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ABSTRACT 

 

 

INVESTIGATION OF THE IMPACTS OF LINKAGE DISEQUILIBRIUM ON 

SNP SELECTION STUDIES 

 

 

 

Kantar Özçırpan, Ekin 

M.S., Department of Biyomedical Engineering 

Supervisor: Prof. Dr. Gerhard-Wilhelm Weber 

Coadvisor: Assist. Prof. Dr. Cem İyigün 

 

January 2015, 90 pages 

 

In many Genome Wide Association Studies (GWAS), the relation between SNPs and 

complex diseases has being tried to reveal.  Moreover it is known that, in GWAS 

there exist a high amount of data which include relations between SNPs, phenotypes 

and diseases, etc. Many algorithms have been used to be able to reach the desired 

information from this huge data.  Therefore, in this study, an algorithm one of whose 

important steps is based on linkage disequilibrium(LD), was constructed to eliminate 

the redundant information from the high-dimensional data. The algorithm improved 

in this study has been tested on prostate cancer data set downloaded from dbGaP. 

In order to find disease related SNPs in GWAS in a more effective way, we have 

constructed an algorithm which is based on LD. The web tool called SNAP (SNP 

Annotation and Proxy Search)  was used to obtain the SNPs in the region of LD, 

which was determined based on the specific threshold value for 𝑟2. This value was 

selected as 0.5. After obtaining a modified version of original data set based on LD, 

Using Fisher’s Combination Method, we have obtained associated combined p 
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values for each SNP in this data set. Then using SNPnexus database, we tried to 

achieve disease related SNPs from both data sets which are the original and modified 

ones. Thus both of the performances being applied on these data sets were evaluated 

relative to each other. Moreover, after eliminating the redundant data we have 

applied SNPnexus analysis again and then the results have shown us, by using   

approximately half of the SNPs, we were able to achieve the desired genes. Besides 

all of them also random forest algorithm was performed on the data set including 

SNPs with individual p values and the modified data set which is including SNPs 

with combined p values. The outputs of both performances were compared.  

In addition, one more purpose of this study, being able to reach the most important 

regulatory SNPs (rSNPs) in GWAS. Based on the data set which was modified using 

LD, we have focused on the non-coding SNPs, which are located on noncoding 

regions, through the whole genome. In conclusion, the number of important 

regulatory SNPs that were found from the modified data set, is much higher than we 

have found before by using original data set., it is expected from this thesis is that, 

the studies which have been conducted on prioritization of disease related SNPs are 

being effected by linkage disequilibrium(LD).   

Keywords: SNP, Genome Wide Association Studies, Prostate Cancer, LD, p Value, 

Random Forest. 
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ÖZ 

 

 

TEK NÜKLEOTİT POLİMORFİZM (SNP) SEÇİMİ ÇALIŞMALARINDA 

BAĞLANTI DENGESİZLİĞİNİN ETKİLERİNİN İNCELENMESİ 

 

 

 

Kantar Özçırpan, Ekin 

Yüksek Lisans, Biyomedikal Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gerhard-Wilhelm Weber 

Yardımcı Tez Yöneticisi: Doç. Dr. Cem İyigün 

 

Ocak 2015, 90 sayfa 

 

Genom ölçeğinde ilişkilendirme çalışmalarında (GWAS), DNA üzerinde tek 

nükleotid polimorfizmi olarak adlandırılan SNPler ile kompleks hastalıklar 

arasındaki ilişlki ortaya çıkarılmaya çalışılır. Literatürde, bu amaca yönelik 

çalışmlardan daha verimli bir şekilde sonuç elde edebimek için çeşitli algoritmlar yer 

almaktadır. Bizim çalışmamızda da LD’ nin, yüksek miktarda, çok boyutlu veri 

setlerini içeren bu çalışmalar üzerindeki etkisini ölçmek adına yeni bir algortima 

geliştirilmiştir.  

Web tabanlı SNAP (SNP Annotation and Proxy Search) aracı kullanılarak 𝑟2 değeri 

0.5 olarak belirlenmiş ve veri setimizde yer alan her bir SNP ile ilgili LD bölgesinde 

bulunan SNP dizileri elde eilmiştir. Daha sonra elde edilen her bir SNP dizisi için 

Fisher’s Combination metodu kullanılarak combined p value olarak adlandırdığımız 

bileşik bir p değeri hesaplanmıştır. Bu değer SNP dizileri içerisinde orjinal p değeri 

en küçük olan SNP’e atanarak çalışmanın ileriki basamaklarında kullanılacak olan 
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yeni bir veri seti elde edilmiştir. Orjinal veri seti olara dbGAP veritabanından elde 

edilen prostat kanser verileri kullanılmıştır. LD kullanılarak elde edilen veri ile 

orjinal veri üzerinde SNPPnexus analizi gerçekleştirilmiş ve bulunan hastalıkla 

ilişkili  SNPler karşılaştırılarak performans değerlendirmeleri yapılmıştır. Ayrıca 

daha önce de belirttiğimiz gibi GWAS çalışmaları, yüksek miktarda veri üzerinde 

yürütülmektedir. Bu yüzden karmaşaya ve zaman kaybına neden olan yığınla 

anlamsız veriden sakınılması gerekmektedir. LD yardımı ile, gereksiz bir takım 

veriyi filtreleyerek elde ettiğimiz bir diğer veri setinde uygulanan SNPnexus analizi 

gösteriyor ki; yaklaşık yarı yarıya düşen SNP sayısı ile, aynı anlamlı genlere 

ulaşabiliyoruz. Bu da, çalışmaya başlamadan önce öngördüğümüz bazı sonuçlara 

ulaştığımızı gösteriyor.  Bütün bu  çalışmaların yanısıra  bu iki veri seti, bir de  

rastgele orman metoduna girdi olarak verilmiş ve elde edilen çıktılar karşılaştırılarak 

bu algoritmanın etkisi değerlendirilmiştir. 

Bu çalışmanın bir diğer amacı da gen bölgesinde yer almayan ancak bir geni dolaylı 

olarak etkilebilecek olan düzenleyici SNPleri (rSNPs) de tespit etmek. Bu SNPleri 

araştırırken de gördük ki; orjinal veri seti ve LD tabanlı veri setinden elde edilen 

sonuçlar karşılaştırıldığında, LD tabanlı veri setinden daha verimli sonuçlar elde 

edebiliyoruz. Sonuç olarak anlaşılıyor ki, hastalıkla ilişkili SNPlerin seçimi üzerine 

yürütülen çalışmlarda LD’nin etkisinin ölçülmesi bu çalışmanın temel amacıdır. 

Anahtar Kelimeler: SNP, Genom Ölçeğinde İlişkilendirme Çalışmaları, Prostat 

Kanseri, LD, p Değeri, Rastgele Orman. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

The aim of Human Genome Project, which was coordinated by the National 

Institutes of Health and the U.S. Department of Energy, is to determine the sequence 

of the human genome and to identify the genes consisting of these sequences 

(Shapiro 1993).This project formally began in 1990 and was completed in 2003. 

After Human Genome Project was completed, researchers started to understand 

formation and functionalities of the human DNA. As they learn more about the genes 

and proteins those form the DNA structure,  fields like medicine, biotechnology, or 

the life sciences, have begun to be developed more qualified than before 

(Contributors; “Genetic Home Reference” 2014). 

The field which has a greatest tendency to be improved was Genome-wide 

association studies (GWAS). In this method the genome is searched for small 

variations, called single nucleotide polymorphisms or SNPs (pronounced “snips”), 

that will be explained in detail in Subsection 2.1. Since one of the most important 

medical problems is to obtain the association between complex diseases and SNPs, 

these methods are mostly developed for this purpose. By looking at hundreds or 

thousands of SNPs at the same time via GWAS, I would say researchers aim to 

figure out the gene that may contribute to a person’s risk of developing a certain 

disease. In addition, one of the main objectives of a GWAS is to develop a prediction 

model for clinical outcome which is mostly binary (Kim et al. 2013). This can be 

done by knowing that the SNPs occur more frequently in people with a particular 

disease than in people without a disease. The outcomes of the study can be used for 

diagnostic and prognostic purposes in related fields and provides researchers to have 

better understanding of the relationship between the disease and SNPs 
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(“Genetic Home Reference” 2014). In the literature, many SNP-complex disease 

relations were studied such as heart diseases (Lettre et al. 2011), diabetes (Reddy et 

al. 2011), rheumatoid arthritis (Stahl et al. 2010), bipolar disorder (Scott et al. 2009), 

hypertension (Adeyemo et al. 2009), multiple sclerosis (Jakkula et al. 2010) and 

cancer types (Yeager et al. 2007; Easton and Eeles 2008; Gerstenblith, Shi, and 

Landi 2010). 

There exist two types of methods using in GWAS: parametric methods and non-

parametric methods. Parametric methods are based on a genetic model. These kinds 

of models are mostly constructed by statistical calculations such as regression based 

models. On the other hand non-parametric methods do not need any genetic model to 

achieve the goal of our study. By such methods genetic models are constructed, 

mostly with using data mining and machine learning techniques (Musani et al. 2007).  

There are advantages and disadvantages of using these methods. However, the 

appropriate method should be chosen based on many important criteria such as the 

problem that is needed to be solved, and the data type in genetic data set that will be 

used for the associated study. In addition, the aim of the study must be seriously 

concerned while choosing the group of methods. There are also such kinds of studies 

that are trying to combine these method to obtain a new hybrid method which is 

expected to improve advantages of the methods while minimizing the disadvantages 

(Lin 2010; Journal and Computing 2013).  

The genetic data used in these studies have a high dimensionality, so that sometimes 

traditional statistical methods can be inadequate for the analysis. Due to these 

comments, researchers prefer non-parametric methods over parametric ones (Aguiar, 

Seoane, and Freire 2010)  

As it can be seen in the literature, lots of different machine learning algorithms have 

been applied in GWAS. The methods using decision trees (Fiaschi, Garibaldi, and 

Krasnogor 2009; Saangyong  Uhmn  Young-Woong  Ko, Sungwon  Cho, Jaeyoun  

Cheong and Jin  Kim 2009; Miyaki et al. 2004; Gomes, Vinga, and Gaspar 2010), 

artificial neural networks (Tomida et al. 2002; Lucek et al.; Marinov and Weeks 

2001; Tomita et al. 2004), Bayesian belief networks (Sinoquet and Leray 2010; 

Mourad, Sinoquet, and Leray 2011; Jiang, Barmada, and Visweswaran 2010), 

support vector machines (Zhou and Wang 2007; Chuang et al. 2011; Brown et al. 
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2000; Waddel et al. 2005) and genetic algorithms (Journal and Computing 2013; 

Brown et al. 2000), etc., can be given as example of these machine learning methods 

which have been used in this field. However, since the results of these methods can 

change due to some variables such as the  type of the data as mentioned above, 

researchers could not prove that one of the methods perform best (Musani et al. 

2007). 

 

In this study, we applied the random forest algorithm to analyze the data set 

including SNPs with individual p values. In addition, by using linkage disequilibrium 

(LD) region information which will be explained in detail, we obtained a set of SNPs 

with combined p values. This combined p values have been derived by using 

Fisher’s Combination Method. After obtaining a set of SNPs with combined p 

values, the random forest algorithm was performed again. Since our data set was 

collected based on prostate cancer information, our aim has been to be able to find 

SNPs and genes that are associated with prostate cancer. For these purposes, 

SNPnexus analysis has been performed. Moreover, we have shown interest in 

noncoding regions besides coding regions where the genes are included. We will also 

explain the regulatory SNPs which may have an effect on prostate cancer. These 

noncoding SNPs have been analyzed for both data sets including SNPs with 

individual p values and combined p values via HaploReg website. The explanations 

of all comparisons done using the obtained results will be discussed. 

This thesis is structured as follows. Chapter 1 gives information about the literature 

related to the SNP selection studies. In Chapter 2, the data sets which are used in this 

study and random forest method will be introduced by giving brief information about 

the formulation used in this study. In Chapter 3, materials and methods that are 

applied in this study will be explained in detail. In the following Chapter 4, the 

results of the data processing part will be given. Chapter 4 will also contain the 

experimental phase of this study, including an explanation of the way of achieving 

combined p values by using LD. In Chapter 5, a discussion of the results obtained in 

Chapter 4 is provided.  Chapter 5 also contains a comparison of the models with the 

experimental findings of this study for different p values. The closing Chapter 6 

contains the conclusion of the study and suggestions for future work.  

http://trond.hjorteland.com/thesis/node5.html#chform
http://trond.hjorteland.com/thesis/node15.html#chdynam
http://trond.hjorteland.com/thesis/node22.html#chnum
http://trond.hjorteland.com/thesis/node30.html#chorb
http://trond.hjorteland.com/thesis/node43.html#chlit
http://trond.hjorteland.com/thesis/node46.html#chconcl
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Firstly the meaning and the usage of SNPs should be understood. Therefore, we will 

continue by describing SNPs in all aspects in the following chapter. 
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CHAPTER 2  

 

 

LITERATURE SURVEY 

 

 

 

2.1 The Single Nucleotide Polymorphisms (SNPs) 

Single nucleotide polymorphisms (SNPs) are the most common type of genetic 

variation. They represent differences in DNA at nucleotide level. This kind of 

differences occurs as the replacement of two nucleotides in one of the stretch of 

DNA. For example, a SNP may replace the nucleotide cytosine (C) with the 

nucleotide thymine (T) in that DNA stretch (Figure 2.1). 

 

Figure 2.1 A C/T polymorphism. (adapted from http://en.wikipedia.org/wiki/Single-

nucleotide_polymorphism)  

To understand what makes us different from each other, it has to be known those 

genomic differences in human population. Therefore, this topic is one of the major 

interest of researchers in genetics science. As mentioned above, SNPs are single base 

pair differences between individuals and they are important reasons behind the 

variations that occur in human genome. 

According to researches, more than 112 million SNPs have been reported in human 

genome, which means if we now that there are about 3.2 billion nucleotides through 
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the whole DNA, approximately, it is assumed that in every 28 nucleotides there exist 

one SNP in the human genome. This information is validated by dbSNP database  

 

(Sherry et al. 2001; Eslahchi et al. 2011). There is also another public database called 

Ensembl (T. J. P. Hubbard, B. L. Aken, K. Beal, B. Ballester, M. Caccamo et al. 

2007) which provides researchers to access identified millions of common SNPs.  

SNPs have the important role in genome science to find the disease related genes, 

since they can be used as biological markers. Therefore, a SNP may have an effect 

on the gene function directly if it is located in a gene sequence or near a gene 

sequence in DNA strand. In addition, SNPs are preferred to other genetic markers, 

such as microsatellites, because of their high abundance, relatively low mutation rate, 

and easy adaptability to automatic genotyping (“Genetic Home Reference” 2014). 

2.2 Linkage Disequilibrium (LD) 

An allele is an alternative form of same gene or same genetic locus that is located at 

a specific position on a specific chromosome. This DNA coding determines 

individual characteristics that can be passed on from parents to offspring. It becomes 

necessary to deal with the non-random associations of alleles at different loci since 

allele frequencies could not be able to describe the dynamics of genotypes when 

genetic variation at two or more loci is considered simultaneously. These non-

random associations of alleles at different loci is called linkage disequilibrium (LD) 

(Feingold 1980). LD occurs when genotypes at the one locus is not independent of 

the genotype at a second locus. However, with not proving the dependency between 

two genotypes, we cannot exactly say that there exists a LD, since the term is 

misleading for two reasons. The first one is that non-random associations of alleles at 

two loci can occur even if the two genes are unlinked, and also just because two loci 

are linked, this does not mean that they will be in linkage equilibrium (LE). In 

addition, by proving the independency between two genotypes, a linkage equilibrium 

exists whose term is the opposite of LD used for this situation. 

LD is affected by several factors such as population history, the age and phenotype 

characteristics of the variants or natural selection, etc. There is a specific area of 

research studying relative contributions of these factors to LD patterns. Therefore it 

is expected that LD information in different regions and different populations is used 

http://biology.about.com/od/geneticsglossary/g/DNA.htm


7 

 

for inferring population histories and localizing genetic variants underlying complex 

traits (Zhao H. , Pfeiffer R 2003). Biologists and human geneticists are increasingly 

studying linkage disequilibrium recently, in order to understand past evolutionary 

and demographic events. In addition, they are using LD information, in order to map 

genes that are associated with quantitative characters and inherited diseases, so that 

they can investigate sets of genes that have been linked during evolution (Slatkin 

2008). 

When it comes how the LD is calculated, in the literature there are some different 

measurements of LD. Based on the haplotype frequencies, different LD coefficients, 

that are commonly used ones, can be measured as  explained below. 

To measure the LD coefficient, it is necessary to know haplotype frequencies as 

show in Table 2.1. 

Table 2.1 Haplotype Frequencies 

 
Locus  B 

Totals 
B b 

Locus A 
A 𝑝𝐴𝐵 𝑝𝐴𝑏 𝑝𝐴 

a 𝑝𝑎𝐵 𝑝𝑎𝑏 𝑝𝑎 

Totals 𝑝𝐵 𝑝𝑏 1.0 

 

For the distant loci, not the LD but the LE is expected. Therefore, the following 

equations based on haplotype frequencies becomes as given: 

𝑝𝐴𝐵 = 𝑝𝐴. 𝑝𝐵                              (2.1) 

𝑝𝐴𝑏 = 𝑝𝐴𝑝𝑏 = 𝑝𝐴(1 − 𝑝𝐵)                                                  (2.2)  

𝑝𝑎𝐵 = 𝑝𝑎𝑝𝐵 = (1 − 𝑝𝐴)𝑝𝐵                    (2.3) 

𝑝𝑎𝑏 = 𝑝𝑎𝑝𝑏 = (1 − 𝑝𝐴)(1 − 𝑝𝐵)                     (2.4) 

For the nearby loci LD is expected and the equations based on haplotype frequencies 

becomes as follows: 

𝑝𝐴𝐵 ≠ 𝑝𝐴𝑝𝐵                              (2.5) 

𝑝𝐴𝑏 ≠ 𝑝𝐴𝑝𝑏 = 𝑝𝐴(1 − 𝑝𝐵)                            (2.6)  
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𝑝𝑎𝐵 ≠ 𝑝𝑎𝑝𝐵 = (1 − 𝑝𝐴) 𝑝𝐵                               (2.7) 

𝑝𝑎𝑏 ≠ 𝑝𝑎𝑝𝑏 = (1 − 𝑝𝐴)(1 − 𝑝𝐵)                     (2.8) 

One of the coefficients associated with LD is the disequilibrium coefficient 𝐷𝐴𝐵, 

given below: 

    
  𝐷𝐴𝐵

= 𝑝𝐴𝐵 − 𝑝𝐴𝑝𝐵                           (2.9) 

 

  𝑝𝐴𝐵 = 𝑝𝐴𝑝𝐵 + 𝐷𝐴𝐵                           (2.10) 

 

  𝑝𝐴𝑏 = 𝑝𝐴𝑝𝑏 − 𝐷𝐴𝐵                 (2.11) 

 

   𝑝𝑎𝐵 = 𝑝𝑎𝑝𝐵 − 𝐷𝐴𝐵               (2.12) 

 

   𝑝𝑎𝑏 = 𝑝𝑎𝑝𝐵 + 𝐷𝐴𝐵               (2.13) 

A and B are set to be common allele and a and b are set to be the rare allele mostly 

found in the literature. 

The second coefficient for LD is 𝐷′
𝐴𝐵 which is the scaled version of D. 

𝐷′
𝐴𝐵 is given by: 

                                (2.14) 

The value of 𝐷′
𝐴𝐵 varies between -1 and 1. If the value of D’ is equal to 1 or -1, this 

means a recombination between the markers cannot be proved. When the allele 

frequencies are similar, with high D’ the markers can represent each other. However, 

in some situations, D’ can be misleading. For example, in small samples and when 

one allele is rare in any sample, the value of D’ can mislead the outcomes of the 

study. 
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The third and the last coefficient for LD is 𝑟2 whose calculation based on 𝐷𝐴𝐵  and 

the frequencies of haplotypes. This measurement is given by: 

    𝑟2 =
𝐷𝐴𝐵

2

𝑝𝐴(1−𝑝𝐴)𝑝𝐵(1−𝑝𝐵)
=  

𝑋2

2𝑛
         (2.15) 

The value of  𝑟2  varies between 0 and 1. When the two markers provide identical 

information, 𝑟2  becomes 1 and if they are independent from each other, then the 

value of 𝑟2 becomes 0. In the literature, this measure is mostly used by population 

geneticists (Hill 1974; Feingold 1980). 

2.3 SNP Selection Studies Using LD  

It is known that SNPs may be located on the genes related to common and complex 

diseases, such as cancer. Therefore, by identifying SNPs and using them as markers, 

researchers have been trying to prove that they may be helpful in personalized 

medicine, disease risk studies or in researches about inheritance of disease genes 

within families, etc. They further may also be used in studies about complex diseases 

such as heart disease, and cancer is a major challenge in current molecular sciences.  

SNPs are chosen as markers due to the following reasons: There exist an abundant 

number of SNPs in DNA, also they have a relatively low mutation rate, and an easy 

adaptability to automatic genotyping also when compared to properties of 

microsatellites (Zhang et al. 2004). However, there are some disadvantages of using 

SNPs. The most common problem which researchers face, is the tremendous number 

of SNPs on the human genome, which is estimated at more than eleven million. The 

huge number of SNPs always causes the researchers to slow down, while challenging 

to obtain and analyze the information of all the SNPs. 

It is known that SNPs play an important role in understanding the association 

between genetic variations and human diseases. Especially, in GWAS thousands of 

SNPs have to be genotyped to analyze. However, by identifying the correlation 

between genotypes, LD and SNPs, all of the SNPs does not have to be genotyped 

necessarily, no longer. 

In the literature, there are SNP selection methods which are motivated by the non-

random association among SNPs, namely  are LD mentioned above (Patil et al. 2001; 
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Schulze et al. 2004; Jorde 2000; Gabriel 2002; Daly et al. 2001; Carlson et al. 2004). 

These methods claim that, when high LD exists between SNPs, the nucleotide 

information of one can usually be inferred from that of the others. Therefore, a 

relatively small subset of SNPs that still retains most of the nucleotide information of 

the original set can be selected. In these kinds of studies, the selected SNPs are called 

tag SNPs, while the remaining, unselected SNPs are called tagged SNPs. The 

assumption is that a possible association between a disease phenotype and the 

unselected tagged SNPs is assumed to be indirectly captured through the selected tag 

SNPs (Liu, Wang, and Wong 2010). Not for a same but for a similar purpose, we 

have improved an algorithm in one step of our study. We have obtained the SNPs 

which are in the same LD region. This region has been obtained by selecting   𝑟2 

threshold value as 0.005. By merging equivalent SNPs, we have found a small subset 

of SNPs which provides us to obtain enough for biologically relevant SNPs on 

prostate cancer. Therefore, by merging equivalent SNPs, not only computation cost 

is saved but also the storage can be reduced (Liu, Wang, and Wong 2010).  

With the availability of a dense genome-wide map of SNPs, it is now possible to use 

linkage disequilibrium (LD) to map genes that cause a disease (Reich et al. 2001). 

As mentioned, in GWAS hundreds or thousands of SNPs are being examined at the 

same time, so that researchers are able to figure out the gene that may contribute to a 

person’s risk of developing a certain disease. According to studies, there are two 

important advantages of using LD that refers to the nonrandom association of alleles 

at two or more different regions in haplotypes that are inherited from an ancestral 

chromosomes (Lewontin and July 1964), in association studies. One of the 

advantages of using LD is: there is no need to genotype the individuals who belong 

to a pedigree, just need to genotype unrelated individuals. Therefore, it is possible to 

study a huge number of individuals. A further advantage is that, since too much 

historical recombination events are reflected by LD information, this may help to 

develop a map for disease-causing mutations.  

In the literature, it is seen that LD have been used in many studies, especially, in 

those which have the aim of selecting SNPs that represent a region including 

candidate genes related with diseases (Zhao H. , Pfeiffer R 2003; Byng et al. 2003; 

Horne and Camp 2004; Ayers and Cordell 2010; Xu, Kaplan, and Taylor 2007). 

http://en.wikipedia.org/wiki/Chromosomes
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These studies have been carried out mostly based on the idea that if the LD appears 

between SNPs, this implies that not all SNPs need to be genotyped in the candidate 

region (Byng et al. 2003). 

According to the previous studies in the literature, there are valuable variation in LD 

pattern across the human genome (Dunning et al. 2000; Reich et al. 2002; Taillon-

Miller et al. 2000; Eisenbarth et al. 2001). There may exist some regions with a high 

LD and some regions with a low LD across the human genome (Daly et al. 2001; 

Patil et al. 2001; G. C. Johnson et al. 2001; Dawson et al. 2002; Gabriel 2002). In the 

literature the regions with high LD are termed as blocks. In these blocks, it is 

commensurate to draw most of haplotype structures by using inconsiderable number 

of tag SNPs (Patil et al. 2001; G. C. Johnson et al. 2001). Therefore, if the extraction 

of LD patterns from genotype data is done, may help sufficient number of selected 

tag SNPs. Available methods which have been developed for haplotype block 

partitioning and tag SNP selection based on haplotype data or genotype data can be 

classified into two categories. In one of the categories, firstly, haplotype blocks are 

obtained by using pairwise LD information of the SNPs (Gabriel 2002) or a four-

gamete test (Wang et al. 2002). Then, tag SNPs are selected in each obtained block. 

In the other categories, haplotype blocks are used as a tool to minimize the total 

number of tag SNPs over a region of interest or the whole genome (Patil et al. 2001; 

Zhang et al. 2004). This type of methods can only be used with haplotype data. 

However, we will not employ haplotype information, we will just use the LD 

information between SNPs. By using LD information we have obtained lists of SNPs 

for each SNP in the data set and then given the SNPs that are in the same LD region 

to Fisher’s Combination Method as an input. It is assumed that when there are many 

loci in high LD, this test performs very well (Chapman and Whittaker 2008). There 

are some other combined p value studies which use the LD information indirectly for 

measuring the combined p value (Cui, Li, and Williams 2011). We have selected the 

correlated SNPs located in the LD region of the representative SNP according to the 

threshold value for  𝑟2.  We have used the threshold value as 0.5 in order not to lose 

so much information while avoiding redundant information. Finally, the data set 

including SNPs with combined p values was obtained. 
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CHAPTER 3  

 

 

MATERIAL AND METHODS 

 

 

 

3.1 Data 

3.1.1 Prostate Cancer Data 

The data set which is consisting of “Multi Ethnic Genome Wide Scan of Prostate 

Cancer” data was obtained from dbGap database with the study accession number 

phs000306.v2.p1. Genotyping of the data was done by Broad Institute of MIT and 

Harvard as a part of GENEVA study. These data are a combination of such case 

control studies conducted on different ethnicities like African Americans, Latinos 

and Japanese that live in California and Hawaii. This data set consists of a total of 

9415 subjects which 4650 cases and 4795 controls. Each subject  has 544408  SNPs 

in  genotyped area of their DNAs, represented by rsID’s. This data set has also 

phenotype information listed in Table 1; however these phenotype attributes will not 

be interested much in this study. 

Table 3.1 Phenotype variables of prostate cancer data. 

Name Explanation 

sex Gender 

Status Case/Control status 

age_cat Age at entry into cohort 

agedx_cat Age at diagnosis for cancer cases 

ageco_cat Age at blood draw controls 

bmi_cat Body mass index 

fh_prca Family history of prostate cancer 

(brother or father) 
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pa_cat Hours per day of moderate or 

vigorous physical activity 

Packyrs_ca Pack years of smoking cigarettes 

ethanol_ca Alcohol drinks per day 

d_lyco_cat Density of lycopene intake 

p_fat_cat Percentage of calories from fat 

d_calc_cat Density for calcium intake 

currsmoke Currently smoker? 

eversmoke Ever smoked? 

severity Aggressiveness of disease for cases 

 

3.1.2 Data Set Annotations  

The different sets of data are labelled as fallows  and will be referred to  as SNP-IP, 

SNP-CP, SNP-Filtered and SNP-IP-Ext after this point in the thesis. 

SNP-IP: The data set which is preprocessed with Plink and filtered by choosing p 

values threshold as 0.005. Also referred as the data set including SNPs with 

individual p values. 

SNP-CP: The data set including SNPs with combined p value. 

SNP-Filtered: Representative set of SNPs (reduced version of SNP-CP based on 

LD). 

SNP-IP-Ext: The genotype-phenotype integrated data set (Extended version of SNP-

IP by adding phenotype information). 

3.1.3 Preparation of the Data Set Used in the Subsections Based on SNPnexus 

analysis 

We have prepared the data set by using the output of a web tool called SNAP which 

is needed to some operations be performed on, through this study. We have given the 

data set including 2706 SNPs with individual p values to this tool. SNP data set has 

been selected as “1000 Genomes Pilot” and the population panel has been as CEU. 

We have decided to choose 𝑟2 threshold as 0.5. Normally, its range is from 0.0 
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through 1.0 and the default value is 0.8. However, to keep the data to be analyzed as 

large as needed and not to lose more SNPs, 𝑟2 has been selected as 0.5. 

After obtaining the data set from the output of SNAP analysis, it has been shown that 

many of SNPs yield a warning which has the meanings as the following: 

 WARNING No LD data is available for “rs…..” in 1000GenomesPilot1, 

panel CEU, 

 WARNING No matching proxy snps found, 

 WARNING Query snp not in 1000GenomesPilot1(A. D. Johnson et al. 

2008). 

Therefore before trying to find combined p values we have to discard these SNPs 

which have a warning information, from the other SNPs that have LD and proxy 

SNP information. We have obtained the pure data set by eliminating this kind of 

redundant information. The pure data set contains 2495 SNPs which means that there 

are no response values for 211 SNPs of the input data set of this step. 

Then, an algorithm has been applied to obtain combined p values for each SNPs in 

the p value filtered data set. This algorithm has been constructed by using R language 

in R Studio. First we have the pure data set which were eliminated from “Warning” 

information. There are lists of SNPs in LD regions of each SNP which include the 

response after SNAP analysis. Therefore, we have obtained SNP arrays from this 

data set and each SNP array represents a list of SNPs which are located in the LD 

region, where the selected 𝑟2 threshold value is set as 0.5, for one SNP. Each SNP 

array was given sequentially to Fisher’s Combination Method as an input and the 

output of each step is one of the combined p value associated with one SNP array. 

Then we have identified each combined p value with each SNP in the data set which 

is the input data set of this process. Therefore, we have obtained the most important 

data set which will be used in further steps of this study. 

3.1.4 Selecting Representative Set of SNPs By Using LD 

It is assumed that if we use one node SNP instead of other SNPs in the same LD 

region, we are able to represent the whole SNPs in that region with that node SNP. 
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We have selected the representative SNP as the SNP with the smallest individual p 

value, which the SNP that has the most statistical meaning in genetics. 

By eliminating the SNPs that are located in the same LD region other than the SNP 

which has the smallest p value in that region, we have found a small subset of SNPs 

which provides us to obtain biologically relevant SNPs for prostate cancer. 

Therefore, by minimizing the number of SNPs in the data set, not only computation 

cost is saved but also storage can be reduced (Liu, Wang, and Wong 2010). In 

addition, when a high LD exists between SNPs, the information of SNPs can be 

inferred from other SNPs located in the same LD region. Therefore relatively small 

subset of  SNPs  can carry most of the biological information of the original set 

(Friedman, Tibshirani, and Hastie 2009). 

After the elimination has been done, the number of SNPs in the data set, which is 

including SNPs with combined p value, was reduced from 2495 to 1758. 

3.1.5 Preparation of the Data Set Used in the Subsections Based on 

RegulomeDB Analysis 

It is known that the functional effects of noncoding disease-associated SNPs cannot 

be  determined easily. This is one of the challenging issue in GWAS. We are trying 

to break the prejudices that the SNPs are considered as unimportant in the noncoding 

regions through the whole DNA. In the literature, many of these SNPs are likely to 

be regulatory SNPs which are shown as rSNPs.  Their functional ability is known as 

they are able to effect transcription factor (TF) while binding to DNA (Macintyre et 

al. 2010). 

After HaploReg analysis have been  done on SNP-IP and SNP-CP individually while 

in SNP-IP, it has been found that 1538 SNPs in 2706 have no dbSNP function 

annotation as intronic, 1419 SNPs in SNP-CP which includes 2495 SNPs, have no 

dbSNP function annotation as intronic. As a result, for both data sets, more than half 

of the SNPs in these data sets are not located on a gene region. 
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3.2 Data Preprocessing 

3.2.1 Plink and P Value Filtering Analyzes 

The data set which is “Multi Ethnic Genome Wide Scan of Prostate Cancer” was 

obtained from dbGap (database of Genotypes and Phenotypes) with the study 

accession number phs000306.v2.p1 (Mailman et al. 2007). This data set consists of 

9457 subjects which 4650 cases and 4795 controls. The data set was given to Plink 

which is a whole genome association analysis tool set, as an input (Purcell 2007). 

The output of Plink analysis was “association.assoc.adjusted” file which is 

consisting of p values associated with all of the 544408 SNPs that are the genotype 

information of the subjects existing in the data set.  By using the p value information 

including in this file, due to some threshold value, p value filtering has done on the 

prostate cancer data set.  Therefore, these filtering process provides us to eliminate 

the redundant data which is accepted insignificant according to statistical studies. 

The threshold for the p value was chosen as 0.005 and the data set was filtered using 

this threshold value in order to find both statistically and biologically relevant 

SNPs. Since, the p value indicates the probability of observing the data by chance, 

more focused data have been obtained by choosing the p value as 0.005. 

Due to the large number of single nucleotide polymorphisms (SNPs), it is essential to 

use only a subset of all SNPs. Therefore, eliminating redundant SNPs in the data set 

will provide several advantages to the researches while analyzing. After the filtering 

step, 544408 SNPs which is number of SNPs in “association.assoc.adjusted” file, 

has reduced to 2706 SNPs. This is our main data set that will be studied in more 

detail. Therefore, almost %99 of the all SNPs has been eliminated in order to 

simplify the further analysis in this study. 

Moreover, an additional data set was obtained by using threshold for p value as 0.05 

since while looking for the p values associated with the SNPs in LD region of each 

selected SNP in main data set, it was a waste of time searching for those p values in 

the huge data set which has mostly irrelevant SNPs. A p value of 0.05 is typically 

thought to indicate a significance level (Raetz et al. 2001). 
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Hence, by choosing threshold value as 0.05 for the p value, the additional data set 

was limited to 26398 SNPs to improve the success of our study.  

3.2.2 SNPnexus Analysis 

SNPnexus analysis can be accepted as preprocessing for the data which is used as an 

input to last step of the algorithms improved in this study (Chelala, Khan, and 

Lemoine 2009; Abu Z. Dayem Ullah, Lemoine, and Chelala 2012; A Z Dayem 

Ullah, Lemoine, and Chelala 2013). 

SNPnexus analysis has done via the website of SNPnexus shown in Figure 3.1. The 

part labeled with “Paste in your query” is used for importing our data set which 

includes the SNPs that we want to obtain disease association information.  Finally, 

by choosing  the Genetic Association of Complex Diseases and Disorders (GAD) 

option in the part labeled with “Phenotype & Disease Association” ,the output was 

set to give the required results (Chelala, Khan, and Lemoine 2009; Abu Z. Dayem 

Ullah, Lemoine, and Chelala 2012; A Z Dayem Ullah, Lemoine, and Chelala 2013). 

Before and after the random forest method is being applied, SNPnexus analysis has 

been done several times in different steps of this study on different number of SNPs 

chosen in prostate cancer data set in order to compare the number of SNPs associated 

with prostate cancer. This analysis has also been provided to examine not only the 

number of SNPs that are related with prostate cancer but also which SNPs are related 

with prostate cancer with known rsIDs. Therefore, this tool is very useful to show 

disease association information. In Chapter 4, the tables which are given in 

Subsection 4.1.1 and 4.2.1, include the SNPs related with prostate cancer found by 

performing SNPnexus analysis. 
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Figure 3.1 SNPnexus home page (adapted from Chelala, Khan, and Lemoine 2009; 

Abu Z. Dayem Ullah, Lemoine, and Chelala 2012; A Z Dayem Ullah, Lemoine, and 

Chelala 2013). 

3.2.3 SNAP Analysis 

Based on the ancestral geography of our population and the geographic location 

where the samples from that population were collected, we have chosen CEU as 

Population Panel in Figure 3.2. The population named CEU represents Utah residents 

with ancestry from Northern and Western Europe included in the HapMap. The other 

populations named like CEU in HapMap is given below (Altshuler et al. 2010): 

 YRI : Yoruba in Ibadan, Nigeria,  

 JPT : Japanese in Tokyo, Japan,  

 CHB : Han Chinese in Beijing, China.  
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In Figure 3.2, the user interface of SNAP (SNP Annotation and Proxy Search) 

website is given. Using SNAP we are able to find proxy SNPs which are selected 

based on linkage disequilibrium, physical distance and/or membership in selected 

commercial genotyping arrays (A. D. Johnson et al. 2008). 

 

Figure 3.2 SNAP home page (adapted from A. D. Johnson et al. 2008). 

3.2.4 HaploReg Analysis 

HaploReg  is a web tool for examining the annotations of SNPs in none coding 

regions of the DNA (Figure 3.3) (Ward and Kellis 2012). The SNPs in the data set 
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including SNPs with individual p values and in the data set including SNPs with 

combined p values were given to this tool as input. While examining the SNPs it is 

necessary to select an LD threshold as NA (not applicable), since we are just looking 

among the SNPs that we have given as an input and not all the SNPs in the LD 

regions. Then, this tool was used in order to eliminate the SNPs which are exactly in 

the coding regions that have dbSNP functional annotations as intronic. 

 

Figure 3.3 HaploReg home page (adapted from  Ward and Kellis 2012). 

After obtaining the SNPs which are not located on the intronic regions by using 

HaploReg web tool, now it is needed to be known which SNPs are more important 

than others according to their RegulomeDB scores. Therefore, RegulomeDB is a web 

tool that provides information based on the regulatory elements in noncoding region 

of the human genome.  The scoring scheme of RegulomeDB is given in Table 3.2.  

As it is shown in the table, the SNPs which have the smallest RegulomeDB score, are 

the most valuable SNPs when being considered as regulatory SNPs. The particular 

categories from 1a to 1f are more important than other categories and category 1a is 

the most important one which means a likely to affect binding and linked to 

expression of a gene target (Boyle et al. 2012). 

Table 3.2 The scoring scheme of RegulomeDB (Boyle et al. 2012). 

Score Supporting data 

1a eQTL + TF binding + matched TF motif + matched DNase Footprint + 

DNase peak 

1b eQTL + TF binding + any motif + DNase Footprint + DNase peak 
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1c eQTL + TF binding + matched TF motif + DNase peak 

1d eQTL + TF binding + any motif + DNase peak 

1e eQTL + TF binding + matched TF motif 

1f eQTL + TF binding / DNase peak 

2a TF binding + matched TF motif + matched DNase Footprint + DNase peak 

2b TF binding + any motif + DNase Footprint + DNase peak 

2c TF binding + matched TF motif + DNase peak 

3a TF binding + any motif + DNase peak 

3b TF binding + matched TF motif 

4 TF binding + DNase peak 

5 TF binding or DNase peak 

6 other 

 

3.3 Random Forest Algorithm  

To understand the random forest (RF) algorithm used in this study, the meaning of 

data mining and how the process of supervised learning is performed should be 

known. In summary, the process of extracting information from a data set and then 

transforming those data into an understandable structure for further use is called data 

mining (Wikipedia contributors 2014). Moreover, in this study classification type of 

random forest algorithm was applied and classification is considered as an instance 

of supervised learning, in which learning based on a training set of correctly 

identified observations is available, much as in our data set the people whose DNAs 

were genotyped are grouped as cases and controls. Therefore, the disease status 

information of the data set was known and can be given as an input into the random 

forest algorithm. 

When different learning models are employed, the accuracy of classification can be 

increased. This is the main idea of the technique that is called bagging. Random 

Forest Algorithm works as a large collection of decorrelated decision trees. Since lots 

of decision trees are employed, the algorithm is named as forest. Random Forest 

Algorithm creates a lot of decision trees and uses them to make a classification; that 

is why it is an algorithm based on bagging technique. From one main sample set, lots 

of subsets are created with random values. For each one, decision trees are created. 

http://en.wikipedia.org/wiki/Supervised_learning
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After creating decision trees which are obtained by using subsamples of the entire 

sample, the number of votes can be accounted for each class (Friedman, Tibshirani, 

and Hastie 2009). 

If we want to describe Random Forests (RF) more general, it is one of the 

commonly-used data-mining technique which has two main types on the way to 

achieve the outputs of the algorithm. The first where the response available is 

continuous is called regression. The second is categorical called classification, which 

will be focused on in this study. By building an ensemble of classification trees, this 

algorithm tries to predict the outcome which is the disease status due to the data set 

used in our study. Also the prostate cancer data set has a large number of predictors 

as SNPs those can improve the success of the algorithm (Breiman 2001). In RFs 

votes are collected from growing an ensemble of trees for selecting the most popular 

class to improve classification accuracy (Breiman 2001).  In the literature RFs, 

commonly have been proposed for the analysis of genetic data (Goldstein, Polley, 

and Briggs 2011). Moreover, recently large SNP data sets from GWAS much as in 

our study have been suggested to be analyzed by using RFs (Goldstein et al. 2010). 

With their quality of the prediction in high-dimensional data, RFs can also be used to 

rank SNPs by giving them variable importance measures (VIM) which is the most 

important outcome of RFs. These importance values are mean decrease accuracy 

(MDA) and mean decrease Gini (MDG). In random forest algorithm, with the 

addition of a single variable, if the accuracy of the algorithm decreases notably, this 

means that that variable must be taken into account. Therefore, the more the MDA 

increases, the more important the variable contributes to classification of the data. In 

addition, homogeneity is one of the important measures of the random forest 

algorithm, which is represented by MDG. The higher the MDG value grows, the 

more those  variables result in nodes with higher purity (Liaw and Wiener 2002). 

Hence, by selecting top ranking SNPs for each ranking based on importance values, 

one can use  the best predictor variables for further  studies (Winham et al. 2012). In 

addition, there is no need for any cross-validation to get an unbiased estimate of the 

data set error. During the run it is estimated internally which is defined as the out-of-

bag (OOB) error rate (Breiman 2001). 



24 

 

3.3.3 Usage in R 

The random forest algorithm can be applied in R by using the library of this 

algorithm which is prepared for R language. In R, Breiman’s random forest 

algorithm based on Breiman and Cutler’s original Fortran code is implemented for 

classification and regression (Breiman 2001).  There is a formula which is 

represented as “randomForest” provides researchers an option to specify the 

predictors as a matrix or data frame by defining the x argument with defining 

responses as a vector via y argument. The given formula has too many arguments to 

be filled; however, in our case, we have only used some of the whole arguments. As 

shown in this equation, the type of our study is classification. This type is performed 

when response is a discrete factor. On the other hand, regression is performed when 

the response is not a factor that is continuous. While using randomForest formula, in 

order to perform supervised learning, one must specify the responses properly.  

Therefore in this study the column that is consisting of status information of the 

people is defined as a response vector via y argument in the Eqn. (3.2) (Liaw and 

Wiener 2002). 

3.4  Fisher’s  Combination Method  

There are a number of ways to combine independent p values or some other 

independent statistical values in different fields. Perhaps the most famous and the 

most widely used combination method is Fisher’s Combination Method. In genetics, 

this method is employed for to combine p values of all SNPs in a gene. However, we 

have used this method to combine the p values of list of SNPs that are located in the 

LD region of one node SNP which is used for as main SNP while detecting SNPs in 

LD region. 

Fisher’s Combination Method is based on the fact that the probability of rejecting the 

global null hypothesis which states that there is no significant difference between the 

expected and observed result. The global null hypothesis is related to the intersection 

of the probabilities of each individual test, ∏ Pii . Even if the null hypothesis is true 

for all partial tests, it is known that ∏ Pii  is not uniformly distributed. Moreover this 

value cannot be used itself as the joint significance level for the global null 

hypothesis test. Fisher has rectified this fact by concretizing some interesting 
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properties and relationships among distributions of random variables. These 

properties are explained below (The Eugenics Review 1926). 

The cumulative distribution function (cdf) of an exponential distribution is: 

 

F(𝑥) = 1 - 𝑒−𝜆𝑥                   (3.1) 

𝜆 is  the rate parameter 

The inverse cdf is: 

𝑥 =  −
1

𝜆
𝑙𝑛 (1 − 𝐹(𝑥) )              (3.2) 

𝐹(𝑥) = 𝑃               (3.3)  

P is a random variable uniformly distributed in the interval [0,1] 

Therefore Eqn (3.5) can be written as: 

𝑥 =  −
1

𝜆
ln (𝑃)                 (3.4)  

The cdf of a chi-squared distribution with v  degrees of freedom,  𝑋𝑣
2, is given by: 

𝐹(𝑥; 𝑣 ) =
∫ 𝑡

𝑣 
2  −1

𝑒−𝑡𝑑𝑡

𝑥
2

0

(
𝑣 

2
 −1)!

          (3.5) 

If v = 2, and solving the integral we have: 

F(𝑥; 𝑣 = 2 ) =
∫ 𝑡

𝑣 
2  −1

𝑒−𝑡𝑑𝑡

𝑥
2

0

(
𝑣 

2
 −1)!

=  ∫ 𝑒−𝑡𝑑𝑡
𝑥

2
0

= 1 −  𝑒−
𝑥

2      (3.6) 

The 𝑋2 distribution with v = 2 is equivalent to an exponential distribution with rate 

parameter 𝜆 =  
1

2
 . 

The moment-generating function (mgf) of  a  𝑋𝑣
2  is: 

M(𝑡) = (1 −  2𝑡)−
𝑣 

2           (3.7) 

 

The mgf of the sum of  k  independent variables that follow each a   𝑋2
2  distribution 

is then given by: 

𝑀𝑠𝑢𝑚(𝑡) = ∏ (1 −  2𝑡)−
2 

2
𝑘
𝑖=1 =  (1 −  2𝑡)−𝑘     (3.8) 

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Uniform_distribution
http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Moment-generating_function
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which also defines a  𝑋2 distribution, however, with degrees of freedom  𝑣 = 2 𝑘 . 

As a summary of the Eqns. from (3.1) to (3.8), given above by taking the logarithm 

the product ∏ Pii  can be converted into a sum. Multiplication of each ln(Pi) by 2 

changes the rate parameter to 𝜆 = 1/2 and makes this distribution equivalent to a 

𝑋2 distribution with degrees of freedom 𝑣 = 2. If  𝑘 of these logarithms are summed, 

the summation also 𝑋2 distribution, but now with 𝑣 = 2 𝑘 degrees of freedom, i.e. 

  𝑋2𝑘
2    . 

Therefore the statistic for the Fisher method can be computed as: 

𝑋 = −2 ∑ ln (Pi)
 𝑘
𝑖=1                           (3.9) 

In conclusion, with  𝑋  following a   𝑋2𝑘
2   distribution, p value for the global 

hypothesis can be easily obtained (The Eugenics Review 1926; Zaykin et al. 2007). In 

other words, for combining K independent p values Eqn. (3.11) is used as a statistical 

method (Peng et al. 2010). 

3.4.1 Usage in R 

It is very simple to use the Fisher’s Combination Method in R. It is the code 

representation of the mathematical expression of this method.  

By giving each SNP list that is located in the LD region of one representative SNP, 

to the method as an input, we are able to calculate the combined p value for each 

group of SNPs. However in our algorithm we have associated the measured 

combined p value with the representative SNP. Therefore, we have obtained a data 

set including SNPs with combined p value. 
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CHAPTER 4  

 

 

RESULTS 

 

 

 

The Figure 4.1 given below can be accepted as the main framework of our study. 

There are also more than one additional steps in our study other than the steps in the 

following flow chart. These extra steps will also be included in this chapter. 

 

Figure 4.1 The main flow chart of our study. 
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4.1 Analyses Performed on the Data Set Including SNPs with Individual p 

Values 

After Plink analysis and p value filtering, by choosing threshold value as 0.005, the 

data set including 2706 SNPs with individual p values has been obtained. This data 

set was annotated as SNP-IP, throughout this study. In Subsection 4.1, the whole 

analyses done on SNP-IP which is the data set including SNPs with individual p 

values, will be explained. 

4.1.1 Outputs of SNPnexus Analysis 

Analysis with SNP-IP   

In this step, SNPnexus analysis has been done on all of the SNPs in SNP-IP to find 

out if there are any associated SNPs with prostate cancer or not. The number of SNPs 

has been found associated with prostate cancer calculated as 57 through the whole of 

2706 SNPs in this data set. Those 57 SNPs are shown in Table 4.1 with associated 

rsIDs. In addition, the Table 4.2 shows the genes where these SNPs are located. It 

has been observed that 57 SNPs are found to be associated with prostate cancer, 

located in 29 different gene regions. 

Table 4.1 Prostate cancer related SNPs found in SNP-IP. 

 SNPS  SNPS 

1 rs12329598 30 rs209998 

2 rs531572 31 rs4908107 

3 rs3912492 32 rs927188 

4 rs9637471 33 rs553371 

5 rs6803449 34 rs2360995 

6 rs12636081 35 rs12896434 

7 rs17061864 36 rs7914154 

8 rs8178179 37 rs928111 

9 rs17775610 38 rs4267385 

10 rs2999081 39 rs7911448 

11 rs2811415 40 rs13437706 

12 rs2811518 41 rs1234220 
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13 rs2811388 42 rs4750759 

14 rs6798749 43 rs1877724 

15 rs3764880 44 rs2567608 

16 rs620359 45 rs10776909 

17 rs12882037 46 rs1266890 

18 rs4921943 47 rs567700 

19 rs7844180 48 rs11016862 

20 rs4496973 49 rs3745540 

21 rs4870828 50 rs2360999 

22 rs16998751 51 rs7089141 

23 rs6482743 52 rs6768256 

24 rs9971190 53 rs6970999 

25 rs7082319 54 rs2107280 

26 rs213386 55 rs8066276 

27 rs1380466 56 rs10106032 

28 rs4665716 57 rs11737898 

29 rs2622625   

 

Table 4.2 Genes hosting the SNPs that were found related to prostate cancer in SNP-

IP. 

 GENES SNPS  GENES SNPS 

1 EPHX1 rs1877724 16 KLK12 rs3745540 

2 BCAS1 rs12329598 

rs16998751 

17 FHIT rs3912492 

rs9637471 

rs6803449 

rs12636081 

rs17061864 

rs213386 

rs1380466 

3 PTEN rs1234220 18 ESRRB rs12882037 

rs2360995 

rs12896434 

rs2360999 
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4 NCOA1 rs4665716 19 PIK3AP1 rs7914154 

5 ABCG2 rs2622625 20 CUBN rs7089141 

6 MGMT rs531572 

rs6482743 

rs9971190 

rs7082319 

rs553371 

rs4750759 

rs567700 

rs11016862 

21 COL4A2 rs928111 

7 AIFM1 rs209998 22 NXPH1 rs6970999 

rs2107280 

8 EEFSEC rs2999081 

rs2811415 

rs2811518 

rs2811388 

rs6798749 

rs6768256 

23 ACE rs4267385 

rs8066276 

9 SLC30A7 rs4908107 24 CAMK1D rs7911448 

10 TLR8 rs3764880 25 PSD3 rs4921943 

rs7844180 

rs10106032 

11 SSTR4 rs2567608 26 ZHX2 rs4496973 

rs4870828 

12 RXRA rs10776909 27 CREB5 rs13437706 

13 PKHD1 rs927188 

rs1266890 

28 SORCS2 rs11737898 

14 PRKDC rs8178179 29 PVT1 rs17775610 

15 C2ORF43 rs620359    

 

Analysis with 1000 SNPs of SNP-IP 

To narrow the region to be analyzed, initially, we have sorted the SNPs according to 

their individual p values. This sorted SNP set can be referred to briefly as sorted 
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SNP-IP. Then we have selected the first 1000 SNPs of this sorted set. To find the 

prostate cancer related SNPs in that narrow region, SNPnexus analysis has been done 

on this set. The output SNPs are shown in Table 4.3 with associated rsIDs. It has 

been observed, 21 SNPs that show a significant association with prostate cancer 

located in 11 different genes (Table 4.4). 

Table 4.3 Prostate cancer related SNPs founded in first 1000 of sorted SNP-IP. 

 SNPS 

1 rs12329598 

2 rs531572 

3 rs3912492 

4 rs9637471 

5 rs6803449 

6 rs12636081 

7 rs17061864 

8 rs8178179 

9 rs17775610 

10 rs2999081 

11 rs2811415 

12 rs2811518 

13 rs2811388 

14 rs6798749 

15 rs3764880 

16 rs620359 

17 rs12882037 

18 rs4921943 

19 rs7844180 

20 rs4496973 

21 rs4870828  
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Table 4.4 Genes hosting the SNPs that were found related to prostate cancer in the 

first 1000 SNPs of sorted SNP-IP. 

 GENES SNPS 

1 BCAS1 rs12329598 

2 MGMT rs531572 

3 FHIT rs3912492 

rs9637471 

rs6803449 

rs12636081 

rs17061864 

4 PRKDC rs8178179 

5 PVT1 rs620359 

6 EEFSEC rs2999081 

rs2811415 

rs2811518 

rs2811388 

rs6798749 

7 TLR8 rs3764880 

8 C2ORF43 rs620359 

9 ESRRB rs12882037 

10 PSD3 rs4921943 

rs7844180 

11 ZHX2 rs4496973 

rs4870828 

 

Analysis with 1000 SNPs of SNP-IP after RF 

The data set including 2706 SNPs with individual p values which was annotated as 

SNP-IP, was given to random forest as an input. The most important parameters of 

random forest algorithm are “ntree” and “mtry” which should be determined before 

performing the algorithm.  “ntree” which represents the  number of trees to grow was  

determined as 5001 which is large enough to ensure that every input row gets 

predicted at least a few times. Furthermore, “mtry”, which is the number of variables 

randomly sampled as candidates at each split, was determined as 10. Although the 



33 

 

default value of “mtry” for classification is the square root of the number of variables 

which is approximately 52 in this study, it has been chosen as 10 since based on our 

group’s experinces the number 10 was found more suitable than the number 52. 

The outputs of RF are obtained as importance values which are MDA and MDG 

values, explained in Subsection 3.3.3. The SNPs are sorted based on both of these 

values individually. The first 1000 of sorted SNPs based on MDA values were given 

to SNPnexus database in order to figure out the number and the quality of SNPs 

related with prostate cancer, existing in these SNPs. Then the same procedure was 

performed on the first 1000 of sorted SNPs based on MDG values. Therefore, this 

analysis provides the comparison of two different outputs obtained from both 

individual SNP sets which were sorted according to two distinct importance values. 

As shown in Table 4.5, while 22 SNPs were obtained from the ranking based on 

MDA value, 18 SNPs were obtained from the ranking based on MDG value. 14 

SNPs are identical in these two sets. The identical SNPs are shown as black and bold 

in Table 4.5. 

Table 4.5 Prostate cancer related SNPs founded in both first 1000 of sorted SNP sets 

based on MDA values (the list on the left) and MDG values (the list on the right) 

separately after RF on SNP-IP. 

 SNPS  SNPS 

1 rs567700 1 rs553371 

2 rs531572 2 rs567700 

3 rs6482743 3 rs531572 

4 rs3912492 4 rs4750759 

5 rs6803449 5 rs9971190 

6 rs213386 6 rs3912492 

7 rs1380466 7 rs213386 

8 rs2622625 8 rs2622625 

9 rs6768256 9 rs2567608 

10 rs10776909 10 rs10776909 

11 rs3745540 11 rs3745540 

12 rs2360995 12 rs12882037 

13 rs12882037 13 rs7914154 
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14 rs7914154 14 rs4267385 

15 rs6970999 15 rs8066276 

16 rs2107280 16 rs4921943 

17 rs4267385 17 rs4496973 

18 rs8066276 18 rs4870828 

19 rs4921943  

20 rs4496973 

21 rs4870828 

22 rs11737898 

 

Moreover, the genes hosting these prostate cancer related SNPs can be found easily 

from the output of SNPnexus analysis. In Table 4.6, the genes that are hosting the 

prostate cancer related SNPs found in the first 1000 of sorted set of  SNPs based on 

MDA values are shown. In addition the genes that are hosting the prostate cancer 

related SNPs found in the sorted set of SNPs based on MDG values are given in 

Table 4.7. It has been observed that, while 22 SNPs that were found to be associated 

with prostate cancer are located in 13 different gene regions based on the analysis 

that have been done according to MDA values, 18 SNPs that were found to be 

associated with prostate cancer are located in 11 different gene regions based on the 

analysis that has been done according to MDG values. As shown in Table 4.8, 10 

genes are shown as black and bold since they are common in both output sets. Based 

on this observation, we cannot prove certainly that, one of the performances of the 

analysis that has been done according to both importance values of RF, is better than 

the other, since there are small differences between the outputs of both analyses. 

However, we can say that both of the importance values can be used as the main 

outcome of the random forest algorithm. 

Table 4.6 Genes hosting the SNPs that were found related to prostate cancer in the 

first 1000 of sorted SNPs based on MDG values after RF on SNP-IP. 

 GENES SNPS 

1 MGMT rs567700 

rs531572 

rs6482743 
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2 FHIT rs3912492 

rs6803449 

rs213386 

rs1380466 

3 ABCG2 rs2622625 

4 EEFSEC rs6768256 

5 RXRA rs10776909 

6 KLK12 rs3745540 

7 ESRRB rs2360995 

rs12882037 

8 PIK3AP1 rs7914154 

9 NXPH1 rs6970999 

rs2107280 

10 ACE rs4267385 

rs8066276 

rs4267385 

rs8066276 

11 PSD3 rs4921943 

12 ZHX2 rs4496973 

rs4870828 

13 SORCS2 rs11737898 

 

Table 4.7 Genes hosting the SNPs that were found related to prostate cancer in the 

first 1000 of sorted SNPs based on MDG values after RF on SNP-IP. 

 GENES SNPS 

1 MGMT rs553371 

rs567700 

rs531572 

rs4750759 

rs9971190 

2 FHIT rs3912492 

rs213386 

3 ABCG2 rs2622625 
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4 SSTR4 rs2567608 

5 RXRA rs10776909 

6 KLK12 rs3745540 

7 ESRRB rs12882037 

8 PIK3AP1 rs7914154 

9 ACE rs4267385 

rs8066276 

rs4267385 

rs8066276 

10 PSD3 rs4921943 

11 ZHX2 rs4496973 

rs4870828 

 

Table 4.8 Comparison of the genes hosting the SNPs that were found related to 

prostate cancer in the first 1000 of sorted SNPs based on MDA values (the list on the 

left) and MDG values (the list on the right)  separately after RF on SNP-IP. 

 GENES  GENES 

1 MGMT 1 MGMT 

2 FHIT 2 FHIT 

3 ABCG2 3 ABCG2 

4 EEFSEC 4 SSTR4 

5 RXRA 5 RXRA 

6 KLK12 6 KLK12 

7 ESRRB 7 ESRRB 

8 PIK3AP1 8 PIK3AP1 

9 NXPH1 9 ACE 

10 ACE 10 PSD3 

11 PSD3 11 ZHX2 

12 ZHX2   

13 SORCS2   
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Analysis with 1000 SNPs of SNP-IP-Ext after RF 

A genotype-phenotype integrated data set was obtained by adding the phenotype 

information to SNP-IP and was annotated as SNP-IP-Ext. With the same parameters 

using in previous Subsection 4.1.3, RF was performed on SNP-IP-Ext. As in the 

previous step two importance values were determined which are MDA and MDG 

values. After sorting the SNPs based on both of these values individually, first 1000 

of both distinct ranking were selected and were given to SNPnexus database. We 

have selected these first 1000 SNPs by not considering the phenotype information 

which exist at the beginning of the sequence. The reason why we have used   

phenotype information is that, if these information can affect the out of bag error rate 

of RF or not and to examine if the output SNPs will be altered with an excessive rate 

or not. This issue will be discussed in Subsection 5.1.1. The number and the quality 

of SNPs related with prostate cancer existing in these sets were figured out after the 

analysis done via SNPnexus. If we want to compare the  two rankings, as shown in 

Table 4.9, while 17 SNPs were obtained from the ranking due to MDA value, 19 

SNPs  were obtained from the ranking due to MDG value. 10 SNPs are shown as 

black and bold, since they are common SNPs in these two sets.  

Table 4.9 Prostate cancer related SNPs founded in both the first 1000 of sorted SNP 

sets based on MDA values (the list on the left) and MDG values (the list on the right) 

separately  after RF on SNP-IP-Ext. 

 SNPS  SNPS 

1 rs1877724 1 rs553371 

2 rs531572 2 rs567700 

3 rs9971190 3 rs531572 

4 rs3912492 4 rs4750759 

5 rs6803449 5 rs7082319 

6 rs12636081 6 rs3912492 

7 rs213386 7 rs213386 

8 rs620359 8 rs1380466 

9 rs7914154 9 rs2622625 

10 rs6970999 10 rs2567608 

11 rs2107280 11 rs10776909 
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12 rs4267385 12 rs12882037 

13 rs8066276 13 rs7914154 

14 rs4921943 14 rs4267385 

15 rs10106032 15 rs8066276 

16 rs4496973 16 rs4921943 

17 rs4870828 17 rs10106032 

 18 rs4496973 

19 rs4870828 

Analysis with 100 SNPs after RF on First 1000 SNPs of SNP-IP 

This part can be accepted as a preliminary study of examining the improvements of 

performances done on the data set including SNPs with combined p values which is 

annotated as SNP-CP throughout this study. These performances will be discussed in 

detail later. 

As described before, the SNPs in SNP-IP have been sorted based on associated 

individual p values. Then first 1000 of these SNPs were selected. By performing RF 

with using the same parameters given in subsection 4.1.3 on these selected 1000 

SNPs, MDA and MDG values were obtained for each SNP in this set. Moreover, 

after RF was performed, the SNPs were sorted based on these two importance values 

individually. To compare the two rankings, the first 100 of both distinct ordered set 

were selected and analyzed by using SNPnexus database. The output SNPs that are 

obtained from SNPnexus analysis are given in Table 4.10. As shown all of the SNPs 

are the same in these two sets. Moreover the genes that are hosting these prostate 

cancer related SNPs are shown in Table 4.11. It has been understood that 3 SNPs are 

located in 2 different genes. This is the least extensive work through the whole study. 

Since, this study was assayed that to look for if it will be adequate to be able to do 

analyses on the smallest data set or not. In the Discussion chapter, we will see that 

the output of this study may mislead the researchers or not. 
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Table 4.10 Prostate cancer related SNPs founded in both first 100 of sorted SNP sets 

based on MDA values(the list on the left) and MDG values(the list on the right) 

separately after RF on the first 1000 SNPs of SNP-IP. 

 SNPS  SNPS 

1 rs12882037  1 rs12882037 

2 rs4496973  2 rs4870828 

3 rs4870828 3 rs4496973 

 

Table 4.11 The genes hosting the SNPs that were found related to prostate cancer in 

the first 100 of sorted SNPs based on MDA values(the list on the left) and MDG 

values(the list on the right) after RF on the first 1000  SNPs of SNP-IP. 

 GENES SNPS 

1 ESRRB rs12882037 

2 ZHX2 rs4496973 

rs4870828 

4.1.2 Outputs of  HaploReg and RegulomeDB Analyses 

Analysis with 500 non-coding SNPs of SNP-IP   

After HaploReg Analysis have been done on SNP-IP, it has found that 1538 SNPs  in 

2706 have no dbSNP  function annotation as intronic. This means that, slightly more 

than half of the SNPs in this data set are not directly located on a gene region, but 

may affect the genes or proteins indirectly, namely they can be regulatory SNPs. 

Moreover, it is known that SNPs occur in non-coding regions more frequently than 

in coding regions. Therefore, our result has supported this statistical reality. As in the 

previous subsection before selecting desired SNPs, we have sorted those of non-

coding SNPs based on associated individual p values.  Then we have selected the 

first 500 of this sorted set. In Table 4.12, the SNPs found in the first 500 non-coding 

SNPS of SNP-IP, with RegulomeDB scores equal and less than 3, are shown. These 

19 SNPs have greater importance compared to other SNPs that have RegulomeDB 

scores higher than 3. We have selected threshold value for this score as 3 since if the 

RegulomeDB score decreases the functional ability of regulatory SNPs is increases.  

http://en.wikipedia.org/wiki/Coding_region
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It  can be thought that why we did not use the 1168 SNPs which is the difference 

between the number of all SNPs and the number of SNPs that have no dbSNP  

function annotation as intronic, to  find prostate cancer related genes. Since the aim 

of this study is not just to improve the performances of the analyses but also to prove 

that the LD information have exactly effect on the SNP selection procedure. 

Table 4.12 The none-coding SNPs with RegulomeDB scores equal and less than 3, in 

the first 500 non-coding SNPs of SNP-IP. 

  SNPs RegulomeDB  Score 

1 rs6708126 2b 

2 rs8090231 2b 

3 rs12101523 3a 

4 rs1762438 1f 

5 rs943889 2b 

6 rs2063295 2b 

7 rs17701543 3a 

8 rs10510573 3a 

9 rs11751092 2a 

10 rs11075236 2b 

11 rs888096 2b 

12 rs977676 2b 

13 rs11253536 2b 

14 rs9435409 3a 

15 rs1330100 3a 

16 rs1379736 2a 

17 rs2581717 2b 

18 rs9328186 3a 

19 rs2062287 3a 

4.2 Analyses Performed on the Data Set Including SNPs with Combined p 

Values 

From the data set including 2706 SNPs with individual p values which was annotated 

as SNP-IP, we have prepared a data set which is consisting of SNPs with combined p 

values as explained in detail in Subsection 3.1.2. This data set was annotated as SNP-
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CP, throughout this study. In this part, the whole analyses done on SNP-CP, will be 

explained. 

4.2.1 Outputs of SNPnexus Analysis 

Analysis with SNP-CP 

When the data set was organized for obtaining combined p value, the number of 

SNPs in the data set reduced to 2495. Therefore it is expected that the number of 

SNPs related with prostate cancer will be reduced. The SNPs related with prostate 

cancer has been found from SNP-CP are shown in Table 4.13. After SNPnexus 

analysis has been done on SNP-CP,  it has proved that, smaller number of  prostate 

cancer related SNPs has been obtained,  compared to the number of prostate cancer 

related SNPs that have been found in SNP-IP. However if the success of the analysis 

is considered as the percentage of the number of SNPs related with prostate cancer, 

the  analysis was  accepted as successful as the analysis has done on SNP-IP. In 

addition, the gene regions where these SNPs are located on, are shown in Table 4.13. 

It has been observed that 52 SNPs that show a significant association with prostate 

cancer are located on 25 different genes. 

Table 4.13 Prostate cancer related SNPs found in SNP-CP. 

 SNPS  SNPS 

1 rs17775610 27 rs553371 

2 rs8178179 28 rs567700 

3 rs531572 29 rs4750759 

4 rs620359 30 rs6482743 

5 rs3912492 31 rs9971190 

6 rs9637471 32 rs7082319 

7 rs6803449 33 rs2360995 

8 rs12636081 34 rs12896434 

9 rs17061864 35 rs7914154 

10 rs12882037 36 rs928111 

11 rs2999081 37 rs2107280 

12 rs2811415 38 rs4267385 

13 rs2811518 39 rs7911448 
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14 rs2811388 40 rs13437706 

15 rs6798749 41 rs1877724 

16 rs4921943 42 rs10776909 

17 rs7844180 43 rs11016862 

18 rs4496973 44 rs3745540 

19 rs4870828 45 rs2360999 

20 rs213386 46 rs6768256 

21 rs1380466 47 rs6970999 

22 rs4665716 48 rs8066276 

23 rs4908107 49 rs10106032 

24 rs1266890 50 rs11737898 

25 rs927188 51 rs9341218 

26 rs1234220 52 rs2567608 

 

Table 4.14 Genes hosting the SNPs that were found related to prostate cancer in 

SNP-CP. 

 GENES SNPS  GENES SNPS 

1 PVT1 rs17775610 14 PIK3AP1 rs7914154 

2 PRKDC rs8178179 15 COL4A2 rs928111 

3 MGMT rs531572 

rs553371  

rs567700  

rs4750759  

rs6482743  

rs9971190  

rs7082319 

rs11016862  

16 NXPH1 rs7914154 

rs2107280 

rs6970999 

4 C2ORF43 rs620359 17 ACE rs4267385 

rs8066276 

5 FHIT rs3912492  

rs9637471  

rs6803449  

18 CAMK1D rs7911448 
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rs12636081  

rs17061864 

rs213386  

rs1380466  

6 ESRRB rs12882037 

rs2360995 

rs12896434 

rs2360999 

19 CREB5 rs13437706 

7 EEFSEC rs2999081  

rs2811415  

rs2811518  

rs2811388  

rs6798749 

rs6768256  

20 EPHX1 rs1877724 

8 PSD3 rs4921943 

rs7844180 

rs10106032 

21 RXRA rs10776909 

9 ZHX2 rs4496973  

rs4870828  

22 KLK12 rs3745540 

10 NCOA1 rs4665716 23 SORCS2 rs11737898 

11 SLC30A7 rs4908107 24 IGFBP2 rs9341218 

12 PKHD1 rs1266890  

rs927188  

25 SSTR4 rs2567608 

13 PTEN rs1234220    

 

Analysis with 1000 SNPs of SNP-CP 

According to combined p values that we have measured, the SNPs associated with 

those p values were sorted. To narrow the region to be analyzed, we have selected 

first 1000 SNPs from the ranking which is based on the combined p values. 

SNPnexus analysis has been done on first 1000 SNPs of sorted SNP-CP. The output 

SNPs are shown in Table 4.15 with associated rsIDs. It has been observed, there are 

23 SNPs that show a significant association with prostate cancer located on 6 

different gene regions as given in Table 4.16. 
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Table 4.15 Prostate cancer related SNPs founded in first 1000 of sorted SNP-CP. 

 SNPS 

1 rs1234220  

2 rs553371 

3 rs567700 

4 rs531572 

5 rs4750759 

6 rs6482743 

7 rs9971190 

8 rs7082319 

9 rs11016862 

10 rs3912492 

11 rs9637471 

12 rs6803449 

13 rs12636081 

14 rs17061864 

15 rs1380466 

16 rs2999081 

17 rs2811415 

18 rs2811518 

19 rs2811388 

20 rs6798749 

21 rs12896434 

22 rs2360999 

23 rs10106032 

 

Table 4.16 Genes hosting the SNPs found related to prostate cancer in the first 1000 

SNPs of sorted SNP-CP. 

 GENES SNPS 

1 PTEN rs1234220 

2 MGMT rs553371 

rs567700 

rs531572 
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rs4750759 

rs6482743 

rs9971190 

rs7082319 

rs11016862 

3 FHIT rs3912492 

rs9637471 

rs6803449 

rs1263608 

rs1706186 

rs1380466 

4 EEFSEC rs2999081 

rs2811415 

rs2811518 

rs2811388 

rs6798749 

5 ESRRB rs12896434 

rs2360999 

6 PSD3 rs10106032 

 

Analysis with 1000 SNPs of SNP-CP after RF 

The data set including 2495 SNPs with combined p values which was annotated as 

SNP-CP, was given to RF as an input. By using the same parameters that were given 

in Subsection 4.1.1, the input SNPs have been associated with the importance values 

which are MDA and MDG values explained before. After sorting the SNPs based on 

the importance values individually, initially the first 1000 of sorted SNPs based on 

MDA values were given to SNPnexus database in order to figure out the 

qualifications of SNPs related with prostate cancer existing in this set. Then, the 

same procedure was performed on the first 1000 of sorted SNPs based on mean 

MDG values.  

As shown in Table 4.17, while 23 SNPs were obtained from the ranking based on 

MDA values, from the ranking based on MDG values, 18 SNPs were obtained. 13 
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SNPs are identical in these two sets.  These identical SNPs are shown as black and 

bold in Table 4.17.  

Table 4.17 Prostate cancer related SNPs founded in both the first 1000 of sorted SNP 

sets based on MDA values (the list on the left) and MDG values  (the list on the 

right) separately after RF on SNP-CP. 

 SNPS  SNPs 

1 rs553371 1 rs1877724 

2 rs567700 2 rs553371 

3 rs4750759 3 rs567700 

4 rs6482743 4 rs531572 

5 rs3912492 5 rs4750759 

6 rs12636081 6 rs9971190 

7 rs213386 7 rs7082319 

8 rs1380466 8 rs3912492 

9 rs2999081 9 rs213386 

10 rs2811518 10 rs2567608 

11 rs6768256 11 rs12882037 

12 rs10776909 12 rs7914154 

13 rs3745540 13 rs4267385 

14 rs12882037 14 rs8066276 

15 rs7914154 15 rs4921943 

16 rs928111 16 rs10106032 

17 rs4267385 17 rs4496973 

18 rs8066276 18 rs4870828 

19 rs4921943   

20 rs10106032   

21 rs4496973   

22 rs4870828   

23 rs11737898   

 

Moreover the genes that are hosting the prostate cancer related SNPs found in the 

sorted set of SNPs due to MDA values are shown in Table 4.18. In addition the genes 
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that are hosting the prostate cancer related SNPs found in the sorted set of SNPs due 

to MDG values are given in Table 4.19.  It has viewed that, while 23 SNPs that were 

found to be associated with prostate cancer are located in 12 different gene regions 

based on the analysis that have been done according to MDA values, 18 SNPs that 

were found to be associated with prostate cancer are located in 9 different gene 

regions based on the analysis that have been done according to MDG values. As 

shown in Table 4.20, 7 genes are shown as black and bold which means they are 

common in both output sets.  Based on this observation, we cannot prove certainly 

that, one of the performances of the analysis which have been done according to both 

importance values of RF, is better than the other.  

Table 4.18 Genes hosting the SNPs that were found related to prostate cancer in the 

first 1000 of sorted SNPs based on MDA values after RF on SNP-CP. 

 GENES SNPS 

1 MGMT rs553371 

rs567700 

rs4750759 

rs6482743 

2 FHIT rs3912492 

rs12636081 

rs213386 

rs1380466 

3 EEFSEC rs2999081 

rs2811518 

rs6768256 

4 RXRA rs10776909 

5 KLK12 rs3745540 

6 ESRRB rs12882037 

7 PIK3AP1 rs7914154 

8 COL4A2 rs928111 

9 ACE rs4267385 

rs8066276 

rs4267385 

rs8066276 
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10 PSD3 rs4921943 

rs10106032 

11 ZHX2 rs4496973 

rs4870828 

12 SORCS2 rs11737898 

 

Table 4.19 Genes hosting the SNPs that were found related to prostate cancer in the 

first 1000 of sorted SNPs based on MDG values after RF on SNP-CP. 

 GENES SNPS 

1 EPHX1 rs1877724 

2 MGMT rs553371 

rs567700 

rs531572 

rs4750759 

rs9971190 

rs7082319 

3 FHIT rs3912492 

rs213386 

4 SSTR4 rs2567608 

5 ESRRB rs12882037 

6 PIK3AP1 rs7914154 

7 ACE rs4267385 

rs8066276 

rs4267385 

rs8066276 

8 PSD3 rs4921943 

rs10106032 

9 ZHX2 rs4496973 

rs4870828 
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Table 4.20 Comparison of the genes hosting the SNPs that were found related to 

prostate cancer in the first 1000 of sorted SNPs based on MDA values (the list on the 

left) and MDG values (the list on the right)  separately after RF on SNP-CP. 

 GENES  GENES 

1 MGMT 1 EPHX1 

2 FHIT 2 MGMT 

3 EEFSEC 3 FHIT 

4 RXRA 4 SSTR4 

5 KLK12 5 ESRRB 

6 ESRRB 6 PIK3AP1 

7 PIK3AP1 7 ACE 

8 COL4A2 8 PSD3 

9 ACE 9 ZHX2 

10 PSD3   

11 ZHX2   

12 SORCS2   

 

Analysis with 100 SNPs after RF on the First 1000 SNPs of SNP-CP 

In this step of this study, we will further reduce the number of SNPs that will be 

analyzed. As given in Subsection 4.2.1 the SNPs in SNP-CP have been sorted based 

on associated combined p values. Then first 1000 of these SNPs were selected. In the 

following step, RF was performed on these selected 1000 SNPs, by using the same 

parameters given in Subsection 4.1.3. MDA and MDG values were obtained for each 

SNP in this set as in previous sections related with RF. The SNPs were sorted based 

on these two importance values individually. The first 100 SNPs of both distinct 

ordered sets were selected and analyzed by using SNPnexus database in order to 

compare two rankings. However we could not find any prostate cancer related SNPs 

in both of the sorted sets. Therefore analyses done on this small subset of the entire 

set shows us that, when trying to generalize the results, we need larger subsets of the 

original data set. Sometimes small subsets may be insufficient to be analyzed and to 

lead the further studies. 
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Analysis with SNP-Filtered 

As described in subsection 3.1.4, we have a small subset of SNPs which provides us 

to obtain biologically relevant SNPs for prostate cancer. This data set can be 

described as representative set of the whole SNPs in the original data set. It was 

obtained by eliminating the SNPs which can be accepted as redundant based on the 

assumption that, one of the representative SNPs can be able to carry biological 

information that is also inferred from those redundant SNPs. 

SNPnexus analysis has been done on all of the SNPs in SNP-Filtered. The number of 

SNPs has been found associated with prostate cancer calculated as 33 through the 

whole of 1758 SNPs in this data set. Those 33 SNPs are shown in Table 4.21 with 

associated rsIDs. In addition the genes where these SNPs are located on are shown in 

Table 4.22. It has observed that 33 SNPs that show a significant association with 

prostate cancer are located on 23 different gene regions. 

Table 4.21 Prostate cancer related SNPs found in SNP-Filtered. 

                 SNPS  SNPS 

1 rs17775610 18 rs2567608 

2 rs4908107 19 rs10776909 

3 rs8178179 20 rs927188 

4 rs531572 21 rs1234220 

5 rs7082319 22 rs11016862 

6 rs620359 23 rs3745540 

7 rs3912492 24 rs213386 

8 rs9637471 25 rs1380466 

9 rs12636081 26 rs2360995 

10 rs12896434 27 rs7914154 

11 rs12882037 28 rs6768256 

12 rs928111 29 rs2107280 

13 rs4267385 30 rs7911448 

14 rs4921943 31 rs10106032 

15 rs7844180 32 rs13437706 

16 rs4870828 33 rs11737898 

17 rs4665716   
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Table 4.22 Genes hosting  the SNPs that were found related to prostate cancer in 

SNP-Filtered. 

 GENES SNPS 

1 PVT1 rs17775610 

2 SLC30A7 rs4908107 

3 PRKDC rs8178179 

4 MGMT rs531572 

rs7082319 

rs11016862 

5 C2ORF43 rs620359 

6 FHIT rs3912492  

rs9637471  

rs12636081  

rs213386 

rs1380466 

7 ESRRB rs12896434 

rs12882037 

rs2360995 

8 COL4A2 rs928111 

9 ACE rs4267385 

10 PSD3 rs4921943 

rs7844180 

rs10106032 

11 ZHX2 rs4870828 

12 NCOA1 rs4665716 

13 SSTR4 rs2567608 

14 RXRA rs10776909 

15 PKHD1 rs927188 

16 PTEN rs1234220 

17 KLK12 rs3745540 

18 PIK3AP1 rs7914154 

19 EEFSEC rs6768256 

20 NXPH1 rs2107280 



52 

 

21 CAMK1D rs7911448 

22 CREB5 rs13437706 

23 SORCS2 rs11737898 

 

4.2.2 Outputs of  HaploReg and RegulomeDB Analyses 

Analysis with 500 non-coding SNPS of SNP-CP 

The aim of this step is to focus on SNPs that are not located on  gene regions namely, 

noncoding regions. We have found from the output of HaploReg analysis, 1419 

SNPs in SNP-CP, have no dbSNP function annotation as intronic.  This means that, 

more than half of the SNPs in this data set are not located on a gene region, but may 

have effect on the genes or proteins indirectly. The SNPs with RegulomeDB scores 

equal and less than 3, in the first 500 SNPS of SNP-CP, are given in Table 4.23. 27 

SNPs have been found with desired RegulomeDB scores. These 27 SNPs are more 

valuable when compared to other SNPs that have RegulomeDB scores higher than 3. 

Table 4.23 The none-coding SNPs with RegulomeDB scores equal and less than 3, in 

the first 500 non-coding SNPs of SNP-CP. 

 SNPs RegulomeDB Score 

1 rs2832093 3a 

2 rs6714287 3a 

3 rs304951 1d 

4 rs7136770 1f 

5 rs10506347 1f 

6 rs12998237 2a 

7 rs1781079 2b 

8 rs12101523 3a 

9 rs17701543 3a 

10 rs10027556 3a 

11 rs9897342 2b 

12 rs8090231 2b 

13 rs11253536 2b 
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14 rs2765895 3a 

15 rs6894361 3a 

16 rs422945 1d 

17 rs531805 1f 

18 rs6944602 1f 

19 rs11696842 1f 

20 rs12910685 2b 

21 rs6708126 2b 

22 rs1636579 3a 

23 rs16960555 1f 

24 rs1379736 2a 

25 rs986046 2b 

26 rs977676 2b 

27 rs17264915 3a 
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CHAPTER 5  

 

 

DISCUSSION 

 

 

 

The aim of this thesis is to demonstrate that if there exist any valuable impact of LD 

on SNP prioritization studies or not. To prove a new algorithm has been constructed 

and tested on prostate cancer data set downloaded from dbGaP. 

In Chapter 5,the result of the analysis, given in the Chapter 4, will be discussed. 

5.1 Discussion on SNPnexus Results 

5.1.1 Analyses with 1000 SNPs of SNP-IP and 1000 SNPs of SNP-IP-Ext after 

RF 

In this step, the outputs, which were obtained from the random forest algorithm, 

performed on both SNP-IP and SNP-IP-Ext, have been compared. In the Subsection 

4.1.1, essential SNPnexus analysis has been done on the first 1000 SNPs of 

mentioned SNP sets. A comparison of the results obtained based on MDA value is 

shown in Table 5.1. 22 SNPs have been obtained from first 1000 of the ordered SNP 

set based on MDA values which were obtained from the outputs of RF performed on 

SNP-IP. In addition, 17 SNPs have been obtained from first 1000 of the ordered SNP 

set based on mean decrease accuracy values which were obtained from  the outputs 

of RF performed on SNP-IP-Ext. 12 SNPs are identical in these two sets. 

In addition, a comparison of the results obtained based on MDG values is shown in 

Table 5.2. 18 SNPs have been obtained from the first 1000 of the ordered SNP set 

based on MDG values which were obtained from the outputs of RF performed on 

SNP-IP. Moreover, 19 SNPs have been obtained from the first 1000 of the ordered 

SNP set based on MDG values which were obtained from the outputs of RF 

performed on SNP-IP-Ext. 16 SNPs are the same in these two set. 
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The same parameters have been used for both of the performances done on the data  

sets SNP-IP and SNP-IP-Ext. However, error rates of the both performances were  

determined very close to each other, as shown in Table 5.3. In Table 5.4 and 5.5, 

confusion matrices of both performances are given. These matrices list the classes 

and how the RF classified each one, plus the classification error for each. By using 

the values from these tables the OOB estimate of error rate can be calculated as 

shown in Eqn. (5.1). Although the error rate of RF performance SNP-IP-Ext is a bit 

larger than the other, it does not mean that phenotype information is redundant. It can 

be said that the phenotype information is not necessary for this study. Moreover, the 

determined rankings were very similar in these two performances. Although 

phenotype information variables were on the top of the rankings in the output of 

performance with SNP-IP-Ext, when phenotype information was taken out, most of 

the remaining sorted SNPs are as most of the leading SNPs in the output of 

performance with SNP-IP. 

Table 5.1 Prostate cancer related SNPs founded in both the first 1000 of sorted SNP 

sets based on MDA values after RF on SNP-IP (the list on the left)  and SNP-IP-Ext 

(the list on the right)  individually. 

 SNPS  SNPS 

1 rs567700 1 rs1877724 

2 rs531572 2 rs531572 

3 rs6482743 3 rs9971190 

4 rs3912492 4 rs3912492 

5 rs6803449 5 rs6803449 

6 rs213386 6 rs12636081 

7 rs1380466 7 rs213386 

8 rs2622625 8 rs620359 

9 rs6768256 9 rs7914154 

10 rs10776909 10 rs6970999 

11 rs3745540 11 rs2107280 

12 rs2360995 12 rs4267385 

13 rs12882037 13 rs8066276 

14 rs7914154 14 rs4921943 
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15 rs6970999 15 rs10106032 

16 rs2107280 16 rs4496973 

17 rs4267385 17 rs4870828 

18 rs8066276  

19 rs4921943   

20 rs4496973  

21 rs4870828 

22 rs11737898 

 

Table 5.2 Prostate cancer related SNPs founded in both the first 1000 of sorted SNP 

sets based on MDG values after RF on SNP-IP (the list on the left)  and SNP-IP-Ext 

(the list on the right)  individually. 

 SNPS  SNPS 

1 rs553371 1 rs553371 

2 rs567700 2 rs567700 

3 rs531572 3 rs531572 

4 rs4750759 4 rs4750759 

5 rs9971190 5 rs7082319 

6 rs3912492 6 rs3912492 

7 rs213386 7 rs213386 

8 rs2622625 8 rs1380466 

9 rs2567608 9 rs2622625 

10 rs10776909 10 rs2567608 

11 rs3745540 11 rs10776909 

12 rs12882037 12 rs12882037 

13 rs7914154 13 rs7914154 

14 rs4267385 14 rs4267385 

15 rs8066276 15 rs8066276 

16 rs4921943 16 rs4921943 

17 rs4496973 17 rs10106032 

18 rs4870828 18 rs4496973 

 19 rs4870828 
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Table 5.3 OOB estimate of error rate of both performances. 

Data Sets OOB estimate of error rate 

SNP-IP 23.81% 

SNP-IP-Ext 24.76% 

 

Table 5.4 Confusion matrix of performance with SNP-IP. 

 1 2 Class error 

1 477 151 0.2404459 

2 149 483 0.2357595 

 

Table 5.5 Confusion matrix of performance with SNP-IP-Ext. 

 1 2 Class error 

1 481 147 0.2340764 

2 165 467 0.2610759 

 

OOB estimate error rate = 
# of wrongly classified SNPs

# of whole  SNPs
  (5.1) 

 

5.1.2 Analyses with SNP-IP,  SNP-CP and SNP-Filtered 

Throughout this study we have obtained three main data sets from the original data 

set. One of them is the data set including SNPs with individual p values which is 

annotated as SNP-IP, the other one is the data set containing SNPs with combined p 

values which is annotated as SNP-CP and the last one is the data set that can be 

accepted as representative set of the two of other SNP sets which is also annotated as 

SNP-Filtered. By performing SNPnexus analysis on these data sets we have found 

the SNPs which are given in Table 5.6 as prostate cancer related SNPs. As expected, 

while the number of analyzed SNPs decreases, the amount of SNPs found as prostate 

cancer related, decreases. However, it has proven that when we have calculated the 

ratio of the prostate cancer related SNPs to the associated data sets, all the three 

proportion values are close to each other. By considering the proportion values as 

success rates which are given in Table 5.7, we can say that the results of all the 

analyses are as successful as each other. 
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Table 5.6 Prostate cancer related SNPs found in SNP-IP, SNP-CP and SNP-Filtered. 

SNPS in SNP-IP SNPS in SNP-CP SNPS in SNP-Filtered 

1 rs12329598 1 rs17775610 1 rs17775610 

2 rs531572 2 rs8178179 2 rs4908107 

3 rs3912492 3 rs531572 3 rs8178179 

4 rs9637471 4 rs620359 4 rs531572 

5 rs6803449 5 rs3912492 5 rs7082319 

6 rs12636081 6 rs9637471 6 rs620359 

7 rs17061864 7 rs6803449 7 rs3912492 

8 rs8178179 8 rs12636081 8 rs9637471 

9 rs17775610 9 rs17061864 9 rs12636081 

10 rs2999081 10 rs12882037 10 rs12896434 

11 rs2811415 11 rs2999081 11 rs12882037 

12 rs2811518 12 rs2811415 12 rs928111 

13 rs2811388 13 rs2811518 13 rs4267385 

14 rs6798749 14 rs2811388 14 rs4921943 

15 rs3764880 15 rs6798749 15 rs7844180 

16 rs620359 16 rs4921943 16 rs4870828 

17 rs12882037 17 rs7844180 17 rs4665716 

18 rs4921943 18 rs4496973 18 rs2567608 

19 rs7844180 19 rs4870828 19 rs10776909 

20 rs4496973 20 rs213386 20 rs927188 

21 rs4870828 21 rs1380466 21 rs1234220 

22 rs16998751 22 rs4665716 22 rs11016862 

23 rs6482743 23 rs4908107 23 rs3745540 

24 rs9971190 24 rs1266890 24 rs213386 

25 rs7082319 25 rs927188 25 rs1380466 

26 rs213386 26 rs1234220 26 rs2360995 

27 rs1380466 27 rs553371 27 rs7914154 

28 rs4665716 28 rs567700 28 rs6768256 

29 rs2622625 29 rs4750759 29 rs2107280 

30 rs209998 30 rs6482743 30 rs7911448 

31 rs4908107 31 rs9971190 31 rs10106032 
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32 rs927188 32 rs7082319 32 rs13437706 

33 rs553371 33 rs2360995 33 rs11737898 

34 rs2360995 34 rs12896434   

35 rs12896434 35 rs7914154   

36 rs7914154 36 rs928111   

37 rs928111 37 rs2107280   

38 rs4267385 38 rs4267385   

39 rs7911448 39 rs7911448   

40 rs13437706 40 rs13437706   

41 rs1234220 41 rs1877724   

42 rs4750759 42 rs10776909   

43 rs1877724 43 rs11016862   

44 rs2567608 44 rs3745540   

45 rs10776909 45 rs2360999   

46 rs1266890 46 rs6768256   

47 rs567700 47 rs6970999   

48 rs11016862 48 rs8066276   

49 rs3745540 49 rs10106032   

50 rs2360999 50 rs11737898   

51 rs7089141 51 rs9341218   

52 rs6768256 52 rs2567608   

53 rs6970999     

54 rs2107280     

55 rs8066276     

56 rs10106032     

57 rs11737898     

 

Table 5.7 Comparison of success rates of SNP-IP, SNP-CP and SNP-Filtered. 

 

Data sets 

The number of SNPs related 

with prostate cancer 

The number of whole  SNPs 

Success rate 

SNP-IP 57 2706 %2.1 

SNP-CP 52 2495 %2.08 

SNP-Filtered 33 1758 %1.8 
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In Table 5.8, the genes hosting the prostate cancer related SNPs are given. Common 

genes are shown as black and bold. As expected all of the genes hosting the prostate 

cancer related SNPs that were found from SNP-Filtered, exist in other two sets.  Our 

experiment has shown that, with using the SNPs which are able to represent other 

SNPs (SNP-Filtered) instead of using SNP-IP, while the number of genes hosting the 

SNPs related to prostate cancer were not changed as to be taken into account, the 

number of SNPs located on those genes were decreased. Therefore, while validating 

the biologically relevant results, the experimental cost has been decreased to a 

relatively significant level. As shown, while the number of SNPs decreased from 57 

to 33, the number of genes hosting those SNPs decreased from 29 to 23, so that 

almost half of the SNPs have been eliminated.   

Table 5.8 Genes hosting the SNPs that were found related to prostate cancer in SNP-

IP (the list on the left), SNP-CP (the list in the middle) and SNP-Filtered (the list on 

the right). 

GENES in SNP-IP GENES  in SNP-CP GENES in SNP-Filtered 

1 EPHX1 1 PVT1 1 PVT1 

2 BCAS1 2 PRKDC 2 SLC30A7 

3 PTEN 3 MGMT 3 PRKDC 

4 NCOA1 4 C2ORF43 4 MGMT 

5 ABCG2 5 FHIT 5 C2ORF43 

6 MGMT 6 ESRRB 6 FHIT 

7 AIFM1 7 EEFSEC 7 ESRRB 

8 EEFSEC 8 PSD3 8 COL4A2 

9 SLC30A7 9 ZHX2 9 ACE 

10 TLR8 10 NCOA1 10 PSD3 

11 SSTR4 11 SLC30A7 11 ZHX2 

12 RXRA 12 PKHD1 12 NCOA1 

13 PKHD1 13 PTEN 13 SSTR4 

14 PRKDC 14 PIK3AP1 14 RXRA 

15 C2ORF43 15 COL4A2 15 PKHD1 

16 KLK12 16 NXPH1 16 PTEN 

17 FHIT 17 ACE 17 KLK12 

18 ESRRB 18 CAMK1D 18 PIK3AP1 
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19 PIK3AP1 19 CREB5 19 EEFSEC 

20 CUBN 20 EPHX1 20 NXPH1 

21 COL4A2 21 RXRA 21 CAMK1D 

22 NXPH1 22 KLK12 22 CREB5 

23 ACE 23 SORCS2 23 SORCS2 

24 CAMK1D 24 IGFBP2   

25 PSD3 25 SSTR4   

26 ZHX2     

27 CREB5     

28 SORCS2     

29 PVT1     

 

5.1.3 Analyses with 1000 SNPs of SNP-IP and 1000 SNPs of SNP-CP 

The main reason why we have started this study is that, the foregoing discussion on 

the significance level of LD in SNP selection studies.  By using the result which   

were given in the Subsection 4.1.1, we are able to compare the performances of both 

data set SNP-IP and SNP-CP which are based on individual p values and combined p 

values, respectively. As mentioned above,  the most important step of the algorithm 

for obtaining combine p values is that,  obtaining a list of SNPs which are expected 

to be in LD with the associated SNP,  according to the given threshold value for 𝑟2. 

Thus we have claimed that, if we obtain associated combined p values for each SNP 

in SNP-IP, we can be able to demonstrate the impact of LD in such kinds of SNP 

selection studies. In Table 5.9, prostate cancer related SNPs that were found in both 

first 1000 of sorted SNP sets based on individual p values and combined p values, 

are given.  As shown, the number of SNPs in two lists are close to each other, 

however, only 11 SNPs are identical which is about half of one of the set. On the 

other hand, if we examine the genes hosting the prostate cancer related SNPs in both 

sets individually, the number of genes decreases, in the second ranking which is 

based on combined p value. These genes are given in In Table 5.10 and common 

genes are shown as black and bold. As shown in the table, almost all of the genes 

hosting the SNPs that were found related to prostate cancer in the first 1000 of sorted 

SNP-CP, are common in both sets. This result may lead us to the conclusion that, 
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cost effective gene filtration can be done based on our claim which is the reason why 

we have started to this study. 

Table 5.9 Prostate cancer related SNPs that were found in both first 1000 of sorted 

SNP sets based on individual p values (SNP-IP) ( the list on the left) and combined p 

values (SNP-CP) (the list on the right). 

 SNPS  SNPS 

1 rs12329598 1 rs1234220  

2 rs531572 2 rs553371 

3 rs3912492 3 rs567700 

4 rs9637471 4 rs531572 

5 rs6803449 5 rs4750759 

6 rs12636081 6 rs6482743 

7 rs17061864 7 rs9971190 

8 rs8178179 8 rs7082319 

9 rs17775610 9 rs11016862 

10 rs2999081 10 rs3912492 

11 rs2811415 11 rs9637471 

12 rs2811518 12 rs6803449 

13 rs2811388 13 rs12636081 

14 rs6798749 14 rs17061864 

15 rs3764880 15 rs1380466 

16 rs620359 16 rs2999081 

17 rs12882037 17 rs2811415 

18 rs4921943 18 rs2811518 

19 rs7844180 19 rs2811388 

20 rs4496973 20 rs6798749 

21 rs4870828  21 rs12896434 

  22 rs2360999 

  23 rs10106032 
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Table 5.10 Genes hosting the SNPs that were found related to prostate cancer in the 

first 1000 of sorted SNP-IP (the list on the left) and in the first 1000 of sorted SNP-

CP (the list on the right). 

 GENES  GENES 

1 BCAS1 1 PTEN 

2 MGMT 2 MGMT 

3 FHIT 3 FHIT 

4 PRKDC 4 EEFSEC 

5 PVT1 5 ESRRB 

6 EEFSEC 6 PSD3 

7 TLR8   

8 C2ORF43   

9 ESRRB   

10 PSD3   

11 ZHX2   

 

5.1.4 Analyses with 1000 SNPs of SNP-IP Before and After RF  

To figure out the effect of RF on the prostate cancer data set, SNPnexus analyzes 

have been done on this data set before and after RF was performed. After ordering 

the SNPs based on individual p values, the first 1000 SNPs were selected and 

analyzed via SNPnexus database. In addition, after performing random forest 

algorithm on the whole SNPs, the importance values with associated SNPs have been 

obtained. Then these SNPs were sorted based on mean decrease accuracy and mean 

decrease Gini values individually. The first 1000 SNPs were selected and analyzed 

via SNPnexus database as done before RF was performed. The outputs of all these 

performances are given in the Subsection 4.1.1. We will just bring the all results 

together to compare and to comment on them. 

A comparison between prostate cancer related SNPs that were found in the ordered 

SNP set based on individual p values and in the ordered SNP set based on MDA 

values, is shown in Table 5.11. 21 SNPs have been found from the first 1000 of the 

ordered SNP set due to individual p values, while 22 SNPs have been found from 
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first 1000 of the ordered SNP set based on MDA values. The number of identical 

SNPs in these two sets is 5 which is considerably low. Moreover, if we compare the 

genes hosting the SNPs in both SNP lists, it is shown that, while they are numerically 

similar, one of them has 11 genes and the other one has 13 genes, only 6 genes are 

common in both (Table 5.13). Therefore, after RF was performed, the SNPs and the 

genes that will be focused, have altered. 

The comparison between prostate cancer related SNPs found in the ordered SNP set 

based on individual p values and in the ordered SNP set based on MDG values, is 

shown in Table 5.12. 21 SNPs have been found from the first 1000 of the ordered 

SNP set based on individual p values as mentioned above, while 18 SNPs have been 

found from first 1000 of the ordered SNP set based on MDG values. 6 SNPs are 

identical in these two sets. As a result, the number of identical SNPs existing in both 

SNP lists is relatively small. In addition, the number of genes hosting these SNPs in 

both lists is the same, however again the amount of identical genes is not enough to 

be analyzed (Table 5.14). Therefore after RF was performed, as in the comparison 

has done between the lists of SNPs based on individual p values and MDA values, 

the SNPs and the genes that will be focused, have altered, proving that there exist 

some effects of RF which are needed to be clarified. 

SNPs with rsIDs rs531572, rs3912492, rs12882037 and rs4921943 are common in all 

sets ordered in different three ways which are based on individual p values, MDA 

and MDG values. Moreover, there exist five common genes which are ZHX2, PSD3, 

ESRRB, FHIT, MGMT in all sets. In further studies, when we will apply all analyses 

on different data sets, we will be able to make more precise comments about this 

topic. 

Table 5.11 Prostate cancer related SNPs that were found in both first 1000 of sorted 

SNP sets based on individual p values (the list on the left) and MDA values (the list 

on the right). 

 SNPS  SNPS 

1 rs12329598 1 rs567700  

2 rs531572 2 rs531572 

3 rs3912492 3 rs6482743 



66 

 

4 rs9637471 4 rs3912492 

5 rs6803449 5 rs6803449 

6 rs12636081 6 rs213386 

7 rs17061864 7 rs1380466 

8 rs8178179 8 rs2622625 

9 rs17775610 9 rs6768256 

10 rs2999081 10 rs10776909 

11 rs2811415 11 rs3745540 

12 rs2811518 12 rs2360995 

13 rs2811388 13 rs12882037 

14 rs6798749 14 rs7914154 

15 rs3764880 15 rs6970999 

16 rs620359 16 rs2107280 

17 rs12882037 17 rs4267385 

18 rs4921943 18 rs8066276 

19 rs7844180 19 rs4921943 

20 rs4496973 20 rs4496973 

21 rs4870828  21 rs4870828 

  22 rs11737898 

 

Table 5.12 Prostate cancer related SNPs that were found in both first 1000 of sorted 

SNP sets based on individual p values (the list on the left) and MDG values (the list 

on the right). 

 SNPS  SNPS 

1 rs12329598 1 rs553371 

2 rs531572 2 rs567700 

3 rs3912492 3 rs531572 

4 rs9637471 4 rs4750759 

5 rs6803449 5 rs9971190 

6 rs12636081 6 rs3912492 

7 rs17061864 7 rs213386 

8 rs8178179 8 rs2622625 
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9 rs17775610 9 rs2567608 

10 rs2999081 10 rs10776909 

11 rs2811415 11 rs3745540 

12 rs2811518 12 rs12882037 

13 rs2811388 13 rs7914154 

14 rs6798749 14 rs4267385 

15 rs3764880 15 rs8066276 

16 rs620359 16 rs4921943 

17 rs12882037 17 rs4496973 

18 rs4921943 18 rs4870828 

19 rs7844180   

20 rs4496973   

21 rs4870828    

 

Table 5.13 Genes hosting the SNPs that were found related to prostate cancer in the 

both the first 1000 of sorted SNP sets based on individual p values (the list on the 

left) and MDA values (the list on the right). 

 GENES  GENES 

1 BCAS1 1 MGMT 

2 MGMT 2 FHIT 

3 FHIT 3 ABCG2 

4 PRKDC 4 EEFSEC 

5 PVT1 5 RXRA 

6 EEFSEC 6 KLK12 

7 TLR8 7 ESRRB 

8 C2ORF43 8 PIK3AP1 

9 ESRRB 9 NXPH1 

10 PSD3 10 ACE 

11 ZHX2 11 PSD3 

  12 ZHX2 

  13 SORCS2 
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Table 5.14 Genes hosting  the SNPs that were found related to prostate cancer in the 

both first 1000 of sorted SNP sets based on individual p  values (the list on the left) 

and MDG values (the list on the right). 

 GENES  GENES 

1 BCAS1 1 MGMT 

2 MGMT 2 FHIT 

3 FHIT 3 ABCG2 

4 PRKDC 4 SSTR4 

5 PVT1 5 RXRA 

6 EEFSEC 6 KLK12 

7 TLR8 7 ESRRB 

8 C2ORF43 8 PIK3AP1 

9 ESRRB 9 ACE 

10 PSD3 10 PSD3 

11 ZHX2 11 ZHX2 

 

5.1.5 Analyses with 1000 SNPs of  SNP-CP Before and After RF 

It is known that the data set including SNPs with combined p values which is 

annotated as SNP-CP, has been obtained from the date set including SNPs with 

individual p values which is annotated as SNP-IP. Therefore, after RF was performed 

on SNP-CP, we expect to achieve similar results which were obtained in the previous 

section. To prove this expectation, first, SNPnexus analyzes have been done on this 

data set before and after RF was performed. The outputs of the related analyses are 

given in the Subsection 4.2. As in the previous section we will bring them together to 

investigate.  

The comparison between prostate cancer related SNPs that were  found in the 

ordered SNP set based on  combined p values and in the ordered set of SNPs based 

on MDA values, is shown in Table 5.15. As it can be inferred from the table, in both 

of the sets, although the number of prostate cancer related SNPs is same, the SNPs in 

the two lists are not exactly identical. The number of common SNPs in these two sets 

is 9 which is considerably low again, as expected. Moreover, we compared the genes 

hosting the SNPs in both SNP lists, as shown in Table 5.17. After RF was performed, 



69 

 

we were able to obtain nearly twice the number of genes. 5 genes are identical in 

these two sets which means, almost all of the genes hosting  prostate cancer related 

SNPs in the first 1000 of the ordered SNP set based on combined  p values, can be 

obtained after RF was performed. Thus, although the SNPs that will be focused on, 

have changed to be taken into consideration after RF was performed, the genes that 

will be focused in further studies have not altered drastically, but numerically 

increased. 

The comparison between prostate cancer related SNPs found in the ordered SNP set 

based on combined p values and in the ordered SNP set based on MDG values is 

shown in Table 5.16. 23 SNPs have been found from the first list while 18 SNPs 

have been found from the second list. 8 SNPs are identical in these two sets. The 

number of identical SNPs existing in both SNP lists is relatively small. In addition, 

the hosting genes of these SNPs are shown in Table 5.18. As shown in this table, the 

similarities between both lists do not provide sufficient information to be able to 

infer reliable results. So that, we cannot say one of them has better results. However, 

it can be seen obviously that, after RF was performed, while the SNPs that will be 

focused have altered as in above analysis, the genes that will be focused, have not 

altered so much but numerically increased. 

SNPs with rsIDs rs553371, rs567700, rs4750759, rs3912492 and rs10106032 are 

common in all sets ordered in different three ways which are based on combined p 

values, MDA and MDG values. Moreover, there exist five common genes which are 

MGMT, FHIT, ESRRB, PSD3 in all sets that were analyzed in this Subsection 5.1.5. 

Table 5.15 Prostate cancer related SNPs that were found in both the first 1000 of 

sorted SNP sets based on combined p values (the list on the left) and MDA values 

(the list on the right). 

 SNPS  SNPS 

1 rs1234220 1 rs553371 

2 rs553371 2 rs567700 

3 rs567700 3 rs4750759 

4 rs531572 4 rs6482743 

5 rs4750759 5 rs3912492 
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6 rs6482743 6 rs12636081 

7 rs9971190 7 rs213386 

8 rs7082319 8 rs1380466 

9 rs11016862 9 rs2999081 

10 rs3912492 10 rs2811518 

11 rs9637471 11 rs6768256 

12 rs6803449 12 rs10776909 

13 rs12636081 13 rs3745540 

14 rs17061864 14 rs12882037 

15 rs1380466 15 rs7914154 

16 rs2999081 16 rs928111 

17 rs2811415 17 rs4267385 

18 rs2811518 18 rs8066276 

19 rs2811388 19 rs4921943 

20 rs6798749 20 rs10106032 

21 rs12896434 21 rs4496973 

22 rs2360999 22 rs4870828 

23 rs10106032 23 rs11737898 

 

Table 5.16 Prostate cancer related SNPs that were found in both first 1000 of sorted 

SNP sets based on combined p values (the list on the left) and MDG values (the list 

on the right). 

 SNPS  SNPS 

1 rs1234220 1 rs1877724 

2 rs553371 2 rs553371 

3 rs567700 3 rs567700 

4 rs531572 4 rs531572 

5 rs4750759 5 rs4750759 

6 rs6482743 6 rs9971190 

7 rs9971190 7 rs7082319 

8 rs7082319 8 rs3912492 

9 rs11016862 9 rs213386 

10 rs3912492 10 rs2567608 
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11 rs9637471 11 rs12882037 

12 rs6803449 12 rs7914154 

13 rs12636081 13 rs4267385 

14 rs17061864 14 rs8066276 

15 rs1380466 15 rs4921943 

16 rs2999081 16 rs10106032 

17 rs2811415 17 rs4496973 

18 rs2811518 18 rs4870828 

19 rs2811388   

20 rs6798749   

21 rs12896434   

22 rs2360999   

23 rs10106032   

Table 5.17 Genes hosting the SNPs that were found related to prostate cancer in both 

the first 1000 of sorted SNP sets based on combined p values (the list on the left) and 

MDA values (the list on the right). 

 GENES  GENES 

1 PTEN 1 MGMT 

2 MGMT 2 FHIT 

3 FHIT 3 EEFSEC 

4 EEFSEC 4 RXRA 

5 ESRRB 5 KLK12 

6 PSD3 6 ESRRB 

  7 PIK3AP1 

  8 COL4A2 

  9 ACE 

  10 PSD3 

  11 ZHX2 

 

 



72 

 

Table 5.18 Genes hosting  the SNPs that were found related to prostate cancer in 

both the first 1000 of sorted SNP sets based on combined p values (the list on the 

left) and MDG values (the list on the right). 

 GENES  GENES 

1 PTEN 1 EPHX1 

2 MGMT 2 MGMT 

3 FHIT 3 FHIT 

4 EEFSEC 4 SSTR4 

5 ESRRB 5 ESRRB 

6 PSD3 6 PIK3AP1 

  7 ACE 

  8 PSD3 

  9 ZHX2 

5.1.6 Analyses with 1000 SNPs of SNP-IP and the 1000 SNPs of SNP-CP after 

RF 

In order to compare the effects of random forest algorithm on the data sets SNP-IP 

and  SNP-CP, we have performed this algorithm on both  data sets individually and 

then the outputs were sorted based on importance values as mentioned above. 

Finally, SNPnexus analyses have been done on first 1000 SNPs in both sorted sets. 

By using the results which were given in the Subsections 4.1.1 and 4.1.2, we have 

created the Tables 5.19 and 5.20. The SNPs which are shown as black and bold are 

identical SNPs in both sets. In Table 5.19, it is shown that more than half of the 

SNPs of each set identical to each other. 14 SNPs are identical in both sets. 

Moreover, in Table 5.20, we have obtained similar results as in Table 5.19. Again 

more than half of the SNPs of each set identical to each other and the number of 

SNPs which are identical is 14. As expected, since many of the prostate cancer 

related SNPs in all of the sets are identical, the genes hosting these SNPs are mostly 

identical as shown in Table 5.24 and 5.25. The number of common genes is as high 

as we expected.  Therefore it can be interpreted that from all of the tables which were 

created by using the results given before, similar outcomes were obtained. 

All of these results point to fact that, the effects of RF to the data set including SNPs 

with individual p values and combined p values, are nearly same. 
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In addition, SNPs with rsIDs rs567700, rs3912492, rs213386, rs12882037, 

rs7914154, rs4267385, rs8066276, rs4921943, rs4496973, rs4870828 are common in 

all sets ordered based on different parameters. The number of common SNPs which 

were given in the previous two subsections is nearly half of the number of common 

SNPs that we have obtained in this subsection. Moreover, there exist 7 common 

genes which are MGMT, FHIT, ESRRB, PIK3AP1, ACE, PSD3 and ZHX2  in all 

sets that were analyzed in this subsection. As expected, the number of common genes 

that were obtained in this subsection is higher than the number of common genes that 

were obtained in the previous two Subsections 5.1.4 and 5.1.5. 

Moreover if we examine the error rates which are given in Table 5.21, 5.22 and 5.23, 

it clear that by using both sets SNP-IP and SNP-CP as an input for RF, any 

improvement cannot be observed. All of the error rates, OOB estimation error rate 

and clear error rates are very similar to each other. Therefore, all of these outcomes 

can be supporting subtractions to the claim that the effects of random forest 

algorithm on the data sets SNP-IP and SNP-CP are similar. Although by using the 

SNPs with associated combined p values, the SNPs and the genes hosting these SNPs 

that will be focused on, have altered in a significance level, after RF was performed 

on these sets, the result have not changed  in an acceptable level.  

Table 5.19 Prostate cancer related SNPs that were found in both the first 1000 of 

sorted SNP sets SNP-IP (the list on the left) and SNP-CP (the list on the right) based 

on MDA values. 

 SNPS  SNPS 

1 rs567700  1 rs553371 

2 rs531572 2 rs567700 

3 rs6482743 3 rs4750759 

4 rs3912492 4 rs6482743 

5 rs6803449 5 rs3912492 

6 rs213386 6 rs12636081 

7 rs1380466 7 rs213386 

8 rs2622625 8 rs1380466 

9 rs6768256 9 rs2999081 

10 rs10776909 10 rs2811518 
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11 rs3745540 11 rs6768256 

12 rs2360995 12 rs10776909 

13 rs12882037 13 rs3745540 

14 rs7914154 14 rs12882037 

15 rs6970999 15 rs7914154 

16 rs2107280 16 rs928111 

17 rs4267385 17 rs4267385 

18 rs8066276 18 rs8066276 

19 rs4921943 19 rs4921943 

20 rs4496973 20 rs10106032 

21 rs4870828 21 rs4496973 

22 rs11737898 22 rs4870828 

  23 rs11737898 

 

Table 5.20 Prostate cancer related SNPs that were found in both the first 1000 of 

sorted SNP sets SNP-IP (the list on the left) and SNP-CP (the list on the right) based 

on MDG values. 

          SNPS            SNPS 

1 rs553371 1 rs1877724 

2 rs567700 2 rs553371 

3 rs531572 3 rs567700 

4 rs4750759 4 rs531572 

5 rs9971190 5 rs4750759 

6 rs3912492 6 rs9971190 

7 rs213386 7 rs7082319 

8 rs2622625 8 rs3912492 

9 rs2567608 9 rs213386 

10 rs10776909 10 rs2567608 

11 rs3745540 11 rs12882037 

12 rs12882037 12 rs7914154 

13 rs7914154 13 rs4267385 

14 rs4267385 14 rs8066276 

15 rs8066276 15 rs4921943 
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16 rs4921943 16 rs10106032 

17 rs4496973 17 rs4496973 

18 rs4870828 18 rs4870828 

 

Table 5.21 OOB estimate of error rate of both performances. 

Data Sets OOB estimate of error rate 

SNP-IP 23.81% 

SNP-CP 25.87% 

 

Table 5.22 Confusion matrix of performance with SNP-IP. 

 1 2 Class error 

1 477 151 0.2404459 

2 149 483 0.2357595 

 

Table 5.23 Confusion matrix of performance with SNP-CP. 

 1 2 Class error 

1 469 159 0.2531847 

2 167 465 0.2642405 

 

Table 5.24 Genes hosting  the SNPs that were found related to prostate cancer in 

both the first 1000 of sorted SNP sets SNP-IP (the list on the left) and SNP-CP (the 

list on the right) based  MDA values. 

 GENES  GENES 

1 MGMT 1 MGMT 

2 FHIT 2 FHIT 

3 ABCG2 3 EEFSEC 

4 EEFSEC 4 RXRA 

5 RXRA 5 KLK12 

6 KLK12 6 ESRRB 

7 ESRRB 7 PIK3AP1 
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8 PIK3AP1 8 COL4A2 

9 NXPH1 9 ACE 

10 ACE 10 PSD3 

11 PSD3 11 ZHX2 

12 ZHX2 12 SORCS2 

13 SORCS2  

 

Table 5.25 Genes hosting  the SNPs that were found related to prostate cancer in 

both the first 1000 of sorted SNP sets SNP-IP (the list on the left) and SNP-CP (the 

list on the right) based on MDG values. 

 GENES  GENES 

1 MGMT 1 EPHX1 

2 FHIT 2 MGMT 

3 ABCG2 3 FHIT 

4 SSTR4 4 SSTR4 

5 RXRA 5 ESRRB 

6 KLK12 6 PIK3AP1 

7 ESRRB 7 ACE 

8 PIK3AP1 8 PSD3 

9 ACE 9 ZHX2 

10 PSD3  

11 ZHX2 

 

In this and the two of  previous Subsections, we have analyzed many SNP lists which 

were sorted based on different important values. Also, we have come up with many 

prostate cancer related SNPs and the genes hosting those SNPs. Therefore, if a SNP 

or a gene is common in all of the results, it can have greater importance or may be it 

means, it is just one of the important SNP or gene that we must obtain for further 

studies. Although the number of common genes which are MGMT, FHIT, ESRRB 

and PSD3, is more than one, only one SNP with rsID rs3912492 has been found as 

common. In addition, this SNP is located on the gene called FHIT which has been 

found as prostate cancer. 
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If we focus on this SNP in closer detail by using SNPnexus, we have revealed that 

many results were related to different types of cancer and other metabolic diseases. 

Thus can be a proof for it to have many different biological effects.  

5.1.7 Analyses with 100 SNPs after RF  on the  First 1000 SNPs of SNP-IP and 

SNP-CP. 

The aim of this step is that, if we can be able to generalize our results based on 

random forest algorithm by using less number of SNPs or not. As it is shown in 

Table 5.26, there are not any prostate cancer related SNPs in the first 100 of the first 

1000 SNPs of SNP-CP, which were sorted based on importance values. However, in 

the previous subsection we have proved that the effect of random forest on the data 

sets SNP-IP and SNP-CP are similar. Thus, minimizing the number of SNPs which 

are employed in this study, may mislead the outcomes which will be used in further 

studies. Although the comparison of error rates which are given in Tables 5.27, 5.28 

and 5.29 are similar to the comparisons that have been done in previous Subsections, 

the results that are given in Tables 5.26 and 5.30 are not sufficient for being 

interpreted.   

Table 5.26 Prostate cancer related SNPs that were found in both first 100 of sorted 

SNP sets, the first 1000 SNPs of SNP-IP (the list on the left) and the first 1000 SNPs 

of SNP-CP (the list on the right), based on both  MDA and MDG values. 

SNPS SNPS 

1 rs12882037   

2 rs4496973  

3 rs4870828 

 

Table 5.27 OOB estimate of error rate of both performances. 

Data Sets OOB estimate of error rate 

The First 1000 SNPs of 

SNP-IP 

25.48% 

The First 1000 SNPs of 

SNP-CP 

23.41% 
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Table 5.28 Confusion matrix of performance with the first 1000 SNPs of SNP-IP. 

 1 2 Class error 

1 462 166 0.2643312 

2 155 477 0.2452532 

 

Table 5.29 Confusion matrix of performance with the first 1000 SNPs of SNP-CP. 

 1 2 Class error 

1 474 154 0.2452229 

2 141 491 0.2231013 

 

Table 5.30 Genes hosting the SNPs that were found related to prostate cancer in the 

both first 100 of sorted SNP sets, the first 1000 SNPs of SNP-IP (the list on the left) 

and the first 1000 SNPs of SNP-CP (the list on the right) based  on both MDA and 

MDG values. 

 GENES GENES 

1 ESRRB  

2 ZHX2  

5.2 Discussion on RegulomeDB  Results 

5.2.1 RegulomeDB Analyzes Done on The First 500 non-coding SNPs of SNP-IP 

and  First 500 non-coding SNPs of SNP-CP  

As an introduction to the studies based on the SNPs which are located on noncoding 

regions, we have selected the non-coding SNPs in both data sets SNP-IP and SNP-

CP. In order to make a comparison between the results that were obtained in the 

Subsections 4.1.2 and 4.2.2, fairly , Table 5.31 was created. It is obviously seen that 

in the data set SNP-CP which is including SNPs with combined p values, more SNPs 

were found with RegulomeDB scores equal and less than 3. Therefore, this can be 

very powerful evidence that, using LD is a true insight in order to improve the 

studies based on selection of desired SNPs. 
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In addition, in Table 5.32 the non-coding SNPs with RegulomeDB score 1 and the 

genes that these SNPs can effect indirectly, are given. As shown in this table, the 

number of SNPs in SNP-CP is much higher than the number of SNPs in SNP-IP. 

While only one non-coding SNP with RegulomeDB score 1 has been found from 

SNP-IP, in SNP-CP this number has reached to 8. When everything taken into 

consideration, it has proved that LD has an importance in other parameters used in 

SNP selection studies. 

Table 5.31 The none-coding SNPs with RegulomeDB scores equal and less than 3, in 

the first 500 non-coding SNPs of SNP-IP and SNP-CP. 

 SNPs  SNPS 

1 rs6708126 1 rs2832093 

2 rs8090231 2 rs6714287 

3 rs12101523 3 rs304951 

4 rs1762438 4 rs7136770 

5 rs943889 5 rs10506347 

6 rs2063295 6 rs12998237 

7 rs17701543 7 rs1781079 

8 rs10510573 8 rs12101523 

9 rs11751092 9 rs17701543 

10 rs11075236 10 rs10027556 

11 rs888096 11 rs9897342 

12 rs977676 12 rs8090231 

13 rs11253536 13 rs11253536 

14 rs9435409 14 rs2765895 

15 rs1330100 15 rs6894361 

16 rs1379736 16 rs422945 

17 rs2581717 17 rs531805 

18 rs9328186 18 rs6944602 

19 rs2062287 19 rs11696842 

  20 rs12910685 

  21 rs6708126 

  22 rs1636579 

  23 rs16960555 
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  24 rs1379736 

  25 rs986046 

  26 rs977676 

  27 rs17264915 

 

Table 5.32 Non-coding SNPs with RegulomeDB scores equal to 1 and the genes 

which they effect indirectly, in both of the first 500 SNPs of the data sets SNP-IP and 

SNP-CP. 

 SNPS in SNP-IP RegulomeScore eQTL 

1 rs1762438 1f MGMT 

 SNPS in SNP-CP RegulomeScore eQTL 

1 rs304951 1d   

2 rs422945 1d APPBP1 

3 rs10506347 1f STAT6 

4 rs7136770 1f STAT6 

5 rs531805 1f COG7, 

DCTN5 

6 rs16960555 1f ZNF586 

7 rs11696842 1f PTPNS1L2, 

SIRPB1 

8 rs6944602 1f ZNFN1A1 

 

 

 

 

 

 

 

 

 

http://regulomedb.org/snp/chr10/131263456
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CHAPTER 6  

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

In this study, different analysis were performed on different input models  which 

were obtained from the one main original set, in order to show if LD should be 

considered or not, in such SNP selection studies. In addition, we have examined the 

SNPs located on noncoding regions, if we can be able to obtain useful information or 

not.  The results and the experimental findings allow us to draw the following 

conclusions: 

1. For the selection of disease related SNPs, obtaining a new modified data set 

including SNPs with associated combined p values, from the original set by using 

LD. 

We believe that our study serves as a window to an understanding of the process 

based on contribution of LD in such kinds of SNP selection studies. Although we 

could not be able to improve the outputs of random forest algorithm in an 

acceptable level, if we consider the improved algorithm alone not as an input to 

another algorithm, we have proved that cost effective gene filtration can be 

achieved when analyzing the first 1000 SNPs of data the sets. In addition, if all 

the SNPs in data set is being analyzed, the results lead us to the conclusion that 

cost effective SNP filtration can be achieved. 

2. Selection of regulatory SNPs by concerning noncoding regions after obtaining a 

new modified data set including SNPs with associated combined p values based 

on LD. 

It is known that the functional effects of noncoding disease associated SNPs is 

one of the challenging issue in GWAS. Although we were able to find some 
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regulatory SNPs which have greater importance, by using the data set including 

SNPs with individual p values, we have proved that, after constructed the new data 

set which is consisting of the SNPs with associated combined p values, we 

were able to obtain the most important regulatory SNPs in a significant level. 

Therefore, the results can be the powerful evidence for LD to have positive effects on 

SNP selection studies, especially on studies based on non-coding SNPs. 

As future works;  

 By considering the improved algorithm alone, it can be validated after 

applied on another data set. 

 By considering the improved algorithm as an input modification algorithm, 

after applying it on another set, modified input can be given to another 

classification algorithm, other than random forest.  

 After gaining more biological perspective in this area, we will be able to 

focus on the output SNPs and genes hosting those SNPs in more closer detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

 

REFERENCES 

 

 

 

Adeyemo, Adebowale, Norman Gerry, Guanjie Chen, Alan Herbert, Ayo Doumatey, 

Hanxia Huang, Jie Zhou, et al. 2009. “A Genome-Wide Association Study of 

Hypertension and Blood Pressure in African Americans.” PLoS Genetics 5 (7): 

e1000564. doi:10.1371/journal.pgen.1000564. 

Aguiar, Vanessa, Jose A Seoane, and Ana Freire. 2010. “GA-Based Data Mining 

Applied to Genetic Data for the Diagnosis of Complex Diseases,” 220–40. 

Altshuler, David M, Richard a Gibbs, Leena Peltonen, Emmanouil Dermitzakis, 

Stephen F Schaffner, Fuli Yu, Penelope E Bonnen, et al. 2010. “Integrating 

Common and Rare Genetic Variation in Diverse Human Populations.” Nature 

467 (7311): 52–58. doi:10.1038/nature09298. 

Ayers, Kristin L, and Heather J Cordell. 2010. “SNP Selection in Genome-Wide and 

Candidate Gene Studies via Penalized Logistic Regression.” Genetic 

Epidemiology 34 (8): 879–91. doi:10.1002/gepi.20543. 

Boyle, Alan P, Eurie L Hong, Manoj Hariharan, Yong Cheng, Marc a Schaub, Maya 

Kasowski, Konrad J Karczewski, et al. 2012. “Annotation of Functional 

Variation in Personal Genomes Using RegulomeDB.” Genome Research 22 (9): 

1790–97. doi:10.1101/gr.137323.112. 

Breiman, Leo. 2001. “Random Forests.” European Journal of Mathematics 45 (1): 

5–32. 

Brown, M. P. S., W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, 

M. Ares, and D. Haussler. 2000. “Knowledge-Based Analysis of Microarray 

Gene Expression Data by Using Support Vector Machines.” Proceedings of the 

National Academy of Sciences 97 (1): 262–67. doi:10.1073/pnas.97.1.262. 

Byng, M C, J C Whittaker, A P Cuthbert, C G Mathew, and C M Lewis. 2003. “SNP 

Subset Selection for Genetic Association Studies.” Ann Hum Genet 67 (Pt 6): 

543–56. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&d

opt=Citation&list_uids=14641242. 

Carlson, Christopher S, Michael a Eberle, Mark J Rieder, Qian Yi, Leonid Kruglyak, 

and Deborah a Nickerson. 2004. “Selecting a Maximally Informative Set of 

Single-Nucleotide Polymorphisms for Association Analyses Using Linkage 



84 

 

Disequilibrium.” American Journal of Human Genetics 74 (1): 106–20. 

doi:10.1086/381000. 

Chapman, Juliet, and John Whittaker. 2008. “Analysis of Multiple SNPs in a 

Candidate Gene or Region.” Genetic Epidemiology 32 (6): 560–66. 

Chelala, Claude, Arshad Khan, and Nicholas R. Lemoine. 2009. “SNPnexus: A Web 

Database for Functional Annotation of Newly Discovered and Public Domain 

Single Nucleotide Polymorphisms.” Bioinformatics 25 (5): 655–61. 

Chuang, Li-yeh, Kuo-chuan Wu, Hsueh-wei Chang, and Cheng-hong Yang. 2011. 

“Support Vector Machine-Based Prediction for Oral Cancer Using Four SNPs 

in DNA Repair Genes” I: 16–19. 

Contributors, Wikipedia. “Human Genome Project.” Wikipedia, The Free 

Encyclopedia. 

http://en.wikipedia.org/w/index.php?title=Human_Genome_Project&oldid=637

660910. 

Cui, Yuehua, Shaoyu Li, and Barry L. Williams. 2011. “A Combined $p$-Value 

Approach to Infer Pathway Regulations in eQTL Mapping.” Statistics and Its 

Interface 4 (3): 389–401. doi:10.4310/SII.2011.v4.n3.a13. 

Daly, M J, J D Rioux, S F Schaffner, T J Hudson, and E S Lander. 2001. “High-

Resolution Haplotype Structure in the Human Genome.” Nature Genetics 29 

(2): 229–32. 

Dawson, Elisabeth, Gonçalo R Abecasis, Suzannah Bumpstead, Yuan Chen, Sarah 

Hunt, David M Beare, Jagjit Pabial, et al. 2002. “A First-Generation Linkage 

Disequilibrium Map of Human Chromosome 22.” Nature 418 (6897): 544–48. 

Dayem Ullah, A Z, N R Lemoine, and C Chelala. 2013. “A Practical Guide for the 

Functional Annotation of Genetic Variations Using SNPnexus.” Brief Bioinform 

14 (4): 437–47. doi:10.1093/bib/bbt004. 

Dayem Ullah, Abu Z., Nicholas R. Lemoine, and Claude Chelala. 2012. “SNPnexus: 

A Web Server for Functional Annotation of Novel and Publicly Known Genetic 

Variants (2012 Update).” Nucleic Acids Research 40 (W1). 

Dunning, Alison M, Francine Durocher, Catherine S Healey, M Dawn Teare, Simon 

E Mcbride, Francesca Carlomagno, Chun-fang Xu, et al. 2000. “The Extent of 

Linkage Disequilibrium in Four Populations with Distinct Demographic 

Histories,” 1544–54. 

Easton, Douglas F, and Rosalind a Eeles. 2008. “Genome-Wide Association Studies 

in Cancer.” Human Molecular Genetics 17 (R2): R109–15. 

doi:10.1093/hmg/ddn287. 



85 

 

Eisenbarth, I, A M Striebel, E Moschgath, W Vogel, and G Assum. 2001. “Long-

Range Sequence Composition Mirrors Linkage Disequilibrium Pattern in a 1.13 

Mb Region of Human Chromosome 22.” Human Molecular Genetics 10 (24): 

2833–39. 

Eslahchi, Changiz, Ali Katanforoush, Hamid Pezeshk, and Narjes Afzaly. 2011. 

“Archive of SID Haplotype Block Partitioning and tagSNP Selection under the 

Perfect Phylogeny Model Archive of SID” 9 (4): 281–89. 

Feingold, N. 1980. “Linkage Disequilibrium.” Journal de Genetique Humaine 28 

(2): 105–13. doi:10.1371/journal.pgen.1000147. 

Fiaschi, Linda, Jonathan M. Garibaldi, and Natalio Krasnogor. 2009. “A Framework 

for the Application of Decision Trees to the Analysis of SNPs Data.” In 2009 

IEEE Symposium on Computational Intelligence in Bioinformatics and 

Computational Biology, CIBCB 2009 - Proceedings, 106–13. 

Friedman, J, R Tibshirani, and T Hastie. 2009. The Elements of Statistical Learning: 

Data Mining, Inference, and Prediction. Springer-Verlag New York. 

Gabriel, S B. 2002. “The Structure of Haplotype Blocks in the Human Genome.” 

Science 296: 2225–29. 

“Genetic Home Reference.” 2014. In Help Me Understand Genetic, 9–66. 

Department of Health & Human Services. http://ghr.nlm.nih.gov/. 

Gerstenblith, Meg R, Jianxin Shi, and Maria Teresa Landi. 2010. “Genome-Wide 

Association Studies of Pigmentation and Skin Cancer: A Review and Meta-

Analysis.” Pigment Cell & Melanoma Research 23 (5): 587–606. 

Goldstein, Benjamin A, Alan E Hubbard, Adele Cutler, and Lisa F Barcellos. 2010. 

“An Application of Random Forests to a Genome-Wide Association Dataset: 

Methodological Considerations & New Findings.” BMC Genetics 11: 49. 

Goldstein, Benjamin A, Eric C Polley, and Farren B. S. Briggs. 2011. “Random 

Forests for Genetic Association Studies.” Statistical Applications in Genetics 

and Molecular Biology. 

Gomes, Bruno C, Susana Vinga, and Jorge Gaspar. 2010. “A Data Mining Approach 

for the Detection of High-Risk Breast Cancer Groups,” 1–8. 

Hill, W G. 1974. “Estimation of Linkage Disequilibrium in Randomly Mating 

Populations.” Heredity 33 (2): 229–39. 

Horne, B D, and N J Camp. 2004. “Principal Component Analysis for Selection of 

Optimal SNP-Sets That Capture Intragenic Genetic Variation.” Genet Epidemiol 

26 (1): 11–21. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&d

opt=Citation&list_uids=14691953. 



86 

 

Jakkula, Eveliina, Virpi Leppä, Anna-Maija Sulonen, Teppo Varilo, Suvi Kallio, 

Anu Kemppinen, Shaun Purcell, et al. 2010. “Genome-Wide Association Study 

in a High-Risk Isolate for Multiple Sclerosis Reveals Associated Variants in 

STAT3 Gene.” American Journal of Human Genetics 86 (2): 285–91. 

doi:10.1016/j.ajhg.2010.01.017. 

Jiang, X, M M Barmada, and S Visweswaran. 2010. “Identifying Genetic 

Interactions in Genome-Wide Data Using Bayesian Networks.” Genet 

Epidemiol 34 (6): 575–81. doi:10.1002/gepi.20514 [doi]. 

Johnson, Andrew D., Robert E. Handsaker, Sara L. Pulit, Marcia M. Nizzari, 

Christopher J. O’Donnell, and Paul I W De Bakker. 2008. “SNAP: A Web-

Based Tool for Identification and Annotation of Proxy SNPs Using HapMap.” 

Bioinformatics 24 (24): 2938–39. 

Johnson, G C, L Esposito, B J Barratt, A N Smith, J Heward, G Di Genova, H Ueda, 

et al. 2001. “Haplotype Tagging for the Identification of Common Disease 

Genes.” Nature Genetics 29 (2): 233–37. doi:10.1038/ng1001-233. 

Jorde, L.B. 2000. “Linkage Disequilibrium and the Search for Complex Disease 

Genes.” Genome Research 10 (10): 1435–44. doi:10.1101/gr.144500. 

Journal, International, and Innovative Computing. 2013. “A GENETIC 

ALGORITHM – SUPPORT VECTOR MACHINE METHOD FOR 

SELECTING TAG SINGLE NUCLEOTIDE” 9 (2): 525–41. 

Kim, Jinseog, Insuk Sohn, Dennis Dong Hwan Kim, and Sin-Ho Jung. 2013. “SNP 

Selection in Genome-Wide Association Studies via Penalized Support Vector 

Machine with MAX Test.” Computational and Mathematical Methods in 

Medicine 2013 (January): 340678. doi:10.1155/2013/340678. 

Lettre, Guillaume, Cameron D Palmer, Taylor Young, Kenechi G Ejebe, Hooman 

Allayee, Emelia J Benjamin, Franklyn Bennett, et al. 2011. “Genome-Wide 

Association Study of Coronary Heart Disease and Its Risk Factors in 8,090 

African Americans: The NHLBI CARe Project.” PLoS Genetics 7 (2): 

e1001300. doi:10.1371/journal.pgen.1001300. 

Lewontin, R C, and Received July. 1964. “The Interaction of Selection and Linkage. 

I. General Considerations; Heterotic Models’,” 49–67. 

Liaw, A, and M Wiener. 2002. “Classification and Regression by randomForest.” R 

News 2: 18–22. 

Lin, Min-hui. 2010. “A Hybrid PSO - SVM Approach for Haplotype Tagging SNP 

Selection Problem” 8 (6): 60–65. 

Liu, Guimei, Yue Wang, and Limsoon Wong. 2010. “FastTagger: An Efficient 

Algorithm for Genome-Wide Tag SNP Selection Using Multi-Marker Linkage 

Disequilibrium.” BMC Bioinformatics 11 (January): 66. doi:10.1186/1471-

2105-11-66. 



87 

 

Lucek, P, J Hanke, J Reich, S A Solla, and J Ott. “Multi-Locus Nonparametric 

Linkage Analysis of Complex Trait Loci with Neural Networks.” Human 

Heredity 48 (5): 275–84. 

Macintyre, Geoff, James Bailey, Izhak Haviv, and Adam Kowalczyk. 2010. “Is-

rSNP: A Novel Technique for in Silico Regulatory SNP Detection.” 

Bioinformatics (Oxford, England) 26 (18): i524–30. 

doi:10.1093/bioinformatics/btq378. 

Mailman, Matthew D, Michael Feolo, Yumi Jin, Masato Kimura, Kimberly Tryka, 

Rinat Bagoutdinov, Luning Hao, et al. 2007. “The NCBI dbGaP Database of 

Genotypes and Phenotypes.” Nature Genetics 39 (10): 1181–86. 

Marinov, M, and D E Weeks. 2001. “The Complexity of Linkage Analysis with 

Neural Networks.” Human Heredity 51 (3): 169–76. doi:53338. 

Miyaki, Koichi, Kazuyuki Omae, Mitsuru Murata, Norio Tanahashi, Ikuo Saito, and 

Kiyoaki Watanabe. 2004. “High Throughput Multiple Combination Extraction 

from Large Scale Polymorphism Data by Exact Tree Method.” Journal of 

Human Genetics 49 (9): 455–62. 

Mourad, Raphaël, Christine Sinoquet, and Philippe Leray. 2011. “A Hierarchical 

Bayesian Network Approach for Linkage Disequilibrium Modeling and Data-

Dimensionality Reduction prior to Genome-Wide Association Studies.” BMC 

Bioinformatics 12 (1). BioMed Central Ltd: 16. doi:10.1186/1471-2105-12-16. 

Musani, S K, D Shriner, N Liu, R Feng, C S Coffey, N Yi, H K Tiwari, and D B 

Allison. 2007. “Detection of Gene X Gene Interactions in Genome-Wide 

Association Studies of Human Population Data.” Hum Hered 63 (2): 67–84. 

doi:000099179 [pii]\r10.1159/000099179. 

Patil, N, A J Berno, D A Hinds, W A Barrett, J M Doshi, C R Hacker, C R Kautzer, 

et al. 2001. “Blocks of Limited Haplotype Diversity Revealed by High-

Resolution Scanning of Human Chromosome 21.” Science (New York, N.Y.) 

294 (5547): 1719–23. 

Peng, Gang, Li Luo, Hoicheong Siu, Yun Zhu, Pengfei Hu, Shengjun Hong, Jinying 

Zhao, et al. 2010. “Gene and Pathway-Based Second-Wave Analysis of 

Genome-Wide Association Studies.” European Journal of Human Genetics : 

EJHG 18 (1). Nature Publishing Group: 111–17. doi:10.1038/ejhg.2009.115. 

Purcell, Shaun. 2007. “PLINK: A Toolset for Whole-Genome Association and 

Population-Based Linkage Analysis.” American Journal of Human Genetics, 

81. 

Raetz, Elizabeth A., Philip J. Moos, Aniko Szabo, and William L. Carroll. 2001. 

“GENE EXPRESSION PROFILING.” Hematology/Oncology Clinics of North 

America. doi:10.1016/S0889-8588(05)70257-4. 



88 

 

Reddy, M V Prasad Linga, H Wang, S Liu, B Bode, J C Reed, R D Steed, S W 

Anderson, L Steed, D Hopkins, and J-X She. 2011. “Association between Type 

1 Diabetes and GWAS SNPs in the Southeast US Caucasian Population.” Genes 

and Immunity 12 (3): 208–12. 

Reich, David E, Michele Cargill, Stacey Bolk, James Ireland, Pardis C Sabeti, Daniel 

J Richter, Thomas Lavery, et al. 2001. “Linkage Disequilibrium in the Human 

Genome” 9 (Table 1): 199–204. 

Reich, David E, Stephen F Schaffner, Mark J Daly, Gil McVean, James C Mullikin, 

John M Higgins, Daniel J Richter, Eric S Lander, and David Altshuler. 2002. 

“Human Genome Sequence Variation and the Influence of Gene History, 

Mutation and Recombination.” Nature Genetics 32 (1): 135–42. 

Saangyong  Uhmn Young-Woong Ko, Sungwon Cho, Jaeyoun Cheong and Jin Kim, 

Dong-Hoi Kim. 2009. “A Study on Application of Single Nucleotide 

Polymorphism and Machine Learning Techniques to Diagnosis of Chronic 

Hepatitis.” Expert Systems 26 (1): 10. 

http://www3.interscience.wiley.com/journal/121675322/abstract?CRETRY=1&

SRETRY=0. 

Schulze, Thomas G, Kui Zhang, Yu-Sheng Chen, Nirmala Akula, Fengzhu Sun, and 

Francis J McMahon. 2004. “Defining Haplotype Blocks and Tag Single-

Nucleotide Polymorphisms in the Human Genome.” Human Molecular 

Genetics 13 (3): 335–42. doi:10.1093/hmg/ddh035. 

Scott, Laura J, Pierandrea Muglia, Xiangyang Q Kong, Weihua Guan, Matthew 

Flickinger, Ruchi Upmanyu, Federica Tozzi, et al. 2009. “Genome-Wide 

Association and Meta-Analysis of Bipolar Disorder in Individuals of European 

Ancestry.” Proceedings of the National Academy of Sciences of the United 

States of America 106 (18): 7501–6. doi:10.1073/pnas.0813386106. 

Shapiro, L J. 1993. “Human Genome Project.” The Western Journal of Medicine 158 

(2): 181. 

Sherry, S T, M Ward, M Kholodov, J Baker, L Phan, E M Smigielski, K Sirotkin, 

and K Sirotkin Genome Res. 2001. “dbSNP : The NCBI Database of Genetic 

Variation” 29 (1): 308–11. 

“Single-Nucleotide Polymorphism.” 2013. 

http://en.wikipedia.org/w/index.php?title=Single-

nucleotide_polymorphism&oldid=549487528. 

Sinoquet, Christine, and Philippe Leray. 2010. “A Bayesian Network Approach to 

Model Local Dependencies among SNPs A Bayesian Network Approach to 

Model Local Dependencies among SNPs.” 

Slatkin, Montgomery. 2008. “Linkage Disequilibrium--Understanding the 

Evolutionary Past and Mapping the Medical Future.” Nature Reviews. Genetics 

9 (6): 477–85. 



89 

 

Stahl, EA, S Raychaudhuri, EF Remmers, G Xie, S Eyre, BP Thomson, YH Li, et al. 

2010. “Genome-Wide Association Study Meta-Analysis Identifies Seven New 

Rheumatoid Arthritis Risk Loci.” NATURE PUBLISHING GROUP. 

http://discovery.ucl.ac.uk/140377/. 

T. J. P. Hubbard, B. L. Aken, K. Beal, B. Ballester, M. Caccamo, Y. Chen, R. 

Holland L. Clarke, G. Coates, F. Cunningham, T. Cutts, T. Down, S. C. Dyer, S. 

Fitzgerald, J. Fernandez-Banet, S. Graf, S. Haider, M. Hammond, J. Herrero, E. 

Kulesha K. Howe, K. Howe, N. Johnson, A. Kahari, D. Keefe, F. Kokocinski, 

A. Parker D. Lawson, I. Longden, C. Melsopp, K. Megy, P. Meidl, B. Ouverdin, 

T. Cox A. Prlic, S. Rice, D. Rios, M. Schuster, I. Sealy, J. Severin, G. Slater, D. 

Smedley, G. Spudich, S. Trevanion, A. Vilella, J. Vogel, S. White, M. Wood, G. 

Proctor V. Curwen, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, A. 

Kasprzyk, and and E. Birney. S. Searle, J. Smith, A. Ureta-Vidal. 2007. 

“Ensembl.” Nucleic Acids Research. 

Taillon-Miller, P, I Bauer-Sardiña, N L Saccone, J Putzel, T Laitinen, A Cao, J Kere, 

G Pilia, J P Rice, and P Y Kwok. 2000. “Juxtaposed Regions of Extensive and 

Minimal Linkage Disequilibrium in Human Xq25 and Xq28.” Nature Genetics 

25 (3): 324–28. 

The Eugenics Review. 1926. “Statistical Methods for Research Workers” 18 (2): 

148–50. 

Tomida, S, T Hanai, N Koma, Y Suzuki, T Kobayashi, and H Honda. 2002. 

“Artificial Neural Network Predictive Model for Allergic Disease Using Single 

Nucleotide Polymorphisms Data.” J Biosci Bioeng 93 (5): 470–78. doi:S1389-

1723(02)80094-9 [pii]. 

Tomita, Yasuyuki, Shuta Tomida, Yuko Hasegawa, Yoichi Suzuki, Taro Shirakawa, 

Takeshi Kobayashi, and Hiroyuki Honda. 2004. “Artificial Neural Network 

Approach for Selection of Susceptible Single Nucleotide Polymorphisms and 

Construction of Prediction Model on Childhood Allergic Asthma.” BMC 

Bioinformatics 5 (September): 120. doi:10.1186/1471-2105-5-120. 

Waddel, Michael, David Page, Fenghuang Zhan, Bart Barlogie, and John 

Shaughnessy Jr. 2005. “Predicting Cancer Susceptibility from Single-

Nucleotide Polymorphism Data: A Case Study in Multiple Myeloma.” BIOKDD 

’05 Proceedings of the 5th International Workshop on Bioinformatics, 21–28. 

Wang, Ning, Joshua M Akey, Kun Zhang, Ranajit Chakraborty, and Li Jin. 2002. 

“Distribution of Recombination Crossovers and the Origin of Haplotype Blocks: 

The Interplay of Population History, Recombination, and Mutation.” American 

Journal of Human Genetics 71 (5): 1227–34. doi:10.1086/344398. 

Ward, Lucas D, and Manolis Kellis. 2012. “HaploReg: A Resource for Exploring 

Chromatin States, Conservation, and Regulatory Motif Alterations within Sets 

of Genetically Linked Variants.” Nucleic Acids Research 40 (Database issue): 

D930–34. doi:10.1093/nar/gkr917. 



90 

 

Wikipedia contributors. 2014. “Data Mining.” Wikipedia, The Free Encyclopedia. 

http://en.wikipedia.org/w/index.php?title=Data_mining&oldid=638889170 . 

Winham, Stacey J, Colin L Colby, Robert R Freimuth, Xin Wang, Mariza de 

Andrade, Marianne Huebner, and Joanna M Biernacka. 2012. “SNP Interaction 

Detection with Random Forests in High-Dimensional Genetic Data.” BMC 

Bioinformatics 13 (1). BMC Bioinformatics: 164. doi:10.1186/1471-2105-13-

164. 

Xu, Zongli, Norman L Kaplan, and Jack a Taylor. 2007. “Tag SNP Selection for 

Candidate Gene Association Studies Using HapMap and Gene Resequencing 

Data.” European Journal of Human Genetics : EJHG 15 (10): 1063–70. 

doi:10.1038/sj.ejhg.5201875. 

Yeager, Meredith, Nick Orr, Richard B Hayes, Kevin B Jacobs, Peter Kraft, Sholom 

Wacholder, Mark J Minichiello, et al. 2007. “Genome-Wide Association Study 

of Prostate Cancer Identifies a Second Risk Locus at 8q24.” Nature Genetics 39 

(5): 645–49. 

Zaykin, Dmitri V, Lev A Zhivotovsky, Wendy Czika, Susan Shao, and Russell D 

Wolfinger. 2007. “Combining P-Values in Large Scale Genomics 

Experiments.” Pharmaceutical Statistics 6 (3): 217–26. doi:10.1002/pst.304. 

Zhang, Kui, Zhaohui S Qin, Jun S Liu, Ting Chen, Michael S Waterman, and 

Fengzhu Sun. 2004. “Haplotype Block Partitioning and Tag SNP Selection 

Using Genotype Data and Their Applications to Association Studies.” Genome 

Research 14 (5): 908–16. doi:10.1101/gr.1837404. 

Zhao H. , Pfeiffer R, Gail M. H. 2003. “Haplotype Analysis in Population Genetics 

and Association Studies, Pharmacogenomics.” 

Zhou, Nina, and Lipo Wang. 2007. “Effective Selection of Informative SNPs and 

Classification on the HapMap Genotype Data.” BMC Bioinformatics 8 (C): 484. 

doi:10.1186/1471-2105-8-484. 
 


