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ABSTRACT

FUSION OF TARGET DENSITY AND INTENSITY FUNCTIONS BASED
ON CHERNOFF FUSION USING SIGMA POINTS

GÜNAY, MEL�H

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Mübeccel Demirekler

Co-Supervisor : Assoc. Prof. Dr. Umut Orguner

February 2015, 151 pages

Handling of unknown correlation in the target information obtained from dif-

ferent sources is an important problem for consistent track fusion. Cherno�

fusion technique is one of the popular approaches which produce conservative

fusion results to bring this consistency. This method is based on exponential

scaling of the input functions and it provides an analytical solution when input

functions are Gaussian densities. The thesis mainly discusses the extension of

the Cherno� fusion method to Gaussian Mixtures in a consistent and robust

way and proposes an approximate approach for the computation of the fused

output. The exponential scaling, required for Cherno� fusion, is based on a

sigma-point approximation of the underlying functions. The resulting general

fusion rule yields a closed form problem formulation that gives the fused func-

tion as a Gaussian mixture. E�ectiveness of the fusion method is presented for

simple but illustrative density fusion problems and compared to the optimal

solutions and exact numerical Cherno� fusion. The technique is applied to the
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IMM �lter used in target tracking problems. The results show the e�ectiveness

of the method. The second application of the method is to fuse the PHD �lter

outputs that are Gaussian Mixture intensities. PHD �lters are again used in

target tracking. Di�erent fusion architectures are investigated and their results

are compared with each other. The comparison is also made with other available

methods whenever they are applicable.

Keywords: Handling unknown correlation, Cherno� fusion of Gaussian mixtures,

Single-target IMM track density fusion, Multi-target PHD target intensity fusion
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ÖZ

S�GMA NOKTALARLA YAPILAN CHERNOFF B�RLE�T�RME
KURALINA DAYALI HEDEF OLASILIK DA�ILIM VE YO�UNLUK

FONKS�YONLARININ B�RLE�T�R�LMES�

GÜNAY, MEL�H

Doktora, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler

Ortak Tez Yöneticisi : Doç. Dr. Umut Orguner

�ubat 2015 , 151 sayfa

Farkl� kaynaklardan elde edilen hedef bilgilerindeki bilinmeyen korelasyonun ele

al�nmas� tutarl� bir iz füzyonu yap�lmas� aç�s�ndan önemli bir problemdir. Cher-

no� birle³tirme tekni§i bu tutarl�l�§� sa§lamak ad�na önerilen popüler yöntemler-

den biridir. Bu yöntem girdi fonksiyonlar�n�n üstel olarak a§�rl�kland�r�lmas�na

dayanmakta ve Gauss da§�l�ml� fonksiyonlar için analitik çözüm önermektedir.

Bu tezde Gauss Kar�³�ml� fonksiyonlar için Cherno� birle³tirme yönteminin ge-

li³tirilmesi ve tutarl� ve gürbüz sonuçlar elde edilmesine yönelik çözüm öneril-

mektedir. Önerilen teknik Gauss kar�³�m fonksiyonunun yakla³�k üstel de§erini

bulmay� gerektirir. Üstel de§er bulma i³lemi girdi fonksiyonlara sigma nokta

yakla³t�r�m� uygulanmas� ile sa§lanmaktad�r. Sonuçta, Gauss kar�³�ml� fonksi-

yonlar için kapal� formda bir maliyet fonksiyonu üretilmekte ve füzyon sonucu

yeni bir Gauss kar�³�m� olarak elde edilmektedir. Önerilen yöntemin etkinli§i
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basit ve ayd�nlat�c� örneklerde gösterilmi³tir. Bu örneklerde olas�l�k yo§unluk

fonksiyonlar�n�n bile³tirilmesi problemi ele al�nm�³ ve önerilen yöntem optimal

çözüm ve nümerik Cherno� birle³tirme çözümleri ile k�yaslanm�³t�r. Bu teknik,

hedef izlemede güncel bir problem olan IMM süzgeci içeren füzyon mimarileri-

nin ç�kt�lar�n�n birle³tirilmesi amac� ile kullan�lm�³t�r. Di§er bir güncel problem

olan PHD �ltresi içeren füzyon mimarilerinin ç�kt�lar�n�n birle³tirilmesi problemi

için de ayn� yöntem kullan�lm�³t�r. Sonuçlar gerek de§i³ik füzyon mimarileri için

gerekse, olabildi§i durumlarda, de§i³ik füzyon yöntemleri için kar³�la³t�r�lm�³t�r.

Anahtar Kelimeler: Bilinmeyen korelasyonun ele al�nmas�, Gauss kar�³�mlar�n�n

Cherno� birle³tirme tekni§i ile birle³tirilmesi, Tek hedef IMM iz olas�l�k da§�l�m

fonksiyonu birle³tirimi, Çoklu-hedef PHD hedef yo§unluk fonksiyonu birle³ti-

rimi
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CHAPTER 1

INTRODUCTION

�... That night, detective went to bed early but he could not fall asleep. He

was still thinking about the recent investigation on the robbery taken place at

one of the most popular museums in the capital city. Thieves had stolen the

�Golden Circuit�, one of the most valuable paintings of the world, a week ago.

This painting was in oil on a golden plate, describing the equivalent circuit of

a vacuum tube operational ampli�er designed by the Bell Labs in 1941. He

was never good at electricity at the school but he had to learn that this picture

represented the �rst version of an operational ampli�er which was very important

to today's technology world. Then, he got out of his bed and stood up by the

window. He looked at the colorful lights of the city and thought that he would

not sleep without reaching a conclusion on this robbery. He was sure that without

any internal support from the museum sta�, that would not happen. He went

over his suspect list in his mind again (Figure 1.1) and he decided that the thief

had to be John since all the signs were directing himself towards this old security

o�cer. He was quite sure...�

Leaving the detective with his own responsibilities, there is an important ques-

tion that we need to ask as the readers of this story: Should the detective be

so much sure about his decision? Since most of the suspects of the event say

that John is the criminal, detective naturally thinks in this way. However, if

there exist some �unknown factors� that build up a correlation between what

the suspects tell and, that the detective would never know, all the conclusions

may totally be changed (Figure 1.2).
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Detective 

John Susan Michael 

 Suspects 

(Security Officer) (Secretary) (Assistant  Manager) 

Michael 
must be 
the thief 

John is very 
likely to be 

the thief 

Thief is 
John, I 

saw him. 

Figure 1.1: Suspect list for the robbery.

Hopefully, the detective reconsiders �his con�dence� on his decision and also

thinks about the unknown correlation in the information at hand. This story is

dreamed up to express the vitality of handling the unknown correlation between

data obtained from di�erent sources which is, actually, the main topic of this

thesis.

Recently, importance of information fusion concept has signi�cantly raised for

several disciplines of the technology. Together with the development of the �sys-

tem of systems� approach, which includes several fusion systems, it become

necessary to generate various fusion levels and methods in a decentralized frame-

work. This basically requires continuous research and development activities to

integrate these systems with each other e�ectively. For this aim, researchers

study for designing more and more robust and accurate fusion algorithms. Gen-

erally, these algorithms and the architecture of the system a�ects each other in

both ways based on the requirements and the communication capacity of the

system. Various aspects of data fusion will be provided brie�y in Section 1.1.

One of the decentralized fusion applications is the combination of the information
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Susan Michael 
(Secretary) (Assistant  Manager) 

I swear, I saw John 
going out of the 

museum building that 
night. 

The day before the interrogation day… 

Really, I 
believe in 
you… 

Figure 1.2: Unknown conversation made before the interrogation day.

obtained from various types and number of radars. In such applications, the

degree of the correlation is unknown because of the unknown target dynamics

and it has to be approximated to achieve a consistent fusion result. In case

the radar information to be fused is in the form of Gaussian Mixtures, the

fusion problem turns out to be much more di�cult when compared with the

single Gaussian case since dimension of the state space does not allow numerical

methods. This thesis proposes to use a novel method called Sigma Point Cherno�

Fusion (SPCF) technique to overcome the di�culties of Cherno� fusion, which

is one of these numerical methods.

Additionally, performance of SPCF is analyzed for two di�erent architectures in

which Gaussian mixtures has to be exchanged and the fusion operation has to

be performed. These two architectures contain di�erent types of radars whose

association and tracking mechanisms di�er from each other. While the �rst

architecture includes Interacting Multiple Model (IMM) tracker following Joint

Probabilistic Data Association (JPDA) algorithm, the second one uses Extended

Kalman Gaussian Mixture Probability Hypothesis Density (EK-GMPHD) �lter

for both tracking and association steps. Both of the architectures produce Gaus-

sian mixture information regarding the targets of interest and this information

should be communicated to other radars in the architecture to perform the fusion

operation at the receiver side.
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To sum up, this thesis mainly brings the contributions stated below to the data

fusion area:

• Sigma Point Cherno� Fusion (SPCF)

• Fusion of target density functions (In IMM framework)

• Fusion of target intensity functions (In EK-GMPHD framework)

This thesis �rst provides some general information regarding data fusion prob-

lems and, speci�cally decentralized data fusion algorithms in this chapter. Then,

problem de�nition of this thesis is also given in the same chapter to draw the

boundaries of the thesis study. In Chapter 2, theory for the proposed tech-

nique SPCF will be discussed in detail and its performance will be analyzed

based on simple benchmarks scenarios. Chapter 3 will rely on the application of

SPCF technique in a radar network in which the radars have IMM trackers. Fu-

sion analysis and performance comparison of di�erent fusion strategies including

the methods SPCF, Naive and Covariance Intersection (CI), will be performed.

PHD fusion application based on fusion of target intensity functions will be in-

vestigated in Chapter 4, next. Proposals for the fusion strategies will be given

together with their analytical analysis. Finally, the thesis will end up with the

conlusions that discusses about the contributions of it to the data fusion world.

1.1 Introduction to Data Fusion

The aim of data fusion is to achieve better situation awareness by combining

the data obtained from various number and type of sensors. Connections of the

sensors and the fusion nodes may vary depending on the speci�c system require-

ments or the design decisions. These connections de�ne the architectural frame-

work of the fusion system and this framework is categorized into two: centralized

and decentralized fusion. In centralized fusion, sensors are directly connected to

a single node and fusion is performed only at that node. On the other hand, in

the decentralized data fusion, the connection schemes may be complex and there

may be several fusion nodes performing the fusion simultaneously. Within this
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scheme, the fusion is performed locally at each node on the basis of local obser-

vations and the information communicated from the neighboring nodes. There

may be several connection schemes of the sensors in a fusion system. For in-

stance, Figure 1.3 describes various possible radar communication structures in

which the arrows represent the track/measurement/density exchange direction.

Fusion process is performed at each radar site when remote target information

is received and each unit separately generates the fused track.

The following are the natural problems of a sensor fusion system which have to

be solved to achieve the desired over-all system performance.

• Distribution or management model of the system: Data exchange

mechanism of the overall fusion system must be designed (e.g. decision on

which node will send to or receive from which node), if needed, manage-

ment and control signals must be determined and the fusion must support

these commands.

• Data alignment: Especially, when the system is heterogeneous, i.e., com-

posed of various types of sensors, data produced by those sensors must be

interpreted appropriately so that all information are referenced to a com-

mon reference unit.

• Adaptation of fusion to communication or bandwidth constraints:

The fusion architecture must be designed according to the the communi-

cation infrastructure of the over-all system.

• Handle of asynchronous or delayed data: Since the sensors in the

system may not produce the target data at the same time, the measure-

ments incoming to a node may belong to di�erent time instances of the

target whose state is changing dynamically. The possible delay in the com-

munication channels may cause de�ciency in the data obtained for which

precaution must be taken in the system design.

• Association: Data from di�erent sources must be correlated and unique

and correct target picture must be obtained. Association must be de-

signed in the way that it must provide correct identi�cation of the targets
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continuously.

• Tracking: Information belonging to the same target must be processed

so as to fuse and track that target and the target state must be estimated.

• Elimination of unknown correlation: Information gathered from dif-

ferent information sources at a given node is very likely to possess com-

monalities. The common information in the data must be eliminated so

as to prevent the fusion system from producing inconsistent results.

All of these problems are important to the performance of a fusion system and

there are numerous completed/ongoing studies on all of these areas. Main focus

of the thesis will just rely on �elimination of unknown correlation in decentralized

fusion systems� and techniques proposed to solve other problems of the fusion

systems will be used, if it is required. Following section will now provide basic

information regarding the techniques proposed to perform the fusion operation

of correlated data.

1.2 Elimination of Unknown Correlation in Decentralized Fusion

Systems

A decentralized data fusion system is composed of sensors and processors. Pro-

cessors fuse local sensor data and remote data obtained from other sensor sys-

tems. Characteristics of a decentralized fusion system are described by the

network architecture, communication links and fusion algorithms. A three sen-

sor cyclic communication structure is provided in Figure 1.4 as an example.

This structure has an optimal analytical solution yet it is a complex structure

because of multiple paths resulting in information propagation.

Following resultant formulae (1.1) for the �rst fusion step is proved to be the op-

timal decentralized fusion for three sensor cyclic communication network shown

in Figure 1.4.
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p(x) =
1

c

p1,k(x)p2,k(x)p1,k−3(x)

p1,k−2(x)p2,k−1(x)
(1.1)

where c is the normalization constant, p(x) is the conditional probability at node

S1 after the fusion operation, and pi,k(x) is the conditional probability at node

Si at time k before the fusion.

This approach is called the Information Graph (IG) approach and [10] shows

us that the application of the optimal decentralized fusion techniques to obtain

optimal results must be supported by carrying information belonging to the pre-

vious steps via communication links which may be undesirable and expensive

for most fusion systems.

The idea of obtaining the optimal fusion must take into account the fact that

the decentralized fusion problem is characterized by the unknown correlation

of the information gathered from the di�erent sensors. The correlation in the

data must be eliminated in order to avoid over-con�dent results and obtain

much more consistent ones. In the literature, there are several scalable fusion

techniques which do not demand previous step's information and propose some

approximations for the fusion of the densities gathered from these sensors. De-

tailed information on these techniques and comparison of them are provided in

[10]. A list and summary on the most commonly used fusion methods are listed

below to provide the completeness of the thesis report :

• Channel Filter Fusion

• Naïve Fusion

• Cherno� Fusion

• Shannon Fusion

• Bhattacharyya Fusion
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1.2.1 Channel Filter Fusion

Channel Filter approach is a �rst order approximation of IG method and only

the �rst order redundant information is aimed to be eliminated. Channel Filter

fusion equation is given in equation (1.2).

pChF(x) =
p1,k(x)p2,k(x)/p2,k−1(x)∫
p1,k(x)p2,k(x)/p2,k−1(x)dx

(1.2)

where p1(x) and p2(x) are the two probability density functions belonging to the

local and remote densities, respectively. The subscript ChF is for the channel

�lter. When both densities are Gaussian, fusion formulae for Channel Filter

Fusion becomes as the equations (1.3).

P−1
k = P−1

1,k + P−1
2,k − P

−1
2,k−1 (1.3a)

P−1
k x̂k = P−1

1,k x̂1,k + P−1
2,k x̂2,k − P−1

2,k−1x̂2,k−1 (1.3b)

where, pk(x) = N (x, x̂k, Pk), p1,k(x) = N (x, x̂1,k, P1,k) and p2,k(x) = N (x, x̂2,k,

P2,k). It is obvious that this is an approximation and the performance is not

expected to be satisfactory when compared to that of IG approach.

1.2.2 Naïve Fusion

Naïve fusion is the simplest fusion approach and it assumes that there is no

dependency between the densities to be fused. Its general fusion formulae and

formulae for Gaussian case is provided in the equations (1.4) and (1.5), respec-

tively.

pNF(x) =
p1(x)p2(x)∫
p1(x)p2(x)dx

(1.4)
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P−1 = P−1
1 + P−1

2 (1.5a)

P−1x̂ = P−1
1 x̂1 + P−1

2 x̂2 (1.5b)

1.2.3 Cherno� Fusion

Another idea is to de�ne a notion of �conservativeness� that is used to avoid

overcon�dence. The main problem is then to obtain a measure of conservative-

ness, i.e., how to say one pdf is �more conservative� than another. One option

is to utilize the entropy measure concept which will produce the level of an

uncertainty for a given pdf. For this aim, Cherno� information measure has

been proposed and Cherno� Information fusion has been de�ned. The reader

is referred to [2] for further information and a comprehensive understanding of

Cherno� Fusion. Given two density functions px,1(·) and px,2(·) representing the
same random variable x, the fused density px,CF(·) is obtained as

px,CF(x) =
pw
∗

x,1(x)p1−w∗
x,2 (x)∫

pw
∗

x,1(x)p1−w∗
x,2 (x)dx

(1.6)

where the subscript CF stands for Cherno� fusion and w∗ is selected as below

w∗ = arg min
w∈[0,1]

L

(
pwx,1(x)p1−w

x,2 (x)∫
pwx,1(x)p1−w

x,2 (x)dx

)
. (1.7)

Here, the function L(·) represents an uncertainty measure from the space of

density functions into real numbers. See [2] for details about the consistency

and conservativeness properties of Cherno� fusion formula (1.6).

When the input densities are Gaussian, this approach corresponds to Covariance

Intersection (CI) technique [23, 25] which is one of the main approaches to

decentralized fusion [10]. Detailed information about this fusion method is given

in section 2.2 and analytic expression of the mean and covariance of the fused

density is provided in the Equations (1.8) and (1.9).
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P−1
CI xCI =w∗P−1

1 x1 + (1− w∗)P−1
2 x2 (1.8a)

P−1
CI =w∗P−1

1 + (1− w∗)P−1
2 (1.8b)

where w∗ ∈ [0, 1] is calculated using the following optimization

w∗ , arg min
w∈[0,1]

L
((
wP−1

1 + (1− w)P−1
2

)−1
)

(1.9)

1.2.4 Shannon Fusion

Shannon fusion is a special case of Cherno� fusion when w is selected for the

minimum value of the determinant of the fused density covariance, i.e., the

function L in the cost (1.7) is selected to be the determinant of the fused

covariance. For the Gaussian case, this turns out to be minimizing the Shannon

Information of the fused density. Shannon information for the Gaussian density

case is calculated as Is =
∫
p(x) ln p(x)dx = 1

2
ln (2π)n|P |1/2 + n/2, where P is

the covariance of p(x). Fusion of two Gaussians utilizing the Shannon technique

requires solving the optimization problem de�ned in (1.10) and (1.11).

P−1
SF xSF =w∗P−1

1 x1 + (1− w∗)P−1
2 x2 (1.10a)

P−1
SF =w∗P−1

1 + (1− w∗)P−1
2 (1.10b)

where w∗ ∈ [0, 1] is calculated using the following optimization

w∗ , arg min
w∈[0,1]

Is. (1.11)

1.2.5 Bhattacharyya Fusion

Similar to Shannon fusion, this fusion technique is again a special case of Cher-

no� Fusion. The parameter w is selected as 0.5 and the equations get similar to

those of Naïve Fusion for the Gaussian case. The covariance and mean of the

fused density is provided in (1.13) and (1.15), respectively.
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P−1
BF =

1

2

(
P−1

1 + P−1
2

)
(1.12)

=
(
P−1

1 + P−1
2

)
− 1

2

(
P−1

1 + P−1
2

)
(1.13)

P−1
BF x̂BF =

1

2

(
P−1

1 x̂1 + P−1
2 x̂2

)
(1.14)

=
(
P−1

1 x̂1 + P−1
2 x̂2

)
− 1

2

(
P−1

1 x̂1 + P−1
2 x̂2

)
(1.15)

Note that in this case, common prior information corresponds to the average of

the two sets of information to be fused in the fusion equations.

1.3 Elimination of Unknown Correlation in Track Fusion Problems

The area of track fusion is mainly concerned about the correlation between the

estimates to be fused. Even if the sensors used in a network collect measure-

ments which are conditionally independent of each other, local processing of the

measurements in the presence of common process noise in the target dynam-

ics makes the local estimation errors correlated [3]. Moreover, the existence of

data feedback loops can cause rumor propagation all over the network, which

would result in inconsistencies, overcon�dence and in turn even �lter divergence.

The proposed solutions for the track correlation problem range from the ones

requiring extra information transmission (e.g. Kalman �lter gains [4]) or extra

processing (e.g. information decorrelation [32, 12]) to compensate for the cor-

relation, like the Covariance Intersection (CI) [23, 25] and the Largest Ellipsoid

Algorithm (LEA) [6, 52]. An analysis with a survey and comparison of the

possible approaches is presented in [9, 10].

The early approaches to track fusion considered only the fusion of locally es-

timated means and covariances due to the ubiquitous use of Gaussian density

based state estimators (e.g. Kalman �lter (KF), extended KF (EKF), unscented

KF (UKF) [24]). This was indeed a manifestation of the computational restric-

tions of the era which made such �lters actually the only possible choices. With
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the advent of more sophisticated state estimators like Gaussian sum �lters [44],

multiple model �lters [8], [5, Section 11.6] and particle �lters [20, 1], the need

for fusing density functions became more apparent. Similarly, in multiple target

tracking, the consideration of local multiple hypothesis trackers (MHT) which

inherently hold mixtures for targets directly leads to the problem of fusing local

mixtures for a single target (even if Gaussian based state estimators are used in

local trackers). The recent developments in multiple target tracking leading to

the extensive use of probability hypothesis density (PHD) �lters [34] made the

need for density/intensity fusion methods even more signi�cant.

1.4 State-Of-The Art Fusion Techniques for Gaussian Densities and

Gaussian Mixture Densities

Because of the reasons depicted in Section 1.3, consistent and optimum fusion

of density functions is investigated in detail in [13]. The generalization of CI to

probability density functions was �rst proposed by Mahler in [40] and two years

later, independently, by Hurley in [22]. This generalization is called by di�erent

names by di�erent authors: Cherno� fusion [10]; geometric mean density [2];

exponential mixture densities [27]. In [40], Mahler also proposed the application

of both the optimal approach [13] and Cherno� fusion to multitarget densities.

The consistency and conservativeness properties of Cherno� fusion are inves-

tigated in [2]. Explicit formulae are derived for Cherno� fusion of Bernoulli,

Poisson and independent cluster process multitarget densities in [15].

Table 1.1 demonstrates the applicable fusion techniques to both Gaussian den-

sities and Gaussian mixture densities and clearly reveals the point that has to

be studied in detail. Although there has been several studies on the aspects of

Cherno� fusion, there does not exist satisfactory approaches in the literature

that enable to apply Cherno� fusion to Gaussian Mixtures. According to our

knowledge, the only solution proposed for this problem is by [26] and this work

makes an analysis on the existing fusion technique Pairwise Component Co-

variance Intersection (PCCI) and proposes two other di�erent methods, Pseudo

Cherno�-1 and Pseudo Cherno�-2 which are derived from �rst order approxima-
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tion of wth power of the mixture. Comparison of these techniques are performed

and Pseudo Cherno�-2 algorithm is found as the best among all. Notice that

the �rst order approximation of the exponent of a given mixture sounds as a

weak assumption and its weakness will be demonstrated by comparing these

techniques with the one proposed in the thesis in Section 2.5.

Table 1.1: Existence analysis of state-of-the art fusion techniques to Gaussian
densities and Gaussian mixture densities.

As a result, this thesis aims to �ll the gap on performing Cherno� fusion of

Gaussian mixtures. The proposed method called Sigma Point Cherno� Fusion

(SPCF) is given in Chapter 2 with some analysis.

1.5 Analysis and Comparison of the Existing Studies for Track Fu-

sion Architectures

Although some work is done for di�erent fusion techniques, it seems that there

does not exist su�cient study on the performances of di�erent decentralized

fusion techniques applied to track fusion problems. For instance, even for CI

technique, there is no study clearly showing its bene�ts over Naive fusion when

only state estimates are fused. Additionally, performance of Cherno� fusion

could not be evaluated on a track fusion system because of the di�culty of

the implementation of Cherno� fusion for high state dimensions, which is the
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general case. This study claims to �ll this gap and allows to implement Cher-

no� fusion technique for fusion of track density/intensity functions in the form

Gaussian Mixture. Speci�cally, this thesis aims to propose some fusion strate-

gies and to compare these strategies in case the radars possesses IMM and PHD

�lters, which corresponds to the fusion of target density and intensity functions,

respectively.

Focusing on a track fusion system based on IMM �lter, the only analysis in the

literature is the fusion of the state estimates with Gaussian densities. There does

not exist any study that inspects using Gaussian mixture densities internally

produced by an IMM �lter for fusion purposes. This requires consistent fusion

of two Gaussian mixture densities which was not that practical and e�cient up

to this thesis. For instance, at an architecture like the one given in Figure 1.5,

fusion operation should be performed at each radar site, and the fusion problem

of IMM output density functions in the form of Gaussian mixtures are to be

analyzed. The problem is elaborated in Chapter 3.

Another area that requires the fusion of Gaussian mixtures is the PHD �lter,

in particular GMPHD �ltering (Figure 1.6). GMPHD �lters generate Gaussian

Mixture intensity functions. There is no work in the literature that fuses the

PHD's without referring to the measurements that generate them. The thesis

focuses on proposing di�erent fusion strategies enabling the fusion and demon-

strate some results for comparing them. Chapter 4 is devoted to this track fusion

problem.
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a. Fully connected communication structure b. Cyclic communication structure 

c. Unbalanced and distributed communication structure 

d. Fully connected communication 
structure for two radars 

Figure 1.3: Some examples to radar communication structures.
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Figure 1.4: Cyclic communication scenario (adopted from [10]).

IMM 
Tracker 

IMM 
Tracker 

Gaussian Mixture 
Density 

Gaussian Mixture 
Density 

Figure 1.5: Track fusion architecture based on IMM �lter in which Gaussian
densities are exchanged.

GMPHD 
Filter 

Gaussian Mixture 
Intensity 

GMPHD 
Filter 

Gaussian Mixture 
Intensity 

Figure 1.6: Track fusion architecture based on PHD �lter in which Gaussian
mixture intensities are exchanged.
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CHAPTER 2

SIGMA POINT CHERNOFF FUSION

2.1 Introduction

In this chapter, we propose an approximate approach for the Cherno� fusion of

Gaussian mixtures. As indicated in Section 1.4, the existing literature on this

subject is not mature. Our methodology starts by approximating an arbitrary

power of a Gaussian mixture with an unnormalized Gaussian mixture whose

weights are to be found by using a weighted least squares formulation. The in-

strumental weighted least squares problem that gives the weights is constructed

by approximating the original Gaussian mixture with its sigma-point approxi-

mation. Such an approximation can lead to a density fusion which no longer

involves powers of the densities to be fused. An important merit of the proposed

fusion rule is that it yields a closed form problem formulation including the cost

function and the fused density in the form of a Gaussian mixture. We illustrate

the performance of the proposed generalization on a density fusion scenario and

on a benchmark scenario where Gaussian mixtures are required to be fused.

The organization of the chapter is as follows: A brief overview of CI and Cherno�

fusion is presented in Section 2.2. Section 2.3.1 �rst establishes the approxima-

tion of the density powers appearing in Cherno� fusion for Gaussian mixtures

and then presents the proposed new version of Cherno� fusion for Gaussian mix-

tures, which is the main result of this chapter. The explicit fused density formula

resulting from the application of the proposed fusion rule to Gaussian mixtures

is obtained in Section 2.3.2. The simulation results are given in Sections 2.4 and
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2.5. The chapter is �nalized with discussions in Section 2.6.

2.2 Covariance Intersection and Cherno� Fusion

Covariance Intersection (CI) [23, 25] is one of the main approaches to decentral-

ized fusion [10]. Its main advantage is that it enables consistent fusion under

unknown correlation information. The consistency in this context is de�ned as

the fused covariance being always larger than or equal to the optimally fused

covariance that would be obtained if the correlation information was available.

For more details about the optimality and consistency properties of CI, see [11].

The main idea of CI is to combine the estimates and their covariances as a

weighted sum of them. Assume two local estimates x1 ∈ Rn and x2 ∈ Rn and

their positive de�nite covariances P1 ∈ Rn×n and P2 ∈ Rn×n. Then the fused

estimate xCI and covariance PCI are calculated as

P−1
CI xCI =w∗P−1

1 x1 + (1− w∗)P−1
2 x2 (2.1a)

P−1
CI =w∗P−1

1 + (1− w∗)P−1
2 (2.1b)

where w∗ ∈ [0, 1] is calculated using the following optimization

w∗ , arg min
w∈[0,1]

L
((
wP−1

1 + (1− w)P−1
2

)−1
)
. (2.2)

Here, the function L : Sn×n≥0 → R≥0 represents an uncertainty measure from the

space of symmetric positive semi-de�nite matrices (Sn×n≥0 ) into non-negative real

numbers (R≥0) and usually selected either as the trace or the determinant of the

matrix argument. De�ne the ellipsoid EP , as

EP , {x|xTP−1x < 1} (2.3)

Above approach generates the fused covariance PCI as �the smallest� ellipsoid

containing the intersection EP1 ∩ EP2 of the ellipsoids EP1 and EP2 corresponding

to the local covariances P1 and P2 respectively. See Figure 2.1 for an illustration

of this property in two dimensions.
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A very attractive property of CI is that it is generalizable to the fusion of den-

sity functions [40, 22]. The corresponding generalization is called Cherno� fu-

sion [10]. Given two density functions px,1(·) and px,2(·) representing the same

random variable x, the fused density px,CF(·) is obtained as

px,CF(x) =
pw
∗

x,1(x)p1−w∗
x,2 (x)∫

pw
∗

x,1(x)p1−w∗
x,2 (x)dx

(2.4)

where the subscript CF stands for Cherno� fusion and w∗ is selected as below

w∗ = arg min
w∈[0,1]

L

(
pwx,1(x)p1−w

x,2 (x)∫
pwx,1(x)p1−w

x,2 (x)dx

)
. (2.5)

Here, the function L(·) represents an uncertainty measure from the space of

density functions into real numbers. For example, the matrix uncertainty mea-

sure trace in CI corresponds to the uncertainty measure variance (Ex[xTx] −
Ex[x

T ]Ex[x]) in Cherno� fusion and the matrix uncertainty measure, determi-

nant in CI, corresponds to the uncertainty measure entropy (Ex[− log p(x)]) in

Cherno� fusion. See [2] for details about the consistency and conservativeness

properties of Cherno� fusion formula (2.4).

2.3 Cherno� Fusion of Gaussian Mixtures Using Sigma-Points

When the densities px,1(·) and px,2(·) in (2.4) are selected to be Gaussian Mix-

tures as:

px,1(x) =
M∑
i=1

µiN (x;φi,Φi) (2.6a)

px,2(x) =
N∑
j=1

νjN (x;ψj,Ψj) (2.6b)

application of Cherno� fusion formula (2.4) requires the exponentiation of the

Gaussian mixtures for exponent values in [0,1].

Starting with the single Gaussian case, the exponentiation results in the scaled

Gaussian given below.

Nw(x;φ,Φ) =c(w,Φ)N
(
x;φ,w−1Φ

)
(2.7)
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optimal
x = 1

Covariance Intersection

Figure 2.1: Covariance intersection algorithm in two dimensional case (n = 2).
Similar �gures also appear in [23, 25].

for w ∈ (0, 1) where c(w,Φ) is a scalar independent of x. Later, the expression

above will be the basis for some assumptions in this chapter. Notice that the

mean of the Gaussian density does not change after the exponentiation and the

covariance is multiplied simply by w−1.

2.3.1 Taking the wth Power of a Gaussian Mixture

For the Gaussian mixture case, the Cherno� fusion formula requires the wth

power of the Gaussian mixture where w ∈ (0, 1). We call the wth power of a

Gaussian mixture p(x) =
N∑
i=1

wiN (x;xi, Pi) as q(x) , pw(x). Note that q(·) is not
necessarily a Gaussian mixture but one can intuitively say that its shape would

be similar to a Gaussian mixture. Assuming that q(·) can be approximated

as a (unnormalized) Gaussian mixture, estimation of the number of mixture

components, weights, means and covariances of the components of q(·) becomes

the main concern. De�ning an optimization problem over all of these parameters

to �nd q(x) is possible, however even numerical solutions may not be feasible for
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real-time applications. Therefore, we make the following assumptions utilizing

the interpretation for the single Gaussian case given in (2.7).

• q(·) has the same number of components as p(·).

• The means of the components of q(·) are equal to those of p(·).

• The covariances of the components of q(·) are equal to the covariances of

the components of p(·) scaled by 1/w

The assumptions listed above results in the following expression for q(·).

q(x) ≈
N∑
i=1

βiN (x;xi, w
−1Pi) (2.8)

Note that the only unknown variables in (2.8) are the weights {βi}Ni=1 of the

components of q(x) which can be found by solving the following optimization

problem.

minimize
β

∫
(q(x)− pw(x))2p(x)dx (2.9a)

subject to 0 ≤ βi, i = 1, . . . , N. (2.9b)

where β = [β1, β2, . . . , βN ]T . In the optimization problem de�ned above the cost

function (2.9a) is quadratic and the constraint (2.9b) is linear in the unknown

weights {βi}Ni=1. Hence we have a quadratic optimization problem which is rel-

atively easy to solve. An important drawback is that the analytic evaluation

of the integral in the cost (2.9a) is not possible. Notice that the optimization

problem has to be solved for every candidate exponent w for the Cherno� fu-

sion which would lead to extreme amount of computations, especially in high

dimensions. Therefore we choose here to approximate the optimization problem

above by the following optimization problem.

minimize
β

N∑
i=1

wi

2n+1∑
j=1

πji
(
q(sji )− pw(sji )

)2
(2.10a)

subject to 0 ≤ βi, i = 1, . . . , N. (2.10b)

where {sji}2n+1
j=1 are the sigma-points for the ith component of p(·) generated by

unscented transform [24] and {πji }2n+1
j=1 are their weights. Note that the approx-

imate optimization problem given above follows simply from the approximation

21



of p(·) given as

p(x) ≈
N∑
i=1

wi

2n+1∑
j=1

πji δsji
(x)︸ ︷︷ ︸

≈N (x;xi,Pi)

(2.11)

where δs(·) denotes the Dirac delta function placed at s.

The new optimization problem (2.10a) can simply be written as the following

weighted non-negative least squares problem.

minimize
β

(Mβ − b)TW(Mβ − b) (2.12a)

subject to 0 ≤ βi, i = 1, . . . , N. (2.12b)

where the elements of the vector b ∈ RN(2n+1)×1, the matrix M ∈ RN(2n+1)×N

and the diagonal matrix W ∈ RN(2n+1)×N(2n+1) are de�ned as

[M](2n+1)(i−1)+j,m ,N (sji ;xm, w
−1Pm), (2.13)

[b](2n+1)(i−1)+j,1 ,p
w(sji ) (2.14)

[W](2n+1)(i−1)+j,(2n+1)(i−1)+j =wiπ
j
i (2.15)

for i,m = 1, . . . , N and j = 1, . . . , 2n + 1 where the notation [·]i,j denotes

the i, jth element of the argument matrix. The solution for the weighted least

squares problem (when the constraints are neglected) is given as

β̂ =
(
MTWM

)−1
MTWb. (2.16)

Note that the problem de�ned as (2.12a) and (2.12b) is a weighted non-

negative least squares problem. There are existing simple solutions to the origi-

nal weighted non-negative least squares problem like Lawson-Hanson algorithm

given in [28] which may require some computational power. To speed up the

process to �nd the optimal solution, �rst we propose to solve the problem ig-

noring the non-negativity constraint, and then in case the solution turns out to

with negative weights, Lawson-Hanson algorithm is used.

The approach described above provides a fast and scalable (with the dimension

of x) way for approximating the wth power of a Gaussian Mixture as another

Gaussian Mixture which is going to be instrumental in the Cherno� fusion of

Gaussian mixtures.
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2.3.2 Cherno� Fusion of Gaussian Mixtures

In this section, we are going to investigate the fusion of Gaussian mixtures by

Cherno� Fusion technique using the results of the previous subsection. In order

to �nd the fused density given in (2.4), the wth and (1− w)th powers of px,1(x)

and px,2(x) should be found, respectively. The approximate solution proposed

in the previous subsection, generates functions qx,1(·) and qx,2(·) that are also

(unnormalized) Gaussian mixtures given as

qx,1(x) =
M∑
i=1

µ̂i(w)N (x;φi, w
−1Φi) (2.17)

qx,2(x) =
N∑
j=1

ν̂j(w)N (x;ψj, (1− w)−1Ψj) (2.18)

where the dependency of the weights on w is emphasized. Given qx,1(·) and

qx,2(·), the rest of the fusion amounts to nothing but applying the so called

�naive� fusion formula [10] (i.e., the fusion formula that would be valid if the local

quantities were independent.1) to fuse the resultant mixtures (2.17) and (2.18).

Multiplication of the Gaussian Mixtures qx,1(·) and qx,2(·) results in

qx,1(x)qx,2(x)

=
M∑
i=1

N∑
j=1

µ̂iν̂jN
(
x;φi,

Φi

w

)
N
(
x;ψj,

Ψj

1− w

)
(2.20)

=
M∑
i=1

N∑
j=1

µ̂iν̂jπij(w)N
(
x; x̃ij(w), P̃ij(w)

)
(2.21)

where

πij(w) ,N
(
φi;ψj,

Φi

w
+

Ψj

1− w

)
(2.22)

P̃−1
ij (w) =wΦ−1

i + (1− w)Ψ−1
j (2.23)

P̃−1
ij (w)x̃i,j(w) =wΦ−1

i φi + (1− w)Ψ−1
j ψj. (2.24)

1 The naive fusion formulae is given as

pnaive(x) =
px,1(x)px,2(x)∫
px,1(x)px,2(x)dx

. (2.19)
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Therefore, we have

px,SPCF(x) =

 ∑M
i=1

∑N
j=1 µ̂i(w)ν̂j(w)πij(w

∗)

×N
(
x; x̃ij(w

∗), P̃ij(w
∗)
) 

∑M
i=1

∑N
j=1 µ̂iν̂jπij(w

∗)
(2.25)

where

w∗ = arg min
w∈[0,1]

L

∑M
i=1

∑N
j=1 µ̂i(w)ν̂j(w)πij(w)N

(
x; x̃ij(w), P̃ij(w)

)
∑M

i=1

∑N
j=1 µ̂i(w)ν̂j(w)πij(w)

 . (2.26)

In this work we are going to use the variance as the optimizing criterion since

it is analytically computable for Gaussian mixtures, i.e., L(px(x)) = Ex[x
Tx]−

Ex[x
T ]Ex[x], which gives

w∗ = arg min
w∈[0,1]

 ∑M
i=1

∑N
j=1 µ̂i(w)ν̂j(w)πij(w)

×
[
tr
(
P̃ij(w)

)
+ ‖x̃ij(w)− x̃(w)‖2

2

] 
∑M

i=1

∑N
j=1 µ̂i(w)ν̂j(w)πij(w)

(2.27)

where

x̃(w) ,
M∑
i=1

N∑
j=1

µ̂i(w)ν̂j(w)πij(w)x̃ij(w), (2.28)

and the notation ‖ · ‖2 denotes the Euclidean norm of the argument vector; the

operator tr(·) is the trace of the argument matrix.

Notice that while the cost function and the fused density for Cherno� fusion can

only be obtained with resort to numerical optimization due to the exponentiation

of the Gaussian mixtures, the sigma-point Cherno� fusion enables the analytical

evaluation of the cost function and provides an explicit formula for the fused

density once the optimization problem (with respect to w) is solved.

2.4 Comparison of Di�erent Fusion Techniques with Optimum Fu-

sion Based on Simulations

In this section, we are going to present the results obtained by applying the

sigma-point Cherno� fusion to univariate and bivariate density fusion problems
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and comparing the results to those of exact numerical Cherno� fusion and op-

timum fusion. The case study given here considers a fusion scenario where we

have two local agents, called A1 and A2, which process both conditionally in-

dependent and common information about a random variable x ∈ Rn. Both

agents assume common prior information about x given as

x ∼ p(x) ,
2∑
i=1

πiN (x;µi,Mi). (2.29)

We consider three conditionally independent measurements z1, z2 and z3 of x

which are related to x with the simple noisy measurement relation

zj = x+ vj (2.30)

where vj ∼ N (vj; 0, Rj) for i = 1, 2, 3. We suppose that the measurement pairs

Z1 , {z1, z2} and Z2 , {z2, z3} are available to agents A1 and A2 respectively.

When the agents get their respective information, Z1 and Z2, they calculate the

posterior densities p1(·) and p2(·) de�ned as

p1(x) , p(x|Z1) ∝ p(Z1|x)p(x) (2.31)

p2(x) , p(x|Z2) ∝ p(Z2|x)p(x) (2.32)

respectively. The task is then going to be the fusion of p1(·) and p2(·) under

unknown correlations. Note here that the common information in this case is

the common prior information that the agents use and the information of the

measurement z2. It is obvious that the optimal fused density would be given as

popt(x) , p(x|z1, z2, z3) ∝ p(z1|x)p(z2|x)p(z3|x)p(x). (2.33)

A point to be emphasized here is that the densities p1(·), p2(·) and popt(·) can

all be calculated exactly using the Kalman �lter update formulae. We below

give the analytical formula only for p(x|z1) and the others can be calculated

similarly.

p(x|z1) =
2∑
i=1

π̄iN (x; µ̄i,M i) (2.34)
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where

µ̄i =µi +Ki(zi − µi) (2.35a)

M i =Mi −KiSiK
T
i (2.35b)

π̄i ∝πiN (z1;µi, Si) (2.35c)

Si =Mi +R1 (2.35d)

Ki =MiS
−1
i (2.35e)

For this case study, the fused density results of 4 di�erent density fusion methods

are presented for di�erent scenarios. The 4 methods are:

• Optimal: The optimal result calculated using (2.33).

• Naive: The fused density obtained assuming independence between the

two local densities. This method gives highly overcon�dent results since

it totally neglects the existent dependence between the local quantities.

• Cherno�: Cherno� fusion formula (2.4) is applied. In this case, the

optimization (2.5) is carried out on a grid of 100 uniformly placed w-

values in the interval [0, 1]. The variance of the fused density is used

as the objective function. The integrals involved for calculating both the

cost function and the normalization constant for the resulting density were

taken numerically using a uniform grid of all components of the x vector

placed in the interval [−400m, 400m] with a spacing of h meters.

• Sigma Point Cherno�: The method proposed in this work is applied.

As in Cherno� fusion, the optimization is carried out on a grid of 100

uniformly placed w-values in the interval [0, 1]. The variance of the fused

density is used as the objective function. The cost function is calculated

analytically using the formula (2.27).

A total of 10000 Monte Carlo runs are made, where in each run di�erent real-

izations of x, z1, z2 and z3 are used. As the comparison metrics, we calculate

the means and the standard deviations of the components of x corresponding

to the resulting fused densities for each run. For each algorithm (naive fusion,
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Cherno� fusion, sigma-point Cherno� fusion), we calculate the distance from the

mean and the standard deviation obtained by the algorithm to the mean and the

standard deviation of the optimally fused density poptimal(·), i.e., we calculate

emean =
∥∥∥mean [palgorithm(·)]−mean [poptimal(·)]

∥∥∥
2

(2.36)

estd =
∥∥∥std [palgorithm(·)]− std [poptimal(·)]

∥∥∥
2

(2.37)

where �algorithm� can be one of naive fusion, Cherno� fusion and sigma-point

Cherno� fusion and the notation std [·] denotes the vector composed of the

standard deviations of components of x distributed with the argument density.

After calculating the error metrics for each Monte Carlo run, we calculate the

empirical estimate of the cumulative distribution function of each error metric.

2.4.1 1D-Case

In the following, we are going to make two parameter selections for the scenario

described above when x ∈ R, i.e., n = 1, and then present the results.

2.4.1.1 Parameter Selection I

In this case we select the parameters of the scenario as below.

π1 =0.8 π2 =0.2 (2.38a)

µ1 =− 50m µ2 =50m (2.38b)

M1 =1002m2 M2 =202m2. (2.38c)

R1 = R2 = R3 = 1002m2. (2.39)

In Figures 2.2 and 2.3 we show the result of the single run where the sampled x

value is x = −36.1141m and the sampled measurements are given as z1 = 59.9m

z2 = −112.6m and z3 = −22.1m. The densities p(·), p1(·), p2(·) and poptimal(·)
are illustrated in Figure 2.2. In Figure 2.3, we show the fused densities poptimal(·),
pnaive(·), pCF(·) and pSPCF(·). For this example, the Cherno� fusion selects the

exponent w = 1 while sigma-point Cherno� fusion selects the scaling factor
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Figure 2.2: The densities p(·), p1(·), p2(·) and poptimal(·) for parameter selection
I.

w = 0.9394. Note that for this speci�c case, the fused densities pSPCF(·) and

pCF(·) seem to be quite similar and they �t better to poptimal(·) than pnaive(·)
does. It must be noted that, for exactly the same example, it is easy to �nd the

reverse case if other samples are generated from the random variables x, z1, z2

and z3. We show the error cdfs for the means and the standard deviations in

Figures 2.4 and 2.5 respectively. The results show that for this example, sigma-

point Cherno� fusion is a little better than Cherno� fusion on the average in

terms of both mean error and standard deviation error. Note that the mean

error of both algorithms are worse than naive fusion whose mean estimates are

surprisingly close to the optimal means. However, as can be observed, the naive

fusion standard deviation errors are much worse than the other algorithms which

is expected.
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Figure 2.3: The fused densities poptimal(·), pnaive(·), pCF(·) and pscaling(·) for pa-
rameter selection I.

2.4.1.2 Parameter Selection II

In this case we select the parameters of the scenario as below.

π1 =0.5 π2 =0.5 (2.40a)

µ1 =− 20m µ2 =20m (2.40b)

M1 =102m2 M2 =102m2. (2.40c)

R1 = R2 = R3 = 1002m2. (2.41)

The error cdfs for the means and the standard deviations are given in Figures 2.6

and 2.7 respectively. For this example, the results show that the di�erences of

the obtained means and covariances from the optimal mean and covariances

are much smaller compared to the previous parameter set. For a better visual

comparison, the axes limits are selected same in Figures 2.6 and 2.7 and in

Figures 2.4 and 2.5. The mean errors of the sigma-point Cherno� fusion for the

current parameter selection are on average similar to those of Cherno� fusion

and Naive fusion. Nevertheless, the sigma-point Cherno� fusion still seems to

be considerably more consistent than naive fusion.
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Figure 2.4: The cdfs for emean for parameter selection I.

The above case study gives some preliminary information about the performance

of SPCF compared to Cherno�. SPCF is an approximation to Cherno� and the

case study demonstrates that this approximation is reasonable. Two di�erent

parameter sets are selected with di�erent characteristics: �rst is anti-symmetric,

the second one is symmetric. For both cases, SPCF's performance is close to

Cherno�.

2.4.2 2D-Case

The aim of this part is to give some idea about the computational power re-

quirement of the algorithms. Comparison of the methods from a computational

point of view is much more meaningful when the problem is de�ned in a higher

dimensional space. For this aim, 2D example is generated. The new problem

is analyzed in terms of the performances of di�erent fusion techniques, as well.

One-dimensional simulations presented in the previous subsection are extended
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Figure 2.5: The cdfs for estd for parameter selection I.

to the 2D space in which the parameters of the scenario are selected as below.

π1 =0.8 π2 =0.2 (2.42a)

µ1 =[−50m;−50m] µ2 =[50m; 50m] (2.42b)

M1 = diag(1002m2, 1002m2) M2 = diag(202m2, 202m2) (2.42c)

R1 = R2 = R3 = diag(1002m2, 1002m2) (2.43)

The results of performance analysis are represented in the �gures 2.8 and 2.9.

In parallel with the earlier �ndings, mean estimates of the sigma-point Cherno�

fusion are very similar to those of Cherno� and Naive fusion methods while it has

better covariance characteristics than these two methods. These results are an

indication of the e�ectiveness of the proposed technique in a higher dimension.

From computational point of view, for the 1D case, when the discretization

interval length h is equal to 0.1m for the Cherno� fusion, the computation times

of the proposed technique and the Cherno� fusion method were, more or less,

similar on the average and both run 100 times slower than naive fusion. This is
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Figure 2.6: The cdfs for emean for parameter selection II.

reasonable since the fused density computation is carried out 100 times for the

optimization involved in the method. On the other hand, when the dimension is

increased to 2, the sigma-point Cherno� fusion is approximately 350 times faster

than the Cherno� fusion due to the numerical integral taken in the Cherno�

fusion while calculating the objective function and the normalization constants.

This di�erence is expected to increase drastically with multivariate densities

in higher dimensions where taking numerical integrals would be much more

di�cult. Note that the discretization interval length h for the 2D case is taken

as 1m and reducing this length further will certainly increase the computation

di�erence between the sigma-point Cherno� fusion and the Cherno� fusion. Also

note that while the Cherno� fusion spends a lot of time in the objective function

evaluation, it still cannot provide an analytical fused density estimate at the end

of the optimization which is not the case with the sigma-point Cherno� fusion.
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Figure 2.7: The cdfs for estd for parameter selection II.

2.5 Comparison of Di�erent Fusion Techniques with Numeric Cher-

no� Fusion Based on Simulations

This part analyzes the performance of SPCF for a problem that is used for this

purpose in [26] which we take as a benchmark scenario. Results obtained by ap-

plying SPCF are compared with that of existing techniques like Pairwise Compo-

nent Covariance Intersection (PCCI), Pseudo Cherno�-1 and Pseudo Cherno�-2.

Performance of the fused densities is evaluated by comparing their contour plots

with that of numerical Cherno� fusion and by utilizing a metric proposed by

Comaniciu [17]. The metric provides the distance between two distributions and

is given by (2.44).

d =
√

1− ρ[p(x), p̂(x)] (2.44)

where

ρ[p(x), p̂(x)] =

∫ √
p(x)p̂(x)dx (2.45)
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Figure 2.8: The cdfs for emean for parameter selection for 2D.

is the Bhattacharyya coe�cient.

PCCI method stated in [26] relies on the application of CI technique to each pair

of Gaussians in the Gaussian Mixture densities. Resultant individual solutions

are combined into the global Gaussian mixture which is certainly a suboptimal

solution. Other approximations called Pseudo Cherno�-1 and Pseudo Cherno�-2

are based on the �rst order approximation of wth and (1−w)th power of the two

Gaussian mixtures and then applying Naive fusion on these expansions. Pseudo

Cherno�-2 is an augmented version of Pseudo Cherno�-1.

Details of the fusion example in [26] are not provided hence we used the following

parameters regarding the input estimate densities 1 and 2. Contour plots of the

input densities using these parameters are obtained as in Figure 2.10.
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Figure 2.9: The cdfs for estd for parameter selection for 2D.

p1(x) =
3∑
i=1

βiN (m1,i, P ) (2.46)

p2(x) =
3∑
i=1

αiN (m2,i, P ) (2.47)

where {βi}3
i=1 = {0.35, 0.3, 0.35}, {m1,i}3

i=1 = {[−5 − 3], [0 0], [7 7]}, {αi}3
i=1 =

{0.38, 0.5, 0.12}, {m1,i}3
i=1 = {[7 − 7], [2 − 2], [5 2]} and P = 1.6 ∗ I2.

Fused densities obtained by the stated techniques together with SPCF are given

in Figure 2.11. It is obvious that SPCF performs much better than the other

proposed techniques if the contour plots of numerically evaluated Cherno� fusion

is taken as �best fusion� for the experimentation. This result also indicates that

SPCF is a good approximation to Cherno� fusion.

Quantitative performance analysis based on (2.44) demonstrates again the out-

standing performance of SPCF against other approximations in Table 2.1. SPCF

is almost three times better than the Pseudo Cherno�-2 which is the best ap-

proach according to that study.
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(a) Input Estimate-1 (b) Input Estimate-2

Figure 2.10: Input estimates for the benchmark scenario.

Table 2.1: Cost of di�erent approximations. Results of PCCI and Pseudo
Cherno�-1 techniques are adopted from [26].

Algorithm Cost

PCCI 0.7286
Pseudo Cherno�-1 0.6608
Pseudo Cherno�-2 0.4523

SPCF 0.0700

Approximate computation times for each method are given in Table 2.2 for this

example. Note that these results are dependent on the processor that we run

the algorithms though they give intuition about the relative complexity of each

approach.

SPCF signi�cantly decreases the computation time of the Cherno� operation

when compared to the numeric method. Also note that SPCF is 15 times slower

than the Pseudo Cherno�-2 method. This is an expected result since SPCF

technique includes a complex algorithm to �nd the exponent of the input den-

sities.
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Table 2.2: Approximate computation times for numeric Cherno�, Pseudo Cher-
no� and SPCF techniques.

Algorithm Computation Time

Numeric Cherno� 62.9 sec.
Pseudo Cherno�-2 0.13 sec.

SPCF 1.87 sec.

2.6 Discussions

In this chapter, we propose a solution to the problem of Cherno� fusion of

Gaussian mixtures by approximating the exponent of the input Gaussian mix-

ture densities with sigma points and then performing the Cherno� technique.

This technique is explained in detailed in this chapter and the e�ectiveness of

the technique is demonstrated by comparing it with the optimal solution, nu-

meric Cherno� fusion and naive fusion. The results of the proposed approach

are comparable to those obtained by Cherno� fusion and persistently more con-

sistent than naive fusion. SPCF is an approximation to Cherno� fusion. So,

to compare it with some other approximations proposed in the literature, the

method is applied to the benchmark problem of [26]. The clear superiority of

SPCF is demonstrated in Table 2.1.

Track fusion problems is one of the interesting fusion area which requires the

elimination of unknown correlations obtained from di�erent sensors. They are

generally de�ned in high dimensional state spaces and elimination of unknown

correlation requires numerical approaches for exponentiation of the mixtures

which is impossible in general. So, the proposed technique in this chapter will

give way to the fusion of target density and intensity functions in track fusion

problems. Speci�cally in this study, we use SPCF method in various fusion

architectures for fusion of IMM and PHD �lters.
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(a) Numeric Cherno� (b) SPCF

(c) PCCI (d) Pseudo Cherno�-1

(e) Pseudo Cherno�-2

Figure 2.11: Fusion results for the benchmark scenario. Results of PCCI and
Pseudo Cherno�-1 techniques are adopted from [26].
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CHAPTER 3

FUSION OF IMM'S IN A DECENTRALIZED RADAR

SYSTEM

3.1 Introduction

Interacting Multiple Model (IMM) �lter is often preferred by the tracking com-

munity because of its �exibility to adapt di�erent target motion models and it is

quite natural to face with the problem of fusion of IMM �lters in a multisensor

environment. So, the application that we introduce in this chapter covers the

fusion strategies for two sensors having IMM trackers which produce Gaussian

mixture densities. We assume that the two radar systems produce state proba-

bility densities that can be exchanged and fusion can be performed to combine

the information of the local and remote Gaussian mixtures. As previously stated,

the information exchange architecture taken as a baseline for these strategies is

provided in Figure 1.5. Even in this simple scenario, a few fusion architectures

and methods can be proposed to yield good state estimates. Prior to further

discussions on these fusion strategies, some information for the classic IMM

�lter and necessary equations for its implementation will be provided for the

completeness of the subject. Fusion derivations related to the Naive and SPCF

methods in the related fusion architectures will be discussed next. Lastly, per-

formance evaluations for the di�erent fusion approaches will be provided using

simulated and realistic target scenarios.
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Figure 3.1: Block diagram of the IMM for two models.

3.2 Short Description of IMM (Adopted from [5])

A block diagram for a single step of the IMM �lter for two models is given

in Figure 3.1. For the time k, the inputs are the previous model conditioned

estimates; x̂1(k−1|k−1) and x̂2(k−1|k−1), the associated covariances P 1(k−
1|k−1) and P 2(k−1|k−1) (the covariances are not shown in the �gure) and the

previous model probabilities µ(k − 1|k − 1) = [µ1(k − 1|k − 1) µ2(k − 1|k − 1)]′

from the time k− 1. Here, µj(k− 1|k− 1) is the probability that model j is the

correct model at the previous time instant. Each of the �lters uses a di�erent

combination (mixture) of x1(k− 1|k− 1) and x2(k− 1|k− 1) as the initial state.

In the �gure, the four conditional model probabilities µi|j(k−1|k−1), (i, j = 1, 2)

are used in the mixing procedure, which produces the two mixed estimates

x̂01(k − 1|k − 1) and x̂02(k − 1|k − 1). The mixed estimates along with the

current measurement z(k), are then used in the �lters to compute the updated

state estimates x̂1(k|k) and x̂2(k|k) for the current time. The �lters also com-
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pute the likelihoods Λ1(k) and Λ2(k) that each estimate is from the correct

�lter. The likelihoods, the previous model probabilities, and the model switch-

ing probabilities pij are then used to compute the updated model probabilities

µ(k|k) = [µ1(k|k) µ2(k|k)]′. Finally, the state estimate combiner computes the

overall state estimate x̂(k|k) as a weighted combination of x̂1(k|k) and x̂2(k|k),

where the weigths are µ1(k|k) and µ2(k|k).

The IMM estimator is outlined below (See [4] for a derivation). For the current

update cycle, the IMM estimator starts with the r-model-conditioned state es-

timates x̂i(k − 1|k − 1), state error covariances P i(k − 1|k − 1), and the model

probabilities µi(k − 1|k − 1) = Pr
{
M i(k − 1)|Zk−1

1

}
from the previous time

instant. Here, Zk−1
1 = {z(1), . . . , z(k − 1)} denotes the set of past measure-

ments, and Zk
1 =

{
Zk−1

1 , z(k)
}
denotes all measurements, including the current

measurement z(k). M i(k − 1) stands for the state of target's motion matching

with the ith model. When the current measurement z(k) is received, the IMM

is implemented using the following steps:

1. Mixing of the State Estimates (Interaction): For the �lter matched

toM j(k), the mixed estimate x̂0j(k−1|k−1) and covariance P 0j(k−1|k−1)

are computed by

x̂0j(k − 1|k − 1) =
r∑
i=1

µi|j(k − 1|k − 1)x̂i(k − 1|k − 1) (3.1)

P 0j(k − 1|k − 1) =
r∑
i=1

µi|j(k − 1|k − 1)
{
P i(k − 1|k − 1)+

[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

] [
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]′}
(3.2)

where the conditional model probabilities µi|j(k − 1|k − 1) are given by

µi|j(k − 1|k − 1) = Pr
{
M i(k − 1)|M j(k), Zk−1

1

}
(3.3)

=
1

µj(k|k − 1)
pijµ

i(k − 1|k − 1) (3.4)
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and the predicted model probability µj(k|k − 1) is computed by

µj(k|k − 1) = Pr
{
M j(k)|Zk−1

1

}
(3.5)

=
r∑
i=1

pijµ
i(k − 1|k − 1) (3.6)

2. Model Conditioned Updates. For the �lter matched to M j(k), the

update is given by the Kalman �ltering equations:

x̂j(k|k − 1) = Φj(k, k − 1)x̂0j(k|k − 1) (3.7)

P j(k|k − 1) = Φj(k, k − 1)P 0j(k|k − 1)[Φj(k, k − 1)]′+

Gj(k, k − 1)Qi(k − 1)[Gj(k, k − 1)]′ (3.8)

vj(k) = z(k)−Hj(k)x̂j(k|k − 1) (3.9)

Sj(k) = Hj(k)P j(k|k − 1)[Hj(k)]′ +Rj(k) (3.10)

Kj(k) = P j(k|k − 1)[Hj(k)]′[Sj(k)]−1 (3.11)

x̂j(k|k) = x̂j(k|k − 1) +Kj(k)vj(k) (3.12)

P j(k|k) = [I −Kj(k)Hj(k)]P j(k|k − 1) (3.13)

where x̂j(k|k−1) is the predicted state estimate underM j(k), correspond-

ing prediction covariance is P j(k|k− 1), vj(k) is the residual, Sj(k) is the

residual covariances, Kj(k) is the Kalman gain, x̂j(k|k) is the updated

state estimate under M j(k), P j(k|k) is the updated covariance matrix,

and I is the identity matrix.

3. Model Likelihood Computations. The likelihood of the �lter matched

to M j(k) is de�ned by Λj(k) = f [z(k)|M j(k), Zk−1
1 ], where f [.|.] denotes

a conditional density. The likelihood is computed using the �lter residual,

the residual covariances, and the assumption of Gaussian statistics.
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Λj(k) =
1√

det[2πSj(k)]
exp

{
−1

2
[vj(k)]′[Sj(k)]−1vj(k)

}
(3.14)

4. Model Probability Updates. The probability µj(k|k) for M j(k) is

µj(k|k) = Pr
{
M j(k)|Zk

1

}
(3.15)

=
1

c
µj(k|k − 1)Λj(k) (3.16)

where the normalization factor c is

c =
r∑
i=1

µi(k|k − 1)Λi(k) (3.17)

5. Combination of the State Estimates. The overall or combined state

estimate x̂(k|k) and P (k|k) for the IMM are given by

x̂(k|k) =
r∑
i=1

µj(k|k)x̂j(k|k) (3.18)

P (k|k) =
r∑
i=1

µj(k|k)

(
P j(k|k) + [x̂j(k|k)− x̂(k|k)][x̂j(k|k)− x̂(k|k)]′

)
(3.19)

3.3 Fusion Strategies Regarding the Fusion of Information Produced

by Local and Remote IMM's

Inclusion of the fusion strategies into the traditional IMM �lter might require

some modi�cations and calculations on the �ow of the standard �lter. The prob-

lem here is to fuse the local information obtained from �interaction, �ltering and

mode probability update� blocks with that obtained from the remote radar sys-

tem. Note that the type of the local and remote densities may be the estimate
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pdf of each sensor which is a single Gaussian or a Gaussian Mixture which may

lead to di�erent architectures including aforementioned fusion techniques. In

this section, not all of the architectures or techniques are analyzed but those

which are suitable to the �ow of an IMM �lter are selected and detailed inspec-

tion of the SPCF technique with resort to other techniques is made. For this

aim, four di�erent fusion strategies are chosen as the framework for the fusion

of IMM's and their fusion expressions are analytically found. The expressions

below are derived for the general case for which number of the models in both

IMM 's are identical and taken as a variable r while the experiments will rely

on two models which will be explained in detail, later on.

• Strategy-1: Both local and remote information are Gaussian Mixture

densities. Naive and SPCF fusion methods are both applicable. Feedback

to the tracker is provided.

• Strategy-2: Both local and remote information are Gaussian Mixture

densities. SPCF fusion method is chosen. No feedback to the tracker is

provided.

• Strategy-3: Both local and remote information are Gaussian densities.

CI technique is chosen for this case. Feedback exists.

• Strategy-4: Both local and remote information are Gaussian densities,

CI technique is chosen for this case. No feedback exists.

3.3.1 Fusion Strategy-1

This strategy is proposed for fusing two Gaussian mixtures while not violating

the rules of a standard IMM �lter. Figure 3.2 shows the internal structure of

the local fusion system adapted to fuse local information and remote Gaussian

mixture in the most appropriate way.

Notice that in this case, while remote information is in the form of a Gaussian

mixture density, the local one is the information function matched toM j(k) with
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Figure 3.2: IMM fusion structure in which Gaussian mixtures are exchanged
and Naive/SPCF methods are applicable.

model probability µjL(k|k) which is in the form of a scaled Gaussian. Equation

for the former is given in (3.20) and that of the latter is in (3.21).

fR(x) =
r∑
i=1

µiR(k|k)N
(
x; x̂iR(k|k), P i

R(k|k)
)

(3.20)

f jL(x) = µjL(k|k)N
(
x; x̂jL(k|k), P j

L(k|k)
)

(3.21)

where the letters �R�, �L� and �F� denote �Remote�, �Local� and �Fused�, respec-

tively, throughout the chapter. Only Naive and SPCF fusion techniques can be

applicable to fuse a Gaussian function with a Gaussian mixture.

3.3.1.1 Implementation of Naive Fusion Technique

The implementation is explained by referring to Figure 3.2.

Step 1 IMM Interaction, Filtering and Mode Probability Update
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Block This step is the same as that of a classic IMM �lter and are followed

in the same way without any modi�cation.

Step 2 Fusion of Local and Remote Information Utilizing the idea beneath

the Naive Fusion approach to produce the fused information from the functions

obtained, multiplication of fR(x) and f jL(x) gives out the desired function car-

rying the fused information as stated in the equation (3.25):

f jF (x) = f jL(x)fR(x) (3.22)

= µjLN
(
x; x̂jL, P

j
L

) r∑
i=1

µiRN
(
x; x̂iR, P

i
R

)
(3.23)

= µjL

r∑
i=1

µiRN
(
x; x̂iR, P

i
R

)
N
(
x; x̂jL, P

j
L

)
(3.24)

Then the multiplication of the Gaussians results in another Gaussian multiplied

by a scalar.

f jF (x) = µjL

r∑
i=1

µiRN (x̂jL; x̂iR, P
i
R + P j

L)N (x; x̂i|j, P i|j) (3.25)

where x̂i|j = ((P i
R)−1 + (P j

L)−1)−1((P i
R)−1x̂iR + (P j

L)−1x̂jL) and P i|j = ((P i
R)−1 +

(P j
L)−1)−1.

Rearranging the multiplication gives out the resultant equation in (3.26).

f jF (x) = µjLC(j)
1

C(j)

r∑
i=1

µiRN (x̂jL; x̂iR, P
i
R + P j

L)N (x; x̂i|j, P i|j) (3.26)

where

C(j) =

∫ r∑
i=1

µiRN (x̂jL; x̂iR, P
i
R + P j

L)N (x; x̂i|j, P i|j)dx (3.27)

=
r∑
i=1

µiRN (x̂jL; x̂iR, P
i
R + P j

L) (3.28)

is the normalizing constant for the Gaussian mixture. If we denote

pjF (x) ,
1

C(j)

r∑
i=1

µiRN (x̂jL; x̂iR, P
i
R + P j

L)N (x; x̂i|j, P i|j) (3.29)
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as the new density function, µjLC(j) corresponds to the updated model proba-

bility for the �lter matched to M j(k):

µjL,upd , µjLC(j) (3.30)

Note that the sum of mode probabilities must be equal to unity. To guarantee

this, normalization is applied and the updated information function becomes:

µjL,upd,nor =
µjL,upd∑r
j=1 µ

j
L,upd

(3.31)

f jF (x) = µL,upd,norp
j
F (x) (3.32)

Combination of the Gaussians in f jF (x) is required since x̂jfinal(k|k) must be the

mean of a single Gaussian at the end to run the procedure same as that of the

classic IMM �lter.

x̂jfinal(k|k) =
1

C(j)

r∑
i=1

µiRN (x̂jL; x̂iR, P
i
R + P j

L)x̂i|j (3.33)

P j
final(k|k) =

1

C(j)

r∑
i=1

µiRN (x̂jL; x̂iR, P
i
R + P j

L)(P ij + [x̂i|j − x̂jfinal][x̂
i|j − x̂jfinal]

′)

(3.34)

Step-3 Combination of the State Estimates The overall or combined state

estimate x̂(k|k) and P (k|k) for the IMM are given by

x̂(k|k) =
r∑
j=1

µjL,upd,nor(k|k)x̂jfinal(k|k) (3.35)

P (k|k) =
r∑
j=1

µjL,upd,nor(k|k)

(
P j
final(k|k) + [x̂jfinal(k|k)− x̂(k|k)][x̂jfinal(k|k)− x̂(k|k)]′

)
(3.36)
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3.3.1.2 Implementation of SPCF Technique

Steps 1 IMM Interaction, Filtering and Mode Probability Update

Block This step is the same as that of a classic IMM �lter and are followed in

the same way without any modi�cation.

Step 2 Fusion of Local and Remote Information Utilizing the idea be-

neath the Cherno� Fusion approach to produce the fused information from the

functions obtained, multiplication of fR(x) and f jL(x) gives out the desired fused

function as stated in the equations (3.37) and (3.38):

f jF (x) =
(
f jL(x)

)w (
fR(x)1−w) (3.37)

= (µjL)wNw
(
x; x̂jL, P

j
L

) [ r∑
i=1

µiRN
(
x; x̂iR, P

i
R

) ]1−w

(3.38)

For the calculation of (1−w)th power of the Gaussian Mixture obtained from re-

mote radar system SPCF technique can be exploited and (3.38) is approximated

as (3.40).

f jF (x) ∼= (µjL)w
(
2π
∣∣w−1P j

L

∣∣)0.5(
2π
∣∣P j

L

∣∣)w/2 N (x; x̂jL, w
−1P j

L

) r∑
i=1

βiRN
(
x; x̂iR, (1− w)−1P i

R

)
(3.39)

= (µjL)w
(
2π
∣∣w−1P j

L

∣∣)0.5(
2π
∣∣P j

L

∣∣)w/2
r∑
i=1

βiRN
(
x; x̂jL, w

−1P j
L

)
N
(
x; x̂iR, (1− w)−1P i

R

)
(3.40)

then the multiplication of the Gaussians results in another Gaussian multiplied

by a scalar.

f jF (x) = (µjL)w
(
2π
∣∣w−1P j

L

∣∣)0.5(
2π
∣∣P j

L

∣∣)w/2
r∑
i=1

βiRN
(
x̂jL; x̂iR, (1− w)−1P i

R + w−1P j
L

)
N
(
x; x̂i|j, Pi|j

)
(3.41)

where

x̂i|j = ((1− w)(P i
R)−1 + w(P j

L)−1)−1((1− w)(P i
R)−1x̂iR + w(P j

L)−1x̂jL) (3.42)

P i|j = ((1− w)(P i
R)−1 + w(P j

L)−1)−1 (3.43)
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Rearranging the multiplication in (3.41) gives (3.44).

f jF (x) = (µjL)w
(
2π
∣∣w−1P j

L

∣∣)0.5(
2π
∣∣P j

L

∣∣)w/2 C(j)
1

C(j)

r∑
i=1

βiRN
(
x̂jL; x̂iR, (1− w)−1P i

R + w−1P j
L

)
N
(
x; x̂i|j, Pi|j

)
(3.44)

where

C(j) =

∫ r∑
i=1

βiRN
(
x̂jL; x̂iR, (1− w)−1P i

R + w−1P j
L

)
N
(
x; x̂i|j, Pi|j

)
(3.45)

=
r∑
i=1

βiRN
(
x̂jL; x̂iR, (1− w)−1P i

R + w−1P j
L

)
(3.46)

is the normalizing constant for the Gaussian Mixture.

If we donate 1
C(j)

∑r
i=1 β

i
RN

(
x̂jL; x̂iR, (1− w)−1P i

R + w−1P j
L

)
N
(
x; x̂i|j, Pi|j

)
as

the new density function, remaining terms correspond to the updated model

probability for the �lter matched to M j(k):

µjL,upd , (µjL)w
(
2π
∣∣w−1P j

L

∣∣)0.5(
2π
∣∣P j

L

∣∣)w/2 C(j) (3.47)

pjF (x) ,
1

C(j)

r∑
i=1

βiRN
(
x̂jL; x̂iR, (1− w)−1P i

R + w−1P j
L

)
N
(
x; x̂i|j, Pi|j

)
(3.48)

Optimal w selection is made by variance minimizing criteria, i.e.,

w∗ , arg min
w∈[0,1]

L
(
pjF (x)

)
(3.49)

where the function L(.) is selected as the trace of the pdf covariance in this

study.

Note that the sum of mode probabilities must be equal to unity. To guarantee

this, normalization is applied to the resultant model probabilities. So,

µjL,upd,nor =
µjL,upd∑r
j=1 µ

j
L,upd

(3.50)

49



f jF (x) = µL,upd,norp
j
F (x) (3.51)

Combination of the Gaussians in pjF (x) is required since x̂jfinal(k|k) must be the

mean of a single Gaussian at the end so as to run the procedure same as that

of the classic IMM �lter.

x̂jfinal(k|k) =
1

C(j)

r∑
i=1

µiRN (x̂jL; x̂iR, (1− w)−1P i
R + w−1P j

L)x̂i|j (3.52)

P j
final(k|k) =

1

C(j)

r∑
i=1

µiRN (x̂jL; x̂iR, (1− w)−1P i
R + w−1P j

L)

(P ij + [x̂i|j − x̂jfinal][x̂
i|j − x̂jfinal]

′) (3.53)

Step-3 Combination of the State Estimates The overall or combined state

estimate x̂(k|k) and P (k|k) for the IMM are given by

x̂(k|k) =
r∑
j=1

µjL,upd,nor(k|k)x̂jfinal(k|k) (3.54)

P (k|k) =
r∑
j=1

µjL,upd,nor(k|k)

(
P j
final(k|k) + [x̂jfinal(k|k)− x̂(k|k)][x̂jfinal(k|k)− x̂(k|k)]′

)
(3.55)

3.3.2 Fusion Strategy-2

In this strategy, output state Gaussian mixture densities are exchanged in be-

tween remote and local radar systems. Fusion, based on SPCF technique, is

performed outside the information loop of each IMM �lter and does not provide

any feedback to the local tracking structure (Figure 3.3). Final state estimate

is found by combining the Gaussians in the resultant Gaussian mixture. Notice

that both radar yield the same state estimates at the end.
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Figure 3.3: IMM fusion structure in which Gaussian mixtures are exchanged
and SPCF method is used.

Equation for the remote radar density is given in (3.56) and that of the local is

in (3.57).

fR(x) =
r∑
i=1

µiR(k|k)N
(
x; x̂iR(k|k), P i

R(k|k)
)

(3.56)

fL(x) =
r∑
j=1

µjL(k|k)N
(
x; x̂jL(k|k), P j

L(k|k)
)

(3.57)

SPCF fusion technique is selected as the fusion approach of this method. Refer-

ring to Figure 3.3, its implementation is explained next.

Steps 1 IMM Interaction, Filtering and Mode Probability Update

Block This step is the same as that of a classic IMM �lter and are followed in

the same way without any modi�cation.

Step 2 Fusion of Local and Remote Information If Cherno� Fusion for-

mulae is applied to fR(x) and fL(x), the desired fused function is found by the
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equations (3.58) and (3.59):

fF (x) =
1

C
fwL (x)f 1−w

R (x) (3.58)

=

[ r∑
j=1

(µjL)N
(
x; x̂jL, P

j
L

) ]w[ r∑
i=1

µiRN
(
x; x̂iR, P

i
R

) ]1−w

(3.59)

where C is the normalization constant. For the calculation of wth and (1−w)th

power of the Gaussian Mixtures, SPCF technique can be exploited and (3.59)

is approximated as (3.61).

fF (x) ∼=
1

C

r∑
j=1

αjLN
(
x; x̂jL, w

−1P j
L

) r∑
i=1

βiRN
(
x; x̂iR, (1− w)−1P i

R

)
(3.60)

=
1

C

r∑
j=1

r∑
i=1

αjLβ
i
RN

(
x; x̂jL, w

−1P j
L

)
N
(
x; x̂iR, (1− w)−1P i

R

)
(3.61)

Then the multiplication of the Gaussians results in another Gaussian multiplied

by a scalar.

fF (x) =
1

C

r∑
j=1

r∑
i=1

αjLβ
i
RN

(
x̂jL; x̂iR, (1− w)−1P i

R + w−1P j
L

)
N
(
x; x̂i|j, Pi|j

)
(3.62)

where

x̂i|j = ((1− w)(P i
R)−1 + w(P j

L)−1)−1((1− w)(P i
R)−1x̂iR + w(P j

L)−1x̂jL) (3.63)

P i|j = ((1− w)(P i
R)−1 + w(P j

L)−1)−1 (3.64)

If we denote the weights of the new Gaussian mixture density as λij(w) as given

below,

λij(w) ,
1

C
αjLβ

i
RN

(
x̂jL; x̂iR, (1− w)−1P i

R + w−1P j
L

)
(3.65)

C =
r∑
j=1

r∑
i=1

αjLβ
i
RN

(
x̂jL; x̂iR, (1− w)−1P i

R + w−1P j
L

)
(3.66)
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fused density is represented as (3.67).

fF (x) =
r∑
j=1

r∑
i=1

λij(w)N
(
x; x̂i|j, Pi|j

)
(3.67)

Optimal w selection is made by variance minimizing criteria, i.e.,

w∗ , arg min
w∈[0,1]

L (fF (x)) (3.68)

where the function L(.) is selected as the trace of the covariance of the pdf in

this study.

Step-3 Combination of the State Estimates The overall or combined state

estimate x̂(k|k) and P (k|k) for the fusion structure are given by

x̂(k|k) =
r∑
j=1

r∑
i=1

λij(w∗)x̂i|j (3.69)

P (k|k) =
r∑
j=1

r∑
i=1

λij(w)
(
Pi|j + [x̂i|j − x̂(k|k)][x̂i|j − x̂(k|k)]′

)
(3.70)

3.3.3 Fusion Strategy-3

This strategy is proposed for fusing two Gaussian densities in a feedback mech-

anism while not violating the rules of a standard IMM �lter. Figure 3.4 demon-

strates the internal structure of the local fusion system adapted to fuse local

information and remote Gaussian density in the most appropriate way.

In this type of strategy, while remote information is a Gaussian density, the local

one is a scaled Gaussian density which is the information function matched to

M j(k) with model probability µjL(k|k). Equation for the former is given in

(3.71) and that of the latter is in (3.72).

fR(x) = N (x; x̂R(k|k), PR(k|k)) (3.71)

f jL(x) = µjL(k|k)N
(
x; x̂jL(k|k), P j

L(k|k)
)

(3.72)
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Figure 3.4: IMM fusion structure in which Gaussian densities are exchanged and
CI method is applied in a feedback mechanism.

where the letters �R�, �L� and �F� denote �Remote�, �Local� and �Fused�, re-

spectively, throughout the chapter. CI technique is chosen to fuse two Gaussian

functions for this case. Implementation steps for this approach are provided as

below:

Steps 1 IMM Interaction, Filtering and Mode Probability Update

Block This step is the same as that of a classic IMM �lter and are followed in

the same way without any modi�cation.

Step 2 Fusion of Local and Remote Information Utilizing the idea be-

neath the Cherno� Fusion approach to produce the fused information from the

functions obtained, multiplication of fR(x) and f jL(x) gives out the desired fused

function as stated in the equations (3.73) and (3.74):

f jF (x) =
(
f jL(x)

)w (
fR(x)1−w) (3.73)

= (µjL)wNw
(
x; x̂jL, P

j
L

)
N 1−w (x; x̂R, PR) (3.74)

Taking the exponent of the Gaussians in (3.74) results in the Equation (3.75)
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for the fused density.

f jF (x) = (µjL)w
(
2π
∣∣w−1P j

L

∣∣)0.5(
2π
∣∣P j

L

∣∣)w/2 (2π |(1− w)−1PR|)0.5

(2π |PR|)(1−w)/2

N
(
x; x̂jL, w

−1P j
L

)
N
(
x; x̂R, (1− w)−1PR

)
(3.75)

then the multiplication of the Gaussians results in another Gaussian multiplied

by a scalar.

f jF (x) = (µjL)w(2πw−n(1− w)−n)0.5
∣∣P j

L

∣∣0.5( |PR|∣∣P j
L

∣∣
)w/2

N
(
x̂jL; x̂R, (1− w)−1PR + w−1P j

L

)
N
(
x; x̂j|R, Pj|R

)
(3.76)

where n is the dimension of the state and

x̂j|R = ((1− w)(PR)−1 + w(P j
L)−1)−1((1− w)(PR)−1x̂R + w(P j

L)−1x̂jL) (3.77)

P j|R = ((1− w)(PR)−1 + w(P j
L)−1)−1 (3.78)

If we donate the Gaussian density in (3.75) as the new density function, remain-

ing terms correspond to the updated model probability for the �lter matched to

M j(k):

µjL,upd , (µjL)w(2πw−n(1− w)−n)0.5
∣∣P j

L

∣∣0.5( |PR|∣∣P j
L

∣∣
)w/2

(3.79)

pjF (x) , N
(
x; x̂j|R, Pj|R

)
(3.80)

Optimal w selection is made by variance minimizing criteria, i.e.,

w∗ , arg min
w∈[0,1]

L
(
pjF (x)

)
(3.81)

where the function L(.) is selected as the trace of the pdf covariance in this

study.
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Note that the sum of mode probabilities must be equal to unity. To guarantee

this, normalization is applied to the resultant model probabilities. So,

µjL,upd,nor =
µjL,upd∑r
j=1 µ

j
L,upd

(3.82)

f jF (x) = µL,upd,norp
j
F (x) (3.83)

Step-3 Combination of the State Estimates The overall or combined state

estimate x̂(k|k) and P (k|k) for the IMM are given by

x̂(k|k) =
r∑
j=1

µjL,upd,nor(k|k)x̂j|R(k|k) (3.84)

P (k|k) =
r∑
j=1

µjL,upd,nor(k|k)

(
P j|R(k|k) + [x̂j|R(k|k)− x̂(k|k)][x̂j|R − x̂(k|k)]′

)
(3.85)

3.3.4 Fusion Strategy-4

In this strategy, only output state estimates are exchanged in between remote

and local radar systems. Information fusion, based on CI technique, is per-

formed outside the information loop of each IMM �lter and does not provide

any feedback to the local tracking structure (Figure 3.5). Notice that both local

and remote information is in the form of a Gaussian density. Density for the

former is given in (3.86) and that of the latter is in (3.87).

fL(x) = N (x; x̂L(k|k), PL(k|k)) (3.86)

fR(x) = N (x; x̂R(k|k), PR(k|k)) (3.87)
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Figure 3.5: IMM fusion structure in which only state estimates are exchanged
and CI method is applicable.

Application of Cherno� fusion technique on the Gaussian densities boils down

to nothing but the CI technique:

P−1
updx̂upd = w∗P−1

L x̂L + (1− w∗)P−1
R x̂R (3.88)

P−1
upd = w∗P−1

L + (1− w∗)P−1
R (3.89)

where w∗ ∈ [0, 1] is calculated using the following optimization

w∗ , arg min
w∈[0,1]

L
(
wP−1

L + (1− w)P−1
R

)
(3.90)

and where the function L is selected as the trace of the covariance matrix.

3.4 Performance Evaluation

To test the performances of the strategies and the fusion methods explained in

the previous section, a set of experiments is planned. The experiments are based
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on 2D air platform scenarios in which the correlated track information obtained

from di�erent radar systems have to be fused. The scenarios are selected so

as to understand the performance characteristics of the fusion methods in ideal

and in more realistic situations. Ideal scenarios are based on the generation of

the target trajectory for the prede�ned motion models and production of the

related noisy radar measurements generated by adding white Gaussian noise to

the true trajectory. On the other hand, the realistic case includes trajectories

of two possible targets and randomly generated realistic radar measurements.

The performance of the methods, SPCF, Naive and CI are compared with each

other and with the performance of the centralized measurement fusion. The

centralized measurement fusion relies on fusing the unprocessed measurement

information generated by the radars and will be considered as a benchmark for

the experimental outputs. Individual performances are obtained by the di�er-

ence of their outputs from the target ground truth trajectory by using L2-norm.

The result is used as a measure for the accuracy of the state estimates.

The experiments use 50 randomly generated tracks with a length of 100 seconds

which are produced by constant velocity models with large and small process

noises corresponding to Model-1 and Model-2, respectively. Based on the ground

truth generated, radar measurements are produced and fed to both local and

remote radar IMM �lters. The measurements are also fed to a centralized IMM,

which is expected to perform the best fusion amongst all for comparison pur-

poses. All the fusion results are compared with the ground truth trajectory of

the target in the L2 norm sense. Then ensemble average of the resultant esti-

mates of the 50 targets are taken at each time instant. A rough overview of the

experiment set-up is provided in Figure 3.6.

The assessment methodology stated here will be a basis for both ideal and

realistic target scenarios for which detailed information will be given in the

upcoming sections.
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Figure 3.6: Experimental set-up to analyze di�erent fusion approaches.

3.4.1 Ideal System Scenarios

3.4.1.1 Selection of the Target and the Radar Characteristics

The ideal scenarios are proposed to understand the performance boundaries of

the approaches based on the process and measurement noise standard devia-

tions. During the simulation phase of the thesis, it is observed that the level of

correlation of the information obtained from the radars can certainly be di�er-

ent for di�erent process and measurement noise selections. Speci�cally, relative

value of the measurement noise with respect to process noise certainly e�ects the

correlation of the output densities of the Kalman-based IMM �lters and details

of this observation will be emphasized in this section.

For the ideal case, motion / measurement models of IMM �lters are perfectly

�tted to those of the ground truth and all the parameters in the �lter are com-

patible with those of target and radar models. With this choice, model mismatch
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errors are avoided which may prevent objective comparison of the fusion strate-

gies.

Another issue is the relative positions of the target with respect to the radars

which is an important parameter. It is likely to a�ect the overall system per-

formance in the sense that contribution of the azimuth and range measurement

noises to the results is a function of the deployment. Since the contribution of

the deployment to the performance is quite di�cult to analyze, radar measure-

ment noises are simply selected as white Gaussian noises in x and y dimensions.

Measurement models for the radar are given in (3.91) and (3.92).

y1(xk) = Hxk + vk(r1) (3.91)

y2(xk) = Hxk + vk(r2) (3.92)

where v(r1) ∼ N (ṽ, 0, r1), v(r2) ∼ N (ṽ, 0, r2) and H = [1 0 0 0; 0 1 0 0]. In

this work, r1 = r2 is taken and they represent uncorrelated measurement noise

variances of the radars.

Selected target motion model is based on two models including low and high

process noise models:

xk+1 = Fxk +Bwk(qi), i = 1, 2 (3.93)

where

F =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 (3.94)

and

B =


∆t2

2
0

0 ∆t2

2

∆t 0

0 ∆t

 (3.95)
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Figure 3.7: Markov chain for the selection of the process noise model.

and wk(.) is selected by using the Markov process stated in Figure 3.7 where

wk(q1) ∼ N (w, 0, q1) and wk(q2) ∼ N (w, 0, q2) correspond to the low and high

process noise covariances, respectively.

3.4.1.2 Analysis of the IMM Filter to be Used

As stated before, IMM �lter parameters are chosen as exactly the same as that

of the target models in order to avoid the model mismatch errors during the

simulations. Although mismatch is avoided, we investigate further the IMM

�lter and its coherency with the measurements and the target model before going

towards the fusion experiments. For this aim, 50 tracks have been generated

randomly for consistency check analysis. An example trajectory together with

the corresponding radar measurements is given in Figure 3.8. IMM tracker

outputs and the IMM weights belonging to this track are provided in Figure 3.9

and Figure 3.10, respectively.

Consistency check of the �lter is performed by analyzing Normalized Innova-

tions Squared (NIS) and Normalized Estimate Error Squared (NEES) values

generated within the �lter. These parameters are used for statistical testing of

Kalman and IMM �lters [4] and are measures of the model match. Ensemble

averages of these values and upper and lower allowable limits are computed and

displayed in Figures 3.11 and 3.12. Results show that, in most of the times,

the NIS and NEES values lie in the boundaries, which indicate that the model

mismatch errors are small.
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Figure 3.8: One of the generated targets and related radar measurements.

3.4.1.3 Fusion Experiments

In track fusion problems, the most important parameters seem to be the mea-

surement noise variances, i.e., r1 and r2, and process noise variances, i.e., q1 and

q2, since these certainly e�ect the level of correlation between the local and re-

mote radars and the level of the rumor propagation in the radar trackers. Based

on this fact, the experiments are performed for a variety of the variance param-

eters to understand the performance boundaries of the strategies and the fusion

methods. Proposed experiments are given in Table 3.1 and the summary for

the fusion techniques that will be analyzed is provided in Table 3.2.

Note that remote radar's fusion performance is not analyzed since we did not

see signi�cant di�erence between the results of the remote radar and that of the

local one for the experiments and the strategies.
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Figure 3.9: Radar measurements and IMM tracker outputs on the zoomed ver-
sion of Figure 3.8.

Table 3.1: Experiments designed to understand performance boundaries of the
strategies.

Experiment
No

Aim Parameter selection

1 To understand the
e�ect of measure-
ment noises in the
fusion.

σp1 = 1, σp2 = 35 and
σr = σr1 = σr2 =

{10, 25, 50, 75, 100, 150, 200, 300, 400}

2 To understand the
e�ect of process
noises in the fusion.

σr = σr1 = σr2 = 100 and
(σp1, σp2) = αx(1, 35) where α is a
constant and selected from the set
{1, 1.5, 2, 2.5, 3, 4, 8}

Ensemble averaged fusion results belonging to the parameters σp1 = 1, σp2 = 35

and σr = 50 are displayed in Figures 3.13 and 3.14. Notice that Naive fusion

yielded divergent state estimates, and it does not seem to be a consistent fusion

approach for the problem as expected. Divergence of the Naive fusion is caused

by the fact that fusion results is fed back to the �ltering algorithm and the

correlated information accumulates in the estimates. When the other techniques

are analyzed in detail, SPCF seems to yield the �rst two best results in the sense

that the closest averaged norm to that of centralized fusion belongs to SPCF in
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Figure 3.10: IMM weights for di�erent models (belonging to the IMM example
in Figure 3.9).

Table 3.2: Summary of the fusion techniques to be analyzed.

Fusion
Technique

Strategy Architecture Implementation

Naive Strategy-1, see Sec-
tion 3.3.1 for de-
tails.

see Figure 3.2 see Section 3.3.1.1
for details.

SPCF Strategy-1, see Sec-
tion 3.3.1 for de-
tails.

see Figure 3.2 see Section 3.3.1.2
for details.

SPCF Strategy-2, see Sec-
tion 3.3.2 for de-
tails.

see Figure 3.3 see Section 3.3.2
for details.

CI Strategy-3, see Sec-
tion 3.3.3 for de-
tails.

see Figure 3.4 see Section 3.3.3
for details.

CI Strategy-4, see Sec-
tion 3.3.4 for de-
tails.

see Figure 3.5 see Section 3.3.4
for details.

Strategy-1 and 2.

This experiment belonging to a single parameter set does not prove that SPCF
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Figure 3.11: Ensemble average of NIS values and required boundaries.

is always better than the other fusion techniques. To understand the e�ective-

ness and weaknesses of the proposed method, same experiment is performed

for di�erent parameter selections as stated in Table 3.1. Mean errors for the

ensembles are found with respect to time for the de�ned experiments in the

table.

Experiment-1 (Experiments to Analyze the E�ect of Measurement

Noise):

Experiment-1 is proposed to analyze the e�ect of measurement noises in the

fusion results under model-match condition while keeping the other parame-

ters �xed. Mean L2 error is obtained for each parameter and the plots related

to the performance of the techniques against di�erent measurement noises are

computed and are given in Figure 3.15.

As it is seen in Figure 3.15, Naive fusion is the worst strategy amongst all. It

can hardly reach an acceptable performance for very low measurement noise

levels yet it has a divergent characteristics as the measurement noise increases.
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Figure 3.12: Ensemble average of NEES values and required boundaries.

Increase in the error with increasing measurement noise implies that the cor-

relation level of the information in the fusion system cannot be removed as

expected.

When the �gure is zoomed to analyze the performances of the other approaches,

as shown in Figure 3.16, SPCF technique in Strategy-1 and 2 seems to be

more robust and e�ective than the other methods under the increase in the

measurement noise. Note that as the measurement noise increases, the system

relies on the process more, so the information that comes from the two radar

systems become more correlated. This fact shows us that in case of high corre-

lation between the tracker outputs of the local radar and the remote one, SPCF

performs better which indicates that it is a conservative fusion method. On the

other hand, SPCF technique in Strategy-1 seems to be slightly worse than SPCF

in Strategy-2. This is because of the e�ect of the feedback mechanism in the

structure, which contributes to the correlation level of the information loop and

this results in a highly correlated data within the system.
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Figure 3.13: Ensemble average of the fusion results for the parameters σp1 = 1,
σp2 = 35 and σr = 50. Dashed lines represent the mean lines for each result.

This fact shows us that in case of high correlation between the tracker outputs

of the local radar and the remote one, SPCF in can eliminate this correlation in

the way better than the other approaches can.

Figure 3.17 which is a zoomed version of 3.15 for the low measurement noise

levels, (i.e., low correlation level). Figure shows that SPCF in both strategies is

good in the whole range of measurement noise standard deviations. That is an

indication of adaptability of SPCF to di�erent noise values.

We have already mentioned that as observation noise of the two systems increase,

then states become more correlated. This fact can be explained by the Kalman

�lter structure used in the IMM �lter. It is well known that as measurement

noise gets smaller, Kalman gain increases and the measurement contributes to

the output estimates more compared to that provided by the process. Since the

measurements are uncorrelated, the output densities tend to be uncorrelated, as
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Figure 3.14: Zoomed version of Figure 3.13.

well. In the other way, when the measurement noise increases, the contribution

of the measurements to the output gets smaller, and the process model which

actually causes the correlation in the data becomes dominant and the input

densities become more correlated.

Experiment-2 (Experiments to Analyze the E�ect of Process Noise):

The basic idea of the next experiment is similar to that of Experiment-1 and

the e�ect of process noises in the fusion results under model-match condition

is investigated while keeping the other parameters �xed. Mean L2 norm is

obtained for each parameter selection. The plots related to the performance of

the techniques against di�erent process noise standard deviations are shown in

Figure 3.18. The parameter α is a scaling factor for both process noise standard

deviations of Model-1 and Model-2, i.e., q1 and q2, and increase in this parameter

implies increase in both deviations in the same rate.
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Figure 3.15: Mean of L2 Norm error of the ensemble averages vs di�erent mea-
surement noise standard deviations for σp1 = 1 and σp2 = 35.

Figure 3.18 shows that selection of low process noises degrades the performance

of the Naive fusion, as expected. On the other hand, its performance gets better

as the process noise levels increase. This is an expected result since for high

process noises, measurement noise becomes more dominant which decreases the

correlation between the estimated states of the two sources. Notice that after the

alpha parameter exceeds 3, it even produces better results than the centralized

approach. This demonstrates that centralized fusion technique cannot produce

small enough covariance so its performance gets worse than the Naive technique

for process noises greater than (q1, q2) > (3, 105).

The performances of other fusion techniques are shown in Figure 3.19. This fact

shows that SPCF technique in Strategy-1 and 2 is more robust and e�ective

than the other methods.

The results of the two sets of experiments are consistent and they reveal that
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Figure 3.16: Zoomed version of Figure 3.15 to exclude Naive fusion.

SPCF performs better compared to the other decentralized fusion techniques for

the overall spectrum of the process noise selections, which indicates its adapt-

ability.

3.4.2 Realistic System Scenarios

Previous scenarios are based on simulation of perfect match of IMM �lter param-

eters with those of target models and radar measurement models, and they are

proposed in the way that the models are independent of the deployment. These

experiments are done to investigate the performance boundaries of the fusion

strategies under ideal conditions while keeping the deployment e�ect outside

of the results. On the other hand, inspection of the performance of the fusion

approaches for more realistic targets and radar cases is another point that has

to be clari�ed. For this aim, some benchmark target scenarios existing in the
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Figure 3.17: Zoomed version of Figure 3.15 focusing in the measurement noise
standard deviation margin [10-50].

literature are selected and realistic radar simulation algorithms generating the

azimuth and range measurements are used.

3.4.2.1 Selection of Targets

A remarkable target library belonging to several type of air targets exists in

[7]. This library includes a variety of air targets which are preferred by some

authors for their own work [42]. For this thesis, we choose two extreme scenarios

which represent low and high maneuverable targets. These targets correspond

to Target-2 and Target-6 in [7].

• Target-2 (Low maneuverable target): The trajectory of this target is

shown in Figure 3.20 and represents a trajectory which would be expected

from a small, maneuverable aircraft, such as a Learjet or other similar high
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Figure 3.18: Mean of L2 Norm error of the ensemble averages vs. alpha param-
eter (σp1 = 1× alpha, σp2 = 35× alpha and σr = 25).

performance commercial aircraft. It initializes at a speed of 305m/s and

altitude of 4.57km. The target performs a 2.5g turn through 90◦ of course

change. After the turn, the target descends gradually to an altitude of

approximately 3.05km. A 4g turn rolling out to straight and level �ight

is performed at a constant speed of 305m/s and then the trajectory ends.

The RCS of the target is 2m2.

• Target-6 (Highly maneuverable target):This target starts at a speed

of 426m/s and an altitude of 1.55km. Constant speed and course are

maintained for a period of 30s upon which a 7 turn is performed. The

new course is maintained for another 30s. A 6g turn is performed while

the throttle is reduced and the aircraft is nosed over in order to decrease

the altitude. After that a �nal altitude of 0.79km is obtained and a time

span of 30s, another 6g turn is made and full throttle is commanded.
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Figure 3.19: Zoomed version of Figure 3.18 to exclude Naive fusion.

After approximately 30s, a 7g turn is performed, and upon completion of

the turn, straight and level, non-accelerating �ight is maintained for the

completion of the trajectory. The average RCS is 1.9m2.

3.4.2.2 Radar Model

One of the main aims of this experiment is providing realistic radar measure-

ments to the fusion system. In this study, we used a simpli�ed radar simulator

to generate measurements for a given trajectory (See [19] for the details.). The

simple simulator �rst generates an SNR for given target and radar position, and

using SNR value it calculates the probability of detection, Pdetection as follows:
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Figure 3.20: Trajectory of Target-2 and deployment of radars.

SNR =
(SNRref.d

4
ref)

d4
(3.96)

Pdetection = p
1

1+SNR

fa (3.97)

In the above expression SNRref is the reference SNR, dref is the maximum range

of the radar for SNRref, d is the distance between the radar and the target and

pfa is the corresponding false alarm.

Radar measurements are the range and the bearing angles. Measurement noise

is another parameter of the radar model. In this study, range noise is assumed

to be uniformly distributed along the range ambiguity. Bearing angle noises are

modeled as Gaussian noises independent of each other.

Bias is another important cause of degradation in the radar measurements. Bias

is generated by mislocating the radar and its north axis. However, in this study

e�ects of the bias on fusion are not analyzed, so no bias is assumed. Table 3.3

gives the parameters used in this study to generate the radar measurements.
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Figure 3.21: Trajectory of Target-6 and deployment of radars.

Table 3.3: Radar parameters selected for the experiments.

Radar Parameter Value

Azimuth measurement error(rms) 0.3 deg.
Azimuth bias 0 deg.

Range measurement error(rms) 10 m.
Range bias 0 m.

Probability of detection given in (3.97)
pfa 10−14

SNRref 10
dref 100 km.

Sampling period 1 sec.

The problem here is that track set obtained from the simulator may also contain

false tracks due to the clutter and the relevant track/measurements must be

picked up at the output of the radar simulator. To overcome this di�culty,

adaptation process de�ned in Figure 3.22 is used to generate target related

measurements which is required for the follow-on fusion mechanisms.
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Figure 3.22: Experimental set-up adapted to radar simulator to pick-up the
target related measurements.

3.4.2.3 Filter Parameters

Target motion model is selected as the same with that of the previous experiment

given in (3.93). Standard deviation of low and high process noise models are

selected as q1 = 1 and q2 = 30, respectively.

Measurement model of the �lter is selected as in

y(xk) = Hxk + v(x̃k) (3.98)

where x̃k is relative estimated position of the target with respect to the radar,

H = [1 0 0 0; 0 1 0 0] and v(x̃k) ∼ N (ṽ, 0, R(x̃k)). Note that since the measure-

ment noises are de�ned in azimuth and range and the �lter runs in cartesian

coordinate system, unbiased coordinate conversion operation is required to ob-

tain the measurement noise covariance matrix, R(x̃k). Details of this operation

are provided in [33].
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3.4.2.4 Fusion Experiments

Evaluation of the performance of the fusion techniques are based on the prede-

�ned target scenarios, i.e., Target-2 and Target-6 scenarios. The experiments

are based on the same fusion strategies with ideal case experiments and SPCF

is compared with the other techniques: centralized fusion, Naive, CI and Local

radar's IMM �lter. Ensemble average of the L2 state error norms with respect to

time is computed over and plotted for 50 Monte Carlo runs. In all of the �gures,

target acceleration values in g unit are provided to build up the relationship

between the performances and the maneuvering state of the target.

Deployment of the radars and relative target positions are important factors on

the performance of the fusion systems. The results may be varied depending

on the radar system of interest. So, the results are displayed for both local and

remote radar fusion systems to assess the robustness of the fusion system against

target's relative position to the fusion site.

Experiments on low maneuverable target

Experimental results for Target-2 and Target-6 scenarios are given in Figures

3.23 and 3.24. When we look at the performance of the Target-2 scenario given

in the related �gures, the e�ect of fusion process in the performance seems quite

remarkable. Both SPCF and CI provided almost 50 percent increase in the

performance when compared with the individual radar trackers. Both methods

provide slightly better results than those of the optimal one. The reason why

centralized fusion is worse than the other two techniques relies on the model

mismatch errors between the target model and the �lter parameters.

In this scenario, target does not make signi�cant maneuvers and, SPCF in

Strategy-1 seems to the best and there is not much di�erence between SPCF in

Strategy-2 and CI in Strategy-3 and 4 for this case.

Experiments on High Maneuverable Target

The Target-6 experiments are analyzed in Figures 3.25 and 3.27. Zoomed ver-

sions of these �gures are also provided as Figures 3.26 and 3.28, respectively.

These last two �gures focus on the fusion techniques by excluding the results of
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Figure 3.23: Fusion performances of the techniques at the �local radar� for target-
2. Dashed gray line corresponds to the maneuver of the target and other dashed
lines represent the mean lines for each result.

the local IMM.

Fusion process again signi�cantly increases the over-all performance when com-

pared with the radar IMM trackers. It can also be observed that acceleration of

the target receive almost 7g which seems to a�ect all the performances.

SPCF in Strategy-1 again produces the best results in average and CI in Strategy-

3 follows it. Note that these strategies have feedback mechanisms and this shows

that the feedback enhances the performances for high maneuverable targets.

As stated before, the target acceleration corresponds to the process noise which

is the main actor in the correlation of the data to be fused. The presence of

the correlation can be seen by evaluating the results of Naive, SPCF and CI

techniques during the maneuvering time intervals. During these intervals, Naive
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Figure 3.24: Fusion performances of the techniques at the �remote radar� for
target-2. Dashed gray line corresponds to the maneuver of the target and other
dashed lines represent the mean lines for each result.

generally produces less errors than the other methods by elimination of the un-

wanted correlation more e�ectively. This is an expected observation since high

process noise model in IMM gets more dominant during these time frames and

this results in increase in the e�ect of the measurements to the �nal state es-

timates. This causes the output estimates less correlated. In lower correlation

cases, i.e., target's low maneuvering state, SPCF and CI yield better perfor-

mances since the low process model becomes dominant and output densities

become more correlated.

Experiments on Hybrid Fusion Structures

The relationship between the performances of the proposed strategies and the

maneuvering state of the target raises the idea of proposing adaptive hybrid

fusion structures which includes more than one fusion strategy. In such a pro-
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Figure 3.25: Fusion performances of the techniques at the �local radar� for
Target-6. Dashed gray line corresponds to the maneuver of the target and other
dashed lines represent the mean lines for each result.

posal, the system adaptively selects the fusion strategy depending on the mode

probability of the target, which is actually a measure of a maneuver. Experi-

ments on high maneuverable target demonstrates that Naive is a good choice if

the target is maneuvering, and SPCF in Strategy-1 is in the opposite case. So,

the strategy in Figure 3.29 is proposed as an adaptive fusion approach.

The resultant plots for the proposed hybrid strategy are given in Figure 3.30

where the threshold is selected as 0.85. According to the results, the hybrid

structure, in the average, produces the best result which is slightly better than

SPCF in Strategy-1. This experiment does not prove that this kind of fusion

approach always provides improvements in the errors. Better parameter tuning

is required to reach more reliable conclusions which is left as a future work.

Computational Perspectives
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Figure 3.26: Zoomed version of Figure 3.25.

Average computation times obtained from Target-6 experiments for each fusion

approach is provided in Table 3.4. The resultant times demonstrate that SPCF

in Strategy-1 is computationally demanding when compared to other techniques,

which is expected. SPCF solves three di�erent optimization problems for each

model in the IMM �lter to �nd wth and (1−w)th powers of the Gaussian mixtures

and to �nd the optimum w in the Cherno� fusion operation. CI technique only

solves for the optimum w so that it has quite low computation load in both

Strategy-3 and 4. Note that no e�ort has been spent neither to simplify the

algorithms nor to reduce the computation. We believe that the computational

load can be reduced signi�cantly with appropriate changes in the optimization

algorithms. This part is left as future work.
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Figure 3.27: Fusion performances of the techniques at the �remote radar� for
Target-6. Dashed gray line corresponds to the maneuver of the target and other
dashed lines represent the mean lines for each result.

Table 3.4: Average computation times for each strategy.

Strategy Computation Time

Centralized Fusion 0.0019 sec.
Naive (Strategy-1) 0.0034 sec.
SPCF (Strategy-1) 2.4318 sec.
SPCF (Strategy-2) 0.8460 sec.
CI (Strategy-3) 0.0360 sec.
CI (Strategy-4) 0.0080 sec.

3.5 Discussions

In this chapter, fusion strategies are analyzed for a two-radar fusion system based

on IMM �lters. Fusion systems send IMM output target density functions to
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Figure 3.28: Zoomed version of Figure 3.27.

each other for fusion. The basic idea is to eliminate the correlation to obtain

better state estimates. Four di�erent strategies are proposed as solutions to this

problem: Strategy-1, Strategy-2,Strategy-3 and Strategy-4. Strategy-1 relies on

the fusion of remotely obtained Gaussian mixture density with a local Gaussian

function by SPCF and Naive fusion techniques. Output of the fusion is provided

back to the internal �lter. Strategy-2 is proposed to fuse Gaussian mixture

densities to �nd the state estimate. In this case, there exist no feedback to

the IMM �lter. Strategy-3 and 4 are simpler solutions in which Gaussian state

estimates are exchanged for fusion with and without feedback mechanisms to

the internal �lter.

Assessment of the strategies are based on the computation of the error norms

for ideal and more realistic target scenarios. Ideal scenarios are proposed to

extract the performance boundaries for di�erent parameter selections of process

and measurement noise models. Average errors for each parameter selection
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Figure 3.29: An adaptive hybrid fusion structure which includes SPCF and
Naive techniques.

are found and explanations for the performance of the strategies are brought

forward. According to the results, selection of measurement noise relative to the

process noise seems to be important since this a�ects weight of the measurements

in the state estimates. Results give clues about the selection of the fusion method

for di�erent tracking scenarios.

Experiments on realistic scenarios lead us to understand the applicability of the

proposed technique for real environments including low and high maneuverable

target trajectories and radar models generating azimuth and range measure-

ments. The performance results build up the relationship between the target

maneuvers and the correlation in the information to be fused. The results also

reveal that elimination of the correlation by SPCF is satisfactory and SPCF can

be a good choice for such kind of highly maneuverable targets. Similar results

for both local and remote radar sites give us an indication of robustness of the

proposed technique against di�erent radar deployments and relative target po-

sitions. A hybrid solution including SPCF and Naive methods is also proposed

depending on the target maneuvers and initial results are obtained. Deeper
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Figure 3.30: Target-6 results for the hybrid structure together with those of
SPCF and Naive techniques. Dashed gray line corresponds to the maneuver of
the target and other dashed lines represent the mean lines for each result.

analysis on hybrid fusion structures is a future work.
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CHAPTER 4

FUSION OF PHD'S IN A DECENTRALIZED RADAR

SYSTEM

4.1 Introduction

In recent years, the attention on Probability Hypothesis Density (PHD) �lter,

which is mainly based on tracking target intensity function, has signi�cantly

increased. The �lter relies on the theory Finite Set Statistics (FISST) and its

equations are derived according to the tools provided by FISST. Related equa-

tions, in fact, are not easy to realize so that some approaches have been brought

forward which enables the implementation of this �lter [48, 47]. Although there

exist several applications of the PHD �lter that use the proposed implementa-

tions, not many studies exist bringing multisensor PHD applications into life

because of the di�culties in the implementation of the multisensor PHD fusion

equations. Especially, in case of the correlation between the multiple PHD's is

unknown, the problem turns out to be much more di�cult to solve. Even though

formulae for the equations related to the multisensor PHD fusion with unknown

correlation is derived by utilizing the Cherno� fusion technique, which is one of

the favorite methods used in the decentralized fusion systems, there does not

exist any closed form problem formulation related to these derivations. SPCF

technique is considered to be a good candidate to apply approximate Cherno�

fusion for combining multiple PHD's in Gaussian Mixture PHD implementation.

This study mainly focuses on the utilization of SPCF method for fusing GM-

PHD �lter outputs in a decentralized fusion system. Fusion equations of SPCF

are obtained and performance of the technique is analyzed on some applicable
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strategies.

The chapter starts with providing general information on PHD �lter and then

goes on with the literature survey related to multisensor PHD fusion methods.

Later, some fusion strategies for multiple PHD �lters and applicable decentral-

ized fusion techniques based on SPCF method are discussed in Section 4.4.1.

The performance assessment of the proposed fusion strategies and their com-

parison are given in Section 4.5. The chapter ends with the evaluation of the

overall chapter and discuses the novelties regarding the proposed strategies.

4.2 The PHD Filter

As depicted in the introduction part, the main focus of this chapter is on PHD

�ltering and its possible multisensor fusion applications so that it is bene�cial to

provide basic and background information on PHD �ltering. The idea of PHD

�lter is based on Finite Set Statistics (FISST) whose underlying key point is

treating �nite sets as random elements from probability theory point of view

[34]. It provides the ability to unify the data obtained from various sources

under a single Bayesian framework which gives us the opportunity to see all the

detection, tracking and identi�cation problems as a single problem.

Multitarget tracking challenges can be counted as random noises, missed and

false detections (clutter), target dynamics (linear, nonlinear, maneuvering), im-

perfect and disparate observations, non-standard targets and scenarios (e.g. ex-

tended and unresolved targets), varying number of targets/sensors and data as-

sociation problem. Conventional approaches for multitarget �ltering problems

follow the order of detection, association, tracking and �nally identi�cation.

These approaches have some drawbacks because of their basic assumptions. To-

gether with the measurements and the motion models, the means of solutions

to the Bayes �ltering and data association are approximations which are very

likely to bring the system to a suboptimal point.

Extension of Bayes theorem to a Multi-target estimator is an even more chal-

lenging problem. Remembering the optimal Bayesian �ltering, Bayes equation
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Figure 4.1: Transforming multitarget/sensor world into a meta world (adopted
from the reference [2]).

contains integrals at the numerator and the denominator terms that can not gen-

erally be computed analytically even for single target case. Note that Kalman

�ltering is for a single target and it is optimal under the linearity and the Gaus-

sianality assumptions and is considered as a closed form solution to the optimal

Bayes �ltering. For the multitarget case, the closed form analytic solution is

almost impossible.

To overcome this challenge, FISST is considered as a remarkable tool that can

be exploited to enable multitarget �ltering [34]. It provides a natural yet rig-

orous mathematical tool enabling derivations and computations in multi-target

estimation systems. The key idea of the utilization of FISST is to transform the

multisource-multitarget problem into a mathematically equivalent single-sensor,

single-target problem and to represent the multi-target state and observations

as �nite sets instead of the vectors (Figure 4.1).

Finite set representation has statistical attributes such as the set distance mea-

sure and other set operations like set derivative and integral (Table 4.1). This
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representation has the power of indicating all possible occurrences of the multi-

target scenario and there does not exist any inherent ordering of the measure-

ments or targets. So, the nature of this representation allows explicit modeling

of many challenging aspects of (multi) target estimation while solving the data

association problem and formulating detection, tracking and identi�cation as a

uni�ed problem.

Table 4.1: Some concepts in the single sensor/target domain and their corre-
spondence in the multi one (adopted from the reference [39]).

Single-sensor/target domain multi-sensor/target domain

sensor meta-sensor
target meta-target

vector observation, z �nite-set observation, Z
vector state, x �nite-set state, X
derivative set-derivative
integral set integral

probability-mass function belief mass function
likelihood multitarget likelihood
prior pdf multitarget prior pdf

information theory multitarget information theory
�ltering theory multitarget �ltering theory

Although there exist several advantages of FISST for multitarget problems, there

are some handicaps of the approach that needs to be dealt with. It is not a

straightforward generalization of the single target case and the equations are

mathematically complex. Furthermore the computational complexity of the ap-

proach is intractable and it brings no solution to the track continuity problem.

To overcome these disadvantages and to obtain an approximation to multitar-

get Bayesian �ltering, Probability Hypothesis Density (PHD) �lter has been

proposed which propagates the �rst moment of the density function correspond-

ing to the target intensity [38]. The PHD is characterized by the property that

the integral of this intensity in a region equals to the expected number of tar-

gets in that hyper-volume. Integrating the intensity over the whole state space

gives the expected number of targets present at any time. Besides, form of the

intensity helps us to localize the targets whose number has already been found.
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PHD �lter provides solution to the multitarget Bayes rule which is given in

(4.1). Solving this problem requires the Bayesian multitarget equations, the

multisensor-multitarget measurement model in (4.2) and system dynamical model

in (4.3).

p(Xk|Zk) =
p(Zk|Xk)p(Xk|Zk−1)

p(Zk|Zk−1)
(4.1)

where Xk = {x1, . . . , xn}, Zk = {z1, . . . , zm} and Zk = {Zi|i = 1, . . . , k}

Z = h(X) ∪∆Z (4.2)

h(X) : set of target generated measurements

∆Z : set of the measurements representing false alarms, clutter, etc.

X = g(X) ∪∆X (4.3)

g(X) : set of states belonging to previously existing targets (including target

disappearance)

∆X : set of states belonging to newly appearing targets (target birth)

The models in (4.2) and (4.3) enable us to handle the following situations:

Measurement Model:

• Missed detection

• State dependent missed detection

• False alarms

• Extended targets (more than one measurement from a single target)

• Unresolved targets (targets moving so closely that they can not be distin-

guished)
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System Dynamical Model:

• State dependent false alarms

• Target disappearance

• Target appearance

• Target spawning from an existing target (a target �ring a missile)

• Coordinated Motion of a group of targets

When the literature is surveyed for recent developments on PHD �lter, there

exists several studies on various aspects of this �lter like augmentation of PHD

implementations ([49]), some novel techniques for solving PHD problems (track

maintenance [51], extended targets [31] etc.), handling of sensor registration

errors within PHD �lters [29] and, of course, several PHD applications [50, 14,

21].

Further analytical derivations related to the PHD �ltering is provided in Mahler's

work [38] yet general structure of the �lter and its main implementation types

are given in the thesis for the completeness of the subject.

4.2.1 PHD Filter Stages

PHD �ltering has two main stages: �prediction� and �measurement update�.

Predicted target intensity at time k + 1 is found at the prediction step and the

�nal intensity estimate is re�ned by the measurement update step (Figure 4.2).

Analytical expression of the predicted PHD at time k + 1 is found in terms of

the PHD at time k as found in (4.4) which allows recursion.

D̂X̃k+1
(x) = DB̃k+1

(x) +

∫
DX̃k

(w)ps(w)pk(x|w)dw (4.4)

where DB̃k+1
(x) is the target birth intensity at time k + 1, DX̃k

is the target

intensity at time k, ps(w) is state dependent survival probability, and pk(x|w)

is state transition density.
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Figure 4.2: Basic steps in the PHD �ltering process.

Measurement updated PHD obtained by using the measurement set and the

predicted PHD is given in (4.5)

DX̃k+1
(x) =

(
1− pD(x) +

∑
y∈Y

pD(x)pỹ|x̃(y|x)

DC̃(y) + D̂X̃k+1
[pD(x)pỹ|x̃(y|x)]

)
D̂X̃k+1

(x)

(4.5)

where D̂X̃k+1
is the predicted intensity, DC̃(y) is the clutter intensity, pD(x) is

the state dependent detection probability and pỹ|x̃(y|x) is the posterior density.
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4.2.2 Basic PHD Implementations

4.2.2.1 Gaussian Mixture PHD Filter

Gaussian Mixture PHD (GMPHD), proposed by [47], is derived for linear Gaus-

sian multi-target model and gives a closed form solution to the multitarget track-

ing problem. Detailed derivations, algorithms and pseudo-code of this method is

provided in [47]. Here we give basic assumptions, prediction and measurement

update stages of the method for the sake of completeness.

Assuming the target dynamical model and the sensor measurement model are

linear Gaussian (given in (4.6) and (4.7), respectively) and assuming the target

and birth intensities are in the form of Gaussian mixtures as in (4.8) and (4.9),

predicted target intensity turns out to be a Gaussian mixture as in (4.10), as

well. Measurement updated PHD also becomes a Gaussian Mixture which is

given in (4.11).

For a single target set:

pk|k−1(y|x) = N (x;Ak−1w,Qk−1) (4.6)

pỹ|x̃(y|x) = N (y;Ckx,Rk) (4.7)

DB̃k
(x) =

J
B̃k∑
i=1

w
(i)

B̃k
N (x;m

(i)

B̃k
, P

(i)

B̃k
) (4.8)

DX̃k
(x) =

J
X̃k∑
i=1

w
(i)

X̃k
N (x;m

(i)

X̃k
, P

(i)

X̃k
) (4.9)

D̂X̃k+1
(x) =

J
B̃k+1∑
j=1

w
(j)

B̃k+1
N (x;m

(j)

B̃k+1
, P

(j)

B̃k+1
) + pS

J
X̃k∑
i=1

w
(i)

X̃k
N (x; m̃

(i)

X̃k
, P̃

(i)

X̃k
) (4.10)
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Figure 4.3: GMPHD Implementation.

DX̃k+1
(x) = (1− pD)

Jp∑
j=1

w(j)
p N (x;m(j)

p , P (j)
p )+

Jp∑
j=1

∑
y∈Y

w
(j)
p q(j)(y)pD

DC̃(y) + pD
∑Jp

i=1w
(i)
p q(j)(y)

N (x; m̃(j), P̃ (j)) (4.11)

The complete �ow of GMPHD �lter algorithm is given in Figure 4.3. Note

that other steps are added to classical PHD structure like pruning and state

extraction. Pruning is required since the number of Gaussians after the update

stage is proportional to the multiplication of the number of measurements and

the number of Gaussians in the predicted target intensity. Pruning is required

to reduce the total number of Gaussians and is done by thresholding the weights

and/or clustering some Gaussians.
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4.2.2.2 Particle PHD Filter

The main idea of the Particle PHD �lters also known as Sequential Monte Carlo

(SMC)-PHD �lters, relies on the approximation of the integrals by random sam-

ples drawn from the density of interest. The PHD or intensity functions are

represented by the weighted impulses at these random samples (or particles).

The interesting thing about the resultant algorithm is that it is independent of

the (time-varying) number of targets and computational complexity depends on

the other parameters of the �lter. This type of implementation is not the focus

of this thesis. So, details regarding the particle PHD �lter will not be provided.

Readers who are interested may refer to [48].

4.3 Multisensor PHD Fusion

Recent evolution of PHD �lters raised the problem of fusion of PHD's obtained

from di�erent information sources. The problem is de�ned as the fusion of

unprocessed measurement sets obtained from the sensors and the fusion of target

intensity functions obtained from sensor PHD �lters. Based on the type of the

fused information, multisensor PHD fusion is categorized into two: Centralized

and Decentralized PHD fusion.

4.3.1 Centralized PHD Fusion

In centralized fusion systems, unprocessed sensor information is gathered at a

central system node and fusion operation is performed there. Although this

approach is optimal, it demands much from the communication infrastructure

of the system so that it is not generally preferred for the fusion applications.

Unfortunately, there does not exist exact formulation for this problem. [38]

states that PHD and CPHD algorithms are single sensor �lters and multisensor

generalization of multitarget �ltering is computationally intractable. Later, [34]

proposes another approximation called as �iterated � corrector approxima-

tion technique� . This method is based on the idea of performing the mea-
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Figure 4.4: Iterated-corrector approximation technique for two sensor case.

surement update stage of PHD �ltering for each sensor sequentially. In other

words, output of measurement update of a sensor is used as the input of the

measurement update stage of the next sensor (Figure 4.4). This technique has

the drawback that changing the order of the sensors produces di�erent updated

PHDs. However, the simulations indicate that this does not result in noticeable

di�erences in the performance [36].

The study [37] proposes an approximate fusion approach for PHD and CPHD

(Cardinalized PHD) �lters, which is sensor order invariant. This approach in-

cludes simplifying assumptions and is computationally tractable (for CPHD

only). The author of the paper called these approximations product multisensor

PHD (PM-PHD) and product multisensor CPHD (PM-CPHD), yet there does

not exist any simulation results for them. Then, [41] extends the idea of [37] by

solving the scale unbalance problem and revealing some multisensor simulation

results which are based on the OSPA (Optimum SubPattern Assignment) metric

[43]. Besides these generalization trials, [35] reduces the multisensor problem to
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the speci�c two-sensor case and proposes a method to fuse the data.

A di�erent approach has been suggested in [18], which is based on performing

partitioning on the sensor measurements depending on the sensors' �eld of views

(FOVs) to decrease the computational cost of the multisensor PHD �lter.

4.3.2 Decentralized PHD Fusion

A decentralized PHD fusion system is based on the fusion of target intensity

functions and the intensities are fused at the system fusion nodes. One of the

main problems of a decentralized fusion system is the elimination of the com-

mon information in the data to be fused. Only [45, 46] propose a multisensor

PHD tracker based on a Poisson Intensity approach and a general solution for

the multisensor fusion problem is given based on the fusion of individual PHD

intensities belonging to di�erent sensors. This work does not consider the corre-

lated information and claims that the fused intensity turns out to be the average

intensities of the radar �lters in the region of interest. As far as we understand,

there is no indication of whether this approach is optimal or not. However, [36]

states that this approach does not rely on a mathematical back-bone and, does

not show acceptable performance on some prede�ned scenarios.

To the best of our knowledge, there do not seem to exist satisfactory studies

that analyzes practical means of decentralized fusion of target intensity functions

which are correlated. Next section will discuss this point in detail.

4.4 Fusion of Multiple PHD Filters with Unknown Correlation

As stated in Chapter 1, one of the most important problems in a decentralized

sensor network is consistent and robust fusion. An analysis of decentralized

fusion of densities is already performed in Chapter 3 and various aspects of it

are analyzed in detail. The other recent problem is decentralized fusion of target

intensities in case the sensor systems run PHD �lters as the tracking subsystem.

Unfortunately, to our knowledge, there does not exist any satisfactory practical
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solution to overcome this problem yet. [16] derived the required fusion equations

for Poisson multi-object intensities based on the Cherno� fusion technique yet

there is not any further improvement on that work that proves the e�ectiveness

of the approach.

This section discusses the application of SPCF method for fusing multi-object

intensities and compares it with Naive fusion and iterated � corrector approxi-

mation fusion technique for the measurement fusion [34]. Note that there is not

any applicable optimal solution to this problem and iterated � corrector approx-

imation technique performance will be taken as a baseline for the analysis.

4.4.1 PHD Fusion Strategies

GMPHD �lter implementation is chosen as the radar tracker in this work since

generated intensity in the �lter is a Gaussian mixture. Fusion strategies in-

serted into a traditional GMPHD �lter might require some modi�cations and

calculations in the �ow of the standard �lter. The problem here is to fuse the

local information obtained from the measurement update block with that ob-

tained from the remote radar system. Note that local and remote intensities

are Gaussian Mixtures which may lead to di�erent architectures in which SPCF

and Pseudo Cherno�-2 ([26]) fusion methods can be applied. In this section,

the proposed techniques are adapted into the GMPHD �lter and the detailed

inspection of the SPCF technique with resort to other approaches is made. For

this aim, four di�erent fusion strategies are chosen as the framework for fusion of

PHD's and their fusion expressions are analytically provided. The fusion struc-

ture given in Figure 4.5 is proposed assuming the overall system is a two radar

fusion system (Figure 1.6).

Notice that both local and remote information are Gaussian Mixture intensity

so that only SPCF and Pseudo Cherno�-2 fusion methods are applicable while

Numeric Cherno� fusion can not be applied because of the high state dimension

of the track fusion problem. Equations for the local intensity is given in (4.13)

and that of the remote intensity is in (4.16).
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DL(x) =
N∑
j=1

wjLN
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x;mj
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j
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)
(4.12)

=
N∑
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wkL︸ ︷︷ ︸
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= µLsL(x) (4.14)
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wiRN
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)
(4.15)

=
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(
x;mi

R, P
i
R

)
(4.16)

= µRsR(x) (4.17)

where µL and µR are the average number of objects, each distributed according

to the spatial single object density sL(x) and sR(x), respectively. µL and µR can

be found as the sum of the weights and sL(x) and sR(x) are normalized versions

of DL(x) and DR(x), respectively. The letters in the equations �R�, �L� and �F�

denote �Remote�, �Local� and �Fused� throughout the chapter, respectively.

Note that the selection of the fusion strategies may be based on the type of the

target intensity to be fused and the feedback mechanism in the fusion structure.

Fusion Strategies Based on the Type of the Intensity: Cherno� fusion

formulae derived by [16] enables the formulation of the fusion problem. Based

on the resultant fusion formulae, the fusion problem can be de�ned as below:

DF (x) = µ
(1−w∗)
R µw

∗

L s
(1−w∗)
R (x)sw

∗

L (x) (4.18)

where w∗ is selected as below

w∗ = arg min
w∈[0,1]

L
(
µ

(1−w)
R µwLs

(1−w)
R (x)swL(x)

)
. (4.19)

Here, the function L(. . .) represents an uncertainty measure from the space of

density functions into real numbers and is selected as the trace of the covariance

matrix of the resultant density in this thesis.

The fusion equation in (4.18) is derived for the fusion of multitarget intensities.

Additionally, another idea may be based on fusion of single-object densities as

given below:
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DF (x) = µ
(1−w∗)
R µw

∗

L︸ ︷︷ ︸
µF (x)

s
(1−w∗)
R (x)sw

∗
L (x)∫

s
(1−w∗)
R (x)sw

∗
L (x)dx︸ ︷︷ ︸

sF (x)

(4.20)

where w∗ is selected as below

w∗ = arg min
w∈[0,1]

L (sF (x)) . (4.21)

Here, the function L(. . .) is selected same as before.

Note that since the aim is the fusion of single-object densities, normalization

operation is required to obtain the single-object fused density at the end.

The proposed fusion equations and assumptions above bring us to two types

fusion methods:

• Method-1, Fusion of multi-target intensity

• Method-2, Fusion of single object density

Fusion Strategies Based on the Feedback Mechanism: According to

whether fused output is fed back to the PHD �lter, or not, two options can

be taken into account as shown in Figure 4.5.

• with feedback: fused PHD is used for the next time step.

• without feedback: fusion output is not fed back to the PHD �lter.

Filter's own intensity estimate is used for the next step

Combination of these di�erent perspectives results in four di�erent fusion strate-

gies at the end. Derivations related to SPCF are provided in the next section

and evaluations and results for each combination are discussed at the end of this

chapter.

4.4.2 Derivations for SPCF Fusion of Local and Remote PHD Filters

Cherno� fusion of two Gaussian mixtures can be performed by utilizing the

proposed SPCF technique. The equation in (4.18) requires taking the exponent
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of the densities to be fused. Inserting (4.13) and (4.16) into (4.18) yields the

fusion function of Cherno� technique for Method-1.

DSPCF,Method-1(x) = µ
(1−w)
R µwL

[ N∑
j=1

w̃jLN
(
x;mj

L, P
j
L

) ]w
[ M∑
i=1

w̃iRN
(
x;mi

R, P
i
R

) ](1−w)

(4.22)

At this point, wth and (1 − w)th of the Gaussian mixtures in (4.22) can be

found by the SPCF approximation technique, and the fused PHD is found as in

(4.23).

DSPCF,Method-1(x) ∼= µ
(1−w)
R µwL

N∑
j=1

αjLN
(
x;mj

L, wP
j
L

)
M∑
i=1

αiRN
(
x;mi

R, (1− w)P i
R

)
(4.23)

the variables
{
α

(j)
L

}N
j=1

and
{
α

(i)
R

}M
i=1

are found by the technique proposed in

Chapter 2. Multiplication of the Gaussians results in another scaled Gaussian.

DSPCF,Method-1(x) = µ
(1−w)
R µwL

N∑
j=1

M∑
i=1

αjLα
i
R

N
(
mj
R;mj

L, wP
j
L + (1− w)P i

R

)
N
(
x;mi|j, P i|j) (4.24)

where,

mi|j = ((1− w)(P i
R)−1 + w(P j

L)−1)−1((1− w)(P i
R)−1mi

R + w(P j
L)−1mj

L) (4.25)

P i|j = ((1− w)(P i
R)−1 + w(P j

L)−1)−1 (4.26)

If we de�ne γi,j , αjLα
i
RN

(
mj
R;mj

L, wP
j
L + (1− w)P i

R

)
in (4.24), so fused den-

sity for the SPCF technique is obtained as in (4.27).
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DSPCF,Method-1(x) = µ
(1−w)
R µwL

N∑
j=1

M∑
i=1

γi,jN
(
x;mi|j, P i|j) (4.27)

= µSPCF,Method-1sSPCF,Method-1 (4.28)

where

µSPCF,Method-1 , µ
(1−w)
R µwL

N∑
j=1

M∑
i=1

γi,j (4.29)

sSPCF,Method-1 ,
N∑
j=1

M∑
i=1

γ̃i,jN
(
x;mi|j, P i|j) (4.30)

Equations for method-2 can be computed based by similar derivations as method-

1 and fused intensity can be obtained as in (4.32).

DSPCF,Method-2(x) = µ
(1−w)
R µwL

N∑
j=1

M∑
i=1

γ̃i,jN
(
x;mi|j, P i|j) (4.31)

= µSPCF,Method-2sSPCF,Method-2 (4.32)

where

µSPCF,Method-2 , µ
(1−w)
R µwL (4.33)

sSPCF,Method-2 ,
N∑
j=1

M∑
i=1

γ̃i,jN
(
x;mi|j, P i|j) (4.34)

4.5 Performance Evaluation

For understanding the performance of the proposed PHD fusion strategies and

the fusion methods, again 2D air platform scenarios is selected for which the

correlated target intensity information obtained from di�erent radar systems

have to be fused. Speci�cally, the scenario stated in [47] is selected as the

benchmark scenario and a modi�ed version of this scenario is also proposed for

deeper understanding of the performance of the methods.

The performance of the methods, SPCF and Pseudo Cherno�-2 are compared

with each other and are also compared with the iterated corrector approximation
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technique. The iterated corrector approximation technique will rely on fusing

the unprocessed measurement information set generated by the radars and will

be considered as an optimal fusion method. Individual performances will be

obtained by �nding the OSPA distances between the resultant estimate set and

the true target set.

4.5.1 OSPA(Optimal SubPattern Assignment) Metric

OSPA is a very well-known measure which re�ects the di�erence between two

target sets. It stands for �Optimum SubPattern Assignment� and is proposed

by [43]. Its basic properties in [43] are provided as:

• being a metric on the space of �nite sets,

• having a natural (meaningful) physical interpretation,

• capturing cardinality errors and state errors meaningfully,

• being easily computed.

The OSPA metric used here gives the distance between two �nite sets X =

x1, . . . , xm and Y = y1, . . . , yn, where X is the target position extracted by

the PHD fusion system, Y is the ground truth target set and m,n ∈ N0 =

{0, 1, 2, . . .}. The metric is calculated for m ≤ n and 1 ≤ p < ∞ as in (4.35).

d
(c)

p is called the OSPA metric of order p with cut-o� c.

d
(c)

p (X, Y ) :=

 1

n

min︸︷︷︸
π∈Πn

m∑
i=1

d(c)(xi, yΠ(i))
p + cp(n−m)

 (4.35)

where dc(x, y) := min(c, d(x, y)), c > 0 is de�ned as the cut o�, Πk is the set of

permutations on {1, 2, . . . , k} for any k ∈ N = {1, 2, . . .} and d(x, y) is the L2

norm.

In case m > n, d
(c)

p (X, Y ) is found as d
(c)

p (Y,X).

Notice that OSPA metric of order 2 with cut-o� 100 is selected for the experi-

ments in this thesis.
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Figure 4.6: Experimental set-up to analyze di�erent fusion approaches.

4.5.2 Experiment Set-up

The experiments are based on 250 randomly generated Monte Carlo runs. Radar

measurements are generated according to the radar model given in Section 4.5.5

and fed to both the local and the remote radar PHD �lters. The measurements

are also fed to a centralized PHD, which is expected to perform the best fusion

amongst all for comparison purposes. All of the fusion results are compared

with the ground truth target set in terms of OSPA metric and expected number

of targets. Ensemble average of the OSPA metric and average number of targets

is computed with respect to time. A rough overview of the experimental set-up

is provided in Figure 4.6.

Next sections will describe the target trajectories and radar models. Note that

the trajectories in Scenario-1 are generated as similar as possible to those in

[47]. Additionally, the parameters are selected exactly the same as those stated

in [47], except the birth intensity.
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Figure 4.7: Trajectories of Scenario-1. Start points of the red and blue trajecto-
ries are marked by circles. Radar positions are denoted by magenta and yellow
squares. Large circles at the starting point show the �birth� regions.

4.5.3 Target Scenarios

Multitarget scenarios are required to show and compare the performance of

the proposed approaches since the aim is to fuse target intensities distributed

throughout the entire state space. [47] gives a two-target scenario in which

the distance between the targets decreases down up to a certain time and then

increases again. This target scenario is called �Scenario-1� and its trajectories

are provided in Figure 4.7. In the �gure, magenta and yellow squares represent

local and remote radar deployments, respectively.

Another scenario is de�ned to enrich the target scenario database and to examine

the robustness of proposed fusion strategies in di�erent scenarios. The second

scenario is called �Scenario-2�. The trajectories of the targets in this scenario are

given in Figure 4.8. Note that in this scenario the two targets get close to each

other not only positionally but their velocities become similar. Both scenarios

have target trajectories that can be considered as �coordinated turn�.
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Figure 4.8: Trajectories of Scenario-2. Start points of the red and blue trajecto-
ries are marked by circles. Radar positions are denoted by magenta and yellow
squares. Large circles at the starting point show the �birth� regions.

4.5.4 Target Model and Related Parameters

Survival probability of the target is taken as pS,k = 0.99 and follows a nonlin-

earity nearly constant turn model [30]. The target state xk = [yk, wk]
T where

yk = [px,k, py,k, vx,k, vy,k]
Tand ωk is the turn rate. State dynamics are given in

(4.36) and (4.37).

yk = F (ωk−1)yk−1 +Gwk−1 (4.36)

ωk = ωk−1 + ∆uk−1 (4.37)

where
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F (ω) =


1 1 sinω∆

ω
−1−cosω∆

ω

0 1 1−cosω∆
ω

sinω∆
ω

0 0 cosω∆ − sinω∆

0 0 sinω∆ cosω∆

 (4.38)

and

G =


∆2

2
0

0 ∆2

2

∆ 0

0 ∆

 (4.39)

∆ = 1 s, wk ∼ N (.; 0, σ2
wI2), σw = 15 m/s2 uk ∼ N (.; 0, σ2

uI2),and σu = (π/180)

rad/s. No spawning is assumed and the spontaneous birth intensity is given as:

γk(x) = 0.1N (x;m(1)
γ , Pγ) + 0.1N (x;m(2)

γ , Pγ) (4.40)

where

m(1)
γ = [−1000, 500, 0, 0, 0]T (4.41)

m(2)
γ = [850, 1150, 0, 0, 0]T (4.42)

Pγ = diag([2500, 2500, 2500, 2500, (6xπ/180)2]T ) (4.43)

4.5.5 Radar Model

The measurement model consisting of bearing and range measurements is pro-

vided as in (4.44).

zk =

arctan
(
px,k
py,k

)√
p2
x,k + p2

y,k

+ εk (4.44)

where εk ∼ N (.; 0, Rk) with Rk = diag([σ2
θ , σ

2
r ]), σθ = 2(π/180) rad/s and σr =

20m. The clutter random �nite set follows the uniform Poisson model (4.45) over
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Figure 4.9: Measurements generated by the local radar for a single run. �x�
and �o�s correspond to the measurements related to the clutter and the targets,
respectively.

the surveillance region [0, π] rad × [0, 2000] m, with λc = 3.2x10−3(rad m)−1

(i.e., an average of 20 clutter returns on the surveillance region).

κk(z) = λcV u(z) (4.45)

where u(.) is the uniform density over the surveillance region, V is the volume

of the surveillance region, and λc is the average number of clutter return per

unit volume.

Note that the detection and survival probabilities of each target are taken as

pD,k = 0.98 and pS,k = 0.99. Measurements generated by the local radar for a

single run is provided in Figure 4.9 as an example.
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Figure 4.10: State estimates of the EK-GMPHD �lter together with true target
trajectories for Scenario-1. �o�s correspond to the �lter state estimates.

4.5.6 PHD Filter

The �lter type selected for the implementation is Extended Kalman GMPHD

(EK-GMPHD), which is also selected in [47]. The implementation done here is a

replica of the implementation of [47]. This provides the opportunity to compare

the two implementations and the comparison shows almost same tracking results.

Pseudocode for the EK-GMPHD �lter, the pruning and the state extraction

steps in [47] are also given in Appendix A for the sake of completeness.

State estimate results of EK-GMPHD �lter for a single run is also shown in the

Figures 4.10 and 4.11. Additionally, Figure 4.12 represents the expected number

of targets for the same run. Note that expected number of targets is simply the

sum of the Gaussian mixture weights.
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Figure 4.11: Representation of the state estimates of EK-GMPHD �lter in terms
of x and y coordinates. �o�s correspond to the �lter state estimates.

4.5.7 Fusion Results

Evaluation of the fusion performance of the proposed techniques are based on

the target scenarios de�ned in Section 4.5.3 and the radar models given in

Section 4.5.5. Assuming there exist two radars communicating to each other

and both radars have EK-GMPHD tracker, fusion operation is performed at each

radar site for SPCF and Pseudo Cherno�-2 techniques. This operation relies

on fusion of single target/multitarget intensities (method-1/method-2) and the

feedback mechanism given in the fusion structure. Details of fusion strategies

are already provided in Section 4.4.1. The evaluation of the proposed techniques

is performed by providing the OSPA distance and expected number of targets.

The ensemble average of these measures obtained in 250 Monte Carlo runs are

taken for each time instance.The two strategies, SPCF and Pseudo Cherno�-2,

are also compared with the iterated corrector approximation technique which

takes all the measurements of both radars as input (Figure 4.4). Following

sections illustrate the fusion performances for each target scenario based on four
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Figure 4.12: Estimated number of targets with respect to time for the same
single run.

types of techniques stated in Section 4.4.1. A list of these techniques is also

provided here for better understanding:

• Method-1, Fusion of multi-target intensity

� with feedback

� without feedback

• Method-2, Fusion of single object density

� with feedback

� without feedback

The feedback loop is shown in Figure 4.6. For the feedback case, the fused

intensity is used in the next PHD iteration.

The resultant OSPA and average number of targets values of both scenarios are

obtained for the following PHD trackers and PHD fusion techniques:
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Figure 4.13: �Scenario-1�, �Method-1 with feedback�: Ensemble averaged OSPA
distances of the trackers and the fusion techniques.

• Local Radar PHD Tracker

• Remote Radar PHD Tracker

• Iterated Corrector Approximation

• SPCF

• Pseudo Cherno�-2

When the results of each scenario are analyzed, following observations are made

regarding the performances of the proposed fusion strategies:

• Pseudo Cherno�-2 fusion method yields worst results among all the tech-

niques in terms of OSPA distance metric. If feedback is provided it even
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gets worse which shows this technique is not robust when the feedback is

provided.

• SPCF fusion technique based on Method-1 produces poor quality estimates

for the number of targets . This observations is also projected into the

OSPA distances and corresponding OSPA distances are worse than those

of individual PHD �lters when feedback is not provided. However, this

approach is still much more better than the Pseudo Cherno�-2 method.

Building up a feedback mechanism seems to improve the results of this

method and makes it comparable with the individual �lters.

• SPCF fusion technique based on Method-2 seems to be a consistent and

robust fusion approach for both of the target scenarios and its performance

is generally better than the performances of the individual PHD trackers.

When compared with the results of iterated corrector approximation tech-

nique, SPCF produces the closest results to those of iterated corrective

approximation technique compared to individual �lters, in general. Feed-

back mechanism for this case slightly augments the OSPA distance and it

even produces slightly better OSPA than the iterated corrector approxi-

mation.

• Providing a feedback from the fusion architecture to the tracker seems to

improve the performance of the SPCF technique. Depending on the fusion

architecture and communication demands of the system, any of the �with�

or �without� feedback mechanisms can be chosen as a solution.

• Method-2 produces more accurate target set than Method-1 for both with

and without feedback mechanisms. In terms of number of targets estimate,

Method-2 is again much better than Method-1.

• Average computation times of Scenario-1 experiments for each fusion ap-

proach are obtained and given in Table 4.2. The results reveal that SPCF

is computationally demanding in general when compared to the other

techniques, which is an expected outcome. SPCF solves three di�erent

optimization problems to �nd wth and (1 − w)th powers of the Gaussian

mixtures and to �nd the optimum w in the Cherno� fusion operation. On
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the other hand, Pseudo Cherno� technique only solves for the optimum w

so that its computation time is lower.

Table 4.2: Average computation times in seconds for PHD fusion techniques.

Algorithm Method-1

with feed-

back

Method-2

with feed-

back

Method-1

without

feedback

Method-2

without

feedback

Iterated Corrector

Approx.

0.03 0.03 0.03 0.03

Pseudo Cherno�-2 2.96 2.83 0.29 0.28

SPCF 2.73 3.26 5.26 5.30

Also note that feedback mechanism decreases the computations for SPCF

and increases that of Pseudo Cherno�-2 method. The cause of this observa-

tion is analyzed in detail and it is found that the number of Gaussians gen-

erated within each approach seriously e�ect the computation times. Figure

4.29 reveals that feedback mechanism decreases the number of Gaussians

produced by the radar PHD �lters which de�nitely decreases the compu-

tational load. On the other hand, when Pseudo Cherno�-2 technique is

used with feedback, number of Gaussians yielded by the individual trackers

increases which signi�cantly results in more computations (Figure 4.30).

4.6 Discussions

In this chapter, fusion of multiple PHD �lters with unknown correlation is inves-

tigated on a decentralized sensor network. SPCF fusion technique is analyzed

in detail for two types of fusion approaches: single object density fusion and

multitarget intensity fusion. Notice that although Cherno� fusion equations are

proposed for multitarget intensity fusion in the literature, these proposals do

not provide any applicable form of problem formulation for the fusion of Gaus-

sian mixture intensity functions. One of the novelties of this thesis is to provide

an applicable way to perform Cherno� fusion of Gaussian mixture intensities,

which yields the fusion of PHD �lter outputs. Apart from that, other novel idea
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of fusing single object densities based on Cherno� fusion is raised during the

thesis study period. This approach is actually inspired from the multitarget in-

tensity Cherno� fusion formulae and necessary derivations for both fusion types

are done analytically for the fusion of Gaussian mixture intensities. Together

with SPCF, Pseuso Cherno� fusion results are also obtained so as to be able

make a comparison of SPCF with an existing technique.

Performance of the stated techniques are assessed on a two radar PHD fusion

problem in which EK-GMPHD �lters exist. Some fusion strategies based on

SPCF and Pseudo Cherno� fusion are brought forward in compatible with the

internal structure of the PHD �lter. The resultant intensities are compared with

the exact trajectories by using OSPA distances and expected number of targets.

Results are also assessed by using the results of the iterated corrector approxi-

mation technique, which is the best approach based on measurement fusion in

the PHD �lter. E�ectiveness of single object density and multitarget intensity

fusion based on SPCF technique is demonstrated in terms of consistency and

accuracy.
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Figure 4.14: �Scenario-1�, �Method-1 with feedback�: Ensemble averaged ex-
pected number of targets of the trackers and the fusion techniques.
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Figure 4.15: �Scenario-1�, �Method-2 with feedback�: Ensemble averaged OSPA
distances of the trackers and the fusion techniques.
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Figure 4.16: �Scenario-1�, �Method-2 with feedback�: Ensemble averaged ex-
pected number of targets of the trackers and the fusion techniques.
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Figure 4.17: �Scenario-1�, �Method-1 without feedback�: Ensemble averaged
OSPA distances of the trackers and the fusion techniques.
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Figure 4.18: �Scenario-1�, �Method-1 without feedback�: Ensemble averaged
expected number of targets of the trackers and the fusion techniques.
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Figure 4.19: �Scenario-1�, �Method-2 without feedback�: Ensemble averaged
OSPA distances of the trackers and the fusion techniques.
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Figure 4.20: �Scenario-1�, �Method-2 without feedback�: Ensemble averaged
expected number of targets of the trackers and the fusion techniques.
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Figure 4.21: �Scenario-2�, �Method-1 with feedback�: Ensemble averaged OSPA
distances of the trackers and the fusion techniques.
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Figure 4.22: �Scenario-2�, �Method-1 with feedback�: Ensemble averaged ex-
pected number of targets of the trackers and the fusion techniques.
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Figure 4.23: �Scenario-2�, �Method-2 with feedback�: Ensemble averaged OSPA
distances of the trackers and the fusion techniques.
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Figure 4.24: �Scenario-2�, �Method-2 with feedback�: Ensemble averaged ex-
pected number of targets of the trackers and the fusion techniques.
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Figure 4.25: �Scenario-2�, �Method-1 without feedback�: Ensemble averaged
OSPA distances of the trackers and the fusion techniques.
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Figure 4.26: �Scenario-2�, �Method-1 without feedback�: Ensemble averaged
expected number of targets of the trackers and the fusion techniques.
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Figure 4.27: �Scenario-2�, �Method-2 without feedback�: Ensemble averaged
OSPA distances of the trackers and the fusion techniques.
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Figure 4.28: �Scenario-2�, �Method-2 without feedback�: Ensemble averaged
expected number of targets of the trackers and the fusion techniques.
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Figure 4.29: �Scenario-1�, �Method-2 with and without feedback�: Ensemble
averaged number of Gaussians generated in SPCF fusion technique.
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Figure 4.30: �Scenario-1�, �Method-2 with and without feedback�: Ensemble
averaged number of Gaussians generated in Pseudo Cherno�-2 fusion technique.
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CHAPTER 5

CONCLUSION

Unknown correlation in the data to be fused may cause in producing inconsistent

results or even divergence of the over-all system. So, elimination of the com-

monality becomes a mandatory problem in decentralized data fusion systems.

Several methods are proposed in the literature and Cherno� fusion is considered

to be one of the e�ective techniques among all, since it brings conservativeness

to the fusion operation. However, implementation of this technique is tricky

because of the exponentiation of the underlying densities when these densities

are not Gaussian.

Statement of this non-solved problem has been the driving force of this thesis

together with its possible applications to target tracking �eld. Studying on the

solutions to this problem and possible applications of it has resulted in three

main contributions provided by this thesis to the decentralized data fusion area:

• Sigma Point Cherno� Fusion (SPCF) Technique

• Fusion of Target �Density� Functions in Track Fusion Systems

• Fusion of Target �Intensity� Functions in Track Fusion Systems

As the �rst contribution, SPCF, is proposed as an approximate method for

Cherno� fusion of Gaussian mixtures which requires exponentiation of these

functions. An arbitrary power of a Gaussian mixture is �rst approximated as

an unnormalized Gaussian mixture by preserving the means and scaling the co-

variances of the original mixture. The weights of the approximating mixtures

135



on the other hand are found by an optimization which turns into a weighted

least squares problem when a sigma-point approximation of the original den-

sity is used. The resulting Cherno� fusion formula for Gaussian mixtures then

basically boils down to applying naive fusion on approximated exponentiated

versions of the individual densities and therefore an analytical formulae can be

obtained for the fused density which can be important in subsequent estimation

stages in many practical target tracking applications. This result is important

in that applying Cherno� fusion to Gaussian mixtures inevitably requires resort

to numerical approaches due to the exponentiation of the mixtures. This would

especially be critical in high dimensional state-spaces. The new fusion formulae,

SPCF, enables the analytical evaluation of the objective function involved in the

fusion if the variance is used as the corresponding uncertainty measure. Brie�y,

this novel technique

• provides an analytical fused density which is consistent,

• is easy to implement,

• has low computational cost compared to numerical integration.

The new fusion technique provides some new solutions to di�erent decentralized

track fusion problems. By using the proposed technique, SPCF, it is now possible

to apply Cherno� fusion to a track fusion system because of the ease of its

implementation for high state dimensions.

In light of this description, second contribution of the thesis is mainly raised

from the application of SPCF to an IMM fusion system. The thesis analyzes the

boundaries of the fusion performances of all applicable techniques and demon-

strates that SPCF is a good candidate for realistic target scenarios and radar

systems. In short, the analysis of the IMM fusion in this thesis brings following

novelties to the literature:

• presenting a new perspective of fusing pdf's at di�erent stages of IMM,

• proving the possibility of using Cherno� fusion for combining target state

136



density functions produced by IMM �lter by approximating it by the SPCF

technique,

• proposing and comparing di�erent applicable IMM fusion architectures,

• determining the performance boundaries of decentralized fusion techniques

for di�erent IMM fusion architectures,

• showing that the proposed fusion technique augments the combined state

estimates for also realistic target scenarios.

Third contribution mainly relies on the fusion of multiple GM-PHD �lters with

unknown correlation where target intensity must be fused. Fusion of PHD �l-

ters is considered for four di�erent fusion architectures in a decentralized fusion

system. These architectures include both fusion of single-object density func-

tions and multitarget intensity functions and these are compared with each other

based on the OSPA metric and expected number for targets. Following novelties

are provided to the tracking world by this part of the thesis:

• bringing forward a method to fuse PHD's without referring to measure-

ments,

• proving that it is possible to use Cherno� fusion for combining target

intensity functions produced by a GMPHD �lter by approximating it by

the SPCF technique,

• proposing the fusion of spatial single object densities instead of multitarget

intensities,

• proposing and comparing di�erent applicable GMPHD fusion architec-

tures.

To sum up, according to the author's opinion, this thesis has brought forward a

strong tool to deal with correlated information and demonstrated its e�ectiveness

in two main tracking applications. Certainly, there still exist some ideas given

below that may improve its performance and reduce the computational demands

of the algorithm:
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• A closer work and deeper analysis of the basic assumptions of the SPCF

method is planned. The assumptions are author's intuitive assumptions

and relaxation of these assumptions and rede�ning the problem may lead

to better Cherno� approximations, which may provide the fusion systems

with higher performance.

• Grid search for the optimum w parameter in the Cherno� fusion operation

may be modi�ed so as to decrease the computation time of the SPCF algo-

rithm. Selection of this parameter based on the past values of it sounds as

a good idea yet detailed analysis on the best selection has to be performed.

• Hybrid fusion structures including various types of fusion methods seem

to be a promising approach for fusion applications. Detailed investigation

and further experimentation on hybrid structures is a future work for the

authors.
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APPENDIX A

EK-GMPHD FILTER PSEUDO CODE

Pruning and state extraction steps required in the �lter are also provided as in

the Tables A.3 and A.4.
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Table A.1: EK-GMPHD �lter (Prediction of birth targets, prediction of existing
targets, construction of PHD update components steps),(adopted from [47]).

given
{
w

(i)
k−1,m

(i)
k−1, P

(i)
k−1

}Jk−1

i=1
and the measurement set Zk

step 1. (Prediction of birth targets)
i = 0

for j = 1, . . . , Jγ,k
i := i+ 1

w
(i)
k|k−1 = w

(j)
γ,k, m

(i)
k|k−1 = m

(j)
γ,k, P

(i)
k|k−1 = P

(j)
γ,k

end
for j = 1, . . . , Jβ,k

for l = 1, . . . , Jk−1

i := i+ 1

w
(i)
k|k−1 = w

(l)
k−1w
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k|k−1 = Q

(j)
β,k−1 + F

(j)
β,k−1P

(l)
k−1[F

(j)
β,k−1]T

end
end

step 2. (Prediction of existing targets)
for j = 1, . . . , Jk−1

i := i+ 1

w
(i)
k|k−1 = pS,kw

(j)
k−1, m

(i)
k|k−1 = ϕk(m

(j)
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,

end
Jk|k−1 = i

step 3. (Construction of PHD update components)
for j = 1, . . . , Jk|k−1

η
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end
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Table A.2: EK-GMPHD �lter (Measurement update and outputting steps),
(adopted from [47]).

step 4. (Update)
for j = 1, . . . , Jk|k−1

w
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end
l:=0
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k = m
(j)
k|k−1 +K

(j)
k (z − η(j)

k|k−1))

P
(lJk|k−1+j)

k = P
(j)
k

end
end

w
(lJk|k−1+j)

k :=
w

(lJk|k−1+j)

k

κk(z)+
∑Jk|k−1

i=1 w
(lJk|k−1+i)

k

, for j = 1, . . . , Jk|k−1

Jk = lJk|k−1 + Jk|k−1

output.
{
w

(i)
k ,m

(i)
k , P

(i)
k

}Jk
i=1
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Table A.3: EK-GMPHD �lter (Pruning step), (adopted from [47]).

given
{
w

(i)
k ,m

(i)
k , P

(i)
k

}Jk
i=1

, a truncation period T , a merging threshold U ,

and a maximum allowable number of Gaussian terms Jmax,
Set l = 0, and I = i = 1, . . . , Jk|w(i)

k > T .
repeat

l := l + 1

j := arg maxi∈I w
(i)
k

L :=
{
i ∈ I|(m(i)

k −m
(j)
k )T (P

(j)
k )−1(m

(i)
k −m

(j)
k ) ≤ U

}
w̃

(l)
k =

∑
i∈Lw

(i)
k

m̃
(l)
k = 1

w̃
(l)
k

∑
i∈Lw

(i)
k x

(i)
k

P̃
(l)
k = 1

w̃
(l)
k

∑
i∈Lw

(i)
k (P

(i)
k + (m̃

(l)
k −m

(i)
k )(m̃

(l)
k −m

(i)
k )T )

I := I\L
until I = ∅

if l > Jmax then replace
{
w̃

(i)
k , m̃

(i)
k , P̃

(i)
k

}l
i=1

by those of the Jmax Gaussians

with largest weights.

output
{
w̃

(i)
k , m̃

(i)
k , P̃

(i)
k

}l
i=1

as pruned Gaussian components.

Table A.4: EK-GMPHD �lter (Multitarget state extraction), (adopted from
[47]).

given
{
w

(i)
k ,m

(i)
k , P

(i)
k

}Jk
i=1

Set X̂k = ∅
for j = 1, . . . , Jk

if w(i)
k > 0.5

for j = 1, . . . , round(w
(i)
k )

update X̂k =
[
X̂k,m

(i)
k

]
end

end
end
output X̂k as the multi-target state estimate.
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