah, flanger) real-time and enhance the main nonlinear guitar effects
(distortion, overdrive) using system identification methods. After the verification of
the effect models with MATLAB, real-time implementations of these effects will be
done using C/C++/C# software languages. For the modelling of main nonlinear gui-
tar effects, distortion and overdrive, this thesis investigates current methods of static
modelling and dynamic nonlinear state space solutions. After discussion of previ-
ous models, this thesis introduces a new method of distortion modelling with system
identification called Enhanced Modelling of Guitar Distortion. Enhanced Modelling
of Guitar Distortion algorithm will use neural network system identification method
ANFIS (Adaptive-Network-Based Fuzzy Inference System). ANFIS is used as a sys-
tem identification tool in Enhanced Modelling of Guitar Distortion algorithm. This
algorithm takes the guitar output signal and pre-amplifies the input with 12AX7 vac-
uum tube amplifier simulation model to obtain clean channel. ANFIS system identi-
fication block is trained using desired distortion effect input output pair. This training
and learning results into a ANFIS (Adaptive-Network-Based Fuzzy Inference Sys-
tem) structure that can be used for processing future inputs. Using clean channel
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output as an input to the ANFIS structure, lead channel output is obtained. Real-time
implementations of distortion and overdrive will be done using C/C++/C# software
languages.

The results of the Enhanced Modelling of Guitar Distortion algorithm will show if
it is applicable to model distortion and overdrive effects using system identification
approach. Listening tests will be done to provide evidence that the simulation models
are successful. Strict real-time constraints are going to be satisfied and the simulation
of a guitar amplifier will be presented.

Keywords: Guitar, Audio, Audio Signal Processing, Nonlinear Signal Processing,
Delay, Comb Filter, Wah-Wah, Flanger, Distortion, Overdrive, ANFIS, System Iden-
tification, Valve Tube Modeling, Guitar Effects
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ÖZ

GİTAR EFEKTLERİNİN DİJİTAL MODELLENMESİ

Zeki, Engin

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Tolga Çiloğlu

Ocak 2015 , 126 sayfa

Çoğu elektrik gitarist dijital ses efektlerini kullanmaktadır. Bu efektler elektrik gita-
ristlerin istedikleri tonları ve sesleri elde etmelerini sağlamaktadır. Dijital Ses Çalışma
Ortamları (DAW) ve Sanal Stüdyo Teknolojileri (VST) ses efektleri yazılımlarının
geliştirilmesi ve yaygınlaşmasını sağlamışlardır. Bu tezin amacı genel doğrusal gi-
tar efektlerinden olan delay, reverb, wah-wah ve flanger efektlerinin gerçek zamanlı
olarak modellenmesi ve doğrusal olmayan gitar efektlerinden distortion ve overdrive
efektlerinin sistem tanımlama algoritmalarını kullanarak geliştirilmesidir. MATLAB
kullanılarak efektlerin doğrulanmasının ardından, gerçek zamanlı olarak C/C++/C#
yazılım dilleri kullanılarak uygulaması yapılacaktır. Genel doğrusal olmayan efekt-
lerden olan distortion ve overdrive efektlerinin modellenmesi için şu anda uygulanan
metodlardan statik modelleme ve dinamik denklem çözümleri incelenecektir. Sistem
tanımlama metodları kullanan Enhanced Modelling of Guitar Distortion algoritması
tasarlanacaktır. Bu algoritma sinir ağları yapısı kullanan sistem tanımlama ANFIS
(Adaptive-Network-Based Fuzzy Inference System) modelini kullanacaktır. Distor-
tion ve overdrive gitar efektlerinin de C/C++/C# yazılım dilleri kullanılarak uygula-
ması yapılacaktır. ANFIS yapısı bir sistem tanımlama aracı olarak Enhanced Model-
ling of Guitar Distortion modeli içerisinde yer almaktadır. Bu algoritma gitar sinyalini
alarak ön amfi olan 12AX7 vakum tüp amfi simülasyon modelinden geçirerek temiz
kanalı elde etmektedir. İstenen distortion efekt giriş çıkış sinyali ile ANFIS sistem
tanımlama bloğu eğitilir. Bu eğitilme ve öğrenme sonucunda bir ANFIS yapısı elde
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edilmektedir. Bu ANFIS yapısı ile gelecek giriş sinyalleri de işlenebilmektedir. Temiz
kanal çıkışının ANFIS yapısına giriş olarak kullanılmasıyla kirli kanal çıkışı da elde
edilebilmektedir.

Enhanced Modelling of Guitar Distortion algoritmasının sonuçları sistem tanımlama
metodlarının distortion ve overdrive gitar efektlerinin modellenmesinde kullanılabi-
leceğini gösterecektir. Dinleme testleri sonucunda simülasyon modellerinin başarılı
olduğuna kanaat getirilecektir. Gerçek zaman sınırlandırmaları öngörülerek, gitar ses
güçlendiricisi simülasyonu sunulacaktır.

Anahtar Kelimeler: Gitar, Ses, Ses Sinyal İşleme, Doğrusal Olmayan Sinyal İşleme,
Erteleme, Filtreleme, Wah-Wah Efekti, Flanger, Distortion, Overdrive, ANFIS, Sis-
tem Tanımlama, Triode Modelleme, Gitar Efektleri
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CHAPTER 1

INTRODUCTION

Electric guitar is home for many analog and digital effects, with its ability to convert

vibration of metal strings into electrical signal. The guitar effects world is divided into

two: analog effects and digital effects. Analog effects provide high fidelity, quality

and organic sounds, while digital effects provide mobility, quantization and package

of effects in a single box or software. The most common effects that an electric guitar

player use are: Overdrive, Distortion, Delay, Reverb, Wah-Wah and Flanger. These

are the main effects where other customized effects are derived of.

This thesis focuses on the real-time implementations of delay, reverb, wah-wah, flanger

from the linear guitar audio effects and enhancement of overdrive and distortion from

nonlinear guitar audio effects. Emerging with the enhancements in the ways of per-

sonal computing and digital signal processing, there is a need to emulate, simulate

and synthesize digital effects successfully compared to their analog counterparts.

Both from electrical engineering society and audio engineering world, researchers

contribute to the evolution of various digital guitar effects. The Center for Computer

Research in Music and Music Acoustics research group at Stanford University has

put a tremendous work on the subject with J.O. Smith’s books and papers on digital

audio effects. Udo Zölzer and his team at Helmut Schmidt University of Hamburg

contributed to digital audio effects with their work on State Variable Solutions and

Enhanced Triode Models of Vacuum Tube Amplifiers.

High quality electric guitar audio equipments are expensive and people tend to look

out for cheaper and effective solutions to obtain high quality effects in a package.

As a result, we have seen an emergence of software digital effects modellers and
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technical research papers and books about the topic. The book called Digital Audio

Effects, DAFx by Udo Zölzer, contains research papers about digital audio effects

[21]. These papers are the starting reference for this thesis with neat implementations

and explanations of audio effects. Deriving from those chapters of work, I tried to

enhance distortion and overdrive and implement delay, reverb, wah-wah and flanger

real-time with my own experience as a 10 year electric guitar player. There are lots

of brands, manufacturers and designers in the audio effects industry having diverse

products with multiple effects implementations generally divided into two categories:

analog and digital. Digital audio effects are also divided into subcategories: Linear

Audio Effects and Nonlinear Audio Effects.

Linear audio effects include the digital audio effects where the output can be ex-

pressed by the linear combination of the input and output signals’ present and past

values (i.e. as a LCCDE). Delay, Reverb, Wah-Wah and Flanger are linear audio ef-

fects and can be expressed by LCCDEs. Real-Time implementations of these effects

can be challenging in some audio processing applications, such as DAW (Digital

Audio Workstations) and Guitar Audio Processing Softwares, on Windows, OS X

and Linux environments. For this reason, these effects are implemented with strict

real-time constraints that does not effect the electric guitar player’s performance, and

throughout the chapters this emphasis is given to the reader.

Nonlinear audio effects are mostly related with overdrive, fuzz and distortion, where

the relation between input and output signals can not be expressed in linear terms. In

that case, nonlinear signal processing algorithms can be used for modelling nonlinear

guitar effects. Different methods are implemented by researchers. Basic implemen-

tations started with static nonlinear models between input and output. It is found that

the static implementations are not satisfactory for the players. Dynamic models that

solve the nonlinear state space solution of the physical effects circuits are introduced

by many researchers. This method gives good results given that the circuit is known

prior to the modelling. Wave digital filter models have also been tried to blockwise

model the distortion algorithm. Wave digital filters for distortion modelling is not

preferred due to the reason that block models are hard to standardize between differ-

ent implementations. The actual physical circuit of analog distortion and overdrive

effects are generally not well known and can be modelled as a black box system.
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For this reason, nonlinear system identification is an alternative way of describing

the relation between the input and output of nonlinear guitar audio effects. Addition-

ally, equalizer filters are used to get much warm tonal output from these nonlinear

effects. In this thesis, we are taking a system identification approach to the distor-

tion and overdrive modelling by introducing a neural network system identification

method to model input and output behavior of highly nonlinear audio circuits. Start-

ing with basic building blocks, such as diode rectifier, we develop a training, learning

and checking mechanism for the modelling of distortion and overdrive effects found

in most guitar amplifier blocks. In this context, this thesis is an advancement of the

current guitar distortion modelling methods of nonlinear state space solutions, giving

the designer the opportunity to model without knowing the internal circuitry of the

distortion/overdrive effect in investigation. The neural network solution that has been

implemented is called ANFIS (Adaptive-Network-Based Fuzzy Inference System)

where fuzzy rules and membership functions are used to optimize the overall system

estimation.

The second chapter of the thesis, Linear Guitar Audio Effects, presents the theoretical

background of main linear guitar audio effects (delay, reverb, wah-wah and flanger).

The real-time implementations are provided in the appendix section. The emergence

and development of these effects are investigated in this chapter. In order to model

these effects, actual effects pedal’s input and output values are recorded. These input

and output values are then used to formulate the impulse response and filter charac-

teristics. Delay guitar effect is an ideal delay with gain and delay parameters. Reverb

is implemented using the colorless artificial reverberation algorithm introduced by

Schroeder [16]. Wah-wah is modelled after the Jim Dunlop’ s Original GCB95 Wah-

Wah guitar effects pedal. State variable filter structure is used to model the changing

behavior of this effect. Flanger is implemented by introducing sinusoidally changing

delay to the input signal. All of these effects are used commonly by electric guitar

players. Equalizer filters are also implemented for each of these effects to obtain

similar output of guitar amplifier cone speaker’s.

The third chapter, Basics of Guitar Distortion: Diode Limiter and Pre-Amplifier intro-

duces the basic concepts and methodologies to model guitar distortion and overdrive.

These guitar effects are highly nonlinear, and both of them contain diode limiter and
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pre-amplifier structures. Diode limiter is a rectifier circuit with low-pass characteris-

tics. Pre-amplifier in guitar amplifiers is the first stage of the input signal amplifica-

tion. The guitar output signal is amplified by a vacuum tube amplifier 12AX7 in the

pre-amplifier section. The simulation models for the diode limiter and vacuum tube

amplifier is presented with circuit examples and parameter settings. 12AX7 vacuum

tube amplifier has different versions due to differences between manufacturers. RSD-

1, RSD-2 and EHX-1 are the most common ones used in guitar amplifiers. In the

end of the chapter, the different parameter settings are given for these different tube

model versions.

The fourth chapter discusses a different method of guitar distortion modelling using

wave digital filters. This method is implemented in various papers in the field as an

alternative method of simulation of vacuum tube amplifiers. However, wave digital

blockwise models are not preferred due to nature of the strict real-time constraints of

the nonlinear simulation. Since each blockwise model introduces significant delay in

the path, the overall delay can be higher than expected. For this reason, just the basics

of the method is mentioned and implementations of wave digital filters approach for

distortion modelling is not included.

The fifth chapter introduces a system identification approach to model highly nonlin-

ear guitar audio effects: distortion and overdrive. Firstly, static nonlinearity approach

to distortion modelling is discussed. Dynamic models are selected to get better re-

sults in simulation. Among dynamic models, we have selected neural network system

identification method, ANFIS (Adaptive-Network-Based Fuzzy Inference System) to

model distortion/overdrive. ANFIS method is introduced to the reader in this chapter.

The application of ANFIS algorithm is shown with specific implementations of Line

6 Spider IV amplifier and Marshall JCM900 pre-amplifier. With the help of ANFIS

algorithm, we have developed a method called Enhanced Modelling of Guitar Dis-

tortion. This enhanced method uses ANFIS as a system identification tool to model

the distortion effect in the lead channel of amplifier. Enhanced Modelling of Guitar

Distortion is a 6 step algorithm summarized as follows:

1. The guitar output signal, x[n], is used as an input to the 12AX7 pre-amplifier

model.
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2. Then the equalizer high-pass and band-pass filters are used to change tonal

characteristics of pre-amplifier output.

3. EL84 vacuum tube power amplifier model amplifies the equalized signal. The

output of the vacuum tube power amplifier is called clean channel output, yc[n].

4. ANFIS System Identification block model takes two inputs, xa[n] and ya[n].

xa[n] is the training input signal to the distortion effects pedal that is modelled.

ya[n] is the output of the distortion effects pedal for the training input xa[n].

ANFIS System Identification code block trains these input output sequence to

form an ANFIS structure called outfis.

5. This ANFIS structure can be used to evaluate future outputs for random inputs

coming from the yc[n] clean channel. ANFIS Evaluator block evaluates the lead

channel output, yl[n], using the ANFIS structure, outfis and yc[n] as inputs.

6. The main channels’ simulation of a guitar amplifier, clean channel (yc[n]) and

lead channel (yl[n]) outputs are obtained.

Enhanced Modelling of Guitar Distortion algorithm introduces a training, learning

and modelling approach to generic distortion algorithms. Numerous different dis-

tortion pedals can be modelled adjusting the number of membership functions and

epochs. The algorithm provides flexible modelling scheme for the effects modeller.

Previous distortion modelling algorithms focus on directly solving the nonlinear state

space equation of a specific circuit. This final chapter concludes with the RMSE re-

sults obtained from simulating idealized circuits. RMSE values change with the AN-

FIS system design parameters: number of membership functions and epoch. These

parameters are selected in correspondence with the order of nonlinearity and dynam-

ics of the distortion effect that is investigated. The listening tests are done to verify

the actual output of the Enhanced Modelling of Guitar Distortion Algorithm. It is also

verified that the algorithm models sound nearly same as the real amplifiers.

Each guitar effect is designed in MATLAB, implemented in Microsoft Visual Stu-

dio 2010 using C++ and C# and then ported to Texas Instruments TMS320VC5505

eZdsp. MATLAB is used for the initial design of the guitar effects algorithms.

Microsoft Visual Studio 2010 is used for real time application development in the
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Windows platform. ASIO (ASIO4ALL) - Universal ASIO Driver for WDM Audio

is used to satisfy real-time development constraints. ASIO drivers can be set with

64 samples of ASIO Buffer Size, which is the best real-time constraint to satisfy in

ASIO. Latency Compensation parameters are set to 0 samples for In and Out. Buffer

Offset is also set to 0 ms. Realtek High Definition sound card is used for the testing.

Realtek HD Audio output and Realtek HD Audio Line input are used for effect output

and input.

Boss Inc., Mesa Boogie Inc., Marshall Inc., Line 6 Inc., Digitech Inc., Jim Dunlop

Inc. are all trademarks having their own rights on their products, all of the men-

tions and references of implementations in this thesis are for academic and research

purposes only.
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CHAPTER 2

LINEAR GUITAR AUDIO EFFECTS

2.1 Basic Building Block: Delay

2.1.1 FIR Delay

In signal processing applications, delay is the most used building block which expect-

edly has effects both in time and frequency domains. Generally, audio engineers in

the field consider the time domain changes related to the effects on the side neglecting

the changes that eventually happened on the frequency domain [21]. A handful of ef-

fects can be related to time domain processing of the audio signal having the building

block delay. The delay guitar audio effect can be implemented with just shifting the

discrete-time signal in time domain by an integer amount d, as mathematically stated

both in time and frequency domain below (Figure 2.1).

y[n] = x[n− d] (2.1)

Y (ejw) = X(ejw).e−jwd (2.2)

H(ejw) = e−jwd (2.3)

H(z) = z−d (2.4)

As can be seen from Discrete-Time Fourier Transform and Z-transform, delay shifts

the signal in time causing also a phase shift in frequency domain. Expectedly, the

phase changes linearly with frequency, where the delay amount, d, decides on the

slope. As we can see from Figure 2.2, the magnitude of the filter stays at 0 dB for all
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Figure 2.1: The Basic Building Block: Delay.

frequencies meaning that this filter does not affect magnitude while linearly changing

phase. In digital guitar audio effect delay, the delayed signal is summed up to the

original signal, as described in the next section: FIR Comb Filter.

Figure 2.2: Magnitude and Phase Response of Delay (d = 5).

2.1.2 FIR Comb Filter

In digital guitar audio effect delay, we generally use the input signal buffer as our

reference and filter that signal with gain and delay parameters than sum it up back to

the original signal. In this way, we can hear our real-time input and delayed version

of our signal in delay guitar audio effect. In signal processing terms, this can be stated

mathematically as below, where d is the integer amount of delay and g is the delay

gain. This structure is called FIR Comb Filter.
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y[n] = x[n] + g.x[n− d] (2.5)

Y (ejw) = X(ejw) + g.X(ejw).e−jwd (2.6)

H(ejw) = 1 + g.e−jwd (2.7)

H(ejw) = 1 + g.cos(wd)− jg.sin(wd) (2.8)

|H(ejw)| =
√
|1 + g.cos(wd)|2 + |g.sin(wd)|2 (2.9)

H(z) = 1 + g.z−d (2.10)

Following from Equation 2.9, we can state that magnitude response resembles a comb

having amplitudes between |1+g| and |1-g|, assuming g selected as a positive constant.

This statement has been made obvious by looking to Figure 2.4, where magnitudes

are given in dBs, constant delay selected as d = 5 and gain g selected as g = 2. The

peaks of the magnitude response occur at even multiples of 0.2π. This is due to the

fact that cos(w∗d) = cos(0.4π∗5) = cos(2π) = 1 giving us the maxima of Equation

2.9. Generalizing this example, we can conclude that even multiples of π/d are the

magnitude response maxima, while odd multiples of π/d are the magnitude response

minima. Phase response is not linear in this case as in pure FIR delay. The effect

of the delay parameter d can be basically seen by observing the magnitude response.

Changing delay parameter d will affect the comb filter like compressing up and down

an accordion. Increasing delay parameter d means that you will have more teeth of

the comb, while decreasing d means less teeth.

Figure 2.3: FIR Comb Filter.

FIR Comb Filter has a comb like frequency response. The filtering of the input signal

with the FIR Comb Filter results into changes in the tonal characteristics. This change

can be undesirable and must be treated carefully. Listening tests will help the design

process of delay in that cases. The change in the frequency response can also be
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Figure 2.4: Magnitude and Phase Response of FIR Comb Filter (d =5, g=2).

used in a desirable guitar audio effect called Audio Flanger, where the delay amount

changes with time.

2.2 Audio Flanger

Audio Flanger is basically a variable delay digital filter, where the amount of delay, ei-

ther fractional or integer, changes with time index. The amount and pattern of change

in delay defines what kind of an effect you obtain. The delay of an audio flanger

generally ranges sinusoidally between 0 - 15 ms. Assuming 44100Hz(samples/sec)

sampling rate, we take each sample on 2.2676e− 05sec intervals. This results into a

delay range of approximately 0 - 660 samples. This will in turn creates small varia-

tions over the input note that has been given by the player, sinusoidally changing with

time. Different delay functions can lead to different effects and variations, such as jet

airplane sounds, fuzzy and funky sounds created by customized flanger patterns. The
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variable delay can be shown mathematically as below.

A = Floor(tflangemax.Ts/2) (2.11)

M [n] = Floor(A+ Asin(2πFflangenTs)) (2.12)

z[n] = x[n−M [n]] (2.13)

y[n] = x[n] + g.z[n] (2.14)

y[n] = x[n] + g.x[n−M [n]] (2.15)

If we choose Ts = 1/Fs = 2.2676e− 05sec where Fs = 44100Hz and tflangemax =

15ms, A turns out to be A = 330, which is expected, since we need a sinusoidal

ranging from 0 - 660 in as our variable delay. The origins of the flange effect come

from the direct tape mixing of 2 simultaneous recordings. Tiny differences on the

mixing tape’s speed result into the phasing effect which is mathematically same as

applying a variable delay to the original mix. Flanging effect ranges from jet sound

effects to chorus-like small variation effects in which you change the way and speed

of your variable delay. There are considerations about the integer and fractional delay

and the method to interpolate the samples. In the appendix section, details about

practicality and the implementation is presented. The signal flow diagram is plotted

as in Figure 2.5.

Figure 2.5: Audio Flanger.

Calling the variable delayed signal z[n], we formulate the way to visualize what is

happening both in time and frequency domains. Since we have an impulse response

also changing with time, we expect a time dependent frequency response. Let us

call the system following from x[n] to z[n], the response at time n to an impulse

applied at n − τ , as h1[τ, n]. Mathematically showing, the equations of the variable

delayed signal z[n] can be written as in Equation 2.16. These set of equations are
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designed to introduce the linear-time variant (LTV) system of variable delay. As it

is shown in Equation 2.17, the system h1[τ, n] is a linear-time variant (LTV) system.

The frequency response of a LTV system can be represented with respect to slowly

changing time dimension. The impulse response h1[τ, n] is a collection of impulse

responses with respect to discrete-time parameter n. For a fixed n, we can say that the

impulse response is a function of discrete-time index n, called M [n]. The frequency

response H1(e
jw, n) turns out to be a phase shift by M[n] for a fixed discrete-time

index n. The total response of the system, H(ejw, n) , can be shown with respect to

sample time index n in Equation 2.19.

z[n] = x[n−M [n]] (2.16)

h1[τ, n] = δ[τ −M [n]] (2.17)

H1(e
jw, n) = e−jwM [n] (2.18)

H(ejw, n) = 1 + g.e−jwM [n] (2.19)

Figure 2.6: Variable Delay Impulse Response Scatter 3D Plot, h1[τ, n].

Analyzing Figure 2.6 and Figure 2.7, we observe the changes of variable delay on

both time and frequency domain. We can call n as sample index, while τ is a dummy

variable. The impulse response plot in Figure 2.6 shows that for each sample time
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Figure 2.7: Variable Delay Frequency Response Mesh 3D Plot, H(ejw, n).

index n, we have a different delay. This delay has a sinusoidal pattern in the case of

the original flanger effect. The frequency response plot in Figure 2.7 shows that for

each sample time index n, we have a comb filter response. In comb filter frequency

response, the number of peaks changes sinusoidally with time giving us a shape of

an accordion. These impulse and frequency responses are just an extension of comb

filter for each sample time index n.

2.3 Reverberation

In acoustics modelling and processing of a closed environment, such as a room or

a concert hall, reverberation occurs when sound scatters and arrives back from sur-

roundings. The surrounding materials’ characteristics are effective to phase, ampli-

tude and frequency characteristics of reverberation.

The information about static audio source and listening positions are important when

designing a reverberation algorithm. The reverberation systems are divided into three

parts: the direct sound, early reflections and late reverberation. As defined in the

literature, the direct sound is the audio wave that reaches listener first [16]. Early

reflections are the fastest arriving reflections from the sound source. Late reflections
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are the distinct reflections coming back from the surroundings.

2.3.1 Reverberation Environment Modelling

Reverberation environments include the simulation of a room, concert hall, cave,

arena, hangar, etc. Different reverberation algorithms are designed to model diverse

reverberation environments. The basic of these algorithms is room acoustics mod-

elling, where the reflections and scattering of the room is considered. The human ear

does not exactly distinguish between the actual shape of the room with just only the

convolved output. This is the reason why there exists no shape parameter, but only

the amplitude and phase attenuations considered while designing the reverberation

system.

Among the first implementations of reverberation, Manfred Schroeder’s work on ar-

tificial reverberation is the most important [16]. In his work at 1960s, he designed the

complex patterns of echoes using delay-based all-pass filters and recursive comb fil-

ters [16]. Mathematically, the basic recursive reverberation using delay lines is shown

in Equation 2.20.

y[n] = −g.x[n] + x[n−m] + g.y[n−m] (2.20)

The best way to understand what this recursive input output relation does is to look

at the impulse response of the recursive reverberation system. We can also see that

there is a feedback loop with a gain less than unity summed up to each output sample.

This feedback loop is creating the acoustics of a reverberation environment, such as

room, concert hall. The impulse response of reverberation is shown mathematically

in Equation 2.21. The gain parameter, g, decides on the rate of exponential decay of

the reverberation impulse response.

h[n] = −g.δ[n] + (1− g2).[δ[n−m] + g.δ[n− 2.m] + ...] (2.21)

The reverberation impulse response function creates a reverberation effect where the
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Figure 2.8: Impulse Response of the Recursive Reverb Equation.

listener thinks that there is scattering through the walls or other objects in the en-

vironment. The section will continue with the generalization of this reverberation

environment, introducing the digital all-pass filter structure and its analysis leading to

the colorless reverberation.

2.3.2 Digital All-Pass Filter

A digital all-pass filter, similar to its name, does not alter the magnitude of the fre-

quency response, but changes the phase of the input signal x[n]. A common form of

digital all-pass filter is shown mathematically in Equation 2.22.
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Agp(z) = − g + z−1

1 + g.z−1
(2.22)

Agp(e
jw) = − g + e−jw

1 + g.e−jw
(2.23)

|Agp(ejw)| = |g + e−jw|
|1 + g.e−jw|

(2.24)

|Agp(ejw)| = |g + cos(w)− j.sin(w)|
|1 + g.cos(w)− j.g.sin(w)|

(2.25)

|Agp(ejw)| =
√

(g + cos(w))2 + sin2(w)√
(1 + g.cos(w))2 + g2.sin2(w)

(2.26)

|Agp(ejw)| = 1 (2.27)

A digital all-pass filter is exactly the bilinear transform of an analog all-pass filter.

Digital all-pass filter acts as a phaser when used cascaded with different parameters

on the signal flow path. Digital all-pass filter has a flat magnitude response, but does

not have linear phase response. This feature makes this filter applicable to such effects

where we do not want to change magnitude characteristics. Using digital all-pass filter

we can simultaneously change phase characteristics and obtain time-varying effects.

For time varying guitar audio effects, digital all-pass filter is used as a building block.

In mathematical terms, the phase response of the all-pass filter is shown in Equation

2.31.

Agp(z) = − g + z−1

1 + g.z−1
(2.28)

Arg(Agp(e
jw)) = Arg(−g − e−jw)− Arg(1 + g.e−jw) (2.29)

Arg(Agp(e
jw)) = Arg(−g − cos(w) + j.sin(w))− Arg(1 + g.cos(w)− j.g.sin(w))

(2.30)

Arg(Agp(e
jw)) = arctan(

sin(w)

−g − cos(w)
)− arctan(

−g.sin(w)

1 + g.cos(w)
) (2.31)

Looking at the Figure 2.9, we can see a flat frequency response that characterizes the

all-pass filter. The phase response is the direct representation of the Equation 2.31,

which decreases with frequency.
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Figure 2.9: Digital All-Pass Filter Frequency and Phase Response Plot.

Another all-pass filter formulation, as discussed in the end of Reverberation Environ-

ment Modelling, is generally used for a building block for such reverberation systems,

so we will continue with analyzing that recursive input output equation and using it

in more complex algorithms. The recursive formula is mentioned again in Equation

2.32 and z transform and magnitude response equations are given in the following

equations.

y[n] = −g.x[n] + x[n−m] + g.y[n−m] (2.32)

H(z) =
Y (z)

X(z)
=
−g + z−m

1− g.z−m
(2.33)

H(ejw) =
Y (ejw)

X(ejw)
=
−g + e−jwm

1− g.e−jwm
(2.34)

|H(ejw)| = | − g + e−jwm|
|1− g.e−jwm|

(2.35)

|H(ejw)| = | − g + cos(wm)− j.sin(wm)|
|1− g.cos(wm) + j.g.sin(wm)|

(2.36)

|H(ejw)| =
√

(−g + cos(wm))2 + sin2(wm)√
(1− g.cos(wm))2 + g2.sin2(wm)

(2.37)

|H(ejw)| = 1 (2.38)

The all-pass filter is the building block for general reverberation effects and used
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extensively in the literature of audio effects. The MATLAB code for this kind of

basic building is given as a function allpass.m in the following listing.

Figure 2.10: Digital All-Pass Filter MATLAB Function Code Block.

The problem of reverberation is also discussed by Julius O. Smith III later in his work

called Physical Audio Signal Processing [18]. In this literature, it is mentioned that

the direct signal propagating from a sound source can be simulated using a single

delay line in series with an attenuation scaling or low-pass filter. In addition to that

since each wave is just a relation between a sound source and the listener, these waves

can be modelled as a feed-forward comb filter. Feed-forward comb filter includes a

tapped delay line to introduce the reflections. The model consists of changing am-

plitude and phase of the source signal and then passing through a designed filter to

model the effects of air absorption and reflection material [2]. The drawback of this

method is that we can only model source to listener (point to point) audio acoustics.

Such a transfer function system for two sources and a listener with two ears (sinks /

outputs) can be modelled in MATLAB as in Figure 2.11.
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Figure 2.11: Exact Reverb via Transfer-Function Modelling.

As can be seen in the figure, x1[n] and x2[n] are the input audio sources, h11[n] and

h12[n] are the transfer functions reaching to first ear output y1[n] and h21[n] and h22[n]

are the transfer functions reaching to second ear output y2[n] respectively. The outputs

y1[n] and y2[n] can be seen as our two ears left and right respectively in this case. The

transfer function can be shown as a matrix relation in z-domain as following.

Y1(z)

Y2(z)

 =

H11(z) H12(z)

H21(z) H22(z)

X1(z)

X2(z)

 (2.39)

It is stated that in order to compute the output coming to each ear y1[n] and y2[n],

we have to take convolutions in the number of audio sources times number of audio

sinks (ears), which is 4 convolutions (2 audio sources times 2 audio sinks (ears)) [18].

Mathematically this convolution can be shown in Equation 2.40.

yi[n] =
2∑

k=1

xk[n] ∗ hik[n] =
2∑

k=1

Mij∑
m=0

xk[n].hik[n−m], i = 1, 2. (2.40)

In the case of electric guitar reverberation, we just have one audio source, the electric

guitar input and two distinct systems processing the same input giving left and right

ear outputs y1[n] and y2[n] respectively. This kind of a system can be shown as in the

following MATLAB Figure 2.12.
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Figure 2.12: Exact Guitar Reverb via Transfer-Function Modelling.

The exact equation for electric guitar reverberation model is given in Equation 2.41.

The guitar input is stated as x[n], two systems for left and right as h1[n] and h2[n]

respectively and two outputs for left and right ear, y1[n] and y2[n] respectively.

yi[n] =
2∑
i=1

x[n] ∗ hi[n] =

Mi∑
m=0

x[n].hi[n−m], i = 1, 2. (2.41)

Modelling impulse response between each source and listener can be computation-

ally complex. For these reasons, the methods to model reverberation virtually be-

come much more convenient and later called as artificial reverberation. Modelling

the acoustic reverberation environment also introduces delay restricting real-time im-

plementation because of the reason that the number of multiplications and additions

got much higher with each inch of width, height and length of the room. The solu-

tion to make calculations much easier and model the reverberation patterns, artificial

reverberation algorithms are introduced to overcome these problems.

2.3.3 Artificial Reverberation

Artificial Reverberation is the perceptual modelling of reverberation, in which meth-

ods are devised to recreate reverberation studying the behavior of signal following

from sources to sinks. These methods are efficient in the way that simple models

mimicking the actual reverberation paths are used in the algorithms.

First of all, there are two terms to begin with: echo density and mode density. Echo

density is the number of reflected and returned sound waves from audio source to sink
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per unit time. Echo density is square proportional with time, t, that starts from the ini-

tial audio wave leaving the sink. So as time passes the echo density increases square

proportional in a way that we can model echos as random processes and sample this

processes to obtain our late reverberation model. In this section, it is necessary to

mention Manfred R. Schroeder with his work Colorless Artificial Reverberation and

Natural Sounding Artificial Reverberation which are explained in the next section.

2.3.3.1 Colorless Artificial Reverberation

In 1961, Manfred R. Schroeder and B. F. Logan presented a paper called "Colorless"

Artificial Reverberation on Journal of Audio Engineering Society [16]. This paper

introduced the term digital reverberation. Modern reverberation techniques rely on

digital reverberation implementations. This paper is regarded as a milestone in digital

audio effects for that reason.

The need for the design of artificial reverberation comes from the costly and inef-

ficient implementations of reverberation on analog domain. The research to simu-

late multiple reflections in a room lead to the design of building blocks to simulate

these reflections. "Colored" reverberation is introduced where reverberation is imple-

mented with changes in the frequency response. The work of Schroeder and Logan

aimed for the solution of this problem suggesting an all-pass filter with same rever-

beration effect.

Electronic reverberators have definite advantages over modelling real reverberation

chambers directly. Price of modelling and having a reverberation chamber is not

something everyone can afford. On the other hand an electronic reverberator is easy to

implement on any microprocessor architecture with embedded audio codec. However,

an ideal way to represent reverberation should be artificial in the sense that it can be

easily represented as a LTI system overall.

Simulating the frequency response of large rooms is a chanllenging problem in rever-

beration algorithm designs. In his paper, Schroeder states that a room can be charac-

terized by its normal modes of vibration which can be described mathematically as in

Equation 2.42.
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Number of Modes =
4πV

c3
f 2 (2.42)

From Equation 2.42, we can see that number of modes are independent from room

shape and square proportional with frequency. In this equation V is the volume of the

room, c is the velocity of sound and f is the frequency. There exists a term of critical

frequency fc, which is the moment when many modes overlap due to the high density

of echoes. The critical frequency can be shown mathematically in Equation 2.43.

fc = 2000

√
T

V
(2.43)

In the Equation 2.43, T is the reverberation time in seconds and V is the volume of

the room in m3. When the frequency gets near and above this frequency range, it is

hard to hear individual scatterings and echoes due to the increased number of modes

resulting into irregular amplitude frequency response overall. For a human ear, it

is hard to distinguish these fluctuations in the frequency response so we perceive

them as an overall change and a collection of each impulse response into a totalized

impulse response. The method to test reverberation chambers is to apply sine waves

having different frequencies leading to different impulse responses and hearing the

output signals reflected back from the walls of the room. Another much effective

method is to use psycho-acoustically enhanced test signals, specialized noises, to

find much smoother impulse responses. Up until colorless reverberation, the only

disadvantage of artificial electronic reverberators is its hard applicability to model the

smooth frequency response of a room. The colored reverberation algorithm is shown

in Equation 2.44. Magnitude response and z transform of Equation 2.44 is given in

the following equations.
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y[n] = x[n− d] + g.y[n− d] (2.44)

H(ejw) =
e−jwd

1− g.e−jwd
(2.45)

H(z) =
z−d

1− g.z−d
(2.46)

H(z) =
z−10

1− 0.5.z−10
(2.47)

H(ejw) =
∞∑
k=1

gk−1.e−jwkd (2.48)

|H(ejw)|2 =
1

1 + g2 − 2.g.cos(w.d)
(2.49)

|H(ejw)|2 =
1

1 + g2 − 2.g.cos(10w)
(2.50)

h[n] =
∞∑
k=1

gk−1.δ[n− k.d] (2.51)

As can be seen from the impulse response and its Z-Transform, we can say that the

frequency response is colored, in the sense that it effects the output radically like

a comb filter. The colored reverberation algorithm is not applicable to use when

frequency characteristics of the input is not intended to change. In these applications,

we have used the colorless artificial reverberation algorithm in order to conserve the

frequency characteristics of the input signal.

2.3.3.2 Early Reflections

Early reflections are the reflections coming back from audio source to audio sink (ear)

in nearly 100ms. This short time of 100ms enables us to use tapped delay lines (TDL)

to model early reflections. Early reflections are important perceptually that they can

create the 3D spatial positioning of the audio sources to our ears, so if possible it is

better to model spatial features in early reflections.

Modelling early reflections with tapped delay lines (TDL) is the most common ap-

proach to get the desired reverberation. Air absorption and reflection pattern model

can be done by filtering the input signal first and then passing it from through TDL.

Early reflections and late reverberation are concurrent. At the point that early reflec-
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tions start to disappear, late reverberation starts to appear. Spotting early reflections

and the feedback of early reflections to late reverberation are important in reverbera-

tion design. In this way, more natural and informed late reverberation can be achieved.

2.3.3.3 Late Reverberation

Late reverberation requires a reverberation impulse response having two important

features: a smooth (not too smooth) decay and a smooth (not too regular) frequency

response [16]. Natural reverberation decays exponentially, this gives us a smoothly

decaying impulse response overall. In addition to this a decaying noise process can be

sampled and introduced to decaying late reverberation to make it sound more natural.

To make the frequency response smooth and free of irregularities, one should take

the mode density especially high. This choice leads modes to spread out uniformly

resulting into a smooth frequency response overall.

Moorer experimented with the method of introducing exponentially decaying white

noise as a late reverberation impulse response[16]. White noise corresponds to both

of the conditions that is required by the late reverberation: smooth decay and smooth

frequency response. When compared with the ideal late reverberation, we can say that

it is more colored than the real late reverberation obtained by the introduction of the

exponentially decaying white noise impulse response. What comes to mind with late

reverberation is that if we can use cascaded all-pass filters, as Schroeder suggested,

we can obtain desired late reverberation algorithms without changing the frequency

response of the input [16]. Even for this purpose, dedicated hardware optimized for

all-pass sections are built in today’s audio applications. All-pass filter design allowed

audio engineers to separate the design procedure to two: First to design the duration

and density of the reverberation and secondly to add desired coloration to the input

by filtering the input with the desired response. In order to virtualize and separate the

environment, Schroeder defined the term colorless reverberation, where he defined

an ideal, virtual reverberation without changing the frequency response [16].

The most common way to use all-pass filters for late reverberation modelling is to

cascade them to obtain impulse expanders, where you can form your unique reverber-

ation effects with the desired gain and delay parameters. In order to simulate that in
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MATLAB, we have written our own all-pass filter function called allpass(x,M, g),

where x is the input signal, M is the delay in terms of samples and g is the gain

parameter. Using this function, cascaded all-pass filter implementation is straightfor-

ward to implement with this line of code: y = allpass(allpass(x,M1, g1),M2, g2);

where M1 = 35000;, M2 = 60000;, g1 = 0.5; and g2 = 1;. The plot ot the cascaded

all-pass filter output y can be seen in the Figure 2.14. In order to illustrate the all-pass

functionality, we have also included the power spectral density estimate by Welch

method to compare the input and output frequency responses. As can be seen from

Figure 2.15 and 2.16, the only difference is in the amplitude since the gains we have

given to the parameters are different than 1. Still the shape of the frequency response

stays the same as expected.

Figure 2.13: The time plot of the Original Input Signal x.

2.3.4 Reverberation Implementation

Overlap-Add method is used to model reverberation real-time. Frames are used to

buffer a part of the input signal. Within the time limit of each frame, a new frame is
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Figure 2.14: The time plot of the Output Signal y.

processed. The circular buffer implementation is designed using ConCurrentQueue

structure in C#, which represents the circular buffer structure.

2.4 Wah-Wah Effect

Wah-wah effect, similar to its name, produces a variation of the input signal with

the basic human voice "Wah". The wah-wah effect actually is a time varying band-

pass filter where the center frequency, fc, of the band-pass filter changes with time.

This time-varying filtering with changing center frequency creates this unique effect

called wah-wah. Wah-wah is generally used in rock lead guitar parts and offered to

the guitar player as a foot controllable pedal. This allows the player to decide on the

center frequency like a gas pedal in a car.

The structure of the time-varying band-pass filter of the wah-wah effect is the state

variable filter. In wah-wah implementations, we preferred to use this structure be-

cause of the reason that it has many implementations in addition to wah-wah and has
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Figure 2.15: Power Spectral Density Estimate by Welch Method of the Original Input
Signal x.

parameterized settings to obtain the desired center frequencies. The main advantage

of the state variable filter is the ability to provide low-pass, band-pass and high-pass

filter simultaneously. The state variable filter structure used in wah-wah effect is plot-

ted in Figure 2.17.

Looking at Figure 2.17, we can see the input x[n], low-pass output yl[n], band-pass

output yb[n] and high-pass output yh[n]. The outputs are created using the state vari-

able filter where T represents a unit delay block. The equations for the outputs are

given starting from Equation 2.52.

yl[n] = F1yb[n] + yl[n− 1] (2.52)

yb[n] = F1yh[n] + yb[n− 1] (2.53)

yh[n] = x[n]− yl[n− 1]−Q1yb[n− 1] (2.54)

where F1 and Q1 are related to the cut-off frequency fc and damping parameter, d.
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Figure 2.16: Power Spectral Density Estimate by Welch Method of the Output Signal
y.

Figure 2.17: State Variable Filter Used In Wah-Wah Effect.

F1 = 2sin(πfc/fs) (2.55)

Q1 = 2d (2.56)

The highest frequency note produced by a 24th fret electric guitar (excluding har-
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monics), is the 24th fret E note, which is approximately 1318Hz. Generally, wah-

wah effect is used with distortion which introduces and amplifies the harmonics be-

yond this range so we choose a band-pass cut off frequency, fc ranging from 500

to 3000 Hz to include higher bandwidth. The algorithm we have implemented is

called an Auto-Wah, where the band-pass cutoff frequency fc ranges automatically

in a triangular wave pattern during the real-time playing of the guitar. The param-

eters are minf , delta, maxf , desired minimum frequency, change in center fre-

quency per sample and desired maximum frequency respectively. Fw is the trian-

gular wave frequency parameter and effects the rate of change of the center fre-

quency, fc. Figure 2.18 shows the specific triangular band-pass frequency func-

tion for the parameters set to: minf = 500, maxf = 3000, Fw = 2000 and

delta = Fw/Fs = 2000/44100 = 0.0454. Fw is chosen to be large to show the

change over time easily, in normal wah-wah effects Fw is chosen to be much smaller.

Figure 2.18: Auto-Wah Band Pass Frequency Over Time.

One of the most famous pedals in wah-wah guitar audio effects is the Jim Dunlop

Original GCB95 model. This wah pedal originated from the 1966 Thomas organ

model and basically is the oldest wah pedal ever designed. The foundations under the

wah pedal is the time-varying band pass filtering, so the shape and range of the filter

plays an important role in the output sound. Starting with MATLAB, we have im-
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plemented this effect on various platforms and also in real-time using C# on windows

applications and C/C++ on Texas Instruments eZDSP implementations. Let us first

start with the basics of the effect using generic MATLAB function calls and plots.

In MATLAB, we first start with the trimming of the triangular wave of band-pass

frequency change to the length of the input signal. The other parameter sets are the

damping factor, d which is initialized with d = 0.05 and F1, the calculated fc depen-

dent parameter is recalculated in the loop for each changing value of fc. Fc and Q1

is calculated beforehand using the generic formulas given above. The next step is to

put the parameters Fc and Q1 into the for loop with the state variable filter equation to

calculate each sample output with the corresponding F1 value. The wah-wah output

that we are interested is the yb[n] output, which is the band-pass output of the state

variable filter. Finally, we normalize the output dividing each sample output value to

the maximum of the outputs, to get an output ranging from -1 to 1. The input wav file

and the output wavfile are shown as in Figure 2.19.

Figure 2.19: Comparison of the Original Input, x[n], Auto-Wah Effect Output, y[n].
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CHAPTER 3

BASICS OF GUITAR DISTORTION: DIODE LIMITER AND

PRE-AMPLIFIER

3.1 The Basic Building Block: Diode Limiter

Distortion and overdrive are two main highly nonlinear guitar audio effects. The

signature guitar tones of famous guitar players are compared discussing their distor-

tion and overdrive guitar effects. Through the emergence of blues, rock and metal,

the implementations of distortion and overdrive guitar effects pedals have changed

drastically. The main tone of a guitar player can be separately investigated into two

separate signal channels: Clean Channel and Lead/Overdrive/Distortion Channel (dif-

ferent names can appear between manufacturers). This thesis presents a method to

easily simulate these two channels, obtaining desired audio outputs.

Famous blues and rock players have unique amplifier, equalizer, rack and stomp box

effects to characterize their sounds. The unique sounds of amplifiers, drives, equaliz-

ers and effects pedals give the guitar player the opportunity to form their unique sound

and feel through music. Guitar audio effect distortion first used by over-driving valve

tube amplifiers in a way that the amplifiers are used at their nonlinear points. In dis-

tortion and overdrive effects circuits a structure called diode limiter is commonly used

as a building block. Diode limiter provides the two way clipping in its simplest way.

Starting from the modelling of the diode, we will advance to how we can consider

the effects of capacitors on the dynamic processing of the distortion. First we should

begin with the famous Shockley diode equation as shown in Equation 3.1 [20]:
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Id = Is.(e
Vd

n.VT − 1) (3.1)

Id = Diode Current (A)

Is = Diode Reverse Bias Saturation Current (A)

Vd = Diode Voltage (V)

VT = Diode Thermal Voltage (V)

n = Emission Coefficient / Quality Factor

Figure 3.1: The I-V Characteristic of Shockley Diode Model.

The parameters used for the I-V characteristics for the diode model simulation are as

follows: Is = 2.52e− 9A, VT = 45.3e− 3V and n = 1 for ideal conditions [12].

3.2 The Importance of Pre-Amplifier

Whether you use a solid state (FET) amplifier or tube amplifier, the first stage of

the signal amplification follows the route of a structure called pre-amplifier. The

importance of the pre-amplifier is the amplification of the input signal to be later

processed at the power amplifier and tone sections. A vacuum tube amplifier called
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Figure 3.2: National Instruments Multisim 11.0 Schematic of a Simple Diode Circuit.

12AX7 is used extensively in pre-amplifier designs. Pre-amplifier circuit including

12AX7 can be modified with different resistance and capacitance values to obtain

different guitar tones. Testing many of the offered designs from numerous guitar

amplifier manufacturers, the following configuration from AX-84 Cooperative Tube

Guitar Amp Project gave me the best results overall, both in listening and analyzing

phases [17].

Figure 3.3: Generic 12AX7 Vacuum Tube Pre-Amplifier Schematic.

The design includes firstly the input voltage divider feeding the gate of the 12AX7

Vacuum Tube Amplifier, amplified by the 12AX7 amplifier and then DC block ca-

pacitance applies tone control over the output signal. There are couple of models

when analyzing and modelling vacuum tube amplifiers: Koren’s Tube Model [13],

Child-Langmuir Model and recently introduced physically-informed real-time capa-
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ble Vacuum Tube Model of Dempwolf-Zölzer Model [6]. We will briefly look into

each model and decide on our simulation method.

In DAFx-11 Conference, Dempwolf and Zölzer presented a physically-motivated

12AX7 triode model, which is also real-time capable due to its low computational

complexity [6]. The model starts with stating the cathode current and that the expo-

nent of the generic equation can be different from 1.5 as stated in Koren’s Model and

other main vacuum tube models. Triode characteristics are dependent on a number of

parameters: Va, anode voltage, Vg, grid voltage and Ik, Ia and Ig, cathode, anode and

grid currents respectively. Since grid and anode currents flow both to the cathode,

the equation Ig + Ia = Ik follows naturally. Another pre-requisite for easier analysis

is to model the three terminal triode as a two-terminal one introducing the effective

voltage which is basically the amalgamation of grid and anode voltages, Vg and Va

by the amplification factor, µ. The effective voltage is stated mathematically as in

Equation 3.2.

Veff = (Vg +
1

mu
.Va) (3.2)

Following the effective voltage equation, the triode model can be simplified as in the

diode model using effective voltage as in Equation 3.3.

Ik = G.x(Veff )
3
2 (3.3)

The cathode current equation is applicable under normal operating conditions (Vg =

−2V and Va = 300V ) [6].The ideal tube models ignore the grid current(Ig = 0) since

it just has an effect on the capacitive distortion models. However, in some cases re-

alistic approaches tend to take Ig into consideration. Practically, deviations from the

ideal models occur at 20 percent, such that even the tubes manufactured by the same

company may have differences in characteristics. The cathode current is modelled

using Equation 3.4. The parameter γ represents these changing manufacturing differ-

ences. Dempwolf and Zölzer also suggest using a parameterized cathode current as

in Equation 3.4.
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Ik = G.(Veff )
γ, Veff > 0, Veff < 0 is not considered (3.4)

The grid and cathode also constitutes a relation between anode and cathode in a two-

terminal tube diode, so we can consider the same physical background formulization

for the grid current. Upon studies, it is found that the anode voltage, Va has little or

no effect on the grid current, so we can model grid current as a nonlinear function of

grid voltage, Vg,the grid perveance, Gg and exponential parameter ξ.

Ig = f(Vg) = Gg.Vg
ξ (3.5)

Dempwolf and Zölzer suggested using smooth functions for the triode model, elim-

inating discontinuities coming from piecewise functions [6]. They offered to use

logarithmic functions as the h(x) function below rather using piecewise functions.

h(x) = log(1 + eC.x).
1

C
(3.6)

Finalizing the equations requires to replace the smooth versions the previous cathode

and grid currents with the new logarithmic smoothing function as in equations 3.7

and 3.8.

Ik = G.(log(1 + exp(C.(
1

µ
.Va + Vg))).

1

C
)γ (3.7)

Ig = Gg.(log(1 + exp(Cg.Vg)).
1

Cg
)ξ + Ig0 (3.8)

Subtracting Ig from Ik gives the desired anode current Ia as in Equation 3.9.

Ia = Ik − Ig (3.9)
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As a result, we have three equations at hand and two sets of parameters: (G,C, µ, γ)

for cathode current and (Gg, Cg, ξ, Ig0) for grid current. Dempwolf-Zölzer [6], used

a MATLAB Curve Fitting Tool to find the suitable parameters for their proposed

model. The results are promising such that they have nearly exact match with the

actual tube measurements. The table for the parameters used to model 3 different

tubes are given in Figure 3.4. [6].

Figure 3.4: The Model Parameters Found by Curve Fitting Toolbox of MATLAB.
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CHAPTER 4

WAVE DIGITAL FILTER MODELLING APPROACH OF

GUITAR DISTORTION

4.1 Wave Digital Filter Modeling of Guitar Distortion

Wave Digital Filters are developed by Alfred Fettweis in 1969 to model classical fil-

ters using port equivalents of actual circuitry present in the designed schematics [7].

These filters are preferably in lattice or ladder configurations. In order to understand

the design a wave digital filter model, a sufficient knowledge of network theory is

required. This section will continue by first introducing a two-port network analy-

sis, then the applicability of wave digital filters to the real-time implementations of

distortion and overdrive guitar audio effects will be discussed.

4.1.1 Two-Port Networks

A general two-port network is defined by its input, output voltages and currents as

given by parameters: V1, I1 for input V2, I2 for output as shown in Figure 4.1.

The essential rule for a two-port network is to have the current going into one terminal

of a port same as the current leaving the other terminal of the same port [1]. With this

rule satisfied, a two-port network can be described by parameter matrix. Z parameters,

y parameters and h parameters are given respectively as in Equations 4.1, 4.2 and 4.3.
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Figure 4.1: Simplest Two-Port Network Configuration.

V1
V2

 =

z11 z12

z21 z22

I1
I2

 (4.1)

I1
I2

 =

y11 y12

y21 y22

V1
V2

 (4.2)

V1
I2

 =

h11 h12

h21 h22

I1
V2

 (4.3)

Using two-port network solutions, wave digital filters are used to model each and

every component of a previously known circuit. It is an alternative way to directly

solving the state space solutions of a nonlinear circuit.

4.1.2 Application of Wave Digital Filter Theory to Nonlinear Audio Circuits

Wave Digital Filter Theory focuses on how we can represent digital filters in wave

digital domain. We first establish our reference domain then convert each one and

two port circuit block into wave digital domain. In order to do that we have to give

reference to Alfred Fettweis’ Wave Digital Filters: Theory and Practice [1985] Invited

Paper [7]. In this paper Fettweis defines the wave digital filter as a representation of

a class of digital filters that are closely related to classical filter networks preferably

lossless filters inserted between resistive terminations. For each and every wave digi-

tal filter, there corresponds a reference filter from which it is derived.
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In 2006, Matti Karjalainen and Jyri Pakarinen published a paper called "Wave Digital

Simulation of a Vacuum-Tube" Amplifier as an alternative method for the nonlinear

state-space or SPICE circuit simulations of vacuum tube amplifiers [11]. The wave

digital modelling of nonlinear audio circuits allow the designer to model each and

individual block and then simulate them together to form much complex circuits [4].

Though the wave digital filters allow block modelling of each component, it is not a

standardized process to model each and every block and make the connection algo-

rithms [15]. In order for a wave digital filter to be formed, the inside circuitry must be

known prior to modelling the input output filter, so that wave digital filters can not be

used for our purposes of nonlinear system identification. Since wave digital filtering

is an alternative way of simulating distortion and overdrive circuits, this chapter is

included to introduce alternative methods to the reader. The implementations of dis-

tortion modelling with wave digital filters are not included because of these reasons.

39



40



CHAPTER 5

SYSTEM IDENTIFICATION APPROACH TO DISTORTION

MODELLING

5.1 System Identification Approach to Distortion Modelling

System identification is used to model dynamic systems from collected data [8]. A

system can be characterized by its input output pair. External factors such as noise

and unobservable data effect the system unintentionally [3]. Distortion and overdrive

nonlinear effects are similar highly nonlinear dynamic systems. For the modelling of

these effects, black box system identification approach can be selected. Black box

modelling of a system includes forming a system structure only with input and output

pair analysis [14]. No additional information about the inside circuitry is known in

black box modelling.

The most common approach to identify a system is to first model that system linearly.

For that purposes, we can use LCCDEs known also as the discrete time difference

equation shown in the following equation:

y(t) + a1y(t− 1) + ...+ any(t− n) = b1u(t− 1) + ...+ bmu(t−m) (5.1)

One of the best ways to understand this equation is to write it in the form of output

predictions with previous information as follows:
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y(t) = −a1y(t− 1)− ...− any(t− n) + b1u(t− 1) + ...+ bmu(t−m) (5.2)

In order to shorten the notation into the matrix form we wanted to denote the param-

eters and the shifted responses as follows:

θ = [a1...an b1...bm]T (5.3)

ϕ = [−y(t− 1)− ...− y(t− n) u(t− 1) + ...+ u(t−m)]T (5.4)

Resulting into writing the difference equation in the matrix form as follows:

y(t) = ϕT (t)θ (5.5)

Where such an estimation depends on the parameter set θ, the prediction equation

should be written as follows:

ŷ(t|θ) = ϕT (t)θ (5.6)

Linear estimation models for distortion and overdrive are not used since these effects

are highly nonlinear. Static nonlinear modelling approaches are used. These models

try to simulate hard and soft clipping static functions [21]. The introduction to distor-

tion modelling is done by implementing hard clipping to an audio input[21]. This is

the static distortion model found in most applications. Distortion guitar audio effect is

an intentional harmonics exaggeration to obtain more sustain, boldness and compres-

sion, eventually leading to blues and rock sound. Mathematically shown in equations

5.7 and 5.8, is the hard clipping and an extension to it, compressed clipping. Com-

pressed clipping additionally has amplitude degradation if the input signal is above

the specific threshold, a. This will in turn results into harmonics having much more

power in the output.
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yhc[x[n]] =


x[n], if − th ≤ x[n] ≤ th

−th, if x[n] < −th

th, if x[n] > th

(5.7)

Figure 5.1: Symmetrical Hard Clipping.

Upon observing the output signals of various distortion amplifiers and elementary

input/output models, we came up with introducing a hard compression to the hard

clipping function. This application exaggerates the odd harmonics created by the

clipping function, resulting into compression of the input values behind a threshold

level, a. The mathematical models are shown in the output equation 5.8 of ycc[x[n]]

with the parameters a and b. In addition to output function, MATLAB plot and

power spectral density of the compressed clipping output signal are shown in Figures

5.3 and 5.4.
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Figure 5.2: Power Spectral Density of the Symmetrical Hard Clipping Output to 440
Hz Sinusoidal Tone.

ycc[x[n]] =


x[n]/a, if − a ≤ x[n] ≤ a

1−b
a−1 .x[n] + a.b−1

a−1 , if x[n] > a

1−b
a−1 .x[n]− a.b−1

a−1 , if x[n] < −a

(5.8)

The results of this comparison can be seen by looking at the power spectral densities

of each output function, Figures 5.2 and 5.4. Compressed Clipping method enhances

the odd harmonics higher than the static hard clipping. This method is used generally

for the elementary distortion models with compression. While listening to the results,

in case of compressed clipping we hear the enhanced odd harmonic inside the signal.

This gives the output signal additional harshness that we want in a good distortion

model.

The next implementation we are going to present is the smooth static nonlinearity.

This method is mentioned in DAfx [21], to basically simulate and model distortion

and fuzz in general. The difference is that the input and output relational mapping
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Figure 5.3: Symmetrical Compressed Clipping.

function is a smooth function compared to hard clipping and compressed clipping.

The mathematical model is shown in Equation 5.9.

f(x) = sgn(x)(1− e−|x|) (5.9)

What this smooth static nonlinearity does is that given input values x, it generates

output values y for each sample input. The input output relationship of the nonlinear

static distortion function is shown in Figure 5.5.

The introduction of smoothness makes the distortion output much more organic to the

ear than the previous models. In the previous models, we can sense some digitiza-

tion and inorganic sounds created by the harsh clipping in the output in the previous

implementations.

Continuing with a more generalized expression for nonlinear black-box models for

nonlinear system estimation, we can state the generalized nonlinear system in Equa-

tion 5.10.
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Figure 5.4: Power Spectral Density of the Symmetrical Compressed Clipping Output
to 440 Hz Sinusoidal Tone.

ŷ(t|θ) = g(Zt−1, θ) (5.10)

In this general model, explicit time dependence is omitted and Zt−1 is the regres-

sion parameter where past input and output values are stored and θ is the nonlinear

mapping parameter from the regressor space to the output space.

The regressor model can be expanded and generalized using the following equations:

g(Zt−1, θ) = g(ϕ(t), θ) (5.11)

Generalized equations give us an insight about the estimation methods. In order to

specialize our estimation method, we will continue with the neural network estima-

tion method called ANFIS (Adaptive-Network-Based Fuzzy Inference System) in the

following chapter. This method uses fuzzy rules to train, learn and model nonlinear

functions and is applicable to model distortion and overdrive.
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Figure 5.5: Static Nonlinearity of the Distortion Function.
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CHAPTER 6

ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE

SYSTEM

6.1 ANFIS: Adaptive-Network-Based Fuzzy Inference System

Neural networks are used as a system identification method with training, learning

and modelling steps. ANFIS is one of the applicable neural network system identi-

fication methods to model highly nonlinear dynamic systems such as distortion and

overdrive. Introduced in 1993 by Jyh-Shing Roger Jang [10], ANFIS nonlinear mod-

elling approach introduced an adaptive node based neural network system identifi-

cation. This method involves training a set of input and output values and learning

the relation between the pair. Considering highly nonlinear audio effects, distortion

and overdrive, it is applicable to use a black box neural network system identification

method. At this point ANFIS provides a cost-efficient and reliable way of modelling

the black box between input and output pairs of distortion and overdrive guitar audio

effects.

ANFIS method is introduced to standardize the existing methods which transfers hu-

man knowledge and decision making into a rule based mathematical method and

training data. Another point is the need for effective methods for tuning the member-

ship functions (MF) to minimize output error, hence maximizing performance index.

Firstly this chapter introduces what this method is, and then the chapter continues

with the adaptation of this algorithm to our case of modelling overdrive and distor-

tion.
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In ANFIS structure, the fuzzy logic is implemented using if-then structure. This

method is basically a formulated mapping of the inputs to outputs with the introduc-

tion of parameters. Fuzzy if-then rules are used extensively in system identification,

where a dynamic system can be represented by decision making rules. The ANFIS

structure used in modelling distortion or overdrive effect can be shown using layer

representations. In this specific ANFIS structure, we have inputs (x[n] and x[n− 1])

and obtained a single output (y[n]). For the training, inputs xk[n] and xk[n − 1] are

the current guitar output signal array and single delayed guitar output signal array of

length k. The training output array of length k, yk[n] is obtained either by the ideal

nonlinear state space circuit space solution of the distortion/overdrive guitar effect

circuit or real overdrive/distortion guitar effect pedal output for the input xk[n].

The architecture and learning rule of ANFIS relies on the definition of an adaptive

network. A multilayer feed-forward adaptive network has nodes where each node

has its own function processing its incoming input signal into output. Each node is

connected to one another via links where the weights are mentioned in their specific

functions. Square nodes are adaptive nodes which have parameters. Circle nodes are

fixed nodes which do not have parameters. Parameters of an adaptive network is a

set where each parameter of every node is included. The procedure of updating the

parameters is called training and learning. To illustrate such a network, the ANFIS

structure with two inputs, single output and N rules is shown in Figure 6.1.

First layer consists of adaptive nodes, which are represented as square nodes. The

node functions are the fuzzy membership functions, which generally are generalized

or gaussian bell functions. In this structure, we used generalized bell-shaped func-

tion for fuzzy membership functions for both A and B fuzzification members. The

node outputs of the first layer are represented as O1
i . In our ANFIS implementations,

number of rules is selected as 10 (N = 10).

O1
i = µAi

(x[n]) for i = 1, 2, ..., 10. (6.1)

O1
i = µBi

(x[n− 1]) for i = 11, 12, ..., 20. (6.2)

This special function µ(x) is called the membership function of Ai or Bi, and it

specifies the degree to which the given input x[n] or x[n − 1] satisfies the quantifier

Ai or Bi. In this ANFIS application, µAi
(x) is chosen to be the generalized bell-
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Figure 6.1: ANFIS structure with 2 inputs x[n] and x[n − 1], and single output y[n]

[10].

shaped distribution with maximum 1 and minimum 0 as given in the following two

bell shaped formulas.

µAi
(x[n]) =

1

1 + [(x[n]−ci
ai

)2]
bi
. (6.3)

µBi
(x[n− 1]) =

1

1 + [(x[n−1]−di
ei

)2]
fi
. (6.4)

In this two bell-shaped formulas [ai bi ci] and [di ei fi] are the parameter sets, also

called premise parameters. Changing these parameters results into different bell-

shaped member functions, also different system models. As MATLAB provides,

there are different types of membership functions named by their distribution shapes

such as: trimf, trapmf, gbellmf, gaussmf, gauss2mf, pimf, dsigmf, psigmf. This layer

is called fuzzification layer since the inputs are mapped with corresponding fuzzy
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membership functions.

Second layer is the multiplication layer, where the fixed circle nodes make simple

multiplications of the incoming inputs. The outputs of this layer are called the fire

strengths of the rules. The firing strengths of each rule are given in Equation 6.5.

O2
i = wi = µAi

(x[n]).µBi
(x[n− 1]). for i = 1, 2, ..., 10. (6.5)

In the third layer, the firing strengths of each previous node outputs are normalized.

This layer is called the normalization layer. These nodes are also fixed circle nodes as

the second layer. The normalization function for the third layer is given in Equation

6.6.

O3
i = w̄i =

wi∑10
i=1wi

. for i = 1, 2, ..., 10. (6.6)

Fourth layer consists of adaptive square nodes, which multiplies the normalized firing

strengths with the parameterized rules. This layer is called rules. These rules are

coming from the Sugeno fuzzy rule model. Sugeno fuzzy rule parameters are called

consequent parameters, and denoted with pi, qi and ri. Sugeno fuzzy rules have

if-then structure as shown in Equations 6.7 to 6.13. Each normalized firing strength,

w̄i, is then multiplied with the corresponding rule parameterized polynomial to obtain

the fourth layer outputs, O4
i . The formulization is given in Equation 6.14.

Rule 1 : If x[n] is A1 and x[n− 1] is B1, (6.7)

then f1 = p1x[n] + q1x[n− 1] + r1. (6.8)

Rule 2 : If x[n] is A2 and x[n− 1] is B2, (6.9)

then f2 = p2x[n] + q2x[n− 1] + r2. (6.10)

... (6.11)

Rule 10 : If x[n] is A10 and x[n− 1] is B10, (6.12)

then f10 = p10x[n] + q10x[n− 1] + r10. (6.13)
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O4
i = w̄ifi = w̄i(pix[n] + qix[n− 1] + ri). (6.14)

The fifth and last layer is the defuzzification layer, which sums up the incoming node

outputs. This summation output is also called the crisp output, y[n] in a single output

ANFIS structure. The output of the ANFIS structure, y[n] is given in Equation 6.15.

y[n] = O5
i =

10∑
i=1

w̄ifi =

∑10
i=1wifi∑10
i=1wi

. (6.15)

In the final output node equation, we have obtained an output depending on both

premise parameters (ai, bi, ci, di, ei, fi) and consequent parameters (pi, qi, ri). These

parameters are coming from two adaptive layers of the ANFIS structure, Layer I

(Fuzzification) and Layer IV (Rules) respectively. Using different learning algo-

rithms, ANFIS method tries to optimize both premise and consequent parameters

using the training input and output data.

ANFIS method can be summarized with the steps below:

1. Compare the input variables with the membership functions on the premise part

to obtain the membership values (or compatibility measures) of each linguistic

label. (This step is often called Fuzzification.)

2. Combine (through a specific T-norm operator, usually multiplication or min.)

the membership values on the premise part to get firing strength (weight) of

each rule.

3. Generate the qualified consequent (either fuzzy or crisp) of each rule depending

on the firing strength.

4. Aggregate the qualified consequents to produce a crisp output. (This step is

called defuzzification.)
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6.1.1 Hybrid Learning Algorithm

The learning method that we use in ANFIS implementation is the hybrid learning

algorithm. The output of the ANFIS structure, y[n] can be written as a linear com-

bination of consequent parameters (pi, qi, ri), assuming that the premise parameters

(ai, bi, ci, di, ei, fi) are fixed.

y[n] = w̄1f1 + w̄2f2 + ...+ w̄10f10. (6.16)

= w̄1(p1x[n] + q1x[n− 1] + r1) + w̄2(p2x[n] + q2x[n− 1] + r2) + ... (6.17)

+ w̄10(p10x[n] + q10x[n− 1] + r10). (6.18)

=
10∑
i=1

(w̄ix[n])pi + (w̄ix[n− 1])qi + (w̄i)ri (6.19)

Hybrid Learning Algorithm consists of both forward and backward pass through the

adaptive node parameter updates. In the forward pass of the hybrid learning algo-

rithm, the consequent parameters in Equation 6.19 are estimated by the least squares

method. In the backward pass, the error rates propagate backward and the premise

parameters are updated by the gradient descent [10]. The identified consequent pa-

rameters are optimal under the condition that the premise parameters are fixed. It is

shown that the hybrid approach is much faster than the gradient descent only method.

There are four proposed methods to update the premise and consequent parameters

[10]:

1. Gradient Descent Only: All parameters are updated by gradient descent.

2. Gradient Descent and One Pass of LSE: The LSE is applied only once at the very

beginning to get the initial values of the consequent parameters and then the gradient

descent takes over to update all parameters.

3. Gradient Descent and LSE: This is the proposed hybrid learning rule, which ap-

plies LSE in the forward pass and applies gradient descent in the backward pass [10].

4. Sequential (Approximate) LSE Only: The ANFIS is linearized w.r.t. the premise

parameters and the extended Kalman filter algorithm is employed to update all param-

eters. This is proposed in the neural network literature before ANFIS architecture.
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Mathematical formulation of the node function requires the knowledge of its previ-

ous outputs and the parameters used in the functions. For each layer of the adaptive

network there exist a number of nodes which can have different functions. We can

denote this function as Ok
i , which denotes the output of the ith node at the kth layer.

Assuming that the adaptive network has L layers, we can define the function as fol-

lows.

Ok
i : Ok

i (O
k−1
1 , ...Ok−1

#(k−1), a, b, c, ...) (6.20)

The node output function depends on the node output functions of the previous node

outputs and its own parameters denoted by a, b and c and more. These outputs are

compared with the training data T to find the error measure, which in this case is the

cumulative squared error as depicted in the following formula.

Ep =

#(L)∑
m=1

(Tm,p −OL
m,p)

2
(6.21)

Summing up each error value for each training data entry p, where p ranges between

1 and P, we can obtain the total error measure, denoted by E.

E =
P∑
p=1

Ep (6.22)

The method for finding the optimal parameters (learning procedure) follows the gra-

dient descent in E over the parameter space, calculating the error rate for pth training

data. The formulation for the error rate for the output node at ith node of the Lth layer

can be shown as below.

∂Ep
∂OL

i,p

= −2(Ti,p −OL
i,p) (6.23)
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Each internal ith node of kth layer has its own error rate obtained by the chain rule of

derivation, where k is between 1 and L− 1.

∂Ep
∂Ok

i,p

=

#(k+1)∑
m=1

∂Ep
∂Ok+1

m,p

∂Ok+1
m,p

∂Ok
i,p

(6.24)

This gives us the gist of the ability to calculate the error rate of an internal node as a

linear combination of the error rates in the next layer. For all k k between 1 and L

and i between 1 and #k, we can find the specific error rate by using the previous two

formulas.

Introducing an arbitrary parameter α of the given adaptive network and output related

nodes O∗ whose outputs depend on α, we can define the error output according to

parameter α as follows. In the following function S is the set of nodes whose outputs

depend on α.

∂Ep
∂α

=
∑
O∗∈S

∂Ep
∂O∗

∂O∗

∂α
(6.25)

For the gradient descent algorithm the update formula for the parameter α can be

shown as below.

∆α = −η∂E
∂α

(6.26)

where η is the learning rate, k is the step size and can be manipulated as:

η =
k√∑
α(∂E

∂α
)2

(6.27)

The speed of convergence, as stated in the original paper, depends on step size pa-

rameter k. The speed also depends on the length of each gradient transition in the
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parameter space. In the next sub-chapter, I will talk about the two methods for learn-

ing algorithms: Batch (Off-Line) Learning and Pattern (On-Line) Learning which are

both under Hybrid Learning Rules.

6.1.1.1 Batch (Off-Line) Learning - Hybrid Learning Technique

This method incorporates both the gradient descent algorithm and the least squares

estimate (LSE) to identify parameters, which makes it more robust than just using the

gradient method. To explain this method of solution, we have to first look at the main

input and output relations. Consider an adaptive network having set of input variables

I and one output and output function F having parameters from the set S as follows

[10]:

output = F (I, S) (6.28)

Using linearity, assuming that there happens to be a function H , which makes H ◦ F
linear with some of the elements of S, this makes it possible to use least squares

method identifying parameters. In mathematical representation, if we can show that

the parameter set S can be decomposed into two sets as follows.

S = S1 ⊕ S2 (6.29)

The parameter sets can be summarized as follows:

S = set of total parameters (6.30)

S1 = set of premise parameters (6.31)

S2 = set of consequent parameters (6.32)

where assuming that H ◦ F is linear in the elements of S2, if we apply the Equation

6.28 with this property, we obtain the Equation 6.33.
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H(output) = H ◦ F (I, S) (6.33)

Assuming that the training data P is given, plugging this into Equation 6.33, the

general solution for the output problem can be stated as in Equation 6.34.

AX = B (6.34)

In this general equation, X is the vector representing unknown parameters in S2,

having length M . The dimensions of A, X and B are P×M , M×1 and P×1, re-

spectively. The problem is just an input, output linear algebra solution, where the

number of training data P is, in most cases, are larger than the number of parameters

M . As a result, this problem is an overdetermined problem where there is no exact

solution to the equation at hand. Instead of generating the exact solution, the possible

pseudo solution having the minimized squared error solution can be presented which

is called the LeastSquaresEstimate(LSE). The best possible solution in the least

squares sense can be stated as follows.

X∗ = (ATA)−1ATB (6.35)

In this formula, we call the part (ATA)−1AT as the pseudo-inverse ofA. The solution

for this equation is computationally expensive because of the inverse present in the

formula. In order to solve this problem, iterative approach is selected to compute the

LSE of X . These formulas are used in Adaptive Signal Processing extensively as

follows.

Xi+1 = Xi + Si+1ai+1(b
T
i+1 − aTi+1Xi) (6.36)

Si+1 = Si −
Siai+1a

T
i+1Si

1 + aTi+1Siai+1

(6.37)
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where Si is called the covariance matrix and i ranges from 0 to P − 1. As expected

this iterative algorithm needs to have some initial conditions as: X0 = 0 and S0 =

γI , where γ is a positive large number and I is the M×M identity matrix. It is

time to combine the gradient and the least squares approach to obtain the hybrid

learning technique. This hybrid learning technique includes epochs which includes

both forward and backward passes. The forward pass includes introducing the input

data to the system and signals go forward to calculate each node output until the

matrices A and B in general equation are obtained. Hence, the parameters in S2 are

identified by the sequential least squares formulas in the previous equations. The

forward pass continues until all the node error measures calculated for the first time.

The backward pass does the error rate updating parameters in S1 by propagating the

output end toward the input using gradient method.

6.1.2 Pattern (On-Line) Learning

Pattern learning induces that the parameters of the system are updated after each data

presentation to the system. If a system has a changing characteristics with time, this

pattern learning technique is much preferable to use. For this kind of online learning

the update equations are changed from the previous learning algorithm. This algo-

rithm incorporates the decaying of the old parameters with the decaying or forgetting

factor λ, stated as follows:

Xi+1 = Xi + Si+1ai+1(b
T
i+1 − aTi+1Xi) (6.38)

Si+1 =
1

λ
[Si −

Siai+1a
T
i+1Si

λ+ aTi+1Siai+1

] (6.39)

where λ is between 0 and 1. If the λ is small, this means that the old data effects

decays faster. Faster convergence in some cases can introduce instability and should

be avoided.
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6.1.3 Implementations of ANFIS using MATLAB

MATLAB has an extensive toolbox on fuzzy systems called Fuzzy Logic Toolbox

where you can model your adaptive-network-based fuzzy inference system. Mandani

type fuzzy systems are modelled by mapping input characteristics to input member

functions, input membership functions to rules, rules to a set of output characteris-

tics. Output characteristics are modelled by mapping output member functions, and

the output membership function mapped to a single-valued output or a decision as-

sociated with the output. The function used for Adaptive-Network-Based Fuzzy In-

ference System (ANFIS) is called anfis. The membership functions for the ANFIS

structure can be selected using the genfis1 command.

The basic principles under the ANFIS method is neural networks. These networks

incorporates neural adaptive learning patterns to learn information about an input-

output (I/O) relationship. ANFIS derives its name from "Adaptive-Network-Based

Fuzzy Inference System" where membership function parameters are tuned using

a back-propagation algorithm alone or in combination with a least squares type of

method. In this way, the fuzzy system update and train their parameters to mini-

mize total error. The learning and training process helps the parameters to find their

optimum inputs. Parameter computation is handled by the traction of the gradient

vector. ANFIS uses generally the same procedure with other system identification

algorithms. What ANFIS model uses to find the parameters are the input and output

for forming the training data and the ANFIS system.

Input and output membership functions are modelled using this training data, later

defuzzification of the output membership functions lead to the crisp output which is

the desired output. At this point, the training data is really important to represent

the features of the system, because it is the data that shapes the ANFIS system to

model the nonlinear dynamics. Training data should not be noisy or corrupted hence

this leads to corrupt system models which are not desired. What is needed for this

testing is the "model validation using testing and checking data sets". In this step, the

ANFIS system formed from training data is put under an unknown input and ANFIS

output is compared to the desired output to see if the system works correctly. This is

the crucial step where you use the algorithm to process different inputs and get your
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desired result. In our case, the input is the guitar audio signal which comes from

the electrical guitar to the ANFIS system. The designed system should be put under

test with random playing and testing sound perceptionally to the desired output. The

gist of collecting the training data is to find the most random and lengthy sequence

that you are allowed to have the necessary time to process it. This leads to a greatly

designed member functions and good results in terms of performance and efficiency.

MATLAB allows to test various scenarios before delving into much detail in real-time

coding. For this reason, this part will first start with a basic example to model a

distortion effect that is investigated. I currently use Line 6 Spider IV 15 Watt Combo

Amplifier at home, it is both versatile and effective in its digital signal processing

implementation especially in distortion. In my first implementation, I switched to

the distortion effect, then feed the amplifier with a 440Hz (A440 - 4th Octave A

Note) sinusoidal having amplitude unity, and simultaneously recorded the output of

the amplifier. This is done to see at least what kind of clipping has the amplifier done

to just a single sinusoidal input. With the help of MATLAB, the input output graphs

of the functions are shown in Figure 6.2.

Expected as usual, the distortion channel of my amplifier clipped the sinusoidal around

+0.5 on the positive side and -0.5 on the negative side. This clipping seems to be uni-

form, but the parts where the signal is clipped differs from one to one because of the

dynamics processing of the amplifier, response of the loudspeaker and additionally

the noise added through the processing. Overall, this gives us a gist of how the dis-

tortion channel behaves when feed with distinct inputs. The next step is to build the

ANFIS structure over the training data at hand. The training data for this specific

example is just the input x[n] in one column and the last column is used for the real

output obtained from the output of the amplifier denoted by l[n]. This is represented

in MATLAB as trnData = [x l];. Introductory to the ANFIS method I wanted to

choose 3 input member functions and 3 output member functions for this method,

for tracking to be easy and I will increase member functions to show the effect of

choosing the necessary number of member functions and iterations. The results of

this implementation are given in the Results chapter.
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Figure 6.2: The output of the Line 6 Spider IV Distortion Channel for Sinusoidal
Input at 440Hz.
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CHAPTER 7

ENHANCED MODELLING OF GUITAR DISTORTION

7.1 Enhanced Modelling of Guitar Distortion

In Chapter 6, we have introduced a method for modelling guitar audio effect distor-

tion/overdrive using ANFIS system identification algorithm. This chapter continues

with introducing simulation of clean channel and lead channel of a guitar amplifier

using Enhanced Modelling of Guitar Distortion algorithm. Through the emergence of

blues, rock and metal, there happens to be tons of changes of how the electric guitar

input is amplified, shaped and distorted to get the best possible tone from the sup-

plied equipment. The main tone of a guitar player can be separately investigated into

two separate signal channels: Clean Channel and Lead/Overdrive/Distortion Channel,

changing names through different manufacturers and amplifiers appear. This thesis

presents a method to easily simulate these two channels, obtaining desired audio out-

puts.

Each of electric guitar players have unique amplifier, equalizer, rack effects and stomp

box effects to characterize their sounds. In this chapter, we introduce an applicable

method to analyze and model such a signal processing algorithm to obtain desired

clean and lead tones at the output. The signal flow path is given in Figure 7.1, where

x[n] shows the input from the electric guitar, yc[n] represents the clean channel out-

put and yl[n] represents the lead/distortion channel output. The inputs for the ANFIS

System Identification (Distortion) are the training input and output pairs recorded si-

multaneously from the desired distortion effects pedal, xa[n] and ya[n] respectively.

xa[n] and ya[n] are training input and output arrays of desired length. Before the real-
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time loop starts, the block called the ANFIS System Identification (Distortion) needs

to be trained with the sampled distortion/overdrive effects pedal input and output, as

mentioned, xa[n] and ya[n] respectively. This training results into an ANFIS Identifi-

cation System called outfis which consists of the membership function type, number,

rules of the neural network, firing strength of each path and all other necessary infor-

mation needed to define the neural network. We then use this outfis system and the

clean tubed output signal yc[n] as inputs into the ANFIS Evaluator (Distortion) sys-

tem. This is basically the neural network evaluator, which applies the neural network

rules designed inside the outfis to shape the input yc[n], in order to obtain the distort-

ed/overdrived lead output called yl[n]. This in turn allows the user to shape their own

distortion/overdrive curve with their desired overdrive/distortion effect/pedal. The

signal chain figure of the whole system is given in Figure 7.1.

Figure 7.1: The Signal Chain of the Clean and Lead Guitar Output.

7.1.1 12AX7 Tube Pre-Amplifier

Guitar tube amplifiers have the necessery first stage pre-amplifier section, which am-

plifies the signal and gives its warm and touchy feel of the tube amplification. It

is very common to see nearly the same pre-amplifier schematics with changing re-

sistance and capacitor values inside different amplifiers. In order to simulate a tube

amplifier, some important simulation methods have been introduced by different re-

searchers. Due to its dynamic nonlinearity and high fidelity of the amplifier simula-
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tion, this topic is still debated among researchers.

One of the most important attempts to standardize tube amplifier simulation have been

introduced by W. Marshall Leach, Jr. in his paper called SPICE Models for Vacuum-

Tube Amplifiers in 1995 [12]. In this paper, he proposes a method to simulate and

approximate the behavior of one of the most commonly used pre-amplifier vacuum

tubes: 12AX7. The approximation of plate current can be shown as below, directly

the way he had shown:

iP = K.(µ.VGK + VPK)
3
2 for µ.VGK + VPK ≥ 0 (7.1)

= 0. for µ.VGK + VPK < 0 (7.2)

Leach [95], then states the small-signal plate current for 12AX7 Tube Amplifier Tri-

ode as:

ip =
∂IP
∂VGK

.vgk +
∂IP
∂VPK

.vpk (7.3)

= gm.vgk +
vpk
rp

(7.4)

where the transconductance gm and the plate resistance rp is represented by the fol-

lowing equations and the Figure 7.2 represents the equivalent circuits for the tube

model.

gm =
∂IP
∂VGK

=
3µIp

2(µVGK + VPK)
(7.5)

rp =
∂IP
∂VGK

−1
(7.6)

Pspice subcircuit models are created by the SPICE netlists of the designed triode

tube amplifier model to incorporate the model into the standardized SPICE circuit

design and analysis software. What we have incorporated from his simplified model

is the frequency response of the amplifier. Generally amplifiers are designed to use

their linear region with the desired frequencies to be amplified having a flat gain in
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Figure 7.2: The Equivalent Model for the Triode Tube Amplifier.

the frequency response plots. In audio processing, we have the whole hearing range

between 20Hz to 20kHz to be processed with the frequency response of the amplifier,

which in turn is very important for tonal characteristics of the output. Taking a look

at the sample frequency response of a general tube amplifier circuit design, we have

also modelled our system to get tube warm and characteristic output.

Figure 7.3: The Sample Pre-Amplifer Circuit Using 12AX7 Tube Amplifier,
Leach[95].

In current ideal modelling schemes, it is always assumed that we have a complete

knowledge over the circuit of the distortion or the amplifier part that we want to

model. For an end-user, or the music enthusiast, what is more important is how it

sounds overall in the output. For these purposes, we will continue with combining

real-time models coming from previous chapters with the ANFIS modelling results of
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Figure 7.4: The Frequency Response of 12AX7 Tube Pre-Amplifier Circuit.

the distortion input output training pairs at hand. For this purpose, we will introduce

the state space model generally used for solving linear systems. This nonlinear state

space solution is the ideal solution that we compare with our ANFIS estimation that

models the system as a black box.

7.1.2 Obtaining Training Data For ANFIS System Identification

Nonlinear state space solutions are used to model nonlinear guitar audio effects as-

suming that the inside circuitry is known. [18] [19]. This solution is the ideal case

where results come close to the actual circuit solution. Given the system parameter

values and the connections, resistors, capacitors, inductors, the state-space equations

can be as below [5]:

ẋ(t) = A.x(t) +B.u(t) (7.7)

y(t) = D.x(t) + E.u(t) (7.8)

where x(t) is the state variable, ẋ(t) is the derivative of the state variable, u(t) is the

input and y(t) is the output functions with respect to time, t. A is the state, B the

input, D the output and E the feed-through matrix of the general linear state-space
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equation [9]. The next two steps is the discretization of this continuous time linear

state-space equation and introducing a nonlinear element into the functions to solve

nonlinear state-space equations as in Equations 7.9 to 7.11.

ẋ = a.x+ b.u+ C.i(v) (7.9)

y = d.x+ e.u+ f.i(v) (7.10)

v = G.x+ h.u+K.i(v) (7.11)

This equation is an extension to the previous linear state-space equation, by intro-

ducing nonlinear function of i(v) that depends nonlinearly to parameter v [5]. The

discretization and canonicalization of the nonlinear state-space equation results into

the following discrete time representations of the solution in Equations 7.12 to 7.14.

xc[n] = Ā.xc[n− 1] + b̄.u[n] + c̄.i[v[n]] (7.12)

y[n] = d̄.xc[n− 1] + ē.u[n] + f̄ .i[v[n]] (7.13)

v[n] = Ḡ.xc[n− 1] + h̄.u[n] + K̄.i[v[n]] (7.14)

The canonicalized matrix equations are represented in Equations 7.15 to 7.19.

Ā = 2(
2

T
I − A)−1C (7.15)

f̄ = f + d(
2

T
I − A)−1C (7.16)

Ḡ =
2

T
G(

2

T
I − A)−1 (7.17)

h̄ = h+G(
2

T
I − A)−1b (7.18)

K̄ = K +G(
2

T
I − A)−1C (7.19)

Dempwolf, Holters and Zölzer have clearly stated the algorithm to simulate a solution

with a software like MATLAB [5], as summarized with the following steps of the

analysis:
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1. State-space analysis of the circuit: Find a matrix formulation in the continuous

time domain. The voltages across the capacitors are defining state. Contribu-

tions from non-linear elements are expressed by i[v[n]].

2. Perform the discretization (e.g. trapezoidal rule) to achieve the discrete-time

representation.

3. Filtering process:

• Solve the non-linear equation given in equation of v[n] to obtain i[v[n]] from

the current input u[n] and the previous state xc[n− 1]. Here we exploit the fact

that equation of v[n] depends on xc[n− 1], not xc[n].

• Once i[v[n]] is determined, the new state and the output are computed with the

above equations of xc[n] and y[n].

• Update the matrix entries in case of parameter changes.

The following algorithm is then applied to model a pre-amplifier of the famous Mar-

shall JCM900 vacuum tube guitar amplifier [5]. This is exactly the A-channel of the

Hi-Gain Dual Reverb head. This section is perfect for our purposes because of its

dual rectifier/limiters nonlinearity present inside the circuit, seen as in Figure 7.5 [5].

Figure 7.5: Dual Rectifier Pre-Amplifier Stage of Marshall JCM900.

This circuit design is referenced from the DAFx-10 paper of Dempwolf, Holters and

Zölzer called "Discretization of Parametric Analog Circuits for Real-Time Simula-
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tions" and JCM900 and all of its parts are trademarks of the Marshall Inc. [5]. The

parameter values can be listed as follows: R1 = 22kΩ, R2 = 12kΩ, R3 = 220kΩ,

C1 = 47nF , C2 = 1nF , C3 = 47pF and the α is the potentiometer gain parameter.

Nonlinear devices are the diodes which has red color with 3mm LEDs. The open-loop

gain of the pre-amplifier is selected as 25dB, which is higher than the actual gain it

supplies in the whole circuit. In the simulations, the operational amplifier is assumed

to be ideal, having no voltage drop between the inputs.

Nonlinear part of the circuit, rectifier diodes, are assumed to be ideal and identical

with each other. Given the voltage applied to the diode, VF , the current following

through the diode can be stated using the Shockley equation [5]:

iD1 = Is.(e
VF
n.Vt − 1) (7.20)

The Shockley equation parameters are stated as following: reverse saturation current

Is = 6.5x10−20A, thermal voltage Vt = 25.3mV and the emission coefficient n =

1.68 [5]. The combination of two sided diodes can be summarized into a single

equation as in Equation 7.22.

i = iD = Is.(e
VC3

2.n.Vt − 1)− Is.(e
−VC3
2.n.Vt − 1) (7.21)

= 2.Is.sinh(
VC3

2.n.Vt
) (7.22)

The state space solution can be done by stating the state-space matrix according to

the input voltage u, and the voltages across capacitors.

A =


R1+R2

C1.R1.R2
− 1
R2.C1

0

− 1
R2.C2

0 − R2+(1−α).R3

(1−α).R2.R3.C2
0

− 1
R2.C3

− 1
R2.C3

− 1
α.R3.C3

 (7.23)
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b =


R1+R2

C1.R1.R2

− 1
R2.C2

− 1
R2.C3

 (7.24)

C =


0

0

− 1
C3

 (7.25)

x =


vC1

vC2

vC3

 (7.26)

y =
[
−vC3

]
(7.27)

d =
[
0 0 −1

]
(7.28)

e =
[
0
]

(7.29)

f =
[
0
]

(7.30)

G =
[
0 0 1

]
(7.31)

h =
[
0
]

(7.32)
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K =
[
0
]

(7.33)

Pre-calculation of canonized version of the actual solution is required because it takes

long time for calculation of inverse matrix afterwards, or in the simulation. The

resulting steps can be summarized as follows:

A = −


C1 0 0

0 C2 0

0 0 C3


−1

×

(
1
R1

0 0

0 1
(1−α).R3

0

0 0 1
α.R3

+
1

R2


1

1

1

 . [1 1 0
])

(7.34)

and the matrix inversion used in the equations can be written as the following:

(
2

T
I − A)−1 =

(
β1
−1 0 0

0 β2
−1 0

0 0 β3
−1

+
1

R2


1

1

1

 . [1 1 0
])−1

(7.35)

.


C1 0 0

0 C2 0

0 0 C3


where the parameters β is defined as follows:

β1 =
R1.T

2.C1.R1 + T
(7.36)

β2 =
(1− α)R3.T

2.(1− α).C2.R3 + T
(7.37)

β3 =
α.R3.T

2.α.C3.R3 + T
(7.38)

Applying Sherman-Morrison formula to the previous equations, we obtain the sim-

plified solution to the matrices required to solve nonlinear state-space equations [5].
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Ā =


2.C1.R1−T
2.C1.R1+T

0 0

0 2.(1−α).C2.R3−T
2.(1−α).C2.R3+T

0

0 0 2.α.C3.R3−T
2.α.C3.R3+T

 (7.39)

− 4

R1.T.(R2 + β1 + β2)


β1

β2

β3

 . [β1.C1 β2.C2 0
]

b̄ = − 2

R1.(R2 + β1 + β2)


β1.(R1 +R2 + β2)

β2.(R1 − β1)
β3.(R1 + β1)

 (7.40)

C̄ = −2


0

0

β3

 (7.41)

d̄ =
2

T
.
[
β1.C1.

β3
R2+β1+β2

β2.C2.
β3

R2+β1+β2
−β3.C3

]
(7.42)

ē = − β3.(R1 − β1)
(R2 + β1 + β2).R1

(7.43)

f̄ = β3 (7.44)

Ḡ = −d̄ (7.45)

h̄ = −ē (7.46)
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K̄ = −β3 (7.47)

This nonlinear state space solution is solved using MATLAB as can be found on the

appendix section, to obtain an input and output reference for the training of the ANFIS

structure. We will use the output from the solved nonlinear state space equation as

the ideal output of the JCM900 pre-amp as we have not the real amplifier. This ideal

solution is taken as a reference to our training input and output pair to the ANFIS

System Identification (Distortion) part as signals xa[n] and ya[n] respectively.

7.1.3 Enhanced Modelling of Guitar Distortion Algorithm

Figure 7.6: Enhanced Modelling of Guitar Distortion Model Basic Signal Flow Dia-
gram.

Enhanced Modelling of Guitar Distortion algorithm uses the ideal training input (xa[n])

and output (ya[n]) pair obtained from the nonlinear state space solution offered by

Dempwölf and Zölzer. Using this training pair, the black box system is estimated

using ANFIS System Identification block. Then the ANFIS system is used to process

future outputs to obtain lead channel. The type and number of membership functions,

epoch and input selection affect the performance of the ANFIS estimation. Different

parameters are selected to get the best result both computationaly and performance
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wise. Another important point is the selection of the length of the training input out-

put pair. For our purposes, we have recorded multiple 140000 sample length electric

guitar output which includes different guitar playing styles and speeds. We trained

the system with the corresponding input and output pair that produces the nearest es-

timate to the ideal model. The results are presented in the Results chapter. Enhanced

Modelling of Guitar Distortion is a 6 step algorithm summarized as follows:

1. The guitar output signal, x[n], is used as an input to the 12AX7 pre-amplifier

model.

2. Then the equalizer high-pass and band-pass filters are used to change tonal

characteristics of pre-amplifier output.

3. EL84 vacuum tube power amplifier model amplifies the equalized signal. The

output of the vacuum tube power amplifier is called clean channel output, yc[n].

4. ANFIS System Identification block model takes two inputs, xa[n] and ya[n].

xa[n] is the training input signal to the distortion effects pedal that is modelled.

ya[n] is the output of the distortion effects pedal for the training input xa[n].

ANFIS System Identification code block trains these input output sequence to

form an ANFIS structure called outfis.

5. This ANFIS structure can be used to evaluate future outputs for random inputs

coming from the yc[n] clean channel. ANFIS Evaluator block evaluates the lead

channel output, yl[n], using the ANFIS structure, outfis and yc[n] as inputs.

6. The main channels’ simulation of a guitar amplifier, clean channel (yc[n]) and

lead channel (yl[n]) outputs are obtained.
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CHAPTER 8

RESULTS

8.1 Results

There are different testing methods for different digital guitar effects. Most of them

includes the comparison of the ideal guitar audio effect time domain output to the

simulated one. The guitar audio effects that change the frequency characteristics of

the input signal are also compared using the frequency domain comparisons. Linear

guitar audio effects, such as delay, reverb, wah-wah, flanger are tested regarding these

testing methods. For nonlinear guitar audio effects such as distortion and overdrive,

additional tests are presented. Sinusoidal input test and log-sine sweep spectrogram

are two methods for testing distortion and overdrive simulated methods that are pre-

sented in the results section.

A sample input is recorded to test the delay, reverberation, wah-wah and flanger ef-

fects. This recording is the low E note of the electric guitar. The sample input is called

samplein. This input is fed to the designed guitar effect algorithms in C, C++ and C#

and the output is recorded. Then the output is called sampleout. For each of the lin-

ear guitar audio effects, we compare samplein and sampleout to see the behaviour of

each effect. The ANFIS System Identification Algorithm will be tested with different

membership and epoch functions to find the best possible RMSE values as presented

as a testing method [10]. For the testing of the Enhanced Modelling of Guitar Distor-

tion Algorithm, we selected the method presented in Dempwolf and Zolzer’ s paper

[6].

Each guitar effect is designed in MATLAB, implemented in Microsoft Visual Stu-
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dio 2010 using C++ and C# and then ported to Texas Instruments TMS320VC5505

eZdsp. MATLAB is used for the initial design of the guitar effects algorithms.

Microsoft Visual Studio 2010 is used for real time application development in the

Windows platform. ASIO (ASIO4ALL) - Universal ASIO Driver for WDM Audio

is used to satisfy real-time development constraints. ASIO drivers can be set with

64 samples of ASIO Buffer Size, which is the best real-time constraint to satisfy in

ASIO. Latency Compensation parameters are set to 0 samples for In and Out. Buffer

Offset is also set to 0 ms. Realtek High Definition sound card is used for the testing.

Realtek HD Audio output and Realtek HD Audio Line input are used for effect input

and output.

8.1.1 Delay Results

The sample input samplein is fed to the input of the designed delay system. The com-

parison of samplein and sampleout is presented in Figure 8.1. In the implementation

of delay, a complementary band-pass filtering can be applied to obtain desired guitar

tone in the output. The characteristics of this filter is shown in the Figure 8.4. The

delay is implemented using the FIR comb filter structure in the Linear Guitar Audio

Effects - Basic Building Block: Delay section. The FIR comb filter has been called

with delay parameter of 0.5 sec and 1 gain. Additionally, group delay (in samples)

plots for single delay element and FIR Comb Filter are shown respectively in Figures

8.2 and 8.3.

8.1.2 Reverberation Results

The sample input samplein is fed to the input of the designed reverberation system.

The comparison of samplein and sampleout is presented in the below graphs. In the

implementation of reverberation, a complementary band-pass filtering can be applied

to obtain desired guitar tone in the output. The characteristics of this filter is shown in

Figure 8.4. The reverberation is implemented using the digital all-pass filter structure

in the Reverberation - Digital All-Pass Filter section. The digital all-pass filter has

been called with parameters of 0.5 sec of delay and b0 = 0.2, b1 = 0.1 and a1 =
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Figure 8.1: FIR Comb Filter Test Input samplein and Output sampleout.

−0.5. The group delay (in samples) plot with the same reverberation parameters is

shown in Figure 8.7.

8.1.3 Wah-Wah Results

Wah-Wah implementation is done by referring to the Jim Dunlop Original Wah-Wah

Pedal, GCB95. For the test of this effect, the state variable filter structure is used

to implement bandpass filter with changing frequencies. One of the most famous

pedals in wah-wah guitar audio effects is the Jim Dunlop Original GCB95 model.

This wah pedal originated from the 1966 Thomas organ model and basically is the

oldest wah pedal ever designed. The foundations under the wah pedal is the time-

varying band pass filtering, so the shape and range of the filter plays an important

role in the output sound. Starting with MATLAB, we have implemented this effect

on various platforms and also in real-time using C# on windows applications and
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Figure 8.2: Group delay (in samples) of single delay element with 0.5 gain and 5
delay parameters.

C/C++ on Texas Instruments eZDSP implementations. Let us first start with the basics

of the effect using generic MATLAB function calls and plots. In MATLAB, we

first start with the trimming of the triangular wave of band-pass frequency change

to the length of the input signal. The other parameter sets are the damping factor,

d which is initialized with d = 0.05 and F1, the calculated fc dependent parameter

is recalculated in the loop for each changing value of fc. Fc and Q1 is calculated

extensively using the generic formulas given in Equations 2.55 and 2.56. The next

step is to put the parameters Fc and Q1 into the for loop with the state variable filter

equation to calculate each sample output with the corresponding F1 value. The wah-

wah output that we are interested is the yb[n] output, which is the band-pass output of

the state variable filter. Finally, we normalize the output dividing each sample output

value to the maximum of the outputs, to get an output ranging from -1 to 1.
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Figure 8.3: Group delay (in samples) of FIR Comb Filter 0.5 gain and 5 delay param-
eters.

8.1.4 ANFIS Modelling Results

UsingMATLAB functions, we build theANFIS model for a more generic example

where a randomly played guitar input signal is fed through the ANFIS system. It

is aimed to estimate the black - box model of the nonlinear system using training

data and to check the model with the checking data obtained from the recordings.

In order to do such a comparison, one should simultaneously record the input and

output of the real black-box model of the system. The black-box that is desired to be

modelled in the following scenario is the amplifier called Line 6 Spider IV running in

the distortion effect mode calibrated to the desired output effect.

Simultaneous input and output can be accomplished using several methods, one of

which includes using Data Acquisition Toolbox from MATLAB. Toolbox allows
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Figure 8.4: Complementary Band Pass Filter Design to Obtain Different Guitar
Tones.

to trigger input and output approximately at the same time, allowing user to record

input and output simultaneously. In the Figure 8.10 code block, ai is used to refer to

the analog input channel, whereas ao refers to the analog output channel. First, we

are going to record a sample of input guitar signal randomly played including guitar

licks and rhythms using the analog input channel ai. The data is written to an input

variable called ll which represents the input to the system of amplifier. This part of

code records 10 seconds of samples having sampling rate of 44100 Hz.

After obtaining a proper input signal with this part of code, then we want to trim the

start and end of the signal such that we have a good training input without the pres-

ence of artifacts. Applying trimming, ll becomes a signal of length 200000 samples.

Scaling the signal such that the max and min values gets near to 1 and -1 gives us a

nice input signal ll to use as a training input. The final version of the input signal ll

can be seen as in Figure 8.11.
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Figure 8.5: Reverberation Test Input samplein and Output sampleout.

Having the input at hand, we need to feed the amplifier with this trimmed and scaled

clean input ll and simultaneously record the output dd, which is the distorted sig-

nal from the amplifier output. In order to do this we use the trigger function of

MATLAB, as shown in the following code block to record the output on the vari-

able dd.

After N = 100 number of trials we calculated the correlation between the undis-

torted output and then the distorted outputs and find on the average our system of

recording has on the average 1240 samples of delay on the input through output path

which resembles a delay of 1240samples/44100samples/sec = 0.0281sec, which

is a fair amount of delay on the signal path. It is important to use this data when

comparing the input and output sample by sample. What is more intriguing is that

selecting the distortion channel adds up 80samples of delay which sums up to total

of 1320samples. As a result, I have trimmed both the input ll and output dd just to
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Figure 8.6: Complementary Band Pass Filter Design to Obtain Different Guitar
Tones.

match the two signals at the right moment, shifted the output signal by 1320 samples

to obtain the exact input output relationship. The resulting trimmed, adjusted and

distorted output signal dd is shown in Figure 8.13.

As can be seen from the output signal dd, the distortion channel output has a special

clipping on the input signal. It is not only clipping, also the dynamics of this nonlinear

processing that we are trying to model with the ANFIS nonlinear black-box approach

to the distortion problem. The mathematical foundation of a black-box model stands

on the decision what kind of input parameters the model is going to use. The basic

equation for a generic discrete time input signal x[n] output signal y[n] can be shown

as below.

y[n] = f(x[n− 1], x[n− 2], ..., x[n− dx], y[n− 1], y[n− 2], ..., y[n− dy]) (8.1)
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Figure 8.7: Group delay (in samples) of Reverberation.

The above equation is the very foundation of the system modelling environment

where the input parameters are the input signals delayed up until dx and also feedback

from the previous outputs are fed to the input line to the evaluation function f , leading

to the output sample y[n]. What is required to successfully model a system behavior

is to estimate the function f such that the chosen inputs leads to the output with the

least error possible when compared to the original output. In our method to estimate

the dynamical model behind the distortion problem, we will use Adaptive-Network-

Based Fuzzy Inference System (ANFIS) to formulate an estimation to the amplifier

output. Such systems, in general, are called neural networks, where previous input

and output are trained to form much detailed network of nodes to formulate weighted

outputs according to special member functions. The theory behind the ANFIS struc-

ture is referred in the previous chapters, where a structure with membership functions

are introduced extensively.
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Figure 8.8: Auto-Wah Effect Output Shown With the Original Input.

The most important part of any system identification problem is to choose the number

and details of the inputs chosen for the system. In such a problem of audio processing,

we have an input x[n] at hand where we can use the nearest x[n − 1] sample for

estimation of the output sample at present time, y[n]. Apart from using x[n− 1], we

can also use x[n − 1], x[n − 2], ..., x[n − dx], where in our following application

dx = 6. On the other hand, we can also use the feedback from the outputs on the

input signal, the most recent output sample that we have at present time is y[n − 1].

Continuing with others, we can also feed y[n− 1], y[n− 2], ..., y[n− dy] to the input

signal path, where in our following application dy = 4. As a result, we can summarize

that in the input signal matrix for the following application, we are using y[n − 1],

y[n− 2], y[n− 3], y[n− 4], x[n− 1], x[n− 2], x[n− 3], x[n− 4], x[n− 5], x[n− 6]

respectively in this order. The choice of dx and dy are application and programmer

specific that we are trying to minimize RMSE with these input parameters. Since we

are shifting the signals at most 6 samples we trim from the beginning of the input by

6 samples in order to make the start of the input signal meaningful.

The next step is the training of previously observed and recorded audio input and

86



Figure 8.9: Wah-Wah Effect Band-Pass Filter.

Figure 8.10: Method for recording from Guitar to ll variable.

output pairs for the ANFIS system. Our x[n] input signal array is called llclear and

y[n] output signal array is called ddclear in our application. As a result, we train our

input and output arrays, llclear and ddclear respectively to form our ANFIS nodal

structure. There are two methods for training, when you want to train for ANFIS

system: Sequential Training and Exhaustive Training. Compared to other training

algorithms which inherits linear estimation such as ARX and Hammerstein-Wiener

method, ANFIS relies directly on nodal nonlinear estimation of each input to output
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Figure 8.11: Trimmed and Scaled Input Signal ll.

pair. As mentioned earlier, even with training, we can decide on what kind of inputs

we are giving to the ANFIS system.

Sequential training starts with trying one by one the each possible input array candi-

date, which are: y[n − 1], y[n − 2], y[n − 3], y[n − 4], x[n − 1], x[n − 2], x[n − 3],

x[n − 4], x[n − 5], x[n − 6] respectively. For each of the candidate inputs, ANFIS

training with sequential search seqsrch, calculates the RMSE error for training and

checking data. In our input and output signal pair, we used first 75000 samples for

training and the next 75000 samples for just checking the ANFIS output, making in

total a 150000 length of signal. Below are the results for using just one input to the

ANFIS system. Looking at the results, the best first input selection might be the

feedback from the output: y[n− 1].

The second selection of input for sequential search follows the same rules that accept-

ing that the y[n − 1] is the first input, it selects the best second input with respect to

this decision and lists the RMSE according to all input candidates. The third input se-

lection follows the same pathway and attaches the third input RMSE results for both

training and checking data. As can be observed, in our application we select 3 inputs

that gives us the best RMSE value from the 10 possible input candidates.
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Figure 8.12: Simultaneous Input Output Code Block.

Another method for candidate input selection is to use exhaustive search method with

the MATLAB function called exhsrch. This method differs from sequential search

method with trying all combinations of 3 candidate inputs to find the triad that gives

the best possible RMSE. This method is consuming in the sense of calculations, but

effective when choosing the right input candidates for the system, hence every pos-

sible input combination is tried. The below listings show the exhaustive search trials

89



Figure 8.13: Trimmed and Scaled Output Signal dd.

Figure 8.14: First ANFIS Input Selection Results.

for each input candidate triads. The best possible scenario for the minimization of the

RMSE is to select inputs as y[n− 1], y[n− 2], u[n− 1] for this example. This means

that our input signal consists of a matrix including feedback from the output and the

previous input.

Looking at the RMSE values, the best choice for the input is the following model:

ANFIS model = 6: y(k-1) y(k-2) u(k-6) –> trn=0.0427, chk=0.0474. This means that

for our input selections we select two feedback signals coming from the output and

input coming from the actual input signal delayed by 6, denoted by u[n − 6] in this
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Figure 8.15: Exhaustive Search ANFIS Input Selection Results.

context. As a result our input data matrix consists of y[n− 1], y[n− 2] and x[n− 6].

These three input choices gives us the best results both in training and checking with

the ANFIS algorithm. The input choices differs from application from application,

the best results that are obtained from both checking and training data lead us to this

choice. Future testing with other checking data is required to justify these choices.

The next step is the formulation of the ANFIS system for our input and output train-

ing pairs. In order to do this, we have to decide the number and kind of the member

functions used in the ANFIS structure. The training data used for ANFIS structure

generation includes y[n − 1], y[n − 2] and x[n − 6] respectively on the first three
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columns, the last and the fourth column belongs to the training output column y[n].

We give this training data to the generate ANFIS input structure command input,

genfis1(trainingdata) and by default built a ANFIS structure of having 2 member

functions of type ’gbellmf’ which is Gaussian Bell Function. Then using this gener-

ated ANFIS input structure, we generate an output ANFIS structure to evaluate future

inputs of any kind. In order to create this output ANFIS structure, we use the built in

function [FIS,ERROR,STEPSIZE,CHKFIS,CHKERROR] = anfis(TRNDATA ,INIT-

FIS ,TRNOPT ,DISPOPT ,CHKDATA) and as an output we get the output training

output fis structure, training mean square error, step size, checking ouput fis structure

and checking mean square error respectively. We have set decremental rate as 0.5 and

incremental rate as 1.5 for this application and epoc is just 1 and can be increased for

different applications. The ANFIS structure that we desired to find is the checking fis

structure called chkoutfismat in the structures. This structure contains everything

about our ANFIS structure such as neural network rules, number and type of mem-

bership functions, input to output mappings. So let us take a look at the ingredients

of chkoutfismat and the relationship of our input selections with the output one by

one in Figure 8.16.

Figure 8.16: The attributes of the chkoutfismat data structure.

As one can observe, the finalized system has 3 inputs input1, input2, input3 namely,

representing y[n−1], y[n−2] and x[n−6] respectively and the output is just a single

array y[n].

What this FIS editor can provide us is the rules of the ANFIS system that is designed.

For each of the membership function provided the inputs are weighted by the firing
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Figure 8.17: The ANFIS structure from the System Identification Toolbox of MAT-
LAB.

strengths assigned to them, leading to a cumulative output. For every pair of inputs,

input1, input2, input3, the output can be calculated by dragging and dropping the

horizontal line assigned to each input. The rules are like the summary of the system,

it resembles the kind of the relationship between the inputs and the outputs of the

system.

ANFIS results into relationship between inputs and output of the system. These rela-

tionships can also be visualized as 3D surface plots between each chosen two input

pairs and the output. The following surface plot graphs include the combinations the

input pairs leading to the output value.

Having shown of all the combinations of 3D surface plots between inputs and output,

we can finally go to the conclusions of ANFIS Method, where we will compare our

method to the ARX Model Identification. Let us look how good the ANFIS prediction

is visually. Figure 8.25 shows the comparison between the training, checking data,

represented as solid blue line to the ANFIS predictions, represented as the green dots

on the blue line original values. Figure 8.26 will give an insight detail zooming in the
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Figure 8.18: The rules of the ANFIS structure from the System Identification Toolbox
of MATLAB.

neat details of the prediction on a sample interval.

The through look to the estimated output, green dots, one can see that the estimation

is very successful, on the premise of avoiding the overshoots resulted from the high

nonlinearity of the system. This in turn is expected due to the nature of the rectifiers,

high nonlinear process on the input signal and this result can be seen in the zoomed in

Figure 8.26. What is more overwhelming is the fact that, the estimated output signal,

yest[n] sounds perceptually the same as the real output signal y[n].

The RMSE values are our comparison values between training data input output pairs

and checking data input output pairs. The lower and closest the training and checking

RMSE values, the better the estimation performance. In our through experiments, we

have observed quite close training and checking RMSE values, which is promising

for a nonlinear estimation problem of this density. The RMSE calculation for both
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Figure 8.19: The 3D Surface Plot of the ANFIS structure from the System Identifica-
tion Toolbox of MATLAB.

the training and checking outputs are done using the following formula. In addition

to RMSE, we can normalize the RMSE value with the peak to peak value of the

signal, where we divide the RMSE value with the difference between the maximum

value of the output signal and the minimum value of the output signal. In our case,

the maximum value of the output signal can be approximated as 0.5, and minimum

value of the output signal can be approximated as −0.5. As a result, the range is

1 and RMSE and NRMSE values are the same for this implementation as shown in

Equations 8.2 and 8.3.

RMSE =

√∑n
k=1 (yest[k]− y[k])2

N
= 0.04 (8.2)

95



Figure 8.20: The 3D Surface Plot of the ANFIS structure from the System Identifica-
tion Toolbox of MATLAB.

NRMSE =
RMSE

ymax −min
=

√∑n
k=1 (yest[k]−y[k])

2

N

1
= 0.04 (8.3)

The RMSE value can be affected by many factors, such as the pre amplifier, power

amplifier and speaker model of the amplifier at test. The system under test is a Line 6

Spider 4 Guitar Amplifier which has built in total amplifier and effects models work-

ing real-time. This is the general test for a nonlinear system identification model for

such nonlinear guitar effects. So the RMSE is neat and enough in this application

leading us to get even better results with only distortion and overdrive effects pedals

under test without the amplifier. This ANFIS model even represents the dynamics of

the amplifier such as its pre-amplifiers model, tone stage, power amplifier and dis-

tortion stage. For such complex signal pathways, this nonlinear system identification
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Figure 8.21: The 3D Surface Plot of the ANFIS structure from the System Identifica-
tion Toolbox of MATLAB.

approach is better than other methods of modelling the nonlinearity. This structure

can be complicated, but it is easy to implement and resembles the system as a black

box which processes signals through its path. Even when we do not know the inner

circuitry of the system at test, we can model its behavior under the tests that is present

and find the future outputs as a consequence.

8.1.5 Enhanced Modelling of Guitar Distortion Algorithm Results

The input to this system x[n], is the input directly from the electrical guitar, values

ranging from -1 to 1 with 16 bits digital quantization and 44.1 kHz of sampling fre-

quency. Later x[n] is fed to nonlinear pre-amplifier, in this case we used 12AX7

simulation model as our pre-amplifier. The pre-amplifier circuitry, in most cases, in-

97



Figure 8.22: The 3D Surface Plot of the ANFIS structure from the System Identifica-
tion Toolbox of MATLAB.

cludes potentiometers and tone/equalization circuitry, so we model those parts in the

High-Pass Filter 12AX7 and Band-Pass Filter Tone parts. What this filters allow is

parameterized settings for the user selected tones and characteristics to be modified

later by the user. At the end of the first signal flow line, we obtain a clean channel

(undistorted) sound with vacuum tube elements, which we use for the effects that uses

clean channel (etc. Delay, Reverb, Flange, Wah-Wah).

The enhancement of distortion comes from the ANFIS System that flows the second

signal flow path. The training input and output pairs are xa[n] and ya[n] respectively.

This training sequence is obtained by recording a guitar training input xa[n] and then

passing this input to the nonlinear state-space solution depicted in the Dempwolf and

Zölzers paper [5] to obtain the training output ya[n]. This training input output pair

is pre-calculated before the ANFIS System Identification (Distortion) block is imple-
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Figure 8.23: The 3D Surface Plot of the ANFIS structure from the System Identifica-
tion Toolbox of MATLAB.

mented. This block takes the training pair and form a backward propagation Sugeno-

Type neural network ANFIS model for the distortion or any nonlinear system that is

processing input to output pair. As an output, system identification block has a spe-

cial structured ANFIS model called outfis that can be evaluated with external input

to form new outputs with the rules coming from the FIS structure. As a result, the

output, yl[n] becomes the amalgamation of the vacuum tube characteristics with the

distortion block that is under concern. Calling yl[n] as the lead channel is appropriate,

hence it is distorted with the system identification ANFIS approach.

The beginning of the ANFIS training starts with the formation of the input training

array, what we call in the implementations as the xa[n] array. This array contains a

randomly played song, which includes different guitar techniques, range of frequen-
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Figure 8.24: The 3D Surface Plot of the ANFIS structure from the System Identifica-
tion Toolbox of MATLAB.

cies and amplitudes ranging from -1 to 1 to represent a random electric guitar input

signal. Then the nonlinear state-space solution to the JCM900 rectifier part is applied

as explained above and in the paper of Dempwolf and Zölzer’ s [5] to obtain the out-

put training pair called ya[n]. Together the input and output pairs, xa[n] and ya[n]

respectively are feed to the ANFIS System Identification block which forms ANFIS

rules regarding the membership and epoch parameters to obtain the structured ANFIS

system called outfis. The structure outfis contains every bit of information regard-

ing the ANFIS System designed by the training input and output pair, such that any

new input to the ANFIS System can be evaluated with the outfis structure to obtain

the desired output.

The last part of the chain is the ANFIS Evaluator (Distortion), which is basically a
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Figure 8.25: The Output Plot of the ANFIS structure.

neural network evaluator to form the desired output with using clean channel, yc[n]

and the ANFIS System structure called outfis to obtain the lead channel distorted

output yl[n]. As a result, the desired outputs yc[n] and yl[n], clean channel and lead-

/distortion channel outputs are obtained using the Enhanced Modelling of Guitar Dis-

tortion algorithm.

To conclude this section, we will continue with detailed results analysis and music

tests to see if we succeeded on enhancing the distortion in favor of putting some

flavor into the effect. Let’s start with comparing the log sine-sweep spectrograms and

see the harmonics effects on the distorted signal in Figures 8.28 and 8.29. The input

is a sinusoidal chirp signal which has an inreasing frequency characteristic from 1Hz

to 3000Hz, electric guitar’s general maximum frequency. The output is taken from

the lead/distorted channel, yl[n].
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Figure 8.26: The Zoomed Output Plot of the ANFIS structure.

Clearly, the difference can be seen as a result of odd-harmonics starts to appear after

the distortion effect has been applied to the input. This waterfall sine-sweep log spec-

trogram tells much about the distortion effect, as how the magnitude of the harmonics

spread over the whole hearing range up to 22050Hz. Every single distortion unit have

unique waterfall representations that represent the characteristics of the distortion pro-

vided. For our purposes, the music side evaluation of the resulting output should be

done to finalize the results. When listened to the real-time outputs with playing the

electric guitar as an input, one can tell the difference between the static wave-shaping

and the ANFIS model of the distortion block. The static wave-shaping feels digital,

while ANFIS output gives much organic, warm and bluesy sounding distortion effect

while combining the gain to the input signal. The training input represents a portion

of the JCM900 amplifier of the Marshall Inc., such that the resulting output represents

the characteristics of a Marshall amplifier on sound and note articulation and feel.
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Figure 8.27: Enhanced Modelling of Guitar Distortion Model Basic Signal Flow Di-
agram.

Another result should be derived with comparing the nonlinear state-space solution

to the ANFIS system identification and tell whether the blindfold black box system

identification works good or not. One way to point out this is to compare the training

and checking input pairs estimations with the ANFIS structure. In order to show this,

we first feed the ideal system with an arbitrary sinusoidal signal, for our choice it is

the A note of 440 Hz, called as the discrete-time signal, a[n], shown below.

The arbitrary input signal first is passed from the idealized system, where we have

directly solved the nonlinear state space equation and obtained the ideal solution rep-

resented as y[n]. The ANFIS solution would be expected to bring the best possible

solution compared to the ideal output y[n]. The previously trained ANFIS system is

trained with 30 membership functions having 50 epochs and used only the current

input and the one previous input, represented as a[n] and a[n− 1]. The evalfis com-

mand function is used with the resulting ANFIS structure outfis and the other two

parameters as the input to this function are a[n] and a[n − 1]. The ANFIS evaluated

and estimated output called, yanf [n] is very close to the ideal output y[n], having

a RMSE value of 0.023 with the length of 2000 samples. The underneath blue plot

shows the ideal output y[n] and the red plot shows the estimated output yanf [n].

There happened to be some minor overshoots, but in general the estimated output
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Figure 8.28: The log Sine-Sweep spectrogram of The Chirp Signal Ranging From 1
- 3000 Hz.

follows the ideal output.

To conclude this chapter, we present the relationship between the epochs and number

of membership functions with the RMSE of the ANFIS System Identification method

used inside the Enhanced Modelling of Guitar Distortion algorithm. In ANFIS struc-

ture epochs are the total number of forward and backward parameter updates for the

premise and consequent parameters. Number of membership functions are defined

in the first layer of the ANFIS structure and represent the fuzzification detail of the

inputs. These are the two determining parameters of the simulation models of the

ANFIS training structure. In most cases, higher epoch and number of membership

functions mean lower RMSE. Low RMSE is always aimed to get similar results to

the ideal nonlinear effect output. In Figures 8.32, 8.33 and 8.34, the relationship

between RMSE, epochs and number of member functions is observed. The best pos-

sible choice to get the lowest RMSE value is to select epoch as 50 and number of
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Figure 8.29: The log Sine-Sweep spectrogram of The Distorted Chirp Signal Ranging
From 1 - 3000 Hz.

membership functions as 20. Higher epoch and number of membership functions

can give better results, but also results into much higher computation complexity and

parameters. There is a tradeoff between these values when chosing for the optimum

epoch and number of membership functions.
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Figure 8.30: Arbitrary Input Signal of 440Hz Sinusoidal.

Figure 8.31: ANFIS Output and Ideal Output Comparison, RMSE = 0.023
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Figure 8.32: RMSE Error Between ANFIS Estimated Output and Real Output with
Different Epochs.

Figure 8.33: RMSE Error Between ANFIS Estimated Output and Real Output with
Different Number of Member Functions.
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Figure 8.34: RMSE Error with Respect to Epochs and Number of Member Functions.
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CHAPTER 9

CONCLUSION

9.1 Conclusion

In this thesis, we implemented delay, reverb, wah-wah, flanger and introduced a new

method called Enhanced Modelling of Guitar Distortion. Each guitar effect is de-

signed in MATLAB, implemented in Microsoft Visual Studio 2010 using C++ and

C# and then ported to Texas Instruments TMS320VC5505 eZdsp. The chapters start

with the introduction of the guitar effects and continue with the implementation de-

tails. Linear Guitar Audio Effects chapter includes delay, reverberation, flanger and

wah-wah guitar effects theory and implementations. Starting from Basics of Guitar

Distortion: Diode Limiter and Pre-Amplifier chapter, we introduced current methods

for guitar distortion/overdrive modelling. We briefly mentioned Wave Digital Filter

Modelling Approach of Guitar Distortion. System Identification Approach to Distor-

tion Modelling chapter introduces a black-box modelling approach to distortion/over-

drive. Using ANFIS: Adaptive-Network-Based Fuzzy Inference System as a system

identification toolbox, we developed a new method called Enhanced Modelling of

Guitar Distortion.

Previous methods mostly rely on solving directly the nonlinear state space solutions

of internal circuitry of distortion/overdrive pedal. This thesis aimed to develop a

black-box approach where no information is known about the internal circuit of dis-

tortion/overdrive. Black-box approach to distortion/overdrive modelling is preferable

for digital guitar amplifier systems. Digital guitar amplifier systems include lots of

different types of distortion/overdrive that can be easily modelled with the Enhanced
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Modelling of Guitar Distortion algorithm. The equalizer band-pass filters are used

to obtain desired tones from the linear and nonlinear guitar effects. We modelled

Marshall JCM-900 pre-amplifier with Enhanced Modelling of Guitar Distortion al-

gorithm. We obtained 64 samples of ASIO Buffer Size, which is the best real-time

constraint to satisfy in ASIO implementations. The average RMSE value is 0.04,

which is obtained with different membership function and epoch parameters. These

algorithms are designed inMATLAB, implemented in Microsoft Visual Studio 2010

using C++ and C# and then ported to Texas Instruments TMS320VC5505 eZdsp. The

results show that Enhanced Modelling of Distortion Algortihm provides good nonlin-

ear modelling of guitar distortion/overdrive.

The developed guitar effects can be used professionally on Windows platform. DSP

implementations can also be used as a standalone guitar effects processor. Total guitar

amplifier models, based on modelling different nonlinear parts, can be developed us-

ing offered algorithms. A vacuum tube guitar amplifier consisting of numerous non-

linear parts such as the pre-amplifier and power-amplifier is introduced in Enhanced

Modelling of Guitar Distortion chapter. It is recommend to implement different am-

plifier and distortion/overdrive nonlinear models using Enhanced Modelling of Guitar

Distortion algorithm. This will allow further testing of the algorithm that is offered.

MATLAB Fuzzy Logic Toolbox is used in the development stage of the nonlinear

system identification models in this thesis. In the future iterations of the algorithm,

a faster training and learning algorithm can be developed using C++. In this thesis,

ANFIS method is used as a system identification algorithm. A different system iden-

tification tool can be used for obtaining different results. Among our tests, we found

that ANFIS method suits best to our needs. Development of better neural network

solutions can aid the Enhanced Modelling of Guitar Distortion.

The effects are tested also with listening tests. Even though technical results are

enough to show that the algorithms are successful, listening tests are also important

from musical perspective. Comparing the results of the designed guitar effect algo-

rithms with current guitar effects processor softwares, we found that our effects pro-

vide virtual studio quality effects. The real time constraints are satisfied with equal

or better real-time output using ASIO driver at 64 samples of buffer size. It is recom-

mended for guitar effects developers to follow black-box approaches like Enhanced
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Modelling of Guitar Distortion algorithm. This system identification approach allows

the third party user to model numerous nonlinear overdrive/distortion effects just by

recording input and output of the desired distortion/overdrive effect simultaneously.

In the future, these algorithms can be ported to other platforms such as Mac Os X,

Android and iOs. Mobile applications can be developed using Enhanced Modelling

of Guitar Distortion algorithm. Even though iOs is much preferable for real-time au-

dio input and output algorithms, Android’ s Audio API is developing rapidly to allow

low latency audio applications.

In conclusion, different approaches for implementing main linear guitar audio effects

(delay, reverb, flanger and wah-wah) and main nonlinear guitar audio effects (distor-

tion, overdrive) are presented and Enhanced Modelling of Guitar Distortion algorithm

is introduced in this thesis. Theoretical background for modelling each effect is given

in detail. Black box approach for modelling distortion and overdrive is introduced

and implemented using ANFIS system identification tool. Enhanced Modelling of

Guitar Distortion algorithm is formulated and implemented real-time. As a result,

the distortion/overdrive effect has a warm and organic sound that is expected from a

good distortion/overdrive effect. Even though nonlinear state space solutions provide

direct results of the internal circuit of these effects, Enhanced Modelling of Guitar

Distortion provides an alternative way of black box modelling to allow user to model

their own distortion/overdrive effects.
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APPENDIX A

IMPLEMENTATION DETAILS

A.1 Implementation of FIR Delay and FIR Comb Filter

A.1.1 MATLAB Implementation

The FIR Delay in MATLAB is just a matrix shifting operation which is included

also in FIR Comb Filter resembles the line of code like: [zeros(1, dsample) x(1 :

length(x) − dsample)];. Using this portion of the code summed up with the input

signal x, one can obtain the code for the FIR Comb Filter, written as a function called

fircomb function for general use as below:

Figure A.1: MATLAB Function of fircomb(x,Fs,d,g).

The parameters for this fircomb(x, Fs, d, g) function are easily to figure out. x is the

input signal read by the wavread function of MATLAB. Fs is the sampling frequency

in Hz (samples/sec), which also comes from the [x Fs nBits] = wavread(’sample.wav’)

command. d is the delay parameter in seconds, which is then converted to samples

using Fs inside the function, and finally g is the gain parameter, generally between
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0 and 1, but can also be larger than 1 in specific cases. The output of this function

behaves as explained mathematically and figuratively in the previous chapters. The

use and practicality of it is really easy.

A.1.2 C# Implementation

The solution in Visual Studio 2010 uses the ASIO SDK support by Steinberg to de-

velop the basic real-time circular buffer to output the real-time processed audio. In

order to use this SDK I have written a class called AudioFX under the AudioDSP

namespace. AudioFX includes my own implementations for Distortion, Wah-Wah,

Flanger, Delay, Reverb and etc. Among these functions V FDelay does the FIR

Comb Filter job and can be used as follows:

Figure A.2: C# Function of VFDelay(realIn,realOut,delay,g).

The parameters in the C# implementation is nearly the same with the MATLAB. The

main difference is the sample by sample processing of the VFDelay function while

MATLAB does total array processing. Due to this reason the parameters realIn and

realOut are input and output float samples. d in this case delay amount in terms of

samples not seconds. g is again the gain parameter, generally between 0 and 1, in

specific cases can be larger than 1.
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A.2 Implementation of Audio Flanger

A.2.1 MATLAB Implementation

In order to implement Audio Flanger in a computer environment, one do have to im-

plement a function having the variable delay functionality. This can be programmed

dynamically for real-time purposes, but for MATLAB environment, we do not need

dynamic programming. I have written a basic function to shift each input signal from

input x, with the array of delay, having values for how much shift will each input

sample get, called delay parameter. The important point in this function is to zero

the input signal where the delay value for that sample is larger than the index of it.

This is due to fact that we do not have information about that much past values for

that signal. The function called vdelay2(x, delay) can be used for that variable delay

purposes inside of the audio flanger implementation.

Figure A.3: MATLAB Function of vdelay2(x,delay).

As described in previous chapters theoretically, first we have to define the desired

shaped variable delay array with the pre-defined parameters than put this delay array

into the vdelay2 array. The procedure to create the suitable variable delay is given as

in the sample MATLAB code where regular own delay function is used with index k

to get the desired delay value at that specific index and return it to the output variable

of the function vdelay2. Next, we sum up the output of the vdelay2 function to the

input x[k] at that instance to obtain the output of the flanger.
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A.2.2 C# Implementation

Real-time constraints requires ASIO 2.3 drivers to be used in the implementation pro-

cess. Audio Flanger is written under the AudioDSP namespace and AudioFX class,

having the usage method of Flanger(float RealIn, int flange_s, int flange_max) .

This method takes theRealIn: the input sample at that time, flange_s: the changing

index of the delay, flange_max: the maximum of the changing index of the delay.

In order to use this function, first the user have to choose what kind of changing delay

function to use. For our purposes, we have chosen the most general sinusoidal delay

array structure for our FlangeBuffer function as shown below.

Figure A.4: FlangeBuffer Function to Form Sinusoidal Changing Delay Index.

Following the definition of the changing delay array, we pass each member of the

changing delay array and the input sample from the Flanger(float RealIn, int flanges,

int flange_max) function. The following code block uses circular buffer concurrent

queue to make it happen the changing delay implementation which is the core of the

flanger audio effect. TryDequeue and Enqueue are the functions to pull and push

the First In First Out system of the circular buffer in order to maintain the changing

delay mechanics. The user have to input the flange_max parameter as to set the

maximum value of delay that the flanger system introduces to buffer. The code block

of the AudioDSP function can be seen as the following:

The test results satisfy the needs for a flanger effect, where a sinusoidally chang-

ing delay parameter is implemented. Different kind of delay arrays can be defined

mathematically for different needs, such as jet airplane effects or othe customized

flanger used in funk, rock and hard rock. Real-time needs are tested with the help of

ASIO support with interoperable code pieces. In order to implement a good flanger

effect, one needs 5 to 20 MB RAM to supply the needs for the concurrent circular

buffer queue and to operate a nice real-time constraint, the user should have decre-
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Figure A.5: Flanger Function implement under the AudioDSP namespace in Au-
dioFX Class.

ment BufferSize to 64 in the ASIO Control Panel.

A.3 Implementation of Reverberation

A.3.1 C# Implementation

Similar to Flanger effects implementation reverberation also uses the concurrent cir-

cular buffer queue implementation, the difference is that reverberation does not in-

clude changing delay parameter, but includes feedback component where we enqueue

and dequeue from the circular buffer each time the code block is called. Let us look

at the code block and give the brief explanation regarding the parameters and how it

does the reverberation.

Implementing reveberation in real-time needs two concurrent circular buffer queues,

one for storing past samples of the input x[n] and the other for storing information

about output y[n]. These two concurrent circular buffers are represented as the param-

eters, rg_x and rg_y respectively. The delayed input and output samples, x[n −m]

and y[n − m] respectively, are dequeued from the circular buffers into the floating

point parameters, delay_data_rb and delay_data_rb_y, respectively. The parameter
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Figure A.6: Reverberation Code Block Written in C#.

called delay_s_rb is used to calculate the parameter m in samples, where the func-

tion takes the parameter m in seconds to make it much easier for the user. As we

have two channels for the stereo, we multiply the seconds with two times the sam-

pling frequency, 44.1 kHz. The first thing the code does is to fill the buffers until the

counter, reverb_cnt, reaches the sample number of the input delay. After the first

filling the buffer is completed, it is time to dequeue from the both queues, the values

of the delayed input and output samples and implement the reverberation equation,

with the decaying gain parameter g. We close that case part with the enqueuing to

the circular buffer the latest inputs coming from the ASIO drivers, and returning the

calculated output value, RealOut_rb.
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A.4 Implementation of Wah-Wah Effect

A.4.1 C# Implementation

When heared to the wah-wah output file, one can hear the changing bandpass fre-

quency filter and the speed of the change by ear. These can be adjusted changing the

wave function of the band-pass center frequency, fc and damping factor d as desired.

But the real challenge is to implement this algorithm real-time using C# on Windows

Applications and C/C++ on the implementation on eZDSP board by Texas Instru-

ments. I will first continue with the C# implementation that results into Windows

Application on C#. The following code block function does the wah-wah job with

the parameters realIn, Fc, Fs, floating point value of the sample input, bandpass-

center frequency and sampling frequency chosen generally as 44.1kHz respectively.

What this function does is that it takes the input sample at that real-time instance and

calculate the state variable equations and store the previous yb[n− 1] and yl[n− 1] in

the parameters ybpast and ylpast respectively in the function. With each followinf

input and calculated state variable equation, these stored values from the previous it-

eration is updated accordingly, since the system includes one previous state variables

inside.

Figure A.7: Wah-Wah Effect Code Block In C#.

Using this Wahwah function in the main block of the program is crucial and the

library to use this function is under the AudioDSP namespace AudioFX class. The

line to call the function to read the input[index] sample then simultaneously writes
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back to input[index] using the function with the previously defined variables: Au-

dioDSP.AudioFX.Wahwah(input[index], input[index], Fc, Fs, d);. This line should

be enrolled in the circular buffer read and write sequence. The successful real-time

execution of this code block is only possible using Steinberger ASIO SDK to directly

reach to the sound card drivers and possible with the common onboard sound cards

like the one that I use on my desktop computer, Realtek High Definition Audio and

also Creative Sound Blaster Z which both have ASIO support built into the software

that comes with them. Selecting the necessary sound card driver will let the ASIO

to run the code and give real-time Wah-Wah output to the user. I tested the system

built with my own electric guitar, where I jacked in my electric guitar, Dean ML79F

to the Line In port and take the output from the Line Out to my 2.1 speaker system

and enjoyed the result with the output got as I desired.

When we come to the last part, the eZDSP programming, it was a little bit exhausting

since I come with the idea to define each filter by hand as enumerated parameters,

since it became consuming to calculate filter parameters right before the filtering pro-

cess made the system non-real time. I found the solution with pre-defining a set of fil-

ter parameters related to the different filters with different desired center frequencies,

fc as shown below with some example filter parameters. The parameter definitions

for the IIR filter numerator and denominator parameters are as shown below. The pa-

rameters are B0, B1/2, B2, A0, A1/2, A2, where B0, B1/2 and B2 are the numerator

coefficients, A0, A1/2 and A2 are the denominator coefficients.

Figure A.8: Wah-Wah Shelving Filter Parameters for Min and Max Band-Pass Fre-
quency.

The MATLAB output of both parameter lines for the maximum fc and minimum fc

are shown as below:

As can be seen from previous two plots, we apply shelving filters ranging desiredly

from fcmin to fcmax. In our choice of triangular wave pattern fc ranges up from

fcmin to fcmax, then fcmax to fcmin periodically with time. What this normalized

frequencies correspond to in our case is that if we multiply the normalized frequencies
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Figure A.9: Wah-Wah Shelving Filter for Min fc.

Figure A.10: Wah-Wah Shelving Filter for Max fc.

by the half of the sampling frequency (44.1kHz) we obtain where in really the filtering

operation proceeds. For fcminreal = 22050Hz ∗ 0.009887695 = 218.0237Hz and

fcmaxreal = 22050Hz ∗ 0.04016113 = 885.5529Hz. So we can summarize that for

Auto-Wah guitar audio effect we have a periodic triangular wave ranging between

218Hz and 885Hz for the band-pass frequency fc of the shelving filter.
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The original wah-wah effect introduced was the Original Crybaby GCB95 by Jim

Dunlop. In order to compensate and compare the filters and bandpass frequencies, I

fed the input of the guitar effects pedal with white noise and measured the output to

estimate the power spectral density and min max points of the real filters. Let’s look

at the min and max bandpass shelving filters of the real guitar pedal as follows:

Figure A.11: Original Crybaby GCB95 Wah-Wah Shelving Filter for Min fc.

As can be seen from the previous two graphs, the Original CryBaby from Jim Dunlop

basically does the time variable shelving filtering on the input signal. The calcu-

lations with the sampling frequency Fs shows us the shelving filters that we have

designed are the ideal approximations to the original guitar wah pedal GCB95. The

sound tests show the same results with the pleasure of the guitar player with the im-

plementation of the Auto-Wah pedal. When we convert the normalized frequencies to

the continuous frequency values we will see how similar the min and max frequen-

cies. fcminCryBaby = 22050Hz ∗ 0.007813 = 172.2767Hz and fcmaxCryBaby =

22050Hz ∗ 0.04688 = 1033.7040Hz. These frequencies are really similar to our

filters designed in MATLAB and implemented inside the Texas Instruments eZdsp
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Figure A.12: Original Crybaby GCB95 Wah-Wah Shelving Filter for Max fc.

coded using the Code Composer Studio.

Shelving Filter concept used in the Wah-Wah design process is the critical point of

designing a good and desired Wah-Wah effect. In our case we have used the shelving

filter concept referred in the Second Edition DAFX: Digital Audio Effects reference

book. If we call the numerator parameters as the b vector and the denominator pa-

rameters as the a vector. The shelving filter equations calculates the denominator and

the numerator of the IIR band-pass filter that is desired to be used. The equations are

as follows, where additionally fb is the bandwidth of the shelving filter:

V0 = 10
G
20 (A.1)

H0 = V0 − 1 (A.2)
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d = −cos(2 ∗ π ∗ fc
Fs

) (A.3)

ab =
tan(π∗fb

Fs
)− V0

tan(π∗fb
Fs

) + V0
(A.4)

a = [2 +H0 +H0 ∗ ab 2 ∗ (d− d ∗ ab) −H0 − ab ∗ (2 +H0)] (A.5)

b = [2 2 ∗ (d− d ∗ ab) 2 ∗ ab] (A.6)

The shelving filter design procedure gives us the parameters for the denominator and

numerator of the desired band-pass IIR filter with the specified fb , fc and G as band-

width, center cut-off frequency and the gain. We then take this parameters, apply it to

the input electric guitar signal and test the feel of it, then decide on the range of the

fc and time-variable change it to obtain the wah-wah effect basically. Using eZdsp

by Texas Instruments, a generic code block is used to process the input signal sample

by sample, if applicable with the real-time constraints. In the wah-wah code block, in

order not to compute each time-changing shelving filter parameters again and again,

I have pre-calculated the necessary filter parameters that are used frequently by the

Wah-Wah system and write them into the memory and call them when needed to pro-

cess the signal with the desired signal. The for loop that does the sample by sample

processing job is shown below:
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