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ABSTRACT

FUSION OF TARGET DENSITY AND INTENSITY FUNCTIONS BASED
ON CHERNOFF FUSION USING SIGMA POINTS

GUNAY, MELIH
Ph.D., Department of Electrical and Electronics Engineering
Supervisor : Prof. Dr. Miibeccel Demirekler

Co-Supervisor : Assoc. Prof. Dr. Umut Orguner

February 2015, pages

Handling of unknown correlation in the target information obtained from dif-
ferent sources is an important problem for consistent track fusion. Chernoff
fusion technique is one of the popular approaches which produce conservative
fusion results to bring this consistency. This method is based on exponential
scaling of the input functions and it provides an analytical solution when input
functions are Gaussian densities. The thesis mainly discusses the extension of
the Chernoff fusion method to Gaussian Mixtures in a consistent and robust
way and proposes an approximate approach for the computation of the fused
output. The exponential scaling, required for Chernoff fusion, is based on a
sigma-point approximation of the underlying functions. The resulting general
fusion rule yields a closed form problem formulation that gives the fused func-
tion as a Gaussian mixture. Effectiveness of the fusion method is presented for
simple but illustrative density fusion problems and compared to the optimal

solutions and exact numerical Chernoff fusion. The technique is applied to the



IMM filter used in target tracking problems. The results show the effectiveness
of the method. The second application of the method is to fuse the PHD filter
outputs that are Gaussian Mixture intensities. PHD filters are again used in
target tracking. Different fusion architectures are investigated and their results
are compared with each other. The comparison is also made with other available

methods whenever they are applicable.

Keywords: Handling unknown correlation, Chernoff fusion of Gaussian mixtures,

Single-target IMM track density fusion, Multi-target PHD target intensity fusion
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Y/

SIGMA NOKTALARLA YAPILAN CHERNOFF BIRLESTIRME
KURALINA DAYALI HEDEF OLASILIK DAGILIM VE YOGUNLUK
FONKSIYONLARININ BIRLESTIRILMESI

GUNAY, MELIH
Doktora, Elektrik ve Elektronik Miihendisligi Boliimii
Tez YoOneticisi : Prof. Dr. Miibeccel Demirekler

Ortak Tez Yoneticisi : Do¢. Dr. Umut Orguner

Subat 2015 , sayfa

Farkli kaynaklardan elde edilen hedef bilgilerindeki bilinmeyen korelasyonun ele
alinmasi tutarh bir iz fiizyonu yapilmasi agisindan 6nemli bir problemdir. Cher-
noff birlegtirme teknigi bu tutarhilhigr saglamak adina 6nerilen popiiler yontemler-
den biridir. Bu yontem girdi fonksiyonlarinin iistel olarak agirliklandirilmasina
dayanmakta ve Gauss dagilimh fonksiyonlar icin analitik ¢oziim 6nermektedir.
Bu tezde Gauss Karigimli fonksiyonlar i¢cin Chernoff birlestirme yonteminin ge-
ligtirilmesi ve tutarli ve giirbiiz sonuglar elde edilmesine yonelik ¢oziim 6neril-
mektedir. Onerilen teknik Gauss karigim fonksiyonunun yaklagik iistel degerini
bulmay1 gerektirir. Ustel deger bulma islemi girdi fonksiyonlara sigma nokta
yaklagtirimi uygulanmasi ile saglanmaktadir. Sonucta, Gauss karigimli fonksi-
yonlar i¢in kapali formda bir maliyet fonksiyonu iiretilmekte ve fiizyon sonucu

yeni bir Gauss karsimi olarak elde edilmektedir. Onerilen yontemin etkinligi

vii



basit ve aydinlatici 6rneklerde gosterilmigtir. Bu orneklerde olasilik yogunluk
fonksiyonlarinin bilegtirilmesi problemi ele alinmig ve onerilen yontem optimal
¢oziim ve niimerik Chernoff birlestirme c¢oziimleri ile kiyaslanmigtir. Bu teknik,
hedef izlemede giincel bir problem olan IMM siizgeci igeren fiizyon mimarileri-
nin ¢iktilarinin birlegtirilmesi amaci ile kullanilmigtir. Diger bir giincel problem
olan PHD filtresi iceren fiizyon mimarilerinin ciktilarinin birlestirilmesi problemi
icin de ayn1 yontem kullanilmigtir. Sonuclar gerek degisik fiizyon mimarileri i¢in

gerekse, olabildigi durumlarda, degisik fiizyon yontemleri i¢in karsilagtirilmigtir.

Anahtar Kelimeler: Bilinmeyen korelasyonun ele alinmasi, Gauss karigimlarinin
Chernoff birlegtirme teknigi ile birlestirilmesi, Tek hedef IMM iz olasilik dagilim
fonksiyonu birlegtirimi, Coklu-hedef PHD hedef yogunluk fonksiyonu birlegti-

rimi
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CHAPTER 1

INTRODUCTION

“... That night, detective went to bed early but he could not fall asleep. He
was still thinking about the recent investigation on the robbery taken place at
one of the most popular museums in the capital city. Thieves had stolen the
“Golden Circuit”, one of the most valuable paintings of the world, a week ago.
This painting was in oil on a golden plate, describing the equivalent circuit of
a vacuum tube operational amplifier designed by the Bell Labs in 1941. He
was never good at electricity at the school bul he had to learn that this picture
represented the first version of an operational amplifier which was very important
to today’s technology world. Then, he got out of his bed and stood up by the
window. He looked at the colorful lights of the city and thought that he would
not sleep without reaching a conclusion on this robbery. He was sure that without
any internal support from the museum staff, that would not happen. He went
over his suspect list in his mind again (Figure and he decided that the thief
had to be John since all the signs were directing himself towards this old security

officer. He was quite sure...”

Leaving the detective with his own responsibilities, there is an important ques-
tion that we need to ask as the readers of this story: Should the detective be
so much sure about his decision? Since most of the suspects of the event say
that John is the criminal, detective naturally thinks in this way. However, if
there exist some “unknown factors” that build up a correlation between what
the suspects tell and, that the detective would never know, all the conclusions

may totally be changed (Figure [1.2).



i

Detective

[ [ ]
? w € Suspects
John Susan Michael
(Security Officer) (Secretary) (Assistant Manager)

Michael Thief is
must be

the thief

John is very
likely to be
the thief

Figure 1.1: Suspect list for the robbery.

Hopefully, the detective reconsiders “his confidence” on his decision and also
thinks about the unknown correlation in the information at hand. This story is
dreamed up to express the vitality of handling the unknown correlation between
data obtained from different sources which is, actually, the main topic of this

thesis.

Recently, importance of information fusion concept has significantly raised for
several disciplines of the technology. Together with the development of the “sys-
tem of systems” approach, which includes several fusion systems, it become
necessary to generate various fusion levels and methods in a decentralized frame-
work. This basically requires continuous research and development activities to
integrate these systems with each other effectively. For this aim, researchers
study for designing more and more robust and accurate fusion algorithms. Gen-
erally, these algorithms and the architecture of the system affects each other in
both ways based on the requirements and the communication capacity of the

system. Various aspects of data fusion will be provided briefly in Section

One of the decentralized fusion applications is the combination of the information
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Figure 1.2: Unknown conversation made before the interrogation day.

obtained from various types and number of radars. In such applications, the
degree of the correlation is unknown because of the unknown target dynamics
and it has to be approximated to achieve a consistent fusion result. In case
the radar information to be fused is in the form of Gaussian Mixtures, the
fusion problem turns out to be much more difficult when compared with the
single Gaussian case since dimension of the state space does not allow numerical
methods. This thesis proposes to use a novel method called Sigma Point Chernoff
Fusion (SPCF) technique to overcome the difficulties of Chernoff fusion, which

is one of these numerical methods.

Additionally, performance of SPCF is analyzed for two different architectures in
which Gaussian mixtures has to be exchanged and the fusion operation has to
be performed. These two architectures contain different types of radars whose
association and tracking mechanisms differ from each other. While the first
architecture includes Interacting Multiple Model (IMM) tracker following Joint
Probabilistic Data Association (JPDA) algorithm, the second one uses Extended
Kalman Gaussian Mixture Probability Hypothesis Density (EK-GMPHD) filter
for both tracking and association steps. Both of the architectures produce Gaus-
sian mixture information regarding the targets of interest and this information
should be communicated to other radars in the architecture to perform the fusion

operation at the receiver side.



To sum up, this thesis mainly brings the contributions stated below to the data

fusion area:

e Sigma Point Chernoff Fusion (SPCF)
e Fusion of target density functions (In IMM framework)

e Fusion of target intensity functions (In EK-GMPHD framework)

This thesis first provides some general information regarding data fusion prob-
lems and, specifically decentralized data fusion algorithms in this chapter. Then,
problem definition of this thesis is also given in the same chapter to draw the
boundaries of the thesis study. In Chapter 2| theory for the proposed tech-
nique SPCF will be discussed in detail and its performance will be analyzed
based on simple benchmarks scenarios. Chapter |3| will rely on the application of
SPCF technique in a radar network in which the radars have IMM trackers. Fu-
sion analysis and performance comparison of different fusion strategies including
the methods SPCF, Naive and Covariance Intersection (CI), will be performed.
PHD fusion application based on fusion of target intensity functions will be in-
vestigated in Chapter [4] next. Proposals for the fusion strategies will be given
together with their analytical analysis. Finally, the thesis will end up with the

conlusions that discusses about the contributions of it to the data fusion world.

1.1 Introduction to Data Fusion

The aim of data fusion is to achieve better situation awareness by combining
the data obtained from various number and type of sensors. Connections of the
sensors and the fusion nodes may vary depending on the specific system require-
ments or the design decisions. These connections define the architectural frame-
work of the fusion system and this framework is categorized into two: centralized
and decentralized fusion. In centralized fusion, sensors are directly connected to
a single node and fusion is performed only at that node. On the other hand, in
the decentralized data fusion, the connection schemes may be complex and there

may be several fusion nodes performing the fusion simultaneously. Within this

4



scheme, the fusion is performed locally at each node on the basis of local obser-
vations and the information communicated from the neighboring nodes. There
may be several connection schemes of the sensors in a fusion system. For in-
stance, Figure describes various possible radar communication structures in
which the arrows represent the track /measurement/density exchange direction.
Fusion process is performed at each radar site when remote target information

is received and each unit separately generates the fused track.

The following are the natural problems of a sensor fusion system which have to

be solved to achieve the desired over-all system performance.

e Distribution or management model of the system: Data exchange
mechanism of the overall fusion system must be designed (e.g. decision on
which node will send to or receive from which node), if needed, manage-
ment and control signals must be determined and the fusion must support

these commands.

e Data alignment: Especially, when the system is heterogeneous, i.e., com-
posed of various types of sensors, data produced by those sensors must be
interpreted appropriately so that all information are referenced to a com-

mon reference unit.

e Adaptation of fusion to communication or bandwidth constraints:
The fusion architecture must be designed according to the the communi-

cation infrastructure of the over-all system.

e Handle of asynchronous or delayed data: Since the sensors in the
system may not produce the target data at the same time, the measure-
ments incoming to a node may belong to different time instances of the
target whose state is changing dynamically. The possible delay in the com-
munication channels may cause deficiency in the data obtained for which

precaution must be taken in the system design.

e Association: Data from different sources must be correlated and unique
and correct target picture must be obtained. Association must be de-

signed in the way that it must provide correct identification of the targets



continuously.

e Tracking: Information belonging to the same target must be processed

so as to fuse and track that target and the target state must be estimated.

e Elimination of unknown correlation: Information gathered from dif-
ferent information sources at a given node is very likely to possess com-
monalities. The common information in the data must be eliminated so

as to prevent the fusion system from producing inconsistent results.

All of these problems are important to the performance of a fusion system and
there are numerous completed /ongoing studies on all of these areas. Main focus
of the thesis will just rely on “elimination of unknown correlation in decentralized
fusion systems” and techniques proposed to solve other problems of the fusion
systems will be used, if it is required. Following section will now provide basic
information regarding the techniques proposed to perform the fusion operation

of correlated data.

1.2 Elimination of Unknown Correlation in Decentralized Fusion

Systems

A decentralized data fusion system is composed of sensors and processors. Pro-
cessors fuse local sensor data and remote data obtained from other sensor sys-
tems. Characteristics of a decentralized fusion system are described by the
network architecture, communication links and fusion algorithms. A three sen-
sor cyclic communication structure is provided in Figure [I.4] as an example.
This structure has an optimal analytical solution yet it is a complex structure

because of multiple paths resulting in information propagation.

Following resultant formulae ([1.1)) for the first fusion step is proved to be the op-
timal decentralized fusion for three sensor cyclic communication network shown

in Figure
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where ¢ is the normalization constant, p(x) is the conditional probability at node
Sy after the fusion operation, and p; x(z) is the conditional probability at node

S; at time k before the fusion.

This approach is called the Information Graph (IG) approach and [I0] shows
us that the application of the optimal decentralized fusion techniques to obtain
optimal results must be supported by carrying information belonging to the pre-
vious steps via communication links which may be undesirable and expensive

for most fusion systems.

The idea of obtaining the optimal fusion must take into account the fact that
the decentralized fusion problem is characterized by the unknown correlation
of the information gathered from the different sensors. The correlation in the
data must be eliminated in order to avoid over-confident results and obtain
much more consistent ones. In the literature, there are several scalable fusion
techniques which do not demand previous step’s information and propose some
approximations for the fusion of the densities gathered from these sensors. De-
tailed information on these techniques and comparison of them are provided in
[10]. A list and summary on the most commonly used fusion methods are listed

below to provide the completeness of the thesis report :

Channel Filter Fusion

Naive Fusion

Chernoff Fusion

Shannon Fusion

Bhattacharyya Fusion



1.2.1 Channel Filter Fusion

Channel Filter approach is a first order approximation of IG method and only
the first order redundant information is aimed to be eliminated. Channel Filter

fusion equation is given in equation (|1.2)).

P1 k:(x) k(@) /P2r—1(7)

fplk z)p Jf)/]?zk 1(x)dx (1.2

pChF( )

where p;(z) and py(x) are the two probability density functions belonging to the
local and remote densities, respectively. The subscript ChF is for the channel
filter. When both densities are Gaussian, fusion formulae for Channel Filter

Fusion becomes as the equations (1.3).

Pt = P1k+P2k1 Plei—1 (1.3a)
sz_ T = Pl_,k X1k + P2_7]€1/ZL’\2’]€ - PQ_,Ii—l‘%\Zk—l (13b)

where, p(z) = N (2, Tk, Pr), pru(@) = N(@, 1, Pri) and pog(z) = N(z, o,
Py ). It is obvious that this is an approximation and the performance is not

expected to be satisfactory when compared to that of IG approach.

1.2.2 Naive Fusion

Naive fusion is the simplest fusion approach and it assumes that there is no
dependency between the densities to be fused. Its general fusion formulae and
formulae for Gaussian case is provided in the equations (1.4} and ., respec-
tively.

p1(x)p2()
[ 1(@)pa(w)dx (1.4)

pNF(I) =
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P P IZE1 + P 1'2 (15b)

1.2.3 Chernoff Fusion

Another idea is to define a notion of “conservativeness” that is used to avoid
overconfidence. The main problem is then to obtain a measure of conservative-
ness, i.e., how to say one pdf is “more conservative” than another. One option
is to utilize the entropy measure concept which will produce the level of an
uncertainty for a given pdf. For this aim, Chernoff information measure has
been proposed and Chernoff Information fusion has been defined. The reader
is referred to [2| for further information and a comprehensive understanding of
Chernoff Fusion. Given two density functions p, ;(-) and p, s(-) representing the

same random variable x, the fused density p, cr(-) is obtained as

pxﬁ(x)pi‘zw*(x)
fp:r 1 T px 2 .flf)dl’

where the subscript CF stands for Chernoff fusion and w* is selected as below

w 1—w
w* = arg min L Pea (@) () . (1.7)
wel0,1] 2 (2)py " (x)da

Here, the function L(-) represents an uncertainty measure from the space of
density functions into real numbers. See [2] for details about the consistency

and conservativeness properties of Chernoff fusion formula (|1.6]).

When the input densities are Gaussian, this approach corresponds to Covariance
Intersection (CI) technique [23, 25] which is one of the main approaches to
decentralized fusion [10]. Detailed information about this fusion method is given
in section [2.2] and analytic expression of the mean and covariance of the fused

density is provided in the Equations and (L.9).
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Pyl =w* P ey + (1 — w*) Pyt (1.8a)
Pyl =w Pt + (1 —w) Pyt (1.8b)

where w* € [0, 1] is calculated using the following optimization

w* £ arg min £ ((wPfl + (1 - w)PQ_l)A) (1.9)

wel0,1]
1.2.4 Shannon Fusion

Shannon fusion is a special case of Chernoff fusion when w is selected for the
minimum value of the determinant of the fused density covariance, i.e., the
function £ in the cost is selected to be the determinant of the fused
covariance. For the Gaussian case, this turns out to be minimizing the Shannon
Information of the fused density. Shannon information for the Gaussian density
case is calculated as I, = [ p(z)Inp(z)dz = 1n (2m)"|P|V? + n/2, where P is
the covariance of p(z). Fusion of two Gaussians utilizing the Shannon technique

requires solving the optimization problem defined in (1.10) and (L.11)).

Pipasy =w* Py + (1 — w*) Py 'y (1.10a)
Pyl =w* Py + (1 —w*) Py (1.10b)

where w* € [0, 1] is calculated using the following optimization

w* £ arg min I, (1.11)
we[0,1]

1.2.5 Bhattacharyya Fusion

Similar to Shannon fusion, this fusion technique is again a special case of Cher-
noff Fusion. The parameter w is selected as 0.5 and the equations get similar to

those of Naive Fusion for the Gaussian case. The covariance and mean of the

fused density is provided in (1.13) and (1.15)), respectively.

10



1
Pop =5 (PU + FyY) (1.12)

= (P + P - % (Pt + P (1.13)
PB_FI/I\BF - % (Pl_l?fl + P2_1/I\2) (114)
= (P2 + Py ') — % (P2 + Py '2) (1.15)

Note that in this case, common prior information corresponds to the average of

the two sets of information to be fused in the fusion equations.

1.3 Elimination of Unknown Correlation in Track Fusion Problems

The area of track fusion is mainly concerned about the correlation between the
estimates to be fused. Even if the sensors used in a network collect measure-
ments which are conditionally independent of each other, local processing of the
measurements in the presence of common process noise in the target dynam-
ics makes the local estimation errors correlated [3]. Moreover, the existence of
data feedback loops can cause rumor propagation all over the network, which
would result in inconsistencies, overconfidence and in turn even filter divergence.
The proposed solutions for the track correlation problem range from the ones
requiring extra information transmission (e.g. Kalman filter gains [4]) or extra
processing (e.g. information decorrelation [32, 12]) to compensate for the cor-
relation, like the Covariance Intersection (CI) [23] 25] and the Largest Ellipsoid
Algorithm (LEA) [6, 52]. An analysis with a survey and comparison of the
possible approaches is presented in [9] [10)].

The early approaches to track fusion considered only the fusion of locally es-
timated means and covariances due to the ubiquitous use of Gaussian density
based state estimators (e.g. Kalman filter (KF), extended KF (EKF), unscented
KF (UKF) [24]). This was indeed a manifestation of the computational restric-

tions of the era which made such filters actually the only possible choices. With
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the advent of more sophisticated state estimators like Gaussian sum filters [44],
multiple model filters [8], [5, Section 11.6] and particle filters [20] 1], the need
for fusing density functions became more apparent. Similarly, in multiple target
tracking, the consideration of local multiple hypothesis trackers (MHT) which
inherently hold mixtures for targets directly leads to the problem of fusing local
mixtures for a single target (even if Gaussian based state estimators are used in
local trackers). The recent developments in multiple target tracking leading to
the extensive use of probability hypothesis density (PHD) filters [34] made the

need for density /intensity fusion methods even more significant.

1.4 State-Of-The Art Fusion Techniques for Gaussian Densities and

Gaussian Mixture Densities

Because of the reasons depicted in Section consistent and optimum fusion
of density functions is investigated in detail in [I3]. The generalization of CI to
probability density functions was first proposed by Mahler in [40] and two years
later, independently, by Hurley in [22]. This generalization is called by different
names by different authors: Chernoff fusion [10]; geometric mean density [2];
exponential mixture densities [27]. In [40], Mahler also proposed the application
of both the optimal approach [I3] and Chernoff fusion to multitarget densities.
The consistency and conservativeness properties of Chernoff fusion are inves-
tigated in [2]. Explicit formulae are derived for Chernoff fusion of Bernoulli,

Poisson and independent cluster process multitarget densities in [15].

Table demonstrates the applicable fusion techniques to both Gaussian den-
sities and Gaussian mixture densities and clearly reveals the point that has to
be studied in detail. Although there has been several studies on the aspects of
Chernoff fusion, there does not exist satisfactory approaches in the literature
that enable to apply Chernoff fusion to Gaussian Mixtures. According to our
knowledge, the only solution proposed for this problem is by [26] and this work
makes an analysis on the existing fusion technique Pairwise Component Co-
variance Intersection (PCCI) and proposes two other different methods, Pseudo

Chernoff-1 and Pseudo Chernoff-2 which are derived from first order approxima-
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tion of w'" power of the mixture. Comparison of these techniques are performed
and Pseudo Chernoff-2 algorithm is found as the best among all. Notice that
the first order approximation of the exponent of a given mixture sounds as a
weak assumption and its weakness will be demonstrated by comparing these
techniques with the one proposed in the thesis in Section [2.5

Table 1.1: Existence analysis of state-of-the art fusion techniques to Gaussian
densities and Gaussian mixture densities.

EXIste.nce Existence Analysis
Analysis for

. . for fusion of
. Fusion Formulae fusion of .
techniques «Gaussian

«Gaussian )
- Mixtures»
Densities» =

Density Fusion

D11 (X)P2,1 (X) /D21 (X)
Channel Filter p(x) = - - - OK NO
I[PLk (X)Pz,k (x)/Pz,k—l (x)]dx
p1(x)p2(x)
Naive Fusion py(x) = 77— 0K (0]'¢
T [ ()pa (n)dx
Y (Ops ™ (%)
Chernoff Fusion Per(X) = —= —r OK Not satisfactor
[y @pi ™ (xdx Y
Shannon Fusion Same as that of Chernoff Fusion OK Not satisfactory
Bhatl':t::il;:'ryya Special Case of Chernoff Fusion OK Not satisfactory

As a result, this thesis aims to fill the gap on performing Chernoff fusion of
Gaussian mixtures. The proposed method called Sigma Point Chernoff Fusion

(SPCF) is given in Chapter [2] with some analysis.

1.5 Analysis and Comparison of the Existing Studies for Track Fu-

sion Architectures

Although some work is done for different fusion techniques, it seems that there
does not exist sufficient study on the performances of different decentralized
fusion techniques applied to track fusion problems. For instance, even for CI
technique, there is no study clearly showing its benefits over Naive fusion when
only state estimates are fused. Additionally, performance of Chernoff fusion
could not be evaluated on a track fusion system because of the difficulty of

the implementation of Chernoff fusion for high state dimensions, which is the
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general case. This study claims to fill this gap and allows to implement Cher-
noff fusion technique for fusion of track density/intensity functions in the form
Gaussian Mixture. Specifically, this thesis aims to propose some fusion strate-
gies and to compare these strategies in case the radars possesses IMM and PHD
filters, which corresponds to the fusion of target density and intensity functions,

respectively.

Focusing on a track fusion system based on IMM filter, the only analysis in the
literature is the fusion of the state estimates with Gaussian densities. There does
not exist any study that inspects using Gaussian mixture densities internally
produced by an IMM filter for fusion purposes. This requires consistent fusion
of two Gaussian mixture densities which was not that practical and efficient up
to this thesis. For instance, at an architecture like the one given in Figure
fusion operation should be performed at each radar site, and the fusion problem
of IMM output density functions in the form of Gaussian mixtures are to be

analyzed. The problem is elaborated in Chapter [3]

Another area that requires the fusion of Gaussian mixtures is the PHD filter,
in particular GMPHD filtering (Figure [1.6). GMPHD filters generate Gaussian
Mixture intensity functions. There is no work in the literature that fuses the
PHD’s without referring to the measurements that generate them. The thesis
focuses on proposing different fusion strategies enabling the fusion and demon-
strate some results for comparing them. Chapter[dis devoted to this track fusion

problem.
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Figure 1.4: Cyclic communication scenario (adopted from [10]).
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Figure 1.5: Track fusion architecture based on IMM filter in which Gaussian
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Figure 1.6: Track fusion architecture based on PHD filter in which Gaussian

mixture intensities are exchanged.
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CHAPTER 2

SIGMA POINT CHERNOFF FUSION

2.1 Introduction

In this chapter, we propose an approximate approach for the Chernoff fusion of
Gaussian mixtures. As indicated in Section the existing literature on this
subject is not mature. Our methodology starts by approximating an arbitrary
power of a GGaussian mixture with an unnormalized Gaussian mixture whose
weights are to be found by using a weighted least squares formulation. The in-
strumental weighted least squares problem that gives the weights is constructed
by approximating the original Gaussian mixture with its sigma-point approxi-
mation. Such an approximation can lead to a density fusion which no longer
involves powers of the densities to be fused. An important merit of the proposed
fusion rule is that it yields a closed form problem formulation including the cost
function and the fused density in the form of a Gaussian mixture. We illustrate
the performance of the proposed generalization on a density fusion scenario and

on a benchmark scenario where (Gaussian mixtures are required to be fused.

The organization of the chapter is as follows: A brief overview of CI and Chernoff
fusion is presented in Section Section [2.3.1] first establishes the approxima-
tion of the density powers appearing in Chernoff fusion for Gaussian mixtures
and then presents the proposed new version of Chernoff fusion for Gaussian mix-
tures, which is the main result of this chapter. The explicit fused density formula
resulting from the application of the proposed fusion rule to Gaussian mixtures

is obtained in Section [2.3.2] The simulation results are given in Sections [2.4 and
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2.5l The chapter is finalized with discussions in Section

2.2 Covariance Intersection and Chernoff Fusion

Covariance Intersection (CI) [23] 25] is one of the main approaches to decentral-
ized fusion [I0]. Its main advantage is that it enables consistent fusion under
unknown correlation information. The consistency in this context is defined as
the fused covariance being always larger than or equal to the optimally fused
covariance that would be obtained if the correlation information was available.

For more details about the optimality and consistency properties of CI, see [11].

The main idea of CI is to combine the estimates and their covariances as a
weighted sum of them. Assume two local estimates z; € R™ and x5 € R™ and
their positive definite covariances P; € R™*" and P, € R™*". Then the fused

estimate xcp and covariance Pqp are calculated as

Pileor =w* P ey + (1 — w*) Py g (2.1a)
Pyl =w P + (1 —w) Pyt (2.1b)

where w* € [0, 1] is calculated using the following optimization

w* £ arg min L ((wPfl +(1-— w)PQ_l)A) . (2.2)

wel0,1]

Here, the function L : S%” — R>( represents an uncertainty measure from the
space of symmetric positive semi-definite matrices (S13") into non-negative real
numbers (R>o) and usually selected either as the trace or the determinant of the

matrix argument. Define the ellipsoid &Ep, as

Ep 2 {zla" Pl < 1} (2.3)

Above approach generates the fused covariance Pg; as “the smallest” ellipsoid
containing the intersection £p, N Ep, of the ellipsoids £p, and Ep, corresponding
to the local covariances P; and P, respectively. See Figure 2.1]for an illustration

of this property in two dimensions.
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A very attractive property of CI is that it is generalizable to the fusion of den-
sity functions [40, 22]. The corresponding generalization is called Chernoff fu-
sion [10]. Given two density functions p,(-) and p, o(-) representing the same

random variable z, the fused density p, cr(-) is obtained as

pe(2)ps " (@)
Prcr(2) = s (2.4)
fpx71($)p;’2 (z)dx
where the subscript CF stands for Chernoff fusion and w* is selected as below
v (2)plt(x
w" = arg min £ Pea )plew( ) . (2.5)
welo]  \ [ Py (2)py " (2)da

Here, the function L£(-) represents an uncertainty measure from the space of
density functions into real numbers. For example, the matrix uncertainty mea-
sure trace in CI corresponds to the uncertainty measure variance (F,[z7z] —
E.[zT]E,[z]) in Chernoff fusion and the matrix uncertainty measure, determi-
nant in CI, corresponds to the uncertainty measure entropy (E,[—logp(z)]) in
Chernoff fusion. See [2] for details about the consistency and conservativeness

properties of Chernoff fusion formula ([2.4)).

2.3 Chernoff Fusion of Gaussian Mixtures Using Sigma-Points

When the densities p,1(-) and p, () in (2.4) are selected to be Gaussian Mix-

tures as:
M
Poa(z) = Z N (x; ¢i, ®;) (2.6a)
z]:Vl
Pea(®) =Y VN (z39;, ;) (2.6b)
j=1

application of Chernoff fusion formula (2.4) requires the exponentiation of the

Gaussian mixtures for exponent values in [0,1].

Starting with the single Gaussian case, the exponentiation results in the scaled

Gaussian given below.
N (x; ¢, @) =c(w, ®)N (x; gb,w_lq)) (2.7)
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Figure 2.1: Covariance intersection algorithm in two dimensional case (n = 2).
Similar figures also appear in |23} 25].

for w € (0,1) where c¢(w, ®) is a scalar independent of z. Later, the expression
above will be the basis for some assumptions in this chapter. Notice that the
mean of the Gaussian density does not change after the exponentiation and the

covariance is multiplied simply by w™!.

2.3.1 Taking the w'® Power of a Gaussian Mixture

For the Gaussian mixture case, the Chernoff fusion formula requires the w
power of the Gaussian mixture where w € (0,1). We call the w'™® power of a
Gaussian mixture p(x) = % wN (z; 2;, P;) as q(z) = p*(x). Note that ¢(-) is not
necessarily a Gaussian miZ;tlure but one can intuitively say that its shape would
be similar to a Gaussian mixture. Assuming that ¢(-) can be approximated
as a (unnormalized) Gaussian mixture, estimation of the number of mixture
components, weights, means and covariances of the components of ¢(-) becomes
the main concern. Defining an optimization problem over all of these parameters

to find ¢(x) is possible, however even numerical solutions may not be feasible for
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real-time applications. Therefore, we make the following assumptions utilizing

the interpretation for the single Gaussian case given in (2.7)).

e ¢(-) has the same number of components as p(-).
e The means of the components of ¢(-) are equal to those of p(-).

e The covariances of the components of ¢(-) are equal to the covariances of

the components of p(-) scaled by 1/w

The assumptions listed above results in the following expression for ¢(-).

Zﬁz iz, w ' P) (2.8)

Note that the only unknown variables in are the weights {3;}2Y, of the
components of g(x) which can be found by solving the following optimization

problem.
miniﬁmize/(q(z) — p¥(x))?*p(x)dx (2.9a)
subject to 0 < G;, i =1,...,N. (2.9b)

where = [, fa, . . . ,BN]T. In the optimization problem defined above the cost
function (2.9a)) is quadratic and the constraint is linear in the unknown
weights {3;}Y,. Hence we have a quadratic optimization problem which is rel-
atively easy to solve. An important drawback is that the analytic evaluation
of the integral in the cost is not possible. Notice that the optimization
problem has to be solved for every candidate exponent w for the Chernoff fu-
sion which would lead to extreme amount of computations, especially in high
dimensions. Therefore we choose here to approximate the optimization problem

above by the following optimization problem.

2n+1

mlnlmlze Z w; Z “’(sg))2 (2.10a)

subject to 0 < 3;, i=1,...,N. (2.10b)

]}Qn-‘rl

where {s are the sigma-points for the ith component of p(-) generated by

]}2n+1

unscented transform [24] and { are their weights. Note that the approx-

imate optimization problem given above follows simply from the approximation
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of p(-) given as
2n+1

p(z) =~ Zwi Z Wgésg (x) (2.11)

~N (z;x;,P;)

where 0,(-) denotes the Dirac delta function placed at s.

The new optimization problem (2.10a) can simply be written as the following

weighted non-negative least squares problem.
minignize (M3 —b)"W(Mg3 — b) (2.12a)
subject to 0 < 3;, i=1,...,N. (2.12b)

where the elements of the vector b € RN@+Dx1 the matrix M € RN@r+DxN

and the diagonal matrix W € RVN@HD)xN2n+1) are defined as

[M](2n+1)(i—l)+j,m éN(sZ; T, w_le), (2,13)

[zt 1)6-1)01 20"(5) (2.14)

(W] an 1) (1), @n 1) 1) 45 =i, (2.15)

for i,m = 1,...,N and j = 1,...,2n + 1 where the notation [-|;; denotes

the 7, jth element of the argument matrix. The solution for the weighted least

squares problem (when the constraints are neglected) is given as

B=(M"WM) ' M”Wh. (2.16)

Note that the problem defined as (2.12a)) and (2.12b)) is a weighted non-

negative least squares problem. There are existing simple solutions to the origi-
nal weighted non-negative least squares problem like Lawson-Hanson algorithm
given in [28] which may require some computational power. To speed up the
process to find the optimal solution, first we propose to solve the problem ig-
noring the non-negativity constraint, and then in case the solution turns out to

with negative weights, Lawson-Hanson algorithm is used.

The approach described above provides a fast and scalable (with the dimension
of x) way for approximating the w'™ power of a Gaussian Mixture as another
Gaussian Mixture which is going to be instrumental in the Chernoff fusion of

(Gaussian mixtures.
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2.3.2 Chernoff Fusion of Gaussian Mixtures

In this section, we are going to investigate the fusion of Gaussian mixtures by
Chernoff Fusion technique using the results of the previous subsection. In order
to find the fused density given in (2.4), the w™ and (1 — w)™ powers of p, ()
and p,o(z) should be found, respectively. The approximate solution proposed
in the previous subsection, generates functions ¢, 1(-) and ¢, »(-) that are also
(unnormalized) Gaussian mixtures given as

M

Gea () = D Fu(w)N (s 65, 0™ @) (2.17)
oo(z) = Z Ui (w)N (2315, (1 — w)~105) (2.18)

where the dependency of the weights on w is emphasized. Given g, 1(-) and
¢z2(-), the rest of the fusion amounts to nothing but applying the so called
“naive” fusion formula [I0] (i.e., the fusion formula that would be valid if the local

quantities were independent|[) to fuse the resultant mixtures (2.17) and (2.18).

Multiplication of the Gaussian Mixtures g, 1(-) and g, 2(-) results in

(]a:,l(ff)%,2($)
M N o o, W,
= 2 ;MiVJ’N <x; bi E) N (m; Y, m) (2.20)
M N B
= Y AN (w35(w), Py(w)) (2.21)
i=1 j=1
where
A q)z ‘I/
mij(w) =N (@; vyt ﬁ) (2.22)
Pl (w) =0 + (1 - w)¥;! (2.23)
Py (w)(w) =w®; ¢ + (1 —w) ¥y, (2.24)

! The naive fusion formulae is given as

o (z) = pw,l(m)pwﬂ(x)
Prive (@) = o @pen(e)ds (2.19)
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Therefore, we have

Sty Yoo Ha(w) 7y (w) s (w*)
N (x; Fiy(w), éj(w*))

px,SPCF<x) = ) (2.25)
> Zjvzl pavjmij(we)
where
w* =arg min
we(0,1]
S )7y () (A (), By ) 226

Sty Yooy Ha(w) vy (w) s (w)

In this work we are going to use the variance as the optimizing criterion since
it is analytically computable for Gaussian mixtures, i.e., £(p,(z)) = E [zTx] —

E,[2#T]E,[z], which gives

Sy S i (w) By (w) s (w)
x [t (Py(w)) + 135 (w) = #(w) 3]

w" =arg min VA v — (2.27)
wel0.1] > e Zj:l i (w) v (w)m; (w)
where
M N
Fw) £ Y ii(w)D;(w)mi (w) s (w), (2.28)
i=1 j=1
and the notation || - ||, denotes the Euclidean norm of the argument vector; the

operator tr(-) is the trace of the argument matrix.

Notice that while the cost function and the fused density for Chernoff fusion can
only be obtained with resort to numerical optimization due to the exponentiation
of the Gaussian mixtures, the sigma-point Chernoff fusion enables the analytical
evaluation of the cost function and provides an explicit formula for the fused

density once the optimization problem (with respect to w) is solved.

2.4 Comparison of Different Fusion Techniques with Optimum Fu-

sion Based on Simulations

In this section, we are going to present the results obtained by applying the

sigma-point Chernoff fusion to univariate and bivariate density fusion problems
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and comparing the results to those of exact numerical Chernoff fusion and op-
timum fusion. The case study given here considers a fusion scenario where we
have two local agents, called A; and As, which process both conditionally in-
dependent and common information about a random variable x € R". Both

agents assume common prior information about x given as

2
v p(x) 2 mN (w; i, M), (2.29)
=1

We consider three conditionally independent measurements z;, 2o and z3 of x

which are related to x with the simple noisy measurement relation
z; =x +v; (2.30)

where v; ~ N (v;;0, R;) for i = 1,2,3. We suppose that the measurement pairs
Z1 2 {21, 2} and Zy £ {2, 23} are available to agents A, and A, respectively.
When the agents get their respective information, Z; and Z,, they calculate the
posterior densities p;(-) and po() defined as

respectively. The task is then going to be the fusion of p;(-) and ps(-) under
unknown correlations. Note here that the common information in this case is
the common prior information that the agents use and the information of the

measurement z,. It is obvious that the optimal fused density would be given as

Popt () £ p(x|21, 22, 23) o p(z1|2)p(22|2)p(23]7)p(2). (2.33)

A point to be emphasized here is that the densities py(-), p2(-) and popi(+) can
all be calculated exactly using the Kalman filter update formulae. We below
give the analytical formula only for p(x|z;) and the others can be calculated

similarly.
p(z|z) = Zm (z; i, M) (2.34)
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where

fi =i + Ki(z — i) (2.35a)
M; =M; — K;S;K} (2.35b)
7 ocmN (21 s, S;) (2.35¢)
S; =M; + R (2.35d)
K; =M;S;! (2.35¢)

For this case study, the fused density results of 4 different density fusion methods

are presented for different scenarios. The 4 methods are:

e Optimal: The optimal result calculated using (2.33)).

e Naive: The fused density obtained assuming independence between the
two local densities. This method gives highly overconfident results since

it totally neglects the existent dependence between the local quantities.

e Chernoff: Chernoff fusion formula is applied. In this case, the
optimization is carried out on a grid of 100 uniformly placed w-
values in the interval [0,1]. The variance of the fused density is used
as the objective function. The integrals involved for calculating both the
cost function and the normalization constant for the resulting density were
taken numerically using a uniform grid of all components of the x vector

placed in the interval [—400m, 400m] with a spacing of h meters.

e Sigma Point Chernoff: The method proposed in this work is applied.
As in Chernoff fusion, the optimization is carried out on a grid of 100
uniformly placed w-values in the interval [0, 1]. The variance of the fused

density is used as the objective function. The cost function is calculated

analytically using the formula (2.27).

A total of 10000 Monte Carlo runs are made, where in each run different real-
izations of z, 21, 2o and z3 are used. As the comparison metrics, we calculate
the means and the standard deviations of the components of x corresponding

to the resulting fused densities for each run. For each algorithm (naive fusion,
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Chernoff fusion, sigma-point Chernoff fusion), we calculate the distance from the
mean and the standard deviation obtained by the algorithm to the mean and the

standard deviation of the optimally fused density poptimai(-), i-e., we calculate

Cmean = |[mean [pagorinm ()] = mean [popima ()] | (2:36)

Estd :HStd [Patgorithm (+)] — std [Poptimal (+)] H2 (2.37)

where “algorithm” can be one of naive fusion, Chernoff fusion and sigma-point
Chernoff fusion and the notation std[-] denotes the vector composed of the
standard deviations of components of x distributed with the argument density.
After calculating the error metrics for each Monte Carlo run, we calculate the

empirical estimate of the cumulative distribution function of each error metric.

2.4.1 1D-Case

In the following, we are going to make two parameter selections for the scenario

described above when x € R, i.e., n = 1, and then present the results.

2.4.1.1 Parameter Selection 1

In this case we select the parameters of the scenario as below.

m =0.8 Ty =0.2 (2.38a)
p1 = — 50m 2 =50m (2.38b)
M, =100°m*> M, =20*m”. (2.38¢)

R, = Ry = Ry = 100°m?. (2.39)

In Figures and [2.3| we show the result of the single run where the sampled z
value is x = —36.1141m and the sampled measurements are given as z; = 59.9m
29 = —112.6m and z3 = —22.1m. The densities p(-), p1(:), p2(-) and poptimai(-)
are illustrated in Figure . In Figure we show the fused densities poptimai(-)s
Pnaive(*); Por(+) and psper(+). For this example, the Chernoff fusion selects the

exponent w = 1 while sigma-point Chernoff fusion selects the scaling factor
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Figure 2.2: The densities p(-), p1(+), p2(-) and poptimai(-) for parameter selection
L.

w = 0.9394. Note that for this specific case, the fused densities pspcr(:) and
per(-) seem to be quite similar and they fit better to poptimai(-) than puaive(-)
does. It must be noted that, for exactly the same example, it is easy to find the
reverse case if other samples are generated from the random variables z, 2z, 25
and z3. We show the error cdfs for the means and the standard deviations in
Figures and respectively. The results show that for this example, sigma-
point Chernoff fusion is a little better than Chernoff fusion on the average in
terms of both mean error and standard deviation error. Note that the mean
error of both algorithms are worse than naive fusion whose mean estimates are
surprisingly close to the optimal means. However, as can be observed, the naive
fusion standard deviation errors are much worse than the other algorithms which

is expected.
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Figure 2.3: The fused densities poptimal(+), Pnaive(+), Pcr(+) and pscating(+) for pa-
rameter selection I.

2.4.1.2 Parameter Selection II

In this case we select the parameters of the scenario as below.

m =0.5 e =0.5 (2.40a)
p1 = — 20m 2 =20m (2.40Db)
M, =10*m? My =10?m?. (2.40¢)

Rl = R2 = Rg = 1002m2. (241)

The error cdfs for the means and the standard deviations are given in Figures
and respectively. For this example, the results show that the differences of
the obtained means and covariances from the optimal mean and covariances
are much smaller compared to the previous parameter set. For a better visual
comparison, the axes limits are selected same in Figures and and in
Figures 2.4 and 2.5] The mean errors of the sigma-point Chernoff fusion for the
current parameter selection are on average similar to those of Chernoff fusion
and Naive fusion. Nevertheless, the sigma-point Chernoff fusion still seems to

be considerably more consistent than naive fusion.
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Figure 2.4: The cdfs for ey, for parameter selection 1.

The above case study gives some preliminary information about the performance
of SPCF compared to Chernoff. SPCF is an approximation to Chernoff and the
case study demonstrates that this approximation is reasonable. Two different
parameter sets are selected with different characteristics: first is anti-symmetric,

the second one is symmetric. For both cases, SPCF’s performance is close to

Chernoff.

2.4.2 2D-Case

The aim of this part is to give some idea about the computational power re-
quirement of the algorithms. Comparison of the methods from a computational
point of view is much more meaningful when the problem is defined in a higher
dimensional space. For this aim, 2D example is generated. The new problem
is analyzed in terms of the performances of different fusion techniques, as well.

One-dimensional simulations presented in the previous subsection are extended
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Figure 2.5: The cdfs for egq for parameter selection 1.

to the 2D space in which the parameters of the scenario are selected as below.

m =0.8 7y =0.2 (2.42a)
g1 =[—50m; —50m] 2 =[50m; 50m)| (2.42Db)
M, =diag(100°m? 100°m?) M, =diag(20°m?, 20°m?) (2.42¢)

R, = Ry = R3 = diag(100°m?, 100°m?) (2.43)

The results of performance analysis are represented in the figures and
In parallel with the earlier findings, mean estimates of the sigma-point Chernoff
fusion are very similar to those of Chernoff and Naive fusion methods while it has
better covariance characteristics than these two methods. These results are an

indication of the effectiveness of the proposed technique in a higher dimension.

From computational point of view, for the 1D case, when the discretization
interval length h is equal to 0.1m for the Chernoff fusion, the computation times
of the proposed technique and the Chernoff fusion method were, more or less,

similar on the average and both run 100 times slower than naive fusion. This is
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Figure 2.6: The cdfs for eyea, for parameter selection I1.

reasonable since the fused density computation is carried out 100 times for the
optimization involved in the method. On the other hand, when the dimension is
increased to 2, the sigma-point Chernoff fusion is approximately 350 times faster
than the Chernoff fusion due to the numerical integral taken in the Chernoff
fusion while calculating the objective function and the normalization constants.
This difference is expected to increase drastically with multivariate densities
in higher dimensions where taking numerical integrals would be much more
difficult. Note that the discretization interval length h for the 2D case is taken
as Im and reducing this length further will certainly increase the computation
difference between the sigma-point Chernoff fusion and the Chernoff fusion. Also
note that while the Chernoff fusion spends a lot of time in the objective function
evaluation, it still cannot provide an analytical fused density estimate at the end

of the optimization which is not the case with the sigma-point Chernoff fusion.
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2.5 Comparison of Different Fusion Techniques with Numeric Cher-

noff Fusion Based on Simulations

This part analyzes the performance of SPCF for a problem that is used for this
purpose in [26] which we take as a benchmark scenario. Results obtained by ap-
plying SPCF are compared with that of existing techniques like Pairwise Compo-
nent Covariance Intersection (PCCI), Pseudo Chernoff-1 and Pseudo Chernoff-2.
Performance of the fused densities is evaluated by comparing their contour plots
with that of numerical Chernoff fusion and by utilizing a metric proposed by

Comaniciu [I7]. The metric provides the distance between two distributions and

is given by ([2.44).

d=+/1—pp(x), p(z)] (2.44)

where

plp(e), Bl)] = / Jr@p)da (2.45)

33



1 I T T T T
0.8t
0.6
=
3
0.4t
0.2 5
'/ = = = Chernoff
— SPCF
O I I I 1
0 20 40 60 80 100

€mean (m)

Figure 2.8: The cdfs for ey, for parameter selection for 2D.

is the Bhattacharyya coefficient.

PCCI method stated in [26] relies on the application of CI technique to each pair
of Gaussians in the Gaussian Mixture densities. Resultant individual solutions
are combined into the global Gaussian mixture which is certainly a suboptimal
solution. Other approximations called Pseudo Chernoff-1 and Pseudo Chernoff-2
are based on the first order approximation of w'* and (1 —w)™ power of the two
Gaussian mixtures and then applying Naive fusion on these expansions. Pseudo

Chernoff-2 is an augmented version of Pseudo Chernoff-1.

Details of the fusion example in [26] are not provided hence we used the following
parameters regarding the input estimate densities 1 and 2. Contour plots of the

input densities using these parameters are obtained as in Figure [2.10]
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pi(x) = Zﬁi/\/(ml,i, P) (2.46)
pa(w) = 3 il (mai, P) (2.47)

where {8;}2_, = {0.35,0.3,0.35}, {my;}, = {[~5 —3],[00,[7 7]}, {au}?, =
{0.38,0.5,0.12}, {m1.}3, ={[7 —7).[2 —2],[5 2]} and P = 1.6 % L.

Fused densities obtained by the stated techniques together with SPCF are given
in Figure It is obvious that SPCF performs much better than the other
proposed techniques if the contour plots of numerically evaluated Chernoff fusion
is taken as “best fusion” for the experimentation. This result also indicates that

SPCF is a good approximation to Chernoff fusion.

Quantitative performance analysis based on demonstrates again the out-
standing performance of SPCF against other approximations in Table SPCF
is almost three times better than the Pseudo Chernoft-2 which is the best ap-
proach according to that study.
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(a) Input Estimate-1 (b) Input Estimate-2

Figure 2.10: Input estimates for the benchmark scenario.

Table 2.1: Cost of different approximations. Results of PCCI and Pseudo
Chernoff-1 techniques are adopted from [26].

Algorithm Cost

PCCI 0.7286
Pseudo Chernoft-1 0.6608
Pseudo Chernoft-2  0.4523

SPCF 0.0700

Approximate computation times for each method are given in Table for this
example. Note that these results are dependent on the processor that we run
the algorithms though they give intuition about the relative complexity of each

approach.

SPCF significantly decreases the computation time of the Chernoff operation
when compared to the numeric method. Also note that SPCF is 15 times slower
than the Pseudo Chernoff-2 method. This is an expected result since SPCF
technique includes a complex algorithm to find the exponent of the input den-

sities.
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Table 2.2: Approximate computation times for numeric Chernoff, Pseudo Cher-
noff and SPCF techniques.

Algorithm Computation Time
Numeric Chernoff 62.9 sec.
Pseudo Chernoff-2 0.13 sec.

SPCF 1.87 sec.

2.6 Discussions

In this chapter, we propose a solution to the problem of Chernoff fusion of
Gaussian mixtures by approximating the exponent of the input Gaussian mix-
ture densities with sigma points and then performing the Chernoff technique.
This technique is explained in detailed in this chapter and the effectiveness of
the technique is demonstrated by comparing it with the optimal solution, nu-
meric Chernoff fusion and naive fusion. The results of the proposed approach
are comparable to those obtained by Chernoff fusion and persistently more con-
sistent than naive fusion. SPCF is an approximation to Chernoff fusion. So,
to compare it with some other approximations proposed in the literature, the
method is applied to the benchmark problem of [26]. The clear superiority of
SPCF is demonstrated in Table 2.1l

Track fusion problems is one of the interesting fusion area which requires the
elimination of unknown correlations obtained from different sensors. They are
generally defined in high dimensional state spaces and elimination of unknown
correlation requires numerical approaches for exponentiation of the mixtures
which is impossible in general. So, the proposed technique in this chapter will
give way to the fusion of target density and intensity functions in track fusion
problems. Specifically in this study, we use SPCF method in various fusion

architectures for fusion of IMM and PHD filters.
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Figure 2.11: Fusion results for the benchmark scenario. Results of PCCI and
Pseudo Chernoff-1 techniques are adopted from [26].
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CHAPTER 3

FUSION OF IMM’S IN A DECENTRALIZED RADAR
SYSTEM

3.1 Introduction

Interacting Multiple Model (IMM) filter is often preferred by the tracking com-
munity because of its flexibility to adapt different target motion models and it is
quite natural to face with the problem of fusion of IMM filters in a multisensor
environment. So, the application that we introduce in this chapter covers the
fusion strategies for two sensors having IMM trackers which produce Gaussian
mixture densities. We assume that the two radar systems produce state proba-
bility densities that can be exchanged and fusion can be performed to combine
the information of the local and remote Gaussian mixtures. As previously stated,
the information exchange architecture taken as a baseline for these strategies is
provided in Figure Even in this simple scenario, a few fusion architectures
and methods can be proposed to yield good state estimates. Prior to further
discussions on these fusion strategies, some information for the classic IMM
filter and necessary equations for its implementation will be provided for the
completeness of the subject. Fusion derivations related to the Naive and SPCF
methods in the related fusion architectures will be discussed next. Lastly, per-
formance evaluations for the different fusion approaches will be provided using

simulated and realistic target scenarios.
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Figure 3.1: Block diagram of the IMM for two models.

3.2 Short Description of IMM (Adopted from [5])

A block diagram for a single step of the IMM filter for two models is given
in Figure |3.1} For the time k, the inputs are the previous model conditioned
estimates; 7' (k — 1|k — 1) and 2?(k — 1|k — 1), the associated covariances P'(k —
1|k—1) and P?(k—1|k—1) (the covariances are not shown in the figure) and the
previous model probabilities u(k — 1|k — 1) = [u'(k — 1|k — 1) p?(k — 1|k — 1))
from the time k — 1. Here, p/(k — 1|k — 1) is the probability that model j is the
correct model at the previous time instant. Each of the filters uses a different

combination (mixture) of z'(k — 1|k — 1) and 2?(k — 1|k — 1) as the initial state.

In the figure, the four conditional model probabilities p'V (k—1|k—1), (i, = 1,2)
are used in the mixing procedure, which produces the two mixed estimates
2%k — 1|k — 1) and 2°%(k — 1|k — 1). The mixed estimates along with the
current measurement z(k), are then used in the filters to compute the updated

state estimates Z'(k|k) and Z?(k|k) for the current time. The filters also com-
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pute the likelihoods A'(k) and A2(k) that each estimate is from the correct
filter. The likelihoods, the previous model probabilities, and the model switch-
ing probabilities p;; are then used to compute the updated model probabilities
p(klk) = [pt(k|k) p?(k|k)]. Finally, the state estimate combiner computes the
overall state estimate Z(k|k) as a weighted combination of Z!(k|k) and 72(k|k),

where the weigths are p!(k|k) and p?(k|k).

The IMM estimator is outlined below (See [4] for a derivation). For the current
update cycle, the IMM estimator starts with the r-model-conditioned state es-
timates 7'(k — 1|k — 1), state error covariances P'(k — 1|k — 1), and the model
probabilities y'(k — 1|k — 1) = Pr{M'(k—1)|Zy"'} from the previous time
instant. Here, ZF™!' = {2(1),...,2(k — 1)} denotes the set of past measure-
ments, and ZF = {Z{ 7', z(k)} denotes all measurements, including the current
measurement z(k). M'(k — 1) stands for the state of target’s motion matching
with the i*" model. When the current measurement z(k) is received, the IMM

is implemented using the following steps:

1. Mixing of the State Estimates (Interaction): For the filter matched
to M7 (k), the mixed estimate 7% (k—1|k—1) and covariance P% (k—1|k—1)

are computed by

%Oj(k—1|k:—1):iu”(k:—ﬂk—l)?(k:—uk—l) (3.1)

=1

PY(k—1]k—1) = XT:M’U(k — 1|k — D{P(k — 1|k — 1)+

[@(k — 1k —1) = 2%k — 1)k — 1)] [7'(k — 1]k — 1) = 2%(k — 1]k — 1]’}
(3.2)

where the conditional model probabilities 7 (k — 1|k — 1) are given by

Pk =1k — 1) = Pr{M'(k — 1)|M’(k), Zy~'} (3.3)
= mpijui(k‘ — 1k —1) (3.4)
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and the predicted model probability u?(k|k — 1) is computed by

p (k[k = 1) = Pr{M’(k)|Z{~"} (3.5)
= Zpij;ﬂ'(k —1[k—=1) (3.6)

2. Model Conditioned Updates. For the filter matched to M7(k), the

update is given by the Kalman filtering equations:

7 (k|k —1) = & (k, k — 1)2% (k|k — 1) (3.7)

Pl(k|lk —1) = ® (k, k — 1)PY (k|k — 1)[®7 (k, k — 1)]'+
Gk, k —1DQ"(k— 1[G (k, k—1)] (3.8)

v